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Résumé

Cette thèse vise à proposer de nouvelles méthodes permettant de reconstruire la cir-

culation dans le manteau terrestre et l’évolution de la tectonique de surface pour les

deux cents derniers millions d’années. Nous utilisons des modèles numériques de

convection mantellique dans lesquels la dynamique de surface est comparable à la tec-

tonique terrestre. En combinant ces modèles avec des reconstructions de la tectonique

des plaques il est possible d’estimer la structure et l’évolution du champ de tempéra-

ture dans le manteau. Jusqu’à présent, l’inclusion des reconstructions de la tectonique

des plaques se faisait en imposant des conditions aux limites du modèle (équilibre des

forces, vitesses imposées...). Ces techniques, bien que permettant de tester la valid-

ité de différents scénarios tectoniques alternatifs, n’autorisent pas de rétroaction dy-

namique de la convection mantellique sur la tectonique de surface.

Dans ce travail, nous avons développé des techniques d’assimilation de données per-

mettant d’intégrer les reconstructions de la tectonique des plaques dans un modèle

numérique tout en laissant se développer de manière auto-cohérente cette rétroaction.

Les techniques développées permettent également de prendre en compte les incerti-

tudes associées aux reconstructions de la tectonique des plaques et de calculer les er-

reurs sur l’estimation finale de la circulation mantellique.

Dans un premier temps, nous avons développé un filtre de Kalman suboptimal qui per-

met d’estimer la structure et l’évolution de la circulation mantellique la plus probable à

partir d’un modèle numérique de convection et d’une série temporelle d’observations

de surface, ainsi que de leurs incertitudes respectives.

Ce filtre a été testé sur des expériences synthétiques. Celles-ci consistent à tenter de

retrouver une évolution témoin à partir d’une série temporelle de données issues de

cette évolution. Ces expériences ont montré qu’il était possible, en principe, de recon-

struire la structure et l’évolution de l’ensemble du manteau à partir d’observations de

vitesses et de flux de chaleur à la surface.

Dans un second temps, nous avons développé un filtre de Kalman d’ensemble. Ce filtre
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permet non seulement d’estimer de manière plus précise la géométrie des structures

mantelliques, mais aussi les incertitudes sur cette estimation.



v

Abstract

This dissertation focuses on the developpement of data assimilation methods to recon-

struct the circulation of the Earth’s mantle and the evolution of its surface tectonics for

the last 200 Myrs. We use numerical models of mantle convection in which the surface

dynamics is similar to the Earth’s. By combining these models with plate tectonics re-

constructions, it is possible to estimate the structure and evolution of the temperature

field of the mantle. So far, the assimilation of plate tectonics reconstructions was done

by imposing specific boundary conditions in the model (force balance, imposed veloci-

ties...). These techniques, although insightful to test the likeliness of alternative tectonic

scenarios, do not allow the full expression of the dynamical feedback between mantle

convection and surface tectonics. We develop sequential data assimilation techniques

able to assimilate plate tectonics reconstructions in a numerical model while simul-

taneously letting this dynamical feedback develop self-consistently. Moreover, these

techniques take into account errors in plate tectonics reconstructions, and compute the

error on the final estimation of mantle circulation.

First, we develop a suboptimal Kalman filter. This filter estimates the most likely struc-

ture and evolution of mantle circulation from a numerical model of mantle convec-

tion, a time series of surface observations and the uncertainty on both. This filter was

tested on synthetic experiments. The principle of a synthetic experiment is to apply the

data assimilation algorithm to a set of synthetic observations obtained from a reference

run, and to then compare the obtained estimation of the evolution with the reference

evolution. The synthetic experiments we conducted showed that it was possible, in

principle, to reconstruct the structure and evolution of the whole mantle from surface

velocities and heat flux observations.

Second, we develop an Ensemble Kalman Filter. Instead of estimating the most likely

evolution, an ensemble of possible evolutions are computed. This technique leads to a

better estimation of the geometry of mantle structures and a more complete estimation

of the uncertainties associated.
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1

Introduction

The Earth is an active planet, as evidenced by the regular occurrence of earthquakes,

volcanic eruptions and the presence of large regions of highly deformed rocks. This

activity is the surface expression of a dynamic system comprised of the two outermost

layers of the Earth: the crust (of variable thickness between 0 up to 60 km) and the

mantle (extending from the base of the crust to 2900 km in depth). To date, the Earth

science community uses two different theories to describe the dynamics of the mantle-

crust system at a global scale: plate tectonics theory describes the motion at the surface

of the Earth while mantle convection theory describes its internal dynamics.

The theory of plate tectonics is a kinematic theory. Its original formulation (McKenzie

& Parker, 1967; Morgan, 1968; Le Pichon, 1968) states that the Earth’s surface is made of

a jigsaw of internally rigid blocks, the plates, each of them moving with respect to the

others. The relative motion of these plates is accommodated by deformation along the

lines separating plates, called plate boundaries. This theory is successful in predicting

the pattern of surface velocities and explaining the repartition of mountain ranges,

earthquakes and volcanism (Figure 1 shows for example the fit between seismicity

and plate boundaries). It also gives a global framework to integrate various types of

data (magnetic, bathymetric, geodetic, paleontologic, geologic...) and provide models
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of the motions at the surface of the Earth at present (Geologically current plate motion

models, e.g. DeMets et al., 2010), and in the past (classical plate reconstruction models,

e.g. Torsvik et al., 2010; Seton et al., 2012; Müller & Wessel, 2015).

FIGURE 1: Synthetic world map taken from Müller & Wessel (2015). This
map shows: in white, the plate boundaries from Coffin et al. (1997), in red
dots the shallow seismicity (0 − 70 km depth) from Engdahl et al. (1998),
and with areas of lighter illumination the regions of diffuse plate bound-
aries based on Figure 1 of Gordon (2000). Plate abbreviations: B, Borneo;
AN, Antarctica; AR, Arabia; AU, Australia; CA, Caribbean; CAP, Capri-
corn; CL, Caroline; CO, Cocos; EU, Eurasia; I, Indo-China; IN, India; JF,
Juan de Fuca; NA, North America; NB, Nubia; NC, North China; NZ,
Nazca; OK, Okhotsk; PA, Pacific; SA, South America; SC, Scotia Sea; SM,

Somalia; Y, Yangtze; T, Tarim Basin; PH, Philippine.

Mantle convection theory, on the contrary, is a physical theory. It is based on the obser-

vation that the mantle, although solid, behaves like a fluid at timescales greater than

a few thousand years (Nansen, 1928; Haskell, 1937; Griggs, 1939a), and thus uses the

principles and methods of fluid dynamics to study the mantle. Mantle convection the-

ory states that the mantle is cooling down and that the principal mechanism for its

transferring heat is convection: hot and thus lighter material in the interior rises while

cold and denser material at the surface sinks, creating convecting currents. The evo-

lution of mantle convection theory is tightly linked to the exploration of the surface
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dynamics of the Earth. Originally, the possibility of mantle convection was studied

(Holmes, 1931; Pekeris, 1935; Hales, 1936; Griggs, 1939b; Runcorn, 1962) so as to pro-

vide a viable driving mechanism for the theory of continental drift of Wegener (1924).

The formulation of plate tectonics theory provided a more detailed description of the

dynamics of the Earth’s surface and it was soon thereafter recognized that the plates

correspond to the thermal boundary layer in mantle convection theory (Turcotte &

Oxburgh, 1972), or in short that plates are mantle convection. Since then, two of the

central questions of mantle convection studies have been: how does plate tectonics

arise from mantle convection, and what are the dynamical interactions between plates

and the rest of the mantle?

The physical description of mantle convection is based on the derivation of partial dif-

ferential equations governing the flow (Turcotte & Oxburgh, 1972). These equations

are highly nonlinear, so the computation of a solution generally requires the develop-

ment of numerical methods (McKenzie et al., 1974). The development of models of

mantle convection has followed two complementary lines of inquiry to investigate the

relationship between surface tectonics and mantle dynamics (see Lowman, 2011, for a

review).

The first consist in using plate reconstruction models, either past or present, as bound-

ary conditions of mantle convection models. In doing so, they provide estimations of

the structure and evolution of the flow in the Earth’s mantle. We will call these esti-

mations mantle circulation reconstructions. Hager & O’Connell (1979) pioneered this

type of studies and showed how the presence of plates at the surface affects the large

scale flow of the mantle. Mantle circulation reconstructions have provided valuable

insights into the dynamics and evolution of the deep earth mantle structures (Bunge

et al., 1998; McNamara & Zhong, 2005; Davies et al., 2012; Bower et al., 2013), the evolu-

tion of mantle plumes and their relationship to hotspots (Hassan et al., 2016), changes

in the Earth’s rotation axis (Steinberger & O’Connell, 1997), sea-level (Moucha et al.,

2008) or dynamic topography (Flament et al., 2013), for example.

The second line of research consist of implementing the physics necessary to generate
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plates in convection codes, so that plate tectonics arises naturally from mantle convec-

tion models (Bercovici et al., 2015). Tackley (2000a) described this aim as the "Holy

Grail" of mantle convection modellers: it would describe physically the dynamics of

both the mantle and the surface, and, in doing so, unify the theories of plate tectonics

and mantle convection. 16 years later, this aim is still not reached, but the progresses

in this direction have led to the emergence of numerical models of mantle convection

which display a surface dynamics similar to that of the Earth, at first order (Moresi &

Solomatov, 1998; Moresi et al., 2000; Richards et al., 2001; Stein et al., 2004; Bercovici,

2003; Tackley, 2000b; Van Heck & Tackley, 2008). Although the mechanisms of plate

generation are still not clearly understood, these models are realistic enough to study

the dynamics of seafloor spreading (Coltice et al., 2012, 2013), the long-term motion

of continents (Rolf et al., 2014; Yoshida, 2010) or the repartition of plate sizes and the

dynamics of specific tectonic features (Mallard et al., 2016).

In this dissertation, we propose to take advantage of the predictive power of such

models to develop a new generation of mantle circulation reconstructions, where ob-

servations of past and present plate motions are not imposed as boundary conditions,

but assimilated in mantle convection models by an inverse method.

The problem of reconstructing mantle circulation is indeed an inverse problem: past

and present motions at the surface of the Earth are the consequence of the structure

and evolution of the flow in the mantle. Hence, we aim at determining the cause (the

structure and evolution of the flow in the mantle) from its consequences (observations

of surface motions). From the standpoint of inverse problem theory (see e.g. Wunsch,

2006, for a general introduction to inverse methods), the problem posed by mantle cir-

culation reconstruction corresponds to the general question: how to estimate the state

evolution of a system from a time series of data and a dynamical model? Methods solv-

ing this type of problem are grouped together under the generic term data assimilation

methods.

Data assimilation methods were originally developed in the context of numerical weather

prediction (Daley, 1993), and have since then found numerous applications, especially
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in studies of geophysical fluids (i.e. the atmosphere Bengtsson et al., 1981; Daley, 1993;

Kalnay, 2003, the ocean Chassignet & Verron, 2006 and the liquid outer core Fournier

et al., 2010). These areas of research provide extensive resources on methods to solve

data assimilation problems. We build on the experience and advances of data assim-

ilation in those fields to design algorithms for the mantle circulation reconstruction

problem.

This dissertation is organized as follows:

Chapter 1 presents the mantle circulation direct problem. We derive the partial differ-

ential equations governing mantle dynamics and the associated boundary and initial

conditions. We also discuss constitutive laws chosen to describe mantle material, with

a special focus on the rheology of the mantle, which plays a crucial role in the mod-

elling of mantle convection with plate-like tectonics. Finally, we describe the numerical

methods used to solve these equations.

Chapter 2 presents the mantle circulation inverse problem. We first introduce the gen-

eral formalism of data assimilation and connect the mathematical objects that are de-

fined to their meaning in the context of mantle circulation reconstruction. Then, we

detail the data that is available to reconstruct mantle circulation. We finally review the

reconstruction strategies that have so far been developed for mantle circulation.

Chapter 3 presents a proof of concept for the application of data assimilation methods

to reconstruct mantle circulation from its surface tectonics history. We develop a sub-

optimal scheme derived from the Kalman filter, where surface velocities and seafloor

age maps are used as data to assimilate. We test this algorithm on synthetic experi-

ments using 2-D spherical annulus mantle evolutions. The results obtained show that

it is possible, in principle, to reconstruct mantle circulation from the sole (and imper-

fect) knowledge of the history of surface tectonics.

In Chapter 4, we go one step further and apply the Ensemble Kalman Filter (EnKF) to

this problem. The EnKF is a sequential Monte Carlo method particularly adapted to

solve high dimensional data assimilation problems with a nonlinear dynamics. We test
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the EnKF using synthetic observations, on a 2D-spherical annulus model and compare

it with the method developed in Chapter 3. The EnKF performs on average better and

is more stable than the former method. Moreover, the efficiency and scalability of the

code we developed during this work opens the way to the application of the EnKF to

realistic data assimilation with plate reconstructions and a 3D spherical mantle model.

Chapter 5 discusses the results obtained during this thesis and the possible future di-

rections.
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Introduction Française

La Terre est une planète active, comme en témoignent l’occurence régulière de trem-

blements de terre, d’éruptions volcaniques et la présence de grandes régions fortement

déformées. Cette activité est l’expression de surface d’un système dynamique constitué

des deux couches les plus superficielles de la Terre: la croûte (d’épaisseur variable de 0

à 60 km) et le manteau (s’étendant de la base de la croûte à 2900 km en profondeur).

À ce jour, la communauté des sciences de la Terre utilise deux théories différentes pour

décrire la dynamique du système manteau-croûte à une échelle globale: la théorie de

la tectonique des plaques décrit les mouvements à la surface de la Terre alors que la

théorie de la convection mantellique décrit sa dynamique interne.

La théorie de la tectonique des plaques est une théorie cinématique. Sa formulation

originale (McKenzie & Parker, 1967; Morgan, 1968; Le Pichon, 1968) stipule que la sur-

face de la Terre est faite d’un puzzle de blocs rigides, les plaques, qui se déplacent les

unes par rapport aux autres. Le mouvement relatif de ces plaques est accomodé par

la déformation le long des lignes séparant les plaques, appelées limites de plaques.

Cette théorie réussit à prédire les vitesses de surface et à expliquer la répartition des

chaînes de montagnes, des tremblements de terre et du volcanisme (la figure 2 mon-

tre par exemple l’adéquation entre la sismicité et les limites des plaques). Elle fournit
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également un cadre global pour intégrer différents types de données (magnétiques,

bathymétriques, géodésiques, paléontologiques, géologiques ...) et ainsi fournir des

modèles des mouvements à la surface de la Terre à l’heure actuelle (modèles de mou-

vements de plaques géologiquement actuels, par exemple DeMets et al., 2010), et dans

le passé (modèles classiques de reconstitution de la tectonique des plaques, par exem-

ple Torsvik et al., 2010; Seton et al., 2012; Müller & Wessel, 2015).

FIGURE 2: Carte synthétique du monde prise de Müller & Wessel (2015).
Cette carte montre: en blanc, les limites de plaques de Coffin et al. (1997),
en points rouges la sismicité peu profonde (0 − 70 km de profondeur)
de Engdahl et al. (1998), et avec les zones illuminées les régions de limites
de plaques diffuses, basées sur la figure 1 de Gordon (2000). Abréviations
des plaques: B, Bornéo; AN, Antarctique; AR, Arabie; AU, Australie; CA,
Caraïbes; CAP, Capricorne; CL, Caroline; CO, Cocos; UE, Eurasie; I, Indo-
Chine; En Inde; JF, Juan de Fuca; NA, Amérique du Nord; NB, Nubia; NC,
Chine du Nord; NZ, Nazca; OK, Okhotsk; PA, Pacifique; SA, Amérique
du Sud; SC, Mer Scotia; SM, Somalie; Y, Yangtze; T, bassin de Tarim; PH,

Philippine.

La théorie de la convection mantellique, au contraire, est une théorie physique. Elle

est basée sur l’observation que le manteau, bien que solide, se comporte comme un

fluide à des échelles de temps supérieures à quelques milliers d’années (Nansen, 1928;

Haskell, 1937; Griggs, 1939a), et utilise les principes et les méthodes de la dynamique

des fluides pour étudier le manteau. La théorie de la convection mantellique affirme
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que le manteau se refroidit et que le mécanisme principal de transfert de chaleur est

la convection: le matériel chaud et donc plus léger, à l’intérieur du manteau, s’élève

tandis que le matériel froid et plus dense, à la surface, coule, créant ainsi des courants

de convection. L’évolution de la théorie de la convection mantellique est étroitement

liée à l’exploration de la dynamique de surface de la Terre. A l’origine, on a étudié

la possibilité de la convection mantellique (Holmes, 1931; Pekeris, 1935; Hales, 1936;

Griggs, 1939b; Runcorn, 1962) dans le but de fournir un mécanisme d’entraînement vi-

able pour la théorie de la dérive des continents de Wegener (1924). La formulation de

la théorie de la tectonique des plaques a fourni une description plus détaillée de la dy-

namique de la surface de la Terre et il a été bientôt reconnu que les plaques tectoniques

correspondent à la couche limite thermique de surface dans la théorie de la convection

mantellique (Turcotte & Oxburgh, 1972), ou autrement dit, que les plaques font partie

de la convection mantellique. Depuis, deux des questions centrales des études de la

convection mantellique ont été: Comment la tectonique des plaques découle-t-elle de

la convection mantellique et quelles sont les interactions entre les plaques et le reste du

manteau?

La description physique de la convection mantellique est basée sur la dérivation d’équations

aux dérivées partielles régissant l’écoulement (Turcotte & Oxburgh, 1972). Ces équa-

tions sont très non linéaires, donc le calcul d’une solution nécessite généralement le

développement de méthodes numériques (McKenzie et al., 1974). Le développement

de modèles de convection mantellique a suivi deux lignes de recherche complémen-

taires pour étudier la relation entre la tectonique de surface et la dynamique du man-

teau (voir Lowman, 2011, pour une revue).

La première consiste à utiliser des modèles de reconstitution de plaques, passés ou

présents, comme conditions aux limites des modèles de convection mantellique. On

obtient ainsi des estimations de la structure et de l’évolution de l’écoulement dans le

manteau terrestre. Nous appellerons ces estimations les reconstitutions de la circula-

tion mantellique. Hager & O’Connell (1979) ont été les pionniers de ce type d’études

et ont montré que la présence de plaques à la surface affecte l’écoulement à grande
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échelle du manteau. Les reconstitutions de la circulation mantellique ont permis une

meilleure compréhension de la dynamique et l’évolution des structures du manteau en

profondeur (Bunge et al., 1998; McNamara & Zhong, 2005; Davies et al., 2012; Bower

et al., 2013), de l’évolution des panaches mantelliques et de leur relation avec les points

chauds (Hassan et al., 2016), des changements dans l’axe de rotation de la Terre (Stein-

berger & O’Connell, 1997), dans le niveau marin (Moucha et al., 2008) ou la topogra-

phie dynamique (Flament et al., 2013), par exemple.

La deuxième ligne de recherche consiste à implémenter la physique nécessaire pour

générer des plaques dans les codes de convection, de sorte que la tectonique des plaques

émerge naturellement dans les modèles de convection mantellique (Bercovici et al.,

2015). Tackley (2000a) décrit ce but comme le "Saint Graal" des modélisateurs de la

convection mantellique: on pourrait décrire physiquement la dynamique du manteau

et de la surface, et, ce faisant, unifier les théories de la tectonique des plaques et de

la convection mantellique. 16 ans plus tard, ce but n’est toujours pas atteint, mais les

progrès dans ce sens ont conduit à l’émergence de modèles numériques de convection

mantellique qui produisent une dynamique de surface semblable à celle de la Terre,

au premier ordre (Moresi & Solomatov, 1998; Moresi et al., 2000; Richards et al., 2001;

Stein et al., 2004; Bercovici, 2003; Tackley, 2000b; Van Heck & Tackley, 2008). Bien que

les mécanismes de génération des plaques ne soient pas encore clairement compris,

ces modèles sont suffisamment réalistes pour étudier la dynamique de formation des

fonds océaniques (Coltice et al., 2012, 2013), le mouvement à long terme des continents

(Rolf et al., 2014; Yoshida, 2010) ou encore la répartition des tailles des plaques et la

dynamique de certains contextes tectoniques spécifiques (Mallard et al., 2016).

Dans cette dissertation, nous proposons de tirer parti du pouvoir prédictif de tels

modèles pour développer une nouvelle génération de reconstitutions de la circula-

tion mantellique, dans laquelle les observations des mouvements de plaques passées

et présentes ne sont pas imposées comme des conditions aux limites, mais assimilées

dans les modèles de convection mantellique par une méthode inverse.

Le problème de la reconstitution de la circulation mantellique est en effet un problème
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inverse: les mouvements passés et présents à la surface de la Terre sont la conséquence

de la structure et de l’évolution de l’écoulement dans le manteau. Par conséquent,

nous cherchons à déterminer la cause (la structure et l’évolution de l’écoulement dans

le manteau) à partir de ses conséquences (observations des mouvements de surface).

Du point de vue de la théorie des problèmes inverses (voir, par exemple Wunsch, 2006,

pour une introduction générale aux méthodes inverses), Le problème posé par la re-

constitution de la circulation mantellique correspond à la question générale: Comment

estimer l’évolution de l’état d’un système à partir d’une série chronologique de don-

nées et d’un modèle dynamique? Les méthodes de résolution de ce type de problème

sont regroupées sous le terme générique de méthodes d’assimilation de données.

Les méthodes d’assimilation de données ont été initialement développées dans le con-

texte de la météorologie (Daley, 1993), et ont depuis lors trouvé de nombreuses ap-

plications, en particulier dans l’étude des fluides géophysiques (l’atmosphère Bengts-

son et al., 1981; Daley, 1993; Kalnay, 2003, l’océan Chassignet & Verron, 2006 et le

noyau externe liquide Fournier et al., 2010). Ces domaines de recherche fournissent des

ressources étendues sur les méthodes permettant de résoudre les problèmes d’assimilation

des données. Nous nous appuyons sur l’expérience et les progrès de l’assimilation de

données dans ces domaines pour concevoir des algorithmes appliqués au problème de

la reconstitution de la circulation mantellique.

Cette thèse est organisée comme suit:

Le chapitre 1 présente le problème direct de la circulation mantellique. Nous dérivons

les équations aux dérivées partielles régissant la dynamique du manteau ainsi que les

conditions aux limites et les conditions initiales. Nous discutons également les lois

constitutives choisies pour décrire les propriétés mécaniques du manteau, en mettant

l’accent sur la rhéologie du manteau, qui joue un rôle crucial dans la modélisation de

la convection mantellique avec une tectonique de type plaque. Enfin, nous décrivons

les méthodes numériques nécessaires pour résoudre ces équations.

Le chapitre 2 présente le problème inverse de la circulation mantellique. Nous in-

troduisons d’abord le formalisme général de l’assimilation des données et relions les
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objets mathématiques définis à leur signification dans le contexte de la reconstitution

de la circulation mantellique. Ensuite, nous détaillons les données disponibles pour

reconstruire la circulation mantellique. Nous examinons enfin les stratégies de recon-

stitution qui ont été développées jusqu’ici pour la circulation mantellique.

Le chapitre 3 présente une preuve du concept pour l’application de méthodes d’assimilation

de données pour reconstruire la circulation mantellique à partir de l’histoire de sa tec-

tonique de surface. Nous développons un schéma sous-optimal dérivé du filtre de

Kalman, dans lequel les vitesses de surface et les cartes d’âge du fond marin sont util-

isées comme données à assimiler. Nous testons cet algorithme sur des expériences syn-

thétiques, en utilisant des évolutions 2D-sphériques annulaires. Les résultats obtenus

montrent qu’il est possible, en principe, de reconstituer la circulation mantellique à

partir de la connaissance unique (et imparfaite) de l’histoire de la tectonique de sur-

face.

Dans le chapitre 4, nous allons plus loin et appliquons le filtre de Kalman d’Ensemble

(EnKF) à ce problème. L’EnKF est une méthode séquentielle de Monte Carlo partic-

ulièrement adaptée pour résoudre l’assimilation de données pour des problèmes de

grande dimension avec une dynamique non linéaire. Nous testons l’EnKF en utilisant

des observations synthétiques, sur un modèle 2D-sphérique annulaire et comparons

les résultats avec la méthode développée dans le chapitre 3. L’EnKF fonctionne en

moyenne mieux et est plus stable que l’ancienne méthode. De plus, l’efficacité et la

scalabilité du code que nous avons développé au cours de ce travail ouvrent la voie à

l’application de l’EnKF à une assimilation avec des données provenant des reconstitu-

tions des plaques terrestres et un modèle de manteau sphérique en 3D.

Le chapitre 5 traite des résultats obtenus au cours de cette thèse et des orientations

futures possibles.
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CHAPTER 1

The Mantle Circulation Forward Problem

Solving the direct problem of mantle circulation consists of specifying how to compute

an evolution of mantle circulation from a given initial state. To do so, we use fluid

dynamics principles. After justifying the use of fluid dynamics to compute mantle cir-

culation, we derive the partial differential equations governing the flow, then specify

the initial and boundary conditions necessary to solve these equations. An additional

section is dedicated to the rheology of the mantle, which plays a major role in its dy-

namics. Finally, we discuss the numerical approximation of such a problem.

1.1 Fluid Mechanics for Mantle Convection

The study of mantle convection focuses on the dynamics of the mantle at length scales

greater than one kilometer. This enables the modelling of the mantle as a continuous

medium, although mantle material is polycrystalline and affected by brittle deforma-

tion near the surface.
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Moreover, as in many solids, the response of mantle material to stress depends on

the frequency content of the forcing. At shorter timescales (typically < 100 years), the

mantle behaves like an elastic body, able to propagate seismic shear waves for exam-

ple. However when submitted to stress over a longer period of time, mantle material

deforms permanently. The Maxwell time τm gives a timescale for this transition from

elastic to viscous behavior: τm = µ0/G where µ0 is the dynamic viscosity and G is the

shear modulus (elasticity). For the mantle, the shear modulus is of the order of 1011 Pa.

If we take a viscosity of 1026 Pa.s for the lithosphere, and a viscosity of 1021 Pa.s for

the rest of the mantle, we obtain a Maxwell time of 30 Myr and 300 yr respectively.

So, at timescales of 1 Myr or greater, the bulk of the mantle can be modelled as a vis-

cous fluid. In the following, we shall make the same hypothesis for the lithosphere,

although elasticity should be taken into account (Thielmann et al., 2015; Moresi et al.,

2003).

Geochemical and seismological evidence suggests that the mantle is chemically het-

erogeneous at all length scales (see for example Meibom & Anderson (2004); Gurnis

(1986a) for geochemistry and Ricard et al. (2014) for seismology). Although chemical

heterogeneities play an important role for mantle convection (see for example Tackley,

2015, for an introduction to mantle geochemical geodynamics), we will consider only

thermal heterogeneities in this development.

1.2 Conservation Equations

General derivations of equations governing fluid dynamics can be found in classical

textbooks of fluid dynamics such as Batchelor (2000); Chorin et al. (1990). Here, we

present the series of approximations classically used to model mantle convection, as

developed in more details in Turcotte & Oxburgh (1972), Schubert et al. (2001) or Ricard

(2015), for example.
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General Equations for the Conservation of Mass, Momentum and En-

ergy

The conservation of mass implies that the variation in density ρ of an open volume is

compensated by a flow of mass ρu (where u is the velocity) across its boundary. In

differential form, it gives

∂ρ

∂t
+∇ · (ρu) = 0, (1.1)

with t the time. The variation of density with time is linked to sound wave propagation

and is therefore negligible for the study of mantle convection.

Newton’s second law (Newton, 1642–1727) states that the rate of change of momentum

of a particle of fluid is equal to the sum of surface and body forces applied to this par-

ticle of fluid. Combined with the equation of conservation of mass and the divergence

theorem, this leads to the differential equation

ρ
Du

Dt
= ∇ · σ + f , (1.2)

where σ is the stress tensor and f is the sum of body forces acting on the fluid per

unit volume. The only body force acting on mantle material is the gravitational body

force, so f = ρg with g the gravitational acceleration (see for example Ricard (2015),

section 7.02.2.3.2 for a discussion on the effect of non-inertial forces on the mantle). The

gravitational acceleration g depends on the repartition of mass in the mantle according

to

g = −∇Ψ and ∇2Ψ = 4πGρ, (1.3)

where Ψ is the gravitational potential and G is the gravitational constant.
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The stress tensor is decomposed into an isotropic thermodynamic pressure P and a de-

viatoric velocity driven stress tensor τ , such that σ = −P I+ τ , with I the identity ma-

trix. As discussed previously, we suppose that mantle material behaves viscously. Al-

though mantle anisotropy is established (Karato, 1998), and viscous anisotropy could

affect the dynamics of the flow (Pouilloux et al., 2007; Mühlhaus et al., 2004), we as-

sume, for simplicity, that the mantle viscosity is isotropic. The viscosity is then de-

scribed with a bulk viscosity µv and a shear viscosity µ. This leads to a velocity driven

stress tensor τ linked to velocity through

τ =

[(
µv − 2

3
µ

)
∇ · u

]
I+ µ

(
∇u+ [∇u]T

)
. (1.4)

The balance of energy gives

ρ
DU
Dt

= −∇ · q− P∇ · u+∇ · (τ · u) + ρH. (1.5)

where U is the internal energy per unit mass, H the rate of energy production (radio-

genic heating) per unit mass and q the heat flux.

We apply Fourier’s law (Fourier, 1768–1830) to link the heat flux q to temperature

q = −k∇T with k the thermal conductivity.

By applying the first law of thermodynamics and supposing local thermodynamic

equilibrium, we have

DU
Dt

= Cp
DT

Dt
− αT

ρ

DP

Dt
+ P
∇ · u
ρ

(1.6)

where α is the thermal expansivity and Cp is the heat capacity at constant pressure per

unit volume.
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We obtain the set of partial differential equations

∇ · (ρu) = 0, (1.7a)

ρ
Du

Dt
= −∇P +∇ · τ + ρg, (1.7b)

with g = −∇Ψ and ∇2Ψ = 4πGρ,

τ =

[(
µv − 2

3
µ

)
∇ · u

]
I+ µ

(
∇u+ [∇u]T

)
,

ρCp
DT

Dt
= ∇ · (k∇T ) + αT

DP

Dt
−∇ · (τ · u) + ρH. (1.7c)

For mantle convection, this system of equation is simplified either by using the anelas-

tic liquid approximation or the Boussinesq approximation (Joseph Valentin Boussi-

nesq, 1842–1929). The anelastic liquid approximation takes into account compress-

ibility and the depth-dependence of density. Derivation of anelastic liquid equation

for the mantle can be found in Jarvis & McKenzie (1980); Glatzmaier (1988); Bercovici

et al. (1992); Alboussière & Ricard (2013). Here, we will derive the simpler Boussinesq

equations.

The Boussinesq Equations

To further simplify the system of equations, all the variables are written as the sum of

a reference static solution and a perturbation. In the Boussinesq approximation, the

reference state is chosen hydrostatic with a constant temperature T0 and a constant

density ρ0. We write

P = P + P ′ , T = T0 + T ′ and ρ = ρ0 + ρ′. (1.8)

with P the hydrostatic pressure and P ′, T ′ and ρ′ the perturbations for pressure, tem-

perature and density. The gravity can also be decomposed into a one-dimensional (1D)
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profile g and a perturbation g′: g = g + g′. Following Equation 1.3, we have:

g = −∇Ψ and ∇2Ψ = 4πGρ0, (1.9)

g′ = −∇Ψ′ and ∇2Ψ′ = 4πGρ′. (1.10)

The hydrostatic pressure P is

∇P = ρ0g. (1.11)

We further suppose that the density perturbation depends only on temperature. In the

hypothesis that ρ′ ≪ ρ0, we obtain the equation of state

ρ′ = −ρ0αT ′. (1.12)

with α the constant expansivity.

Compared to the anelastic liquid approximation, the Boussinesq approximation does

not take into account compressibility and its main effect on temperature: the presence

of a vertical adiabatic temperature gradient. Although the adiabatic temperature dif-

ference across the mantle is not negligible, the nonadiabatic temperature difference is

high enough to be responsible for most of mantle dynamics. For the energy conserva-

tion equation (Eq. 1.7c), it means that the terms αT DP
Dt

and∇·(τ ·u) are negligible in the

Boussinesq approximation (Bercovici et al., 1992; Glatzmaier, 1988; Jarvis & McKenzie,

1980; Tackley, 1996).
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This leads to the Boussinesq equations

∇ · u = 0 (1.13a)

ρ0
Du

Dt
= −∇P ′ +∇ ·

[
µ
(
∇u+ [∇u]T

)]
− ρ0αT

′g + g′ρ0, (1.13b)

with g = −∇Ψ and ∇2Ψ = 4πGρ0,

g′ = −∇Ψ′ and ∇2Ψ′ = 4πGρ′,

ρ0Cp
DT ′

Dt
= ∇ · (k∇T ′) + ρ0H. (1.13c)

The term g′ρ0, related to self-gravitation was shown to only affect the computation of

gravity, but not the geometry of the flow (Zhong et al., 2008): we will omit it in the

following.

