. Abou-jaoudé, Model checking to assess T-helper cell plasticity, Frontiers in Bioengineering and Biotechnology, issue.2, p.86, 2015.
DOI : 10.1101/012641

A. , T. Albert, R. Thakar, and J. , Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions, Wiley Interdiscip Rev Syst Biol Med, vol.6, issue.5, pp.353-369, 2014.

. Altman, MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells, Cell Metabolism, vol.22, issue.6, pp.221009-1019, 2015.
DOI : 10.1016/j.cmet.2015.09.003

. Arellano, "Antelope": a hybrid-logic model checker for branching-time Boolean GRN analysis, BMC Bioinformatics, vol.12, issue.1, p.490, 2011.
DOI : 10.1145/876638.876643

Y. Assoian, R. K. Assoian, and Y. Yung, A reciprocal relationship between Rb and Skp2: implications for restriction point control, signal transduction to the cell cycle, and cancer, Cell Cycle, vol.7, issue.1, pp.24-27, 2008.
DOI : 10.4161/cc.7.1.5232

. Bagnara, The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems, Science of Computer Programming, vol.72, issue.1-2, pp.3-21, 2008.
DOI : 10.1016/j.scico.2007.08.001

. Ballesta, A Combined Experimental and Mathematical Approach for Molecular-based Optimization of Irinotecan Circadian Delivery, PLoS Computational Biology, vol.49, issue.9, 2011.
DOI : 10.1371/journal.pcbi.1002143.s001

URL : https://hal.archives-ouvertes.fr/inserm-00692053

. Banks, Computational Methods in Systems Biology, 13th International Conference Proceedings, chapter Analysis of a Post-translational Oscillator Using Process Algebra and Spatio-Temporal Logic, pp.222-238, 2015.

. Barnes, Requirement of Mammalian Timeless for Circadian Rhythmicity, Science, vol.302, issue.5644, pp.302439-442, 2003.
DOI : 10.1126/science.1086593

. Batt, Efficient parameter search for qualitative models of regulatory networks using symbolic model checking, Bioinformatics, vol.26, issue.18, pp.26-603, 2010.
DOI : 10.1093/bioinformatics/btq387

URL : https://hal.archives-ouvertes.fr/inria-00482569

. Batt, Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli, Bioinformatics, vol.21, issue.Suppl 1, pp.21-40, 2005.
DOI : 10.1093/bioinformatics/bti1048

URL : https://hal.archives-ouvertes.fr/hal-00171939

. Bérenguier, Dynamical modeling and analysis of large cellular regulatory networks, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.23, issue.2, p.25114, 2013.
DOI : 10.1063/1.4809783

. Bernot, Application of formal methods to biological regulatory networks: extending Thomas??? asynchronous logical approach with temporal logic, Journal of Theoretical Biology, vol.229, issue.3, pp.339-347, 2004.
DOI : 10.1016/j.jtbi.2004.04.003

. Bieler, Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells, Molecular Systems Biology, vol.10, issue.7, p.10739, 2014.
DOI : 10.15252/msb.20145218

. Billy, Synchronisation and control of proliferation in cycling cell population models with age structure, Mathematics and Computers in Simulation, vol.96, pp.66-94, 2014.
DOI : 10.1016/j.matcom.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00662885

. Binné, Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit, Nature Cell Biology, vol.63, issue.2, pp.225-232, 2007.
DOI : 10.1074/jbc.M304930200

T. Bollinger and U. Schibler, Circadian rhythms ??? from genes to physiology and disease, Swiss Medical Weekly, vol.144, p.13984, 2014.
DOI : 10.4414/smw.2014.13984

A. R. Bradley, SAT-Based Model Checking without Unrolling, Proceedings of the 12th International Ccnference on Verification, Model Checking, and Abstract Interpretation, Lecture Notes in Computer Science, 2011.
DOI : 10.1007/3-540-40922-X_8

. Brim, STL???: Extending signal temporal logic with signal-value freezing operator, Information and Computation, vol.236, pp.52-67, 2014.
DOI : 10.1016/j.ic.2014.01.012

. Calzone, BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge, Bioinformatics, vol.22, issue.14, pp.221805-1807, 2006.
DOI : 10.1093/bioinformatics/btl172

URL : https://hal.archives-ouvertes.fr/hal-01431364

. Calzone, L. Soliman-]-calzone, and S. Soliman, Coupling the cell cycle and the circadian cycle, Research Report, vol.5835, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00070191

. Calzone, Mathematical Modelling of Cell-Fate Decision in Response to Death Receptor Engagement, PLoS Computational Biology, vol.2006, issue.3, p.1000702, 2010.
DOI : 10.1371/journal.pcbi.1000702.s008

URL : https://hal.archives-ouvertes.fr/inserm-00704979

F. Fages, Symbolic model checking of biochemical networks, CMSB'03: Proceedings of the first workshop on Computational Methods in Systems Biology, pp.149-162, 2003.

