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Introduction

The Standard Model (SM) of particle physics is built on top of basic requirements such as Lorentz
covariance and renormalizability, and offers a common framework for the description of all known
microscopic interactions in terms of local, gauged symmetries. This theory was the fruit of the
work of many generations of talented physicists, and is certainly one of the most impressive
achievements of sciences. For example, one has tracked a long road to achieve the formulation of
the theory of electroweak interactions, unifying Electromagnetism and Weak processes. Indeed,
first the weak interactions were introduced as a new fundamental interaction in the 30’s by
Fermi [1], formulated at that time as a contact interaction. Later, exactly 60 years ago, parity
violation in weak decays was suggested [2], triggering doubts about charge-conjugation and time
reversion symmetries [3]. The observation of parity violation [4–6] in the following year confirmed
such a hypothesis and was of utmost importance for the understanding of the weak interactions
(see [7,8] for historical details). Following the discovery of parity violation, they were conceived
as a V −A = γµ − γµγ5 (i.e. a coupling to left-handed fields) interaction [9,10], suggesting that
the exchange of vector bosons was the underlying reason for the weak force.

The short-distance character of the weak interactions, related to the exchange of heavy gauge
bosons, was elegantly interpreted as the low-energy limit of a more fundamental and symmetric
theory, the Electroweak interaction of Glashow-Salam-Weinberg. The Electroweak symmetry is
spontaneously broken by the vacuum expectation value of a scalar field φ, which also introduces
the Higgs boson of the SM. At the same time that this mechanism, named Brout-Englert-Higgs
(BEH) [11], explains the short-distance nature of weak interactions by giving masses to the W±

and Z0 bosons, the particles responsible for the weak forces, it also offers an origin for the masses
of the quarks and charged leptons, through their interaction with the same scalar field φ.

Together with the strong interactions, this overall picture has been verified in an accurate
way by measurements coming from different sectors, two important examples being EW Precision
Observables (EWPO) [12–14] and Flavour Observables [15–17], which test very different aspects
of the theory, including Z boson couplings and the CP violation encoded in the CKM matrix.
More recently, the historical discovery of the Higgs boson [18, 19] has been made, the only
remaining block of the SM not directly observed until then.

It is interesting to note that the SM gives hints towards the possibility of having something
more fundamental beyond itself. Indeed, the hierarchical structure of the CKM matrix, together
with the strong hierarchy of the masses of the quarks and leptons, claim for a deeper understand-
ing and questioning. Moreover, the values of the gauge couplings gs, gL, gY are roughly similar:
following a successful tradition of unifying interactions (gravity effects on the ground and celes-
tial movement, electric and magnetic forces, electromagnetic and weak interactions, etc.), one
may be tempted to do the same for the known quantum fundamental interactions.

On top of that, though very successful in explaining a wide variety of particle physics phe-
nomena, the SM leaves unexplained some properties of nature. Here we will focus on the different
behaviours of left- and right-handed chiralities of the known fermions, or in other words the vi-
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olation of parity symmetry. A possible and somewhat natural avenue to explain this feature is
to embed the SM into a more symmetric model, which treats the chiralities on equal footing.
Looking for new symmetries (e.g. supersymmetry, gauge unification, etc.) or to reasons why
we do not see them (e.g. explaining lepton flavour violation in neutrino oscillations, or why the
Yukawa matrices in the SM break the symmetries between different generations in the way they
do, etc.) can improve crucially our understanding of fundamental phenomena, and indeed it has
proven to be the case over the past, the SM itself being an example.

The class of models restoring parity, the Left-Right (LR) Models, has been first conceived in
the seventies [20–23], and since then it is at the origin of fruitful investigations. This is certainly
due to the flexibility it has concerning its specific realization, a property exploited for addressing
a wide variety of phenomenological problems, including the smallness of neutrino masses [24] and
strong CP violation [25, 26]. At the same time, the LR Model may result from Grand Unified
gauge groups [27], as part of their spontaneous breaking pattern. From these perspectives then,
investigating the violation of parity symmetry may be a window for dealing with other questions
in particle physics.

The first point concerning their formulation is that the LR Models introduce a new weak
interaction which couples preferentially to right-handed fields, analogously to the situation found
in the SM for left-handed currents. This is encoded in the gauge group

SU(3)c × SU(2)L × SU(2)R × U(1)B−L ,

where B − L states for baryonic minus leptonic number. At an energy scale beyond the EW
symmetry breaking, LR symmetry is spontaneously broken giving origin to the SM framework
and to parity violating phenomena. Following the spontaneous breaking of the LR gauge group,

the spectrum of gauge bosons includes heavy W ′± and Z ′0 bosons, which are associated to a
rich phenomenology: for instance, the W ′± couples to right-handed fields with a strength in
the quark sector given by a CKM-like mixing matrix, thus introducing the mixing of different
generations and new sources of CP violation beyond the one of the CKM matrix. Moreover,

the Z ′0 and the W ′± mix respectively with the Z0 and the W± bosons thus changing the way
in which the known weak gauge bosons couple to fermions, a situation that can be tested by

EWPO. Note also that, more recently, the potential for observing the LR particles W ′± and Z ′0

in high-energy colliders has triggered new activities in the domain, e.g. [28].
The specific way in which the spontaneous breaking of the LR gauge group happens depends

on the scalar content of the model. It is usual to consider triplet representations since they give
rise to a see-saw mechanism for the light neutrinos. We would like here to revisit a simpler
realization of the LR Models containing doublets instead of triplets, which is less constrained
from the point of view of the spontaneous breaking pattern of the LR symmetry. Indeed, the way

the masses of the known gauge bosons W,Z are related, satisfying MW ≈ MZ · gL/
√
g2

Y + g2
L,

constrains the vacuum expectation value of one of the triplet representations, left unconstrained
in the case of doublet representations. This explains our choice for the title (“Phenomenology
of Left-Right Models in the quark sector”): we focus here on the more fundamental aspects of
LR Models, namely the pattern of its Spontaneous Symmetry Breaking and the properties of its
minimal scalar sector, while the question of the smallness of the neutrino masses may require
further additional elements to be integrated on top of the doublet scenario under investigation
here.

We consider the study of this doublet scenario based on the phenomenology of the new gauge
bosons and the new scalar sector. The latter includes new neutral scalars that have Flavour
Changing Neutral Couplings (FCNC) at tree level, which are strongly suppressed in the SM,
where they first arrive at the one-loop order. FCNCs typically provide extremely powerful
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constraints on New Physics models, and therefore deserve close attention. They provide new
contributions to meson-mixing observables, which have been intensively studied in the context
of LR Models [28–37], and point towards lower bounds for the W ′ mass of a few TeV and the
much constraining lower bound of O(10) TeV or even higher for the masses of the extended scalar
sector.

When computing the LR contributions to meson-mixing processes, trustful predictions require
the knowledge of QCD effects. If in one hand long-distance QCD effects have been addressed by
several groups [38–42] and one expects their accuracy to increase in the near future, on the other
one would like to improve the accuracy in the calculation of the short-distance QCD effects. In
order to achieve such a task, we have therefore considered their calculation at the NLO, and
compared the methods used previously in the literature [30,43–49].

By studying the constraints LR Models are submitted to, we aim at having a clearer picture
of their structure, namely energy scales and couplings. To this effect, we perform a combined
analysis of EWPO, direct searches for the new gauge bosons and meson-mixing observables.
Their combination is provided by CKMfitter, a powerful statistical analysis framework which
has proven for instance very useful in the extraction of the Wolfenstein parameters in the context
of the SM [16,50].

Shifting to a different issue, the QCD effects mentioned above as well as other theoretical
parameters are subjected to systematic uncertainties, in many cases the main source of uncer-
tainty concerning their true values. The combination of different classes of observables should
in principle take into account the particularity of theoretical uncertainties, which are different
in nature compared to random statistical errors. In fact, their very interpretation is subject to
some ambiguity, since they do not fit straightforwardly in the usual statistical framework. We
will then discuss possible models of theoretical errors, an issue particularly important for flavour
physics in which this class of uncertainties are usually large.

In Chapter 1 we are going to introduce the basic elements of the SM, and test its basic
features based on two classes of observables, EWPO and flavour observables in the quark sector.
While the first test aspects of the SM such as the EW Symmetry Breaking, the second includes
phenomena of CP violation, which in the SM come from a unique complex phase from the CKM
matrix. Then in Chapter 2 we are going to introduce the LR Model, discussing various aspects
of its gauge, scalar, quark a leptonic sectors. In Chapter 3 we consider EWPO in the context of
the LR Model as a first test of its viability, and for further constraining the LR Model structure
we also consider bounds on the mass of the W ′ coming from its direct search. Then we move to
a second class of observables, consisting of meson-mixing observables. In order to constrain and
test the LR Model with accuracy we consider addressing one fundamental element necessary for
phenomenological analyses which are the short-distance QCD corrections. The basic elements
necessary for the computation are given in Chapter 4, while the computation in the LR Model is
left for Chapter 5. We combine the set of the previous observables, namely EWPO, bounds from
direct searches for the LR spectrum and meson-mixing observables in an exploratory study in
Chapter 6. Then in Chapter 7 we compare different models of theoretical uncertainties for dealing
with flavour observables. This last chapter corresponds to a prospective study of the CKMfitter

Collaboration, for the further improvement of the extraction of the parameters characterizing the
CKM matrix from global fits. Finally, some points are complemented in a series of Appendices.

7



Chapter 1

The Standard Model

At the present state of accuracy, the SM (Standard Model) theory of particle physics succeeds
in the description of a wide variety of observations, such as the weak interactions, which lead to
generation mixing in the quark sector. These interactions are formulated as chiral phenomena
where for instance the W boson, whose exchange is responsible for the generation mixing, couples
exclusively to left-handed fermions. The coupling strengths of the W boson to quarks are the
elements of a unitary matrix called Cabibbo-Kobayashi-Maskawa (CKM) matrix [51, 52], intro-
duced in the diagonalization of the quark mass matrices issued from Yukawa-type interactions.
These same couplings introduce the only (sizeable) source of CP violation in the SM.

The goal of the present chapter is to render explicit the success of the SM in the description
of flavour processes in the quark sector. We are going to compare the SM predictions with the
most solid and accurate flavour observables, which will lead us to the extraction of the strengths
of the W couplings.

Since quarks are confined into hadronic states and weak interactions are formulated in terms
of quark states, one cannot “decouple” weak interactions from QCD effects (particularly those
non-perturbative in αs). Therefore, in order to test the weak sector of the SM, a good knowledge
of the strong dynamics of the theory, ubiquitous in quark processes, is mandatory. Moreover, to
match the experimental precision, accurate predictions must be made, requiring one to compute
perturbative QCD effects in αs (apart from other corrections such as QED radiative effects).
We will thus pay some attention to parameters originating from QCD, both from its short-
(perturbative) and long-range (non-perturbative) dynamics.

It should be kept in mind that the extraction of SM parameters is meaningful only if the
formulation of the SM as a whole, described briefly in the next section, is adapted to correctly
model nature. After reviewing the SM and considering EWPO, we are going to briefly discuss
the inputs and the statistical framework we are going to employ in order to draw a picture of
the SM prediction of CP−violating processes.

1.1 Introduction to the SM

In what follows, we are going to gradually introduce the necessary elements to build the SM. We
do not intend to be comprehensive or self-contained, and therefore we are going to jump many
steps in its formulation (they can be found in detail in e.g. [53–55]).
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1.1.1 Gauge symmetries

We start with the gauge symmetries of the SM

SU(3)c × SU(2)L × U(1)Y , (1.1)

where the conserved charge of the first symmetry is color, the second is weak isospin and the
third is hypercharge, and each group has a characteristic coupling strength: gs, gL and gY denote
respectively the gauge couplings of the three groups SU(3)c, SU(2)L and U(1)Y .

The generators of the symmetry groups SU(3)c and SU(2)L (Y is an operator proportional
to the identity) are Hermitian operators obeying to the commutation rules

[T s
a , T

s
b ] = ifabc

s T s
c and [TL

a , T
L
b ] = ifabc

L TL
c , (1.2)

respectively. Above, fabc
s and fabc

L are the structure constants of the groups SU(3)c and SU(2)L

(in the latter case we have fabc
L = ǫabc, ǫ being the antisymmetric symbol – more generally, fabc

is antisymmetric and proportional to tr{[Ta, Tb]Tc}).
To each of these symmetries it is associated a distinct vector field Xµ = Aµ,Wµ or Bµ (all

massless at this stage) satisfying the gauge transformations

Xµ → X ′
µ = UXµU

−1 − 1

ig
U∂µU

−1 , U = exp{iχ(x)} , (1.3)

where g = gs, gL or gY , χ(x) is called gauge function, and Xµ ≡ XaµTa, χ ≡ χaTa. Under the
gauge transformation, Gµν

a , Fµν
a and Fµν

Y , defined as

Gµν
a = ∂µAaν − ∂νAaµ + gsf

abc
s AbµAcν , (1.4)

Fµν
a = ∂µW aν − ∂νW aµ + gLf

abc
L W bµW cν , (1.5)

Fµν
Y = ∂µBν − ∂νBµ , (1.6)

transform as Fµν → UFµνU−1. Therefore, the following Yang-Mills Lagrangian

Lgauge = −1

4
Gµν

a Gaµν − 1

4
Fµν

a Faµν − 1

4
Fµν

Y FY µν , (1.7)

where a runs over the total number of generators, is invariant under the gauge transformations.
Apart from the terms in Lgauge, in full generality when building the SM we should consider

a term like

1

2
ǫµναβG

µν
a Gαβ

a , (1.8)

where ǫµναβ is the anti-symmetric tensor. This is a P− and T −violating term, where P states for
parity transformation, (t,−→r ) → (t,−−→r ), and T for time reversion, (t,−→r ) → (−t,−→r ). Despite
being an important issue in the SM (and its extensions), we are not going to discuss it in detail
(see Ref. [54] for an introduction into this problem).

1.1.2 Matter fields

The kinetic term for a spinor field f is given by1

1The irreducible representations of the Lorentz group are Weyl spinors, which are complex two-component
objects of definite chiralities (right- or left-handed). A Dirac spinor f is built out of two Weyl spinors uR,L,
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L(free)
matter = f̄ iγµ∂µf , f̄ = f †γ0 , (1.10)

where we assume for the time being a massless field f , and γµ are 4 × 4 matrices satisfying the
Dirac algebra

{γµ, γν} = 2gµν14×4 . (1.11)

The matter content of the Standard Model is made of three copies or generations of the
following fields (all three equivalents at this stage):

left-handed quarks: QL =

(
uL

dL

)
= (3,2, 1/3) ,

right-handed quarks: uR = (3,1, 4/3) , dR = (3,1,−2/3) ,

left-handed leptons: LL =

(
νL

ℓL

)
= (1,2,−1) ,

right-handed leptons: ℓR = (1,1,−2) ,

where the quantum numbers refer to the gauge group in Eq. (1.1), and Y = 2(Q−TL
3 ) is chosen

for left and right-handed chiralities such that up-type quarks u have electric charge Q = +2/3
and down-type quarks d have electric charge Q = −1/3, while we have neutral leptons ν with no
electric charge and charged leptons ℓ with electric charge Q = −1. Now it should be clear the
subscript “L” in the SU(2)L gauge group: the right- and left-handed fields are charged differently
under this symmetry, the former being singlets and the latter being doublets.

When considering interactions with the gauge sector we substitute ∂ → D, where the covari-
ant derivative D includes the gauge transformations of the fermionic fields:

Dµ = ∂µ − i(gsA
aµT s

a + gLW
aµTL

a + gY B
µY/2) , (1.12)

where T s
a and TL

a are the generators of the symmetry groups SU(3)c and SU(2)L. The free

Lagrangian L(free)
matter is then replaced by

Lmatter = f̄ iγµDµf . (1.13)

The full Lagrangian is now Lgauge + Lmatter and it leads to parity and charge-conjugation vio-
lation (i.e. the discrete symmetry relating a particle and its anti-particle), a consequence of the
gauging of V −A.

Note that the mass term −mf̄f = −m(fRfL +h.c.) is not allowed by symmetry reasons, since
it cannot be derived from the matter content (right-handed singlets and left-handed doublets)
of the SM. At low energies, where the local symmetries SU(2)L × U(1)Y are (spontaneously)
broken, a mass term is compatible with the remaining symmetry, which is the electromagnetism.
We will come back to the question of the masses of the fermions later on.

f =

(
uR

uL

)
, where uR,L have definite parity transformations

P : uR,L → uL,R . (1.9)

A Weyl spinor is then a Dirac spinor that is an eigenstate of γ5: γ5f = ±f ⇔ γ5f
c = ∓fc, where fc is defined

so that fc = CAT f†T
– A and C are matrices satisfying Aγµ = γ†

µA and γµC = −CγT
µ (for the usual Dirac

representations, A = γ0). By definition, a Majorana spinor is a Dirac spinor such that fc = f , up to an arbitrary
phase.
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1.1.3 EW symmetry breaking

A further piece of the Lagrangian, necessary to implement symmetry breaking in the SM, includes
a complex scalar field φ in the following way

L(free)
scalar = (∂µφ)(∂µφ)† − V (φ) , (1.14)

where the first term is the kinetic energy density of φ, and the second its self-interaction

V (φ) = −µ2φ†φ+
λ

2
(φ†φ)2 . (1.15)

The scalar field φ has the following quantum numbers

φ = (1,2, 1) , (1.16)

i.e. a colourless weak isodoublet

φ =

(
ϕ+

ϕ0

)
, (1.17)

where the superscripts +, 0 refer to the values of the operator TL
3 + Y/2, which remains an

unbroken symmetry at low energies, identified with the electromagnetism.
If µ2 from Eq. (1.15) is positive, the field φ acquires a vacuum expectation value (VEV) given

by

〈φ〉 =

(
0

(µ2/λ)1/2

)
, (1.18)

which does not introduce a source of CP violation in the SM: though one could choose to have a
complex VEV, its phase can be eliminated by a non-physical field redefinition φ → eiαφ, i.e. by
a global phase shifting. From the expansion of φ around its VEV

φ = 〈φ〉 +




ϕ+

(H0 + iχ0)√
2


 , (1.19)

one has

V = −µ4

2λ
+ µ2(H0)2 + . . . , (1.20)

where the ellipsis contains cubic and quartic interactions. The first term is related to the vacuum
energy density, while the second states that there is a massive scalar field of mass

√
2µ, which

is the SM Higgs particle. The full spectrum contains still massless particles, as attested by the
remaining degrees of freedom χ0 and ϕ±, which are the (would-be) Goldstone bosons [56].

Interactions between the scalar φ and the gauge sector are implemented through the substi-

tution ∂ → D, which follows by charging φ under Eq. (1.1), and requiring L(free)
scalar → Lscalar to

be invariant under the gauge transformations of φ:

Lscalar = (Dµφ)(Dµφ)† − V (φ) . (1.21)

Eq. (1.21) implies one of the major achievements of particle physics: through the interplay
of the two sectors, the gauge bosons acquire masses at low energies, thus explaining why the
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weak interactions have a short range (in other words, the corresponding forces are described by
a Yukawa potential). Let us now see how it happens, a mechanism called Brout-Englert-Higgs
(BEH) [11]. By expanding (Dµφ)(Dµφ)† around the vacuum expectation value of φ, we have the
mass terms

M2
WW−W+ +

1

2
M2

ZZ
2 , MW =

gLv

2
, MZ =

MW

cθ
, (1.22)

where v =
√

2(µ2/λ)1/2 and the fields W±, Z are

W± =
W 1 ∓W 2

√
2

,

(
A

Z

)
=

(
cθ sθ

−sθ cθ

)(
B

W 3

)
, (1.23)

and

e = (g−2
L + g−2

Y )−1/2 , sθ = sin θ = e/gL , cθ = cos θ = e/gY . (1.24)

The mass terms above are not compatible with the electroweak gauge symmetries stated in the
previous section: while there still remains a massless field A, the electromagnetic vector field,
the remaining symmetries are said to be spontaneously broken, due to the VEV of φ. Note
that out of A we have two physical degrees of freedom, corresponding to the possible transverse
polarizations, while the massive fields W± and Z have extra degrees of freedom corresponding
to the Goldstone bosons discussed after Eq. (1.20), which are ϕ± and χ0, respectively.

It is an amazing fact that the same phenomenon we are discussing, leading to the sponta-
neous breaking of local (gauge) symmetries, also implies a mechanism for mass generation in the
fermionic sector through (primes are used previous to going to the eigenmass basis)

LY ukawa = −(Q′
LY φd

′
R +Q′

LỸ φ̃u
′
R + L′

LY
leptφℓ′

R) + h.c. , fL = f̄PR ,

φ̃ = iτ2φ
†T
, τ2 =

(
0 −i
i 0

)
, (1.25)

where Y, Ỹ , Y lept are 3 × 3 matrices over generation indices, called Yukawa matrices. Plugging
the vacuum expectation value of the Higgs field, we obtain the following mass term

LY ukawa ∋ −(d′
LMdd

′
R + u′

LMuu
′
R + ℓ′

LMℓℓ
′
R) + h.c. , (1.26)

where Md =
v√
2
Y , Mu =

v√
2
Ỹ and Mℓ =

v√
2
Y lept. The Yukawa matrices (not necessarily

Hermitian) are diagonalized by the bi-unitary transformations Uu,d
L,R

u′
R = Uu

RuR , u′
L = Uu

LuL , (1.27)

d′
R = Ud

RdR , d′
L = Ud

LdL , (1.28)

under which we have, by definition,

Uu†
L MuU

u
R = diag(mu,mc,mt) , Ud†

L MdU
d
R = diag(md,ms,mb) , (1.29)

where mu,md,ms,mc,mb,mt are real and positive. Following this discussion, LY ukawa leads
to symmetry breaking among the generations: previous to considering the Yukawa interactions,
the Lagrangian was invariant under the interchange of generations, but now generations are
differentiated by their masses, mt ≃ 170 GeV, mb ≃ 4 GeV, mc ≃ 1 GeV, etc.
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1.1.4 Full model

The full SM theory is described by

LSM = Lgauge + Lscalar + Lmatter + LY ukawa , (1.30)

where the individual terms are defined in Eqs. (1.7), (1.21), (1.13), (1.25), (1.12), and (1.15). The
full Lagrangian leads to the phenomenon of generation mixing, as we now see. For a fermionic
multiplet f , the gauge interactions are derived from fγµiDµf , from which one has for the weak
charged current

gL√
2

(W+
µ u

′
Lγ

µd′
L +W−

µ d
′
Lγ

µu′
L) , (1.31)

which can be put into the mass basis for quarks

gL√
2

(W+
µ uLγ

µV dL +W−
µ dLγ

µV †uL) . (1.32)

Above, the matrix

V ≡ Uu†
L Ud

L (1.33)

is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Its non-diagonal structure, as we
measure it, leads to generation mixing, as seen from Eq. (1.32). Note that the analogous unitary

matrix Uu†
R Ud

R is not observable in the SM.2

The phenomenon of generation mixing is exclusive of the weak charged coupling, i.e. in the
SM the couplings of the Z, the photon and the gluon are diagonal over family indices. Another
important property concerning the matrix V is that it has a complex phase which leads to the
only sizable source of CP violation in the SM.

1.2 EWPO for testing the SM

A crucial way of testing the picture described in the previous section, i.e. the couplings of the
gauge bosons to fermions and the way in which the local gauged symmetries of the SM are
broken at low energies, has been provided by precise measurements made at LEP (e−e+ collider,
including ALEPH, DELPHI, OPAL, and L3) and the Tevatron (pp̄ collider) in the 80’s, among
others. These experiments were able to collect a large amount of data and build many different
observables involving the production and decay of Z bosons, and – to a lesser extent – W±

bosons. In the case of the Z boson, these observables were specially designed to test the Lorentz
structure of its couplings to fermions, i.e. gf

V and gf
A defined as follows

gL

2 cos θ
Zµfγµ(gf

V − gf
Aγ5)f =

gL

2 cos θ
Zµ 1

2
fLγµ(gf

V − gf
Aγ

5)fL + (L ↔ R) , (1.34)

gf
V = TL

3 (f) − 2Q(f) sin2 θ, gf
A = TL

3 (f) , (1.35)

for a flavour f (a lepton or a quark). The different values of these couplings are given in Table 1.1.
Taking into account the set of the most precise measurements and predictions, one can per-

form a global fit and test the overall agreement of the SM picture with data. At the same time,
if this agreement is good enough, it is possible to extract the values of the underlying quantities

2A comment about notation: when shifting to the Left-Right Model, V is going to be replaced by V L.
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left-handed TL
3 (f) Q(f) gf

V gf
A gf

V /g
f
A

νeL, νµL, ντL +1/2 0 +1/2 +1/2 1

eL, µL, τL −1/2 −1 −1/2 + 2 sin2 θ ∼ −0.04 −1/2 ∼ 0.08

uL, cL, tL +1/2 +2/3 +1/2 − 4/3 sin2 θ ∼ 0.19 +1/2 ∼ 0.38

dL, sL, bL −1/2 −1/3 −1/2 + 2/3 sin2 θ ∼ −0.35 −1/2 ∼ 0.70

right-handed TL
3 (f) Q(f) gf

V gf
A gf

V /g
f
A

eR, µR, τR 0 −1 +2 sin2 θ ∼ 0.46 0 -

uR, cR, tR 0 +2/3 −4/3 sin2 θ ∼ −0.31 0 -

dR, sR, bR 0 −1/3 +2/3 sin2 θ ∼ 0.15 0 -

Table 1.1: EW quantum numbers of the different SM fermions.

of the theory, as it was the case for the mass of the Higgs boson [57]. Note that this is an indirect
extraction, much different in the case of the Higgs mass from modern direct measurements. In
what follows, we perform a global fit of the EW Precision Observables (EWPO).

1.2.1 Inputs

The couplings gf
V and gf

A are the basic ingredients to define many EWPO. Among these observ-
ables we have left-right asymmetries of the couplings

Af = 2
gf

V g
f
A

(gf
V )2 + (gf

A)2
, f = e, µ, τ, b, c , (1.36)

forward-backward asymmetries in the Z boson production

AF B(f) =
3

4
AeAf , f = e, µ, τ, b, c , (1.37)

total cross section of the Z boson into hadrons

σhad =
∑

f∈{u,d,s,c,b}

12π

M2
Z

ΓeēΓff̄

Γ2
Z

, (1.38)

ratios of partial widths for quarks

Rq =
Γqq̄

Γhad
, q = b, c , (1.39)

etc., defined at the pole of the Z boson from e+e− collision. The full set of EWPO, including
Atomic Parity Violation measurements obtained at low-energies, is defined explicitly in Ap-
pendix A.

The set of observables we use in our fit is given in Table 1.2. Correlations were taken into
account and can be found in the quoted references. The inputs are dominated by statistical
uncertainties, an important difference with respect to flavour observables that will be introduced
later.

Thanks to the huge effort from the theoretical side to match the experimental accuracy of
these observables, see [12] and references therein, which required going beyond the tree level
order, one was able to probe the structure of the SM in detail. The higher order effects are
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sensitive to the underlying parameters of the model, such as the masses of the top-quark, Z0

boson and Higgs boson, and apart from that these corrections are also sensitive to the coupling
constants αs and α, at the energy scale MZ for Z0 observables.

Beyond the loop-corrections alluded in the last paragraph, Initial State Radiation (ISR) and
Final State Radiation (FSR) need also to be taken into account. They correspond to high-
order corrections in QED where one (or more) photon(s) are emitted by the initial electron
or/and positron states, in the case of ISR, or by the final states, in the case of FSR. Taking
into account this class of corrections is of capital importance: they reduce the value of σhad by
about 36 %, and the value of Aµ,τ

F B by as much as 80 %. In what follows, they have already been
subtracted from the experimental values [12], quoted in Table 1.2. To distinguish the initial and
the ISR/FSR-subtracted values, the latter are referred to as “pseudo-observables,” and indicated
with a superscript 0 (but we do not systematically use this notation). Note an important point:
their extraction is made in a model-independent way, since these are pure QED effects, and
therefore do not depend on the EW sector which is under test here.

We give a few more comments about one of the inputs. The value for the strong cou-
pling, αs(MZ) = 0.1185 ± 0.0005syst [58], takes into account the four following classes of in-
puts: τ−decay, Lattice, DIS, and e+e−. More recent information on αs from hadronic collider
studies [59] are not included, because this extraction has a more important uncertainty when
compared with the other four classes. Note that the τ−decay provides a value for the strong
coupling at mτ , and needs to be evolved from low-energy scales up to MZ . This can be done
up to the N3LO [60], and requires the inclusion of thresholds for the charm- and bottom-quarks.
The strong constant extracted from τ−decays is the only input used by Gfitter in the SM fit,
presumably because the full set of them has a negligible impact on the prediction for the Higgs
mass, see Ref. [61].

1.2.2 Parameterization

The corrections beyond tree level of any observable X can be written in terms of the parameters

S ≡ {mpole
top , αs(MZ),MZ ,MH ,∆α(MZ)} . (1.40)

One can thus write

X = X0 + c1 · LH + c2 · ∆t + c3 · ∆αs
(1.41)

+c4 · ∆2
αs

+ c5 · ∆αs
∆t + c6 · ∆α + c7 · ∆Z ,

LH = log
MH

125.7 GeV
, (1.42)

∆t =

(
mpole

top

173.2 GeV

)2

− 1 , (1.43)

∆αs
=
αs(MZ)

0.1184
− 1 , (1.44)

∆α =
∆α(MZ)

0.059
− 1 , (1.45)

∆Z =
MZ

91.1876 GeV
− 1 . (1.46)

The parameterization in Eq. (1.41) describes very accurately the ensemble of the observables we
consider, and higher-order terms in LH ,∆t,∆αs

,∆α,∆Z compared to those already shown can
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be safely neglected. We must now determine the coefficients of the parameterization, and we have
used Zfitter 6.42 [14, 62] for determining them. Zfitter consists in a set of codes integrating
higher-order corrections to a variety of observables, mainly those defined at the pole of the Z
boson. For a given set of values of {mpole

top , αs(MZ),MZ ,MH ,∆α(MZ)}, Zfitter provides the
numerical value of X , and we are then able to determine the values of X0, c1,2,3,4,5,6,7 seen in
Appendix B.

Reference [63] includes further corrections for the observables ΓZ , σhad, Rb,c (two-loop EW
diagrams, not included in the version 6.42 of Zfitter) and gives their parameterization in the
same way seen in Eq. (1.41). We have then considered its results for the coefficients of the
parameterization of ΓZ , σhad, Rb,c.

A last point concerning the parameters of Eq. (1.41): it will be more useful to parameterize
α in a different way. First we write

α(s) =
α(0)

1 − ∆α(s)
, α(0) = 1/137.035999074 , (1.47)

for α calculated at the energy s (when not stated otherwise, α is calculated at MZ), and then
we use the following decomposition into quark (except the top), charged leptonic and top con-
tributions

∆α(s) = ∆α
(5)
had(s) + ∆αeµτ (s) + ∆αtop(s) , (1.48)

where [64, 65]

∆αeµτ (MZ) = 0.031497686 , ∆αtop(MZ) = −0.000072 , (1.49)

with negligible uncertainties. In the following, we use the parameter ∆α
(5)
had(MZ) instead of

∆α(MZ). Note that we do not use an input for ∆α
(5)
had due to the wild spread of central values

and uncertainties found in the literature (see the “EW model and constraints on NP” review
in [58]).

1.2.3 Global fit

We now comment on the results of the global fit. The observables were combined using CKMfitter,
a statistical tool which will be described in the next section. The value for the χ2

min of the global
fit is 22.24, and with 22 degrees of freedom we have the p-value ∼ 45 %, good enough for a mean-
ingful extraction of the fundamental parameters. The extracted best fit points and intervals are
seen in Table 1.2.

The overall conclusion we can draw is that EWPO are well described in the context of the
SM. There are some tensions, however, indicated by the pulls defined for an observable o as

pull =
√
χ2

min − χ2
min,o! , (1.50)

where “o!” means that the second χ2 is built without the experimental information on o. This
is a different definition from the one used used in EWPO: in the context of EWPO, a different
definition is usually found in the literature [12]. As can be seen from Figure 1.1, the main tensions
are found for σhad, AF B(b, τ),ASLD

e , which are left unexplained at this stage in the SM context.
We now move to a much different class of observables, consisting of flavour physics observables.
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Observable Ref. input SM fit (1 σ) pull

∆α
(5)
had - 0.02736+0.00041

−0.00042 -

MH [GeV] [18] [19] 125.7 ± 0.4 125.7 ± 0.4 0.97

mpole
top [GeV] [66] 173.34 ± 0.36 ± 0.67 174.04+0.36

−1.48 0.95

MZ [GeV] [12] 91.1876 ± 0.0021 91.1876 ± 0.0021 0.44

αs [58] 0.1185 ± 0 ± 0.0005 0.11900+0.00012
−0.00109 0.23

ΓZ [GeV] [12] 2.4952 ± 0.0023 2.49493+0.00042
−0.00084 0.56

σhad [nb] [12] 41.541 ± 0.037 41.4857+0.0067
−0.0023 1.42

Rb [12] 0.21629 ± 0.00066 0.215762+0.000055
−0.000022 0.56

Rc [12] 0.1721 ± 0.0030 0.172256+0.000019
−0.000037 0.14

Re [12] 20.804 ± 0.050 20.7445+0.0029
−0.0088 0.77

Rµ [12] 20.785 ± 0.033 20.7445+0.0029
−0.0088 1.08

Rτ [12] 20.764 ± 0.045 20.7915+0.0030
−0.0088 0.87

AF B(b) [12] 0.0992 ± 0.0016 0.10363 ± 0.00079 2.89

AF B(c) [12] 0.0707 ± 0.0035 0.07409 ± 0.00061 0.62

AF B(e) [12] 0.0145 ± 0.0025 0.01639+0.00024
−0.00025 0.39

AF B(µ) [12] 0.0169 ± 0.0013 0.01639 ± 0.00024 0.29

AF B(τ) [12] 0.0188 ± 0.0017 0.01639 ± 0.00024 1.41

Ab [12] 0.923 ± 0.020 0.93464 ± 0.00011 0.41

Ac [12] 0.670 ± 0.027 0.66823 ± 0.00050 0.15

ASLD
e [12] 0.1516 ± 0.0021 0.1478 ± 0.0011 2.15

Ae(Pτ ) [12] 0.1498 ± 0.0049 0.1478 ± 0.0011 0.42

ASLD
µ [12] 0.142 ± 0.015 0.1478 ± 0.0011 0.40

ASLD
τ [12] 0.136 ± 0.015 0.1478 ± 0.0011 0.82

Aτ (Pτ ) [12] 0.1439 ± 0.0043 0.1478 ± 0.0011 0.95

MW [GeV] [67] [68] 80.385 ± 0.015 ± 0.004 80.3694+0.0075
−0.0081 0.89

ΓW [GeV] [69] 2.085 ± 0.042 2.09151+0.00062
−0.00093 0.15

QW (Cs) [70] [71] −73.20 ± 0.35 −72.959 ± 0.036 0.69

QW (T l) [72] [73] −116.4 ± 3.6 −116.457+0.059
−0.057 0.01

Table 1.2: Inputs and results for the SM global fit.
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 (Tl)
W

Q  0.01
 (Cs)

W
Q  0.69

WΓ  0.15
WM  0.89

)τ (PτA  0.95
 (SLD)τA  0.82
 (SLD)µA  0.40

)τ (PeA  0.42
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Figure 1.1: The pulls defined in Eq. (1.50) indicate the tensions between the measured and the
(indirectly) predicted values given by the SM.

1.3 CKM matrix phenomenology and fit

The strengths of the W couplings to quarks are left free in the SM and must be extracted from
the observation of nature. One may determine these couplings from a well-measured set of ob-
servables, performing a global combination of them. The exercise of combining a large set of
observables in the extraction of the CKM matrix has been executed by many different collabo-
rations [15–17], and they have all pointed towards a consistent description of flavour processes
made by the SM. This is usually indicated by Unitarity Triangle (UT) fits, showing that at the
current level of accuracy the observables agree about the true values of the fundamental quanti-
ties parameterizing the CKM matrix, in particular the one related to CP−violating phenomena.
Previous to performing a global fit, we now introduce the most relevant facts about the CKM
matrix.

1.3.1 The CKM matrix

The elements of the CKM matrix

V =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (1.51)

describe the coupling strengths of the W boson to a pair of up- and down-type quarks. Being a
unitary matrix, the product of two different columns of V satisfies
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VcdV ∗
cb

VudV ∗
ub

VtdV ∗
tbα

β
γ

Figure 1.2: Example of Unitarity Triangle. In this specific case, the sides of the (un-normalized)
triangle have lengths of order λ3.

VuαV
∗

uβ + VcαV
∗

cβ + VtαV
∗

tβ = 0 , (1.52)

where {α = d, β = s} corresponds to products of elements of V found in the KK meson-mixing
system, while {α = d, β = b} ({α = s, β = b}) is found in the BdBd (BsBs respectively) system.
Graphically, Eq. (1.52) can be represented by a triangle whose sides correspond to the following
three vectors in the complex plane: VuαV

∗
uβ , VcαV

∗
cβ , and VtαV

∗
tβ , see Figure 1.2.

These same elements can be parameterized in terms of mixing angles θ12, θ13, θ23, also called
Cabibbo angles, between different generations (Chau-Keung parameterization [74])

V =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13






c12 s12 0

−s12 c12 0

0 0 1




=




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 ,

(1.53)

where sij = sin θij and cij = cos θij for i, j = 1, 2, 3, with i < j. The complex phase δ is, as stated
previously, the only sizeable source of CP violation in the SM. The Chau-Keung parameterization
(and the Wolfenstein parameterization that will be introduced afterwards) is based on a phase
convention for the CKM matrix, i.e. the value of δ depends on an arbitrary choice. However, it
is shown that [75]

J ≡ Im(VusVcbV
∗

ubV
∗

cs) = c12s12c
2
13s13c23s23 sin δ , (1.54)

called the Jarlskog invariant, is independent on the phase convention. Since mixing angles are
small, as we will see, J and therefore CP−violating processes are naturally suppressed: J ≃ 10−5,
much smaller than its maximum allowed value, viz. 1/(6

√
3) ≃ 0.1.

It is experimentally observed that the structure of the CKM matrix is hierarchical, i.e. mixings
between different generations are suppressed. It is then useful to exploit the hierarchy of the
CKM elements and introduce the Wolfenstein parameterization [76], where to all orders in the
small parameter λ ≃ 0.2 we have:

19



s12 =
|Vus|

(|Vud|2+|Vus|2)1/2
≡ λ , (1.55)

s23 =
|Vcb|

(|Vud|2+|Vus|2)1/2
≡ Aλ2 , (1.56)

s13e−iδ = Vub ≡ Aλ3(ρ− iη) . (1.57)

Therefore, a non-vanishing value for η is equivalent to having a complex phase in the CKM
matrix.

Note that, though the elements Vcd, Vts (and Vcs) are complex, their phases are suppressed
by extra powers of λ if compared to Vub, Vtd (which is in fact a convention dependent statement).
This can be more immediately seen from a systematic expansion in powers of λ (up to order
O(λ6))

Vud = 1 − λ2

2
− λ4

8
, (1.58)

Vus = λ , (1.59)

Vub = Aλ3(ρ− iη) , (1.60)

Vcd = −λ+
λ5

2
A2(1 − 2(ρ+ iη)) , (1.61)

Vcs = 1 − λ2

2
− λ4

8

(
1 + 4A2

)
, (1.62)

Vcb = Aλ2 , (1.63)

Vtd = Aλ3(1 − ρ− iη) +
λ5

2
A(ρ+ iη) , (1.64)

Vts = −Aλ2 +
λ4

2
A(1 − 2(ρ+ iη)) , (1.65)

Vtb = 1 − λ4

2
A2 . (1.66)

It turns out that the three contributions relevant for the BdBd system in Eq. (1.52) have
roughly the same size, order λ3, cf. Figure 1.2. Its internal angles, which are invariant under
phase redefinitions of the quark fields, can be easily checked to be given by

α = arg

(
− VtdV

∗
tb

VudV ∗
ub

)
, β = arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
, γ = arg

(
−VudV

∗
ub

VcdV ∗
cb

)
. (1.67)

Once all the sizes have roughly the same length, we see that

1 +
VudV

∗
ub

VcdV ∗
cb

+
VtdV

∗
tb

VcdV ∗
cb

= 0 (1.68)

is a useful relation in graphical representations, as a triangle whose sides are:

1 , Ru = |VudVub/VcdVcb|∼ 1 and Rt = |VtdVtb/VcdVcb|∼ 1 , (1.69)

and the internal angles are α, β and γ, see Figure 1.3. For this same triangle, (ρ̄, η̄) defined as
follows
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(1, 0)

Ru

Rtα

β
γ

ρ̄

η̄

Figure 1.3: Example of Unitarity Triangle. In this specific case, the sides of the triangle have
lengths of order 1. The coordinates (ρ̄, η̄) determine the position of the apex of the triangle in
the ρ̄ vs. η̄ plane, indicated by the black blob, and therefore its shape, i.e. the angles α, β, γ.

ρ̄+ iη̄ = −VudV
∗

ub

VcdV
∗

cb

(1.70)

gives the coordinate of the apex of the triangle equivalent to Eq. (1.68) in the ρ̄ vs. η̄ plane, of
which the side opposite to the apex is the basis and has length 1. Note that ρ̄, η̄ differ from ρ, η
by O(λ2) corrections, which can be seen from the relation

ρ+ iη =

√
1 −A2λ4(ρ̄+ iη̄)√

1 − λ2 (1 −A2λ4(ρ̄+ iη̄))
, (1.71)

valid to all orders in λ.
Since our goal is to show the success of the SM to describe the structure of the weak inter-

actions in the quark sector through a UT fit, we are going to perform a global fit to determine
precisely the shape of the triangle defined from Eq. (1.68). Let us now see which classes of
observables are going to be considered to perform this task.

1.3.2 Observables

We collect in Table 1.3 the full set of inputs we use in the global fit: from the experimental side,
we have gained much precision in the determination of the Unitarity Triangle in the last years,
thanks to which it was possible to confirm the mechanism of Kobayashi and Maskawa [52] for the
origin of CP violation in K decays, as we will see. This was in particular due to the B−factories
Belle and BaBar (based on the decays of Υ(4S) into bb̄ states) [85], where B related observables
are collected.

The individual inputs in Table 1.3 have very different impacts when constraining the Unitarity
Triangle, so that the different categories of inputs deserve a dedicated discussion. The following
scheme contains the basic information one needs in the global fit:
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V =




d s b

u n → p+ eν K → π + ℓν B → π + ℓν

c D → π + ℓν D → K + ℓν B → D + ℓν

t B0B̄0 B0
s B̄

0
s t → b+W




(1.72)

=




d s b

u 1 − λ2

2
λ Aλ3(ρ− iη)

c −λ 1 − λ2

2
Aλ2

t Aλ3(1 − ρ− iη) −Aλ2 1




+ O(λ4) ,

where, as indicated in the first line, |Vud| is mainly determined from nuclear transitions, while
|Vus|, |Vcd|, |Vcs|, |Vub|, |Vcb| come from leptonic and semileptonic decays, and |Vtd|, |Vts| come
from B meson-mixing observables (mass differences). The knowledge of the (semi-)leptonic
decay rates and mixing observables are limited by the theoretical uncertainties coming from
hadronic parameters discussed in the next section. We further add that the element |Vtb| can
be in principle probed by high-energy processes where a top is produced in association with a
W , but the resulting accuracy is not yet competitive with the global fit prediction coming from
low-energy physics, see e.g. Ref. [86].

In the Wolfenstein parameterization, the parameters λ and A are basically fixed by the s → u
and b → c semileptonic decays, as seen from the part of Eq. (1.72). The constraints on ρ̄, η̄ come
from different sources, among which we have semileptonic decays b → u and b → c:

b → u, c ⇒ |Vub|≃ Aλ3Ru and the ratio |Vub/Vcb|≃ λRu ,

with Ru =
√
ρ̄2 + η̄2 , (1.73)

and B meson-mixing observables

B0
d,sB

0

d,s ⇒ |Vtd|≃ Aλ3Rt and the ratio |Vtd/Vts|≃ λRt ,

with Rt =
√

(1 − ρ̄)2 + η̄2 , (1.74)

where ratios are considered in order to have a better control over uncertainties. Note that we
have given the expressions of the last two classes of observables as functions of Ru,t: since both
are individually compatible with η̄ = 0 (cf. Figure 1.5), they are referred to as CP−conserving
observables.

The K meson-mixing also provides information on ρ̄, η̄, of the form

|εK | ⇒ η(a1 − ρ) = a2 , (1.75)

where a1,2 > 0 do not need to be given at the moment. We see then that the KK system
provides a constraint of a different sort compared to the B systems, since η = 0 is not allowed,
i.e. its observation alone is a clear sign of CP violation.

Such as εK , CP asymmetries also indicate clear signs of CP violation, by measuring the
difference in rates of a process and its CP−conjugated one. The ratio [87]
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CKM Process Observables Theoretical inputs

|Vud| 0+ → 0+ β |Vud|nucl = 0.97425 ± 0 ± 0.00022 [77] Nuclear matrix elements

|Vus| K → πℓν |Vus|SLf
K→π
+ (0) = 0.2163 ± 0.0005 [78] fK→π

+ (0) = 0.9645 ± 0.0015 ± 0.0045

K → eνe B(K → eνe) = (1.581 ± 0.008) · 10−5 [78] fK = 155.2 ± 0.2 ± 0.6 MeV

K → µνµ B(K → µνµ) = 0.6355 ± 0.0011 [78]

τ → Kντ B(τ → Kντ ) = (0.6955 ± 0.0096) · 10−2 [78]
|Vus|
|Vud|

K → µν/π → µν
B(K → µνµ)

B(π → µνµ)
= 1.3365 ± 0.0032 [78] fK/fπ = 1.1952 ± 0.0007 ± 0.0029

τ → Kν/τ → πν
B(τ → Kντ )

B(τ → πντ )
= (6.431 ± 0.094) · 10−2 [78]

|Vcd| νN |Vcd|not lattice = 0.230 ± 0.011 [78]

D → µν B(D → µν) = (3.74 ± 0.17) · 10−4 [79] fDs
/fD = 1.175 ± 0.001 ± 0.004

D → πℓν |Vcd|fD→π
+ (0) = 0.148 ± 0.004 [80] fD→π

+ (0) = 0.666 ± 0.020 ± 0.048

|Vcs| W → cs̄ |Vcs|not lattice = 0.94+0.32
−0.26 ± 0.13 [78]

Ds → τν B(Ds → τν) = (5.55 ± 0.24) · 10−2 [79] fDs
= 248.2 ± 0.3 ± 1.9 MeV

Ds → µν B(Ds → µνµ) = (5.57 ± 0.24) · 10−3 [79]

D → Kℓν |Vcs|fD→K
+ (0) = 0.712 ± 0.007 [80, 81] fD→K

+ (0) = 0.747 ± 0.011 ± 0.034

|Vub| semileptonic B |Vub|SL = (4.01 ± 0.08 ± 0.22) · 10−3 [79] form factors, shape functions

B → τν B(B → τν) = (1.08 ± 0.21) · 10−4 [79, 82] fBs
/fB = 1.205 ± 0.003 ± 0.006

|Vcb| semileptonic B |Vcb|SL = (41.00 ± 0.33 ± 0.74) · 10−3 [79] form factors, OPE matrix elements

|Vub/Vcb| semileptonic Λb

B(Λp → pµ−ν̄µ)q2>15

B(Λp → Λcµ−ν̄µ)q2>7

= (1.00 ± 0.09) · 10−2 [83]
ζ(Λp → pµ−ν̄µ)q2>15

ζ(Λp → Λcµ−ν̄µ)q2>7

= 1.471 ± 0.096 ± 0.290

α B → ππ, ρπ, ρρ branching ratios, CP asymmetries [79] isospin symmetry

β B → (cc̄)K sin(2β)[cc̄] = 0.691 ± 0.017 [79] subleading penguins neglected

γ B → D(∗)K(∗) inputs for the 3 methods [79] GGSZ, GLW, ADS methods

φs Bs → J/ψ(KK,ππ) (φs)b→cc̄s = −0.015 ± 0.035 [79]

V ∗
tqVtq′ ∆md ∆md = 0.510 ± 0.003 ps−1 [79] B̂Bs

/B̂Bd
= 1.023 ± 0.013 ± 0.014

∆ms ∆ms = 17.757 ± 0.021 ps−1 [79] B̂Bs
= 1.320 ± 0.016 ± 0.030

Bs → µµ B(Bs → µµ) = (2.8+0.7
−0.6) · 10−9 [84] fBs

= 224.0 ± 1.0 ± 2.0 MeV

V ∗
tdVts and εK |εK | = (2.228 ± 0.011) · 10−3 [78] B̂K = 0.7615 ± 0.0027 ± 0.0137

V ∗
cdVcs κε = 0.940 ± 0.013 ± 0.023

Table 1.3: Constraints used for the global fit, and the main inputs involved (more information can be found in ref. [16]). When two
errors are quoted, the first one is statistical, and the second one systematic. In the cases of α and γ angles, many different channels or
methods are used to extract their values, and the full resulting p-value profiles are used as the inputs for the global fit [16].
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Γ(X → f) − Γ(X̄ → f̄)

Γ(X → f) + Γ(X̄ → f̄)
≡ Γ − Γ

Γ + Γ
, (1.76)

where Γ denotes the rate of the CP−conjugated process of rate Γ, defines schematically this class
of observables. Taking the ratio has a clear advantage, because it permits to have a good control
over hadronic uncertainties: since QCD effects are CP−conserving, they drop in Eq. (1.76). As
seen in Table 1.3, such asymmetries directly measure the angles α, β, γ through decays of Bd

mesons: for instance, Bd → J/ψK gives a clean measure of sin(2β) – see e.g. Refs. [54, 88] for
the related calculations.

Apart from the role played by CP−conserving and violating quantities, there is also a clear
distinction between tree level (e.g. B → X + ℓν decays, X = π,D) and loop-level (e.g. B0

q B̄
0
q

mixing, q = d, s) dominated observables. While tree level dominated processes give a cleaner and
safer extraction of SM parameters, the question is less straightforward for loop-level processes.
Indeed, if New Physics effects are large enough to be observed, it is generally expected that
relatively to tree level amplitudes they are much suppressed, but compared to loop-induced SM
amplitudes they can have a similar size.

Apart from the observables discussed in this section, other observables are not included
because they do not have a sufficient accuracy yet, such as B(Bd → µµ), or because the theoretical
uncertainties deserve still some improvement or at least more discussion, e.g. ∆Γs and ε′

K/εK .
Therefore, it would be premature to use them in a precision fit.

1.3.3 Theoretical inputs

From the elements of the SM we calculate the amplitudes for low-energy processes. The most
efficient way to build a Lagrangian specially designed for low-energy observables is to build an
effective description which keeps only the most relevant set of physical operators, neglecting oth-
ers which are too much suppressed by the high-energy scales [89]. Then, for low enough energies,
i.e. for long enough wavelengths, QCD effects become non-perturbative. Since the characteristic
wavelength of weak interactions (∼ 1/MW ) is much smaller, everything happens in two steps:
first we build an effective Lagrangian of weak interactions including short-range QCD correc-
tions, and then this picture is completed at long distances by taking into account the hadronic
environment, where the low-energy effective quantities can be extracted from experiment.

Nowadays, non-perturbative effects are most of the time computed numerically from first
principles by a technique called Lattice QCD. It consists in the computation of correlation func-
tions defined on a lattice of discrete points (in the Euclidean space). Physical quantities are then
determined from the extrapolation of the results in the cases where the lattice inter-space goes
to zero and its total size goes to infinite, apart from other possible limits related to the physical
masses of the particles simulated. This effective description has been enormously developed in
the last decades, thanks to the increasing computing capacities, and has acquired a great degree
of sophistication [90].

Let us see a few examples where hadronic quantities must be known in order to predict an
observable. In the leptonic decay π → ℓν, we need the value of the π decay constant, called fπ

and defined as

−pµfπ = 〈0|(d̄γµγ5u)|π(p)〉 , (1.77)

up to an arbitrary phase, correcting the coupling of the W boson to a pair of d and/or u in
the hadronic environment. Similarly, when calculating the decay rate of the semi-leptonic decay
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K → π + ℓν, one faces the hadronic amplitude of K → π, whose non-perturbative effects are
contained in the form factor fK→π, defined from

fK→π
+ (q2)(p+ p′)µ + fK→π

− (q2)(p− p′)µ = 〈π(p′)|(s̄γµPLu)|K(p)〉 , (1.78)

where qµ ≡ (p − p′)µ gives a term proportional to the mass mℓ (∼ 0 for ℓ = e, µ) when the
contraction with the leptonic current is taken. Both fπ and fK→π

+ must be determined from
elsewhere in order to predict the SM values of the related processes.

Another class of non-perturbative parameters concerns |∆F |= 2 mixing processes, which
require long-distance parameters called bag parameters BP , P = K,Bd, Bs. These are defined
as the ratio of the |∆F |= 2 hadronic amplitude over its Vacuum Insertion Approximation (VIA)
estimate (e.g. see the Appendix C of [54]). For definiteness, consider the K0K̄0 system

BK ∝ 〈K|(s̄γµPLd) (s̄γµPLd)|K〉
〈K|(s̄γµPLd)|0〉 〈0|(s̄γµPLd)|K〉

, (1.79)

where the vacuum is indicated by the state |0〉. Note that 〈0|(s̄γµPLd)|K〉 is proportional to the
decay constant fK : we thus have

2

3
m2

Kf
2
KBK = 〈K|(s̄γµPLd) (s̄γµPLd)|K〉 , (1.80)

where mK is the average of the eigenmasses of the KK system. Note that BK depends on the
scale µhad where 〈K|(s̄γµPLd) (s̄γµPLd)|K〉 is determined: by factorizing out this dependence,

one defines a scale independent quantity usually indicated by a hat, B̂K .
The full set of theoretical inputs needed in our analysis is contained in the third column of

Table 1.3. A different class of inputs is necessary when computing meson-mixing observables,
which corresponds to short-distance QCD corrections that can be computed by a perturbative
expansion in αs (more on this subject will come in Chapters 4 and 5). We have employed the
following values, which collect these perturbative effects [91–94]

ηcc = 1.87 ± 0 ± 0.76 , ηtt = 0.5765 ± 0 ± 0.0065 , ηct = 0.497 ± 0 ± 0.047 ,

ηB = 0.5510 ± 0 ± 0.0022 , (1.81)

where the first uncertainty is statistical and the second theoretical. The values correspond
respectively to short-distance QCD corrections to KK mixing (first line) and BB mixing (second
line). For ηcc, subjected to the largest uncertainty, an important fraction of the uncertainty comes
from the poor convergence behaviour of the series: indeed, the shift NLO → NNLO enhances
the central value by ∼ 30 %.