Further Simplifications and Nondimensionalization

We suppose g, Cp, k and H constant. The gravity is written g = −ger with er the radial

unit vector.

We use four characteristic scales for the nondimensionalization:

• the length D = 2900 km, corresponding to mantle thickness,

• the temperature difference ∆T = 1600 K, the temperature drop across the bound-

ary layer (the lithosphere),

• the thermal diffusion time τD = D2ρ0Cp

k
= 265 billion years, i.e. the time scale of

diffusion across the whole mantle,

• the reference viscosity µ0 = 1023 Pa.s−1, which correspond to the viscosity at the

mid-depth in the mantle,
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and perform the following change of variables in the Boussinesq equations

T ′ = T ∗∆T , t = t∗τD , u = u∗D/τD, (1.14)

µ = µ∗µ0 , P
′ = P ∗µ0/τD and ∇ = ∇∗/D. (1.15)

This gives the nondimensional set of equations

∇∗ · u∗ = 0, (1.16a)

1

Pr

Du∗

Dt∗
= −∇∗P ∗ +∇∗ ·

[
µ∗

(
∇∗u∗ + [∇∗u∗]T

)]
+ RaerT

∗, (1.16b)

DT ∗

Dt∗
= ∇∗2T ∗ + Rh, (1.16c)

where Ra and Pr are the Rayleigh and Prandtl numbers (John William Strutt, 3rd Baron

Rayleigh, 1842-1919; Ludwig Prandtl, 1875-1953), defined as

Ra =
ρ20Cpgα∆TD3

µ0k
and Pr =

µ0Cp

k
. (1.17)

For the mantle, Ra is estimated to be of the order of 107 and Pr of the order 1024. The

very high Prandtl number implies that the left-hand side of equation 1.16b is almost

zero: the mantle does not have any inertia.

Rh is the nondimensional rate of energy production

Rh =
ρ0HD2

k∆T
. (1.18)

Finally, we obtain the nondimensional equations of conservation of mass, momentum

and energy that is used in this thesis to model mantle convection:

∇ · u = 0, (1.19a)

∇P −∇ ·
[
µ
(
∇u+ [∇u]T

)]
= RaTer, (1.19b)

DT

Dt
= ∇2T + Rh, (1.19c)
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To solve this set of equation, we need to specify the domain on which they are to

be solved as well as the initial and boundary conditions. We also need to specify a

constitutive equation for viscosity. These are the topics of the following two sections.

1.3 Initial and Boundary Conditions

The volume of the mantle, noted Ω, is at first order a spherical shell of inner radius

3480 km and outer radius 6371 km (if we include the crust). We denote its outer bound-

ary with Γa and its inner boundary with Γb. The natural system to locate a point on

such a geometry is spherical coordinates. We use the physical convention: the position

vector x is defined by its colatitude φ, its longitude θ and its radius r and eφ, eθ, er are

the corresponding unit vectors.

The upper boundary Γa is in contact with air and water (dynamic viscosity η = 10−5

and 10−3 Pa.s, respectively) and the lower boundary Γb is in contact with the liquid

core (dynamic viscosity of the order 10−3 Pa.s). The drastic drop of viscosity along

these boundaries implies free surface conditions, with a deformable surface. The to-

pography of the boundaries are very small compared to the length scale of convection

so it is generally neglected in global mantle convection models. Mechanical boundary

conditions are then free-slip with rigid, perfectly spherical and impermeable bound-

aries Γa and Γb

∀t, ∀x ∈ Γb, u(x, t) · er = 0 and σ(x, t) · er = 0 (1.20a)

∀t, ∀x ∈ Γa, u(x, t) · er = 0 and σ(x, t) · er = 0 (1.20b)

However, regional studies have shown the importance of taking into account the de-

formation of the surface to obtain a surface dynamics closer to the Earth, especially in

the context of subduction (Gerya, 2011). Recently, a global mantle convection model

with a deformable surface has been developed (Crameri et al., 2012; Crameri & Tackley,

2014, 2015) but its high numerical cost limits its application for now.
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An alternative mechanical boundary condition would be free slip at Γb and imposed

velocities at Γa

∀t, ∀x ∈ Γb, u(x, t) · er = 0 and σ(x, t)er = 0, (1.21a)

∀t, ∀x ∈ Γa, u(x, t) · er = 0 and uH(x, t) = ua
H(x, t), (1.21b)

with uH the horizontal velocity. This boundary condition is used to force the surface

dynamics, and we will discuss it in the next chapter on mantle circulation reconstruc-

tions.

Both boundaries Γa and Γb are supposed isothermal with temperature Ta and Tb, re-

spectively

∀x ∈ Γb, T (x) = Tb, (1.22a)

∀x ∈ Γa, T (x) = Ta. (1.22b)

The only prognostic equation is the energy conservation Eq.1.19c so the initial condi-

tion is entirely defined by an initial temperature field Ti

∀x ∈ Ω, T (x, t = 0) = Ti(x). (1.23)

1.4 Rheology and Self-Consistent Plate Generation

Mantle material is polycrystalline. Its response to stress depends on various mecha-

nisms of deformation at the crystal scale (Karato, 2013; Kohlstedt, 2015). The combi-

nation of all these mechanisms results in a complex and nonlinear rheology which is

key to understanding mantle dynamics (Turcotte & Oxburgh, 1972; Davies & Richards,

1992; Bercovici, 2015).
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In section 1.1, we supposed a relationship between the deviatoric stress tensor τ and

the strain rate tensor ǫ̇ of the form

τ = 2µǫ̇, (1.24)

with µ the viscosity and ǫ̇ =
(
∇u+ [∇u]T

)
/2. This formulation can take into account

a wide range of deformation mechanisms by considering a composite rheology, where

the effective viscosity µ is

1

µ
=

1

µ1

+
1

µ2

+ ... (1.25)

with µ1, µ2... the effective viscosities of each mechanism, potentially varying with tem-

perature, pressure, strain rate, grain size and composition.

In this dissertation, we focus on the relationship between surface tectonics and mantle

convection, so we limit the discussion on rheology to the question:

what type of viscosity law generates Earth-like tectonics at the surface of

convection models?

One of the most important characteristics of mantle rheology is the dichotomy between

a strong lithosphere and the rest of the mantle, which is softer. This is primarily due to

the thermal activation of crystal deformation (Gordon, 1967; Weertman & Weertman,

1975), modelled by a viscosity following an Arrhenius law

µ ∝ exp

(
EA + PVA

T

)
, (1.26)

with EA an activation energy and VA an activation volume. Both parameters set the

amplitude of viscosity variations in the mantle and affect the style of convection. Sys-

tematic studies of convection with a temperature dependent rheology show three pos-

sible convective regimes, depending on the viscosity contrast between the surface and

the bottom of the system (Christensen, 1984; Solomatov, 1995; Ratcliff et al., 1997). Low

viscosity contrasts produce mobile-lid convection in which the flow resembles isovis-

cous convection. With a high viscosity contrast (greater than 104), the convection is
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limited to the lower part of the system, and the surface is frozen: this regime is called

stagnant-lid convection. An intermediate regime exists, where the surface is sluggish.

Experimental studies, crystal deformation theory, and geophysical observations indi-

cate an average viscosity profile with a strong lithosphere (µ > 1025 Pa.s), and a softer

underlying mantle with a viscosity ranging from 1019-1021 Pa.s in its upper part to

1022-1023 Pa.s in its lower part (King, 2016). Consequently, the Earth’s mantle convec-

tion regime should be stagnant-lid, if its viscosity was only temperature and pressure

dependent. The presence of mobile plates at the surface of the Earth, and the high

deformation observed at plate boundaries proves otherwise.

It is possible to obtain plate-like dynamics by artificially introducing weak zones in

the top boundary layer of a stagnant-lid convective system (Christensen & Yuen, 1984;

Gurnis & Hager, 1988; Puster et al., 1995; Zhong et al., 2000). Zhong et al. (1998) iden-

tify two diagnostics to evaluate how Earth-like the surface dynamics of a model is.

Plateness (first defined in 2-D by Weinstein & Olson, 1992) quantifies the localization of

deformation at the surface of a dynamic system. The plateness is maximum (generally

set to one) when the surface is made of perfectly rigid blocks moving along infinitely

small boundaries that concentrate surface deformation. Conversely, the plateness is

low when the deformation is distributed uniformly at the surface. The plateness of the

Earth is very high: Gordon (2000) estimates that the deformation at the surface of the

Earth is concentrated in less than 15% of its total area. The second diagnostic is the ra-

tio of surface toroidal to poloidal motion. Any divergence free 3-D velocity field can be

decomposed into a toroidal and a poloidal flow. At the surface, the poloidal flow cre-

ates divergence or convergence motions whereas the toroidal flow is associated with

plate spin and strike-slip motion. On Earth, the ratio of surface toroidal to poloidal

flow varies between 0.25 to 0.5 for the last 120 Myr (Olson & Bercovici, 1991; Lithgow-

Bertelloni et al., 1993). Models with imposed weak zones are a valuable tool to study

the evolution of preexisting plates and plate boundaries, but they cannot create new

plate boundaries.

To generate weak zones at the surface of models self-consistently, it is necessary to take
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into account a nonlinear relationship between stress and strain rate. However, it is still

not clear which relationship best describes lithosphere rheology, so various approaches

coexist (see reviews of Tackley, 2000a; Lowman, 2011; Bercovici, 2003; Bercovici et al.,

2015). Figure 1.1 summarizes the different relationships tested over the past 40 years.

The first models proposed a power-law relationship between stress and strain rate

FIGURE 1.1: Curves of stress versus strain-rate for Newtonian, non-
Newtonian power-law rheology (n=3), Bingham plastic, visco-plastic,

stick-slip and pseudo-stick-slip rheologies. From Bercovici et al. (2015).

(Parmentier et al., 1976; Christensen, 1984). However, they produce very little plateness

when the power-law index is 3, which is typically what is measured for mantle rocks

(Weertman & Weertman, 1975; Evans & Kohlstedt, 1995). An increase of the power-law

index leads to better localization of the deformation in narrow weak zones (Weinstein

& Olson, 1992), but 3-D models yield only moderate toroidal motion (Christensen &

Harder, 1991; Bercovici, 1993, 1995; Čadek et al., 1993). To enhance the localization

of deformation, Bercovici (1993, 1995) proposed a power-law rheology with index -1

(pseudo-stick-slip in Figure 1.1), which would be the steady-state equivalent of a more

complex, time dependent rheology (Tackley, 2000c). This type of rheology produces

strain-rate weakening: at low strain-rates, the material behaves like a very viscous fluid

but when the strain rate increases above a given threshold, the viscosity decreases so
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drastically that it causes a decrease in stress. 3-D tests produce encouraging plateness

and toroidal to poloidal ratio (Tackley, 1998a). However, such a rheology is difficult to

implement in 3-D mantle convection models because of its high nonlinearity (Tackley,

2000c). Viscoplastic rheology (see figure 1.1) is generally preferred. In this formulation,

the material behaves like a Newtonian viscous material when the stress is low. When

the stress reaches a given threshold, called the yield stress σY, the viscosity follows

µ =
σY

2ǫ̇II

, (1.27)

where ǫ̇II =
√

ǫ̇ij ǫ̇ij (in Einstein notation) is the second invariant of the strain rate

tensor. This type of rheology aims at modelling the brittle and ductile deformation

processes that take place in the lithosphere (Moresi & Solomatov, 1998; Trompert &

Hansen, 1998). When combined with an asthenosphere of reduced viscosity, they pro-

duce plateness and toroidal to poloidal ratios comparable to that of the Earth (Tackley,

2000c; Richards et al., 2001; Stein et al., 2004). The progresses of numerical methods

(e.g. Yoshida & Kageyama, 2004; Tackley, 2008; Burstedde et al., 2013) and the increase

of computational power led to a series of models in 3-D spherical shell geometry self-

consistently generating plate-like tectonics at their surface (Richards et al., 2001; Walzer

& Hendel, 2008; Van Heck & Tackley, 2008; Yoshida, 2008; Foley & Becker, 2009). Fig-

ure 1.2 shows a snapshot of the surface and inner structure of a typical plate-like evo-

lution produced by this type of models. Although these models display Earth-like

plateness and toroidal:poloidal ratio, they have several major flaws. Firstly, the range

of yield stresses (σY) that produces plate-like tectonics is very limited (Foley & Becker,

2009) and does not correspond to estimated values of the strength of the lithosphere

(Kohlstedt et al., 1995). However, the introduction of continents (Rolf & Tackley, 2011),

melting (Lourenço et al., 2016) and a free surface (Crameri, 2013) tends to increase the

yield stress at which plate tectonics appears on models. Secondly, during subduction,

both sides dive into the mantle, whereas on Earth, subduction is exclusively single-

sided (Gerya et al., 2008). Free surface boundary conditions give encouraging results

for the development of single-sided subduction in such models (Crameri & Tackley,
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FIGURE 1.2: Left: surface velocity and viscosity fields snapshots of a free
(i.e. unconstrained by data) mantle convection evolution with composite
viscoplastic and temperature-pressure Newtonian rheology. Right: corre-
sponding temperature field of the interior of the system. From Bello et al.

(2015)

2014), especially combined with a weak-crust layer (Crameri & Tackley, 2015). Thirdly,

the strike-slip boundaries are very diffuse, contrary to the Earth.

Several further developments have been proposed to obtain a surface dynamics closer

to the Earth, such as taking into account the viscosity variations with the concentration

of fluids in rocks, grain size and the deformation history (Bercovici et al., 2015). How-

ever, for the time being, a composite rheology with a Newtonian component of the

form of equation 1.26, combined with a plastic behavior (Eq.1.27) remains the best op-

tion to study global convection with Earth-like tectonics. Recent applications of such

models include comparison of seafloor age distributions and the time scale of spread-

ing fluctuations in models and on Earth (Coltice et al., 2012, 2013), studies on the super-

continent cycle (Rolf et al., 2014), and on the distribution of plate sizes (Mallard et al.,

2016).
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1.5 Numerical Approximation

The final system of equations to solve is composed of three conservation equations

∇ · u = 0, (1.28)

−∇P +∇ ·
[
µ
(
∇u+ [∇u]T

)]
= RaTer, (1.29)

DT

Dt
= ∇2T + Rh, (1.30)

a constitutive law for viscosity, which is a nonlinear function of temperature, pressure

and stress

µ =

(
1

µn

+
1

µy

)
−1

, (1.31)

with µn ∝ exp

(
EA + PVa

T

)
, (1.32)

and µy =
σY

2ǫ̇II

, (1.33)

and the initial and boundary conditions

∀x ∈ Ω, T (x, t = 0) = Ti(x), (1.34)

∀x ∈ Γa ∪ Γb, ur(x) = 0 and σer = 0, (1.35)

∀x ∈ Γa, T (x, t) = Ta and ∀x ∈ Γb T (x, t) = Tb. (1.36)

This set of equations (or a variation of it, discussed in the previous sections) is dis-

cretized in time using finite differences and in space using finite difference (Kageyama

& Sato, 2004), finite volume (Harder & Hansen, 2005; Tackley, 2008) or finite element

(Baumgardner, 1985; Zhong et al., 2008; Burstedde et al., 2013; Kronbichler et al., 2012)

methods. Those grid-based methods are preferred to spectral methods, which, al-

though in principle more accurate and more efficient, have so far not been able to

treat efficiently large horizontal viscosity variations (Balachandar et al., 1995; Zhang &

Yuen, 1996).



1.5. Numerical Approximation 29

Regardless of the technique, the evolution of a solution is computed by repeating two

stages:

1. Flow solution: at a given time step, the velocity and pressure fields are computed

by solving Equations 1.28 and 1.29, for a given temperature field.

2. Time stepping: the temperature field at the next time step is computed by solving

Equation 1.30, using the former temperature and velocity solution.

(Ismail-Zadeh & Tackley, 2010 provide a detailed description of numerical methods for

geodynamic modelling, and Zhong et al., 2015 review the recent advances of mantle

convection numerical modelling).

In this dissertation, we use the finite volume code STAGYY (Tackley, 2008), which is

an extension of STAG3D, continuously developed since 1992 (Tackley et al., 1993; Tack-

ley, 1996, 1998b, 2002; Tackley & Xie, 2003). Recent developments of this code include

the implementation of continents (Rolf & Tackley, 2011), free surface with the sticky

air method (Crameri et al., 2012) and crust production by melting (Lourenço et al.,

2016). This code has been extensively tested with the mantle convection community

benchmarks from Blankenbach et al., 1989 (2-D), Busse et al., 1994 (3D Cartesian) ,

Van Keken et al., 1997 (thermo-chemical convection), Stemmer et al., 2006 (spherical

geometry), Tosi et al., 2015 (viscoplasticity) and showed good agreement with those

(Tackley et al., 1993; Tackley, 1996; Tackley & King, 2003; Tackley, 2008). Addition-

ally, Tackley (2000c) performed a convergence test for models with self-consistent gen-

eration of plates. STAGYY is parallelized by domain decomposition, using the MPI

message-passing library, and shows good scalability (Tackley, 2008).

The capabilities of this code go far beyond the simple model setup that we use in this

dissertation. We chose a relatively simple setup to focus on the development of meth-

ods of reconstruction of mantle circulation, but it was important to develop a mantle

circulation reconstruction framework on a code which allows more complexities, for

future applications.
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Conclusion

In this chapter, we presented the solution for the direct problem of mantle circulation:

we showed how we compute an evolution from a mantle convection model featuring

plate-like tectonics at its surface and an initial temperature field. However, the initial

temperature field of the Earth’s mantle is unknown. Knowledge of past and present

mantle circulation come from indirect sources of information such as seismic tomogra-

phy, for the 3D current structure of the mantle and plate tectonics reconstructions, for

past mantle circulation. This makes the reconstruction of mantle circulation an inverse

problem. The aim of the next chapter is to describe this inverse problem, review meth-

ods used to tackle it, and present data assimilation methods, that we apply in chapter

4 and 5.
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Résumé du Chapitre

Résoudre le problème direct de la circulation dans le manteau consiste à spécifier

comment calculer une évolution de la circulation dans le manteau à partir d’un état

initial donné. Pour ce faire, nous utilisons les principes de dynamique des fluides.

Après avoir justifié l’utilisation de la dynamique des fluides pour calculer la circula-

tion dans le manteau, nous dérivons les équations aux dérivées partielles qui régissent

l’écoulement, puis nous spécifions les conditions initiales et aux limites nécessaires

pour résoudre ces équations. Une section supplémentaire est consacrée à la rhéologie

du manteau, qui joue un rôle majeur dans sa dynamique. Enfin, nous discutons de

l’approximation numérique de ce problème.

Dans ce chapitre, nous avons présenté la solution pour le problème direct de la cir-

culation dans le manteau: nous avons montré comment nous calculons une évolution

à partir d’un modèle de convection du manteau présentant une tectonique de type

plaque à sa surface et un champ de température initial. Cependant, le champ de tem-

pérature initial du manteau terrestre est inconnu. La connaissance de la circulation

dans le manteau passé et présent provient de sources indirectes d’information telles

que la tomographie sismique, pour la structure de l’écoulement en 3D au présent et les

reconstructions de la tectonique des plaques, pour la circulation passée dans le man-

teau. Ceci fait de la reconstitution de la circulation mantellique un problème inverse.

Le but du chapitre suivant est de décrire ce problème inverse, d’examiner les méthodes

utilisées pour le résoudre et de présenter les méthodes d’assimilation de données, que

nous appliquons aux chapitres 4 et 5.





33

CHAPTER 2

Data and the Mantle Circulation Inverse Problem

The aim of a mantle circulation reconstruction is to estimate the past and present 3-D

flow in the mantle, using data on mantle circulation in combination with a dynamical

model of mantle convection. Data on mantle circulation is available both at present,

with the constraints provided by seismic tomography for example, and in the past,

with constraints on the surface tectonics history, for example. Inverse problems dealing

with asynchronous data fall in the category of data assimilation problems. This chapter

aims at presenting the data assimilation problem for mantle circulation. We start by

formulating the mantle circulation problem in the data assimilation framework (first

section). Then we detail the data available on the history of mantle circulation (second

section). The third section finally presents the applications to the reconstruction of past

mantle flow.
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2.1 A Data Assimilation Framework for Mantle Circula-

tion Problems

Data assimilation methods have originally been developed as a way to estimate the

state of the atmosphere at present, so as to obtain an initial state for numerical weather

predictions (see for example Ghil, 1989, for a short account of early data assimilation

developments in weather forecasting). The improvement of both numerical weather

models and the observational network, along with the increase in computational power,

led to the evolution from subjective analysis of sparse observations, to objective anal-

ysis of a denser network of observations and finally to the assimilation of data not

only spatially, but also through time, i.e. 4-D data assimilation (Charney et al., 1969;

Smagorinsky et al., 1970; Rutherford, 1972). Atmospheric data assimilation borrows

many concepts from control and estimation theory (see for example Ghil et al., 1981;

Le Dimet & Talagrand, 1986). The main difference is in the larger size of the prob-

lem and dataset used in atmospheric data assimilation, which pushed the develop-

ment of specific techniques. The application of data assimilation methods has been

progressively opening to various geophysical systems, following the development of

observational networks and numerical models in the corresponding disciplines. Cur-

rent applications include oceanography (Chassignet & Verron, 2006), geomagnetism

(Fournier et al., 2010), oil and gas reservoir (Evensen, 2009a, Chapter 17), and glaciol-

ogy (Bonan et al., 2014), for example. In parallel, the goals of data assimilation methods

have diversified: the original aim was to estimate the current state of a system to fore-

cast future evolutions, but other applications have emerged, such as reanalysis of past

data (hindcasting), sensitivity analysis of models to different parameters and initial

and boundary conditions, assessment of the numerical model, and parameter estima-

tion. Concerning mantle convection, data assimilation techniques provide powerful

tools to investigate fundamental questions such as:

• what is the predictive power of state of the art mantle convection models, or how

well do we model mantle dynamics?
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• what was the circulation of the mantle in the past?

• how sensitive are mantle circulation models to the variation of key parameters,

such as rheological ones?

The integration of data in dynamical models is a longstanding problem in global man-

tle convection studies (Hager & O’Connell, 1979) and in geodynamics in general (see

for example the introductory book by Ismail-Zadeh et al., 2016). One of the ways to

solve this problem has been to apply data assimilation methods to mantle circulation

reconstructions. This approach was pioneered by Bunge et al. (2003) and Ismail-Zadeh

et al. (2004) who developed variational data assimilation methods for mantle circula-

tion reconstructions. In these articles, they present the data assimilation problem of

mantle circulation reconstruction in its continuous form (using a set of partial differ-

ential equations similar to the one described in Section 1.2 and associated continuous

fields). Here, we choose a different approach and formulate the data assimilation prob-

lem directly on the discretized version of mantle flow equations. We use the standard

data assimilation formulation advised by Ide et al. (1997) and define the unknown (the

state of the mantle), the sources of information (observations, background state and

dynamical model) and how each of these components is related to the others.

2.1.1 The Unknown: the Evolution of the True State of the Mantle

The true state gathers all the variables that are necessary and sufficient to compute the

3-D flow of the Earth’s mantle at a given time.

In the continuum approximation (see section 1.1), the evolution of mantle flow is de-

scribed by a set of fields varying continuously in space and time. However, the com-

putation of a dynamical evolution of those fields requires their discretization (see sec-

tion 1.5). So, in practice, we aim at estimating the evolution of the discretized state

of the mantle. In this case, the true state can take the form of a vector containing the

values of the discretized fields at a given time step k. This vector is named the true

state vector and noted xt
k. Then, we write the evolution of the true state as a time series
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of true state vectors

{
xt
1,x

t
2, ...,x

t
K

}
, (2.1)

with indices {1, ..., K} referring to the numbers of the time steps.

The type and number of discretized fields included in the true state depend on the

model chosen for mantle convection. For the model described in Chapter 1, the 3-D

flow of the mantle at a given time is entirely defined from the sole knowledge of the

temperature field. In this case, the true state vector contains the temperature values of

the mantle at points defined on the numerical grid. For a model taking into account

the variations of composition in the mantle, we would have to add the discretized

compositional fields, for example.

2.1.2 Observed Data on Mantle Circulation

The set of observed data on mantle circulation is organized in the form of a series of

observed data vectors

{yo
1,y

o
2, ...,y

o
K} (2.2)

where yo
k contains the data observed at the time step k ∈ {1, 2, ..., K}.

At each time step k, there is a function that associates a data vector to the set of continu-

ous fields defining the state of the system. This function is approximated by a mapping

Hk between the discretized state space and the data space. Hk is called the observation

operator. For any state vector xk, the corresponding data vector yk is given by

yk = Hk(xk) + ǫhk (2.3)

where ǫhk represents the errors caused by the hypotheses used to define Hk (e.g. dis-

cretization and description of the physics of the measurement).
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Moreover, the observed data are affected by measurement errors, so the relation be-

tween the true state and the observed data at time step k is

yo
k = Hk(x

t
k) + ǫok + ǫhk (2.4)

where ǫok is the error vector of observed data at time step k.

In mantle circulation problems, the term "observation" is to be understood in a broad

sense. It is common to integrate raw observations into a model to obtain global es-

timates of variables that are directly linked to mantle circulation. We then use these

global estimates as "observations" in the data assimilation procedure. We will discuss

this point in the following sections.

2.1.3 The Dynamical Model

The dynamical modelM predicts the evolution of the state vector from one time step

to the next. An example of M for mantle convection has been derived in chapter 1.

As highlighted and discussed throughout chapter 1, the dynamical modelM is a nu-

merical approximation of an imperfect physical model describing the evolution of the

continuous state of the system through time. From a state vector xk, we can write the

state vector at time step k + 1 as

xk+1 =M(xk) + ηk, (2.5)

with ηk the modelling errors due to discretization and simplifications in the physical

modelling.

During this thesis, we used the numerical code STAGYY (see section 1.5) with a set of

options and parameters described in the chapters 3 and 4 as the modelM.
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2.1.4 The Background State of the Mantle

The background state of the mantle corresponds to the estimation of the state of the

mantle before the observed data have been integrated. This a priori state comes from

our knowledge of the physics of mantle convection, or the integration of another set of

observed data, for example. The background state is linked to the first true state vector

through

xb = xt
1 + ǫb, (2.6)

where ǫb is the error vector of the background state vector.

In this work, we used the results of a very long evolution computed with the dynam-

ical model M to infer the average temperature field in the mantle and evaluate the

amplitude of the background error vector (see section 3.4.1 for more details).

Summary

We have described the components of the general problem of mantle circulation recon-

structions:

• the unknown: a time series of true state vectors {xt
1,x

t
2, ...,x

t
K}

• three sources of information, all affected by errors:

– the background state xb

– the time series of observed data {yo
1,y

o
2, ...,y

o
K} and their associated obser-

vation operators {H1,H2, ...,HK}

– the dynamical modelM.

In the next section, we focus on the description of the observed data currently used to

reconstruct mantle circulation. Then, in Section 2.3 we describe the algorithms used to

solve the mantle circulation inverse problem.
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2.2 Data on Mantle Circulation

Currently, two types of "observed data" are used in dynamical mantle circulation re-

constructions:

• a temperature field of the mantle at present, which is derived from seismic to-

mography,

• a time series of surface velocities, which is the synthesis of a wide range of obser-

vations on the history of the surface of the Earth.

In the following, we detail the procedure used to obtain these data, and discuss the

possible errors that affect them.

2.2.1 Mantle Temperature Field at Present

If we consider purely thermal convection, the density at a given depth is solely depen-

dent on temperature. For example, in the model developed in chapter 1, the density

anomaly ρ′ is linked to the temperature anomaly T ′ through

ρ′ = −ρ0αT ′. (2.7)

with α the expansivity and ρ0 the reference density. Hence, to obtain an estimate of the

temperature field in the mantle at present, we need:

• a reference temperature profile (In the Boussinesq approximation, it is simply a

constant temperature, see Section 1.2)

• a 3-D model of density anomaly

This model of density anomaly is derived from wave speed anomaly models inferred

from seismic tomography.
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Seismic Tomography

Dziewonski & Anderson (1981) computed the first widely accepted reference profile

of the elastic properties of the Earth: the Preliminary Reference Earth Model (PREM).

In particular, the PREM provides estimates of the velocity of compressional and shear

waves (P- and S-waves), and density in the Earth as a function of depth. With these

estimates it is possible to predict the travel time of any seismic wave for a given earth-

quake and a given seismic station. In practice, the predicted travel times do not fit

exactly the observed travel times. Such discrepancies are due to the lateral heterogene-

ity of Earth’s material elastic properties, interpreted as variations of either temperature

or composition: the S-wave velocity vs and the P-wave velocity vp are

vs =

√
G

ρ
and vp =

√
K + 4

3
G

ρ
(2.8)

where K , G and ρ are the bulk modulus, the shear modulus and the density. At a

given depth, each of them varies with temperature and composition.

Seismic tomography refers to inverse methods that aim at mapping in 2-D or 3-D the

lateral heterogeneity of the elastic properties of the Earth, using seismograms as data,

and a forward model specifying how seismic waves propagate in the Earth. The three

components of the technique, i.e. the inverse method, the forward model, and the

type of data extracted from the seismograms vary depending on the target region of

mapping, the type of physical properties that are to be determined, the restrictions on

computational power, and the availability of data. A full review of seismic tomog-

raphy techniques is beyond the scope of this dissertation, and we refer the reader to

Thurber & Ritsema (2015) for an introduction to the field and to Rawlinson et al. (2010);

Trampert & Fichtner (2013); Liu & Gu (2012) for recent reviews.

Seismic tomography studies of the whole mantle have focused on estimating 3-D mod-

els of S-wave speed anomalies (e.g. Gu et al., 2001; Panning & Romanowicz, 2006; Kus-

towski et al., 2008; Ritsema et al., 2011; Auer et al., 2014; Chang et al., 2015), P-wave

speed anomalies (e.g. Boschi & Dziewonski, 2000; Li et al., 2008), or both (e.g. Su &
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Dziewonski, 1997; Masters et al., 2000; Antolik et al., 2003; Houser et al., 2008; Koele-

meijer et al., 2016). The resulting models of velocity anomalies differ between studies

(see for example Figure 2.1 which shows shear wave velocity anomalies for different

models and at different depths). Becker & Boschi (2002) compared 4 P-wave, 7 S-wave

and 3 S- and P-wave tomography models. After a spherical harmonic decomposition

of these models, they computed correlations between each pair of models, depending

on the depth and the spherical harmonic degree. For the first 8 spherical harmonic

degrees, they found an average correlation for pairs of P-wave models between 0.69

and 0.85, and slightly higher correlations for pairs of S-wave models. The correlations

tended to decrease with increasing spherical harmonic degree.

FIGURE 2.1: Maps of shear wave velocity anomalies at depth 100, 400,
600, 800, 1000, 2000 and 2800 km of tomographic models (from left to
right):S40RTS (Ritsema et al., 2011), S362ANI (Kustowski et al., 2008),
SAW642AN (Panning & Romanowicz, 2006), TX2008 (Simmons et al.,

2009), HMSL-S (Houser et al., 2008). Taken from Ritsema et al. (2011).
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The differences in tomographic models are attributed to the variations in datasets,

but also to the non-uniqueness of the solution to the inverse problem, which is dealt

with differently depending on studies, using a wide range of inverse methods and

parametrization of the forward model. The seismological community has developed

several techniques to assess the reliability of tomographic models (see Rawlinson et al.,

2014, for a review). A direct computation of the a posteriori error covariance matrix

associated to the estimated S- and/or P-wave anomaly models would provide a much

needed way to evaluate the information that could be extracted from those, and avoid

geological and geodynamical misinterpretations (see Foulger et al., 2013, for a review

on the pitfalls of seismic tomography interpretation for non-specialists). However, the

size of the whole mantle seismic tomography problem makes the computation of this

matrix very costly (and even intractable for some models). In practice, partial resolu-

tion tests are preferred (see examples in the previously cited works). Such tests do not

quantify directly the absolute amplitude of errors on tomographic models. A project

of 3-D Reference Earth Model for S- and P-wave speed, density, and anisotropy with

the estimation of uncertainties is under construction (Moulik et al., 2016). Such model

would provide a sound basis for geodynamical interpretation.