. Chabrier-rivier, Modeling and querying biomolecular interaction networks, Theoretical Computer Science, vol.325, issue.1, pp.25-44, 2004.
DOI : 10.1016/j.tcs.2004.03.063

URL : http://doi.org/10.1016/j.tcs.2004.03.063

C. Chaouiya, Petri net modelling of biological networks, Briefings in Bioinformatics, vol.8, issue.4, 2007.
DOI : 10.1093/bib/bbm029

. Chaouiya, Logical Modelling of Gene Regulatory Networks with GINsim, Methods Mol Biol, vol.804, pp.463-79, 2012.
DOI : 10.1007/978-1-61779-361-5_23

R. Chaouiya, C. Chaouiya, and E. Remy, Logical Modelling of Regulatory Networks, Methods and Applications, Bulletin of Mathematical Biology, vol.3, issue.4, pp.891-895, 2013.
DOI : 10.1007/s11538-013-9863-0

URL : https://hal.archives-ouvertes.fr/hal-01282925

. Chaouiya, Qualitative Analysis of Regulatory Graphs: A Computational Tool Based on a Discrete Formal Framework, Positive Systems, pp.119-126, 2003.
DOI : 10.1007/978-3-540-44928-7_17

. Chiang, Hybrid Simulations of Heterogeneous Biochemical Models in SBML, ACM Transactions on Modeling and Computer Simulation, vol.25, issue.2, pp.141-1422, 2015.
DOI : 10.1145/2742545

URL : https://hal.archives-ouvertes.fr/hal-01170947

. Cimatti, NuSMV 2: An OpenSource Tool for Symbolic Model Checking, Proceedings of the International Conference on Computer-Aided Verification, CAV'02, 2002.
DOI : 10.1007/3-540-45657-0_29

. Clarke, Bounded Model Checking using SAT Solving, Formal Methods in System Design, vol.19, issue.1, pp.7-34, 2001.
DOI : 10.1023/A:1011276507260

. Clarke, Model Checking, 1999.

. Comet, Simplified Models for the Mammalian Circadian Clock, Proceedings of the 3rd International Conference on Computational Systems- Biology and Bioinformatics, pp.127-138, 2012.
DOI : 10.1016/j.procs.2012.09.014

URL : https://hal.archives-ouvertes.fr/hal-01282923

. Cousot, . Cousot, P. Cousot, and R. Cousot, Abstract interpretation, Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages , POPL '77, pp.238-252, 1977.
DOI : 10.1145/512950.512973

URL : https://hal.archives-ouvertes.fr/hal-01108790

. Csikász-nagy, Analysis of a Generic Model of Eukaryotic Cell-Cycle Regulation, Biophysical Journal, vol.90, issue.12, pp.904361-79, 2006.
DOI : 10.1529/biophysj.106.081240

. Dai, A novel CyclinE/CyclinA-CDK Inhibitor targets p27Kip1 degradation, cell cycle progression and cell survival: Implications in cancer therapy, Cancer Letters, vol.333, issue.1, pp.103-112, 2013.
DOI : 10.1016/j.canlet.2013.01.025

B. Davidich, M. I. Davidich, and S. Bornholdt, Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast, PLoS ONE, vol.11, issue.12, p.1672, 2008.
DOI : 10.1371/journal.pone.0001672.t004

J. De, Qualitative simulation of genetic regulatory networks using piecewise-linear models, Bulletin of Mathematical Biology, vol.66, issue.2, pp.301-340, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00173849

M. De, Design, optimization, and predictions of a coupled model of the cell cycle, circadian clock, dna repair system, irinotecan metabolism and exposure control under temporal logic constraints, Theoretical Computer Science, issue.21, pp.4122108-2127, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01285815

R. Dick and S. M. Rubin, Molecular mechanisms underlying RB protein function, Nature Reviews Molecular Cell Biology, vol.8, issue.5, pp.297-306, 2013.
DOI : 10.1038/nrm3567

. Donzé, Efficient Robust Monitoring for STL, 25th International Conference on Computer Aided Verification, CAV'13, 2013.
DOI : 10.1007/978-3-642-39799-8_19

A. Donzé and O. Maler, Robust Satisfaction of Temporal Logic over Real-Valued Signals, FORMATS 2010, pp.92-106, 2010.
DOI : 10.1007/978-3-642-15297-9_9

