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Abstract

This research is motivated by the need to find out new methods to optimize a
power system. In this field, traditional management and investment methods are
limited when confronted with highly stochastic problems which occur when in-
troducing renewable energies at a large scale. After introducing the various facets
of power system optimization, we discuss the continuous black-box noisy opti-
mization problem and then some noisy cases with extra features.

Regarding the contribution to continuous black-box noisy optimization, we are
interested into finding lower and upper bounds on the rate of convergence of vari-
ous families of algorithms. We study the convergence of comparison-based algo-
rithms, including Evolution Strategies, when confronted with different strengths
of noise (small, moderate and big). We also extend the convergence results in the
case of value-based algorithms when dealing with small noise. Last, we propose a
selection tool to choose, between several noisy optimization algorithms, the best
one on a given problem.

For the contribution to noisy cases with additional constraints, the delicate
cases, we introduce concepts from reinforcement learning, decision theory and
statistic fields. We aim to propose optimization methods which are closer to reality
(in terms of modelling) and more robust. We also look for less conservative power
system reliability criteria.



Résumeé

Ces recherches s’inscrivent dans la nécessité de développer de nouvelles méthodes
d’optimisation des systemes €lectriques. Optimisation du contrdle d’un systeme
électrique, mais aussi optimisation des investissements a réaliser: nouvelles
connexions, unités de production et nouveaux stockages. En particulier,
I’introduction massive d’énergies renouvelables rend caduques les méthodes
usuelles de contréle qui ne traitent pas efficacement le caractere fortement
aléatoire de la production (€olien, solaire).

Le chapitre 1 introduit les enjeux de la transition énergétique: enjeux envi-
ronnementaux, politiques et technologiques. Le probleme d’optimisation d’un
systeme électrique est formalisé sous la forme d’une équation a 5 variables:
les investissements, les incertitudes non stochastiques telles que les incertitudes
géopolitiques et technologiques, les politiques de controle, les configurations du
réseau et les incertitudes stochastiques telles que la demande en électricité, la
production éolienne ou I’arrivée d’eau dans un barrage pour un jour donné. Les
méthodes les plus classiques d’optimisation sont ensuite présentées et discutées. 4
questions de recherche, développées et étudiées dans cette these, sont formulées:

e Question de recherche #1: Comment résoudre le probleme d’Unit Commit-
ment sans supposer la linéarité ou la convexité de la fonction de colit et sans
simplifier excessivement le processus aléatoire ?

e Question de recherche #2: Comment approximer, en un temps de calcul
raisonnable, un équilibre de Nash dans un cadre stochastique ?

e Question de recherche #3: Comment réduire le biais induit par I’utilisation
d’un échantillon de taille modeste dans un probleme de planification de
développement de capacités ?

e Question de recherche #4: Quels sont les taux de convergence optimaux de
différentes familles d’algorithmes d’optimisation continue dans un contexte
bruité et boite noire ?



La premicre partie est dévolue a la question de recherche #4. Le chapitre
2 commence par définir I’optimisation continue dans un contexte bruité et boite
noire et dresse la revue de littérature. En particulier, une partition est faite en-
tre deux grands types d’algorithmes: les algorithmes basés sur les évaluations et
les algorithmes basés sur les comparaisons. Le chapitre 3 étudie le comportant
des stratégies d’évolutions, un cas particulier d’algorithmes basés sur les com-
paraisons, face a un bruit faible: au prix d’un petit nombre de réévaluations,
cette famille d’algorithme converge aussi vite que dans le cas non bruité. Le
chapitre 4 montre, dans le cas d’un bruit fort (additif), une borne inférieure sur
le taux de convergence' des algorithmes basés sur les comparaisons lorsqu’ils
échantillonnent toujours dans un domaine restreint, prés de 1’approximation
courante de I’optimum. Sous ces hypotheses, le taux de convergence n’est jamais
plus petit que —1/2, alors que les algorithmes basés sur les évaluations atteignent
un taux de —1. Le chapitre 5 prouve que, néanmoins, les algorithmes basés sur
les comparaisons peuvent égaler ceux basés sur les évaluations en terme de taux
de convergence, si I’on effectue des ré-échantillonnages ‘loin’ de I’optimum, tou-
jours dans le cas d’un bruit additif. Le chapitre 6 s’intéresse aux algorithmes
basés sur les évaluations, et propose 1’étude simultanée d’un bruit faible, modéré
et fort. On retrouve les résultats déja connus dans le cas d’un bruit fort, et des nou-
velles bornes sont démontrées pour les autres types de bruit. Le chapitre 7 propose
une méthode de sélection d’algorithmes dans le cadre bruité: sélection d’un type
d’algorithme (basé sur des évaluations ou des comparaisons) et sélection de la
paramétrisation d’un algorithme. Pour cela, on considere un portfolio qui, no-
tablement, sélectionne un algorithme en se basant sur les itérations passées, et
non pas courantes. Cette subtilité est essentielle pour obtenir une convergence; il
est prouvé que le portfolio sélectionne alors presque toujours un des algorithmes
les plus performants.

La seconde partie regroupe les cas bruités plus délicats. Le chapitre 8 traite
la question de recherche #1, ou le probléme est bruité et dépend du temps. Ce
chapitre présente et étudie une méthode qui permet de mieux prendre en compte
des colits non linéaires et non convexes, ainsi qu’ un processus stochastique non
markovien. Une étude théorique démontre que cette méthode peut atteindre une
politique optimale et plusieurs expériences (sur un probleme de gestion de mul-
tiples batteries et deux problémes hydroélectriques) montrent ses bons résultats
en pratique. Le chapitre 9 adresse la question de recherche #2, i.e. optimisa-
tion bruitée et adversariale. Plusieurs variantes de 1’algorithme de Grigoriadis

li.e. une borne supérieure sur la vitesse maximale de convergence.



et Khachiyan adaptées au cas bruité sont proposées et étudiées. Le chapitre 10
porte sur la question de recherche #3, autour de I’optimisation bruitée et a taille
d’échantillon réduite. Des méthodes de bootstrap et de validation croisée sont
utilisées sur un cas test artificiel, permettant de réduire le biais issu du petit nom-
bre d’échantillons collectés.

La troisieme partie conclut et met 1’accent sur des points intéressants a appro-
fondir lors de futures recherches.
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Chapter 1

A beautiful application: power
systems

1.1 Motivations

Energy concerns are already in the spotlight since a few years. Opening your
favourite newspaper or social network, chances are good for you to find an article
related to energy transition.

Environmental issue & climate change. Fossil energies - oil, coal and nat-
ural gas - contribute for a large part to premature deaths across the world, up
to 8 millions deaths per year according to [World Health Organization, 2015],
notably through air pollution; see also [Conca, 2012] for an interesting discus-
sion on the rate of deaths per source of energy. Along with the air pollu-
tion, public opinion worldwide worries about the use of nuclear energy which
raises the matters of long time storage of the wastes, accidents or terrorist threat.
Energy production is also by far the first source of greenhouse gas emission
[International Energy Agency, 2015].

Economic weight. Economy and energy are intrinsically linked
[Stern and Enflo, 2013], think e.g. about the energy crisis of the 1970s. In
particular, [Giraud, 2015] discussed the correlation between GDP and energy. A
dynamic economy relies heavily on the access to a cheap and abundant source of
energy [Fonteneau, 2015].

19



CHAPTER 1. A BEAUTIFUL APPLICATION: POWER SYSTEMS 20

Political response. Confronted with these challenges, we encounter local re-
sponses - at the scale of a country - such as fixing the electricity price, sub-
siding a given energy source, looking for energetic independence or allowing
or not shale gas exploitation. Some structures are in charge of the studies
and development of concrete new solutions, such as the ADEME! in France,
which gave me the opportunity to work on this topic through the Post project?.
At a regional level, a group of countries can agree on some common pol-
icy such as the so-called (N — 1) standard®, voted by the European parlia-
ment [Official Journal of the European Union, 2010]. Global decisions are also
discussed within international conferences, resulting into some accords - the
last one being the Paris Agreement, where the members agreed to try to re-
duce their greenhouse gas emissions in order to not exceed 2°C of global
warming [United Nations, 2015]. On the other hand, this resolution will be
difficult to follow since the demand for energy keeps growing, notably from
the emerging countries, and could increase by 37% by 2040 according to
[International Energy Agency, 2014].