Meanwhile, several studies have adopted a more pragmatic approach to assess the

robustness of the structures illuminated by seismic tomography. The idea is to com-

pare various tomographic models in order to extract their common features, supposing

that if tomographic models developed using different parametrizations, observations

and inverse methods have common structures, then it is likely that these structures

are not artefacts but reflect true heterogeneities of Earth’s material properties. For

example, Lekic et al. (2012) followed this approach and performed a cluster analy-

sis of tomographic models of the lower mantle to infer its large scale structure. For

the whole mantle, Becker & Boschi (2002) propose tomography-based benchmarks for

geodynamics by computing a weighted average of available P-wave and S-wave mod-

els (called Pmean and Smean). They regularly update these models taking into account

new tomographic studies (Becker & Boschi, 2016).
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Conversion of Wave Speed Anomaly Models to Temperature Fields

Equation 2.8 shows that S- and P-wave speeds depend on three material properties: the

bulk modulus K, the shear modulus G and the density ρ. These material properties

vary with temperature, pressure and composition. The first order relationship between

a lateral relative density anomaly δρ/ρ = δ ln ρ and a lateral relative S- or P-wave speed

anomaly δvs/vs = δ ln vs or δvp/vp = δ ln vp can be written as

δ ln ρ = Rρ/sδ ln vs and δ ln ρ = Rρ/pδ ln vp (2.9)

with Rρ/s and Rρ/p the partial derivatives ∂ρ/∂vs and ∂ρ/∂vp. At constant depth, δ ln ρ,

δ ln vs, δ ln vp, Rρ/s and Rρ/p depend on temperature and composition, so the interpre-

tation of wave speed anomaly models in terms of density variations of purely thermal

origin is not rigorously exact (Mattern et al., 2005; Stixrude & Lithgow-Bertelloni, 2005,

2011). However, it is generally the assumption taken in mantle circulation reconstruc-

tions (e.g. Conrad & Gurnis, 2003; Steinberger & O’Connell, 1997; Spasojevic et al.,

2009), where the density anomaly of the mantle below the lithosphere is computed

with either constant or depth-dependent Rρ/s or Rρ/p, estimated using mineral physics

constraints (e.g. Karato & Karki, 2001; Cammarano et al., 2003). The S-wave velocity

anomalies are generally preferred in these computations due to their better resolution

of upper mantle heterogeneities.

Instantaneous models of mantle dynamics have also played a role in justifying such as-

sumption and providing a scaling between wave speed anomalies and density anoma-

lies (see Forte et al., 2015, for a review). Instantaneous models of mantle circulation

estimate the flow of the mantle at present from:

• data such as seismic tomography models, the surface kinematics, the geometry

of the geoid, the value of gravity anomalies, topography...

• a physical model of instantaneous mantle flow (Richards & Hager, 1984; Ricard

et al., 1984, 1993), combined with models of the material properties of the mantle.
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Hager et al. (1985) used the first models of seismic tomography to infer a density field

and compute the geoid from it. In doing so, they were able to relate to first order

seismic and geodynamical observables. By complementing the tomography-derived

density model with a model of subducted slabs, Hager & Richards (1989) were able to

explain 90% of the current geoid. The improvement of both observations and models

has produced a variety of instantaneous mantle circulation models which aim at rec-

onciling seismic and geodynamical observations. For example, Simmons et al. (2006,

2009, 2010) perform a joint inversion of geodynamical and seismic observable to de-

termine the optimum Rρ/s profile and infer the temperature and compositional con-

tributions to the variations of densities. Stadler et al. (2010), Ghosh et al. (2010) and

Ghosh & Holt (2012) combine tomography-derived density anomalies and models of

slabs to determine the state of stress in the lithosphere and Wang et al. (2015) build on

this work to evaluate the capacity of various tomography models to produce accurate

geodynamic observables.

So far, dynamical mantle circulation models have only used estimated temperature

fields from tomography, or from an integration of other variables at present from joint

geodynamical and seismic inversions (e.g. Glišović & Forte, 2016). However, the con-

tinuous developments in both instantaneous and dynamical mantle circulation models

bring these areas of research ever closer and opens the way to a direct integration of

present-day raw observations in a dynamical model.

2.2.2 Surface Kinematics History of the Mantle

Observations on the global horizontal motions at the surface of the Earth are generally

sparse and indirect and, for a significant part, are of qualitative nature. The concepts

and methods associated to plate tectonics theory enable us to produce a simple time

series of quantitative data that can be integrated in a data assimilation framework as

described in Section 2.1.
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The modern formulation of plate tectonics theory is the result of a collective effort of

the geoscience community to integrate at a global scale observations on the horizon-

tal motions of the Earth’s surface from a wide range of disciplines (see for example

Oreskes, 2003, for a historical description of the origins of plate tectonics theory and an

account of its development by some of the researchers who took part in this scientific

revolution). Here, we summarize the evolution of ideas and highlight key observa-

tions that led to the formulation of plate tectonics theory in the late 60’s by McKenzie

& Parker (1967), Morgan (1968) and Le Pichon (1968). We then describe the current

models for past surface motions, which are to a large extent still based on these princi-

ples and observations.

In the beginning of the 20th century, Alfred Wegener (1880-1930) proposed the conti-

nental drift hypothesis: the continents once formed a single landmass (called Pangaea)

and have been drifting apart since then. Throughout his career, he collected obser-

vations supporting his theory and documented them in the successive editions of his

book, "Die Entstehung der Kontinente und Ozeane" (see for example Wegener, 1924,

the English translation of the third edition). Wegener bases his theory on the comple-

mentary shape of continents and the continuity of geological formations, paleoclimates

and fossil repartition once continents are reunited.

Although the continental drift theory was rejected by a large part of the community

(Oreskes, 1999), it gained a few early supporters. For example, Du Toit (1937) collected

further geological observations supporting the theory of continental drift. Holmes

(1931, 1944) proposed mantle convection as a viable mechanism for continental drift.

Geodesist Felix Andries Vening-Meinesz pioneered the oceanic geodetic studies and

interpreted the negative gravity anomalies at oceanic trenches (the deepest regions

of the ocean floor) as the locations of downwelling convective currents (see Vening-

Meinesz, 1948, for a synthesis of his gravity expeditions between 1923 and 1938). Griggs

(1939b) designed experimental models of continental drift driven by convection cur-

rents.

The 1960 − 1970 decade saw the progressive formulation and acceptance of the plate
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tectonics theory, starting with the sea-floor spreading theory (Dietz, 1961; Hess, 1962)

and new evidence of large scale lateral motion of continents (Runcorn, 1961) and fin-

ishing with the "new global tectonics" (i.e. plate tectonics) (Morgan, 1968; Le Pichon,

1968).

The intense marine geophysical exploration of the previous decades (started for mili-

tary purposes during WWII and continued from then on) had produced an extensive

dataset of the bathymetry, heat flow, seismic properties, gravity and magnetic anoma-

lies of the seafloor, giving a global view of the oceanic domain and requiring new

interpretations. Parallelly, the progresses in seismology made possible the detection

and precise localization of ever smaller and distant earthquakes, as well as a better de-

termination of earthquake properties such as the focal mechanism, and the associated

slip (see e.g. Isacks et al., 1968, for a synthesis of data interpreted in the light of plate

tectonics theory).

FIGURE 2.2: "World Ocean Floor Panorama" by Heezen & Tharp (1977),
two pioneers of ocean exploration, who produced the first comprehensive

maps of the ocean floor.

These studies led to the characterization of 5 main features of the ocean floor:

• abyssal plains, which represent most of the ocean floor, show very localized

and limited deformation, and display "zebra patterns" of magnetic anomalies, i.e.
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elongated stripes of alternating positive and negative magnetic anomalies (Ma-

son & Draff, 1961). These zebra pattern are oriented parallely to the mid-ocean

ridges.

• mid-ocean ridges, which form the largest mountain ranges on Earth and show

remarkable continuity (Ewing & Heezen, 1956; Heezen et al., 1959, see also figure

2.2). They are associated with a high heat flow, volcanic activity, shallow earth-

quakes and a fracture zone resembling a rift at their center. Mid-oceanic ridges

have been identified as spreading centers in Hess’s and Dietz’s theory of seafloor

spreading.

• deep trenches, which are associated with mountain ranges on adjacent conti-

nents or island arcs, show intense seismic activity with deep earthquakes orga-

nized on a plane dipping towards the continents or the island arc (Benioff, 1949).

Deep trenches are identified as zones of convergence where the oceanic floor dive

into the mantle in Hess’s and Dietz’s theory of seafloor spreading, later labeled

as subduction zones.

• fracture zones, linear features of several hundred to several thousand kilometers,

perpendicular to mid-ocean ridges. These fracture zones are associated with an

offset of the linear features they traverse (zebra pattern of magnetic anomalies

and mid-ocean ridges) and hence appear as zones of shearing. Wilson (1965b)

and Sykes (1967) showed these fractures correspond to transform faults which

link divergent or convergent boundaries to form a consistent network of mobile

belts dividing the surface of the Earth into rigid plates. Moreover, it was recog-

nized that fracture zones are seismically active only on the sections that connect

two other active boundaries, so that the rest of them are interpreted as fossil

transform faults.

• volcanic islands and seamounts generally organized in linear chains. The ra-

dioactive dating of the volcanic rocks of pacific chains showed a regular age pro-

gression, with the younger islands being closer to the east pacific rise (i.e. the

Pacific ocean ridge). Wilson (1963, 1965a) interpreted these chains as the result
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of successive volcanic eruptions due to localized and fixed rising mantle currents

below the moving plates. These hotspots were later connected to deep mantle

plumes by Morgan (1971).

Simultaneously, the study of continental rocks brought key elements that led to the ac-

ceptance of plate tectonics theory. These continental arguments are the result of the

interaction of studies on the remanent magnetism of rocks, radioactive dating and

progresses in the understanding of the origin of the Earth’s magnetic field, with the

emergence of the geodynamo theory (Elsasser, 1946a,b).

First, a collection of paleomagnetic data of continental rocks indicated an apparent

variation of the location of the magnetic pole through geological times. This appar-

ent polar wander appeared to be different depending on continents. Runcorn (1961)

showed that lateral motions of continents could reconcile the apparent polar wander-

ing paths. Supposing that the magnetic pole has not moved over geological times, it

is then possible to track the paleolatitude of continents with paleomagnetic data (the

paleolongitude cannot be estimated because the Earth’s magnetic field is radially sym-

metrical).

The second observation was the frequent reversed polarity measured in the remanent

magnetism of rocks of various ages. Cox & Doell (1963) used the newly developed K-

Ar dating method on samples coming from 6 volcanic eruptions and were able to show

the consistency of the polarity among rocks of the same age, which suggested the ex-

istence of global polarity reversals of the magnetic field. Additionally, they could date

the reversal events, and obtained in this way the first geomagnetic polarity time scale,

constantly updated since then (Ogg, 2012). Morley (1963) and Vine & Matthews (1963)

connected these findings with the seafloor spreading theory, stating that if the ocean

floor is produced at mid-ocean ridges and moving away from them with time, then the

zebra patterns of magnetic anomalies on the seafloor correspond to the fossilization of

the magnetic polarity through time and should be organized symmetrically around the

mid-ocean ridges. This prediction was then confirmed by Heirtzler & Le Pichon (1965)

and Heirtzler et al. (1966, 1968). Moreover, the identification of specific anomalies from
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the center of the ridge outward, along with a magnetic polarity timescale provided a

way to estimate the age of the ocean floor depending on the distance of the ridge, and

thus to deduce the rate of seafloor spreading.

The final concept to formulate plate tectonics theory was found independently by

McKenzie & Parker (1967) and Morgan (1968): since the Earth’s surface is made of

a jigsaw of internally rigid plates in constant motion, then the plate motions can be de-

scribed with principles of solid body rotation on a sphere. More precisely, we can use

Euler’s rotation theorem (Leonhard Euler 1707-1783): a solid body motion on a sphere

can always be described as a rotation around an axis passing through the center of the

sphere, and the composition of two rotations is also a rotation. Consequently, absolute

plate motions and relative motions of plate pairs are rotations, and are uniquely de-

fined by their respective angular velocities and rotation poles (called the Euler poles

and corresponding to one of the two points defined by the intersection of the rota-

tion axis with the surface of the Earth). Morgan (1968) then deduced that transform

faults could only develop along "small circles", i.e. circles at the surface of the Earth of

constant latitude with respect to the Euler pole (see figure 2.3).

FIGURE 2.3: Diagram of two plates sharing a divergent plate boundary.
The motion of plate 2 relative to plate 1 is described by the Euler pole A
and an angular velocity. Transform faults develop along small circles of

constant latitude with respect to the Euler pole A. Morgan (1968)

In this formulation, the plate tectonics jigsaw puzzle becomes a spherical geometry

problem: we can integrate local observations on relative motions of plate pairs to esti-

mate their Euler poles and angular velocities, and use geometrical constraints at triple
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junctions (where 3 plates are in contact) to deduce the relative motions of plate pairs

which are not constrained by data (see the description of the technique in McKenzie

& Morgan, 1969). Following this principle, Le Pichon (1968) was the first to define a

globally consistent plate circuit, i.e. a set of plates and plate boundaries which are re-

lated to each other in such a way that the relative motions of each plate pair can be

either inferred from observations or deduced from other plate pairs relative motions

(see Figure 2.4). He bases his analysis on data of seafloor spreading motions: the Eu-

ler poles are determined from the directions of fracture zones, and the spreading rates

are inferred from the identification of magnetic anomalies around the ridges, the rest of

relative plate motions are inferred geometrically. In his article, Le Pichon proposes also

a partial reconstruction of plate motion throughout the Cenozoic (65.5 Myr to present)

by applying successive rotations inferred by the same technique.

FIGURE 2.4: The first consistent global model of plate motions as pub-
lished by Le Pichon (1968).

By the end of 1968, Earth scientists had built a theory which at first order explains

the surface dynamics of the Earth, and allows the integration of local observations

of different nature, coming from almost all the disciplines of Earth sciences, into a

consistent framework. The following decades saw the emergence of space geodesy

(see Blewitt (2015) for a review), which made possible:
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• the direct measurements of surface motions with techniques such as Very Long

Baseline Interferometry, Satellite Laser Ranging, and the Global Positioning Sys-

tem. We can now measure surface motions and infer plate motions which could

not be deduced with classical plate tectonics principles (e.g. DeMets et al., 2010).

Those techniques also led to the production of instantaneous maps of plate mo-

tions (e.g. Argus et al., 2010; Kogan & Steblov, 2008), and the measurement of

plate deformation (e.g. Kreemer et al., 2014).

• a better localization of ships during measurement campaigns at sea. This resulted

in an improved mapping of magnetic anomalies identifications (e.g. Seton et al.,

2014, see also Figure 2.5).

• the production of high resolution maps of gravity anomalies (e.g. Sandwell &

Smith, 2009, see also Figure 2.6), which considerably increased the database of

fracture zones, seamounts and other features of the ocean floor (e.g. Wessel, 2001;

Matthews et al., 2011; Wessel et al., 2015).

FIGURE 2.5: Map taken from Seton et al. (2014), which shows magnetic
anomalies identifications (colored by age), recently collected to build a

community database.

The maps of ocean magnetic anomaly identifications (Figure 2.5) and gravity anomaly

(Figure 2.6) form the basis for the reconstruction of relative plate motions for the last
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FIGURE 2.6: Map of gravity anomalies (Sandwell & Smith, 2009) and a
model of plates at present. The name of major plates are: AFR: Africa,
ANT: Antarctica, ARA: Arabia, AUS: Australia, C: Cocos, CAP: Capri-
corn, CAR: Caribbean, EUR: Eurasia, IND: India, NAM: North Amer-
ica, NAZ: Nazca, PAC: Pacific, PH: Philippine, SAM: South America,

SOM: Somalia. Taken from Seton et al. (2012).

150 Myr: surface motions are reconstructed based on the spreading history of ocean

basins, inferred from the age of the ocean floor (given by the magnetic anomaly identi-

fications map), and indications of the direction of motion with active and fossil trans-

form faults (identified on the gravity anomaly map). The general procedure consists in

determining series of finite rotations defining the relative motions of plate pairs, start-

ing at present and going back in time. The most common method to determine a finite

rotation is the Hellinger method (Hellinger, 1981), summarized in Figure 2.7:

1. selection of magnetic anomalies of the same age from both sides of a ridge and

identification of associated transform faults

2. construction of isochrons, i.e. lines of same age formed by magnetic anomaly

identifications and transform faults. These isochrons are decomposed in great

circle segments, and the conjugate great circle segment on each isochrons are
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identified (numbers 1, 2, 3, 4 on the figure).

3. rotation of data of one plate to fit the data of the other plate. The common bound-

ary is then reconstructed by a set of great circle segments, and the misfit to the

data is computed by taking the weighted average of the distance of data points

to their corresponding great circle segment.

FIGURE 2.7: Diagram of the principle of the Hellinger method for relative
plate motion reconstructions. Plates A and B are separated by a ridge
(double lines), and active transform faults (single line). a) localization of
magnetic anomaly identifications of the same age on both sides of the plate
boundaries (pink and blue points) and of fossil transform faults (dashed
lines) b) definition of isochrons and identification of conjugate great circle
segments c) position of magnetic anomaly identifications after the finite
rotation, and inferred past plate boundary. Taken from Wessel & Müller

(2015)

By repeating this technique on isochrons of increasing age, we can construct a time

series of finite rotations of plate pairs starting at present and going back in time. The

extent of these time series is limited by the destruction of ocean floor at subduction

zones. For example, the relative motion of the Pacific plate to the Nazca Plate (see

Figure 2.6 for the localization of plates) can only be reconstructed directly for the last

∼ 50 Myr since the older ocean floor of the Nazca plate has been subducted. Supposing

symmetrical spreading rates, it is possible to estimate earlier finite rotations between

these two plates by studying the sole pacific plate data (e.g. Seton et al., 2012), but this

method introduces further uncertainties in the reconstruction. When both sides of the

ridge have been destroyed, the reconstructions rely on the interpretations of onshore

geology and extrapolations of the direction and the rate of spreading at more recent

times (e.g. Rowley, 2008). In this case, the uncertainties on the reconstructions are high,
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but difficult to quantify. Torsvik et al. (2010) defines the "world uncertainty" to quan-

tify the increase of the global uncertainty of plate reconstructions through time, due

to the absence of older ocean floor: the world uncertainty corresponds to the fraction

of the Earth’s lithosphere which has been subducted since a given time. For exam-

ple, the oceanic floor older than 140 Myr has almost entirely been subducted, which

brings the world uncertainty at 60% at that time. Besides, the time resolution of the

finite rotation series is directly dependent on the frequency of polarity reversal of the

magnetic field. One of the most important lack of data is the Cretaceous superchron

(Granot et al., 2012): between 121 and 83 million years ago, the polarity of the Earth’s

magnetic field appears to have been stable, so a large portion of the ocean seafloor

cannot be dated with precision using magnetic anomaly identifications, as is shown in

Figure 2.5. Müller et al. (2008b) produced continuous maps of seafloor age uncertainty

based on the distance from the nearest magnetic anomaly.

Once the motion of divergent plate boundaries is determined, it is possible to infer

the relative motions of other boundaries using geometrical constraints. To determine

the relative motions of all plate pairs, we need to construct a plate circuit such that

each plate is connected to the plate circuit by at least one divergent boundary where

the finite rotations are computable, as Le Pichon (1968) had constructed at present.

However, it is not possible to build such a circuit for the last 200 Myr. Some plates,

such as the Philipine plate at present (Bird, 2003), have very limited portions of diver-

gent boundaries and are thus almost isolated from the rest of the global circuit. Before

83 Myr, the Pacific plate cannot be linked to the global circuit either (Seton et al., 2012).

Moreover, the uncertainties on finite rotations propagate through the circuit and two

alternative circuits can lead to different results (e.g. Steinberger et al., 2004). Finally,

some parts of the surface of the Earth have undergone deformation, for example South

East Asian plates. In these places, plate tectonics geometrical rules do not apply (e.g.

Holt et al., 2000; Gordon, 2000). To produce a global model of plate reconstruction it

is thus necessary to take into account other sources of information. These complemen-

tary sources of informations are of two types: additional observations on the relative

motion of plates, and observations on the absolute motion of plates.
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Observations on the relative motions of plates include for example paleontological,

structural, stratigraphic and regional geology constraints (e.g. Hosseinpour et al., 2016;

Barnett-Moore et al., 2016). The integration of such constraints into global reconstruc-

tions is not done in a systematic way. On the contrary, it generally requires choices

and interpretations from the geoscientist who builds the reconstruction. The resulting

uncertainties are then difficult to quantify.

Observations on the absolute plate motions primarily include data from island and

seamount chains, and paleomagnetism. Figure 2.8 represents the linkage between the

relative motion of a plate with its neighboring plates, and its absolute motion. All

these motions are represented for a plate which is stationary for the last 80 Myr, for il-

lustrative purposes. The figure also depicts the predicted apparent polar wander path

(i.e. the time evolution of the direction of the paleopole as recorded by the remanent

magnetism of the rocks belonging to this plate) and the geometry and age progres-

sion of an island and seamount chain. These predictions are made with the following

assumptions: 1) the Earth’s magnetic field has always been primarily dipolar, and its

poles have always remained stationary 2) the seamounts and ocean islands are cre-

ated by static and localized hotspots below the plate (first hypothesized by Wilson,

1963). With these hypotheses, it is possible to infer the paleolatitude of the plate from

APW paths (the paleolongitude cannot be inferred because the Earth magnetic field

is radially symmetrical) and the absolute motion of the plate by considering several

seamount and island chains and estimating finite rotation series, similarly to what is

done for the relative plate motions from magnetic anomalies and fracture zones. The

respective uncertainties on observations can also be estimated (see for example Torsvik

et al., 2008 for APW uncertainty estimations, and O’Neill et al., 2005; Wessel et al., 2006

for uncertainty estimations on absolute plate motions from seamount and island chain

motions).

In practice, the estimation of absolute plate motions is more complex. First, the study of

APW paths reveals a significant component of whole mantle and crust rotation, called

true polar wander (e.g. Goldreich & Toomre, 1969; Besse & Courtillot, 2002; Evans,



56 Chapter 2. Data and the Mantle Circulation Inverse Problem

FIGURE 2.8: Diagram of the relationship between relative plate motions
(shown on the plate boundaries), absolute plate motions and predicted
observations of apparent polar wander and seamount and island chain
geometry, if the magnetic pole of the Earth and the hotspots were static.

Taken from Torsvik et al. (2008).

2003; Maloof et al., 2006; Steinberger & Torsvik, 2008). The true polar wander is due to

the redistribution of masses in the convecting mantle, which changes the axis of max-

imum non-hydrostatic moment of inertia and leads to a whole mantle and crust rota-

tion so as to realign this axis to the spin axis of the Earth. Second, the global study of

seamount and ocean island chains shows that the hotspots are slightly moving through

time, due to convective currents in the mantle (e.g. Molnar & Stock, 1987; Tarduno &

Gee, 1995; Tarduno & Cottrell, 1997; DiVenere & Kent, 1999; Tarduno et al., 2003). As a

result, the APW paths and seamount and ocean island chains actually give indications

on the relative motions of plates with respect to the magnetic pole of the Earth and

the moving mantle, respectively. To integrate these observations together with rela-

tive plate motions in a global model of plate tectonics reconstruction, it is necessary to

define a common reference frame and relate all the data to it.
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Reference frames vary depending on studies. Torsvik et al. (2008) review and compare

four types of reference frames generally used in plate tectonics reconstructions: paleo-

magnetic, African fixed hotspot, African moving hotspot, and global moving hotspot.

The paleomagnetic reference frame uses APW paths corrected from their estimated

true polar wander to determine the variations in paleolatitudes of continents. Since

the longitude is not constrained by APW paths, the reference frame also considers one

plate as fixed in longitude (generally, Africa is chosen due to its central place in the

Pangaea, and its supposed small amplitude of motion). The paleomagnetic reference

frame is the only reference frame available before 130 Myr. The three other reference

frames are variations on hotspot-based reference frames using different approxima-

tions. The African fixed hotspot reference frame considers that the hotspots in the

Atlantic and Indian oceans are totally fixed (e.g. Müller et al., 1993), and anchors rela-

tive plate motions in a frame using data coming from those hotspots. On the contrary,

the African moving hotspot, and global moving hotspot reference frames estimate the

motions of hotspots, and propose corrections to construct a reference frame. The esti-

mation of the motion of hotspots is done using mantle circulation models (e.g. O’Neill

et al., 2005; Doubrovine et al., 2012), that we will discuss in the next section.

Recent plate tectonics reconstructions use a hybrid reference frame, as proposed by

Torsvik et al. (2008), where a moving hotspot reference frame is used for recent times

(up to 100 Ma) and is linked to a paleomagnetic reference frame for earlier times (e.g.

Torsvik et al., 2010; Seton et al., 2012; Müller et al., 2016).

Additionally, mantle structures estimated from tomography models have been included

as absolute plate motion constraints in some plate tectonics reconstruction models.

Van Der Meer et al. (2010) identified paleoslabs (remnants of subducted lithosphere

in the mantle) using seismic tomography, and opened the way to the introduction of

such features into plate tectonic reconstructions (e.g. Williams et al., 2015). Torsvik

et al. (2014) used the location of deep mantle structures (Large Low Shear Velocity

Provinces, LLSVP), that are thought to be responsible for the production of Large ig-

neous provinces, to estimate the longitude of continents in the Paleozoic.
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The final result of these plate tectonics reconstructions is a time-series of plate layouts

associated with pairs of rotation poles and angular velocities, which describe the his-

tory of the motions at the surface of the Earth. Modelling techniques and software

developments have recently allowed the production of plate tectonics reconstructions

continuous in time (e.g. Gurnis et al., 2012; Müller et al., 2016), which made their inte-

gration into mantle convection models both easier and more consistent (see next sec-

tion). Given the amount of observations used for these reconstructions, and the variety

of specific techniques used to integrate those observations, the quantification of uncer-

tainties in the final result is difficult to estimate. To our knowledge, a rigorous quan-

tification of errors in the global plate tectonics reconstructions has not been performed

yet. The progress made in successive plate reconstruction models are generally eval-

uated by comparing them with previous ones on their ability to explain observations

(Müller et al., 2016) and the plausibility of the dynamics they predict (Williams et al.,

2015).

Conclusions on Observed Data

In this section, we described the data currently used in mantle circulation models: the

temperature field at present and the history of surface kinematics. These data are not

raw observations, but the result of models that integrate a wide range of observations.

This setup is not ideal, since the addition of successive layers of models and/or in-

versions make the link between raw observations and the final result (the estimated

mantle circulation) complex and the uncertainties difficult to assess. In this sense, the

ultimate goal of data assimilation for mantle convection is to develop a framework

able to integrate directly raw observations. The construction of community databases

gathering raw data in a unified format (Seton et al., 2014; Wessel et al., 2015; Moulik

et al., 2016), the progresses made in each of the disciplines to model and understand

mantle structure and dynamics, and the techniques developed to assimilate data into

models all contribute to this aim.
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2.3 Dynamical Mantle Circulation Reconstructions

Three alternative strategies have been proposed to reconstruct the history of mantle

circulation: backward advection, semi-empirical sequential methods and variational

data assimilation. In the present dissertation, we propose a fourth one: sequential data

assimilation, that we develop in Chapters 3 and 4. Backward advection and empiri-

cal sequential methods have already produced numerous estimations of global mantle

circulation evolutions in the last decades. The variational data assimilation methods

are more recent, and have so far been applied to regional reconstructions (Liu & Gur-

nis, 2008; Spasojevic et al., 2009) and just recently to global mantle circulation models

(Glišović & Forte, 2014; Horbach et al., 2014; Glišović & Forte, 2016).

Backward advection and empirical sequential methods are direct methods: they in-

tegrate data in mantle convection models as boundary or initial conditions, without

taking into account the uncertainties on the data and/or the model. We present these

methods in the first part of this section. On the contrary, variational and sequential

data assimilation consider mantle circulation reconstruction as an inverse problem,

and explore (at least partially) the mantle state space to determine the evolution that

best fits the observed data, given uncertainties on both data and the convection model.

We describe these techniques in the second part of this section.

2.3.1 Direct Methods

By the end of the 90’s, the increase in computational power and the advances in nu-

merical modelling had led to the emergence of numerical models able to solve the

governing equations of mantle convection in 3D spherical geometry, with radial vis-

cosity variations and at a Rayleigh number 1 to 2 orders of magnitude lower than that

of the Earth’s mantle (Tackley et al., 1993; Bunge et al., 1996). Simultaneously, the res-

olution of mantle tomographic models had improved, revealing the distribution and

geometry of subducted slabs (Su & Dziewonski, 1997; Masters et al., 1996; Li & Ro-

manowicz, 1996; Grand et al., 1997; Van der Hilst et al., 1997). Finally, semi-dynamical
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models of mantle density evolution derived from surface kinematic history had shown

their ability to reproduce the current geoid and seismic wave speed anomalies, and

to predict plate velocities in the past (e.g. Ricard et al., 1993; Zhang & Christensen,

1993; Deparis et al., 1995; Lithgow-Bertelloni & Richards, 1998). The Backward advec-

tion (Steinberger & O’Connell, 1997) and semi-empirical sequential (Bunge et al., 1998)

methods emerged from these progresses, as a way to investigate the dynamics of the

mantle and its interaction with surface tectonics.

Backward advection

Backward advection consists in reversing the time in mantle convection equations, to

compute the evolution of mantle circulation from its present state (derived from seis-

mic tomography) backward in time, using plate tectonics reconstructions as surface

boundary conditions. As described in section 1.3, the conditions at the upper bound-

ary Γa of the model are then

∀t, ∀x ∈ Γa, u(x, t) · er = 0 and uH(x, t) = ua
H(x, t), (2.10)

with u the total velocity and uH the horizontal velocity. t, x and er are the time, the

position vector and the unit radial vector. ua
H is the surface velocity field given by plate

tectonics reconstructions. In this formulation, it is necessary to have plate tectonics

reconstructions which are continuous in time.

For mantle convection, the only prognostic equation is the equation of energy conser-

vation. In the Boussinesq approximation, the nondimensional form of this equation is

∂T

∂t
+ u · ∇T = ∇2T + Rh, (2.11)
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where T and Rh are the nondimensional temperature and rate of energy production.

The backward heat advection-diffusion equation should be:

∂T

∂t
− u · ∇T = −∇2T − Rh. (2.12)

This problem is an ill-posed problem: the backward diffusion term −∇2T will trans-

form a slight positive temperature anomaly at present into a very large and localized

temperature anomaly in the past. It follows that the final solution (the temperature

field at some time in the past) does not depend continuously on the initial condition

(the temperature field at present): the problem is unstable, and following Hadamard

(1902) definition, ill-posed (see Ismail-Zadeh et al., 2016, section 1.1 for a simple 1-

D example of this behavior). In practice, the diffusion term is dropped. Then, the

backward rate of energy production −Rh also needs to be dropped, for global energy

balance reasons. The backward conservation energy equation becomes a simple back-

ward advection equation

∂T

∂t
= u · ∇T. (2.13)

The backward advection method should be valid for a timespan which is short com-

pared to the diffusion time of temperature heterogeneities in the mantle. If we consider

a temperature anomaly of characteristic size 100 km (5 times smaller than the current

resolution of global tomography models, see e.g. Ritsema et al., 2011), we obtain a

characteristic diffusion time of

τd =
d2

κ
= 300 Myr, (2.14)

where κ = 10−6m2.s−1 is the coefficient of thermal diffusivity. Conrad & Gurnis (2003)

add to the backward advection algorithm an analytic solution describing the thermal

boundary layers (where diffusion is the principal mechanism of heat transfer) to model

more accurately mantle circulation. They test the reliability of the backward advection

method by first computing the state of the mantle in the past by backward advection,
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and then computing a forward evolution from this initial state. Finally, they compare

the predicted state of the mantle at present with the state of the mantle derived from

seismic tomography. With this setup, they estimate that backward advection is reli-

able to reconstruct mantle circulation for the last 50 to 75 Myr. O’Neill et al. (2005)

push the reconstructions of mantle circulation to 120 Myr, using a different technique

for the boundary layers. From their mantle circulation models, they estimate the mo-

tions of hotspots through time, in order to build a moving hotspot reference frame (see

previous section). They take into account uncertainties in the plate tectonics recon-

structions and convection models by successively running backward advection evolu-

tions and modifying the parameters of the model and plate tectonics reconstructions,

to converge to a result consistent with both the physics and the data. Doubrovine

et al. (2012) also use backward advection to estimate a moving hotspot reference frame

for the last 130 Myr. However, they stop the backward advection at 70 Myr, and

estimate the motion of hotspots between 70 and 130 Myr using the velocity field at

70 Myr. Williams et al. (2015) compare the moving hotspot reference frame of O’Neill

et al. (2005); Doubrovine et al. (2012) to the absolute reference frame recently derived

from the identification of paleoslabs in tomography models (Van Der Meer et al., 2010).