. Dunlap, Eukaryotic circadian systems: cycles in common, Genes to Cells, vol.20, issue.1, pp.1-10, 1999.
DOI : 10.1046/j.1365-2443.1999.00239.x

S. Eckel-mahan, K. Eckel-mahan, and P. Sassone-corsi, Metabolism control by the circadian clock and vice versa, Nature Structural & Molecular Biology, vol.281, issue.5, pp.462-469, 2009.
DOI : 10.1038/nsmb.1595

. Eggers, Automated Technology for Verification and Analysis: 6th International Symposium, Proceedings, chapter SAT Modulo ODE: A Direct SAT Approach to Hybrid Systems, pp.171-185, 2008.

F. Fages, Temporal logic constraints in the biochemical abstract machine BIOCHAM (invited talk), Proceedings of Logic Based Program Synthesis and Transformation, LOPSTR'05, number 3901 in Lecture Notes in Computer Science, 2005.

R. Fages, F. Fages, and A. Rizk, On temporal logic constraint solving for analyzing numerical data time series, Theoretical Computer Science, vol.408, issue.1, pp.55-65, 2008.
DOI : 10.1016/j.tcs.2008.07.004

S. Fages, F. Fages, and S. Soliman, Abstract interpretation and types for systems biology, Theoretical Computer Science, vol.403, issue.1, pp.52-70, 2008.
DOI : 10.1016/j.tcs.2008.04.024

URL : https://hal.archives-ouvertes.fr/hal-01431355

. Fages, Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM, Journal of Biological Physics and Chemistry, vol.4, issue.2, pp.64-73, 2004.
DOI : 10.4024/2040402.jbpc.04.02

URL : https://hal.archives-ouvertes.fr/hal-01431345

T. Fages, F. Fages, and P. Traynard, Temporal Logic Modeling of Dynamical Behaviors: First-Order Patterns and Solvers, Logical Modeling of Biological Systems, pp.291-323, 2014.
DOI : 10.1002/9781119005223.ch8

URL : https://hal.archives-ouvertes.fr/hal-01103305

. Fauré, Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle, Bioinformatics, vol.22, issue.14, pp.22-124, 2006.
DOI : 10.1093/bioinformatics/btl210

. Fauré, Modular logical modelling of the budding yeast cell cycle, Molecular BioSystems, vol.97, issue.2, pp.1787-1796, 2009.
DOI : 10.1109/TCBB.2008.64

. Feillet, Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle, Proceedings of the National Academy of Sciences of the United States of America, pp.1119928-9833, 2014.
DOI : 10.1073/pnas.1320474111

URL : https://hal.archives-ouvertes.fr/hal-01421054

. Feillet, Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth, Frontiers in Neurology, vol.26, issue.Pt 4, pp.1-7, 2015.
DOI : 10.1101/gad.183251.111

URL : https://hal.archives-ouvertes.fr/hal-01255098

. Ferrell, Modeling the Cell Cycle: Why Do Certain Circuits Oscillate?, Cell, vol.144, issue.6, pp.144874-885, 2011.
DOI : 10.1016/j.cell.2011.03.006

H. Fisher, J. Fisher, and T. A. Henzinger, Executable cell biology, Nature Biotechnology, vol.2034, issue.11, pp.251239-251288, 2007.
DOI : 10.1038/nbt1356

. Fisher, Computer Aided Verification, 27th International Conference Proceedings, Part I, chapter Synthesising Executable Gene Regulatory Networks from Single-Cell Gene Expression Data, pp.544-560, 2015.

P. Fisher, J. Fisher, and N. Piterman, A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations, Model Checking in Biology, pp.255-279, 2014.

. Flobak, Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling, PLOS Computational Biology, vol.58, issue.8, pp.11-1004426, 2015.
DOI : 10.1371/journal.pcbi.1004426.s012

URL : https://hal.archives-ouvertes.fr/hal-01221572

. Franke, From binary to multivalued to continuous models: the lac operon as a case study, Journal of integrative bioinformatics, vol.7, issue.1, pp.1-19, 2010.

. Funahashi, CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks, Proceedings of the IEEE, pp.961254-1265, 2008.
DOI : 10.1109/JPROC.2008.925458

. Gao, Satisfiability Modulo ODEs, FMCAD'13: Proc. of Formal Methods in Computer-Aided Design, Lecture Notes in Computer Science, 2013.

