
NNT : 2016SACLN058

1

Thèse de doctorat

de l’Université Paris-Saclay

préparée à l’ Ecole Normale Supérieure

Paris-Saclay

Ecole doctorale n◦
580

Sciences et Technologies de l’Information et de la Communication

Spécialité de doctorat : Informatique

par

Mme. Marie Van Den Bogaard

Motifs de Flot d’Information

dans les Jeux à Information Imparfaite

Thèse présentée et soutenue à Cachan, le 29 novembre 2016.

Composition du Jury :

Mme Véronique Bruyère Professeur Rapporteur

Université de Mons

M. Sven Schewe Professeur Rapporteur

University of Liverpool

Mme Patricia Bouyer-Decitre Directrice de Recherche Examinatrice

CNRS

M. Arnaud Durand Professeur Président

Université Paris 7

M. Dietmar Berwanger Chargé de Recherche Directeur de thèse

CNRS

M. Laurent Doyen Chargé de Recherche Directeur de thèse

CNRS

Laboratoire Spécification et Vérification
École Normale Supérieure Paris-Saclay, UMR 8643 du CNRS
61 avenue du Président Wilson, 94235 Cachan Cedex, France

Résumé

De plus en plus de tâches informatiques sont effectuées par des systèmes interactifs qui im-
pliquent plusieurs agents distribués, qui n’ont qu’une connaissance locale de l’état global
du système, et leurs propres ressources de calcul. Planifier les actions de ces agents par-
tiellement informés de telle sorte qu’il coopèrent pour accomplir la tâche, et ce quelque
soit le comportement de l’environnement, soulève un important défi de conception, connu
comme le problème de la synthèse distribuée. Ceci motive le désir de mieux comprendre les
mécanismes de l’interaction. Au niveau théorique, deux questions principales émergent:
Qu’est-ce qui rend l’interaction entre agents si difficile à gérer? Et, comment trouver des
solutions correctes au problème de la synthèse distribuée de façon automatique?

Notre travail explore ces questions par le prisme des jeux synchrones sur graphes finis
et à information imparfaite. Les jeux sur les graphes sont une manière puissante de
modéliser les systèmes distribués, car ils capturent des caractéristiques clés des situations
d’interaction. La structure de graphe permet de modéliser des interactions qui impliquent
des choix non-déterministes de l’environnement, et qui se déroulent sur une durée illimitée.
Les actions des agents (joueurs), ainsi que les choix de l’environnement, déterminent l’état
actuel du jeu, qui porte une observation privée pour chaque joueur. L’objectif commun
des joueurs est exprimé comme une condition de gain définissant les séquences infinies
d’états (parties) qui correspondent aux exécutions correctes du système.

Planifier les actions des joueurs pour remplir une condition de gain commune, en dépit
de l’information imparfaite, revient à construire une stratégie gagnante jointe, c’est-à-
dire une fonction qui prescrit une action concrète à choisir pour chaque état possible du
jeu. Le problème de la synthèse distribuée peut être reformulé pour le cadre des jeux en
deux parties: La résolubilité est la question de savoir si, pour un graphe fixé, il existe une
stratégie gagnante commune qui satisfait une condition de gain donnée. L’implémentabilité
est la tâche de construire, en se basant sur des automates finis, une stratégie gagnante,
s’il en existe une. La contribution que l’on présente ici est articulée en trois parties.

Premièrement, on s’intéresse à la question de la difficulté intrinsèque des phénomènes
interactifs, en étudiant une variante de notre modèle général de jeux, les consensus game
acceptors. En considérant une des formes les plus simples de jeu, où les joueurs ont
à s’accorder sur une unique décision simultanée après avoir passivement observé une
séquence finie de symboles produits par l’environnement, en fonction d’un graphe de
corrélation, on montre que, sous hypothèse d’information imparfaite, la condition de con-
sensus est suffisante pour causer l’indécidabilité. En examinant la structure de ce graphe
de corrélation, on obtient un aperçu de la frontière de décidabilité des jeux à information
imparfaite. En utilisant les outils de la théorie des langages formels, on peut classifier

1

la complexité d’exécuter des stratégies gagnantes: On identifie des cas où des instances
de consensus game acceptors requièrent la puissance de calcul des automates à piles non-
déterministes ou des automates linéairement bornés.

Ensuite, on se concentre sur des cas décidables et sur la façon dont l’information est
rendue accessible aux joueurs. On identifie un motif de flot d’information parmi les joueurs
qui assure la décidabilité: l’information hiérarchique. Un jeu est considéré à information
hiérarchique quand l’information à propos de l’historique actuel est accessible aux joueurs
de manière ordonnée, de telle sorte qu’il n’y a pas deux joueurs ayant de l’information
incomparable. On présente trois variantes de l’information hiérarchique: L’information
hiérarchique statique, où il existe une hiérarchie d’information fixe entre les joueurs pour
le jeu entier, l’information hiérarchique dynamique, où la hiérarchie d’information peut
changer au cours d’une partie, et enfin l’information hiérarchique récurrente avec condition
de gain observable, où il peut y avoir des phases à information incomparable, mais avec
la garantie qu’une hiérarchie sera rétablie à nouveau dans le futur. Avec ces variantes, on
élargit le paysage des architectures décidables.

Enfin, on considère une source particulière d’information imparfaite dans les jeux,
qui peut apparâıtre en pratique: les délais. On regarde la situation dans laquelle la
délivrance des signaux aux joueurs n’est pas instantanée, les empêchant de réagir comme
prévu initialement par une stratégie basée sur un système fonctionnant parfaitement. On
montre que sous certaines restrictions du modèle de jeux et pour une classe réaliste de
conditions de gain, un scénario où les signaux sont délivrés avec des délais bornés n’est pas
fatal pour résoudre la synthèse distribuée. Développant la technique de delayed-response
de la littérature de théorie des jeux économique, on élabore une procédure qui prend en
charge la structure de système de transition à états multiples de notre modèle de jeux,
et, en recombinant prudemment des stratégies gagnantes dans les instances de jeu avec
monitorat instantané, construit des solutions au problème de la synthèse distribuée différée
qui préservent les équilibres.

2

Summary

More and more computing tasks are performed by interactive systems that involve several
distributed agents, which have local knowledge about the global state of the system and
their own computing resources. Planning the actions of such partially informed agents so
that they cooperate to complete the task, regardless of the behaviour of the environment,
raises a significant design challenge, known as the distributed synthesis problem. This
motivates the desire to better understand interaction mechanisms. On a theoretical level,
two main questions arise: What makes interaction between agents so difficult to handle?
And, how to find correct solutions of the distributed synthesis problem in an automated
way?

Our work investigates these questions through the prism of synchronous games on
finite graphs with imperfect information. Games on graphs are a powerful way to model
distributed systems, as they capture key features of interactive situations. The graph
structure allows to model interactions that involve non-deterministic choices from the
environment, and that unfold over an unlimited time period. Actions of the agents (play-
ers), along with the choices of the environment, determine the current state of the game,
which carries private observations for each player. The common objective of the players
is expressed as a winning condition defining the infinite sequences of states (plays) that
correspond to correct executions of the system.

Planning the actions of the players to fulfil a common winning condition, despite the
imperfect information, amounts to constructing a joint winning strategy, that is, a function
that prescribes a concrete action to take in each possible state of the game. The distributed
synthesis problem can be reformulated for the game setting in two flavours: Solvability is
the question whether, on a fixed graph, there exists a joint winning strategy that satisfies
a given winning condition. Implementability is the task of constructing, relying on finite-
state automata, a joint winning strategy, should one exist. The contribution we present
is three-fold.

First, we address the question of why interaction is difficult to handle, by studying the
consensus game acceptor variant of the general game model. Considering one of its sim-
plest forms, where players have to agree on only one simultaneous decision after passively
observing a finite sequence of symbols produced by the environment according to a certain
correlation graph, we show that, under imperfect information, the consensus condition is
enough to cause undecidability. Investigating the structure of this correlation graph, we
gain insight about the frontier of decidability of games with imperfect information. By
using tools of formal language theory, we can also classify the complexity of executing
joint winning strategies: We identify cases in which consensus acceptor games instances

3

require the computing power of non-deterministic pushdown automata or linear-bounded
automata.

Second, we focus on decidable cases and the way information is made accessible to the
players. We identify a pattern of information flow among players that leads to decidability:
hierarchical information. A game has hierarchical information when the information about
the current history is accessible to the players in an orderly fashion, so that no two players
have incomparable information. We present three variants of hierarchical information:
Static hierarchical information, where there is a fixed information hierarchy of players
for the whole game, dynamic hierarchical information, where the information hierarchy
can change along a play, and finally recurring hierarchical information and observable
winning conditions, where there can be phases with incomparable information, but with
the guarantee that there will be a hierarchy again in the future. With these variants, we
enlarge the landscape of decidable architectures.

Finally, we consider a particular source of imperfect information in games, that can
arise in practice: delays. We look at the situation where the delivery of signals to players
is not instantaneous, preventing them to react as intended initially by a strategy based
on a perfectly running system. We show that, under certain restrictions on the game
model and for a realistic class of winning conditions, a signalling scenario with bounded
delays is not fatal to solving the distributed synthesis problem. Extending the delayed-
response technique from the economical game theory literature, we design a procedure
that handles the transition state-structure of our game model, and constructs, by carefully
recombining winning strategies from instant monitoring game instances, solutions to the
delayed distributed synthesis problem that preserve the equilibrium outcomes.

4

Acknowledgements

First, I would like to sincerely thank Véronique Bruyère and Sven Schewe, who have had
the kindness to accept the role of reviewers, even though the deadline was short, and
their schedule already full. Merci beaucoup and vielen Dank for your reviews and your
feedback.

Je voudrais aussi bien sûr remercier Patricia Bouyer et Arnaud Durand pour avoir
accepté de faire partie du jury, encore une fois avec un temps limité avant la soutenance,
et des emplois du temps bien chargés. Merci beaucoup Arnaud pour m’avoir toujours
encouragée, depuis ce jour où j’ai débarqué de Caen dans une réunion d’information sur
le LMFI.

Un très grand merci à Laurent Doyen pour avoir accepté d’être mon directeur et à
Dietmar Berwanger pour m’avoir encadrée avec patience et bienveillance. La somme de
tout ce que j’ai appris sous votre houlette dépasse largement le contenu de ce manuscrit.

Ma gratitude vient ensuite aux collègues du LSV, qui m’ont offert un entourage pro-
fessionnel qui m’a permis d’ouvrir mes horizons scientifiques et de profiter d’un quotidien
agréable au laboratoire. Mention spéciale au 4ème et à ses habitants, en particulier à ceux
qui ont partagé mon bureau au fil du temps: Wojtek, Nadime, Emilien, Anup, David,
Karima, Samy et Pierre. Merci à tous les doctorants pour les goûters des moniteurs et
pour les bons moments: Mahsa (I miss our girly time!), Julien, Vincent, Guillaume, Lucca,
Jérémy, Simon, Simon, Nathann, Daniel. Un deuxième très grand merci à Nadime (parce
que trois, c’est trop) et à Guillaume pour m’avoir si souvent écoutée et guidée. Je voudrais
également remercier les personnels administratifs et techniques du LSV, Virginie, Cather-
ine, Thida, Imane, Francis et Hugues pour leur efficacité et leur grande gentillesse. Merci à
l’équipe pédagogique qui m’a permis d’enseigner à Cachan dans de très bonnes conditions
et en confiance, Paul, Serge H., Claudine et Hubert, l’expérience acquise à vos côtés est
précieuse. J’ai bénéficié pendant ces quatre ans de conseils avisés et d’encouragements
dans les moments de doute, qui furent nombreux, et pour cela je voudrais remercier no-
tamment Alain (et ses super formations), Serge A. (et ses pointeurs vers les concours
d’enseignement), Stéphane D. (et sa bienveillance), Thomas et Étienne pour les discus-
sions quasi quotidiennes aux pauses café ou chocolat, mais pas que, et enfin un merci tout
particulier à Stéphanie pour son suivi, ses encouragements et son aide au long cours.

Je n’aurais sûrement pas fini ma thèse si je n’avais pas eu l’opportunité de faire une
quatrième année tout en enseignant à Versailles. Merci infiniment à Florent et Yann pour
m’avoir parlé du poste, à Sandrine et Franck pour m’avoir accueillie au sein du département
et m’avoir fait découvrir le monde merveilleux de l’IN100, ainsi qu’à Thierry pour avoir
été le parfait responsable de cours, ce fut une très belle expérience de travailler avec vous.

5

Merci aux copains qui sont là, envers et contre tout, mais surtout avec moi, votre
amitié me porte, n’en doutez pas. D’abord celles qui sont là depuis la période glorieuse de
l’adolescence, Laura, Asma, Clémence, Juliane, Cécile. Ceux que la fac de maths de Caen
m’aura apportés, Lise, Seb, Anais. Les heureuses conséquences de mon année à Dresde:
Nico, Aurélien, Benôıt, Lucien, Carole, Pedro, Julia. Les parisiens, Maÿlis pour m’avoir
recueuillie rue Esquirol, Schweizer et son élégance de la pensée, Hadrien mon puits de
culture, Maëlle et son dynamisme. À mon déménageur de choc Jocelyn, merci pour tout,
(et surtout pour être aussi ronchon que moi!).

Merci à mon vieux et à ma Maman, notamment pour avoir toujours remis les choses
en perspective. Enfin Rémy, merci d’avoir eu confiance en moi, bien souvent à ma place,
et tout simplement d’être à mes côtés.

6

Contents

Résumé . 1

Summary . 3

Acknowledgements . 5

1 Introduction 9

1.1 Motivation . 9

1.2 Imperfect Information . 10

1.3 Information-Flow Patterns . 10

1.4 Games on Graphs . 12

1.5 Related Research . 13

1.5.1 Asynchronous Setting . 13

1.5.2 Quantitative Games . 13

1.5.3 Stochastic Games . 14

1.6 Outline . 14

1.6.1 Consensus condition . 14

1.6.2 Hierarchical patterns . 16

1.6.3 Delayed monitoring . 17

1.7 Organisation of the Thesis . 17

2 Preliminaries 19

2.1 Context . 19

2.1.1 Church’s problem . 20

2.1.2 Distributed systems . 22

2.2 Games with Imperfect Information . 26

2.2.1 Game graph . 26

2.2.2 Plays and histories . 28

2.2.3 Indistinguishability relation . 29

2.2.4 Strategies . 29

2.2.5 Winning conditions . 30

2.3 Background . 32

2.3.1 The case of perfect information . 32

2.3.2 The case of one player against Nature 35

2.3.3 Distributed games . 38

7

3 Consensus Condition 41
3.1 Consensus Game Acceptors . 42
3.2 Describing Languages by Games . 44

3.2.1 Characterising regular languages . 46
3.2.2 Domino frontier languages . 50
3.2.3 Uniform encoding of domino problems in games 51

3.3 Characterising Context-Sensitive Languages 53
3.4 Consensus and Iterated Transductions . 54
3.5 Consensus Games for Context-Free Languages 58
3.6 Discussion . 63

4 Information Hierarchies 65
4.1 Finite-State Strategies and Automata . 66
4.2 Static Hierarchies . 67

4.2.1 Hierarchical observation . 67
4.2.2 Incorporating perfect recall . 69
4.2.3 Signals and game transformations 71

4.3 Dynamic Hierarchies . 72
4.3.1 Information rank signals . 74
4.3.2 Smooth overtaking . 75
4.3.3 Shadow players . 78

4.4 Transient Perturbations . 79
4.5 Monitored Architectures . 87
4.6 Discussion . 88

5 Delayed Signals 91
5.1 Framework . 92

5.1.1 Repeated games . 93
5.1.2 From repeated games to games with multiple states 97

5.2 Games with Delayed Signals . 99
5.2.1 General model . 99
5.2.2 Instant and bounded-delay monitoring 101
5.2.3 Shift-invariant, submixing utilities 102
5.2.4 The transfer theorem . 103

5.3 Proof . 103
5.3.1 Unravelling small cycles . 103
5.3.2 The Frankenstein procedure . 104
5.3.3 Correctness . 105
5.3.4 Equilibrium condition . 106
5.3.5 Finite-state strategies . 107

5.4 Discussion . 107

Bibliography 109

A Résumé (long) en français 117

8

Chapter 1

Introduction

Interaction between computational agents is an ubiquitous phenomenon in practice. For
instance, on an online booking platform, several independent agents have to cooperate with
one another: a customer, an airline and a hotel. Indeed, the airline and the hotel have
to propose suitable options to the customer, and then proceed to the booking. However,
every agent has a partial view on the situation: the customer has to take decisions despite
the risk of the hotel or airline overbooking, while the hotel and airline do not know their
respective offers, and whether the customer will actually use their service or has alternative
plans that he may prefer in the end. Such systems, featuring several independent agents,
are called distributed systems. One can see that, in these systems, information about the
other agents is crucial, but may be limited due to the infrastructure of the system and each
agent’s partial view of the global system. A natural goal is to be able to coordinate in spite
of the missing information. This implies designing programs to prescribe the behaviour
of the agents, and corresponds to the synthesis problem for distributed systems. In this
work, we investigate distributed synthesis on a theoretical level, on the model of games
with imperfect information and via the analysis of information-flow patterns in different
interactive scenarios.

1.1 Motivation

Situations involving cooperation between several independent agents, which can be mod-
elled as distributed systems, arise in many different contexts. Building systems automat-
ically so that they are correct by design has been a persistent ambition of the computing
science. This raises the desire to better understand the role of imperfect information
in distributed synthesis. Indeed, achieving cooperation under uncertainty is known to be
hard, even undecidable in general [70], and uncovering the intrinsic causes of this hardness
and finding classes of interactive systems for which specifications are enforceable would
let us gain insight on a wide range of design issues and suggest approaches to overcome
them. In this thesis, we address the two following main questions: (1) What makes inter-
action between agents so difficult to handle? (2) And, how to find correct solutions of the
distributed synthesis problems in an automated way?

9

Viewing computation in a broad sense as an interactive process is an approach with
strong roots in the theoretical computer science tradition: The fundamental concept of
alternation, introduced by Chandra, Stockmeyer and Kozen [20] in the early eighties, where
computation steps are attributed to conflicting players seeking to reach or avoid certain
outcome states, relied on determined games with perfect information and gave important
results, notably in automata theory. Concurrently, Peterson and Reif [69] initiated a study
on computation via games with imperfect information, involving teams of players with a
setting highly expressive, but also difficult to comprehend. However, it reveals games as a
central analytic tool for modelling interactive scenarios, and as a framework rich enough
to be interesting in its own right. Throughout this work, we address the questions (1) and
(2) taking the perspective of information-flow patterns.

1.2 Imperfect Information

In distributed systems, information may be accessible only to a limited extent to the agents,
depending on the way agents are connected, the unpredictability of the environment, and
possible implementation failures. Games with imperfect information model the partial
view of the agents on the whole system. There are different reasons that lead to imperfect
information in games, more precisely, we distinguish two main sources of uncertainty :

First, uncertainty can arise from the structure of the distributed system itself. In our
model, it is represented by the graph structure underlying the game. Global states of the
system correspond to positions on the graph, and carry with them private information for
the players in the form of observations. Transitions from one global state to another are
represented by directed edges between positions in the graph, labelled with action profiles.
Outgoing edges labelled with the same action profile but ending at different states account
for the non-determinism induced by Environment/Nature’s influence on the system. These
structural properties allow for uncertainty caused by Nature’s uncontrollable behaviour,
and the limited field of vision of the players.

Second, failures due to the reality of the system execution may arise and cause un-
certainty. In practice, several parameters can indeed alter the planned behaviour of a
distributed system. Communication failures can be, to a certain extent, modelled in the
game framework. Incorporating uncertainty about the delivery of observations is a way
to represent mishaps in the communication process. However, the fact that such failures
occur during the execution phase makes it difficult to embed this possibility directly in
the game graph structure. Thus, we model them at the monitoring level, that is, the
abstract layer that takes care of the time parameter and on how players actually receive
observations throughout a play.

1.3 Information-Flow Patterns

Imperfect information in games allows to model distributed systems in scenarios where
agents are not omniscient. In order to achieve their objective, the agents of such a system
have to cooperate, and that most usually involves sharing or aggregating information, to
overcome the handicap of individual partial knowledge. The way information flows in the

10

system, i.e. how agents receive information from the environment or communicate with
other agents, is critical. Analysing the shape of the information flow in a game lets us
gain insight on the complexity of the strategy synthesis, find decidable cases for distributed
synthesis and alleviate difficulties to synthesise winning strategies under realistic pertur-
bations. Therefore, focussing on identifiable patterns of information flow, we are able to
exhibit classes of games that are representative of different aspects of interaction and its
inherent difficulties. In the development of this thesis, we look at the information flow in
games from three different angles:

Two-directional information flow In the most general case, information can be
gained by any of the players and shared to support the cooperation towards the com-
mon objective. Therefore, the information gathered by individual players impacts the
unfolding of a play. Actually, the extent of this impact is tremendous: It turns out that
uncertainty about the knowledge of partners propagates iteratively, in the sense that a
player, in addition to his own observations, has to take into account the possible obser-
vations of a partner, the speculations of the partner on his knowledge and so on and so
forth. In our model, private observations for the players are attached to the states of
the game, or positions of the graph. Therefore, the graph structure of a game can be
seen as a correlation graph for observations of players. Iterating the relation described by
the correlation graph gives insights about the complexity of solving games and executing
winning strategies.

One-directional information flow Another perspective is to consider the way the
information is distributed among the players. If, in general, distributed synthesis is unde-
cidable, it becomes decidable when information flows in only one direction, that is, when
there exists an order among players from the most informed to the least informed. Indeed,
the fact that a player’s information determines the information of players lower in the
hierarchy eliminates the need to reason about other’s knowledge, and thus the consequent
propagation of uncertainty. In this work, we investigate three patterns of hierarchical in-
formation flow that yield decidability: static hierarchical information, where the hierarchy
is fixed for the whole play; dynamic, where the hierarchy is allowed to change during the
play; and recurring, where ephemeral phases without hierarchy can occur.

Information flow perturbations In practice, even with the most careful system de-
sign, hardware or software failures can happen. The task of designing strategies that would
cope with such imperfect information is challenging, due to the many types of perturba-
tions that can arise at the implementation level. In this work, we look at cases where the
information flow is perturbed by a fault in the mechanism that handles the delivery of ob-
servations to players. Relaxing the assumption that the system is equipped with a perfect
communication infrastructure and that every observation is accessible instantaneously to
players is a way to describe real-life induced imperfect information at the modelling level.
More precisely, we investigate the scenario where players do not receive their observations
instantaneously but with finite delays. It turns out that distributed synthesis for some
relevant classes of games can recover from such perturbations.

11

1.4 Games on Graphs

Our investigation is carried out through the prism of synchronous games on finite graphs
with imperfect information. Games on graphs are a powerful way to model distributed
systems, as they capture key features of interactive situations. We are interested in finite-
state systems, thus we focus on finite graphs. Agents of a distributed system are modelled
by players in a game. Each player has its own finite set of actions and finite set of ob-
servations. The environment behaviour in a distributed system is modelled partly as a
distinguished player, called Nature, and by the way observations are distributed over the
graph structure. The underlying graph represents the transition structure of a distributed
system: nodes correspond to the different states of the system, while edges correspond
to transition between states. Every edge is labelled with an action profile, that is, one
action for each player, that determines, along with the choice of Nature, the next position
on the graph, that is the next state of the game. In our model, we assume that there
is no dead-end : at every state, each action profile leads to a successor state. This finite
graph structure allows to model interactions that involve non-deterministic choices from
the environment, and that unfold over an unlimited time period. Executions of a dis-
tributed system are modelled as a (possibly) infinite alternating sequence of states and
action profiles, or a play. Specifications on the system behaviour are expressed as winning
conditions in the form of !-regular sets of plays. Planning the actions of the players is
done by defining strategies, that is, functions that prescribe an action to take for each
possible play prefix or history. Doing this in a way which ensures that the unfolding play
satisfies the winning condition, regardless of Nature’s choices amounts to defining winning
strategies.

We outlined earlier what imperfect information meant in the context of interactive
systems. In our model, it translates to the notion of observations. Each player has
his own finite observation alphabet, and each state of the game graph is labelled with
an observation profile. This labelling gives rise to observation functions, one for each
player. Upon reaching a state, each player is assumed to receive his part of the observation
profile. Observation functions may not be injective. Some states can look the same to
a player, inducing an equivalence relation on the states set of the graph that we call
the indistinguishability relation. As we also assume the players to have perfect recall,
the indistinguishability relation naturally extends to histories and plays, and this has an
effect on strategies design: Indeed, there may be several histories that look the same for a
player, and, as strategies are functions implemented by deterministic machines, they have
to prescribe the same action to all histories that are indistinguishable to be valid.

Another significant aspect of our model is that it is synchronous: It means we assume
that the system is equipped with a global clock that every component of the system can
refer to and that times the whole execution of the system. In terms of games, it corresponds
to the assumption that every move on the graph happens after each player simultaneously
chooses one action, so that transitions respects the global tick of the system. In addition
to this global clock, we choose to work with a game model where actions of the players are
simultaneous, in the sense that each transition from a state to another is assumed to be
triggered by a complete action profile, with one action per player. This is a convenient and
compact way to represent features of interaction situations under imperfect information.

12

The central problem of distributed synthesis for games with imperfect information is
composed of the following two facets: Solvability is the question whether, on a fixed graph,
there exists a joint winning strategy that satisfies a given winning condition. Implementa-
tion is the task of constructing, relying on finite-state automata, a joint winning strategy,
should one exist.

1.5 Related Research

As distributed synthesis is undecidable in the general case ([69], [70], [82], [47], [77]), great
efforts have been directed towards identifying computationally manageable classes. To
do so, several approaches that involve restricting the way the information flows between
players have been explored ([53], [36], [51], [72], [37]). Furthermore, the wide variety
of scenarios where coordination between independent agents has to be achieved lead to
different settings being investigated.

1.5.1 Asynchronous Setting

Contrary to our model, where players perform their action on a schedule regulated by a
global clock, in the asynchronous case, agents are equipped with their own local clock, and
have to actively synchronise with other agents to perform certain actions. This approach
captures a certain aspect of the reality of designing distributed systems: Indeed, it is often
the case in practice that components do not have access to a shared and reliable clock.
Assuming there is no constraint on the number of actions any agent can make during
an abstract global time unit models this feature well. A consequence of this absence of
an implicit agreement on time is that, in order to accomplish their common goal and
cooperate correctly, agents have to synchronise on shared actions to gain information on
the global state of the system. In this setting, distributed synthesis is decidable only
for systems where at most one process is a black-box [78]. Another approach considers
agents to have causal memory : the schedule of communication can be specified, but the
information transmitted during synchronisation events cannot be limited, as agents gather
and forward as much information as possible about the past. Therefore, a new type of
automata is needed to model the computing processes: the most widely used is the model
of asynchronous automata, or Zielonka automata. These automata have indeed been the
common ground for research on asynchronous systems since their introduction by Zielonka
in [89]. This leads to more decidable classes, such as series-parallel systems [40], well-
connected architectures [41], and, more recently, acyclic architectures [64].

1.5.2 Quantitative Games

In this thesis, we focus on !-regular winning conditions in Chapters 2, 3 and 4, which
are qualitative objectives, in the sense that players either win or lose. However, several
problems involving interaction have a quantitative aspect, for instance when players try
to optimise the value of a certain parameter during an execution of the system, and which
we consider in Chapter 5. Weighted games, where transitions are labelled with weights
or payoffs to evaluate the performance of an action (profile), allow to model this kind of

13

situations [12]. Depending on the problem, the interpretation of the payoffs may vary,
for instance they can represent power consumption levels that players wish to maintain
around a certain value, as in the setting of Energy Games, see [19] or [50], or individual
rewards for players that want to maximise their average payoff in the long run, as in [91]
or [33]. Games with quantitative objectives and imperfect information are hard already for
two players: while in this setting, games with !-regular winning condition are decidable,
mean-payoff games are undecidable in general, and restrictions are necessary to obtain
decidability [31]. As the situations are diverse, the form of the desired solutions can differ:
from the classical Nash Equilibrium [66], to the more refined Subgame Perfect Equilibrium
and Secure Equilibrium concepts, as in [26], [45], [16] or [17]. More recently, one can
cite the approach of [24] that studies the effect of additional time bounds constraints on
quantitative objectives.

1.5.3 Stochastic Games

We stated earlier that, in our model, Nature resolves non-determinism. In fact, we incorpo-
rate non-determinism as an abstraction of the uncontrollable behaviour of the environment
(Nature), but we do not make any assumption on a potential probability distribution over
the space of moves. The stochastic game framework allows to refine the expectation on
Nature’s behaviour by considering the effect of different probability distributions on the
synthesis of winning strategies. The counterpart is that perfect information of the state
is generally assumed. Players are also equipped with stochastic choice functions to im-
plement mixed strategies: while in our setting, a strategy maps a state to an action, a
mixed strategy maps a state to a probability distribution over the actions space. An im-
portant consequence of considering stochastic behaviour is that it allows for variants of the
“winning” objective, introducing for instance the notions of almost-surely winning strate-
gies, that is, strategies that ensure a win with a high probability threshold. For a survey
on concurrent stochastic games with !-regular objectives, see [25], and [21], [46] or [23]
for more recent developments. Stochastic games with quantitative objectives have also
been investigated, see for instance [15]. As we focus on the relation between information-
flow patterns and distributed synthesis under imperfect information, in order to identify
significant correlation between different patterns and the complexity of finding winning
strategies, we choose to keep the model free of stochastic considerations.

1.6 Outline

In this section, we sum up the main contributions of this thesis.

1.6.1 Consensus condition

In a first approach to study interaction mechanisms, we investigate the dependencies
created in the information flow by the observation of players. To do so, we restrict our
general game model to a setting where two players cooperate against Nature and have
to agree on a single yes/no decision after receiving a finite sequence of observations, or
inputs, selected by Nature along the game graph. The winning condition we consider

14

is a consensus condition. The single decision is bound to be taken at designated final
states, each of them associated with a set of admissible decisions, and carrying the same
observation, so that players may not always be able to distinguish between them. The
decision one player has to take at these final states is then not only dependent on what
he has observed as an input, but also on what his partner has seen as his own private
input. As the phase of receiving their input is passive and entirely driven by Nature, no
communication is possible between players during a play. Thus, they have to “deduce” on
their own which information the other player has to guarantee a safe decision, that is a
decision that is both admissible and will be chosen by his partner as well. In our model,
private observations of the players are attached to the states of the game, or positions of
the graph. Therefore, the graph structure of a game can be seen as a correlation graph for
observations. This helps to isolate the role of imperfect information has in the difficulty
of solving distributed synthesis: the uncertainty one player has on the state of the game
propagates on to the other player’s information, which in turn has to be considered by
the first player, and so on. In order to construct winning strategies for each player, the
transitive closure of the indistinguishability relations of both players have to be taken
into account. A second important aspect of these games is that the yes/no decision at
the end of an observation phase actually amounts to accept or reject a finite input word:
We call them consensus game acceptors to reflect that. Once we view consensus game
acceptors as devices to recognise sets of words over finite alphabets, the connection with
formal languages is natural and gives us tools to, first, prove undecidability of distributed
synthesis in the general case, and second, provide a classification of consensus acceptors
games in terms of complexity of executing a winning strategy, by showing correspondence
with classes of formal languages.

The first contribution here is to revisit the classical proof of undecidability of the
distributed synthesis problem by showing a reduction from the emptiness problem for
context-sensitive languages. It gives us insight on the frontier of decidability of games
with imperfect information by identifying cooperation, in the form of consensus, as a cru-
cial criterion that is sufficient to cause undecidability, as the other factors, communication
between players and multiple or infinite decision making during the play, have been elim-
inated from the model. The second contribution is the classification in terms of formal
languages. By using the tools and results of formal languages theory, we show how the
shape of the correlation graph of a consensus game acceptors determines the complexity
of executing a winning strategy for the players. With the help of domino tiling results,
we obtain the correspondence between consensus game acceptors and context-sensitive
languages, and thus with linear-bounded automata. We then refine our classification by
exploiting logical characterisations of formal languages and results on transducers, obtain-
ing correspondence with context-free languages and smaller subclasses as deterministic
context-free languages and Dyck languages. This approach via formal languages repre-
sents a departure from the usual focus on finite-state winning strategies, as we obtain
strategies that can rely on pushdown automata or linear bounded automata to be exe-
cuted.

These contributions are based on the results published with Dietmar Berwanger in the
proceedings of the 19th International Conference on Developments in Language Theory
(DLT 2015) [8], and the corresponding technical report [10].

15

1.6.2 Hierarchical patterns

After looking closely at the consequences of imperfect information on the information flow
in games, we focus on hierarchical information-flow patterns. Hierarchical systems, that is,
systems where the information is distributed among agents in an orderly fashion, forming
a hierarchy from the most informed to the least informed agents, represent a fundamental
case in which the distributed synthesis problem becomes decidable. The fact that each
agent has access to the observations received by agents below in the hierarchy makes
the analysis of the system simpler: intuitively, it is easier to cooperate with agents that
can be simulated with one’s own information. Already in 1979, Peterson and Reif [69]
showed that, for games in this setting, it is decidable—although, with non-elementary
complexity—whether distributed winning strategies exist and that, if so, finite-state win-
ning strategies can be effectively synthesised. Later, the result was extended by Pnueli and
Rosner [70] to the framework of distributed systems over fixed linear architectures where
information can flow only in one direction. Kupferman and Vardi, in [53], developed a
fundamental automata-theoretic approach that furthermore extends the decidability re-
sult from linear-time to branching-time specifications. Lastly, Finkbeiner and Schewe show
in [36] the existence of an effective criterion on communication architectures that guar-
antees the decidability of the distributed synthesis problem: the absence of information
forks, which implies a hierarchical order in which processes have access to the observations
provided by the environment.

In this work, we go beyond the hierarchical observation pattern. We introduce relax-
ations of the hierarchy principle that lead to decidable cases and that are recognisable
with relatively low complexity. More precisely, we first go from hierarchical observation to
hierarchical information by assuming players have perfect recall. In this case, the decid-
ability result is a direct consequence of the one from [70], [53] and [36]. To prove this, we
introduce the tool of finite-state signals and explain how deducing is as helpful as observing
in distributed synthesis problems. Secondly, we relax the (static) hierarchical information
pattern by considering dynamic hierarchical information, that is when the information
order among players changes along a play. We show how to reduce this case to the static
one by using finite-state signals to construct an equivalent shadow game that has static
hierarchical information. Intuitively, in the shadow game, the i-th shadow always plays
the role of the current i-th most informed player in the original game, so that the shadow
players are organised in a static hierarchy. Finally, we introduce recurring hierarchical in-
formation that corresponds to cases where there can be transient phases of perturbations
of the hierarchical information. One can show that, for observable winning conditions,
the distributed synthesis problem is decidable for games with recurring hierarchical in-
formation, by using the information tracking construction from [5]. These new classes
broaden the landscape of decidable games with imperfect information. Furthermore, it
highlights the fact that the game framework is flexible enough to model communication
and information schemes that cannot directly captured by communication architectures,
as we discuss in Section 4.5.

These contributions are based on the results published with Dietmar Berwanger and
Anup B. Mathew in the proceedings of the 13th International Symposium on Automated
Technology for Verification and Analysis (ATVA 2015) [6], and the corresponding technical

16

report [7].

1.6.3 Delayed monitoring

Finally, we shift our focus from looking at uncertainty caused by the structure of a dis-
tributed system itself to investigating the consequences of a source of uncertainty arising
in practice: delays. We consider the case where the monitoring of a game, that is, the
usually abstracted implementation layer that takes care of the players actually receiving
information during an execution, may deliver signals with a finite and bounded delay. We
study the impact of the delayed-monitoring of a game on the distributed synthesis problem:
More precisely, we ask ourselves if delays are fatal to the existence of winning strategies
for games that are solvable in the instant-monitoring setting. The delayed-monitoring case
has been successfully addressed in economical game theory, and we are directly inspired
by the work of Fudenberg, Ishii and Kominers in [38] that presents a transfer result that
allows to construct equilibria-preserving strategies in the delayed-monitoring version of a
game from strategies in the instant-monitoring version. This transfer result relies on the
delayed-response technique, whose key idea is for the players to wait for the maximal delay
before reacting to a signal. This way, it is guaranteed that all the players have received the
information concerning a certain stage of the game, and constructing the delayed-response
strategies amounts to recombine orderly threads of the instant-monitoring game. However,
they work within the framework of repeated games, that correspond to the particular case
of games with one state in our terminology.

In this work, we adapt their technique to games with several states. To do so, we
introduce a new model of synchronous games with imperfect information, where the ob-
servation signals carrying information on the actions of the players are no longer attached
to states, and where delays are modelled. We then present the Frankenstein procedure
that effectively constructs strategies for the delayed monitoring versions of games solvable
in the instant-monitoring case, relying on a reduction of a delayed-monitoring game to a
collection of instances of an instant-monitoring game. We also identify the class of games,
for which this transfer is applicable: games with shift-invariant and submixing utilities.

These results were published with Dietmar Berwanger in the proceedings of the 35th
IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science Foundations (FSTTCS 2015) [9].

1.7 Organisation of the Thesis

In Chapter 2, we introduce the basic concepts and results that are necessary to proceed
to our core work. To start, we briefly recall how synthesis, and later distributed synthesis,
became prominent problems in theoretical computer science. Then, we detail the model
of synchronous games on finite graphs with imperfect information and its links with other
classical game models of the literature. We explicit our model by presenting the different
notions on a simple example. Finally, we state the fundamental results on games on graphs
that are preconditions to obtain the results in the remaining of the manuscript.

In Chapter 3, we restrict our general model so as to simplify the framework as much
as possible. We focus on what we call consensus game acceptors: games with imperfect

17

information on finite graphs for two players against Nature, where players have a unique
decision to take per play, in order to win or lose. They are bound to choose between
accepting or rejecting finite sequences of observations. To win a play, they have to choose
according to the graph structure (some states allow both decisions, while some allow only
one) and in consensus, that is, agree on a common decision. In this chapter, we investigate
the consequences of the information flow from and back to a player, by uncovering how
the indistinguishability relations of each player are intertwined. We present an alternative
proof of the undecidability of distributed synthesis and a classification of consensus game
acceptors in terms of formal languages.

In Chapter 4, after looking closely at the flow of information from and back to one
player, we consider a setting with more classical properties, that is, a game graph were
actions are not limited to some specific final states. The perspective here is a more global
one, as we focus on the way the information is distributed to the players. We investigate
the synthesis of distributed strategies in cases where the information flow is ordered, in
the sense that there exists a hierarchy among players, from the least informed to the
most informed, with no incomparable information sets. We show that these cases lead to
decidability of the distributed synthesis problem, as well as finite-state solutions and show
effective procedures to detect one of the variants of hierarchical information in a game.