Williams et al. (2015) find discrepancies between reference frames for times older than

70 Myr, further confirming the results of Conrad & Gurnis (2003): backward advection

models are probably not reliable beyond 70 Myr.

Furthermore, uncertainties on the state of the mantle at present (derived from seismic

tomography) and on plate tectonics reconstructions add to the intrinsic time limit of

retrodictions for the backward advection method.
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Semi-empirical Sequential Methods

The semi-empirical sequential methods estimate mantle circulation by integrating plate

tectonics reconstructions chronologically into a mantle convection model. Plate tec-

tonics reconstructions are either introduced as velocity boundary conditions (follow-

ing Equation 2.10), as first described by Bunge et al. (1998), or with a more sophisti-

cated method, by blending a convection solution with thermal and kinematic models

of plates and slabs (Bower et al., 2015). Contrary to backward advection, the timespan

of the reconstruction is not limited by the assimilation method, but the availability of

plate tectonics reconstructions. This makes possible the computation of mantle circula-

tion models for much longer timespans (so far, up to 450 Myr, as done by Zhang et al.,

2010). Such long term evolutions allow the investigation of the effect of surface tec-

tonics on the deep mantle structure (e.g. McNamara & Zhong, 2005; Schuberth et al.,

2009b,a; Zhang & Zhong, 2011; Davies et al., 2012; Bower et al., 2013; Bull et al., 2014;

Hassan et al., 2015), and the investigation of alternative scenarios of absolute plate mo-

tions beyond 70 Myr (e.g. Shephard et al., 2012; Nerlich et al., 2016; Zahirovic et al., in

press).

One important issue of semi-empirical sequential methods is that the initial condition

is unknown. A first guess is generally obtained by supposing a simple 1D temperature

profile (e.g. McNamara & Zhong, 2005), by constructing a mantle structure consistent

with the first plate layout used (e.g. Flament et al., 2014), or by computing a solution

with surface boundary conditions corresponding to the first plate layout for tens of

millions of years or more (e.g. Bunge et al., 2002). McNamara & Zhong (2005) stud-

ied the sensitivity of mantle circulation models to initial conditions. They considered

three initial conditions: a first case with a 1-D temperature profile and two other cases

where they imposed the velocity boundary conditions from the reconstructed plate

tectonics 119 Myr ago for 60 Myr and 120 Myr, respectively. Figure 2.9 shows the esti-

mated temperature field at the base of the mantle circulation models after 119 Myr of

reconstruction. Although the global pattern is similar for the three mantle circulation

models, the details of the temperature field vary between models.
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cba

FIGURE 2.9: Maps of the estimated nondimensional temperature at
present at 2811 km depth for three mantle circulation models computed
from three different initial states, all other conditions being equal (ther-
mochemical mantle model, 119 Myr of assimilation of plate tectonics re-
constructions). Initial states are: a) 1-D temperature profile b) 60 Myr of
imposed boundary conditions corresponding to the velocity and layout of
plates 119 Myr ago c) same as b) but with 120 Myr. Taken from McNamara

& Zhong (2005).

Both semi-empirical sequential and backward advection methods have shown their

sensitivity to variations in mantle convection models (e.g. O’Neill et al., 2005; Bello

et al., 2015) and in observed data (e.g. Doubrovine et al., 2012; Shephard et al., 2012).

The limits of these methods motivate the development of methods to assimilate data

on mantle circulation into mantle convection models while taking into account the

uncertainties on both the model and the observed data. We describe these techniques

in the next section.

2.3.2 Data Assimilation Methods

In Section 2.1, we described the problem of mantle circulation reconstruction as as

a time-dependent state estimation problem, following the classical notations of data

assimilation. Two approaches exist to find a solution to this problem: sequential data

assimilation and 4-D variational data assimilation.

So far, data assimilation methods for mantle circulation have been developed either as

simplified schemes directly derived from 4-D variational data assimilation (e.g. Bunge

et al., 2003), or as techniques derived from optimal control theory, bearing similarities

with 4-D variational data assimilation (e.g. Ismail-Zadeh et al., 2003b,a, 2007). In this

dissertation, we present two applications of sequential data assimilation methods to

the mantle circulation problem. To ease the comparison between techniques, we keep
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the general formulation of data assimilation derived from the discretized state and

model, as in Section 2.1. We first describe the common objective of data assimilation

techniques. Then we describe the principle of 4-D variational data assimilation and

the applications to mantle circulation. Finally, we describe the general principle of

sequential data assimilation.

In the following, we consider only the second order statistics of the errors affecting

the states and data. Other formulations exist, taking into account a more thorough

description of error statistics (see e.g. Bocquet et al., 2010, for a review). More de-

tailed descriptions of data assimilation techniques can be found in classical textbooks

of atmospheric sciences and numerical weather prediction (e.g. Bengtsson et al., 1981;

Daley, 1993; Kalnay, 2003), oceanography (e.g. Chassignet & Verron, 2006) or data as-

similation in general (e.g. Evensen, 2009a; Swinbank et al., 2012; Blayo et al., 2014).

Objective of Data Assimilation

As described in Section 2.1, the unknown is defined as a time series of true state vectors

{xt
1,x

t
2, ...,x

t
K} and three sources of information are available, all affected by errors:

• the background state xb, which is related to the first true state by

xb = xt
1 + ǫb (2.15)

with ǫb the error on the background state. The error is modelled as a random

vector of 0 mean (the background state is supposed unbiased) and covariance

matrix Pb.

• the time series of observed data {yo
1,y

o
2, ...,y

o
K} and their associated observation

operators {H1,H2, ...,HK}. At a given time step k the observed data vector yo
k is

related to the true state xt
k by

yo
k = Hk(x

t
k) + ǫok + ǫhk (2.16)
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with ǫok the measurement errors and ǫhk the errors linked to the observation oper-

ator. The sum of errors ǫ
o,h
k = ǫok + ǫhk is modelled as a random vector of 0 mean

(observations are supposed unbiased) and covariance matrix Rk.

• the dynamical modelM, which relate a given state xk−1 at time step k − 1 to the

state vector xk at time step k by

xk =M(xk−1) + ηk (2.17)

with ηk the errors linked to modelling approximations. The error is modelled

as a random vector of 0 mean (the model is supposed unbiased) and covariance

matrix Qk.

We cannot compute directly the error made by a given evolution {x1,x2, ...,xK} with

respect to the true state evolution {xt
1,x

t
2, ...,x

t
K}, since it is unknown. However, we

can compute the distances between the estimated evolution and the constraints given

by the different sources of information. More precisely, we compute the Mahalanobis

distances (Mahalanobis, 1936). The Mahalanobis distance ∆a(x) is a measure of the

distance of a vector x to the multivariate continuous random vector a of mean µ and

covariance matrix Σ:

∆a(x) =

√
(x− µ)T (Σ)−1 (x− µ). (2.18)

For example, when the covariance matrix Σ is the identity matrix, this means that the

variance of each component of the random vector a is one and the components of a

are uncorrelated. In this case, the Mahalanobis distance corresponds to the Euclidean

distance between the vector x and the mean µ (i.e. the L2 norm of x− µ).
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For our problem, we compute the following Mahalanobis distances:

[
∆ǫb(x1 − xb)

]2
= (x1 − xb)T

(
Pb

)−1
(x1 − xb) (2.19a)

∀k ∈ {1, .., K},
[
∆

ǫ
o,h
k
(Hk(xk)− yo

k)
]2

= (Hk(xk)− yo
k)

T (Rk)
−1 (Hk(xk)− yo

k) (2.19b)

∀k ∈ {2, .., K},
[
∆ηk

(M(xk−1)− xk)
]2

= (M(xk−1)− xk)
T (Q)−1 (M(xk−1)− xk). (2.19c)

The global aim of data assimilation methods is to find a state evolution which mini-

mizes these distances. 4-D variational and sequential data assimilation methods differ

by the strategies adopted to determine this evolution.

4-D Variational Data Assimilation

4-D variational data assimilation methods aim at providing a time series of the esti-

mated evolution of the state of the system such that the objective function J defined

by

J (x1,x2, ...,xK) =(x1 − xb)T
(
Pb

)−1
(x1 − xb)

+
K∑

k=1

(Hk(xk)− yo
k)

T (Rk)
−1 (Hk(xk)− yo

k)

+
K∑

k=2

(xk −M(xk−1))
T (Qk)

−1 (xk −M(xk−1)) (2.20)

is minimized. The minimization of this function is called weak constraint four dimen-

sional variational assimilation or weak constraint 4D-var, following the terminology of

Sasaki (1970). The term "weak constraint" comes from the fact that we take into account

modelling errors.

Bunge et al. (2003) writes the equivalent of the objective function of Equation 2.20 in

the continuous case, using the classical conservation equations governing mantle flow,
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as described in Chapter 1. However, the mantle model they consider differs from the

model used in this dissertation on two major points.

First, in these models, the viscosity depends neither on temperature, nor on the state

of stress, but only on depth. This has important consequences for the development of

data assimilation techniques. As discussed in Section 1.4, the temperature and stress

dependence of the viscosity is necessary to obtain mantle convection models which

display plate-like tectonics at their surface. If we use a mantle model which does not

have this type of viscosity law, then it is not possible to integrate the data derived from

plate reconstructions as is done in classical data assimilation schemes, i.e. by defining

an operator H that links a state computed from the model to surface velocities. In this

case, the only data which is usable as proper "observed data", as defined previously, is

the temperature field at present, estimated from seismic tomography. The time series

of observed data {yo
1,y

o
2, ...,y

o
K} shrinks to {yo

K}. The vector yo
K contains the values

of the discretized temperature field derived from seismic tomography. The associated

observation operatorHK corresponds to the interpolation of the temperature field from

the grid defined in mantle convection models to the different discretization used in

seismic tomography models. The equivalent discrete objective function becomes:

J (x1,x2, ...,xK) =(x1 − xb)T
(
Pb

)−1
(x1 − xb)

+ (HK(xK)− yo
K)

T (RK)
−1 (HK(xK)− yo

K)

+
K∑

k=2

(xk −M(xk−1))
T (Qk)

−1 (xk −M(xk−1)) (2.21)

The second difference is the mechanical boundary conditions at the surface of the

model. Since the mantle convection model cannot produce plate-like tectonics at the

surface self-consistently, plate tectonics reconstructions have to be imposed as surface

boundary conditions (Equation 2.10) to obtain an "Earth-like" evolution. In this formu-

lation, the mantle modelM includes the plate tectonics reconstructions.

In this specific case, Bunge et al. (2003) derives Euler-Lagrange equations associated

to the continuous objective function. In principle, the solution to the Euler-Lagrange



2.3. Dynamical Mantle Circulation Reconstructions 69

equations provides the state evolution which minimizes the objective function. How-

ever, in practice, further assumptions are made before computing the solution to this

problem. Bunge et al. (2003) suppose no error on the model (which means in their

formulation also no error on plate tectonics reconstructions). If we neglect modelling

errors, then the evolution of the state of the system can be determined solely from the

first state:

∀k ∈ {2, ..., K}, xk =M(xk−1) (2.22)

Under this assumption, the objective function J depends only on the initial state x1

and becomes

J (x1) =(x1 − xb)T
(
Pb

)−1
(x1 − xb)

+ (HK(xK)− yo
K)

T (RK)
−1 (HK(xK)− yo

K). (2.23)

We consider further that the covariance matrices associated to the background state

error Pb and the observed data error RK are of the form:

Pb = V bI and RK = V oI (2.24)

where I is the identity matrix and V b and V o are the variances associated to each com-

ponent of the background state and observation error random vectors.

We obtain the cost function

J (x1) =
1

V b
(x1 − xb)T (x1 − xb)

+
1

V o
(HK(xK)− yo

K)
T (HK(xK)− yo

K) . (2.25)

In the continuous form, and considering that the states and data contain only temper-

ature fields, this translates to

Jc(Ti) =
1

V b

∫

Ω

[
Ti(a)− T b(a)

]2
da+

1

V o

∫

Ω

[Tf (a)− T o(a)]2 da. (2.26)
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Where Ti is the initial temperature field to be determined, Tf the final temperature,

computed from the evolution of Ti using the forward model of mantle convection.

T b is the a priori initial temperature field, and T o is the temperature field at present,

derived from seismic tomography. Ω represents the volume of the mantle and a is the

position vector.

The function Jc, (or a further simplification, taking V b → ∞ and V o = 1), along with

a mantle convection model, form the basis of the development of current data assimi-

lation methods applied to the mantle circulation inverse problem. In practice, iterative

methods for the minimization of the function Jc are developed in the continuous form,

and the resulting equations are then discretized to solve the system.

The general organization of algorithms is:

1. Initialization with a discretized temperature field T
(1)
i .

2. Iteration until convergence of the solution. At the nth iteration

(a) Computation of the state evolution using the forward code of mantle con-

vection, from a given discretized initial state T
(n)
i we obtain a final state T

(n)
f .

(b) Computation of the correction δT (n) to add to the initial state to minimize the

cost function. The new initial temperature field is then T
(n+1)
i = T

(n)
i + δT (n)

Algorithms differ by the techniques used to estimate the correction δT (n) in stage 2b.

One solution, adopted by Bunge et al. (2003), and further investigated by Horbach et al.

(2014), Vynnytska & Bunge (2015) and Ghelichkhan & Bunge (2016) is to use the ad-

joint method to obtain a first order estimation of the gradient of the objective function

∇Jc around a given initial temperature field. This method requires the derivation of a

set of partial differential adjoint equations associated with the set of partial differential

equations defining the forward model of mantle convection. The stage 2b corresponds

to the backward computation of the discretized adjoint equations. The advantage of

this method is that the partial differential adjoint equations are very similar to the for-

ward differential equations, which allows the use of the same code to perform stage 2a



2.3. Dynamical Mantle Circulation Reconstructions 71

and stage 2b. However, this also means that the computational time required for stage

2a is equivalent as the one needed for stage 2b. Moreover, the computation of stage

2b requires to store the whole set of temperature and velocity evolutions computed in

stage 2a. Bunge et al. (2003) performs a preliminary test in 3 dimensions for a 100 Myr

evolution and obtain convergence of the objective function value after 100 iterations.

Horbach et al. (2014) apply this method to the reconstruction of mantle circulation for

the past 40 Myr. They test the sensitivity of the method to the initial temperature field

chosen in stage 1 of the algorithm, and show that the solutions, after several iterations,

all converge to the same evolution. Vynnytska & Bunge (2015) further test this vari-

ational algorithm using synthetic experiments in 2D cylindrical geometry. First, they

compute a reference evolution using the forward model, with a free-slip boundary

condition. The surface velocities and final temperature fields are extracted from the

reference evolution. Then the variational algorithm is applied to estimate an evolution

from these two constraints: surface velocities are used as boundary conditions, and

the final temperature field is the data to fit. The background state is a spherically sym-

metric temperature field. They limit the timespan of the evolution to 50 Myr. Within

this period, the evolution inferred from the variational data assimilation algorithm

converges towards the reference solution. They also perform synthetic experiments

where the surface boundary conditions are not imposed during the assimilation. In

this case, the assimilation algorithm produces an evolution whose final temperature

field converges towards the reference final temperature field, but the whole estimated

evolution diverges from the reference evolution, showing the presence of local minima

of the objective function in Equation 2.26 if velocities are not imposed at the surface

of the mantle convection model. More generally, these results show the importance

of surface velocity constraints to estimate the evolution of the temperature field in the

past.

Ismail-Zadeh et al. (2003a,b, 2004) also use the adjoint method but derive the adjoint

equations considering a model restricted to the equations of conservation of energy

(and associated boundary conditions), supposing no effect of the temperature varia-

tion on the velocity field. In step 2a, they consider the complete mantle model with the
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equations of conservation of mass, momentum and energy and the associated bound-

ary conditions, arguing that the iteration of step 2a and step 2b will then lead to an

estimation of the evolution consistent with the physics of mantle convection. The com-

putational cost of this technique is lighter than the former method and this formula-

tion also allows the implementation of temperature-dependent viscosity. Liu & Gurnis

(2008) perform synthetic regional tests using this method and show that the result of

the assimilation depends strongly on the chosen initial state in stage 1 of the algorithm.

To obtain convergence towards the reference evolution, it is necessary to compute the

initial temperature field (stage 1 of the algorithm) from a simple backward advection,

as done in section 2.3.1.

Finally, Ismail-Zadeh et al. (2007) propose an algorithm based on the regularization

of the backward heat equation (Equation 2.12) for stage 2b. This method is called the

quasi-reversibility method (Lattés & Lions, 1969). With synthetic tests, Ismail-Zadeh

et al. (2007) finds a lower accuracy of the quasi-reversibility method compared to ad-

joint methods. However, the quasi-reversibility method is computationally lighter (see

Ismail-Zadeh et al., 2016, Chapter 7 for a comparison between backward advection, ad-

joint and quasi-reversibility methods). Glišović & Forte (2014, 2016) recently applied

the quasi-reversibility method to the reconstruction of mantle circulation for the last

65 Myr.

All the techniques described previously, when applied to global reconstructions of

mantle circulation, impose plate tectonic reconstructions as mechanical boundary con-

ditions, without taking into account the uncertainties on these reconstructions. As

shown for example by the synthetic experiments of Vynnytska & Bunge (2015), the

imposition of surface constraints during the assimilation is decisive to obtain solu-

tions that converge to the true evolution (also highlighted by Glišović & Forte, 2016).

Given the uncertainties of plate tectonics reconstructions as we go back in time (see

section 2.2.2), it then appears important to be able to take them into account in the data

assimilation algorithms developed.

In this dissertation, we focus on the development of data assimilation methods that
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consider the history of plate tectonics not as a boundary condition that is imposed at

the surface of the model, but as observed data, which are assimilated in a consistent

fashion in mantle circulation models. To do so, we use direct models of mantle con-

vection that are able to produce plate-like tectonics at their surface self-consistently.

These models have viscosity laws that strongly vary with both temperature and stress,

as is discussed in Section 1.4. This introduces strong nonlinearities in the flow equa-

tions, which complicates the development of 4-D variational data assimilation meth-

ods. Hence, we turn to sequential data assimilation methods, the principle of which

we describe in the next section.

Sequential Data Assimilation

The exact formulation of the sequential data assimilation algorithms that were devel-

oped during this thesis are described in the next two chapters. Here, we simply high-

light the principle of the method. Although sequential methods find their roots in

estimation theory more than optimal control theory (see the following Chapters), we

present here the different estimations as the minimization of objective functions, so as

to ease the comparison with the previous 4-D variational data assimilation methods.

Sequential methods divide the problem into several consecutive stages:

1. The best guess for the initial state x1 is computed by minimizing the objective

function:

J (x1) =(x1 − xb)T
(
Pb

)−1
(x1 − xb)

+ (H1(x1)− yo
1)

T (R1)
−1 (H1(x1)− yo

1) (2.27)

the result of this minimization is called the first analyzed state xa
1, which is linked

to the first true state by xa
1 = xt

1 + ǫa1, with ǫa1 the error on the first analyzed state.

ǫa1 is modelled as a random vector, of mean 0 and covariance matrix Pa
1 (called

the analyzed error covariance matrix). Pa
1 is also evaluated during this stage by
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taking into account the errors on both the background state and the first observed

data.

2. Two steps are repeated, until all observations have been taken into account. At

timestep k ∈ {2, 3, ..., K}:

(a) the Forecast state x
f
k is computed using the modelM:

x
f
k =M(xa

k−1). (2.28)

The forecast state is linked to the kth true state by x
f
k = xt

k + ǫ
f
k , with ǫ

f
k the

error on the kth forecast state. ǫ
f
k is modelled as a random vector, of mean

0 and covariance matrix P
f
k (called the forecast error covariance matrix). Pf

k

is also evaluated during this stage, by taking into account the errors on the

analyzed state and the modelling errors.

(b) the Analyzed state xa
k is determined by minimizing the objective function

J (xk) =(xk − x
f
k)

T
(
P

f
k

)
−1

(xk − x
f
k)

+ (H1(xk)− yo
k)

T (Rk)
−1 (Hk(xk)− yo

k). (2.29)

xa
k is linked to the first true state by xa

k = xt
k + ǫak, with ǫak the error on the kth

analyzed state. ǫak is modelled as a random vector, of mean 0 and covariance

matrix Pa
k (called the analyzed error covariance matrix). Pa

k is also evaluated

during this stage, by taking into account errors on the kth forecast state and

errors on the kth observed data.

In this scheme, the observations are integrated sequentially: the evolution of the es-

timated state is computed forward in time, and the observed data, as they become

available, are assimilated into the estimated state evolution. The estimated state evo-

lution should then converge towards the true evolution, as more and more data are

assimilated.
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The following chapters 3 and 4 propose two algorithms based on this principle to re-

construct mantle circulation. We performed synthetic experiments on both these algo-

rithms to determine whether it is possible to reconstruct mantle circulation from the

sole and imperfect knowledge of the surface tectonics history, and under which con-

ditions a satisfactory reconstruction is possible. The first one is a suboptimal scheme

derived from the classical Kalman Filter (see e.g. Todling & Cohn, 1994, for a review

on suboptimal schemes based on Kalman filters). This scheme provided encouraging

results and drove us to develop a more efficient sequential data assimilation algorithm

for the mantle circulation problem. This is what we do in Chapter 4 with the imple-

mentation of an Ensemble Kalman Filter for this problem.
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Résumé du chapitre

Le but d’une reconstitution de la circulation mantellique est d’estimer l’écoulement

3-D dans le manteau, au présent et dans le passé. Pour atteindre ce but, on combine

des données sur la circulation mantellique avec un modèle dynamique de convection

mantellique. On dispose de données sur la circulation mantellique au présent, avec

par exemple les contraintes fournies par la tomographie sismique, et dans le passé,

avec par exemple les contraintes sur l’histoire de la tectonique de surface. Les prob-

lèmes inverses s’intéressant à des données asynchrones appartiennent à la catégorie

des problèmes d’assimilation de données. Ce chapitre vise à présenter le problème

de l’assimilation de données pour la circulation mantellique. Nous commençons par

formuler le problème de la circulation mantellique dans le cadre de l’assimilation de

données. Nous décrivons ensuite les données actuellement utilisées dans les modèles

de circulation mantellique: le champ de température actuel et l’histoire de la cinéma-

tique de surface. Finalement on présente les applications à la reconstruction de la cir-

culation mantellique. Trois stratégies alternatives ont été proposées pour reconstruire

l’histoire de la circulation mantellique: l’advection rétrograde, les méthodes séquen-

tielles semi-empiriques et l’assimilation de données variationnelle. Dans la présente

thèse, nous proposons une quatrième méthode: l’assimilation de données séquentielle,

que nous développons dans chapitres 3 et 4. Ces quatre méthodes sont présentées dans

la troisième section de ce chapitre.
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CHAPTER 3

A sequential data assimilation approach for the joint

reconstruction of mantle convection and surface tectonics
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Bocher, M., Coltice, N., Fournier, A., & Tackley, P., 2016. A sequential data

assimilation approach for the joint reconstruction of mantle convection and
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Abstract

With the progress of mantle convection modelling over the last decade, it now becomes

possible to solve for the dynamics of the interior flow and the surface tectonics to first

order. We show here that tectonic data (like surface kinematics and seafloor age dis-

tribution) and mantle convection models with plate-like behaviour can in principle be

combined to reconstruct mantle convection. We present a sequential data assimilation

method, based on suboptimal schemes derived from the Kalman filter, where surface

velocities and seafloor age maps are not used as boundary conditions for the flow,

but as data to assimilate. Two stages (a forecast followed by an analysis) are repeated

sequentially to take into account data observed at different times. Whenever obser-

vations are available, an analysis infers the most probable state of the mantle at this

time, considering a prior guess (supplied by the forecast) and the new observations at

hand, using the classical best linear unbiased estimate. Between two observation times,

the evolution of the mantle is governed by the forward model of mantle convection.

This method is applied to synthetic 2-D spherical annulus mantle cases to evaluate its

efficiency. We compare the reference evolutions to the estimations obtained by data

assimilation. Two parameters control the behaviour of the scheme: the time between

two analyses, and the amplitude of noise in the synthetic observations. Our technique

proves to be efficient in retrieving temperature field evolutions provided the time be-

tween two analyses is 10 Myr. If the amplitude of the a priori error on the observations

is large (30 per cent), our method provides a better estimate of surface tectonics than

the observations, taking advantage of the information within the physics of convection.
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3.1 Introduction

Global tectonics is a surface expression of mantle convection (Bercovici, 2003): the mo-

tions of continents and seafloor are generated by forces acting within the mantle and

the lithosphere. For example, Ricard et al. (1989) and Alisic et al. (2012) obtained a

consistent description of surface kinematics by converting the long wavelength het-

erogeneities of seismic velocity into buoyancy forces. Mantle convection studies also

attest to this link, showing for example that a downwelling in a context of large-scale

convection draws continents to aggregate (Zhong, 2001; Rolf et al., 2014).

Reconstructing the convective history of the Earth’s mantle is a long-standing prob-

lem in geosciences (Bunge et al., 1998). Indeed, an accurate determination of mantle

temperature and velocity fields evolution only for the last 200 My would already lead

to a better understanding of ore deposits formation, water resources distribution, the

evolution of the geodynamo on geological time scales or deep material properties. The

geodynamics community has taken advantage of the link between mantle convection

and tectonics to build a first approach to reconstruct the convection history of the past

100 My. For this approach, plate tectonics theory is used to describe surface kinematics.

By driving convection currents at the surface with plate kinematic reconstructions, it

is possible to propose a scenario of the evolution of mantle heterogeneities. Results so

obtained proved to be relatively consistent with long wavelength seismic tomography

or/and the geoid (Bunge & Grand, 2000; Flament et al., 2013). These 3D spherical con-

vection models are called mantle circulation models (Bunge et al., 2002), as a reference

to oceanography. They require very fine parametrization in order to generate internal

structures consistent with both the physics of convection and geophysical observa-

tions (Bower et al., 2015). To go one step further, several groups used tomographic

models as data, in addition to plate reconstructions (Bunge et al., 2003; Ismail-Zadeh

et al., 2007; Liu & Gurnis, 2008). A temperature field of the present-day Earth’s mantle

is generated from these tomographic models, and the past mantle circulation is re-

trieved following various methods such as backward advection, variational methods

and quasi-reversibility methods (see Ismail-Zadeh & Tackley (2010) for a full report on
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these methods). There are two drawbacks in this methodology, both difficult to over-

come. First, the convection models used so far do not naturally produce Earth-like

tectonics: they generate either sluggish tectonics at the surface or a stagnant lid when

larger viscosity contrasts are prescribed (Solomatov, 1995). Second, although tectonic

data are the most important source of information (they are time-dependent, unlike

seismic data), they are used only to drive the flow, not as data to match. To drive the

flow, the kinematics needs to be known at every time-step of the calculation. This is not

the case for plate tectonic reconstructions, even though Gurnis et al. (2012) designed

a procedure to interpolate the plate tectonics geometry between times at which it is

known.

Significant progress has been made in the past 10 years on modelling convection that

produces more realistic surface tectonics. Convection with a pseudo-plastic rheology

generates surface tectonics with a plate-like behaviour (Moresi & Solomatov, 1998;

Moresi et al., 2000; Stein et al., 2004; Bercovici, 2003; Tackley, 2000b; Van Heck & Tack-

ley, 2008; Bercovici & Ricard, 2014). Recent models display seafloor spreading and

continental drift comparable to that of the Earth to first order: seafloor age distribu-

tions and the time scale of spreading fluctuations are consistent with what has been

inferred for the Earth for the last 200 My (Coltice et al., 2012, 2013). This opens the

way to producing a mantle circulation model using convection models with plate-like

behaviour, under the observational constraint provided by tectonic data. This con-

straint is not to be enforced through kinematic boundary conditions imposed at every

time step. Instead, it should be taken into account in a statistically consistent fashion,

whereby the prediction due to the model and the observations are combined in a way

that respects the uncertainties affecting both.

We explore here this possibility using a controlled case, and present a proof of con-

cept. We have developed a sequential data assimilation method which is a suboptimal

scheme based on the Kalman filter (see Todling & Cohn (1994) for a review of sub-

optimal schemes based on the Kalman filter). Such data assimilation methodology
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provides the best linear unbiased estimate of the temperature field and surface veloc-

ities at times data are available, and a prediction of the evolution of the system state

between those times. Using synthetic tests in spherical annulus geometry (Hernlund

& Tackley, 2008), we show that our data assimilation method is efficient for reconstruc-

tions over 200 My with data gaps of 5 − 10 My and relative uncertainties on surface

observations below 30%. This method also allows the refinement of surface tectonics,

taking advantage of the information within the physics of convection.

In the following, we first describe the general approach to Kalman Filtering in Sec-

tion 2. Section 3 provides details on the definition of the different operators and vec-

tors forming the backbone of a sequential data assimilation framework: the physical

model, the data and the state for mantle convection, as well as the observation opera-

tor. Section 4 presents our sequential data assimilation algorithm and the adjustments

used for the reconstruction of mantle convection. Then, we present in Section 5 an

evaluation of the method with a series of synthetic experiments, which leads to the

discussion of section 6.

3.2 The Extended Kalman Filter

We introduce in this section the Extended Kalman Filter that we adapt and apply to

the convection reconstruction problem. We use here classical notations, taken from Ide

et al. (1997). Our goal is to estimate the evolution of the mantle temperature field, using

information from a mantle convection model and tectonic data including global kine-

matics and seafloor ages. The following is a rather general description of the Extended

Kalman Filter; similar developments can be found in Ghil & Malanotte-Rizzoli (1991);

Kalnay (2003); Wunsch (2006) for meteorology and oceanography and in Fournier et al.

(2010) for geomagnetism, for example.

Data assimilation aims at estimating the state of a dynamical system and its evolution

for a given period of time, combining information from observations and a physical

model. The evolution of the state of the system is described by the set of true state
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vectors, storing the chosen scalar fields that are discretized:

{
xt
1,x

t
2, ...,x

t
nt

}
, (3.1)

the subscripts {1, 2, ..., nt} being the discrete time steps.

Likewise, the observations are defined as a set of column vectors

{
yo
t1
,yo

t2
, ...,yo

tn

}
with {t1, t2, ..., tn} ⊂ {1, 2, ..., nt}. (3.2)

The true state and the observations are linked linearly by the observation operator H

∀ti ∈ {t1, t2, ..., tn}, yo
ti
= Hxt

ti
+ ǫoti , (3.3)

where ǫoti is the observation error at the timestep ti. The precise value of ǫoti is unknown.

However, it is possible to model it as a random vector and estimate its probability

density function (PDF). We assume ǫoti follows a centred Gaussian statistics, and its

associated covariance matrix

Rti = Covar(ǫoti) = 〈ǫ
o
ti
(ǫoti)

T 〉 (3.4)

is called the observation error covariance matrix. The operator []T means transpose.

The Extended Kalman Filter belongs to the Sequential Data Assimilation techniques.

It consists of integrating the observation vectors one after the other into a numerical

model, when they become available. Fig. 3.1 gives an overview of this procedure. The

initialization, at timestep t1, provides an a priori guess of the state of the system. Then

two steps called analysis and forecast are performed sequentially, every time a new

observation vector becomes available, until all the observations have been taken into

account. Hence the name of the technique: sequential data assimilation. The analysis

corrects the current estimate of the system state by considering the new observations.

The forecast provides an estimation of the evolution of the system until the next time

new observations are available. The evolution of the estimated state should converge
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Timestep
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FIGURE 3.1: Principle of Sequential Data Assimilation. The initialization
at time t1 sets the background state x

b (green dot at t1). xb is corrected by
taking into account new observations, leading to the first analyzed state
x
a
t1 (blue dot at t1), which is closer to the true state x

t
t1 (red cross at t1).

The evolution of the state (green line) is then computed by the modelM
until t2, leading to a new forecast state x

f
t2

(green dot). A new analyzed
state x

a
t2 is computed considering new observations. The sequence is re-

peated until all observations have been taken into account. The aim of
data assimilation is to get as close as possible to the true state evolution

(red line).
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towards the true state as more observations are assimilated.

3.2.1 Initialization

The Extended Kalman Filter algorithm starts at the timestep t1, when the first observa-

tions are available. Before taking into account the first observations, an a priori state of

the system has to be estimated. It is called the background state xb. The relationship

between the background state and the true state at t1 is

xb = xt
t1
+ ǫb, (3.5)

where ǫb is the background state error. ǫb is a random vector with 〈ǫb〉 = 0 and

Covar(ǫb) = Pb.

The background state vector is considered as the forecast state vector at timestep t1,

written x
f
t1 and its covariance matrix Pb is the forecast error covariance matrix at t1,

written P
f
t1 .