. Garg, Synchronous versus asynchronous modeling of gene regulatory networks, Bioinformatics, vol.24, issue.17, pp.241917-241942, 2008.
DOI : 10.1093/bioinformatics/btn336

. Geng, Cyclin E Ablation in the Mouse, Cell, vol.114, issue.4, pp.431-443, 2003.
DOI : 10.1016/S0092-8674(03)00645-7

. Gérard, . Goldbeter, C. Gérard, and A. Goldbeter, Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle, Proceedings of the National Academy of Sciences, pp.21643-21648, 2009.
DOI : 10.1073/pnas.0903827106

. Gérard, . Goldbeter, C. Gérard, and A. Goldbeter, Entrainment of the Mammalian Cell Cycle by the Circadian Clock: Modeling Two Coupled Cellular Rhythms, PLoS Computational Biology, vol.3, issue.5, p.1002516, 2012.
DOI : 10.1371/journal.pcbi.1002516.g015

. Gérard, Effect of positive feedback loops on the robustness of oscillations in the network of cyclin-dependent kinases driving the mammalian cell cycle, FEBS Journal, vol.366, issue.18, pp.2793411-3431, 2012.
DOI : 10.1111/j.1742-4658.2012.08585.x

. Gery, The Circadian Gene Per1 Plays an Important Role in Cell Growth and DNA Damage Control in Human Cancer Cells, Molecular Cell, vol.22, issue.3, pp.375-382, 2006.
DOI : 10.1016/j.molcel.2006.03.038

D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry, vol.81, issue.25, pp.812340-2361, 1977.
DOI : 10.1021/j100540a008

. Glass, . Kauffman, L. Glass, and S. A. Kauffman, The logical analysis of continuous, non-linear biochemical control networks, Journal of Theoretical Biology, vol.39, issue.1, pp.103-129, 1973.
DOI : 10.1016/0022-5193(73)90208-7

. Gong, Formal analysis for logical models of pancreatic cancer, IEEE Conference on Decision and Control and European Control Conference, pp.4855-4860, 2011.
DOI : 10.1109/CDC.2011.6161052

. Gréchez-cassiau, The Circadian Clock Component BMAL1 Is a Critical Regulator of p21WAF1/CIP1 Expression and Hepatocyte Proliferation, Journal of Biological Chemistry, vol.283, issue.8, pp.4535-4542, 2008.
DOI : 10.1074/jbc.M705576200

. Grieco, Integrative Modelling of the Influence of MAPK Network on Cancer Cell Fate Decision, PLoS Computational Biology, vol.17, issue.4, p.1003286, 2013.
DOI : 10.1371/journal.pcbi.1003286.s010

O. Hansen, N. Hansen, and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-195, 2001.
DOI : 10.1016/0004-3702(95)00124-7

. Heitzler, Competing G protein-coupled receptor kinases balance G protein and ??-arrestin signaling, Molecular Systems Biology, vol.3, issue.590, 2012.
DOI : 10.1038/msb.2012.22

URL : https://hal.archives-ouvertes.fr/hal-00776169

D. Henley, S. Henley, and F. Dick, The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle, Cell Division, vol.7, issue.1, p.10, 2012.
DOI : 10.1016/j.devcel.2004.10.019

. Hong, Circadian rhythms synchronize mitosis in Neurospora crassa, Proceedings of the National Academy of Sciences, pp.1397-1402, 2014.
DOI : 10.1073/pnas.1319399111

D. Irons, Logical analysis of the budding yeast cell cycle, Journal of Theoretical Biology, vol.257, issue.4, pp.543-559, 2009.
DOI : 10.1016/j.jtbi.2008.12.028

URL : https://hal.archives-ouvertes.fr/hal-00554556

. Ji, An Rb-Skp2-p27 Pathway Mediates Acute Cell Cycle Inhibition by Rb and Is Retained in a Partial-Penetrance Rb Mutant, Molecular Cell, vol.16, issue.1, pp.47-58, 2004.
DOI : 10.1016/j.molcel.2004.09.029

. Ji, . Zhu, P. Ji, and L. Zhu, Using Kinetic Studies to Uncover New Rb Functions in Inhibiting Cell Cycle Progression, Cell Cycle, vol.4, issue.3, pp.373-375, 2005.
DOI : 10.4161/cc.4.3.1535

. Kang, Modeling the Effects of Cell Cycle M-phase Transcriptional Inhibition on Circadian Oscillation, PLoS Computational Biology, vol.40, issue.3, p.1000019, 2008.
DOI : 10.1371/journal.pcbi.1000019.s005

S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, vol.22, issue.3, pp.437-67, 1969.
DOI : 10.1016/0022-5193(69)90015-0

. Koren?i?, Timing of circadian genes in mammalian tissues Scientific reports, p.5782, 2014.