In Chapter 5, we consider a perturbation of the information flow that can arise in
practice, as we look at the scenario of signals being delivered to the player with a finite
delay. To do so, we introduce a slight modification of our game model: we shift the
observations from the states of the graph to the edges, and we discuss this change in the
beginning of the chapter. We show that, for a realistic class of winning conditions, this
delayed monitoring is not fatal to the synthesis of winning strategies. Furthermore, we
show that the outcome in the instant monitoring instantiation of a game can be guaranteed
in the delayed monitoring one, thanks to a solution procedure that carefully recombines
and reorganises strategies designed to be winning in the instant monitoring case.

18

Chapter 2

Preliminaries

In this chapter, we present basic notions that will be of use in the following chapters.
We start by a brief historical account of the main problem we study, i.e. the distributed
synthesis problem, before presenting our game model formally, and introducing the basic
results that are the foundation of our work.

2.1 Context

As stated in the introduction of this thesis, a motivation to study games is that they are
a great framework to study interaction. From the original challenge of constructing a
machine able to interact with a human user to the more recent and sophisticated one of
designing complex systems with several components, understanding the underlying mech-
anisms and limitations of interaction has been a source to prolific and ground-breaking
research. Generally speaking, a reactive system describes a system that receives infor-
mation or data released by an external (therefore, possibly uncontrollable) environment,
and has to perform a certain task according to this information, or input. We view the
environment as an external agent of the system and assume the components of the system
to be controllable, which means we can prescribe them a certain way to behave. This
view of a computing system naturally raises several questions. For instance, we may ask
which kind of behaviour we can enforce on the system, both individually, and globally.
Then, the question of how hard it is in terms of computation resources to enforce said
behaviour arises. Furthermore, given a certain task, is it possible to design a system
that will succeed in completing this task regardless of the behaviour of the uncontrollable
environment? Games offer a framework to study these questions. Players model the com-
ponents of the system, Nature models the uncontrollable environment, strategies model
the prescription of behaviours to the controllable players, and winning conditions specify
the desired global behaviour of the system. We present now a brief historical review of
the fundamental (distributed) synthesis problem.

19

2.1.1 Church’s problem

The fundamental, yet simply stated, Church’s problem ([29], [30]) can be described in
this way: Consider a process, that receives an infinite bitstream ↵ as input from its
environment, and has to output, bit by bit, an infinite stream β that satisfies certain
constraints depending of ↵. The task is to design a finite-state procedure that produces, for
any input sequence ↵, an output sequence β that respects the constraints. The key feature
of this kind of systems is that it is reactive. Indeed, the process receives information from
the environment, in the form of an infinite stream of bits that we call input, and returns an
infinite stream of bits that we call output. This communication between the process and
the environment occurs on communication channels. In the case of one process, we only
have two channels: an input channel and an output channel. The desired behaviour of the
system is expressed as a specification, in the form of a logical formula, or a language on
pairs of inputs and outputs. More precisely, in the original setting of Church’s problem,
specification were given as formulae of S1S, the monadic second-order logic over the
successor structure (N,+1). These formulae can also be understood as relations1 over
{0, 1}! ⇥ {0, 1}!. Church’s problem can then be stated as follows: Given a formula
' in S1S that specifies a relation R ✓ {0, 1}! ⇥ {0, 1}!, does there exist a function
σ : {0, 1}! ! {0, 1}! which is computable by a finite-state automaton (with output), such
that (w, σ(w)) 2 R for all w 2 {0, 1}!?

p
↵ β

Figure 2.1: Church’s problem

Example 2.1 (Church’s problem). A reactive system with one process p is represented in
Figure 2.1. The environment sends a infinite bitstream ↵ to the process p, which outputs
an infinite bitstream β.

This problem corresponds to the base case of the synthesis problem. In 1969, Büchi
and Landweber [18] solved Church’s Problem. Their solution is phrased in the automata
theory framework and builds on the fundamental result of McNaughton [60] on the deter-
minisation of Büchi-automata. Their proof methods are quite complicated and we refer
to the tutorial [81], which presents a proof that relies on a game theoretic formulation.
Indeed, it turns out that the relation between input and output given by an instance of
Church’s problem can actually be viewed as the winning condition of an infinite game
for one player (the process) against Nature (the environment). Moreover, a specification
given as an S1S-formula can be transformed into a Muller automaton that accepts pairs
of input and output letter strings. Muller automata can be transformed into parity games,
such that the emptiness of the automata corresponds to the existence of winning strate-
gies in games. This problem is effectively solvable for parity games, as we will see later

1In our context, having ω-regular relations in mind is sufficient.

20

in Section 2.3.1. Furthermore, the Mealy automaton used to prescribe the behaviour of
the process also corresponds to a strategy automaton in the game setting. Thus, we end
up with modelling Church’s problem in terms of games. A key feature of this problem is
that the interaction between the process and the environment is of infinite duration. As a
result, the input and output on which we specify a relation are words of infinite length, or
!-words. In order to satisfy the specification over these infinite input and output, we need
devices that handle them. Muller automata and parity automata are such devices. They
belong to the class of !-automata. Their structure is similar to the one of automata on
finite words, but the acceptance condition has a new form. Instead of looking only at a set
of accepting states, we also allow for more involved conditions that take into account the
infinite length of the words considered. For instance, one may wish to accept the infinite
words that display an infinite number of occurrences of a certain letter. In this case, it
is clear that a reachability condition is not sufficient to witness this property. Therefore,
we extend the classical acceptance conditions of automata on finite words to !-regular
acceptance conditions for automata on infinite words, following [44].

Definition 2.1 (!-automata). An !-automaton is a quintuple A := (Q,Σ, δ, q0, Acc),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q ⇥ Σ ! 2Q is a transition
function, q0 2 Q is the initial state, and Acc is the acceptance component. When the
transition function is of the form δ : Q⇥Σ! Q, that is, for every state v and every letter
a, there exists a unique successor state v0, we say that A is deterministic. A run of A on
an infinite word w = w1w2 · · · 2 Σ! is an infinite sequence of states ⇢ = ⇢0⇢1 . . . such that
⇢0 = q0, and each pair of consecutive states in the sequence respects the transition function
δ : for all i > 0, we have ⇢i 2 δ(⇢i−1, wi) (and ⇢i = δ(⇢i−1, wi) if A is deterministic).

Several !-regular acceptance conditions have been considered, we focus here on two
prominent ones, that use a new ingredient : the infinite occurrence record of a run, that
is the set of states of the automaton that are visited infinitely often in a run on an infinite
word. For a run ⇢ of an !-automaton, the infinite occurrence record is denoted Inf(⇢).

Definition 2.2 (Muller acceptance condition). A Muller acceptance condition for an !-
automaton A is a subset F of the sets of states of A such that an !-word w is accepted
by A if, and only if, there exists a run ⇢ of A on w such that Inf(⇢) 2 F .

Definition 2.3 (Parity acceptance condition). A parity acceptance condition for an !-
automaton A is a colouring c : Q ! {1, . . . , k}, where k 2 N such that an !-word w is
accepted byA if, and only if, there exists a run ⇢ ofA on w such that min {c(q) | q 2 Inf(⇢)}
is even.

We will see later that !-automata are also a great tool for the game-theoretical ap-
proach to infinite duration interaction problems.

The model of finite-state machines (with output) we choose to implement the behaviour
of the process is the model of Mealy automata, that we describe formally in Definition 2.4.
It is a deterministic machine that, on each letter of the input, outputs a letter. It is
equivalent to the model of letter-to-letter transducers, that we use in Chapter 3. They are
also the model used to implement strategies for players in our games, hence we often refer
to them as strategy automata.

21

Other approaches to solving Church’s problem have been taken. A significant alter-
native proof from Rabin [71] relies on tree automata techniques. Instead of considering
computations of the system as words and pursuing a linear approach like we informally
presented above (and the original proof of Büchi and Landweber), Rabin models com-
putations by trees. The tree representation allows to deal directly with the space of all
sequence pairs of input and output sequences.

An important property of the setting of Church’s problem is that the process has
perfect information. It knows every bit of information produced by the environment. In
addition to the restrictions on the specifications, it is a reason why synthesis works well
in this case. When we extend the setting to several processes coordinating to satisfy a
specification, imperfect information may arise. Indeed, it is likely that a process cannot
communicate all the information it receives or produces to all the other processes. In
applications it is often the case that processes do not have a complete view of the state
of the system. Furthermore, when the processes actually have perfect information, the
system can be modelled as a single global process, and reduces to the above presented
setting. This motivates the study of distributed systems with several processes.

2.1.2 Distributed systems

When the reactive system is composed of more than one process, there is a need to
model the communication between processes formally, namely to introduce communication
architectures. We have already seen what a process, input and output communication
channels are. We extend now these notions to the case of several processes.

A distributed system D = (A, (Σc)c2C) with a set of n+1 processes P = {p0, p1, . . . , pn}
is a pair composed of a communication architecture A and a family of finite communication
alphabets (Σc)c2C , where

• A communication architecture A has the form (C, r, w) with:

– C is a finite set of communication channels,

– each channel c 2 C has its own finite communication alphabet Σc,

– r : C ! P is a read function that assigns a unique reading process to each
communication channel,

– w : C ! P is a write function that assigns a unique writing process to each
communication channel.

For a channel c 2 C, we require that r(c) 6= w(c), that is, there is no communication
“self-loop”. Furthermore, as each communication channel has its communication alphabet,
we can also define the input alphabet of a process p as

S
{Σc | r(c) = p} and its output

alphabet as
S
{Σc | w(c) = p}. The set P = {p0, p1, . . . , pn} can be partitioned into

Pcon = {p1, . . . , pn}, which are the processes forming the grand coalition, and p0, which
represents the environment. The communication architecture A can also be represented
as a finite directed graph, where the vertices correspond to processes, and edges are used
to model the communication channels, and this presentation is the one we use here.

22

p1
↵ β

p2
↵0 β0

Figure 2.2: A communication architecture with two parallel processes

Example 2.2 (Two parallel processes). A distributed system with two parallel processes
p1 and p2 is represented in Figure 2.2. By parallel it is meant that the two processes do
not have any communication channel between them. The environment sends a infinite bit
stream ↵ to the process p1, which outputs an infinite bit stream β. At the same time, the
environment sends a infinite bit stream ↵0 to the process p2, which outputs an infinite bit
stream β0. Here, the communication alphabets are {0, 1}.

The synthesis problem

The synthesis problem for distributed systems can be stated as follows: Given a distributed
system D and an !-regular specification L, does there exist an implementation profile for
the processes?

Pnueli, Rosner in their seminal paper Distributed Systems are hard to synthesize [70]
showed that the synthesis problem for two processes and an environment is undecidable,
already for safety specifications, that is, specifications requiring the system avoids certain
states throughout its execution. They show how to reduce the Halting Problem to the
distributed synthesis problem for a system with only two processes in parallel, as in Fig-
ure 2.2, and a safety specification. It follows that the synthesis problem is undecidable in
the general case.

On a positive side, there are some decidability results. In [70] again, Pnueli and
Rosner introduced the pipeline architectures, depicted in Figure 2.3, and showed that
the synthesis problem for this restricted type of distributed systems is decidable, however
non-elementarily, for LTL specifications. The key feature of these pipelines is that the
information flow is ordered, namely that the first process to receive information has at
least as much information as the second, and so on, so that no new information ignored by
the first process arises in the computation line. In the end, the pipeline could be viewed
as a single process where the different tasks are restricted to be performed with a certain
amount of information.

In [53], Kupferman and Vardi extend this decidability result to branching time speci-
fications, looking at executions in the form of trees and no longer as paths. They present
three classes of communications architectures for which the synthesis problem is decidable
for branching time specifications. First, two classes where the processes are linearly or-
dered, namely, pipelines in the sense of Pnueli and Rosner [70] or one-way chains, two-way

23

p1
↵

p2
β

. . .
⌘

pn
⌧ ⌫

Figure 2.3: An architecture with linearly ordered processes, or pipeline

p1
↵

p2

β

⌘

p3

⌘

⌧

p4

⌧

λ

p5

λ
⌫

⇢

Figure 2.4: A two-way chain with five processes

chains, where the information is allowed to flow back and forth from the process that re-
ceives input from the environment, as in Figure 2.4. Second, one other class is presented,
where processes are organised in a cyclic way: one-way rings architectures, that are simi-
lar to one-way chain but where the last process has a communication channel to the first
process, as in Figure 2.5. To prove that the synthesis problem for these three classes of
architectures is decidable, they rely on alternating tree automata. They successively apply
projection and re-shaping transformation operations on alternating tree automata to first
consider the possible behaviours of the system according to the most informed process to
then prune the possibilities according to the processes below in the hierarchy. The key
property of these three classes of architectures is that the environment provides input to
only one process in the architecture.

In [62], Mohalik and Walukiewicz take a game-theoretical approach to the distributed
synthesis problem by encoding directly instances of the problem in a so-called distributed
game. Processes are modelled as players that have to cooperate against an hostile environ-
ment. While communication channels between processes can be explicitly represented in
communication architectures, here players have no explicit means to communicate among
themselves, and any such communication has to take place through the environment. Each
player has only a local view of the global state of the system, hence it has access to its
own local history to build its local strategy. In this setting, a distributed strategy is then

p1
↵

p2
β

. . .
⌘

pn
⌧ ⌫

⇢

Figure 2.5: A one-way ring

24

a collection of local strategies, one for each player. On the other hand, the environment
has access to the global history of the game. A play is an alternating sequence of moves
of the players and of the environment. Solving the distributed synthesis problem for the
original architecture and specification amounts to finding a distributed winning strategy
for the game. Players need to communicate implicitly while making their moves, which is
to compare with our framework (see Section 2.2), where communication between players
is also implicit, in the sense that their choice of actions may trigger different observations
for their fellow players, who can then deduce information on the global state of the game.
However, the game they construct to model the distributed synthesis problem instance al-
lows for dead-end in the graph game. Furthermore, it is a sort of product game assembled
from local games for each player, where environment moves are more liberally designed
in order to let implicit communication among processes happen, according to the original
architecture communication channel. The authors show two simplification theorems to
reduce the number of players and the amount of nondeterminism in a game to obtain
an equivalent game, in the sense that there exists a distributed winning strategy in the
original game if, and only if, there exists one in the simplified game. The original game
is either simplified to the setting of one player against the environment, or to the setting
where the environment has no choice of moves, both of which are decidable cases for the
distributed synthesis problem. Their technique is sufficient to cover the decidable cases of
distributed synthesis mentioned above.

Lastly, in [36], Finkbeiner and Schewe extend Kupferman and Vardi’s ([53]) work by
providing a criterion for characterising architectures with decidable synthesis problem :
the absence of information forks. Intuitively, an information fork in an architecture is a
situation where the information flow is split up between two processes: as in Figure 2.2
where the environment communicates with two distinct processes. Intuitively, there is
a point in the architecture where the order in information levels is lost. Their proof
method for the decidability of the synthesis problem for architectures that do not display
any information fork uses similar alternating tree automata techniques to Kupferman
and Vardi. The undecidability of the synthesis problem for architectures that display an
information fork uses a new reduction of the Halting Problem to the synthesis problem.
In fact, an information fork can be seen as a sub-architecture of the full communication
architecture considered, where two independent processes receive information from the
environment and cannot fully deduce the information the other process received.

As we have seen with the approach of [62], games with imperfect information have
already been successfully used to model the intricate interactions that one can find in dis-
tributed systems. It actually subsumes the model of communication architectures, as we
will suggest in Chapter 4. In a few words, the communication between players in games
is implicit because it is embedded in the graph game structure, while it is explicit in
architectures, which display communication channels. Furthermore, this implicit commu-
nication structure in games allows for more flexibility in design: while in communication
architectures, the Environment is an uncontrollable agent, which can send any input to
processes, which can read from it, in games, although Nature handles non-determinism,
its range can be limited via the game graph structure, allowing for finer and more liberal
designs of distributed systems. We choose this game-theoretical approach to investigate

25

further these interactive systems and their properties. We now turn to the core model
used in this work: synchronous games on finite graphs with imperfect information.

2.2 Games with Imperfect Information

We consider a set I = {1, . . . , n} of players and a distinguished agent called Nature. Each
player i has her own finite set of actions Ai and her own finite set of observations Bi. A
list of n elements (xi)i2I , one for each player i, is called a profile. The set of all action
profiles is A =

Q
i2I

Ai. The set of all observation profiles is B =
Q
i2I

Bi.

2.2.1 Game graph

A game graph is a structure G = (V,E, (βi)i2I , v0), where:

• V is a finite set of states;

• E ✓ V ⇥A⇥V is an edge relation, representing transitions from one state to another
triggered by an action profile;

• βi : V ! Bi is the observation function for Player i, mapping every state v 2 V to
an observation b 2 Bi;

• v0 2 V is the initial state.

We assume that for every state v and every action profile a, there exists a successor
w 2 V such that (v, a, w) 2 E.

Example 2.3 (A game graph with two players against Nature). Consider the graph G of
Figure 2.6. It is a game graph for a game with two players against Nature, with action
sets A1 = A2 = {L,R}. The states carry their name as a label. The initial state is v0.
Edges carry action profiles as labels. For instance, at state vL, if the first player chooses
action L and the second chooses action R, the successor state is vC . For readability, we
do not draw several edges whenever multiple action profiles link the same pair of states,
but label one edge with the possible action profiles. For instance, from state vL, if the
players choices of actions yield the profile R|L, the successor state is also vC . Furthermore,
when every action choice of one player yield the same successor state, we use the symbol
⇤ instead of listing every profile possible, as in the transition from vC to ⊕, where the
choice of the second player does not matter: both L|L or L|R yield ⊕ as the successor
state. Similarly, at state ⊕, players enter a loop, regardless of the profile of actions played,
hence the self-loop is labelled with ⇤|⇤.

Nature plays a role: whenever there is more than one transition from a state with the
same action profile, the successor state is selected by Nature. This is the case at the initial
state v0. In fact, any action profile can lead to vL or vR. Recall now the definition of a
game graph: in addition to the states and edge relation, a game graph is given with a
profile of observation functions, one for each player. The observation function βi : V ! Bi

26

v0

vL vR

v0L vC v0R

⊕

⇤|⇤ ⇤|⇤

L|L, R|R

L|R,
R|L

L|L,
R|R L|R, R|L

⇤|⇤ L|⇤ R|⇤ ⇤|⇤

L|L
⇤|⇤ R|⇤, ⇤|R

Figure 2.6: Example of a game graph with two players against Nature

describes the (maybe partial) view of Player i on every state v 2 V . Therefore, even if the
observations for the players are not explicitly defined as part of the state names, they are
state-attributes, and we represent them attached to the states like in Figure 2.7. On the
left side of the name state appears the observation of the first player on this state, and on
the right side appears the observation of the second player. The state name component has
a grey background as a reminder that it is not observed by the player, unless mentioned
otherwise.

The game graph presented in Figure 2.6 corresponds to the case where the observation
sets of the players are B1 = B2 = {◦}, in other words, all states look the same to both
players. Their observations are not represented, as they are irrelevant.

27

◦ v0 ◦

◦ vL ◦ • vR ◦

◦ v0L ◦ • vC • ◦ v0R ◦

◦ ⊕ ◦ ◦ •

⇤|⇤ ⇤|⇤

L|L, R|R

L|R,
R|L

L|L,
R|R L|R, R|L

⇤|⇤ L|⇤ R|⇤ ⇤|⇤

L|L
⇤|⇤ R|⇤, ⇤|R

Figure 2.7: Example of a game graph with two players against Nature

2.2.2 Plays and histories

A play on a game graph G proceeds as follows: Starting from the initial state v0, all
n players choose simultaneously and independently an action ai1 from their set Ai. The
action profile a1 = (ai1)i2I yields a set {(v0, a1, v) | (v0, a1, v) 2 E} of possible edges
according to the edge relation E. Among these, Nature picks an edge that determines the
next state v. Each player receives a private observation βi(v) of the successor state. The
play then continues from v onwards, following the same three steps: the players choose an
action profile, Nature picks an edge, and the players receive their observation. We call an
iteration of these three steps a round of the game, and an edge (v, a, v0) 2 E, composed
of a starting state, an action profile and a destination state is called a move.

Formally, a play is an infinite2 sequence ⇡ = v0v1v2 · · · 2 V !, such that, for all ` ≥ 0,
there exists a move (v`, a, v`+1) 2 E. A history is a finite prefix v0v1v2 . . . v` 2 V ⇤ of
a play. The number ` of rounds played in a history is referred to as its length. The
set of all histories in the game graph G is denoted Hist(G). We extend the observation
functions βi from edges to plays by setting βi(⇡) = βi(v0)β

i(v1)β
i(v2) . . . , and we call

βi(⇡) the observed play of Player i. We define similarly the observed histories of Player i

and write Histi(G) := {βi(⇡) | ⇡ 2 Hist(G)} for the set of observation histories of Player i.

2Finite plays can also be considered, as in Chapter 3, without much change: it is sufficient to specify
the winning condition as regular sets rather than ω-regular sets.

28

2.2.3 Indistinguishability relation

Two plays ⇡ and ⇡0 are indistinguishable for Player i if βi(⇡) = βi(⇡0). In this case, we
write ⇡ ⇠i ⇡0. Similarly, two histories are indistinguishable if the corresponding observed
histories are the same.

Example 2.4 (Playing on G). Consider the graph G of Figure 2.7. The infinite sequences
of states ⇡ = v0vLvC ⊕ . . . and ⇡0 = v0vRvC ⊕ . . . are plays on G. The finite prefixes
⇡2 = v0vLvC and ⇡0

2 = v0vRvC of ⇡ and ⇡0 are histories of length 2 . Observed histories
are β1(⇡2) = ◦ ◦ •, β1(⇡0

2) = ◦ • • for the first player, β2(⇡2) = ◦ ◦ • = β1(⇡0
2) for the

second player. The first player can distinguish the two histories, while, for the second
player, the observed histories of ⇡2 and ⇡0

2 are equal: Hence, ⇡2 ⇠
2 ⇡0

2, the two histories
are indistinguishable for the second player.

2.2.4 Strategies

A strategy for Player i prescribes an action in Ai at every history, such that any two
indistinguishable histories yield the same action. Formally, a strategy for Player i is a
mapping si : V ⇤ ! Ai, that is information-consistent : for any two histories ⇡, ⇡0 such
that ⇡ ⇠i ⇡0, we have si(⇡) = si(⇡0). Clearly, strategies extend to observed histories as
well. The set of all strategies for Player i is called Si, and S denotes the set of all strategy
profiles. A play v0v1v2 . . . follows a strategy si 2 Si if, for every ` ≥ 0, it holds that
ai`+1 = si(v0v1v2 . . . v`). Similarly, a play ⇡ follows a strategy profile s 2 S if it follows
the strategies si of all players. The plays that follow a strategy profile s are called the
outcomes of s.

As suggested in the previous section, we use Mealy automata to describe finite-state
strategies.

Definition 2.4 (Mealy automaton). A strategy automaton, or Mealy automaton has the
formM = (M,B,A,m0, µ, ⌫), where:

• M is a finite set of memory states with a designated initial state m0,

• B is a set of observations,

• A is a set of actions,

• µ : M ⇥B !M is a memory update function,

• ⌫ : M ⇥B ! A is an action choice function.

The strategy computed byM is the function fM with

fM(q0, . . . , qk) = ⌫(µ(m0, q0q1 . . . qk−1), qk) for k ≥ 1.

Notice that a Mealy automaton is a deterministic automaton, as memory update and
action choice are functions. Concretely, a Mealy automaton implements a strategy for a

29

player by prescribing an action based on the observation received by the player on the last
transition in the game graph, and the current state of the memory. The computational
power of such a strategy automaton is limited, as the memory set M is finite. This is the
kind of strategies we are mostly interested in finding as solutions for distributed synthesis
problems.

Definition 2.5 (Finite memory strategies). For a game G, a strategy si for a player i is
said to be finite memory, or forgetful, if there exists a Mealy automaton that implements si.
A strategy profile s is finite memory if all its elements are finite-memory.

We distinguish the particular case of memoryless strategies:

Definition 2.6 (Memoryless strategies). A strategy s for a player i in a game G is mem-
oryless, or positional, if there exists a function f : V ! Ai that implements s: for any
history v0, . . . , v` of the game, s(v0, . . . , v`) = f(v`).

Informally, a strategy is memoryless if it relies only on the last observation received
to prescribe the next action and thus, there exists a Mealy automaton that implements σ
such that its memory states set M is a singleton.

2.2.5 Winning conditions

A winning condition on a game graph G is a set W ✓ V ! of plays on G. We first give
three examples of winning conditions.

• A safety condition is specified by a set F ✓ V of safe states. A play is winning if all
states occurring in it belong to F .

• A reachability condition is specified by a set F ✓ V of target states. A play is
winning if there exists a state in F that appears in it.

• A parity condition is specified by a priority function Ω : V ! N. A play ⇡ is winning
if (min {Ω(v) | v 2 Inf(⇡)}) ⌘ 0 mod 2, that is, if the minimal priority occurring
infinitely often is even.

Finally, a game G = (G,W) consists of a game graph G and a winning condition W .
A play ⇡ is winning if ⇡ 2W . A strategy profile S is winning if all plays following S yield
plays that are winning. We say that a game is solvable, if there exists a winning strategy
profile.

30

Example 2.5 (Winning a game). We consider the game G1 = (G,W1) consisting of the
game graph G of Figure 2.7 and the reachability winning condition W1 with the target
set F = {⊕}. The plays ⇡ = v0vLvC ⊕ . . . and ⇡0 = v0vRvC ⊕ . . . are both winning
plays. They are both outcomes of the strategy profile s = (s1, s2) such that, for all v 2 V ,

s1(v) =

(
L if β1(v) = ◦

R if β1(v) = •

and,

s2(v) =

(
L if β2(v) = •

R if β2(v) = ◦

Notice that s is a positional, or memoryless, strategy profile: for each player, the action
prescribed by their strategy depends only on the observation on the current state. The
strategy profile s is moreover winning: ⇡ and ⇡0 are the only outcomes of s, and they are
winning plays.
We consider now the game G2 = (G,W2) consisting of the game graph G of Figure 2.7
and the safety winning condition W1 with the safe set F = V \ {vC}. The plays ⇡ =
v0vLv

0
L ⊕ . . . and ⇡0 = v0vRv

0
R ⊕ . . . are both winning plays. They are both outcomes

of the memoryless strategy profile s = (s1, s2) such that, for all v 2 V ,

s1(v) =

(
L if β1(v) = ◦

R if β1(v) = •

and,

s2(v) = L

The strategy profile s is moreover winning: ⇡ and ⇡0 are the only outcomes of s, and they
are winning plays.

31

2.3 Background

Throughout this work, we are interested in the two flavours of the distributed synthesis
problem for games with imperfect information:

1. Solvability: For a given game, does there exist a joint winning strategy?

2. Implementation: Construct a winning strategy, if any exists.

In this section, we present the background notions and results that will be useful in
the three following chapters.

2.3.1 The case of perfect information

The study of interaction mechanisms first considered a setting where information is per-
fect, meaning that players always know the current state of the game.3 In fact, perfect
information games form a special case of games with imperfect information that is easier
to handle. They are well studied in the literature and we present here the key results, that
involve notions that are also relevant to the imperfect information case. In the remaining
of this section, a game G is a game between two players with perfect information.

The classical notion of determinacy is significant:

Definition 2.7 (Determinacy). We say that a class C of two-player games is determined
if, for each game G 2 C, either the first or the second player has a winning strategy.

Notice that the definition is stated for a setting of two adversarial players, and so will
the remaining results. As we consider in our model a coalition of players that cooperate
against Nature, one can see this two-player with perfect information setting as the case
of one player against Nature, where the player has perfect information about the play,
namely, about the edge Nature chooses at each step. However, we do not consider Nature
to be intrinsically hostile to the player, but rather to be a passive player, and the player
needs to achieve his goal against all possible behaviours of this passive player. In this
sense, it is clear that, even if we do not acknowledge the notion of strategy of Nature, nor
try to construct any, determinacy is relevant as well in this context. Indeed, if a class of
two active player games with perfect information is determined, then its one-player against
Nature variant is also determined, in the sense that either the first player has a winning
strategy against the second player, and thus this strategy is also winning against Nature,
or the second player has a winning strategy, and thus the first player cannot prevent the
case of Nature playing according to this strategy, therefore he has no winning strategy.
For more considerations on the role of Nature as a passive player, see for instance the
reflexion of Walliser in [87].

In the previous section, we presented the general model used in this thesis: synchronous
games with imperfect information and simultaneous moves. However, simultaneous moves
intrinsically generate imperfect information, in the sense that, after a move, a player

3Action profiles are not considered as part of the play: as the players are assumed to cooperate against
Nature towards a common objective, there is no need to monitor the actions specifically. Things change
when considering non purely cooperative players, see Chapter 5.

32

may not be able, upon receiving his observation on the new state, to distinguish the
exact influence of every other player on this move, as different action profiles may trigger
the same transition. Therefore, it seems that it only makes sense to speak of perfect
information for games that are turn-based, that is, games where players choose their actions
one after the other, so that the effect of an individual action is not hidden by other
simultaneous actions. As we said earlier, the games we consider in this section correspond
in fact to games for one player against Nature. In this case, there is no concern about
the concurrency of the actions choices, as Nature is understood as the non-determinism
resolver: it chooses a transition among the set of candidates that are labelled by a complete
action profile. In this sense, a game in our model for one player against Nature can be
seen as a turn-based game.

As a first result, we consider the reachability condition:

Theorem 2.1. The class of reachability games is determined.

A way to show the determinacy of reachability games of perfect information is to use
the Attractor construction. The idea is to compute the winning regions of the players
inductively: Starting from the target set of the first player as his attractor, one adds to it
the states that allows to reach the target set in one round. Considering the set obtained,
one continues to add states that allow to reach the current attractor in one round, and
so on until no state can be added anymore. From any state in this final attractor set,
the first player can force the successor state to stay in this set, and to eventually reach
his target set. The set computed then corresponds to the winning region of the first
player, and its complement to the winning region of the second player. For details on
the construction, see [44]. Furthermore, from the attractor’s construction, one can easily
extract a memoryless winning strategy, as every iteration of the construction requires
the attractor to be reachable in one round. Thus, reachability games are memoryless
determined, that is, the winning player has a memoryless winning strategy.

Notice that the safety condition is dual to the reachability condition in the following
sense: Consider a safety game G with the safe set for player 1 being F ✓ V . Consider now
the reachability game G0 played on the same graph as G but with the target set for player
1 being V \ F , and where the roles of the player are switched. Player 1 has a winning
strategy in G if, and only if, player 2 has a winning strategy in G0: Clearly, if player 1 can
maintain the play in F in G, then he cannot force the play to go outside F , that is, to V \F
in G0, where he has the same actions available as player 2 in G. Thus, the determinacy of
safety games follows from the determinacy of parity games.

We now turn to the remaining !-regular winning conditions. Many determinacy results
for classes of games rely on proofs that reduce the considered winning condition to a parity
condition, for which the determinacy is easy to obtain. We list here the results that lead
to determinacy for games with !-regular winning conditions.

Recall the definition of a parity winning condition: from a colouring function of finite
range c on the states of the game graph, we restrict winning plays to the ones where
the minimum colour number among the states appearing infinitely often in the play is
even. Another important winning condition that uses a colouring of the states is the

33

Muller condition. It corresponds to the accepting condition of Muller automata presented
earlier:

Definition 2.8 (Muller winning condition). A Muller winning condition for a game G
equipped with a colouring function c : V ! C, where C ✓ N, is specified by a subset
F ✓ P(C). A play ⇡ in G is then winning if Inf(c(⇡)) 2 F .

It turns out that Muller winning conditions subsume all !-regular winning conditions,
in the following sense:

Theorem 2.2 (Zielonka [90]). For any game G with an !-regular winning condition, there
exists a Muller game G0 on the same graph and with the same colouring function such that
Player i has a winning strategy in G if, and only if, he has a winning strategy in G0.4

Furthermore, parity winning conditions subsume Muller winning conditions:

Proposition 2.1. For every Muller game G with set of states V there exists a parity
game G0 with set of states V 0 and a function r : V ! V 0 such that Player i has a winning
strategy in G if, and only if, he has a winning strategy in G0.

A key tool to handle Muller games is the Latest Appearance Record technique, LAR
for short, introduced by McNaughton in [59]: Intuitively, the idea is to keep track of the
states visited in a play, as well as the order in which they were last visited, by maintaining
an ordered list of states and an index to record the last permutation in the order, to
account for the Muller winning condition that describe the possible sets of infinitely often
occurring colours that specify winning plays.

Now that we know that any game with an !-regular winning condition can be re-
duced to an equivalent game with a parity condition, it remains to show that the class of
parity games is determined. This is a classic result that can be found in several places
in the literature. For instance, Emerson and Jutla, in [34] presented a proof involving
the techniques of µ-calculus. In [63], Mostowski also obtains the result of parity games
determinacy. Finally, Zielonka shows, in [90], that, by effectively computing, in a similar
manner than the Attractor construction used to show determinacy of reachability games,
the winning regions of the players and showing they partition the state space, memoryless
determinacy of parity games.

Theorem 2.3 ([90], [34], [63]). The class of parity games is memoryless determined.

With the Theorem 2.2 and Proposition 2.1, we obtain:

Corollary 2.1. The class of !-regular games is determined with finite memory.

Remark. In this work, we focus on !-regular winning conditions and we have seen that
games with perfect information are determined in this case. In his paper [58] of 1975,
Martin showed that games with perfect information and Borel winning conditions are

4Note that the winning strategy for G and the winning strategy forG0 are most likely quite different.
The theorem states that the existence of winning strategies for G and G

0 are equivalent, but does not
specify how to get one from the other, if at all possible.

34

◦ v0

◦ v21 ◦ v31

◦ v22 ◦ ◦ v32

• ⊕ ◦ v33

L, R L, R

L R R L

R

L

L, R

R

L

R
L, R

L

Figure 2.8: Example of a game graph with one player against Nature

determined. As all !-regular winning conditions are Borel sets, the determinacy result for
games with !-regular winning conditions can also be seen as a consequence of Martin’s
result. Furthermore, by relying on the axiom of choice, thus in a non-constructive manner,
to consider non-Borel sets as a winning condition, it is possible to design games with perfect
information that are not determined, as shown by Gale and Stewart in [39].

2.3.2 The case of one player against Nature

Let us now turn to the setting with imperfect information. The case of one player against
Nature has to be dissociated from the multiple player setting: indeed, even with imperfect
information, the problem of deciding if the player has a winning strategy in a game is
decidable, while the existence of a distributed winning strategy is undecidable, as we will
see in the next section.

Example 2.6 (Counting modulo 6 game). Consider the game graph of Figure 2.8 together
with a reachability winning condition and target set F = {⊕}. It is a game for one player
against Nature with imperfect information: for instance, at the initial state v0, the player,
whether he chooses action L or R, lets Nature choose between v21 and v31, and receives
the observation ◦ in both cases. The set of winning strategies clearly consists of the
strategies that prescribe the player to play L for a number of rounds that is equal to a
common multiple of 2 and 3 after the first move. Indeed, the game graph is designed
so that after the first move, the player does not know if the current state is in the 2-
cycle formed by the states {v21, v

2
2} or in the 3-cycle formed by the states {v31, v

3
3, v

3
3}.

Since the only way to reach ⊕ is to play R at v22 or v33, and that playing R elsewhere
in the cycles leads to the sink , the player has to ensure the current state is v22 or v33
to play R and win the game, thus, wait, by playing L for any multiple of 6 after the

35

first round, before playing R. Let M = (M,B,A,m0, µ, ⌫) be the Mealy automaton
with memory set M = {m0,m1,m2,m3,m4,m5,m6}, observation set B = {◦, •}, action
set A = {L,R} and such that: µ(m0, •) = m0 and µ(m0, ◦) = m1, for 1 i 5,
µ(mi, ◦) = µ(mi, •) = mi+1, and µ(m6, ◦) = µ(m6, •) = m0 ; ⌫(m0, •) = ⌫(m0, ◦) = L,
for 1 i 5, ⌫(mi, ◦) = ⌫(mi, •) = L, and ⌫(m6, ◦) = µ(m6, •) = R. M implements the
finite memory winning strategy s that makes the player play L for seven rounds before
playing R and reach ⊕, and then play L forever.

We have seen a game with imperfect information for one player against Nature for
which it is easy to see that the synthesis problem has a positive answer. In fact, in 1984,
in [73], Reif has studied and solved the synthesis problem for the case of one player:

Theorem 2.4 ([73]). The problem of deciding whether the player in a game with imperfect
information has a winning strategy is ExpTime-hard.

The approach of Reif consists of eliminating imperfect information by constructing an
equivalent game with perfect information, for which the synthesis problem is decidable,
as games with perfect information are determined. Informally, the game with perfect
information is constructed from the original game with imperfect information in a way
that resembles the powerset construction used to determinise finite automata: The states
of the game with perfect information consist of the subsets of states that the player cannot
distinguish in the original game, that is, his information sets.

Example 2.7 (Knowledge-set construction). We illustrate the knowledge-set construction
idea on the Counting game example of Figure 2.8. The associated knowledge game of
perfect information is depicted in Figure 2.9: The states of the graph game correspond
to set of states of the original game, according to the indistinguishability relation defined
by the observations distribution: for instance, after the first move in the Counting game,
the player does not know if the state is v21 or v31, since the observation he receives is ◦ in
either case. Therefore, in the knowledge game, the information set {v11, v

3
1} becomes the

only successor state of the initial state v0. The whole knowledge game is constructed in
this manner: there exists a transition (C, a, C 0) in the knowledge game if, and only if, in
the original game, for every state q0 2 C 0, there exists a state q 2 C such that (q, a, q0) is
a transition and all states of C 0 yield the same observation. The observation function in
the resulting game is the identity function. (This is represented in the picture by the fact
that the state names are written on a white background.) Thus, the resulting game has
perfect information. Furthermore, the player has a winning strategy in the original game
if, and only if, he has a winning strategy in the knowledge game. For instance, consider
the strategy sK for the knowledge game such that

s(q) =

(
R if q = {v22, v

3
3}

L otherwise

Notice that sK is a memoryless winning strategy, as it can be implemented by the Mealy
automatonMK = ({m0}, B

K , A,m0, µ
K , ⌫K) such that its observation set is equal to the

set of states of the knowledge game. The strategy sK actually corresponds to the winning
strategy s constructed in Example 2.6, and, as we have hinted in Example 2.6, winning

36

{v0}

{v21 , v
3
1} {v22 , v

3
2} {v21 , v

3
3} {v22 , v

3
1} {v21 , v

3
2} {v22 , v

3
3}

{ ⊕ }

{ }

L, R

L

R

L

R

R

L

R

R

L

R

R

L

R

R

L

L R

L R

Figure 2.9: Perfect information game obtained by the knowledge-set construction

strategies in the original game require memory, to count the number of rounds after the
initial one.