3.2.2 Analysis and forecast sequence

At ti, a new estimate of the state of the system is calculated considering yo
ti

, Rti , x
f
ti and

P
f
ti . This step is called analysis, the new estimate being the analyzed state xa

ti
. The

relationship between the analyzed state and the true state is

xa
ti
= xt

ti
+ ǫati , (3.6)

where ǫati is the analysis error at ti. ǫati is modelled as a random vector following a Gaus-

sian law, and its covariance Pa
ti

is the analysis error covariance matrix. The analyzed

state xa
ti

is chosen so that

• xa
ti

is a linear combination of xf
ti and yo

ti
,

• Tr(Pa
n) is minimised,
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• 〈ǫan〉 = 0.

These conditions lead to the classical Best Linear Unbiased Estimate (see Ghil & Malanotte-

Rizzoli (1991) for example)

xa
ti
= x

f
ti +Kti

[
yo
ti
−Hx

f
ti

]
, (3.7)

Kti = (HP
f
ti)

T
[
H(HP

f
ti)

T +R
]
−1

, (3.8)

Pa
ti
= (I−KtiH)Pf

ti , (3.9)

where Kti is the Kalman gain at ti. If the probability density functions of the errors on

the forecast state and the observed data are Gaussian and the observation operator is

linear, then xa
ti

is not only the estimate of minimum variance but as well the most likely

state: in this case, the analysis will be optimal.

The evolution of the estimated state of the system from ti to ti+1, the next timestep

observations are available, is computed using the direct numerical modelM:

x
f
ti+1

=M
(
xa
ti

)
+ ηti

. (3.10)

Its associated covariance matrix is

P
f
ti+1

= MPa
ti
MT +Qti

, (3.11)

where M is the tangent linear model, i.e. the linearised version of the operatorM and

Qti
is the model error covariance matrix. Equations 3.10 and 3.11 describe the forecast

step. The estimated state of the system at a timestep ti+1 x
f
ti+1

is called the forecast

state and P
f
ti+1

is the forecast error covariance matrix at timestep ti+1. P
f
ti+1

takes into

account both the propagation of errors of the analyzed state at timestep ti, ǫati and the

model errors ηti
. We assume a perfect model in this study, so that

∀ti, ηti
= 0. (3.12)
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3.3 Convection model, Mantle State Vector and Tectonic

Data

In this section, we describe in detail whatM, H, x and y refer to in our mantle convec-

tion context.

3.3.1 Convection Model with Plate-Like Behaviour

The forward model M is our source of prior information. It solves the equations of

conservation of mass, momentum and energy with classical simplifications for man-

tle convection: infinite Prandtl number and Boussinesq approximation. We further

assume an isochemical mantle, and non-dimensionalize the equations to thermal dif-

fusion scales (for a full development of the equations, see Ricard (2015) for example).

We obtain

∇ · u = 0, (3.13)

∇ ·
[
µ
(
∇u+ (∇u)T

)]
−∇p+ RaTer = 0, (3.14)

DT

Dt
= ∇2T +H, (3.15)

where u, p, T and t are the non-dimensional velocity, dynamic pressure, tempera-

ture and time, respectively. We work in spherical coordinates (r, θ, φ) of unit vectors

(er, eθ, eφ). Ra is the Rayleigh number and H is the non-dimensional internal heating

rate. The models presented here have 10% basal heating and 90% internal heating.

The temperatures at the top and bottom boundaries are set to Ta and Tb. The surface

and the base of the model are shear-stress free.

The dynamic viscosity µ varies with temperature and stress following the equation

µ =
(
µ−1
T + µ−1

y

)
−1

, (3.16)
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µT decreasing exponentially with temperature (according to Arrhenius law), and di-

vided by β when reaching the solidus:

µT = exp

(
EA

T + T1

− EA

2T1

)
if T < Ts, (3.17)

µT = β−1 exp

(
EA

T + T1

− EA

2T1

)
if T > Ts. (3.18)

T1 is the temperature for which µT = 1, EA is the activation energy and Ts = Ts0 +

∇rTs(ra − r) with ra the surface value of r. Ts models the variation of solidus with

depth and is tuned so that the viscosity drop is located at the base of the top bound-

ary layer. This results in a weaker asthenosphere and favours plate-like behaviour

(Richards et al., 2001; Tackley, 2000b).

µy is defined by

σyield = σY + (ra − r).∇rσY , µy =
σyield

2ǫ̇
, (3.19)

with σY , ∇rσY and ǫ̇ being the yield stress at the surface, the depth-dependence of the

yield stress and the second invariant of the strain rate tensor respectively. The strain

rate tensor is linked to the velocity by

ǫ̇ =
1

2

[
∇u+ (∇u)T

]
. (3.20)

Solutions are computed using StagYY (Tackley et al., 1993), a finite-volume, multigrid

convection code. We use a spherical annulus grid which provides results closer to the

spherical grid than a cylindrical geometry (Hernlund & Tackley, 2008). The grid is

refined in the radial direction near the upper boundary of the model. In the following,

the longitudinal coordinate of a point is written φm, with m ∈ {1, 2, ...,M} and its radial

coordinate is written rn with n ∈ {1, 2, ..., N}, r varying from rb to ra. The value of the

parameters used for this work are given in Table 3.1.

Since this work is a proof of concept, we chose a fairly simple model, with equation
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TABLE 3.1: Values of the parameters of the forward models

Symbol Meaning model 1 model 2 model 3
Ra Rayleigh number 106 106 107

H Non-dimensional internal heating rate 20.5 13.5 20.5

M
Resolution of the grid in the longitude
direction

384 384 512

N
Resolution of the grid in the radial
direction

48 48 64

ra Radius of the top of the domain 2.2 2.2 2.2

rb Radius of the bottom of the domain 1.2 1.2 1.2

Ta Temperature at the top of the domain 0 0 0

Tb Temperature at the bottom of the domain 0.9 1.3 1

EA Activation Energy 23.03 23.03 23.03

T1 Temperature at which µT = 1 1 1 1

β
Factor of viscosity reduction for partial
melting

10 10 10

Ts0 Solidus Temperature at r = ra 0.6 0.6 0.6

∇rTs
Radial gradient of the solidus
temperature

2 2 2

σY Yield Stress 1.104 1.104 4.104

∇rσY Radial gradient of the yield stress 2.105 2.105 2.105

governing the flow relying on strong assumptions (incompressible, isochemical man-

tle). The Rayleigh number is 106 which is one or two orders of magnitude lower than

that of the Earth, but high enough to ensure chaotic convection. The viscosity law self-

consistently generates plates at the surface, as it can be seen from the surface velocity

in Fig.3.10. Ignoring many more complexities does not mean they are not fundamental

for reconstructing Earth mantle evolution, but we focus in this manuscript on the data

assimilation methodology.

3.3.2 The State of the mantle

Given Equations 3.13 to 3.15 above, the field variables describing the state of the Earth’s

mantle x are velocity, temperature and pressure. Inertial forces are negligible for man-

tle convection, which means that the velocity and pressure fields can be deduced from

the temperature field at any time given the viscosity law and other parameters, as

shown in the diagnostic Equations 3.13 and 3.14. Since it is possible to compute u and

p from the sole knowledge of T , x should be restricted to T alone.
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3.3.3 The Data: Surface Heat Flux and Surface velocities

As a first approach, the data yo we use are not direct measurements per se, but plate

reconstruction models. For instance, Seton et al. (2012) or Shephard et al. (2013) pro-

posed plate tectonics reconstructions for the last 200 My, using the continuously clos-

ing plates methodology (Gurnis et al., 2012) so that a reconstruction can be numerically

computed for any time between a given ti and the subsequent ti+1. These reconstruc-

tions integrate paleomagnetic, paleobiological and geological data to provide continu-

ous maps of surface velocity and seafloor age as well as the position and geometry of

continents. It is this type of data that is used today in convection reconstructions with

imposed boundary conditions. One fundamental difference between these methods

and our sequential assimilation method is that the latter naturally takes into account

uncertainties in the reconstructions. A second difference is that we do not need the

surface data to be known at all times.

Plate reconstructions provide estimates of the velocity at any location on the surface of

the Earth in the approximation of the plate tectonics theory, as well as the age of the

seafloor. In the model we use in this manuscript, surface heat flux is an excellent proxy

for the age of the seafloor (Coltice et al., 2012). Consequently, we propose to consider

surface heat flux and surface velocity as the data to assimilate. However, with more

sophisticated models, small scale convection would require an explicit computation of

the age of the seafloor.

At each time ti, the data vector for the present study will be

y = [qs(φ1), . . . , qs(φN), Vs(φ1), . . . , Vs(φN)]
T , (3.21)

where qs(φm) and Vs(φm) are the surface heat flux and tangential velocity values at

longitude φm, respectively. Hence, for the model parameters set of Table 3.1, the data

vector contains 2N = 768 values.
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3.3.4 The Observation Operator and the Augmented State

As described by Equation 3.3, the link between the state of the system x and the data y

has to be expressed in the form of a linear equation. This is straightforward for surface

heat flux. At a given longitude φm, the surface heat flux is approximated by a first

order discretization of Fourier’s law

∀φm q(φm) = −k
T (φm, rN)− T (φm, rN−1)

rN − rN−1

, (3.22)

where k is the thermal conductivity, which is 1 for our non-dimensional framework.

However, the link between the velocity field and the temperature field is highly non-

linear, because of our choice of rheology. This is why we consider an augmented state

of the mantle, containing both temperature and surface velocity fields:

x =[T (φ1, r1) , . . . , T (φM , r1), T (φ1, r2), . . . , (3.23)

T (φM , rN), V (φ1), . . . , V (φM)], (3.24)

where T (φm, rn) is the temperature value at longitude φm and radius rn and V (φm) is

the surface tangential velocity value at longitude φm. For the model parameters set of

Table 3.1, the state vector contains NM +N = 18816 values.

3.4 Sequential Data Assimilation Algorithm for Mantle

Convection

We describe here the steps of our sequential algorithm, which are

• an initialization, which evaluates the background state xb and its error covariance

matrix Pb,
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• an analysis which estimates

{
x
f
ti ,P

f
ti ,y

o
ti
,Ro

ti

}
→

{
xa
ti

}
,

• a forecast, which computes

{
xa
ti

}
→

{
x
f
ti+1

,Pf
ti+1

}
.

3.4.1 Initialization

The background state xb and its associated covariance matrix Pb describe an estimate

of the state of the system when no observation is yet available. xb components corre-

spond to the average temperature field and surface velocities of the mantle. Pb contains

the two-point spatial correlation of the temperature field and surface velocity field, as

described by Balachandar (1998).

To estimate xb and Pb, we use a set of K = 200 states of the system xk with k ∈

{1, ..., K}, computed with the mantle convection code. These states are extracted from

a free run of the convection model (i.e. unconstrained by data). To ensure decorrelation

between the states, the time between two snapshots is equivalent to 5 Lyapunov times.

The Lyapunov time is the e-folding time for the growth of an initial error in a dynamic

system. In the calculations we describe below, we obtain a typical Lyapunov time of

140 My, similar to the Lyapunov times computed in 3D spherical convection models

(Bello et al., 2014).

The background state is

xb = 〈x〉 = 1

K

K∑

k=1

xk (3.25)
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and the error covariance matrix is

Pb = Covar(x) =
1

K − 1

K∑

k=1

(
xk − xb

) (
xk − xb

)T
. (3.26)

The probability density functions of all the variables are also estimated, to compare

them to Gaussian probability density functions. Indeed, the best linear unbiased esti-

mate used during analysis is optimal only in the linear Gaussian case, as described in

section 2.

As noted before, the initial setting of the model is spherically symmetric. As a conse-

quence

∀(φ, r), 〈T (φ, r)〉 = 〈T (0, r)〉, (3.27)

∀(φ1, φ2, r1, r2),

Cov(T (φ1, r1), T (φ2, r2)) = Cov(T (0, r1), T (φ1 − φ2, r2)), (3.28)

∀(φ1, φ2, r1, r2),

Cov(T (φ1, r1), T (φ2, r2)) = Cov(T (0, r1), T (φ2 − φ1, r2)). (3.29)

Likewise

∀φ, 〈Vs(φ)〉 = 〈Vs(0)〉, (3.30)

∀(φ1, φ2),

Cov(Vs(φ1), Vs(φ2)) = Cov(Vs(0), Vs(φ1 − φ2)), (3.31)

∀(φ1, φ2, r1),

Cov(T (φ1, r1), Vs(φ2)) = Cov(T (0, r1), Vs(φ2 − φ1)), (3.32)

Cov(T (φ1, r1), Vs(φ2)) = −Cov(T (0, r1), Vs(φ1 − φ2)). (3.33)

These symmetries are enforced during the computation of xb and Pb, which decreases

the number K of states of the system needed to obtain converged statistics. For our
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FIGURE 3.2: Probability density functions of background surface velocity
(left) and background surface heat flux (right) compared to their Gaussian

approximations (in light gray)

test case, the covariance matrix Pb contains (NM +N)2 = 188162 = 354, 041, 856 com-

ponents. The symmetries in the covariances dramatically reduce the number of inde-

pendant components to N/2(M + 1)2 = 3, 557, 400.

From xb and Pb, a background data vector yb and its associated covariance matrix Rb

are defined as

yb =Hxb, (3.34)

Rb =HPbHT . (3.35)

Figs 3.2 and 3.3 represent the PDF of surface velocity, surface heat flux and tempera-

ture for different depths for our test model described in Section 3.1. Surface velocities

(Fig. 3.2 left) have a Gaussian PDF which is consistent with the approximation we

made. On the contrary, the PDFs of temperature (Fig. 3.3) are more complex. For tem-

perature values close to the surface, the PDFs are highly skewed and have a strong

kurtosis. This behaviour is due to the strongly nonlinear rheology at the surface of

the model (kurtosis), and the isothermal boundary conditions (skewness). As a conse-

quence, the estimation performed during analysis will not be optimal.
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xb, Pb, yb and Rb are used to standardize the state x and data y for the analysis step.

We define their corresponding standard score state x̃ and standard score data ỹ by

x̃ =
(
Sb

)−1 (
x− xb

)
, (3.36)

ỹ =
(
Sb

y

)−1 (
y − yb

)
, (3.37)

where Sb is the diagonal matrix containing the standard deviations of each component

of the background state and Sb
y the diagonal matrix containing the standard deviations

of each component of the background data,

Sb = Diag(Pb)1/2, (3.38)

Sb
y = Diag(Rb)1/2. (3.39)

The standard score observation operator H̃ is then

H̃ = (Sb
y)

−1HSb. (3.40)

The standardized background state x̃
b and its associated covariance matrix P̃

b
are then

x̃
b =0, (3.41)

P̃
b
=(Sb)−1Pb(Sb)−1. (3.42)

The covariance matrix P̃
b
, associated with the standardized background state corre-

sponds as well to the correlation matrix of the background state. Equations 3.28 to 3.33

are also valid for correlations values, i.e. for the components of P̃
b
.

Equations 3.28 and 3.29 show that the correlation between any couple of temperature

variables can be summed up by plotting only the correlations

∀r1, r2 ∈ [rb, ra]
2, ∀∆φ ∈ [0, π], Cor(T (0, r1), T (∆φ, r2)) (3.43)

Hence, for a given r1, the two points spatial temperature-temperature correlations can
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FIGURE 3.4: Maps of the two-point spatial correlation of temperature. The
arrow indicates the location of the anchor point. The maps represents the
correlation between the temperature at anchor points and the tempera-
ture points on the rest of the domain. Considering the symmetries of
correlations described on equations 3.28 and 3.29, only the correlations
∀φ′ ∈ [0, π], r′ ∈ [0, 1],Cov(T (0, r), T (φ′, r′)) for r = rb (A), r = (ra + rb)/2

(B) and r = ra (C) are shown.

be mapped onto a half-spherical annulus. Fig. 3.4 represents these correlation maps

for different values of r1: r1 = rb (Fig. 3.4(a)), r1 = (ra + rb)/2 (Fig. 3.4(b)) and r1 = ra

(Fig. 3.4(c)). Fig. 3.4(a) shows that bottom temperatures have strong correlations with

neighbouring temperatures, up to 0.6 at a distance corresponding to a third of the do-

main depth. A fourth order convection pattern is also notable, with bottom tempera-

ture values anticorrelated with temperatures at a longitude of +90°and correlated with

values at a longitude of +180°. The mid-mantle temperature (Fig. 3.4b) has an ellip-

soidal zone of high correlation, which is the result of the dominant vertical motion in

this part of the domain. Finally the top temperatures have a zone of correlation which

extends towards the longitudinal direction, corresponding to the dominant horizontal

motion at the surface of the domain. The anticorrelation between the top boundary

layer and the rest of the domain is also remarkable.
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FIGURE 3.5: Map of the two-point spatial correlations of temperature and
velocity. The arrow indicate the anchor point. The map represents the
correlation between the surface velocity value at the anchor point and
the temperature values on the rest of the domain. Considering the sym-
metries of correlations described on equations 3.32, only the correlations

∀r ∈ [rb, ra], ∀∆φ ∈ [0, 2π], Cor(Vs(0), T (∆φ, r)) are shown.

Equation 3.32 shows that the correlation between any couple of temperature-surface

velocity variables can be summed up by plotting only the correlations

∀r ∈ [rb, ra], ∀∆φ ∈ [0, 2π], Cor(Vs(0), T (∆φ, r)) (3.44)

Hence, the two points spatial temperature-velocity correlations can be mapped onto a

spherical annulus. Fig. 3.5 represents this correlation map. Fig. 3.5 shows that surface

velocities are weakly correlated with temperature, with a maximum correlation value

of 0.4. Nevertheless, the correlations between surface velocity and temperature at the

bottom are not negligible, and this is mainly due to the sinking of slabs to the bottom

of the model.

Although we ignore the non-Gaussianity of some distributions, second order statistics

succeed in summing up the main features of the convection model dynamics.
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Furthermore, the matrix P̃
b

is eigendecomposed leading to

P̃
b
= V ΛV T . (3.45)

where V contains the eigenvectors of P̃
b

and Λ its eigenvalues. The background cor-

relation matrix P̃
b

is reduced to

P̃
b

r = V rΛrV
T
r (3.46)

where Λr contains only the 1928 largest eigenvalues, which account for 99.98% of the

cumulative variance of P̃
b
. V r is composed of the corresponding eigenvectors. The re-

duction of the correlation matrix is equivalent to assuming that the correlations associ-

ated with the lowest eigenvalues and corresponding eigenvectors are not meaningful.

This technique, described by Cane et al. (1996), not only lightens the computational

cost, but also corrects the state of the system only in those directions followed by the

dynamical model.

We can now describe the first standard score forecast state as

x̃
f
t1
= 0, (3.47)

P̃
f

t1
= P̃

b

r = V rΛrV
T
r . (3.48)

3.4.2 Analysis

At every time ti, i ∈ {1, ..., n}, new observed data yo
ti

are available. These observations

are assumed to be unbiased, which means 〈ǫoti〉 = 0. An error covariance matrix Rti

is associated with these observations. The observation error covariance matrix R is

assumed here to be the same for any time. R and yo
ti

are standardized with respect to
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yb and Sb
y

ỹ
o
ti
=

(
Sb

y

)−1 (
yo
ti
− yb

)
, (3.49)

R̃ =
(
Sb

y

)−1
R

(
Sb

y

)−1
. (3.50)

Independently, a prior estimate of the state is computed. It is the forecast state x
f
ti ,

assumed to be unbiased (〈ǫfti〉 = 0). Its associated error covariance matrix is P
f
ti . P

f
ti

and x
f
ti are standardized with respect to xb and Sb

x̃
f
ti
=

(
Sb

)−1
(
x
f
ti − xb

)
, (3.51)

P̃
f

ti
=

(
Sb

)−1
P

f
ti

(
Sb

)−1
. (3.52)

To further simplify this problem, we assume that

P̃
f

ti
≈ P̃

b ≈ V rΛrV
T
r . (3.53)

Under this assumption, the reduced state Kalman filter is given by

K̃r = (H̃P̃
f

ti
)T

[
H̃(H̃P̃

f

ti
)T + R̃

]−1

. (3.54)

The result of the analysis is finally rescaled using the forecast standard deviation

xa
ti
= x

f
ti + S

f
tiK̃r

[
ỹ
o
ti
− H̃x̃

f
ti

]
. (3.55)

3.4.3 Forecast

The forecast state at time ti+1, x
f
ti+1

is computed by the convection code STAGYY, taking

xa
ti

as starting state.
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The associated covariance matrix P
f
ti+1

is estimated by assuming

P
f
ti+1

=S
f
ti+1

V rΛrV
T
r S

f
ti+1

(3.56)

S
f
ti+1

=αSf
ti . (3.57)

The coefficient α is estimated by considering errors on data and using the fact that the

error on forecast data and on observed data are uncorrelated:

α =

√√√√Tr(Covar(Hx
f
ti+1
− yo

ti+1
)−R)

Tr(Covar(Hx
f
ti − yo

ti)−R)
. (3.58)

3.5 Synthetic Experiments

We test here our sequential assimilation algorithm on synthetic cases. The parameters

chosen for the model 1 are described in Table 3.1, along with the parameters of two

additional models: model 2, which has a higher bottom heat flux to surface heat flux

ratio (37%), and model 3, which has a higher Rayleigh number (107). The time in the

evolutions computed is rescaled as classically done, using the transit time of the mantle

as the relevant scaling time (see Gurnis, 1986b, for example). The Earth’s mantle transit

time tEt estimates the average time spent by a particle to move from the surface to the

core-mantle boundary. For the Earth, it is evaluated by considering the thickness of the

mantle DE and the root mean square of surface velocities vErms

tEt =
DE

vErms

. (3.59)

vErms is obtained from plate tectonics reconstructions (Shephard et al., 2013; Seton et al.,

2012, for example). tMt , the transit time for the model can be computed by the same

procedure. The rescaling of time for a computed evolution is

t = t∗
tEt
tMt

, (3.60)
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where t∗ is the non-dimensional time. This rescaling is designed so that the time of the

evolution can compare to that of the Earth, even if the vigour of convection differs.

3.5.1 Setup of the Experiments

We test our data assimilation method on synthetic experiments. They consist of two

phases.

First, we synthesize a true state evolution
{
xt
1,x

t
2, ...,x

t
nt

}
and corresponding observed

data sets
{
yo
t1
,yo

t2
, ...,yo

tn

}
. This is done by computing a convection evolution spanning

600 My and considering it as the true state evolution
{
xt
1,x

t
2, ...,x

t
nt

}
. From this evo-

lution, we extract sets of surface heat flow and surface velocities at regular intervals

∆t. These data are randomly noised to produce
{
yo
t1
,yo

t2
, ...,yo

tn

}
. We set the average

amplitude of the random noise as a fraction γ of qrms and Vrms, the root mean squares

of surface heat flux and velocity, respectively. The observed error covariance matrix is

then

R = γ2




q2rms ... 0 0 ... 0

0 ... 0 0 ... 0

0 ... q2rms 0 ... 0

0 .. 0 V 2
rms ... 0

0 ... 0 0 ... V 2
rms




. (3.61)

Second, we apply the assimilation algorithm using the synthetic data
{
yo
t1
,yo

t2
, ...,yo

tn

}
.

Then, we compare the result of the assimilation,
{
x
f
1 ,x

f
2 , ...,x

f
nt

}
with the true state

{
xt
1,x

t
2, ...,x

t
nt

}
.

For each set of model parameters, we compute 21 mantle convection evolutions start-

ing from different initial conditions to produce 21 possible true state evolutions. For

model 1, we test the assimilation for each evolution with 10 different pairs of param-

eters of data assimilation (∆t, γ). ∆t is varying from 1 My to 50 My and γ from 5% to

50%. For Model 2 and 3, we test the assimilation for each evolution with ∆t = 10 My
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TABLE 3.2: Values of the parameters of the assimilation for synthetic ex-
periments.

name of
experiment

Rayleigh
number

Heat flux
ratio

∆t
(My)

γ (%)
number of

synthetic
experiments

t1γ10 106 10% 1 10 21
t5γ10 106 10% 5 10 21
t10γ5 106 10% 10 5 21
t10γ10 106 10% 10 10 21
t10γ30 106 10% 10 30 21
t10γ50 106 10% 10 50 21
t15γ10 106 10% 15 10 21
t20γ10 106 10% 20 10 21
t50γ10 106 10% 50 10 21
t10γ10Q40 106 37% 10 10 21
t10γ10Ra7 107 26% 10 10 21

and γ = 10%. The exact combinations of parameters tested are presented in Table 3.2.

Table 3.2 defines as well the name of the different assimilations that we will use in the

following.

3.5.2 Quality of the data assimilation estimate

We evaluate the quality of the data assimilation scheme on its ability to retrieve the

true temperature fields and to match surface data.

Fig. 3.6 shows examples of the final forecast state (second column) for evolutions with

different parameters, after 300 My of data assimilation: t10γ10 (31 observation times,

model 1), t50γ10 (7 observation times, model 1), t10γ10Q40 (31 observation times,

model 2) and t10γ10Ra7 (31 observation times, model 3). The two first cases are done

using the same model parameters, so we display the data assimilation results of the

same evolution for better comparison. The true temperature fields for each case are

displayed on the first column. The local error on the third column of Fig. 3.6 is the

absolute value of the error at each coordinate (φm, rn)

ǫfT (φm, rn) = |T f (φm, rn)− T t(φm, rn)|. (3.62)
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FIGURE 3.6: Comparison of the results of data assimilation after 300 My
for four cases. First row: data assimilation with a ∆t = 10 My (experi-
ment t10γ10), second row: data assimilation with a ∆t = 50 My (experi-
ment t50γ10), third row: data assimilation with a ∆t = 10 My (experiment
t10γ10Q40) and fourth row: data assimilation with a ∆t = 10 My (exper-
iment t10γ10Ra7). The first column displays the true temperature field
for each experiment, the second column shows the analyzed temperature
field, and the third column is the associated error multiplied by 10 and
represented using the same color scale than the field itself, in order to ease

visual inspection.
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Below the boundary layer, the locations of positive temperature anomalies are better

retrieved for t10γ10 than for t50γ10. The general geometry of slabs at the bottom is

representative of the true state, even though some details are missing. The geome-

try of upwellings is retrieved for t10γ10, but only their approximate location is well

estimated for t50γ10. Some minor positive anomalies are missing at the bottom of the

domain for both cases. The relative error shows that although the geometry of the tem-

perature field is reasonably well recovered, the actual temperature values for down-

and upwellings are not as accurately estimated. This tendency is especially noticeable

for t50γ10. Overall, the convection pattern is correctly estimated, but for t50γ10 slabs

are blurred. The structures are also well recovered for t10γ10Q40 and t10γ10Ra7. We

can see that the general shape of the hot upwellings is well estimated for both cases, ex-

cept on one upwelling, on the bottom right corner of the t10γ10Ra7 experiment, where

the hot upwelling with two branches is estimated as only one bigger upwelling. The

structure of slabs are also reasonnably well estimated. The value of the errors for both

t10γ10Q40 and t10γ10Ra7 are higher than those of t10γ10, on some localized regions.

We compute the spatial average error of the temperature field for each timestep i ∈

{1, 2, ..., nt}

ǫfT (i) =

√√√√√√√

M∑
m=1

N∑
n=1

(T f
i (φm, rn)− T t

i (φm, rn))2∆V (φm, rn)

M∑
m=1

N∑
n=1

T t
i (φm, rn)2∆V (φm, rn)

, (3.63)

where ∆V (φm, rn) is the volume of the cell centred on (φm, rn). For each combination of

∆t and γ, ǫfT (i) is averaged over 21 synthetic experiments differing only by their initial

conditions for the model 1. The synthetic experiments t10γ10Q40 (higher bottom to

surface heat flux ratio) and t10γ10Ra7 (higher Rayleigh number) showed respectively

20 and 19 successes out of 21. We identify a data assimilation experiment as failing

if there is a time after which the global error ǫfT is consistently increasing when anal-

yses are performed. The three failure cases show a consistently increasing difference

between observed data and forecast data, making them easy to identify even with-

out the knowledge of the true state evolution. Picking another random noise of the
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FIGURE 3.7: Evolution of the average relative error on the forecast tem-
perature field with γ = 10% and ∆t = 1, 5, 10, 15, 20 and 50 My. Note that

the scale on the y-axis is logarithmic.

same magnitude for each of the three experiments that failed produced a successful

data assimilation trial. Hence, peculiar random noise structure could prevent accurate

retrieval by the methodology presented here. We compute the average evolution of

errors for synthetic experiments t10γ10Q40 and t10γ10Ra7 taking into account only

the successes, ie 20 experiments for t10γ10Q40 and 19 for t10γ10Ra7. Hence, the es-

timation of the error is not specific to a case that is easier to retrieve than others. On

every curve, the analysis times are characterized by a sudden drop of the error (see

Figs 3.7, 3.8 and 3.9). This is remarkable for the first analysis, at time 0, where the error

is reduced by a factor of two for any set of parameters tested. These results show that

taking into account only the second order statistics is efficient at correcting a forecast

state and improving the estimate of the true state.

As observed in Figs 3.7, 3.8 and 3.9, the general evolution of errors with time follows

three phases: an error reduction phase, which may be followed by an error stabilization

phase around the lower value, and finally an error growth phase. The duration and

existence of each phase depends on the chosen combination of ∆t, γ and the model
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FIGURE 3.8: Evolution of the average relative error on the forecast tem-
perature field with ∆t = 10 My and γ = 5, 10, 30 and 50%. Note that the

scale on the y-axis is logarithmic.

parameters.

Fig. 3.7 shows the evolutions of errors for data assimilations with noise on observa-

tions of 10% and different frequencies of analyses: t1γ10, t5γ10, t10γ10, t15γ10, t20γ10

and t50γ10. The error reduction phase lasts between 300 to 400 My (2 to 2.5 Lyapunov

times) for all cases except for the extreme case of t50γ10 (50 My representing one third

of the Lyapunov time). For the first 100 My of assimilation, the shorter the time be-

tween 2 analyses, the faster the errors decrease.

If analysis intervals are equal to or longer than 15 My, growth of the error happens

within 600 My of assimilation. In contrast, for t1γ10, t5γ10 and t10γ10, no error growth

occurs, and errors are stable at around 5% after 200 My. Throughout the assimilation,

errors for t1γ10 become greater than the errors for t5γ10. This is due to the method

used for updating forecast errors in our scheme. Indeed, their estimation is based on

the comparison between observed and forecast surface data. A 1 My interval between

analyses does not allow the possible errors made internally to be propagated onto the
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FIGURE 3.9: Evolution of the average relative error on the forecast tem-
perature field with ∆t = 10 My and γ = 10% for the model 1, model 2 and

model 3. Note that the scale on the y-axis is logarithmic.

surface. It follows that the error on the forecast is underestimated for short intervals of

analysis, leading to results that are not as good as for longer intervals of analysis.

Fig. 3.8 shows the evolutions of errors for data assimilations with analyses every 10 My

and different errors on observations: t10γ5, t10γ10, t10γ30 and t10γ50. For levels of

noise in observation ranging from 5 to 30%, the error reduction phase lasts more than

300 My. Even when observations are noised as much as 50%, data assimilation keeps

errors to values lower than 10% on the estimate of the temperature field over the first

100 My. Fig. 3.8 shows that low levels of noise in observations (5 to 10%) give results

of similar quality.

The error evolutions for t10γ10Ra7 and t10γ10Q40 are shown in Fig. 3.9, along with the

evolution of errors of t10γ10. The error for t10γ10Ra7 is on average smaller than the

error for t10γ10. On the contrary, the error for t10γ10Q40 is on average bigger than the

error of t10γ10. We note as well that, between two analyses, the errors are increasing

much more for t10γ10Ra7 than for the other cases.
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FIGURE 3.10: Comparison between true, observed and analyzed surface
heat flux (left) and surface velocities (right) after 100 My of assimilation

with the parameters t10γ50

Fig. 3.10 demonstrates that our data assimilation scheme provides a posteriori a better

estimate of surface data than the a priori observation for extreme cases. Indeed, for

t10γ50, after 100 My of data assimilation, the a posteriori retrieved surface heat flux

and surface velocities are better estimates of the true values than the ones used as the

observations.

We conducted here synthetic experiments, where the true state is known, and the result

of data assimilation can be compared to this true state evolution. However, in a data

assimilation using real observations, the true state of the system is unknown. In this

case, it is necessary to use other diagnostics to evaluate the quality of the assimilation.