For completeness, the remaining parameters used in the fit include

αs(MZ) = 0.1185 ± 0 ± 0.0006 , (1.82)

for the strong coupling [58] (including information from the Z pole, coming from an electroweak
precision fit [13]), and [66]

m̄t(m̄t) = 165.95 ± 0.35 ± 0.64 GeV , m̄c(m̄c) = 1.286 ± 0.013 ± 0.040 GeV , (1.83)

for the masses of the top- and charm-quarks running inside the loops of the meson-mixing
amplitudes. Above, the input for the top-quark mass is determined from mpole

top by using the

following relation, valid around the value mpole
top = 173.34 GeV:
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Figure 1.4: (Left) χ2 for a random variable of variance σ2 = 1 whose measure is Xmes = 0 ≡ X.
The theoretical uncertainty is modelled in the Rfit scheme with range [−∆,∆] = [−1, 1]: this is
seen as a plateau at χ2 = 0 for [−1, 1], while outside the plateau we have χ2 = (Xmes − µ)2/σ2,
where µ ≡ Xtheo is the parameter we want to extract. (Right) Combination of two χ2 profiles,
similar to the one described in the left figure, one for which Xmes = 0 ≡ X (red) and one
for which Xmes = 5 ≡ Y (blue); in the naive Rfit procedure, the combined profile results in
the dashed, purple curbe, with no theoretical uncertainty, while in this case the educated Rfit
method would consider a resulting theoretical uncertainty equals to the smallest of the theoretical
uncertainties (dashed orange).

m̄t(m̄t) ≃ 0.9626 ×mpole
top − 0.90 GeV , (1.84)

which comes from a one-loop calculation described in Ref. [95].

1.3.4 CKMfitter

We combine the observables in a pure frequentist approach based in a χ2 analysis. In the context
of flavour physics, theoretical uncertainties, mainly introduced by the theoretical inputs from
Section 1.3.3, deserve a special attention. Contrarily to EWPO, they are very much significant
in the comparison between measurement and theoretical prediction. When considering this class
of uncertainties, one quotes a range [−∆,∆], and we will admit that it contains the true value δ
of the theoretical uncertainty: if δ was known, instead of quoting X±σstat ± ∆, we would quote
(X + δ) ± σstat (further discussion follows in Chapter 7).

We adopt a Rfit scheme for dealing with theoretical uncertainties. In practice, this means
that one can vary freely the true value of the theoretical uncertainty inside the quoted uncertainty
δ ∈ [−∆,∆] without any penalty from the χ2. This implies a plateau for the preferred value
of the parameter we would like to extract, see Figure 1.4 (Left), a shape that will be further
discussed in Chapter 7. Subsequently, Confidence Level intervals are determined from varying
the χ2 around the best fit point, and the goodness of the fit is calculated by supposing that χ2

min

is distributed as a χ2−distribution.
Different extractions of the same quantity are combined previous to the fit (more on that

in Chapter 7), and when different inputs point towards a tension, such as in |Vxb|, x = u, c,
for inclusive and exclusive extractions, we adopt a special procedure. To illustrate this point,
Table 1.4 contains the inclusive and exclusive inputs for |Vub| and |Vcb| previous to their average,
which are substantially in tension given the size of their uncertainties. A procedure we call
naive Rfit average leads to no theoretical uncertainty if the data are barely compatible, i.e. the
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resulting average is not affected by the unknown true value of the theoretical uncertainties δ.
This is illustrated in Figure 1.4 (Right), where it is shown that one has a vanishing theoretical
uncertainty: the resulting dotted-purple curve has not a shape presenting a flat bottom, a feature
symptomatic of theoretical uncertainties in the Rfit scheme. Since it creates a very aggressive
situation where two inputs in disagreement end up implying a very precise average, without any
theoretical uncertainty related, we adopt a conservative procedure in which the final theoretical
uncertainty is equal to the smallest of the individual theoretical uncertainties. This procedure
is called educated Rfit, and it is represented by the dotted-orange curve in Figure 1.4 (Right).
Both methods are compared in Table 1.4.

|Vub|×103 central value stat. uncertainty theo. uncertainty

exclusive 3.28 ± 0.15 ± 0.26

inclusive 4.36 ± 0.18 ± 0.44

naive Rfit 3.70 ± 0.12 ± 0.00

educated Rfit 3.70 ± 0.11 ± 0.26

|Vcb|×103 central value stat. uncertainty theo. uncertainty

exclusive 38.99 ± 0.49 ± 1.17

inclusive 42.42 ± 0.44 ± 0.74

naive Rfit 41.00 ± 0.33 ± 0.00

educated Rfit 41.00 ± 0.33 ± 0.74

Table 1.4: Inclusive and exclusive inputs for |Vub| and |Vcb|, and their averages under two different
procedures: naive Rfit and educated Rfit.

For form factors, bag parameters and decay constants, previous to the global fit we aver-
age over the extractions made by different groups (the individual references are found in [16]).
Moreover, if for a quantity we have many sources of systematic uncertainty ∆1, . . . ,∆n, they are
treated at the same footing and summed linearly, ∆1 + . . .+ ∆n. The resulting averages are seen
in the last column of Table 1.3.3

The procedure depicted in the last paragraphs is adopted by the CKMfitter Collaboration
[16]. Apart from its main statistical lines we have briefly described, found in more details in [16],
at a more computational level CKMfitter is a modularized set of files of code where each class of
observables is defined in terms of the underlying relevant parameters: these are the Wolfenstein
parameters, for factors, bag parameters, etc. To make the computational work more efficient, the
derivatives of the observables are calculated symbolically in order to optimize the extremization
procedure, necessary in the determination of the best fit point.

Having discussed the observables, the theoretical inputs and the statistical treatment, we now
shift to the results of our analysis, obtained through the CKMfitter framework.
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Figure 1.5: Plot in the ρ̄ vs. η̄ plane showing the constraints of the individual inputs (not shown
are, for example, constraints from Vus and Vcs, which are relevant only for A, λ, cf. Eqs. (1.59)
and (1.62)). The set of observables point towards an apex at ∼ (0.15, 0.35), with 68 % CL (95 %
CL) represented in hashed red (yellow with red contour). (Note that there is a discrete ambiguity
for β coming from the sin 2β constraint, indicated by the gray region for which cos 2β < 0.
However, this ambiguity is excluded at 95 % CL.)

1.3.5 Results

The results of the global fit for ρ̄, η̄ are summarized in Figure 1.5, where we represent the Unitarity
Triangle for the BdBd system – corresponding to the orthogonal relation between the first and
the third columns of the CKM matrix (divided by VcdV

∗
cb), as discussed in Section 1.3.1. Of

course, other Unitarity Triangles could also be represented, cf. Ref. [16]. In the same figure,
we indicate the individual 68 % CL (Confidence Levels): in order to determine these confidence
intervals in the ρ̄ vs. η̄ plane, theoretical inputs are obviously employed, apart from the necessary
experimental information.

The outcome of the fit points towards a unique region in the (ρ̄, η̄) plane. For the goodness of
the fit we find a p-value equals to 66 %, or 0.4 σ in units of sigma: the good agreement implies
that the extraction of the fundamental parameters of the SM is meaningful and we have

A = 0.8227+0.0066
−0.0136 , λ = 0.22543+0.00042

−0.00031 , (1.85)

ρ̄ = 0.151+0.012
−0.006 , η̄ = 0.354+0.007

−0.008 .

Individually, each observable provides a test of the validity of the SM, as indicated by the
pulls defined in Eq. (1.50), which are normally distributed with mean zero and a dispersion of
one.4 The values of the pulls seen in Figure 1.6 tell us that each single observable has a suitable
SM prediction compared to the experimental value. Since the observables have correlated fits,
which is for instance the case for sin 2β and B(B → τν) [16], the distribution of the pulls is not
normal. Note that the presence of a plateau in the Rfit model for theoretical uncertainties may
lead to a vanishing pull for some quantities even in cases where the predicted and the observed
values are not identical.

3Note that, although different numbers of dynamical flavours on the Lattice are simulated, Nf = 2, 2 + 1, 2 +
1 + 1, we suppose that they extract the same underlying quantity, and therefore they can all be used in the
average, without preference for a particular Nf .

4The inputs B(K− → µ−ν̄µ)/B(π− → µ−ν̄µ) and B(τ− → K−ν̄τ )/B(τ− → π−ν̄τ ) are not shown because
they are correlated with B(K− → µ−ν̄µ) and B(τ− → K−ν̄τ ).
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Figure 1.7: (Left) combination of observables dominated by tree level amplitudes (only γ(DK)
is used [16]), (Right) combination of processes dominated by loop-induced amplitudes. 68 %
confidence level intervals (95 % CL) are represented in dashed red (yellow with red contour).
The apex of the unitarity triangle is determined from the global fit.
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Figure 1.8: (Left) fit of observables that can be individually explained by η̄ = 0 (called
CP−conserving), (Right) combination of processes that individually exclude η̄ = 0 (except for
the ambiguity in the α constraint). 68 % confidence level intervals (95 % CL) are represented in
dashed red (yellow with red contour). The apex of the unitarity triangle is determined from the
global fit.

In Figure 1.7 we show the outcome of the fit when only tree level or loop-induced processes are
considered. Both fits lead to values of ρ̄, η̄ in agreement with the global extraction of ρ̄, η̄ shown
in Figure 1.5. We also consider a plot, Figure 1.8, containing only CP−conserving quantities, i.e.
observables which individually do not exclude a vanishing CP−violating phase, or equivalently
η̄ = 0. Its outcome, and the one from a global fit considering only CP−violating observables,
also agrees with the global fit combining all classes of observables at once.

1.4 Conclusions and what comes next

The SM succeeds in explaining a wide variety of classes of observables: in the context of the
underlying gauge structure of the model, the EWPO are of particular interest, and have shown
a great predictivity for the Higgs mass and top-quark mass before they were discovered or
determined with accuracy [57]. As we have seen, there are some unexplained tensions that we
have found in Section (1.2), such as AF B(b, τ), ASLD

e and σhad, which have the largest pulls.
We have also seen over this chapter the success of the SM in describing the set of flavour
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observables shown in Table 1.3. In particular, this success implies that the mechanism of CP
violation in the SM gives an accurate picture of nature, and we were able to extract very accurate
values for the Wolfenstein parameters describing the CKM matrix.

However, this is not the full story: extensions of the SM are typically evoked at high energy
scales to explain poorly understood features of the SM, or some tensions when comparing pre-
dictions and measurements. The great success of the SM to describe many observables helps us
to test the very existence of these extensions and to probe their structure.

Starting from the next chapter, we are going to analyse a particular extension of the Standard
Model which introduces weak charged right-handed currents, to be contrasted with the pure weak
charged left-handed currents of the SM. We now discuss this extension of the SM, called Left-
Right Model.

31



Chapter 2

Left-Right Models

Parity violation is an experimental fact used in the formulation of the SM, where left- and right-
handed fields have different gauge structures. Therefore, the SM incorporates this feature rather
than explains its origin. One possibility for a better understanding of why one observes parity
violation is to assume it at high enough energies, and then assume it is spontaneously broken
when one goes down in energy, leading to parity violating phenomena.

To accomplish such a mechanism we introduce a second SU(2) local symmetry under which
left-handed fields transform as singlets and right-handed fields transform as doublets [20–23]:

SU(3)c × SU(2)L × SU(2)R × U(1)Ỹ , (2.1)

where Ỹ is a hypercharge in principle different from the one of the SM. This therefore adds up
a new term in the Yang-Mills Lagrangian compared to the SM case

Lgauge = −1

4
Gµν

a Gaµν − 1

4
Lµν

a Laµν − 1

4
Rµν

a Raµν − 1

4
Fµν

Ỹ
FỸ µν , (2.2)

replacing the notation of the field tensor F of the SM by L and adding up the Lagrangian density
that corresponds to the new local symmetry SU(2)R. This is the basic starting point of the class
of models called Left-Right (LR) Model, and another feature we can point out is the existence of
new gauge bosons:

W ′ and Z ′ , (2.3)

which acquire masses as a result of the symmetry breaking pattern, when the extended gauge
group of the LR Models breaks down into the local symmetries of the SM:

SU(3)c × SU(2)L × SU(2)R × U(1)Ỹ → SU(3)c × SU(2)L × U(1)Y , (2.4)

thus breaking the parity symmetric structure spontaneously. We are going to discuss at length
in Section 2.2 this pattern and the scalar field content necessary to realize it.1

Apart from the issue of parity, the SM raises some other intriguing questions that we could
attempt to solve by restoring parity

(a) in the way the SM is introduced, the hypercharges are in principle completely arbitrary;
they are then fixed in order to accommodate the electric charges,

1Of course, at each step of the symmetry breaking, the Lagrangian built out of renormalization and symmetry
arguments is supplemented by higher-dimensional operators which are induced by the previous (itself effective or
UV complete) Lagrangian, after that some of its degrees of freedom are integrated out.
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(b) the strong CP−violating phase, if it exists at all, is “unexpectedly” small,

(c) in the SM, neutrinos are massless, and there is no mechanism for the description of the
observed neutrino oscillations.

Possible answers or ways to deal with these problems in the LR Models are: (a) the hypercharges
in the LR Model are naturally interpreted; first the electric charge Q is given by

Q = TL
3 + TR

3 +
Ỹ

2
, (2.5)

and then Ỹ results being equal to B −L, where B is the baryonic number and L is the leptonic
number. (b) The strong CP problem can be naturally investigated in the LR Model framework,

since the CP−violating term −1

4
G̃µνG

µν is also parity-violating [25, 26, 96]. (c) In LR Models,

right-handed neutrinos must be introduced, thus leading to mechanisms for mass generation.
At a practical level, many different ways of implementing a Left-Right Model have been

investigated in the literature: a possible avenue is to consider extra fermions [97], which may
serve as candidates for Dark Matter [98]; otherwise, in the effort to solve the naturalness problem
(the hierarchy between the EW scale and whatever comes beyond), LR supersymmetric models
have been considered [99,100]; different scalar sectors, with two bi-doublets, with triplets and/or
doublets, etc. have been discussed in order to realize a series of features, see e.g. [101–103]. All
of these realizations of LR Models have their own motivations. Here, we would like to address a
particular realization of Left-Right Models, called doublet scenario, that will be described in the
next sections.

2.1 Matter content

Before explaining the spontaneous symmetry breaking in LR Models, let us introduce its matter
content, which is a generic feature found in many of its realizations. As we have already stated,
right-handed fermions are put into doublets, and right-handed neutrinos are introduced:

left-handed quarks: QL =


uL

dL


 = (3,2,1, 1/3) ,

right-handed quarks: QR =


uR

dR


 = (3,1,2, 1/3) ,

left-handed leptons: LL =


νL

ℓL


 = (1,2,1,−1) ,

right-handed leptons: LR =


νR

ℓR


 = (1,1,2,−1) ,

showing an elegant and self-speaking symmetry between left- and right-handed fields.
The part of the full Lagrangian describing the interactions with the fields f shown above is

Lmatter = f̄ iγµDµf , (2.6)

where the covariant derivative D includes the new gauge symmetries introduced by the LR
Models
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Dµ = ∂µ − i

(
gsA

aµT s
a + gLW

aµ
L TL

a + gRW
aµ
R TR

a + gB−LB
µB − L

2

)
, (2.7)

where gs, gL, gR and gB−L are the gauge couplings.

2.2 Spontaneous symmetry breaking in the LR Model

The LR Models must reproduce the observations we have made so far, where weak right-handed
currents are suppressed compared to weak left-handed ones, and where parity P and charge-
conjugation C are both violated over the energy scales we have had access so far. This set of
characteristics are achieved in the same way as in the SM, where W,Z−mediated interactions
are weak due to the large masses of these gauge bosons (and a relatively small gauge coupling
strength), generated through the BEH mechanism.

In the LR Model case, a way to implement the spontaneous symmetry breaking (SSB) pattern
of Eq. (2.1) is to have a doublet under SU(2)R whose vacuum expectation value leads to the
SSB

SU(2)R × U(1)B−L → U(1)Y . (2.8)

Therefore, we introduce the SU(2)R doublet

χR =

(
χ+

R

χ0
R

)
, (2.9)

which breaks SU(2)R × U(1)B−L when χ0
R develops the VEV κR/

√
2 as follows

χ0
R = (χ0r

R + iχ0i
R + κR)/

√
2 , (2.10)

where χ0r
R and χ0i

R are two distinct real fields of null VEV. The VEV κR is expectedly larger
than the one responsible for the SSB of the EW group

SU(2)L × U(1)Y → U(1)EM , (2.11)

as argued in the first paragraph.
To further discuss the Brout-Englert-Higgs mechanism in LR Models, we first shift to the

mass generation mechanism for fermions. Of course, the primary interest is to implement the
BEH mechanism, but out of this discussion we will have picked up the scalar field that has the
good quantum numbers for both phenomena, BEH and the mass generation of fermions. In
the SM, masses come from the coupling of a scalar doublet to fermionic singlets and fermionic
doublets, which introduces squared ng−dimensional matrices called Yukawa matrices, where ng

is the number of generations (3 in the SM and in the LR Model). In LR Models, a Yukawa
term invariant under SU(3)c × SU(2)L × SU(2)R × U(1)B−L requires a scalar bi-doublet, Φ =
(1,2,2, 0), which transforms like2

Φ → ULΦU †
R . (2.12)

2Note that, due to the extra SU(2)R symmetry, the bi-doublet cannot be mapped onto two doublets, and
therefore we cannot trivially think about the LR Model as a two-Higgs doublet model (THDM) extension of the
SM. For further discussion on the parallel between LR Model and THDM, see Ref. [104] in the context of flavour
physics.
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The scalar bi-doublet has the expression

Φ =

(
ϕ0

1 ϕ+
2

ϕ−
1 ϕ0

2

)
, (2.13)

and from the same degrees of freedom of Φ one defines

Φ̃ = τ2Φ†T
τ2 =

(
ϕ0†

2 −ϕ+
1

−ϕ−
2 ϕ0†

1

)
, (2.14)

which transforms in the same way as Φ, namely Φ̃ → ULΦ̃U †
R. The fields ϕ0

1,2 acquire the vacuum
expectation values

ϕ0
1 = (ϕ0r

1 + iϕ0i
1 + κ1)/

√
2, (2.15)

ϕ0
2 = (ϕ0r

2 + iϕ0i
2 + κ2) eiα/

√
2 ,

and κ1,2 trigger EWSB and generate the masses of the fermions. Since the bi-doublet is also
charged under SU(2)R, it corrects slightly the picture of the first symmetry breaking, given at
leading order by κR, and corrected by κ1,2.

So far, we have introduced a doublet under SU(2)R and a bi-doublet under SU(2)L×SU(2)R,
and we have seen why they are required: in order to break the LR Model gauge group down to
the SM one, to implement the SSB in the SM and to generate masses for fermions. However,
our final goal is to build a model which is invariant under parity, i.e. to introduce the required
degrees of freedom to define a P symmetric model. Therefore, we introduce a doublet under
SU(2)L, χL = (1,2,1, 1), i.e.

χL =

(
χ+

L

χ0
L

)
. (2.16)

In full generality, it acquires a non-vanishing VEV3

χ0
L = (χ0r

L + iχ0i
L + κL) eiθL/

√
2 , (2.17)

which corrects both the first (SU(2)R ×U(1)B−L → U(1)Y , since χL is charged under U(1)B−L)
and the second symmetry breakings. Concerning the latter, it is a combination of κ1,2,L, more
precisely the combination

√
κ2

1 + κ2
2 + κ2

L ≃ 246 GeV (2.18)

that characterizes the energy scale of the EWSB. It will be useful in the following to characterize
the SSB in terms of the parameters that follow

ǫ ≡ κ1

κR

√
1 + r2 + w2 , r ≡ κ2

κ1
, w ≡ κL

κ1
. (2.19)

Together with the angles θ and φ introduced below, they reflect the way in which the gauge
symmetries are spontaneously broken: in particular, due to the expected hierarchy of SSB scales,
ǫ is a small parameter, and we are generally going to keep only first order corrections in ǫ.

Summarizing the previous discussion, we have the following symmetry breaking pattern

3Here, the phases of ϕ0
1 and χ0

R have been rotated away, and 〈ϕ0
2, χ

0
L〉 are the only complex VEVs.
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first breaking: tanφ = tφ ≡ gB−L

gR

1

g2
Y

≡ 1

g2
R

+
1

g2
B−L

second breaking: tan θ = tθ ≡ gY

gL

1

e2
≡ 1

g2
L

+
1

g2
R

+
1

g2
B−L

gL =
e

sθ
gR =

e

cθsφ
gB−L =

e

cθcφ

Table 2.1: Couplings and relevant angles of the symmetry breaking pattern.

SU(3)c × SU(2)L × SU(2)R × U(1)Y

Stage 1: ↓
SU(3)c × SU(2)L × U(1)Y

Stage 2: ↓
SU(3)c × U(1)EM

.

At both stages, we have SU(2) × U(1) → U(1): for the first stage, there is a “weak” angle φ,
analogous to θ from Chapter 1, which describes the direction in which the first breaking occurs,
see Table 2.1.

In the BEH mechanism, when generating the masses for the gauge bosons W,Z,W ′, Z ′, an
equivalent number of scalars become their longitudinal degrees of freedom. It is clear from
Eqs. (2.10), (2.15), (2.17) that there are eight remaining neutral degrees of freedom, the SM-like
Higgs plus three CP−even and two CP−odd scalars, while in the charged sector we have two
remaining charged degrees of freedom. The scenario we describe here corresponds, however, to
the minimal possible scalar content: we have already stated the necessity of χL for a structure
which is symmetric under parity, while a bi-doublet, necessary for the generation of masses in
the fermionic sector, cannot fully break the SU(2)L × SU(2)R × U(1)B−L gauge group down to
U(1)EM , but only produce a partial breaking SU(2)L ×SU(2)R → SU(2)L+R, i.e. simultaneous
and identical transformations under both SU(2) symmetries.

2.3 Gauge boson spectrum

Each step of the symmetry breaking is represented in the neutral sector in the following way



sθ cθ 0

cθ −sθ 0

0 0 1




︸ ︷︷ ︸
Stage 2




1 0 0

0 sφ cφ

0 cφ −sφ




︸ ︷︷ ︸
Stage 1



W 3

L

W 3
R

B


 =



A

X1

X2


 , (2.20)

where cθ ≡ cos θ, etc. On the other hand, we have for the charged gauge bosons

W±
L =

W 1
L ∓W 2

L√
2

, W±
R =

W 1
R ∓W 2

R√
2

. (2.21)

The fields X1, X2 and WL,WR can mix depending on the specific Spontaneous Symmetry Break-
ing occurring in LR Models, and therefore the physical states Z,Z ′ and W,W ′ are linear combi-
nations of X1, X2 and WL,WR, respectively.
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M̃2
Z M̃2

Z′ ∆M̃2
Z′ δM̃2

Z

1

4
(g2

L + g2
Y )κ2 1

4
(g2

R + g2
B−L)κ2

R

c2
φ

4
g2

R

[
κ2 − κ2

L

1 − 2c2
φ

c4
φ

]
−
c2

φ

4e
gLgRgB−L

[
κ2 − κ2

L

c2
φ

]

M̃2
W M̃2

W ′ ∆M̃2
W ′ δM̃2

W

1

4
g2

Lκ
2 1

4
g2

Rκ
2
R

1

4
g2

R(κ2
1 + κ2

2) −s2β

4
gLgR(κ2

1 + κ2
2)

Table 2.2: Mass terms at the tree level. Above, κ2 ≡ κ2
1 + κ2

2 + κ2
L, and s2β = 2r/(1 + r2)

The physical states can be determined by diagonalizing the mass matrix of the gauge bosons,
which results from the couplings to the scalars. First then, we have the covariant derivative D
as in Eq. (2.7), from which one has the following gauge invariant part of the full Lagrangian

Lscalar = (DµχR)(DµχR)† + (DµχL)(DµχL)† + (DµΦ)(DµΦ)† − V , (2.22)

where the potential V ≡ V (χR, χL,Φ) is going to be discussed later. (Note that, since Φ

transforms as Φ → ULΦU †
R, the part of the covariant derivative on W a

R gets an opposite sign
compared to that of W a

L .)
Now, expliciting the VEVs of the scalars fields, we have the following mass term

Lmass =
(
W+

L W+
R

)( M̃2
W δM̃2

W

δM̃2
W M̃2

W ′ + ∆M̃2
W ′

)(
W−

L

W−
R

)

+
1

2

(
A X1 X2

)



0 0 0

0 M̃2
Z δM̃2

Z

0 δM̃2
Z M̃2

Z′ + ∆M̃2
Z′






A

X1

X2


 , (2.23)

where the mass terms at the tree level are given in Table 2.2.
The off-diagonal terms lead to mixing between X1 and X2, or between W±

L and W±
R : for

instance, the ∼ 80 GeV charged gauge boson W± results from the mixing of the fields associated
to the TL

± and TR
± weak isospin generators, which is suppressed by the ratio of vacuum expectation

values, i.e. ǫ2. If we now diagonalize the gauge boson matrix, the eigenmasses are given by:

M2
Z = M̃2

Z − δM̃4
Z

M̃2
Z′

, M2
Z′ = M̃2

Z′ + ∆M̃2
Z′ =

M2
W ′

c2
φ

(1 + O(ǫ2)) , (2.24)

M2
W = M̃2

W − δM̃4
W

M̃2
W ′

, M2
W ′ = M̃2

W ′ + ∆M̃2
W ′ =

g2
Rκ

2
R

4
(1 + O(ǫ2)) ,

(2.25)

keeping only the first corrections on M̃2
Z,W , δM̃2

Z,W , ∆M̃2
Z′,W ′ over M̃2

Z′,W ′ .
To conclude this section, we would like to discuss the chosen scalar representations in connec-

tion with the gauge boson spectrum. If a triplet representation ∆L = (1,3,1, 2) was considered

instead of χL, the VEV κtriplet
L would be very much suppressed. This is due to the different ways
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in which this VEV contributes to the masses of the W±, Z gauge bosons: since the so-called
ρ−parameter

ρ =
M2

W

M2
Z cos2 θ

(2.26)

is very close to 1, 〈∆0
L〉 would be small, a dozen GeV at most (for ρ = 0.99 for instance, we find

κtriplet
L ≃ 17 GeV, see Appendix C). On the other hand, since in the doublet LR Model case the

spontaneous symmetry breaking mechanism is triggered by doublets and a bi-doublet, ρ does
not provide a very important constraint at tree level, see Appendix C.

2.4 Masses in the fermionic sector

When the scalar doublet of the SM develops a VEV, it gives masses to the fermions (apart from
the neutrinos), which are equal to the VEV times the diagonal elements of the diagonalized
Yukawa matrices. The unitary matrices that diagonalize the mass matrices lead to the CKM
matrix, discussed in the last chapter, responsible for mixing among different generations in the
context of the SM.

In LR Models, when the bi-doublet develops VEVs, it generates masses to the fermions
(including neutrinos) and the diagonalization of the mass matrix leads to non-diagonal mixing
matrices responsible for the flavour phenomenology in LR Models. In this context, we have two
possible structures

L(quarks)
Y ukawa = −Q′

L(ΦY + Φ̃Ỹ )Q′
R + h.c. , (2.27)

where Y, Ỹ are the two Yukawa matrices. Given the vacuum expectation values seen in Eqs. (2.15),
we have the mass matrices

Mu =

√
κ2

1 + κ2
2√

2
(cY + sỸ ) , Md =

√
κ2

1 + κ2
2√

2
(sY + cỸ ) , (2.28)

where c ≡ 1/(
√

1 + r2) and s ≡ r/(
√

1 + r2). We now diagonalize the mass matrices Mu,d as in
the previous chapter, resulting in

Uu†
L MuU

u
R = M̂u = diag(mu,mc,mt) , Ud†

L MdU
d
R = M̂d = diag(md,ms,mb) , (2.29)

and the same unitary transformations Uu,d
R , Uu,d

L introduce the mixing matrices V L,R, which are
defined as the unitary matrices

V L,R = Uu†
L,RU

d
L,R . (2.30)

We now discuss an important point concerning M̂u,d. Note that when s = O(1) c ⇔ r = O(1),
a linear combination of Y, Ỹ gives a large mass in one case (the top-quark mass in the LHS of
Eq. (2.28)), and not in the other (down-type quark masses in the RHS of Eq. (2.28)). It is usual
then to ask for r ≪ 1 (see e.g. Ref. [28], where large spontaneous CP−violating phases are
considered) and Y alone would account for the very large mass of the top. However, in order
to remain as general as possible, we will investigate arbitrary values for r, but we will keep in
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mind that, even if not impossible, having mt in one case and mb in the other would state a
somewhat unexpected relation among the VEVs κ1,2, related to EWSB, and the components of
the Yukawas Y, Ỹ .

Shifting to the leptonic sector, we first note that in the SM neutrinos are massless. A “triv-
ial” extension of the SM, however, could be to consider three copies of right-handed neutrinos
νR = (1,1, 0), thus leading to a Dirac mass term for νL,R just like for the other fermions. Due
to their quantum numbers, νR are sterile, i.e. they do not interact with the other particles,
and their existence would at our present stage of knowledge remain based on the observation of
neutrino masses and generation mixing (the PMNS matrix).

In the LR Models, right-handed neutrinos must be introduced to establish a LR symmetry
in the leptonic sector and their existence could be tested by means of right-handed currents. In
the doublet scenario under investigation here we have

L(leptons)
Y ukawa = −L′

L(ΦY lept + Φ̃Ỹ lept)L′
R + h.c. , (2.31)

similarly to Eq. (2.27). Once plugging the VEV of the bi-doublet, we have the following non-
diagonalized leptonic mass matrices

Mν =

√
κ2

1 + κ2
2√

2
(cY lept + sỸ lept), Me =

√
κ2

1 + κ2
2√

2
(sY lept + cỸ lept) , (2.32)

the diagonalization of them leading to the mixing-matrices V L,R
lept , analogously to the quark sector.

Note that when sending the masses of the neutrinos to zero one does not always gain in symmetry
as in the SM for charged fermions [105], because νL and νR in the LR model can be related by
the exchange of physical W or W ′ gauge bosons when r 6= 0 [106]. This results in finite radiative
contributions to the masses of the neutrinos proportional to the masses of the charged leptons.
Whether or not this situation results in fine-tuned masses for the neutrinos at low energies in
the doublet case when r is arbitrary must still be checked.

2.5 Discrete symmetries and the scalar potential

In LR Models, we may define the following parity transformation (where global phases are
absorbed into the fields)

P :





QL ↔ QR

Φ → Φ†

χL ↔ χR

(2.33)

(we omit −→x → −−→x or −→p → −−→p ). We also define the charge conjugation transformation4

C :





QL ↔ (QR)c

Φ → ΦT

χL,R ↔ χ†T
R,L

. (2.34)

4See Refs. [103, 107] for other transformations in the context of LR Models, and see Ref. [108] for a more
general discussion.
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We have not yet mentioned the case C so far: after all, parity and charge-conjugation viola-
tions are closely related in the SM, and LR Models alternatively offer the possibility of restoring
C at high energies. Therefore, one could as well rewrite the statements we have made so far
about the restoration of P by considering C instead of P . Moreover, restoring C is motivated by
possible extensions of the LR Model [28].

We now move to a discussion of the scalar potential. Its most general form, symmetric under
the parity transformation defined above is

V = −µ2
1 tr(Φ†Φ) − µ2

2 tr(Φ̃†Φ + Φ̃Φ†) − µ2
3(χ†

LχL + χ†
RχR)

+ µ′
1(χ†

LΦχR + χ†
RΦ†χL) + µ′

2(χ†
LΦ̃χR + χ†

RΦ̃†χL) + λ1[tr(Φ†Φ)]2

+ λ2

(
[tr(Φ̃†Φ)]2 + [tr(Φ̃Φ†)]2

)
+ λ3 tr(Φ̃†Φ) tr(Φ̃Φ†) + λ4 tr(Φ†Φ) tr(Φ̃†Φ + Φ̃Φ†)

+ ρ1[(χ†
LχL)2 + (χ†

RχR)2] + ρ3(χ†
LχL)(χ†

RχR) + α1(χ†
LχL + χ†

RχR) tr(Φ†Φ)

+
α2

2
{eiδ2 [χ†

LχL tr(Φ̃Φ†) + χ†
RχR tr(Φ̃†Φ)] + e−iδ2 [χ†

LχL tr(Φ̃†Φ) + χ†
RχR tr(Φ̃Φ†)]}

+ α3(χ†
LΦΦ†χL + χ†

RΦ†ΦχR) + α4(χ†
LΦ̃Φ̃†χL + χ†

RΦ̃†Φ̃χR),

(2.35)

where δ2 is a CP−violating phase, and µ2
1,2,3, µ′

1,2, λ1,2,3,4, ρ1,3 and α1,2,3,4 are all real. Even
if there are O(20) new parameters in the potential, not all of them are relevant, and only a
few show up in the expressions of couplings and masses of the heavy sector, as seen in their
expressions given in Appendix E.

For simplicity reasons, we focus specifically in the case where no complex phase is present in
the potential, namely sin δ2 = 0. As argued in Appendix D, the phases of the VEVs are related
to δ2, and we are going as well to set all of them to zero, i.e. sinα = sin θL = 0.

The basic features of the scalar potential symmetric under C can be found in Appendix F in
a slightly different context, where it is argued that the C case introduces extra complex phases.
However, since we are interested in the simplified case where the complex phases in the potential
are set to zero, both cases P and C lead to the same discussion. Moreover, neither one or the
other implies the vanishing of a possible coupling between the fields Φ, χL,R: all the possible
combinations are already present in Eq. (2.35), and what changes is the relation between the
coefficients of the different structures and the number of possible complex phases. Then, we
expect for all our purposes to have essentially the same discussion when P or C invariant scalar
potentials are considered, and perhaps even when neither of them is assumed.

By minimizing the potential, one determines the VEVs in terms of the parameters of V . At
the minimum, the stability conditions which must be satisfied are

∂V

∂x

∣∣∣∣∣
{κ1,2,L,R,α,θL}

= 0 , (2.36)

where x ∈ {ϕ0r
1 , ϕ

0r
2 , χ

0r
R , χ

0r
L , ϕ

0i
1 , ϕ

0i
2 , χ

0i
R , χ

0i
L } (out of them, two equations are redundant, i.e.

there are six independent equations relating the set of the six parameters {κ1,2,L,R, α, θL} char-
acterizing the minimum). The mass matrix in the scalar sector is determined at the minimum
by

M2 =
∂2V

∂x∂y

∣∣∣∣∣
{κ1,2,L,R,α,θL}

, (2.37)

which is an 8 × 8 matrix in the neutral sector (x as above, and with y assuming values over the
same set), or a 4 × 4 matrix in the charged sector (x, y ∈ {ϕ±

1 , ϕ
±
2 , χ

±
R, χ

±
L }).
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In agreement with the discussion at the end of Section 2.2, the resulting scalar spectrum
calculated from Eq. (2.37) consists of:

• one light SM-like scalar h0, of mass ∼ κ, and

• three heavy CP−even scalars H0
1,2,3,

• two heavy CP−odd scalars A0
1,2,

• two heavy charged scalars H±
1,2,

where the heavy particles have masses ∼ κR. As seen in Appendix E, some of the physical
scalars are degenerate at leading order in ǫ: thus {H0

i , A
0
i ;H±

i }, i = 1, 2, have the same masses.
Of course, two other CP−odd scalars and two other charged scalars correspond to the would-be
Goldstone bosons and are absorbed as the longitudinal degrees of freedom of the massive gauge
bosons.

2.6 Couplings to fermions

Here, we focus on the basic characteristics of the gauge boson and physical scalar couplings to
the fermionic sector. More information and technical details can be found in Appendix E.

2.6.1 Couplings of the gauge bosons to the fermions

As in the SM, the couplings of the fermions to the gauge bosons can be determined from their
charges. Then, these couplings are corrected when going to the mass basis of the gauge bosons
due to the mixing of the known and new gauge bosons. This mixing is suppressed by the hierarchy
of the SSB energy scales, and comes at order O(ǫ2). For the sake of readability, we provide in this
chapter the couplings at leading order in ǫ, while the full expressions are given in Appendix E.
It is straightforward that at this order the couplings to the charged vector bosons are given by

gL√
2
W−

LµuLγ
µV LdL +

gR√
2
W−

RµuRγ
µV RdR (2.38)

+
gL√

2
W−

LµνLγ
µV L

leptℓL +
gR√

2
W−

RµνRγ
µV R

leptℓR + h.c. ,

which has a symmetric structure for right- and left-handed fields.
In the SM, the CKM matrix is the mixing matrix corresponding to V L = Uu†

L Ud
L, while V R

is not relevant. Concerning the structure of V L, since it is unitary there are
ng(ng + 1)

2
possible

complex phases, where ng is the number of generations. However, some of them are non-physical:
one can redefine the relative phases of the quark fields, thus eliminating 2ng − 1 phases. With
ng = 3, we have one physical complex phase, which alone introduces CP violation in the quark
sector of the SM. When there is a second mixing matrix, the one corresponding to right-handed
quark currents, one has a total of ng(ng + 1) possible complex phases distributed over the two
mixing matrices, but as before one can eliminate 2ng − 1 phases by redefining the quark fields
(in what follows, one eliminates as much as possible the phases of V L). Hence, there is a total
of n2

g − ng + 1 complex phases in V L,R. When ng = 3, the total number of complex phases

introduced by V L,R is seven, i.e. six extra phases compared to the SM, constituting new sources
of CP violation in the quark sector.
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W

V L

uL

dL

W ′

V R

uR

dR
Z

gf
V 1 − gf

Aγ5

f

f
Z′

df
V 1 + df

Aγ5

f

f

Figure 2.1: Main couplings of the W,W ′, Z and Z ′ particles (which are further corrected by their
mixing).

The same exercise for deriving Eq. (2.38) can also be made for the couplings to the neutral
gauge bosons Z ∼ X1 and Z ′ ∼ X2. From Eq. (2.20) we have

f̄γµ

[(
gLT

L
3 sθ + gRT

R
3 sφcθ + gB−L

B − L

2
cφcθ

)
Aµ

+

(
gLT

L
3 cθ − gRT

R
3 sφsθ − gB−L

B − L

2
cφsθ

)
X1µ (2.39)

(
gRT

R
3 cφ − gB−L

B − L

2
sφ

)
X2µ

]
f ,

where f = QL,R or LL,R. The reader should note that the Z ′ boson introduced here, which is
an admixture of X2 (the main component) and X1, does not introduce flavour changing neutral
currents, as it may happen in other models which have Z ′ bosons. The reason for this is the
same found in the SM for explaining the absence of FCNC of the Z: up-like quarks or down-like
quarks of the same chirality and different generations have exactly the same quantum numbers
(except for flavour), assuring flavour diagonal couplings (see [109–112]).

The weak interaction part of the expression (2.39) can be compactly written as

Zµ
1 J

0
µ + (Z ′)µ

2K
0
µ , (2.40)

which is corrected at order O(ǫ2) by the mixing between X1 and X2, and where

J0
µ =

gL

cθ
(TL

3 (f)fLγµfL − s2
θQ(f)fγµf) (2.41)

=
gL

cθ

1

2
f̄γµ(gf

V − gf
Aγ

5)f ,

K0
µ = gL

tθ
tφ

(
TR

3 (f)fRγµfR − t2φ
(B − L)(f)

2
fγµf

)
(2.42)

= gL
tθ
tφ

1

2

(
df

V fγµf + df
Afγµγ5f

)
,

and

gf
V = TL

3 (f) − 2Q(f)s2
θ, gf

A = TL
3 (f) , (2.43)

df
V = TR

3 (f)/c2
φ + t2φ (TL

3 (f) − 2Q(f)) , (2.44)

df
A = TR

3 (f)/c2
φ − t2φ T

L
3 (f) , (2.45)
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left-handed TL
3 (f) TL

R (f) Q(f) df
V df

A

νeL, νµL, ντL +1/2 0 0 t2φ(+1/2) −t2φ(+1/2)

eL, µL, τL −1/2 0 −1 t2φ3/2 −t2φ(−1/2)

uL, cL, tL +1/2 0 +2/3 −t2φ5/6 −t2φ(+1/2)

dL, sL, bL −1/2 0 −1/3 t2φ/6 −t2φ(−1/2)

right-handed TL
3 (f) TL

R (f) Q(f) df
V df

A

νeR, νµR, ντR 0 +1/2 0 +1/(2c2
φ) +1/(2c2

φ)

eR, µR, τR 0 −1/2 −1 −1/(2c2
φ) + 2t2φ −1/(2c2

φ)

uR, cR, tR 0 +1/2 +2/3 +1/(2c2
φ) − 4t2φ/3 +1/(2c2

φ)

dR, sR, bR 0 −1/2 −1/3 −1/(2c2
φ) + 2t2φ/3 −1/(2c2

φ)

Table 2.3: Quantum numbers of the different fermions in the LR Model.

given in Table 2.3. The first line of Eq. (2.39) can be simplified as

AµJ
µ
EM , Jµ

EM = eQ(f)fγµf , (2.46)

where we have employed

Q(f) = TR
3 (f) + TL

3 (f) +
(B − L)(f)

2
.

Just like the last expression is only a consistency check (the electric charge must be equal to the
unbroken U(1) charge), the couplings to gluons have the obvious expression

gsf̄γ
µGa

µTaf . (2.47)

2.6.2 Couplings of the scalars to the fermions

Similarly to the vectorial couplings, the couplings of the fermions to the would-be Goldstones
can also be evaluated. For the sake of readability, their expressions are given in Appendix E.

Here, we focus on the physical scalars. Developing the Yukawa terms around the VEV of the
scalar fields, beyond the quark mass terms one gets the couplings

uL
1

κ1(1 − r2)

[
M̂u(ϕ0r

1 − rϕ0r
2 ) + V LM̂dV

R†(ϕ0r
2 − rϕ0r

1 )
]
uR + h.c. , (2.48)

where a similar expression holds for the down-type sector. Above, the first term inside brackets
is a diagonal coupling to the up-type generations, while the second introduces Flavour Changing
Neutral Currents (FCNC). To further interpret this result, one needs to express the set of un-
physical fields {ϕ0r

1 , ϕ
0r
2 , χ

0r
L , χ

0r
R } in terms of the physical CP−even scalar fields, h0, H0

1,2,3. In

Appendix E, we show the expressions for h0, H0
1,2,3 in terms of {ϕ0r

1 , ϕ
0r
2 , χ

0r
L , χ

0r
R } up to leading

order in ǫ. Here we pay special attention to the light SM-like Higgs field:

h0 =
1√

1 + r2 + w2
(ϕ0r

1 + rϕ0r
2 + wχ0r

L ) + O(ǫ)χ0r
R . (2.49)
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It then follows from Eq. (2.48) that h0 does not couple non-diagonally, since h0 is orthogonal to
the combination ϕ0r

2 − rϕ0r
1 and the h0−coupling vanishes. Clearly, this is a feature at leading

order in ǫ, but it is also valid when considering O(ǫ) corrections, thanks to the structure of the
next-to-leading order term, proportional to χ0r

R as seen from Eq. (2.49).
On the other hand, the diagonal couplings of the Higgs are given by

−
(

M̂d√
κ2

1 + κ2
2 + κ2

L

dLdR +
M̂u√

κ2
1 + κ2

2 + κ2
L

uLuR

)
h0 + O(ǫ2) + h.c. (2.50)

Note that in the SM we have

−
(
M̂d

v
dLdR +

M̂u

v
uLuR

)
H0 + h.c. (2.51)

Both expression are identical up to O(ǫ2) corrections since
√
κ2

1 + κ2
2 + κ2

L is equivalent to v found

in the SM (up to O(ǫ2) corrections), and H0 from the SM is identified with h0, by construction.
The comparison between Eq. (2.50) and (2.51) implies that the measurement of the intensity of
the couplings of the Higgs to the fermions does not set alone bounds on κL, as it could be naively
thought once the bi-doublet alone couples to the fermions.

Of course, other combinations of the fields {ϕ0r
1 , ϕ

0r
2 , χ

0r
L , χ

0r
R } will have couplings which

introduce FCNC in the model. This is the main reason why one generally has very strong
bounds on the scalar sector of the model, pushing the neutral scalar masses beyond many TeV
(see Chapter 6).

2.7 Structure of the mixing matrix V R

The new mixing matrix V R describes the couplings of the new charged gauge boson W ′± to
quarks and introduces new free parameters in generic versions of the model.5 However, by
considering the explicit realization of a discrete symmetry, parity P or charge-conjugation C, one
may constrain V R. Let us see the structure the Yukawa matrices must have under these discrete
symmetries. Under P , we have [54]

(2.52)QLΦY QR
P→ Qγ0PRΦ†Y PRγ

0Q = QRΦ†Y QL ,

and to fit the Hermitian conjugate

(QLΦY QR)† = QRΦ†Y †QL , (2.53)

we require Y = Y † (and Ỹ = Ỹ †). On the other hand, under charge-conjugation

(2.54)QLΦY QR
C→ (QR)cΦTY (QL)c = QLΦY TQR .

Hence, Y = Y T (and Ỹ = Ỹ T ) for charge-conjugation invariance.
The particular structures for V R in each of these two cases are: (a) under a parity-symmetric

model

5The mass spectrum M̂u,d and the mixing matrices V L,R are all related to the underlying Y, Ỹ . Knowing

{mu,d,s,c,b,t} and the Cabibbo angles of V L, namely {sin θ12, sin θ13, sin θ23}, one has the possibility to constrain

the structure of V R. This is studied in [29], where constraints sensitive to CP violation are also employed.
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V R = SuV
LSd , (2.55)

Sq = diag(sqi
) , sqi

= ± , i = 1, 2, 3 ,

which is valid in the case where there is no complex phase from the bi-doublet vacuum expectation
values, as we assume here for simplicity reasons (for a more general discussion, see [28] and [113]).
(b) under charge-conjugation

V R = Ku(V L)∗Kd , (2.56)

Kq = diag(kqi
) , kqi

= eiθqi , i = 1, 2, 3 ,

where one of the phases θqi
is fixed by the others. In this case, there are extra 2ng − 1 = 5

complex phases in total.
We call the expression stated by Eq. (2.55) a manifest relation between the two mixing

matrices, while the relation stated in Eq. (2.56) can be called pseudo-manifest, which are two
common patterns investigated in LR Model studies.

Eqs. (2.55) and (2.56) may be seen as further constraints to the model in order to have more
predictive versions of LR Models, and follow from P or C that we have till now advocated for.
However, we would like to test the more general case where V L, V R are not related by a manifest
or a pseudo-manifest relation. The reader may be worried by the fact that, therefore, we would
have no exact discrete symmetry at all. Nonetheless, the exact equality of couplings, Eqs. (2.55)
and (2.56) (and moreover the gauge couplings gL = gR), should be the concern of more elaborate
Grand Unified Theories, while LR Models introduce the required degrees of freedom for a P
or C symmetric theory. In this picture, differences between left and right couplings would be
explained by the running from the scale of unification of the couplings down to the scale ∼ κR,
inducing gL 6= gR and V R

≁ V L (up to signs or complex phases) in the LR Model.6

2.8 Triplet model

While the model with doublets we have described has been the first one to be considered in the
end of the ‘70s when LR Models were conceived, the model with two triplets and one bi-doublet
has been extensively considered in the literature, starting from Ref. [24]. It has the interesting
feature of implementing a mechanism where the known neutrinos have very light masses due to
very heavy counterparts (i.e. a see-saw mechanism).

For further discussion, let us investigate over the remaining of this section the triplet scenario,
in particular the interactions with leptons, where we find the most important differences. To
this effect, we have the two triplets ∆R = (1,1,3, 2) and ∆L = (1,3,1, 2), which introduce the
following degrees of freedom

∆R =

(
δ+

R/
√

2 δ++
R

δ0
R −δ+

R/
√

2

)
, ∆L =

(
δ+

L/
√

2 δ++
L

δ0
L −δ+

L/
√

2

)
. (2.57)

(A discussion concerning the scalar potential in this case, together with the Higgs spectrum is
found in Appendix F.)

6For this reason, we have avoided so far the use of the term “Left-Right Symmetric Model.”
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In the triplet case, beyond the Yukawa terms

L(leptons)
Y ukawa ∋ −L′

L(ΦY lept + Φ̃Ỹ lept)L′
R + h.c. , (2.58)

we also have

L(leptons)
Y ukawa ∋ −1

2
((L′

L)ciτ2∆LY
lept

L L′
L + (L′

R)ciτ2∆RY
lept

R L′
R) + h.c. , (2.59)

thus leading to Majorana masses. The full mass matrix is then

L(leptons)
mass = −1

2

(
(νL)c νR

)( hL
MκL hDκ+

hT
Dκ+ hR

MκR

)(
νL

(νR)c

)
+ h.c. , (2.60)

where hD = (cY lept + sỸ lept)/
√

2, hL
M = Y lept

L /
√

2, hR
M = Y lept

R /
√

2 and κ+ ≡
√
κ2

1 + κ2
2.

Note that the mass matrix of Eq. (2.60) has a 6 × 6 structure: when writing the physical
interactions with light neutrinos, one would find a non-unitary 3 × 3 matrix, implying a more
involved analysis of neutrino processes compared to the doublet case.

For simplicity, let us consider the case of only one generation [54]. When going to the mass
basis, one finds (we choose conveniently the global phases of the fields so that hR

M > 0 and
assume hR

MκR ≫ hDκ+ ≫ hL
MκL)

mν ≃ h2
D

hR
M

κ2
+

κR
− hL

MκL, mN ≃ hR
MκR , (2.61)

and
(

ν

N

)
=

(
+i cos Θ −i sin Θ

sin Θ cos Θ

)(
νL

(νR)c

)
, (2.62)

where cos Θ ≃ 1− 1

2

(
hD

hR
M

κ+

κR

)2

. Then, the left-handed field νL is basically light, while the right-

handed counterpart νR is much heavier. To compare the two contributions to mν in Eq. (2.61),
one has the following relation between the VEVs κL,R, valid in the triplet case

(2ρ1 − ρ3)
κL

κ+
≃
[
β1
κ1κ2

κ2
+

cos(θL − α) + β2
κ2

1

κ2
+

cos θL (2.63)

+β3
κ2

2

κ2
+

cos(θL − 2α)

]
κ+

κR
⇒ κL

κ+
≡ γ

κ+

κR
,

at leading order in ǫ = κ1/κR, which is one of the stability conditions from the scalar potential
(see Appendix F). Therefore, Eq. (2.63) leads to

mν =
(
h2

D − γhL
MhR

M

)
κ2

+/(h
R
MκR) , (2.64)
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where γ, defined implicitly from Eq. (2.63), is of any sign. This relation is called a see-saw
mechanism: κ+ being fixed by the EWSB, the bigger κR (setting the scale for mN ) is, the
smaller mν becomes. Note that the see-saw mechanism, and therefore the smallness of neutrinos
masses, is closely related to the spontaneous breaking of parity in a very elegant way, through
κL ≪ κR.

Let us have a closer look to the spectrum. Given

κR . 10 TeV and κ+ ≃ 246 GeV , (2.65)

if all the involved parameters of the potential and Yukawas were of order O(1), one would have
mν & 6 GeV, implying far too big neutrino masses. Therefore,

h2
D, γhL

M of order 10−9 (2.66)

are usually required, while hR
M ∼ O(1) controls the mass of the heavy neutrino. To accomplish

Eq. (2.66), one may imagine having

hL
M of order O(1) , (2.67)

just like hR
M , and γ much suppressed. At the same time,

hD ∼ 10−4 , (2.68)

which is not surprising given the sizes of the Dirac Yukawa couplings in the other sectors, e.g.
me/κ+. As noted in [24,100], asking for small β1,2,3 in the definition of γ is not a problem, since
quantum corrections to these same coefficients would not spoil their smallness.7 It has also been
argued over the literature that it is possible to evoke approximate symmetries to suppress the
coefficient of mν ∝ κ2

+/κR (e.g. Refs. [114–116]).
Note that Eq. (2.64) is the usual motivation for considering the triplet scenario. However,

in view of the requirement of further suppressions for explaining the smallness of ν masses,
Eq. (2.66), we see that the original interest for introducing triplets in the model (i.e. predicting
small neutrino masses), is less compelling than usually advocated. On the other hand, though
in the doublet scenario no prediction is made concerning the smallness of the neutrino masses,
it is a simpler scenario in the sense that no Yukawas Y lept

L,R are present, thus implying that the
mixing among leptonic generations is described by 3 × 3 unitary matrices, and the number of
physical scalar fields is lower (there are no doubly charged fields δ±±

L,R).

2.9 Conclusions

Over this chapter, we have introduced LR Models, and we have seen their main features:

• They consist in the gauge group SU(3)c×SU(2)L×SU(2)R×U(1)B−L, offering a framework
where one is in principle able to implement parity P or charge-conjugation C symmetry,

• In order to spontaneously break the new local symmetries, SU(2)R × U(1)B−L → U(1)Y ,
to implement the EW spontaneous breaking, SU(2)L × U(1)Y → U(1)EM , and to gen-
erate masses for the fermions, we include two scalar doublets χR = (1,1,2, 1) and χL =
(1,2,1, 1), and a bi-doublet Φ = (1,2,2, 0), this being the minimal possible set of fields,

7Note that the suppression of γ implies the suppression of κL through Eq. (2.63).
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• The vacuum expectation value 〈χ0
R〉 = κR/

√
2 breaking the LR Model gauge group down

to the SM one is expected to be much larger than κ ≃ 246 GeV, a way to explain why LR
Model effects have not been observed so far,

• After the first symmetry breaking, new gauge bosons are present: a new charged gauge

boson W ′± and a new neutral gauge boson Z ′0, whose masses are proportional to κR,

• W ′± couples to quarks through a mixing matrix V R analogous to the CKM matrix: its
structure can be constrained by considering P or C to be exactly restored at the energy
scale ∼ κR, but the full restoration of P or C may be achieved a priori only at higher
energy scales,

• The matrix V R, which has in principle an arbitrary structure, introduces new sources of
CP violation,

• Beyond the SM-like Higgs field h0, other physical scalars are present. These are: three
CP−even H0

1,2,3, two CP−odd A0
1,2, and two charged H±

1,2, which have masses proportional

to κR. The scalars H0
1,2 and A0

1,2 have Flavour Changing Neutral Couplings, a feature not
present in the SM. This then implies contributions to meson-mixing observables that are
relevant for phenomenology.

Starting from the next chapter, we aim at constraining the doublet scenario of the LR Model.
First we will consider EWPO, in order to constrain the specific way in which local symmetries
are spontaneously broken in the LR Model, and then we will shift to meson-mixing observables.
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Chapter 3

Testing the SSB pattern of LR
Models through EWPO and
direct searches

The first class of observables of interest to constrain LR Models includes EWPO [117,118]. In the
Standard Model, they constitute constraints of utmost importance for testing the consistency of
one of its most salient features, namely the spontaneous breaking of the Electroweak symmetry
SU(2)L × U(1)Y , as seen in Chapter 1. Being very sensitive to the precise way in which the
Brout-Englert-Higgs mechanism operates in the SM, one expects to gain valuable information
concerning the way in which the LR Model gauge group is spontaneously broken.

A meaningful computation of these observables in the SM framework requires radiative cor-
rections, as discussed in Section 1.2.1. On top of that, we add tree level contributions introduced
by the LR Model with respect to the pure SM (i.e. the SM with no extra fields or parameters),
and from this point the LR Model can be constrained - we postpone the discussion of radiative
corrections in the LR Model framework to [119]. We reconsider the global fit of the full set of
observables already studied in the context of the SM in Section 1.2, see also [120] [121] [122] [123].
Moreover, we also consider the impact of direct searches for W ′ bosons.

It should be stressed that throughout this chapter we are not interested in flavour-sensitive
observables (this being the concern of Chapter 6): the main goal here is to probe one simple and
in some sense new realization of Left-Right Models (the doublet LR Model) from the point of
view its Spontaneous Symmetry Breaking features.