37

2.3.3 Distributed games

As we already pointed out, involving more than one player in a game with imperfect in-
formation increases greatly the complexity of the decision problem. Actually, the problem
turns out to be undecidable, and even when it is decidable, the construction problem is
far more complex.

In [69], Peterson and Reif5 establish the fundamental results about games with imper-
fect information and several players. They present a classification of these games in regards
of their specific rules and a correspondence with computing models. They generalise the
alternation machines of Chandra, Kozen and Stockmeyer [20], to multiple person alter-
nation machines to model interaction among several agents. In our setting, alternation
machines correspond to games of one player against Nature, while multiple person alter-
nation machines correspond to games with more than two players against Nature. They
show that for a two player (against Nature) game with reachability winning condition,
the question whether there exists a joint winning strategy for the players is undecidable.
They also identified a class of multiplayer games for which this question is decidable,
although, with non-elementary complexity: hierarchical games. Informally, hierarchical
games are a special case of multiplayer games with imperfect information where players
are ordered so that a player higher in the order has access to all the information available
to the lower-ranked players. Furthermore, they present an effective procedure to construct
a joint finite-state winning strategy, whenever one exists. The decidability result was later
extended by Pnueli and Rosner [70] for pipelines in the distributed systems framework, as
we have seen earlier.

In general, the question whether there exists a winning strategy for the players in a
safety game with imperfect information is undecidable:

Theorem 2.5 ([69], [70]). The solvability problem for a game of two players with imperfect
information against Nature and a safety winning condition is undecidable.

The proof relies on a reduction of the Halting Problem so that, for a given Turing
Machine, one constructs a game for two players against Nature, along with an !-regular
winning condition, that has a joint winning strategy if, and only if, the machine halts on
the empty input.

We do not go into further details here as we give an alternative proof of this undecid-
ability result in Chapter 3, using the tools of formal languages.

Even when the game admits a joint winning strategy for the players, it may be that
this winning strategy cannot be implemented with finite memory:

Proposition 2.2 ([5]). There are finite safety games for two players against Nature that
require infinite memory.

Remark. In fact, Janin, in [47], even showed that there exist two-player safety games that
admit a winning strategy, but none that can be implemented by a Turing machine.

5for a more recent account, see also [1]

38

Finally, in [5], a semi-decision procedure for the solvability of distributed games is
proposed. It relies on the information tracking construction that extends the knowledge-
set construction mentioned earlier to the distributed case by transforming a game with
several players coordinating against Nature to a two-player game with perfect information,
while preserving winning strategy profiles. This tracking construction is based on the
unravelling of a game with imperfect-information as a tree with epistemic models as nodes,
that represent the knowledge of the players at every state of the game. As with the
knowledge-set construction, this yields a game of perfect information, however on an
infinite tree in this case. They show how to obtain a finite-graph representation via an
abstraction technique relying on homomorphic equivalence of epistemic models, that is
sound for games with observable !-regular winning conditions.

39

40

Chapter 3

Consensus Condition

In this chapter, we propose a game model of a language acceptor based on coordination
games between two players with imperfect information. Compared to the model of Pe-
terson and Reif [69], similar to the model of games presented in Chapter 2, our setting
is utterly simple: the games are played on a finite graph, plays are of finite duration,
they involve only one yes-or-no decision, and the players have no means to communicate.
Moreover, they have to take their decisions in consensus. Given an input word that may
yield different observations to each of the players, they have to settle simultaneously and
independently on a common decision, otherwise they lose.

Without the restrictions to consensus and to a single decision per play, the distributed
synthesis problem, as stated in Section 2.3, for coordination games with safety winning
conditions is known to be undecidable [69, 70]. Furthermore, Janin [47] points out that
there exist two-player safety games that admit a winning strategy, but none that can be
implemented by a Turing machine.

Here, we analyse how the information gathered by a single player in a two-player
setting impacts the unfolding of a play. In our model, private observations for the players
are attached to the states of the game, or positions of the graph. Therefore, the graph
structure of a game can be seen as a correlation graph for observations and observation
sequences of players. Furthermore, in this particular case, we put aside some other general
aspects of interaction by considering games that require only one action (or decision) of
the players before the play is either won or lost. By letting Nature be responsible for
the entire path in the graph, or the succession of global states, we can better identify the
influence of the information a player receives on the common decision process.

Our first main result establishes a correspondence between context-sensitive languages
and consensus games: We prove that, for every context-sensitive language L, there exists a
solvable consensus game in which every winning strategy extends the characteristic func-
tion of L, and conversely, that every solvable consensus game admits a winning strategy
characterised by a context-sensitive language. As a second result, we characterise win-
ning strategies for consensus games in terms of iterated transductions of the (synchronous
rational) relation between the observations of players. This allows us to identify a sub-
class of games that corresponds to context-free languages. Although it is still undecidable
whether a game of the class admits a winning strategy, we can effectively construct opti-
mal strategies implemented by push-down automata. The results provide insight on the

41

inherent complexity of coordination in games with imperfect information. With regard
to the basic problem of agreement on a simultaneous action, they substantiate the as-
sertion that ‘optimality requires computing common knowledge” put forward by Dwork
and Moses in their analysis of Byzantine agreement in distributed systems [32]. Indeed,
the constraints induced by our acceptor model can be reproduced in virtually any kind of
games with imperfect information and plays of unbounded length, with the consequence
that implementing optimal strategies amounts to deciding the transitive closure of the
transduction induced by the game graph.

3.1 Consensus Game Acceptors

Consensus acceptors are games between two cooperating players, 1 and 2, and a passive
agent called Nature. Given a finite observation alphabet Γ common to both players,
a consensus game acceptor G = (V,E, (β1, β2), v0,Ω) is described by a finite set V of
states, a transition relation E ✓ V ⇥ V , and a pair of observation functions βi : V ! Γ
that label every state with an observation for each player i = 1, 2. There is a distinguished
initial state v0 2 V with no incoming transition. States with no outgoing transitions
are called final states; the admissibility condition Ω : V ! P({0, 1}) maps every final
state v 2 V to a nonempty subset of admissible decisions Ω(v) ✓ {0, 1}. The observations
at the initial and the final states do not matter, we assume that they correspond to a
special symbol # 2 Γ for both players.

The game is played as follows: Nature chooses a finite path ⇡ = v0 v1 . . . vn+1 in G

from the initial state v0, following transitions (v`, v`+1) 2 E, for all ` n,
to a final state vn+1. Then, each player i receives a private sequence of observations
βi(⇡) := βi(v1)β

i(v2) . . . β
i(vn) and is asked to take a decision ai 2 {0, 1}, independently

and simultaneously. The players win if they agree on an admissible decision, that is,
a1 = a2 2 Ω(vn+1); otherwise they lose. Without risk of confusion we sometimes write
Ω(⇡) for Ω(vn+1).

We say that two plays ⇡, ⇡0 are indistinguishable to Player i, and write ⇡ ⇠i ⇡0, if
βi(⇡) = βi(⇡0). This is an equivalence relation, and its classes, called the information
sets of Player i, correspond to observation sequences βi(⇡). A strategy for Player i is a
mapping si : V ⇤ ! {0, 1} from plays ⇡ to decisions si(⇡) 2 {0, 1} such that si(⇡) = si(⇡0),
for any pair ⇡ ⇠i ⇡0 of indistinguishable plays. A joint strategy is a pair s = (s1, s2); it is
winning, if s1(⇡) = s2(⇡) 2 Ω(⇡) for all plays ⇡. In this case, the components s1 and s2

are equal, and we use the term winning strategy to refer to the joint strategy or either of
its components. Finally, a game is solvable, if there exists a (joint) winning strategy.

Compared to the game model we introduced in the preliminaries, consensus game
acceptors seem quite different but are actually only a restriction of our initial model.
Indeed, for clarity purposes, we say here that the players have only one decision to take,
at final states, and then the play is over, while before that, they passively observe the input
Nature gives them. To make it correspond to our game model, which requires actions of
the players at each step and an infinite duration of a play, it is sufficient to proceed to
slight changes in the description of consensus game acceptors. In order to comply with
the first requirement, one can label every transition between two states with all possible
action profiles, therefore considering players to have acted, while in fact keeping the passive

42

character of this phase, since Nature is still the only responsible of any choice of direction
in the game graph. For the infinite duration, it is simply enough to consider the winning
and losing states to have self-loops, labelled, once again, with all possible action profiles.

Whenever we refer to games in the following, we mean consensus game acceptors.

Strategies and knowledge. With the consensus condition in mind, one can see that
winning strategies cannot be constructed for each player relying solely on their own in-
distinguishability relation. Indeed, if player i can distinguish between two plays ⇡ and ⇡0,
but player j cannot, it would be unwise for a strategy to prescribe to player i different
decisions after ⇡ and ⇡0, since, as we stated above, it is necessary for a (joint) strategy
to be winning that the two individual strategies coincide on all plays ⇡. Therefore, we
need to take into account cases where the uncertainty on plays propagates back and forth
between the players. We say that two plays ⇡ and ⇡0 are connected, and write ⇡ ⇠⇤ ⇡0, if
there exists a sequence of plays ⇡1, . . . , ⇡k such that

⇡ ⇠1 ⇡1 ⇠
2 · · · ⇠1 ⇡k ⇠

2 ⇡0.

Then, a mapping f : V ⇤ ! {0, 1} from plays to decisions is a strategy that satisfies
the consensus condition if, and only if, f(⇡) = f(⇡0), for all ⇡ ⇠⇤ ⇡0. In terms of dis-
tributed knowledge, this means that the decisions have to be based on events that are
common knowledge among the players at every play. (For an introduction to knowledge
in distributed systems, see Chapters 4 – 6 in the book of Fagin, Halpern, Moses, and
Vardi [35].) Such a consensus strategy — or, more precisely, the pair (f, f)— may still
fail, due to prescribing inadmissible decisions. We say that a decision a 2 {0, 1} is safe at
a play ⇡ if a 2 Ω(⇡0) for all ⇡0 ⇠⇤ ⇡. Then, a consensus strategy f is winning if, and only
if, it prescribes a safe decision f(⇡) for every play ⇡.

It is sometimes convenient to represent a strategy for Player i as a function
f i : Γ⇤ ! {0, 1}. Every such function describes a valid strategy, because observation se-
quences identify information sets; we refer to an observation-based strategy in contrast to
the state-based representation si : V ⇤ ! {0, 1}. Note that the components of a joint win-
ning strategy need no longer be equal in the observation-based representation. However,
once the strategy for one player is fixed, the strategy of the other player is determined by
the consensus condition, so there is no risk of confusion in speaking of a winning strategy
rather than a joint strategy pair.

As an example, consider the game depicted in Figure 3.1, with observation alphabet
Γ = {a, b, /, .,⇤}. States v at which the two players receive different observations are
split, with β1(v) written in the upper part and β2(v) in the lower part; states at which the
players receive the same observation carry only one symbol. The admissible decisions at
final states are indicated on the outgoing arrow. Notice that upon receiving the observation
sequence a2b2, for instance, the first player is constrained to choose decision 1, due to the
following sequence of indistinguishable plays that leads to a play where deciding 0 is not
admissible. 0

BB@

a, a

a, /
b, .
b, b

1
CCA ⇠

2

0
BB@

a, a

/, /
., .
b, b

1
CCA ⇠

1

0
BB@

a, /
/, .
., /
b, .

1
CCA ⇠

2

0
BB@

/, /
., .
/, /
., .

1
CCA ⇠

1

0
BB@

/,⇤
.,⇤
/,⇤
.,⇤

1
CCA ⇠

2

0
BB@

⇤,⇤

⇤,⇤

⇤,⇤

⇤,⇤

1
CCA

43

v0

a /

a b

a
a

a
/

/
.

/
⇤

⇤

.b
b

b

b
.

.
/

.
⇤

= # # +

10, 1

Figure 3.1: A consensus game acceptor

In contrast, decision 0 may be safe when Player 1 receives input a3b2, for instance. Actu-
ally, the strategy s1(w) that prescribes 1 if, and only if, w 2 {anbn | n 2 N} determines
a joint winning strategy. Next, we shall make the relation between games and languages
more precise.

Remark. The representation scheme of Figure 3.1 slightly differs from the one presented
in Chapter 2: While the initial and final states keep the same format, we omitted the
state names on the remaining states for readability and because the state names here are
irrelevant. Furthermore, the observations on these states are organised vertically rather
than horizontally, with the observation of the first player on the top part of the state, and
the observation of the second player on the bottom part: this is to visually highlight the
correspondence with domino tilings rows, as we will see in Section 3.2.2.

3.2 Describing Languages by Games

We use the characterisation of context-sensitive languages in terms of nondeterministic
linear-bounded automata given by Kuroda [54], and the following well-known results from
the same article: (1) For a fixed context-sensitive language L over an alphabet Σ, the
problem whether a given word w 2 Σ⇤ belongs to L is PSpace-hard. (2) The problem of
determining whether a given context-sensitive language represented by a linear-bounded
automaton contains any non-empty word is undecidable. For background on formal lan-
guages, see for instance [76].

We consider languages L over a terminal alphabet Σ. The empty word " is excluded
from the language, and also from its complement L̄ := (Σ⇤ \ {"}) \ L. As acceptors for
such languages, we consider games over an observation alphabet Γ ◆ Σ, and we assume
that no observation sequence in Σ+ is omitted: for every word w 2 Σ+, and each player
i, there exists a play ⇡ that yields the observation sequence βi(⇡) = w.

44

Given a consensus game acceptor G, we associate to every observation-based strategy
s 2 S1 of the first player, the language L(s) := {w 2 Σ⇤ | s(w) = 1}. We say that the
game G covers a language L ✓ Σ⇤, if G is solvable and

• L = L(s), for some winning strategy s 2 S1, and

• L ✓ L(s), for every winning strategy s 2 S1.

If, moreover, L = L(s) for every winning strategy in G, we say that G characterises L. In
this case, all winning strategies map L to 1 and L̄ to 0.

Notice that every solvable game covers a unique language L over the full observation
alphabet Γ. With respect to a given terminal alphabet Σ ✓ Γ, the covered language is
hence L\Σ⇤. For instance, the consensus game acceptor represented in Figure 3.1 covers
the language {anbn | n 2 N} over {a, b}. To characterise a language rather than covering
it, we need to add constraints that require to reject inputs.

Given two games G,G0, we define the union G [G0 as the consensus game obtained
by taking the disjoint union of G and G0 and identifying the initial states. Then, winning
strategies of the component games can be turned into winning strategies of the composite
game, if they agree on the observation sequences over the common alphabet.

Lemma 3.1. Let G, G0 be two consensus games over observation alphabets Γ, Γ0. Then,
an observation-based strategy r is winning in G[G0 if, and only if, there exist observation-
based winning strategies s, s0 in G, G0 that agree with r on Γ⇤ and on Γ0⇤, respectively.

Proof. =): Let r be a winning observation-based strategy in G[G0. Consider the function
s : Γ⇤ ! {0, 1} such that s(w) = r(w) for all w 2 Γ⇤. As Γ⇤ is included in the domain of
r, and r is observation-based, s is an observation-based strategy in G. Furthermore, r is
winning in G[G0, so r(w) is safe in G[G0 for, in particular, every word w 2 Γ⇤. Assume
that there exists w 2 Γ⇤ such that the decision s(w) = r(w) is not safe in G. It then means
that there exists w0 2 Γ⇤ such that Ω(w0) = 1−s(w) and w ⇠⇤ w0. That implies that s(w)
is not safe in G[G0 either, since G[G0 is the union of G and G0. Since s(w) = r(w), that
contradicts the fact that r is a winning strategy in G[G0, therefore s(w) is safe in G and
s is an observation-based winning strategy in G. Similarly, the strategy s0 : Γ0⇤ ! {0, 1}
such that s(w) = r(w) for all w 2 Γ0⇤ is an observation-based winning strategy in G0.
(=: Let r be an observation-based strategy in G[G0 and let s and s0 be observation-

based winning strategies in G and G0 that agree with r on Γ⇤ and on Γ0⇤, respectively. Let
w 2 Γ⇤ [Γ0⇤. If w 2 Γ⇤ \Γ0⇤, then r(w) = s(w) = s0(w), since s and s0 agree with r on Γ⇤

and on Γ0⇤, respectively. Furthermore, as s ans0 are winning strategies in G and G0, r(w)
is a safe decision in G and G0. As G [G0 is the union of G and G0, the decision r(w) is
also safe in G[G0. Now if w 2 Γ⇤ \Γ0⇤, then r(w) = s(w), which is a safe decision in G. If
there exists w0 2 Γ⇤ \ Γ0⇤ such that w ⇠⇤ w0, then s(w0) = s(w) and is also a safe decision
in G, since s is a winning strategy in G. As s0 is a winning strategy in G0 and agrees with
r on Γ0⇤, the decision s0(w0) is equal to r(w0) and is safe in G0. The decision r(w0) is then
safe in G[G0, and therefore r(w) is safe in G[G0. Similarly, if w 2 Γ0⇤ \ Γ⇤, the decision
r(w) is safe in G [G0. Thus, the strategy r is an observation-based winning strategy in
G [G0.

45

Whenever a language and its complement are covered by two consensus games, we can
construct a new game that characterises the language. The construction involves inverting
the decisions in a game, that is, replacing the admissible decisions for every final state
v 2 V with Ω(v) = {0} by Ω(v) := {1} and vice versa; final states v with Ω(v) = {0, 1}
remain unchanged.

Lemma 3.2. Suppose two consensus games G, G0 cover a language L ✓ Σ⇤ and its com-
plement L̄, respectively. Let G00 be the game obtained from G0 by inverting the admissible
decisions. Then, the game G [G00 characterises L.

Proof. First, let us notice that no sequence of observations in Σ⇤ is omitted in G00, since G
covers the language L ✓ Σ⇤. Consider now a winning strategy s in G such that L(s) = L.
We argue that s is also a winning strategy in G[G00. Let w be a word in Σ⇤. By definition,
the decision s(w) is safe in G. It is also the case in G00: If w 2 L, s(w) = 1 since G covers L.
As G0 covers L̄, there exists a winning strategy s0 such that L(s0) = L̄, therefore s0(w) = 0
and is a safe decision. G00 has inverted admissible decisions from G0, so s(w) = 1 is safe
in G00. thus, s(w) is safe in G[G00. Symmetrically, if w 2 L̄, the decision s(w) = 0 is safe
in G [G00. The strategy s prescribes safe decisions on every word w 2 Σ⇤, hence it is a
winning strategy and G[G00 is solvable. We finally show that for every winning strategy s

in G[G00, we have L = L(s). Let r be a winning strategy in G[G00. From Lemma 3.1, we
know that there exist winning strategies s, s00 in G, G00 that agree with r on their respective
observation alphabets, which both include Σ⇤. Since G covers L, we know that L ✓ L(s)
in G, and as r agrees with s on Σ⇤, it is also true that L ✓ L(r). Furthermore, r agrees
with s00 on Σ⇤ as well, and in G00, we have L(s00) ✓ L: G00 is constructed by inverting the
admissible decisions of G0, which covers L̄, so every winning strategy s0 in G0 is such that
L̄ ✓ L(s0). Hence, L(r) = L and G [G00 characterises L.

3.2.1 Characterising regular languages

As a first exercise, we show how to describe regular languages with consensus game ac-
ceptors. The result relies on the fact that a consensus game acceptor with common obser-
vations for both players is essentially a finite automaton. We detail the proof to fix the
notations before doing more complex manipulations.

We say that a consensus game acceptor G = (V,E, (β1,β2), v0,Ω) has common ob-
servation if β1 = β2. In this case, we will simply denote by β the common observation
function.

Theorem 3.1. Let Σ be a finite alphabet. A language L ✓ Σ⇤ \ {"} is regular if, and only
if, there exists a consensus game acceptor with common observation that characterises L.

One direction of the proof of Theorem 3.1 relies on the following lemma.

Lemma 3.3. For a language L ✓ Σ⇤ \ {"}, let G = (V,E,β, v0,Ω) be a consensus
game acceptor with common observation and observation alphabet Γ ◆ Σ [{#} that
characterises L. Then, there exists a consensus game acceptor with common observa-
tion G0 = (V 0, E0,β0, v00,Ω

0) that also characterises L, such that for every final state t of
G0, the set Ω0(t) is a singleton.

46

Proof. Let T be the set of all final states of G and let T 0 ✓ T be the set of final states
that admits a unique decision. Consider G0 = (V 0, E0,β0, v00,Ω

0) where:

• V 0 = {v | v 2 V, there exists t 2 T 0 reachable from v in G} ;

• E0 = E \ (V 0 ⇥ V 0) ;

• β0 = β"V 0 ;

• v00 = v0;

• Ω0 = Ω"T 0 .

By construction, G0 is a consensus game acceptor with common observation such that
Ω0(t) is a singleton for every final state t. We can remark two facts about G0.

Claim 3.1. A play in G0 corresponds to a play in G that yields the same observation
sequence and that admits the same unique decision.

Proof. Let ⇡ = v0, v1, . . . , t be a play in G0. Let v and v0 be successive states in ⇡. By
construction of G0, both v and v0 are in V and β(v) = β0(v). Moreover (v, v0) 2 E0, so
(v, v0) 2 E. Finally, t is reachable from every state of ⇡, and t 2 T 0 ✓ T . Since Ω0 = Ω"T 0 ,
we also have Ω(t) = Ω0(t), which is a singleton. Hence the sequence v0, v1, . . . , t is indeed
a play in G that yields the same observation sequence and that admits the same unique
decision.

Claim 3.2. For every winning strategy s in G, there exists a winning strategy s0 in G0,
that agrees with s on all plays that end in T 0.

Proof. Let s be a winning strategy in G. By Claim 3.1, every play in G0 is also a play in
G that yields the same observation sequence. Consider the strategy s0 that agrees with s

on all plays that are also in G0. Since s is winning in G and Ω0 = Ω"T 0 , it is clear that s0

also prescribes a safe decision in G0. Hence, s0 is a winning strategy in G0.

We are now ready to show that G0 also characterises L: Towards this, we need to show
three facts: first, that no observation sequence on Σ⇤ is omitted in G0, second that G0 is
indeed solvable, and finally that, for every winning strategy s0 in G0, we have L(s0) = L.

We know that G characterises L, which means that: (1) for every non-empty word
w 2 Σ⇤, there exists a play that yields the observation sequence w, (2) G is solvable, and
(3) for every winning strategy s, it is true that s(w) = 1 if, and only if, w 2 L.

• No observation sequence on Σ⇤ is omitted in G0: Let w be a word in Σ⇤. By property
(1), there exists a play ⇡ with β(⇡) = w. Assume now that all plays that yield the
observation sequence w admit both decisions 0 and 1. By property (2), there exists
a winning strategy s such that s(w) = 1 if and only if w 2 L. The strategy s0

that agrees with s on Σ⇤ \ {w}, and such that s0(w) = 0 if and only if w 2 L is
a winning strategy in G, since all plays that yield the observation sequence w also
admit the decision 0. This contradicts property (3) of G. Thus, for every non-empty
word w 2 Σ⇤, there exists a play ⇡0 = v0, v1, ..., t in G where β(⇡0) = w and t 2 T 0.

47

Since ⇡0 is a play in G, the final state t is reachable from every state of ⇡ and
(v, v0) 2 E for every two successive states of ⇡0. Since t 2 T 0, all states in ⇡0 are in
V 0 and (v, v0) 2 E0 for every two successive states of ⇡0. Therefore ⇡0 is a play in
G0, and since β0 = β"V 0 , it also yields the same observation sequence w. Hence, no
observation sequence in Σ⇤ is omitted in G0.

• G0 is solvable: Since G characterises L, it means in particular that it is solvable. Let
s be a winning strategy of G. By Claim 3.2, we already know that the strategy that
agrees with s on all plays that are also in G0 is a winning strategy in G0. Therefore,
G0 is solvable.

• L(s0) = L for every winning strategy s0 of G0: Let s0 be a winning strategy of G0.
By construction, all final states of G0 admit only one decision. By Claim 3.1, every
play in G0 corresponds to a play in G that yields the same observation sequence
and ends at the same final node. Since G characterises L, we know that for every
non-empty word w 2 Σ⇤, and every final state t 2 T 0 such that there exists a play
with observation sequence w ending at t, Ω(t) = {1} if, and only if, w 2 L. As
Ω0 = Ω"T 0 , it follows that s0(w) = 1 if, and only if, w 2 L.

Hence, G0 characterises L. ⇤

We are now ready to prove Theorem 3.1:

Proof. (=: Let L be a language on a finite alphabet Σ, and G a consensus game acceptor
that characterises L, such that β1 = β2. Thanks to Lemma 3.3, we can assume, without
loss of generality, that all final states in G admit only one decision. To prove that L is
regular, we extract from G a finite automaton that accepts L. We keep the notations of
Lemma 3.3: G = (V,E,β, v0,Ω) with observation alphabet Γ ◆ Σ [{#}, the set of all
final states of G is T .

Consider the finite automaton A = (Q, q0,∆, F,Σ), where:

(1) Q = {v | v 2 V and β(v) 2 Σ} [{v0} and q0 = v0;

(2) F = {v 2 Q | there exists t 2 T, (v, t) 2 E and Ω(t) = {1}};

(3) ∆ = {(q, a, q0) 2 Q⇥ Σ⇥Q | β(q0) = a, (q, q0) 2 E}.

48

Intuitively, A has the same transition structure as the game graph of G, but the
observations are lifted from the states to their incoming edges. We claim that A indeed
accepts L:

• L ✓ L(A): Let w = a1a2 . . . an be a word in Σ⇤. If w 2 L, then there exists a
play ⇡ = v0, v1, . . . , vn in G such that β(⇡) = w and Ω(vn) = {1}. By construction,
⇢ = v0, v1, . . . , vn−1 is a run of A that accepts w: Indeed, vi, vi+1 2 Q for every two
consecutive states vi, vi+1 in ⇢, and (vi, ai+1, vi+1) 2 ∆. Furthermore, Ω(vn) = {1},
so vn−1 2 F .

• L(A) ✓ L: Let w be a word in Σ⇤. If w is accepted by A, then, by (1), w 2 Σ⇤.
Furthermore, there exists a run ⇢ = v0, v1, . . . , vn on input w with vn 2 F . By (2),
if vn 2 F , then there exists t 2 T such that (vn, t) 2 E and Ω(t) = {1}. By (3),
the play ⇡ = v0, v1, . . . , vn, t in G is such that β(⇡) = w. Since G characterises L, it
follows that w 2 L.

A is a finite automaton that accepts L. Hence, L is regular.

=): Let L be a regular language on a finite alphabet Σ. Let A be a deterministic finite
automaton that accepts L, andA0 be a DFA that accepts its complement L := (Σ⇤\{"})\L.
We assume that Q \Q0 = ;, up to renaming.

Consider the game G = (V,E,β, v0,Ω) with observation alphabet Γ = Σ[{#}, initial
state v0, and set of final states T . The set of states V is composed of an initial state v0,
two final states t and t0 with Ω(t) = 1 and Ω(t0) = 0, as well as a state (v, a) for each
transition in A or A0 that reaches state v upon reading a. From the initial state v0, there
are edges to states (v, a) such that δ(q0, a) = v or δ0(q00, a) = v. There is an edge from a
state (v, a) to a state (v0, a0) when either δ(v, a0) = v0 or δ0(v, a0) = v0. Finally, there is
an edge from states (v, a) with v 2 F to the final state t, whereas there is an edge from
states (v, a) such that v 2 F 0 to the final state t0 and the observation function β is defined
as follows: β(v0) = β(t) = β(t0) = #, and β((v, a)) = a for every state of the form (v, a).

Now, G is a consensus game acceptor with common observation such that Ω(t) is a
singleton for every final state t of G. We first remark two facts about G.

Claim 3.3. An accepting run labelled by a word w in A corresponds to a play in G with
observation sequence w and ending in t. Similarly, an accepting run labelled by a word w

in A0 corresponds to a play in G with observation sequence w and ending in t0.

Proof. Let w = a1 . . . an be a word accepted by A. There exists a run ⇢ = q0, v1, . . . , vn in
A labelled by w and such that qn 2 F . Thus, for each i 2 [0, n− 1], we have δ(vi, ai+1) =
vi+1. By (1), (vi+1, ai+1) 2 V , and by (3), β((vi+1, ai+1)) = ai+1. By (2), for all j 2
[1, n − 1], we have ((vj , aj), (vj+1, aj+1)) 2 E, and (v0, (v1, a1)) 2 E. Moreover, since
vn 2 F , we have ((vn, an), t) 2 E .

Claim 3.4. For every observable sequence ↵ in G, their exists a unique play ⇡ such that
β(⇡) = ↵.

49

Proof. Let ↵ := w be an observable sequence in G. As the observation alphabet Γ is
Σ [{#}, and # is only observed at v0, t and t0, we deduce that w 2 Σ⇤ \ {"}. By
definition of G, there is a play ⇡ with observation sequence w, and it has the form
v0, (v1, a1), . . . , (vn, an), z, where w = a1, . . . , an and z 2 T . Since w 2 Σ⇤ \ {"}, it is
either accepted by A or by A0, because A accepts L and A0 accepts its complement. If
w is accepted by A, then q0, v1, . . . , vn is an accepting run labelled by w in A. As A is
deterministic, there exists no other accepting run in A of the word w. Therefore ⇡ is
actually unique and equal to v0, (v1, a1), . . . , (vn, an), t, by Claim 3.3. The same argument
applies if w is accepted by A0, with ⇡ = v0, (v1, a1), . . . , (vn, an), t

0.

We show now that G characterises L:

• No observation sequence on Σ⇤ is omitted in G: Let w = a1 . . . an be a non-empty
word in Σ⇤. Since A accepts L and A0 accepts its complement, w is either accepted
by A or by A0. By Claim 3.3, there exists a play in G with observation sequence w.
Hence, no observation sequence on Σ⇤ is omitted in G.

• G is solvable: Consider the function s : T ! {0, 1} defined by: s(t) := 1 and
s(t0) := 0. Then, s describes a strategy, as, by Claim 3.4, any two plays of G are
distinguishable with respect to β, in particular any two plays that end in different
final states. Furthermore, as Ω(t) = {1} and Ω(t0) = {0} in G, the strategy s is
winning. Hence, G is solvable.

• L(s) = L for every winning strategy s: We first notice that the strategy s

described above is the only winning strategy in G. Let w be a word
in L(s) = {w 2 Σ⇤ | s(w) = 1}. Hence, we know that s(w) = 1. Since s is winning,
it means that the play with observation sequence w ends in t. By construction of G,
it implies that w is accepted by A. Thus, w 2 L, and L(s) ✓ L.

Let now w be a word in L. There exists a run in A accepting w. We showed
in Claim 3.3 that this implies that there exists of a play in G with observation
sequence w and ending in t. Therefore, s(w) = 1. Thus, w 2 L(s), and L ✓ L(s).
In conclusion, L(s) = L.

Hence, if L is regular, there exists a consensus game acceptor G with common observation
that characterises L. ⇤

3.2.2 Domino frontier languages

To show equivalences with other classes of formal languages, we need more involved tools
for encoding languages into consensus game acceptors. We use domino systems as an
alternative to encoding machine models and formal grammars (See [86] for a survey.). A
domino system D = (D,Eh, Ev) is described by a finite set of dominoes together with
a horizontal and a vertical compatibility relation Eh, Ev ✓ D ⇥ D. The generic domino

50

tiling problem is to determine, for a given system D, whether copies of the dominoes can
be arranged to tile a given space in the discrete grid Z⇥Z, such that any two vertically or
horizontally adjacent dominoes are compatible. Here, we consider finite rectangular grids
Z(`,m) := {0, . . . , ` + 1} ⇥ {0, . . . ,m}, where the first and last column, and the bottom
row are distinguished as border areas. Then, the question is whether there exists a tiling
⌧ : Z(`,m) ! D that assigns to every point (x, y) 2 Z(`,m) a domino ⌧(x, y) 2 D such
that:

• if ⌧(x, y) = d and ⌧(x+ 1, y) = d0 then (d, d0) 2 Eh, and

• if ⌧(x, y) = d and ⌧(x, y + 1) = d0 then (d, d0) 2 Ev.

The Border-Constrained Corridor tiling problem takes as input a domino system D
with two distinguished border dominoes # and ⇤, together with a sequence
w = w1w2 . . . w` of dominoes wi 2 D, and asks whether there exists a height m such
that the rectangle Z(`,m) allows a tiling ⌧ with w in the top row, # in the first and last
column, and ⇤ in the bottom row:

• ⌧(i, 0) = wi, for all i = 1, . . . , `;

• ⌧(0, y) = ⌧(`+ 1, y) = #, for all y = 0, . . . ,m− 1;

• ⌧(x,m) = ⇤, for all x = 1, . . . , `.

Domino systems can be used to recognise formal languages. For a domino system D
with side and bottom border dominoes as above, the frontier language L(D) is the set
of words w 2 D⇤ that yield positive instances of the border-constrained corridor tiling
problem. We use the following correspondence between context-sensitive languages and
domino systems established by Latteux and Simplot.

Theorem 3.2 ([55, 56]). For every context-sensitive language L ✓ Σ⇤, we can effec-
tively construct a domino system D over a set of dominoes D ◆ Σ with frontier lan-
guage L(D) = L.

Figure 3.2 describes a domino system for recognising the language anbn also covered
by the game in Figure 3.1. In the following, we show that domino systems can generally
be described in terms of consensus game acceptors.

3.2.3 Uniform encoding of domino problems in games

Game formulations of domino tiling problems are standard in complexity theory, going
back to the early work of Chlebus [27]. However, these reductions are typically non-
uniform: they construct for every input instance consisting of a domino system together
with a border constraint a different game, which depends, in particular, on the size of
the constraint. Here, we use imperfect information to define a uniform reduction that
associates to a fixed domino system D a game G(D), such that, for every border constraint
w, the question whether D, w allows a correct tiling is reduced to the question of whether
decision 1 is safe in a certain play associated to w in G(D).

51

a a a a / a b . b b b b

/ / . . / . # # ⇤ ⇤ ⇤ ⇤

#
#

a

a

a

/

b

b

b

.

/

⇤

.

⇤

.

/

/

.

(a) domino system for an
b
n

a a a b b b
a a / . b b
a / . / . b
/ . / . / .
⇤ ⇤ ⇤ ⇤ ⇤ ⇤

(b) tiling a
3
b
3

Figure 3.2: Characterising a language with dominoes

Proposition 3.1. For every domino system D, we can construct, in polynomial time, a
consensus game acceptor that covers the frontier language of D.

Proof. Let us fix a domino system D = (D,Eh, Ev) with a left border domino # and a
bottom domino ⇤. We construct a consensus game G for the alphabet Σ := D \{#,⇤} to
cover the frontier language L(D). There are domino states of two types: singleton states
d for each d 2 D \ {#} and pair states (d, b) for each (d, b) 2 Ev. At singleton states d,
the two players receive the same observation d. At states (d, b), the first player observes d
and the second player b. The domino states are connected by transitions d! d0 for every
(d, d0) 2 Eh, and (d, b)! (d0, b0) whenever (d, d0) and (b, b0) are in Eh. There is an initial
state v0 and two final states bz and z, all associated to the observation # for the border
domino. From v0 there are transitions to all compatible domino states d with (#, d) 2 Eh,
and all pair states (d, b) with (#, d) and (#, b) 2 Eh. Conversely, the final state z is
reachable from all domino states d with (d,#) 2 Eh, and all pair states (d, b) with (d,#)
and (b,#) 2 Eh; the final bz is reachable only from the singleton bottom domino state ⇤.
Finally, admissible decisions are Ω(z) = {0, 1} and Ω(ẑ) = {1}. Clearly, G is a consensus
game, and the construction can be done in polynomial time.

Note that any sequence x = d1 d2 . . . d` 2 D` that forms a horizontally consistent row
in a tiling by D corresponds in the game to a play ⇡x = v0 d1 d2 . . . d`, z or ⇡x = v0⇤` bz.
Conversely, every play in G corresponds either to one possible row, in case Nature chooses
a single domino in the first transition, or to two rows, in case it chooses a pair. Moreover,
a row x can appear on top of a row y = b1 b2 . . . b` 2 D` in a tiling if, and only if, there
exists a play ⇢ in G such that ⇡x ⇠

1 ⇢ ⇠2 ⇡y, namely ⇢ = v0 (d1, b1) (d2, b2) . . . (d`, b`) z.

Now, we claim that at an observation sequence ⇡ = w for w 2 Σ` the decision 0
is safe if, and only if, there exists no correct corridor tiling by D with w in the top row.
According to our remark, there exists a correct tiling of the corridor with top row w, if and
only if, there exists a sequence of rows corresponding to plays ⇡1, . . . ,⇡m, and a sequence
of witnessing plays ⇢1, . . . , ⇢m−1 such that w = ⇡1 ⇠

1 ⇢1 ⇠
2 ⇡2 · · · ⇠

1 ⇢m−1 ⇠
2 ⇡m = ⇤`.

However, the decision 0 is unsafe in the play ⇤` and therefore at w as well. Hence, every
winning strategy s for Gmust prescribe s(w) = 1, for every word w in the frontier language
of D, meaning that L(s) ✓ L(D).

Finally, consider the mapping s : D⇤ ! A that prescribes s(w) = 1 if, and only if,
w 2 L(D). The observation-based strategy s in the consensus game G is winning since
s(⇤⇤) = 1, and it witnesses the condition L(s) = L(D). This concludes the proof that the
constructed consensus game G covers the frontier language of D.

52

3.3 Characterising Context-Sensitive Languages

Our first main result establishes a correspondence between context-sensitive languages and
consensus games.

Theorem 3.3. For every context-sensitive language L ✓ Σ⇤, we can effectively construct
a consensus game acceptor that characterises L.

Proof. Let L ✓ Σ⇤ be an arbitrary context-sensitive language, represented, e.g., by a
linear-bounded automaton. By Theorem 3.2, we can effectively construct a domino sys-
tem D with frontier language L. Further, by Proposition 3.1, we can construct a consensus
game G that covers L(D) = L. Due to the Immerman-Szelepcsényi Theorem, context-
sensitive languages are effectively closed under complement, so we can construct a con-
sensus game G0 that covers Σ⇤ \L following the same procedure. Finally, we combine the
games G and G0 as described in Lemma 3.2 to obtain a consensus game that characterises
L.