One diagnostic is based on the study of the innovation, which is the difference between

the observed data yo
i and the forecast data Hx

f
i ,

di = yo
i −Hx

f
i . (3.64)

The simplest evaluation is to consider the evolution of the cumulative mean innovation

dk =

∥∥∥∥∥

k∑

i=1

di

∥∥∥∥∥ (3.65)

which is supposed to converge to zero if the scheme is unbiased (Talagrand, 2003).
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FIGURE 3.11: Evolution of the cumulative mean innovation as a function
of the number of analyses. On the left: for model 1 with γ = 10% and
∆t = 1, 5, 10, 15, 20 and 50 My; on the right: for Model 1 with ∆t = 10 My

and γ = 5, 10, 30 and 50%

Fig. 3.11 shows the cumulative mean innovation for the different parameters, as a func-

tion of the number of analyses. The cumulative mean innovation is decreasing through

time for all cases, showing that our scheme is unbiased. This should not come as a sur-

prise, since the observations and the model are governed exactly by the same physics.

3.6 Discussion

We chose a sequential method because of its relative ease of implementation com-

pared to alternative methods such as variational data assimilation (see Talagrand, 1997;

Evensen, 2007, for discussions on both methodologies). Moreover, sequential data as-

similation has proved to be efficient in solving a wide range of geophysical problems

(Aubert & Fournier, 2011; Hoteit & Pham, 2004, for example). We opted for a sub-

optimal scheme based on the Kalman filter instead of driving the flow with surface

velocities so as to exploit the surface information a step further. The initial condi-

tion, or first guess, is given as a compromise between a 1D temperature profile and

the inversion of the first data available. Then, the whole temperature field is updated
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whenever observations are available. This means our models are less sensitive to ini-

tial conditions than mantle circulation models in which plate velocities are imposed as

boundary conditions.

The specificity of sequential data assimilation is that the estimated state of the man-

tle improves through time, as more data are assimilated into the model (Fig. 3.1). This

raises an issue since the information at hand for the Earth tends to improve in accuracy

as it gets closer to present-day: classical sequential data assimilation schemes are not

able to extend the recent information back in time. This difficulty can be overcome by

implementing Kalman smoothers (Cohn et al., 1994; Cosme et al., 2010; Nerger et al.,

2014) which use time correlations to update the previous states with new observations.

Applying these techniques would also enable us to add tomographic models as obser-

vations in mantle circulation models, and to propagate this information back in time.

However, one of the benefits of the method we developped would be to provide an

image of the present state of the Earth mantle which is independant from seismic data,

and would give the opportunity to work on the interpretation of tomographic models.

Our sequential assimilation technique gives encouraging results for our test cases: data

assimilation gradually reduces the distance between the true models and the estimated

ones for the first 300 My, even for highly noised data (up to 30% of noise). The anal-

ysis is based on a linear correction, the amplitude of which depends on the distance

between the predicted data and the observed data. The linearity of the correction is an

approximation that is efficient as soon as the prediction is close enough to the obser-

vation. When these two are too different, the analysis tends to over-correct the state,

which leads to an unrealistic analyzed state. The algorithm is stable as long as the

time between two observations is short enough: if it is 15 My and greater the esti-

mated temperature field will eventually diverge from the true temperature field. If the

time between two analyses is too long, the linear approximation for correcting the state

field is not valid any more. The temperature field is over-corrected and this leads to

analyzed temperatures inconsistent with the physical model.

We evaluate hereafter how the required ∆t and γ in our test cases compare to the
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corresponding values available for Earth’s data: time between two plate reconstruc-

tion stages and uncertainty on plate kinematics and seafloor age maps. The seafloor

spreading isochrons used for tectonic reconstructions are based on the identification of

magnetic anomalies (Müller et al., 2008a). This gives a strong constraint on the motion

of plates at least every 10 My, except for the Cretaceous superchron spanning between

83.5 to 125 Ma. Other geological arguments have been provided to infer plate evo-

lutions for this period (Torsvik et al., 2009). For more recent times (the last 20 My),

more precise surveys of magnetic anomalies have led to regional reconstructions with

a temporal resolution of around 1 My (Merkouriev & DeMets, 2006). Moreover, Gur-

nis et al. (2012) developed a way to estimate kinematic states between two stages of

reconstructions. With this method, having data to assimilate at least every 10 My is en-

sured, although interpolated solutions could miss peculiar changes in plate motions,

and errors on the reconstructed states propagate into the interpolated states.

Regarding these errors, noise in plate tectonic reconstructions is difficult to estimate

since the process involves taking into account various types of data and human syn-

theses. Hence, uncertainties on plate reconstructions increase as we go back in time,

since less data are available and more interpretation is required. The accuracy of re-

constructions also varies in space. For instance the evolution of the Atlantic for more

than 100 My is well known, however, the eastern Pacific before 60 My is mostly un-

known because the oceanic seafloor has subducted. Efforts to estimate errors on plate

tectonic reconstructions have been directed to the estimation of errors on present maps

of oceanic sea floor (Müller et al., 2008a), and on the noise reduction in finite rotations

deduced from them (Iaffaldano et al., 2014). Both of these works show that the error of

age maps is smaller than 10% for recent times (< 50 My). However, errors back in time

are more difficult to estimate since accuracy for certain plates decreases (like those in

the eastern Pacific as discussed before for instance), and an error on the angular veloc-

ity or the position of the Euler pole would constrain the errors on velocities over the

whole plate domain (Molnar & Stock, 1985). These errors would have to be propagated

to seafloor age maps.
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As successful as it may appear, the method presented here has several limitations.

First, our technique does not take into account non-linearities of the model physics,

and the non-Gaussianity of the distribution of temperature, heat flux and velocity val-

ues. Indeed, we computed only second order statistics to estimate the link between

temperatures and velocities. However, the method we present here already captures

the essential features of mantle convection, and provides accurate convection recon-

structions with the approximations made.

In this study, we assumed a perfect model (with η = 0 as stated in Equation 3.12).

However, this would not be the case for applying the technique with Earth data. Model

equations assume simplifications of the physics, detailed in Ricard (2007). Any parametriza-

tion we may use would have shortcomings. The most important, least known, ingre-

dient is thought to be rheology, which is a strong limitation according to Worthen et al.

(2014). Applying our method to Earth data would help evaluate the forecasting power

of the state-of-the-art convection models. Explicitly introducing a model error term in

the data assimilation scheme could be a way to improve the reconstructions (Evensen,

2007). Also, we used heat flux as a proxy for seafloor age because there is no small

scale convection in our test cases. For Earth data, monitoring age with tracers, giving

the exact estimate of seafloor age would be required. The state vector and observa-

tion matrix would differ slightly, but the technique would still apply. Complexifying

the direct model used in data assimilation (ie having a 3D model at higher Rayleigh

number, with a more complex rheology and a multi component system) will as well

increase dramatically the size of the data assimilation problem. In particular, the state

covariance matrix will reach a size at which the direct computations carried out in

this paper will be extremely heavy. One solution would be to take advantage of the

structure and properties of the covariance matrix (symmetries, periodicity) to design

faster algorithms. The method could also be modified to avoid the computation of the

covariance matrix and calculate directly the smaller matrix H̃P̃
f

ti
.
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3.7 Conclusion

We have applied sequential data assimilation methodology to reconstruct mantle con-

vection using surface data (velocity and heat flux as a proxy for seafloor age). This

work is a first approach to test the efficiency of assimilating surface data to recover the

evolution of convecting structures. Our technique belongs to the suboptimal schemes

of sequential data assimilation based on the Kalman filter. We modified the optimal

interpolation method to update the forecast error covariance matrix.

Our scheme of sequential data assimilation proves to be efficient in recovering the tem-

perature field of a convective system with plate-like tectonics at its surface over several

100 My. The only observations used were surface heat fluxes and surface velocities. We

tested the robustness of the method by conducting synthetic experiments in 2D spher-

ical annulus geometry. We obtained accurate results, even for the location of plumes

at the base of the models, for periods of at least 300 My provided the time between

analyses is shorter than 15 My and the noise in observation is lower than 30%. These

requirements are satisfactory, since current plate reconstruction models already pro-

vide estimates for velocities and ages at least every 10 My and with a fine accuracy for

the past 60 My, and possibly beyond.

Application to the Earth would first involve the use of 3D-spherical sophisticated mod-

els, with high resolution, high convective vigour, continents and a more realistic rhe-

ology. In 3D the ratio of number of data points to unknowns would be the same as

in 2D spherical annulus geometry by definition. However, increasing the resolution of

our model would make this ratio deteriorate, which could be compensated by increas-

ing the correlation between closer nodes. Moreover, although convection models can

account for complex parametrizations, their limitations could introduce errors in the

reconstructions.

These difficulties should not stop the exploitation of the method: if successful, the con-

vection reconstruction would provide a new image of the mantle, alternative to seismic

tomography, which would appear as an independent source of information and assess



114
Chapter 3. A sequential data assimilation approach for the joint reconstruction of

mantle convection and surface tectonics

the quality of the estimate of the state of the mantle at present day; if unsuccessful, it

would provide a quantitative evaluation of forward models and help us decide how to

improve them.
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Résumé du chapitre

Grâce aux avancées réalisées au cours de la dernière décennie dans le domaine de la

modélisation de convection mantellique, il est maintenant possible de modéliser au

premier ordre la dynamique interne et la tectonique de surface du système croûte-

manteau. Nous montrons ici que les données tectoniques (comme la cinématique de

surface et la répartition de l’âge du fond marin) et les modèles de convection du man-

teau avec comportement en plaques peuvent en principe être combinés pour recon-

struire la circulation mantellique. Nous présentons une méthode d ’assimilation de

données séquentielle, basée sur un schéma sous-optimal dérivé du filtre de Kalman,

où les vitesses de surface et les cartes d’âges des fonds océaniques ne sont pas util-

isées comme conditions limites pour l’écoulement mais comme données à assimiler.

Deux étapes (une prévision suivie d’une analyse) sont répétées séquentiellement pour

intégrer des données observées à différents moments. Chaque fois que des observa-

tions sont disponibles, l’étape d’analyse détermine l’état le plus probable du manteau

à ce moment, en tenant compte d’une estimation préalable (fournie par la prévision)

et des nouvelles observations disponibles, en utilisant la meilleure estimation linéaire

non biaisée. Entre deux temps d’observation, l’évolution du manteau est régie par le

modèle direct de convection mantellique. Pour évaluer son efficacité, cette méthode est

appliquée à des cas synthétiques en 2-D (géométrie d’anneau sphérique). Nous com-

parons les évolutions de référence aux estimations obtenues par assimilation de don-

nées. Deux paramètres contrôlent le comportement du schéma: le temps entre deux

analyses, et l’amplitude du bruit dans les observations synthétiques. Notre technique

se révèle efficace pour reconstruire des évolutions de champ de température, à condi-

tion que le temps entre deux analyses soit de 10 Myr. Si l’amplitude de l’erreur a priori

sur les observations est importante (30%), notre méthode fournit une meilleure estima-

tion de la tectonique de surface que les observations, en tirant profit de l’information

contenue dans la physique de la convection.
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Ensemble Data Assimilation For Mantle Circulation
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Abstract

Recent advances in mantle convection modelling led to the release of a new generation

of convection codes, able to generate self-consistently plate-like tectonics at their sur-

face. Those models physically link mantle dynamics to surface tectonics. Combined

with plate tectonic reconstructions, they have the potential to produce a new genera-

tion of mantle circulation models that use data assimilation methods and where uncer-

tainties on plate tectonic reconstructions are taken into account. We recently provided

a proof of this concept by applying a suboptimal Kalman Filter to the reconstruction

of mantle circulation (Bocher et al., 2016). Here, we propose to go one step further and

apply the Ensemble Kalman Filter (EnKF) to this problem. The EnKF is a sequential

Monte Carlo method particularly adapted to solve high dimensional data assimilation

problems with nonlinear dynamics. We tested the EnKF using synthetic observations

consisting of surface velocity and heat flow measurements, on a 2D-spherical annulus

model and compared it with the method developed previously. The EnKF performs

on average better and is more stable than the former method. Less than 300 ensemble

members are sufficient to reconstruct an evolution. We use covariance adaptive infla-

tion and localization to correct for sampling errors. We show that the EnKF results are

robust over a wide range of covariance localization parameters. The reconstruction is

associated with an estimation of the error, and provides valuable information on where

the reconstruction is to be trusted or not.
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4.1 Introduction

Mantle circulation models are estimates of mantle flow history. They combine two

sources of information: observations on the dynamics or 3D structure of the Earth’s

mantle and a numerical model of mantle convection. In their effort to reconcile both

observations and our physical understanding of mantle dynamics, they serve a wide

variety of purposes and disciplines. Hager & O’Connell (1979) originally built instanta-

neous mantle circulation models to understand the effect of plates on large-scale man-

tle flow. Since then, they have been used, among other applications, to understand the

dynamics and evolution of the deep earth mantle structures (Bunge et al., 1998; McNa-

mara & Zhong, 2005; Bower et al., 2013; Davies et al., 2012), to study the evolution of

mantle plumes and their relationship to hotspots (Hassan et al., 2016), to infer changes

in the Earth’s rotation axis (Steinberger & O’Connell, 1997), sea-level (Moucha et al.,

2008) or dynamic topography (Flament et al., 2013).

The geodynamics community has developed three alternative approaches to the prob-

lem of the reconstruction of mantle circulation. The first approach, backward advec-

tion, consists in starting at present by estimating the current density field of the mantle

from seismic tomography models (see Conrad & Gurnis, 2003, for a description of this

method). This density field is then advected backward in time with plate tectonic re-

constructions as imposed boundary condition (Steinberger & O’Connell, 1997). This

method has a limited numerical cost and exploits the two most instructive constraints

on mantle circulation: plate tectonic reconstructions and seismic tomography. How-

ever, this technique neglects thermal diffusion, so it is not able to reconstruct past

thermal structures that have completely diffused before present and it is limited to

times and regions for which the effect of diffusion is thought to be small. This limits

reconstructions to the last 50 to 75 Myr (Conrad & Gurnis, 2003) or even to shorter pe-

riods if we consider the uncertainties on tomographic models (Bello et al., 2014). The

second approach, the semi-empirical sequential method, estimates mantle circulation

by integrating plate tectonics reconstructions chronologically into a mantle convection
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model. Plate tectonic reconstructions are either introduced as velocity boundary con-

ditions, as first described by Bunge et al. (1998), or with a more sophisticated method,

by blending a convection solution with thermal and kinematic models of plates and

slabs (Bower et al., 2015). This approach allows the use of models of convection with

chemical heterogeneities (McNamara & Zhong, 2005). Also, it is not anymore the re-

construction method that limits the timespan of the reconstruction, but the availability

of plate tectonic reconstructions. This led to mantle circulation models integrating up

to 450 Myr of plate reconstruction history (Zhang et al., 2010). However, this method

considers plate tectonic reconstructions as perfect estimates of surface tectonics: un-

certainties affecting the reconstructions are not taken into account although they are

substantial, especially as reconstructions go further in the past (for example, there is

almost no information on the state of the ocean floor before 140 Myr, see e.g. Torsvik

et al., 2010). This method also requires the choice of an arbitrary initial temperature

field to compute the evolution. The third approach uses data assimilation methods to

solve the mantle circulation problem. Data assimilation methods are inverse methods

dealing with the specific problem of estimating the evolution of a dynamical system

from asynchronous data and a physical model (Evensen, 2009a). The full inverse prob-

lem for mantle circulation, as stated by Bunge et al. (2003), would take into account

model errors, numerical approximations, errors on plate reconstructions and on the

estimation of the current tomography-derived temperature field to provide the best fit

given all sources of information. However, solving the full inverse problem of mantle

circulation is still a great challenge given the nonlinearities in mantle convection dy-

namics and the computational power required to compute a realistic forward mantle

convection evolution alone (Stadler et al., 2010; Burstedde et al., 2013). So far, varia-

tional data assimilation dominates over other methods to estimate mantle circulation

(Bunge et al., 2003; Horbach et al., 2014; Ghelichkhan & Bunge, 2016). To simplify the

problem, they minimize the misfit between the final temperature field of the mantle

circulation model and the one deduced from seismic tomography. These mantle circu-

lation models impose plate tectonic reconstructions as boundary conditions, as in the

first two approaches.
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Here, we take a different view on data assimilation methods for mantle circulation

models by focusing on how to take into account the uncertainties in plate tectonic

reconstructions. For almost a decade, 3-D spherical mantle convection models have

shown the capability to self-consistently produce plate-like tectonics at their surface

(Walzer & Hendel, 2008; Van Heck & Tackley, 2008; Yoshida, 2008; Foley & Becker,

2009). These models physically link surface tectonics comparable to that of the Earth

to mantle convection processes (Coltice et al., 2012; Rolf et al., 2014; Mallard et al.,

2016). In Bocher et al. (2016), we took advantage of this link to build a sequential data

assimilation algorithm able to integrate plate reconstructions into a mantle convection

code while taking into account the uncertainties on those plate tectonic reconstructions.

This technique assimilates a time series of surface observations chronologically, by re-

peating two stages, analysis and forecast, until all observations are taken into account.

Whenever an observation is available, the analysis evaluates the most likely state of the

mantle at this time, considering a prior guess (supplied by the forecast) and the new

observations at hand. For this evaluation, we used the classical best linear unbiased es-

timate (Talagrand, 1997). Then, the forward model of mantle convection forecasts the

evolution of the mantle until the next observation time. We tested this algorithm on

synthetic experiments. It proved to be efficient in recovering mantle circulation given

constraints on the amplitude of errors affecting observations and the timespan between

observations. Here we extend this work by applying a more advanced sequential data

assimilation method, the Ensemble Kalman Filter (EnKF, described in Evensen, 1994;

Burgers et al., 1998). This method is particularly suited for high dimensional nonlin-

ear dynamical models (Evensen, 2009b). Instead of estimating the most likely state of

the mantle, the Ensemble Kalman filter provides at each time an approximation of the

probability density function of the state of the system in the form of a finite ensemble

of states. During the forecast stage, each member of the ensemble evolves indepen-

dently. For the analysis, we use the second order statistics of the ensemble to correct

each ensemble member with the new observations at hand. We evaluate this method

with synthetic experiments in 2D-spherical annulus geometry (Hernlund & Tackley,

2008) and compare it to the algorithm developed by Bocher et al. (2016). The EnKF
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provides more accurate estimations than the former method, and is even able to recon-

struct evolutions that the former method could not. Moreover, the EnKF also estimates

locally the error on the reconstruction. The optimal size of the ensemble for our test

case is 300 members. Both covariance inflation and localization eliminate spurious

correlations arising from the finite size of the Ensemble that is used to compute them.

This paper is organized as follows. In section 2, we present our simplifications on the

general mantle circulation reconstruction problem and the correspondence with the

notation in the EnKF algorithm. Then, in section 3, we detail the EnKF method and

justify the variants chosen for the application to mantle circulation. Section 4 presents

the results obtained on synthetic experiments and compares them to results obtained

by the method described in Bocher et al. (2016). Section 5 is a discussion on the choice

of the method and the challenges involved in the application of such a method to a

realistic setting.

4.2 Presentation of the Problem

We aim at reconstructing mantle circulation for the last hundreds of millions of years

by combining a mantle convection model with plate tectonic reconstructions, using an

Ensemble Kalman Filter. To study the behavior of the Ensemble Kalman filter on such

problem, we consider a simplified mantle convection model. This section describes the

model used to compute a mantle evolution, the data set assimilated in this evolution,

and finally the backbone of Ensemble Kalman Filtering.

4.2.1 Mantle Convection Model

At the timescales and lengthscales we are interested in (≥ 10 kyr, ≥ 1000 km), the

mantle can be modelled as a continuous visco-plastic medium. To compute mantle cir-

culation, we solve the equations of conservation of mass (Eq. 4.1 below), momentum
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(Eq. 4.2 below) and energy (Eq. 4.8 below) for an isochemical mantle under the Boussi-

nesq approximation. The system of equations is non-dimensionalized to the thermal

diffusion time scale (see Ricard, 2015). Given the high Prandtl number of the mantle

(of the order of 1024), inertia is neglected. With these assumptions, the equations of

conservation of mass and momentum become diagnostic equations of the form

∇ · u = 0, (4.1)

∇ · σ −∇p+ RaTer = 0, (4.2)

where σ, u, p, and T are the non-dimensional deviatoric stress, velocity, dynamic pres-

sure, and temperature, respectively. The equations are written in spherical coordinates

(r, θ, φ), using the physical convention with r the radius, θ the colatitude and φ the

longitude. The associated unit vectors are (er, eθ, eφ).

Ra is the Rayleigh number, defined as

Ra =
ρ0g0α0∆Ta3

µ0κ0

, (4.3)

with ρ0 the density for T = 0, g0 the gravitational acceleration, α0 the thermal expan-

sivity, ∆T the temperature drop, a the depth of the layer, κ0 the thermal diffusivity, µ0

the dynamic viscosity of the system. The Rayleigh number in our model is 106. It is one

or two orders of magnitude lower than that of the Earth, but high enough to ensure

chaotic convection. The vertical velocities and shear-stress at the surface and the base

of the model are set to zero.

The deformation response of mantle material to stress is implemented as a linear rela-

tionship linking the strain rate tensor ǫ̇ to the deviatoric stress tensor σ as

σ = 2µeff ǫ̇ = µeff

(
∇u+ (∇u)T

)
. (4.4)

The effective viscosity µeff takes into account both a viscous Newtonian behavior with
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a viscosity µn and a pseudo-plastic behavior with an equivalent “pseudo-plastic vis-

cosity” µy,

µeff = min(µn, µy). (4.5)

The Newtonian viscosity µn follows an Arrhenius law

µn = µ0 exp

(
EA

T + T1

)
(4.6)

with µ0 = exp
(
−EA

2T1

)
, T1 the temperature at which µn = 1, and EA the nondimensional

activation energy. We implement the decrease of viscosity in the asthenosphere by

reducing by a factor of 10 the viscosity µn when the temperature is above a solidus

equation Ts = Ts0 + ∇rTs(ra − r) with ra the surface value of r. The implementation

of a weak asthenosphere tends to favor plate-like behavior (Tackley, 2000b; Richards

et al., 2001).

The pseudo-plastic part of the effective viscosity µy is defined by

µy =
σyield

2ǫ̇II

, (4.7)

where ǫ̇II is the second invariant of the strain rate tensor and σyield = σY +(ra− r)∇rσY ,

with σY and∇rσY the yield stress at the surface and the depth-dependence of the yield

stress, respectively.

The energy conservation equation is the only prognostic equation of the system

DT

Dt
= ∇2T + Rh. (4.8)

Rh is the non-dimensional internal heating rate defined as

Rh =
ρ0D

2H

k0∆T
(4.9)
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with H the dimensional heating rate and k0 the thermal conductivity. We set isothermal

top and bottom boundaries with temperatures Ta and Tb, respectively. The models

presented here have 10% basal heating and 90% internal heating.

These equations are solved using the finite volume, multigrid parallel code STAGYY

(Tackley et al., 1993), on a spherical annulus grid. This geometry provides results closer

to the spherical grid than cylindrical geometry (Hernlund & Tackley, 2008). In the

following, the longitudinal coordinate of a point is φl, with l ∈ {1, 2, ..., L} and its

radial coordinate is rm with m ∈ {1, 2, ...,M}, r varying from rb to ra.

Note that this paper focuses on the methodology of ensemble data assimilation for a

convecting system similar to that of the Earth’s mantle. Hence, we choose a rather

simple model that can reproduce plate-like tectonics at the surface. We rely on sim-

plifications such as 2D geometry, incompressible and isochemical mantle and a rheol-

ogy which does not take into account the history of the material. Although some of

the complexities we ignore may play a fundamental role in the reconstruction of the

Earth’s mantle evolution, we choose to focus in this manuscript on the data assimila-

tion methodology. Moreover, we choose to keep the same parameters as the test case of

Bocher et al. (2016) in order to allow direct comparison between the methods. Table 4.1

lists the chosen parameter values.

To ease the comparison with Earth’s mantle convection, we rescale the nondimensional

time in the evolution, t, by the transit time of the convective system. By definition, the

transit time of the Earth’s mantle is tEt = aE/vErms, with aE the thickness of the mantle

and vErms the root mean square of surface velocities of the Earth, as estimated by plate

tectonic reconstructions (Seton et al., 2012). We compute the same value for the model

tmt = a/vmrms. The scaled time ts is then ts = t
tEt
tmt

.

4.2.2 Observations of Mantle Circulation

The state of the Earth’s surface is the time integrated expression of mantle circulation.

At a global scale, the main source of information for the last 100 Myr is the database
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TABLE 4.1: Values of the parameters of the forward model

Symbol Meaning value
Ra Rayleigh number 106

Rh Non-dimensional internal heating rate 20.5
L number of grid points in longitude 384
M number of grid points in radius 48
ra Radius of the top of the domain 2.2
rb Radius of the bottom of the domain 1.2
Ta Temperature at the top of the domain 0
Tb Temperature at the bottom of the domain 0.9
EA Activation Energy 23.03
T1 Temperature at which µT = 1 1
β Factor of viscosity reduction for partial melting 10
Ts0 Solidus Temperature at r = ra 0.6
∇rTs Radial gradient of the solidus temperature 2
σY Yield Stress 1.104

∇rσY Radial gradient of the yield stress 2.105

of the localization and identification of magnetic anomalies on the seafloor, translated

into maps of seafloor ages (Müller et al., 2008a; Seton et al., 2014). This information is

complemented with regional geological studies giving constraints on the timing and

geometry of tectonic events as well as a synthesis of paleontological, structural geology,

stratigraphical, magnetic anomalies, gravity data and seismic studies. In addition, pa-

leomagnetic data provide constraints on the paleolatitude of continental blocks (Besse

& Courtillot, 2002).

Plate tectonic reconstructions use the geometric theory of plate tectonics to integrate

all these observations. The result is a time series of maps of seafloor ages, plate layout

and kinematics. The continuously closed plate algorithm (Gurnis et al., 2012) produces

plate tectonic reconstruction maps continuous in space and time (Seton et al., 2012;

Müller et al., 2016).

Although we are aware that these plate tectonic reconstruction maps are in themselves

models and not direct observations, we propose to develop an assimilation method

that use them as data to assimilate in our mantle convection model. This solution is

generally chosen in mantle circulation reconstructions (Bunge et al., 2002; Zhang et al.,

2010; Bower et al., 2015), because it provides continuous surface boundary conditions

in space and time for the period of reconstruction. One advantage of the technique we
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develop is that it is possible to consider errors on the data that is assimilated, another

is that the reconstructions do not need to be known at all times and at all points on the

surface. Hence it is possible, in principle, to design a data assimilation scheme using

direct observations. However, this would require further developments both on the

database design and on the data assimilation algorithm. Sequential data assimilation

methods for mantle circulation are still in their infancy, so we opt for a simpler struc-

ture of the data to be assimilated: a time series of maps of surface velocity and seafloor

age, as given by plate tectonic reconstructions.

In this study, we limit ourselves to the test of data assimilation in synthetic experi-

ments. In the model described in subsection 4.2.1, the absence of small scale convec-

tion at the base of the boundary layer makes the surface heat flux an excellent proxy

for the age of the seafloor (Coltice et al., 2012). Consequently, we consider surface heat

flux and surface velocity as the data to assimilate.

To our knowledge, the amplitude of the uncertainty on global plate tectonic recon-

structions has not yet been assessed. For the synthetic tests we perform in section 4.4,

we choose an arbitrary value of 10% of the root mean square value of heat flux and

surface velocity, respectively. We further discuss this choice in section 4.5.

4.2.3 Ensemble Kalman Filtering Framework: Notations

Our aim is to assimilate a time series of observations (surface velocities and heat fluxes)

into a mantle convection model to estimate the evolution of the state of the mantle. We

introduce here the general formulation of Ensemble Kalman Filtering and link them to

our problem. We use the notation system recommended by Ide et al. (1997).

The time series of data is defined as a set of column vectors {yo
1,y

o
2, ...,y

o
K}, where the

subscripts {1, 2, ..., K} refer to the times at which observations are available. As seen in

the previous section, the data used for our experiments are surface velocity and surface
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heat flux. The data vector at time k is thus defined as

yo
k =

[
qok(φ1), q

o
k(φ2), ..., q

o
k(φL), u

o
φk(φ1), u

o
φk(φ2), ..., u

o
φk(φL)

]T
, (4.10)

where qok(φl) and uo
φk(φl) are the observed values of surface heat flux and surface hor-

izontal velocity at the k-th timestep and longitude φl, and (·)T means transpose. We

model errors on observations by a random vector of zero mean and covariance matrix

Rk (we suppose unbiased observations). Although Rk is a diagonal matrix of constant

value and size in our experiments, it is not generally the case. Correlations between

errors on observations could be specified in Rk.

The evolution of the state of the system is estimated sequentially during the period

where observations are available. At each timestep k ∈ {1, 2, ..., K}, we define two

state vectors: the a priori state, or forecast state x
f
k and the analysis state xa

k, which is

the state corrected after having assimilated the observations yo
k. The system of equa-

tions developed in section 4.2.1 shows that we can compute velocity, viscosity and

pressure values at each grid point from the temperature field. Nevertheless, the rela-

tion between surface velocities and the temperature field is nonlinear. We choose to

include the whole temperature field and the surface velocities to form an augmented

state vector. This simplifies the computations thereafter. The state of the mantle at a

timestep k ∈ [1, K] is defined as

xk = [Tk(φ1, r1), Tk(φ1, r2), ..., Tk(φL, rM), uφk(φ1), uφk(φ2), ..., uφk(φL)]
T , (4.11)

where Tk(φl, rm) and uφk(φl) are the values of temperature at the kth timestep, longi-

tude φl and radius rm and surface horizontal velocity at the kth timestep and longitude

φl.

The forecast and analyzed states are uncertain as well. Their uncertainties are repre-

sented by two random vectors of zero expectancy and covariance matrices Pf
k and Pa

k,

respectively. We do not compute explicitely these covariance matrices. Instead, we
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TABLE 4.2: Notations and dimensions of data assimilation variables

Symbol Meaning size (literal) size (Value)
x state LM + L 18 816
y data L+ L 768
H observation matrix operator (L+ L)× (LM + L) 768× 18 816
R observation error covariance matrix (L+ L)× (L+ L) 768× 768
P state error covariance matrix (LM + L)× (LM + L) 18 816× 18 816
X ensemble state (LM + L)×N 18 816×N ,

(N = 96,288 or 768)

compute two ensembles of N states {xf
kn}n∈[1,N ] and {xa

kn}n∈[1,N ], such that their av-

erage equals x
f
k and xa

k, respectively, and their respective sample covariance matrices

approximate P
f
k and Pa

k. The ensemble of states {xf
kn}n∈[1,N ] and {xa

kn}n∈[1,N ] are stored

in the matrices Xf
k and Xa

k, where the nth column is the state of the nth ensemble mem-

ber xf
kn and xa

kn, respectively.

Finally, we introduce the observation operator, which maps a given state vector xe
kn (e

being f or a) to the corresponding data ye
kn. If the surface heat flux is approximated by

a first order discretization of Fourier’s law, then the observation operator is linear, and

can be represented by the matrix H such that

∀k ∈ {1, 2, ..., K}, ∀n ∈ {1, 2, ..., N}, ye
kn = Hxe

kn. (4.12)

Table 4.2 summarizes the dimensions of the vectors and matrices for our problem.

4.3 Ensemble Kalman Filter with Localization and Infla-

tion

The Ensemble Kalman Filter (Evensen, 1994; Burgers et al., 1998) is a sequential data

assimilation algorithm using the same equations as the Kalman Filter for the analysis

step, but Monte Carlo methods to forecast the error statistics on the state. We explain

here how we adapt the Ensemble Kalman Filter to our problem and justify the choice

of the starting ensemble.
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To implement the EnKF, we used the software environment Parallel Data Assimilation

Framework (PDAF, Nerger et al., 2005; Nerger & Hiller, 2013).

4.3.1 Initialization: First Analysis and Generation of the starting en-

semble

As in Bocher et al. (2016), we compute second order statistics from a series of 400 decor-

related snapshots of convection simulations. We obtain the first forecast state of aver-

age x
f
1 and associated covariance matrix P

f
1 . The background covariance matrix P

f
1

is eigendecomposed and rank reduced into P
f
1r = VΛVT , with Λ a diagonal matrix

containing the nr = 1928 largest eigenvalues of Pf
1 (which accounts for 99.98% of its

cumulative variance) and V a matrix of the corresponding eigenvectors.

The first set of observations yo
1 is assimilated to obtain

xa
1 = x

f
1 +VAVTHTR−1(yo

1 −Hx
f
1), (4.13)

Pa
1 = VAVT , (4.14)

with

A =
[
Λ−1 +VTHTR−1HV

]−1
. (4.15)

We generate an ensemble of N initial states using the second order exact sampling

method (Hoteit, 2001; Pham, 2001). First, A is eigendecomposed

A = VaΛaVaT . (4.16)
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The ensemble members are then computed following

Xa
1 =




| |

xa
11 ... xa

1N

| |




=




| |

xa
1 ... xa

1

| |




+
√
N − 1VVaΛa1/2



ΩT

N×(N−1)

0(nr−N)×N


 , (4.17)

where Ω is a random matrix whose columns are vectors forming an orthonormal basis

and each of them is orthogonal to 1 = [1, ..., 1]T . Ω is generated through the algorithm

described in the appendix of Nerger et al. (2012). The matrix Ω is designed so that the

sample mean of the starting ensemble is equal to xa
1 and its sample covariance matrix

is equal to matrix Pa
1 reduced to its N largest eigenvalues.

