C. J. Alpert and A. B. Kahng, Recent directions in netlist partitioning: a survey, Integration, the VLSI Journal, vol.19, issue.1-2, pp.1-81, 1995.
DOI : 10.1016/0167-9260(95)00008-4

L. Babel, H. Kellerer, and E. V. Kotov, Thek-partitioning problem, Mathematical Methods of Operations Research, vol.45, issue.1, pp.59-82, 1998.
DOI : 10.1007/BF01193837

S. Barna and S. Aravind, A new approximation technique for resource-allocation problems, Proc. Innovations in Computer Science (ICS), pp.342-357, 2010.

S. T. Barnard and H. D. Simon, Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems, Concurrency: Practice and Experience, vol.38, issue.2, pp.101-117, 1994.
DOI : 10.1002/cpe.4330060203

R. Bellman, Dynamic Programming, 1957.

C. Bichot and P. Siarry, Partitionnement de graphe : Optimisation et applications. Traité IC2, Série Informatique et système d'information, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01381608

H. L. Bodlaender and T. Kloks, Better algorithms for the pathwidth and treewidth of graphs, Automata, Languages and Programming, pp.544-555, 1991.
DOI : 10.1007/3-540-54233-7_162

E. G. Boman, K. D. Devine, L. A. Fisk, R. Heaphy, B. Hendrickson et al., Zoltan home page, 1999.

T. Bui, C. Heigham, C. Jones, and E. T. Leighton, Improving the performance of the Kernighan-Lin and simulated annealing graph bisection algorithms, Proceedings of the 1989 26th ACM/IEEE conference on Design automation conference , DAC '89, pp.775-778, 1989.
DOI : 10.1145/74382.74527

Ü. V. Çatalyürek and C. Aykanat, Hypergraph model for mapping repeated sparse matrixvector product computations onto multicomputers, Proc. International Conference on High Performance Computing, 1995.

Ü. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication, IEEE Transactions on Parallel and Distributed Systems, vol.10, issue.7, pp.673-693, 1999.
DOI : 10.1109/71.780863

B. Chen, C. Potts, and E. G. Woeginger, A Review of Machine Scheduling: Complexity, Algorithms and Approximability, pp.1493-1641, 1999.
DOI : 10.1007/978-1-4613-0303-9_25

C. Chevalier, Conception et mise en oeuvre d'outils efficaces pour le partitionnement et la distribution parallèles de problème numériques de très grande taille, Thèse de doctorat, 2007.

C. Chevalier, G. Grospellier, F. Ledoux, and E. J. Weill, Load balancing for mesh based multiphysics simulations in the Arcane framework, Proceedings of the Eighth International Conference on Engineering Computational Technology, 2012.

C. Chevalier and F. Pellegrini, PT-Scotch: A tool for efficient parallel graph ordering, Parallel Computing, vol.34, issue.6-8, pp.318-331, 2008.
DOI : 10.1016/j.parco.2007.12.001

URL : https://hal.archives-ouvertes.fr/hal-00402893

C. Chevalier and I. Safro, Comparison of coarsening schemes for multilevel graph partitioning. Learning and Intelligent Optimization, pp.191-205, 2009.

I. I. Cplex, V12.1 : User's manual for Cplex, International Business Machines Corporation, vol.46, issue.53, p.157, 2009.

G. Dantzig, Linear Programming and Extensions, 1963.
DOI : 10.1515/9781400884179

E. Devine, R. Boman, B. Heaphy, E. C. Hendrickson, and . Vaughan, Zoltan data management services for parallel dynamic applications, Computing in Science & Engineering, vol.4, issue.2, 2002.
DOI : 10.1109/5992.988653

W. E. Donath and A. J. Hoffman, Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices, IBM Technical Disclosure Bulletin, vol.15, pp.938-944, 1972.

W. E. Donath and A. J. Hoffman, Lower Bounds for the Partitioning of Graphs, IBM Journal of Research and Development, vol.17, issue.5, pp.420-425, 1973.
DOI : 10.1142/9789812796936_0044

V. Duraira and P. Kalla, Exploiting hypergraph partitioning for efficient Boolean satisfiability, Proceedings. Ninth IEEE International High-Level Design Validation and Test Workshop (IEEE Cat. No.04EX940), pp.141-146, 2004.
DOI : 10.1109/HLDVT.2004.1431257

C. Evrendilek, Vertex Separators for Partitioning a Graph, Sensors, vol.8, issue.2, 2008.
DOI : 10.3390/s8020635

C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for improving network partitions, Proceedings of the 19th Design Automation Conference, pp.175-181, 1982.

M. Fiedler, A property of eigenvectors of non-negative symmetric matrices and its application to graph theory, Czechoslovak Math. J, vol.25, pp.619-633, 1975.