3.1 Corrections from the Left-Right Model to the EWPO

We will correct the SM predictions by including the contributions from the LR Model at tree
level. Then, from these corrections, we will be able to constrain this particular extension of the
SM. We consider the calculation of a low-energy effective theory at tree level by integrating out
the (heavy) gauge bosons Z ′,W ′.

In our case, contributions from the extended Higgs sector at tree level are not important, since
they are expectedly heavy (due to Flavour Changing Neutral Current related processes that we
will discuss later) and we work with energies around MZ or lower. Moreover the physical scalars
couple with strengths proportional to the masses of the quarks and leptons, which are the light
degrees of freedom for the tree level processes under discussion.
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3.1.1 Effective Lagrangians

Here we will closely follow [124]. Having κL 6= 0, however, is the essential difference between our
analysis and the one found in reference [124], where κL is set to zero as a simplification.

The Lagrangian including gauge boson interactions with fermions and gauge boson mass
terms is

L =
1

2
M2

ZZ
µZµ +M2

WW+µW−
µ +

1

2
M2

Z′Z ′µZ ′
µ +M2

W ′W ′+µ
W ′−

µ

+ Zµ

(
J0µ − δM̃2

Z

M̃2
Z′

K0µ

)
+ Z ′

µ

(
K0µ +

δM̃2
Z

M̃2
Z′

J0µ

)
+AµJ

µ
EM (3.1)

+

[
W+

µ

(
J+µ − δM̃2

W

M̃2
W ′

K+µ

)
+W ′+

µ

(
K+µ +

δM̃2
W

M̃2
W ′

J+µ

)
+ (+ ↔ −)

]
,

where the currents J0,K0, J±,K±, JEM are read from Section 2.6.1. Note that, in the expres-
sions above weak charged currents are in the flavour basis: going to the mass basis introduces
the mixing matrices V L,R and V L,R

lept , which are of no relevance here, since the masses of the kine-
matically allowed fermions are too small compared to MW to be significant for the determination
of ΓW , at the precision we need to calculate LR Model corrections.

At energy scales
√
s much below the masses MZ′,W ′ , one can integrate out the W ′ and the

Z ′ leading to

Ls≪M2
Z′,W ′

eff =
1

2
M2

ZZ
µZµ +M2

WW+µW−
µ (3.2)

+ Zµ

(
J0µ − δM̃2

Z

M̃2
Z′

K0µ

)
+

[
W+

µ

(
J+µ − δM̃2

W

M̃2
W ′

K+µ

)
+ (+ ↔ −)

]

+ AµJ
µ
EM − 1

2M̃2
Z′

K0µK0
µ − 1

M̃2
W ′

K+µK−
µ ,

where one recognizes the SM Lagrangian corrected by terms suppressed by (M̃Z′)−2 or (M̃W ′)−2.
At energies

√
s much smaller than MZ,W one can integrate out the W and the Z, and we are

left with

Ls≪M2
Z,W

eff = − 1

2M̃2
Z

[
J0µJ0

µ +
M̃2

Z

M̃2
Z′

(
δM̃4

Z

M̃4
Z

J0µJ0
µ − 2

δM̃2
Z

M̃2
Z

J0µK0
µ +K0µK0

µ

)]

− 1

M̃2
W

[
J+µJ−

µ +
M̃2

W

M̃2
W ′

(
δM̃4

W

M̃4
W

J+µJ−
µ − δM̃2

W

M̃2
W

(J+µK−
µ + J−µK+

µ )

+ K+µK−
µ

)]
+ AµJ

µ
EM . (3.3)

It is from the two last expressions that we have calculated the LR Model corrections used in the
fit.

As a parenthesis, compared to the triplet case, where SU(2)R × U(1)B−L is triggered by a
triplet ∆R under SU(2)R instead of a doublet χR as in our case, the only difference we have is
(taking 〈∆0

R〉 = 〈χ0
R〉, which may not be the result of phenomenological studies)
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(M̃2
Z′)doublet → 4(M̃2

Z′)triplet , (M̃2
W ′)doublet → 2(M̃2

W ′)triplet , (3.4)

while the other mass parameters (M̃2
Z , etc.) remain the same when κL = 0.

3.1.2 Parameters used in the fit

Neglecting electroweak corrections, functions of α,mtop and MH , as well as terms from J+
µ K

−µ

and K+
µ K

−µ, that do not interfere with the SM J+
µ J

−µ in the limit where the mass of the muon
is neglected, one gets the following expression for the Fermi constant

GF√
2

=
g2

L

8M̃2
W

(
1 +

δM̃4
W

M̃2
W M̃2

W ′

)
=

1

2κ2

(
1 + ǫ2R4s2

2β

)
, (3.5)

where one employs

R2 =

(
1 +

w2

1 + r2

)−1

≤ 1 , R2 ≥ 0 , (3.6)

and

s2β =
2r

1 + r2
. (3.7)

The Fermi constant is measured from the µ lifetime. Note that its value is extremely well
measured, and it is given by

GF = (1.1663787 ± 0.0000006) · 10−5 GeV-2 (PDG) . (3.8)

Due to the accuracy compared to other experimental inputs, we are going to neglect the uncer-
tainty in the last expression.

To further continue, we recall the expression for the mass of the Z boson

M2
Z = M̃2

Z − δM̃4
Z

M̃2
Z′

=
α(MZ)π

s2
θc

2
θ

κ2


1 − ǫ2c4

φ

(
1 − 1 −R2

c2
φ

)2

 , (3.9)

where

c2
φ = 1 − s2

θ

1 − s2
θ

(
gL

gR

)2

≃ 1 − 1

3

(
gL

gR

)2

(3.10)

has already been defined and is a parameter indicating the value of the ratio gL/gR.
In EW precision tests, it is standard to use MZ and GF as parameters of the fit, since they

are very precisely measured. We will do the same here, trading sθ, κ by GF ,MZ , thus leading to
the following relations between the SM and the LR Model

κ2 = (κ2)SM

(
1 + ǫ2R4s2

2β

)
, (3.11)

s2
θc

2
θ = (s2

θc
2
θ)SM


1 + ǫ2R4s2

2β − ǫ2c4
φ

(
1 − 1 −R2

c2
φ

)2

 ,

where
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(κ2)SM ≡ 1√
2GF

, (s2
θc

2
θ)SM ≡ α(MZ)π√

2GFM2
Z

. (3.12)

Note that there are no tree level corrections to the fine structure constant, as can be seen
from the previous Lagrangians. Therefore

α = (α)SM =
e2

4π
. (3.13)

3.1.3 Expressions for LR Model corrections

We now use the definitions given in Appendix A to calculate the tree level expression of an
observable in the SM, X tree

SM , and the tree level expression in the LR Model, X tree
LRM , from the

effective Lagrangian in Eq. (3.2) or (3.3).
Following the discussion in Chapter 1.2, we will thus use the following set of parameters

S′ = {mpole
top , αs(MZ),MZ ,MH ,∆α

(5)
had(MZ), ǫ, cφ, r, w} , (3.14)

cf. Eq. (1.40).

We have then the following expressions for
1

ǫ2
· X tree

LRM

X tree
SM

(numerical values are truncated for

compactness), where one employs the numerical approximation (s2
θ)SM ≃ 0.234, sufficient for

the precision required here:

• Asymmetries

1

ǫ2
· δAb/Ab = −0.113 − 0.649 c2

φ + 0.762 c4
φ (3.15)

+(−0.119 + 0.994 c2
φ)R2 +R4 0.232 (1 − s2

2β) ,

1

ǫ2
· δAc/Ac = 3.12 − 8.97 c2

φ + 5.86 c4
φ (3.16)

+(−4.90 + 7.65 c2
φ)R2 +R4 1.79 (1 − s2

2β) ,

1

ǫ2
· δAe,µ,τ/Ae,µ,τ = 50.7 − 118. c2

φ + 66.9 c4
φ (3.17)

+(−71.1 + 87.3 c2
φ)R2 +R4 20.4 (1 − s2

2β) ,

1

ǫ2
· δAF B(b)/AF B(b) = 50.6 + 67.6 c4

φ − 71.2R2 (3.18)

+c2
φ (−118.+ 88.2R2) +R4 20.6 (1 − s2

2β) ,

1

ǫ2
· δAF B(c)/AF B(c) = 53.8 + 72.7 c4

φ − 76.0R2 (3.19)

+c2
φ (−127.+ 94.9R2) +R4 22.2 (1 − s2

2β) ,

1

ǫ2
· δAF B(e, µ, τ)/AF B(e, µ, τ) = 101.+ 134. c4

φ − 142. R2 (3.20)

+c2
φ (−235.+ 174. R2) +R4 40.8 (1 − s2

2β) ,

• Z total width

1

ǫ2
· δΓZ/ΓZ = 0.783 + 0.141 c4

φ − 2.13R2 (3.21)

+c2
φ (−0.924 + 1.49R2) +R4 1.35 (1 − s2

2β) ,
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• Rations of Z widths

1

ǫ2
· δRb/Rb = −0.422 − 0.194 c4

φ + c2
φ (0.616 − 0.253R2) (3.22)

+0.481R2 −R4 0.0591 (1 − s2
2β) ,

1

ǫ2
· δRc/Rc = 0.814 + 0.374 c4

φ + c2
φ (−1.19 + 0.488R2) (3.23)

−0.928R2 +R4 0.114 (1 − s2
2β) ,

1

ǫ2
· δRe,µ,τ/Re,µ,τ = −0.218 + 0.993 c4

φ − 0.0850R2 (3.24)

+c2
φ (−0.775 + 1.30R2) +R4 0.303 (1 − s2

2β) ,

• Cross-section of the Z into hadrons

1

ǫ2
· δσhad/σhad = 1.09 − 0.140 c4

φ + c2
φ (−0.948 − 0.183R2)

−1.05R2 − R4 0.0428 (1 − s2
2β) , (3.25)

where a kinematic correction to the Z → bb process [125] was included in the calculation
of σhad in the denominator of δσhad/σhad:

(
1 − 4m2

b

M2
Z

)1/2 [
gb

V

(
1 +

2m2
b

M2
Z

)
+ gb

A

(
1 − 4m2

b

M2
Z

)]
≃ 0.99. (3.26)

• W mass and total width

1

ǫ2
· δMW /MW = 0.719 − 1.44 c2

φ + 0.719 c4
φ (3.27)

−1.44R2 + 1.44 c2
φR

2 + 0.719R4(1 − s2
2β) ,

1

ǫ2
· δΓW /ΓW = 2.16 − 4.32 c2

φ + 2.16 c4
φ (3.28)

−4.32R2 + 4.32 c2
φR

2 + 2.16R4(1 − s2
2β) ,

• Atomic Parity Violation

1

ǫ2
· δQW (p)/QW (p) = 52.1 + 20.6 c4

φ − 73.7R2 (3.29)

+c2
φ 88.0 (1 −R2) +R4 21.6 (1 − s2

2β) ,

1

ǫ2
· δQW (n)/QW (n) = −1 +R4 (1 − s2

2β) . (3.30)

Together with the expressions in Appendix A, this set of expressions therefore gives the SM
and LR Model tree level contributions X tree

SM and X tree
LRM = O(ǫ2). The Standard Model XSM can

be considered up to the highest order known

XSM = X tree
SM + X radiative

SM . (3.31)

Finally, the expressions corrected by the LR Model are given by

53



X = XSM

(
1 +

X tree
LRM

X tree
SM︸ ︷︷ ︸

O(ǫ2)

)
+ O(ǫ4) , (3.32)

where corrections coming at order O(ǫ4) are not taken into account, and X radiative
SM X tree

LRM/X tree
SM

has negligible impact.

3.2 Direct searches for LR Model particles

There has been an intensive program to search for a W ′ coupling exclusively to right-handed
currents. One of the analysed decay channels is

W ′+ → tb̄ (3.33)

(or W ′− → bt̄), where the final hadronic pair is on-shell. The pair tb̄ then decays into ℓ+νbb̄
[126–128], where ℓ = e, µ, or qq̄bb̄ [129, 130]. Exclusion limits at 95 % are set on the mass of the
W ′ for the special case gR = gL, generally excluding masses below ∼ 2 TeV (or excluding large
values of gR, when gR 6= gL, for a given value of MW ′). In many of these analyses, it is assumed
that the right-handed neutrino is heavier than the W ′, and therefore the W ′ decays exclusively
hadronically. The analyses may also consider a V R matrix proportional to the identity 13×3 as
a simplification.

Another channel, interesting when right-handed neutrinos are allowed to be heavy, is

W ′ → ℓ1N → ℓ1ℓ2W
′∗ → ℓ1ℓ2qq̄ , (3.34)

where N is a right-handed neutrino. This channel, known as Keung-Senjanović [131], leads to a
same-sign pair of leptons in the final state, or in other words lepton number violation (however,
the actual analyses may consider both, same- and different-sign, final states). Following a series
of simplifications to guarantee the predictivity of the analysis, one is able to set lower bounds on
the mass of the W ′ of ∼ 3 TeV [132] (more generally, an exclusion region in the plan MW ′ ,MN is
quoted). Since the mass of the right-handed neutrino could be light as well, the decay W ′

L → ℓν,
where ν is a light neutrino, has also been considered, leading to similar bounds on the mass of
the W ′

L, of ∼ 2 TeV [133], and the more recent stronger lower bound of ∼ 4.74 TeV [134]. This
however corresponds to searches of a W ′

L which is interpreted as a heavier version of the W ,
coupling exclusively to left-handed currents (and excluding couplings to the SM bosons W,Z, h).

Lower bounds are also found from diboson resonance searches, such as
WW/WZ → ℓνjj [135]. In this respect, an excess observed in the invariant mass range
1.8 − 2.0 TeV [136] has triggered a relatively large number of theoretical studies, specially when
other excesses are considered simultaneously (such as an excess of eejj in the invariant mass
range ≈ 2.1 TeV), see e.g. [137] (for a W ′ interpretation), [138] (for a W ′, Z ′ interpretation)
and also [139, 140]. However, more recent experimental data from the Run-II of LHC have not
confirmed such excess, see e.g. [141].

We could still comment on other channels, such as W ′ → tb → ℓνjj [142], or W ′ → ttj [143].
Our point here, however, is that as a matter of fact LR Models have many parameters (gR, V R,
etc.) or realizations (with heavy or light Dirac and/or Majorana right-handed neutrinos, etc.)
and analyses usually consider particular cases. That being said, we consider that it is sufficient
for the analysis presented here to assume a strict lower bound of 2 TeV for the mass of the MW ′ .

Apart from searching for the W ′, Z ′ resonances are also intensively looked for in the channels
ℓℓ, ττ , bb, tt, etc. As for the W ′, many of these analyses consider the Sequential Standard Model
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Figure 3.1: (Left) Correlation among Ab
F B and ASLD

e in the LR Model showing a strong tension
between the two measurements (the SM fit has essentially the same p-value curve and is not
shown). (Right) Correlation among σhad and QW (Cs) in both SM and LR Model.

(SSM) picture [144], where new gauge bosons Z ′ and W ′
L are assumed to have couplings equal

to the ones in the SM. In the SSM, lower bounds of order 2 − 3 TeV are set on the mass of the
Z ′,1 while some less constraining limits also exist for LR Models, MZ′ & 1050 GeV [145] or even
higher MZ′ & 2 − 2.5 TeV [146]. In view of that, and due to the weaker impact on the analysis
of a lower limit for MZ′ (we remind the reader that in our version of the LR Model, the relation
MZ′ = MW ′/cφ holds), we do not include any a priori lower bound on the mass of the Z ′.

There has also been interest for the search of LR Model scalar particles, such as the doubly
charged scalar when triplets under SU(2)R instead of doublets are considered. In view of the very
strong bounds coming from indirect processes (that we will consider later on), direct searches
are not competitive yet (see Ref. [147] for future collider searches).

3.3 Results of the global fits

The set of observables we use in our fit is given in Table 3.1, and they were combined using
CKMfitter, as in Chapter 1. In our analysis, the parameter cφ is allowed to vary over the
range [0.1, 0.99], resulting from the perturbativity requirements g2

R/4π < 1 and g2
B−L/4π < 1

(symmetrically, cφ could be considered over the range [−0.99,−0.1], but the observables are not
sensitive to the sign of cφ). The ratio r = κ2/κ1 (where both VEVs are positive) can be taken
over the range [0, 1], otherwise we could redefine r as 1/r altogether with w/r → w, see Eqs. (3.6)-
(3.7). On the other hand, the range for w can be larger, and we consider w ∈ [0, 3]. Having
too large values for w would imply small κ1,2, which set the scale of the masses of the fermions:
w 6 3 is therefore required in order to avoid too large Yukawa couplings of the top-quark.

The value for χ2
min is 21.47, and for 19 d.o.f. we have the resulting p-value of ∼ 31 %, allowing

for a meaningful extraction of the physical parameters. One can consider the Standard Model
as a limit case of the LR Model for which ǫ → 0+, thus loosing all the dependences on the other
LR Model parameters, i.e. cφ, r, w. It then follows that the quantity χ2

min|SM −χ2
min|LRM is

1Experimental bounds are communicated in terms of production ratio times branching ratio, σ × B. It does
not look obvious, at least at this point, that a simple rescaling of B (equal to the ratio of the couplings in the
SSM and the LR Model frameworks) would be enough to reinterpret bounds derived in the SSM, in part because
the widths of the Z′ in both two cases are different.
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Figure 3.2: Correlation among ǫ and cφ in two situations: (Left) no constraint from MW ′ and
(Right) including this direct bound. Note the different scales in ǫ used in the two figures.

distributed as a χ2 with 1 degree of freedom. Therefore, the SM hypothesis in the context of the
LR Model has a pull of

pull =
√
χ2

min|SM −χ2
min|LRM = 0.88 σ , (3.35)

interpreted as a 0.88 σ deviation, which at this stage is not large enough for substituting the SM
hypothesis for the LR Model one.

The results for the best fit point and 68 % CL intervals are given in Table 3.1. As seen from
the predicted values of the different observables, the global fit of the LR Model is rather similar
to the SM one discussed in Section 1.2. One sees that the agreement with the experimental values
is improved for some observables (e.g. σhad,MW ) at the expense of others (e.g. Re,µ, QW (Cs)).
Note as well from the pulls shown in Table 3.1 that, similarly to the SM case, under the LR
Model hypothesis the experimental inputs for AF B(b, τ), ASLD

e and σhad show sizable tensions
with the underlying model, which are still left unexplained. Of course, different observables (and
their pulls) are correlated: for example, Figure 3.1 (Left) shows the correlation of AF B(b) and
ASLD

e , whereas Figure 3.1 (Right) shows the correlation of QW (Cs) and σhad in both SM and
LR Model fits, indicating the possibility of decreasing the tension in σhad at the cost of QW (Cs).

Moreover, one sees in Table 3.1 that the observables are not powerful enough to constrain cφ,
r and w independently at 1σ (a situation indicated by “flat” in that table). One also notes that
the true value of w is poorly constrained, w preferring the highest value possible we allow it to
have. This preference is also illustrated in Table 3.2 (note that in this table we have fixed MW ′

to 1.5 TeV, whereas in the rest of this chapter we have considered the lower bound of 2 TeV),
indicated by the smaller values of χ2

min one has for larger w. Moreover, when w = 0, gB−L

reaches its perturbativity limit, g2
B−L = 4π.

Though cφ, r, w are not all constrained at 1 σ, we can still have access to their correlations.
Figure 3.2 shows the correlation between cφ and ǫ in two different cases: (Left) without the
information about direct searches for W ′, and (Right) when bounds on the mass of W ′ from
direct searches are included. In the last case, as expected from

M̃2
W ′ ≃ α(MZ)π√

2GF (c2
θ)SM

1

s2
φǫ

2
≃
(

44.1 TeV

103

)2
1

s2
φǫ

2
(3.36)

(M2
W ′ and M̃2

W ′ differ by O(ǫ0) corrections, and we ignore the latter for the expression of M2
W ′),
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Observable input LRM fit (1 σ) pull

∆α
(5)
had - 0.02812+0.00085

−0.00107 -

MH [GeV] [18] [19] 125.7 ± 0.4 125.70 ± 0.40 0.81

mpole
top [GeV] [66] 173.34 ± 0.36 ± 0.67 174.03+0.36

−1.56 0.64

MZ [GeV] [12] 91.1876 ± 0.0021 91.1875 ± 0.0021 0.49

αs [58] 0.1185 ± 0 ± 0.0005 0.11900+0.00010
−0.00101 0.81

cφ [0.1, 0.99] 0.49/flat -

ǫ ≥ 0 0.025+0.033
−0.025 -

r [0, 1] 0.0075/flat -

w [0, 3] large, read text -

ΓZ [GeV] [12] 2.4952 ± 0.0023 2.49485+0.00082
−0.00096 0.47

σhad [nb] [12] 41.541 ± 0.037 41.5067+0.0083
−0.0333 1.78

Rb [12] 0.21629 ± 0.00066 0.215737+0.000067
−0.000031 0.60

Rc [12] 0.1721 ± 0.0030 0.172292+0.000030
−0.000077 0.13

Re [12] 20.804 ± 0.050 20.7356+0.0136
−0.0085 1.01

Rµ [12] 20.785 ± 0.033 20.7356+0.0136
−0.0085 1.35

Rτ [12] 20.764 ± 0.045 20.7826+0.0136
−0.0085 0.65

AF B(b) [12] 0.0992 ± 0.0016 0.10356+0.00081
−0.00080 2.87

AF B(c) [12] 0.0707 ± 0.0035 0.07401 ± 0.00062 0.60

AF B(e) [12] 0.0145 ± 0.0025 0.01637 ± 0.00025 0.29

AF B(µ) [12] 0.0169 ± 0.0013 0.01637 ± 0.00025 0.30

AF B(τ) [12] 0.0188 ± 0.0017 0.01637 ± 0.00025 1.42

Ab [12] 0.923 ± 0.020 0.93435+0.00046
−0.00017 0.40

Ac [12] 0.670 ± 0.027 0.66775+0.00077
−0.00053 0.16

ASLD
e [12] 0.1516 ± 0.0021 0.1478 ± 0.0011 2.20

Ae(Pτ ) [12] 0.1498 ± 0.0049 0.1478 ± 0.0011 0.43

ASLD
µ [12] 0.142 ± 0.015 0.1478 ± 0.0011 0.40

ASLD
τ [12] 0.136 ± 0.015 0.1478 ± 0.0011 0.82

Aτ (Pτ ) [12] 0.1439 ± 0.0043 0.1478 ± 0.0011 0.94

MW [GeV] [67] [68] 80.385 ± 0.015 ± 0.004 80.3718+0.0075
−0.0093 0.72

ΓW [GeV] [69] 2.085 ± 0.042 2.09170+0.00066
−0.00084 0.16

QW (Cs) [70] [71] −73.20 ± 0.35 −72.915+0.133
−0.070 0.89

QW (T l) [72] [73] −116.4 ± 3.6 −116.39+0.22
−0.12 0.00

M2
W ′ [TeV2] ≥ 4 TeV2 ≥ 4 TeV2 -

Table 3.1: Results for the LR Model global fit. We use the same inputs as for the SM fit, except
that we include bounds on the mass of W ′ coming from direct searches. The term “flat” referring
to the confidence intervals of cφ and r means that no bounds at 1σ are set (cφ = 0.49 and
r = 0.0075 refer to the best fit point). The definition of a pull is given in Eq. (1.50).
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Figure 3.3: Illustrative plot showing the impact of different constraints on the ǫ, cφ plane: the
dashed blue line is representative of the EWPO constraints; the solid lines correspond to MW ′ =
1 TeV (red) and MW ′ = 3 TeV (green), while the red and green dot-dashed lines correspond to
MZ′ = 1 TeV and MZ′ = 3 TeV, respectively; finally, the dot-dashed black lines come from the
(theoretical) requirements g2

R/4π < 1 ⇒ |cφ|. 0.99 and g2
B−L/4π < 1 ⇒ |cφ|& 0.1. The blue

region corresponds to the area satisfying simultaneously the representative EWPO constraints,
MW ′ > 3 TeV and 0.1 < |cφ|< 0.99.

w ǫ2 |cφ| χ2
min|SM −χ2

min|LR MZ′ [TeV] gR gL gB−L

0 0.88 0.11 0.01 13.1 0.36 0.65 3.57

1 1.04 0.40 0.99 3.77 0.39 0.65 0.90

2 1.43 0.63 2.07 2.4 0.46 0.65 0.56

Table 3.2: Best fit point results for two parameters of the EWPO fits, the Z ′ mass, the couplings
as well as the χ2

min for MW ′ = 1.5 TeV and w fixed as given by the first column. ǫ2 is in units
10−3. The fit prefers w > 0, though χ2

min does not change by large amounts (a less important
decrease of the χ2

min is seen for larger values of MW ′).

there is no allowed point in the phase space for high values of ǫ and fixed cφ, thus “killing
the tail” of the graph in the left. This is better illustrated in Figure 3.3, where the bounds
from direct searches for the W ′ boson (setting bounds on MW ′ ∝ 1/(sφǫ)) and EWPO in
the ǫ, cφ plane, together with representative limits on the mass of the Z ′ (which has the form
MZ′ = MW ′/cφ ∝ 1/(cφsφǫ)) boson and the requirements g2

R/4π, g
2
B−L/4π < 1 are shown.

3.4 Conclusions

We have considered over this chapter EWPO, which were parameterized in the SM in terms
of the mass of the top-quark, the SM-like Higgs mass, the Z boson mass and the couplings αs

and α. Their expressions are then corrected by the LR Model, giving contributions suppressed

by ǫ, which is the ratio of EW and LR symmetry breaking scales (
√
κ2

L + κ2
1 + κ2

2 and κR,

respectively). We have as well considered bounds on the mass of the W ′ boson coming from
direct searches, which are however not optimized for the most general case under consideration
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here.
We would like to summarize some results of the outcome of our analysis:

• The SM and the LR Model both lead to similar qualities of the global fit and similar
predictions for the EWPO,

• EWPO plus direct searches mainly set the bound ǫ . 0.04, while we do not have strong
constraints on the parameters w = κL/κ1, r = κ2/κ1 and gR introduced in the LR Model
framework,

• There is, however, an intriguing suggestion for κR ≫ κ1,2 ∼ κL, i.e. large w. The fact
that w, constrained to be essentially zero in the triplet LR Model, is pushed towards non-
vanishing values is an interesting feature of the doublet scenario, but it remains to be seen
if the other sectors of the theory agree with this tendency.

In what follows, we will discuss a further set of inputs, consisting in meson-mixing observables,
in order to further test the LR Models.
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Chapter 4

Overview of meson-mixing
observables

We now shift to a different class of observables, made of meson-mixing observables. As in the case
of EWPO, our goal here is to probe the possible structure of LR Models. The difference compared
to EWPO is that new parameters show up in the prediction of meson-mixing observables, thus
offering the opportunity to constrain them. The new parameters are the elements of the mixing-
matrix V R, which describe the couplings of the W ′ boson to quarks, and the masses of the
extended scalar sector.

In Section 4.1, we discuss the contributions to meson-mixing in LR Models, which are di-
agrams including W ′, H±,0 exchanges, beyond the WW box already found in the SM. Then,
reliable predictions of LR Model rates require the computation of short-distance QCD correc-
tions. Indeed, as we have seen in Chapter 1 in the SM these are important corrections, shifting
the individual contributions found in the SM framework by factors of 2, cf. Eqs. (1.81). Over the
Sections 4.2, 4.3, 4.4 we are going to introduce the basic elements necessary in order to discuss
these short-distance QCD corrections in two different approaches, Effective Field Theory (EFT)
and Method of Regions (MR), trying to be as general as possible in our description. Then, in
Section 4.5 we briefly compare both approaches in order to validate the MR, which is meant to be
an approximation to the more complete calculation done in the EFT approach. This calculation
is going to be considered in detail in the next chapter, dedicated to more technical elements.

4.1 Contributions to meson-mixing

Formally, from the Lagrangian L of the theory one builds all the possible contributions to the

meson-mixing amplitude from the generating Green’s function, 〈T exp

[
i

∫
d4xL(x)

]
〉|∆F |=2. Of

these, we aim at keeping the set of diagrams compatible with gauge invariance at first order in

β = M2
W /M2

W ′ = O(ǫ2) . (4.1)

Apart from the WW box already found in the SM, one important class of contributions includes
the exchange of a single W ′ in a box together with a W , which turns out not to be gauge invariant
by itself. The set of diagrams necessary for the gauge invariance of the WW ′ box includes loop
corrections of the Higgs self-energy and Higgs |∆F |= 1 coupling [148, 149]. The other classes
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of diagrams we consider consist of charged Higgs and tree level neutral Higgs exchanges, cf.
Figure 4.1.

4.1.1 SM

In the SM, the only contribution we have is shown in Figure 4.1 (a), where two W bosons are
exchanged and the internal flavours can be u, c, t. Of course, the full set of diagrams also includes
the exchange of the corresponding Goldstone boson G instead of W , i.e. WG and GG boxes. We
note that the set of boxes is gauge invariant by itself, and that it is finite (no renormalization is
needed at this stage). The final expression is found for instance in [92], and is given by

HSM =
G2

FM
2
W

4π2
QV LL

1

∑

U,V =u,c,t

λLL
U λLL

V (4.2)

× [(1 + xUxV /4)I2(xU , xV ) − 2xUxV I1(xU , xV )] + h.c.,

where the operator QV LL
1 is

QV LL
1 = d̄γµPLs · d̄γµPLs . (4.3)

The combinations of CKM matrix elements are given by

λAB
U = V A∗

Uq1
V B

Uq2
(4.4)

(q1,2 are the external flavours) and I1,2(xU , xV ) are the Inami-Lim functions [150]

I1(xU , xV ) =
xU log xU

(1 − xU )2(xU − xV )
+ (U ↔ V ) +

1

(1 − xU )(1 − xV )
,

I2(xU , xV ) =
x2

U log xU

(1 − xU )2(xU − xV )
+ (U ↔ V ) +

1

(1 − xU )(1 − xV )
. (4.5)

We further apply the unitarity of the CKM matrix, i.e.
∑

U=u,c,t

λLL
U = 0, to rewrite Eq. (4.2)

under a different form

HSM =
G2

FM
2
W

4π2

[
λLL

c λLL
c SLL(xc) (4.6)

+λLL
t λLL

t SLL(xt) + 2λLL
t λLL

c SLL(xc, xt)

]
QV LL

1 + h.c.,

where we have defined the following loop functions

SLL(xc) = xc + O(x2
c) , (4.7)

SLL(xt) = xt

(
1

4
+

9

4

1

1 − xt
− 3

2

1

(1 − xt)2

)
− 3

2

(
xt

1 − xt

)3

log xt ,

SLL(xc, xt) = −xc log xc + xcF (xt) + O(x2
c log xc) ,
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Figure 4.1: Figure (a): contribution already found in the SM. Figures (b)-(f): set of diagrams
giving the main new contributions to kaon mixing in Left-Right Models. The set (b), (c), (d)
and a contribution from (e), tree level neutral Higgs exchanges, forms a gauge invariant set of
diagrams. Another important class of new contributions includes charged Higgs exchanges in a
box, diagram (f). Instead of the neutral CP−even Higgs H0

i , i = 1, 2, we could consider as well
the CP−odd ones, A0

i , i = 1, 2. Diagrams where the W and W ′ are replaced by their respective
Goldstone bosons have also to be taken into account.
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with

F (xt) =
x2

t − 8xt + 4

4(1 − xt)2
log xt +

3

4

xt

(xt − 1)
. (4.8)

We refer to the above three contributions as charm-charm, top-top and charm-top, respec-
tively, which are proportional to λLL

U λLL
V , U, V = c, t. Note that, thanks to the unitarity of the

CKM matrix, O(log xc) in the charm-charm contribution vanishes, while due to the different
masses in the charm-top case this factor is present.

4.1.2 LR Models

We start by discussing the contributions from box diagrams. Due to the W,W ′ mixing, which
modifies the structure of theW coupling at order ǫ2 by the introduction of right-handed couplings,
we need in principle to reconsider the SM-like WW box, which is also present in the LR Model.
Moreover, since right-handed couplings are also present, we distinguish the following cases: zero,
one, two, three and four right-handed couplings. Each time there is a right-handed coupling, the
whole contribution gets suppressed by ǫ2, and the combination of a left-handed coupling with a
right-handed one implies a chiral flip of the intermediate up-type quark. Now, diagrams with an
odd number of chirality flips give no contribution when the momenta of the external quarks are
set to zero, since the integral on the loop momentum is odd. Therefore, we consider only the
left-handed coupling of the W , since the next contribution involving two right-handed couplings
is suppressed by ǫ4, thus implying that WW boxes in LR Models have the same expressions
found in the SM, Eqs. (4.6)-(4.7).

Apart from the WW box, we also have WW ′ boxes. The heavy character of the W ′ implies
that we need to consider only its right-handed coupling. The WW ′ box diagrams are usually
calculated in the ’t Hooft-Feynman gauge (ξW,W ′ = 1), see e.g. [48], and we have

A(box) =
G2

FM
2
W

4π2
2βh2〈QLR

2 〉
∑

U,V =u,c,t

λLR
U λRL

V

√
xUxV (4.9)

× [(4 + xUxV β)I1(xU , xV , β) − (1 + β)I2(xU , xV , β)] ,

where the operator QLR
2 is

QLR
2 = d̄PRs · d̄PLs . (4.10)

Note that this operator has a very different structure when compared to the SM operator, QV LL
1 .

In Eq. (4.9), gauge couplings are contained in h = gR/gL, and

I1(xU , xV , β) =
xU log xU

(1 − xU )(xU − xV )
+ (U ↔ V ) + O(β), (4.11)

I2(xU , xV , β) =
x2

U log xU

(1 − xU )(xU − xV )
+ (U ↔ V ) − log β + O(β)

(corrections in β are found for example in [48]). In the ’t Hooft-Feynman gauge, the contributions
to A(box) seen in the second line of Eq. (4.9) come from the four following diagrams:

• WW ′ ⇒ I1(xU , xV , β) term,
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• GW ′ ⇒ I2(xU , xV , β) term,

• WG′ ⇒ βI2(xU , xV , β) term, of higher order in β, and

• GG′ ⇒ xUxV βI1(xU , xV , β) term, also of higher order in β,

where G (G′) is the Goldstone boson associated to the light (heavy) gauge boson W (W ′).
The different handednesses of the main couplings of the W,W ′ imply chiral flips leading to

the overall mass term, seen in the first line of Eq. (4.9). Expanding A(box) in β = M2
W /M2

W ′ and
xc = m2

c/M
2
W one has

A(box) =
G2

FM
2
W

4π2
2βh2〈QLR

2 〉
[
λLR

c λRL
c S(box)(xc, xc, β) (4.12)

+ λLR
t λRL

t S(box)(xt, xt, β) + (λLR
c λRL

t + λLR
t λRL

c )S(box)(xc, xt, β)

]
,

where the loop functions are

S(box)(xc, xt, β) =
√
xcxt

[
xt − 4

xt − 1
log(xt) + log(β)

]
+ O(β, x3/2

c ) , (4.13)

S(box)(xt, xt, β) = xt

(
x2

t − 2xt + 4

(xt − 1)2
log(xt) +

xt − 4

xt − 1
+ log(β)

)
+ O(β) ,

(4.14)

S(box)(xc, xc, β) = xc (4 log(xc) + 4 + log(β)) + O(β, x2
c) . (4.15)

Note that due to the overall mass factors, xU , diagrams involving an up-quark are very much
suppressed and can be ignored.

It has been shown in [151] that the WW ′ box diagram in LR Models forms a gauge invariant
set only if neutral Higgs exchanges induce no FCNC at tree level. However, we have seen
that this is not the case in the class of LR Models we are considering, cf. Section 2.6.2. The
question of gauge invariance has been addressed in several papers [119, 148, 149, 151, 152], and
the required diagrams for gauge invariance are shown in Figure 4.1 (c, d, e). Note that, in
order to be consistent with the order of these four point Green’s functions, we should consider
the renormalization of the Higgs mass and couplings: for this reason, we consider the on-shell
subtractions as described in [148].

Below, we give the expressions of the vertex and self-energy diagrams in the ’t Hooft-Feynman
gauge. They depend on the Higgs mass through ωi = M2

W ′/M2
Hi

= O(1):

A(self) = −2β

2∑

i=1

F2
i ωih

2G
2
FM

2
W

4π2
〈QLR

2 〉SS(ωi)
∑

U,V =c,t

λLR
U λRL

V

√
xUxV , (4.16)

SS(ω) = −2 +
(1 − ω2)

ω
log

∣∣∣∣
1 − ω

ω

∣∣∣∣+ O(β) , (4.17)
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and

A(vertex) = −32β
2∑

i=1

Fiωih
2G

2
FM

2
W

4π2
〈QLR

2 〉SV (ωi)
∑

U,V =c,t

λLR
U λRL

V

√
xUxV , (4.18)

SV (ω) = −1 + (1 − ω) log

∣∣∣∣
1 − ω

ω

∣∣∣∣+ O(β1/2) . (4.19)

The above expressions include a CP−even and a CP−odd Higgs. Note that the mixed propagator
of a CP−even and a CP−odd Higgs gives no contribution, due to their real and pure imaginary
couplings, respectively.

The functions Fi = kFiGi correct the limiting case w → 0+, explicitly calculated in e.g. [37],
and are calculated from the corrections to the couplings of the scalar sector to the gauge bosons
(proportional to Fi) and quarks (proportional to Gi) when w 6= 0. Their expressions are given
by

F1 =
1

2(1 − r2)(1 + β(x)w2)(1 − δ2)

(
(−k2 + (k2 − 2(1 + ν(x)))X)(1 + δ2)

+2(1 + ν(x) + (r2 − β(x)w2(1 − r2) + ν(x))δ2)

)
(4.20)

while F2 = 1 − F1 is calculated from F1 by changing δ → 1/δ, where δ = MH2/MH1 is the ratio
of the mass of the scalars H2, A2 over the one of the scalars H1, A1. The other functions seen in
the expression of Fi are

X =

√
1 − 4δ2

(1 + δ2)2

(1 + r2) (1 + β(x)w2)

k2
,

β(x) = (1 + x2)/(1 + rx)2 , ν(x) = w2/(1 + rx) , (4.21)

k2 = 1 + r2 + w2 .

In the above expressions, we have indicated the dependence on the parameter x defined as
x = µ′

1/µ
′
2, which is the ratio of the two trilinear coupling constants seen in the scalar potential of

Eq. (2.35). Its origin here amounts to the diagonalization of the mass matrix in the scalar sector,
introducing eigenvectors whose coefficients in the original basis depend on x, thus introducing x
in the couplings of the physical scalar particles.

The remaining contribution necessary for gauge invariance comes from a tree level diagram,
cf. Figure 4.1 (e). It originates from the mixing between H0

1 and H0
2 , or between A0

1 and A0
2,

through WW ′ loops leading to a gauge dependence of the scalar couplings, just like the diagram
in Figure 4.1 (d) is not gauge invariant by itself. We give in the following expression both the
gauge independent (first line) and the gauge dependent (second line) contributions from the tree
level diagram in the ’t Hooft-Feynman gauge:

A(H0) =

(
−4GFβu√

2

k2

1 + r2

2∑

i=1

ωiG̃
2
i

+h2G
2
FM

2
W

2π2
βFr√

ω1ω2SS(
√
ω1ω2)

)
(4.22)

∑

U,V =c,t

λLR
U λRL

V

√
xUxV 〈QLR

2 〉 ,
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where u = (1 + r2)2/(1 − r2)2. In this expression, other operator structures such as s̄PLd · s̄PLd
or s̄PRd · s̄PRd come at a higher order in β and are neglected. The function Fr is defined as

Fr =

2∑

i=1

F2
i − 1, where Fi is found in Eq. (4.20). The second line of Eq. (4.22) combines in the

sum

A(box) + A(vertex) +A(self) +A(tree)|Fr , (4.23)

to form a gauge invariant expression. A discussion concerning gauge invariance in the general
case where w 6= 0 is found in reference [119].

The function G̃2
i seen in the gauge independent part is calculated from G̃2

i = (1 + r2)G2
i /u

where Gi corrects the couplings of the scalars to the quarks when w 6= 0. Its expression is given
by

G̃2
2 =

k2(1 − δ2(1 −
(
1 + 1/δ2

)
X)) − 2w2(1 − β(x)(1 + r2))

2(1 − δ2)(1 + r2)(1 + β(x)w2)
, (4.24)

while G̃2
1 is determined from the relation G̃2

1 = 1 − G̃2
2.

Apart from the contributions given in Eqs. (4.6), (4.12), (4.16), (4.18), (4.22), the last set of
diagrams, shown in Figure 4.1 (f) consists of boxes WH±

i and GH±
i , i = 1, 2, where H±

i is a
heavy, electrically charged Higgs which couples as G′, cf. Appendix E.1. As discussed in [152], it
alone does not form a gauge invariant set, but the other diagrams necessary for gauge invariance
(vertex and self-energy diagrams) contribute at a higher order in β in the ’t Hooft-Feynman
gauge. In this case, we have

H(H± box) =
G2

FM
2
W

4π2

k2

1 + r2
QLR

2

2∑

i=1

G̃2
i 2ωiβu(1 − β)

∑

U,V =u,c,t

λLR
U λRL

V

√
xUxV

× [−I2(xU , xV , ωiβ) + xUxV I1(xU , xV , ωiβ)] + h.c. , (4.25)

or, expanding in β and xc,

H(H± box) =
G2

FM
2
W

4π2

k2

1 + r2
QLR

2

2∑

i=1

G̃2
i 2ωiβu

∑

U,V =c,t

λLR
U λRL

V

√
xUxV S

H
LR(xU , xV , βωi) + h.c. , (4.26)

with

SH
LR(xc, xt, ωβ) =

(
xt

xt − 1
log(xt) + log(ωβ)

)
+ β · O(β, xc), (4.27)

SH
LR(xt, xt, ωβ) =

(
2xt

xt − 1
log(xt) − xt + log(ωβ)

)
+ O(β2), (4.28)

SH
LR(xc, xc, ωβ) = log(ωβ) + β · O(β, xc). (4.29)

When calculating the expressions above, we have considered only the mi
u term seen in the third

and sixth lines (involving the coupling ūi
Ld

j
RH

+
1,2) of Table E.6 in Appendix E. The mj

d terms seen
in the different lines of this same table do not contribute in the system of kaons. On the other
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hand, mi
u terms from the second and fourth lines (involving the coupling ūi

Rd
j
LH

+
1,2) provide

contributions similar to the WG and GG box diagrams found in the SM, i.e. contributions
proportional to λLL

U λLL
V QV LL

1 for (U, V ) ∈ {(t, t), (c, t), (t, c)}. Since these contributions do not
carry the same enhancements of the LR operators (i.e. the values of the short-distance QCD
corrections for tt and ct, and the chiral enhancement m2

K/(ms +md)2 seen in Eq. (6.11) below),
we will not further consider them in our analysis.

A last comment is in order. In all cases including physical scalars, when taking the limit
where w goes to zero the contributions from the particles H0

2 , A
0
2, H

±
2 go to zero and this scalar

sector decouples from the meson-mixing phenomenology. In such a case, the expressions given
above reduce to those found for example in [37].

4.1.3 Including short-distance QCD corrections in the LR Model

The expressions we have given above correspond to the main contributions up to higher order
corrections in β of the full LR Model. On top of that, we must consider QCD corrections,
which may shift considerably the individual contributions. These contributions are factorized
at a low-energy scale µh into short-distance and long-distance corrections, and the former are
calculated by perturbative methods while non-perturbative methods are able to take into account
hadronic effects in 〈K|QLR

2 |K̄〉(µh). Short-distance QCD corrections from the high energy scales
µW down to the low energy scale µh are collected into the η̄ parameters seen in the following
compact expressions: first, we have

〈H(W W ′)〉 =
G2

FM
2
W

4π2
8βh2〈QLR

2 〉(µh)
∑

U,V =c,t

η̄
(LR)
UV (µh)λLR

U λRL
V (4.30)

√
xUxV S

LR(xU , xV , β, ω) + h.c.,

with

SLR(xU , xV , β, ω) = S(box)(xU , xV , β)/(4
√
xUxV ) + F (ω1, ω2)/4, (4.31)

and

F (ω1, ω2) = −
2∑

i=1

Fiωi (FiSS(ωi) + 16 SV (ωi)) + Fr√
ω1ω2SS(

√
ω1ω2) , (4.32)

where in Eq. (4.30) we include the gauge dependent part of Eq. (4.22), necessary for canceling
the gauge dependence coming from Eqs. (4.12), (4.16), (4.18). Then, for the other contributions

〈H(H± box)〉 = 2ωβu
G2

FM
2
W

4π2
〈QLR

2 〉(µh)
∑

U,V =c,t

η̄
(H± box)
UV (µh)λLR

U λRL
V

√
xUxV S

H
LR(xU , xV , βω) + h.c. , (4.33)

〈H(H)〉 = −4GF√
2
uβω〈QLR

2 〉(µh)
∑

U,V =c,t

η̄
(H)
UV (µh)λLR

U λRL
V

√
xUxV + h.c. (4.34)

Above, the masses mU are understood to be calculated at mU , i.e. mU (mU ), U = u, c, t.
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In the rest of this chapter, we are going to discuss strategies for computing the η̄ in the LR
Model. Two approaches are going to be considered, the Effective Field Theory [45–47] and the
Method of Regions [43, 44, 48, 49]. After comparing them in the SM, where the differences will
be clearer, these methods are going to be employed in Chapter 5 for the LR Models.

4.2 EFT for meson-mixing in LR Models

Here we discuss the steps for building the effective theory valid at low energies describing meson-
mixing in LR Models, which will be important for the computation of short-distance corrections.
We are going to point out some particular features of LR Models, while a comprehensive discus-
sion of the SM case may be found in [92]. For definiteness, we orient our discussion to the kaon
system, but a similar discussion also applies in the system of B mesons.

4.2.1 Operator Product Expansion

The way to formalize an EFT includes an Operator Product Expansion (OPE) [89, 155]. Per-
forming an OPE amounts to factorizing short range physics in coupling constants, called Wilson
coefficients, and long distance physics corresponding to the dynamical degrees of freedom in-
cluding any dependence on the external states (supposedly light). This is particularly important
when discussing QCD corrections: one collects short-distance, perturbative effects in the Wilson
coefficients, while the QCD behaviour at long distances such as hadronization is factorized out
and treated at a different step, through appropriate non-perturbative methods.

In order to build an EFT, the first step is precisely to perform an OPE, keeping only those
operators which have the lowest power on the high energy scale M , i.e. we keep only the
leading power of 1/M2 (further corrections in the case of meson-mixing are discussed for example
in [153]). The usefulness of this procedure is to simplify the description of the problem by using
a limited set of operators. Indeed, in this way suppressed operators are not present from the
very beginning.

In few words, building an EFT amounts to defining a new (possibly non-renormalizable) field
theory below a certain energy scale µ called the matching scale: such a field theory collects
the effects of the heavy particles through coupling constants, the Wilson coefficients mentioned
above. Each time one builds an effective theory the most general set of operators up to a certain
order is taken, and their coefficients or coupling constants are defined by comparison with the
full theory.

4.2.2 Integrating out heavy particles

In LR Models, one disposes of the following spectrum of particles

H0,±
α , A0

α, W
′, W, t, b, c, s, u, d, (4.35)

where in our case α ∈ {1, 2}, but one can imagine a larger scalar content in other realizations of
LR Models. Note that there is a large spread of masses among these particles: W ′ for instance
is not expected to have a mass below a few TeV, cf. Chapter 3, while some of the fermions have
masses around a few GeV, or even below. Since some of them are so heavy compared to the
other particles, one can consider “integrating out” W ′, H or W [154, 156].

In the cases of W,W ′, the procedure of integrating out a massive gauge boson implies that the
longitudinal degree of freedom, i.e. the non-physical (would-be) Goldstone boson, is also absent
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in the effective theory. This is consistent with going to a unitary gauge and then integrating out
a particle of mass M whose propagator is

−i
k2 −M2

(
gµν − kµkν

M2

)
. (4.36)

Whenever the energy scale k2 is much inferior than the massM of the propagating vector particle,
one can perform the expansion

i

M2
gµν + O

(
k2

M2

)
, (4.37)

meaning that the propagating particle has no more dynamics. In this expansion, the O
(
k2

M2

)

terms correspond to infinitely many higher dimensional operators in the Fourier transformed
space.

4.2.3 Set of operators

Comparatively to W and t, the new scalar fields and the W ′ boson are much heavier. However,
we choose to integrate out all of them at the same energy scale, referred to as µW . We will
discuss more on this point at the end of Section 4.3. We note here that we keep only the lowest
order corrections in β, where β = M2

W /M2
W ′ , and we do not suppose that ωi = M2

W ′/M2
Hi

is
negligible. Below µW , the most general effective Lagrangian describing meson-mixing in LR
Models is given by

L(5)
eff = −4GF√

2
V2
∑

k

CkQk − 2G2
F V4

∑

l

C̃lQ̃l, (4.38)

where Vn indicates the number of powers on the mixing matrices, V L,R. Qk, Q̃l represent
local |∆F |= 1 and |∆F |= 2 operators, respectively, while Ck and C̃l are their corresponding
Wilson coefficients. The superscript in parenthesis, “(5)” in Eq. (4.38), indicates the number of
dynamical flavours. The sum over k above includes in addition to QLR

2 another LR operator
which will be relevant in our discussion afterwards, which is

QLR
1 = d̄γµPRs · d̄γµPLs . (4.39)

We now discuss the Q̃l operators. Due to chiral flips and Higgs couplings, the expressions in
the full theory are proportional to mU ×mV , U, V = u, c, t, and we do not need to worry about
the up-quark, whose mass is very small and thus set to zero. Therefore, in Eq. (4.38) above there
is no |∆F |= 1 operator with an up-quark, and we are left with charm internal flavours only in

the EFT. This is different from the SM effective Lagrangian, LSM (5)
eff , for which the up-quark is

present as uc, cu boxes.
Before further discussion, note that the W and W ′ couple to fermions proportionally to the

gauge couplings gL and gR, respectively, while this is not the case for the scalar sector. We
therefore deal with (1) the SM contributions, (2) the W W ′ box, vertex and self-energy, (3)
the W H± box, and (4) the tree level neutral Higgs exchange separately, which corresponds to
distinguishing different powers on gL, gR and respecting gauge invariance. Following the same
reasoning, we also distinguish the parts of the effective Lagrangian containing different powers
on λLR

c , i.e. we distinguish the three sectors cc, ct, tt. Let us inspect the operators we need in
each sector, after integrating out the top-quark, the gauge bosons W and W ′, and the scalars.
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Below the scale µW , we dispose of the light mass mc (the masses mt,MW,W ′,H are absorbed into
the Wilson coefficients):

tt We can have only local dimension 6, |∆F |= 2 operators QLR
1,2 .

cc Here, |∆F |= 1 local operators are present, and the dimension 8 operators m2
c Q

LR
1,2 are

needed in order to renormalize the contraction of two |∆F |= 1 operators, where m2
c appears

explicitly since it is related to the light spectrum. Indeed, the log(xc) contribution found
in Eq. (4.15) already indicates the need to include local operators in the EFT.

ct We have local dimension 7, |∆F |= 2 operators of the form mc Q
LR
1,2 (mc coming from the

matching of the LR Model onto the effective description).

Note that there is also the possibility of having |∆F |= 1 penguin operators coming from the
contraction of top propagators, and giving a contribution proportional to λLL

t , or λRR
t . They con-

tribute to the mixing of mesons when contracted with a current-current operator, d̄γµPLqq̄γµPLs
or d̄γµPRqq̄γµPRs, q = u, c, leading to terms proportional to λLL

t λRR
c , or λLL

c λRR
t . This does

not correspond to any of the above mentioned contributions, {tt, cc, ct}, and has not been taken
into account in the phenomenological analysis that will follow in Chapter 6: by analogy with the
SM where penguin operators imply a small effect of the order of 1 % [47], we do not expect a
large contribution in LR Models from penguin operators.

Also note that, we have widely ignored operators proportional to the light masses md,s so
far in the discussion of the effective theory. Accordingly, in the full theory we have neglected
corrections which go like m2

d,s/M
2
W , or in other words we have set the external momenta to zero,

which consistently corresponds to neglecting higher dimensional operators. (In fact, masses md,s

may appear, but for a different reason, as off-shell IR regulators.)

To continue, when going down in energy, one goes from L(5)
eff to L(4)

eff by integrating out the
bottom, thus changing the way the strong coupling αs evolves (and possibly having a different
set of penguin operators [47]). A further step in the EFT program is to consider the threshold

µc where the charm-quark is integrated out from the theory, through the definition of L(3)
eff , fully

described by a set of |∆F |= 2 local operators QLR
1,2 .

A comment concerning B systems is in order here: in the SM, due to the structure of the
CKM matrix and the masses of the up-type quarks, the tt contribution (proportional to m2

t ) is
largely dominant. In LR Models, however, ct contributions (proportional to mcmt) can also be
important, given the arbitrary structure of the mixing matrix V R.1 For completeness, we also
discuss the cc case, though this contribution is very suppressed even in non-manifest scenarios
for V R. In the ct and cc cases, one could formally follow a Heavy Quark Expansion, in which
the bottom-quark degree of freedom is decomposed into two pieces, one light and another one
heavy, based on a 1/mb expansion. Next, we would consider integrating out the heavy degree
of freedom, and neglecting the suppressed corrections which go as 1/mb, corresponding to new
operators that are usually neglected. In this way, the discussion concerning the operator basis in
the B case follows in exactly the same way the discussion made above for the system of kaons.

1Following this comment, note that one should as well compute contributions from H±
1,2 proportional to mbmt,

cf. the mj

d
couplings in Table E.6 in Appendix E, when general structures of V R are considered. However, in the

phenomenological analysis of Chapter 6 we consider the special case where V R = V L, for which both mcmt and
mbmt contributions can be neglected.
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4.3 Renormalization Group Equations

In the previous section, we have built effective theories by defining effective operators and cou-
plings at the energy scales µW or µc. These effective couplings, or Wilson coefficients, are not
directly observable. Indeed, they generally depend on the energy scale of the renormalization,
i.e. the scale at which we choose to subtract possible divergences, which is an arbitrary scale.
However, the Lagrangian of the theory, as physical observables, is independent of this choice
(there is in fact a residual dependence of the Lagrangian on this scale, which will be discussed
at the appropriate moment). This simple remark implies a very beautiful formalism through
the introduction of the Renormalization Group Equations (RGE), which tell us how to evolve
the couplings of the theory, or other blocks such as matrix elements, from one energy scale to
another.

At this moment, we discuss what the running means in practice. To pick an example, the
strong coupling αs ≡ 4π a is not an observable and depends on the energy scale µ at which we
probe its effects. Its running is given by the following RGE

da

d logµ

NLO
= −2β0a

2 − 2β1a
3. (4.40)

Given a reference scale µ1, the solution to Eq. (4.40) at a scale µ2 is

αs(µ2) =
αs(µ1)

v(µ2;µ1)

[
1 − β1

β0

αs(µ1)

4π

log v(µ2;µ1)

v(µ2;µ1)

]
, (4.41)

where

v(µ2;µ1) = 1 − β0
αs(µ1)

4π
log

(
µ2

1

µ2
2

)
, (4.42)

and, for the sake of clarity, we have ignored the thresholds at which a heavy quark flavour is
integrated out.