With new needs come new technologies. Renewable energies are signifi-
cantly cleaner - in terms of CO, and particulate matter - than fossil energy
[International Energy Agency, 2015, Ohlstrom et al., 2000]. However, apart from
specific sources such as hydroelectricity, they are highly stochastic and diffi-
cult to forecast. Even with a small percentage of renewable energy involved in
the power network, problems arise in case of sudden changes (e.g. in luminos-
ity). Thus, solar production is impacted very quickly and globally by an eclipse
[SolarPower Europe, 2015]. Through domino effect, such phenomenon might
cause a global black-out without a careful and coordinated planning of the differ-
ent electrical grid’s operators, since such an event is particularly easy to predict.
The massive introduction of renewable energy implies changes in the design
of the power grid, e.g. additional storage capacities and use of smart grids, able
to drive accurately the consumption. In particular, it has been pointed out that the
extensive use of renewable energy implies a paradigm shift: instead of adapting
the production to the demand - as it is done nowadays - the demand should be
smoothed in order to fit the current production [Marchal, 2015]. Large parks of

"http://www.ademe.fr/en

*http://www.post.artelys.com/

3This standard requires each member state to be able to tackle an unexpected outage of their
single largest piece of gas infrastructure, i.e., satisfying the demand with the remaining network
[Ralf et al., 2014].
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electric vehicles could support this smoothing via a smart control of the batteries
loading. Space smoothing could also be applied thanks to long distance con-
nections (High Voltage Direct Current - HVDC); see also the ambitious global
grid concept [Ernst, 2015b, Chatzivasileiadis et al., 2013]. On the contrary, mi-
crogrids, small networks of the size of one house or a few streets, are also under
study. Microgrids are composed of various renewable energy sources and a bat-
tery, possibly completed with a diesel generator [Ernst, 2015a] - they might be or
not be connected to the grid.

Where does computer science stand in all of this? As [MacKay, 2009] says,
“we need numbers, not adjectives.” And these numbers should be reliable and
meaningful.

Simulating and optimizing power systems is crucial for testing the validity and
cost of some scenarios:

e What are the costs (economical, ecological) of a purely renewable system?

e Consider a limited budget (bound on investments) over the next 50 years:
what is the best investment planning?

e What is the ecological/economical benefit, if we can relax the constraint of
national independence?

e What is the impact of a given gas supply cut-off / what is the best adaptation
strategy to such a gas supply interruption?

An important task is to build reliable power system modelling tools. Big power
system companies use such modelling platforms but they are not available in open
source. It is possible to find some platforms such as the Artelys Crystal Super
Grid* and some libraries, such as Simscape Power Systems in Matlab> or Model-
ica PowerSystems library®.

Along with modelling, we need detailed data, either archive or simulation.
When wind and solar power are involved in a power grid, we need time and space
series in order to forecast accurately the wind speed and daylight, especially we
need to measure their correlation. Some benchmarks have been developed in order

“https://wuw.artelys.com/en/applications/artelys—crystal-energy/
artelys—-supergrid

Shttp://fr.mathworks.com/products/simpower/

®https://github.com/modelica/PowerSystems
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https://www.artelys.com/en/applications/artelys-crystal-energy/artelys-supergrid
http://fr.mathworks.com/products/simpower/
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to test and compare various optimization algorithms, such as the COCO/BBOB
platform’ for continuous optimization or OpenAlI® for reinforcement learning, see
also [Castronovo et al., 2016].

Once we have both tools at hand, i.e. power system modelling and data, we
want to optimize this system. The subject of this thesis is precisely this opti-
mization side. Especially, as it will be discussed below, the increase in volatility
production requires new models of energy management. We study optimization
processes able to handle stochastic effects.

1.2 Optimization in power systems

A power grid consists of a transmission network, a distribution network, loads
and power plants. Optimizing this power system means optimizing a given cost
function under constraints. The cost function includes economical costs, mainte-
nance costs and environmental costs. Economical costs take into account risks of
failure [Autorita per I’Energia Elettrica e il Gas, 2004] and maintenance costs in-
corporate risks for workers. The constraints are operational constraints of power
systems and demand satisfaction.

We propose through Eq. 1.2 an optimization problem for power systems. We
present the motivations behind the variables choices involved in this equation.
Especially, we do not detail the modelling aspect, i.e., the physical laws such as
the Kirchhoff law, which govern the current and voltage of an electrical network,
but give some references for the interested reader. We focus on the optimization
aspect. We review the different optimization solutions at hand and the challeng-
ing facets arising, such as high dimensionality, stochasticity, non-convexity, non-
linearity or non-Markovianity. We aim to study and develop principled methods
able to deal with such problems - thus our contribution is mainly theoretical and
the scope of this thesis is not exclusive to power systems, but might be useful in
every application dealing with similar difficulties.

1.2.1 Parameters of the cost function

The cost function depends on investments, non stochastic uncertainties, manage-
ment policy (unit commitment), network configuration, and ‘real’ stochastic un-
certainties. We detail below these parameters.

"http://coco.gforge.inria.fr/
$https://openai.com/blog/openai-gym-beta/
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Investments .¥.

Investments regard the new capacities - storages, connections, plants - that should
be added to the power grid. Where should they be added? Which kind of capac-
ities: HVDC connection or not, storage, solar plant, wind plant, thermal plant,
etc...? What dimension/size is optimal? Quantifying the optimal connection ca-
pacities and storage capacities at the scale of a continent or more is an important
optimization problem, with budget in dozens or hundreds of billions of euros.
There are high level facts which are well known: in the European grid, conditions
are better for wind power in the north, for solar power in the south, for addi-
tional hydroelectric storage in Scandinavia. Also, Africa is not that far - there are
already connections between Europe and Africa [SYSTINT Workgroup, 2007],
and increasing these connections is a possibility.

Non-stochastic uncertainties % .

In the setting of long term planning, i.e. a time horizon of several decades, non-
stochastic uncertainties must be included. It encompasses uncertainties which can
not be modelled, such as

e political uncertainties: real CO, penalization or not, cut off of Russian gas
exportation, energy sources subsidies, oil prices;

e technological uncertainties: solar and wind plants efficiency, power to gas
efficiency, large use of electric cars or not;

e climate change uncertainty: how many degrees of global warming?

As a first approximation, it seems reasonable to assume that everyone collabo-
rates: countries of the same geographical area develop a common power grid such
that the costs (economical, environmental, ...) are minimum; in this case, the op-
timization in Eq. 1.2 over % would be a minimum. However, it often occurs that
countries or areas want to have some autonomy in case of problems: we set a
maximum over % in Eq. 1.2, so that we pessimistically consider the worst case.

Management policy ;.

Given a power network, the energy producer needs to satisfy the de-
mand. This is the management policy, or unit commitment [Padhy, 2004,
Sheble and Fahd, 1994]. This problem involves deciding which power plants are
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switched on/off and the dispatch, i.e., deciding the power output for each plant.
On the power grid, different power plants are available: thermal plants, nuclear
power plants, hydroelectric power stations (dams), solar power plants, wind tur-
bines, etc... Each plants needs to satisfy some constraints such as maximum ramp-
ing rate, stock management constraints, start up costs, minimum water flows (see
e.g. [Bertsimas et al., 2013]). The details of the unit commitment problem are
beyond the scope of this thesis, we refer to [Decock, 2014] for more informa-
tion regarding the constraints and specific costs. We invite the reader interested
in hydrothermal scheduling to read more in [Couétoux, 2013]. The unit commit-
ment problem is a sequential decision making problem, also termed multistage
optimization problem or dynamic programs, see [Bertsekas, 1995, Powell, 2007].

Network configuration &7,.

In regard to short term management, security and costs concerns invite to deal
with the network reconfiguration. In case of line outage (cf. the N — 1 stan-
dard in Section 1.1), it is cheaper and faster to change the topology of the net-
work, i.e., to switch the transmission line, rather than re-dispatching the power
output for each plant in order to avoid overloading of lines. Afterwards, the
new topology can be reversed if the line failure is fixed or after a generator
dispatch. This problem involves some load flow feasible constraints (e.g. the
flow should satisfy the Kirchhoff law and not exceed the line capacity) and is
highly relevant in the context of terrorism threat [The Telegraph, 2015]. Fur-
thermore, with the increasing integration of renewable energy- more likely to
cause sharp load changes - comes the need to increase the flexibility and ef-
ficiency of the power grid. This topic is beyond the scope of this thesis, see
[Liet al., 2012, Kezunovic et al., 2014, Hedman et al., 2011, Zaoui et al., 2005]
for more details.

Stochastic uncertainties @ ~ I1.

The stochastic uncertainties designate the random variables which are generated
by an underlying (possibly unknown) probability distribution function I1. In par-
ticular, it does not depend on human decisions such as political uncertainties. In
the context of energy management, it is, typically (non exhaustively), luminosity,
wind speed, inflows [Siqueira et al., 2006] in a dam and demand [RTE-ft, 2014].
We bring the attention to the assumptions on the random variables: are the
random variable realizations independent or not? are they Markovian or not? do
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they have a finite variance? These assumptions will be discussed throughout this
thesis.

The knowledge about this random process varies from one problem to the
other. Mainly, we can distinguish between problems where we have a finite sam-
ple of random values realizations and those for which we have a generative model
available. Between these two extreme settings, one can try to infer the hidden
distribution from a sample of realization.