M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Research Logistics Quarterly, vol.3, issue.1-2, pp.95-110, 1956.
DOI : 10.1002/nav.3800030109

M. Gairing, B. Monien, and A. Woclaw, A faster combinatorial approximation algorithm for scheduling unrelated parallel machines, Theoretical Computer Science, vol.380, issue.1-2, pp.87-99, 2007.
DOI : 10.1016/j.tcs.2007.02.056

M. Garey, D. Johnson, and L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science, vol.1, issue.3, pp.237-267, 1976.
DOI : 10.1016/0304-3975(76)90059-1

F. Glover and M. Laguna, Tabu Search, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01412610

R. Graham, E. Lawler, J. Lenstra, and A. R. Kan, Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey, Annals of Discrete Mathematics, vol.5, pp.287-326, 1979.
DOI : 10.1016/S0167-5060(08)70356-X

R. L. Graham, Bounds on Multiprocessing Timing Anomalies, SIAM Journal on Applied Mathematics, vol.17, issue.2, pp.416-429, 1969.
DOI : 10.1137/0117039

C. Guéret, C. Prins, and E. M. Sevaux, Applications of optimization with Xpress-MP. Dash Optimization Ltd, 2000.

I. and G. Optimization, Gurobi optimizer reference manual, 2015.

L. Hagen, D. Huang, and E. A. Kahng, On implementation choices for iterative improvement partitioning algorithms, 1997.

K. M. Hall, -Dimensional Quadratic Placement Algorithm, Management Science, vol.17, issue.3, pp.219-229, 1970.
DOI : 10.1287/mnsc.17.3.219

URL : https://hal.archives-ouvertes.fr/hal-00309584

S. Hauck and G. Borriello, An evaluation of bipartitioning techniques, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.16, issue.8, pp.849-866, 1997.
DOI : 10.1109/43.644609

B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel computing, Parallel Computing, vol.26, issue.12, 2000.
DOI : 10.1016/S0167-8191(00)00048-X

B. Hendrickson and R. Leland, An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations, SIAM Journal on Scientific Computing, vol.16, issue.2, pp.452-469, 1995.
DOI : 10.1137/0916028

B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, Proceedings of the 1995 ACM/IEEE conference on Supercomputing (CDROM) , Supercomputing '95, 1995.
DOI : 10.1145/224170.224228

A. Horowitz and S. Sahni, Exact and Approximate Algorithms for Scheduling Nonidentical Processors, Journal of the ACM, vol.23, issue.2, pp.317-327, 1976.
DOI : 10.1145/321941.321951

O. H. Ibarra and C. E. Kim, Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems, Journal of the ACM, vol.22, issue.4, pp.463-468, 1975.
DOI : 10.1145/321906.321909

R. M. Karp, Reducibility among Combinatorial Problems, pp.85-103, 1972.

G. Karypis, R. Aggarwal, V. Kumar, and E. S. Shekhar, Multilevel hypergraph partitioning, Proceedings of the 34th annual conference on Design automation conference , DAC '97, pp.69-79, 1999.
DOI : 10.1145/266021.266273

G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM Journal on Scientific Computing, vol.20, issue.1, 1995.
DOI : 10.1137/S1064827595287997

G. Karypis and V. Kumar, Metis A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, 1998.

G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.359-392, 1999.
DOI : 10.1137/S1064827595287997

H. Kellerer and V. Kotov, A 3/2-approximation algorithm for -partitioning, Operations Research Letters, vol.39, issue.5, pp.359-362, 2011.
DOI : 10.1016/j.orl.2011.06.005

B. W. Kernighan and S. Lin, An Efficient Heuristic Procedure for Partitioning Graphs, Bell System Technical Journal, vol.49, issue.2, pp.291-307, 1970.
DOI : 10.1002/j.1538-7305.1970.tb01770.x

N. G. Kinnersley, The vertex separation number of a graph equals its path-width, Information Processing Letters, vol.42, issue.6, pp.345-350, 1992.
DOI : 10.1016/0020-0190(92)90234-M

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by Simulated Annealing, Science, vol.220, issue.4598, pp.671-680, 1983.
DOI : 10.1126/science.220.4598.671

Y. Kobayashi and C. Sommer, On shortest disjoint paths in planar graphs, Discrete Optimization, vol.7, issue.4, pp.234-245, 2010.
DOI : 10.1016/j.disopt.2010.05.002

E. Korach and N. Solel, Tree-width, path-width, and cutwidth, Discrete Applied Mathematics, vol.43, issue.1, pp.97-101, 1993.
DOI : 10.1016/0166-218X(93)90171-J

B. Krishnamurthy, An improved min-cut algorithm for partitioning VLSI networks, IEEE Trans. Computers, vol.33, issue.5, pp.438-446, 1984.