One interpretation of the characterisation is that, for every context-sensitive language,
there exists a consensus game that is as hard to play as it is to decide membership in
the language. On the one hand, this implies that winning strategies for consensus games
are in general PSpace-hard. Indeed, there are instances of consensus games that admit
winning strategies, however, any machine that computes the decision to take in a play
requires space polynomial in the length of the play.

Remark. In Section 3.2, given a consensus game acceptorG, and to every observation-based
strategy s 2 S1 of the first player, we associated the language L(s) := {w 2 Σ⇤ | s(w) = 1}.
Therefore, we say that a winning strategy s is PSpace-hard if the membership problem
for L(s) is PSpace-hard.

Theorem 3.4. There exists a solvable consensus game for which every winning strategy
is PSpace-hard.

Proof. There exist context-sensitive languages with a PSpace-hard word problem [54].
Let us fix such a language L ✓ Σ⇤ together with a consensus game G that characterises
it, according to Theorem 3.3. This is a solvable game, and every winning strategy can be
represented as an observation-based strategy s for the first player. Then, the membership
problem for L reduces (in linear time) to the problem of deciding the value of s in a play
in G: For every input word w 2 Σ⇤, we have w 2 L if, and only if, s(w) = 1. In conclusion,
for every winning strategy s in G, it is PSpace-hard to decide whether s(w) = 1.

On the other hand, it follows that determining whether a consensus game admits
a winning strategy is no easier than solving the emptiness problem of context-sensitive
languages, which is well known to be undecidable.

Theorem 3.5. The question whether a consensus game admits a winning strategy is
undecidable.

Proof. We reduce the emptiness problem for a context-sensitive grammar to the solvability
problem for a consensus game. For an arbitrary context-sensitive language L 2 Σ⇤ given

53

as a linear bounded automaton, we construct a consensus game G that characterises L,
in polynomial time, according to Theorem 3.3. Additionally, we construct a consensus
game G0 that characterises the empty language over Σ⇤: this can be done, for instance, by
connecting a clique over letters in Σ observable for both players to a final state at which
only the decision 0 is admissible. Now, for any word w 2 Σ⇤, the game G0 requires decision
0 at every observation sequences w 2 Σ⇤, whereas G requires decision 1 whenever w 2 L.
Accordingly, the consensus game G [G0 is solvable if, and only if, L is empty. As the
emptiness problem for context-sensitive languages is undecidable [54], it follows that the
solvability problem is undecidable for consensus game acceptors.

We have seen that every context-sensitive language corresponds to a consensus game
acceptor such that language membership tests reduce to winning strategy decisions in a
play. Conversely, every solvable game admits a winning strategy that is the characteristic
function of some context-sensitive language. Intuitively, a strategy should prescribe 0 at a
play ⇡ whenever there exists a connected play ⇡0 at which 0 is the only admissible decision.
Whether this is the case can be verified by a nondeterministic machine using space linear
in the length of the play ⇡.

Theorem 3.6. Every solvable consensus game admits a winning strategy that is imple-
mentable by a nondeterministic linear bounded automaton.

Proof. Let G = (V,E, (β1,β2), v0,Ω) be a solvable consensus game acceptor over an ob-
servation alphabet Γ. The fact that G is solvable means, in particular, that every play
admits at least one safe decision: for every play ⇡, there exist no two plays ⇡0 and ⇡00 with
admissible decision sets Ω(⇡0) = {0} and Ω(⇡00) = {1} such that ⇡0 ⇠⇤ ⇡ ⇠⇤ ⇡00. Hence,
the function s that prescribes 0 at a play ⇡ whenever there exists a connected play ⇡0 at
which 0 is the only admissible decision and 1 otherwise is a winning strategy. Furthermore,
this winning strategy s is implementable by a nondeterministic linear bounded automaton:
on input ⇡, the automaton the automaton successively guesses pairs of connected plays,
and checks if the consecutive plays are indeed indistinguishable for one of the players, and
if the admissible decision set of the second play is {0}, in which case the run is accepting.
If the second play admits both decisions 0 and 1, it is written over the previous play in the
sequence, and the automaton proceeds to guess the next connected play in the sequence,
in order to ensure the used space stays linear in the size of the original play ⇡.

3.4 Consensus and Iterated Transductions

Our aim in the following is to investigate how the structure of a consensus game relates
to the complexity of the described language which, in turn, determines the complexity
of winning strategies. Towards this, we view games as finite-state automata representing
the relation between the observation sequences received by the players and the admissible
decisions.

A synchronous transducer is a two-tape automaton (Q,Γ,∆, q0, F) over an alphabet
Γ, with state set Q, a transition relation ∆ ✓ Q⇥ Γ⇥ Γ⇥Q labelled by pairs of letters,
an initial state q0 2 Q and a non-empty set F ✓ Q of final states; in contrast to games,

54

final states of transducers may have outgoing transitions. We write p
a|b
−−! q to denote a

transition (p, a, b, q) 2 ∆. An accepting run of the transducer is a path

⇢ = q0
a1|b1
−−−! q1

a2|b2
−−−! . . .

an|bn
−−−! qn

that follows transitions in ∆ starting from the initial state q0 and ending at a final state
qn 2 F . The label of the run is the pair of words (a1 . . . an, b1, . . . bn). A pair of words
(w,w0) 2 Γ⇤⇥Γ⇤ is accepted by the transducer if it is the label of some accepting run. The
relation recognised by the transducer is the set R ✓ Γ⇤ ⇥ Γ⇤ of accepted pairs of words.
A relation is synchronous if it is recognised by a synchronous transducer. In general, we
do not distinguish notationally between transducers and the relation they recognise. For
background on synchronous, or letter-to-letter, transducers, we refer to the survey [3] of
Berstel and to Chapter IV in the book [75] of Sakarovitch.

Given a consensus game acceptor G = (V,E,β1,β2, v0,Ω) over an observation alpha-
bet Γ, we define the seed of G to be the triple (R,Lacc, Lrej) consisting of the relation
R := { (β1(⇡),β2(⇡)) 2 (Γ⇥Γ)⇤ | ⇡ play in G } together with the languages Lacc ✓ Γ⇤ and
Lrej ✓ Γ⇤ of observation sequences β1(⇡) on plays ⇡ in G with Ω(⇡) = {1} and Ω(⇡) = {0},
respectively. The seed of any finite game can be represented by finite-state automata.

Lemma 3.4. For every consensus game, the seed languages Lacc, Lrej are regular and the
seed relation R is recognised by a synchronous transducer.

Proof. We construct automata from the game graph by moving observations from each
state to the incoming transitions. Let G = (V,E,β, v0,Ω) be a consensus game over an
observation alphabet Γ, and let (R,Lacc, Lrej) be its seed. We define three automata over
the alphabet Γ, on the subset of V consisting of non-final game states and with initial
state q0 = v0.

The automata for the seed languages Lacc and Lrej allow transitions u
a
−! v if (u, v) 2 E

and β1(v) = a. The set of final states consists of all game states v with an outgoing
transition (v, v0) 2 E to some final state with Ω(v0) = {1} for Lacc, and with Ω(v0) = {0}

for Lrej. Then, for all words a1 . . . an 2 Γ⇤, accepting runs v0
a1−! v1

a2−! . . .
an−! vn

of the automata Lacc and Lrej correspond to plays ⇡ := v0v1 . . . vnv
0 with observations

β1(⇡) = a1 . . . an such that Ω(⇡) = {1} and Ω(⇡) = 0, respectively. Hence, the automata
recognise Lacc and Lrej.

Similarly, the transducer for the seed relation has transitions u
a|b
−−! v whenever (u, v) 2

E with β1(v) = a, β2(v) = b, and its final states are states v 2 V with an outgo-
ing transition (v, v0) 2 E to some final state v0 in G. Then, for any pair of words

(a1 . . . an, b1 . . . bn) 2 Γ⇤⇥Γ⇤, there exists an accepting run v0
a1|b1
−−−! v1

a2|b2
−−−! . . .

an|bn
−−−! vn

of the transducer if, and only if, there exists a play ⇡ = v0, v1, . . . , vn, v
0 with observations

β1(⇡) = a1 . . . an, and β2(⇡0) = b1 . . . bn, for some final game state v0. So, the transducer
recognises the seed relation R, as intended.

Conversely, we can turn synchronous transducers and automata over matching alpha-
bets into games.

Lemma 3.5. Given a synchronous relation R ✓ Γ⇤⇥Γ⇤ and two disjoint regular languages
Lacc, Lrej ✓ Γ⇤, we can construct a consensus game with seed (R,Lacc, Lrej).

55

Proof. Let us consider a synchronous transducer R and two word automata A, B that
recognise R, Lacc and Lrej, respectively. We assume that the word automata are deter-
ministic, with transition functions δA : QA ⇥ Γ ! QA and δB : QB ⇥ Γ ! QB. To avoid
confusion, we label the components of each automaton with its name and write p

a
−!
R

q for

the transitions in R.
We construct a game G over the observation alphabet Γ [{#} with states formed

of three components: a transducer transition p
a|b
−−!
R

q, a state of A, and one of B. The

game transitions follow the adjacency graph of the transducer in the first component
and update the state of A and B in the second and third component according to the
observation a of Player 1 in the first component. More precisely, the set of game states
is V := ∆ ⇥ QA ⇥ QB [{v0, vacc, vrej, v=}, where v0 is a fresh initial state whereas vacc,
vrej and v= are final states. Game transitions lead from the initial state v0 to all states

(qR0
a|b
−−!
R

q, qA0 , q
B
0); for each pair of incident transducer transitions e := p

a|b
−−!
R

q and

e0 := q
a0|b0

−−!
R

q0, and for all automata states qA 2 QA, qB 2 QB, there is a game transition

from (e, qA, qB) to (e0, δA(qA, a), δA(qB, a)); finally, from any state (p
a|b
−−!
R

q, qA, qB) with

q 2 FR there is a transition to vacc if qA 2 FA , to vrej if qB 2 FB, and otherwise

to v=. The observation at state (p
a|b
−−!
R

q, qA, qB) is (a, b); at the initial and the final

states both players observe #. Admissible decisions are Ω(vacc) = {1}, Ω(vrej) = {0}, and
Ω(v=) = {0, 1}.

Now, for any play ⇡, the first component corresponds to an accepting run of R on the
pair of observation sequences (β1(⇡),β2(⇡)), whereas the second and third components
correspond to runs of A and B on β1(⇡) which are accepting if Ω(⇡) = {1} and Ω(⇡) = {0},
respectively. Accordingly, the game G has seed (R,Lacc, Lrej).

Thanks to the translation between games and automata, we can reason about games in
terms of elementary operations on their seed. Our notation is close to the one of Terlutte
and Simplot [80]. Given a relation R ✓ Γ⇤ ⇥ Γ⇤, the inverse relation is

R−1 := {(x, y) 2 Γ⇤ ⇥ Γ⇤ | (y, x) 2 R}.

The composition of R with a relation R0 2 Γ⇤ is

RR0 := {(x, y) 2 (Γ⇥ Γ)⇤ | (x, z) 2 R and (z, y) 2 R0 for some z 2 Γ⇤}.

For a language L ✓ Γ⇤, we write RL := {x 2 Γ⇤ | (x, y) 2 R and y 2 L}. For a subalphabet
Σ ✓ Γ, we denote the identity relation by (\Σ⇤) := {(x, x) 2 Σ⇤ ⇥ Σ⇤}. The power Rk

of R is defined by R0 := (\Γ), and Rk+1 := RkR for k > 0. Finally, the iteration of R is
R⇤ := [0k<!R

k.
One significant relation obtained from the seed transducer R of a game G is the re-

flection relation ⌧(R) := RR−1. That is, a word w 2 Γ⇤ over the observation alphabet is
a reflection of u 2 Γ⇤ if, whenever Player 1 observes u, Player 2 considers it possible that
1 actually observes w. Obviously, this relation is reflexive and symmetric. Its transitive
closure relates observations received on connected plays.

56

Lemma 3.6. Let G be a consensus game with seed relation R ✓ Γ⇤⇥Γ⇤, and let ⌧ := RR−1

be its reflection. Then,

(i) ⌧ = { (β1(⇡),β1(⇡0)) | plays ⇡ ⇠2 ⇡0 in G }, and

(ii) ⌧⇤ = (\Γ⇤) [{ (β1(⇡),β1(⇡0)) | plays ⇡ ⇠⇤ ⇡0 in G }.

Proof. (i) By definition of the seed relation, for any pair of words (w,w0) 2 RR−1,
there exist plays ⇡,⇡0 such that β1(⇡) = w, β1(⇡0) = w0, and β2(⇡) = β2(⇡0), that
is, ⇡ ⇠2 ⇡0. Conversely, for any pair of plays ⇡ ⇠2 ⇡0, the observation sequences are
related by (β1(⇡),β2(⇡)) 2 R and (β2(⇡),β1(⇡0)) = (β2(⇡0),β1(⇡0)) 2 R−1.
Hence (β1(⇡),β1(⇡0)) 2 RR−1.

(ii “◆”): Clearly, (\Γ⇤) ✓ ⌧⇤. Further, by definition of connectedness, if ⇡ ⇠⇤ ⇡0,
then there exists a sequence of plays (⇡`)`2k with ⇡0 = ⇡, ⇡2k = ⇡0, and ⇡` ⇠

1 ⇡`+1 ⇠
2

⇡`+2 for all even ` < 2k. Therefore, the observation sequences x := β1(⇡`) = β1(⇡`+1),
y := β1(⇡`+2), and z := β2(⇡`+1) = β2(⇡`+2) are related by (x, z) 2 R and (z, y) 2 R−1,
which means that (x, y) = (β1(⇡`),β

1(⇡`+2)) 2 RR−1, for all even ` < 2k. Accordingly,
we obtain (β1(⇡),β1(⇡0)) 2 (RR−1)⇤.

(ii “✓”) To show that every pair of distinct words in ⌧⇤ can be observed by Player 1
on connected plays, we verify by induction on the power k ≥ 1 that for every pair
(w,w0) 2 (RR−1)k, there exists a sequence of plays ⇡0 ⇠

1 ⇡1 ⇠
2 · · · ⇠2 ⇡2k such that

β1(⇡0) = w and β1(⇡2k) = w0.

The base case for k = 1 follows from point (i) of the present lemma:
if (w,w0) 2 (RR−1), then there exist ⇡ ⇠2 ⇡0 with β1(⇡) = w, β1(⇡0) = w0, and we
set ⇡0 = ⇡1 = ⇡ and ⇡2 = ⇡0. For the induction step, assume that the hypothesis holds
for a power k ≥ 1 and consider (w,w0) 2 (RR−1)k+1. That is, there exists a word z 2 Γ⇤

such that (w, z) 2 (RR−1)k and (z, w0) 2 (RR−1). The former implies, by induction hy-
pothesis, that we have a chain ⇡0 ⇠

1 ⇡1 ⇠
2 · · · ⇠1 ⇡2k−1 ⇠

2 ⇡2k with β1(⇡0) = w and
β1(⇡2k) = z; from the latter it follows, by definition of R, that there exist plays ⇡ and ⇡0

with β1(⇡) = z = β1(⇡2k), β
2(⇡) = β2(⇡0), and β1(⇡0) = w0. Therefore, we can prolong

the witnessing chain by setting ⇡2k+1 := ⇡, ⇡2k+2 := ⇡0, which concludes the induction
argument.

The consensus condition requires decisions to be invariant under the reflection relation.
This yields the following characterisation of winning strategies.

Lemma 3.7. Let G be a consensus game with seed (R,Lacc, Lrej) over an alphabet Γ, and
let ⌧ := RR−1 be its reflection relation. Then, a strategy s : Γ⇤ ! {0, 1} of Player 1 is
winning if, and only if, it assigns s(w) = 1 to every observation sequence w 2 ⌧⇤Lacc and
s(w) = 0 to every observation sequence w 2 ⌧⇤Lrej.

Proof. (“=) ”) According to Lemma 3.6(ii), every word w 2 ⌧⇤Lacc corresponds to the
observation sequence β1(⇡) = w of a play ⇡ in G, and there exists a connected play ⇡0 ⇠⇤ ⇡

with ⇡0 2 Lacc. Therefore, any winning strategy s : Γ⇤ ! {0, 1} for Player 1 must assign
s(w) = 1 to all w 2 Lacc and further, to all w 2 ⌧⇤Lacc, by the conditions of consensus
and indistinguishability. Likewise, it follows that s(w) = 0 for all w 2 ⌧⇤Lrej.

57

(“(=”) Consider the mapping s : V ⇤ ! {0, 1} with s(w) = 1 if, and only if,
β1(⇡) 2 ⌧⇤Lacc. Then s is a valid strategy, as for all ⇡ ⇠2 ⇡0 we have (β1(⇡),β1(⇡0)) 2 ⌧

and (β1(⇡0),β1(⇡)) 2 ⌧ , hence β1(⇡) 2 ⌧⇤Lacc if, and only if, β1(⇡0) 2 ⌧⇤Lacc. If it is the
case that s(⇡) = 0 for all ⇡ 2 ⌧⇤Lrej, that is, ⌧⇤Lacc \ ⌧⇤Lrej = ;, then s is a winning
strategy.

As a direct consequence, we can characterise the language defined by a game in terms
of iterated transductions.

Theorem 3.7. Let G be a consensus game with seed (R,Lacc, Lrej), and let Σ be a subset
of its alphabet. Then, for the reflection ⌧ := RR−1, we have:

(i) G is solvable if, and only if, ⌧⇤Lacc \ ⌧⇤Lrej = ;.

(ii) If G is solvable, then it covers the language (\Σ⇤)⌧⇤Lacc.

(iii) If G is solvable and (\Σ⇤)(⌧⇤Lacc [⌧
⇤Lrej) = Σ⇤, then G characterises the language

(\Σ⇤)⌧⇤Lacc.

3.5 Consensus Games for Context-Free Languages

Properties of iterated letter-to-letter transductions, or equivalently, length-preserving trans-
ductions, have been investigated by Latteux, Simplot, and Terlutte in [57, 80], where it is
also shown that iterated synchronous transductions capture context-sensitive languages.
Our setting is, however, more restrictive in that games correspond to symmetric transduc-
tions. In the following, we investigate a family of consensus game acceptors that captures
context-free languages. Since the class is not closed under complement, we will work with
the weaker notion of covering a language rather than characterising it. For the language-
theoretic discussion, we generally assume that the rejecting seed language Lrej is empty
and specify the seed (R,Lacc, ;) as (R,Lacc).

Firstly, we remark that regular languages correspond to games where the two players
have the same observation function. Clearly, such games admit regular winning strategies
whenever they are solvable.

Remark. We have already shown this result in Section 3.2.1 as a way to familiarise with
the specificities of consensus game acceptors and suggest their similarities with automata.
Here, we see that the transducer point of view provides a much more direct proof.

Proposition 3.2. A language L ✓ Σ⇤ is regular if, and only if, it is characterised by a
consensus game acceptor where the seed relation is the identity.

Proof. Every regular language L ✓ Σ⇤ is characterised by the game with seed
((\Σ⇤), L,Σ⇤ \ L). Conversely, suppose a language L ✓ Σ⇤ is characterised by a game G

over an alphabet Γ ◆ Σ with seed ((\Γ⇤), Lacc, Lrej). Then, G also covers L and, by The-
orem 3.7(ii), it follows that L = (\Σ⇤)(\Γ⇤)⇤Lacc = Σ⇤ \ Lacc. Hence, L is regular.

58

Dyck languages. As a next exercise, let us construct games for covering Dyck lan-
guages, that is, languages of well-balanced words of brackets; we also allow neutral sym-
bols, which may appear at any position without affecting the bracket balance. Our ter-
minal alphabet A consists of an alphabet Bn = { [k,]k | 1 k n } of n ≥ 1 matching
brackets and a set C of neutral symbols. For a word w 2 A⇤ and an index k, we denote
by excessk(w) the difference between the number of opening and of closing brackets [k
and]k. Then, the Dyck language DA over A consists of the words w 2 A⇤ such that, for
each kind of brackets k 2 {1, . . . , k}, excessk(w) = 0, whereas for all prefixes w0 of w,
excessk(w0) ≥ 0.

Given a terminal alphabet A = Bn [C, we define the transducer Rn,C over the obser-
vation alphabet Γ := A [{⇤} with a set of states {q0, q1, . . . , qn}, among which q0 is the
initial and the only final state, and with the following two kinds of transitions: copying

transitions q0
a|a
−−! q0 for all a 2 Γ, as well as qk

⇤|⇤
−−! qk for every k 2 {1, . . . n}, and erasing

transitions q0
[k|⇤
−−! qk and qk

]k|⇤
−−! q0 for the brackets of each kind k, and q0

c|⇤
−−! q0 for

each neutral symbol c 2 C. Essentially, Rn,C erases neutral symbols and any innermost
pair of brackets.

Lemma 3.8. The Dyck language over an alphabet n of matching brackets and a set C of
neutral symbols is covered by the game with seed (Rn,C ,⇤⇤).

Proof. For a terminal alphabet A with partitions Bn, C as in the statement, we denote the
corresponding Dyck language byDA and the previously defined transduction by R := Rn,C .
The observation alphabet Γ = Bn[C[{⇤} extends A with an additional neutral symbol ⇤;
let DΓ ◆ DA be the Dyck language over this extended alphabet. Consider now the game
G over Γ with seed (R,⇤⇤). We using the reflection relation ⌧ := RR−1 to argue that
DA = ⌧⇤⇤⇤.

To see that the Dyck language DA is contained in the language ⌧⇤⇤⇤ covered by G,
observe that for every pair of words u, u0 2 Γ⇤ where u 2 DΓ and u0 is obtained from u

by replacing one innermost pair of matching brackets with ⇤, we have (u, u0) 2 R. Since
the relation R contains the identity on Γ, it follows that (u, u0) ✓ RR−1, so (u, u0) 2 ⌧ . If
we set out with an arbitrary word w 2 A⇤, first erase all neutral symbols by applying R

once, and then repeat applying R to erase an innermost pair of brackets, we end up with
⇤⇤, hence w 2 ⌧⇤⇤⇤.

Conversely, to verify that every word in ⌧⇤⇤⇤ has well-balanced brackets, we show
that DΓ is invariant under the transductions R and R−1 in the sense that for any pair
(u,w) 2 R [R−1, we have u 2 DΓ if, and only if, w 2 DΓ. Towards this, let us fix
an accepting run of R on u|w and compare the values excessk(u0) and excessk(w0) of

its prefixes u0|w0, for any k ≥ n: the values are equal until a transition q0
[k|⇤
−−! qk is

taken at some prefix u0[k|w
0⇤. Since qk is not final, the run will take the transition

qk
]k|⇤
−−! q0 at some later position; let u00]k|w

00⇤ be the shortest continuation of u0|w0 at
which q0 is reached again. Hence, we set out with excessk(w0) = excessk(u0), and also
have excessk(u0) = excessk(u00), since none of [k or]k is transduced while looping in qk;
after returning to q0, again excessk(w00) = excessk(u00), because the opening bracket was
matched. So, it is the case that excessk(u0) ≥ 0 for all prefixes u0 of u if, and only if,
excessk(w0) ≥ 0 for all prefixes w0 of w, which means that RDΓ ✓ DΓ and R−1DΓ ✓ DΓ;

59

the converse inclusions hold because R contains the identity on Γ. Accordingly, for every
sequence w0, . . . , w` of words with w0 = w such that (wi, wi+1) 2 ⌧ for each i < `, we have
wi 2 DΓ if, and only if, wi+1 2 DΓ. Since ⇤⇤ 2 DΓ, it follows that w 2 DΓ, for any word
w 2 ⌧⇤⇤⇤. In conclusion, (\A⇤)⌧⇤⇤⇤ ✓ DA.

Context-free languages. To extend the consensus-game description of Dyck languages
to arbitrary context-free languages, we use the Chomsky-Schützenberger representation
theorem [28] in the non-erasing variant proved by Okhotin [67]. A letter-to-letter homo-
morphism h : A⇤ ! Σ⇤ is a functional synchronous transduction that preserves concate-
nation, that is, h(uw) = h(u)h(w) for all words u,w 2 A⇤. Such a homomorphism is
identified by its restriction f : A! Σ to single letters.

Theorem 3.8 ([67]). A language L ✓ Σ⇤ is context-free if, and only if, there exists a
Dyck language DA over an alphabet A of brackets and neutral symbols, a regular language
M ✓ A⇤, and a letter-to-letter homomorphism h : A⇤ ! Σ⇤, such that L = h(DA \M).

We will show how a game acceptor that covers an arbitrary language L ✓ A⇤ can be
extended to cover a homomorphic image of the intersection of L with a regular language.
Let h : A! Σ be a letter-to-letter homomorphism, and let R be a synchronous transducer
over an alphabet Γ ◆ A. We construct from R a new transducer Rh over the enlarged
alphabet Σ [Γ ⇥ A by adding a coding cycle. This is done by including a fresh final

state qh, as well as transitions q0
h(a)|(a,a)
−−−−−−! qh and qh

h(a)|(a,a)
−−−−−−! qh for all a 2 A, and then

relabelling each transition p
a|b
−−! q of R to p

(a,x)|(b,x)
−−−−−−! q, for all x 2 A. Intuitively, the new

transducer duplicates the automaton tapes into two tracks which are both initialised with
a homomorphic pre-image u 2 A⇤ of a terminal word w 2 Σ⇤, in a transduction via the
coding cycle. The first track is intended to simulate R on the pre-image u, whereas the
second track stores u: the contents is looped through every other transduction of Rh or
of its inverse. Notice that every run of Rh proceeds either through the new coding cycle,
or through the original transducer R, in the sense that, for any pair (w,w0) 2 Rh we have
{w,w0} ✓ Σ⇤ [(Γ⇥A)⇤.

Lemma 3.9. Suppose that a game acceptor with seed (R,Lacc) covers a language L ✓ A⇤.
Let M ✓ A⇤ be a regular language and let h : A⇤ ! Σ⇤ be a letter-to-letter homomorphism.
Then, the game acceptor with seed (Rh, Lacc ⇥M) covers the language h(L\M) over the
terminal alphabet Σ.

Proof. Let G be a game over an alphabet Γ ◆ A with seed (R,Lacc). Without loss of
generality, we assume that R contains the identity on A, otherwise we take the reflexive
transduction RR−1 to obtain the seed of a game that covers the same language. Further,
let M ✓ A⇤ be a regular language and let h : A ! Σ represent a letter-to-letter homo-
morphism as in the statement. We argue for the case where the alphabets Σ and Γ are
disjoint; the general case follows by composition with a relabelling homomorphism. Now,
consider the game G0 with seed transducer Rh and accepting language L0

acc := Lacc ⇥M .
We denote the reflection relations associated R and Rh by ⌧ := RR−1 and ⌧ 0 := RhR

−1
h .

To see that h(L \ M) is included in the language covered by G0, consider a word
w = h(u) for some u 2 ⌧⇤Lacc \M . By Theorem 3.7, there exists a witnessing sequence

60

(ui)i` with u0 = u, u` 2 Lacc, and (ui, ui+1) 2 ⌧ for all i < `. By construction of Rh,
we have (w, (u, u)) 2 Rh which implies (w, (u, u)) 2 ⌧ 0, thanks to our assumption that
(\A⇤) ✓ R. Since (u`, u) 2 Lacc ⇥ M , the sequence starting with w and followed by
((ui, u))i<` is witnessing that w 2 ⌧ 0⇤L0

acc.

Conversely, consider a word w 2 (\Σ⇤)⌧ 0⇤L0
acc and let (wi)i` be a witnessing sequence

with w0 = w, w` 2 L0
acc, and (wi, wi+1) 2 ⌧ 0 for all i `. By construction of Rh, the initial

word w is preserved at each term wi of the sequence, in the sense that either wi = w, or
wi = (ui, xi) 2 Γ⇤ ⇥A⇤ for some xi 2 A⇤ such that w = h(xi). By our assumption that Σ
and Γ are disjoint, we have w 62 Lacc, so there exists a last position k < ` with wk = w.
As w 2 Σ⇤ can only be transduced via the coding cycle, it follows that wi+1 = (u, u) for
some u 2 A⇤ with h(u) = w. For each following position i > k, the terms of the sequence
are of the form wi = (ui, u) for a certain word ui 2 Γ⇤. Hence the coding cycle cannot
be applied and the sequence (ui)k<i` satisfies, (ui, ui+1) 2 ⌧ for all i < `. Moreover,
w` = (u`, u) 2 L0

acc = Lacc⇥M . Thus, the sequence witnesses that u = uk+1 2 ⌧⇤Lacc\M ,
and since h(u) = w, it follows that w 2 h(L \M).

Now, we can construct a game acceptor for covering an arbitrary context-free language
L ✓ Σ⇤ represented as L = h(DA \M) according to Theorem 3.8, by applying Lemma 3.9
to the particular case of Dyck languages: we set out with the seed transducer Rn,C for
the Dyck language DA over the alphabet A = Bn [C and add a coding cycle for the
homomorphism h. This yields a transducer Rh over the alphabet Σ[(A[{⇤})⇥A such
that the game with seed (Rh,⇤

⇤ ⇥M) covers L.

The generic construction of Rh can be simplified in the case where R = Rn,C is the
seed transducer of a Dyck language. Notice that, if we start from a word w 2 Σ⇤, then
every distinct word w0 6= w reached in the iteration (w,w0) 2 (RhR

−1
h)⇤ consists only of

letters of the form (x, x) or (⇤, x) with x 2 Bn [C. Hence, the reduced transducer R̂h

obtained from Rh, by restricting to the (subset of transitions labelled with letters in the)
subalphabet Σ[{(x, x) | x 2 A}[{(⇤, x) | x 2 A} and identifying each pair (x, x) 2 A⇥A
with x, is equivalent to Rh in the sense that, for every regular language M ✓ A⇤, the
game with seed (R̂h,⇤

⇤ ⇥ M) covers the same language over Σ as the one with seed
(Rh,⇤

⇤⇥M). In contrast to Rh, however, the reduced transducer R̂h has fewer transition
and a smaller alphabet, which extends the one of the underlying Dyck language DA only
with a neutralised copy of each letter in A.

We argue that the shape of the seed constructed above is prototypical for games that
cover context-free languages. Therefore, we focus on games with a seed isomorphic to the
seed (R̂h,⇤

⇤⇥M) obtained for the homomorphic image of a Dyck-language over n bracket
pairs intersected with a regular language. An n-flower transducer is a transducer R =
(Q,Γ,∆, q0, F) on a set of states Q = {q0, q1, . . . , qn, qh} with initial state q0 and final state
set F = {q0, qh}, over an alphabet that can be partitioned into Γ = Σ[Bn[C [A

0, where
Bn is a set of nmatching brackets [k,]k and A0 is a disjoint copy of A := Bn[C, associating
a neutralised variant a to each letter a 2 A, such that ∆ contains copying transitions

q0
a|a
−−! q0 for all a 2 A [A0, and qk

a | a
−−−−! qk for all a 2 A and each k 2 {1, . . . n}, as

well as erasing transitions q0
c| c
−−! q0 for each c 2 C, and q0

[k| [k
−−−! qk, qk

]k|]k
−−−! q0 for

each k. Furthermore, we require that there is a homomorphism h : A ! Σ, such that

61

q0

q1 q2

qh

(

(

[

[

x

x
,

x

x
x2A

)

)

x

x
x2A

]

]

x

x
x2A

a

[
,
b

(
,
c

]
,
c

)

(a) 2-flower

q0

q1 q2

qh

qf

qc

(

(

[

[

(

(
,

[

[

)

)

x

x
x 2 A

]

]

x

x
x 2 A

a

[
,
b

(
,
a

]
,
b

)

x

x
,
x

x
x2A

)

)
,

]

]

(b) loose flower for palindromes

Figure 3.3: Flower transducers

the remaining transitions of ∆ are coding transitions q0
h(a)|a
−−−−! qh and qh

h(a)|a
−−−−! qh for all

a 2 A. Finally, a seed (R,Lacc) is an n-flower if R is an n-flower transducer and Lacc is a
regular language over the alphabet A0 of its neutralised symbols. An example of a 2-flower
transducer is depicted in Figure 3.3(a).

Theorem 3.9. A language is context-free if, and only if, it is covered by a consensus game
acceptor with an n-flower seed.

Proof. Let L ✓ Σ⇤ be an arbitrary context-free language. According to the Representation
Theorem 3.8, there exists an alphabet A partitioned into a bracket alphabet Bn and a set
of neutral symbols C, a letter-to-letter homomorphism given by h : A! Σ, and a regular
language M ✓ A⇤, such that L = h(DA \M). With these in hand, we construct the
seed transducer Rn,C for the Dyck language DA as in Lemma 3.8 and then add a coding
cycle qh for the homomorphism h. According to Lemma 3.9, the transducer R constructed
in this way together with the seed language Lacc := ⇤⇤ ⇥M describes a game that covers
L. By reducing R to the alphabet Σ [A [{⇤} ⇥ A, we finally obtain the n-flower seed
seed (R̂,⇤⇤ ⇥M) that also covers L over Σ.

For the converse statement, let G be a consensus game with an n-flower seed (R,Lacc)
over an alphabet Γ. We wish to prove that the language covered by G over Γ is context-
free. First, we partition Γ into an alphabet Σ, a set Bn of n matching brackets, a set C of
(prime) neutral symbols, and a neutralised copy A0 of A := Bn [C. Let DA be the Dyck
language over A, and let h : A ! Σ be the letter-to-letter homomorphism determined
by the coding cycle in R. Then, consider the neutralising letter-to-letter homomorphism
⌫ : A[A0 ! A0 which maps both a and a to the neutralised copy a , and setM := ⌫−1Lacc;
as an inverse homomorphic image of a regular language, M is regular. By construction
of the flower transducer, we know that, over the alphabet Σ, the game G covers the
context-free language h(DA \M).

To describe the language covered over the full alphabet Γ, consider the Dyck language
D0
A over the alphabet A[A0 with the same set Bn of brackets as DA, but with an extended

set C [A0 of neutral symbols. We observe that D0
A is closed under R and R−1 in the sense

that, for any pair of non-terminal words w,w0 2 Γ⇤ \ Σ⇤ with (w,w0) 2 R, we have

62

w 2 D0
A if, and only if, w0 2 D0

A. Moreover, ⌫(w) = ⌫(w0) (letters are neutralised, but
never forgotten). This implies that, over Γ \ Σ, the game G covers the language D0

A \M .
Since every observation sequence of G is either contained in Σ⇤ or in (Γ \ Σ)⇤, it follows
that, over the full alphabet Γ, the consensus game G covers the context-free language
h(DA \M) [(D0

A \M).

Notice that, without restricting the alphabet of the accepting seed language to neu-
tralised symbols, the structure of the transducer alone would not guarantee that the lan-
guage covered by a game with an n-flower seed is context-free. For instance, the one-flower
transducer over a bracket pair [,] one neutral symbol #, and their neutralised copies, to-
gether with the seed language Lacc := [+# [

+]+ give rise to a game where the covered

language L is not context-free, since the intersection L \ [
+# [+]+ = [

n# [n]n is not
context-free.

Returning to games, the argument from Lemma 3.7 shows that, given a game with
seed (R,Lacc, Lrej), at every play ⇡ with observation β1(⇡) in the language L1 covered
by (R,Lacc) over the full observation alphabet, the only safe decision is 1, whereas at
each play with observations in the language L0 covered by (R,Lrej) the only safe decision
is 0. An observation-based strategy prescribing s1(⇡) := 1 precisely if β1(⇡) 2 L1 induces
a joint strategy that is optimal in the sense that it prescribes a safe decision whenever
one exists. Likewise, a strategy that prescribes 0 precisely at sequences in L0 is optimal.
Optimal strategies are undominated, that is, no other strategy wins strictly more plays.
Clearly, if a game is solvable, then every optimal strategy is winning.

One consequence of Theorem 3.9 is that, for games where one of (R,Lacc) or (R,Lrej) is
an n-flower, the set L1 or L0 is context-free, and therefore recognisable by a nondetermin-
istic push-down automaton, which we can construct effectively from the game description.
The obtained automaton hence implements an optimal strategy that is indeed a winning
strategy, in case the game is solvable. According to Theorem 3.7, already for games where
both L0 and L1 are context-free, the question of whether a winning strategy exists amounts
to solving the disjointness problem for context-free languages and is hence undecidable.
Under these circumstances, it is remarkable that we can effectively construct strategies
that are optimal and, moreover, winning whenever the game is solvable.

Corollary 3.1. For any consensus game G with seed (R,Lacc, Lrej) where either (R,Lacc)
or (R,Lrej) is an n-flower, we can effectively construct a nondeterministic push-down
automaton S that implements an optimal strategy.

3.6 Discussion

We presented a simple kind of games with imperfect information where constructing op-
timal strategies requires iterating the (synchronous rational) relation that correlates the
observation of players. This establishes a correspondence between winning strategies in
games on the one hand, and main classes of formal languages on the other hand. The
correspondence leads to several insights on games with imperfect information.

Firstly, we obtain simple examples that illustrate the computational complexity of
coordination under imperfect information. The classical constructions for proving that the

63

problem is undecidable in the general case typically involve an unbounded number of non-
trivial decisions by which the players describe configurations of a Turing machine [70, 1, 77].
In contrast, our undecidability argument in Theorem 3.5 relies on a single simultaneous
decision.

Secondly, we identify families of games where optimal strategies exist and can be con-
structed effectively, but the complexity of the strategic decision necessarily grows with
the length of the play. This opens a new perspective for distributed strategy synthesis
that departs from the traditional focus on finite-state winning strategies and from game
classes, on which the existence of such is decidable. In consensus games, the implementa-
tion of winning strategies requires arbitrary linear-bounded automata in the general case.
However, we have also described a structural condition on game graphs that ensures that
winning strategies can be implemented by push-down automata.

One challenging objective is to classify games with imperfect information according to
the complexity of strategies required for solving them. The insights developed for consen-
sus games allow a few more steps in this direction. For instance, games with one-flower
seeds cover one-counter languages and therefore admit optimal strategies implemented
by one-counter automata. Likewise, we can build up a variant of n-flower seeds from
Dyck languages restricted to palindromes, as illustrated in Figure 3.3(b). Games with
such loose n-flower seeds cover a subclass of linear languages and hence admit optimal
strategies implemented by one-turn push-down automata.