Optimizing against a finite sample of realization is termed Sample Average
Approximation (SAA); this is discussed in Chapter 10.

When a generative model is at hand, we consider several strategies. A first
approximation is to optimize the cost function over the expectation of the random
process, i.e. replace @ with Eg (@) in Eq. 1.2. It amounts to performing de-
terministic optimization, which is already very challenging since power system
optimization involves high dimensional problems. As a drawback, this might cost
a lot in case of extreme events - drought, heatwave, very cold winter. We aim at
encompassing the whole stochastic aspect. That is, we want to optimize taking
into account the random process. In this case, we want to optimize the expected
costs, computed with respect to the probability distribution of the random process,
as in Eq 1.2.

1.2.2 Optimization problem

Consider a function, denoted by COST. It is a measure, economical, eco-
logical, social, of the efficiency of the power system. This function results
from some physical laws and/or is given by some experts; see [Decock, 2014,
Couétoux, 2013] for some examples. Consider the set of variables introduced
above: investments .#, non stochastic uncertainties %/, management policy <,
network configuration &7, and stochastic uncertainties @ following an unknown
probability distribution IT. Then, the following equation can be used to choose the
suitable investments:

ok . . . . !
" =argmin Egympmax min min COST(i,u w). 1.1
i] w uewy pefle p/Gz@z (7 vp7p7 ) ( )
However, to compute the min over &?; and &%, in Eq. 1.1, we make the as-
sumption that @ is known. That is, to assume that failures and weather conditions
are perfectly forecast. This is an anticipativity assumption, which is less than
satisfactory in a stochastic setting with limited forecasts. We propose a better
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formulation of the optimization problem, without assuming perfect forecasts, as
follows:

- . . . . /
i =argmin max min min Eg.q COST(i,u w). (1.2)
gmin max min min Eo (i,u,p,p’, @)
We aim to bring some elements of response to this equation, significantly more
difficult to solve than Eq. 1.1.

1.2.3 How to handle this?

As each variable has different features (dimension, domain, constraints,... ), each
part of Eq. 1.2 is handled differently. We review briefly these methods and discuss
their advantages and drawbacks.

Cutting plane method

The cutting plane method can be used to optimize the sub-equation:

i* =argmin min Eg,.rg COST(i, p, ®)
ic.s PEX

within a moderate computational cost.

The cost function must be convex and have some sub-gradient, but
not necessary any gradient. Kelley’s method [Cheney and Goldstein, 1959,
J. E. Kelley, 1960], bundle method [de Oliveira and Sagastizabal, 2014] or Ben-
ders decomposition [Benders, 1962] are classical variants of the cutting plane
method. It consists in approximating the cost function by a convex piecewise
linear function APPROX:

Vie s/, APPROX(i) = lréljagdlj(l),
where /; is a linear function Vj € {1,...,d} and d an integer.

It is assumed that the optimum of APPROX is a good approximation of the
optimum of the cost function. The piecewise linear function is obtained by adding
at each iteration a new plane, using the sub-gradient of the cost function computed
at the current approximation of the optimum (see Fig. 1.1). The strength of this
method is that it can be coded in a linear problem: it is solvable in polynomial
time [Karmarkar, 1984]. Hence it is very fast in theory and usually solved in a
reasonable time in practice.
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Figure 1.1: Cutting plane method. The blue plain curve is the function to optimize.
We first compute a given number of planes big enough to be able to have a first
approximation, here 2 (C1 and C2 in red ‘+’) in Figure 1.1a. They are computed
using the subgradient of the cost function. Their minimum x is the estimate of the
optimum of the cost function. Then, at each iteration, we add one cut and update
the approximation; Figure 1.1b displays the 2"¢ iteration.

Example 1.2.1 (Lagrangian relaxation). Solving the Unit Commitment Problem,
i.e. solving the minimization over & in Eq. 1.2 consists in solving a mini-
mization problem under constraints. For handling this, Lagrangian relaxation
[Bertsimas and Tsitsiklis, 1997] is a common method. The dual problem obtained
is then possibly solved with the cutting plane method. See [Belloni et al., 2003]
for a beautiful application of this method to the Brazilian Power System. We point
out also that in this case, the Lagrangian multipliers represent the marginal costs
of the various power plant under study.
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Example 1.2.2 (Stochastic Dual Dynamic Programming (SDDP)). Stochastic
Dual Dynamic Programming® [Pereira and Pinto, 1991] is another method to
tackle the Unit Commitment Problem. In particular, it handles the Markov De-
cision Processes. The cutting plane method is the central idea behind the SDDP
algorithm (used in the backward path). Note that SDDP handles the stochastic
uncertainties, but requires convex Bellman values and a moderate complexity of
random processes state.

Nonetheless, convexity assumption is a strong condition, which might not hold
in practice when it comes to power system. We give three arguments which sup-
port this remark.

e Hydroelectricity. The efficiency in the dam depends of the height of fall.
Hydroelectricity also implies various turbines with different outputs. This
results in some non-convex cost function, see [Couétoux, 2013].

e Gas turbine. Non-convex effects similar to the hydroelectric case might
occur in the gas turbine case.

e Economies of scale. Generally, costs per kilowatt of capacity de-
crease as size increases, e€.g. for CHP'® or for solar power
[International Renewable Energy Agency, 2012]. This is why we expect
non-convex cost functions.

Reinforcement Learning & Control
The unit commitment sub-problem:

p* = argmin Eg1 COST(p, )
pES]

can be modelled in the following way.
Given an initial state s¢, a policy p, a transition function T, a final step time T

and a sequence of random variables @y, ..., 0r_1, we define:
a = p(s,t): the decision at 7,
s = %(s,t,a,0): the state at 7,
¢ = GC(s,a) €RR: the cost at time ¢,
Cost, = Zcr € R : the total cost function.
t

9See Chap. 8 for the unknown vocabulary of this example.
Ohttps://www.wbdg.org/resources/chp.php
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This is a Reinforcement Learning Problem [Sutton and Barto, 1998]. The vari-
ables a (resp. s) stand for ‘action’ (resp. ‘state’). The policy p, given a state and
a time, provides the next action. Given a state, an action and a time, the function
T provides the new state of the system, which depends of a random value w. The
total cost of the policy p over the T time steps is then COST,. Note that we do
not define formally the state and action spaces as the goal of the introduction is to
give the main ideas and intuition behind the power systems challenges. A formal
definition can be found in Chap. 8.

When @y, ...,0r_1 are Markovian random values, the problem above is
termed Markov Decision Process (MDP). Many techniques have been developed
to tackle such problem [Bertsekas, 1995, Couétoux, 2013]. The Markovian prop-
erty of the random variables is a key point in some of these techniques named
below. Note that when the process is non-Markovian, it can be made Markovian
by enlarging the complexity of the random processes state. For example, if the
random variable @; depends on the 10 last random variables @;_1,..., @ _19, We
define a new random variable: €, = (@, ...,®_9), and we rewrite the decision
process with this new variable : the process is Markovian.

[Saravanan et al., 2013] provides clear review on the optimization techniques
used to solve the unit commitment problem. Among them, Stochastic Dy-
namic Programming (SDP) [Bellman, 1957], Stochastic Dual Dynamic Pro-
gramming (SDDP) [Pereira and Pinto, 1991], Model Predictive Control (MPC)
[Bertsekas, 2005] or Direct Policy Search (DPS) [Schoenauer and Ronald, 1994]
are used to deal with MDP. However, each of them is limited:

e MPC is suboptimal by nature (deterministic approximation);
e SDP needs a moderate size of state space;

e SDDP requires convexity of Bellman values and a moderate complexity of
random processes state (that is, either the random process is Markovian or
it can be made Markovian as described above without increasing to much
the random processes state).

SDP and SDDP generally use some linear optimization method (see Sec-
tion 1.2.3). We would like to have a representation of the unit commitment prob-
lem closer from the reality and still have a method which reaches the optimal
policy. That is, we need to relax the assumptions on the model. Namely, we want
to get rid of the convexity conditions, to have an arbitrary large state space and an
arbitrary random process.
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g Research Question #1

How can we handle the Unit Commitment Problem without assuming:
e the convexity or linearity of the cost function;

e the Markovianity (or equivalently, as discussed above, the moderate
size complexity) of the random process?

Decision theory

The sub-equation
i* = argmin max COST(i,u) (1.3)
icy uc%
falls within decision theory.