Consider now any coupling constant C (in the absence of mixing between operators). Its
running provides multiplicative contributions of the generic form

C(µ1)
LO
= C(µ2)

(
αs(µ1)

αs(µ2)

)d

, (4.43)

for a certain power d, which can be expanded as follows

(
αs(µ1)

αs(µ2)

)d

= vd(µ2;µ1) ·
[
1 − β1

β0

αs(µ1)

4π

log v(µ2;µ1)

v(µ2;µ1)

]−d

(4.44)

= 1 − γ(0)a(µ1) log

(
µ1

µ2

)
− γ(0) β1

β0
a2(µ1) log

(
µ1

µ2

)
+ . . . ,

where in the last line we have traded d by γ(0)/(2β0). Therefore, by evolving a mass from
µ2 to µ1, one collects factors of the form a(µ1) log (µ1/µ2), called Leading Order (LO), and
a2(µ1) log (µ1/µ2), called Next-to-Leading Order (NLO), etc.2

2To be consistent, at the NLO we should employ

C(µ1) = C(µ2)

(
1 +

αs(µ2)

4π
J

)(
αs(µ1)

αs(µ2)

)d (
1 − αs(µ1)

4π
J

)
, (4.45)
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The last Taylor expansion has a meaning only if the terms contained in the ellipsis are much
smaller than one. To further discuss this point, let us consider the example of the running of
masses and give some numerical values. First

γ(0)
m = 6CF , β0 =

11N − 2f

3
, β1 =

34

3
N2 − 10

3
Nf − 2CF f, CF =

N2 − 1

2N
, (4.46)

where f is the number of dynamical flavours, and N the number of colors. Then

β1/β0 ∼ 6, 5, 3, 1 for f = 3, 4, 5, 6 . (4.47)

For µ1 → mc and µ2 → MW one has

αs(mc) ≃ 0.3 and log(MW /mc) ≃ 4 . (4.48)

It is then clear that the Taylor expansion (for f = 3, 4, 5) made above cannot be justified, because
γ(0)

m a(µ1)|log(µ1/µ2)|∼ 0.8 is too large and does not allow for an expansion. This illustrates that
the solution to the RGE resums large logarithms to all orders in perturbation theory. Therefore,
RGE prove to be a very efficient, and even mandatory, way to improve perturbative calculations
in αs.

In this context, we discuss the issue of a unique energy scale for integrating out W,W ′, H0,±

and t. Alternatively, W ′, H could be integrated out at O(MW ′ ,MH), and we would be left with
a theory containing dynamical W bosons and top-quarks. At the end of the day, we would have a
resummation of αs(MW ) log β to all orders in perturbation theory when running the EFT defined
at O(MW ′ ,MH) down to O(MW ,mt). This then justifies the procedure of considering a single
scale µW for integrating out {W,W ′, H0,±, t}: these resummed factors are small in the interesting
phenomenological range of LR Models, namely MW ′ . 10 TeV, for which αs(MW ) log β/π . 0.3,
and therefore do not require such a precise calculation. Conversely, the need for precision in the
resummation of log β for large log β with an EFT between EW and LR scales gets damped by
an overall β suppression factor. (Similar comments would also apply to the logarithm log(βω),
provided the difference of masses of the W ′ and the extended Higgs sector is not too large.)
Note that, on the other hand, we cannot do the same for contributions which go like log xc, cf.
Eq. (4.7). This can be seen by the comparison between both resummations:

αs(mc)|log(xc)|/π αs(MW )|log(β)|/π
∼ 0.8 ∼ [0.2, 0.3]

showing that the resummation of αs(mc) log(xc) is mandatory, while higher orders in αs(MW ) log(β)
can be neglected in a first approximation (but will contribute to the error budget).

We consider now the counting of QCD corrections in the situation of having log(xc) in the
Wilson coefficient, a discussion that will be relevant in what will follow. As seen from Eq. (4.15),
the loop-function corresponding to the cc contribution contains a large logarithm log(xc). In this
case, when running from µW down to µc at LO we will have the overall factor log(µc/µW ) [47].
Therefore, when a large logarithm is present in the loop-functions we have the following counting:
factors of the form

log (µ1/µ2) × [a(µ1) log (µ1/µ2)]
n
, n ≥ 0 , (4.49)

where J corrects the running at the NLO. Note that the NLO running of αs was used even when the running of
C was considered up to the LO: we may say in this case that the calculation is done at the LO with αs improved
to the NLO.

72



are called LO, while

[a(µ1) log (µ1/µ2)]
n
, n ≥ 0 , (4.50)

are called NLO, and so on. Another interesting aspect of Eq. (4.15), combined with the re-
maining pieces necessary for gauge invariance, is the need to go beyond the LO for com-
puting short-distance corrections: as can be seen from Table 4.1, the non-logarithmic term

1+
log(β) + F (ω1, ω2)

4
may be large, thus indicating a sizeable correction coming from the NLO.

LO log(xc) ∼ −8.2

1

NLO
log(β)

4
∼ [−1.3,−2.4], for MW ′ ∈ [1, 10] TeV

F (ω1, ω2)

4
∼ [−0.9, 5], for ω1 ∈ [0.1, 1], w = 0

Table 4.1: Contributions from the charm-charm case: compared to the other factors from
Eq. (4.31), the factor log(xc) comes at LO, while the remaining terms come at the NLO. When
w = 0 as in the simplified case shown here, the function F (ω1, ω2) reduces to a function on ω1

only.

4.4 Method of Regions

Chronologically, before the EFT approach was used to calculate short-distance QCD corrections
for KK meson-mixing in [45], a way to estimate them was discussed in Refs. [43] and [44], by
employing a method we call Method of Regions (MR). The idea behind this method is to resum
potentially large logarithms of the form αs · log by using RGE, thus providing an estimate for the
short-distance QCD corrections. With the development of the EFT formalism, see [92], the MR
may be seen nowadays as an approximation to the complete calculation, made by a systematic
use of EFT, which employs RGE in effective descriptions of the full LR Model.

We now explain how the MR operates. Consider dressing the set of Electroweak one-loop
diagrams in Figure 4.1 with the exchange of a gluon in all possible ways. One of the resulting
two-loop diagrams is given in Figure 4.2. Based on this particular example, the prescription
given by the MR to estimate short-distance QCD corrections is the following:

• Fix the momentum k running in the EW loop. Then, consider the “two sides” of the
diagram separately, i.e. consider the contraction of two |∆F | = 1 diagrams, one of them
containing the exchange of a gluon.

• Determine the range of the momentum q of the gluon implying terms of the generic form
αs · log. In the present example, we have that the integration of q2 over the range [k2,M2

W ]
results in a term proportional to αs · log(k2/M2

W ).

• Over the last range, integrate out the W being exchanged, and identify the anomalous di-
mensions γ of the four-quark operators. Schematically, the running given by RGE of an op-
erator of anomalous dimension γ from M2

W to k2 results in a factor (αs(M2
W )/αs(k2))γ/2β0 .

It is precisely this factor that we aim at extracting from all the possible gluon exchanges.
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↓ k

ց q
s

d

d

s

|∆F | = 1

q →

Figure 4.2: Example of short-distance corrections to meson-mixing processes in the Method of
Regions. (Left) The momentum k running in the original loop is fixed, and one distinguishes
the relevant range of momenta of the gluon q giving αs · log(k2/M2

W ) factors. (Right) Over this
range, we integrate out the W boson and identify the relevant anomalous dimension necessary to
resum the potentially large αs · log(k2/M2

W ) contribution.

• It follows from the last step that the method can be applied if the relevant anomalous
dimensions are already known: in the example we have shown, only |∆F | = 1 are required,
but for other diagrams anomalous dimensions describing how |∆F | = 2 operators evolve
are also necessary.

• Finally, perform the integration over k2. The dominant range of k2 is determined from the
loop functions. One distinguishes two possible cases:

(a) the loop function is dominated by a single mass scale, m, for which k2 is replaced by
m2;

(b) the loop function is dominated by the range [m1,m2] coming from the logarithm

log(m1/m2), in which case one performs the average

∫ m2
1

m2
2

dk2

k2
αγ/2β0

s (k2).

The last step requires more precision. Generalizing Ref. [43] in case (b) at NLO, we define
the following averaging function

RNLO
log (γ, U, J ;m1,m2) = log−1 m

2
2

m2
1

(
αs(m1)

αs(µ)

)−γ

(4.51)

×
∫ m2

2

m2
1

dk2

k2

(
αs(k)

αs(µ)

)γ [
U +

αs(k)

4π
J

]
,

where U, J are related to the matching and renormalization of the |∆F | = 1, 2 operators and do
not depend on k, yielding for γ 6= 0, 1

RNLO
log (γ, U, J ;m1,m2) =

1

log(m2
2/m

2
1)

4π

β0αs(m1)
(4.52)

×
[

1

1 − γ

{(
αs(m2)

αs(m1)

)γ−1

− 1

}
U

+
αs(m1)

4π

1

γ

[
β1

β0
U − J

]{(
αs(m2)

αs(m1)

)γ

− 1

}]
.
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The function defined above includes contributions from the NLO proportional to the factor J ,
and from the running of the strong coupling constant at the NLO (term proportional to β1).
The case (a), where a single mass scale m1 dominates the integral, is a limit of case (b) and is
given by

RNLO
1 (γ, U, J ;m1,m2) = U +

αs(m1)

4π
J . (4.53)

When moving to the NLO, a feature not present in the original works, we employ the known
anomalous dimensions at the NLO (the factors in J), and in a full NLO computation matching
corrections at the NLO are also required. We would like now to point out a feature concerning
the extension of the MR to the NLO. In the cases of top-top and charm-charm contributions,
Eq. (4.7), LO and NLO short-distance corrections resum the following terms

(αs · log)n , αs · (αs · log)n , n ≥ 0 , (4.54)

respectively. In the charm-top case, however, there is a large logarithm in the loop function,
Eq. (4.7), resulting in the counting

log · (αs · log)n , (αs · log)n , n ≥ 0 . (4.55)

In this specific case, we extend the MR at NLO in the following way:

• at LO, only the factor log xc contributes, whose important range of momenta is k2 ∈
[m2

c ,M
2
W ], while

• at NLO there is a contribution coming from the anomalous dimension matrices at NLO,
namely the factors J in RNLO

log , and

• there is a second contribution at NLO proportional to the non-logarithmic factor F (xt)
seen in Eq. (4.8), whose important range of gluon momenta is given by k2 → m2

c (and
therefore it is multiplied by the averaging function R1 instead of Rlog).

4.5 Calculation of the short-distance QCD corrections in
the SM

We would like to check the validity of the MR in the SM where short-distance QCD corrections
were computed in the EFT approach [45–47, 93, 94]. Therefore, when moving to the LR Model
in the next chapter, we will know when this method gives good estimates of the EFT, and when
EFT is suitable instead in a more precise calculation.

In the SM, the short-distance corrections are summarized in the η parameters in the following
expression

HSM =
G2

FM
2
W

4π2

[
λLL

c λLL
c ηccS

LL(xc) (4.56)

+λLL
t λLL

t ηttS
LL(xt) + 2λLL

t λLL
c ηctS

LL(xc, xt)

]
b(µh)QV LL

1 + h.c.
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In this case, since one faces a unique operator QV LL
1 one usually factorizes out from the short-

distance QCD corrections the dependence on the hadronization scale, defining a scale-independent
quantity η related to η̄ by

η̄(µh) = ηb(µh) , (4.57)

where

b(µh) =

(
1 +

α
(3)
s (µ2

h)

4π
J

(3)
V

)(
α(3)

s (µ2
h)
)−d

(3)

V

. (4.58)

We now discuss the two ways to calculate η.

4.5.1 Method of Regions

We first discuss the relevant set of diagrams. In the SM, the set of box diagrams including
the W and its Goldstone forms a gauge invariant set. In the ’t Hooft-Feynman gauge, one may
distinguish the boxes WW , WG and GG, which are proportional to I2(xU , xV ), xUxV I1(xU , xV )
and xUxV I2(xU , xV ) respectively, cf. Eq. (4.5) (I1,2 are the Inami-Lim functions). Then, these
diagrams are dressed with gluons and identify the resulting two-loop diagrams contributing for
the short-distance QCD corrections.

In the charm-charm case, contributions given by the exchange of Goldstones come at higher
order in xc, and the loop function can be calculated simply by considering a WW box. Therefore,
the method of regions gives

ηcc =
∑

r,ℓ=±

[
Clow(k2)

(
a

V (W W )
r,ℓ +

α
(4)
s (k2)

4π

(
κr,ℓ log

(
k2

m2
c

)
+ βr,ℓ

))

︸ ︷︷ ︸
matching (4)

(4.59)

Cr
high(k2)Cℓ

high(k2)

]

×



(

1 +
α

(4)
s (m2

c)

4π
J (4)

m

)(
α

(4)
s (k2)

α
(4)
s (m2

c)

)d(4)
m
(

1 − α
(4)
s (k2)

4π
J (4)

m

)


2

︸ ︷︷ ︸
running (7)

,

Clow(k2) =
(
α(3)

s (µ2
4)
)d

(3)

V

(
1 − α

(3)
s (µ2

4)

4π
J

(3)
V

)

︸ ︷︷ ︸
running (6)

×



(

1 +
α

(4)
s (µ2

4)

4π
J

(4)
V

)(
α

(4)
s (k2)

α
(4)
s (µ2

4)

)d
(4)

V
(

1 − α
(4)
s (k2)

4π
J

(4)
V

)


︸ ︷︷ ︸
running (5)

, (4.60)
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Cr
high(k2) =
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1 +
α

(4)
s (k2)

4π
J (4)

r

)(
α

(4)
s (µ2

5)

α
(4)
s (k2)

)d(4)
r
(

1 − α
(4)
s (µ2
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4π
J (4)
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running (3)

×



(
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α

(5)
s (µ2
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4π
J (5)
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)(
α

(5)
s (µ2

W )

α
(5)
s (µ2

5)

)d(5)
r
(

1 − α
(5)
s (µ2

W )

4π
J (5)

r
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︸ ︷︷ ︸
running (2)

×
(

1 +
α

(5)
s (µ2

W )

4π
Br

)

︸ ︷︷ ︸
matching (1)

, r = ±, (4.61)

with k2 → m2
c and

a
V (W W )
r,ℓ =

1 + r + ℓ+ 3 · r · ℓ
4

,
∑

r,ℓ=±
a

V (W W )
r,ℓ = 1, (4.62)

κ++ = a
V (W W )
++ 3 (N − 1), κ+− = κ−+ = a

V (W W )
+− 3 (N + 1),

κ−− = a
V (W W )
−− 3 (N + 3), (4.63)

β++ = (1 −N)

(
N2 − 6

12N
π2 + 3

−N2 + 2N + 13

4N

)
, (4.64)

β+− = β−+ = (1 −N)

(−N2 + 2N − 2

12N
π2 +

3N2 + 13

4N

)
, (4.65)

β−− = (1 −N)

(
N2 − 4N + 2

12N
π2 − 3N2 + 10N + 13

4N

)
. (4.66)

Let us describe the many factors in the expression of ηcc, enumerated from one to seven above: (1)
is a NLO matching onto |∆F |= 1 operators at the scale µW , including the factor Br calculated
from [92]; (2) and (3) describe the running of |∆F |= 1 operators from the scale µ2

W down to the
scale µ2

5, and from the scale µ2
5 down to the scale k2, respectively; (4) describes the contraction of

two |∆F |= 1 operators resulting in a |∆F |= 2 operator, a
V (W W )
r,ℓ arriving at the LO and βrℓ, κrℓ

at the NLO, the latter calculated in [46]; (5) and (6) describe the running of the SM |∆F |= 2
operator from the scale k2 down to the scale µ2

4, and from the scale µ2
4 down to the scale µ2

h,
respectively; in (6), the dependence on µ2

h has been further factorized out into b(µh) defined in
Eq. (4.58); finally, (7) gives the running of the overall mass factor from k2 (coming from the
computation of the WW box diagram), to m2

c (note that since k2 is replaced by the relevant
scale m2

c , this factor reduces to 1). Factors which are proportional to the many J come at the
NLO, and are found in Appendix I.

In the top-top case, contributions where Goldstones are exchanged in the ’t Hooft-Feynman
gauge are not suppressed by xc as in the charm-charm case and must be considered. Note that
log xt ≃ 1.5 and therefore we do not apply in such a case the Rlog averaging. Considering the
three different contributions, WW,WG,GG, the short-distance QCD correction for the top-top
contribution to meson-mixing in the SM is given by
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ηtt =
(η

V (W W )
tt + η

V (GG)
tt x2

t /4)I2(xt, xt, 1) − η
V (W G)
tt 2x2

t I1(xt, xt, 1)

(1 + x2
t/4)I2(xt, xt, 1) − 2x2

t I1(xt, xt, 1)
, (4.67)

where we have

η
V (W W )
tt =

∑

r,ℓ=±

[
Clow(k2)a

V (W W )
r,ℓ Cr

high(k2)Cℓ
high(k2)

]
, k2 → m2

t , (4.68)

Clow(k2) =
(
α(3)

s (µ2
4)
)d

(3)

V

(
1 − α

(3)
s (µ2

4)

4π
J

(3)
V

)
(4.69)
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, r = ±, (4.70)

read as ηcc, and

η
V (W G)
tt =

∑

r=±

[
Clow(k2)

(
aV (W G)

r · −→
C high(k2)

)
Cr

high(k2)
]

(4.71)
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α
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s (µ2

W )

α
(5)
s (k2)

)−→
d
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(5)
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Ĵ (5)

)
−→
C 0,

where

aV (W G)
r =

(
−(1 +N · r) −(1 + r)

)
,

−→
C

T

0 =
(

0 −1/2
)
,
∑

r=±
aV (W G)

r · −→
C 0 = 1, (4.72)

and
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η
V (GG)
tt =

[
Clow(k2)

(−→
C

T

high(k2) · âV (GG) · −→
C high(k2)
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(4.73)
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âV (GG) = 4

(
N 1

1 1

)
,

−→
C

T

0 · âV (GG) · −→
C 0 = 1. (4.74)

The factors in η
V (W G)
tt and η

V (GG)
tt are analogous to those found in η

V (W W )
tt or ηcc. Note that

we include Br,ℓ corrections known from [92] for the matching of a |∆F | = 1 process with a W
dynamic onto an EFT where the W is integrated out (and the top is left dynamic), matching
onto a operator of the form γµPL ⊗ γµPL. Similar corrections onto PL ⊗PR operator structures
were not considered, which should be anyways small since they are suppressed by αs(µW ).

The discussion of the ηct short-distance QCD correction is different due to the log xc in its
loop function. The following equation follows the procedure described at the end of Section 4.4
(ignoring thresholds, resulting in an approximation better than 1 %)

ηct =
1

− logxc + F (xt)
αs(mc)dV

∑

r,ℓ=±
arℓ

(
αs(µW )

αs(mc)

)dℓ+dr

(4.75)

×
(

− log xc R
NLO
log

[
− dℓ − dr + dV + 2dm, urℓ, jrℓ;mc,MW

]
+ F (xt)

)
,

where
arℓ = [1 + r + ℓ+Nrℓ]/4 (4.76)

and the sum
∑

r,ℓ

runs over the possible contractions OεRεL
≡ T{QL

εR
, QL

εL
}, εR, εL = ±, where

the QL
ε operators are defined as

QL
ε = d̄γλPLq

′ · q̄γλPLs
(1̂ + ε˜̂1)

2
. (4.77)

These are multiplicatively renormalizable operators (neglecting penguin operators), where 1̂

denotes a color singlet structure and ˜̂
1 a color anti-singlet. The other factors seen in Eq. (4.75)

include the NLO corrections from matching and running, and are defined by

urℓ = 1 + 2
αs(mc)

4π
Jm − αs(µW )

4π
(Jℓ + Jr −Bℓ −Br),

jrℓ = Jℓ + Jr − JV − 2Jm , (4.78)

where the factors d, J,B are given in Appendix I.
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integrate out

t,W @ µW

full theory EFT: 5, 4, 3-quark theory

|∆F | = 2

QV LL
1

Figure 4.3: Top-top contribution and its EFT description. The full theory matches onto a single
local structure at µW where the top and the W boson are integrated out.

|∆F | = 1

EFT: 5, 4-quark theory

+
integrate out

the c @ µc

EFT: 3 quark theory

|∆F | = 2

QV LL
1

Figure 4.4: Possible diagrams and operators found in the EFT description of the charm-charm
and charm-top cases. Internal flavours include uu, uc, cu, cc (charm-charm case), or uu, uc, cu
(charm-top case). Note that there is one first EFT between µW and µc, described by two inser-
tions of |∆F | = 1 operators and possibly local |∆F | = 2 ones, and another one below µc described
by a single local operator.

4.5.2 EFT

The detailed discussion of the EFT approach can be found in [46, 47, 92]. Here, we comment on
its basic features. We start by discussing the simpler case, the top-top contribution represented
in Figure 4.3. In this case, the top-quark and the W boson are integrated out at a single scale
O(MW ,mt), and the matching of the full theory onto an EFT requires one single local operator
QV LL

1 . The anomalous dimension of this operator is calculated from its dressing with gluons.
Then, one is able to evolve the EFT from the scale of the matching down to the scale µh where
non-perturbative methods are applied to take into account hadronization effects, by calculating
the matrix element 〈QV LL

1 〉(µh).
Moving to the charm-top and charm-charm cases, we discuss both at the same time since

in both two cases the EFT built at µW where the top-quark and the W boson are integrated
out includes |∆F | = 1 operators, cf. Figure 4.4. Compared to the previous top-top case the
computation is a bit more involved because it requires to consider a different EFT below µc, the
scale where the charm-quark is integrated out.

There is an important simplification in the cc case compared to the ct one: thanks to the
GIM mechanism, there is no divergence introduced in the computation coming from the double
insertion of |∆F | = 1 operators, and therefore we do not need a |∆F | = 2 operator in the EFT
between µW and µc. On the other hand, due to the spread of masses of the top and the charm,
the GIM mechanism does not operate in the same way in the ct case (a difference already seen
from the log(xc) factor in its loop function), and local |∆F | = 2 operators are also present.
Moreover, penguin operators are also present in the charm-top case [47].
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SM ηtt ηct

Leading Order (αs · log(xc))n log xc · (αs · log(xc))n

Next-to-LO αs · (αs · log(xc))n (αs · log(xc))n

EFT (LO, NLO) 0.612 − 0.038 = 0.574 0.368 + 0.099 = 0.467

MR (LO, NLO) 0.591 − 0.010 = 0.581 0.345 − 0.011 = 0.334

Table 4.2: Numerical results: the first value corresponds to the LO, while the second one is the
correction from the NLO.

4.5.3 Comparison

A numerical comparison between the two methods, EFT and MR, is shown in Table 4.2. EFT
expressions are taken from Ref. [47], and the numerical results are obtained using the same
inputs found in there, namely mt(mt) = 167 GeV, mc(mc) = µc = 1.3 GeV, MW = 80 GeV,
Λ(4) = 0.310 GeV. The matchings onto the effective theories are performed at µb = 4.8 GeV,
whereas the high scale µW is chosen differently depending on the box considered: µW = 130
GeV when a t quark is involved in order to take into account the fact that in the EFT approach
the top quark and the W boson are integrated out at the same time (hence µW is an average
of the two masses), whereas µW = MW when only c and u quarks are involved and only the W
boson has to be integrated out in the diagram.

In Table 4.2, we do not show a numerical comparison for the charm-charm contribution be-
tween the two methods since they end up giving identical expressions once matching corrections,
originally calculated in the EFT framework [46], are considered in the MR calculation.

For the case of the top-top contribution, the small difference in the numerical values can be
traced back to a different treatment of the top in the MR. Indeed, the top is not integrated
out together with the W boson. Instead the method integrates out the W boson first and
resums short-distance corrections between µM ∼ O(MW ) and µt ∼ O(mt) with the RGE for the
anomalous dimension matrix of |∆F | = 1 operators [157]. Then, in the final step further (and
more important) short-distance QCD corrections are resummed from µt ∼ O(mt) down to µh,
with the RGE for the anomalous dimension matrix of |∆F | = 2 operators.

Note from Table 4.2 that at the LO (the first numerical values given in this same table)
there are differences smaller than 6 % for both cases, charm-top and top-top. However, when
moving to the NLO, a larger discrepancy of 30 % is seen in the former case. This can be partly
traced back to the presence of a large logarithm in the loop function in the charm-top case,
which requires to take into account the anomalous dimension matrix describing the mixing of
the local |∆F | = 2 operators with the double insertion of |∆F | = 1 operators, a feature missed
in our implementation of the MR.

4.6 Conclusion

We have given the expressions of the many diagrams contributing to meson-mixing in LR Models.
For a precise calculation of meson-mixing observables, we must take into account short-distance
QCD corrections, thus the need for calculating the η̄ parameters. They can be calculated by
two different approaches, Effective Field Theory and the less formal Method of Regions. Both
consider Renormalization Groups Equations, which are unavoidable for resuming perturbative
QCD corrections of the form αm

s · logn, where m,n depend on the order considered (LO, NLO,
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etc.). They have different philosophies though: the EFT approach builds a sequence of successive
effective theories, and is the reference method for considering the computation of the η̄ factors;
the MR inspects the possible diagrams and out of them determines the relevant factors αm

s · logn,
from known anomalous dimension matrices and matching corrections.
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Chapter 5

Short-distance QCD corrections
in Left-Right Models

Over this chapter we are going to employ the two methods discussed in the previous chapter
to calculate short-distance QCD corrections to meson-mixing. Over the literature, it is mostly
common to find in the context of LR Models calculations based on the Method of Regions.
Calculations made in the EFT approach can also be found [30], but they miss the effect of
diagrams at low energies where the charm is still dynamical.

On the other hand, calculations in the SM are known up to the NLO in the top-top case and
up to the NNLO in the charm-charm and charm-top cases within the EFT approach, showing a
slow convergence in the charm-charm case. Higher-orders may shift considerably the numerical
results and are important to control the size of the uncertainties one has from the residual
dependence on the matching scales. They are also important to cancel the scheme dependence
one has in the results of hadronic matrix elements calculated at low-energies by non-perturbative
methods. In order to derive solid bounds on the LR Model (independent of the doublet or triplet
specific realizations) structure when considering meson-mixing constraints, we therefore consider
the calculation of short-distance QCD corrections at NLO.

5.1 The MR in the LR Model

The short-distance QCD corrections effects have been addressed at LO in Ref. [48, 49] and are
collected into the η̄ parameters defined in the following expressions:

A(box) =
G2

FM
2
W

4π2
2βh2〈QLR

2 〉
∑

U,V =c,t

λLR
U λRL

V

√
xUxV (5.1)

× [4η̄
(W ′W )
2,UV I1(xU , xV , β) − η̄

(W ′G)
2,UV I2(xU , xV , β)] ,

A(self) = −2β

2∑

i=1

F2
i ωih

2G
2
FM

2
W

4π2
〈QLR

2 〉SS(ωi)
∑

U,V =c,t

η̄
(H)
2,UV λ

LR
U λRL

V

√
xUxV , (5.2)
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A(vertex) = −32β

2∑

i=1

Fiωih
2G

2
FM

2
W

4π2
〈QLR

2 〉SV (ωi)
∑

U,V =c,t

η̄
(H)
2,UV λ

LR
U λRL

V

√
xUxV , (5.3)

We also consider the short-distance corrections for the two other classes of contributions
described in Section 4.1: the box containing a charged Higgs

A(H± box) =
G2

FM
2
W

4π2

k2

1 + r2

2∑

i=1

G̃2
i 2ωiβu〈QLR

2 〉
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U,V =c,t
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U λRL

V

√
xUxV (5.4)

× [η̄
(HG)
2,UV xUxV I1(xU , xV , βH) − η̄

(HW )
2,UV I2(xU , xV , βH)] ,

and the tree level exchange of a neutral Higgs

A(H0) =

(
−4GFβu√

2

k2

1 + r2

2∑

i=1

ωiG̃
2
i

+h2G
2
FM

2
W

2π2
βFr√

ω1ω2SS(
√
ω1ω2)
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(5.5)

∑

U,V =c,t

η̄
(H)
2,UV λ

LR
U λRL

V

√
xUxV 〈QLR

2 〉 .

We have verified by an explicit inspection of the relevant range of internal momenta of the
one-loop diagrams that the self-energy, the vertex, and the tree level Higgs exchange receive all

the same short-distance corrections, indicated by η̄
(H)
2,UV .

Table 5.1 summarizes some features of MR when applied to LR Model box diagrams: we
indicate with a cross in the columns labeled as xc, xt, β the relevant energy scales, then in
columns ∼ and Range we show the dominant terms from the Inami-Lim functions (and therefore
the counting to be performed) and the corresponding range over which αs(k2) is considered. The
final integration over the momentum of the EW diagram k2 is performed accordingly to Rlog or
R1. The cases cc and ct proportional to xixjI1(xi, xj , β) lead to suppressed contributions given
the precision of the method, and are therefore not shown in Table 5.1. Masses coming from
the coupling with Goldstone or Higgs fields are taken at O(µW,W ′ , µH), while masses from the
propagator are calculated at k2.

Note that there is a large logarithm, log xc, in the charm-charm case. This large logarithm
comes from the WW ′ box in the ’t Hooft-Feynman gauge and we now discuss the corresponding
short-distance correction in detail (neglecting thresholds, which correspond to a small correction).
Compared to the SM case, we have in the LR Model more operators, QLR

1,2 , which mix in the

running. Therefore, we must calculate the two factors η̄
(W ′W )
a,UV , a = 1, 2, U and V denoting the

quarks in the loop with mU ≤ mV . In order to express the short-distance QCD correction, we
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ij xc xt β ∼ Range R

cc × log xc [mc, µW ] Rlog

I1(xi, xj , β) ct × O(1) mt R1

tt × O(1) mt R1

cc × log β [µW , µR,H ] Rlog

I2(xi, xj , β) ct × log β [µW , µR,H ] Rlog

tt × log β [µW , µR,H ] Rlog

xixjI1(xi, xj , β) tt × O(1) mt R1

Table 5.1: Characteristics relevant for the MR for each individual contribution. xi =
m2

i /M
2
W , β = M2

W /M2
W ′ . Contributions proportional to I1(xi, xj , β) or xixjI1(xi, xj , β) come

respectively from WW ′ and GH box diagrams, while a contribution proportional to I2(xi, xj , β)
comes from a W ′G or a WH box. GG′ come at a higher order in β and are thus not considered.

start by defining

ξ
(W ′W )
a,UV [R] =

∑

r,l=± ,i=1,2

(
αs(mV )

αs(µh)

)−dl−dr+di+dm
(
αs(mU )

αs(µh)

)−dm

×
(
αs(µW )

αs(µh)

)dl
(
αs(µR)

αs(µh)

)dr
[(

1 +
αs(µh)

4π
K̂

)
Ŵ

]

ai

×RNLO

(
− dl − dr + di + 2dm, (5.6)

[
Ŵ−1

(
1 − αs(µW )

4π
[Jl −Bl] − αs(µR)

4π
[Jr −Br]

+
αs(mU ) + αs(mV )

4π
Jm

)(
τrl

1

τrl
2

)]

i

,

[
Ŵ−1

(
−K̂ + Jl + Jr − 2Jm

)( τrl
1

τrl
2

)]

i

,mV , µW

)
,

with dl,r determined from the anomalous dimension matrices of the |∆F |= 1 current-current
operators, di from the corresponding |∆F |= 2 local operator, dm from the evolution of the
masses, Jl,r,i,m, K̂, Jm the respective terms from the anomalous dimension matrix at NLO, Ŵ
being a diagonalisation matrix needed for solving the RGE, and finally the values of the Wilson
coefficients coming from the matching between the bilocal operators T{QL

r , Q
R
l } and the local

|∆F |= 2 operators are proportional to

τrl
1 = τrl/4 , τrl

2 = 1/4 , τrl = −(r + l +Nrl)/2 . (5.7)

In Eq. (5.6) the index i indicates the individual contributions from the operators QLR
i at mV ,

while at the ending of the running they are indexed by a: as we have already commented on, the
two operators mix through running, and their mixing is described by the 2 × 2 matrices Ŵ and
K̂. Their expressions, together with the others needed in Eq. (5.6), are found in Appendix I.
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Similarly to the SM case for ηct for which the counting in Eq. (4.75) was considered, we finally
have the expression

η̄(W ′W )
a,cc =

1

1 + log xc

(
ξ(W ′W )

a,cc log(xc) +
∑

r,l=±,i=1,2

(
αs(mc)

αs(µh)

)−dl−dr+di

(5.8)

×
(
αs(µW )

αs(µh)

)dl
(
αs(µR)

αs(µh)

)dr

Ŵai

[
Ŵ−1

(
τrl

1

τrl
2

)]

i

)
.

For η̄
(W ′W )
a,ct and η̄

(W ′W )
a,tt , there are no large logarithms in the contribution from I1 in Eq. (4.11),

the integral is dominated by k2 = O(m2
V ) and we have

η̄
(W ′W )
a,ct = ξ

(W ′W )
a,ct [RNLO → RNLO

1 ], η̄
(W ′W )
a,tt = ξ

(W ′W )
a,tt [RNLO → RNLO

1 ], (5.9)

where RNLO should be replaced by RNLO
1 defined in Eq. (4.53) to express the fact that a single

scale dominates the loop momentum.
The next step is to compute GW ′ contributions. Note from Table 5.1 that they come with

the logarithm log β. Its size for phenomenological interesting values of β is not largely dominant
as for log xc. We have therefore considered resumming (in the way just described above) or not
this logarithm. As argued in Section 4.3, we do not expect large corrections coming from the
resumming of logβ, and we have indeed found a rather small modulation of the MR results

for the combined short-distance QCD corrections η̄(LR), η̄(H± box) in Eqs. (4.30), (4.33) when
resumming or not it. The analytical expressions are given in Appendix J, while the numerical
values are given in Tables 5.2 and 5.3. Note that we only give the value of η̄2,UV , the reason
being that the numerical values of η̄1,UV are very much suppressed and therefore irrelevant for

phenomenology. We further note that, for simplicity reasons, the numerical values for η̄
(HW )
2,UV in

Table 5.3 were calculated for the limiting case where w = 0 and therefore in the loop functions
found in those tables F (ω1, ω2) should be replaced by a function depending only on ω1, which

we have set to 0.1 and 0.8. In any case, the variation of η̄
(HW )
2,UV with ω1,2 is small compared to

the uncertainties we will attribute to the final values and will be therefore neglected.
A similar discussion applies for WH,GH and the tree level diagram. The final numerical

results will be discussed later in Section 5.3, together with the results for the EFT calculation in
the charm-charm case.

5.2 EFT calculation of the cc contribution in LR Models

In the SM case we have seen that a good comparison between the EFT approach and the MR
one happens when there is no large logarithm in the loop function, and when that was not the
case and a large log xc was present we have found a difference of 30 % in the ct case. This
is related to a more involved evolution of the relevant operators, because the double insertion
of effective |∆F | = 1 operators has divergences that are renormalized by local counterterms,
a feature missed in our implementation of the MR: in this case, we have not employed any
information concerning the anomalous dimension matrix γrℓ,a, r, ℓ = ± and a = 1, 2, governing
the mixing between double and single insertions of |∆F | = 1 and |∆F | = 2 operators. Note that
the presence of log xc in the full theory announces the need to consider local operators in the

renormalization of the effective theory: indeed, since log q2 + cnt =

∫
dq2

q2
, once the propagator
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η̄2,tt loop functions

WW ′ 4.65 + 0.99 = 5.64
4 log(xt)

(xt − 1)2
− 4

xt − 1

GW ′ 4.66 + 0.98 = 5.64
x2

t − 2xt

(xt − 1)2
log(xt) +

xt

xt − 1
+ log(β)

(tree), (vert), (self) 4.66 + 1.00 = 5.66 F (ω1, ω2)

WH 4.66 + 0.98 = 5.64 u · ω1

(
xt
xt + (xt − 2) log(xt) − 1

(xt − 1)2
+ log(βω1)

)

GH 4.66 + 1.00 = 5.66 u · ω1 · x2
t

−xt + log(xt) + 1

(xt − 1)2

η̄2,ct

WW ′ 2.42 + 0.27 = 2.69 −4 log(xt)

xt − 1

GW ′ 2.42 + 0.27 = 2.69
xt

xt − 1
log(xt) + log(β)

(tree), (vert), (self) 2.42 + 0.28 = 2.70 F (ω1, ω2)

WH 2.42 + 0.27 = 2.69 u · ω1

(
xc + xt

xt − 1
log(xt) + log(βω1)

)

GH - higher order

η̄2,cc

WW ′ 1.46 + 0.16 - 0.28 = 1.34 4 log(xc) + 4

GW ′ 1.26 + 0.01 = 1.27 log(β)

(tree), (vert), (self) 1.26 + 0.02 = 1.28 F (ω1, ω2)

WH 1.26 + 0.02 = 1.28 u · ω1 log(βω1)

GH - higher order

Table 5.2: MR values for the LR Model when log β is not resummed are indicated in the second
column: the first value indicates the LO, and the second one the NLO correction. For the WW ′

contribution to the charm-charm case, the second correction comes from the NLO related to the
log xc, while the third is the LO correction related to the remaining O(1) term. The different loop
functions, indicated in the last column, are calculated in the ’t Hooft-Feynman gauge. When not
indicated, the dependence on ω1 is negligible.
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η̄2,tt loop functions

WW ′ 4.68 + 0.96 = 5.64
4 log(xt)

(xt − 1)2
− 4

xt − 1

GW ′ 4.86 + 7.32 - 5.26 = 6.92
x2

t − 2xt

(xt − 1)2
log(xt) +

xt

xt − 1
+ log(β)

(tree), (vert), (self) 4.66 + 0.98 = 5.64 F (ω1, ω2)

WH,ω1 = 0.1 4.86 + 4.11 - 2.65 = 6.33 u · ω1

(
xt
xt + (xt − 2) log(xt) − 1

(xt − 1)2
+ log(βω1)

)

WH,ω1 = 0.8 4.84 + 6.70 - 4.76 = 6.79 -

GH 4.66 + 0.99 = 5.65 u · ω1 · x2
t

−xt + log(xt) + 1

(xt − 1)2

η̄2,ct

WW ′ 2.43 + 0.26 = 2.69 −4 log(xt)

xt − 1

GW ′ 2.52 + 1.91 - 1.51 = 2.92
xt

xt − 1
log(xt) + log(β)

(tree), (vert), (self) 2.42 + 0.27 = 2.69 F (ω1, ω2)

WH,ω1 = 0.1 2.53 + 1.17 - 0.86 = 2.83 u · ω1

(
xc + xt

xt − 1
log(xt) + log(βω1)

)

WH,ω1 = 0.8 2.52 + 1.77 - 1.40 = 2.89 -

GH - higher order

η̄2,cc

WW ′ 1.55 + 0.16 - 0.31 = 1.40 4 log(xc) + 4

GW ′ 1.31 - 0.02 = 1.29 log(β)

(tree), (vert), (self) 1.26 + 0.02 = 1.28 F (ω1, ω2)

WH,ω1 = 0.1 1.31 - 0.02 = 1.29 u · ω1 log(βω1)

WH,ω1 = 0.8 1.31 - 0.03 = 1.28 -

GH - higher order

Table 5.3: Same as Table 5.2, with the difference of resumming log β. The first numerical values
are the LO contributions while the second and possibly third are the NLO corrections.
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Matching at µW = O(MW ,MW ′ ,MH)

Wilson coefficients at µW : |∆F |= 1 Ref. [158, 159]

|∆F |= 2 calculated here

Running from µW to µc

Anomalous dimension matrix |∆F |= 1, 2 individually Ref. [160]

or tensor: |∆F |= 1, 2 mixing calculated here

Matching at µc = O(mc)

Wilson coefficients at µc: |∆F |= 2 calculated here

Running from µc to µh

Anomalous dimension matrix: |∆F |= 2 Ref. [160, 161]

Table 5.4: Full NLO calculation of η̄LR
cc . Note that the mixing of |∆F | = 1, 2 operators is

calculated here, while their individual running (|∆F | = 1 or |∆F | = 2 separately) is found
in [160].

of the W is replaced by
i

M2
W

one expects a worse control of divergences in the UV range.

A logarithm is also seen in the WW ′ box calculated in the ’t Hooft-Feynman gauge in the
charm-charm contribution seen in Eq. (4.15). We would like in this case to compute the short-
distance correction in the EFT approach and compare it with the MR result. To this effect, we
have already discussed the new energy scales MW ′ ,MH , which are expected to be found beyond
MW ,mt, and we have thus argued that we can integrate out the W,W ′, H, t at the same scale.
Then, in order to evolve the Wilson coefficients determined at µW down to µh, we need the
anomalous dimension matrices describing how the operators |∆F | = 1, 2 evolve without mixing,
already known from the literature, and how the operators of the class |∆F | = 2 mix with double
insertions of |∆F | = 1 operators, which we will determine. Table 5.4 summarizes the steps that
will lead to the calculation of η̄LR

cc .

5.2.1 Basic elements

The set of operators in the charm-charm case includes local |∆F | = 1 and |∆F | = 2 operators.
The effective Lagrangian is
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L(5)
eff (cc) = −4GF√

2
λLL

c

∑

i=±
CL

i

∑

j=±
Z−1

ij QL,bare
j

−4GF√
2
h2βλRR

c

∑

i=±
CR

i

∑

j=±
Z−1

ij QR,bare
j

−2G2
Fh

2βλLR
c λRL

c

2∑

b=1


 ∑

k,l=±
CL

k C
R
l Z̃

−1
kl,b +

2∑

a=1

Cr
aZ̃

−1
ab


 Q̃LR,bare

b

+unphysical operators, (5.10)

where Z, Z̃ are the renormalization matrices which absorb the divergences of the |∆F | = 1, 2
amplitudes of the bare Lagrangian [154] [47]

Z−1 = 1 +
αs

4π
Z−1,(1) + . . . , (5.11)

Z−1,(n) =
n∑

r=0

1

ǫr
Z−1,(n)

r , (5.12)

and similarly for Z̃.
Above, |∆F | = 1 operators seen in the first two lines involve the charm flavour only, and we

have the same coefficient for both at the matching scale µW , i.e. CL
i = CR

i ≡ Ci. Running
effects being generated by strong interactions, CL

i and CR
i evolve in the same way below µW .

In the third line of Eq. (5.10), the first term renormalizes the contraction of two |∆F | =
1 operators, while the second one is necessary in the matching to the full theory. For the
renormalization, two local operators have been introduced:

Q̃LR
1 =

m2
c

g2µ2ε
γL⊗ γR, and (5.13)

Q̃LR
2 =

m2
c

g2µ2ε
L⊗R , (5.14)

whose normalization is chosen so that the mixing with two |∆F | = 1 operators is treated on
the same footing as QCD radiative corrections and a common RGE framework can be applied
to discuss the mixing of all the operators. The notation γL ⊗ γR, and L ⊗ R avoids precising
the quark flavours, which are in a singlet structure under color, and the obvious contraction of
Lorentz indices.

The renormalization group equations describing the evolution of the Wilson coefficients are
(the details of their derivation are given in Appendix G):

∑

j

[
δjk µ

d

dµ
− γjk

]
Cj = 0, γjk ≡

∑

i

Z−1
ji µ

d

dµ
Zik. (5.15)

2∑

a=1

[
δac µ

d

dµ
− γ̃ac

]
Cr

a =
∑

k,l=±
CkClγkl,c, γ̃ac =

2∑

b=1

Z̃−1
ab µ

d

dµ
Z̃bc , (5.16)

and
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γµPR ⊗ γµPL →

γν

γν

Figure 5.1: The simplification of the Dirac algebra leads to Eq. (5.18), among other Lorentz
structures.

γkl,c ≡ −
2∑

b=1


 ∑

k′,l′=±
(γkk′δll′ + γll′δkk′ ) Z̃−1

k′l′,b + µ
d

dµ
Z̃−1

kl,b


 Z̃bc , (5.17)

describing the mixing of |∆F | = 1, 2 operators and calculated below. We now move to the fourth
line of Eq. (5.10), containing evanescent operators.

5.2.2 Evanescent operators

Apart the physical operators we have commented on above, we also need to include a set of
non-physical operators when considering dimensional regularization, a common feature of higher
order calculations. These are operators that vanish in D = 4 dimensions, but are present in
D 6= 4 in order to close the Dirac algebra. As an example of such an operator, we consider the
Dirac structure

γνγµPR ⊗ γνγµPL , (5.18)

that happens once dressing the operators QLR
1 (or Q̃LR

1 ) with gluons, see Figure 5.1. In four
dimensions, such a Dirac structure would simplify to 4PR ⊗ PL, but when D = 4 − 2ǫ we define
the following evanescent operator (EO)

E[QLR
1 ] = d̄γνγµPRs · d̄γνγµPLs− (4 + aǫ)d̄PRs · d̄PLs , (5.19)

where the constant a is arbitrary. When defining E[Q̃LR
1 ], the factor proportional to ǫ may be

chosen independently, in which case it is denoted with a tilde, i.e. ã. The choice we make for
the value of the constants a and ã makes part of the renormalization scheme and as so their
values must be mentioned when providing the final results. For the example given above, we
will choose a = ã = 4, which is the most common choice (related to Fierz identities, [154]). This
particular choice, and the ones for the other relevant evanescent operators, intend to match the
same choice made when calculating Lattice matrix elements by non-perturbative methods. We
do not give here the full set of EO we use: they can be found in Appendix H.

As shown in [162] [163], Wilson coefficients of evanescent operators are not relevant in the
matching because their matrix elements vanish in four dimensions under an appropriate choice of
their finite renormalization. Moreover, [164] have shown that, under certain appropriate choices
of EO and finite renormalization, EO do not mix into physical ones, and [165] have generalized
this statement showing that any choice can be made. However, these operators should not
be ignored, since the bare definitions of the EO are relevant for the evolution of the physical
operators into themselves in the calculation of the two-loop anomalous dimension matrix.
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D0

c

c

|∆F | = 1

+

Q̃LR
1,2

+ Evanescent ops.

Figure 5.2: Illustration of the set of operators required in the matching with the full theory.
Local |∆F | = 1 operators give origin to the diagram D0 represented in the left, which needs to be
renormalized by physical and unphysical operators.

5.2.3 EFT between µW and µc

Set of operators

We illustrate the need for local operators by calculating the diagram in the left of Figure 5.2,
referred to as D0. In the LR Model D0 diverges, thus introducing local counterterms of order
α0

s in the strong coupling. On the other hand, in the case of the SM for cc, there is no need
for local counterterms, thanks to the GIM mechanism: the D0 set of diagrams is finite after the
combination of internal flavours cc− uc− cu+ uu is taken.

The |∆F | = 1 operators are

QX
ε = d̄γλPXq

′ · q̄γλPXs
(1̂ + ε˜̂1)

2
, X = L,R , (5.20)

cf. Eq. (4.77). The calculation of the D0 diagram gives a kinematic structure proportional to

m2
c

(p2 −m2
c)2

(2DR⊗ L− γµ1γµ2R⊗ γµ1γµ2L) , D = 4 − 2ǫ , (5.21)

and a color factor given by
1

4

(
1̂ − 2τmn

˜̂
1
)

, with

τmn = −(m+ n+Nmn)/2 , m, n = ± . (5.22)

After integrating over the internal momentum pµ and a little bit of algebra the final result for
the diagram D0 reads

D0 = i
m2

c

16π2

1

ǫ

(
QLR

2 +QLR
1 τmn

−4ELR
1 τmn − 1

4
ELR

5 +
1

2
ELR

6

)

−i m
2
c

16π2

[
2 + log

(
m2

c

µ2

)] (
QLR

2 +QLR
1 τmn

)
, (5.23)

where the set of evanescent operators ELR
1,5,6 is

ELR
1 = d̄αPRs

β · d̄βPLs
α +QLR

1 /2, (5.24)

ELR
5 = d̄αγµ1γµ2PRs

α · d̄βγµ1γµ2PLs
β − (4 + aLR

2γ ǫ)Q
LR
2 , (5.25)

ELR
6 = d̄αγµ1γµ2PRs

β · d̄βγµ1γµ2PLs
α + (4 + aLR

2γ ǫ)Q
LR
1 /2, (5.26)
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where we take aLR
2γ = 4. We do not keep evanescent operators coming as ǫ0 ×ELR

1,5,6 in Eq. (5.23)
since they play no role in the physical effective Lagrangian defined atD = 4 dimensions. However,
evanescent operators that come as ǫ−1 × ELR

1,5,6 are necessary in the determination of the NLO
anomalous dimension matrices.

Following Eq. (5.23), we need to introduce in the effective Lagrangian counterterms propor-
tional to the operators

QLR
2 +QLR

1 τmn − 4λELR
1 τmn − 1

4
λELR

5 +
1

2
λELR

6 τmn , (5.27)

where λ is included in order to keep track of the evanescent operators, which will be needed when
discussing the calculation of the anomalous dimensions. On the other hand, the finite terms in
Eq. (5.23), necessary in the matching with the full theory, gives

〈Omn〉(0)(µ) =

[
2 + log

(
m2

c

µ2

)] 2∑

a=1

τmn
a

m2
c(µ)

4π2
〈QLR

a 〉(0)(µ)

=

2∑

a=1

rmn,a(µ)
m2

c(µ)

4π2
〈QLR

a 〉(0)(µ), (5.28)

where

τmn
1 =

τmn

4
, τmn

2 =
1

4
, (5.29)

and we have defined

rij,a(µc) =

[
2 + log

(
m2

c

µ2
c

)]
τ ij

a , a = 1, 2. (5.30)

Wilson coefficients at µW

To leading order in β and in xc, the complete calculation performed in the full theory gives
(quark masses are understood to be evaluated at µW )

H(W W ′) =
G2

FM
2
W

4π2
λLR

c λRL
c 2βh2xcQ

LR
2 (5.31)

[
4 log(m2

c/µ
2
W ) +

(
4 log(µ2

W /M2
W ) + 4 + f(W ′,H)

)]
+ h.c. ,

from Eqs. (4.31), where

f(W ′,H) = log(β) + F (ω1, ω2), (5.32)

that is going to show up repeatedly in the calculation.
In the EFT, one has Eq. (5.10)

H(5)
eff = 8G2

Fβh
2λLR

c λRL
c

( ∑

m,n=±
Cm(µW )Cn(µW )〈Omn〉(0)(µW )

+

2∑

a=1

Cr
a(µW )〈Q̃LR

a 〉(0)(µW )

)
, (5.33)
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+ . . .

Figure 5.3: Set of diagrams from the full theory at the order αs. They match onto NNLO
corrections to the Wilson coefficients, and therefore we do not need to consider them.

at order α0
s, including an overall normalization 8G2

Fβh
2λLR

c λRL
c factor for convenience. Therefore

Cr
2 (µW ) =

αs(µW )

4π

(
4 log(µ2

W /M2
W ) − 4 + f(W ′,H)

)
+ O(α2

s(µW )) ,

Cr
1 (µW ) = O(α2

s(µW )) . (5.34)

The initial conditions for the |∆F | = 1 Wilson coefficients are given by [158]

Cr(µW ) = 1 +
αs(µW )

4π

(
log

(
µW

MW

)
γ(0)

m + B2 + rB1

)
, r = ± , (5.35)

where B1,2 are given in Appendix I, which have the same values at µW since QCD is invariant
under parity.

The Wilson coefficients we have above are the ones necessary for a full NLO computation. It
is clear at this point that the diagram in Figure 5.3 matches at the next order in perturbation
theory, i.e. at the NNLO.

Anomalous dimension matrix at LO

The set of anomalous dimension matrices for |∆F | = 1, 2 without mixing is given in Appendix I.
Here, we derive the anomalous dimension tensor describing their mixing. The anomalous dimen-
sion tensor is calculated from the divergences calculated in Eq. (5.27). Writing the divergent
part given in Eq. (5.23) in the Q̃LR

a basis, one has

∑

m,n

(
−4

1

ǫ

)
τmn

a

m2
c

16π2
〈QLR

a 〉(0)(µW ) =
αs

4π

∑

m,n

(
−4

1

ǫ

)
τmn

a 〈Q̃LR
a 〉(0)(µW ) . (5.36)

We now have the following definition, cf. Appendix G

γ(0)
mn,a = 2

[
Z̃

−1,(1)
1

]
mn,a

, (5.37)

where Z̃
−1,(1)
1 has been introduced in the renormalized effective Lagrangian of Eq. (5.10), con-

taining the necessary counterterms. Therefore,

γ(0)
mn,a = −[2 × (−4 · τmn

a )] = 8 · τmn
a . (5.38)
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D1 D2 D3

D4 D5 D6

D7 D8

Figure 5.4: Diagrams Di, corresponding to the contributions at order αs from the double insertion
of |∆F | = 1 operators.

Anomalous dimension matrix at NLO

When going to the NLO, we need to dress the diagrams and operators in Figure 5.2 (including
evanescent operators) with one gluon in order to compute the anomalous dimension tensor at
this order. The full set of diagrams we have is given in Figures 5.4 and 5.5. Their divergent and
finite contributions can be computed with the help of Mathematica and TARCER [166],1 a
package of FeynCalc [167] [168] for the reduction of two-loop integrals, and using the integrals
from [169] or [170]. We use the MS scheme for extracting the divergences, where possible terms
log 4π and γE are absorbed into the definition of the integral in D dimensions. External momenta
are set to zero. At the same time, the IR divergences are controlled by external quark-masses
md,s, that are kept all long the calculations. We spare the reader from long intermediate results
of the different classes of diagrams, which can be found in Ref. [171].

Compared to the LO, new evanescent operators are present in the NLO. In our computation,
they appear when many Dirac matrices of one quark line are contracted with the second line:
for example, the insertion of γνγµPR · γνγµPL seen in the definition of E[QLR

1 ] in Eq. (5.19) in
the diagram seen in Figure 5.1 results in a structure with four Lorentz indices. Following this
same example, consider

ELR
7 = d̄αγµ1γµ2γµ3γµ4PRs

α · d̄βγµ1γµ2γµ3γµ4PLs
β −

(
(4 + aLR

2γ ǫ)
2 + bǫ

)
QLR

2 , (5.39)

where we indicate the further arbitrarity in the choice of the O(ǫ) term by the inclusion of the
parameter b. Similarly to Section 5.2.2, when considering the operators Q̃LR

a with a different

1See [172] for calculations in the ’t Hooft-Veltman scheme.
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normalization we replace b with b̃. The value of b for the same aLR
2γ = ãLR

2γ = 4 is b = b̃ = 96: we
consider these values because then Fierz transformations can be applied in D 6= 4 dimensions.

To determine the anomalous dimension tensor one computes γ
(1)
rℓ,a defined in

γ(1)
mn,a = 4



[
Z̃

−1,(2)
1

]
mn,a

+ β0

[
Z̃

−1,(1)
0

2

]

mn,a

−
2∑

b=1





[
Z̃

−1,(1)
0

2

]

mn,b

[
Z̃

−1,(1)
1

]
ba

+
[
Z̃

−1,(1)
1

]
mn,b

[
Z̃

−1,(1)
0

2

]

ba





−
∑

m′,n′=±

{([
Z

−1,(1)
0

2

]

mm′

δnn′ + δmm′

[
Z

−1,(1)
0

2

]

nn′

)[
Z̃

−1,(1)
1

]
m′n′,a

+
([
Z

−1,(1)
1

]
mm′

δnn′ + δmm′

[
Z

−1,(1)
1

]
nn′

)[ Z̃−1,(1)
0

2

]

m′n′,a






 , (5.40)

see Appendix G. In this expression, the finite renormalization constants Z0, Z̃0, which go with
an overall factor −1/2, absorb the contributions from evanescent operators which come as E/ǫ
(a precision is in order: the term proportional to β0 does not contribute when indices k, n

corresponding to physical operators are taken in [Z̃
−1,(1)
0 ]kn,1 or [Z̃

−1,(1)
0 ]kn,2, see Ref. [154]).