64

Chapter 4

Information Hierarchies

One fundamental case in which the distributed synthesis problem becomes decidable is that
of hierarchical systems: these correspond to games where there is a total order among
the players such that, informally speaking, each player has access to the information
received by the players that come later in the order. Peterson and Reif [69] showed that,
for games in this setting, it is decidable—although, with non-elementary complexity—
whether distributed winning strategies exist and if so, finite-state winning strategies can
be effectively synthesised. The result was extended by Pnueli and Rosner [70] to the
framework of distributed systems over fixed linear architectures where information can flow
only in one direction. Later, Kupferman and Vardi developed a fundamental automata-
theoretic approach [53] that allows to extend the decidability result from linear-time to
branching-time specifications, and also removes some of the syntactic restrictions imposed
by the fixed-architecture setting of Pnueli and Rosner. Finally, Finkbeiner and Schewe [36]
give an effective characterisation of communication architectures on which distributed
synthesis is decidable. The criterion requires absence of information forks, which implies a
hierarchical order in which processes, or players, have access to the observations provided
by the environment.

In this chapter, we study a relaxation of the hierarchical information pattern underlying
the basic decidability results on games with imperfect information. Firstly, we extend the
assumption of hierarchical observation, that is positional information, by incorporating
perfect recall. Rather than requiring that a player observes the signal received by a
less-informed player, we will require that he can deduce it from his observation of the
play history. It can easily be seen that this gives rise to a decidable class, and it is
likely that previous authors had a perfect-recall interpretation in mind when describing
hierarchical systems, even if the formal definitions in the relevant literature generally refer
to observations.

Secondly, we investigate the case when the hierarchical information order is not fixed,
but may change dynamically along the play. This lets us model situations, where the
schedule of the interaction allows a less-informed player to become more informed than
others, or where the players may coordinate on designating one to receive certain signals,
and thus become more informed than others. We show that this condition of dynamic
hierarchical observation also leads to a decidable class of the distributed synthesis problem.

As a third extension, we consider the case where the condition of hierarchical informa-

65

tion (based on perfect recall) is intermittent. That is, along every play, it occurs infinitely
often that the information sets of players are totally ordered; nevertheless, there may be
histories, at which incomparable information sets arise, as it is otherwise typical of infor-
mation forks. We show that, at least for the case of winning conditions over attributes
observable by all players, this condition of recurring hierarchical observation is already suf-
ficient for the decidability of the synthesis problem, and that finite-state winning strategies
exist for all solvable instances.

For all three conditions of hierarchical information, it is decidable with relatively low
complexity whether they hold for a given game. However, the complexity of solving a game
is non-elementary in all cases, as they are more general than the condition of hierarchical
observation, known to admit no elementary lower bound [70].

4.1 Finite-State Strategies and Automata

In this chapter, we work on the game model presented in Chapter 2, however we make
some precisions on the kind of strategies we are interested here: Our focus is on finitely-
represented games, where the game graphs are finite and the winning conditions described
by finite-state automata. Specifically, winning conditions are given by a colouring function
γ : V ! C and an !-regular set W ✓ C! describing the set of plays v0, v1, . . . with
γ(v0), γ(v1), · · · 2 W . In certain cases, we assume that the colouring is observable to
each player i, that is, βi(v) 6= βi(v0) whenever γ(v) 6= γ(v0). For general background on
automata for games, we refer to the survey [44].

Strategies shall also be represented as finite-state machines. A Moore machine over an
input alphabet Σ and an output alphabet Γ is described by a tuple (M,m0, µ, ⌫) consisting
of a finite set M of memory states with an initial state m0, a memory update function
µ : M ⇥Σ!M and an output function ⌫ : M ! Γ defined on memory states. Intuitively,
the machine starts in the initial memory state m0, and proceeds as follows: in state m,
upon reading an input symbol x 2 Σ, updates its memory state to m0 := µ(m,x) and then
outputs the letter ⌫(m). Formally, the update function µ is extended to input words in
Σ⇤ by setting, µ(") := m0, for the empty word, and by setting,

µ(x0 . . . x`−1x`) := µ(µ(x0 . . . x`−1), x`),

for all nontrivial words x0 . . . x`−1x`. This gives rise to the function M : Σ⇤ ! Γ⇤ im-
plemented by M , defined by M(x0, . . . , x`) := ⌫(µ(x0 . . . x`)). A strategy automaton for
Player i on a game G, is a Moore machine M with input alphabet Bi and output alphabet
Ai. The strategy implemented by M is defined as si(v0, . . . , v`−1) := M(βi(v0 . . . v`−1)).
A finite-state strategy is one implemented by a strategy automaton.

Sometimes it is convenient to refer to Mealy machines rather than Moore machines.
These are finite-state machines of similar format, with the only difference that the out-
put function ⌫ : M ⇥ Σ ! Γ refers to transitions rather than their target state (see
Definition 2.4).

In the following we will refer to several classes C of finite games, always assuming that
winning conditions are given as !-regular languages. The finite-state synthesis problem
for a class C is the following: Given a game G 2 C,

66

(i) decide whether G admits a finite-state distributed winning strategy, and

(ii) if yes, construct a profile of finite-state machines that implements a distributed
winning strategy for G.

We refer to the set of distributed (finite-state) winning strategies for a given game G as
the (finite-state) solutions of G. We say that the synthesis problem is finite-state solvable
for a class C if every game G 2 C that admits a solution also admits a finite-state solution,
and if the above two synthesis tasks can be accomplished for all instances in C.

4.2 Static Hierarchies

One fundamental case in which the distributed synthesis problem becomes decidable is that
of hierarchical systems: these correspond to games where there is a total order among the
players such that, informally speaking, each player has access to the information received
by the players that come later in the order.

Peterson and Reif [69] showed that for games in this setting, it is decidable—although,
with non-elementary complexity—whether distributed winning strategies exist and if so,
finite-state winning strategies can be effectively synthesised. The result was extended by
Pnueli and Rosner [70] to the framework of distributed systems over fixed linear archi-
tectures where information can flow only in one direction. Later, Kupferman and Vardi
developed a fundamental automata-theoretic approach [53] that allows to extend the de-
cidability result from linear-time to branching-time specifications, and also removes some
of the syntactic restrictions imposed by the fixed-architecture setting of Pnueli and Rosner.
Finally, Finkbeiner and Schewe [36] give an effective characterisation of communication
architectures on which distributed synthesis is decidable. The criterion requires absence of
information forks, which implies a hierarchical order in which processes, or players, have
access to the observations provided by the environment.

The setting of games is more liberal than that of architectures with fixed communica-
tion channels. For instance, Muscholl and Walukiewicz [64] present a decidable class of
synthesis problems under different assumptions on the communication between processes
that are not subsumed by information-fork free architectures. A rather general, though
non-effective condition for games to admit finite-state distributed winning strategies is
given in [5], based on epistemic models representing the knowledge acquired by players in
a game with perfect recall. This condition suggests that, beyond the fork-free architec-
ture classification there may be further natural classes of games for which the distributed
synthesis problem is decidable.

4.2.1 Hierarchical observation

We set out from the basic pattern of hierarchical information underlying the decidability
results cited in the introduction [53, 69, 70]. These results rely on a positional interpreta-
tion of information, i.e. on observations.

Definition 4.1. A game graph yields hierarchical observation if there exists a total or-
der 5 among the players such that, whenever i 5 j, then for all pairs v, v0 of positions,
βi(v) = βi(v0) implies βj(v) = βj(v0).

67

In other words, if i 5 j, then the observation of Player i determines the observation of
Player j.

Peterson and Reif [69] study a game with players organised in a hierarchy, such that
each player i sees the data observed by Player i − 1. The setting is actually generic for
games with reachability winning conditions and the authors show that winning strate-
gies can be synthesised in n-fold exponential time and this complexity is unavoidable.
Later, [70] consider a similar model in the context of distributed systems with linear-time
specifications given by finite automata on infinite words. Here, the hierarchical organisa-
tion is represented by a pipeline architecture, which allows each process to send signals
only to the following one. The authors show that the distributed synthesis problem for
such a system, is solvable via an automata-theoretic technique. This technique is further
extended by [53] to more general, branching-time specifications. The key operation of
the construction is that of widening – an interpretation of strategies for a less-informed
player j within the strategies of a more-informed player i 5 j. Intuitively, this allows to
first solve a game as if all the moves were performed by the most-informed player, which
comes first in the order 5, and successively discard solutions that cannot be implemented
by the less-informed players, i.e. those which involve strategies that are not in the image
of the widening interpretation.

The automata-theoretic method for solving the synthesis problem on pipeline archi-
tectures, due to [70] and [53], can be adapted directly to solve the synthesis problem for
games with hierarchical observation.

Theorem 4.1 ([70, 53]). For games with hierarchical observation, the synthesis problem
is finite-state solvable.

◦ v0 ◦

◦ v1 ◦ • v2 ◦

◦ v3 ◦ • v4 ◦ •
• v5 •

(a) hierarchical observation

◦ v0 ◦

◦ v1 ◦ • v2 ◦

◦ v3 ◦ ◦ v4 • • v5 •

(b) static hierarchical informa-
tion

Figure 4.1: Basic patterns of hierarchical information: game positions show the observation
of Player 1 (left) and Player 2 (right); the name of the position (middle) is unobservable

68

4.2.2 Incorporating perfect recall

In a first step, we extend the notion of hierarchical observation to incorporate the power
of perfect recall that players have. To do so, we need to take into account not only the
observation received by a player at a certain step in the play, but the entire history of
observations the player received since the start of the play. We have already seen how the
observation functions βi extend from states to histories, as well as the indistinguishability
relations ⇠i on observation histories. The notion of information sets of a player designates
the equivalence classes of its indistinguishability relation. More precisely, the information
set of player i at history ⇡ is P i(⇡) := {⇡0 2 Hist(G) | ⇡0 ⇠i ⇡}. While maintaining the
requirement of a fixed order, we now ask that the information set of a player determines
the information sets of those who follow in the order.

Definition 4.2. A game graph yields (static) hierarchical information if there exists a total
order 5 among the players such that, for all histories ⇡, if i 5 j, then P i(⇡) ✓ P j(⇡).

Example 4.1 (Hierarchical observation vs. hierarchical information). In Figure 4.1(a),
the game graph yields hierarchical observation. Indeed, the observations of the first player
determine the observations of the second player. In fact, at every round, the first player
observes a different symbol for each reachable state, while the second player does not dis-
tinguish between states v1 and v2 after the first round, and between v3 and v4 after the
next round. Clearly, the game graph also yields hierarchical information: For instance, af-
ter two rounds, the information sets of the first player are singletons, as he can distinguish
every history from any other one, while the second player has the following information
sets: P 2(v0v1v3) = P 2(v0v2v4) = {v0v1v3, v0v2v4} and P 2(v0v2v5) = {v0v2v5}, which cor-
respond to the observation histories ◦◦◦ and ◦◦•, respectively. On the other hand, the game
graph in Figure 4.1(b) yields hierarchical information but not hierarchical observation. In-
deed, without the assumption of perfect recall, the first player cannot distinguish between
states v3 and v4, while the second cannot distinguish between states v4 and v5. However,
considering observation histories, one can see that the first player is better informed than
the second: For instance, after two rounds, his information sets are P 1(v0v1v3) = {v0v1v3}
corresponding to the observation history ◦ ◦ ◦, P 1(v0v2v4) = {v0v2v4} corresponding to
the observation history ◦ • ◦, and P 1(v0v2v5) = {v0v2v5} corresponding to the observa-
tion history ◦ • •. The second player information sets are P 2(v0v1v3) = {v0v1v3} and
P 2(v0v2v4) = P 2(v0v2v5) = {v0v2v4, v0v2v5}, which correspond to the observation histo-
ries ◦ ◦ ◦ and ◦ ◦ •, respectively.

The following lemma provides an operational characterisation of the hierarchical in-
formation condition. We detail the proof, as its elements will be used later.

Lemma 4.1. A game graph G yields static hierarchical information if, and only if, for
every pair i 5 j of players, there exists a Moore machine that outputs βj(⇡) on input
βi(⇡), for every history ⇡ in G.

Proof. For an arbitrary game graph G, let us denote the relation between the observations
of two players i and j along the histories of G by

T ij := {(βi(⇡),βj(⇡)) 2 (Bi ⇥Bj)⇤ | ⇡ 2 Hist(G)}.

69

This is a regular relation, recognised by the game graph G when viewed as a finite-word
automaton A

ij
G over the alphabet of observation pairs Bi ⇥Bj .

Concretely, Aij
G := (V,Bi ⇥ Bj , v0,∆, V) is a nondeterministic automaton on states

corresponding to positions of G, with transitions (v, (bi, bj), v0) 2 ∆ if there exists a move
(v, a, v0) 2 E such that βi(v0) = bi and βj(v0) = bj ; all states are accepting.

(() If there exists a Moore machine that recognises T ij , then T ij is actually a function.
Thus, ⇡ ⇠i ⇡0 implies βj(⇡) = T ij(βi(⇡)) = T ij(βi(⇡0)) = βj(⇡0), and therefore ⇡ ⇠j ⇡0.

()) Assuming that G yields static hierarchical information, consider the automa-
ton M ij obtained by determinising A

ij
G and trimming the result, that is, removing all

states that do not lead to an accepting state. As G yields hierarchical information, the
relation T ij recognised by M ij is functional, and hence M ij is deterministic in the input
component i: for any state v there exists precisely one outgoing transition along each
observation bi 2 Bi. In other words, M ij is a Mealy machine, which we can transform
into an equivalent Moore machine, as desired.

Theorem 4.2. For games with static hierarchical information, the synthesis problem is
finite-state solvable.

Proof. Intuitively, we transform an arbitrary game graph G = (V,E,β) with static hi-
erarchical information into one with hierarchical observation, by taking the synchronised
product ofG with automata that signal to each player i the observations of all players j ⌫ i.
We shall see that this preserves the solutions to the distributed synthesis problem, for any
winning condition on G.

To make the construction precise, let us fix a pair i 5 j of players, and consider the
Moore machine M ij = (M,m0, µ, ⌫) from the proof of Lemma 4.1, which translates the
observations βi(⇡) into βj(⇡), for every history ⇡ in G. We define the product G ⇥M ij

as a new game graph with the same sets of actions as G, and the same observation
alphabets (Bk)k 6=i, except for Player i, for which we expand the alphabet to Bi ⇥ Bj to
also include observations of Player j. The new game is over positions in V ⇥M with
moves ((v,m), a, (v0,m0)) if (v, a, v0) 2 E and µ(m,βi(v)) = m0. The observations for
Player i are given by βi(v,m) = (βi(v), ⌫(m)), whereas they remain unchanged for all
other players βk(v,m) = βk(v), for all k 6= i.

The obtained product graph is equivalent to the original game graph G, in the sense
that they have the same tree unravelling, and the additional components in the observa-
tions of Player i (representing observations of Player j, given by the Moore machine M ij)
are already determined by his own observation history, so Player i cannot distinguish any
pair of histories in the new game that he could not distinguish in the original game. Ac-
cordingly, the strategies on the expanded game graph G ⇥M ij correspond to strategies
on G, such that the outcomes of any distributed strategy are preserved. In particular,
for any winning condition over G, a distributed strategy is winning in the original game
if, and only if, it is winning in the expanded game G ⇥ M ij . On the other hand, the
(positional) observations of Player i in the expanded game determine the observations of
Player j.

By applying the transformation for each pair i 5 j of players successively, we obtain a
game graph that is equivalent to G under every winning condition, and which additionally

70

yields hierarchical observation. Due to Theorem 4.1, we can thus conclude that, under
!-regular winning condition, the synthesis problem is finite-state solvable for games with
static hierarchical information.

To decide whether a given game graph yields static hierarchical information, the col-
lection of Moore machines according to Lemma 4.1, for all players i, j, may be used as a
witness. However, this yields an inefficient procedure, as the determinisation of a func-
tional transducer involves an exponential blowup; precise bounds for such translations
are given by Weber and Klemm in [88]. More directly, one could verify that each of the
transductions A

ij
G relating observation histories of Players i, j, as defined in the proof of

Lemma 4.1, is functional. This can be done in polynomial time using, e.g. the procedure
described by Béal et al. in [2].

We can give a precise bound in terms of nondeterministic complexity.

Lemma 4.2. The problem of deciding whether a game yields static hierarchical informa-
tion is NLogSpace-complete.

Proof. The complement problem—of deciding whether for a given game there exists a
pair of players i, j that cannot be ordered in either way— is solved by the following non-
deterministic procedure: Guess a pair i, j of players, then check that i 65 j, by follow-
ing nondeterministically a pair of histories ⇡ ⇠i ⇡0, such that ⇡ 6⇠j ⇡0; symmetrically,
check that j 65 i. The procedure requires only logarithmic space for maintaining point-
ers to four positions while tracking the histories. Accordingly, the complement problem
is in NLogSpace, and since the complexity class is closed under complement, our de-
cision problem of whether a game yields static hierarchical information also belongs to
NLogSpace.

For hardness, we reduce the emptiness problem for nondeterministic finite automata,
known to beNLogSpace-hard [49], to the problem of deciding whether the following game
for two players playing on the graph of the automaton yields hierarchical information:
Nature chooses a run in the automaton, the players can only observe the input letters,
unless an accepting state is reached; if this happens, Nature sends to each player privately
one bit, which violates the condition of hierarchical information. Thus, the game has
hierarchical information if, and only if, no input word is accepted.

4.2.3 Signals and game transformations

Functions that return information about the current history, such as those constructed
in the proof of Lemma 4.1 will be a useful tool in our exposition, especially when the
information can be made observable to some players.

Given a game graph G, a signal is a function defined on the set of histories in G, or on
the set of observation histories of some player i. We say that a signal f : Hist(G)! C is
information-consistent for Player i if any two histories that are indistinguishable to Player i
have the same image under f . A finite-state signal is one implemented by a Moore ma-
chine. Any finite-state signal f : Hist(G) ! C can also be implemented by a Moore
machine M i over the observation alphabet Bi, such that that M(⇡) = M i(βi(⇡)) for
every history ⇡. The synchronisation of G with a finite-state signal f is the expanded
game graph (G, f) obtained by taking the synchronised product G ⇥M , as described in

71

the proof of Lemma 4.1. In case f is information-consistent for Player i, it can be made
positionally observable to this player, without changing the game essentially. Towards this,
we consider the game graph (G, f i) that expands (G, f) with an additional observation
component f i(v) for player i at every position v, such that f(⇡) = f i(v) for each history
⇡ that ends at v. The game graph (G, f i) is finite-state equivalent to G, in the sense that
every strategy for G maps via finite-state transformations to a strategy for (G, f i) with
the same outcome and vice versa. Indeed, any strategy for G is readily a strategy with
the same outcome for (G, f i) and, conversely, every strategy profile s in (G, f i) can be
synchronised with the Moore machines implementing the signals f i for each player i, to
yield a finite-state strategy profile s0 for G with the same outcome as s. In particular, the
transformation preserves solutions to the finite-state synthesis problem.

4.3 Dynamic Hierarchies

In this section, we maintain the requirement on the information sets of players to be
totally ordered at every history. However, in contrast to the case of static hierarchical
information, we allow the order to depend on the history and to change dynamically along
a play.

Definition 4.3. We say that a history ⇡ yields hierarchical information if the information
sets {P i(⇡) | i 2 N} are totally ordered by inclusion. A game graph G yields dynamic
hierarchical information if every history yields hierarchical information.

◦ v0 ◦

◦ v1 ◦ • v2 ◦

◦ v3 ◦ ◦ v4 • ◦ v5 •
•

Figure 4.2: Dynamic hierarchical information

Example 4.2. Figure 4.2 shows an example of such a situation: for instance, at the history
reaching v2, player 1 is more informed than player 2, however, the order switches when the
play proceeds to position v4: Indeed, after the history v0v2, we have P 1(v0v2) = {v0v2},
corresponding to observation history ◦• and P 2(v0v2) = {v0v1, v0v2} corresponding to
observation history ◦◦, hence P 1(v0v2) ✓ P 2(v0v2). But after history v0v2v4, we have
P 1(v0v2v4) = {v0v2v4, v0v2v5} corresponding to observation history ◦•◦ and P 2(v0v2v4) =
{v0v2v4} corresponding to observation history ◦ ◦ • (while P 2(v0v2v5) = {v0v2v5} corre-
sponding to observation history ◦ ◦ •

•), hence P 2(v0v2v4) ✓ P 1(v0v2v4). Similarly, after

72

histories v0v1v3 and v0v2v5 , the information sets are totally ordered by inclusion, as we
have P 1(v0v1v3) = P 2(v0v1v3) = {v0v1v3} and P 2(v0v2v5) ✓ P 1(v0v2v5), respectively.
Therefore, the game graph yields dynamic hierarchical information.

In other words, a game has dynamic hierarchical information if there is no history
at which the information sets of two players are incomparable. To decide whether this
is the case, we can use a nondeterministic procedure similar to the one in Lemma 4.2,
to guess two players i, j and three histories ⇡ ⇠i ⇡0 and ⇡00 ⇠j ⇡, such that ⇡0 6⇠i ⇡00

and ⇡0 6⇠j ⇡00. Since, for a history ⇡, witnesses ⇡0,⇡00 can be guessed and verified by a
nondeterministic automaton, it also follows that, for every finite game, the set of histories
that yield hierarchical information is regular.

Lemma 4.3. For every finite game graph G, we can construct a nondeterministic finite
automaton such that a history in G is accepted if and only if it does not yield hierarchical
information. If G has n players and |V | positions, the number of automaton states is at
most 2n2|V |2.

Proof. Let us fix a game graph G. A history ⇡ in G fails to yield hierarchical information if
there are two players with incomparable information sets at ⇡. To verify this, we construct
an automaton that chooses nondeterministically a pair i, j of players, then, while reading
the input ⇡, it guesses a pair ⇡0, ⇡00 of histories such that ⇡0 ⇠i ⇡ and ⇡00 ⇠j ⇡ and updates
two flags indicating whether ⇡0 6⇠i ⇡00 or ⇡0 6⇠j ⇡00; the input is accepted if both flags are
set. Hence, a word ⇡ 2 V ⇤ that corresponds to a history in G is accepted if, and only if,
the corresponding history does not yield hierarchical information. 1

In its states, the constructed automaton stores the indices of the two players i, j, a
pair of game positions to keep track of the witnessing histories ⇡0 and ⇡00, and a two-bit
flag to record whether the current input prefix is distinguishable from ⇡0 for Player j or
from ⇡00 for Player i. Clearly, it is sufficient to consider each pair of players only once,
hence, the automaton needs at most 4n(n−1)

2 |V |2 states, that is, less than 2n2|V |2.

To decide whether a given game graph G yields dynamic hierarchical information, we
may check whether the automaton described in Lemma 4.3 accepts all histories in G.
However, more efficient than constructing this automaton, we can use a nondeterministic
procedure similar to the one of Lemma 4.2 to verify on-the-fly if there exists a history
at which the information sets of two players are incomparable: guess two players i, j and
three histories ⇡ ⇠i ⇡0 and ⇡00 ⇠j ⇡, such that ⇡0 6⇠i ⇡00 and ⇡0 6⇠j ⇡00. Obviously, the lower
bound from Lemma 4.3 is preserved.

Lemma 4.4. The problem of deciding whether a game graph yields dynamic hierarchical
information is NLogSpace-complete.

In the remainder of the section, we show that, under this more liberal condition,
distributed games are still decidable.

1Notice that the automaton may also accept words that do not correspond to game histories; to avoid
this, we can take the synchronised product with the game graph G and obtain an automaton that recognises
precisely the set of histories that do not yield hierarchical information.

73

Theorem 4.3. For games with dynamic hierarchical information, the synthesis problem
is finite-state solvable.

For the proof, we transform an arbitrary game G with dynamic hierarchical information
into one with static hierarchical information, among a different set of n shadow players
10, . . . , n0, where each shadow player i0 plays the role of the i-most informed player in
the original game, in a sense that we will make precise soon. The information sets of
the shadow players follow their nominal order, that is, if i < j then P i0(⇡) ✓ P j0(⇡).
The resulting shadow game inherits the graph structure of the original game, and we will
ensure that, for every history ⇡,

(i) each shadow player i0 has the same information (set) as the i-most informed actual
player, and

(ii) each shadow player i0 has the same choice of actions as the i-most informed actual
player.

This shall guarantee that the shadow game preserves the winning status of the original
game.

The construction proceeds in two phases. Firstly, we expand the game graph G so that
the correspondence between actual and shadow players does not depend on the history,
but only on the current position. This is done by synchronising G with a finite-state
machine that signals to each player his rank in the information hierarchy at the current
history. Secondly, we modify the game graph, where the shadow-player correspondence is
recorded as a positional attribute, such that the observation of each player is received by
his shadow player, at every position; similarly, the actions of each player are transferred
to his shadow player. Finally, we show how finite-state winning strategies for the shadow
game can be re-distributed to the actual players to yield a winning profile of finite-state
winning strategies for the original game.

4.3.1 Information rank signals

For the following, let us fix a game G with dynamic hierarchical information with the
usual notation. For a history ⇡, we write 5⇡ for the total order among players induced by
the inclusions between their information sets at ⇡. To formalise the notion of an i-most
informed player, we use the shortcut i ⇡⇡ j for i 5⇡ j and j 5⇡ i; likewise, we write i ≺⇡ j

for i 5⇡ j and not j 5⇡ i.

Then, the information rank of Player i over the game graph G is a signal ranki :
Hist(G)! N defined by

ranki(⇡) := |{j 2 N | j ≺⇡ i or (j < i and j ⇡⇡ i) }|.

Likewise, we define the order of Player i relative to Player j as a signal 5i
j : Hist(G) !

{0, 1} with 5i
j (⇡) = 1 if, and only if, i 5⇡ j.

Lemma 4.5. The information rank of each player i and his order relative to any player j
are finite-state signals that are information-consistent to Player i.

74

Proof. We detail the argument for the rank, the case of relative order is similar and simpler.

Given a game G as in the statement, let us verify that the signal ranki is information-
consistent, for each player i. Towards this, consider two histories ⇡ ⇠i ⇡0 in G, and suppose
that some player j does not count for the rank of i at ⇡, in the sense that either i ≺⇡ j

or (i ⇡⇡ j and i < j) — in both cases, it follows that ⇡ ⇠j ⇡0, hence P j(⇡) = P j(⇡0),
which implies that j does not count for the rank of i at ⇡0 either. Hence, the set of
players that count for the rank of Player i is the same at ⇡ and at ⇡0, which means that
ranki(⇡) = ranki(⇡0).

To see that the signal ranki can be implemented by a finite-state machine, we first
build, for every pair i, j of players, a nondeterministic automaton A

j
i that accepts the

histories ⇡ where j ≺⇡ i, by guessing a history ⇡0 ⇠i ⇡ and verifying that ⇡0 6⇠j ⇡. To
accept the histories that satisfy i ⇡⇡ j, we take the product of the automata A

j
i and Ai

j

for i 5⇡ j and j 5⇡ i and accept if both accept. Combining the two constructions allows
us to describe, for every player j, an automaton Aj to recognise the set of histories at
which j counts for ranki(⇡).

Next, we determinise each of the automata Aj and take appropriate Boolean combina-
tions to obtain a Moore machine M i with input alphabet V and output alphabet P(N),
which upon reading a history ⇡ in G, outputs the set of players that count for ranki(⇡).
Finally we replace each set in the output of M i by its size to obtain a Moore machine that
returns on input ⇡ 2 V ⇤, the rank of Player i at the actual history ⇡ in G.

As we showed that ranki is an information-consistent signal, we can conclude that there
exists a Moore machine that inputs observation histories βi(⇡) of Player i and outputs
ranki(⇡).

One consequence of this construction is that we can view the signals ranki and 5i
j

as attributes of positions rather than properties of histories. Accordingly, we can assume
without loss of generality that the observations of each player i have an extra rank compo-
nent taking values in N and that the symbol j is observed at history ⇡ in this component
if, and only if, ranki(⇡) = j. When referring to the positional attribute 5i

j at v, it is

more convenient to write i 5v j rather than 5i
j . Figure 4.3 illustrates the view of the

relative order 5i
j as a state attribute: at each state v, the observations of player i feature

a component set to 1 if i 5v j and 0 otherwise.

4.3.2 Smooth overtaking

As we suggested in the proof outline, each player i and his shadow player, identified by
the observable signal ranki, should be equally informed. To achieve this, we will let the
observation of Player i be received by his shadow, in every round of a play. However,
since the rank of players, and hence the identity of the shadow, changes with the history,
an information loss can occur when the information order between two players, say 1 ≺ 2
along a move is swapped to become 2 ≺ 1 in the next round. Intuitively, the observation
received by Player 2 after this move contains one piece of information that allows him to
catch up with Player 1, and another piece of information to overtake Player 1. Due to their
rank change along the move, the players would now also change shadows. Consequently,
the shadow of 1 at the target position, who was previously as (little) informed as Player 2,

75

1 ◦ v0 ◦ 1

1 ◦ v1 ◦ 0 1 • v2 ◦ 0

1 ◦ v3 ◦ 1 0 ◦ v4 • 1 0 ◦ v5 •
• 1

Figure 4.3: Relative order as a state attribute

just receives the new observation of Player 1, but he may miss the piece of information
that allowed Player 2 to catch up (and which Player 1 had).

◦ v0 ◦

◦ v1 ◦ • v2 ◦

◦ v3 ◦ ◦ v4 • ◦ v5 •
•

(a) crossing: 1 ≺ 2 at v2 to 2 ≺ 1 at v4

◦ v0 ◦

◦ v1 ◦ • v2 ◦

◦ v3 ◦ • v4 ◦ •
• v5 ◦

(b) “naive shadowing” fails

Figure 4.4: The crossing issue

Figure 4.4(a) pictures such a situation. Indeed, the first player is strictly more informed
than the second player after the first round: The information sets of the first player are
P 1(v0v1) = {v0v1} and P 1(v0v2) = {v0v2}, while the information sets of the second
player are P 2(v0v1) = P 2(v0v2) = {v0v1, v0v2}. But after the second round, the second
player is strictly more informed than the first: The information sets of the first player
are P 1(v0v1v3) = {v0v1v3} and P 1(v0v2v4) = P 1(v0v2v5) = {v0v2v4, v0v2v5}, while the
information sets of the second player are P 2(v0v1v3) = {v0v1v3}, P

2(v0v2v4) = {v0v2v4}
and P 2(v0v2v5) = {v0v2v5}. One desired property of our shadow game is that, at every

76

history, every shadow player shi has the same information set as the original player with
information rank i. If we distribute the observations of a player to the corresponding
shadow according to his rank at every round of the game, we end up with the situation
depicted in Figure 4.4(b). Notice that the second shadow sh2 gets only ◦-observations
during the game, since in the first round, the second player had rank 2 and got a ◦-
observation, and in the second round, the first player has rank 2 and gets ◦-observations.
Therefore, shadow player sh2 information set at every history ⇡ after the second round
consists of all possible histories, namely P sh2(⇡) = {v0v1v3, v0v2v4, v0v2v5}. However, in
the original game, even if the first player is the least informed after the second round, his
information set is strictly smaller: remember that, in the first round, he could distinguish
between the two possible histories, and by perfect recall assumption, this knowledge carries
over to the next round, so he can distinguish between paths on the left and right sides of the
game graph. The original game and the “naive” shadow construction from Figure 4.4(b)
yield games with possibly different information sets, and may have different solutions.
The missing piece of information that the second shadow does not get with this direct
approach is therefore crucial.

◦ v0 ◦

•, ◦|

◦ v1 ◦

•, ◦|

• v2 ◦

◦|◦

◦ v3 ◦ ◦ v4 • ◦ v5 •
•

|•, •• |•, ••

Figure 4.5: Eliminating crossings by introducing half-step lookaheads

To fix this problem, we add a step to our construction, and construct an intermediary
finite-state equivalent game to the original, where all changes of hierarchy (or overtaking
of one player by another) are smooth, in the sense that there is a round where these two
players share the same information set before there is a strict inclusion again. We call a
such a game cross-free. The idea is that when a game features only smooth changes in the
hierarchy, the shadow players will always receive enough information to catch up with the
former better informed players that become less informed. Intuitively, at each round, the
smooth-overtaking construction adds a half-step lookahead for less informed players that
will have overtaken another player in the information order at the end of the round. The
knowledge gained by the shadow player is equivalent to this crucial piece of information
mentioned above.

Formally, for a play ⇡ in a game, we say that Player i and j cross at stage ` if

77

P i(⇡`) (P j(⇡`) and P j(⇡`+1) (P i(⇡`+1). We say that a game with dynamic hierarchical
information is cross-free if there are no crossing players in any play.

Lemma 4.6. Every game with dynamic hierarchical information is finite-state equivalent
to a game that is cross-free.

Proof. Let G be a game graph with dynamic hierarchical information. We define a signal
for each pair of players i, j that represents the knowledge that player j has about the
current observation of Player i. If this signal is made observable to Player i only at
histories ⇡ at which i 5⇡ j, the game remains essentially unchanged, as players only
receive information from less-informed players, which they could hence deduce from their
observation. Concretely, we define the signal λi

j : V
⇤ ! P(Bi) by

λi
j(⇡) := {β

i(v0) : v0 is the last state of some history ⇡0 2 P j(⇡)}.

Clearly, this is a finite-state signal.

Now we look at the synchronised product of G with the signals (λi
j)i,j2N and the

relative-order signal 5i
j constructed in the proof of Lemma 4.5. In the resulting game

graph, the signal value λi
j(⇡) at a history ⇡ that ends at a position w is represented by

the position attribute λi
j(w). We add to every move (v, a, w) an intermediary position u,

at which we assign, for every player i the observation {λi
j(w) : i 5w j}. Intuitively,

this can be viewed as a half-step lookahead signal that Player i receives from Player j

who may have been more informed at the source position v – thus the signal is not
necessarily information-consistent for Player i. Nevertheless, the game remains essentially
unchanged after adding the signal, as the players cannot react to the received observation
before reaching the target w, at which point the information is readily revealed. On the
other hand, along moves at which the information order between players switches, the
intermediary position ensures that the players attain equal information. The construction
is illustrated in Figure 4.5.

For any game G on G, we adjust the winning condition to obtain one for the new game
graph, by ignoring the added intermediary positions. As the added positions have only
one successor, the players have no relevant choice, so any distributed winning strategy for
the new game corresponds to one for G and vice versa. In particular, for !-regular winning
conditions, the construction yields a game with no crossings that is finite-state equivalent
to the original game.

4.3.3 Shadow players

We are now ready to describe the construction of the shadow game associated to a
game G = (V,E,β,W) with dynamic hierarchical information. Without loss of gener-
ality, we can assume that every position in G is marked with the attributes ranki(v) and
⇠i

j , for all players i, j according to Lemma 4.5 and that the game graph is cross-free,
according to Lemma 4.6.

The shadow game G0 = (V [{ }, E0,β0,W) is also played by n players and has the
same winning condition as G. The action and the observation alphabet of each shadow
player consists of the union of the action and observation alphabets of all actual players.

78

The game graph G0 has the same positions as G, plus one sink that absorbs all moves
along unused action profiles. The moves of G0 are obtained from G by assigning the actions
of each player i to his shadow player j = ranki(v) as follows: for every move (v, a, v0) 2 E,
there is a move (v, x, v0) 2 E0 labelled with the action profile x obtained by a permutation
of a corresponding to the rank order, that is, ai = xj for j = ranki(v), for all players i.
Finally, at every position v 2 V , the observation of any player i in the original game G is
assigned to his shadow player, that is β0j(v) := βi(v), for j = ranki(v).

By construction, the shadow game yields static hierarchical information, according to
the nominal order of the players. We can verify, by induction on the length of histories,
that for every history ⇡, the information set of Player i at ⇡ in G is the same as the one
of his shadow player ranki(⇡) in G0.

Finally, we show that the distributed synthesis problem for G reduces to the one on G0,
and vice versa. To see that G0 admits a winning strategy if G does, let us fix a distributed
strategy s for the actual players in G. We define a signal σj : Hist(G0) ! A for each
player in G0, by setting σj(⇡) := si(⇡) if j = ranki(⇡), for each history ⇡. This signal
is information-consistent for Player j, since, at any history ⇡, his information set is the
same as for the actual player i with ranki(⇡) = j, and because the strategy of the actual
player i is information-consistent for himself. Hence, σj is a strategy for Player j in G0.
Furthermore, at every history, the action taken by the shadow player j = ranki(⇡) has
the same outcome as if it was taken by the actual player i in G. Hence, the set of play
outcomes of the profiles s and σ are the same and we can conclude that, if there exists
a distributed winning strategy for G, then there also exists one for G0. Notice that this
implication holds under any winning condition, without assuming !-regularity.

For the converse implication, let us suppose that the shadow game G0 admits a winning
profile σ of finite-state strategies. We consider, for each actual player i of G, the signal
si : Hist(G) ! Ai that maps every history ⇡ to the action si(⇡) := σj(⇡) of the shadow
player j = ranki(⇡). This is a finite-state signal, as we can implement it by synchronising
G with ranki, the observations on the shadow players, and the winning strategies σj ,
for all shadow players j. Moreover, si is information-consistent to the actual player i,
because all histories ⇡ 2 P i(⇡), have the same value ranki(⇡) =: j, and, since sj is
information-consistent for Player j, the actions prescribed by sj(⇡) must be the same, for
all ⇡ 2 P j(⇡) = P i(⇡). In conclusion, the signal si represents a finite-state strategy for
Player i. The profile s has the same set of play outcomes outcome as σ, so s is indeed a
distributed finite-state strategy, as desired.

In summary, we have shown that any game G with dynamic hierarchical information
admits a winning strategy if, and only if, the associated shadow game with static hierar-
chical observation admits a finite-state winning strategy. The latter question is decidable
according to Theorem 4.2. We showed that for every positive instance G0, we can construct
a finite-state distributed strategy for G. This concludes the proof of Theorem 4.3.

4.4 Transient Perturbations

As a third pattern of hierarchical information, we consider the case where incomparable
information sets may occur at some histories along a play, but it is guaranteed that a total

79

order will be re-established in a finite number of rounds.

Definition 4.4. A play yields recurring hierarchical information if there are infinitely
many histories that yield hierarchical information. A game yields recurring hierarchical
information if all its plays do so.