If & ={iy,...,in} (resp. Z ={uy,...,uy}) is the finite set of possible invest-
ments (resp. non-stochastic uncertainties), i.e. using the vocabulary of decision
theory, the set of policies or strategies (resp. scenarios), then Eq. 1.3 is called
Wald criterion [Liu, 2015]. As explained in Section 1.2.1, this is the worst case
scenario. “Typically the worst case is a nuclear war and everybody is dead ... so
that there is no point in optimizing anything”©!!. More formally, the assump-
tion behind the use of this criterion is that the Nature'”> knows in advance what
will be our strategy. This is overall a very conservative criterion and the price for
this robustness might be high [Bertsimas and Sim, 2004]. So it is worth taking a
look at other tools for decision under uncertainties, such as the Savage criterion
or scenario-based planning. We refer to [Liu, 2015] for a good introduction of
these notions.

Instead of the Wald criterion (Eq. 1.3), investments against non-stochastic un-
certainties can be modelled as an adversarial zero-sum matrix game. Given a
n X m matrix (Mﬁk)j,k:

e we choose (privately) an investment strategy i; € {ij,...,i,}, i.e. a row
je{l,.n};
e the Nature chooses a scenario u; € {uy,...,u,} (i.e. a column k €
{1,...,m}) without observing i;
"Qlivier Teytaud.

121n decision theory, the choice of u can be called Nature’s choice.
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e we receive a reward!> M .k and the Nature receives reward 1 — M ;.

In this setting, interesting policies are often not deterministic. We play a
stochastic policy p € [0,1]" (¥}_; pj = 1) and Nature plays a stochastic policy
q € [0,1]™ (XX_, g« = 1). That is, we actually play j with probability p; and k
is (independently) played by Nature with probability gz. Our expected payoff is
therefore p'"Mq =Y x pjM; kqx. and the expected payoff for Nature is 1 — p'Mgq.
A Nash equilibrium is a pair (p,q) such that

Y(p',q), p"Mq < p'Mq<p'Mq'.

Intuitively speaking, at a Nash equilibrium, neither Nature nor us can improve
our expected payoff by changing our strategy. It is known, see [Nash, 1951], that
with n and m finite,

e there is always at least one Nash equilibrium;
e it is not necessarily unique;
e all Nash equilibria (p,q) lead to the same value v = p'Mg.

A classical problem is thus the evaluation of a Nash equilibrium, or an approx-
imation thereof in a reasonable time. We want furthermore include the stochastic-
ity . In this setting, instead of getting a fix reward M; x, we will get a stochastic
reward M (@) (see formal definition in Chap. 9).

4 Research Question #2

| How can we approximate in a reasonable computational time a Nash equi-
librium in the stochastic adversarial case?

However, we point out that a resulting Nash strategy is in general a mixed
strategy, i.e. a probability distribution over the strategies in .# opposed to a pure
strategy which is a mixed strategy with probability 1 over one element of .#. This
is classical in games theory. However, in the context of power system invest-
ments, it seems difficult to prescribe “huge investment of offshore wind power
with probability 1/3”, so that a reflection has to be carried out on the adaptivity
of such criterion to the power system setting.

Bwe keep the vocabulary of game theory, so that the reward corresponds to —COST
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Statistics and Noisy Black-Box Optimization

Last but not least, we need to handle the operator E. As pointed out in Sec-
tion 1.2.1, either we have access only to some finite archive, i.e. (®y,...,@,)
realizations of the random variable @ of unknown probability distribution II, or a
generative model is available.

In the first case, optimizing against this finite sample leads to a bias. It is then
interesting to estimate this bias, using methods coming from the statistical com-
munity such as Bootstrap (BS) [Efron, 1982], Jackknife (JK) [Quenouille, 1949],
Cross-Validation (CV) [Arlot and Celisse, 2010], and then provide a better, cor-
rected, expertise. This is explained in Chap 10.

4 Research Question #3

In the context of capacities expansion planning, how can we reduce the bias
resulting from a finite (small) archive?

Regarding the latter case, this means that, given an investment i and a policy
p, we can get a value COST(i, p, ), where @ is for example a weather realiza-
tion that we do not know in advance. This kind of optimization is called black-box
noisy continuous optimization, as we do not assume anything on the cost function.
Black-box noisy continuous optimization is formalized in Chap. 2. We focus on
black-box noisy optimization algorithms, comparing their optimal rates of con-
vergence.

4 Research Question #4

What are the optimal convergence rates of various families of black-box
noisy continuous optimization algorithms?

In particular, continuous black-box noisy optimization will be used in Chap 8,
and it can be seen as a substitution of the classical cutting plane method. Another
field of application of this method, related to power systems, is the Direct Policy
Search method, i.e. the search for an optimal parameter x* of a parametric function
fx» see [Kormushev and Caldwell, 2012]. This justifies the extensive interest for
this optimization method in this thesis: we need a fast and robust black-box noisy
optimization algorithm!
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1.3 Structure of the thesis & contributions

Chap. 1 provides the motivations behind this Ph.D. thesis and the fields of ap-
plication. Afterwards, this document is divided in three parts. Part I targets the
continuous black-box noisy optimization problem and Part II concerns uncertain-
ties, termed noise, with other kinds of features. Part III concludes and gives some
perspectives. Appendix A summarize the main notations of the thesis. In the
rest of this section, text in bold indicates the notions that will be defined in the
following chapters.

1.3.1 Contribution in noisy AND black-box continuous opti-
mization

Part I is dedicated to the study of continuous black-box noisy optimization algo-
rithms. It handles the 4/ research question:

4 Research Question #4

What are the optimal convergence rate of various families of black-box
noisy continuous optimization algorithms?

Chap. 2 introduces the continuous black-box noisy optimization setting, that
is, defines this problem, summarizes the state of the art and enlightens a few
challenging questions of this field. Chap. 3 studies the rate of convergence of
a given family of algorithms - Evolution Strategies (ESs) - in the case of small
noise. Chap. 4 exhibits a lower bound for a large family of comparison-based
algorithms in the additive noise setting. Chap. 5 discusses the possibility for
a comparison-based algorithm to be as fast as a value-based algorithm in the
black-box continuous noisy framework. Chap. 6 analyses the rates of conver-
gence of a value-based algorithm, the Newton-like algorithm, when confronted
with different kind of noises (small, moderate, big). Last, Chap. 7 proposes a
method to select, among different noisy optimization algorithms, the one with an
optimal rate of convergence for the optimization problem at hand.

1.3.2 Delicate cases

Part II handles arduous cases, when the optimization, still black-box and noisy,
has additional constraints.
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Contribution in noisy AND time-dependent optimization

Chap. 8, regards the 1% research question.

'gResearch Question #1

How can we handle the Unit Commitment Problem without assuming:
e the convexity or linearity of the cost function;

e the Markovianity (or equivalently, as discussed above, the moderate
size complexity) of random process?

In addition to be noisy and black-box, we aim at tackling long term effects in
Model Predictive Control (MPC is deterministic, see Section 1.2.3). We study a
Reinforcement Leaning method, called Direct Model Predictive Control (DMPC).
Assuming the convergence of the noisy optimization routine, it provably reaches
an optimal policy without linearity or convex assumptions on the cost and transi-
tion functions, and without requiring moderate complexity of the random values
state. We also compare the performances of DMPC and MPC on a multiple-
battery management problem, and two hydroelectric problems.

Contribution in noisy AND adversarial optimization

We consider the 2" research question in Chap. 9.

4 Research Question #2

| How can we approximate in a reasonable computational time a Nash equi-
librium in the stochastic adversarial case?

Chap. 9 analyses the adaptation of the Grigoriadis & Khachiyan algorithm
[Grigoriadis and Khachiyan, 1995] to the stochastic case, in the setting where the
complexity measure is the number of evaluations. We also introduce variants of
this algorithm and a new algorithm, proving their theoretical validity and testing
their experimental efficiency.

Contribution in noisy AND finite-sample optimization

Last, Chap. 10 treats the 3" research question,



4 Research Question #3

In the context of capacities expansion planning, how can we reduce the bias
resulting from a finite (small) archive?

The optimization of capacities in large scale power systems is a stochastic
problem, because the need for storage and connections varies a lot from one
week to another and from one winter to another. It is usually tackled through
Sample Average Approximation (SAA). However, in many cases, data is high-
dimensional: the sample complexity increases linearly with the number of pa-
rameters and can be scarcely available at the relevant scale. This leads to an
underestimation of capacities. We suggest the use of bias correction in capacity
estimation.
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Chapter 2

Background review

Numerical optimization or simply optimization of a real-valued function f, termed
objective function, is the research of a point, such that the value of f at this point,
called fitness value, is optimal. Without loss of generality, we will assume that
the optimum is a minimum', since minimizing f is equivalent to maximizing — f.
Hence we are looking for the minimizer x* - supposed to be unique - such that for
all x in the search space 2 C R?,

fx) = f(x). (2.1)

Among the classical challenges encountered by continuous optimization, we
identify multi-modality, non differentiability or non continuity, ill-conditioning,
non-separability, high dimensionality, noise and constraints [Chotard, 2015,
Auger, 2016].