These same operators, namely E/ǫ, also contribute to Z̃
−1,(2)
1 in the computation of two-loop

diagrams, which by its turn is not suppressed by a factor 1/2. All in all, evanescent contributions
come suppressed by a factor 1/2.

One finally gets

γ
(1)
rl,i = −4hrl,i(1/2) , (5.41)

with

−hrl,1(λ) =
λ

32N

[
(b̃ − 96)

(
N2 − 2

)
βrl +

(
8(b̃− 48) − 6(b̃− 96)N2

)
τrl

+6N(b̃− 80)

]
− (b̃− 280)

(
N2 − 2

) βrl

64N

+
(
3b̃N2 − 4b̃− 152N2 + 48

) τrl

32N
+

1

32
(376 − 3b̃), (5.42)

−hrl,2(λ) =
λ

8N

(
3
(
b̃− 16

(
N2 + 4

))
+

(
48 − b̃

2

)
Nβrl +

(
b̃+ 96

)
Nτrl

)

+
1

16N
(−3b̃+ 72N2 + 304) + (b̃− 280)

βrl

32
−
(
b̃

8
+ 13

)
τrl

2
,

(5.43)

βrl = l+ r, where the contributions from the evanescent operators are indicated with a factor λ.
Therefore
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Figure 5.5: Diagrams Li, which correspond to the dressing of local |∆F | = 2 operators with
gluons.

γ
(1)
++,1 = −251

6
, γ

(1)
+−,1 = γ

(1)
−+,1 =

169

2
, γ

(1)
−−,1 = −355

6
,

γ
(1)
++,2 = −41

3
, γ

(1)
+−,1 = γ

(1)
−+,1 =

73

3
, γ

(1)
−−,1 =

223

3
. (5.44)

The above expression satisfies a series of checks: (1) we have performed our computations
in an arbitrary QCD gauge ξ, and no dependence on ξ is present in the final result (but it is
present in intermediate steps, see [171]); (2) similarly, we have regularized the IR divergences by
considering masses md,s for the external states, which are not seen in the final expressions (but
also present in the intermediate expressions, see [171]); (3) as shown in Ref. [165], the b̃ shown

above have no effect in the calculation of γ
(1)
rl,i, which is seen easily from Eqs. (5.42) and (5.43)

when λ = 1/2.

5.2.4 EFT below µc

At the energy scale µc we match the EFT defined above µc onto an EFT for which the charm
is integrated out. The Wilson coefficients of this new EFT are determined by comparing the
Green’s functions in the two EFT, which is summarized in the following equation

(
π

αs(µc)
Cr

a(µc)

︸ ︷︷ ︸
LO+NLO

+
∑

i,j=±





rij,a︸︷︷︸

NLO

+
αs

4π
Cop

a
︸ ︷︷ ︸
NNLO


CiCj


 (µc)

)
matching

= Fa(µc) , (5.45)

where the Wilson coefficients Cr
a , a = 1, 2 and Ci, i = ±, in the LHS are the Wilson coefficients

of the EFT defined between the two energy scales µW and µc, while the Wilson coefficients
Fa, a = 1, 2, correspond to the EFT defined below µc: this matching is illustrated in Figure 4.4
seen in the previous chapter in the context of the SM. Note that the factor π/αs(µc) seen above
comes from the normalization of the operators Q̃LR

1,2 (which is the reason why the same factor does
not multiply Fa(µc)). Also concerning this same normalisation factor, the LO term indicated
in Eq. (5.45) gives a factor proportional to log(µc/µW ), as it should, since the running of the
Wilson coefficient Cr results in a factor proportional to αs(µc) log(µc/µW ). We will see in a
while the values of the Wilson coefficients at µc, which are found from their evolution starting
from µW , where they are given by Eqs. (5.34) and (5.35).
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It was possible to check that the gauge-dependent terms as well as the terms involving small
quark masses ms and md are canceled at the matching scale µc for any choice of the coefficients
at order O(ǫ) in the definition of the evanescent operators. This provides additional powerful
checks of the calculation and shows that our results are indeed independent of the choice of the
QCD gauge and the infrared regularisation.

In addition, our results also provide an estimate of the size of NNLO corrections. Indeed, at
NNLO several new contributions appear, one of them coming from the O(αs) corrections to the
operators shown in Eq. (5.45) and proportional to Cop

a .
Its final expression is

8Cop
1 = log

(
m2

c

µ2

)[
11
(
N2 − 2

)
βrl

2N
−
(
N2 + 12

)
τrl

N
+ 5

]

+ log2

(
m2

c

µ2

)((
3

N
− 3N

2

)
βrl − 3Nτrl − 3

)

−3
(
N2 − 2

)
βrl

8N
+

(
95N

4
− 73

2N

)
τrl − 65

4
, (5.46)

8Cop
2 = log2

(
m2

c

µ2

)(
− 6

N
+ 3βrl − 6τrl

)

+ log

(
m2

c

µ2

)(
10

N
− 11βrl − 26τrl

)

+
11N

2
− 38

N
+

3βrl

4
− 51τrl

2
, (5.47)

which were calculated for aLR
2γ = ãLR

2γ = 4, b = b̃ = 96 and the other choices seen in Eq. (H.20) in
Appendix H.

In the 3-quark effective theory, the relevant anomalous dimension matrix γ̂LR describing the
evolution of the system {γL⊗γR,L⊗R} in the three-quark EFT are already known at the NLO
and are given by [160], and found in Appendix I.

5.2.5 Short-distance corrections in EFT

Combining Eq. (5.45) with the renormalisation equation for Cr
a , Ci, a = 1, 2 and i = ±, down

to the low scale µ below mc, we obtain the final result for η̄(LR)
a,cc at NLO in the EFT approach,

corresponding to the gauge-invariant combination of box, vertex and self-energy diagrams:

η̄(LR)
a,cc =

1

SLR(xc(µc), β, ω)
(5.48)

∑

j=1,2

(
(1 +

αs(µ)

4π
K [3]) exp

[
d[3] · log

αs(µc)

αs(µ)

]
(1 − αs(µc)

4π
K [3])

)

aj

Fj(µc) ,

with SLR(xc, β, ω) given by

SLR(xc, β, ω) = 1 + log(xc) +
1

4
f(W ′,H) , (5.49)

and
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Fa(µc) =
π

αs(µc)
Cr

a(µc) +
∑

r,l=±

(
rrl,a(µc) +

αs(µc)

4π
Cop

a (µc)

)
Cr(µc)Cl(µc),

rrl,a(µc) = (2 + log(m2
c/µ

2
c))τrl

a , a = 1, 2 , (5.50)

where the values of Cr
a(µc), Cr(µc) and Cl(µc) are given by



CrCl

Cr
1

Cr
2


 (µc) =

(
1 +

αs(µc)

4π
J̃ [4]

)
· exp

[
d̃[4] · log

αs(µb)

αs(µc)

]
(5.51)

·
(

1 +
αs(µb)

4π
(J̃ [5] − J̃ [4])

)

· exp

[
d̃[5] · log

αs(µW )

αs(µb)

]
·
(

1 − αs(µW )

4π
J̃ [5]

)
·



CrCl

Cr
1

Cr
2


 (µW ) ,

following the running formalized in Eqs. (5.15) and (5.16). In order to get an estimate of the
uncertainty due to neglected higher-order contributions, we have added in Eq. (5.50) the contri-
bution Cop

a which first appears at the next order. The Cr
1,2(µW ) are defined in Eq. (5.34) while

C±(µW ) is defined in Eq. (5.35).
Finally the matrices d̃ = d̃[f ], J̃ = J̃ [f ] and d = d[3], K = K [3] encode respectively the 6 × 6

anomalous dimension matrix γ̃ and the 2×2 one γ̂LR defined in Appendix G, with the additional
definition

d̃ =
(γ̃(0))T

2β0
, J̃ + [d̃, J̃ ] = − (γ̃(1))T

2β0
+
β1

β0
d̃ . (5.52)

Simplified expressions for Fa(µc) where effects from the five-flavour theory have been neglected
and which are extremely good approximations to the complete results read

F1 =
3

104

π

αs

(
2A−− − 39A+− − 26A++ + 63A1

)
(5.53)

−1

8

(
log

(
mc

2(µc)

µc
2

)
+ 2

)(
A−− − 6A+− + 5A++

)

+
1

4

(
−1761281

390000
A−− +

587029

220000
A+− +

16120889

1110000
A++ − 4789827

260000
A1 +

1737

296
A2

+A

(
A−−

(
−12

13
log

(
µW

MW

)
− 10181

16250

)
+A+−

(
9

2
log

(
µW

MW

)
+

39993

10000

)

+A++

(
−6 log

(
µW

MW

)
− 7031

2500

)
+A1

(
63

26
log

(
µW

MW

)
− 974889

1430000

)))
,
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F2 =
3

1924

π

αs

(
2590A−− − 481A+− − 182A++ + 777A1 − 2704A2

)

+
1

4

(
log

(
mc

2(µc)

µc
2

)
+ 2

)(
A−− + 2A+− +A++

)

+
1

4

(
−101273A−−

9750
+

3969529A+−

330000
+

6590729A++

555000
− 5219109A1

130000
+

21963A2

3700

+A

(
− 7

1625
A−−

(
15000 log

(
µW

MW

)
+ 10181

)
+A+−

(
3 log

(
µW

MW

)
+

13331

5000

)

− 7

46250

(
15000 log

(
µW

MW

)
+ 7031

)
A++

+A2

(
2 log

(
MW

MW ′

)
+ F (ω1, ω2) +

2600

37
log

(
µW

MW

)
+

1318747

22200

)

+A1

(
21

13
log

(
µW

MW

)
− 324963

715000

)))
, (5.54)

with

A =
αs(µW )

αs(µc)
, A1 =

(
αs(µW )

αs(µc)

) 2
25

, A2 =

(
αs(µW )

αs(µc)

)−1

,

A++ =

(
αs(µW )

αs(µc)

) 12
25

, A+− =

(
αs(µW )

αs(µc)

)− 6
25

, (5.55)

A−− =

(
αs(µW )

αs(µc)

)− 24
25

.

The value of η̄
(LR)
1,cc is negligible and the one of η̄(LR)

cc ≡ η̄
(LR)
2,cc at the scale µ = 1 GeV is

η̄(LR)
cc

∣∣∣
EF T

=
1

1 − 0.0294F (ω1, ω2)
[1.562 + (0.604 − 0.037F (ω1, ω2)) − 0.473] , (5.56)

where F (ω1, ω2) is defined in Eq. (4.32) and we have taken MW ′ = 1 TeV (for
MW ′ = O(1 − 10) TeV, the dependence on this parameter is very weak). The first and sec-
ond numerical values in the brackets are the LO and NLO contributions stemming from the
first term in Eq. (5.45) or (5.50), whereas the last term comes from the rrl,a term in the same
equation (the term Cop

a in Eq. (5.45) or (5.50) being of a higher order).
The dependence on the matching scales µW and µc is illustrated on Fig. 5.6. This shows

the strong dependence of the LO result on the matching scales and the much milder dependence
at NLO. This behaviour is similar to what is observed in the SM [46, 47, 92] and it constitutes
another significant check of our computation. In the case of the dependence on µc, the relevant
quantity is Nη̄cc with the normalisation factor given by

N = SLR(xc(µc), β, ω)/SLR(xc(mc), β, ω) , (5.57)

considering that SLR(xc(mc), β, ω) is the quantity multiplied by η̄(LR)
cc . We also show the depen-

dence on the choice of the hadronic scale µh in Fig. 5.7 for typical values between 1 < µh/GeV < 2
in the effective theory.
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Figure 5.6: Dependence of η̄cc on the high (left panel) and on the low (right panel) scale in the
EFT approach for MWR

= 1 TeV and respectively for µc = mc and µW = MW . The other
parameters are given in the text. The relevant quantity when µc 6= mc is Nη̄cc with N defined in
Eq. (5.57). We also consider the limiting case ω1 = 0.1 and w = 0.

5.3 Discussion of the results

We are now in a position to give our final results for the short-distance QCD corrections to
KK̄ mixing at NLO in LR Models. Adding up our results from the previous sections yields the
effective Hamiltonian:

H = HSM +
G2

FM
2
W

4π2
8βh2QLR

2

∑

U,V =c,t

λLR
U λRL

V η̄
(LR)
UV

√
xUxV S

LR(xU , xV , β, ω)

−4GF√
2
uβωQLR

2

∑

U,V =c,t

λLR
U λRL

V η̄
(H)
UV

√
xUxV

+
G2

FM
2
W

4π2
QLR

2

∑

U,V =c,t

λLR
U λRL

V η̄
(H±box)
UV SH

LR(xU , xV , βω) + h.c., (5.58)

where HSM is given in Eq. (4.56) and SLR in Eq. (4.31). In all cases, the value of η̄1,UV is
negligible, so that we will only consider η̄2,UV ≡ η̄UV .

In the MR approach we add the individual contributions of Eqs. (5.1), (5.2), (5.3) (given
in Tables 5.2 and 5.3) for the three diagrams 4.1(b), (c), (d) with the relevant weights and we
normalize the result to SLR(xU , xV , β, ω) in order to get the result in the appropriate form (the
same applies to the charged Higgs in the box which corresponds to the third line in Eq. (5.58)).

5.3.1 Short-range contributions for the cc box

Since we computed η̄(LR)
cc in both approaches, we can compare the EFT result with the MR

calculation. We get from Eq. (5.56) and the MR value at the scale µh = 1 GeV for ω1 = 0.1
(ω1 = 0.8) in the limiting case w = 0

η̄(LR)
cc

∣∣∣
EF T

= 1.41 + 0.67 − 0.43 = 1.65 (3.41 − 0.17 − 1.03 = 2.21) ,

(5.59)

η̄(LR)
cc

∣∣∣
MR

= 1.16 + 0.13 + 0.03 = 1.32 (2.46 + 0.27 − 1.32 = 1.41) .

(5.60)
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Figure 5.7: Dependence of η̄LR
cc on the hadronic scale µh in the EFT approach. We also consider

the limiting case ω1 = 0.1 and w = 0.

As in the SM case, we see that the central values from the MR are only in broad agreement
(around 30%) with the EFT approach in the presence of large logarithms, and in this sense
we could quote a 30% uncertainty in Eq. (5.60). Including this uncertainty in our result and
averaging with the values obtained with resummation of log β, we have

η̄(LR)
cc

∣∣∣
MR

= 1.35 ± 0.41 ± 0.08 (1.48 ± 0.44 ± 0.10), (5.61)

where the first uncertainty comes from the comparison of MR and EFT, and the second un-
certainty is obtained by considering the values obtained with and without the resummation of
log β.

The EFT NLO central value will be taken as our final result. At the scale µh = 1 GeV and
for ω1 = 0.1 (ω1 = 0.8) in the limiting case w = 0, we have:

η̄(LR)
cc = 1.65 ± 0.50 (2.21 ± 0.66) , (5.62)

where the conservative 30% error bar includes our estimate of higher-order terms, namely: the
contribution from Cop

a (which turns out to be very small), contributions from the expansion of
Eq. (5.48) up to NNLO, an estimate of the NNLO term assuming a geometrical growth from LO
to NLO, the arbitrariness in the choice of µW when integrating out the W and W ′ bosons to
match onto the four-flavour theory (we vary µW between the two high scales MW and MW ′), the
dependence on the choice of the matching scales for the matching onto the three-flavour theory.
Each of these uncertainties are of the order of a few percent. Furthermore we have not resummed
the contributions log β. This last uncertainty is clearly difficult to determine without an explicit
calculation, however this logarithm log β is multiplied by a suppressing factor αs(µW ), suggesting
that the uncertainty should be smaller than our conservative estimate of 30%.

5.3.2 Short-range contributions for the ct and tt boxes

The short-distance contributions from the ct and tt boxes in the MR are:

η̄
(LR)
ct = 2.74 ± 0.82 ± 0.05 (2.67 ± 0.80 ± 0.03) , (5.63)

η̄
(LR)
tt = 5.88 ± 1.76 ± 0.23 (5.55 ± 1.67 ± 0.11) , (5.64)

where the central value and the second uncertainty are obtained by considering the values ob-
tained with or without a resummation of logβ. The first uncertainty is a conservative 30%
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estimate of the uncertainty of the MR coming from our previous experience in the SM, in rela-
tion with the fact that the top quark is not treated on the same footing as other heavy degrees
of freedom in this approach. As indicated earlier, resumming or not log β yields a small uncer-
tainty of a few percent in both cases (as expected, since the potentially large logarithm log β is
multiplied by a suppressing factor αs(µW )).

5.3.3 Short-range contribution from neutral and charged Higgs ex-
change

The values of the QCD short-distance corrections for the box containing a charged heavy Higgs
(see Fig. 4.1) are

η̄
(H±box)
ct = 2.76 ± 0.83 ± 0.07 (2.79 ± 0.84 ± 0.10), (5.65)

η̄
(H±box)
tt = 5.85 ± 1.76 ± 0.20 (5.90 ± 1.77 ± 0.25), (5.66)

η̄(H±box)
cc = 1.29 ± 0.39 ± 0.01, (5.67)

where the first uncertainty corresponds to a conservative 30% uncertainty related to the MR
method,2 and the second uncertainty corresponds to an average of the results with and without
a resummation of log β. For the tree-level neutral Higgs exchange we have

η̄
(H)
ct = 2.70 ± 0.09, (5.68)

η̄
(H)
tt = 5.66 ± 0.30, (5.69)

η̄(H)
cc = 1.28 ± 0.04, (5.70)

where the quoted uncertainty assesses conservatively the neglected NLO corrections coming from
the matching at µH and the NNLO corrections based on a geometrical progression of the per-
turbative series.

5.3.4 Set of numerical values for different energy scales

Our results need to be combined with hadronic matrix elements calculated at the low energy
scale µh. In the literature, values for µh = 2 GeV and 3 GeV are found, and in Chapter 6 we
are going to combine our calculations at 3 GeV with bag parameters calculated at this same
scale. The numerical results of the short-distance QCD corrections at these scales are given in
Table 5.5.

5.4 B meson systems

Similarly to the kaon system, we can also calculate short-distance QCD corrections for the B
meson systems. As noted in Section 4.2.3, in the case where the right-handed mixing matrix
has an arbitrary structure, we must calculate the contributions related to the tt, ct and cc in
the LR Model. In the EFT calculation, we have considered integrating out the heavy degree of
freedom of the bottom at µb = O(mb) and neglecting operators which are suppressed by 1/mb.
Therefore, the only difference we have compared to the kaon system calculation is the value of
the low energy scale µh, which for the B meson systems is fixed at µb = 4.3 GeV. As expected,
similar dependences on the matching scales µW and µc are observed, while the dependence with

2Note that we provide only one η̄
(H±box)
cc since the dependence on ω1,2 is negligible.
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@ 2 GeV tt ct cc

η̄
(LR)
ij

3.42 − 1.05 F (ω1, ω2)

1 − 0.329F (ω1, ω2)

1.53 − 0.312 F (ω1, ω2)

1 − 0.207F (ω1, ω2)

0.968 − 0.0227 F (ω1, ω2)

1 − 0.0294 F (ω1, ω2)

±1.12 ±0.51 ±0.21 (EFT)

η̄
(H±box)
ij 3.29 ± 1.09 1.54 ± 0.51 0.72 ± 0.24

η̄
(H)
ij 3.19 ± 0.36 1.51 ± 0.36 0.71 ± 0.19

@ 3 GeV tt ct cc

η̄
(LR)
ij

2.80 − 0.862 F (ω1, ω2)

1 − 0.329F (ω1, ω2)

1.26 − 0.256 F (ω1, ω2)

1 − 0.207F (ω1, ω2)

0.803 − 0.0191 F (ω1, ω2)

1 − 0.0294 F (ω1, ω2)

±0.92 ±0.44 ±0.18 (EFT)

η̄
(H±box)
ij 2.71 ± 0.89 1.27 ± 0.42 0.59 ± 0.19

η̄
(H)
ij 2.61 ± 0.31 1.24 ± 0.23 0.58 ± 0.16

Table 5.5: Short-distance QCD corrections for the different classes of diagrams we consider:
diagrams containing the exchange of a pair WW ′ (indicated by the superscript LR), a pair WH
in a box diagram, and a neutral Higgs in a tree level diagram. In the last two lines we have
ignored the very small dependence compared to the uncertainties of the results on ωi. The function
F (ω1, ω2) in the first line is defined in Eq. (4.32).

µh is shown in Figure 5.8. The numerical results for the EFT and the MR calculations are given
in Table 5.6.

5.5 Conclusions

Over this section we have considered two methods for computing short-distance QCD corrections
at NLO for meson-mixing observables in LR Models. These are the Method of Regions, designed
to include the most important corrections by inspecting all possible diagrams dressed with gluons,
and the EFT approach, which builds effective descriptions of the full theory valid at low energies.

In the previous chapter, we have compared the two methods in the Standard Model where
EFT results are available from the literature, and have obtained similar results using the MR

4.2 4.4 4.6 4.8 5.0
μh(GeV)

0.67

0.68

0.69

0.70

0.71

ηcc
LR

Figure 5.8: Dependence of η̄cc with the hadronic scale for the system of B mesons.

104



tt ct cc

η̄
(LR)
ij

2.44 − 0.75 F (ω1, ω2)

1 − 0.329F (ω1, ω2)

1.10 − 0.221 F (ω1, ω2)

1 − 0.207F (ω1, ω2)

0.703 − 0.0169 F (ω1, ω2)

1 − 0.0294 F (ω1, ω2)

±0.80 ±0.35 ±0.21 (EFT)

η̄
(H±box)
ij 2.36 ± 0.80 1.12 ± 0.36 0.52 ± 0.18

η̄
(H)
ij 2.28 ± 0.31 1.07 ± 0.21 0.50 ± 0.16

Table 5.6: Short-distance QCD corrections at NLO for the LR contributions to B meson-mixing.
Flavour thresholds are taken into account. The η̄ are calculated at the hadronisation scale µh =
4.3 GeV with the other parameters as for the kaon system. In the last two lines we have ignored
the very small dependence compared to the uncertainties of the results on ωi. The function
F (ω1, ω2) in the first line is defined in Eq. (4.32).

except when large logarithms are present in the loop functions, i.e. log xc. In the SM, this is the
case for the charm-top contribution, requiring one to consider local |∆F | = 2 operators in the
effective theory defined at the energy scale where the W boson and the top are integrated out
in order to renormalize the divergences of the double insertion of |∆F | = 1 operators.

In the LR Model, we apply the same MR approach to compute short-distance QCD corrections
for the diagrams shown in Figure 4.1, namely the set of contributions box, vertex and self-energy
diagrams where a W ′ is exchanged, the box with a charged Higgs in place of the W ′ and a tree
level diagram where a neutral Higgs is exchanged. In the first set, containing a W ′, the loop
function of the charm-charm contribution has a large logarithm log xc, and since there may be
doubt concerning the MR result in this case, we have applied the EFT approach. This required
the computation of the anomalous dimension matrix at NLO describing the mixing of (double
insertions of) |∆F | = 1 operators and |∆F | = 2 operators. The other anomalous dimension
matrices and matchings at NLO are known from the literature. We have as well computed
a contribution coming at the NNLO in order to make a test of the good convergence of the
perturbative series.

The whole interest of these calculations is to derive more trustful bounds coming from meson-
mixing on the structure of LR Models, as for instance the scale of the masses of the W ′ and the
exchanged scalar sector. We now consider the phenomenology of LR Models based on meson-
mixing observables and the observables discussed in Chapter 3.
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Chapter 6

Global fits

We aim at having a clear picture of the doublet scenario of the LR Model based on experimental
data. As we have discussed in previous chapters, this class of extensions of the SM introduces new
energy scales κ1,2,L,R from the spontaneous breakdown of its gauge symmetries, parameterized

in terms of r = κ2/κ1, w = κL/κ1, ǫ =
√
κ2

1 + κ2
2 + κ2

L/κR, κR. Together with the right-handed

gauge coupling constant, rewritten in terms of cφ, this set of parameters describes LR Model
corrections at tree level to EWPO beyond the SM and the spectrum of masses of the new gauge
bosons.

EWPO and direct bounds on the mass of the W ′ were already considered in Chapter 3.
Here, we would like to integrate the information coming from meson-mixing in a global fit.
When considering meson-mixing observables, other parameters become relevant, which are the
right-handed mixing matrix V R, together with the masses of the neutral scalar sector, MH1 and
MH2 = δMH1 . There is also an extra parameter coming from the Higgs potential, x = µ′

1/µ
′
2,

appearing in the couplings of the scalars to fermions. The full set of parameters we have to
constrain is then

{r, w, ǫ, cφ, V
R,MH1 , δ, x} . (6.1)

This is the set of parameters we consider, and we will be particularly interested in extracting
lower bounds on the spectrum of LR particles. As a simplification, we consider here a particular
structure of V R, namely V R = V L, while more general structures will be considered in [119].

6.1 Meson-mixing observables

Observables from meson-mixing have been extensively studied in the context of LR Models
[28–37,173] (see also [174,175] for generic NP considerations), setting lower bounds of a few TeV
on the mass of the W ′, and pushing the scalar masses beyond O(10) TeV. These constraints were
obtained in the case w = 0, and we would like to revisit these constraints in the more general
case where w can be sizable, a possibility not allowed in the triplet case considered by these
analyses.

We are going to focus on the better known observables in the context of the SM, namely |ǫK |,
cf. for instance [176] for its status, and the mass differences ∆md,s. Other observables have also
been employed in the literature, such as the mass difference in the kaon system ∆mK , and the
direct CP violation quantity ǫ′

K/ǫK . Due to the uncertainties coming from the long-distance
effects in the prediction of these observables, we prefer at the moment to consider only the above
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mentioned observables which have a more solid status, though recent developments in ǫ′
K/ǫK

have been reported in [177]. Similarly, we consider premature to employ D mixing observables,
since theoretical uncertainties from the SM prediction limit a New Physics analysis.1

The experimental values are given by Ref. [78]

|ǫK | = (2.228 ± 0.011) · 10−3 , (6.2)

∆ms = (17.757 ± 0.021) ps−1 , (6.3)

∆md = (0.510 ± 0.003) ps−1 , (6.4)

and we now introduce their theoretical expressions. The expression for the indirect CP violation
ǫK is [54] [178] [179]

ǫK =
G2

FM
2
W

8
√

2π2∆mK

eiφǫ

[
κǫ Im{〈K̄|QV LL

1 |K〉(µh)b(µh)CSM }

+Im{〈K̄|QLR
2 |K〉(µh)CLR

2 (µh)}
]
, (6.5)

where CSM is read from Eq. (4.56) by dropping
G2

FM
2
W

4π2
QV LL

1 in that equation, and we focus

first in this contribution. It includes the short-distance QCD factors ηtt, ηct and ηcc, which
are scale independent: the scale dependence has been factorized out in b(µh), which combines
with 〈QV LL

1 〉(µh) to give a scale invariant quantity. The value of CSM is dominated by the
top-top contribution (∼ 2 ·10−7), but the charm-top and charm-charm ones have important sizes
(∼ 6 · 10−8 and ∼ (−3) · 10−8, respectively).

Above, κǫ corresponds to long-distance effects, whose value has been calculated in the SM
[180–182], thus giving

κǫ = 0.940 ± 0.013 ± 0.023 . (6.6)

Other long-distance effects are hidden in ∆mK , which is precisely measured from experiment to
be

∆mK = 3.48392 × 10−15 GeV . (6.7)

Finally, since we are going to use the information coming from the modulus of ǫK , the value of
φǫ is not relevant for our purposes.

Concerning the LR Model corrections seen in Eq. (6.5), They consist in

CLR
2 = ∆W W ′CLR

2 + ∆H±boxC
LR
2 + ∆HC

LR
2 , (6.8)

whose terms were introduced in Section (4.1.3):

H(X) =
G2

FM
2
W

4π2
QLR

2 ∆XC
LR
2 , (6.9)

1See, however, Ref. [183] for bounds on LR Models from DD̄ mixing.
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where X labels WW ′, H± box and H . We are going to discuss in a while 〈K̄|QV LL
1 |K〉 and

〈K̄|QLR
2 |K〉.

Shifting to the B meson systems, the mass differences are given by

∆MLR
q =

G2
FM

2
W

4π2

∣∣∣∣∣〈B̄q|QV LL
1 |Bq〉(µh)b(µh)CSM (6.10)

+〈B̄q|QLR
2 |Bq〉(µh)CLR

2 (µh)

∣∣∣∣∣ .

The expressions of CSM and the many contributions to CLR
2 can also be read from Eq. (4.56)

and Section 4.1.3, by replacing the mixing-matrix elements and short-distance QCD corrections
from the system of kaons to the system of mesons B. We further note that in the systems of B
mesons, the individual terms in the SM are largely dominated by the top-top contribution (at
least a factor 103 larger than the charm-top and charm-charm contributions).

Short-distance QCD corrections necessary in the calculation of the LR Model corrections to
ǫK and ∆md,s observables were calculated in Chapter 5 and can be read from Tables 5.5 and
5.6.

6.1.1 Bag parameters

Apart from short-distance QCD corrections, other theoretical inputs include quantities param-
eterizing long-distance QCD corrections, or hadronic effects, which we now describe. While in
the SM we find only the local operator QV LL

1 at low energy scales, LR Model requires a different
operator QLR

2 having a different chiral structure. This is the only new structure we need to
consider, since we have already argued that QLR

1 gives suppressed contributions.
Their matrix elements are related to the bag parameters BM

1,4(µh) as follows

〈M |Qi
a|M〉(µh) =

2

3
mMF 2

MP i
a(µh) , (6.11)

PV LL
1 (µh) = BM

1 (µh) , PLR
2 (µh) =

3

4

[(
mM

mq1 +mq2

)2

+
1

6

]
BM

4 (µh) ,

where the factor 1/6 is subleading and thus often neglected, and BM
1 (µh) and BM

4 (µh) combine
respectively with b(µh) and the various η̄UV , U, V = c, t, to give a scale invariant quantity. At
this point, note that there is a chiral enhancement of LR contributions to ǫK : indeed, m2

K/(ms +
md)2 ≃ 25, while the same enhancement is not shared with LR contributions to the B−meson
observables.

The values of B̂Bs
≡ Bs

1 , B̂Bs
/B̂Bd

≡ Bs
1/B

d
1 and B̂K ≡ BK

1 are given in Table 6.1. As
can be seen from Table 6.1 the lattice results for BK

4 for the three different collaborations show
sizable deviations. The SWME [40] and the preliminary RBC-UKQCD [39] ones which use the
intermediate RI-SMOM schemes are consistent with each other, but significantly different from
those using the intermediate RI-MOM scheme [38,184,185]. The source of discrepancy seems to
be the different intermediate renormalization scheme used to match from the matrix elements
to those in the continuum MS scheme, see [40], and more discussions can be found in [186].
Without further understanding of the source of uncertainty, it is premature then to consider
their average.
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Nf µh [GeV]

2+1+1 [38] 3 0.78(4)(3)

2+1 [39] 3 0.92(2)

BK
4 2+1 [40] 3 0.981(3)(62)

2+1 [184] 3 0.69(7)

2+1 [185] 3 0.76(3)

2 [185] 2 0.78(3)

2+1 [41] 4.18 1.040(75)(45)

Bd
4 2 [42] 4.29 0.95(4)(3)

quenched [187] 4.6 1.15(3)(+5
−7)

2+1 [41] 4.18 1.022(57)(34)

Bs
4 2 [42] 4.29 0.93(4)(1)

quenched [187] 4.6 1.16(2)(+5
−7)

Table 6.1: Values of the bag parameters B4 in the MS scheme for various numbers of dynamical
quarks. Various intermediate renormalization scheme are used to match from the matrix ele-
ments obtained on the lattice to the continuum ones. When two uncertainties are given, the first
corresponds to a statistical uncertainty and the second to a theoretical one. Note that among the
references given here only [38], [40] and [185] meet the required quality criteria of the last update
of the Flag working group [186] for K meson-mixing. In boldface, we indicate the values we use
in our analysis.

For definiteness, the results we show in the global fit take into account only the values
indicated in boldface numbers, except when otherwise stated. For BK

4 the value calculated
with 2 + 1 + 1 dynamical flavours on the lattice, Ref. [38] (but we will also comment on the
larger value given in Ref. [40]). The computation done by this reference considered the matrix
element of local, dimension 6 operators. Therefore, dimension eight operators where the charm
quark is exchanged in a loop, as in Figure 5.2, are not considered. In this way, we can employ
directly the short-distance QCD corrections η̄(LR)

cc |EF T that we have computed in an effective
theory described by local dimension 6 operators. The combination of the different values will be
considered in a more complete analysis [119].

6.2 Perturbativity of the potential parameters

We will consider in the global fit of LR Model parameters the impact of perturbativity bounds
on the Higgs potential parameters, which we now detail. The Higgs mass spectrum depends on
three parameters from the scalar potential

α34 = α3 − α4 , ρ = ρ3/2 − ρ1 , x = µ′
1/µ

′
2 , (6.12)

as seen from Appendix E. Conversely, we can express α34 and ρ as functions of the masses

ρ =
M2

H1

κ2
R

(
1 + δ2

)
(1 −X)

2 (1 + w2β(x))
> 0 (6.13)
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(one can verify that 0 6 X 6 1), and

α34

ρ
=

4ν(x)
(
x2
(
r2X − 1

)
+ r2 −X

)
+ 2

(
r2 − 1

)
(X + 1)(rx + 1)

(r2 + 1) (X − 1)(rx + 1)
, (6.14)

where X, ν(x), β(x) are found in Eqs. (4.21). Note that from the stability conditions of the
vacuum, Appendix D, ρ and µ′

2 are related by the following expression:

µ′
2/κR = −

√
2ρw

1 + rx
. (6.15)

One does not expect the parameters from the potential to be too large, otherwise one could
approach non-perturbative regimes. Perturbativity bounds then require α34, ρ, µ

′
1,2/κR to be

inferior than O(4π). Therefore, we assume in a first exploratory analysis

α34, µ
′
1,2/κR ∈ [−10, 10] , (6.16)

ρ ∈ [0, 10] . (6.17)

These requirements translate into bounds for MH1 , r and w through Eqs. (6.13), (6.14), (6.15).
Note that, Refs. [104, 188] have derived unitarity bounds relating the masses of the heavy

scalars and the new gauge bosons, based on vector boson scattering amplitudes. These bounds
were derived in the triplet case, under particular assumptions such as gL = gR. Therefore, they
do not directly apply in our case, and the translation into our case remains to be worked out [119].

6.3 Global fit

6.3.1 Inputs and ranges of definition

For completeness, we list the set of EWPO we use in the global fit:

M light
H , mpole

top , MZ , αs(MZ) , (6.18)

ΓZ , σhad ,

Rb,c,e,µ,τ ,

Ab,c,e,µ,τ
F B ,

Ab,c , ASLD
e,µ,τ , Ae,τ (Pτ ) ,

MW , ΓW ,

QW (Cs) , QW (T l) ,

whose inputs are found in Table 3.1. As indicated in the same table and discussed in Chapter 3,
we also take into account the following direct bound on the mass of the W ′ boson

MW ′ > 2 TeV . (6.19)

Together with meson-mixing observables ǫK ,∆md,s, this is the full set of observables we consider.
Concerning the ranges of definition of the parameters of the fit, as we have observed in

Section 2.2 we choose as a simplification the VEVs κ2, κL to be positive, by setting their complex
phases α, θL to 0 mod 2π. Therefore, we have allowed r to vary over the range [0, 1] like in
Chapter 3. On the other hand, w is allowed to be larger than one. Having values of w larger
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than one implies that the EWSB scale
√
κ2

1 + κ2
2 + κ2

L, up to ǫ2 corrections, is dominated by

κL. Now, once the mass of the top is given by κ1λ1 + κ2λ2, where λ1,2 come from the Yukawa
coupling matrices, suppressing κ1,2 may push λ1,2 to non-perturbative values. We have therefore
considered varying w over the rather conservative range [0, 3]. Therefore

r ∈ [0, 1] , w ∈ [0, 3] . (6.20)

We also include the perturbativity bounds on cφ derived from g2
R, g

2
B−L < 4π, thus implying

|cφ|∈ [0.1, 0.99] . (6.21)

Shifting to the scalar sector, particles are labeled in such a way that δ > 1, and MH1 , which is
the mass of the scalars H0

1 , A
0
1, H

±
1 (degenerate up to O(ǫ2) corrections), will be always smaller

than MH2 , the masses of H0
2 , A

0
2, H

±
2 (also degenerate up to O(ǫ2) corrections). Note that the

inclusion of the sector H0
2 , A

0
2, H

±
2 in the analysis of meson-mixing observables, which decouples

in the limiting case w = 0, is a novelty of the analysis shown in here.

6.3.2 Right-handed mixing matrix

We have argued in Section 2.7 that one may expect the structure of V R to be very different from
the structure of the left-handed mixing matrix V L. However, we study here the most simple and
constrained case where V R = V L. A more general analysis will be the object of future work,
where (semi-)leptonic decays will be integrated in the global fit in order to better constrain
different structures of V R [119].

The matrix V L is equal to the CKM matrix of the SM up to O(ǫ2) corrections. Therefore,
V L has the same hierarchical structure of the CKM matrix, and can be similarly parameterized
by Wolfestein parameters Ã, λ̃, ρ̃, η̃. Lacking of a more complete analysis, we are going to set the
Wolfenstein parameters to the ones found for the CKM matrix extracted in the SM framework.
Their values are given in Eq. (1.85), and in the following we allow Ã, λ̃, ρ̃, η̃ to vary over the 1×σ
intervals we have derived before for the CKM matrix, namely

Ã = 0.819 ± 0.010 , λ̃ = 0.22549 ± 0.00037 , (6.22)

˜̄ρ = 0.154 ± 0.009 , ˜̄η = 0.3535 ± 0.0075 ,

which were symmetrized compared to Eq. (1.85). (We have considered varying the sizes of the
intervals shown above without much effect on the results from the global fit.)

6.3.3 Results

We combine the observables using CKMfitter, employing the Rfit scheme for treating theoretical
uncertainties. The best fit point gives a χ2

min of 22.24 and a p-value of ∼ 27 %, for 19 degrees
of freedom (though some of the parameters are not constrained by the fit, and the real number
of degrees of freedom can be actually lower).

At the best fit point we have

cφ = 0.78 , ǫ = 0.0007 , r = 0.33 , w = 2.4 ,

MH1 = 1.3 · 103 TeV , δ = 1.2 , x = 0.19 , (6.23)

α34 = 4.6 , ρ = 2.5 , µ′
1 = −1.5 , µ′

2 = −7.7 .
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|ǫK |·103 ∆md (ps−1) ∆ms (ps−1)

SM: WW box 2.305 0.5102 17.764

WW ′ -0.021 −4 · 10−5 −0.001

WH box -0.002 −10−6 −10−4

H tree -0.054 -0.0002 -0.005

All 2.228 0.510 17.757

Table 6.2: Numerical impact of the different LR Model contributions to |ǫK | and ∆md,s at the
best fit point. Above, WW ′ refers to the full set of contributions which form a gauge invariant
set.

Table 6.2 shows the individual impacts coming from the different contributions discussed in
Chapter 4 at the best fit point. In all the cases, contributions to the SM are destructive. Note
that WH contributions are far too small at the best fit point, while the tree level diagram H
dominates, but WW ′ also gives sizable contributions.

We now discuss their confidence level intervals and correlations.

One-dimensional constraints

The outcome of the global fit does not show any preference at 1 σ for the values of the parameters
r, w, cφ, x, α34, ρ, µ

′
1,2. On the other hand, we derive the following bounds for MH1 , ǫ, δ at 68 %

CL (95 % CL)

MH1 > 28.1 TeV (26.6 TeV) , (6.24)

ǫ < 0.0131 (0.0135) , (6.25)

δ < 33.7 (34.8) . (6.26)

The upper bound on δ is due to perturbativity requirements of Section 6.2, which limit the scale
of MH2 = δMH1 compared to MH1 ,MW ′ .

Considering Ref. [40] instead of Ref. [38] for the value of BK
4 shifts the results for MH1,2 , 1/ǫ

upwards as expected due to the higher magnitude of B4
K obtained in [40]

MH1 > 31.5 TeV (30.1 TeV) , (6.27)

ǫ < 0.0116 (0.0120) , (6.28)

δ < 29.9 (30.2) . (6.29)

The individual bounds for ǫ and MH1 are indicated in Figure 6.1. Note that the constraint
from |ǫK | plays a particularly important role when added to the fit. Since only the imaginary
part of the LR contribution enters in the expression of |ǫK |, it will be certainly important to
reconsider the global fit if V R is allowed to be different from V L. In particular, in the case where
V R = (V L)∗ there is no contribution from the LR Model to |ǫK |, as discussed in [28]. Also
note that the constraint on MH1 is significantly stronger than the constraint found in literature
in Ref. [30], which is due to a non-manifest structure of the V R mixing-matrix in the latter
reference.

Based on the constraints from EWPO and meson-mixing, it is also possible to set stronger
bounds on the mass of the W ′ compared to Eq. (6.19):
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Figure 6.1: (Left) Impact on the LR Model parameter ǫ of EWPO, the bound on the mass of the
W ′ resulting from direct searches, and the meson-mixing observables ∆md,s and ǫK. The full set
of the constraints is indicated by the label “All.” (Right) Impact of ∆md,s and ǫK on the lower
bound of the Higgs mass MH1 .
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Figure 6.2: Indirect bounds on the masses of the W ′, Z ′ coming from EWPO and meson-mixing
observables (masses are squared).

MW ′ > 3.6 TeV (3.2 TeV) , and MZ′ > 7.5 TeV (7.2 TeV) (6.30)

at 68 % CL (95 % CL), cf. Figure 6.2, while for the value of BK
4 given in Ref. [40] we have

MW ′ > 4.0 TeV (3.7 TeV) , and MZ′ > 8.5 TeV (8.2 TeV) . (6.31)

Correlations among the parameters

In Figure 6.3 we show the effect of the different classes of constraints on the plan (ǫ,MH1). It is
therefore clear that the scenario V R = V L excludes a large region of the parameter space. Note
that there is some impact on the same plan (ǫ,MH1) from perturbativity bounds: in Figure 6.4
(Left), we consider a global fit without the effects of the bounds on α34, ρ and µ′

1,2/κR. Indeed,
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Figure 6.3: Correlation among ǫ =
√
κ2

1 + κ2
2 + κ2

L/κR and the Higgs mass MH1 .

α34 and µ′
2/κR are both proportional to M2

H1
× ǫ2, thus cutting off simultaneous large values of

MH1 and ǫ.
The effect of the size of the uncertainties coming from the short-distance QCD corrections

calculated in Chapter 5 is seen in Figure 6.4 (Right), showing a reduction of the allowed region for
smaller uncertainties when they are all divided by a factor of four. This therefore illustrates the
need for precise short-distance QCD correction calculations, thus further justifying the attention
we have dedicated to them in Chapters 4 and 5.

Though no bounds are set on r, w and cφ, we can still have access to their correlations.
In Figure 6.5 we show the correlation of ǫ with r, w. We see that larger values of ǫ require
smaller values of r. Then, in Figure 6.6 we show the correlation of MH1 with w. We see that
smaller values of MH1 require w small. Concerning correlations with cφ, we do not observe any
correlation in the plan (ǫ, cφ) or (MH1 , cφ), see Figure 6.7.

6.4 Conclusion

We have considered constraints on the parameters of the LR Models, including the masses
of the extended Higgs sector, based on EWPO, direct searches for the W ′ and meson-mixing
observables. We have studied here the simplest and most constrained possible structure of the
mixing matrix in the right-handed sector, namely V R = V L, called manifest scenario. We have
therefore derived the bounds seen in Eq. (6.24)-(6.31) in this specific case, showing that the
indirect bounds on the new gauge bosons and new scalars are stronger than the bounds from
collider physics.

We have not been able to constrain the other parameters of the LR Model. Therefore, the
precise way in which the LR gauge symmetries are broken still offers different pictures, claiming
for the inclusion of more observables. On the other hand, we were able to extract their correlations
with other quantities, thus concluding in particular that large values for r (w) do not favor large
(small) values for ǫ (MH1).
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Figure 6.4: (Left) The same fit as in Figure 6.3 is considered except that perturbative bounds on
α34, ρ and µ′

1,2/κR are not required. (Right) The errors of the short-distance QCD corrections
calculated in Chapter 5 are considered to be four times smaller.
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Figure 6.5: (Left) Correlation among ǫ and r. (Right) Correlation among ǫ and w.
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Figure 6.6: Correlation among MH1 and w.
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Figure 6.7: (Left) Correlation among cφ and ǫ. (Right) Correlation among cφ and MH1 . In both
two plots, the p-value surface has been calculated by considering 1 degree of freedom, since there
is essentially no correlation among the quantities, as the figures show.
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Chapter 7

Modeling theoretical
uncertainties

When dealing with experimental results, one is usually interested in extracting some information
about the underlying theory in charge of explaining them. From both experimental and theoreti-
cal sides, systematic or theoretical uncertainties may be present, which difficults a straightforward
comparison between experiment and theory. From a flavour perspective, the problem of dealing
with theoretical uncertainties is of central importance, since in the flavour global fit discussed in
Chapter 1 many observables suffer from large theoretical uncertainties.

Our goal here is to compare the properties of the Rfit approach, which we have employed in
Chapters 1, 3 and 6, and has shown good properties in the context of flavour physics [16, 50],
with other possible models of theoretical uncertainty. The Rfit scheme was developed to deal
with the vary large uncertainties one had when Lattice QCD results had not achieved the degree
of accuracy they have nowadays. At the present stage of development in particle physics, we
would like to know if other procedures offer interesting alternatives.

The problem of extracting the fundamental parameters of a model (given certain hypotheses)
is going to be discussed in detail in Section 7.2. After we make clear the way we understand on
general grounds the inference of the values of the fundamental parameters of a model, we move
to a more original discussion and include in Section 7.3 theoretical uncertainties. This class
of uncertainties does not fit straightforwardly in the framework and we will face the problem
concerning its interpretation. We will therefore propose different possibilities for modeling the-
oretical uncertainties: a common method called random approach, the Rfit scheme used by the
CKMfitter Collaboration, a method called external approach (close to what experimentalists do
when dealing with systematic uncertainties), and different nuisance approaches (fixed and adap-
tive ranges). Then, in Sections 7.4 and 7.5 we are going to discuss the problem of combining
many measurements under the perspective of these different approaches.

7.1 Statement of the problem

Given a model, such as the SM theory or a NP model, which is formulated in terms of a set of
fundamental parameters µ, suppose we are able to calculate an observable x as a function of µ,
x(µ). By “fundamental parameters,” we refer here to parameters which are free in the framework
of the model, and must have their values extracted from the observation of nature.

From the experimental side, we project then an apparatus able to probe the true value xt of
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the observable, i.e. its value in nature. Since repeating the same experiment twice may not imply
the same outcome, an experiment designed to measure xt may be thought of as a “generator” of
values of a random variable X

X ∼ g(X ;xt) , (“ ∼ ” means “distributed as”) (7.1)

where the probability of measuring X in the subspace S ⊆ U , U containing all possible values, is

∫

S
dX g(X ;xt) = P [X ∈ S|xt] , (7.2)

where g(X ;xt) is normalized so that

∫

U
dX g(X ;xt) = P [X ∈ U|xt] = 1. Interpreted in terms

of an underlying model, xt is a function of its true fundamental parameters µt, i.e. xt = x(µt),
and therefore we replace systematically g(X ;xt) → g(X ;µt).

Now, if the outcome of the experimental analysis gives X0, the following result is quoted

X0 ± σ , (7.3)

where σ is the precision or the accuracy of the measurement. However, this is not the full story:
the next step is to extract the values of the fundamental parameters µt. To this effect, based on
X0 ± σ we aim at extracting constraints on the value of µt.

7.2 Frequentist toolbox

We introduce in this section a set of concepts which will help us in the extraction of physical
parameters and in the comparison of different physical models. We intend to provide the minimal
elements necessary for the understanding of what follows: more complete discussions on the
subject are found in [189–193]. For the time being, we will not be concerned about theoretical
uncertainties: the way to include them in our statistical framework will be discussed later in
Section 7.3.

The first object we introduce is called test statistic, which is a positive definite function of the
experimental value X0, T (X0;µ). It is expected basically to, given the outcome X0 ±σ, indicate
whether it is in “good” or “bad” agreement with the hypothesis Hµ

Hµ : µt = µ (7.4)

of µt being given by µ: the larger the value of T (X0;µ), the worse the agreement of data with
Hµ. Seen as a function of the random variable X , it is a random variable itself whose distribution
is given by

h(T |Hµ) =

∫
dX δ[T − T (X ;µ)]g(X ;µ) . (7.5)

From the distribution h, one can compute the probability of finding a value of the test statistic
smaller than a given T (X0;µ)

P [T < T (X0;µ)] =

∫ T (X0;µ)

0

dT h(T |Hµ) , (7.6)
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and then

P [T < T (X0;µ)] =

∫
dX θ[T (X0;µ) − T (X ;µ)]g(X ;µ) , (7.7)

where θ[y] = 1, when y > 0, and θ[y] = 0, when y ≤ 0.
The criterion we use to distinguish a good from a bad agreement is based on the p-value

defined from the test statistic as

1 − p(X0;µ) = P [T < T (X0;µ)] , p(X0;µ) = P [T ≥ T (X0;µ)] , (7.8)

as we will see in detail in Section 7.2.1. Therefore, large values of p(X0;µ) tend to indicate that
the hypothesis Hµ is in good agreement with the data X0.

Seen as a function of X , the p-value follows the distribution

∫
dX δ[p− p(X ;µ)]g(X ;µ) , (7.9)

implying that the probability of having a p-value which is smaller than or equal to a given α is

(using δ(f(y)) =
∑

i

δ(y − yi)/|f ′(yi)| for a continuously differentiable function of roots yi)

P [p ≤ α|Hµ] = α , P [p > α|Hµ] = 1 − α , (7.10)

meaning that the distribution of the p-value is uniform, i.e. the distribution of values of p is flat
between 0 and 1.

7.2.1 Confidence intervals from the p-value

Before discussing the content of Eq. (7.10), we first define the notion of confidence level interval.
For the Gaussian example of Figure 7.1 (Left), we have considered a measurement X0 and calcu-
lated the curve of the p-value as a function of the numerical hypothesis x(µ) from Eq. (7.8). Then
we show in this figure the intervals over the space of values of x(µ) built from the requirement
p-value > 0.32, or p-value > 0.05, which correspond to Confidence Levels of 68 % and 95 %,
respectively.

The meaning and usefulness of this overall procedure becomes clear from Eq. (7.10). We
illustrate the property stated in Eq. (7.10) in the following way, simplifying the notation by

setting x(µ) to µ: consider generating a set of toy events {X(1)
0 , . . . , X

(n)
0 } respecting a certain

distribution g determined from a chosen µt (in practice both are unknown). This will imply a

set of p-values {p(X(1)
0 ;µ), . . . , p(X

(n)
0 ;µ)} determined from the same g. If µ is chosen so that

µ = µt, then for large enough n there will be a fraction α of the set of p-values p(X
(i)
0 ;µt) which

will be inferior than or equal to α.
Yet, we may state the previous paragraph in a different way. Consider building p-value curves

as a function of µ for each given X
(i)
0 . Pick a value 0 ≤ α ≤ 1 and consider the set of values of µ

for which p(X
(i)
0 ;µ) ≤ α. We call this set of the parameter space the exclusion interval Cα(X

(i)
0 ),

which depends on the value of α and on the realization X
(i)
0 . Then, what Eq. (7.10) tells us is

that for large enough n a fraction α of the sets Cα(X
(i)
0 ) will contain µt.

Finally then, we arrive to the following frequentist procedure to extract the value of µt:
consider that g correctly describes a certain outcome X0, and consider the p-value curve as a

function of µ. Then the complementary set of the interval Cα(X
(i)
0 ) has the 1 − α chance of

containing the true value µt, and we quote for, say 1 −α = 68 %, an interval which contains the
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Figure 7.1: (Left) p-value curves built out of a random variable modeling a measurement dis-
tributed normally. We show on top of the x(µ) axis the intervals determined for p = 0.32 for the
dashed-blue line, or p = 0.05 for the dashed-orange line. (Right) A α CL interval built from a
p-value with exact coverage has a probability of α of containing the true value. This is illustrated
in the simple case of a quantity which has a true value µt = 0 but is measured with an uncertainty
σ = 1.

true value µt with 68 % probability. This is the precise meaning of a 1 − α Confidence Level
(CL) interval in the frequentist sense.

Let us now discuss Figure 7.1 (Right) in detail to better clarify this discussion. Each time
a measurement is performed, it will yield a different value and thus a different p-value curve as
a function of the hypothesis tested µt = µ. We assume these measurements to be distributed
normally, leading to the shapes seen in the figure. From each measurementX0, a 68 % CL interval
can be determined by considering the part of the curve above the line p = 0.32, but this interval
may or may not contain the true value µt = 0. We show an example with ten measurements
in the figure: the curves corresponding to the first case (second case), (not) containing the true
value, are indicated with 6 green solid lines (4 blue dotted lines). Asymptotically, if the p-value
has exact coverage, 68 % of these confidence intervals will contain the true value.

Following what we have said above, we say that a set of hypotheses Hµ is excluded with 1−α
CL if they fall in the exclusion interval Cα(X0) of a given measurement X0: for a given α and

an outcome X0, the hypothesis Hµ is excluded at 1 − α CL if p(X0;µ) ≤ α.
If the property announced in Eq. (7.10) is satisfied, one says that the p-value has exact

coverage. p-values are meaningful tool only if they have good coverage properties, otherwise the
confidence intervals have not the interpretation we have stated in the previous paragraphs. By
“good” we mean exact coverage, Eq. (7.10), or slight over coverage if exact coverage cannot be
assured:

P [p ≤ α|Hµ] = α : exact, (7.11)

P [p ≤ α|Hµ] < α : conservative (overcoverage), (7.12)

P [p ≤ α|Hµ] > α : liberal/aggressive (undercoverage), (7.13)

which is a property dependent on the value of α.
In the case of over (under) coverage, the CL intervals tend to be broader (smaller). This is

reproduced, for example, by quoting an uncertainty σ in the pure statistical case bigger (smaller)
than necessary (and sufficient) for exact coverage.
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Figure 7.2: Illustration of the likelihood ratio discriminant, where the blue and orange functions
have Gaussian shapes (normalized to one). If a measure of x falls to the right of the dotted
purple line, chosen with the help of the Neyman-Pearson lemma, one may exclude the hypothesis
H0 ≡ Hµ0 in favour of the hypothesis H1 ≡ Hµ1 , which may lead to the exclusion of H0 when
it is true in α percent of the cases. Conversely, if a measure of x falls to the left of the dotted
purple line, one may exclude the hypothesis H1 when it is true in β (related to the power of the
method) percent of the cases.