C. Lachat, F. Pellegrini, and D. C. , PaMPA : Parallel Mesh Partitioning and Adaptation, 21st International Conference on Domain Decomposition Methods (DD21), 2012.
URL : https://hal.archives-ouvertes.fr/hal-00879382

J. Lenstra, D. Shmoys, and É. Tardos, Approximation algorithms for scheduling unrelated parallel machines, Mathematical Programming, vol.23, issue.1-3, pp.259-271, 1990.
DOI : 10.1007/BF01585745

J. Leung, L. Kelly, and J. Anderson, Handbook of Scheduling : Algorithms, Models, and Performance Analysis, 2004.

H. R. Lourenço, O. C. Martin, and T. Stützle, Iterated Local Search. Handbook of Metaheuristics, pp.320-353, 2003.

S. Martello, F. Soumis, and P. Toth, Exact and approximation algorithms for makespan minimization on unrelated parallel machines, Discrete Applied Mathematics, vol.75, issue.2, pp.169-188, 1997.
DOI : 10.1016/S0166-218X(96)00087-X

K. Neumann, Min-sum and min-max single-machine scheduling with stochastic tree-like precedence constraints: Complexity and algorithms, 1990.
DOI : 10.1007/BFb0008404

K. Neumann, Nonpreemptive Scheduling with Stochastic Precedence Constraints, pp.139-147, 1991.
DOI : 10.1007/978-3-642-76537-7_10

C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization : Algorithms and Complexity, 1982.

F. Pellegrini, Application de méthodes de partition à la résolution de problèmes de graphes issus du parallélisme, Thèse de Doctorat, 1995.

F. Pellegrini and J. Roman, Scotch: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs, Proceedings of HPCN'96, pp.493-498, 1996.
DOI : 10.1007/3-540-61142-8_588

A. Pothen, H. D. Simon, and K. Liou, Partitioning Sparse Matrices with Eigenvectors of Graphs, SIAM Journal on Matrix Analysis and Applications, vol.11, issue.3, pp.430-452, 1990.
DOI : 10.1137/0611030

N. Robertson and P. Seymour, Graph minors. I. Excluding a forest, Journal of Combinatorial Theory, Series B, vol.35, issue.1, pp.39-61, 1983.
DOI : 10.1016/0095-8956(83)90079-5

N. Robertson and P. Seymour, Graph minors. II. Algorithmic aspects of tree-width, Journal of Algorithms, vol.7, issue.3, pp.309-322, 1986.
DOI : 10.1016/0196-6774(86)90023-4

A. L. Rosenberg and L. S. Health, Graph separators, with applications, Frontiers of Computer Science, 2001.

S. K. Sahni, Algorithms for Scheduling Independent Tasks, Journal of the ACM, vol.23, issue.1, pp.116-127, 1976.
DOI : 10.1145/321921.321934

E. R. Scheinerman and D. H. Ullman, Fractional graph theory : a rational approach to the theory of graphs, Courier Corporation, 2011.

A. Sen, H. Deng, and E. S. Guha, On a graph partitioning problem with applications to VLSI layout, 1991., IEEE International Sympoisum on Circuits and Systems, pp.2846-2849, 1991.
DOI : 10.1109/ISCAS.1991.176137

D. B. Shmoy and E. Tardos, An approximation algorithm for the generalized assignment problem, Math Programming, 1993.
DOI : 10.1007/BF01585178

H. D. Simon, Partitioning of unstructured problems for parallel processing, Computing Systems in Engineering, vol.2, issue.2-3, pp.135-148, 1991.
DOI : 10.1016/0956-0521(91)90014-V

K. Skodinis, Construction of linear tree-layouts which are optimal with respect to vertex separation in linear time, Journal of Algorithms, vol.47, issue.1, pp.40-59, 2003.
DOI : 10.1016/S0196-6774(02)00225-0

L. Tsai, Asymptotic Analysis of an Algorithm for Balanced Parallel Processor Scheduling, SIAM Journal on Computing, vol.21, issue.1, pp.59-64, 1992.
DOI : 10.1137/0221007

S. L. Van-de-velde, Duality-Based Algorithms for Scheduling Unrelated Parallel Machines, ORSA Journal on Computing, vol.5, issue.2, pp.192-205, 1993.
DOI : 10.1287/ijoc.5.2.192

R. Van-driessche and D. Roose, A graph contraction algorithm for the calculation of eigenvectors of the laplacian matrix of a graph with a multilevel method, 1994.

L. Vandenberghe and S. Boyd, Semidefinite Programming, SIAM Review, vol.38, issue.1, pp.49-95, 1996.
DOI : 10.1137/1038003

G. J. Woeginger, When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)?, INFORMS Journal on Computing, vol.12, issue.1, pp.57-74, 2000.
DOI : 10.1287/ijoc.

G. J. Woeginger, A comment on scheduling two parallel machines with capacity constraints, Discrete Optimization, vol.2, issue.3, pp.269-272, 2005.
DOI : 10.1016/j.disopt.2005.06.005

H. Yang, Y. Ye, and E. J. Zhang, An approximation algorithm for scheduling two parallel machines with capacity constraints, Discrete Applied Mathematics, vol.130, issue.3, pp.449-467, 2003.
DOI : 10.1016/S0166-218X(02)00601-7

C. Zhang, G. Wang, X. Liu, and E. J. Liu, Approximating Scheduling Machines with Capacity Constraints, Frontiers in Algorithmics : Third International Workshop. Proceedings, pp.283-292, 2009.
DOI : 10.1287/trsc.19.2.127