2.1 The different flavours of optimization

2.1.1 White, gray or black?

When optimizing an objective function, the optimizer can have access to different
amounts of information. The white-box optimization problem is the best possible
scenario: given a search point, one can get the fitness value at this point, as well
as the gradient and the Hessian. More generally, we have access to the source

lunless specified otherwise.
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code of the objective function. First (resp. second) order methods denote algo-
rithms using the gradient (resp. the gradient and Hessian) of the objective function
[Nesterov, 2004].

However, this ideal scenario is not often encountered in practice. More often,
the practitioner has at best some partial information about the structure of the
objective function, e.g. the smoothness or the separability property. This is the
gray-box optimization problem [Whitley, 2015].

In a real world optimization problem, a common setting is to obtain only the
fitness values of the objective function: this is the black-box problem. No knowl-
edge about the internal process involved in the objective function can be exploited:
given a point, an oracle returns the corresponding fitness value. The black-box set-
ting is natural in many industrial applications, where the fitness value results of
some heavy simulation or some executable file. Black-box algorithms belong to
zero order methods, also known as derivative free optimization methods. Note
that in the literature, fitness-value based algorithms approximating the gradient
(resp. Hessian) by finite differences are considered either as first (resp. second)
order methods or as zero order methods.

2.1.2 Global or local?

It is classical to make a dichotomy between global and local optimization. The ob-
jective of global optimization is to find the global optimum from any starting point
whereas local optimization is the search of a minimum in the vicinity of a starting
point. In particular, local optimization faces the risk to be stuck in local extrema.
Evolutionary algorithms? are often labelled as global optimization algorithms in
contrast to gradient-descent algorithms, assumed to be local optimization meth-
ods. The global convergence can be trivial to prove, e.g. grid search. However,
what matters in our studies is precisely the speed of convergence, as we can not be
satisfied with a slow one. In the present document, we consider smooth objective
functions with a unique optimum - thus local convergence.

2.1.3 Noisy or noise-free?

The setting of Eq. 2.1 assumes that the oracle returns the exact value of f in x: this
is the so called noise-free setting. However, the returned fitness value might be

Zsee Section 2.3 for an introduction to these algorithms.
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perturbed or inaccurate, due to some measurement errors, to the sensor’s sensitiv-
ity or to other stochastic effects such as random simulations in games or stochastic
weather in power systems. This is termed noise, and the optimization problem is
then a noisy optimization problem. Formally, the noisy objective function can be
modelled by a stochastic process. Given a search point x € Z, the oracle provides
the fitness value f(x,®), where @ is a random variable independently sampled
at each call to the black-box. In this setting, the optimization in the manner of
Eq. 2.1 does not make any sense. The optimization of a noisy objective function
is the search for the minimizer x* such that for all x € 2,

E(Df(x7 (D) 2 wa(X*a (D), (22)

where Eg denotes the expectation operator over @.

Note that what we term noisy optimization in the present document is some-
times called stochastic optimization in the literature. This is misleading since
stochastic optimization also refers to optimization algorithms relying on internal
stochastic processes, such as evolutionary algorithms.

Models of noise

In the presentation of the different noise models below, we denote by ® a random
variable, sampled independently with a given probability distribution at each new
evaluation of a search point.

Actuator noise. When the search point is corrupted by noise, this is termed
actuator noise. The noisy objective function is then:

flx,0) = f(x+ o) (2.3)

The study of the actuator noise is beyond the scope of this thesis, however an
extended analysis can be found in [Jin and Branke, 2005, Beyer, 2004].

Additive noise. The additive model of noise is by far the most natural and stud-
ied noise model. To the best of our knowledge, it has been formulated for the first
time in [Hotelling, 1941], motivated by some practical applications in agriculture,
industry and economy. It is formalized in the following way:

fx,0) = fx)+ o. (2.4)
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In this model, the noise has lower bounded variance, even in the neighbour-
hood of the optimum. In most cases, ® is a standard normal variable, and this
is termed Gaussian noise [Arnold and Beyer, 2002, Astete-Morales et al., 2014,
Arnold and Beyer, 2001]. Cauchy and x? distributions have also been studied
[Arnold and Beyer, 2006, Arnold and Beyer, 2003]. They conclude that there is
no significant differences between a Gaussian and Cauchy noise, but the dynam-
ics of the x? is distinct, due to the asymmetry of the distribution. Other studies
simply assume that the variance of @ is bounded by a constant [Fabian, 1967,
Shamir, 2013] - this is called heavy tail noise.

In discrete noisy optimization®, [Dang and Lehre, 2015] found similar be-
haviour of Evolutionary Algorithm, independently of the Gaussian, uniform or
exponential distribution of the additive noise. [Akimoto et al., 2015] studied dis-
crete noisy objective functions with Gaussian noise and heavy tail noise.

Multiplicative noise. The multiplicative noise has been studied in
[Arnold and Beyer, 2002, Jebalia et al., 2011]. It refers to:

fx,0)=f(x)(1+ o). (2.5)

If the probability distribution of @ is conveniently lower bounded, then some
standard (1 + 1)-Evolution Strategy* converges to the optimum. If arbitrary neg-
ative values can be sampled with non-zero probability, then it does not converge
[Jebalia et al., 2011].

Bernoulli setting. Another branch of noisy optimization (here maximization)
involves Bernoulli variable as objective functions: for a given search point x,

1 with probability E, f(x, ®),

0 otherwise. (2.6)

fxw)={

For example, if f(x,®) is a Bernoulli variable of parameter ||x —x*||, then
f(x,®) = 1 with probability ||x —x*||.

Optimizing is then finding x such that Eq f(x, ®) is maximum. This frame-
work is particularly relevant in games [Coulom, 2011, Chaslot et al., 2008]. If
x is a parameter of a game strategy, playing one match with this parametriza-
tion will result in a win (1), or a loss (0) and the random variable @ states

3Discrete optimization is the setting in which the objective function f has discrete variables,
usually, £: {0,1} = Ror f:{0,1,...,n}¢ = R.
“see the definition in Section 2.3.2.
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for the stochasticity in the game (e.g. in case of randomized policy). We
then aim to find x with maximizes the probability of win. Problems tackled
by Direct Policy Search, such as viability problems or binary control problems
[Aubin, 2009, Chapel and Deffuant, 2006], involve this kind of optimization. In
particular, if the optimal policy has a success rate of 100%, then the variance
decreases to zero in the neighbourhood of the optimum.

Generalization of additive and multiplicative models of noise. A more gen-
eral model of noise can be formalized in the following way:

flx,0) = f(x)+ (f(x) = (&) o, (2.7)

When z =0 (resp. z =1 and f(x*) = 0), we get the additive (resp. multi-
plicative) noise. When z > 0, the noise decreases to zero near the optimum. This
setting is not artificial as we can observe this behaviour in many real problems, as
explained for the Bernoulli noise. Three chapters are devoted to the study of ad-
ditive noise, one chapter focuses on small noise - multiplicative and more (z > 1),
and one chapter encompasses several kinds of noise (z € 0, 1,2).

Adaptation to the noise

Three main features emerge to cope with noise: adjusting the population parame-
ters vs. averaging the search points vs. using a surrogate model.

A classical scheme of optimization algorithms is to generate a population
of search points from a central point at each iteration. We can increase this
population size to tackle the effect of noise. It is also possible to increase
its variance or mutation strength. This latter technique prevents prema-
ture convergence. Importantly, the population can escape some sub-optimal
search regions. We refer to [Hansen et al., 2009, Arnold and Beyer, 2001,
Arnold, 2002, Arnold and Beyer, 2000b, Arnold and Beyer, 2000a,
Fitzpatrick and Grefenstette, 1988, Arnold and Beyer, 2006] for more details.

Resampling means that the query to the black-box is repeated several
times for a given search point [Aizawa and Wah, 1993, Aizawa and Wah, 1994,
Beyer, 1993, Hammel and Bick, 1994]. Afterwards, some statistic of the repeated
sample is used as the approximate fitness function of the point. In general, it is the
average. For a given point x € & and an integer r, the approximate fitness value y
is:
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~

1
y=- f(x7wi)7
"=

where (@;)i<i<, are r ii.d realizations of the random variable w. Av-

eraging decreases the variance - denoted Var - of the fitness value. There-

fore, if Var(f(x,w)) = o > 0, then Var(y) = 672 Resampling is then a

way to reduce the uncertainty of the fitness value. The key point is how
to choose optimally r, the number of resamplings, as increasing the num-
ber of calls to the black-box increases the computational burden.  This
number can be fixed, or can increase exponentially with the iteration index
[Astete-Morales et al., 2014], or can be adaptive [Astete-Morales et al., 2014,
Branke and Schmidt, 2003, Branke and Schmidt, 2004, Cantid-Paz, 2004]. Re-
sampling can be viewed as an averaging over time. An alternative method,
which can be seen as an averaging over space, consists in evaluating the fit-
ness by averaging over the neighbourhood of the search point [Fabian, 1967,
Jin and Branke, 2005]. This is based on the assumptions that the objective func-
tion is smooth and that the noise distribution is the same at least in the neighbour-
hood of a point.