7.2.2 Likelihood: comparison of hypotheses

We consider the following product of probability distribution functions (pdf), seen as a function
of the value of the fundamental parameters µ (non correlated case)

LX0 (µ) =
n∏

i=1

gi(X
(i)
0 ;µ) , (7.14)

called the Likelihood. This is an interesting object because the ratio of Likelihoods under different
hypotheses can be used to compare hypotheses as follows: if

LX0 (µ1)/LX0 (µ2) < tα (7.15)

for a given tα then we exclude the hypothesis Hµ1 , called null hypothesis, in favour of the
hypothesis Hµ2 . It can be shown (Neyman-Pearson lemma, see Ref. [194]) that among the
possible exclusion tests which suffer from an error α of excluding Hµ1 if Hµ1 is true (error of
Type-I, false negative), the Likelihood ratio has the smallest possible error for accepting Hµ1 if
Hµ2 is true (error of Type-II, false positive). In this sense, we say that the test of the Likelihood
ratio is optimal: given a Type-I error of size α, the Likelihood ratio minimizes the Type-II error,
thus maximizing the so-called power of the comparison, see Figure 7.2.

Obviously, the logarithm

−2 log(LX0 (µ1)/LX0 (µ2)) = −2 log LX0 (µ1) + 2 log LX0 (µ2)

inherits the properties of the Likelihood ratio, and we build a test statistic to compare both
hypotheses out of that

T = −2 log LX0 (µ1) + 2 log LX0 (µ2) . (7.16)

Then, low values of T show a preference for the hypothesis µ1, thus being able to discriminate
µ1 and µ2.

121



Composite hypotheses

Consider, however, a case where the hypothesis depends on parameters we would like to extract
µ, and additional parameters δ: in this case, we cannot formulate a simple hypothesis Hµ because
something must be said about the value of δ. One talks about composite hypotheses, for which
the optimality property of the ratio of Likelihoods is not guaranteed any more.

By analogy with the principle of maximizing Likelihood ratios discussed above, which leads
to the most powerful situation, one usually considers

Tµ = −2 log
maxδ LX0 (µ, δ)

maxµ,δ LX0 (µ, δ)
(7.17)

= min
δ

[−2 log LX0 (µ, δ)] − min
µ,δ

[−2 log LX0 (µ, δ)]

for comparing hypotheses, i.e. we minimize over the parameters δ, called in this context nuisance
parameters.

7.2.3 Gaussian case without theoretical uncertainties

We would like now to discuss the simplest case where all the random variables are independent,
or decorrelated, and follow a normal distribution. We assume a Gaussian law motivated by the
Central-Limit theorem, which implies that the specific way in which we model an experiment
does not (asymptotically) matter. Therefore

g(X ;µt) =
1√
2πσ

exp

[
−1

2

(
X − x(µt)

σ

)2
]
, (7.18)

where σ is the accuracy of the experimental technique.1

We now build the test statistic from the Likelihood, cf. Eq (7.16)

T (X0;µ) =

n∑

i=1

(
X

(i)
0 − x(µ)

σ

)2

. (7.19)

Beyond the property of optimality of Type-II errors, one can use the Likelihood to build esti-
mators of the fundamental parameters, by the minimization of T , whose minimum follows a χ2

distribution of n− ‖µ‖ degrees of freedom (d.o.f.), where n is the number of measurements and
‖µ‖ is the number of fundamental parameters estimated, i.e. Tmin ∼ χ2(n− ‖µ‖). In principle,
however, this is only true for linear models where x(µ) depends linearly on µ, but for large enough
n this distribution is asymptotically valid (Wilks’ theorem, see Ref. [195]).

Building the p-value as described previously, we have

p(X0;µ) =
Γ(Ndof/2, T (X0;µ)/2)

Γ(Ndof/2)
= Prob(T (X0;µ), Ndof) , (7.20)

1Though it may sound doubtful that one may be able to model an apparatus far away from the range where it
is specially designed to work at, i.e. far away X0 ≃ x(µ) and deep in the “tail” region (borrowing the image of a
Gaussian), this is going to be admitted and X0 ≫ x(µ) or X0 ≪ x(µ) will thus cast doubt on the interpretation
of xt as x(µ) – or the very modeling of the apparatus (cf. [196]).
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where Prob is the well-known routine from the CERN library, which calculates the probability
to find a value for a variable distributed as χ2(Ndof) at least as large as T (X0;µ).2 For further
illustration, consider the case of a single random variable. We have the following expression

1 − p(X0;µ) =

∫ t0

−t0

1√
2πσ

exp

[
−1

2

( y
σ

)2
]
dy , t0 = T (X0;µ) , (7.22)

then3

t0
σ

=
√

2Erf−1(1 − p(X0;µ)) =
√

2Erfc−1(p(X0;µ)) , (7.25)

and t0/σ ≡ kσ(p) gives the “number of units of σ” of a given p-value:

p(X0;µ) ≃ 0.32 ↔ t0 = 1 × σ, p(X0;µ) ≃ 0.05 ↔ t0 = 2 × σ, etc.

which correspond to test statistic values 12, 22, etc. In words, the numbers of σ tell how far
away the predicted value x(µ) is from the best fit point.

7.3 Theoretical uncertainties

A common problem in the determination of an observable is that theoretical uncertainties are
usually present. This is indeed a problem because, by their own nature, theoretical uncertainties
do not decrease with the amount of data: even if the limit where the sample has an infinite
size is taken, the extraction of xt cannot be done with an absolute certainty, and one quotes a
systematic effect ±∆ instead. From a different perspective, it may happen that the technology
we dispose to predict the value of the observable is limited: examples are given by the need to
extrapolate a calculation, or to truncate a perturbative series in theoretical works.

We are going to discuss possible ways to circumvent the difficulty introduced by theoretical
uncertainties in the next subsections. It should be kept in mind through our discussion that,
no matter what their modeling is, the presence of theoretical uncertainties will imply a worse
capacity of extracting the true values of the fundamental parameters of a model.

Some comments about the terminology are relevant. We consider the test statistic and the p-
value as functions of X , a random variable of variance σ2. Moreover, since we are only interested
in the comparison X−x(µ), we can (for practical reasons here) quote the theoretical uncertainty
altogether with the experimental value

X0 ± σ ± ∆ . (7.26)

2Γ(a, y) (Γ(a)) is the incomplete (usual, Euler) gamma function

Γ(a, y) =

∫ ∞

y

ta−1 exp(−t) dt , Γ(a) =

∫ ∞

0

ta−1 exp(−t) dt , (7.21)

and thus Γ(1/2) =
√
π, Γ(1) = 1, Γ(3/2) =

√
π/2, etc.

3The function Erf(y) is defined by

Erf(y) =
2√
π

∫ y

0

exp(−t2) dt . (7.23)

It is also useful to define the complementary of the error function

Erfc(y) =
2√
π

∫ ∞

y

exp(−t2) dt . (7.24)
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One may represent the theoretical uncertainty ∆ as coming from an additional unknown param-
eter δ: if the true value δt of δ was known, we would quote X0 + δt for the central value of the
measurement. It then follows that the meaning of ∆ is not the same as the one for σ, which
parameterizes the probability distribution function of a random variable, and we will need a way
to interpret ∆ or δ. Starting from this section, we are going to discuss different models for δ.

For definiteness, we discuss the case of only one random variable X , and for simplicity we
consider only symmetric cases over this chapter (a longer discussion is found in Ref. [197]). Also
for simplicity reasons, we take x(µ) → µ, i.e. the observable is the fundamental parameter itself
(or it is linearly related to the single parameter µ of the theory).

7.3.1 Random approach: naive Gaussian

In principle, δ comes from a non-statistical source and has no reason to be a random variable.
However, for simplicity one can model it as a random variable of mean 0 and dispersion ∆. Then,
we say that what we measure are the realizations of the random variable

X = X ′ + δ , (7.27)

where

X ′ ∼ N(µt,σ) (7.28)

models the case where no theoretical uncertainties are present.
We then convolute the distribution of X ′ with that of δ, resulting in the distribution of the

random variableX . In what we call “naive Gaussian,” we assume that the theoretical uncertainty
is distributed as a Gaussian

δ ∼ N(0,∆) , (7.29)

and we end up having the commonly used distribution

X ∼ N(µt,
√

σ2+∆2) . (7.30)

Note that we are able to formulate the simple hypothesis Hµ : µt = µ, since we have gotten
rid of δ in some sense. The test statistic is then built from the Likelihood Eq. (7.16) as

T (X ;µ) =
(X − µ)2

σ2 + ∆2
, (7.31)

resulting in the p-value

pnG(X ;µ) = 1 − Erf

[ |X − µ|√
2
√
σ2 + ∆2

]
= Erfc

[√
T (X ;µ)

2

]
. (7.32)
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Figure 7.3: Naive Gaussian: p-value as a function of µ.

In Figure 7.3, we illustrate that the inclusion of theoretical uncertainties (solid, red) increases
the size of the CL intervals compared to the case where no theoretical uncertainties are present
(dashed, blue).

7.3.2 External approach: Scan method

The external approach intends to be close in philosophy to what experimentalists often do to
estimate systematic uncertainties. In this case, the theoretical uncertainty δ is seen as an external
parameter, just like σ, whose value one admits knowing. The apparatus is modeled as

X ∼ N(µt+δ,σ) , (7.33)

and under the simple hypothesis H(δ)
µ : µt = µ+ δ we have the following test statistic from the

Likelihood Eq. (7.16)

T (X ;µ) =
(X − µ− δ)2

σ2
. (7.34)

Note that, given (7.33) and (7.34), the estimator of the observable built from the minimization
of the test statistic converges to µ with the size of the sample, thus implying that this is not a
biased estimator.

The test statistic in Eq. (7.34) implies the following p-value

p(X ;µ) = 1 − Erf

[ |X − µ− δ|√
2σ

]
= Erfc

[√
T (X ;µ)

2

]
, (7.35)

which depends explicitly in the (external) value of δ. We therefore need a way to combine the
different p-values corresponding to the different values of δ. To this effect, we maximize the
p-value over the range Ω = [−∆,∆]:

pScan(X0;µ) = max
δ∈[−∆,∆]

p(X0;µ, δ) , (7.36)
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Figure 7.4: Envelope (red) of p-values for δ ∈ [−∆,∆].

thus implying

pScan(X ;µ) = 1 , if |X − µ|≤ ∆ , (7.37)

= 1 − Erf

( |X − µ± ∆|√
2σ

)
, if ∓ (X − µ) > ∆ .

The idea behind the maximization is to consider the “envelope” of all admissible values of δ:
the various p-value curves shown in Figure 7.4 (dashed, blue) fit into an envelope (solid, red),
which by its turn is used to determine confidence intervals. The range we have chosen above,
namely Ω = [−∆,∆], makes part of the model and for simplicity reasons we are not going to
discuss different possibilities, such as Ω = 3[−∆,∆], which would correspond to an envelope in
Figure 7.4 three times broader.

The external approach, called fixed-1 external or 1-external in what follows, is fundamentally
the same as the Scan method discussed in Ref. [17]. Among the differences, the Scan method
relies on the test statistic T = −2 log L(µ, δ) which is interpreted assuming that T follows a
χ2 distribution law, including both the parameters of interest and nuisance parameters. The
1 −α confidence region is then determined by varying the nuisance parameters in given intervals
(typically a 1 σ range), and accepting only points for which T ≤ Tc, Tc being a critical value so
that P (T ≥ Tc;N |H0) ≥ α (typically α = 0.05), where H0 is the hypothesis of the Standard
Model and N is the number of degrees of freedom.

7.3.3 Nuisance approach

In this case, the theoretical uncertainty is considered as a nuisance parameter in the lines of
Section 7.2.2, and the apparatus is modeled as

X ∼ N(µt+δt,σ) . (7.38)

In principle, we can choose any test statistic that tests correctly the null hypothesis Hµ :
µt = µ, and we start from the following quadratic test statistic

T (X ;µ) =
(X − µ)2

σ2 + ∆2
. (7.39)

This ansatz is motivated by the following procedure
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T (X0;µ) = min
δ∈ℜ

[(
X0 − µ− δ

σ

)2

+

(
δ

∆

)2
]
, (7.40)

already illustrated in Eq. (7.17), where the minimum above is found at (X0 − µ)
∆2

σ2 + ∆2
, and

can assume any value. The advantage of the last ansatz is that, when a larger number of nuisance
parameters is present, this procedure always leads to a quadratic form like the one of Eq. (7.39).

Though T (X ;µ) does not depend on δ, its distribution does due to Eq. (7.38) and the p-value
inherits this dependence

Pδ[T < T (X ;µ)] =
1

2

[
Erf

(
δ + |X − µ|√

2σ

)
− Erf

(
δ − |X − µ|√

2σ

)]
,

1 − pδ(X ;µ) = Pδ[T < T (X ;µ)] , (7.41)

where the subscript δ indicates that we do not treat δ and µ on the same footing. The above
expression states that the p-value depends on the unknown bias parameter δ. To build Confidence
Level (CL) intervals, we consider the following procedure

max
δ∈Ω

pδ(X0;µ) . (7.42)

Taking the maximum in this case as we have done previously in the external approach will them
imply broader CL intervals, expectedly leading to conservative situations.

The question now is what to take for Ω, and in particular suppose we are interested in
quoting confidence intervals at different significances (i.e. “numbers of σ”): should we take
always the same interval Ω where the true value of δ is supposed to be found, or should we adapt
Ω correspondingly to the size of the Confidence Level interval of µ we would like to quote? To
answer to this question, we compare two procedures to define the p-value

• Fixed range Ω = r[−∆,∆]: pfixed(X ;µ) = p±r∆(X ;µ), where r is fixed. We are going to
refer to this method as “fixed−r nuisance approach,” or simply r−nuisance.

• Adaptive range Ω = kσ(p)[−∆,∆]: padapt(X ;µ) = p±kσ(p)∆(X ;µ), where kσ(p) is the
“number of σ” of a given p-value. The adaptive procedure then means that: if one is
interested to quote a significance n × σ, one maximizes pδ(X ;µ) over the range Ω =
n[−∆,∆], i.e. for each n one calculates the corresponding p-value and determines from it
the CL interval for the physical parameter µ.

The choice for Ω makes part of our way to model theoretical uncertainties: a graphical
comparison between the different choices is given in Figure 7.5. The different graphs illustrate
that the two nuisance approaches depicted above lead to very different p-value curves, and
consequently to possibly very different confidence level intervals.
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Figure 7.5: Illustration of the nuisance approach: (Left) Fixed-1 nuisance (solid, red) compared
to the case of no theoretical uncertainty (dashed, blue). (Right) comparison of fixed-1.5 (solid,
red), fixed-2 (solid, blue), fixed-2.5 (dashed, red), and fixed-3 (dashed, blue) nuisance, where one
notes that a smooth plateau shows up for increasingly larger intervals Ω. (Bottom) Adaptive
nuisance (solid, red) compared to the case of no theoretical uncertainty (dashed, blue).

7.3.4 Rfit

The Rfit procedure follows the nuisance philosophy discussed in the previous section, and con-
siders that the theoretical parameter δ strictly relies inside the interval [−∆,∆]. In practice, one
considers a theoretical Likelihood that is a constant over the fixed range δ ∈ [−∆,∆] and zero
outside, and then combines it with a pure statistical Likelihood. This procedure has been briefly
exemplified in Chapter 1 and is adopted by the CKMfitter Collaboration [198], [16].

As said previously, we can choose any test statistic that models correctly the null hypothesis
(the hypothesis we want to test), and we consider the following test statistic

T (X0;µ) = 0 , if |X0 − µ|≤ ∆ (7.43)

=

(
X0 − µ+ ∆

σ

)2

, if µ−X0 > ∆ ,

=

(
X0 − µ− ∆

σ

)2

, if X0 − µ > ∆ ,

which we have already found in Chapter 1. This expression means that we consider at the same
footing values of µ at the flat bottom of T (X0;µ), of size given by 2∆.

In the previous nuisance approaches, one would build a p-value from this test statistic and
would maximize it over a given range for δ. Though this is straightforward to do in one-dimension,
in multi-dimensional cases the computation is much more involved in the Rfit framework. There-
fore, it is usual to assume that the distribution of T (X ;µ) is well approximated by a χ2 distri-
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bution, in which case we can use the expressions given in Section 7.2.3. In the one-dimensional
case, we have:

pRfit(X ;µ) = 1 , if |X − µ|≤ ∆ (7.44)

= 1 − Erf

( |X − µ± ∆|√
2σ

)
, if ∓ (X − µ) > ∆ .

Note that this expression ends up being identical to Eq. (7.37) in the 1-dimensional case.
This, however, is not a property found in higher dimensional cases. The “well” shape function
and the p-value in the Rfit approach are seen in Figure 7.6.
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Figure 7.6: (Left) The test statistic given in Eq. (7.43) is null over the interval indicated by
the two dashed-blue lines, and follows a quadratic shape outside. This ansatz corresponds to a
true value of the theoretical uncertainty δ bounded inside the range [−∆,∆]. (Right) At higher
dimensions, it is preferable to approximate the test statitistic by a known distribution. It is usual
to consider a χ2 distribution, whose shape has a flat top, or a plateau, following the assumption
−∆ ≤ δt ≤ ∆. Note that other approaches discussed beforehand also show a flat top or plateau.

7.3.5 Impact of the modeling of theoretical uncertainties

We now move to the comparison of the different approaches discussed so far. We consider then
a measurement

X0 = 0 ± σ ± ∆ , σ2 + ∆2 = 1 . (7.45)

As said previously, 1-external and Rfit lead to the same p-value curve in the 1-dimensional
case, and in what follows we are going to consider both indistinctly, except when otherwise
stated.

Confidence intervals

The fundamental usefulness of p-values is to quote confidence intervals in the extraction of
fundamental parameters. Therefore, the first comparison to be made concerns the different
properties of the CL intervals of the different approaches we have discussed. In practice, we
would like to find a method which does not quote too large 68 % CL intervals, or otherwise we
would not learn much from data, but on the other hand is rather “conservative” for signalizing
tensions with the Standard Model.

Figure 7.7 shows the p-value curves for different models of theoretical uncertainty, and the
same information under a more quantitative form can be seen in Table 7.1. Note the following
characteristics, independent of the ratio ∆/σ:
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Figure 7.7: Comparison of different methods for modeling theoretical uncertainties for the mea-
surement X0 = 0±σ±∆ , σ2 +∆2 = 1, for different ratios ∆/σ. Plots are shown in “units of σ.”
The various p-values are: (dotted, red) naive Gaussian (nG); (dashed, black) fixed-1 external
δ ∈ [−∆,∆], or Rfit; (dotted-dashed, blue) fixed-1 nuisance δ ∈ [−∆,∆]; (dotted-dotted-dashed,
purple) fixed-3 nuisance δ ∈ 3[−∆,∆]; (solid, green) adaptive-nuisance. Beyond being inde-
pendent of the ratio ∆/σ, by definition, note that at n× σ the nG method always provides a CL
whose size is n.
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nG fixed-1 nuisance adapt. nuisance fixed-1 ext./Rfit

1σ 1.0 1.0 1.0 1.2
∆

σ
= 0.3 3σ 3.0 3.0 3.5 3.2

5σ 5.0 5.0 6.1 5.1

1σ 1.0 1.1 1.1 1.4
∆

σ
= 1 3σ 3.0 2.7 4.1 2.8

5σ 5.0 4.1 7.0 4.2

1σ 1.0 1.1 1.1 1.3
∆

σ
= 3 3σ 3.0 1.8 3.7 1.9

5σ 5.0 2.5 6.3 2.5

1σ 1.0 1.0 1.0 1.1
∆

σ
= 10 3σ 3.0 1.3 3.3 1.3

5σ 5.0 1.5 5.5 1.5

Table 7.1: Comparison of the size of one-dimensional confidence intervals at 1, 3, 5σ for various
methods and various values of ∆/σ.

• At 1σ (important for quoting the metrology): fixed-3 nuisance provides broader CL, while
the other methods provide similar CL. (By definition, fixed-1 nuisance and adaptive nui-
sance give exactly the same 1 σ CL.)

• At 3σ (evidence of tension): fixed-3 nuisance and adaptive nuisance provide broader CL
than the others methods (and identical 3 σ CL in these cases, by definition).

• At 5σ (threshold for discovery): broader CL are given by adaptive nuisance, followed by
nG or fixed-3 nuisance.

As one increases ∆/σ, note the following:

• Globally, the different methods give very similar answers for small ∆/σ, as expected, and
for intermediate or large ∆/σ the differences between the confidence intervals may scale as
a factor 2 for large or intermediate confidence levels.

• Fixed-1 external (or Rfit) and fixed-1,3 nuisance show flat bottoms, and “saturate” for
large ∆/σ, meaning that the size of the confidence intervals grows slowly with the number
of “units of σ” compared to the other methods.

• nG and adaptive-nuisance are similar for low and large ∆/σ, and in the examples shown
more important differences happen for ∆/σ ≃ 1.

Therefore, none of the methods gives systematically the broadest CL interval for all signif-
icances. At large significances, however, adaptive nuisance is always “more conservative” than
the other methods, and for low and large ∆/σ nG gives similar intervals. Whether or not the
methods are aggressive for large ratios and large significances in the precise meaning of Eq. (7.11)
is going to be discussed in Section 7.3.5.
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1 σ signif. threshold nG 1-nuisance adaptive nuisance 1-external/Rfit

nG 1 0.9 1.0 0.4

fixed-1 nuisance 1.1 1 1.0 0.5

adaptive nuisance 1.1 1.0 1 0.5

fixed-1 external/Rfit 1.4 1.4 1.2 1

3 σ signif. threshold nG 1-nuisance adaptive nuisance 1-external/Rfit

nG 3 3.4 2.3 3.2

fixed-1 nuisance 2.7 3 2.0 2.8

adaptive nuisance 4.1 4.9 3 4.8

fixed-1 external/Rfit 2.8 3.2 2.1 3

5 σ signif. threshold nG 1-nuisance adaptive nuisance 1-external/Rfit

nG 5 6.2 3.6 6.1

fixed-1 nuisance 4.1 5 3.0 4.9

adaptive nuisance 7.0 >8 5 >8

fixed-1 external/Rfit 4.2 5.1 3.1 5

Table 7.2: Comparison of 1D 1, 3, 5σ significance thresholds for ∆/σ = 1. For instance, the first
line should read: if with nG a p-value=1 σ is found, then the corresponding values for the three
other methods are 0.9/1.0/0.4 σ.

Significance

When comparing a prediction such as µ = 0 with a measurement X0 6= 0 one would like to
quantify the tension between both, which surely depends on the quoted values for the statistical
variance, σ2, and systematic uncertainty, ∆.

The comparison of significances can be qualitatively seen from Figure 7.7: if the size of the
uncertainty is fixed, or in other words the size of the CL interval, the different approaches quote
different significances for this same CL interval. One can take the observations made previously
in a reverse way: if confidence intervals for a method are broader, then a possible tension becomes
less significant. A more quantitative comparison can be seen in Table 7.2. In this table, built for
the special case ∆/σ = 1, one clearly sees that if for instance the random approach is employed to
quote a significance of 5 σ (last table), the adaptive nuisance approach would be more “cautious,”
quoting 3.6 σ instead, while the other methods seen in table would quote even higher significances
compared to nG.

As a practical example, consider the anomalous magnetic moment of the muon

amuon ≡ gmuon − 2

2
, (7.46)

whose measurement, aexp
muon, compared to the Standard Model prediction, aSM

muon, is
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(aexp
muon − aSM

muon) × 1011 = 288 ± 63exp ± 49SM

significance (H0 : µt = 0)

nG 3.6 σ

1-external/Rfit 3.8 σ

1-nuisance 3.9 σ

adapt. nuisance 2.7 σ

where the first uncertainty comes from the experimental results and is treated as a statistical
uncertainty, while the second uncertainty comes from the SM prediction and is treated as a
theoretical uncertainty. Note that for the given uncertainties, the three different approaches
quote very different significances: while nG, 1-external (or Rfit) and 1-nuisance quote an evidence
for New Physics, the adaptive nuisance procedure does not imply a significance beyond the 3 σ
threshold. This example clarifies that, when large tensions are claimed and the prediction or/and
the measurements presents large theoretical uncertainties, it is fundamental to pay some special
attention to the way this class of uncertainties is interpreted, since it may change the quantitative
information about the size of the deviation.

Coverage

p-values only have a meaning if the confidence intervals they quote have good coverage properties,
i.e. exact coverage or not excessive overcoverage. This guarantees the robustness of a test
statistic, since uncontrolled levels of undercoverage may be too risky for excluding a hypothesis
when it is true, and large overcoverage limits too much our capacity of extracting the true value
of fundamental quantities.

Based in the discussion made in Section 7.2.1, for given µt and δt, we generate a set of n

values {X(1)
0 , . . . , X

(n)
0 } from the distribution of X . For each of these values, we calculate the

p-values p(X
(i)
0 ;µt), i = 1, . . . , n, for the same µt and δt and consider for a given α the fraction

of p-values which is higher than α itself. For exact coverage, this fraction must be equal to 1 −α
when n goes to infinity, and for over (under) coverage this fraction is higher (lower) than 1 − α.
The values of P [p > α|Hµ], i.e. the fraction of p-values covering the true value µt, are shown in
Tables 7.3 and 7.4 for different methods and different CL intervals:

α = 0.3173, 0.0455, 0.0027 for 68.27 %, 95.45 %, 99.73 % CL.

Notice that when the true value of δ is included in the expected interval, called “fortunate”
cases, all approaches present exact or overcoverage, except for a slight undercoverage of nG when
δ 6= 0 in the example. Then, when moving to the “unfortunate” cases where the true value of
δ is outside the interval Ω, where it was supposed to be found, the approaches systematically
undercover. An exception is the adaptive approach, for which Ω grows proportionally to the
confidence interval we want to build, thus showing good coverage properties as the size of the
confidence interval grows.

7.4 Combining data

In this section we consider the combination of many possibly correlated measures of the same
observable, first in the pure statistical case, and then in the case where theoretical uncertainties
are present.
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68.27% CL 95.45% CL 99.73% CL

∆/σ = 1, δ/∆ = 0

nG 84.1% 99.5% 100.0%

1-nuisance 86.5% 99.3% 100.0%

adaptive nuisance 86.4% 100.0% 100.0%

1-external/Rfit 95.4% 99.7% 100.0%

1-ext./Rfit (excl. p ≡ 1) 85.5% 99.1% 100.0%

∆/σ = 3, δ/∆ = 0

nG 99.8% 100.0% 100.0%

1-nuisance 100.0% 100.0% 100.0%

adaptive nuisance 99.9% 100.0% 100.0%

1-external/Rfit 100.0% 100.0% 100.0%

1-ext./Rfit (excl. p ≡ 1) 98.5% 100.0% 100.0%

∆/σ = 3, δ/∆ = 1

nG 56.3% 100.0% 100.0%

1-nuisance 68.1% 95.5% 99.7%

adaptive nuisance 68.2% 100.0% 100.0%

1-external/Rfit 84.1% 97.7% 99.9%

1-ext./Rfit (excl. p ≡ 1) 68.2% 95.4% 99.7%

Table 7.3: Coverage properties of the various methods in “fortunate” cases where the true value
of δ/∆ is contained in (or at the border of) the volume Ω (for all confidence intervals). Since
the 1-external (or Rfit) approach produces clusters of p-values equal to 1 due to a plateau, the
coverage values excluding this plateau are also considered.
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68.27% CL 95.45% CL 99.73% CL

∆/σ = 1, δ/∆ = 1

nG 65.2% 96.6% 99.9%

1-nuisance 68.2% 95.4% 99.7%

adaptive nuisance 68.3% 99.6% 100.0%

1-external 83.9% 97.8% 99.9%

1-external (excl. p ≡ 1) 69.2% 95.7% 99.8%

∆/σ = 1, δ/∆ = 3

nG 5.76% 43.2% 89.1%

1-nuisance 6.60% 38.0% 78.4%

adaptive nuisance 6.53% 75.4% 99.8%

1-external 16.0% 50.3% 84.2%

1-external (excl. p ≡ 1) 14.0% 49.1% 83.8%

∆/σ = 3, δ/∆ = 3

nG 0.00% 0.35% 68.7%

1-nuisance 0.00% 0.00% 0.07%

adaptive nuisance 0.00% 9.60% 99.8%

1-external 0.00% 0.00% 0.13%

1-external (excl. p ≡ 1) 0.00% 0.00% 0.13%

Table 7.4: Coverage properties of the various methods in “unfortunate” cases where the true
value of δ/∆ is not contained in (or at the border of) the volume Ω (for all the confidence
intervals). Since the 1-external approach produces clusters of p-values equal to 1 due to a plateau,
the coverage values excluding this plateau are also considered.
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7.4.1 Pure statistical case

We first introduce the definitions of covariance and correlation matrices in the case where no
theoretical uncertainties are present. In Appendix K, we study the cumbersome case where
the inverse of the covariance matrix, necessary in order to build the usual test statistic, is not
(naively) defined.

Consider now a set of random variables X(1), X(2), X(3), . . . , X(n) equally distributed X(i) ∼
N(µt,σi) with same mean µt. We want to study the estimator µ̂ of µt under the case where
these random variables are correlated. Following the comments in Section 7.2.3, we minimize
the quadratic test statistic to estimate µ

T (X,µ) = (X − µU)T · C+
s · (X − µU) , (7.47)

where U is a column of entries “1” n times, X is the column vector

(X(1), X(2), X(3), . . . , X(n))T ,

and C+
s is the inverse of the covariance matrix Cs, which is a (semi-)positive definite matrix

defined as

(Cs)ij = E[(X(i) − µt)(X
(j) − µt)] ≡ ρijσiσj , (7.48)

where the correlation matrix ρij = E[(X(i) − µt)(X
(j) − µt)]/(σiσj) is squared and symmetric.

Following the minimization of T , µ̂ and σµ are given as follows

µ̂ =
UT · C+

s ·X
UT · C+

s · U = wT ·X , σ2
µ =

UT · C+
s · Cs · C+

s · U
(UT · C+

s · U)2
= wT · Cs · w ,

w =
C+

s · U
UT · C+

s · U ,

n∑

i=1

wi = 1 , (7.49)

where wi are the weights, and σ2
µ is the variance. The above average is efficient in the sense that

it is the unbiased estimator of the true value µt which minimizes the variance.

7.4.2 Theoretical uncertainties

We now consider the case where correlated theoretical uncertainties are present. To make things
simpler, we focus specifically in the nuisance approach case. The external approach has a similar
discussion if an ad hoc overall normalization for Eq. (7.34) is assumed, in order to balance the
contributions to the average according to the theoretical uncertainties.

We start with the following test statistic, cf. Eq. (7.40)

Tδ(X,µ) = (X − µU − ∆δ̃)T ·Ws · (X − µU − ∆δ̃) + δ̃T · W̃t · δ̃ , (7.50)

where Ws is the inverse C−1
s (or the generalized inverse C+

s , see Appendix K) of the n×n statis-

tical covariance matrix, W̃t is the inverse C̃−1
t (or the generalized inverse C̃+

t , see Appendix L)
of the m×m theoretical correlation matrix, and the true values of the theoretical uncertainties
δ̃1, . . . , δ̃m are normalized, which is indicated by the use of “tilded” symbols. The n×m matrix
∆ tells the dependence of the i−th measurement on the j−th theoretical uncertainty, where i
runs from 1 to n, and j runs from 1 to m, i.e. the quoted measure is X(i) ±σi ± ∆i1 ± . . .± ∆im.

The term “correlation matrix” for theoretical uncertainties is in fact an abuse: they are not
random variables, so that “correlation” does not apply as in the statistical sense. Note, however,
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Figure 7.8: Illustration in a three-dimensional example of the (hyper-)space over which we max-
imize the p-value in the two different cases discussed in the text: hypercube and hyperball. In
the former, the three normalized theoretical uncertainties δ̃1,2,3 can assume any value inside the
interval [−1, 1], including |δ̃1,2,3|= 1 simultaneously, while for the hyperball the phase space is
reduced, and avoids these “fine-tuned” possibilities where all the uncertainties have their extreme
admited value.

that the way we have introduced them in Eq. (7.50) is quite symmetric with respect to the
statistical case.

We then minimize over the set of theoretical uncertainties, resulting in the following test
statistic

T (X,µ) = (X − µ)T ·W · (X − µ) , (7.51)

where

W = Ws −BT ·A−1 · B , B = (Ws · ∆)T , A = W̃t +B · ∆ . (7.52)

The above test statistic results then in the following estimator

µ̂ =
∑

i

wiX
(i) , σ2

µ =
∑

i,j

wiwj(Cs)ij ,

wi =
∑

j

W ij ×


∑

i,j

W ij




−1

, (7.53)

which is biased with bias given by

δµ =
∑

i

wi∆iδ̃i . (7.54)

We now discuss the way of varying the different δ̃i according to the last expression. The case
without correlations is trivial to understand, and it corresponds to letting δ̃i vary independently
in the space we want them to be defined: (linear) one could understand that they should be
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Reference Mean Stat Theo

Exclusive [79] 3.28 ± 0.15 ± 0.26

Inclusive [79] 4.359 ± 0.180 ±0.013 ± 0.027 ± 0.037 ± 0.161 ± 0.200

Method Average 1 σ CI 3 σ CI 5 σ CI

nG 3.79 ± 0.22 ± 0 3.79 ± 0.22 3.79 ± 0.65 3.79 ± 1.1

naive Rfit 3.70 ± 0.12 ± 0 3.70 ± 0.12 3.70 ± 0.35 3.70 ± 0.58

educ Rfit 3.70 ± 0.11 ± 0.26 3.70 ± 0.38 3.70 ± 0.61 3.70 ± 0.84

1-hypercube 3.79 ± 0.12 ± 0.34 3.79 ± 0.40 3.79 ± 0.67 3.79 ± 0.91

adapt hyperball 3.79 ± 0.12 ± 0.18 3.79 ± 0.24 3.79 ± 0.88 3.79 ± 1.49

Table 7.5: Top: determinations of |Vub|·103 from semileptonic decays. Note that we decompose
the different sources of theoretical uncertainty for the inclusive determination of |Vub|, while in
Chapter 1 they were combined linearly accordingly to the Rfit approaches discussed in this context.
Bottom: averages according to the various methods, and corresponding confidence intervals for
various significances. The uncertainties are distinguished at 1 σ according to Eqs. (7.53) and
(7.54).

varied over a hypercube when maximizing the p-value, which implies in particular that they can
all assume at the same time their extreme values, i.e. the corners of the hypercube in Figure 7.8
are accessible; or (quadratic) over a hyperball, avoiding the “fine-tuned” corners of the last case,
see Figure 7.8. Therefore, depending on the approach we have

∆µ =
∑

i

|wi∆i| (linear) , ∆µ =

√∑

i

(wi∆i)
2

(quadratic) , (7.55)

recovering the ansatz of [199] in the linear case.
Now, when correlations are present in Eq. (7.54), it should mean that they cannot be varied

independently: in particular, when they are all totally correlated, one would expect to have
only a particular combination of them that can be varied. This is formalized and illustrated in
Appendix L.

7.4.3 Examples

We consider the same physical-oriented example already discussed in Section 1.3.4, namely the
case of incompatible measurements. The two different procedures we call naive Rfit and educated
Rfit were already discussed at that point, where it has been noted that the former implies
no theoretical uncertainty in the average of incompatible measurements (no flat plateau) while
the latter quotes the minimum of the two theoretical uncertainties as the resulting theoretical
uncertainty. Here we compare these two methods with the pure statistical case (naive Gaussian)
and the nuisance approach with fixed hypercube and adaptive hyperball volumes (though the
p-values for the nuisance and external approaches have different interpretations, they lead to the
same expressions for the combined variance and theoretical uncertainty, once the test statistic
in the external approach is defined suitably). The results can be seen numerically in Tables 7.5
and 7.6, or graphically at 1σ in Figure 7.9.
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Reference Mean Stat Theo

Exclusive [79] 38.99 ±0.49 ±0.04 ± 0.21 ± 0.13 ± 0.39 ± 0.17 ± 0.04 ± 0.19

Inclusive [79] 42.42 ±0.44 ±0.74

Method Average 1 σ CI 3 σ CI 5 σ CI

nG 40.41 ± 0.55 ± 0 40.41 ± 0.55 40.41 ± 1.66 40.41 ± 2.77

naive Rfit 41.00 ± 0.33 ± 0 41.00 ± 0.32 41.00 ± 0.98 41.00 ± 1.64

educ Rfit 41.00 ± 0.33 ± 0.74 41.00 ± 1.07 41.00 ± 1.72 41.00 ± 2.38

1-hypercube 40.41 ± 0.34 ± 0.99 40.41 ± 1.15 40.41 ± 1.94 40.41 ± 2.65

adapt hyperball 40.41 ± 0.34 ± 0.44 40.41 ± 0.60 40.41 ± 2.26 40.41 ± 3.84

Table 7.6: Same as Table 7.5 for |Vcb|·103.

The first difference to highlight is that the different methods quote different central values: in
the comparisons we have made in Section 7.3.5 this was not possible because we had a single mea-
surement X0. Now, concerning the uncertainties, also note that at 1 σ the 1-hypercube approach
quotes larger uncertainties, while naive Gaussian and naive Rfit are more aggressive in their
averages. At larger confidence intervals, the adaptive hyperball becomes the more conservative,
while the naive Rfit model is the more aggressive for the reason already mentioned.

7.5 Global fit of flavour observables

So far, we have considered the impact of the modeling of theoretical uncertainties in one-
dimensional cases where there is only one parameter µ that we would like to extract. In this
section we are going to consider an example of utmost interest for flavour physics, which is the
extraction of the Wolfenstein parameters A, λ, ρ̄, η̄. For our purposes, it is sufficient to consider
a subset of the observables given in Chapter 1, Table 1.3.

Following the discussion we have had so far, where the nuisance has been considered for
definiteness, cf. Eq (7.50), we consider minimizing the quadratic form

Tδ(X0;µ) =

N∑

i=1

(
Xi,0 − xi(µ, δ)

Σi

)2

, (7.56)

where the measurements Xi,0 have respective uncertainties Σi (which we suppose non-correlated
over this section for simplicity). Note that the true values of the theoretical uncertainties have
been absorbed into the notation of the SM prediction, namely the set of parameter δ in the
expression for the observables xi(µ, δ). The sum runs over the total number N of observables
we dispose, see Table 7.7, and µ is a short-cut for the parameters we would like to extract:
{A, λ, ρ̄, η̄} in the example we consider.

The best-fit point χ̂ ≡ {µ̂, δ̂} can be determined using the full quadratic form above, Eq. (7.56).
In order to derive analytically the intervals of the parameters we want to extract, {A, λ, ρ̄, η̄},
we are going to consider the following linear model

xi(χj) = x̂i +
∑

k

aik(χk − χ̂k) + O[(χ − χ̂)2] , (7.57)

139



adapt hyperball

1-hypercube

educ Rfit

naive Rfit

nG

Inclusive

Exclusive

3.0 3.5 4.0 4.5 5.0 5.5 6.0

adapt hyperball

1-hypercube

educ Rfit

naive Rfit

nG

Inclusive

Exclusive

36 38 40 42 44 46

Figure 7.9: Comparison between the different approaches for |Vub| (left) and |Vcb| (right) at 1 σ,
where the purple dotted-line indicates the simple average of the two classes on inputs, namely
inclusive and exclusive extractions. The black intervals indicate the size of the statistical uncer-
tainties, while in solid red we indicate the remaining theoretical uncertainty. Instead, the dotted
red lines indicate the linear combination of the individual uncertainties seen in Tables 7.5 and 7.6
for the inclusive extraction of |Vub| (left) and the exclusive extraction of |Vcb| (right): in each of
the two cases, the red intervals give 68 % CL intervals. The incompatibility between the inclusive
and exclusive input is clearly seen.

Observable Input

|Vud|nucl 0.97425 ± 0 ± 0.00022

|Vub| (3.70 ± 0.12 ± 0.26) × 10−3

|Vcb| (41.00 ± 0.33 ± 0.74) × 10−3

∆md (0.510 ± 0.003) ps−1

∆ms (17.757 ± 0.021) ps−1

B̂Bs
/B̂Bd

1.023 ± 0.013 ± 0.014

B̂Bs
1.320 ± 0.017 ± 0.030

fBs
/fB 1.205 ± 0.004 ± 0.007

fBs
225.6 ± 1.1 ± 5.4 MeV

ηB 0.5510 ± 0 ± 0.0022

m̄t 165.95 ± 0.35 ± 0.64 GeV

Table 7.7: Set of inputs considered over this section for the extraction of {A, λ, ρ̄, η̄}, consisting
of observables dominated by theoretical uncertainties. The numerical values correspond to those
used by the CKMfitter Collaboration as of Summer 14 (therefore |Vub|, B̂Bs

, fBs
/fB and fBs

are not exactly the same as in Chapter 1).
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with

x̂i = xi(χ̂j) , aik =
∂xi

∂χk

∣∣∣∣∣
χ=χ̂

, (7.58)

where the index j runs over the full set of parameters, {µ1, . . . , µm, δ1, . . . , δn}. We stress that
over this section our goal is to perform an illustrative comparison between the different the-
oretical models, and that in actual global fits produced by the CKMfitter Collaboration this
simplifying step is not taken (but in any case the differences are not important even for large
confidence intervals). The advantage of considering the linear model is that we can compute an-
alytical expressions for the best values of {A, λ, ρ̄, η̄} and their related statistical and theoretical
uncertainties.

Then one can rewrite the minimum of Eq. (7.56) under the matrix form

N∑

i=1

m+n∑

j=1

aijaik

Σ2
i

χ̂j =

N∑

i=1

aik

Σ2
i

(Xi,0 − x̂i) ⇔ M · χ̂ = A+B ·X0 , (7.59)

where we define implicitly M,A and B. Since measurements Xi and parameters are linearly
related, the statistical uncertainty for χ̂k can readily be obtained from the variances σXi

σ2
χ̂k

=

n∑

i,j=1

[
(M−1)kj

]2 ×
[
aij

Σ2
i

]2

× (σXi
)2 . (7.60)

The theoretical uncertainty on χ̂k is obtained similarly, depending on the type of combination
considered

∆χ̂k
=

√√√√∑

i,j

[(M−1)kj ]
2 ×

[
aij

Σ2
i

]2

× (∆Xi
)

2
(quadratic) , (7.61)

∆χ̂k
=

∑

i,j

[
(M−1)kj

]
×
[
aij

Σ2
i

]
× ∆Xi

(linear) . (7.62)

In the case of the nuisance approach, we can use the above expressions to determine the
confidence intervals. In the other cases, we extend the one-dimensional discussion of Section 7.3,
determining the relevant p-values by assuming that the test statistic in each case follows a known
distribution (in the Rfit case) or by determining its actual distributing and computing the p-
value numerically. We provide in Table 7.8 below the set of results. Note from this table that
Rfit and 1-hypercube give similar results at 1σ, being more conservative than the other methods
at this confidence level. As one increases the significance, the adaptive hyperball approach gives
systematically more conservative intervals.

Note from Table 7.8 that we do not separate the resulting uncertainties in the Rfit scheme into
a statistical and a theoretical parts. Indeed, in more general situations the p-value curves have
more complex shapes than seen in Figure 7.10, and in those situations a plateau corresponding
to the size of the theoretical uncertainty may not be present.
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7.6 Conclusions

We have considered the problem of extracting some information from the measurement

X0 ± σ ± ∆

of an observable xt predicted to have the value x(µ) in the framework of a given model, which
has as free parameters a set represented by µ. In the measurement above, X0 is called the central
value, while σ is the statistical uncertainty and ∆ is the size of the theoretical uncertainty.

Compared with statistical uncertainties, which by definition are modeled by random variables
following a certain distribution law, theoretical (or systematic) uncertainties form a very different
class of uncertainties. Indeed, their origin can be traced back, for instance, to calculations where
one truncates a perturbative series, and where the remaining corrections δt, in principle unknown,
are estimated and a theoretical uncertainty ∆ is quoted.

In the comparison between data and the predictions made by a model for the extraction of
the underlying parameters µ, this class of uncertainties must be taken into account and they
diminish our ability for the extraction of µ, just like statistical uncertainties. The interpretation
of theoretical uncertainties is somewhat arbitrary and we have considered throughout this chapter
different modelings. Ideally, we would like to find a method which is not too “conservative” or
too “aggressive” when quoting confidence level intervals, among other properties. The underlying
issue is to extract useful information from data, without claiming a tension with the Standard
Model which may be only an artifact of the modeling of theoretical uncertainties. For each of
the models, we have considered the corresponding p-values in order to build confidence intervals
for the extraction of the values of µ (the precise way to build p-values and the interpretation of
confidence intervals are discussed in the main text). The following methods were considered:

• In the naive Gaussian approach, we have considered treating them as a source of statistical
uncertainty, and modeled δ by a random variable distributed normally, with variance ∆2.
Though widely employed, it corresponds to the awkward situation where the full result of
perturbative calculation, in the example commented above, has a random behaviour.

• In the external approach, we have considered that they should be treated as an external
parameter, i.e. supposing first that its value is known. Then, when confidence intervals of
the parameters of interest µ are considered, we vary the external parameter δ over a fixed
range, typically [−∆,∆].

• In the nuisance approach, we consider maximizing the p-value, usually carrying a depen-
dence on the value of δ, over a certain interval. We have then considered two different
cases: a fixed interval, and an interval which grows with the size of the confidence interval
for µ we want to have (adaptive approach).

• The Rfit approach also treats δ as a nuisance parameter and models the interval [−∆,∆]
with a plateau in the p-value or test statistic.

We have then studied the properties of these different methods, such as: confidence intervals
(including significances and coverage), averaging different measurements of the same quantity,
and a global fit of the CKM matrix for illustration. These questions are not purely mathematical
and have a clear interest for physical problems, as some of the examples discussed in the main
text attest. As we have seen over this chapter, the sizes of the quoted intervals, apart from
depending on the method chosen, are sensitive to the relative size of statistical and theoretical
uncertainties and the significance at which one wants to build the confidence intervals. Moreover,
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Figure 7.10: Shapes of the p-values for the different treatements of theoretical uncertainties dis-
cussed in the text. We consider the extraction of {A, λ, ρ̄, η̄} for the set of inputs given in
Table 7.7, and as a simplification we consider linearizing the SM predictions around the best-fit
point for these fundamental parameters.

the combination of different extractions of the same quantity, and the outcome of global fits also
depend on the scheme in use.

At higher significances, the adaptive approach has broader confidence level intervals and has
good coverage properties. The adaptive approach also has the interesting property of decompos-
ing statistical and theoretical uncertainties in global analyses, a property not found in the Rfit.
It is then an encouraging possibility to be further investigated.

A longer analysis and more comments are found in [197]. The comparison between different
models for dealing with theoretical uncertainties, plus the way to treat singular cases when
combining correlated measurements correspond to a prospective study to be considered by future
CKMfitter analyses.
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A

Method Fit result 1 σ 2 σ 3 σ

nG 0.809 ± 0.011 0.809 ± 0.011 0.809 ± 0.023 0.809 ± 0.034

Rfit 0.807 ± 0.026 0.807 ± 0.026 0.807 ± 0.031 0.807 ± 0.035

1-hypercube 0.809 ± 0.004 ± 0.025 0.809 ± 0.028 0.809 ± 0.033 0.809 ± 0.037

adaptive hyperball 0.809 ± 0.004 ± 0.010 0.809 ± 0.012 0.809 ± 0.029 0.809 ± 0.043

λ

Method Fit result 1 σ 2 σ 3 σ

nG 0.2254 ± 0.0007 0.2254 ± 0.0007 0.225 ± 0.0013 0.2254 ± 0.0020

Rfit 0.2254 ± 0.0010 0.2254 ± 0.0010 0.2254 ± 0.0010 0.2254 ± 0.0010

1-hypercube 0.2254 ± 0.0000 ± 0.0010 0.2254 ± 0.0010 0.2254 ± 0.0010 0.2254 ± 0.0010

adaptive hyperball 0.2254 ± 0.0000 ± 0.0007 0.2254 ± 0.0007 0.2254 ± 0.0014 0.2254 ± 0.0020

ρ̄

Method Fit result 1 σ 2 σ 3 σ

nG 0.164 ± 0.012 0.164 ± 0.012 0.164 ± 0.025 0.164 ± 0.037

Rfit 0.164 ± 0.032 0.164 ± 0.032 0.164 ± 0.039 0.164 ± 0.046

1-hypercube 0.164 ± 0.007 ± 0.026 0.164 ± 0.029 0.164 ± 0.038 0.164 ± 0.045

adaptive hyperball 0.164 ± 0.007 ± 0.010 0.164 ± 0.014 0.164 ± 0.032 0.164 ± 0.051

η̄

Method Fit result 1 σ 2 σ 3 σ

nG 0.353 ± 0.021 0.353 ± 0.021 0.353 ± 0.042 0.353 ± 0.063

Rfit 0.354+0.050
−0.049 0.354+0.050

−0.049 0.354+0.059
−0.058 0.354+0.068

−0.067

1-hypercube 0.353 ± 0.009 ± 0.041 0.353 ± 0.046 0.353 ± 0.057 0.353 ± 0.067

adaptive hyperball 0.353 ± 0.009 ± 0.019 0.353 ± 0.023 0.353 ± 0.054 0.353 ± 0.083

Table 7.8: Numerical results for different confidence intervals for the models of theoretical uncertainty discussed in the text: naive
Gaussian (nG), Rfit (usually employed by the CKMfitter Collaboration), nuisance approach with theoretical uncertainties varying in a
hypercube (1-hypercube), and adaptive intervals in the nuisance approach with theoretical uncertainties varying in a hyperball (adaptive
hyperball).

1
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Conclusion

We have at hand nowadays a very successful theory to describe a wide variety of phenomena
involving particles and their interactions, which is for this reason called Standard Model. We
have reviewed in Chapter 1 two classes of observables for testing the SM: EWPO, consisting of
very precise measurements, and flavour observables used in the extraction of the elements of the
CKM matrix. In each context, we have considered a global fit based on the CKMfitter statistical
framework for combining observables. The results show an overall successful description of these
observables by the SM.

Though generally very successful, the SM does not explain some features of nature but rather
include them into its framework. A good example is the chiral structure of the weak interactions,
or in other words the violation of parity symmetry (and charge conjugation). We would like to
have a better understanding of this aspect of the SM, and we have therefore considered a class of
extensions of the SM called Left-Right Models [20–23], a framework where the symmetry between
left and right is restored at a high energy scale, similarly to the way in which the electroweak
symmetry is restored at high enough energies.

We have revisited the LR Models realized with doublet representations, which was the first
scalar content to be considered in the old literature on the subject. Later on, more attention
has been given to a model containing triplet scalars, due to the possibility of explaining the
smallness of neutrino masses with a see-saw mechanism. However, the model with triplets has
been very much constrained, justifying the study of other realizations of the LR Models (in our
case a simpler one).

From the point of view of the phenomenology of this class of models, new gauge bosons
Z ′,W ′ are introduced. The W ′ couples to the right-handed fields with strengths described by a
mixing-matrix analogous to the CKM matrix of the SM. This is particularly interesting due to
the possibility of introducing new sources of CP violation. In full generality, other CP−violating
phases could also come from the VEV triggering the spontaneous breaking of the LR gauge group
down to the electromagnetism at low energies; for simplicity reasons though, we have preferred
to work in the case where these phases vanish. A different interesting phenomenological aspect is
that there is a whole new scalar sector, with the new neutral scalar particles introducing flavour
changing neutral currents at the tree level.

We have discussed in Chapter 2 the specific way in which the gauge symmetries of the LR
Models are spontaneously broken. As we have seen at that moment, the energy scale of the EW
Symmetry Breaking is described in full generality by three different Vacuum Expectation Values,

κ1,2,L, which combine as
√
κ2

1 + κ2
2 + κ2

L to set up the scale of the EWSB. We stress that this

is one of the novelties of the work we show in here, namely the consideration of the VEV κL,
which is constrained to be very much suppressed in the triplet case (due to the value of the ρ
parameter).

A sizable value of κL would imply a richer pattern of the EWSB, triggered by scalar fields
of different representations. To probe this aspect, we have performed a global fit including EW
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Precision Observables and the lower direct bound on the mass of the W ′. The results of the
fit for the predictions of the different EWPO are very similar if compared to the SM global fit,
and we were not able to solve the tensions found in the SM context (such as Ab

F B). As seen in
Chapter 3, the scale κR at which parity is restored ends up being very high, due to the direct
bound on the mass of the W ′, limiting in part the sensitivity of the fit to the new gauge coupling
gR and the VEVs κ1,2,L. We have however noted a preference for high values of κL.

We need new observables to constrain the LR Model, and more specifically observables sen-
sitive to new physics effects even for large values of κR. Meson-mixing observables are sensitive
to new energy scales much beyond the reach of modern particle colliders, and are then good
candidates for constraining LR Models, including the couplings of the W ′ and the new scalar
sector. However, in order to learn something accurate from this class of observables, we need
dedicated calculations of the effects introduced by QCD, which are unavoidable when processes
involving quarks are considered.

While the parameters describing long-distance QCD effects in meson-mixing observables in
LR Models have been addressed by many different collaborations, short-distance QCD effects
have not received the same attention. We have calculated in Chapter 5, after a brief introduction
of the necessary tools in Chapter 4, the effects from short-distance QCD corrections in meson-
mixing in LR Models. These effects were computed by exploiting two different methods: one
exact approach based on a successive set of EFT, and another one giving an estimate of the
latter exact approach which we have called Method of Regions. The novelty of our calculation in
the LR Model context was the integration of effects coming from dynamical charms in the EFT
approach, and the effort to extend the MR calculation up to the NLO.

Having achieved the computation of short-distance QCD corrections necessary for the LR
Model predictions of meson-mixing observables, we integrated in Chapter 6 meson-mixing ob-
servables together with EWPO and direct searches for the W ′ in a global fit, using the CKMfitter

statistical framework in the context of the LR Models. Compared to EWPO, the new set of pa-
rameters includes the masses of the scalar sector and the mixing-matrix of the right-handed
quarks V R, analogous to the CKM matrix of the SM. For the latter, however, we have assumed
the simplified case V R = V L in our analysis, a case called manifest scenario.

We were then able to set lower bounds on the masses of the gauge bosons W ′ and Z ′ at
∼ 3.6 − 4.0 TeV and ∼ 7.5 − 8.5 TeV (68 % CL), respectively, more restrictive or at least
competitive when compared to direct search programs. We have as well been able to set bounds
on the masses of the extended scalar sector beyond ∼ 25 TeV. On the other hand, we were not
able to extract bounds for κL, κ1, κ2, gR, but we have extracted some of their correlations.

Some aspects of the global fit can be certainly improved or generalized. We could still refine
the information coming from direct searches, which is usually made under specific assumptions
concerning the couplings of the W ′, Z ′ gauge bosons (such as gL = gR). Moreover, different
structures of the mixing-matrix V R could be probed, requiring new observables, in particular
tree level processes where a charged gauge boson is exchanged in the SM. Their inclusion could
point towards features of the V R mixing-matrix such as new CP−violating phases, and in this
context of (semi-)leptonic processes it would be interesting to include observables which have
recently shown tensions with the SM, e.g. RK , RD , RD∗ . This would lead us to questionings
related to the leptonic sector of the model, a challenging but quite exciting perspective if one
considers that LR Models provide a Z ′ boson as currently hinted at by b → sℓℓ observables, see
e.g. [200].

