NMR spectroscopy as a tool for studying molecular magnetic materials

Abstract : The work presented in this Ph.D. dissertation focuses on the application of NMR spectroscopy for studying molecular magnetic materials. A particular attention is devoted to cyanide-contaning magnetic systems: cyanide building blocks, low-dimensional polymetallic complexes and extended networks (Prussian blue analogues). Basically, we try to show through selected examples that NMR can be used as a powerful structural and magnetic probe to address a variety of questions related to paramagnetic materials (chapter 2, 4, 5). Besides, we also use here NMR to study spin equilibrium in solution in a family of Fe(II) spin-crossover complexes (chapter 3). Apart from the use of various NMR techniques, different physical techniques including FT-IR and UV-Vis spectroscopy (in solid-state and solution), TGA, X-ray diffraction, EPR spectroscopy, Polarized neutron diffraction (only for [Fe(Tp)(CN)3]- compound), and SQUID magnetometry are used to obtain reliable structural and electronic characterization of the probed magnetic materials and to rationalize and support the results obtained from NMR spectroscopy. Theoretical DFT calculations (in collaboration with theoreticians) are also performed on some selected compounds to support the experimental observations. The first chapter of the dissertation provides a short overview of some basic concepts of NMR spectroscopy in solid state and in solution and gives very briefly some few examples of NMR studies on a variety of paramagnetic systems. The first experimental chapter of the thesis focuses on the use of 13C and 15N solid-state NMR spectroscopy to probe local magnetic properties and to estimate the spin density and its distribution onto the cyanide ligands. It thus addresses a fundamental question for magnetochemists: how the unpaired electron delocalized from the paramagnetic source onto the bridging ligand to give rise to the magnetic exchange interaction? In the third chapter of the thesis, the solution state paramagnetic 1H NMR spectroscopy has been used to study Fe(II) mononuclear switchable complexes, which undergo a change of their magnetic (and optical) properties upon external stimuli. More specifically, the thermally-induced spin-crossover equilibria of the [FeII(R-bik)3]2+ complexes has been studied by variable temperature 1H NMR and the results are compared to those obtained by other techniques. The fourth chapter deals with the magneto-structural characterization of some polynuclear complexes based on the new cyanide-based [CoIII(Me2Tp)(CN)3]- building block. NMR spectroscopy of the quadrupolar 59Co nucleus is used as a probe for following the magnetic behaviour of these Co(III) containing molecular systems at different temperature. It also allows to investigate the spin extension mechanism over the cyanide bridge. Finally the chapter 5 intends to explore the use of 113Cd NMR spectroscopy as both a local structural and magnetic probe for studying Fe-Cd based molecular materials...
Document type :
Liste complète des métadonnées

Contributor : Abes Star <>
Submitted on : Friday, January 13, 2017 - 1:02:30 AM
Last modification on : Wednesday, February 6, 2019 - 3:31:25 PM
Document(s) archivé(s) le : Friday, April 14, 2017 - 2:08:34 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01433753, version 1


Siddhartha De. NMR spectroscopy as a tool for studying molecular magnetic materials. Inorganic chemistry. Université Pierre et Marie Curie - Paris VI, 2016. English. ⟨NNT : 2016PA066103⟩. ⟨tel-01433753⟩



Record views


Files downloads