Contradictory results are found in the literature regarding the problem to
choose between increasing the population size or resampling. So far, it
seems that the relevance of one method or the other is problem-dependent
[Jin and Branke, 2005, Chotard, 2015]. Merging the two methods is also a so-
lution [Miller, 1997, Miller and Goldberg, 1996].

A third trend is to build a model - called surrogate model [Ong et al., 2003,
Zhou et al., 2004] - of the noisy objective function by using the previous search
points. [Branke et al., 2001] uses local regression. Confident Local Optimiza-
tion (CLOP) [Coulom, 2011] also performs local regression. In practice, it is
robust to high noise and does not require specific parameter tuning. However,
we are not aware of a mathematical analysis. NEWUOA has been developed
by Powell [Powell, 2004, Powell, 2008]. It performs some quadratic interpola-
tion in order to draw a model of the objective function. It is very efficient in
the noise-free case, but slower in the noisy setting (see [Moré and Wild, 2009]).
QLR - for Quadratic Logistic Regression - is based on a Bayesian quadratic local
regression. In particular, it can sample points far from the current recommen-
dation, which is a crucial point. It is designed for Bernoulli noise, thus very
efficient on such a setting - it can then be considered as a gray-box optimization
method. We refer to [Chaloner, 1989, Fackle Fornius, 2008, Khuri et al., 2006,
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Schein and Ungar, 2007] for more on this algorithm.

2.2 Convergence(s): what makes an algorithm
‘good’?

An optimization algorithm must provide a ‘good’ approximation of the optimum.
What does it mean? Contrarily to discrete optimization, a continuous optimization
algorithm does not in general reach the optimum. It outputs successive estimations
of the optimum, which should converge toward to optimum in a ‘reasonable’ time,
1.e. as ‘fast’ as possible. But being fast or not depends on which measure we
consider to be important. Regarding some industrial applications, a call to the
black-box might be expensive, requiring heavy computations. Thus, the goal is
to find a good approximation of the optimum within a number of calls as small
as possible. That is why from now on, unless specified otherwise, the variable
indexation in the document is always in the number of evaluations, i.e. calls to the
oracle.

2.2.1 Exploration vs. exploitation

In the noisy black-box scenario, an optimization algorithm generates several se-
quences:

® X1,X2,...,Xp,..., the successive search points, or evaluation points;

® V1,2, Vn,-- -, their corresponding noisy fitness values: y,, = f (X, ©);

® X1,X2,...,%y,..., the successive recommendations or approximations of the
optimum x*, where %, is provided after m fitness evaluations have been
performed.

Each search point x,, is the output of a computable function of the previ-
ous search points and their respective function values. The computation of the
search point may involve random processes if the algorithm is randomized or
the objective function is stochastic. Even though in most cases, the recommen-
dation and the search points are exactly the same, it is crucial to distinguish
between these two types of points. In particular, in the noisy setting, ignor-
ing this difference can lead to poor results [Fabian, 1967, Coulom, 2011]. The
sequence (x1,X2,...,Xn,...) represents the exploration phase and the sequence
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(%1,%2,...,%n,...) corresponds to the exploitation one. A key point is how to al-
locate resources (i.e. number of calls to the black-box in our setting) to each of
them - especially how to guarantee an efficient exploration - and how to choose
these sequences.

2.2.2 Convergence criteria

We review some general criteria, which can be applied to any optimization algo-
rithm. Note that measurements specific to one type of algorithm, such as progress
rate for Evolution Strategy (ES) (see [Beyer, 2001]), are not discussed here.

Uniform Rate (UR)

Looking at the distance to the optimum is the first criterion that comes to mind. It
is called Uniform Rate. The term rms - for root mean square - is also encountered
in the literature.

Definition 2.2.1 (Uniform Rate (UR)). Using the previous notations, the Uniform
Rate is defined by:
URy := ||x, —x*||. (2.8)

In particular, we consider the search points. As a consequence, having a ‘good’
Uniform Rate implies to sample the search points only close to the optimum. Ad-
ditionally, due to some randomization of the optimization algorithm, the Uniform
Rate can be a random variable.

Regrets

The concept of Regret is widely used in the bandit literature. It is also used in the
optimization framework, sometimes under other names or without specific name.
Basically, the regret accounts for the ‘loss’ or ‘cost’ of choosing the search or ap-
proximation point instead of the optimum. Therefore, we measure the difference
between the point used or recommended by the algorithm and the optimum in
terms of objective function.

The most usual form of regret is termed Simple Regret (SR). It is widely used,
possibly without this name [Bubeck et al., 2009]. It focuses only on approximat-
ing, with recommendations, the optimum in terms of fitness values.
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Definition 2.2.2 (Simple Regret (SR)). Using the previous notations, the Simple
Regret is defined by:

SRy :=Eo(f (%0, ) = f(x", ©)) = f (%) — f(x7). (2.9)

The expectation operates only on the noise ® in f(%,,®), and not on %,. As a
consequence, SR, is a random variable due to the stochasticity of the noisy evalu-
ations of the search points or the possible internal randomization of the optimiza-
tion algorithm. In the noise-free case, it can be used to determine the precision of
a method, by ensuring that the algorithm outputs a recommendation %, satisfying
SR, < €, for a given € > 0.

Some benchmarks, notably the Bbob/Coco framework in the first version, did
not allow the distinction between search points and recommendations, so that the
Simple Regret can not be checked. An alternative definition, that aims to measure
the precision in a similar way to SR, is the Approximate Simple Regret.

Definition 2.2.3 (Approximate Simple Regret (ASR)). Using the previous nota-
tions, the Approximate Simple Regret is defined by:

ASR, = m<inf(xn) — f(x"). (2.10)

It is wused in the Bbob/Coco framework [Auger etal., 2010a,
Auger et al., 2010b, Auger et al., 2010c, Finck and Beyer, 2010, Ros, 2010a,
Ros, 2010b, LaTorre et al., 2010, Tran and Jin, 2010, Hansen and Ros, 2010],
and in some theoretical papers [Dang and Lehre, 2015]. ASR takes into account
the ‘best’ evaluations among all the search points.

Another form of regret is the Cumulative Regret (CR). This criterion keeps
track of the loss of every search point, not only the best.

Definition 2.2.4 (Cumulative Regret (CR)). Using the previous notations, the Cu-
mulative Regret is defined by:

CR, = Zn: (f(xi)—f(x™)). (2.11)
i=1

The Cumulative Regret is relevant for, e.g., online optimization of a factory,
online optimization of medical treatments, and all cases in which each function
evaluation is an actual loss and not only a simulated loss.
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Expected running and hitting time

When testing algorithms, it is common to use some hitting time, i.e. to consider
the first time that the sequence of points ‘hits’ a given subset of the search space.
We distinguish the first hitting time and the running time.

Definition 2.2.5 (First hitting time). For a precision € > 0, the first hitting time T
is a random variable defined by:

Te :=min{n € N| ||%, —x"|| < €} (2.12)

Definition 2.2.6 (Running time). For a precision € > 0, the running time pg is a
random variable defined by:

Pe :=min{n € N| mgxf(im) —f(x") <¢€} (2.13)

The running time refers to the first ‘stable’ hitting time, i.e. the next recom-
mendation is at least as good as the previous one. In the noise-free setting, if
the recommendation is defined as £, = x;(n) with i(n) = argmin SR;, then this is

1<i<n
equivalent to finding the smallest integer n such that SR, < €. It is reasonable to
assume that the recommendation is the optimal search point in the noise-free set-
ting, as maintaining a best search point so far is easy and cheap. Unfortunately, in
the case of noisy optimization, there is no such equivalence and there is no natural
extension of running time without checking the infinitely many values SR,, for
m>n.

[Corus et al., 2014, He and Yao, 2003, Akimoto et al., 2015] are devoted to
the study of the expected hitting time and the expected running time.

2.2.3 Type of convergence

Regarding the regrets and the Uniform Rate, we distinguish two typical rates of
convergence. The log-log convergence and the log-linear convergence, for which
lower and upper bounds will be discussed in this thesis. In the following, when we
do not specify the mode of convergence (a.s. or in expectation), then the definition
or property holds for every mode.