Shifting to a different issue, we have compared in Chapter 7 different modelings of theoretical
uncertainties, a class of uncertainties that is specially important in flavour physics. We have
shown that the size of a tension between experiment and prediction, or the outcome of the com-
bination of different extractions of the same quantity, or yet the results in terms of confidence

146



intervals of a global fit, depend on the way we understand theoretical errors. The underlying
interest of investigating different models of theoretical uncertainties is not only for the exercise
of illustrating their differences or similarities: aiming to be up-to-date with the present land-
scape of uncertainties in experimental data and theoretical inputs in flavour physics, much more
accurate than ten years ago, we would like to improve the analysis performed by the CKMfitter

Collaboration. We have therefore looked for alternatives to the Rfit scheme, presently used
in the modeling of theoretical errors, and have found a promising candidate, called adaptive
nuisance approach, which shows interesting properties from the point of view of coverage and
decomposition of statistical and theoretical uncertainties in a global fit.
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Résumé et brève discussion des
résultats

Le Modèle Standard (MS) de la physique des particules est bâti à partir d’exigences telles que
la covariance et la renormalisabilité et offre un cadre commun pour la description de toutes les
interactions microscopiques connues en termes de symétries de jauge. Cette théorie a été le
fruit du travail de plusieurs générations de physiciens, et est certainement l’une des réalisations
scientifiques les plus remarquables de notre Histoire. Le long chemin suivi avant d’atteindre
la formulation de la théorie de l’interaction électrofaible, unifiant l’électromagnétisme et les
processus faibles, est un exemple de l’effort qui a été nécessaire. A ce titre, notons que les
interactions faibles ont été introduites d’abord comme une nouvelle interaction fondamentale
dans les années 30 par Fermi [1], formulée à ce moment-là comme une interaction de contact.
Plus tard, il y a exactement 60 ans, la violation de la parité dans les désintégrations faibles a été
suggérée [2], en déclenchant des doutes sur les symétries de conjugaison de charge et de réversion
temporelle [3]. L’observation de la violation de la parité [4–6] l’année suivante a confirmé cette
hypothèse et a été d’une importance capitale pour la compréhension des interactions faibles
(voir [7, 8] pour les détails historiques) : suite à la découverte de la violation de la parité, elles
ont été formulées comme des interactions de type V − A = γµ − γµγ5 [9, 10], indiquant que la
raison sous-jacente de la force faible est l’échange de bosons vectoriels.

La courte portée de l’interaction faible, liée à l’échange de bosons de jauge lourds, est
élégamment interprétée comme la limite de basse énergie d’une théorie plus fondamentale et
symétrique, l’interaction électrofaible de Glashow-Salam-Weinberg. La symétrie électrofaible est
spontanément brisée par la valeur moyenne dans le vide d’un champ scalaire φ, qui introduit le
boson de Higgs dans le cadre du MS. En même temps que ce mécanisme, nommé Brout-Englert-
Higgs (BEH) [11], explique la courte portée des interactions faibles par les masses des bosons
de jauge W± et Z0, les particules responsables des forces faibles, il offre également une origine
pour les masses des quarks et des leptons chargés, en fonction de leur interaction avec ce même
champ scalaire φ.

En tenant compte des interactions fortes, cette image globale a été vérifiée de façon précise par
des mesures provenant de différents secteurs, deux exemples importants étant les observables de
précision électrofaible (EWPO en anglais) [12–14] et les observables de saveur [15–17], testant des
aspects très différents de la théorie, y compris les couplages du boson de jauge Z aux fermions
et la violation de CP telle que décrite par la matrice CKM. Plus récemment, la remarquable
découverte du dernier bloc manquant du MS, le boson de Higgs [18, 19], a couronné de succès
cette théorie.

Il est intéressant d’observer que le MS donne des indications quant à la possibilité d’avoir
une théorie plus fondamentale au-delà de son cadre. En effet, la hiérarchie de la matrice CKM,
ainsi que l’éventail des masses des quarks et des leptons, exige une compréhension plus profonde
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de la structure du MS. En outre, les valeurs des couplages gS , gL, gY sont à peu près similaires
: compte tenu les exemples très importants d’unification de forces en sciences (la gravité sur
le sol et le mouvement céleste, les forces électriques et magnétiques, l’électromagnétisme et les
interactions faibles), il est tentant de supposer des extensions du MS capables de faire de même
pour les interactions quantiques connues.

En plus, bien que capable d’expliquer une grande variété de phénomènes de la physique des
particules, le MS laisse inexpliquées certaines propriétés de la nature. Ici, nous allons mettre
l’accent sur les différents comportements des chiralités gauche et droite des fermions connus,
ou en d’autres termes la violation de la symétrie de parité. Une manière possible et naturelle
d’expliquer cela est d’intégrer le MS dans un modèle plus symétrique, qui traite les deux chiralités
de façon “démocratique.” La recherche de nouvelles symétries (par exemple, la supersymétrie,
etc.), ou des raisons pour lesquelles nous ne les voyons pas (par exemple, la violation de la
saveur leptonique par lors des oscillations des neutrinos, ou la brisure des symétries entre les
différentes générations par les matrices de Yukawa, etc.), peut améliorer fondamentalement notre
compréhension du monde microscopique, le MS en étant un exemple lui-même.

La classe de modèles qui restaure la symétrie de parité, les modèles à symétrie Droite-Gauche
(LR en anglais) a été d’abord conçue dans les années soixante-dix [20–23]. Depuis lors elle est à
l’origine de nombreuses investigations. Cela est certainement dû à la flexibilité de cette classe de
modèles vis-à-vis de sa réalisation spécifique, ce qui est exploité pour traiter une grande variété de
problèmes phénoménologiques, y compris la petitesse de la masse des neutrinos [24], la possibilité
de violer CP dans le secteur de l’interaction forte [25,26] et la matière noire [97]. En même temps,
le modèle LR peut résulter des groupes de jauge des Théories Grand Unifiées [27], en tant qu’une
étape intermédiaire de leur brisure spontanée vers le MS. De ce point de vue, enquêter sur la
violation de la symétrie de parité peut être une fenêtre menant à d’autres questions en physique
des particules.

Le premier point concernant la formulation des modèles LR est l’introduction d’une nouvelle
interaction faible qui se couple préférentiellement aux champs de chiralité droite, de manière
analogue aux courants de chiralité gauche du MS. Ceci se traduit par le groupe de jauge

SU(3)c × SU(2)L × SU(2)R × U(1)B−L ,

où B − L correspond au nombre baryonique total (B) moins le nombre leptonique total (L). À
des échelles d’énergie au-delà de la brisure de la symétrie EW, la symétrie LR est spontanément
brisée donnant origine au MS et aux phénomènes de violation de parité. Suite à la brisure
spontanée du groupe de jauge LR, le spectre de bosons de jauge inclut des particules lourdes

W ′± et Z ′0, associés à une riche phénoménologie : par exemple, le W ′± se couple aux champs
de chiralité droite avec une intensité dans le secteur des quarks donnée par une matrice de
mélange analogue à la matrice CKM, introduisant ainsi le mélange de différentes générations
et de nouvelles sources de violation de CP au-delà de celle de la matrice CKM. De plus, les

bosons Z ′0 et W ′± se mélangent avec les bosons Z0 et W±, respectivement, changeant ainsi les
couplages des bosons de jauge connus aux fermions, ce qui peut être testé par des observables
de précision EW. Notons d’ailleurs que plus récemment la possibilité d’observer les particules

W ′± et Z ′0 dans des collisionneurs de haute énergie a déclenché de nouvelles activités dans ce
domaine [28].

La manière spécifique dont la rupture spontanée du groupe de jauge LR arrive dépend du
contenu scalaire du modèle. Il est habituel de considérer les triplets (1,1,3, 2) et (1,3,1, 2) car
ils donnent lieu à un mécanisme de type see-saw pour les neutrinos légers. Nous voudrons ici
revisiter une réalisation plus simple des modèles LR contenant des doublets au lieu de triplets,
moins contrainte du point de vue de la rupture spontanée de la symétrie LR. En effet, les masses
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des bosons de jauge connus W,Z satisfont à MW ≈ MZ · gL/
√
g2

Y + g2
L, contraignant la valeur

moyenne dans le vide de l’une des représentations de type triplet, laissée a priori libre dans le cas
des représentations de type doublet. Ceci explique notre choix pour le titre (“Phénoménologie de
modèles à symétrie Droite-Gauche dans le secteur des quarks”) : nous nous concentrons ici sur
les aspects les plus fondamentaux des modèles LR, à savoir la brisure spontanée des symétries
locales et les propriétés de son secteur scalaire minimal, alors que la question de la petitesse des
masses des neutrinos peut exiger d’autres éléments supplémentaires.

Nous considérons dans le cadre de ce scénario doublet l’étude de la phénoménologie de nou-
veaux bosons de jauge et du nouveau secteur scalaire. Ce dernier inclut de nouveaux scalaires qui
apportent des courants neutres changeant la saveur (FCNC en anglais) au niveau des arbres. Les
FCNC fournissent généralement des contraintes extrêmement puissantes sur les modèles au-delà
du MS, car pour ce dernier ils arrivent d’abord à l’ordre d’une boucle, et méritent donc une
attention particulière. Ils fournissent de nouvelles contributions au mélange des mésons neutres,
intensivement étudiés dans le scénario triplet des modèles LR [28–37], ce qui implique des limites
inférieures sur la masse du W ′ de quelques TeV, et une limite inférieure d’ordre O(10) TeV pour
les masses du secteur scalaire étendu.

Lors du calcul des contributions LR aux processus de mélange de mésons neutres, la con-
naissance des effets de QCD devient nécessaire. Les effets de QCD de longue distance ont été
abordés par plusieurs groupes [38–42] et on s’attend à une meilleure précision dans un avenir
proche. En revanche, l’un de nos buts ici est d’améliorer la précision du calcul des effets de QCD
de courte distance. Pour parvenir à une telle tâche, nous avons donc considéré leur calcul au
NLO, et comparé les méthodes utilisées dans la littérature [30, 43–49].

En étudiant les contraintes auxquelles les modèles LR sont soumises, nous cherchons à avoir
une image plus claire de leur structure, à savoir ses échelles d’énergie et ses couplages. A cet
effet, nous effectuons une analyse combinée d’EWPO, des recherches directes du bosons de jauge
W ′ et des observables décrivant le mélange de mésons neutres. Leur combinaison est fournie
par le CKMfitter, un cadre d’analyse statistique puissant, prouvé très utile dans l’extraction des
paramètres de la matrice CKM dans le cadre du MS [16,50].

Par ailleurs, les effets de QCD mentionnés ci-dessus ainsi que d’autres paramètres théoriques
sont soumis à des incertitudes systématiques qui sont dans de nombreux cas la principale source
d’incertitude. La combinaison de différentes classes d’observables devrait, en principe, tenir
compte la particularité des incertitudes théoriques, qui sont d’une nature différente par rapport
aux incertitudes statistiques, de caractère aléatoire. En fait, leur interprétation même est soumise
à une ambigüıté, car elles ne sont pas trivialement conformes au cadre statistique habituel. Nous
comparons donc plusieurs modèles d’erreurs théoriques, ce qui est particulièrement important
pour la physique des saveurs.

Résultats obtenus

Nous disposons actuellement d’une théorie capable de décrire une grande variété de phénomènes
impliquant les particules fondamentales et leurs interactions. Pour cette raison, nous appelons
cette théorie le Modèle Standard (MS). Afin de tester le MS, nous avons examiné dans le
Chapitre 1 deux classes différentes d’observables : des observables de précision électrofaible
(EWPO), comprenant des quantités très précisément mesurées, et des observables de la saveur
utilisées dans l’extraction des éléments de la matrice CKM. Au sein de chaque classe, nous avons
considéré un fit global mené par le cadre statistique CKMfitter, qui consiste dans une approche
fréquentiste et applique une modélisation appropriée aux incertitudes de nature théorique. Les
résultats montrent une très bonne description des différentes classes d’observables par le MS.
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Bien qu’ayant beaucoup de succès, le MS n’explique pas certaines caractéristiques de la
nature, mais plutôt les inclut dans sa formulation. Un bon exemple est la structure chirale des
interactions faibles, ou en d’autres mots la violation de la symétrie de parité (et de conjugaison de
charge). Afin d’avoir une meilleure compréhension de cet aspect du MS, nous avons considéré une
classe de ses extensions appelée Modèles à Symétrie Droite-Gauche (Left-Right (LR) Models, en
anglais) [20–23], un cadre dans lequel la symétrie entre les chiralités gauche et droite est rétablie
à une échelle d’énergie élevée, de manière similaire à la façon dont la symétrie électrofaible est
rétablie à hautes énergies.

Nous avons reconsidéré la possibilité d’avoir des modèles LR réalisés avec des représentations
scalaires de type doublet, ce qui a été le premier contenu scalaire à avoir été considéré dans les
premières références à ce sujet. Plus tard, une plus grande attention a été accordée à un modèle
contenant des scalaires de type triplet, en raison de la possibilité d’expliquer les très petites
masses des neutrinos (par le biais d’un mécanisme de type see-saw). Cependant, le modèle avec
des triplets a été fortement contraint, ce qui justifie l’étude d’autres réalisations des modèles LR
(dans notre cas, une réalisation plus simple).

Du point de vue de la phénoménologie de cette classe de modèles, de nouveaux bosons de
jauge Z ′ et W ′ sont introduits. Le W ′ couple aux champs droits avec des forces décrites par une
matrice de mélange analogue à la matrice CKM du MS. Ceci est particulièrement intéressant vis-
à-vis de la possibilité d’introduire de nouvelles sources de violation de CP. En toute généralité,
d’autres phases complexes responsables pour la violation de CP pourraient aussi provenir des
VEV à l’origine de la brisure spontanée du groupe de jauge des modèles LR : pour des raisons de
simplicité, nous avons préféré travailler dans le cas où ces phases ne sont pas présentes. Un autre
aspect phénoménologique également intéressant est l’existence d’un nouveau secteur scalaire,
dans lequel de nouvelles particules scalaires neutres introduisent des courants neutres changeant
la saveur (FCNC) à l’ordre des arbres.

Nous avons discuté dans le Chapitre 2 la manière spécifique par laquelle les symétries de
jauge des modèles LR sont spontanément brisées. Comme nous avons remarqué à ce moment-là,
l’échelle d’énergie de la brisure de la symétrie électrofaible (EWSB) est décrite en toute généralité

par trois VEV, κ1,2,L, qui se combinent de la façon suivante
√
κ2

1 + κ2
2 + κ2

L pour établir l’échelle

de l’EWSB. Nous soulignons ici l’une des nouveautés du travail que nous montrons, à savoir la
considération de la VEV κL, qui est contrainte à être très petite dans le cas des triplets (en raison
de la valeur du paramètre ρ). D’ailleurs, une valeur importante de κL impliquerait un caractère
plus riche de l’EWSB, déclenchée par des champs scalaires de nombres quantiques différents.

Nous avons effectué un fit global incluant des observables de précision électrofaible et la
limite inférieure sur la masse du boson W ′. Les prédictions qui en résultent sont très similaires
en comparaison au fit global du MS, et nous ne sommes pas en mesure de résoudre les tensions
trouvées dans le cadre du MS (comme celle de Ab

F B). Comme on l’a vu dans le Chapitre 3,
l’échelle κR à laquelle la parité est restaurée finit par être très élevée, en raison des bornes directes
sur la masse du boson W ′, ce qui limite en partie la sensibilité du fit au nouveau couplage de
jauge gR et les VEV κ1,2,L. Cependant, nous avons remarqué une préférence pour des valeurs
élevées de κL.

Nous avons besoin de nouvelles observables pour contraindre le modèle LR et plus partic-
ulièrement des observables sensibles aux échelles κR, même pour de grandes valeurs de κR. Des
observables bâties à partir de l’oscillation de mésons neutres sont sensibles aux échelles d’énergie
bien au-delà de la portée des collisionneurs de particules modernes, et sont alors de bons candi-
dats pour contraindre les FCNC introduits par le W ′ et le nouveau secteur scalaire. Toutefois,
afin d’apprendre quelque chose de précis en exploitant cette classe d’observables, nous avons
besoin de calculer les effets venant de la QCD, inévitables lorsque des processus impliquant des
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quarks sont considérés.
Bien que les paramètres décrivant les effets de la QCD à longues distances dans le cadre des

modèles LR ont été traités par de nombreuses collaborations, les effets de la QCD à courtes
distances n’ont pas reçu la même attention. Nous avons calculé dans le Chapitre 5, après une
brève introduction aux outils nécessaires dans le Chapitre 4, les effets des corrections QCD à
courtes distances au mélange de mésons neutres dans les modèles LR. Ces effets ont été calculés
en exploitant deux différentes méthodes : une approche plus formel, basée sur la définition
de théories effectives successives (EFT), et une autre approche donnant une estimation de la
dernière, appelée Méthode des Régions (MR). La nouveauté de notre calcul a été l’intégration
des effets provenant des quarks charm dynamiques dans l’approche EFT, et l’effort d’étendre le
calcul fait par MR jusqu’au NLO.

Après avoir réalisé le calcul des corrections QCD à courtes distances nécessaire pour les
prédictions des oscillations de mésons neutres, nous avons intégré dans le Chapitre 6 les ob-
servables provenant du mélange de mésons neutres avec les EWPO et la recherche directe des
bosons W ′ dans un fit global, en utilisant l’outil statistique CKMfitter. Le nouvel ensemble de
paramètres comprend les masses du secteur scalaire et la matrice de mélange des quarks droits
V R. Pour cette dernière, cependant, nous avons supposé le cas simplifié V R = V L, un scénario
appelé cas manifest.

Nous avons été alors en mesure d’établir des limites pour les masses des bosons de jauge
W ′ et Z ′ de ∼ 3, 6 − 4, 0 TeV et ∼ 7, 5 − 8, 5 TeV, respectivement, plus restrictives que les
programmes de recherche directe. Nous avons aussi été en mesure de mettre des bornes sur les
masses du nouveau secteur scalaire au-delà de ∼ 25 TeV. D’autre part, nous ne sommes pas
en mesure d’extraire des limites pour κL, κ1, κ2, gR, mais nous avons extrait une partie de leurs
corrélations.

Certains aspects du fit global peuvent être certainement améliorés ou généralisés. Nous pour-
rions encore raffiner les informations provenant des recherches directes, qui sont généralement
faites sous des hypothèses spécifiques concernant les couplages des bosons de jauge W ′ et Z ′

(tels que gL = gR). En outre, différentes structures de la matrice de mélange V R pourraient
être sondées, et l’analyse des processus semileptoniques et leptoniques pourrait être intégrée
dans le fit global. Ceux-ci pourraient pointer vers des caractéristiques de la matrice de mélange
V R tels que de nouvelles phases complexes violant CP. Dans ce même contexte, on pourrait
aussi inclure des observables qui ont connu récemment des tensions avec le MS, par exemple
RK , RD , RD∗ . Cela nous conduirait à des questionnements liés au secteur leptonique du modèle,
une perspective intéressante si l’on considère que les modèles LR prédisent des bosons de jauge
Z ′ tel qu’actuellement indiqué par des observables bâtis par l’observation de b → sℓℓ.

Nous avons aussi été intéréssés par d’autres questions, en comparant dans le Chapitre 7
différentes modélisations des incertitudes théoriques, une classe d’incertitudes qui est partic-
ulièrement importante en physique de la saveur. Nous avons montré que la taille d’une tension
entre l’expérience et la prédiction, ou le résultat de la combinaison de différentes extractions de
la même quantité, ou encore les résultats en termes d’intervalles de confiance d’un fit global,
dépendent de la façon dont nous comprenons les erreurs théoriques. L’intérêt sous-jacent à la
considération de différents modèles d’incertitudes théoriques provient non seulement d’un ex-
ercice ayant pour but d’illustrer leurs différences ou similitudes : visant à être en conformité
avec le paysage actuel des incertitudes dans les données expérimentales et dans les paramètres
théoriques en physique de la saveur, plus précises qu’il y a une dizaine d’années, nous voudrons
améliorer l’analyse effectuée par la Collaboration CKMfitter. Nous avons donc cherché des alter-
natives au schéma Rfit, actuellement utilisé dans la modélisation des erreurs théoriques, et nous
avons trouvé un candidat prometteur, connu sous le nom de nuisance adaptative, qui présente
des propriétés intéressantes du point de vue de la couverture de la vraie valeur d’un paramètre
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inconnu et de la décomposition des incertitudes statistiques et théoriques dans un fit global.
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Appendix A

EWPO tree level expressions in
the SM

A.1 Partial widths

Partial widths of the Z boson, Z → f f̄ , are calculated in the following way

Γff̄ = Cf
GF

6π
√

2
[(gf

V )2 + (gf
A)2]M3

Z , (A.1)

where Cf is the number of colours, thus implying

Γνν̄ =
GF

12π
√

2
M3

Z , (A.2)

Γℓℓ̄ =
1

2
Γνν̄ [(1 − 4 sin2 θ)2 + 1] , (A.3)

ΓUŪ =
3

2
Γνν̄ [(1 − 8

3
sin2 θ)2 + 1] , (A.4)

ΓDD̄ =
3

2
Γνν̄ [(1 − 4

3
sin2 θ)2 + 1] , (A.5)

where ℓ = e, µ, τ , U = u, c, D = d, s, b, and we have neglected the masses of the fermions for
illustration (which is an extremely good approximation except for the bottom-quark). Therefore,
the total width is given by1

Γtotal = 3Γνν̄ + 3Γℓℓ̄ + 2ΓUŪ + 3ΓDD̄ , (A.6)

⇒ Γtotal =
3

2
Γνν̄

[
14 − 80

3
sin2 θ +

320

9
sin4 θ

]
. (A.7)

From the previous expressions one has (and for the numerical exercise only, we take GF ≃
1.166 · 10−5 GeV−2, sin2 θ ≃ 0.23, MZ ≃ 91.2 GeV)

1In principle, Γtotal as defined above can be different from ΓZ . In our SM and LRM analyses we assume that
they are the same, i.e. there is no extra invisible channel apart from the three neutrino flavours.
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Γνν̄ ≃ 166 MeV , Γℓℓ̄ ≃ 83 MeV , (A.8)

ΓUŪ ≃ 286 MeV, ΓDD̄ ≃ 368 MeV , (A.9)

Γtotal ≃ 2.4 GeV , (A.10)

from where one has the following branching ratios

Br(νν̄) ≃ 6.8 %, Br(ℓℓ̄) ≃ 3.4 % , (A.11)

Br(UŪ) ≃ 12 %, Br(DD̄) ≃ 15 % , (A.12)

Br(hadrons) ≃ 69 % . (A.13)

As a thumb rule, Z decays twice more into neutrinos than into charged leptons, and 2/3 of the
time into hadrons.

From the partial-widths, one can define the following ratios

Rℓ =
Γhad

Γℓℓ̄

, Rq =
Γqq̄

Γhad
, (A.14)

measured for ℓ = e, µ, τ and q = b, c.

A.2 Cross sections

Consider a e+e− collision2 with a center-of-mass energy
√
s in the center-of-mass frame; the

non-polarized differential cross section at tree level is given by (neglecting the masses of the
fermions)

dσf

d cos θ∗ (
√
s) =

Cf

8π

(
g2

L

8 cos2 θ

)2
s

(s−M2
Z)2 + Γ2

ZM
2
Z

(A.15)

{
[(ge

V )2 + (ge
A)2][(gf

V )2 + (gf
A)2](1 + cos2 θ∗) + 8ge

V g
e
Ag

f
V g

f
A cos θ∗

}
,

where θ∗ is the emission angle in the center-of-mass frame (angle between the positron (electron)
and the final (anti-)particle). Note that the last term shows an asymmetric dependence on the
emission angle θ∗, which is an explicit violation of parity (proportional to the asymmetry AF B(f)
defined below).

Above, a Breit-Wigner approximation was employed, i.e. for a virtual Z∗ exchanged in a
s−channel3 at tree level (k2 = s)

−i gµν − kµkν/M
2
Z

k2 −M2
Z + iΓZMZ

, (A.16)

in the unitary gauge. (Experimentally, however, one employs a width which has an energy
dependence on the energy scale, ∝ (k2 −M2

Z + ik2ΓZ/MZ)−1.)
The differential cross-section implies the following total cross-section

2Of course, hadron collisions are also useful to investigate the lineshape of the Z boson resonance, though they
suffer from initial-quark PDF uncertainties.

3Other channels have a non-resonant character but still contribute to the line-shape of e+e− → Z∗ → e+e−.
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σf (
√
s) =

sΓ2
Z

(s−M2
Z)2 + Γ2

ZM
2
Z

σf , (A.17)

where σf ≡ σf (MZ). In terms of partial-widths at tree level:

σf =
12π

M2
Z

ΓeēΓff̄

Γ2
Z

. (A.18)

Finally, it is useful in order to better control systematic errors to write

σf (
√
s) =

sΓ2
Z

(s−M2
Z)2 + Γ2

ZM
2
Z

σhad

Γff̄

Γhad
, (A.19)

where σhad corresponds to the sum over hadronic channels of σf , i.e. σhad =
∑

f∈{u,d,s,c,b}
σf .

A.3 Asymmetries

Parity violation in neutral weak interactions in the SM is at the origin of a different class of
observables. Though the asymmetries of the Z couplings are not as large as the asymmetries of
the W couplings, they have their own interest due to the precision measurements at the center-
of-mass energy

√
s ∼ 91 GeV (and they offer a privileged way to determine sin2 θ, by writing

gf
V,A in terms of sin2 θ, see Table 1.1 in Chapter 3). One of the possible asymmetries to measure

is the Forward-Backward asymmetry, i.e. the angular asymmetry on Z decays

AF B(f) =
n(θ∗ < 90o) − n(θ∗ > 90o)

n(θ∗ < 90o) + n(θ∗ > 90o)
, (A.20)

where n is the number of events, and f = e, µ, τ, b, c. Note that parity conserving effects, such
as QED and QCD, cancel in the ratio. From the theoretical side, AF B(f) is given as follows

AF B(f) =
3

4
AeAf , Af = 2

gf
V g

f
A

(gf
V )2 + (gf

A)2
. (A.21)

The asymmetry of Z decays in polarised final-states, measured for τ leptons by the observation
of their decay products, is

P τ
− =

n(τR) − n(τL)

n(τR) + n(τL)
= −Aτ , (A.22)

and more generally one has a function of the emission angle, P τ
−(cos θ∗).

Another asymmetry to measure is the Left-Right asymmetry, i.e. the asymmetry of the
cross-section with incident polarized electron beams

ALR =
σ(eL) − σ(eR)

σ(eL) + σ(eR)
= Ae . (A.23)
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A.4 Atomic Parity Violation (APV)

Apart from these Z-lineshape and asymmetries we have low-energy measures coming from Atomic
Parity Violation (APV), see e.g. [201] (and [202,203] for NP studies), which is defined from the
parity violating effects related to the exchanges of Z bosons between the atomic nucleus and the
atomic electrons. The most important contribution comes from the axial coupling to electrons
and to the vectorial couplings to quarks from the nucleons (for more details, see the “EW model
and constraints on NP” review in [58]):

QW (q) = 2ge
Ag

q
V , (A.24)

QW (p) = 2QW (u) +QW (d) , (A.25)

QW (n) = QW (u) + 2QW (d) , (A.26)

and we have considered 133Cs55 and 205, 203T l81 in our fit, whose APV magnitudes are given by

QW (n) = −2(ZQW (p) +NQW (n)) . (A.27)

A.5 W boson partial widths and cross sections

We also provide useful bounds from the W boson properties. In the limit of massless neutrinos
we have

Γνℓ̄ =
GF

6π
√

2
M3

W , (A.28)

and for the quarks there is additionally a dependence on the CKM mixing matrix (q1 (q2) is the
up-type (down-type) flavour)

Γq1 q̄2 = 3
GF

6π
√

2
|V L

q1q2
|2M3

W = 3|V L
q1q2

|2Γνℓ̄ . (A.29)

The above two equations imply

Γtotal = 3Γνℓ̄ + 3
∑

q1,q2

|V L
q1q2

|2Γνℓ̄ = 9Γℓν̄ℓ
, (A.30)

where in
∑

q1,q2

the kinematically allowed flavours are q1 = u, c and q2 = d, s, b. Therefore, one has

the following approximate values (GF ≃ 1.166 · 10−5 GeV−2, MW ≃ 80.4 GeV)

Γνℓ̄ ≃ 227 MeV , (A.31)

from Γub̄ ≃ 6 keV , to Γud̄, cs̄ ≃ 642 MeV , (A.32)

Γtotal ≃ 2 GeV , (A.33)

and the following branching ratios

Br(νℓ̄) ≃ 1/9, Br(hadrons) ≃ 6/9 . (A.34)

Though we are not going to exploit the following expressions in our analysis, it is interesting
to note the parity asymmetry in them. These are: qq̄′ → W ∗ → νℓℓ̄ cross-sections
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dσ̄νℓ

d cos θ∗ (
√
s) =

1

8π

(
g2

L

8

)2 s|V L
qq′ |2

(s−M2
W )2 + Γ2

WM2
W

(1 + cos θ∗)2 ,

(A.35)

and qq′ → W ∗ → q1q2

dσq1q2

d cos θ∗ (
√
s) =

3

8π

(
g2

L

8

)2 s|V L
qq′ |2|V L

q1q2
|2

(s−M2
W )2 + Γ2

WM2
W

(1 + cos θ∗)2 .

(A.36)

In the above expressions, the measured cross section is given by

σf (
√
s) =

∫ ∫
dx1 dx2 F (x1)F (x2)σf (

√
s) , (A.37)

where s = sx1x2 and F (x1,2) are the relevant PDFs.
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Appendix B

Parameterization of the EWPO

In practice, we want to combine the set of EWPO in order to constrain the SM or the LRM
using CKMfitter. Asking CKMfitter to call Zfitter for each realization of S would be too
time-consuming. Therefore, we prefer to parameterize the observables as a function of S before
using CKMfitter. A simple (Fortran) code makes calls to Zfitter for certain realizations of
S, which gives as output the corresponding values for the set of observables we want to study.
Then, with a second program (written in Mathematica), we parameterize these observables as a
function of S. It is this parameterization that is used by CKMfitter to produce global fits. The
following “chart graph” resumes the task

Fortran code → Zfitter → Observables → Mathematica notebook

→ parameterization → CKMfitter → constraints

When using Zfitter, we have left the value of α−1(0) = 137.0360 fixed. The values of
other relevant parameters are: ms = 0.3 GeV, mc = 1.5 GeV, mb = 4.7 GeV, and Gµ =
1.1664·10−5 GeV-2, which were all kept fixed during the analysis. Both of the references, Zfitter

[14] and Freitas in [63], calculate loop corrections in the on-shell scheme. In this scheme, the

mass of the top is the pole mass, mpole
top .

When doing the parameterization, we have divided the intervals of S by the following numbers
of points :

variable interval(s) nb. of points parameter(s) fitted

∆α
(5)
had(MZ) 0.02757 ± 0.00050 81 c6

MZ 91.1876 ± 0.0042 21 c7

mpole
top 173.2 ± 2.0 71 c2

MH 125.7 ± 2.5 51 c1

αs(MZ) 0.1184 ± 0.0050 111 c3

All the same 55 c4, c5

On determining c3 from αs(MZ), we have set c4 to zero (the dependence of c3 on c4 is very
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Obs. X0 c1 c2 c3 c4 c5 c6 c7 max. dev.

ΓZ [MeV] 2494.24 -2.0 19.7 58.60 -4.0 8.0 -55.9 9267 < 0.01

σhad [pb] 41488.4 3.0 60.9 -579.4 38 7.3 85 -86027 < 0.1

Rb * 215.80 0.031 -2.98 -1.32 -0.84 0.035 0.73 -18 < 0.01

Rc * 172.23 -0.029 1.0 2.3 1.3 0.38 -1.2 37 < 0.01

Rℓ * 20750.9 -8.1 -39 732.1 -44 5.5 -358 11702 < 0.1

Table B.1: Parametrization from [63], ∗ = 103. We do not use its parameterization for Rℓ since it is the result of a combination of
Re, Rµ, Rτ .

Obs. X0 c1 c2 c3 c4 c5 c6 c7 max. dev.

ΓZ [MeV] 2495.22 -2.4 20.1 63.48 -3.2 -1.8 -54.4 9225 < 0.006

σhad [pb] 41478.9 1.3 52.8 -630.9 134 -3.4 82 -86323 < 0.5

Rb * 215.81 0.039 -3.12 -0.0285 -0.74 0.070 0.81 -19. < 0.0006

Rc * 172.24 -0.032 1.0 2.3 1.4 0.38 -1.2 37. < 0.0006

Re * 20739.5 -7.7 -32. 791.2 -78. 0.70 -361. 11950. < 0.3

Rµ * 20739.5 -6.8 -32. 791.5 31. -0.17 -362. 11880. < 0.3

Rτ * 20786.5 -8.4 -32. 792.9 -40. -0.37 -363. 11399. < 0.3

AF B(b) * 103.1 -2.7 15.2 -2.2 -4.1 0.09 -115.5 3725.2 < 0.03

AF B(c) * 73.7 -2.1 11.9 -1.7 -2.9 -0.01 -89.4 2877.5 < 0.02

AF B(ℓ) * 16.2 -0.8 4.8 -0.7 -0.7 -0.09 -35.9 1. < 0.02

Ab * 934.6 -0.3 0.4 -0.1 -0.5 0.5 -13.2 429.6 < 0.03

Ac * 667.9 -1.6 9.5 -1.4 -1.5 0.05 -71.5 2260.2 < 0.01

Aℓ * 147.1 -3.7 21.6 -3.1 -5.9 0.05 -162.7 5246.9 < 0.03

MW [GeV] 80.361 -0.058 0.522 -0.073 -0.034 0.0002 -1.069 114.885 < 0.0002

ΓW [MeV] 2090.6 -4.4 41.1 48.2 -2.6 0.9 -83.0 8953.8 < 0.02

QW (Cs) -72.98 -0.09 0.05 -0.21 0.83 0.12 -5.17 172.91 < 0.006

QW (T l) -116.48 -0.13 0.02 -0.33 1.31 0.17 -7.7 257.02 < 0.008

Table B.2: The numeric values (truncated here for illustration) for the parameters of different observables, ∗ = 103.

1
6
1



small): the resulting value for c3 is the same as the value found for a conjoint fit of c3 and c4

from varying αs(MZ); the difference on the values of this c4 and the one determined from the
variation of all the variables together was generally not big. X0 was determined exactly when

setting ∆α
(5)
had(MZ) = 0.02757, MZ = 91.1876, mpole

top = 173.2, MH = 125.7, and αs(MZ) =
0.1184. Varying all the variables was as well used to determine the maximum deviations of the
parameterization, thus showing that extra quadratic dependences are not necessary.
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Appendix C

ρ parameter

The problem of the ρ parameter value for a bi-doublet and two triplets is considered by [54],
so we are going to list some of the results. The important mixing matrices are, where we take
gL = gR = g for simplicity

1

2




|κ1|2+|κ2|2
2

+ |κL|2 −κ1κ2

−κ1κ2
|κ1|2+|κ2|2

2
+ |κR|2


 (C.1)

in the WL,WR basis and

1

2




|κ1|2+|κ2|2
4

+ |κL|2 −|κ1|2+|κ2|2
4

+
s2

θ

c2
θ − s2

θ

|κL|2

−|κ1|2+|κ2|2
4

+
s2

θ

c2
θ − s2

θ

|κL|2 |κ1|2+|κ2|2
4

+
s4

θ|κL|2+c4
θ|κR|2

(c2
θ − s2

θ)2


 (C.2)

in the X1, X2 basis. Here the weak angles are given by

c2
θ ≡ g2

B−L + g2

2g2
B−L + g2

, s2
θ ≡ g2

B−L

2g2
B−L + g2

. (C.3)

On searching for parity breaking, |κL|6= |κR|, and supposing |κR| much bigger than |κL|, |κ1,2|,
one has the following light masses, to leading order in 1/|κR|2:

M2
W ≈ g2

2

( |κ1|2+|κ2|2
2

+ |κL|2
)
, (C.4)

M2
Z ≈ g2

2c2
θ

( |κ1|2+|κ2|2
2

+ 2|κL|2
)

≈ M2
W

c2
θ

+ g2 |κL|2
2c2

θ

. (C.5)

Thus

ρ ≈ (1 + g2|κL|2/(2M2
W ))−1 (C.6)

is close to 1 only when |κL| is much smaller than |κ1,2|.
Following [54], we calculate explicitly the case where the triplets are replaced by doublets.

We find
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1

2




|κ1|2+|κ2|2+|κL|2
2

−κ1κ2

−κ1κ2
|κ1|2+|κ2|2+|κR|2

2


 (C.7)

in the W sector and

1

2




|κ1|2+|κ2|2+|κL|2
4

−|κ1|2+|κ2|2
4

+
s2

θ

c2
θ − s2

θ

|κL|2
4

−|κ1|2+|κ2|2
4

+
s2

θ

c2
θ − s2

θ

|κL|2
4

|κ1|2+|κ2|2
4

+
s4

θ|κL|2+c4
θ|κR|2

4(c2
θ − s2

θ)2


 (C.8)

in the neutral sector, which implies ρ = 1 to leading order in 1/|κR|2.
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Appendix D

Stability conditions

The extreme conditions (first order derivatives of the potential in Eq. (2.35), giving the conditions
for the stability of the vacuum state) with respect to {ϕ0r

1 , ϕ
0r
2 , χ

0r
R , χ

0r
L , ϕ

0i
2 , χ

0i
L } are

0 = κ2

(
B + 4λ4κ

2
1

)
cosα+ κ1

[
A+ α4(κ2

R + κ2
L) + (4λ3 + 8λ2 cos(2α))κ2

2

]

+
√

2µ′
2κLκR cos θL + α2κ2

[
κ2

R cos(α+ δ2) + κ2
L cos(α − δ2)

]
, (D.1)

0 = κ1

(
B + 4λ4κ

2
2

)
cosα+ κ2

[
A+ α3(κ2

R + κ2
L) + (4λ3 + 8λ2 cos(2α))κ2

1

]

+
√

2µ′
1κLκR cos(α− θL) + α2κ1

[
κ2

R cos(α + δ2) + κ2
L cos(α− δ2)

]
,

(D.2)

0 =
C

κ2
R

+
κ2

L

κ2
R

2ρ+
√

2
κL

κR

(
µ′

1

κR

κ2

κR
cos(α − θL) +

µ′
2

κR

κ1

κR
cos θL

)

+2α2r

(
κ1

κR

)2

cos(α+ δ2), (D.3)

0 =
κL

κR

(
C

κ2
R

+ 2ρ

)
+

√
2

(
µ′

1

κR

κ2

κR
cos(α− θL) +

µ′
2

κR

κ1

κR
cos θL

)

+2α2rw

(
κ1

κR

)2

cos(α − δ2), (D.4)

0 = κ1 (B + 16λ2κ1κ2 cosα) sinα+
√

2µ′
1κLκR sin(α− θL)

+α2κ1

[
κ2

R sin(α+ δ2) + κ2
L sin(α− δ2)

]
, (D.5)

0 = µ′
1κ2 sin(α− θL) − µ′

2κ1 sin θL, (D.6)

where ρ ≡ ρ3/2 − ρ1, w ≡ κL

κ1
, r ≡ κ2

κ1
and

A ≡ −2µ2
1 + α1(κ2

R + κ2
L) + 2λ1(κ2

1 + κ2
2), (D.7)

B ≡ −4µ2
2 + 2λ4(κ2

1 + κ2
2), (D.8)

C ≡ −2µ2
3 + 2ρ1(κ2

R + κ2
L) + α1(κ2

1 + κ2
2) + α4κ

2
1 + α3κ

2
2. (D.9)

These six equations provide relations among the VEV values κ1,2, κL,R, α and θL, and the
underlying parameters of the potential, µ2

1,2,3, α1,2,3,4, µ′
1,2, ρ1,3, λ1,2,3,4 and δ2.
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In order to analyze the limit where κR is much bigger than the other VEVs, we define

ǫ ≡
√

1 + r2 + w2
κ1

κR
. It is useful to further define

A′ ≡ −2µ2
1 + α1κ

2
R, (D.10)

B′ ≡ −4µ2
2, (D.11)

C′ ≡ −2µ2
3 + 2ρ1κ

2
R. (D.12)

The extreme conditions are now given under the following form, to leading order in ǫ ≪ 1:

0 ≃ r
B′

κ2
R

cosα+

(
A′

κ2
R

+ α4

)
+

√
2
µ′

2

κR
w cos θL + α2r cos(α + δ2), (D.13)

0 ≃ B′

κ2
R

cosα+ r

(
A′

κ2
R

+ α3

)
+

√
2
µ′

1

κR
w cos(α− θL) + α2 cos(α+ δ2),

(D.14)

0 ≃ C′

κ2
R

, (D.15)

0 ≃ w2ρ +
√

2

(
r
µ′

1

κR
cos(α− θL) +

µ′
2

κR
cos θL

)
, (D.16)

0 ≃ B′

κ2
R

sinα+
√

2
µ′

1

κR
w sin(α− θL) + α2 sin(α+ δ2), (D.17)

µ′
1

κR
r sin(α− θL) =

µ′
2

κR
sin θL, (D.18)

where in the fourth equation (Eq. (D.16)) we have used the third one (Eq. (D.15)). When two
very different energy scales are present, such as κR ≫ κ1,2,L, one may face a certain amount
of tuning as we now explain (an exception would be the situation where two equations reduce
to the same one). In our case, we have six equations (corrected by higher orders in ǫ) and five
parameters {r, w, κR, θL, α} related to the VEVs ( [204], [116], [205]). We can imagine solving for
the VEVs using five out of the six equations, and plugging the solutions into the sixth. In other
words a pure combination of parameters from the potential, say f(µ2

1,2/µ
2
3, α1,2,3,4, ρ1,3, µ

′
1/µ

′
2),

is zero up to corrections suppressed by ǫ, f = O(ǫ). Whether this resulting combination is
stable under radiative corrections, thus stating or not a certain amount of tuning, remains to be
verified.

The equations given so far hold in the most general situation, and for simplicity we are going
to compute the mass spectrum in the particular case where sin θL, and consequently sinα, goes
to zero. For this limit, it is also necessary to have sin δ2 → 0, where δ2 is the CP−violating phase
of the Higgs potential: note from Eq. (D.6) or (D.18) that in the special case where sin θL → 0,

µ′
1κ2 sinα → 0 , (D.19)

and in this case we ask for sinα → 0; then, Eq. (D.5) or (D.17) would imply

α2κ1(v2
R − v2

L) sin δ2 → 0 , (D.20)

and we ask for sin δ2 → 0.
To deal with the limit sinα → 0, a new parameter is introduced by the relative speed

sδ,α ≡ lim
sin α→0

sin δ2

sinα
. For further discussion, the eigenvalues of the mass matrix are given in

Table D.1, up to order O(ǫ).
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Name Mass2 / κ2
R

h0 0

H0
3 2ρ1

H0
1 , A

0
1

1

4r2
(b−

√
b2 − 8r2∆)

H0
2 , A

0
2

1

4r2
(b+

√
b2 − 8r2∆)

Table D.1: Neutral scalar spectrum.

Above, we have employed the definitions

b = α2sδ,αr(1 + r2) + 2ρ{c2w2 + r2[1 + (1 − c)2w2]}, (D.21)

∆ = α2sδ,αρr(1 + r2 + w2) , (D.22)

where c is defined to be
C

1 + C
, C ≡ µ′

1

µ′
2

r, and ρ ≡ (
ρ3

2
− ρ1) (we take cosα = cos θL = 1).

Therefore, we see that when sδ,α = 0 two heavy particles become light, i.e. massless up to order
O(ǫ). In other words, if sin δ2 = 0 from the beginning, while sinα, sin θL 6= 0, the spectrum
would have many light physical scalars.

If one considers solving for {µ2
1,2,3, µ

′
1,2, α2}, to leading order in ǫ:

µ2
1

κ2
R

≃ (α1 + α3)

2
− α34 + 2(1 − 2c)ρw2

2(1 − r2)
, (D.23)

µ2
2

κ2
R

≃ α2

4
+
α34r

2 − 2(c− (1 − c)r2)ρw2

4r(1 − r2)
, (D.24)

µ2
3

κ2
R

≃ ρ1, (D.25)

µ′
1

κR
≃ −

√
2cρw

r
,

µ′
2

κR
≃

√
2(c− 1)ρw, (D.26)

α2sδ,α ≃ −2c2ρw2 + r2(α34 + 2(1 − c)2ρw2)

r(1 − r2)
, (D.27)

where α34 ≡ α3−α4. Equation (D.27) should be seen as the definition of sδ,α, and Eqs. (D.26) are
not independent. Therefore we have four equations relating the three remaining VEVs r, w, κR.

To conclude, though we are discussing the limit sin δ2, sin θL, sinα → 0, we have verified that
this case is equivalent to the special case where sin δ2 = sin θL = sinα = 0. The interesting point
to note, however, is the interplay between the masses of the scalars and the CP−violating phases:
when setting sin δ2 to zero we also require real VEVs or otherwise there would be extra light
scalars (of masses of the order of the EWSB energy scale), a case not considered here, due to the
danger related to potentially too large Flavour-Changing Neutral Currents (FCNC) amplitudes.
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Appendix E

Spectrum of the scalar particles

When diagonalizing neutral the mass matrix, we find the following two massless combinations
(up to O(ǫ3) corrections) eigenstates, orthonormal up to order O(ǫ2)

G0
1 =

1√
1 + r2 + w2

(−ϕ0i
1 + rϕ0i

2 + wχ0i
L ),

G0
2 = χ0i

R − ǫ(−ϕ0i
1 + rϕ0i

2 − 1 + r2

w
χ0i

L )
w2

1 + r2 + w2
(E.1)

(apart from the light SM-like Higgs, built out of ϕ0r
1,2, χ0r

L,R). We could in principle quote any
orthogonal combination out of them, and we need to determine the one which gives the would-be
Goldstone bosons. From the couplings of these scalar fields to the Gauge boson Z ′, we determine
then the linear term of the form Z ′∂G0

Z′ , and similarly for G0
Z . The neutral Goldstones are finally

given by

G0
Z = G0

1 − ǫ
√

1 + r2 + w2

[
s2

R −
(

1 +
w2

1 + r2

)−1
]
G0

2, (E.2)

G0
Z′ = G0

2 + ǫ
√

1 + r2 + w2

[
s2

R −
(

1 +
w2

1 + r2

)−1
]
G0

1. (E.3)

Similarly, we find the following expressions for the charged Goldstones (massless up to order
O(ǫ3))

G± =
1√

1 + r2 + w2
(−ϕ±

1 + rϕ±
2 + wχ±

L ) + 2ǫ
r√

1 + r2 + w2
χ±

R

G′± = χ±
R + ǫ(rϕ±

1 − ϕ±
2 ). (E.4)

In Table E.1, we give the neutral Higgses, up to order O(ǫ1).
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Name Mass2 / κ2
R Vectorial space (not normalized)

h0 0 ϕ0r
1 + rϕ0r

2 + wχ0r
L

H0
3 2ρ1 χ0r

R

H0
1

1

4r2(1 − r2)

(
b −

√
b2 − 8r2(1 − r2)∆

)
p̃ϕ0r

1 + ϕ0r
2 + pχ0r

L

H0
2

1

4r2(1 − r2)

(
b +

√
b2 − 8r2(1 − r2)∆

)
q̃ϕ0r

1 + ϕ0r
2 + qχ0r

L

A0
1

1

4r2(1 − r2)

(
b −

√
b2 − 8r2(1 − r2)∆

)
−p̃ϕ0i

1 + ϕ0i
2 + pχ0i

L

A0
2

1

4r2(1 − r2)

(
b +

√
b2 − 8r2(1 − r2)∆

)
−q̃ϕ0i

1 + ϕ0i
2 + qχ0i

L

Table E.1: Neutral mass spectrum.

Above, we have employed the following definitions

b ≡ α34r
2(1 + r2) + 2ρr2{2(1 − 2c)w2 + 1 − r2}, (E.5)

∆ ≡ ρ(1 + r2 + w2){α34r
2 + 2ρw2[r2(1 − c)2 − c2]}, (E.6)

where c =
C

1 + C
and C =

µ′
1

µ′
2

r. At this order then, the only relevant parameters are α34,

ρ3/2 − ρ1 and µ′
1/µ

′
2. p, p̃ and q, q̃ are combinations of parameters of the potential and VEV

values. They can be related to each other since the eigenvectors shown above are orthogonal,
leaving a dependence on only one function:

p = −k2(1 + rx)(1 − δ2 +
(
1 + δ2

)
X)) + 2w2r(r − x)

2w (k2(r − xδ2) − r2(r − x))
. (E.7)

For completeness, the light Higgs mass is given by

{− 1

ρ1
{[(α1 + α3)r2(1 + r2) + α2r(2r

2 − (1 − r2)sδ,α)]

+w2[2cρ1(2r2 + (1 − r2)c) + ρ3(−c2 + (1 − c)2r2)]}2

+4r2{r2[λ1(1 + r2)2 + 8λ2r
2 + 4λ3r

2 + 4λ4r(1 + r2)]

+w2[(α1 + α3)r2(1 + r2) + α2r(2r
2 − (1 − r2)sδ,α)]

+w4[ρ1(2c2(1 + r2) − (1 − 2c)2r2) + ρ3(−c2 + (1 − c)2r2)]}}
1

2r4(1 + r2 + w2)
ǫ2κ2

R, (E.8)

up to order O(ǫ3).
To conclude, for the charged Higgses, one has:
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Name Mass2 / κ2
R Vectorial space (not normalized)

H±
1

1

4r2(1 − r2)
(b −

√
b2 − 8r2(1 − r2)∆) pχ±

L − p̃ϕ±
1 + ϕ±

2

H±
2

1

4r2(1 − r2)
(b +

√
b2 − 8r2(1 − r2)∆) qχ±

L − q̃ϕ±
1 + ϕ±

2

E.1 Tables of couplings

A0
µ Z0

µ Z ′0
µ

ūi
Lu

i
L

2

3
eγµ e

cW sW
γµ

(
1

2
− 2

3
s2

W +
1

6
ǫ2[(1 + r2)s2

R − k2s4
R]

)
esR

cRcW

(
−1

6

)
γµ

ūi
Ru

i
R

2

3
eγµ e

cW sW
γµ

(
−2

3
s2

W +
(4c2

R − 1)

6
ǫ2[−w2 + c2

Rk
2]

)
e

sRcRcW

(
1

2
− 2

3
s2

R

)
γµ

d̄i
Ld

i
L −1

3
eγµ e

cW sW
γµ

(
−1

2
+

1

3
s2

W − 1

6
ǫ2[(1 + r2)s2

R − k2s4
R]

)
esR

cRcW

(
−1

6

)
γµ

d̄i
Rd

i
R −1

3
eγµ e

cW sW
γµ

(
1

3
s2

W − (2c2
R + 1)

6
ǫ2[−w2 + c2

Rk
2]

)
e

sRcRcW

(
−1

2
+

1

3
s2

R

)
γµ

ν̄i
Lν

i
L 0

e

cW sW
γµ

(
1

2
+

1

2
ǫ2[(1 + r2)s2

R − k2s4
R]

)
esR

cRcW

(
1

2

)
γµ

ν̄i
Rν

i
R 0

e

cW sW
γµ

(
1

2
+

1

2
ǫ2[(1 + r2)s2

R − k2s4
R]

)
esR

cRcW

(
1

2

)
γµ

ℓ̄i
Lℓ

i
L −eγµ e

cW sW
γµ

(
−1

2
+ s2

W + ǫ2[(1 + r2)s2
R − k2s4

R]

)
esR

cRcW

(
1

2

)
γµ

ℓ̄i
Rℓ

i
R −eγµ e

cW sW
γµ

(
1

2
s2

W − (2c2
R − 1)

2
ǫ2[−w2 + c2

Rk
2]

)
e

sRcRcW

(
−1

2
+

1

2
s2

R

)
γµ

Table E.2: Couplings of the fermions to the neutral gauge bosons.

W+
µ W ′+

µ

ūi
Ld

j
L

e√
2sW

V L
ij γµ 0

ūi
Rd

j
R

e
√

2

sW
rǫ2V R

ij γµ
e√

2sRcW

V R
ij γµ

Table E.3: Couplings of the fermions to the charged gauge bosons. For leptons, V L,R → V L,R
lept ,

and the same for the masses.
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H0
1 H0

2

ūi
Ruj

L

−(2r + wp)mi
uδij + (1 + r2 + rwp)V R

ia ma
dV L

ja∗

(1 − r2)κ1

√
1 + p2 + (r + wp)2

(w − r2w − 2pr − 2prw2)mi
uδij + pk2V R

ia ma
dV L

ja∗

(1 − r2)κ1k
√

1 + p2 + (r + wp)2

ūi
Luj

R

−(2r + wp)mi
uδij + ((1 + r2 + rwp)V L

iama
dV R

ja∗

(1 − r2)κ1

√
1 + p2 + (r + wp)2

(w − r2w − 2pr − 2prw2)mi
uδij + pk2V L

iama
dV R

ja∗

(1 − r2)κ1k
√

1 + p2 + (r + wp)2

d̄i
Rdj

L

(1 + r2 + rwp)V R
∗aim

a
uV L

aj − (2r + wp)mi
dδij

(1 − r2)κ1

√
1 + p2 + (r + wp)2

pk2V R
∗aim

a
uV L

aj + (w − r2w − 2pr − w2pr)mi
dδij

(1 − r2)κ1k
√

1 + p2 + (r + wp)2

d̄i
Ldj

R

(1 + r2 + rwp)V L
∗aim

a
uV R

aj − (2r + wp)mi
dδij

(1 − r2)κ1

√
1 + p2 + (r + wp)2

pk2V L
∗aim

a
uV R

aj + (w − r2w − 2pr − w2pr)mi
dδij

(1 − r2)κ1k
√

1 + p2 + (r + wp)2

Table E.4: Couplings of the fermions to the heavy CP−even physical scalars. H3
0 does not couple

to fermions at this order.

A0
1 A0

2

ūi
Ruj

L i
−(2r + wp)mi

uδij + (1 + r2 + rwp)V R
ia ma

dV L
ja∗

(1 − r2)κ1

√
1 + p2 + (r + wp)2

i
(w − r2w − 2pr − w2pr)mi

uδij + pk2V R
ia ma

dV L
ja∗

(1 − r2)κ1k
√

1 + p2 + (r + wp)2

ūi
Luj

R −i
−(2r + wp)mi

uδij + (1 + r2 + rwp)V L
iama

dV R
ja∗

(1 − r2)κ1

√
1 + p2 + (r + wp)2

−i
(w − r2w − 2pr − w2pr)mi

uδij + pk2V L
iama

dV R
ja∗

(1 − r2)κ1k
√

1 + p2 + (r + wp)2

d̄i
Rdj

L −i
(1 + r2 + rwp)V R

∗aim
a
uV L

aj − (2r + wp)mi
dδij

(1 − r2)κ1

√
1 + p2 + (r + wp)2

−i
pk2V R

∗aim
a
uV L

aj + (w − r2w − 2pr − prw2)mi
dδij

(1 − r2)κ1k
√

1 + p2 + (r + wp)2

d̄i
Ldj

R i
(1 + r2 + rwp)V L

∗aim
a
uV R

aj − (2r + wp)mi
dδij

(1 − r2)κ1

√
1 + p2 + (r + wp)2

i
pk2V L

∗aim
a
uV R

aj + (w − r2w − 2pr − prw2)mi
dδij

(1 − r2)κ1k
√

1 + p2 + (r + wp)2

Table E.5: Couplings of the fermions to the CP−odd physical scalars.
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H+
1

ūi
Rd

j
L −

√
2 ×

−(2r + wp)mi
uV

L
ij + (1 + r2 + rwp)V R

ij m
j
d

(1 − r2)κ1

√
1 + p2 + (r + wp)2

ūi
Ld

j
R

√
2 ×

(1 + r2 + rwp)V R
ij m

i
u − (2r + wp)mj

dV
L

ij

(1 − r2)κ1

√
1 + p2 + (r + wp)2

H+
2

ūi
Rd

j
L −

√
2

(w − r2w − 2pr − prw2)mi
uV

L
ij + pk2V R

ij m
j
d

(1 − r2)κ1k
√

1 + p2 + (r + wp)2

ūi
Ld

j
R

√
2
pk2V R

ij m
i
u + (w − r2w − 2pr − w2pr)mj

dV
L

ij

(1 − r2)κ1k
√

1 + p2 + (r + wp)2

Table E.6: Couplings of the fermions to the charged physical scalars.