◦ v0 ◦

◦ v1 • ◦ v2 ◦ • v3 ◦

◦ v4 ◦ • v5 •

Figure 4.6: Recurring hierarchical information

Example 4.3. Figure 4.6 shows an example of such a situation: for instance, at the
history v0v2, the information sets of the two players are incomparable, as P 1(v0v2) =
{v0v1, v0v2} and P 2(v0v2) = {v0v2, v0v3}. However, after the next round, we have
P 1(v0v2v4) = P 1(v0v1v4) = {v0v1v4, v0v1v5} corresponding to observation history ◦ ◦ ◦
and P 2(v0v1v4) = {v0v1v4} corresponding to observation history ◦ • ◦, but P 2(v0v2v4) =
{v0v2v4} corresponding to observation history ◦ ◦ ◦, hence P 2(v0v2v4) ✓ P 1(v0v2v4). Sim-
ilarly, P 2(v0v1v4) ✓ P 1(v0v1v4). Furthermore, after history v0v3v5, we have P 1(v0v3v5) =
P 1(v0v3v5) = {v0v3v5} with observation history ◦ • • for the first player and ◦ ◦ • for the
second player. Thus, after the second round, every history yields hierarchical information,
even if the pattern may have been perturbed at the previous round. The play then pro-
ceeds back to state v0, leaving the hierarchy unchanged, and after that can again yield
uncomparable information sets, that will be comparable at the next round, and so on.

Since the set of histories that yield hierarchical information is regular in any finite game,
according to Lemma 4.3, it follows that the set of plays that yield recurring hierarchical
information is !-regular as well.

Lemma 4.7. For every finite game, we can construct a deterministic Büchi automaton
a play in G is accepted if, and only if it yields recurring hierarchical information. If G
has n players and |V | positions, the number of automaton states is bounded by 2O(n2|V |2).

Proof. Given a game graph G, we can construct a nondeterministic finite automaton A

such that a history in G is accepted if and only if it does not yield hierarchical information,

80

as in Lemma 4.3. By determinising the automaton A via the standard powerset construc-
tion, and then complementing the set of accepting states, we obtain a deterministic au-
tomaton A{ with at most 22n

2|V |2 states that accepts a word ⇡ 2 V ⇤ if either ⇡ 62 Hist(G),
or ⇡ represents a history in G that yields hierarchical information. Finally, we take the
synchronised product B of A{ with the graph G. If we now view the resulting automaton
as a Büchi automaton, which accepts an infinite words if infinitely many prefixes are ac-
cepted by B, we obtain a deterministic automaton that recognises the set of plays in G

that yield hierarchical information. The number of states in B is at most |V | 22n
2|V |2 ,

hence bounded by 2O(n2|V |2).

The automaton construction provides an important insight about the number of con-
secutive rounds in which players may have incomparable information. Given a play ⇡ on a
game graph G, we call a gap any interval [t, t+ `] of rounds such that the histories of ⇡ in
any round of [t, t+ `] do not yield hierarchical information; the length of the gap is `+ 1.
The game graph has gap size k if the length of all gaps in its plays is uniformly bounded
by k.

Clearly, every game graph with finite gap size yields recurring hierarchical information.
Conversely, the automaton construction of Lemma 4.7 implies, via a standard pumping
argument, that the gap size of any game graph with recurring hierarchical information
is at most the number of states in the constructed Büchi automaton. In conclusion, a
game G yields recurring hierarchical information if and only if, the size of a gap in any
play of G is bounded by 2O(n2|V |2).

Corollary 4.1. If a game yields recurring hierarchical information, then its gap size is
bounded by 2O(n2|V |2), where n is the number of players and |V | is the number of positions.

A family of game graphs where the gap size grows exponentially with the number of
positions is illustrated in Figure 4.7. The example is adapted from [4]: There are two
players with no relevant action choices and they can observe one bit, or a special symbol
that identifies a unique sink position v•. The family is formed of graphs (Gm)m≥1, each
constructed of m disjoint cycles (Cr)1rm of lengths p1, p2, . . . , pm corresponding to the
first m prime numbers, respectively. We number the positions on the cycle corresponding
to the r-th prime number as Cr := {cr0, . . . , c

r
pr−1}. On each cycle, both players receive the

same observation 0. Additionally, there are two special positions v01 and v10, that yield
different observations to the players: β1(v01) = β2(v10) = 0 and β1(v01) = β2(v10) = 1.
From the initial position v0 of a game graph Gm, Nature can choose a cycle Cr with r m.
From each position cr` 2 Cr, except for the last one with ` = pr − 1, there are is a move to
the subsequent cycle position cr`+1 and, additionally, to v01 and v10. In contrast, the last
cycle position crpr−1 has only the first position cr0 of the same cycle as a successor. From
the off-cycle positions v01 and v10 the play proceeds to the unique sink state v• that emits
the special observation • to both players.

For instance, consider the game G2 and a play ⇡ cycling infinitely through C2.
After the corresponding history of length 4, the actual state is c22 and both players
observe ◦. However, the first player cannot distinguish c22 from c10, and v01.
Similarly, the second player cannot distinguish c22 from c10, and v10. Their
information sets are P 1(v0c

2
0c

2
1c

2
2) = {v0c

2
0c

2
1c

2
2, v0c

1
0c

1
1c

1
0, v0c

2
0c

2
1v01, v0c

1
0c

1
1v01} and

81

◦ v0 ◦

◦ c10 ◦ ◦ c11 ◦

• v10 ◦ ◦ v01 •

◦ c20 ◦ ◦ c21 ◦

• v10 ◦ ◦ v01 •

◦ c22 ◦

• v10 ◦ ◦ v01 •

◦ cm0 ◦ ◦ cm1 ◦

• v10 ◦ ◦ v01 •

◦ cmpr−1 ◦

• v10 ◦ ◦ v01 •

Figure 4.7: Game with an exponential gap of non-hierarchical information (for better
readability, the positions v01, v10, and v• are multiply represented)

P 2(v0c
2
0c

2
1c

2
2) = {v0c

2
0c

2
1c

2
2, v0c

1
0c

1
1c

1
0, v0c

2
0c

2
1v10, v0c

1
0c

1
1v10}, and players have

incomparable information. But after the corresponding history of length 8,
P 1(v0c

2
0c

2
1c

2
2c

2
0c

2
1c

2
2c

2
1) = P 2(v0c

2
0c

2
1c

2
2c

2
0c

2
1c

2
2c

2
1) = {v0c

2
0c

2
1c

2
2c

2
0c

2
1c

2
2c

2
1}, as there is no tran-

sition to v01 or v10 from c10 nor from c20.

Now, we can verify, for each game graph Gm, that in every play ⇡ that proceeds
only through cycle positions, the information sets of the two players are comparable at
a prefix history of length t > 2 in ⇡, if and only if, all the first m primes divide t − 2;
and that any play that leaves a cycle reaches the sink v•, where the information sets of
both players coincide. Accordingly, Gm yields recurring hierarchical information. On the
other hand, since the product of the first m primes is exponential in their sum, (for a more
precise analysis, see [4]), we can conclude that the gap size of the game graphs Gm grows
exponentially with the number of positions.

As a further consequence of the automaton construction in Lemma 4.7, it follows
that we can decide whether a game graph G yields recurring hierarchical information, by
constructing the corresponding Büchi automaton and checking whether it accepts all plays
in G. However, due to the exponential blow-up in the determinisation of the automaton,
this straightforward approach would require exponential time (and space) in the size of
the game graph and the number of (pairs of) players. Here, we describe an on-the fly

82

procedure that yields better complexity bounds.

Theorem 4.4. The problem of deciding whether a game graph yields recurring hierarchical
information is PSpace-complete.

Proof. We describe a nondeterministic procedure for verifying that an input game G does
not yield recurring hierarchical information, that is, there exists a play in G such that
from some round t onwards, no prefix of length ` ≥ t yields hierarchical information. By
looking at the deterministic Büchi automaton B constructed in Lemma 4.7, we can tell
that this is the case if, and only if, there exists a finally periodic play ⇡ = ⌧⇢! 2 V ! such
that the run of B on ⇡ visits only non-accepting states after reading the prefix ⌧ and,
moreover, it returns to a previously visited state when, but not earlier than, reaching the
prefix ⌧⇢. In other words, the run on ⌧⇢ induces a lasso in B, and hence, the length of ⌧⇢
is bounded by the number of states |V | 22n

2|V |2 in the automaton.
The idea of the procedure, pictured in Algorithm 1, is to guess such a history ⌧⇢, and

to keep track of the states visited in the corresponding run of the automaton B, or, more
precisely, in the powerset construction of the automaton A from Lemma 4.3.

Let us first fix a pair of players i, j. Then, every state reachable by A upon reading
the prefix ⇡ of an input word from V ! is described by a tuple (u, c, w, d) consisting of a
pair of game positions u,w and two binary flags c, d such that there exist histories ⇡0,⇡00

in G that end at u and w, satisfying ⇡ ⇠i ⇡0, ⇡ ⇠j ⇡00, and the flags c or d are set if, and
only if, ⇡00 6⇠i ⇡ or ⇡ 6⇠j ⇡0, respectively. Essentially, this means that ⇡0,⇡00 are candidates
for witnessing that players i, j have incomparable information at some continuation of ⇡.
Every state in the automaton B on the powerset of A records a set Zij 2 (V ⇥ {0, 1})2 of
such tuples, each collecting the terminal positions of all witness candidates for i, j flagged
correspondingly – we call such a set a cell. At the beginning, the procedure guesses one
cell Ẑij for every pair of players i, j (Line 1); we call such a collection of cells a configuration.
The guessed configuration stands for a state of B that shall be reached after reading ⌧ and
to which the run returns at ⌧⇢. Then, starting from the initial configuration, where all
players just see the initial position v0 (Line 3), the procedure generates successively game
positions of ⌧ while updating the current configuration to simulate the run of B on ⌧ . The
current configuration Z summarises the possible runs of A on the prefix of ⌧ generated so
far, and it is updated for every new game position v according to Procedure Update. Once
the configuration Z = Ẑ is reached, the procedure enters a new loop. Here, it verifies in
every iteration that the current configuration indeed contains a witness of incomparability
for the input history, that is, there exists, in the cell of some pair of players, a state of A
in which both distinguishability flags are set (Line 8). Provided the test succeeds, the
procedure successively guesses the positions of ⇢ while updating the current configuration,
until Ẑ is reached again, in which case the procedure accepts. Apart of the case when the
test in Line 8 fails, the procedure also rejects by looping.

Correctness and soundness The procedure mainly requires space to store the config-
urations Z, Ẑ that collect a set of tuples from (V ⇥{0, 1})2 for each pair of players, hence it
runs in polynomial space. To show correctness, we consider the sequence ⇡ of positions v
generated in Lines 5 and 9, and argue that it forms a history in G and that, at every itera-
tion of the loops in Lines 4 and 10, the configuration Z contains, in each cell Zij , precisely

83

the set of pairs u,w of terminal positions reachable by candidate witnesses ⇡0 ⇠i ⇡ such
that ⇡00 ⇠j ⇡, with associated flags c, d indicating correctly whether ⇡0 ⇠j ⇡00 and ⇡00 ⇠i ⇡,
due to the way they are maintained in Lines 4 and 5 of Procedure Update. Accordingly, if
the procedure accepts, then there exists a finally periodic play ⇡ := ⌧⇢! in G such that the
information sets of at least two players are incomparable, in every round from ⌧ onwards.
Soundness follows from the construction of the Büchi automaton in Lemma 4.7 and the
observation that every run of the procedure corresponds to a run of the automaton with
the same acceptance status.

Hardness Finally, we argue that the problem of deciding whether a game graph yields
recurring hierarchical information is PSpace-hard by reduction from the universality prob-
lem for nondeterministic finite automata, shown by [61] to be PSpace-hard.

Given a nondeterministic automaton A = (Q,Σ,∆, q0, F) over an alphabet Σ, we
construct a game graph G for two players with no action choices and with observations
in B1 = B2 = Σ ⇥ {0, 1} corresponding to input letters for A tagged with one bit. The
set of positions in G contains q0 and all letter-state pairs (a, q) 2 Σ ⇥ Q. From every
state (a, q) and from q = q0, there is a move to position (a0, q0) if (q, a0, q0) 2 ∆. Each
position (a, q) yields the same observation (a, 0) to both players (the observation at q0 is
irrelevant). Thus, every run of A on a word ↵ 2 Σ⇤ corresponds to a unique history in G

where both players observe the letters of ↵ tagged with 0. In addition, G has two fresh
positions va and v0a, for every letter a 2 A, with observations β1(va) = β2(v0a) = (a, 1)
whereas β1(v0a) = β2(va) = (a, 0). Whenever there is a move in G from a position v to some
position (a, q) with q 2 F , we also allow a move from v to va. These fresh positions have
one common successor, identified by a distinct observations to both players (essentially,
indicating that the game is over). Clearly, G can be constructed from A in polynomial
time.

Now, consider a nontrivial word ↵ 2 Σ⇤ and suppose that it admits an accepting run
in A. At the corresponding history ⇡ in G, which yields the letters of ↵ tagged with 1 as
an observation to both players, the information sets are incomparable, because each player
considers it possible that the other received the last letter with a 0-tag. In contrast, if ↵
is rejected, the information sets at the corresponding history in G coincide, hence we have
hierarchical information. In conclusion, the language of the automaton A is universal if,
and only if, the constructed game graph yields hierarchical information.

We can show that the synthesis problem for the class of games with recurring hierar-
chical information is finite state-solvable, at least in the case when the winning conditions
are observable. We conjecture that the result extends to the general case.

Theorem 4.5. For games with recurring hierarchical information and observable !-regular
winning conditions, the synthesis problem is finite-state solvable.

Proof. The argument relies on the tracking construction decribed in [5], which reduces
the problem of solving distributed games with imperfect information for n players against
Nature to that of solving a zero-sum game for two players with perfect information. The
construction proceeds via an unravelling process that generates epistemic models of the
player’s information along the rounds of a play, and thus encapsulates their uncertainty.

84

Algorithm 1: Deciding recurring hierarchical information

Data: game graph G = (V,E,β) for n players
Result: accept if G does not yield recurring hierarchical information

type cell : subset of (V ⇥ {0, 1})2

type configuration : matrix of cells (Zi,j)1i<jn

var Z, Ẑ : configurations
var v, v̂ : positions in V

var i, j : players in {1, . . . , n}

1 guess (v̂, Ẑ) // fix target on cycle

2 v v0
3 foreach i, j with i < j do Zi,j {(v0, 0, v0, 0)} // initial configuration

4 while (v, Z) 6= (v̂, Ẑ) do
5 guess v 2 vEA // guess next history state

6 Z Update(v, Z) // follow powerset construction

end
7 repeat

8 if
^

i,j

Zi,j \ (V ⇥ {1})2 = ; then reject // hierarchical information

9 guess v 2 vEA

10 Z Update(v, Z)

until (v, Z) = (v̂, Ẑ) // cycle found

11 accept

This process described as “epistemic unfolding” in the paper [5, Section 3] is outlined
as follows. An epistemic model for a game graph G with the usual notation, is a Kripke
structure K = (K, (Qv)v2V , (⇠

i)1in) over a set K of histories of the same length in
in G, equipped with predicates Qv designating the histories that end in position v 2 V

and with the players’ indistinguishability relations ⇠i. The construction keeps track of
how the knowledge of players about the actual history is updated during a round, by
generating for each epistemic model K a set of new models, one for each assignment of
an action profile ak to each history k 2 K such that the action assigned to any player i

is compatible with his information, i.e. for all k, k0 2 K with k ⇠i k0, we have aik = aik0 .
The update of a model K with such an action assignment (ak)k2K leads to a new, possibly
disconnected epistemic model K0 over the universe

K 0 = {kakw | k 2 K \Qv and (v, ak, w) 2 E},

with predicates Qw designating the histories kakw 2 K 0, and with kakw ⇠
i k0akw

0 when-
ever k ⇠i k0 in K and w ⇠i w0 in G. By taking the connected components of this updated
model under the coarsening ⇠:=

Sn
i=1⇠

i, we obtain the set of epistemic successor mod-
els of K in the unfolding. The tracking construction starts from the trivial model that
consists only of the initial position of the game G. By successively applying the update,
it unfolds a tree labelled with epistemic models, which corresponds to a game graph G0

85

Procedure Update(v, Z)

Data: new position v, current configuration Z

Result: successor configuration after observing β(v)
1 foreach i, j do
2 foreach (u, c, w, d) 2 Zi,j do
3 foreach u0 2 uEA,w0 2 wEA with βi(u0) = βi(v) and βj(w0) = βj(v) do
4 c0 c _ βj(u0) 6= βj(w0) // flag witness for j 5 i

5 d0 d _ βi(u0) 6= βi(w0) // flag witness for i 5 j

6 Z 0
i,j Z 0

i,j [{(u
0, c0, w0, d0)}

end

end

end
return Z 0

for two players with perfect information where the strategies of one player translate into
distributed strategies in G and vice versa. According to [5, Theorem 5], for any winning
condition, a strategy in G0 is winning if and only if the corresponding joint strategy in G
is so.

The construction can be exploited algorithmically if the perfect-information tracking of
a game can be folded back into a finite game. A homomorphism from an epistemic model
K to K0 is a function f : K ! K 0 that preserves the state predicates and the indistin-
guishability relations, that is, Qv(k)) Qv(f(k)) and k ⇠i k0) f(k) ⇠i f(k0). The main
result of [5] shows that, whenever two nodes of the unfolded tree carry homomorphically
equivalent labels, they can be identified without changing the (winning or losing) status
of the game [5, Theorem 9]. This holds for all imperfect-information games with !-regular
winning conditions that are observable. Consequently, the strategy synthesis problem is
decidable for a class of such games, whenever the unravelling process of any game in the
class is guaranteed to generate only finitely many epistemic models, up to homomorphic
equivalence.

Game graphs with recurring hierarchical information satisfy this condition. Firstly, for
a fixed game, there exist only finitely many epistemic models, up to homomorphic equiva-
lence, where the ⇠i-relations are totally ordered by inclusion [5, Section 5]. In other words,
epistemic models of bounded size are sufficient to describe all histories with hierarchical
information. Secondly, by Corollary 4.1, from any history with hierarchical information,
the (finitely branching) tree of continuation histories with incomparable information is of
bounded depth, hence only finitely many epistemic models can occur in the unravelling.
Overall, this implies that every game with recurring hierarchical information and observ-
able winning condition has a finite quotient under homomorphic equivalence. According
to [5, Theorems 9 and 11], we can conclude that the distributed strategy problem for the
class is finite-state solvable.

We point out that the number of hierarchic epistemic models in games, and thus
the complexity of our synthesis procedure, grows non-elementarily with the number of

86

players. This should not come as a surprise, as the solution applies in particular to games
with hierarchical observation under safety or reachability conditions (here, the distinction
between observable and non-observable conditions is insubstantial), and it is known that
already in this case no elementary solution exists (see [69, 1]).

4.5 Monitored Architectures

Finally, we discuss the links between games on graphs and the classical model of commu-
nication architectures of [70]. We presented new decidable classes for distributed synthesis
on games on graphs with imperfect information. Notice that in the framework of com-
munication architectures, only the information-flow pattern that corresponds to what we
call hierarchical observation yields decidable distributed synthesis instances. The commu-
nication infrastructure of a game is more flexible than in communication architectures:
This can be partly explained by the fact that observations, or communication signals be-
tween players, or from Nature to players, are embedded in the game graph. Therefore,
the range of observations that a player can receive can vary throughout a play depending
on the current state of the game. In the classical communication architectures model, a
system is represented as a directed graph, where nodes represent processes and edges rep-
resent communication channels (see Section 2.1.2 for a formal definition of communication
architectures), and the global state of the system is absent from the representation.

In addition to this change of perspective, the base assumption that the communi-
cation channels and the range of signals they can carry at each step of the execution
are fixed establishes a crucial discrepancy between the two models. For instance, con-
sider a distributed system where the environment sends exclusive information to an agent,
then switches to a different agent as the exclusive recipient of information, and where
agents have the ability to communicate so that they maintain a hierarchy of information
among themselves. It is easy to model this situation with a game that will feature the
dynamic hierarchical information pattern. However, any attempt to model this situation
via communication architectures is bound to fail: As the environment sends information
to two agents implies two communication channels directed to two different processes,
the architecture involves an information fork, which is a criterion for undecidability of
the distributed synthesis problem. Furthermore, the hierarchical information patterns we
presented in this chapter are properties of the game graph, thus structural properties. As
suggested with the previous example, such relaxed hierarchical patterns for communication
architectures are not enforceable at the architecture level.

With the implicit communication structure of games on graphs, the focus is set on the
interaction of players, but their individuality is left aside. Indeed, there may be instances
of games modelling distributed systems, where two players interact locally while ignoring
a third one, or teams of players, each responsible for independent tasks. However, these
organisational specificities remain hardly extractable from the game graph itself. On the
other hand, communication architectures have the advantage of displaying the connections
among the players explicitly.

In order to model distributed systems in a way that combines the game graph flexibility
and the architectures explicitness of the communication infrastructure, one approach is to
consider the variant of monitored architectures. The idea is to add a monitoring layer to

87

the architecture, in a form of a specification of the communication infrastructure, called
a view monitor, introduced in [7], that will take care of the refined distribution of signals
that is provided by the graph structure in the game model. Intuitively, this monitor,
modelled as a Mealy machine with the set of global actions of the processes as input
alphabet and the product of observations alphabets of the processes as output alphabet,
decides on passing along or withholding any information that transits through it, either
from the environment or from processes, in order to guarantee a hierarchy of information
at all times, avoiding information forks in the architecture. Thus, at each execution step,
the view monitor transforms a global action into a profile of observations to be distributed
to the processes. Furthermore, processes are modelled as finite-state automata that are
equipped with partial transition functions that allow to enable or disable actions depending
on the current local state and observation: this possibility to disable actions allows to
restrict at the design level the set of observations that can be generated after certain
histories, accounting for the influence of the position in the game graph on the available
successors and their corresponding observation profiles in the game setting.

It turns out that monitored architectures can be seen as a syntactic variant of games,
as it is possible to translate back and forth instances of the distributed synthesis problem
between the game and monitored architectures models, while preserving the set of finite-
state solutions. This correspondence allows to recover the result of Theorem 4.1 as a
direct consequence of the correspondence between games and monitored architectures.
This section is meant an informal presentation of monitored architectures, thus we leave
out the formal arguments and technical details that justify this correspondence between
the two models, that have been developed in [7].

4.6 Discussion

The bottom-line message of our investigation is that the principle of ordered informa-
tion flow can afford some flexibility. Still, this might not open floodgates for natural
applications to automated synthesis under imperfect information. Rather than expecting
information in a real-world system to respect a total order, we see applications in high-
level synthesis towards systems on which hierarchical information patterns are enforced to
allow for further refinement.

One possible scenario is inspired from multi-level synthesis as proposed in [48] for
program repair. Here, the objective is to synthesise a system in several steps: firstly,
construct a high-level strategy for a system prototype, in which only a subset of actions is
controllable or/and not all observations are reliable, and subsequently refine this strategy
to fulfil further specifications, by controlling more actions or relying on more observations.

For our concrete setting, the first-level synthesis problem can be formulated as follows:
given an arbitrary distributed game, determine whether it admits a distributed finite-
state winning strategy such that the synchronised product with the original game yields a
residual game graph with hierarchical information; if possible, construct one. For the next
level, the residual game graph can then be equipped with another winning condition, and
the actions or observations may be refined. In either case, the condition of hierarchical
information enforced by the first-level procedure is in place and guarantees decidability of
the synthesis problem, for each subsequent level.

88

It can be easily seen that, for any arbitrary graph game, the set of strategies that
maintain dynamic hierarchical information is regular. In this case, the multi-level synthe-
sis approach can hence be combined with existing automata-theoretic methods. Unfortu-
nately, this would not work out when the objective is to synthesise a graph with recurring
hierarchical information; already the problem of eventually attaining dynamic hierarchical
information is undecidable.

Finally, a promising approach towards handling coordination problems under imper-
fect information is proposed in recent work of Genest, Katz, Peled and Schewe [42, 52],
in which strategies are viewed by separating the control and communication layers. The
shadow game in our reduction of dynamic to static hierarchical information can be un-
derstood as an instance of this idea, with the scheduling of shadow players corresponding
to a communication layer, and the actual execution of their strategy (as in the static
hierarchical game), to the control layer.

89

90

Chapter 5

Delayed Signals

Appropriate behaviour of an interactive system component often depends on events gen-
erated by other components. The ideal situation, in which perfect information is available
across components, occurs rarely in practice – typically a component only receives signals
more or less correlated with the actual events. Apart from imperfect signals generated
by the system components, there are multiple other sources of uncertainty due to actions
of the system environment or to unreliable behaviour of the infrastructure connecting the
components: For instance, communication channels may delay or lose signals, or deliver
them in a different order than they were emitted. Coordinating components with such
imperfect information to guarantee optimal system runs is a significant, but computation-
ally challenging, problem, in particular when the interaction is of infinite duration. It
appears worthwhile to study the different sources of uncertainty in separation rather than
as a global phenomenon, to understand their computational impact on the synthesis of
multi-component systems.

In this chapter, we consider interactive systems modelled by concurrent games among
multiple players with imperfect information over finite state-transition systems, or labelled
graphs. Each state is associated to a stage game in which the players choose simultane-
ously and independently a joint action, which triggers a transition to a successor state
and generates a local payoff and possibly further private signals to each player. Plays
correspond to infinite paths through the graph and yield, to each player, a global payoff
according to a given aggregation function, such as mean payoff, limit superior payoff, or
parity. As solutions to such games, we are interested in synthesising Nash equilibria in pure
strategies, i.e. profiles of deterministic strategies that are self-enforcing when prescribed
to all players by a central coordinator.

We study the effect of imperfect, delayed monitoring on equilibria in concurrent games.
Towards this, we first introduce a refined game model in which observations about actions
are separated from observations about states, and we incorporate a representation for
nondeterministic delays for observing action signals. To avoid the general undecidability
results from the basic setting, we restrict to the case where the players have perfect
information about the current state.

Our main result is that, under the assumption that the delays are uniformly bounded,
every equilibrium payoff in the variant of a game where signals are delivered instantly is
preserved as an equilibrium payoff in the variant where they are delayed. To prove this,

91

we construct strategies for the delayed-monitoring game by combining responses for the
instant-monitoring variant in such a way that any play with delayed signals corresponds to
a shuffle of several plays with instant signals, which we call threads. Intuitively, delayed-
monitoring strategies are constructed, in a Frankenstein manner, from a collection of
instant-monitoring equilibrium strategies. Under the additional assumption that the payoff
structure is insensitive to shuffling plays, this procedure allows to transfer equilibrium
payoffs from the instant to the delayed-monitoring game.

Firstly, the transfer result can be regarded as an equilibrium existence theorem for
games with delayed monitoring based on classes of games with instant monitoring that
admit equilibria in pure strategies. Defining existence conditions is a fundamental pre-
requisite to using Nash equilibria as a solution concept. If an application model leads to
games that may not admit equilibria, this is a strong reason to look for another solution
concept. As mixed strategies are conceptually challenging in the context of infinite games,
guarantees for pure equilibrium existence are particularly desirable.

Secondly, our result establishes an outcome equivalence between games with instant
and delayed monitoring, within the given restrictions: As the preservation of equilibrium
values from delayed-monitoring games to the instant-monitoring variant holds trivially
(the players may just buffer the received signals until an admissible delay period passed,
and then respond), we obtain that the set of pure equilibrium payoffs is the same, whether
signals are delayed or not—although, of course, the underlying equilibrium strategies differ
between the two variants. In terms of possible equilibrium payoffs, these games are hence
robust under changing signalling delivery guarantees, as long as the maximal delays are
commonly known. In particular, payoff-related results obtained for the instant-signalling
variant apply directly to the delayed variant.

Thirdly, the transfer procedure has some algorithmic content. When we set out with
finite-state equilibrium strategies for the instant-monitoring game, the procedure will also
yield a profile of finite-state strategies for the delayed-monitoring game. Hence, the con-
struction is effective, and can be readily applied to cases where synthesis procedures for
finite-state equilibria in games with instant monitoring exist.

5.1 Framework

In this chapter, we depart from the game model we introduced in Chapter 2 and used
in the following chapters 3 and 4: the observations are not attached to the states of
the game graph anymore, but to the transitions, and we assume perfect information on
the states. Furthermore, the kind of winning conditions we consider is not restricted to
the qualitative !-regular conditions we studied in the previous chapters. Indeed, we also
consider quantitative objectives, where each move in a play yields a reward for each player,
or a payoff in the form of a relative number and the objectives are stated according to
a fixed way of aggregating payoffs in the long-run. These shifts partly stem from the
fact that our study in this chapter is largely inspired by the work of Fudenberg, Ishii and
Kominers in [38]. Indeed, they work within the framework of repeated games, which is
a widely used model in economical game theory. In this section, we present briefly the
basic notions around repeated games before showing how to adapt this framework to fit
our vision of games as state-transition systems. When the number of states is reduced to

92

only one, our model actually coincides with the one of repeated games.

5.1.1 Repeated games

On a historical perspective, repeated games are an extension of strategic games, that
consider ”one-shot” interactive situations, and for which the fundamental concepts of
preferences and payoff functions as well as the equilibrium solution were originally defined.
We concentrate on repeated games that unfold over an extended (finite or infinite) period
of time (by presenting to the players the same strategic game over and over again), as
it coincides with the infinite length game setting in this thesis. Notice as well that in
the following, we take some liberties with the traditional terminology and omit certain
notions in order to keep our exposition as close as possible to our general framework. For
a thorough introduction to economical game theory, we refer the reader to [68] by Osborne
and Rubinstein or [11] by Binmore.

Strategic and repeated games

For our simplified presentation of repeated games, we assume that players have perfect
information. In this context, it means that players observe the actions of all the other
players. We discuss in Section 5.1.2 the implications of imperfect information about the
actions in the setting of games with multiple states and non-purely cooperative objectives.

A stage game describes an interactive situation that require the players to simultane-
ously and independently choose an action. Depending on the action profile, each player
receives his own payoff.

Formally, a stage game G for n players is a triplet G = (N, A, (pi)i2N) where:

• N = {1, . . . , n};

• A =
nQ

i=1
Ai, where Ai is the finite set of actions of Player i;

• each player i has its own payoff function pi : A ! Z that attributes to each action
profile a payoff for Player i.

A repeated game consists of the infinite1 iteration of the same stage game. At each
stage, each player chooses his own action, and the resulting action profile determines the
payoff profile of the stage game, according to the payoff functions pi. However, since the
interaction is infinitely repeated, there is a need to aggregate the payoffs gathered during a
play to be able to reason about the outcome of the game as a whole. Formally, a repeated
game G is a pair consisting of a stage game G and an aggregation function common to
all players u : Z! ! R. A wide variety of aggregation functions have been considered,
depending on the kind of situations the game models. We describe the most common ones
here: For an infinite sequence p = (pi0, p

i
1, . . .) of stage payoffs for player i, a function

u : Z! ! R is said to be:

• A lim-sup aggregation function if p evaluates to lim sup
t≥1

pit

1finite horizon can also be considered for repeated games, however we focus on infinite horizon

93

• A lim-inf aggregation function if p evaluates to lim inf
t≥1

pit

• A mean-payoff aggregation function if p evaluates to lim sup
t≥1

tP
r=1

pir/t

• A discounted aggregation function if there exists a real number δ 2]0, 1[, called the

discount factor2 and p evaluates to
1P
t=1

δtpit

While in a stage game considered independently, a strategy for a player amounts to
a single action, in the repeated setting, as in games on graphs, it is worth taking into
account the past events before choosing the next action. As, at every round, the same
stage game is played, the substance of a repeated game is the sequence of action profiles
that unfolds during the game. For repeated games, a history of length ` is a sequence
(a1, . . . , a`) of ` action profiles. A play ⇡ is an infinite sequence of action profiles.

A (pure) strategy for a player i is a function si : A⇤ ! Ai that prescribes an action
ai 2 Ai after any history of the game G. A mixed strategy allows for stochastic prescrip-
tions according to a probability distribution over the set of actions. The notion of mixed
strategies is fundamental in game theory, as we suggest in Example 5.3. However, in this
work, as in the rest of this thesis, we restrict ourselves to deterministic strategies, that is,
pure strategies in the current terminology.

Since we consider repeated games with perfect information and pure strategies, a strat-
egy profile corresponds to exactly one play: as every strategy of the profile is fixed and de-
terministic, the resulting play is unique. This allows to speak directly of the outcome profile
of a strategy profile in terms of aggregated payoffs: For a strategy profile s = (s1, . . . , sn),
its unique resulting play ⇡ = a1, a2, . . . and an aggregation function u, the outcome of s
is the aggregated payoff profile (u(s1), . . . , u(sn)), where, for each player i, the aggregated
payoff u(si) has value u(pi(a1), p

i(a2), . . .).
As players may have diverging objectives, the notion of best response arises to describe

strategies that guarantee to a player the maximal payoff against a fixed strategy profile of
his opponents.

A strategy si for player i is a best response to a joint strategy s−i of the other players
if for every every strategy s0i for player i, we have u(s−i, si) ≥ u(s−i, s0i).

Equilibrium concept

While the concept of a solution for games with qualitative objectives, as we have considered
so far, is naturally captured by winning strategies, in the sense that the winning condition
is either fulfilled or not during a play, defining what an acceptable solution is for a game
with quantitative objectives is not straightforward. The most common hypothesis is that
players of such games are rational, that is, their own interest comes first, which translates
into the assumption that they try to maximise their own (aggregated) payoff. Thus,
a player is considered to prefer a strategy s to a strategy s0 whenever he can expect
that s will bring him a better payoff than s0 against all possible strategies of the other
players. With this in mind, and since players have their own payoff distributions, so that

2that represents the notion of patience for a player

94

there may not be one play that yield every player his maximal payoff, the search for a
solution of a repeated game can be understood as the quest for a strategy profile that
would achieve some form of optimisation: a situation where the behaviours of the players
would enforce a steady state of the game, so that no player would increase his payoff by
unilaterally changing his behaviour, or deviating. This solution concept is captured to a
certain extentby the notion of Nash equilibrium, introduced by Nash in [66] and [65] :

A strategy profile s = (s1, . . . , sn) is a Nash equilibrium, or NE for short, if no player
has an incentive to deviate. More formally, s is a NE if for every player i, if, for every
strategy s0i for player i, it is true that ui((s−i, s0i)) ui((s−i, si)), where s−i denotes the
profile s without the strategy of Player i. In other terms, for each player i, the strategy si

is a best response to s−i. A Nash equilibrium is pure if it consists of pure strategies, and
mixed if it consists of mixed strategies.

As we will see in Example 5.3, the existence of a pure Nash equilibrium is not guaran-
teed in a strategic game, however, it is always possible to find a mixed Nash equilibrium
in a strategic game.

We present now three simple examples of repeated games:

Example 5.1 (Prisoner’s Dilemma). We recall briefly the setting of the most famous
example in game theory: Consider two acquainted bank robbers. Police take them in
simultaneously but separately, making sure they cannot communicate while in their re-
spective interrogation rooms. There is a lack of evidence to convict them, so the inspectors
need them to confess or at least to betray their partner. Otherwise, if they both choose
to remain silent, they will get a lesser jail time. Trying to convict both robbers, and not
counting on willing confessions of their own guilt, each inspector presents the following
outcomes to the robber he interrogates: “If both of you remain silent, you will both get a
sentence of one year in prison. If you tell us he did it, either he remains silent and you go
free, or he told my colleague you did it, and you both end up with five years in jail. But
if you remain silent and he tells on you, he will go free and you will spend ten years in
prison. It is your choice.”

In the point of view of the robbers, both of them remaining silent is their shot at the
most desirable outcome. At least the best compromise. It is quite risky, however, since
remaining silent exposes to the other betraying and getting the less desirable outcome of
a ten years sentence.

Cooperate Defect

Cooperate (1,1) (0,10)

Defect (10,0) (5,5)

If this situation is a one-time occurrence, in other terms, if this is a stage game, it is
well-known that the only equilibrium is (D,D), meaning both robbers should betray their
partner, if they are rational. Now, if this happens repeatedly over time, things change.
Indeed, with repetition comes the possibility of punishing or retaliation. For this particular
example, a player being aware that if he betrays his partner once, he may go free on this

95

instance, but it will trigger a never ending commitment from his partner to betray him in
the future is enough to annihilate the incentive he could have had to betray his partner in
the first place. More concretely, what he would gain by switching from cooperate to defect
would be one year at this round, and then at each round and forever, serve four years more
than if he would have continued to cooperate. Hence, the strategy profile s = (s1, s2) such
that for any history ⇡ 2 A⇤ ending at an action profile a = (a1, a2),

s1(⇡) =

(
C if a1 = C and a2 = C

D if a1 = D or a2 = D

and s2 is defined symmetrically, is an equilibrium in the repeated setting. 3 These strate-
gies are known as grim-trigger strategies. Other pure strategy profile yield equilibria, such
as tit-for-tat strategies and their variants, where a betrayed player punishes his partner,
but only for a fixed number of subsequent turns before returning to cooperating.

Example 5.2 (Bach or Stravinsky). An other classic repeated game example is called
Bach or Stravinsky4. The setting is the following: there are two friends, let us name them
Alice and Bob, that want to have a nice themed-evening together every week. They share
a passion for classical music, so they settle to make their weekly meeting an occasion to
attend a concert playing their favourite pieces. However, Alice’s favourite composer is
Johann Sebastian Bach, while Bob is a fan of Igor Stravinsky’s compositions. Their town
is culturally big enough to offer opportunities to listen to both composer’s music every
week. One way to see this is that their choice of concert depends entirely on their own
preferences. Of course, if they both go to a concert playing Bach, Alice will be thrilled,
while Bob will enjoy the great music but would rather have gone with his friend to the
Stravinsky concert across town, and symmetrically. At least, they are friends, so they
both prefer to go to the concert playing the other’s favourite composer over splitting and
both going to different concerts. These preferences can be summed up in the following
payoff matrix:

Bach Stravinsky

Bach (3,2) (0,0)

Stravinsky (0,0) (2,3)

In this case, the stage game has two pure Nash equilibria: (B,B) and (S, S) yielding
equilibrium payoffs (3, 2) and (2, 3) respectively. In the repeated setting, along with the
mean-payoff aggregation function, players can both achieve the equilibrium payoff profile
of (52 ,

5
2) by alternating Bach and Stravinsky (or the other way around) every other week.

Example 5.3 (Matching Pennies). The previous two games were examples of a non-zero
sum games, that is, games where the players do not have strictly adversarial objectives. We
present here an example of zero-sum game, where the payoff of one player corresponding

3 Notice that a finite horizon would not admit s as an equilibrium strategy.
4Also known as Battle of the Sexes, involving Alice being fond of ballet and Bob of football. . .

96

to a certain action profile is the opposite number of the payoff of his opponent. The
following game is also an example of a game that does not admit any pure equilibrium.
Matching Pennies is a game for two players where, at each stage game, both players
have to independently and simultaneously choose Heads or Tail. When the chosen actions
match, the first player receives a payoff of 1, while the second player receives the negative
payoff of −1. Symmetrically, when the actions mismatch, the second player receives a
payoff of 1, while the first player receives the negative payoff of −1. A way to see it is to
think that the losing player of the stage game pays 1 unit of their shared currency to the
winning player.