Definition 2.2.7 (log-log convergence). The sequence of random variables
(Ry)neN is said to converge log-logarithmically (or logarithmically):

e almost surely if lim log(Rn) o vists almost surely and is negative.
n—s—-o0 l0g(n)
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e in expectation if lim log(E(R,))

7 exists and is negative.
n—+oo (")

If the limits above exist but are positive, then we say that the algorithm di-
verges log-logarithmically.

log(R,)
log(n)
alent to write R, = O (n%) or to say that R, is in O (nia) If liﬁknflﬁfg(gf)) =—a,
with o > 0, it is equivalent to write R, = Q(nla) or to say that R, is in
Q (). We called this number & the slope of R,, denoted s(R), and use this
different notations throughout the present document. We discuss the optimal
value of this slope o for UR, SR and CR, depending on the characteristic of
the optimization algorithm and on the objective function. The log-log conver-
gence is typical in the noisy optimization setting with lower bounded variance
[Arnold and Beyer, 2002, Astete-Morales et al., 2014, Chen, 1988, Fabian, 1967,
Coulom, 2011, Shamir, 2013, Decock and Teytaud, 2013].

Terminology & Notations. When limsup = —a, with o > 0, it is equiv-
neN

Asymptotic & non-asymptotic regime. We distinguish two different regimes.
The asymptotic one holds when

C
3C >0, I ngp such thatVn > ng, Ry & —,
n

where & stands for < or > and this inequality can be in expectation or a.s.
The non-asymptotic regime holds when

C
3C>0,VneN, R, & —.
n

In Definition 2.2.7, we adopted the asymptotic setting. However, non-asymptotic
results will be discussed in the review of literature below (Section 2.3), in Chap-
ters 4 and 5 and in Appendix B. By default, rates of convergence are asymptotic.

Definition 2.2.8 (log-linear convergence). The sequence of random variables
(Ry)neN is said to converge log-linearly (or linearly):

log(Ry)

e almost surely if lirJrrl == exists almost surely and is negative.
n—s—+o0
e in expectation if lim w exists and is negative.

n—r+oo
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When the limits above exist but are positive, then we say that the algo-
rithm diverges log-linearly. The log-linear convergence is sometimes called ex-
ponential convergence since the sequence (R,), decreases exponentially fast in
the number of calls to the oracle. Log-linear convergence is classical in noise-
free zero-order optimization [Auger, 2005, Beyer, 2001, Teytaud et al., 2005].
[Hansen et al., 2015] has shown a link between the expected hitting time and the
rate of convergence in case of log-linear convergence: E7; ~ log(1/¢€)/a, where

o >0, with lim 28R — _ o
n—to N

The log-linear convergence is faster than the log-logarithmic one, however, we
can encounter even faster rates of convergence.

Definition 2.2.9 (Super-linear convergence). We say that an algorithm converges
super-linearly of order . when:

lim UR, =0
n—r—+oo
UR
and lim " =u>0.
n—+eeURY |
In particular, when lim log(%ﬁ,) = —oo, the super-linear convergence should

n—r—+oo
be investigated. It is classical in the noise-free case with surrogate model

[Auger et al., 2005]. If o = 2, the convergence is quadratic. In the noise-free set-
ting, Newton’s algorithm is quadratic [Nesterov, 2004] and quasi-Newton meth-
ods such as BFGS are superlinear [Nesterov, 2004].

2.2.4 Discussion

UR and SR. By definition, a good slope for the Uniform Rate (s(UR)) is harder
to reach than for the SR because all search points must verify the bound, not only
the recommended ones. For any problem, if for some algorithms, s(UR) < ¢, then
for the same problem there is an algorithm such that s(SR) < c. A slope 0 for UR
and SR can be trivially reached by an algorithm with constant (x;,,%,).

CR and SR. An algorithm with constant (x,,%,) will similarly provide a trivial
slope 1 for CR. On the other hand, optimality between s(SR) and s(CR) can not
be reached simultaneously. In discrete settings, this so called trade-off is proved
by [Bubeck et al., 2011]. They show that in the framework of stochastic multi-
armed bandit problems, the smaller the CR, the larger the SR. This trade-off is
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also observed in continuous optimization algorithms, see Section 2.3.1. Using
the vocabulary of the multi-armed bandit community, this is the trade-off between
exploration and exploitation.

UR and CR. We are not aware of differences between algorithms specialized on
optimizing s(UR) criterion and s(CR) criterion.

2.3 Algorithms and state of the art

We introduce in this section some zero-order noisy optimization algorithms and
discuss their performance regarding the criteria of Section 2.2.2. This review
is not exhaustive as it is centred on the algorithms studied later in this thesis.
[Chotard, 2015] provides a more complete overview, emphasizing the opposition
between deterministic and stochastic algorithms. Stochastic algorithms generate
recommendations through the use of random processes. This makes them more
likely to escape local minima and provides them some sort of robustness - that
will be discussed - when confronted with noise. In contrast, we are particularly
interested in the dichotomy between comparison-based algorithms and algorithms
using an approximate gradient or Hessian: value-based algorithms.

2.3.1 Value-based algorithms

Kiefer-Wolfowitz method

[Kiefer and Wolfowitz, 1952] have made a pioneering work to find numeri-
cally the optimum of a unidimensional noisy objective function such that
Ew(f(x,0)) = f(x) with Var(f(x,®)) bounded. In particular, this covers the
additive case of noise, but it is more general. The optimum was initially a max-
imum, but we write below the results in minimization. Their method derives
from the work of [Robbins and Monro, 1951] one year before, devoted to solve
the equation Eq f(x,®) = o. The Kiefer-Wolfowitz algorithm is a gradient de-
scent algorithm, where the gradient is approximated by finite differences. Given
two sequences of positive numbers (a,),>1 and (¢;),>1, and an initial recommen-
dation Xy € R, the successive recommendations %,, follow the Kiefer-Wolfowitz
scheme.
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. . Xn+1 = Xn — angn;
Kiefer-Wolfowitz scheme ) ) ) L
gn := approximate gradient, estimated by finite differences.

(2.14)

In the original method, [Kiefer and Wolfowitz, 1952] proposes to estimate g,
as follows:

f(fn+cnvw) _f(in _Cnaa))
Cn

8n =

Note that in this part (Section 2.3.1), the recommendation X, is indexed in the
number of iterations, and not in the number of calls to the black-box, as formalized
in Section 2.2.1. This does not change the results on the rate of convergence,
because there is a fixed number of calls to the oracle. It just adds a multiplicative
constant in the upper bound, which does not modify the asymptotic slope.

Assuming that ¢, decreases to 0 and that:

+o0 o0 +o0
Y @, =+, ancn < 4o and Y anc,* < +oo; (2.15)
n=1

n=1 n=1

under some strong regularity conditions of the objective (unidimensional) func-
tion, Kiefer and Wolfowitz proved the convergence in probability of the se-
quence (%,),>1 toward the optimum x*, without a specific rate of convergence
though. [Blum, 1954a, Blum, 1954b, Burkholder, 1956, Dvoretzky, 1956] succes-
sively broadened this convergence result to the multidimensional case and weak-
ened the regularity conditions. The first optimal convergence rate was shown in
[Dupac, 1958], using some inequalities from [Chung, 1954]. The expected Sim-
ple Regret has slope O(n~'/2) when the objective function is twice differentiable
and O(n_z/ 3) when it is three times differentiable. However, this rate is not im-
proved for functions with higher derivatives. It is formalized in Theorem 2.3.1.

Theorem 2.3.1 ([Dupac, 1957], Simple Regret of Kiefer-Wolfowitz algorithm).
The (unidimensional) objective function has a unique minimizer x* and satisfies:

eVe >0 I K >0, K >0 such that ¥V x € B(x"¢),
Klx —x*[ <|f'(x)] < K'lx —x*;

o f(x*) > 0 exists.



CHAPTER 2. BACKGROUND REVIEW 51

If the noise satisfies Eq(f(x,)) = f(x) and Var(f(x,®)) is bounded, if a, = 1,
and ¢, = nﬁ with a > 0 big enough and ¢ > 0 small enough, then

a@—ﬁf:0<%a (2.16)

and this is the optimal rate. Additionally, if "' exists and is bounded in the neigh-
bourhood of x*, then with a, as previously and ¢, = nl%

- 1
aM—xﬁza(Eﬁ> (2.17)
and this rate is optimal. In particular, when f is smooth enough, we get
s(SR) = —2/3.

Note also that [Dupac, 1957] has shown that if the objective function is an-
alytic and symmetric in the neighbourhood of x*, then for any arbitrary € > 0,

E(% —x*)2=0 < n11_8>. We refer to [Schmetterer, 1961] for a good survey of the
early Kiefer-Wolfowitz-like algorithms.

Fabian’s algorithm.