This method of generating the starting ensemble takes advantage of the extensive

knowledge we have on the background statistics of the model. Several other meth-

ods have been tested to generate a starting ensemble, such as starting with random

decorrelated snapshots of mantle convection obtained from a very long run, second

order exact sampling from x
f
1 and P

f
1 , and several assimilations of the first observa-

tions yo
1. None of these solutions were as efficient for our problem as the technique

used here.

4.3.2 Forecast

Between timesteps k − 1 and k, the forward numerical code STAGYY computes in-

dependently the evolution of each of the analyzed states {xa
k−1,n}n∈[1,N ] to produce a

forecast ensemble {xf
k,n}n∈[1,N ].

The forecast state is the average of the ensemble

x
f
k =

1

N
X

f
k1, (4.18)
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and the forecast error covariance matrix is given by the sample covariance matrix of

the ensemble of forecast states

P
f
k =

1

N − 1
X

f
k

(
I− 1

N
11T

)(
I− 1

N
11T

)T

X
fT
k . (4.19)

After several assimilation cycles, the finite size of the ensemble induces the underes-

timation of the error variance (van Leeuwen, 1999), and can lead to filter divergence.

We observed this behavior in our case, and to stabilize the filter we apply covariance

inflation, as suggested in Anderson & Anderson (1999) and Hamill et al. (2001).

We correct the forecast ensemble variance with an inflation factor γ according to

X
f
k ←

1

N
X

f
k11

T +

[
X

f
k

(
I− 1

N
11T

)]√
γ, (4.20)

where ← means that we replace the matrix on the left-hand side by the term on the

right-hand side. γ is computed following the same principles as in the suboptimal

Kalman Filter developed in Bocher et al. (2016), i.e. by comparing the error on obser-

vations and the standard deviation of the innovation dk defined as

dk = yo
k −

1

N
HX

f
k1. (4.21)

The inflation factor is

γ =
V d − V o

V f
, (4.22)

with

V d = Tr
(
dkd

T
k

)
, (4.23)

V o = Tr(Rk), (4.24)

V f = Tr

[
HX

f
k

(
I− 1

N
11T

)(
I− 1

N
11T

)T

X
fT
k HT

]
, (4.25)
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where Tr(·) means the trace. The inflation factor is then truncated between a minimum

value of 1 (to prevent further contraction of the ensemble spread) and a maximum

value of γ+ = 1.25 (to prevent overspread). Several values of maximum inflation factor

have been tested, from γ+ = 1.1 to γ+ = 2, and showed little impact on the efficiency

of the assimilation. A constant inflation factor was also tested, but the results with

an adaptive inflation factor were substantially more accurate, especially for the first

assimilation times.

4.3.3 Analysis

The analyzed state xa
kn of the nth member of the ensemble is

xa
kn = x

f
kn +Kk

(
yo
kn −Hx

f
kn

)
(4.26)

where Kk is the Kalman Gain. yo
kn is the observed data vector yo

k to which a ran-

dom perturbation of zero expectation and covariance matrix Rk is added, as is recom-

mended in Burgers et al. (1998).

The Kalman Gain is defined as

Kk = (Pf
k ◦C)HT

[
H(Pf

k ◦C)HT +Rk

]
−1

, (4.27)

where the matrix P
f
k is the sample covariance matrix of the ensemble of forecast states

{xf
kn}n∈[1,N ]. We use a limited ensemble size (maximum 768) to estimate P

f
k . Spuri-

ous correlations ensue, especially between distant points. To counteract this effect, we

implement direct forecast error localization by Schur multiplying (symbol ◦) Pf
k by the

localization matrix C, as introduced by Hamill et al. (2001) and Houtekamer & Mitchell

(2001). The matrix C is itself the Schur product of a vertical localization matrix Cv and

a horizontal localization matrix Ch. The value of Cv(i, j) depends on the absolute ra-

dius difference of the i−th and the j−th components of the state vector and on vertical

correlation length ℓv. The value of Ch(i, j) depends on the absolute angle difference of
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the i − th and the j − th components of the state vector and on vertical correlation

length ℓh. Both values follow a Gaspari-Cohn compactly supported fifth-order piece-

wise rational function (similar to a Gaussian but with a compact support, Eq. 4.10 of

Gaspari & Cohn, 1999).

We also tested the domain localization strategy as described in Janjic et al. (2011), since

it is computationally more efficient and already implemented in PDAF. However, it

led to a systematic failure of the assimilation. This is due to the nature of our problem:

all the observations are located at the surface of the model and we aim at estimating

the temperature field over the whole depth of the mantle. A vertical localization is as

necessary as a horizontal localization: the localization has to be done in the state space

and not only in the data space.

4.3.4 Implementation of the Ensemble Kalman Filter

We used the software environment PDAF (Nerger et al., 2005; Nerger & Hiller, 2013)

in combination with the mantle convection code STAGYY (Tackley, 2008) to develop

an Ensemble Kalman Filter code for mantle convection . PDAF provides a set of core

routines computing in parallel the analysis steps for a range of ensemble based data

assimilation techniques. It provides as well a set of standard routines to adapt the par-

allelization of a preexisting parallel forward numerical model and integrate the data

assimilation routines. The final product is a highly scalable ensemble data assimilation

code running both forecasts and analyses in parallel.

We modified the STAGYY code following the procedure recommended by PDAF (see

the online documentation wiki at Nerger, 2016). We also made a few modifications in

PDAF routines to allow for direct forecast error localization with the Ensemble Kalman

filter. Additionally, we designed a basic observation database so as to load in a single

step all the observations used in the data assimilation procedure.
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4.4 A posteriori Evaluation of the Ensemble Kalman Fil-

ter Method

We test the data assimilation scheme on twin experiments using the model described in

section 4.2.1. Throughout this section, we compare the results of the Ensemble Kalman

Filter for mantle circulation reconstructions to the results computed using the method

developed in Bocher et al. (2016), hereafter referred to as method 1.

After describing the setup used for twin experiments, we test the robustness of the

EnKF method and compare it to that of method 1. Then, we determine the range of data

assimilation parameters which are suitable to conduct an ensemble data assimilation.

Finally, we assess the ability of the scheme to actually reconstruct specific geodynamic

structures.

4.4.1 Twin Experiment Setup

Twin experiments are a way to assess the accuracy of a data assimilation procedure in

a controlled environment, where the true evolution is perfectly known.

First, we compute a reference evolution using the forward numerical model, consid-

ered as the true evolution, from which we extract the set of true states {xt
k}k∈[1,K]. Here,

the timespan of the evolution is 150 Myr and we sample true states every 10 Myr. From

these states, we compute a time series of surface heat fluxes and surface velocities, fol-

lowing Equation 4.12. We noise these observations with a random Gaussian noise of

standard deviation 10% of the root mean square of surface heat flux qrms and surface

velocities vrms, to obtain the time series of observations to assimilate {yo
k}k∈[1,K]. It fol-

lows that the observation error covariance matrix R is diagonal and does not change

with time.

Then, we perform ensemble data assimilation for the data set {yo
k}k∈[1,K], with the ob-

servation error covariance matrix R. We did not consider any model error in the filter



136 Chapter 4. Ensemble Data Assimilation For Mantle Circulation

TABLE 4.3: Notations and range of values tested for data assimilation pa-
rameters

Symbol Meaning value
N number of ensemble members 96 to 768
K number of observation times 16
γ+ maximum inflation factor 1.25
ℓv vertical correlation length 0.3 to 1
ℓh horizontal correlation angle π/10 to π/2

we describe, so the parameters of the model used in the data assimilation realizations

are the same as those of the reference model.

We present here tests with different assimilation parameters, varying the number of

members N , the vertical correlation length ℓv and the horizontal correlation angle ℓh.

Table 4.3 details the range of parameters tested.

We compute four different evolutions to test the accuracy of the ensemble Kalman filter

for different cases. Figure 4.3 shows the initial and final states of these evolutions,

together with the result of global error evolution, and will be discussed in the next

section.

4.4.2 Robustness of the Assimilation Algorithm

The evolution of the global error on the estimated temperature field over the time pe-

riod {1, ..., K} is

[
ǫfT (1), ǫ

a
T (1), ǫ

f
T (2), ..., ǫ

f
T (K), ǫaT (K)

]
(4.28)

where ǫeT (k), e standing for a (analysis) or f (forecast) is

ǫeT (k) =

√√√√√√√√

L∑
l=1

M∑
m=1

(
T

e

k(φl, rm)− T t
k(φl, rm)

)2 V(φl, rm)

L∑
l=1

M∑
m=1

T t
k(φl, rm)2V(φl, rm)

(4.29)
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FIGURE 4.1: Time evolution of the errors on the estimated temperature
field obtained from data asssimilations with the same 150 Myr dataset, but
different assimilation parameters. The size of the ensemble is A) N = 96,
B) N = 288 and C) N = 768. The assimilations are computed for any
combination of data assimilation parameters: γ+ = 1.25, ℓv = 0.3, 0.5,
0.7 and 1 and ℓh = π/10, π/8, π/6, π/4 and π/2. The black line represent
the evolution of the error for the best assimilation A)N = 96, ℓz = 0.5,
ℓh = π/6 and γ+ = 1.25 B)N = 288, ℓz = 0.7, ℓh = π/10 and γ+ = 1.25 and
C)N = 768, ℓz = 0.5, ℓh = π/4 and γ+ = 1.25. The grey area is delimited
by the maximum and minimum values of errors at each time, for all data

assimilations.

with V(φl, rm) the volume of the grid cell at longitude φl and radius rm, and T
e

k(φl, rm)

the average temperature of the estimated ensemble (either forecast or analysis) at lon-

gitude φl and radius rm.

We test the EnKF on one evolution, with sizes of the ensemble N = 96, 288 and 768 and

for each combination of the following data assimilation parameters values: vertical

correlation length ℓv = 0.3, 0.5, 0.7 and 1 and horizontal correlation angle ℓh = π/10,

π/8, π/6, π/4 and π/2 . We show in Figure 4.1, for each ensemble size, the maximum

and minimum values of errors obtained for all these parameters, as a function of time.

To determine the best assimilation, we compute the average error after analysis

ǫaT =
1

K

K∑

k=1

ǫaT (k). (4.30)

For each ensemble size, the error evolution of the best assimilation (in the sense of

minimum ǫaT ) is also shown in Figure 4.1.
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For any size of the ensemble, it is possible to find a set of parameters leading to a

stabilization of the global error on the temperature field after a few analyses. The time

after which the solution is stabilized corresponds to the transit time of the physical

model (70 Myr). We can see that for N = 288 and N = 768, any combination of

vertical and horizontal correlation lengths leads to errors lower than the first analysis.

Although the error is decreasing through time for any combination of data assimilation

parameters, the difference between the maximum and the minimum errors obtained

is greater than 1%, which is large given that the first analysis error is already below

8%. The best error evolutions for N = 288 and N = 768 are very similar, with a

minimum error of 4.07% and 3.87% after 90 Myr, and an average global error after

analysis of 5.01% and 4.85%, respectively. During the assimilation of a dataset, most

of the computational time is dedicated to the forecast step, so the data assimilation

with 768 members is 2.7 times longer than the assimilation with 288 members, on the

account of the embarrassingly parallel nature of the forecast phase. Since we obtain

very similar results for N = 288 and N = 768, we favor the assimilation with 288

members.

We compute the error on the estimated temperature from the true temperature field.

However, in a realistic case, the true temperature is not known, and the evaluation of

the data assimilation algorithm is based on the study of the statistics of the innovation

vector dk at analysis k

dk = yo
k −Hx

f
k . (4.31)

At each analysis time, we compute the Euclidean norm of the instantaneous innovation

dk and the Euclidean norm of the cumulative mean innovation dk

dk =‖ dk ‖ and dk =

∥∥∥∥∥
1

k

k∑

i=1

di

∥∥∥∥∥ (4.32)

Before computing these norms, we normalize the part of the innovation corresponding

to surface heat flux and velocities by their respective root mean square values.
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The norm of the instantaneous innovation dk measures the distance between the fore-

cast data and the observation, and therefore gives indications on the success or failure

of the assimilation. The evolution of the cumulative mean of the innovation dk allows

us to check the consistency of the data assimilation algorithm at first order. Indeed, the

derivation of the EnKF equations assumes that the error on observations yo and the er-

ror on the forecast data Hxf are unbiased. Such hypotheses imply that the statistically

expected value of d is zero, which means that the norm of the cumulative innovation

should converge to zero as the number of analyses increases.

Figure 4.2 shows the evolution of dk and dk as a function of the number of analyses

for data assimilations with different sizes of ensemble and their respective optimum

vertical and horizontal correlation lengths. The norm of the instantaneous innovation

(Figure 4.2B) first decreases during the first 8 analyses, i.e. 70 My, and then oscillates

for the rest of the assimilation. We observe the same behavior for the evolution of the

error on temperature ǫeT (k): the norm of the instantaneous innovation for ensemble

sizes of N = 288 and 768 are very similar, and lower than that obtained with N = 96.

Figure 4.2A shows the cumulative innovation constantly decreasing throughout the

assimilation, with comparable values for N = 288 and N = 768, and slightly higher

values for N = 96.

We also tested the assimilation algorithm for 4 different evolutions, with the optimal

parameters for an ensemble size of N = 288 members (ℓv = 0.7 and ℓh = π/10). Fig-

ure 4.3 shows the initial and final temperature fields of the evolutions, together with

the evolution of the global error, the spread of the ensemble, and the error evolution

for the method 1.
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FIGURE 4.2: Evolution of A) the cumulative mean innovation and B) the
norm of the instantaneous innovation, as a function of number of analy-
ses and for different ensemble sizes. For each size of the ensemble, the
evolutions correspond to the best combinations of correlation length pa-
rameters: N = 96, ℓz = 0.5, ℓh = π/6 and γ+ = 1.25 ; N = 288, ℓz = 0.7,
ℓh = π/10 and γ+ = 1.25 and N = 768, ℓz = 0.5, ℓh = π/4 and γ+ = 1.25.
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FIGURE 4.3: Evolution of the error (ǫeT , red) as a function of time for 4 different evolutions with N = 288, γ+ = 1.25, ℓv = 0.7 and
ℓh = π/10, compared to the evolution of the spread of the ensemble (σe

T , blue) and the evolution of the error with the technique
of Bocher et al. (2016) (ǫeT method 1, yellow). The initial and final states of the true evolutions are represented on the left of each

corresponding graph.
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The spread of the ensemble is an estimation of the error on the state. We compare

the evolution of ǫeT to the global standard deviation of the temperature field of the

ensemble:

[
σf
T (1), σ

a
T (1), σ

f
T (2), ..., σ

f
T (K), σa

T (K)
]

(4.33)

with σe
T (k) defined as

σe
T (k) =

√√√√√√√√

N∑
n=1

L∑
l=1

M∑
m=1

(
T e
kn(φl, rm)− T

e

k(φl, rm)
)2 V(φl, rm)

(N − 1)
L∑
l=1

M∑
m=1

T
e

k(φl, rm)2V(φl, rm)

. (4.34)

We compute the error for an estimated evolution with the method 1 using Equation 4.29.

Although we ran the four evolutions with the same values of physical parameters (as

described in Table 4.1), they show different configurations: Evolution A has a shorter

wavelength of convection, with the persistence of 4 subductions, 3 ridges and 5 up-

wellings, the death of one ridge and creation of two. Evolutions B, C and D have

longer wavelengths of convection, with two major downwellings, stable throughout

the evolutions. In evolution B, one of these downwellings has a very large negative

temperature anomaly at the bottom of the domain. In evolution C, the remnant of a

subduction merges with a larger subduction into a single downwelling.

In the 4 cases, the errors on the estimated temperature field systematically decrease

during the analysis step for the EnKF algorithm. The errors stay below the first analysis

error for evolutions A, B and C, while they reach slightly higher values for evolution

D. The error of the EnKF is always lower than that obtained with method 1 for the

first 50 My. The average error is lower for the EnKF than for method 1 in 3 out of

4 cases. The average standard deviation of the ensemble (ensemble spread) is of the

same order of magnitude as the true error. However, its evolution is not the same as the

true error, with differences between both of more than 2% for some part of evolution

C, for example. For evolutions C and D, the results of the two methods are comparable



4.4. A posteriori Evaluation of the Ensemble Kalman Filter Method 143

whereas the assimilation with EnKF performs better than method 1 for evolutions A

and B.

For evolution B, method 1 fails to reconstruct accurately the evolution, with the er-

ror reaching values greater than 10% at the end of the assimilation. This case is further

investigated on Figures 4.4 and 4.5. Figure 4.4 compares the true temperature field evo-

lution with the analyzed temperature field of method 1 and of the Ensemble Kalman

filter with N = 288, ℓv = 0.7 and ℓh = π/10. The sudden increase in the error of the esti-

mated temperature field for method 1 seen on Figure 4.3B happens after around 80 Myr

of assimilation, when the direction of bending at the bottom of the domain changes for

the downwelling on the left side (see Figure 4.4, second row). The analyzed temper-

ature field of Method 1 does not predict this change of direction (see Figure 4.4, first

row), while the analyzed temperature field of the ENKF predicts it (see Figure 4.4, third

row). Method 1 computes only the evolution of the best estimate of the system. The

computation of only one estimate ignores that, in this case, a slight perturbation of the

estimated state could lead to a totally different dynamics. On the contrary, the EnKF

method computes the evolution of an ensemble of perturbed solutions and thus takes

into account the nonlinearity of the solution, at least for the forecast stage. Figure 4.5

shows examples of the analyzed temperature fields of different ensemble members for

evolution B, after 80 Myr of assimilation. Although the average temperature fields dis-

plays a downwelling bending to the right, the ensemble members show a wide variety

of downwelling geometries.
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FIGURE 4.5: Example of temperature fields of the members of the ensemble. This example is taken after 80 Myr, for the assimi-
lation of evolution B, with ENKF N = 288, ℓv = 0.7 and ℓh = π/10.
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4.4.3 Effect of the data assimilation parameters on the quality of the

estimation

As shown in Figure 4.1, the choice of N , ℓv and ℓh is critical to minimize errors in the

assimilation, with errors on the estimated temperature field varying from 4% to more

than 10% according to the choice of parameters. We investigate further the effect of

these parameters by comparing the average global errors after analyses, ǫaT , for differ-

ent combinations of N , ℓv and ℓh. Figure 4.6 displays the values of ǫaT for sizes of ensem-

ble N = 96, 288 and 768 (Figures 4.6A, B and C respectively) with ℓv varying between

0.3 and 1, and ℓh between π/10 and π/2. As in Figure 4.1, we observe a dichotomy be-

tween assimilations with N = 96 members, with higher errors, and assimilations with

N = 288 and 768, with lower errors.

For each size of ensemble N we identify the pair (ℓv, ℓh) that leads to the assimilation

with the lowest error ǫaTmin(N). From this minimum value ǫaTmin(N), we select all the

pairs (ℓv, ℓh) that lead to data assimilation with global errors less than ǫaTmin(N)+0.2%.

As the size of the ensemble increases, the optimal lengths of correlations (ℓv, ℓh) tend to

increase. This is a classical effect (Houtekamer & Mitchell, 1998), observed in ensemble

Kalman filters for various dynamical systems. As N increases, the amplitude of noise

in the sample correlation matrix Pf decreases, and small, yet real, correlations between

distant points can be taken into account (Hamill et al., 2001). Between ensemble sizes of

N = 96 and N = 288 the zone of optimal correlations is displaced towards the greater

vertical correlation lengths. When we increase the size of the ensemble from N = 288

to N = 768, the zone of optimal correlations is displaced towards greater horizontal

correlation angles. So the accurate estimation of correlations between points on the

same vertical level needs less samples than between points on the same horizontal

level. This is due to the specifics of mantle convection dynamics. The highly nonlinear

rheology produces plates at the surface with values of velocity and temperature that

may vary substantially (by one or two orders of magnitude) on short distances in the

horizontal direction, especially because of pseudoplasticity. On the contrary, highly

viscous cold downwellings establish a strong continuity in the vertical direction.
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FIGURE 4.6: Value of the mean analyzed error for the same evolution and
different vertical and horizontal correlation lengths. A) for 96 ensemble
members, B) for 288 ensemble members, C) 768 ensemble members. The
dashed lines delimit the zones for which errors are less than ǫaTmin(N) +

0.2%.

For the ensemble size N = 288 and all the values of (ℓv, ℓh), we additionally evaluate

the average global ensemble spread

σa
T =

1

K

K∑

k=1

σa
T (k), (4.35)

the average forecast error on data

ǫfy =
1

K

K∑

k=1

dk
‖ yo

k ‖
(4.36)

and the norm of the cumulative innovation for K analyses:

dK =

∥∥∥∥∥
1

K

K∑

k=1

(
yo
k −Hx

f
k

)∥∥∥∥∥ . (4.37)

These three values are indicators of the accuracy of the assimilation and can be com-

puted in the case of an assimilation with Earth data, unlike ǫaT .

Figure 4.7 represents these results along with the true error ǫaT . The ensemble of optimal

data assimilation parameters is also outlined (ǫaT < ǫaTmin(N) + 0.2%).
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FIGURE 4.7: Value of A) mean analyzed error, B) mean ensemble spread,
C) average forecast error on data, D) norm of cumulative innovation after
K analyses for N = 288, and different vertical and horizontal correlation
lengths. The dashed line delimits the zone for which errors are less than

ǫaTmin(288) + 0.2%.
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Overall, the average ensemble spread σa
T (Figure 4.7B) decreases when ℓh and ℓv in-

crease, with a minimum for ℓh = π/2 and ℓv = 1. The higher the correlation lengths,

the more covariances will be taken into account in the analysis, and the analyzed mem-

bers will be closer to each others and σa
T lower. The average ensemble spread σa

T is of

the same order of magnitude as the true error ǫaT . Moreover, there is a local minimum

of σa
T at ℓv = 0.7 and ℓh = π/10. These parameters correspond to the minimum true

error ǫaT .

The average forecast errors and the norm of the cumulative innovations display the

same behavior: they decrease with increasing vertical and horizontal correlation lengths.

The longer the correlations lengths, the closer the forecast data are to the observations,

and the less biased the assimilation. This means that a better fit to the observations

does not necessarily imply a better fit to the true temperature field. In a realistic con-

text, the result of the assimilation should be checked against independent data to eval-

uate its accuracy. In the case of the Earth’s mantle, independent data could be for

example the geoid or tomographic models.

4.4.4 Accuracy of the Reconstruction of Geodynamic Structures

We focus on three key flow structures: 1) downwelling slabs (subduction) 2) ridges,

i.e. shallow structures resulting from divergent plates at the surface, 3) plumes, hot

upwellings raising from the base of the model.

Figure 4.8 shows the final state of the assimilation after 150 My for the evolution A of

Figure 4.3. We selected 3 assimilations: EnKF96, an Ensemble Kalman Filter with N =

96, ℓv = 0.5 and ℓh = π/6 (first row), EnKF288 an EnKF with N = 288, ℓv = 0.7 and ℓh =

π/10 (second row) and the assimilation with method 1 (third row). We do not show

the Ensemble Kalman Filter with 768 members since the resulting temperature field is

almost indistinguishable from that of EnKF288. The first column represents the true

temperature field, which is the same for all assimilations. The second column is the

analyzed temperature field, i.e. the average of the temperature fields of the analyzed
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ensemble members. The third column is the absolute temperature error, and the fourth

column is the standard deviation of the ensemble spread, which is an estimate of the

error on the analyzed temperature field.

Globally, the EnKF288 and EnKF96 solutions for the temperature field are smoother

than the solution of method 1. We observe this difference especially in the astheno-

sphere, the part of the mantle below the top boundary layer. For method 1, the astheno-

sphere shows short wavelength temperature variations. These variations are absent

from the true temperature field and are inconsistent with convection solutions with

the chosen parameters. They stem from the amplification of the noise in the observa-

tions during the analysis. Moreover, the asthenosphere of the analyzed temperature

field of method 1 is hotter than the true temperature.

Both EnKF96 and EnKF288 reconstruct successfully the ridges locations and structures,

as testified by their error fields. On the contrary, method 1 fails to reconstruct the ridge

on the top right of the domain. It also predicts a ridge that does not exist in the true

state (in the top left quadrant). On the right of the domain, another ridge is associ-

ated with a vertical positive temperature anomaly underneath. This pattern is found

regularly under ridges when applying method 1. This is due to the use of a constant

forecast error covariance matrix, Pf
0 for the analysis. This constant matrix does not take

into account the specifics of the dynamics under a ridge, where the positive anomaly is

generally shallow. We do not observe this detrimental effect in the EnKF assimilations,

where we compute the forecast error covariance matrix P
f
k at each analysis time from

the forecast ensemble.

All three assimilations reconstruct the subductions and predict accurately the bending

direction of slabs at the base of the model. Method 1 tends to underestimate the ampli-

tude of the negative temperature anomalies whereas both EnKF assimilations overes-

timate them. This is especially noteworthy for the bottom left subduction. Moreover,

the estimated slabs are wider than the true slabs. However, we note two arguments in

favor of the EnKF: first, the estimation of the slab improves when the size of the en-

semble increases and second, the local standard deviations of the ensemble indicates
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FIGURE 4.8: Comparison of estimated states after 150 Myr for the evo-
lution A of Figure 4.3. First row: Ensemble Kalman Filter with N = 96,
ℓv = 0.5 and ℓh = π/6; second row: N = 288, ℓv = 0.7 and ℓh = π/10; third
row for method 1 (third row). The first column represents the true tem-
perature field at 150 Myr, the second column is the analyzed temperature
field, the third is the absolute error on temperature value and the fourth
is the estimated error on the analyzed field (spread of the ensemble). On
the true temperature field of EnKF288 we framed the location of the sub-
duction (A), plume (B), ridge initiation (C) and stable ridge (D) studied in

Figure 4.9.
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that the estimation in this part of the domain is less accurate.

Both EnKF288 and EnKF96 solutions do not show any plume at the base of the man-

tle. However, the ensemble spread shows a greater uncertainty on the places where

plumes occur. Method 1 predicts the approximate location of all plumes, but their ge-

ometry is not accurate. Method 1 provides only one estimate of the temperature field.

In this evolution, the plumes are allowed to develop. EnKF96 and EnKF288 provide

an ensemble of states. Each state develops plumes at different locations and their aver-

ages show only a slightly hotter anomaly over a wide area of possible location for the

plumes, as we showed earlier in Figure 4.5 for another assimilation.

To illustrate how different flow structures are reconstructed, we represent on Figure 4.9

the evolution of temperature through time of the ensemble members of EnKF288 at

points on the same vertical for a subduction, a plume, a ridge initiation and a stable

ridge. Figure 4.8 shows the location of these geodynamical features on the true tem-

perature field. We plot the temperature evolutions at the surface, mid-mantle and at

the bottom of the domain. Note that the surface and bottom values of temperature

actually correspond to the values of the first points below the surface and above the

bottom of the domain, respectively.

At the surface, the temperature is corrected accurately at each analysis, with a differ-

ence between the true temperature and the analyzed temperature of less than 0.01. The

correction associated with the analysis gradually decreases with depth due to both co-

variance localization and the dynamics of the system. After 70 My (i.e. one transit

time), the true value of temperature falls within the range of values predicted by the

ensemble for all geodynamical contexts and all depths.

For the subduction, the correction is first done on the surface, and then propagates

gradually in depth. The reconstruction of mid-mantle temperature becomes accurate

after 40 My, and at the bottom of the model after 70 My, which is the value of the transit

time. At the surface, the spread of the ensemble decreases as more data are assimilated.

On the contrary, the spread of the ensemble remains steady for mid-mantle depths and

at the bottom of the domain. For these depths, only the average temperature varies.
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At the surface for the plume, the spread of the ensemble is very low except for a peak

at 40 My, which corresponds to an instability, corrected after one analysis. We note

that this instability affects greatly method 1 since it leads to the false prediction of the

ridge seen in Figure 4.8. At mid-mantle, the ensemble average is slowly converging to

the true temperature. At the bottom, the estimated temperature is lower than the true

temperature, although it slightly increases throughout the assimilation.

The ridge initiation shows how new observations affect the spread of the ensemble. At

the surface, the spread of the ensemble remains low until 100 My, the time of initia-

tion of the ridge. From then on, the estimated temperature increases and the ensemble

members follow the cycle of increasing spread during forecast and dramatic decrease

of spread during analysis. The temperature in the mid-mantle is estimated with a very

good accuracy after 50 My. On the contrary, the assimilation does not predict the evo-

lution of the temperature at the bottom of the domain, although the true temperature

falls within the zone defined by the standard deviation of the ensemble after 50 My.

For the stable ridge, the spread of the ensemble at the surface is increasing during fore-

cast and decreasing dramatically during the analysis. At mid-mantle, the estimated

temperature becomes accurate after 100 My. At the bottom of the domain the tem-

perature is underestimated although it follows the variations of the true temperature:

increase of temperature at the beginning of the assimilation and slight decrease at the

end of the assimilation.

4.5 Discussion

We chose the Ensemble Kalman Filter method for its ease of implementation and flex-

ibility to adapt to different forward numerical models. Indeed, as long as the nature

of the state and observations does not change, the computation of the analysis step

remains the same regardless of the convection code used. On the contrary, the alter-

native method, variational data assimilation, requires the development of an adjoint
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code that needs further development for each additional complexity added to the for-

ward model (see Kalnay et al., 2007, for a comparison of EnKF and 4D variational

methods). For the mantle circulation problem, this results in a series of derivation

of the adjoint considering different approximations (Ismail-Zadeh et al., 2003a; Bunge

et al., 2003; Ghelichkhan & Bunge, 2016; Worthen et al., 2014). The ability of a data

assimilation scheme to adapt to different numerical codes is a particularly important

issue for mantle convection since models are in constant evolution, with current devel-

opments including the implementation of chemistry, nonlinear rheologies, elasticity,

phase transition and compressibility (see e.g. Zhong et al., 2015, for a review of recent

developments of mantle convection codes). In particular, this ease of implementation

allows us to work on models producing self-consistently plate-like tectonics at their

surface, and hence to obtain forecasts whose data can be ultimately compared with

plate reconstructions.

The application of the Ensemble Kalman Filter to the mantle circulation problem is

the continuation of the simpler sequential filter that we developed in an earlier work

(Bocher et al., 2016). The main difference between the two filters is that the EnKF eval-

uates the state covariance matrix with an ensemble of members. This ensemble ap-

proach allows the nonlinear evolution of errors during the forecast stage. This leads to

a higher precision in the reconstruction, but also to a more robust scheme, able to recon-

struct evolutions which could not be reconstructed with the former method. Moreover,

the ensemble assimilation provides an estimate of the errors on the reconstruction at

each point of the domain. The estimation of errors could be a valuable information for

plate tectonic reconstructions for regions and times where data are scarce, by showing

the possible alternative scenarios supported by the ensemble.

This gain in information and quality for reconstructions comes with a price. While

we could perform the former assimilation method in one core hour, the method devel-

oped here requires several hundreds to several thousands of core hours. However, an

efficient parallelization using the PDAF software (Nerger & Hiller, 2013) in combina-

tion with the parallel code STAGYY produces a highly parallel ensemble filter, able to
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perform the assimilations on 768 cores in 20 min for an ensemble of 96 members and

3 hours for an ensemble of 768 members.

The important computational cost of the EnKF limited us in the number of assimi-

lations we could test. After checking the stability of the assimilation results on four

different evolutions, we chose to focus on studying the effect of the parameters of the

Ensemble data assimilation: the size of the ensemble and the vertical and horizontal

correlation lengths. The optimum size of the ensemble for our problem is of the order

of 288 members. Indeed, almost tripling the number of members leads to a decrease

of the average error of less than 0.2%, and on the contrary, dividing the size of the en-

semble by 3 leads to an increase of the average error of more than 1%. Although these

differences in errors appear to be small, they affect the quality of the reconstruction of

thermal structures, as is illustrated in figure 4.8. The average errors on the temperature

field for the estimates shown in figure 4.8 range between 4.8 and 5.8%, so the differ-

ence in errors are less than 1%. Locally, this translates into the presence (or absence)

of geodynamic structures (like ridges and upwellings) which are artefacts. Covariance

localization proved to be important to minimize the error in the reconstruction of man-

tle structure: for 288 members, the difference in the average error is of 0.85% between

the optimal correlation length and the least favorable one. We also investigated the

statistics of the cumulative innovation and of the average forecast error for different

ensemble sizes and correlation lengths. In a realistic case, these are the only variables

available to evaluate the quality of the assimilation. The variation of both cumulative

innovation and average forecast error as a function of ensemble size show the same

tendency as the average error on the temperature field. On the contrary, the correla-

tion lengths minimizing the norm of the cumulative innovation and the average fore-

cast error were different from the ones minimizing the error on the temperature field.