H T

H (1,-1) (-1,1)

T (-1,1) (1,-1)

In the stafe game, there is no pure strategy that yields an equilibrium: for every
strategy profile among the four pure existing, one of the player would profit by deviating.
As suggested by the name of the game, the optimal strategy is mixed and corresponds to
play the game as if they would both toss a coin and let chance determine the outcome
of the stage game. That way, the equilibrium payoff profile is (12 ,

1
2). Similarly, in the

repeated setting, no pure equilibrium can be found: each pure strategy profile gives one
or the other player an incentive to deviate.

5.1.2 From repeated games to games with multiple states

The setting from the previous chapters is standard for the automated verification and
synthesis of reactive modules that maintain ongoing interaction with their environment,
seeking to satisfy a common global specification. Imperfect information about the play
is modelled as uncertainty about the current state in the underlying transition system,
whereas uncertainty about the actions of other players is not represented explicitly. This is
because the main question concerns distributed winning strategies, i.e., Nash equilibria in
the special case where the players have a common utility function and should each receive
maximal payoff. If every player wins when all follow the prescribed strategy, unilateral
deviations cannot be profitable, hence there is no need to monitor actions of other players.
Accordingly, distributed winning strategies can be defined on possible histories of visited
states, independently of the history of played actions. Nevertheless, these games are
computationally intractable in general, already with respect to the question of whether
distributed winning strategies exist as seen in Chapter 3 and [70, 69, 1].

However, if no equilibria exist that yield maximal payoffs to all players in a game,
and we consider arbitrary Nash equilibria rather than distributed winning strategies, it
becomes crucial for a player to monitor the actions of other players. To illustrate, one
elementary scheme for constructing equilibria in games of infinite duration relies on grim-
trigger strategies: cooperate on the prescribed equilibrium path until one player deviates,
and at that event, enter a coalition with the remaining players and switch to a joint pun-
ishment strategy against the deviator. Most procedures for constructing Nash equilibria
in games for verification and synthesis are based on this scheme, which relies essentially
on the ability of players to detect jointly the deviation [83, 85, 16, 14].

97

The grim-trigger scheme works well under perfect, instant monitoring, where all players
have common knowledge about the most recent action performed by any other player. In
contrast, the situation becomes more complicated when players receive only imperfect
signals about the actions of other players, and worse, if the signals are not delivered
instantly, but with uncertain delays that may be different for each player. Imagine a
scenario with three players, where Player 1 deviates from the equilibrium path and this is
signalled to Player 2 immediately, but only with a delay to Player 3. If Player 2 triggers a
punishment strategy against Player 1 as soon as she detects the deviation, Player 3 may
monitor the action of Player 2 as a deviation from the equilibrium and trigger, in his turn,
a punishment strategy against her, overthrowing the equilibrium outcome to the profit of
Player 1.

One motivation for studying infinite games with delays comes from the work of Shmaya [79]
considering sequential games on finitely branching trees (or equivalently, on finite graphs)
where the actions of players are monitored perfectly, but with arbitrary finite delays. In
the setting of two-player zero-sum games with Borel winning conditions, Shmaya shows
that these delayed-monitoring games are determined in mixed strategies. Apart of reveal-
ing that infinite games on finite graphs are robust under monitoring delays, the paper is
enlightening for its proof technique, which relies on a reduction of the delayed-monitoring
game to a game with a different structure that features instant monitoring but, in ex-
change, involves stochastic moves.

Our analysis is inspired directly from recent work of Fudenberg, Ishii, and Komin-
ers [38] on infinitely repeated games with bounded-delay monitoring with stochastically
distributed observation lags. The authors prove a transfer result that is much stronger
than ours, which also covers the relevant case of discounted payoffs (modulo a controlled
adjustment of the discount factor). The key idea for constructing strategies in the delayed-
response game is to modify strategies from the instant-response game by letting them
respond with a delay equal to the maximal monitoring delay so that all players received
their signals. This amounts to combining different threads of the instant-monitoring game,
one for every time unit in the delay period. Thus, the proof again involves a reduction
between games of different structure, with the difference that here one game is reduced to
several instances of another one.

Infinitely repeated games correspond to the particular case of concurrent games with
only one state. This allows applying classical methods from strategic games, which are no
longer accessible in games with several states [74]. Additionally, the state-transition struc-
ture of our setting induces a combinatorial effort to adapt the delayed-response strategies
from [38]: As the play may reach a different state until the monitoring delay expires, the
instant-monitoring threads must be scheduled more carefully to make sure that they com-
bine to a valid play of the delayed-monitoring variant. In particular, the time for returning
to a particular game state may be unbounded, which makes it hard to deliver guarantees
under discounted payoff functions. As a weaker notion of patience, suited for games with
state transitions, we consider payoff aggregation functions that are shift-invariant and sub-
mixing, as introduced by Gimbert and Kelmendi in their work on memoryless strategies
in stochastic games [43].

Our model generalises concurrent games of infinite duration over finite graphs. Equi-
libria in such models have been investigated for the perfect-information case, and it was

98

shown that it is decidable with relatively low complexity whether equilibria exist, and
if this is the case, finite-state equilibrium profiles can be synthesised for several cases of
interest in automated verification. Ummels [83] considers turned-based games with parity
conditions and shows that deciding whether there exists a pure Nash equilibrium payoff in
a given range is an NP-complete problem. For the case of concurrent games with mean-
payoff conditions, Ummels and Wojtczak [84], show that the problem for pure strategies
is still NP-complete, whereas it becomes undecidable for mixed strategies. For the case of
concurrent games with Büchi conditions, that is, parity conditions with priorities 1 and
2, Bouyer et al. [13] show that the complexity of the problem drops to PTime. These
results are in the setting of perfect information about the actual game state and perfect
monitoring. However, as pointed out in the conclusion of [13], the generic complexity
increases when actions are not monitored by any player.

The basic method for constructing equilibria in the settings of perfect monitoring relies
on grim-trigger strategies that react to deviations from the equilibrium path by turning to
a zero-sum coalition strategy opposing the deviating player. Such an approach can hardly
work under imperfect monitoring where deviating actions cannot be observed directly.
Alternative approaches for constructing equilibria without relying on perfect monitoring
comprise, on the one hand distributed winning strategies for games that allow all players
of a coalition to attain the most efficient outcome [53, 36, 5], and at the other extreme,
Doomsday equilibria, proposed by Chatterjee et al. in [22], for games where any deviation
leads to the most inefficient outcome, for all players.

5.2 Games with Delayed Signals

There are n players 1, . . . , n and a distinguished agent called Nature. We refer to a list
x = (xi)1in that associates one element xi to every player i as a profile. For any
such profile, we write x−i to denote the list (xj)1jn,j 6=i where the element of Player i

is omitted. Given an element xi and a list x−i, we denote by (xi, x−i) the full profile
(xi)1in. For clarity, we always use superscripts to specify to which player an element
belongs. If not quantified explicitly, we refer to Player i to mean any arbitrary player.

5.2.1 General model

For every player i, we fix a set Ai of actions, and a set Y i of signals; these sets are finite.
The action space A consists of all action profiles, and the signal space Y of all signal
profiles.

Transition structure

The transition structure of a game is described by a game graph G = (V,E) over a finite
set V of states with an edge relation E ✓ V ⇥ A ⇥ Y ⇥ V that represents transitions
labelled by action and signal profiles. We assume that for each state v and every action
profile a, there exists at least one transition (v, a, y, v0) 2 E.

The game is played in stages over infinitely many periods starting from a designated
initial state v0 2 V known to all players. In each period t ≥ 1, starting in a state vt−1,

99

every player i chooses an action ait, and Nature chooses a transition (vt−1, at, yt, vt) 2 E,
which determines a profile yt of emitted signals and a successor state vt. Then, each
player i observes a set of signals depending on the monitoring structure of the game, and
the play proceeds to period t+ 1 with vt as the new state.

Accordingly, a play is an infinite sequence v0, a1, y1, v1, a2, y2, v2 · · · 2 V (AY V)! such
that (vt−1, at, yt, vt) 2 E, for all t ≥ 1. A history is a finite prefix

v0, a1, y1, v1, . . . , at, yt, vt 2 V (AY V)⇤

of a play. We refer to the number of stages played up to period t as the length of the
history.

Monitoring structure

We assume that each player i always knows the current state v and the action ai she is
playing. However, she is not informed about the actions or signals of the other players.
Furthermore, she may observe the signal yit emitted in a period t only in some later period
or, possibly, never at all.

The signals observed by Player i are described by an observation function

γi : V (AY V)+ ! 2Y
i

,

which assigns to every nontrivial history ⇡ = v0, a1, y1, v1, . . . , at, yt, vt with t ≥ 1, a set
of signals that were actually emitted along ⇡ for the player:

γi(⇡) ✓ {yir 2 Y i | 1 r t}.

For an actual history ⇡ 2 V (AY V)⇤, the observed history of Player i is the sequence

βi(⇡) := v0, ai1, z
i
1, v1, . . . , ait, z

i
t, vt

with zir = γi(v0, a1, y1, v1, . . . , ar, yr, vr), for all 1 r t. Analogously, we define the
observed play of Player i.

A strategy for Player i is a mapping si : V (Ai2Y
i
V)⇤ ! Ai that associates to ev-

ery observation history ⇡ 2 V (Ai2Y
i
V)⇤ an action si(⇡). The strategy space S is the

set of all strategy profiles. We say that a history or a play ⇡ follows a strategy si, if
ait+1 = si(βi(⇡t)), for all histories ⇡t of length t ≥ 0 in ⇡. Likewise, a history or play
follows a profile s 2 S, if it follows the strategy si of each player i. The outcome out(s)
of a strategy profile s is the set of all plays that follow it. Note that the outcome of a
strategy profile generally consist of multiple plays, due to the different choices of Nature.

Strategies may be partial functions. However, we require that, for any history ⇡ that
follows a strategy si, the observed history βi(⇡) is also included in the domain of si.

With the above definition of a strategy, we implicitly assume that players have perfect
recall, that is, they may record all the information acquired along a play. Nevertheless, in
certain cases, we can restrict our attention to strategy functions computable by automata
with finite memory. In this case, we speak of finite-state strategies.

100

Payoff structure

Every transition taken in a play generates an integer payoff to each player i, described
by a payoff function pi : E ! Z. These stage payoffs are combined by a payoff aggre-
gation function u : Z! ! R to determine the utility received by Player i in a play ⇡

as ui(⇡) := u(pi(v0, a1, y1, v1), p
i(v1, a2, y2, v2), . . .). Thus, the profile of utility, or global

payoff, functions ui : V (AY V)! ! R is represented by a profile of payoff functions pi and
an aggregation function u, which is common to all players.

We generally consider utilities that depend only on the observed play, in the sense
that, ui(⇡) = ui(⇡0), for any plays ⇡,⇡0 that are indistinguishable to Player i, that is,
βi(⇡) = βi(⇡0). To extend payoff functions from plays to strategy profiles, we set

ui(s) := inf{ui(⇡) | ⇡ 2 out(s)}, for each strategy profile s 2 S.

Overall, a game G = (G, γ, u) is described by a game graph with a profile of observation
functions and one of payoff functions. We are interested in Nash equilibria, that is, strategy
profiles s 2 S such that ui(s) ≥ ui(ri, s−i), for every player i and every strategy ri 2 Si.
The payoff w = ui(s) generated by an equilibrium s 2 S is called an equilibrium payoff.
An equilibrium payoff w is ergodic if it does not depend on the initial state of the game,
that is, there exists a strategy profile s with u(s) = w for every choice of an initial state.

5.2.2 Instant and bounded-delay monitoring

We focus on two particular monitoring structures, one where the players observe their
component of the signal profile instantly, and one where each player i observes his private
signal emitted in period t in some period t + dit, with a bounded delay dit 2 N chosen by
Nature.

Formally, a game with instant monitoring is one where the observation functions γi

return, for every history ⇡ = v0, a1, y1, v1, . . . , at, yt, vt of length t ≥ 1, the private signal
emitted for Player i in the current stage, that is, γi(⇡) = {yit}, for all t ≥ 1. As the value
is always a singleton, we may leave out the enclosing set brackets and write γi(⇡) = yit.

To model bounded delays, we consider signals with an additional component that rep-
resents a timestamp. Concretely, we fix a set Bi of basic signals and a finite set Di ✓ N of
possible delays, for each player i, and consider the product Y i := Bi⇥Di as a new set of sig-
nals. Then, a game with delayed monitoring is a game over the signal space Y with obser-
vation functions γi that return, for every history ⇡ = v0, a1, (b1, d1), v1, . . . , at, (bt, dt), vt
of length t ≥ 1, the value

γi(⇡) = {(bir, d
i
r) 2 Bi ⇥Di | r ≥ 1, r + dir = t}.

In our model, the role of Nature is limited to choosing the delays for observing the
emitted signals. Concretely, we postulate that the basic signals and the stage payoffs
associated to transitions are determined by the current state and the action profile chosen
by the players, that is, for every global state v and action profile a, there exists a unique
profile b of basic signals and a unique state v0 such that (v, a, (b, d), v0) 2 E, for some
d 2 D; moreover, for any other delay profile d0 2 D, we require (v, a, (b, d0), v0) 2 E,
and also that pi(v, a, (b, d), v0) = pi(v, a, (b, d0), v0). Here again, D denotes the delay space

101

composed of the sets Di. Notice that under this assumption, the plays in the outcome of
a strategy profile s differ only by the value of the delays. In particular, all plays in out(s)
yield the same payoff.

To investigate the effect of observation delays, we will relate the delayed and instant-
monitoring variants of a game. Given a game G with delayed monitoring, the corresponding
instant-monitoring game G0 is obtained by projecting every signal yi = (bi, di) onto its
first component bi and then taking the transition and payoff structure induced by this
projection. As we assume that transitions and payoffs are independent of delays, the
operation is well defined.

Conversely, given a game G with instant monitoring and a delay space D, the cor-
responding game G0 with delayed monitoring is obtained by extending the set Bi of
basic signals in G to Bi ⇥ Di, for each player i, and by lifting the transition and pay-
off structure accordingly. Thus, the game G0 has the same states as G with transitions
E0 := {(v, a, (b, d), w) | (v, a, b, w) 2 E, d 2 D}, whereas the payoff functions are given by
p0

i(v, a, (b, d), w) := pi(v, a, b, w), for all d 2 D.

As the monitoring structure of games with instant or delayed monitoring is fixed,
it is sufficient to describe the game graph together with the profile of payoff functions,
and to indicate the payoff aggregation function. It will be convenient to include the payoff
associated with a transition as an additional edge label and thus represent the game simply
as a pair G = (G, u) consisting of a finite labelled game graph and an aggregation function
u : Z! ! R.

5.2.3 Shift-invariant, submixing utilities

Our result applies to a class of games where the payoff-aggregation functions are invariant
under removal of prefix histories and shuffling of plays. Gimbert and Kelmendi [43] identify
these properties as a guarantee for the existence of simple strategies in stochastic zero-sum
games.

A function f : Z! ! R is shift-invariant, if its value does not change when adding
an arbitrary finite prefix to the argument, that is, for every sequence ↵ 2 Z! and each
element a 2 Z, we have f(a↵) = f(↵).

An infinite sequence ↵ 2 Z! is a shuffle of two sequences ', ⌘ 2 Z!, if N can be
partitioned into two infinite sets I = {i0, i1, . . . } and J = {j0, j1, . . . } such that ↵ik = 'k

and ↵jk = ⌘k, for all k 2 N. A function f : Z! ! R is called submixing if, for every shuffle
↵ of two sequences ', ⌘ 2 Z!, we have

min{f('), f(⌘)} f(↵) max{f('), f(⌘)}.

In other words, the image of a shuffle product always lies between the images of its factors.

The proof of our theorem relies on payoff aggregation functions u : Z! ! R that
are shift-invariant and submixing. Many relevant game models used in economics, game
theory, and computer science satisfy this restriction. Prominent examples are mean payoff

102

or limsup payoff, which aggregate sequences of stage payoffs p1, p2, · · · 2 Z! by setting:

mean-payoff(p1, p2, . . .) := lim sup
t≥1

1

t

tX

r=1

pr, and

limsup(p1, p2, . . .) := lim sup
t≥1

pt.

Finally, parity conditions which map non-negative integer payoffs p1, p2, . . . called pri-
orities to parity(p1, p2, . . .) = 1 if the least priority that occurs infinitely often is even, and
0 otherwise, also satisfy the conditions.

5.2.4 The transfer theorem

We are now ready to formulate our result stating that, under certain restrictions, equilib-
rium profiles from games with instant monitoring can be transferred to games with delayed
monitoring.

Theorem 5.1. Let G be a game with instant monitoring and shift-invariant submixing
payoffs, and let D be a finite delay space. Then, for every ergodic equilibrium payoff w in
G, there exists an equilibrium of the D-delayed monitoring game G0 with the same payoff w.

The proof relies on constructing a strategy for the delayed-monitoring game while
maintaining a collection of virtual plays of the instant-monitoring game, on which the
given strategy is queried. The responses are then combined according to a specific schedule
to ensure that the actual play arises as a shuffle of the virtual plays.

5.3 Proof

Consider a game G = (G, u) with instant monitoring where the payoff aggregation function
u is shift-invariant and submixing, and suppose that G admits an equilibrium profile s.
For an arbitrary finite delay space D, let G0 be the delayed-monitoring variant of G. In
the following steps, we will construct a strategy profile s0 for G0, that is in equilibrium and
yields the same payoff u(s0) as s in G.

5.3.1 Unravelling small cycles

To minimise the combinatorial overhead for scheduling delayed responses, it is convenient
to ensure that, whenever the play returns to a state v, the signals emitted at the previous
visit at v have been received by all players. If every cycle in the given game graph G is at
least as long as any possible delay, this is clearly satisfied. Otherwise, the graph can be
expanded to avoid small cycles, e.g. by taking the product with a cyclic group of order
equal to the maximal delay.

Concretely, let m be the greatest delay among maxDi, for all players i. We define a
new game graph Ĝ as the product of G with the additive group Zm of integers modulo m,
over the state set {vj | v 2 V, j 2 Zm} by allowing transitions (vj , a, b, v

0
j+1), for every

(v, a, b, v0) 2 E and all j 2 Zm, and by assigning, for all transitions (v, a, b, v0) 2 E, stage
payoffs p̂i(vj , a, b, v

0
j+1) := pi(v, a, b, v0). Obviously, every cycle in this game has length at

103

least m. Moreover, the games (Ĝ, u) and (G, u) are equivalent: Since the index component
j 2 Zm is not observable to the players, the two games have the same sets of strategies,
and profiles of corresponding strategies yield the same observable play outcome, and hence
the same payoffs.

In conclusion, we can assume without loss of generality that each cycle in the game
graph G is longer than the maximal delay maxDi, for all players i.

5.3.2 The Frankenstein procedure

We describe a strategy f i for Player i in the delayed monitoring game G0 by a reactive
procedure that receives observations of states and signals as input and produces actions
as output.

The Frankenstein5 procedure maintains a collection of virtual plays of the instant-
monitoring game. More precisely, these are observation histories for Player i, following
the strategy si in G, which we call threads. The observations collected in a thread

⇡ = v0, ai1, (b
i
1, d

i
1), v1, . . . , air, (b

i
r, d

i
r), vr

are drawn from the play of the main delayed-monitoring game G0. Due to delays, it may
occur that the signal (bir, d

i
r) emitted in the last period of a thread has not yet been

received. In this case, the signal entry is replaced by a special symbol #, and we say
that the thread is pending. As soon as the player receives the signal, the placeholder
is overwritten with the actual value, and the thread becomes active. Active threads
⇡ are used to query the strategy si; the prescribed action ai = si(⇡) is played in the
main delayed-monitoring game and it is also used to continue the thread of the virtual
instant-monitoring game.

To be continued, a thread must be active and its current state needs to match the
actual state of the play in the delayed-monitoring game. Intuitively, threads advance
more slowly than the actual play, so we need multiple threads to keep pace with it. Here,
we use a collection of |V |+ 1 threads, indexed by an ordered set K = V [{"}. The main
task of the procedure is to schedule the continuation of threads. To do so, it maintains a
data structure (⌧, h) that consists of the threads ⌧ = (⌧k)k2K and a scheduling sequence
h = h[0], . . . , h[t] of indices from K, at every period t ≥ 0 of the actual play. For each
previous r < t, the entry h[r] points to the thread according to which the action of period
r+ 1 in the actual play has been prescribed; the last entry h[t] points to an active thread
that is currently scheduled for prescribing the action to be played next.

The version of Procedure Frankensteini for Player i, given below, is parametrised by
the game graph G with the designated initial state, the delay space Di, and the given
equilibrium strategy si in the instant-monitoring game. In the initialisation phase, the
initial state v0 is stored in the initial thread ⌧" to which the current scheduling entry h[0]
points. The remaining threads are initialised, each with a different position from V . Then,
the procedure enters a non-terminating loop along the periods of the actual play. In every

5The intuition behind this unusual name for a computing procedure is that the operational mode of
the Frankenstein procedure is not without resemblance with the one of the famous literary doctor, who
assembles several limbs from different sources to give life to a functioning creature, mimicking well the
behaviour of the former owners of his parts, at least for a certain class of tasks!

104

period t, it outputs the action prescribed by strategy si for the current thread scheduled by
h[t] (Line 5). Upon receiving the new state, this current thread is updated by recording the
played action and the successor state; as the signal emitted in the instant-monitoring play
is not available in the delayed-monitoring variant, it is temporarily replaced by #, which
marks the current thread as pending (Line 7). Next, an active thread that matches the
new state is scheduled (Line 9), and the received signals are recorded with the pending
threads to which they belong (Line 11 – 14). As a consequence, these threads become
active.

Procedure: Frankensteini(G, v0, D
i, si)

// initialisation

1 ⌧" := v0; h[0] = "

2 foreach v 2 V do ⌧v := v

// play loop

for t = 0 to ! do
3 k := h[t]
4 assert (⌧k is an active thread)
5 play action ai := si(⌧k) // ait+1

6 receive new state v // vt+1

7 update ⌧k := ⌧k a
i#v

8 assert (there exists an index k0 6= k such that ⌧k0 is active and ends at state v)
9 set h[t+ 1] to the least such index k0

10 receive observation zi ✓ Bi ⇥Di // zit+1

11 foreach (bi, di) 2 zi do
12 k := h[t− di]
13 assert (⌧k = ⇢#v0, for some prefix ⇢, state v0)
14 update ⌧k := ⇢(bi, di)v0

end

end

5.3.3 Correctness

In the following, we argue that the procedure Frankensteini never violates the assertions
in Line 4, 8, and 13 while interacting with Nature in the delayed-monitoring game G0, and
thus implements a valid strategy for Player i.

Specifically, we show that for every history

⇡ = v0, a1, (b1, d1), v1, . . . , at, (bt, dt), vt

in the delayed-monitoring game that follows the prescriptions of the procedure up to
period t > 0, (1) the scheduling function h[t] = k points to an active thread ⌧k that ends
at state vt, and (2) for the state vt+1 reached by playing at+1 := si(⌧k) at ⇡, there exists an

105

active thread ⌧k0 that ends at vt+1. We proceed by induction over the period t. In the base
case, both properties hold, due to the way in which the data structure is initialised: the
(trivial) thread ⌧" is active, and for any successor state v1 reached by a1 := si(⌧"), there is
a fresh thread ⌧v1 that is active. For the induction step in period t+1, property (1) follows
from property (2) of period t. To verify that property (2) holds, we distinguish two cases.
If vt+1 did not occur previously in ⇡, the initial thread ⌧vt+1 still consists of the trivial
history vt+1, and it is thus active. Else, let r < t be the period in which vt+1 occurred
last. Then, for k0 = h[r], the thread ⌧k0 ends at vt+1. Moreover, by our assumption that
the cycles in G are longer than any possible delay, it follows that the signals emitted in
period r < t−m have been received along ⇡ and were recorded (Line 12–14). Hence, ⌧k0

is an active thread ending at vt+1, as required.

To see that the assertion of Line 13 is never violated, we note that every observation
history βi(⇡) of the actual play ⇡ in G0 up to period t corresponds to a finitary shuffle of
the threads ⌧ in the t-th iteration of the play loop, described by the scheduling function h:
The observations (air, (br, dr)

i, vr) associated to any period r t appear at the end of ⌧h[r],
if the signal (br, dr)

i was delivered until period t, and with the placeholder #, otherwise.

In summary, it follows that the reactive procedure Frankensteini never halts, and it
returns an action for every observed history βi(⇡) associated to an actual history ⇡ that
follows it. Thus, the procedure defines a strategy f i : V (Ai2Y

i
V)⇤ ! Ai for Player i.

5.3.4 Equilibrium condition

Finally, we show that the interplay of the strategies f i described by the reactive proce-
dure Frankensteini, for each player i, constitutes an equilibrium profile for the delayed-
monitoring game G0 yielding the same payoff as s in G.

According to our remark in the previous subsection, every transition taken in a play
⇡ that follows the strategy f i in G0 is also observed in some thread history, which in turn
follows si. Along the non-terminating execution of the reactive Frankensteini procedure,
some threads must be scheduled infinitely often, and thus correspond to observations of
plays in the perfect-monitoring game G. We argue that the observation by Player i of a
play that follows the strategy f i corresponds to a shuffle of such infinite threads (after
discarding finite prefixes).

To make this more precise, let us fix a play ⇡ that follows f i in G0, and consider
the infinite scheduling sequence h[0], h[1], . . . generated by the procedure. Since there are
finitely many thread indices, some must appear infinitely often in this sequence; we denote
by Li ✓ K the subset of these indices, and look at the least period `i, after which only
threads in Li are scheduled.6 Then, the suffix of the observation βi(⇡) from period `i

onwards can be written as a |Li|-partite shuffle of suffixes of the threads ⌧k for k 2 Li.

By our assumption that the payoff aggregation function u is shift-invariant and sub-
mixing, it follows that the payoff ui(⇡) lies between the values of min{ui(⌧k) | k 2 Li} and
max{ui(⌧k) | k 2 Li}. Now, we apply this reasoning to all players to show that f i is an
equilibrium profile with payoff u(s).

6Discarding the threads that go off after a finite number of rounds allows to obtain a well-defined shuffle

as a relevant play. As the payoff aggregation functions we consider are shift-invariant, it does not alter the

value of the play payoff to do so.

106

To see that the profile f in the delayed-monitoring game G0 yields the same payoff
as s in the instant-monitoring game G, consider the unique play ⇡ that follows f , and
construct Li, for all players i, as above. Then, all threads of all players i follow si, which
by ergodicity implies, for each infinite thread ⌧k with k 2 Li that ui(⌧k) = ui(s). Hence
min{ui(⌧k) | k 2 Li} = max{ui(⌧k) | k 2 Li}= ui(⇡), for each player i, and therefore
u(f) = u(s).

To verify that f is indeed an equilibrium profile, consider a strategy gi for the delayed-
monitoring game and look at the unique play ⇡ that follows (f−i, gi) in G0. Towards a
contradiction, assume that ui(⇡) > ui(f). Since ui(⇡) max{ui(⌧k) | k 2 Li}, there must
exist an infinite thread ⌧k with index k 2 Li such that ui(⌧k) > ui(f) = ui(s). But ⌧k
corresponds to the observation βi(⇢) of a play ⇢ that follows s−i in G, and since s is an
equilibrium strategy we obtain ui(s) ≥ ui(⇢) = ui(⌧k), a contradiction. This concludes the
proof of our theorem.

5.3.5 Finite-state strategies

The transfer theorem makes no assumption on the complexity of equilibrium strategies in
the instant-monitoring game at the outset; informally, we may think of these strategies
as oracles that the Frankenstein procedure can query. Moreover, the procedure itself runs
for infinite time along the periods of the play, and the data structure it maintains grows
unboundedly.

However, if we set out with an equilibrium profile of finite-state strategies, it is straight-
forward to rewrite the Frankenstein procedure as a finite-state automaton: instead of stor-
ing the full histories of threads, it is sufficient to maintain the current state reached by the
strategy automaton for the relevant player after reading this history, over a period that is
sufficiently long to cover all possible delays.

Corollary 5.1. Let G be a game with instant monitoring and shift-invariant submixing
payoffs, and let D be a finite delay space. Then, for every ergodic payoff w in G generated
by a profile of finite-state strategies, there exists an equilibrium of the D-delayed monitoring
game G0 with the same payoff w that is also generated by a profile of finite-state strategies.

5.4 Discussion

We presented a transfer result that implies effective solvability of concurrent games with a
particular kind of imperfect information, due to imperfect monitoring of actions, and de-
layed delivery of signals. This is a setting where we cannot rely on grim-trigger strategies,
typically used for constructing Nash equilibria in games of infinite duration for automated
verification. Our method overcomes this obstacle by adapting the idea of delayed-response
strategies of [38] from infinitely repeated games with one state, to arbitrary finite state-
transition structures.

Our transfer result imposes stronger restrictions than the one in [38], in particular, it
does not cover discounted payoff functions. Nevertheless, the class of submixing payoff
functions is general enough to cover most applications relevant in automated verification
and synthesis.

107

The restriction to ergodic payoffs was made for technical convenience. We believe it
is not critical for using the main result: The state space of every game can be partitioned
into ergodic regions, where all initial states lead to the same equilibrium value. As the
outcome of every equilibrium profile will stay within an ergodic region, we may analyse
each ergodic region in separation, and apply standard zero-sum techniques to combine
the results. A challenging open question is whether the assumption of perfect information
about the current state can be relaxed.

108

Bibliography

[1] Salman Azhar, Gary Peterson, and John Reif. Lower bounds for multiplayer non-
cooperative games of incomplete information. Journal of Computers and Mathematics
with Applications, 41:957–992, 2001.

[2] Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch.
Squaring transducers: An efficient procedure for deciding functionality and sequen-
tiality of transducers. In Proc. of Latin American Symposium on Theoretical Infor-
matics (LATIN 2000), volume 1776 of Lecture Notes in Computer Science, pages
397–406. Springer, 2000.

[3] Jean Berstel. Transductions and Context-Free Languages. Teubner, 1979.

[4] Dietmar Berwanger and Laurent Doyen. On the power of imperfect information.
In Proceedings of the 28th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’08), volume 2 of Leibniz International Pro-
ceedings in Informatics. Leibniz-Zentrum für Informatik, December 2008.

[5] Dietmar Berwanger, Lukasz Kaiser, and Bernd Puchala. Perfect-information con-
struction for coordination in games. In Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’11), volume 13 of LIPICS, pages 387–398,
Mumbai, India, December 2011. Leibniz-Zentrum für Informatik.

[6] Dietmar Berwanger, Anup Basil Mathew, and Marie van den Bogaard. Hierarchical
information patterns and distributed strategy synthesis. In Automated Technology for
Verification and Analysis - 13th International Symposium, (ATVA 2015), Shanghai,
China, October 12-15, 2015, Proceedings, volume 9364 of Lecture Notes in Computer
Science, pages 378–393. Springer, 2015.

[7] Dietmar Berwanger, Anup Basil Mathew, and Marie van den Bogaard. Hierarchical
information and the synthesis of distributed strategies. CoRR, abs/1506.03883v2,
2016.

[8] Dietmar Berwanger and Marie van den Bogaard. Consensus game acceptors. In De-
velopments in Language Theory - 19th International Conference, (DLT 2015), Liver-
pool, UK, July 27-30, 2015, Proceedings., volume 9168 of Lecture Notes in Computer
Science, pages 108–119. Springer, 2015.

109

[9] Dietmar Berwanger and Marie van den Bogaard. Games with delays - A frankenstein
approach. In 35th IARCS Annual Conference on Foundation of Software Technology
and Theoretical Computer Science, (FSTTCS 2015), December 16-18, 2015, Banga-
lore, India, volume 45 of LIPIcs, pages 307–319. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2015.

[10] Dietmar Berwanger and Marie van den Bogaard. Consensus game acceptors and
iterated transductions. CoRR, abs/1501.07131v3, 2016.

[11] Ken Binmore. Fun and games, a text on game theory. DC Heath and Company, 1992.

[12] Roderick Bloem, Krishnendu Chatterjee, Thomas A Henzinger, and Barbara Jobst-
mann. Better quality in synthesis through quantitative objectives. In International
Conference on Computer Aided Verification, pages 140–156. Springer, 2009.

[13] Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Nash
equilibria in concurrent games with Büchi objectives. In Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2011), Proc., volume 13 of
LIPIcs, pages 375–386. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

[14] Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Pure
Nash equilibria in concurrent games. Logical Methods in Computer Science, 11(2:9),
June 2015.

[15] Patricia Bouyer, Nicolas Markey, and Daniel Stan. Mixed Nash equilibria in concur-
rent games. In Venkatesh Raman and S. P. Suresh, editors, Proceedings of the 34th
Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’14), volume 29 of Leibniz International Proceedings in Informatics, pages
351–363, New Dehli, India, December 2014. Leibniz-Zentrum für Informatik.

[16] Thomas Brihaye, Véronique Bruyère, and Julie De Pril. On equilibria in quantitative
games with reachability/safety objectives. Theory of Computing Systems, 54(2):150–
189, 2014.

[17] Véronique Bruyère, Noémie Meunier, and Jean-François Raskin. Secure equilibria in
weighted games. In Joint Meeting of the Twenty-Third EACSL Annual Conference
on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July
14 - 18, 2014, pages 26:1–26:26. ACM, 2014.

[18] J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-
state strategies. Transactions of the American Mathematical Society, 138:295–311,
1969.

[19] Arindam Chakrabarti, Luca De Alfaro, Thomas A Henzinger, and Mariëlle Stoelinga.
Resource interfaces. In International Workshop on Embedded Software, pages 117–
133. Springer, 2003.

[20] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114–133, 1981.

110

[21] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A Henzinger. Strategy improve-
ment for concurrent reachability and turn-based stochastic safety games. Journal of
computer and system sciences, 79(5):640–657, 2013.

[22] Krishnendu Chatterjee, Laurent Doyen, Emmanuel Filiot, and Jean-François Raskin.
Doomsday equilibria for omega-regular games. In Verification, Model Checking, and
Abstract Interpretation, volume 8318 of Lecture Notes in Computer Science, pages
78–97. Springer, 2014.

[23] Krishnendu Chatterjee, Laurent Doyen, Sumit Nain, and Moshe Y Vardi. The com-
plexity of partial-observation stochastic parity games with finite-memory strategies.
In International Conference on Foundations of Software Science and Computation
Structures, pages 242–257. Springer, 2014.

[24] Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.
Looking at mean-payo↵ and total-payo↵ through windows. Information and Compu-
tation, 242:25–52, 2015.

[25] Krishnendu Chatterjee and Thomas A Henzinger. A survey of stochastic !-regular
games. Journal of Computer and System Sciences, 78(2):394–413, 2012.

[26] Krishnendu Chatterjee, Thomas A Henzinger, and Marcin Jurdziński. Games with
secure equilibria. Theoretical Computer Science, 365(1):67–82, 2006.

[27] Bogdan S. Chlebus. Domino-tiling games. Journal of Computer and System Sciences,
32(3):374 – 392, 1986.

[28] N. Chomsky and M.P. Schützenberger. The algebraic theory of context-free languages.
In Computer Programming and Formal Systems, volume 35 of Studies in Logic and
the Foundations of Mathematics, pages 118 – 161. Elsevier, 1963.

[29] Alonzo Church. Application of recursive arithmetic to the problem of circuit synthesis.
In Summaries of the Summer Institute for Symbolic Logic, volume 1, pages 3–50.
Cornell University, Ithaca, 1957.

[30] Alonzo Church. Logic, arithmetic and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35, 1962.

[31] Aldric Degorre, Laurent Doyen, Ra↵aella Gentilini, Jean-François Raskin, and Szy-
mon Toruńczyk. Energy and mean-payo↵ games with imperfect information. In
International Workshop on Computer Science Logic, pages 260–274. Springer, 2010.

[32] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a byzantine
environment: Crash failures. Information and Computation, 88(2):156–186, 1990.

[33] Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payo↵ games.
International Journal of Game Theory, 8(2):109–113, 1979.

[34] E Allen Emerson and Charanjit S Jutla. Tree automata, mu-calculus and determinacy.
In Foundations of Computer Science, 1991. Proceedings., 32nd Annual Symposium
on, pages 368–377. IEEE, 1991.

111

[35] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
about Knowledge. MIT Press, 1995.

[36] B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proc. of LICS ’05,
pages 321–330. IEEE, 2005.

[37] Bernd Finkbeiner and Sven Schewe. Coordination logic. In International Workshop
on Computer Science Logic, pages 305–319. Springer, 2010.

[38] Drew Fudenberg, Yuhta Ishii, and Scott Duke Kominers. Delayed-response strategies
in repeated games with observation lags. J. Economic Theory, 150:487–514, 2014.

[39] David Gale and Frank M. Stewart. Infinite games with perfect information. In Con-
tributions to the Theory of Games II, volume 28 of Annals of Mathematical Studies,
pages 245–266. Princeton University Press, 1953.

[40] Paul Gastin, Benjamin Lerman, and Marc Zeitoun. Distributed games with causal
memory are decidable for series-parallel systems. In International Conference on
Foundations of Software Technology and Theoretical Computer Science, pages 275–
286. Springer, 2004.

[41] Paul Gastin, Nathalie Sznajder, and Marc Zeitoun. Distributed synthesis for well-
connected architectures. Formal Methods in System Design, 34(3):215–237, 2009.

[42] Blaise Genest, Doron Peled, and Sven Schewe. Knowledge = observation + memory
+ computation. In Proc. of Foundations of Software Science and Computation Struc-
tures (FOSSACS 2015), volume 9034 of Lecture Notes in Computer Science, pages
215–229. Springer, 2015.

[43] Hugo Gimbert and Edon Kelmendi. Two-player perfect-information shift-invariant
submixing stochastic games are half-positional. CoRR, abs/1401.6575, 2014.

[44] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games.
Number 2500 in Lecture Notes in Computer Science. Springer, 2002.

[45] Erich Grädel and Michael Ummels. Solution concepts and algorithms for infinite
multiplayer games. New Perspectives on Games and Interaction, 4:151–178, 2008.

[46] Ernst Moritz Hahn, Sven Schewe, Andrea Turrini, and Lijun Zhang. A simple algo-
rithm for solving qualitative probabilistic parity games. In International Conference
on Computer Aided Verification, pages 291–311. Springer, 2016.