G+
W

ūi
Rd

j
L

−i
√

2

κ1k

[
mi

uV
L

ij

(
1 +

2r2

k2
ǫ2

)
− 2rǫ2V R

ij m
j
d

]

ūi
Ld

j
R

i
√

2

κ1k

[
V L

ij m
j
d

(
1 +

2r2

k2
ǫ2

)
− 2rǫ2mi

uV
R

ij

]

Table E.7: Couplings of the fermions to the charged Goldstone corresponding to the W+ boson.

G0
Z h0

ūi
Lu

i
R

−imi
u

κ1k

[
1 +

w4 − c4
Rk

2

2k4
ǫ

]
mi

u

κ1k
+O(ǫ2)

d̄i
Ld

i
R

imi
d

κ1k

[
1 +

w4 − c4
Rk

2

2k4
ǫ

]
mi

d

κ1k
+O(ǫ2)

Table E.8: Couplings of the fermions to the neutral Goldstone corresponding to the Z0 boson
and the SM-like Higgs particle.
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H0
i A0

i

WW ′ igRMWFi(r, w, ti) −gRMWFi(r, w, ti)

W±G∓
W ′ i

gR

2

MW

M ′
W

Fi(r, w, ti)(p
′ − p)µ

gR

2

MW

M ′
W

Fi(r, w, ti)(p
′ − p)µ

G±
WW ′∓ i

gR

2
Fi(r, w, ti)(p

′ − p)µ
gR

2
Fi(r, w, ti)(p

′ − p)µ

G±
WG∓

W ′ −i gR

2

M2
H0

i

M ′
W

Fi(r, w, ti)
gR

2

M2
A0

i

M ′
W

Fi(r, w, ti)

Gh Gh′ −iξ gR√
2
MWFi(r, w, ti) ξ

gR√
2
MWFi(r, w, ti)

Table E.9: Feynman rules relevant for meson mixing in the Left-Right model. t1 ≡ p and t2 ≡ q.
The last line gives the couplings of the ghost particles (Gh, Gh′) to the heavy Higgses.
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Appendix F

Potential and scalar spectrum in
the triplet case

In the triplet case, the most general scalar potential V symmetric under P is1

V = −µ2
1 Tr(φ†φ) − µ2

2[Tr(φ̃φ†) + Tr(φ̃†φ)] − µ2
3[Tr(∆L∆†

L) + Tr(∆R∆†
R)]

+ λ1[Tr(φφ†)]2 + λ2{[Tr(φ̃φ†)]2 + [Tr(φ̃†φ)]2}
+ λ3[Tr(φ̃φ†) Tr(φ̃†φ)] + λ4 Tr(φφ†)[Tr(φ̃φ†) + Tr(φ̃†φ)]

+ ρ1{[Tr(∆L∆†
L)]2 + [Tr(∆R∆†

R)]2}
+ ρ2[Tr(∆L∆L) Tr(∆†

L∆†
L) + Tr(∆R∆R) Tr(∆†

R∆†
R)]

+ ρ3[Tr(∆L∆†
L) Tr(∆R∆†

R)]

+ ρ4[Tr(∆L∆L) Tr(∆†
R∆†

R) + Tr(∆†
L∆†

L) Tr(∆R∆R)]

+ α1 Tr(φφ†)[Tr(∆L∆†
L) + Tr(∆R∆†

R)]

+ α2{eiδ2 [Tr(φφ̃†) Tr(∆R∆†
R) + Tr(φ†φ̃) Tr(∆L∆†

L)]

+ e−iδ2 [Tr(φ†φ̃) Tr(∆R∆†
R) + Tr(φ̃†φ) Tr(∆L∆†

L)]}
+ α3[Tr(φφ†∆L∆†

L) + Tr(φ†φ∆R∆†
R)] + β1[Tr(φ∆Rφ

†∆†
L) + Tr(φ†∆Lφ∆†

R)]

+ β2[Tr(φ̃∆Rφ
†∆†

L) + Tr(φ̃†∆Lφ∆†
R)] + β3[Tr(φ∆Rφ̃

†∆†
L) + Tr(φ†∆Lφ̃∆†

R)].

(F.1)

Because of Hermitian conjugation and P-symmetry, all the parameters above (µ2
1,2,3, λ1,2,3,4,

ρ1,2,3,4, α1,2,3, and β1,2,3) are real.2

1Ref. [54] has a different expression for V , with different operators, but one can show that they are the same.
Indeed, V contains all possible operators, constituting a basis for any potential one could consider.

2For a potential symmetric under C, some of the parameters of the potential acquire a phase relatively to the
P case: thus

µ2
2[tr(φ̃φ†) + tr(φ̃†φ)] , (F.2)

becomes

µ̃2
2 tr(φ̃φ†) + (µ̃2

2)∗ tr(φ̃†φ) , (F.3)

and similarly for λ2,4 and β1,2,3. The α2-term has instead a different structure:
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In the triplet case, the neutral fields expanded around their VEVs are

ϕ0
1 = (ϕ0r

1 + iϕ0i
1 + κ1)/

√
2,

ϕ0
2 = (ϕ0r

2 + iϕ0i
2 + κ2) eiα/

√
2,

δ0
R = (δ0r

R + iδ0i
R + κR)/

√
2,

δ0
L = (δ0r

L + iδ0i
L + κL) eiθL/

√
2,

(F.6)

together with ϕ+
1,2, δ+

L,R, and δ++
L,R. The extreme conditions with respect to {ϕ0r

1 , ϕ
0r
2 , ϕ

0i
2 , δ

0r
R , δ0r

L , δ0i
L }

are (κ2 6= κ1)

µ2
1

κ2
R

=
α1

2

(
1 +

κ2
L

κ2
R

)
− α3

2

κ2
2

κ2
−

(
1 +

κ2
L

κ2
R

)
+

(
λ1 + 2λ4

κ1κ2

κ2
+

cosα

)
κ2

+

κ2
R

+

[
β2
κ2

1

κ2
−

cos θL − β3
κ2

2

κ2
−

cos(θL − 2α)

]
κL

κR
,

(F.7)

µ2
2

κ2
R

=
α2

2 cosα

[
cos(α+ δ2) + cos(α− δ2)

κ2
L

κ2
R

]
+

α3

4 cosα

κ1κ2

κ2
−

(
1 +

κ2
L

κ2
R

)

+

{
[2λ2 cos(2α) + λ3]

κ1κ2

κ2
+

1

cosα
+

1

2
λ4

}
κ2

+

κ2
R

+

{
β1 cos(θL − α) − 2[β2 cos θL − β3 cos(θL − 2α)]

κ1κ2

κ2
−

}
κL/κR

4 cosα
,

(F.8)

µ2
3

κ2
R

= ρ1

(
1 +

κ2
L

κ2
R

)
+

1

2

(
α1 + α3

κ2
2

κ2
+

)
κ2

+

κ2
R

+ 2α2

[
cos(α+ δ2) − cos(α− δ2)

κ2
L

κ2
R

]
κ1κ2/κ

2
R

1 − κ2
L/κ

2
R

,

(F.9)

[
(2ρ1 − ρ3) − 8α2 sinα sin δ2

1 − κ2
L/κ

2
R

κ1κ2

κ2
R

]
κL

κ+
=

[
β1
κ1κ2

κ2
+

cos(θL − α) + β2
κ2

1

κ2
+

cos θL + β3
κ2

2

κ2
+

cos(θL − 2α)

]
κ+

κR
,

(F.10)

0 = β1
κ1κ2

κ2
+

sin(θL − α) + β2
κ2

1

κ2
+

sin θL + β3
κ2

2

κ2
+

sin(θL − 2α), (F.11)

α2e
iδ2 [tr(φφ̃†) tr(∆R∆†

R
) + tr(φ†φ̃) tr(∆L∆†

L
)] + h.c. (F.4)

becomes

α̃2e
−iδ̃2 tr(φ̃φ†)[tr(∆L∆†

L
) + tr(∆R∆†

R
)] + h.c. (F.5)

The final budget is that a general potential symmetric under C has 6 extra phases compared to the P-symmetric
one because µ̃2

2, λ̃2,4, β̃1,2,3 are generic complex numbers. Similar comments would hold for the doublet case.
It is not difficult to verify that when one asks for P and C invariance, all the complex phases vanish. Instead,

in the general case where neither P or C is considered, many more phases are present in the potential.
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2α2

(
1 − κ2

L

κ2
R

)
sin δ2 =

κ1κ2

κ2
−

sinα

[
α3

(
1 +

κ2
L

κ2
R

)
− 4(2λ2 − λ3)κ2

−/κ
2
R

]

+

{
2
κ1κ2

κ2
−

sin(θL − α)(β2 + β3) +

[
κ2

1

κ2
−

sin θL +
κ2

2

κ2
−

sin(θL − 2α)

]
β1

}
κL

κR
.

(F.12)

We now define ε ≡ κ1/κR, which is a natural expansion parameter, and the extreme conditions
shown above become much simpler when expanded in ε. Considering that the parameters of the
potential are of order O(ε0), except for µ2

1,2,3, and solving for µ2
1,2,3, we have

µ2
1

κ2
R

≃ α1

2
− α3

2

κ2
2

κ2
−
, (F.13)

µ2
2

κ2
R

≃ α2

2

cos(α+ δ2)

cosα
+

α3

4 cosα

κ1κ2

κ2
−
, (F.14)

µ2
3

κ2
R

≃ ρ1, (F.15)

(2ρ1 − ρ3)
κL

κ+
≃
[
β1
κ1κ2

κ2
+

cos(θL − α) + β2
κ2

1

κ2
+

cos θL (F.16)

+β3
κ2

2

κ2
+

cos(θL − 2α)

]
κ+

κR
,

2α2 sin δ2 ≃ κ1κ2

κ2
−
α3 sinα, (F.17)

plus Eq. (F.11), which does not change.
Equations (F.13)-(F.15) are very similar to those found in the doublet case, and constitute

equations for µ2
1,2,3. Equation (F.16) in the triplet case corresponds to a see-saw mechanism:

κL

κ+
in one side,

κ+

κR
in the other, see Section 2.8.

We now shift to the physical spectrum of LRM in the triplet case. We have two charged
and two neutral Goldstone bosons (giving masses to the vector gauge bosons), one light Higgs
(the SM Higgs), and many other massive scalars: five neutral, two singly-charged, and two
doubly-charged Higgses, the former being given in Table F.1.
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State Mass2

ϕ0r
1 + rϕ0r

2 − ε
α1

2ρ1
δ0r

R

(
4λ1 − α2

1

ρ1

)
κ2

1/2

ϕ0r
2 − rϕ0r

1 + ε
4α2

α3 − 4ρ1
δ0r

R α3κ
2
R/2 + O(ε2, r2, εr)κ2

R

δ0r
R + ε

α1

2ρ1
ϕ0r

1 − ε
4α2

α3 − 4ρ1
ϕ0r

2 2ρ1κ
2
R + O(ε2, r2, εr)κ2

R

δ0r
L ρκ2

R

ϕ0i
2 + rϕ0i

1 α3κ
2
R/2 + O(ε2, r2, εr)κ2

R

δ0i
L ρκ2

R

−ϕ0i
1 + rϕ0i

2 0

δ0i
R 0

Table F.1: Neutral spectrum in the triplet case. r ≡ κ2

κ1
is taken small for simplicity. We take

sinα = sin θL = 0, cosα = cos θL = 1; one also asks for β1,2,3 ≪ O(1), a usual requirement when
implementing a see-saw mechanism for neutrinos. Moreover, the ρ−parameter implies κL ∼ 0.
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Appendix G

RGE formulae

We now exploit the fact that the Lagrangian is independent on the renormalization scale. The

equation µ
d

dµ
L(5)

eff ||∆F |=1= 0 (i.e. the net effect of comparing the renormalized Lagrangian at

two different scales is zero up to a certain order) then implies

∑

i

µ
d

dµ
Ci(µ)Z−1

ij (µ) = 0 ⇒
∑

i,j

(
µ
d

dµ
Ci(µ)Z−1

ij (µ)

)
Zjk(µ) = 0, (G.1)

and it follows that

∑

j

[
δjk µ

d

dµ
− γjk

]
Cj = 0, γjk ≡

∑

i

Z−1
ji µ

d

dµ
Zik. (G.2)

The matrix γ is called the anomalous dimension of the |∆F |= 1 local operator QL
i , or QR

i

defined as

QX
i = d̄γλPXq

′ · q̄γλPXs
(1̂ + i˜̂1)

2
, X = L,R , i = ± , (G.3)

where 1̂ denotes a color singlet and ˜̂
1 a color anti-singlet.

We further have, from µ
d

dµ
L(5)

eff ||∆F |=2= 0,

µ
d

dµ


 ∑

k,l=±
CkClZ̃

−1
kl,b +

2∑

a=1

Cr
aZ̃

−1
ab


 = 0

⇒
2∑

b=1

µ
d

dµ


 ∑

k,l=±
CkClZ̃

−1
kl,b +

2∑

a=1

Cr
aZ̃

−1
ab


 Z̃bc = 0, (G.4)

that implies, from the Eq. (G.2)

2∑

a=1

[
δac µ

d

dµ
−

2∑

b=1

Z̃−1
ab µ

d

dµ
Z̃bc

]
Cr

a =
∑

k,l=±
CkClγkl,c, (G.5)

where
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γkl,c ≡ −
2∑

b=1


 ∑

k′,l′=±
(γkk′δll′ + γll′δkk′ ) Z̃−1

k′l′,b + µ
d

dµ
Z̃−1

kl,b


 Z̃bc. (G.6)

Note from Eq. (5.11) that the renormalization matrices include by definition powers in 1/ǫ.
Therefore, when expanding the previous equation defining γkl,c we include ǫ corrections in the µ
derivative as follows

µ
d

dµ
= −2a(µ)[ǫ+ β0a(µ)]

d

da
, a(µ) ≡ αs(µ)

4π
. (G.7)

Following this precision, we have the following expressions for γkl,c, [154] [47]

γ(0)
mn,a = 2

[
Z̃

−1,(1)
1

]
mn,a

, (G.8)

at the LO, and

γ(1)
mn,a = 4



[
Z̃

−1,(2)
1

]
mn,a

+ β0

[
Z̃

−1,(1)
0

2

]

mn,a

−
2∑

b=1





[
Z̃

−1,(1)
0

2

]

mn,b

[
Z̃

−1,(1)
1

]
ba

+
[
Z̃

−1,(1)
1

]
mn,b

[
Z̃

−1,(1)
0

2

]

ba





−
∑

m′,n′=±

{([
Z

−1,(1)
0

2

]

mm′

δnn′ + δmm′

[
Z

−1,(1)
0

2

]

nn′

)[
Z̃

−1,(1)
1

]
m′n′,a

+
([
Z

−1,(1)
1

]
mm′

δnn′ + δmm′

[
Z

−1,(1)
1

]
nn′

)[ Z̃−1,(1)
0

2

]

m′n′,a






 , (G.9)

at the NLO, where

Z = 1 − αs

4π
Z−1,(1) −

(αs

4π

)2

(Z−1,(2) − Z−1,(1) × Z−1,(1)) + . . . ,

(G.10)

has been employed. Of course, the divergent terms that one may face in the definition in Eq. (G.6)
vanish by suitable relations satisfied by the renormalization matrices.

Finally, we have

µ
d

dµ

(
Cr

1

Cr
2

)
= γ̃T

(
Cr

1

Cr
2

)
+
∑

k,l=±

(
CkCl γkl,1

CkCl γkl,2

)
, (G.11)

where γ̃ ≡ Z̃−1µ
d

dµ
Z̃, and

γ̃LR = γ̃ − 2(γm − β) · 12 (G.12)

is the matrix necessary to evolve the system {γL⊗ γR,L⊗R}, while in here we are concerned
with the system {Q̃LR

1 , Q̃LR
2 } with a different normalization.
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An equivalent way to write the last equation is

µ
d

dµ




C2
+

C+C−

C2
−

Cr
1

Cr
2




=




2 · γ+ 0 0 0 0

0 γ+ + γ− 0 0 0

0 0 2 · γ− 0 0

γ++,1 2 · γ+−,1 γ−−,1 γT

γ++,2 2 · γ+−,2 γ−−,2







C2
+

C+C−

C2
−

Cr
1

Cr
2




or

µ
d

dµ

−→
D = ΓT−→

D . (G.13)

The solution of the above differential equations is standard and can be found in [154] [206]:
first we define V diagonalizing the N ×N matrix Γ(0)T

Γ
(0)
D = V −1Γ(0)TV = diag

[
Γ

(0)
1 ,Γ

(0)
2 , . . . ,Γ

(0)
N

]
, (G.14)

and then we define matrices G,H, J in the following way

G = V −1Γ(1)TV, (G.15)

Hij = δijΓ
(0)
i

β1

2β2
0

− Gij

2β0 + Γ
(0)
i − Γ

(0)
j

, (2β0 + Γ
(0)
i − Γ

(0)
j 6= 0)

(G.16)

J = V HV −1. (G.17)

Finally, one has

−→
D (µ1) =

(
1N +

αs(µ1)

4π
J

)
V U(µ1, µ2)V −1

×
(

1N − αs(µ2)

4π
J

)−→
D (µ2), (G.18)

U(µ1, µ2) = diag

[(
αs(µ2)

αs(µ1)

)d1

, . . . ,

(
αs(µ2)

αs(µ1)

)dN

]
, (G.19)

where di = Γ
(0)
i /(2β0).
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Appendix H

Set of evanescent operators

H.1 Operators |∆F |= 2

We define

QV LL = d̄αγµPLs
α · d̄βγµPLs

β , (H.1)

QLR
1 = d̄αγµPRs

α · d̄βγµPLs
β , (H.2)

QLR
2 = d̄αPRs

α · d̄βPLs
β , (H.3)

QSLL
1 = d̄αPLs

α · d̄βPLs
β, (H.4)

and similarly for QV RR and QSRR
1 . The evanescent operators are (f(1→2) =

1

f(2→1)
= −2)

EV LL
1 = d̄αγPLs

β · d̄βγPLs
α −QV LL, (H.5)

EV LL
2 = d̄αγγγPLs

α · d̄βγγγPLs
β − (16 − aV LL

3γ ǫ)QV LL, (H.6)

EV LL
3 = d̄αγγγPLs

β · d̄βγγγPLs
α − (16 − aV LL

3γ ǫ)QV LL, (H.7)

EV LL
4 = d̄αγγγγγPLs

α · d̄βγγγγγPLs
β −

(
(16 − aV LL

3γ ǫ)2 + b̃3V ǫ
)
QV LL,

(H.8)

EV LL
5 = d̄αγγγγγPLs

β · d̄βγγγγγPLs
α −

(
(16 − aV LL

3γ ǫ)2 + b̃3V ǫ
)
QV LL,

(H.9)
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ELR
1 = d̄αPRs

β · d̄βPLs
α − f(2→1)Q

LR
1 , (H.10)

ELR
2 = d̄αγPRs

β · d̄βγPLs
α − f(1→2)Q

LR
2 , (H.11)

ELR
3 = d̄αγγγPRs

α · d̄βγγγPLs
β − (4 + aLR

3γ ǫ)Q
LR
1 , (H.12)

ELR
4 = d̄αγγγPRs

β · d̄βγγγPLs
α − f(1→2)(4 + aLR

3γ ǫ)Q
LR
2 , (H.13)

ELR
5 = d̄αγγPRs

α · d̄βγγPLs
β − (4 + aLR

2γ ǫ)Q
LR
2 , (H.14)

ELR
6 = d̄αγγPRs

β · d̄βγγPLs
α − f(2→1)(4 + aLR

2γ ǫ)Q
LR
1 , (H.15)

ELR
7 = d̄αγγγγPRs

α · d̄βγγγγPLs
β −

(
(4 + aLR

2γ ǫ)
2 + b̃2LRǫ

)
QLR

2 , (H.16)

ELR
8 = d̄αγγγγPRs

β · d̄βγγγγPLs
α − f(2→1)

(
(4 + aLR

2γ ǫ)
2 + b̃2LRǫ

)
QLR

1 ,

(H.17)

ELR
9 = d̄αγγγγγPRs

α · d̄βγγγγγPLs
β −

(
(4 + aLR

3γ ǫ)
2 + b̃3LRǫ

)
QLR

1 ,

(H.18)

ELR
10 = d̄αγγγγγPRs

β · d̄βγγγγγPLs
α − f(1→2)

(
(4 + aLR

3γ ǫ)
2 + b̃3LRǫ

)
QLR

2 ,

(H.19)

and similarly for right-right operators, where d̄γγLs · d̄γγRs means d̄γµ1γµ2Ls · d̄γµ1γµ2Rs, etc.
We take

aSLL
2γ = aSRR

2γ = 12 , (H.20)

aV LL
3γ = aV RR

3γ = 4 ,

aSLL
4γ = aSRR

4γ = 224 ,

b̃3V = −96 ,

aLR
2γ = 4 , aLR

3γ = 4 ,

b̃2LR = 96 , b̃3LR = 96 ,

except when otherwise stated.
For ELR

5,6 , compared to [207], our definitions employ the equations

{γµ, γν} = 2gµν · 1, (H.21)

γµγ
µ = gµ

µ · 1 = D · 1 = (4 − 2ǫ) · 1. (H.22)

found in NDR.
It is interesting to note that, for example,

ẼLR
4 = d̄αγγγPRs

β · d̄βγγγPLs
α − (4 + 4ǫ)d̄αγPRs

β · d̄βγPLs
α

= d̄αγγγPRs
β · d̄βγγγPLs

α − (4 + 4ǫ)(ELR
2 + f(1→2)Q

LR
2 )

= ELR
4 − (4 + 4ǫ)ELR

2 = ELR
4 − 4ELR

2 , (H.23)

and therefore it is the combination of two EO already defined, illustrating that the set of evanes-
cent operators given above is a sufficient set.
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H.2 Operators |∆F |= 1

The relevant operators are

QV LL
1 = Q̃VLVL

= d̄αγµPLq
β · q̄′βγµPLs

α, (H.24)

QV LL
2 = QVLVL

= d̄αγµPLq
α · q̄′βγµPLs

β, (H.25)

QSLR
1 = Q̃LR = d̄αPLq

β · q̄′βPRs
α, (H.26)

QSLR
2 = QLR = d̄αPLq

α · q̄′βPRs
β, (H.27)

and the following definitions of evanescent operators are made

ESLR
2 = d̄αγγPRq

α · q̄′βγγPLs
β − (4 + 4ǫ)QSLR

2 , (H.28)

ESLR
1 = d̄αγγPRq

β · q̄′βγγPLs
α − (4 + 4ǫ)QSLR

1 , (H.29)

EV LL
5 = d̄αγγγPLq

α · q̄′βγγγPLs
β − (16 − 4ǫ)QV LL

1 , (H.30)

EV LL
6 = d̄αγγγPLq

β · q̄′βγγγPLs
α − (16 − 4ǫ)QV LL

2 . (H.31)

For ESLR
1,2 , compared to [207] our definitions employ the equations (H.21) and (H.22) found

in NDR.
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Appendix I

Operators and anomalous
dimensions

I.1 |∆S|= 1 operators

We have the |∆S|= 1 vector operators for the SM case [47, 207]

OV LL
1 = (d̄αγµPLs

β)(V̄ βγµPLU
α) , OV LL

2 = (d̄γµPLs)(V̄ γ
µPLU) , (I.1)

OV LR
1 = (d̄γµPLs)(V̄ γ

µPRU) , OV LR
2 = (d̄αγµPLs

β)(V̄ βγµPRU
α) , (I.2)

where U and V can be any up-type fermions. As discussed in Ref. [207], Fierz identities hold
for these operators up two loops in the NDR-MS scheme. The anomalous dimensions for the
vector-vector operators is simpler for [207]

O± =
O1 ±O2

2
, (I.3)

which are the following

γ
(0)
± = ±6

N ∓ 1

N
, γ

(1)
± =

N ∓ 1

2N

(
−21 ± 57

N
∓ 19

N

3
± 4

3
f

)
,

γ(0)
m = 6CF , γ(1)

m = CF

(
3CF +

97

3
N − 10

3
f

)
, (I.4)

where the second line corresponds to the anomalous dimensions for masses with

CF = (N2 − 1)/2N , and for N = 3, γ
(0)
+ = 4, γ

(0)
− = −8, γ(0)

m = 8.
We introduce the correction of the anomalous dimensions

J± =
d±β1

β0
− γ

(1)
±

2β0
, d± =

γ
(0)
±

2β0
, (I.5)

Jm =
dmβ1

β0
− γ

(1)
m

2β0
, dm =

γ
(0)
m

2β0
, (I.6)

and the value of the Wilson coefficients at the high scale C±(µW ) defined in Ref. [92]

C±(µW ) = 1 +
αs(µW )

4π

(
log

µW

MW
γ

(0)
± +B±

)
+ O(α2

s) , (I.7)
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with

B± = − 11

2N
± 11

2
, (I.8)

leading to the evolution

CNLO
± (µ;µ0) =

(
1 +

αs(µ)

4π
J±

)(
αs(µ0)

αs(µ)

)d±
(

1 − αs(µ0)

4π
[J± −B±]

)
, (I.9)

CNLO
m (µ;µ0) =

(
1 +

αs(µ)

4π
Jm

)(
αs(µ0)

αs(µ)

)dm
(

1 − αs(µ0)

4π
Jm

)
. (I.10)

We have
dm = 4/β0 d+ = 2/β0 d− = −4/β0 . (I.11)

The same equations can be written for OV RR
i which will be useful for the discussion of the LRM,

with identical results for the anomalous dimensions.
One may also consider the running of the |∆S|= 1 local operators VLR. In the basis

OV LR
1 , OV LR

2 , the anomalous dimensions are

γ̂
(0)
V LR =

[
6/N −6

0 −6N + 6/N

]
, (I.12)

γ̂
(1)
V LR =




137

6
+

15

2N2
−

22

3N
f −

100N

3
+

3

N
+

22

3
f

−
71

2
N −

18

N
+ 4f −

203

6
N2 +

479

6
+

15

2N2
+

10

3
Nf −

22

3N
f


 .

Introducing

V̂ =

(
3/2 0

−1/2 −1/2

)
, (I.13)

γ̂
(0)
D = V̂ −1γ̂

(0)T
V LRV̂ =

(
6/N 0

0 −6N + 6/N

)
, γ

(0)
1 = 2 , γ

(0)
2 = −16 , (I.14)

Ĝ = V̂ −1γ̂
(1)T
V LRV̂ , (I.15)

Ĥij = δijγ
(0)
i

β1

2β2
0

− Ĝij

2β0 + γ
(0)
i − γ

(0)
j

(2β0 + γ
(0)
i − γ

(0)
j 6= 0) , (I.16)

Ĵ = V̂ ĤV̂ −1 , (I.17)

one can write down the evolution

~CLR(µ;µ0) =

(
1 +

αs(µ)

4π
Ĵ

)
V̂ D(µ;µ0)V̂ −1

(
1 − αs(µ0)

4π
Ĵ

)
~CLR(µ0) , (I.18)

D(µ;µ0) =

(
(αs(µ0)/αs(µ))d1 0

0 (αs(µ0)/αs(µ))d2

)
, (I.19)

with di = γ
(0)
i /(2β0).
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I.2 |∆S|= 2 operators

For |∆S|= 2 operators, we recall the anomalous dimensions associated with the operator QV

QV = (s̄αγµPLd
α)(s̄βγµPLd

β) , (I.20)

with

γ
(0)
V = 6 − 6/N , (I.21)

γ
(1)
V = −19/6N − 22/3 + 39/N − 57/(2N2) + 2/3f − 2/(3N)f , (I.22)

JV =
dV β1

β0
− γ

(1)
V

2β0
, dV =

γ
(0)
V

2β0
, (I.23)

and we can write down a similar evolution for the |∆S|= 2 local operators QLR
1 , QLR

2

QLR
1 = (s̄αγµPLd

α)(s̄βγµPRd
β) , QLR

2 = (s̄αPLd
α)(s̄βPRd

β) , (I.24)

with the anomalous dimensions

γ̂
(0)
LR =

[
6/N 12

0 −6N + 6/N

]
, (I.25)

γ̂
(1)
LR =




137

6
+

15

2N2
−

22

3N
f

200N

3
−

6

N
−

44

3
f

71

4
N +

9

N
− 2f −

203

6
N2 +

479

6
+

15

2N2
+

10

3
Nf −

22

3N
f


 .

Introducing

Ŵ =

(
3/2 0

1 1

)
, (I.26)

γ̂
(0)
D = Ŵ−1γ̂

(0)T
LR Ŵ =

(
6/N 0

0 −6N + 6/N

)
γ

(0)
1 = 2 γ

(0)
2 = −16 , (I.27)

Ĝ = Ŵ−1γ̂
(1)T
LR Ŵ , (I.28)

Ĥij = δijγ
(0)
i

β1

2β2
0

− Ĝij

2β0 + γ
(0)
i − γ

(0)
j

(2β0 + γ
(0)
i − γ

(0)
j 6= 0) , (I.29)

K̂ = Ŵ ĤŴ−1 , (I.30)

one can write down the evolution

~CLR(µ;µ0) =

(
1 +

αs(µ)

4π
K̂

)
ŴD(µ;µ0)Ŵ−1

(
1 − αs(µ0)

4π
K̂

)
~CLR(µ0) , (I.31)

D(µ;µ0) =

(
(αs(µ0)/αs(µ))d1 0

0 (αs(µ0)/αs(µ))d2

)
, (I.32)

with di = γ
(0)
i /(2β0). The associated LO anomalous dimensions are

γ
(0)
1 = 2 , γ

(0)
2 = −16 , (I.33)

and we have
d1 = 1/β0 , d2 = −8/β0 , dV = 2/β0 . (I.34)
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Appendix J

Case at NLO with the method of
regions

J.1 Contributions with log β

Following Ref. [48], if we consider the box with the Goldstone boson associated to W together
with W ′, the masses stem from the Goldstone boson coupling (evaluated at the scale µW ),
whereas the largest contribution to I2 comes from the range between µW and µR. We obtain

ξ
(W ′G)
a,UV [R] =

∑

r=±,i,j=1,2

(
αs(µW )

αs(µh)

)−dr+di+2dm
(
αs(mU )

αs(µh)

)−dm
(
αs(mV )

αs(µh)

)−dm
(
αs(µR)

αs(µh)

)dr

×
[(

1 +
αs(µh)

4π
K̂

)
Ŵ

]

ai

×RNLO

(
− dr + di − dj ,

[
Ŵ−1â(W ′G)

r V̂
]

ij
[V̂ −1 ~C0]j

×
(

1 − αs(µR)

4π
[Jr −Br] − αs(µW )

4π
2Jm +

αs(mU ) + αs(mV )

4π
Jm

)

−αs(µW )

4π

[
Ŵ−1â(W ′G)

r V̂
]

ij
[V̂ −1Ĵ ~C0]j ,

[
Ŵ−1[â(W ′G)

r Ĵ − K̂â(W ′G)
r ]V̂

]
ij

[V̂ −1 ~C0]j +
[
Ŵ−1â(W ′G)

r V̂
]

ij
[V̂ −1 ~C0]jJr,

µW , µR

)
, (J.1)

with the initial conditions for the evolution of the operators OV LR
1,2 and the coefficients for the

matching from the two-point function of OV RR
± and OV LR

1,2 to the local operators QLR
1,2 at µ = k2.

~C0 =

(
0

−1/2

)
, CLR

a ↔
∑

r,i

(â(W ′G)
r )aiC

V LR
i CV RR

r , â(W ′G)
r =

(
(3r + 1)/2 r/2

0 −1

)
.

(J.2)
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If we consider the box with W and a charged Higgs boson H , the masses stem from the Higgs
couplings (to be evaluated at a high scale µH), whereas the largest contribution to I2 comes from
the range between µW and MH . We obtain

ξ
(HW )
a,UV [R] =

∑

l=±,i,j=1,2

(
αs(µW )

αs(µh)

)di−dj
(
αs(mU )

αs(µh)

)−dm
(
αs(mV )

αs(µh)

)−dm
(
αs(µH)

αs(µh)

)dj+2dm

×
[(

1 +
αs(µh)

4π
K̂

)
Ŵ

]

ai

×RNLO

(
− dl + di − dj ,

[
Ŵ−1â

(HW )
l V̂

]
ij

[V̂ −1 ~C0]j

×
(

1 − αs(µW )

4π
[Jl −Bl] − αs(µH)

4π
2Jm +

αs(mU ) + αs(mV )

4π
Jm

)
,

[
Ŵ−1[â

(HW )
l Ĵ − K̂â

(HW )
l ]V̂

]
ij

[V̂ −1 ~C0]j −
[
Ŵ−1â

(HW )
l V̂

]
ij

[V̂ −1Ĵ ~C0]j

+
[
Ŵ−1â

(HW )
l V̂

]
ij

[V̂ −1 ~C0]jJl, µW , µH

)
, (J.3)

with the same initial conditions for the evolution of the operators QV LR
1,2 and the coefficients for

the matching from the two-point function of OV LL
± and OV RL

1,2 to the local operators QLR
1,2 at

µ = k2.

CLR
a ↔

∑

l,j

(â
(HW )
l )aiC

V RL
j CV LL

l , â
(HW )
l = â

(W ′G)
r=l . (J.4)

One can check that the expressions from Ref. [48] are recovered at leading order.
If we consider log β as small (“small log β approach”), we see that the diagrams are dominated

by the region k2 = O(m2
t , µ

2
W ) in all cases: this is obvious for tt and ct boxes, whereas the cc box

receives only suppressed contributions from the region k2 = O(m2
c). We obtain thus expressions

involving the averaging weight for constant terms RNLO
1

η̄
(W ′G)
a,UV = ξ

(W ′G)
a,UV [RNLO

1 ] , η̄
(HW )
a,UV = ξ

(HW )
a,UV [RNLO

1 ] , (J.5)

where we have identified the two scales for the integration µW = µR to a common average value
(this is similar to the treatment of the region between mt and MW in the SM case).

In the case of a large log β (“large log β approach”), we want to perform the resummation of
the large log β with RNLO

log and consider the rest of the contribution as dominated by the region

k2 = O(m2
t , µ

2
W ). In the case of (W ′G) we obtain

η̄
(W ′G)
a,UV =

[
F

(W ′G)
UV (J.6)

×
∑

r=±, i,j=1,2

(
αs(µW )

αs(µh)

)−dr+di+2dm
(
αs(mU )

αs(µh)

)−dm
(
αs(mV )

αs(µh)

)−dm
(
αs(µR)

αs(µh)

)dr

× Ŵai

[
Ŵ−1â(W ′G)

r V̂
]

ij
[V̂ −1 ~C0]j + log(β) × ξ

(W ′G)
a,UV [RNLO

log ]

]
1

log(β) + F
(W ′G)
UV
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with the contributions from the constant term

F
(W ′G)
tt =

x2
t − 2xt

(xt − 1)2
log(xt) +

xt

xt − 1
, F

(W ′G)
ct =

xt

xt − 1
log(xt) , F (W ′G)

cc = 0 , (J.7)

and similarly for (HW )

η̄
(HW )
a,UV =

[
F

(HW )
UV (J.8)

×
∑

l=±, i,j=1,2

(
αs(µW )

αs(µh)

)di−dj
(
αs(mU )

αs(µh)

)−dm
(
αs(mV )

αs(µh)

)−dm
(
αs(µH)

αs(µh)

)dj+2dm

× Ŵai

[
Ŵ−1â

(HW )
l V̂

]
ij

[V̂ −1 ~C0]j + log(βω) × ξ
(HW )
a,UV [RNLO

log ]

]
1

log(βω) + F
(HW )
UV

with the contributions from the constant term

F
(HW )
tt = xt

xt + (xt − 2) log(xt) − 1

(xt − 1)2
, F

(HW )
ct =

xt

xt − 1
log(xt) , F (HW )

cc = 0 . (J.9)

J.2 Contributions without log β

If we consider the box with the Goldstone associated with W and a charged Higgs boson H ,
the masses stem from the Higgs couplings, the Goldstone boson couplings and the propagator,
whereas the largest contribution to I1 comes from the range between mV and µW . We obtain

η̄
(HG)
a,UV=

∑

b,i,j,j′,k,k′=1,2

(
αs(mU )

αs(µh)

)−3dm
(
αs(mV )

αs(µh)

)di−dk−dk′ −dm
(
αs(µW )

αs(µh)

)dk+2dm(
αs(µH)

αs(µh)

)dk′ +2dm

×ā(HG)
b,jj′

[(
1 +

αs(µh)

4π
K̂

)
Ŵ

]

ai

[
V̂ −1

(
1 − αs(µW )

4π
Ĵ

)
~C0

]

k

[
V̂ −1

(
1 − αs(µH)

4π
Ĵ

)
~C0

]

k′

×RNLO

(
di − dk − dk′ + 2dm,

Ŵ−1
ib V̂jkV̂j′k′ ×

(
1 − αs(µW )

4π
2Jm − αs(µH)

4π
2Jm +

αs(mU ) + αs(mV )

4π
3Jm

)
,

−2JmŴ
−1
ib V̂jkV̂j′k′ − (Ŵ−1K̂)ibV̂jkV̂j′k′ + Ŵ−1

ib (Ĵ V̂ )jkV̂j′k′ + Ŵ−1
ib V̂jk(Ĵ V̂ )j′k′ ,

mV , µW

)
, (J.10)

where ā
(HG)
a,ij provides the coefficients for the matching from the two-point function of OV LR

1,2 to

the local operators QLR
1,2 at µ = k2:

CLR
a ↔

∑

ij

ā
(HG)
a,ij CV LR

i CV RL
j , (J.11)

with the non-vanishing entries

ā
(HG)
1,12 = −2 , ā

(HG)
1,21 = −2 , ā

(HG)
1,11 = −6 , ā

(HG)
2,22 = 4 . (J.12)
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The only relevant case is tt, where RNLO can be replaced by RNLO
1 .

If we consider tree-level H0 exchanges, we have

η̄
(H)
a,UV =

(
αs(mU )

αs(µh)

)−dm
(
αs(mV )

αs(µh)

)−dm
(
αs(µH)

αs(µh)

)2dm

×
(

1 − αs(µH)

4π
2Jm +

αs(mU ) + αs(mV )

4π
Jm

)
(J.13)

×
[(

1 +
αs(µh)

4π
K̂

)
Ŵ

(
αs(µH)

αs(µh)

)~d

Ŵ−1

(
1 − αs(µH)

4π
K̂

)
~C0

]

a

,

where the matching yields the value of the Wilson coefficients for the |∆S|= 2 operators at the
high scale. One can check that the expressions from Ref. [48] are recovered at leading order.
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Appendix K

Inverse of the covariance matrix

In practice, we may not know the correlation among the random variablesX , and it is common to
suppose a correlation of 100 % when two random variables are suspect to be strongly correlated,
as a way to try to be conservative. In such a case, however, the (naive) inverse of the covariance
matrix may not be well defined: in cases it is not possible, we would like to introduce a generalized
inverse C+

s of the covariance matrix Cs, which is not an inverse in the usual sense, C−1
s , but

makes the singular case treatable.1

We start by working out the form of Cs. Since every symmetric matrix is orthogonally
diagonalizable, we write

Cs = Σ · Γ · Σ = Σ · R ·D ·RT · Σ , (K.1)

where Σ collects the statistical uncertainties σ1, σ2, σ3, . . . , σn of the individual measurements,
and the correlation matrix Γ (a symmetric matrix itself) is orthogonally diagonalized into R, an
orthogonal matrix, and D = diag(d1, . . . , dn), a diagonal matrix whose elements, without loss of
generality, are ordered

d1 ≥ d2 ≥ . . . ≥ dm > 0 = dm+1 = . . . = dn . (K.2)

We now ask C+
s to satisfy the following condition characterizing what we call a generalized

inverse2

Cs · C+
s · Cs = Cs , (K.3)

1Note in particular the term C+
s · Cs · C+

s that appears in Eq. (7.49): it cannot be simplified to C+
s because

the condition C+
s · Cs · C+

s = C+
s is not always satisfied by the generalized inverse.

2We can consider the following conditions to further characterize other notions of generalized inverse: given
A ∈ ℜn×m and A+ ∈ ℜm×n, let a subset of the following equalities be satisfied

[1] A ·A+ ·A = A ,

[2] A+ · A ·A+ = A+ ,

[3] (A ·A+)T = A ·A+ ,

[4] (A+ ·A)T = A+ · A .

We say that: if [1] is satisfied, then A+ is a “generalized inverse” of A; if [1, 2] are satisfied, then A+ is a
“generalized reflexive inverse” of A; if [1, 2, 3, 4] are satisfied, then A+ is the “Moore-Penrose pseudoinverse” of A.
In all three cases, a matrix A+ can always be defined for any matrix A, but only the Moore-Penrose pseudoinverse
is always unique. Therefore, if an inverse exists, it is equal to the Moore-Penrose pseudoinverse.
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which is fulfilled by the following symmetric choice

C+
s = Σ−1 · R ·D+ ·RT · Σ−1 , (K.4)

where D+ is the generalized inverse of D

D ·D+ ·D = D , (K.5)

considered to have the form

D+ =

[
1/d A

AT B

]
. (K.6)

We would like to simplify the form D+ may assume in order to simplify as much as possible
the computation of C+

s . For this reason we assume A = 0 and B = λ× 1(n−m)×(n−m), with λ a
constant which we will now fix. A condition we ask our generalized inverse to satisfy is:

if one of the uncertainties is sent to zero, viz. σa → 0+,
then the weight wa must be the dominant one.

This condition is not easily satisfied: for example, the Moore-Penrose pseudoinverse, which is
somewhat closer to the usual inverse, and has the property of uniqueness, does not satisfy this
condition in the singular case (see Ref. [197]).

Let us see the implications of this condition by considering the case where an uncertainty σa

is much smaller than the others. In this case

wi → 1

UT · C+
s · U

1

σiσa
(R ·D+ ·RT )ia , (K.7)

where UT · C+
s · U is a common factor, and R · D+ · RT is independent of the uncertainties σi.

Then, in order to have the dominance of wa, it is enough to satisfy

0 6= (R ·D+ ·RT )aa =

m∑

j=1

(Raj)2 1

dj
+ λ

n∑

j=m+1

(Raj)2 = λ+

m∑

j=1

(Raj)2

(
1

dj
− λ

)
, (K.8)

which is always fulfilled for 0 < λ ≤ 1/d1. We now make a last choice and pick

λ = 1/d1 , (K.9)

recovering the ansatz of [208]. Note that this choice is efficient (i.e. σµ is minimal) over the
range λ ∈ (0, 1/d1] when 100 % correlations are present among all the measurements, in which
case

σ2
µ =

(
∑

i 1/σi)
2/n2

{(
∑

i 1/σi)2/n2 + λ [
∑

i 1/σ2
i − (

∑
i 1/σi)2/n]}2 , (K.10)

where
∑

i

1/σ2
i ≥ (

∑

i

1/σi)
2/n follows from the Cauchy-Schwarz inequality.

We refer to the resulting generalized inverse as “generalized λ−inverse”

D+ = diag(1/d1, . . . , 1/dm, 1/d1, . . . , 1/d1︸ ︷︷ ︸
n−m times

) , λ− inverse . (K.11)
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It should be stressed that, in cases where the inverse is defined, the index m above is equal to
zero, and the generalized λ−inverse reduces to the (usual) inverse.

Though there is arbitrariness in the choices made above, the generalized λ−inverse satisfies
to the basic property we would like the average to satisfy, namely the more precise measurement
dominates the average, i.e. its weight is more relevant. Moreover, for the specific examples
discussed in the next section, it is efficient in the sense that the variance is roughly given by σ2

a

when σa is much smaller than the other uncertainties.

K.1 Examples

K.1.1 Two measurements

In the case of two uncorrelated measurements, there is no problem with the inversion of the
statistical covariance matrix, and we get for all methods

C−1
s =




1

σ2
1

0

0
1

σ2
2


 , σ2

µ =
σ2

1σ
2
2

σ2
1 + σ2

2

→ σ2
1 ,

w =
1

σ2
1 + σ2

2

(
σ2

2

σ2
1

)
→
(

1

σ2
1/σ

2
2

)
. (K.12)

In the case of two fully correlated measurements, we have

Cs =

(
σ2

1 σ1σ2

σ1σ2 σ2
2

)
, (K.13)

with d1 = 2, d2 = 0. The λ-inverse for Cs yields

C+
s =




1

2σ2
1

0

0
1

2σ2
2


 , σ2

µ =
σ2

1σ
2
2 [σ1 + σ2]2

[σ2
1 + σ2

2 ]2
→ σ2

1 ,

w =
1

σ2
1 + σ2

2

(
σ2

2

σ2
1

)
→
(

1

σ2
1/σ

2
2

)
, (K.14)

where we indicate the limit when σ1 → 0.
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K.1.2 n fully correlated measurements

We have a correlation matrix with unit entries everywhere. This yields d1 = n, di>1 = 0. The
λ-inverse yields

C+
s =




1

nσ2
1

· · · 0

...
. . .

...

0 · · · 1

nσ2
n



, σ2

µ =
(
∑

i 1/σi)
2

(
∑

i 1/σ2
i )2

→ σ2
1 ,

w =
1∑

i 1/σ2
i




1/σ2
1

...

1/σ2
N


 →




1

σ2
1/σ

2
2

...

σ2
1/σ

2
n



, (K.15)

where we indicated the limit when σ1 → 0. This is the ansatz found in Ref. [208].

K.1.3 Two fully correlated measurements with an uncorrelated mea-
surement

Let us consider

Cs =




σ2
1 σ1σ2 0

σ1σ2 σ2
2 0

0 0 σ2
3


 , (K.16)

with d1 = 2, d2 = 1, d3 = 0.
The λ-inverse for Cs yields

C+ =




1

2σ2
1

0 0

0
1

2σ2
2

0

0 0
1

σ2
3



,

σ2
µ =

σ2
1σ

2
2σ

2
3 [2σ1σ2σ

2
3 + 4σ2

1σ
2
2 + σ2

1σ
2
3 + σ2

2σ
2
3 ]

[2σ2
1σ

2
2 + σ2

1σ
2
3 + σ2

2σ
2
3 ]2

→ σ2
1 , (K.17)

w =
1

2σ2
1σ

2
2 + σ2

1σ
2
3 + σ2

2σ
2
3




σ2
2σ

2
3

σ2
1σ

2
3

2σ2
1σ

2
2


 →




1

σ2
1/σ

2
2

2σ2
1/σ

2
3


 .
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Appendix L

Correlated theoretical
uncertainties

Apart from the difficulty of taking the inverse of a singular matrix, which led us to introduce
the generalized λ−inverse in the previous appendix, we need a way to characterize the range of
variation of correlated theoretical uncertainties, particularly in the case where 100 % theoretical
correlations are assumed.

We start by introducing the Cholesky decomposition of a symmetric positive-definite matrix
(which always exists and is unique)

C̃t = L · LT , (L.1)

for a lower triangular matrix L with strictly positive diagonal elements. We are going to see
that the Cholesky decomposition has the good properties to describe correlated theoretical un-
certainties in singular cases.

When C̃t is positive-definite, L−1 is always well defined, and from Eq. (7.50) this decomposi-
tion leads to the decorrelation of theoretical uncertainties L−1δ̃ in the non-singular case, where
C̃−1

t = (L−1)T · L−1:

δ̃T · C̃−1
t · δ̃ = δ̃T · (L−1)T · L−1 · δ̃ = (L−1 · δ̃)T · (L−1 · δ̃) . (L.2)

Therefore, we have the following prescription for the combination of correlated theoretical
uncertainties:

∆µ =
∑

j

∣∣∣∣∣
∑

i

wi∆iLij

∣∣∣∣∣ (linear) , (L.3)

∆µ =

√√√√∑

j

(∑

i

wi∆iLij

)2

(quadratic) .

Note that in the above expression we only need to know L. In the case where the matrix C̃t is
only semi-definite positive, the Cholesky decomposition still exists if the diagonal elements of L
are allowed to be zero, but it is not unique. To prescribe a triangular matrix L when C̃t is not
positive-definite,1 we consider C̃t + ǫ× 1m×m, and then take the limit ǫ → 0.

1Meaning that there are directions v for which C̃t · v = 0
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Figure L.1: Ranges of variation for δ̃1 and δ̃2 for ρ = 0, 0.2, 0.5, 0.9, 1, going from light (yellow)
to dark (red). The variation over a hyperball (left) or a hypercube (right) is considered.

In 2 dimensions (see Ref. [197] for other examples), if two theoretical uncertainties δ̃1,2 are
totally (anti-) correlated, i.e. δ̃1 = 1 ⇔ δ̃2 = 1 (δ̃1 = 1 ⇔ δ̃2 = −1), we expect them to vary over a
diagonal. Therefore, in intermediate cases a hypercube or a hyperball should continuously deform
into a diagonal, which is seen in Figure L.1. Note that the hypercube shows the unpleasant feature
of not treating symmetrically δ̃1 and δ̃2. This is a property found in more general situations,
including different modelings of theoretical correlations. On the other hand, the hyperball case
does not suffer from the same problem in correlated situations.
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Titre: Phénoménologie de Modèles à Symétrie Droite-Gauche dans le secteur des quarks
Mots clés: brisure de la symétrie électrofaible, symétrie de parité, modèles à symétrie droite-gauche, observables de précision
électrofaible, oscillation de mésons neutres, QCD à de courtes distances, physique de la saveur, modélisation d’erreurs
systématiques
Résumé: Bien qu’ayant beaucoup de succès pour décrire la grande variété de phénomènes de la physique des particules, le
Modèle Standard (MS) laisse certaines propriétés de la nature sans explication. Ici, nous allons mettre l’accent sur le traitement
différent des chiralités de type gauche et droite dans le cadre du MS. Une façon naturelle d’expliquer cela est de plonger le
MS dans un modèle plus fondamental, capable de traiter les chiralités d’une manière symétrique. Cette classe de modèles,
connue sous le nom de “modèles à symétrie droite-gauche” (LR models, en anglais), introduit une nouvelle interaction qui
couple préférentiellement aux champs “droitiers”. Puis, à une haute échelle d’énergie, la symétrie reliant droite et gauche est
brisée spontanément donnant naissance au MS et aux phénomènes de violation de symétrie de parité. La manière spécifique
par laquelle le mécanisme Brout-Englert-Higgs (BEH) se produit dans les modèles LR peut être sondée par des observables
électrofaibles de précision, ce qui sert de premier test de l’extension du MS dans le secteur électrofaible.

Comme conséquence du mécanisme BEH dans les modèles LR, de nouveaux bosons de jauge sont présents. Ce sont W ′
±

et Z′
0
, censés être beaucoup plus lourds que les bosons de jauge W± et Z0 afin d’expliquer pourquoi ils n’ont jamais été

vus jusqu’à présent. Ces nouvelles particules sont accompagnées d’une riche phénoménologie, comme de nouvelles sources de
violation de CP au-delà de celle du MS. En outre, un nouveau secteur scalaire neutre introduit des courants qui changent la
saveur (FCNC, en anglais) au niveau des arbres, un processus fortement restreint dans le MS, où il arrive seulement à l’ordre des
boucles. L’existence de FCNCs fournit des contraintes extrêmement puissantes sur les modèles LR, et mérite donc une attention
spéciale, en particulier lors du calcul des corrections venant de la QCD. Nous calculons donc les corrections au Next-to-Leading
Order des effets à de courtes distances venant de la QCD aux contributions du modèle LR aux observables |εK |,∆ms,d, liées
au mélange de mésons neutres et sensibles donc aux FCNC.

Ensuite, nous considérons l’étude phénoménologique des modèles LR afin de tester leur viabilité et leur structure. Plus
particulièrement, nous considérons le cas où des doublets scalaires sont responsables de la brisure du groupe de jauge des modèles
LR. A cet effet, nous menons une étude combinée des observables de précision électrofaible, des bornes directes sur la masse
des nouveaux bosons de jauge et des observables qui dérivent de l’oscillation des mésons neutres, dans le cas plus simple où la
matrice de mixing dans le secteur droit est égal à la matrice CKM. Ces observables sont combinées dans le cadre du paquet
CKMfitter d’analyse statistique. La combinaison de différentes classes d’observables doit prendre en compte la particularité
des incertitudes théoriques, qui ne sont pas de nature statistique comme d’autres sources d’incertitude. A ce propos, nous
considérons aussi la comparaison de différentes modèles d’incertitude théorique, afin de trouver des méthodes bien adaptées à
la situation actuelle de notre connaissance des incertitudes théoriques impliquées dans un fit global en physique de la saveur.

Title: Phenomenology of Left-Right Models in the quark sector
Key words: electroweak symmetry breaking, parity symmetry, left-right models, electroweak precision observables, meson os-
cillation, short-distance QCD, flavour physics, modeling of systematic uncertainties
Abstract: Though very successful in explaining a wide variety of particle physics phenomena, the Standard Model (SM) leaves
unexplained some properties of nature. Here we focus on the different behaviours of left- and right-handed chiralities, or in other
words the violation of parity symmetry. A possible and somewhat natural avenue to explain this feature is to embed the SM into
a more symmetric framework, which treats the chiralities on equal footing. This class of models, the Left-Right (LR) Models,
introduces new gauge interactions that couple preferentially to right-handed fields. Then, at an energy scale high enough, LR
symmetry is spontaneously broken through the Brout-Englert-Higgs (BEH) mechanism, thus giving origin to the SM and to
parity violating phenomena. The specific way in which the BEH mechanism operates in LR Models can be probed by EW
Precision Observables, consisting of quantities that have been very accurately measured, serving as a first test of consistency
for extensions of the SM in the EW sector.

We revisit a simple realization of LR Models containing doublet scalars, and consider the phenomenological study of this
doublet scenario in order to test the viability and structure of the LR Models. In particular, there is a rich phenomenology

associated to the new gauge bosons W ′
±

and Z′
0

introduced by LR Models, such as new sources of CP violation beyond the
one of the SM. Moreover, the extended neutral scalar sector introduces Flavour Changing Neutral Couplings (FCNC) at tree
level, which are strongly suppressed in the SM where they arrive first at one loop. FCNCs typically lead to extremely powerful
constraints since they contribute to meson-mixing processes, and therefore deserve close attention. For this reason, we consider
the calculation of short-distance QCD effects correcting the LR Model contributions to the meson-mixing observables |εK | and
∆md,s up to the Next-to-Leading Order (NLO), a precision required to set solid lower bounds on the LR Model scales.

Finally, we combine in a global fit electroweak precision observables, direct searches for the new gauge bosons and meson
oscillation observables in the simple case where the right-handed analogous of the CKM mixing-matrix is equal to the CKM
matrix itself (a scenario called manifest symmetry). The full set of the observables is combined by using the CKMfitter statistical
framework, based on a frequentist analysis and a particular scheme for modeling theoretical uncertainties. We also discuss
other possible modelings of theoretical uncertainties in a prospective study for future global flavour fits made by the CKMfitter
Collaboration.
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