This shows the limits of these indicators to determine the optimal parameters for the

assimilation. In a realistic case, rigorous a posteriori evaluation of a data assimilation

result would require comparison of the prediction made with independent observa-

tions (Talagrand, 2014). For mantle circulation, seismic tomography, topography, true

polar wander or the geoid could play this role.
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By construction, sequential data assimilation methods do not propagate new informa-

tion back in time. In the case of the reconstruction of mantle circulation, this is a clear

disadvantage since the information on the Earth’s surface tectonics tends to become

more reliable as we get closer to present-day. Consequently, a natural extension of

the present work would be to implement an Ensemble Kalman Smoother (Evensen &

Van Leeuwen, 2000; Van Leeuwen, 2001). In the same way as the EnKF uses sample

spatial correlations of the ensemble to update the state of the system with new ob-

servations, the Ensemble Kalman smoother uses sample time and space correlations

of successive ensembles to update former states with the new observations. Evensen

(2003) shows how an Ensemble Kalman Smoother can be implemented with a minimal

computational cost alongside a preexisting EnKF. Moreover, Nerger et al. (2014) shows

that such algorithm is efficient for nonlinear models, and that in their test case, opti-

mal localization parameters for the Ensemble Kalman Smoother coincide with optimal

localization parameters for the EnKF.

As a first approach to test the EnKF for mantle circulation reconstructions, we chose a

fairly simple convection model. As already discussed in Section 4.2.1, a more realistic

mantle model would have, among other things, a 3D-spherical shell geometry and a

higher Rayleigh number. This would substantially increase the size of the data assimi-

lation problem. However, we followed the procedure as described in Nerger & Hiller

(2013) to implement the EnKF. This results in a highly scalable filter, enabling the com-

putation of the EnKF assimilation in a reasonable time. An increase in the Rayleigh

number also implies thiner boundary layers, slabs and plumes. This could translate

into lower optimum correlation lengths for the EnKF. A more realistic model would

additionally include a viscosity increase in the lower mantle (Ricard et al., 1993), and

the presence of continents. This would tend to lengthen the wavelength of convection

in the lower mantle and therefore might ease the mantle circulation reconstruction (see

for example Ricard, 2015, sections 7.02.6.3.2 and 7.02.6.7 for a discussion of both effects

on mantle convection).

In the synthetic experiments of section 4.4, the convection model used to produce the
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series of data is the same as the forward model used during the assimilation. For an

application with Earth data, this will not be the case. The equations solved in models

of mantle convection still hold some shortcomings (Ricard, 2015). Moreover, theories,

observations and experiments do not yet fully constrain parameters, especially rheo-

logical ones (King, 2016), and variations in rheology affect the reconstructions of man-

tle circulation (Bello et al., 2015). Hence it could be fundamental to take into account

model errors. A first order solution is to increase the inflation parameter γ in Equa-

tion 4.20: this would overall increase the a priori uncertainty on the mantle estimation.

Performing experiments where the model used to compute the observation is differ-

ent from the model used for the assimilation would provide us with more information

on how to implement model errors. Another solution would be to consider the joint

assimilation of the state and model parameters. Although it is in principle possible

for the EnKF (Evensen, 2009b), it could be computationally not tractable. Indeed, the

response of mantle dynamics to different rheological parametrization is highly nonlin-

ear, and their inversion calls for the development of techniques focusing on rheology,

such as adjoint based inversions of rheological parameters (Worthen et al., 2014; Rat-

naswamy et al., 2015) or further applications of the recently developed pattern recog-

nition techniques for mantle convection (Atkins et al., 2016).

The choice of the synthetic experiments assimilation window of 150 Myr is a compro-

mise between having the possibility to compute assimilations for various cases and

having an assimilation window covering most part of the timespan of plate tectonic

reconstructions (Seton et al., 2012; Müller et al., 2016; Torsvik et al., 2010). A real assim-

ilation could take into account a longer timespan and therefore improve the assimila-

tion results. However, the structure of the dataset used for the synthetic experiments

is a very idealized version of the actual plate reconstruction models. We already dis-

cuss this issue in Bocher et al. (2016). In the following, we supplement and update this

discussion in the light of research that has recently come to the fore.

First, we set a time series of data covering the whole surface of the domain and reg-

ularly available, every 10 Myr. Plate tectonic reconstructions data are more complex.
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They are based on the estimation of finite relative rotations between individual plates,

structured into a hierarchy describing global relative motions and anchored in an abso-

lute reference frame. The span of each finite relative rotation is determined depending

on the amount and quality of information available for a specific context and therefore

varies depending on plate pairs and times. The average span of finite rotations of re-

cent plate models is of the order of 10 Myr (Torsvik et al., 2010) to 5 Myr (Müller et al.,

2016), but varies over time with for example 1 Myr resolution for the last 20 Myr in

some regions (Merkouriev & DeMets, 2014), or some gaps in the data such as during

the cretaceous superchron from 121 to 83 Myr ago (Granot et al., 2012). The contin-

uously closed plate algorithm (Gurnis et al., 2012) produces plate tectonic reconstruc-

tion maps continuous in space and time which allows the creation of a series of global

plate reconstructions at regular intervals. Nonetheless, creating such a regularized

time series of reconstruction might miss tectonic events. Instead, we could adapt the

frequency of analyses to the varying plate reconstruction resolution. Additional syn-

thetic experiments with a time-series of data whose frequency evolves through time

are necessary to explore the limits of such method.

Second, the observations were perturbed independently with a Gaussian noise of 10%

of the respective root mean square value of surface heat flux and surface velocities.

The estimation of uncertainties on absolute plate motion models involves estimation of

both uncertainties in relative plate motion and on the absolute reference frame (Müller

& Wessel, 2015). The main source of information on the motion of plates comes from

the map of seafloor magnetic anomalies. Hellinger (1981) developed a method to

compute relative motion of plates and associated uncertainties inferred from magnetic

anomaly identifications. Recently, Seton et al. (2014) built an open source community

database. It gathers seafloor magnetic anomaly identifications, and estimation with

Hellinger (1981) method of plates relative motion and associated uncertainties. This

database could be used in the future as a basis to automatically produce global plate

motion histories and assess their uncertainties. To our knowledge, this has not been

done so far at a global scale. On a regional scale and for recent time (5 to 20 Myr),

Iaffaldano et al. (2012) applied the trans-dimensional hierarchical Bayesian method to



160 Chapter 4. Ensemble Data Assimilation For Mantle Circulation

reduce noise in finite rotation data and produce time series of high resolution plate

relative motions. More recently, Iaffaldano & Bunge (2015) applied this technique to

the relative motion of the pacific plate with North America for the last 75 Myr. The

uncertainties on relative plates velocities ranges from 5 to 40% of the root mean square

surface velocity. As we go further back in time, the quantification of relative plate mo-

tion uncertainties becomes hazardous: most of the seafloor created before 150 Myr has

been destroyed by subduction. These plate tectonic reconstructions involve interpre-

tation of different types of data, with a limited spatial coverage and relies heavily on

human expertise. For these epochs, maintaining very high uncertainties on the regions

where few data supports the reconstructions would be a solution.

4.6 Conclusion

We applied the Ensemble Kalman Filter algorithm to the reconstruction of mantle cir-

culation through time. We chose a formulation with covariance inflation and localiza-

tion to minimize the effect of sampling errors in the estimation of the forecast error

covariance matrix. Synthetic "twin" experiments with different evolutions and for dif-

ferent parameters allowed us to assess the efficiency of the algorithm and to determine

the optimal parameters for the assimilation.

This work builds on the developments of a first approach to sequential data assimi-

lation for mantle circulation made in Bocher et al. (2016). The EnKF is more robust

and on average more accurate than the former method. Additionally, the Ensemble

Kalman Filter provides not only an estimate of mantle circulation, but also detailed

maps of uncertainties on this estimation.

We evaluate the accuracy of the EnKF as a function of three main parameters: the size

of the ensemble, and two covariance localization parameters, namely the vertical cor-

relation length and horizontal correlation angle. We find that the optimal size of the

ensemble is of the order of 300 members. For this ensemble size, the optimal vertical
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correlation length corresponds to two thirds of the domain thickness, and the opti-

mal horizontal correlation angle is of π/10 (around 2000 km). These values should be

reevaluated as the dynamical model becomes more realistic.

The EnKF was implemented using the parallel data assimilation framework PDAF in

a preexisting mantle convection code, STAGYY. The resulting code is highly scalable,

which means that the application of the EnKF to realistic data assimilation with plate

reconstructions and a 3D spherical mantle model is within reach in a foreseeable future.
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Résumé du chapitre

Les récentes avancées en modélisation de la convection mantellique ont conduit à

l’apparition d’une nouvelle génération de codes de convection, capables de générer

de façon auto-cohérente des tectoniques de type plaque à leur surface. Ces modèles

relient physiquement la dynamique du manteau à la tectonique de surface. Asso-

ciés à des reconstructions de la tectonique des plaques, ils ont le potentiel de pro-

duire une nouvelle génération de modèles de circulation mantellique qui utilisent des

méthodes d’assimilation de données et tiennent compte des incertitudes sur les recon-

structions de la tectonique des plaques. Nous avons récemment fourni une preuve

de ce concept en appliquant un filtre de Kalman sous-optimal à la reconstruction de

la circulation mantellique (Bocher et al., 2016). Ici, nous proposons d’aller un plus

loin et d’appliquer le filtre de Kalman d’ensemble (EnKF) à ce problème. L’EnKF

est une méthode de Monte Carlo séquentielle particulièrement adaptée pour résoudre

des problèmes d’assimilation de données de grande dimension avec une dynamique

non linéaire. Nous avons testé l’EnKF en utilisant des observations synthétiques com-

prenant des données de vitesse de surface et de flux de chaleur, sur un modèle d’anneau

sphérique 2D et l’avons comparée avec la méthode développée précédemment. L’EnKF

fonctionne en moyenne mieux et est plus stable que l’ancienne méthode. Moins de 300

membres d’ensemble sont suffisants pour reconstituer une évolution. Nous utilisons

l’inflation et la localisation adaptative sur la matrice de covariance pour corriger les

erreurs d’échantillonnage. Nous montrons que les résultats de l’EnKF sont robustes

sur une large gamme de paramètres de localisation de la matrice de covariance. La

reconstruction est associée à une estimation de l’erreur, et fournit des informations

précieuses sur les endroits où la reconstruction est fiable.
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CHAPTER 5

Discussion and Conclusion

During this thesis, we successively proposed two algorithms to reconstruct mantle

circulation by combining observations on surface tectonics with a mantle convection

model, using sequential data assimilation methods.

We first developed a suboptimal sequential data assimilation scheme based on the

Kalman filter (Chapter 3). This scheme is efficient in recovering the temperature field

of a convective system with plate-like tectonics at its surface over several 100 Myr. We

tested the robustness of the method by conducting synthetic experiments in 2D spher-

ical annulus geometry. We obtained accurate results, even for the location of plumes

at the base of the models, for periods of at least 300 Myr, provided the time between

analyses is shorter than 15 Myr and the noise in observation is lower than 30%.

These encouraging results motivated us to further explore the data assimilation prob-

lem of reconstructing mantle circulation from surface tectonics (Chapter 4). The En-

semble Kalman Filter seemed to be a method of choice given its ability to deal with

high dimensional problems and nonlinear models. It indeed proved to be more robust



164 Chapter 5. Discussion and Conclusion

and on average more accurate than the former method, while additionally providing

detailed maps of uncertainties on the estimated evolution.

The synthetic experiments we performed in both studies are by no means exhaustive,

and many more tests remain to be done to thoroughly evaluate data assimilation meth-

ods in the context of mantle circulation reconstruction. Among them, we identify the

need for:

• further twin experiments using a more realistic setting:

– from the dynamical model side, this means, among other things, tests in 3D

spherical geometry, the introduction of continents, a higher Rayleigh num-

ber, a viscosity jump at mid-mantle, but also taking into account the chemi-

cal aspects of mantle convection (see for example Ricard, 2015, section 6 for

an overview of the specificities of mantle convection).

– from the observed data side, this means using an observation error covari-

ance matrix which takes into account the correlations between errors on ad-

jacent points, and the correlation between errors on observed surface veloc-

ities and observed surface heat fluxes. For models developing small-scale

convection, It will also be necessary to use directly seafloor age maps in-

stead of surface heat fluxes as observed data.

• the design of "sister experiments", to assess the effect of errors in mantle convec-

tion models. The principle of these sister experiments would be to compute a

reference evolution with a given set of model parameters, and then to apply the

data assimilation algorithm using a different set of parameters. This type of ex-

periment will inform us on the impact an error in the forward model will have

in the estimation of mantle circulation. This information could be of prior impor-

tance to succeed in the application of these data assimilation algorithms to Earth

data.

Of course, the ultimate test for a data assimilation scheme is its application to Earth
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data. In chapter 4, we developed a data assimilation code for mantle circulation re-

construction by combining a parallel ensemble data assimilation framework (PDAF

Nerger et al., 2005; Nerger & Hiller, 2013) with the state-of-the-art parallel mantle con-

vection code STAGYY (see Tackley, 2008). The high scalability of the resulting code,

and the modelling capabilities of STAGYY (see Section 1.5) make the application of

data assimilation to real data technically possible. The computation of a mantle circu-

lation reconstruction will further require:

• a time series of the layout of plates and associated plate motions. This time series

is easily accessible thanks to the open-access policy of teams working on plate

tectonics reconstructions (e.g. Müller et al., 2016).

• a comprehensive assessment of the errors on plate tectonics reconstructions, tak-

ing into account the errors in both relative and absolute plate motions, and consis-

tent with the formalism used in data assimilation. This task can only be achieved

by a tight collaboration with teams working on plate tectonics reconstructions.

As highlighted in section 2.2.2, tools have been developed to estimate the uncer-

tainties on relative and absolute plate motions (see e.g. Wessel & Müller, 2015 for

a recent review on these techniques). Hence, a first order estimation of uncertain-

ties in plate tectonics reconstructions is possible, even though, as we go back in

time, this estimation might not reflect true uncertainties on plate tectonics recon-

structions (see discussion at the end of Section 2.2.2).

• choices in the parametrization for the mantle convection model. This choice of

parameters will be a compromise between obtaining an internal dynamics and

a surface tectonics as close to the Earth as possible, and the limits in compu-

tational power. In section 1.4, we argued for the use of a composite Newtonian

and pseudoplastic rheology to obtain a mantle convection model self-consistently

producing plate-like tectonics at its surface. This type of models has been inves-

tigated in pioneering studies using 3D spherical geometry (e.g. Richards et al.,

2001; Walzer & Hendel, 2008; Van Heck & Tackley, 2008; Yoshida, 2008; Foley

& Becker, 2009). Further work has also involved the statistical comparison of
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the surface dynamics of this type of models with plate tectonics reconstructions

(Coltice et al., 2012, 2013; Rolf et al., 2014; Mallard et al., 2016). Finally, they have

recently been used to reconstruct mantle circulation using the semi-empirical se-

quential method (Bello et al., 2015; Coltice, in prep). These studies provide a solid

basis to design a mantle convection model for data assimilation applications.

To evaluate the result of such mantle circulation reconstructions, we will need to test it

against independent data. We propose two types of tests:

1. comparison of mantle circulation reconstructions against data independent from

plate tectonics reconstructions. At present, these include seismic tomography

(see Section 2.2.1), dynamic topography and the geoid (see e.g. Steinberger, 2016),

and measurement of heat fluxes at the surface (Jaupart & Mareschal, 2015). In the

past, this could include sea level changes (Müller et al., 2008b) and evidences of

vertical motions (Flament et al., 2013).

2. Another possible test is to perform data assimilation over a restricted timespan

to obtain an estimation of the state of the mantle at some time in the past. Then,

we can compute a free evolution (i.e. unconstrained by data) of this estimated

state up to the present day. By comparing the free evolution with observations,

we can assess the predicting power of mantle circulation reconstructions.

Section 2.3 gives a partial overview of the possible applications of mantle circulation

reconstructions: studies on the effect of surface tectonics on the deep mantle struc-

ture (e.g. McNamara & Zhong, 2005; Schuberth et al., 2009b,a; Zhang & Zhong, 2011;

Davies et al., 2012; Bower et al., 2013; Bull et al., 2014; Hassan et al., 2015), and in-

vestigation of alternative scenarios of absolute plate motions (e.g. O’Neill et al., 2005;

Doubrovine et al., 2012; Shephard et al., 2012; Nerlich et al., 2016; Zahirovic et al., in

press). Other applications include studies of changes in the Earth’s rotation axis (Stein-

berger & O’Connell, 1997), the sea-level (Moucha et al., 2008), dynamic topography

(Flament et al., 2013), and the effect of mantle circulation on core dynamics (Olson

et al., 2015).
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Using data assimilation allows the integration of tectonic data into convection mod-

els in a more consistent way, since the convection model we use generates naturally

plate-like tectonics at its surface, and plate tectonics reconstructions are not enforced

through kinematic boundary conditions, but taken into account in a statistically con-

sistent fashion.

Compared to other disciplines, data assimilation for mantle convection is still in its

infancy. Knowledge, experience and technical advances of data assimilation in other

fields, especially atmospheric sciences and oceanography, provide an extensive amount

of resources to design algorithms for the mantle circulation reconstruction problem. A

direct extension of our work would be for example to develop an ensemble Kalman

smoother algorithm (Evensen & Van Leeuwen, 2000; Van Leeuwen, 2001) to better es-

timate past mantle circulation using data on more recent states of the mantle. New

methods are also being developed to take better into account the nonlinearities in dy-

namical models and the resulting nongaussianity in the statistics of errors (Bocquet

et al., 2010). Such solutions should be considered to build and improve data assimila-

tion algorithms for mantle circulation.

We started this dissertation by remarking the coexistence of two different theories that

set the framework for understanding the dynamics of the Earth’s mantle and crust sys-

tem: plate tectonics and mantle convection. The successive data assimilation develop-

ments that we proposed are an attempt to combine the products of these two theories:

plate tectonics reconstructions on one hand and mantle convection codes on the other

hand. The continuous progress of mantle convection codes in modelling Earth’s in-

ner dynamics and surface tectonics suggest a more ambitious, long-term goal: the raw

observation on surface tectonics (the mapping of magnetic anomalies on the ocean

floor, the observation and dating of tectonic features, paleomagnetic data...) could be

integrated directly into mantle convection models, without using the theoretical frame-

work of plate tectonics.

The revolution of Earth sciences which took place in the 60’s (see Section 2.2.2), with the

emergence of plate tectonics theory, was not merely a change in paradigm. It required
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the Earth science community to gather and connect observations coming from various

disciplines to build a unifying global theory of Earth’s surface motions. In doing so,

it set a new standard for the functioning of solid Earth Science. It brought the Earth

science community to consider geological processes as a multidisciplinary and multi-

scale problem: to understand the global history of the solid Earth, we need to navigate

between micro, macro, local, regional and global scales and reconcile observations of

different nature, coming from various disciplines, in a consistent framework. Plate tec-

tonics theory provided such global framework and proved to be accurate at first order

in its description of surface dynamics. However, plate tectonics is, in essence, a kine-

matic theory: it describes the motions at the surface of the Earth, but not their cause.

Moreover, it is an idealized model of surface motions: plates are not perfectly rigid (e.g.

Gordon, 1998), and plate boundaries are not infinitely small but can be on the contrary

diffuse, in the oceans (Gordon, 2000; Wiens et al., 1985) as well as in the continents, as

the presence of massive mountain ranges attest. Mantle convection theory provides,

on the contrary, a global physical framework which takes into account those diffuse

and continuous deformations, and describes both the solid Earth inner dynamics and

surface tectonics. Many challenges remain before we can directly integrate raw obser-

vations in mantle convection models to produce a physically consistent reconstruction

of both the Earth’s mantle and surface tectonics. Undoubtedly, data assimilation meth-

ods will be one of the pieces of this puzzle.
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Discussion et Conclusion

Au cours de cette thèse, nous avons successivement proposé deux algorithmes pour re-

construire la circulation mantellique en combinant les observations sur la tectonique de

surface avec un modèle de convection mantellique, en utilisant des méthodes d’assimilation

de données séquentielle.

Nous avons d’abord développé un schéma d’assimilation séquentielle sous-optimal

basé sur le filtre de Kalman (Chapitre 3). Ce schéma est efficace pour reconstituer le

champ de température d’un système convectif avec une tectonique de type plaque à sa

surface sur plusieurs 100 Myr. Nous avons testé la robustesse de la méthode en effectu-

ant des expériences synthétiques en géométrie sphérique 2D. Nous avons obtenu des

reconstitutions fidèles, même pour l’emplacement des panaches à la base des modèles,

après des périodes d’assimilation d’au moins 300 Myr, à condition que le temps entre

les analyses soit inférieur à 15 Myr et que l’amplitude du bruit dans les observations

soit inférieure à 30%.

Ces résultats encourageants nous ont poussés à explorer davantage le problème de

l’assimilation des données pour la reconstitution de la circulation mantellique à partir

de la tectonique de surface (Chapitre 4). Le filtre de Kalman d’Ensemble semblait être
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une méthode de choix compte tenu de sa capacité à traiter des problèmes aux dimen-

sions élevées et des modèles non linéaires. Il s’est en effet révélé plus robuste et en

moyenne plus précis que l’ancienne méthode, tout en fournissant en plus des cartes

détaillées des incertitudes sur l’évolution estimée.

Les expériences de synthèse que nous avons réalisées dans les deux études ne sont

nullement exhaustives et de nombreux autres tests restent à faire pour évaluer soigneuse-

ment les méthodes d’assimilation des données dans le contexte de la reconstitution de

la circulation mantellique. Parmi eux, nous identifions la nécessité:

• d’expériences jumelles supplémentaires utilisant des paramètres plus réalistes:

– du côté du modèle dynamique, cela signifie, entre autres, des tests en géométrie

sphérique 3D, l’introduction de continents, un nombre de Rayleigh plus

élevé, un saut de viscosité au milieu du manteau, mais également prendre en

compte les aspects chimiques de la convection mantellique (voir par exem-

ple Ricard, 2015, section 6 pour un aperçu des spécificités de la convection

mantellique).

– du côté des données observées, cela signifie utiliser une matrice de covari-

ance des erreurs sur les données observées qui prend en compte les cor-

rélations entre les erreurs sur des points adjacents et la corrélation entre les

erreurs sur les vitesses de surface observées et les flux de chaleur de surface

observés. Pour les modèles développant une convection à petite échelle, Il

sera également nécessaire d’utiliser directement les cartes de l’âge des fonds

marins au lieu des flux de chaleur de surface comme données observées.

• la conception d’«expériences sœurs», pour évaluer l’effet des erreurs dans les

modèles de convection mantellique. Le principe de ces expériences sœurs serait

de calculer une évolution de référence avec un ensemble de paramètres physiques

donnés, puis d’appliquer l’algorithme d’assimilation de données en utilisant un

ensemble différent de paramètres.

Bien sûr, le test ultime pour un schéma d’assimilation de données est son application
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aux données réelles. Dans le chapitre 4, nous avons développé un code d’assimilation

de données pour la reconstitution de la circulation mantellique en combinant un code

d’assimilation de données d’ensemble parallélisé (PDAF Nerger et al., 2005; Nerger

& Hiller, 2013) avec le code parallèle de convection STAGYY (voir Tackley, 2008). La

grande scalabilité du code obtenu et les capacités de modélisation de STAGYY (voir

section 1.5) rendent techniquement possible l’application de l’assimilation de données

à des données terrestres. Le calcul d’une reconstitution de la circulation mantellique

exige en outre:

• une série chronologique de la disposition des plaques et de leurs mouvements.

Cette série chronologique est facilement accessible grâce à la politique d’accès

libre des équipes travaillant sur les reconstitutions de tectonique des plaques (par

exemple Müller et al., 2016).

• une évaluation complète des erreurs sur les reconstitutions de la tectonique des

plaques, en tenant compte des erreurs dans les mouvements de plaques relatifs

et absolus, et en cohérence avec le formalisme utilisé dans l’assimilation des don-

nées. Cette tâche ne peut être réalisée que par une étroite collaboration avec les

équipes travaillant sur les reconstitutions de la tectonique des plaques. Comme

on l’a souligné dans la section 2.2.2, des outils ont été développés pour estimer

les incertitudes sur les mouvements de plaques relatifs et absolus (voir, par ex-

emple, Wessel & Müller, 2015 pour une revue récente de ces techniques). Par

conséquent, une estimation au premier ordre des erreurs sur les reconstitutions

de la tectonique des plaques est possible, même si cette estimation pourrait ne

pas refléter les incertitudes véritables sur les reconstitutions, en particulier pour

les temps très anciens (voir discussion à la fin de la section 2.2.2).

• des choix dans la paramétrisation pour le modèle de convection mantellique. Ce

choix de paramètres constituera un compromis entre d’une part l’obtention d’une

dynamique interne et d’une tectonique de surface aussi proche que possible de

la Terre et d’autre part les limites en termes de puissance de calcul disponible.

Dans la section 1.4, nous avons plaidé en faveur de l’utilisation d’une rhéologie
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composite newtonienne et pseudoplastique pour obtenir un modèle de convec-

tion mantellique produisant de manière auto-cohérente une tectonique de type

plaque à sa surface. Ce type de modèles a été étudié dans des études pionnières

utilisant la géométrie sphérique 3D (par exemple Richards et al., 2001; Walzer &

Hendel, 2008; Van Heck & Tackley, 2008; Yoshida, 2008; Foley & Becker, 2009).

Des travaux ultérieurs ont également porté sur la comparaison statistique de la

dynamique de surface de ce type de modèles avec des reconstitutions de tec-

tonique des plaques (Coltice et al., 2012, 2013; Rolf et al., 2014; Mallard et al.,

2016). Enfin, ils ont été récemment utilisés pour reconstruire la circulation man-

tellique en utilisant la méthode séquentielle semi-empirique (Bello et al., 2015;

Coltice, in prep). Ces études fournissent une base solide pour concevoir un mod-

èle de convection mantellique adapté à l’application d’algorithmes d’assimilation

de données.

Pour évaluer les reconstitutions de la circulation mantellique obtenues par assimila-

tion de données, nous devrons les comparer avec des données indépendantes. Nous

proposons deux types de tests:

1. la comparaison des reconstitutions de la circulation mantellique avec des don-

nées indépendantes des reconstitutions de la tectonique des plaques. Pour la

circulation mantellique actuelle, on peut envisager par exemple les modèles de

tomographie sismique (voir section 2.2.1), la topographie dynamique et le géoïde

(voir, par exemple Steinberger, 2016), et les mesures de flux de chaleur à la sur-

face (Jaupart & Mareschal, 2015). Dans le passé, les données indépendantes pour-

raient inclure les changements du niveau marin (Müller et al., 2008b) et les indices

de mouvements verticaux (Flament et al., 2013).

2. Un autre test possible consiste à effectuer l’assimilation de données sur un inter-

valle de temps restreint pour obtenir une estimation de l’état du manteau à un

moment donné dans le passé. Ensuite, nous pouvons calculer une évolution li-

bre (c’est-à-dire non contrainte par les données) de cet état estimé jusqu’à ce jour.

En comparant l’évolution libre avec les observations, nous pourrons évaluer le
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pouvoir prédictif des reconstitutions de la circulation mantellique.

La section 2.3 donne un aperçu partiel des applications possibles des reconstitutions

de la circulation mantellique: étude de l’effet de la tectonique de surface sur la struc-

ture du manteau inférieur (e.g. McNamara & Zhong, 2005; Schuberth et al., 2009b,a;

Zhang & Zhong, 2011; Davies et al., 2012; Bower et al., 2013; Bull et al., 2014; Has-

san et al., 2015), et étude de scénarios alternatifs de mouvements absolus des plaques

(par exemple O’Neill et al., 2005; Doubrovine et al., 2012; Shephard et al., 2012; Ner-

lich et al., 2016; Zahirovic et al., in press). D’autres applications incluent les études

des changements dans l’axe de rotation de la terre (Steinberger & O’Connell, 1997), le

niveau marin (Moucha et al., 2008), la topographie dynamique (Flament et al., 2013) et

l’effet de la circulation mantellique sur la dynamique du noyau (Olson et al., 2015).

L’utilisation de l’assimilation de données permet l’intégration de données tectoniques

dans les modèles de convection d’une manière plus cohérente, puisque le modèle de

convection que nous utilisons génère naturellement une tectonique de type plaque à

sa surface et que les reconstitutions de la tectonique des plaques ne sont pas imposées

par des conditions limites cinématiques, mais intégrées d’une manière statistiquement

cohérente.

Comparée à d’autres disciplines, l’assimilation de données pour la convection man-

tellique est encore à ses débuts. Les connaissances, l’expérience et les progrès tech-

niques de l’assimilation de données dans d’autres domaines, en particulier les sciences

de l’atmosphère et l’océanographie, fournissent une quantité importante de ressources

pour concevoir des algorithmes adaptés au problème de la reconstitution de la cir-

culation mantellique. Une extension directe de notre travail serait par exemple de

développer un lisseur de Kalman (Evensen & Van Leeuwen, 2000; Van Leeuwen, 2001)

pour mieux estimer la circulation mantellique passée en utilisant des données sur les

états les plus récents du manteau. De nouvelles méthodes sont également dévelop-

pées pour mieux prendre en compte les non-linéarités dans les modèles dynamiques

et la nongaussianité qui en résulte dans la statistique des erreurs (Bocquet et al., 2010).

Ces solutions devraient être envisagées pour construire et améliorer les algorithmes
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d’assimilation de données pour la circulation mantellique.

Nous avons commencé cette thèse en soulignant la coexistence de deux théories dif-

férentes qui sont utilisées pour comprendre la dynamique du système croûte-manteau

terrestre: la tectonique des plaques et la convection mantellique. Les développements

successifs d’algorithmes d’assimilation de données que nous avons proposés sont une

tentative de combiner les produits de ces deux théories: les reconstitutions de la tec-

tonique des plaques d’une part et les codes de convection mantellique d’autre part. Le

développement continu des codes de convection mantellique dans la modélisation de

la dynamique interne de la Terre et de la tectonique de surface suggère un objectif à

long terme plus ambitieux: les observations brutes sur la tectonique de surface (cartes

des anomalies magnétiques des fonds océaniques, données paléomagnétiques...) pour-

raient être intégrées directement dans les modèles de convection mantellique, sans

utiliser le cadre théorique de la tectonique des plaques.

La révolution des sciences de la Terre qui a eu lieu dans les années 60 (voir la sec-

tion 2.2.2), avec l’émergence de la théorie de la tectonique des plaques, n’était pas

simplement un changement de paradigme. Il a fallu que la communauté des sciences

de la Terre rassemble et relie les observations provenant de diverses disciplines pour

construire une théorie globale expliquant les mouvements de la surface terrestre. Ce

faisant, elle a établi une nouvelle norme pour le fonctionnement de sciences de la Terre

Solide. Elle a amené la communauté des sciences de la terre à considérer les processus

géologiques comme un problème multidisciplinaire et multi-échelles: pour compren-

dre l’histoire globale de la Terre solide, nous devons naviguer entre les échelles micro-

scopique, macroscopique, locale, régionale et globale et concilier des observations de

nature différente, provenant de diverses disciplines, dans un cadre cohérent. La théorie

de la tectonique des plaques a fourni un tel cadre global et s’est révélée juste dans sa

description de la dynamique de surface, au premier ordre. Cependant, la tectonique

des plaques est une théorie cinématique: elle décrit les mouvements à la surface de la

Terre, mais pas leur cause. En outre, il s’agit d’un modèle idéalisé des mouvements

de surface: les plaques ne sont pas rigoureusement rigides, et les limites des plaques
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ne sont pas infiniment petites, mais peuvent être au contraire diffuses, dans les océans

(Gordon, 2000; Wiens et al., 1985) ainsi que sur les continents, comme en témoignent

la présence de massifs montagneux. La théorie de la convection mantellique fournit

au contraire un cadre physique global qui tient compte de ces déformations diffuses

et continues et décrit à la fois la dynamique interne de la Terre solide et la tectonique

de surface. De nombreux défis restent avant que nous puissions intégrer directement

les observations brutes dans les modèles de convection mantellique pour produire une

reconstitution physiquement cohérente de la circulation dans le manteau terrestre et

de la tectonique de surface. Sans aucun doute, les méthodes d’assimilation de données

seront l’une des pièces de ce puzzle.
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