[Fabian, 1967] uses the same pattern as Kiefer and Wolfowitz, but computes the
approximate gradient using averaging over space, which improves the rate of
convergence. Fabian’s algorithm follows the Kiefer-Wolfowitz scheme as in
Eq. 2.14, and given an even integer s, the gradient g, = (g,(j))lg,-gd is updated
as follows:

s/2

. y 1 g -
Vie{l,....d}, g = - Y vk (f (% + cougei, ©) — f (£ — catgei, @), (2.18)
n k=1
where (e;)i<i<q is the standard basis and (ux);<x<s» are such that
0<u <. <ugp < 1. (V)<< are some weights, see [Fabian, 1967] for
their computation. It has been shown in [Fabian, 1967] that this algorithm has
SR arbitrarily close to O(1/n) in expectation and also a.s., as formalized in Theo-

rem 2.3.2.

Theorem 2.3.2 ([Fabian, 1967], Simple Regret of Fabian’s algorithm). Let s be
an even positive integer and € > 0. Let x* be the unique minimizer of the objective
function f. The objective function f satisfies the following properties:
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o its (s+ 1) derivative exists on B(x*,2¢) and is bounded there;

e its Hessian exists, is bounded in norm on R? and it is positive definite and
continuous at x*;

e its first derivative is zero at x*;

oV & >0, there exist p(€) > 0 such that f(x) — f(x*) > p(€) and
IDf(x)[l = p(e) Vx € R\ B(x*, ¢).

Assume that the noise satisfies Eq(f(x,0)) = f(x) and that Var(f(x,®)) is
bounded. Assume that a, = ¢ and ¢, = 3, witha >0, ¢>0and 0 <y <1/2.
Assume that 2Xga > Py where Aq is the smallest eigenvalue of the Hessian and
Bo = min (2sy,1 —2v). Then, with X, obtained by Kiefer-Wolfowitz scheme
(Eq. 2.14) with Eq. 2.18, a.s.:

lim nP (%, —x") =0V B < Bo/2 (2.19)

n—r+oo
In particular, when f is smooth enough, we get s(SR) = —2.

Note that SR is optimal when y = %(s—l— 1)~!. In this case, By = T+ = 1: Bo
§—>00
can be made arbitrarily close to 1, so 23 also, but then y goes to 0.
Depending on the value of y, we get a good SR or a good CR, but never both

simultaneously. In the case of quadratic functions with additive noise
e y— 3 leads to SR = O(n~'/?) and CR = O(n'/?) a.s. and in expectation;
e y— 0leads to SR = O(n"') and CR = O(n) a.s. and in expectation.

We incidentally find out the trade-off discussed above.

On the computational side, the number of calls to the oracle per iteration is
2 x s x d, which might become intractable in practice for large dimension and
when s goes to infinity.

Spall’s algorithm

[Spall, 1987] developed a method, called SPSA for Simultaneous Perturbation
Stochastic Approximation, which alleviates by far this burden. It requires only
2 calls to the black-box at each iteration. Spall’s algorithm follows the Kiefer-
Wolfowitz scheme to update the recommendation as in Eq. 2.14 and the approxi-

mate gradient g, = (gy(li))lgisd is estimated in the following way:
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Vie {1,...,d}7 g}(,ll) — f<x”+cﬂA7w) _f(xn_CnA,W)
2¢,A)

(2.20)

where A € R? is a vector of d mutually independent random variables. The
(A(i)>1§l‘§d have mean zero and satisfy others assumptions; in particular, first and
second inverse moments must be bounded (see [Spall, 1992]). Incidentally, it
excludes uniform and normal random variables. Usually, we consider Bernoulli
random variables, see more in [Kleinman et al., 1999, Spall, 2000]. In terms of
calls to the black-box, variants of Spall’s algorithms have the same optimal con-
vergence rate as Kiefer-Wolfowitz algorithm, i.e. O(n_z/ 3) for the expected SR;
it is formalized in Theorem 2.3.3.

Theorem 2.3.3 ([Gerencsér, 1999], Simple Regret of Spall’s algorithm). Let
B =min(4y,1 -2y) >0, a, = & and ¢, = -5 with a > 0 and ¢ > 0. Assume that
the smallest eigenvalue of the Hessian matrix of the objective function f at x,
denoted by a satisfies aat > /2. The objective function satisfies the following
conditions:

e it has a unique minimizer x* and is 3 times continuously differentiable in
the neighbourhood of x*;

e its gradient is defined in the neighbourhood of x* and has continuous partial
derivative up to second order.

Assume that the noise is additive: ¥x € 9, f(x,®) = f(x) + ®, with @ a bounded
random variable. Assume that the components of A are i.i.d, symmetrically dis-
tributed, bounded and the inverses of its higher moment are bounded. Then, with
Xn obtained by the Kiefer-Wolfowitz scheme (Eq. 2.14) with Eq. 2.20, it follows:

1
E|lZ, —x"|>=0 <n_ﬁ) : (2.21)

This rate is optimal for v = 1/6, which give B = 2/3. In particular, when f is
smooth enough, we get s(SR) = —2/3.

It was shown in [Spall and Cristion, 1998] that this rate is tight.

>The whole assumption involves some condition on the solution of a differential equation im-
plying the gradient, we refer to [Gerencsér, 1999] for the details.
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Spall also proposed some algorithms using additionally some approximate
Hessian, i.e. approximated by finite differences, without improvement of the rate
of convergence [Spall, 2000].

Spall’s algorithms are also efficient in the noise-free setting, providing non-
trivial rates of convergence.

Polyak-Tsybakov’s algorithm

[Polyak and Tsybakov, 1990] proposed a method to merge the good properties
of Fabian and Spall’s algorithms - that is a SR in O(n_ﬁ) with only 1 or 2
evaluations per iteration. They update the recommendation following the Kiefer-
Wolfowitz scheme (Eq. 2.14) and estimate the gradient through the use of a ker-
nel:

f()zn + A, (D) - f()zn — A, (l))
2¢cy,

K is a differential kernel. In practice, it is determined by using Legendre
polynomials and A is a random vector uniformly distributed in [—1/2,1/2]¢. With
this method, the algorithm reaches an expected SR in O(n~!) asymptotically for a
wide family of functions, see Theorem 2.3.4.

Theorem 2.3.4 ([Polyak and Tsybakov, 1990], Simple Regret of Polyak-Tsy-
bakov’s algorithm). Assume that the objective function has a unique optimum at
x*(f) and satisfies:

gn=K(A) . (2.22)

1. f has continuous partial derivatives up to order s inclusive, which satisfy
the Holder condition of order o € (0,1];

2. VxR, (Df(x),x —x*) > Aq|lx —x*||%

3. Vx,x eR?

Df(x) =Df(x')|| < Azfx—x'

>

where A and A are finite positive constants, Ay > Ay. Let F denote the family of
functions with a unique optimum satisfying these 3 conditions. Let B = s+ o > 2,
ap, =% andc, = nlﬁ’ c>0,a>(B—1)/2A,B. Assume that the noise is additive,
ie. E(f(x,m) = f(x)), with E(®) = 0 and E(®?) bounded. Assume that %, is
obtained by the Kiefer-Wolfowitz scheme (Eq. 2.14) with Eq. 2.22, it follows:

sup sup nP=V/PE||g, — x* ()| < o (2.23)
n fe#

In particular, when f is smooth enough, we get s(SR) = —(B —1)/B.
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Note that SR is optimal when 8 — oo, i.e. 5§ — +co. In this case, s(SR) can
be made arbitrarily close to —1. The asymptotic rate of convergence is then the
same as for Fabian’s algorithm, but [Polyak and Tsybakov, 1990] results comprise
a larger class of functions: the class s of the function can be odd (whereas s has to
be even in Theorem 2.3.2), and the s’ h derivative has to satisfy Holder’s condition,
but it is not required for it to be bounded.

On the practical side, [Granichin, 2003] investigates optimal values of a and ¢
(constants in the sequences (a,), and (c,)p).

In a setting related to Polyak-Tsybakov’s algorithm and assumptions (see The-
orem 2.3.4), [Bach and Perchet, 2016] provides additional results, generalizing
Theorem 2.3.4. The optimization algorithm in [Bach and Perchet, 2016] follows
the general framework of Polyak-Tsybakov’s algorithm (Egs. 2.14 and 2.22) but
they average the recommendation, which is:

l n
~/ ~ . .
X = X¢ 1n the unconstrained case, 2.24
T ) B (2.24)
B 2 <

k+1)%; in the constrained case. (2.25)

T i D(n+2) k_ZO<

Especially, they provide results directly in terms of Simple Regret and specifty
the dependence in the dimension d. Their method relaxes the conditions on the
kernel K (see Eq. 2.22). They provide explicit optimal values of a, o, ¢ and y
(see Egs. 2.14 and 2.22), depending on the order of differentiability s, the strong-
convexity constant Ay, the 2™ _order smoothness A, and the dimension d (see
Theorem 2.3.4). Notably, they distinguish:

e convex and strongly-convex functions, the latter corresponding to assump-
tion 3 of Theorem 2.3.4. To the best of our knowledge, it is the first analysis
of the con