[47] David Janin. On the (high) undecidability of distributed synthesis problems. In Proc.
of Theory and Practice of Computer Science (SOFSEM 2007), volume 4362 of Lecture
Notes in Computer Science, pages 320–329. Springer, 2007.

[48] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Program repair as
a game. In Proc. of Computer Aided Verification (CAV’05), volume 3576 of Lecture
Notes in Computer Science, pages 226–238. Springer, 2005.

112

[49] Neil D. Jones. Space-bounded reducibility among combinatorial problems. Journal
of Computer and System Sciences, 11(1):68 – 85, 1975.

[50] Line Juhl, Kim Guldstrand Larsen, and Jean-François Raskin. Optimal bounds for
multiweighted and parametrised energy games. In Theories of Programming and
Formal Methods, pages 244–255. Springer, 2013.

[51] Lukasz Kaiser. Game quantification on automatic structures and hierarchical model
checking games. In Proc. of CSL ’06, volume 4207 of LNCS, pages 411–425. Springer,
2006.

[52] Gal Katz, Doron Peled, and Sven Schewe. Synthesis of distributed control through
knowledge accumulation. In Proc. of Computer Aided Verification (CAV 2011), vol-
ume 6806 of Lecture Notes in Computer Science, pages 510–525. Springer, 2011.

[53] Orna Kupferman and Moshe Y. Vardi. Synthesizing distributed systems. In Proc. of
LICS ’01, pages 389–398. IEEE Computer Society Press, June 2001.

[54] Sige-Yuki Kuroda. Classes of languages and linear-bounded automata. Information
and Control, 7(2):207–223, June 1964.

[55] M. Latteux and D. Simplot. Context-sensitive string languages and recognizable
picture languages. Information and Computation, 138(2):160 – 169, 1997.

[56] Michel Latteux and David Simplot. Recognizable picture languages and domino tiling.
Theoretical Computer Science, 178(1–2):275 – 283, 1997.

[57] Michel Latteux, David Simplot, and Alain Terlutte. Iterated length-preserving ra-
tional transductions. In Mathematical Foundations of Computer Science 1998, pages
286–295. Springer, 1998.

[58] Donald A. Martin. Borel determinacy. Annals of Mathematics, 102:363–371, 1975.

[59] Robert McNaughton. Finite-state infinite games. Project MAC Rep, 1965.

[60] Robert McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9(5):521 – 530, 1966.

[61] Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Proc. Annual Symposium on
Switching and Automata Theory (SWAT’72), pages 125–129. IEEE Computer Society,
1972.

[62] Swarup Mohalik and Igor Walukiewicz. Distributed games. In FSTTCS 2003: Foun-
dations of Software Technology and Theoretical Computer Science, 23rd Conference,
Mumbai, India, December 15-17, 2003, Proceedings, pages 338–351, 2003.

[63] Andrzej W lodzimierz Mostowski. Games with forbidden positions. 1991.

113

[64] Anca Muscholl and Igor Walukiewicz. Distributed synthesis for acyclic architectures.
In Foundation of Software Technology and Theoretical Computer Science, FSTTCS
2014, Proc., volume 29 of LIPIcs, pages 639–651. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2014.

[65] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

[66] John F Nash et al. Equilibrium points in n-person games. Proc. Nat. Acad. Sci. USA,
36(1):48–49, 1950.

[67] Alexander Okhotin. Non-erasing variants of the chomsky–schützenberger theorem.
In Developments in Language Theory, volume 7410 of Lecture Notes in Computer
Science, pages 121–129. Springer, 2012.

[68] Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.

[69] Gary L. Peterson and John H. Reif. Multiple-Person Alternation. In Proc 20th
Annual Symposium on Foundations of Computer Science, (FOCS 1979), pages 348–
363. IEEE, 1979.

[70] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize.
In Proceedings of the 31st Annual Symposium on Foundations of Computer Science,
FoCS ’90, pages 746–757. IEEE Computer Society Press, 1990.

[71] Michael Oser Rabin. Automata on Infinite Objects and Church’s Problem. American
Mathematical Society, Boston, MA, USA, 1972.

[72] Ramaswamy Ramanujam and Sunil Simon. A communication based model for games
of imperfect information. In International Conference on Concurrency Theory, pages
509–523. Springer, 2010.

[73] John H. Reif. The complexity of two-player games of incomplete information. Journal
of Computer and Systems Sciences, 29(2):274–301, 1984.

[74] Dinah Rosenberg, Eilon Solan, and Nicolas Vieille. Stochastic games with imperfect
monitoring. In Advances in Dynamic Games, volume 8 of Annals of the International
Society of Dynamic Games, pages 3–22. Birkhäuser Boston, 2006.

[75] Jacques Sakarovitch. Elements of automata theory. Cambridge University Press,
2009.

[76] Arto Salomaa. Formal Languages. Academic Press, New York, NY , USA, 1973.

[77] Sven Schewe. Distributed synthesis is simply undecidable. Inf. Process. Lett.,
114(4):203–207, April 2014.

[78] Sven Schewe and Bernd Finkbeiner. Synthesis of asynchronous systems. In Inter-
national Symposium on Logic-Based Program Synthesis and Transformation, pages
127–142. Springer, 2006.

114

[79] Eran Shmaya. The determinacy of infinite games with eventual perfect monitoring.
Proc. Am. Math. Soc., 139(10):3665–3678, 2011.

[80] Alain Terlutte and David Simplot. Iteration of rational transductions. Informatique
théorique et applications, 34(2):99–129, 2000.

[81] Wolfgang Thomas. Church’s problem and a tour through automata theory. In Pillars
of Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion
of His 85th Birthday, pages 635–655, 2008.

[82] Stavros Tripakis. Undecidable problems of decentralized observation and control on
regular languages. Inf. Process. Lett., 90(1):21–28, 2004.

[83] Michael Ummels. The complexity of Nash equilibria in infinite multiplayer games.
In Foundations of Software Science and Computational Structures, volume 4962 of
Lecture Notes in Computer Science, pages 20–34. Springer, 2008.

[84] Michael Ummels and Dominik Wojtczak. The complexity of Nash equilibria in limit-
average games. In CONCUR 2011 – Concurrency Theory, volume 6901 of Lecture
Notes in Computer Science, pages 482–496. Springer, 2011.

[85] Michael Ummels and Dominik Wojtczak. The complexity of Nash equilibria in
stochastic multiplayer games. Logical Methods in Computer Science, 7(3), 2011.

[86] Peter van Emde Boas. The convenience of tilings. In Complexity, Logic, and Recursion
Theory, volume 18 of Lecture Notes in Pure and Applied Mathematics, pages 331–363.
Marcel Dekker Inc, 1997.

[87] Bernard Walliser. Information and beliefs in game theory. In J. van Benthem, P.
Adriaans (eds): Handbook on the Philosophy of Information. Elsevier, 2008.

[88] Andreas Weber and Reinhard Klemm. Economy of description for single-valued trans-
ducers. Inf. Comput., 118(2):327–340, May 1995.

[89] Wies law Zielonka. Notes on finite asynchronous automata. Informatique Théorique
et Applications, 21(2):99–135, 1987.

[90] Wies law Zielonka. Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoretical Computer Science, 200(1–2):135–183, 1998.

[91] Uri Zwick and Mike Paterson. The complexity of mean payo↵ games on graphs.
Theoretical Computer Science, 158(1):343–359, 1996.

115

116

Appendix A

Résumé (long) en français

L’interaction entre agents calculatoires est un phénomène omniprésent en pratique. Par
exemple, si l’on considère une plateforme de réservations de vacances en ligne, plusieurs
agents indépendants doivent coopérer les uns avec les autres : le client, une compag-
nie aériennne et un hôtel. En e↵et, la compagnie aérienne et l’hôtel doivent proposer
des options correspondant aux exigences du client, puis e↵ectuer les réservations sur la
base de ses choix. Par ailleurs, chaque agent impliqué dans ce scénario a seulement une
vue partielle de la situation : le client doit prendre des décisions en dépit du risque de
“surbooking” de la part des prestataires, tandis que la compagnie aérienne et l’hôtel ne
connaissent pas leurs propositions respectives, ni si le client utilisera bien les services qu’il
a réservé ou s’il préférera finalement changer d’avis pour choisir d’autres prestataires aux
o↵res plus attractives. De tels systèmes, impliquant plusieurs agents indépendants, sont
appelés des systèmes distribués. Dans ces systèmes, l’information à propos des autres
agents est cruciale, mais peut être limitée en raison de l’infrastructure même du système
et la vue partielle de chaque agent sur la globalité du système. Un objectif naturel est
pour les agents de pouvoir se coordonner malgré l’information éventuellement manquante.
Cela implique de concevoir des programmes prescrivant le comportement des agents, et
correspond au problème de synthèse pour les systèmes distribués. Dans cette thèse, nous
étudions la synthèse distribuée au niveau théorique, sur le modèle de jeux à information
imparfaite, et par le prisme de l’analyse des motifs de flot d’information dans di↵érents
scénarios interactifs.

A.1 Motivation

Les situations nécessitant de la coopération entre plusieurs agents indépendants, qui peu-
vent être modélisées comme des systèmes distribués, apparraissent dans une grande variété
de contextes. Construire des systèmes de manière automatique de sorte à ce qu’ils soient
corrects dès l’étape de conception a toujours été une ambition de la science informatique.
Cette ambition suscite la volonté de mieux comprendre le rôle de l’information imparfaite
dans les problèmes de synthèse distribuée. En e↵et, réussir la coopération en dépit de
l’incertitude est un objectif connu pour être difficile à réaliser, et est même indécidable
en général [70]. Découvrir les causes intrinsèques de cette difficulté et trouver des classes

117

de systèmes interactifs pour lesquels les spécifications sont réalisables de manière certaine
nous donneraient des clés de compréhension sur de nombreux problèmes de conception, et
nous suggéreraient des pistes pour surmonter ces problèmes.

Considérer le calcul au sens large comme un processus interactif est une approche
fortement ancrée dans la tradition de l’informatique théorique: le concept fondamen-
tal d’alternance, introduit par Chandra, Stockmeyer et Kozen [20] au début des années
quatre-vingts, où les étpaes de calcul sont attribuées à des joueurs adverses cherchant à
atteindre ou éviter certains états finals, reposait sur les jeux déterminés à information par-
faite et produit nombre de résultats importants, notamment en théorie des automates. En
parallèle, Peterson and Reif [69] ont initié une étude du calcul via les jeux à information
imparfaite, impliquant des équipes de joueurs dans un cadre hautement expressif, mais
par ailleurs difficile à appréhender. Pour autant, cette approche révèle les jeux comme un
outil analytique central pour modéliser les scénarios interactifs, et comme un domaine su↵-
isament riche pour être intéressant en soi. Dans ce document, nous traitons les questions
(1) et (2) sous l’angle des motifs de flot d’information.

A.2 Information Imparfaite

Dans les systèmes distribués, l’information peut n’être accessible que de façon limitée pour
les agents, suivant la manière dont les agents sont connectés, le caractère imprévisible
de l’environnement, et de possibles pannes au niveau de l’implémentation. Les jeux à
information imparfaite modèlisent la vision partielle des agents sur le système entier.
Plusieurs raisons peuvent causer le statut d’information imparfaite dans un jeu, et nous
distinguons plus précisément deux principales sources d’incertitude:

Tout d’abord, l’incertitude peut émerger de la structure elle-même du système dis-
tribué. Dans notre modèle, cela est représenté par la structure de graphe sous-jacente au
jeu. Les états globaux du système correspondent aux positions sur le graphe, et comportent
des informations privées pour chaque joueur sous la forme d’observations. Les transitions
d’un état global à un autre sont elles représentées par des arcs dirigés entre les posi-
tions du graphe, et sont étiquetées par des profils d’actions. Des arcs sortant d’un même
état, étiquetés par le même profil d’action mais arrivant dans di↵érents états constituent
la façon de modéliser le non-déterminisme induit par l’influence de l’environnement (la
Nature) sur le système. Ces propriétés structurelles permettent la prise en compte de
l’incertitude causée par le comportement imprévisible de la Nature et le champ de vision
restreint des joueurs.

Deuxièmement, des pannes dues à la réalité de l’exécution du système peuvent aussi
apparâıtre et générer de l’incertitude. En pratique, plusieurs paramètres peuvent en e↵et
altérer le comportement planifié d’un système distribué. Les problèmes de communication
peuvent être, jusqu’à un certain point, modélisées dans le cadre formel des jeux. Incor-
porer dans le modèle une possible incertitude sur la réception des observations par les
joueurs est une façon de représenter les erreurs dans le processus de communication. En
revanche, le fait que ces erreurs arrivent lors de la phase d’exécution du système rendent
difficiles d’inclure cette possibilité directement dans la structure de graphe des jeux. Pour
cette raison, nous les modélisons au niveau du monitorat du jeu, c’est-à-dire la couche ab-
straite qui prend en charge le paramètre temporel et de la façon dont les joueurs reçoivent

118

e↵ectivement leurs observations au long d’une partie.

A.3 Motifs de Flot d’Information

L’information imparfaite dans les jeux permet de modéliser des systèmes distribués dans
des scénarios où les agents ne sont pas omniscients. Pour atteindre leur objectif commun,
les agents de tels systèmes doivent coopérer, et cela requiert le plus souvent partager ou
agréger de l’information, pour surmonter ce handicap de connaissance individuelle par-
tielle. La façon dont l’information voyage dans le système, c’est-à-dire la façon dont les
agents reçoivent de l’information de la part de l’environnement, ou la partage entre eux, est
critique. Analyser la forme du flot d’information nous permet d’en apprendre plus sur la
complexité de la synthèse de stratégies, de trouver des cas décidables pour la synthèse dis-
tribuée, et de diminuer la difficulté de synthétiser des stratégies gagnantes sous l’hypothèse
de perturbations réalistes pendant l’exécution du système. Par conséquent, en se concen-
trant sur des motifs identifiables de flot d’information, nous sommes capables d’exhiber
des classes de jeux représentatives de di↵érents aspects des phénomènes d’interaction et
des difficultés associées. Dans le développement de cette thèse, nous considérons le flot
d’information dans les jeux sous trois angles di↵érents:

Flot d’information bi-directionnel dans le cas le plus général, l’information peut être
acquise par n’importe quel joueur et partagée pour soutenir la coopération vers l’objectif
commun. De ce fait, l’information collectée individuellement par les joueurs impacte le
déroulement d’une partie. En réalité, la portée de cet impact est particulièrement impor-
tant: Il s’avère que l’incertitude au sujet de la connaissance des partenaires se propage
itérativement, dans le sens où, un joueur, en plus de ses propres observations, doit pren-
dre en compte les observations possibles de ses partenaires, ainsi que les spéculations de
ses partenaire sur sa connaissance, et ainsi de suite. Dans notre modèle, les observa-
tions privées des joueurs sont rattachées aux états du jeux, ou positions du graphe. Par
conséquent, la structure de graphe du jeu peut être vue comme un graphe de corrélation
pour les observations des joueurs. Itérer la relation décrite par ce graphe de corrélation
permet de mieux saisir la complexité de résoudre des jeux et d’exécuter des stratégies
gagnantes.

Flot d’information uni-directionnel Une autre approche est de considérer la façon
dont l’information est distribuée parmi les joueurs. Si, en général, la synthèse distribuée
est indécidable, elle devient décidable quand l’information voyage seulement dans une
direction, c’est-à-dire quand il existe un ordre parmi les joueurs, du plus informé au
moins informé. En e↵et, le fait que l’information d’un joueur détermine l’information
des joueurs plus bas dans la hiérarchie élimine le besoin de raisonner à propos de la
connaissance de ces joueurs, et par conséquent la propagation de l’incertitude. Dans
cette thèse, nous étudions trois motifs de flot d’information hiérarchique, qui assure la
décidabilité: l’information hiérarchique statique, pour laquelle la hiérarchie est fixée pour
la partie entière, l’information hiérarchique dynamique, pour laquelle la hiérarchie peut
changer au long d’une partie, et enfin l’information hiérarchique récurrente, pour laquelle
des phases de perturbations éphémères peuvent survenir.

119

Perturbations du flot d’information En pratique, même avec la conception de système
la plus minutieuse et prévoyante, des pannes de matériel ou de logiciel peuvent avoir lieu.
La tâche de concevoir des stratégies qui gèreraient de telles sortes d’information imparfaite
est ardue, en raison des nombreux types de perturbations qui peuvent survenir au niveau
de l’implémentation. Dans cette thèse, nous considérons des cas où le flot d’information
est perturbé par la défaillance du mécanisme de distribution des observations aux joueurs.
Assouplir l’hypothèse que le système est équippé avec une infrastructure de communi-
cation parfaite et que chaque observation est accessible instantanément pour les joueurs
est une façon de décrire l’information imparfaite apparaissant en réalité au niveau de la
modélisation. Plus précisément, nous étudions le scénario où les joueurs ne reçoivent pas
leur observations instantanément mais avec un délai fini. Il s’avère que la synthèse dis-
tribuée peut surmonter de telles perturbations, pour certaines classes de jeux pertinentes.

A.4 Jeux sur Graphes

Notre étude s’e↵ectue par le prisme des jeux à information imparfaite synchrones sur
graphes finis. Les jeux sur graphes sont une façon puissante de modéliser les systèmes
distribués, puisqu’ils capturent des propriétés clés des situations interactives. Nous nous
intéressons aux systèmes à états finis, aussi nous concentrons-nous sur les graphes finis.
Les agents d’un système distribué sont modélisés par les joueurs d’un jeu. Chaque joueur
a son ensemble fini d’actions et son ensemble fini d’observations. Le comportement de
l’environnement dans un système distribué est modélisé en partie comme un joueur par-
ticulier appelé Nature et ensuite par la façons dont les observations sont distribuées dans
la structure de graphe. Le graphe sous-jacent représente la structure de transition du
système distribué: les positions du graphe correspondent aux di↵érents états du système,
tandis que les arcs correspondent aux transitions entre les états. Chaque arc est étiqueté
par un profil d’actions, c’est-à-dire, une action par joueur, qui détermine (avec le choix de
la Nature) la prochaine position sur le graphe, c’est-à-dire le prochain état du jeu. Dans
notre modèle, nous supposons qu’il n’existe pas de cul-de-sac: à chaque état, chaque profil
d’action mène à un état successeur. La structure de graphe fini permet de modéliser des in-
teractions qui impliquent des choix non-déterministes de l’environnement et qui se déroule
sur une période de temps illimitée. Les exécutions d’un système distribuée sont modélisées
comme des séquences (éventuellement) infinies et alternantes d’états et de profils d’actions,
ou parties. Les spécifications sur le comportement du système sont exprimées comme des
conditions de gain sous forme d’ensemble !-réguliers de parties. Planifier les actions des
joueurs est e↵ectué en définissant des stratégies, c’est-à-dire des fonctions prescrivant une
action à prendre pour chaque préfixe fini de partie, ou historique. Les stratégies telles que
chaque partie qui les suis satisfait la condition de gain, peu importe les choix de la Nature,
sont appelées des stratégies gagnantes.

Nous avons souligné plus tôt ce que l’information imparfaite signifiait dans le contexte
des systèmes interactifs. Dans notre modèle, cela se traduit par la notion d’observations.
Chaque joueur a son propre alphabet fini d’observations, et chaque état du graphe de jeu
est étiqueté par un profil d’observations. Cet étiquetage donne naissance aux fonctions
d’observation, une pour chaque joueur. À l’arrivée sur un état, chaque joueur est supposé
recevoir sa composante du profil d’observations. Les fonctions d’observation peuvent ne

120

pas être injectives. Certains états peuvent en e↵et sembler similaires à un joueur, im-
pliquant une relation d’équivalence sur l’ensemble d’états du graphe, que nous appelons
la relation d’indistinguabilité. Comme nous supposons par ailleurs que les joueurs ont la
propriété de mémoire parfaite, la relation d’indistinguabilité s’étend naturellement aux
historiques et aux parties, et cela a↵ecte la conception des stratégies : En e↵et, il se peut
que plusieurs historiques soient observés pour un joueur de manière identiques, et puisque
les stratégies sont des fonctions implémentées par des machines déterministes, elle doivent
prescrire la même action après tous les historiques indistinguables pour être valides.

Un autre aspect significatif pour notre modèle est qu’il est synchrone : Cela signifie
que nous supposons que le système est équipé d’une horloge globale que chaque composant
du système peut consulter et à laquelle se fier pendant toute l’exécution du système. En
termes de jeux, cela correspond à l’hypothèse que chaque mouvement sur le graphe a lieu
après que les joueurs ont chacun et simultanément choisi une action, de sorte que les tran-
sitions respectent l’unité de temps du système global. En plus de cette horloge globale,
nous choisissons de travailler avec un modèle de jeu où les actions des joueurs sont simul-
tanées, dans le sens où chaque transition d’un état à l’autre est supposé être permis par un
profil d’actions complet, avec une action par joueur. Ces hypothèses forment une manière
compacte et opportune de représenter les caractéristiques des situations d’interaction sous
information imparfaite.

Le problème central de la synthèse distribuée pour les jeux à information imparfaire
est composé des deux facettes suivantes: La résolubilité est la question de savoir si, sur
un graphe fixé, il existe une stratégie gagnante jointe qui satisfasse une condition de gain
donnée. L’implémentation est la tâche de construire, en s’appuyant sur des automates
finis, une stratégie gagnante jointe, s’il en existe une.

A.5 Plan de la Thèse

Dans cette section, nous résumons les contributions principales de cette thèse.

A.5.1 Condition de consensus

Dans une première approche pour étudier les mécanismes d’interaction, nous explorons
les dépendences créées dans le flot d’information par les observations des joueurs. Pour
cela, nous restreignons notre modèle général de jeu à un cadre où deux joueurs doivent
coopérer contre la Nature, et ont à se mettre d’accord sur une unique décision oui/non
après avoir reçu une séquence finie d’observations, ou entrées, sélectionnées par la Nature
dans le graphe du jeu. La condition de gain considérée est une condition de consensus.
L’unique décision doit être prise par les joueurs à certains états finals désignés, chacun
d’entre eux étant associé avec un ensemble de décisions admissibles, et étant étiquetés
avec la même observation, de sorte que les joueurs ne sont pas toujours capables de les
distinguer les uns des autres. La décision qu’un joueur a à prendre à ces états finals
est donc non seulement dépendant de ce qu’il a observé comme entrée, mais aussi de ce
que son partenaire a observé comme entrée. Puisque la phase de réception des entrées
est passive et entièrement contrôlée par la Nature, aucune communication n’est possible
entre les joueurs durant la partie. De ce fait, les joueurs doivent “déduire” de leur propre

121

chef quelle information l’autre joueur a pour garantir une décision sécure, c’est-à-dire
une décision qui est à la fois admissible et sera aussi choisie par son partenaire. Dans
notre modèle, les observations privées des joueurs sont rattéachées aux états du jeu, ou
positions du graphe. Par conséquent, la structure de graphe du jeu peut être vue comme
un graphe de corrélation pour les observations des joueurs. Cette vision aide à isoler
le rôle de l’information imparfaite dans la difficulté à résoudre la synthèse distribuée :
l’incertitude d’un joueur à propos d’un état du jeu se propage sur l’information de l’autre
joueur, qui à son tour doit être prise en compte par le premier, etc. Pour construire des
stratégies gagnantes pour chaque joueur, la clôture transitive de l’union des deux relations
d’indistinguabilité des joueurs doit être considérée. Un deuxième aspect important de ces
jeux est que la décision oui/non à prendre au terme de la phase d’observation se résume en
réalité à accepter ou rejeter un mot fini : Nous appelons ces jeux consensus game acceptors
pour refléter ce fait. Une fois que nous voyons les consensus game acceptors comme
des objets pour reconnâıtre des ensembles de mots sur des alphabets finis, la connexion
avec les langages formels est naturelle et nous donnent les outils pour, tout d’abord,
prouver l’indécidabilité de la synthèse distribuée dans le cas général, et ensuite, fournir
une classification des consensus games acceptors en termes de complexité d’exécutions des
stratégies gagnantes, en montrant des correspondances avec di↵érentes classes de langages
formels.

La première contribution ici est de revisiter la preuve classique d’indécidabilité du
problème de synthèse distribuée en montrant une réduction du problème du vide pour
les langages contextuels. Cela éclaire la frontière de décidabilité des jeux à information
imparfaite en identifiant la coopération, dans sa forme la plus épurée de consensus, comme
un critère crucial suffisant à causer l’indécidabilité, puisque les autres facteurs, comme la
communication entre les joueurs et la multiplicité (voire l’infinité) de décisions à prendre
au cours d’une partie, ont été éliminés du modèle. La seconde contribution est la classifi-
cation en termes de langages formels. En utilisant les outils et résultats de la théorie des
langages formels, nous montrons comment la forme du graphe de corrélation d’un con-
sensus game acceptor détermine la complexité d’exécuter une stratégie gagnante pour les
joueurs. avec l’aide de résultats de pavages de dominos, nous établissons la correspondance
entre les consensus game acceptors et les langages contextuels, et par conséquent avec
les automates linéairement bornés. Nous raffinons ensuite la classification en exploitant
des caractérisations logiques des langages formels et des résultats sur les transducteurs,
et obtenons des correspondances avec les langages algébriques et certaines sous-classes,
comme les langages algébriques déterministes ou les langages de Dyck. Cette approche
via les langages formels représente un écart de l’habituelle concentration sur les stratégies
gagnantes nécessitant uniquement une mémoire finie, puisque nous obtenons des stratégies
qui peuvent requérir la puissance d’automates à piles ou linéairement bornés pour être
exécutées.

Ces contributions sont basées sur les résultats publiés avec Dietmar Berwanger à la
conférence DLT 2015 [8], et le rapport technique correspondant [10].

122

A.5.2 Motifs hiérarchiques

Après avoir considéré attentivement les conséquences de l’information imparfaite sur le flot
d’information dans les jeux, nous nous concentrons ensuite sur les motifs hiérarchiques de
flot d’information. Les systèmes hiérarchiques, c’est-à-dire les systèmes où l’information
est distribuée parmi les agents de manière ordonnée, établissant ainsi une hiérarchie de
l’agent le plus informé à l’agent le moins informé, représentent un cas fondamental pour
lequel le problème de synthèse distribuée devient décidable. Le fait que chaque agent ait
accès aux observations reçues par les agents plus bas dans la hiérarchie rend l’analyse
du système plus simple : intuitivement, il est plus facile pour un agent de coopérer avec
des agents qui peuvent être simulés par sa propre information. Déjà en 1979, Peterson
et Reif [69] montraient que pour des jeux dans ce cas, il est décicable — certes, avec
une complexité non-élémentaire — si des stratégies gagnantes distribuées existent et si
oui, que des stratégies gagnantes à mémoire finie peuvent être e↵ectivement synthétisées.
Plus tard, ce résultat sera étendu par Pnueli et Rosner [70] au modèle des systèmes dis-
tribués sur des archietectures linéaires fixes où l’information peut voyager dans une seule
direction. Kupferman et Vardi, dans [53], développent une approche fondamentale de
théorie des automates qui étend encore le résultat de décidabilité de spécifications en temps
linéaire aux spécifications en temps arborescent. Enfin, Finkbeiner et Schewe montrent
dans [36] l’existence d’un critère e↵ectif sur les architectures de communication qui garan-
tit la décidabilité du problème de synthèse distribuée : l’absence de fourche d’information,
qui implique un ordre hiérarchique dans lequel les processus ont accèse aux observations
fournies par l’environnement.

Dans cette thèse, nous allons plus loin que le motif d’observation hiérarchique. Nous
introduisons des relaxations de ce strict principe de hiérarchie qui assurent tout de même
la décidabilité et qui sont reconnaissables avec une complexité relativement basse. Plus
précisément, nous passons d’abord de l’observation hiérarchique à l’information hiérarchique
en supposant que les jouers ont la propriété de mémoire parfaite. Dans ce cas, le résultat
de décidabilité est une conséquence directe du résultat de [70], [53] et [36]. Pour prou-
ver ceci, nous introduisons l’outil de signal à états finis et expliquons comment déduire
est aussi utile qu’observer dans les problèmes de synthèse distribuée. Deuxièmement,
on assouplit le motif d’information hiérarchique (statique) en considérant l’information
hiérarchique dynamique, c’est-à-dire quand l’ordre d’information entre les joueurs change
au cours d’une partie. Nous montrons comment réduire ce cas au cas statiuqe en util-
isant des signaux à états finis pour construire un jeu d’ombres équivalent qui bénéficie
d’information hiérarchique statique. Enfin, nous introduisons l’information hiérarchique
récurrente, qui correspond aux cas où des phases éphémères de perturbation du motif
hiérarchique peuvent survenir. Nous pouvons montrer que pour les conditions de gain
observables, le problème de synthèse distribuée est décidable pour les jeux à informa-
tion hiérarchique récurrente, en nous appuyant sur la construction de suivi d’information
de [5]. De plus, cela souligne le fait que le modèle de jeu est suffisamment flexible pour
modéliser des schémas d’information et de communication qui ne peuvent pas être directe-
ment capturés par les architectures de communication, comme nous le suggérons dans la
section 4.5.

Ces contributions sont basées sur les résultats publiés avec Dietmar Berwanger et Anup

123

B. Mathew à la conférence ATVA 2015 [6], et sur le rapport technique correspondant [7].

A.5.3 Monitorat avec délais

Enfin, nous déplaçons notre regard de l’incertitude causée par la structure elle-même des
systèmes distribués pour explorer les conséquences d’une source d’incertitude apparaissant
en pratique : les délais. Nous considérons le cas où le monitorat d’un jeu, c’est-à-dire,
la couche habituelllement abstraite d’implémentation qui s’occupe de faire e↵ectivement
recevoir aux joueurs l’information au cours de l’exécution, peut délivrer les signaux avec
un délai fini et borné. Nous étudions l’impact de ce monitorat avec délais d’un jeu sur le
problème de synthèse distribuée : Plus précisément, nous nous demandons si les délais sont
fatals pour l’existence de stratégies gagnantes pour des jeux qui sont résolubles dans le cas
d’un monitorat instantané (sans délai). Le cas du monitorat avec délais a été brillamment
traité dans le cadre de la théorie des jeux économique, et nous nous sommes directement
inspirés du travail de Fudenberg, Ishii et Kominers dans [38], qui présente un résultat
de transfert qui permet de construire des stratégies préservant les équilibres pré-existant
dans la version d’un jeu avec délais à partir de stratégies gagnantes du jeu sans délai. Ce
résultat de transfert repose sur la technique de réponse retardée, dont l’idée principale est
pour les joueurs d’attendre le délai maximal avant de réagir à un signal. Ce faisant, il
est garanti que tous les joueurs auront reçu l’information concernant une certaine étape
du jeu, et construire les stratégies à réponse retardée revient à recombiner dans un ordre
précis des di↵érents fils d’exécution du jeu à monitorat instantané. Leur travail s’inscrit
en revanche dans le modèle des jeux répétés, qui correspond au cas particulier de jeux avec
un seul état dans notre terminologie.

Dans cette thèse, nous adaptons leur technique aux jeux à états multiples. Pour ce
faire, nous introduisons un nouveau modèle de jeux synchrones à information imparfaite,
où les signaux d’observations prtant l’information sur les actions des autres joueurs ne
sont plus rattachés aux états, et où les délais sont modélisés. Nous présentons ensuite la
procédure Frankenstein; qui construit de manière e↵ective des stratégies pour les versions
à monitorat avec délais de jeux résolubles dans le cas du monitorat instantané, en se
reposant sur une réduction du jeu à monitorat avec délais à une collection d’instances du
jeu à monitorat instantané. Nous identifions par ailleurs la classe de jeux pour laquelle ce
tranfert est applicable : les jeux à conditions de gain shift-invariant et submixing.

Ces résultats ont été publiés avec Dietmar Berwanger à la conférence FSTTCS 2015 [9].

A.6 Organisation de la Thèse

Dans le Chapitre 2, nous introduisons les concepts et résultats de base nécessaires pour
procéder au coeur de notre travail. Pour commencer, nous rappelons brièvement comment
la synthèse, puis plus tard la synthèse distribuée, sont devenues des problèmes proéminent
en informatique théorique. Ensuite, nous détaillons le modèle de jeux synchrones à infor-
mation imparfaite sur graphes finis et ses liens avec d’autres modèles de jeux classiques
dans la littérature. Nous explicitons notre modèles en présentant les di↵érentes notions sur
un exemple simple. Enfin, nous énonçons les résultats sur les jeux sur graphes nécessaires
à l’obtention des résultats présentés dans le reste du manuscrit.

124

Dans le Chapitre 3, nous restreignons notre modèle général pour le simplifier le plus
possible. Nous nous concentrons sur ce que nous appelons des consensus game acceptors
: des jeux à information imparfaite sur graphe finis pour deux joueurs contre la Nature,
où les joueurs ont une seule décision à prendre par partie pour la gagner ou la perdre. Ils
doivent choisir entre accepter ou rejeter des séquences d’observations finies. Pour gagner
une partie, ils doivent choisir en fonction de la structure du graphe (certains états per-
mettent les deux décisions, alors que d’autres en permettent seulement une des deux) et
en consensus, c’est-à-dire en se mettant d’accord sur la même décision. Dans ce chapitre,
nous explorons les conséquences du flot d’information depuis et vers un joueur, en met-
tant à jour la façon dont les relations d’indistinguabilité des joueurs sont interconnectées.
Nous présentons une preuve alternative d’indécidabilité de la synthèse distribuée et une
classification des consensus game acceptors en termes de langages formels.

Dans le Chapitre 4, après avoir considéré le flot d’information du point de vue d’un
joueur, nous nous intéressons à un contexte plus classique, c’est-à-dire un modèle où les
actions ne sont pas limitées à un certain nombre d’états finals. La perspective ici est
plus globale, puisque nous nous concentrons sur la façon dont l’information est distribuée
parmi les joueurs. Nous explorons la synthèse de stratégies distribuées dans les cas où
l’information est ordonnée, dans le sens où il existe une hiérarchie parmi les joueurs,
du plus informé au moins informé, sans ensembles d’information incomparables. Nous
montrons que ces cas implique la décidabilité du problème de synthèse distribuée, ainsi
que l’existence de solutions implémentables avec mémoire finie, et montrons enfin des
procédures é↵ectives pour détecter les variantes du motif d’information hiérarchique dans
un jeu.

Dans le Chapitre 5, nous considérons une perturbation du flot d’information pouvant
survenir en pratique, puisque nous nous intéressons au scenario où les signaux sont délivrés
aux joueurs avec un délai fini. Pour ce faire, nous introduisons une modification de notre
modèle de jeu : nous détachons les observations des états du jeu pour les attacher aux
transitions, et nous justifions ce changement en début de chapitre. De plus, nous mon-
trons que les isssues d’un jeu dans son instantiation avec monitorat instantané peuvent être
préservées et garantie dans sa variante à monitorat avec délais, grâce à une procédure con-
struisant des solutions en recombinant et réorganisant prudemment les stratégies conçues
pour être gagnantes dans le cas du monitorat instantané.

125

Titre : Motifs de Flot d’Information dans les Jeux à Information Imparfaite

Mots clefs : Jeux, information imparfaite, synthèse distribuée, flot d’information

Résumé : De plus en plus de tâches informatiques sont

effectuées par des systèmes interactifs qui impliquent

plusieurs agents distribués, qui n’ont qu’une connais-

sance locale de l’état global du système, et leurs propres

ressources de calcul. Notre travail explore des scénarios

interactifs par le prisme des jeux synchrones sur graphes

finis et à information imparfaite.

Premièrement, on s’intéresse à la question de la dif-

ficulté intrinsèque des phénomènes interactifs, en étu-

diant une variante de notre modèle général de jeux, les

consensus game acceptors. On montre que, sous hypo-

thèse d’information imparfaite, la condition de consen-

sus est suffisante pour causer l’indécidabilité. En uti-

lisant les outils de la théorie des langages formels, on

donne une classification de la complexité d’exécuter des

stratégies gagnantes.

Ensuite, on se concentre sur des cas décidables et sur

la façon dont l’information est rendue accessible aux

joueurs. On identifie un motif de flot d’information

parmi les joueurs qui assure la décidabilité: l’informa-

tion hiérarchique. Un jeu est considéré à information

hiérarchique quand l’information à propos de l’histo-

rique actuel est accessible aux joueurs de manière or-

donnée, de telle sorte qu’il n’y a pas deux joueurs ayant

de l’information incomparable. On présente trois va-

riantes de l’information hiérarchique: L’information hié-

rarchique statique, dynamique, et enfin récurrente qui

élargissent le paysage des architectures décidables.

Enfin, on considère une source particulière d’infor-

mation imparfaite dans les jeux, qui peut apparaître

en pratique: les délais. Développant la technique de

delayed-response de la littérature de théorie des jeux

économique, on élabore une procédure qui prend en

charge la structure de système de transition à états mul-

tiples de notre modèle de jeux, et, en recombinant pru-

demment des stratégies gagnantes dans les instances de

jeu avec monitorat instantané, construit des solutions

au problème de la synthèse distribuée différée qui pré-

servent les équilibres.

Title : Information-Flow Patterns in Games with Imperfect Information

Keywords : Games, imperfect information, distributed synthesis, information flow

Abstract : More and more computing tasks are perfor-

med by interactive systems that involve several distribu-

ted agents which have local knowledge about the global

state of the system and their own computing resources.

Our work investigates interactive scenarios through the

prism of synchronous games on finite graphs with im-

perfect information.

First, we address the question why interaction is diffi-

cult to handle, by studying the consensus game acceptor

variant of the general game model. We show that, un-

der imperfect information, the consensus condition is

enough to cause undecidability. By using tools of for-

mal language theory, we also give a classification of the

complexity of executing joint winning strategies.

Second, we focus on decidable cases and the way infor-

mation is made accessible to the players. We identify a

pattern of information flow among players that leads to

decidability: hierarchical information. A game has hie-

rarchical information when the information about the

current history is accessible to the players in an orderly

fashion, so that no two players have incomparable infor-

mation. We present three variants of hierarchical infor-

mation: static, dynamic, and finally recurring hierarchi-

cal information that enlarge the landscape of decidable

architectures.

Finally, we consider a particular source of imperfect in-

formation in games, that can arise in practice: delays.

Extending the delayed-response technique from the eco-

nomical game theory literature, we design a procedure

that handles the transition state-structure of our game

model, and constructs, by carefully recombining win-

ning strategies from instant monitoring game instances,

solutions to the delayed distributed synthesis problem

that preserve the equilibrium outcomes.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

1

	Résumé
	Summary
	Acknowledgements
	Introduction
	Preliminaries
	Consensus Condition
	Information Hierarchies
	Delayed Signals
	Bibliography
	Résumé (long) en français