. Kotoshiba, p27 is regulated independently of Skp2 in the absence of Cdk2, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1843, issue.2, pp.1843436-1843481, 2014.
DOI : 10.1016/j.bbamcr.2013.11.005

. Kotoshibai, Molecular Dissection of the Interaction between p27 and Kip1 Ubiquitylation-promoting Complex, the Ubiquitin Ligase That Regulates Proteolysis of p27 in G1 Phase, Journal of Biological Chemistry, vol.280, issue.18, pp.28017694-17700, 2005.
DOI : 10.1074/jbc.M500866200

W. Krek, Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase, Cell, vol.78, issue.1, pp.161-172, 1994.
DOI : 10.1016/0092-8674(94)90582-7

N. Le-novere, Quantitative and logic modelling of molecular and gene networks, Nature Reviews Genetics, vol.52, issue.3, pp.146-158, 2015.
DOI : 10.1093/bioinformatics/btq124

. Lees, Cyclin E/cdk2 and cyclin A/cdk2 kinases associate with p107 and E2F in a temporally distinct manner., Genes & Development, vol.6, issue.10, pp.1874-1885, 1991.
DOI : 10.1101/gad.6.10.1874

J. Leloup and A. Goldbeter, Toward a detailed computational model for the mammalian circadian clock, Proceedings of the National Academy of Sciences, pp.7051-7056, 2003.
DOI : 10.1073/pnas.1132112100

. Levi, Implications of circadian clocks for the rhythmic delivery of cancer therapeutics, Adv. Drug Deliv. Rev, vol.59, pp.9-101015, 2007.

. Lévi, . Schibler, F. Lévi, and U. Schibler, Circadian Rhythms: Mechanisms and Therapeutic Implications, Annual Review of Pharmacology and Toxicology, vol.47, issue.1, pp.593-628, 2007.
DOI : 10.1146/annurev.pharmtox.47.120505.105208

. Li, The yeast cell-cycle network is robustly designed, Proceedings of the National Academy of Sciences, vol.101, issue.14, pp.4781-4786, 2004.
DOI : 10.1073/pnas.0305937101

. Li, A Circadian Clock Transcription Model for the Personalization of Cancer Chronotherapy. Cancer research, pp.8-5472, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00935081

T. Lincoln, P. Lincoln, and A. Tiwari, Symbolic Systems Biology: Hybrid Modeling and Analysis of Biological Networks, Hybrid Systems: Computation and Control HSCC, pp.660-672, 2004.
DOI : 10.1007/978-3-540-24743-2_44

. Liu, Imatinib Mesylate Induces Quiescence in Gastrointestinal Stromal Tumor Cells through the CDH1-SKP2-p27Kip1 Signaling Axis, Cancer Research, vol.68, issue.21, pp.689015-689038, 2008.
DOI : 10.1158/0008-5472.CAN-08-1935

. Loyer, Role of CDK/cyclin complexes in transcription and RNA splicing, Cellular Signalling, vol.17, issue.9, pp.1033-1051, 2005.
DOI : 10.1016/j.cellsig.2005.02.005

N. Markey and P. Schnoebelen, Model Checking a Path, CONCUR 2003, pp.251-265, 2003.
DOI : 10.1007/978-3-540-45187-7_17

URL : https://hal.archives-ouvertes.fr/hal-01194626

. Matsuo, Control Mechanism of the Circadian Clock for Timing of Cell Division in Vivo, Science, vol.302, issue.5643, pp.302255-259, 2003.
DOI : 10.1126/science.1086271

. Meyer, H. J. Meyer, and M. Rape, Processive ubiquitin chain formation by the anaphase-promoting complex, Seminars in Cell & Developmental Biology, vol.22, issue.6, pp.544-550, 2011.
DOI : 10.1016/j.semcdb.2011.03.009

. Mombach, Modelling the onset of senescence at the G1/S cell cycle checkpoint, BMC Genomics, vol.15, issue.Suppl 7, p.7, 2014.
DOI : 10.1186/1471-2164-15-S7-S7

. Montagnoli, Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation, Genes & Development, vol.13, issue.9, pp.1181-1189, 1999.
DOI : 10.1101/gad.13.9.1181

P. Monteiro and C. Chaouiya, Efficient Verification for Logical Models of Regulatory Networks, 6th International Conference on Practical Applications of Computational Biology & Bioinformatics of Advances in Intelligent and Soft Computing, pp.259-267, 2012.
DOI : 10.1007/978-3-642-28839-5_30

. Monteiro, Temporal logic patterns for querying dynamic models of cellular interaction networks, Bioinformatics, vol.24, issue.16, pp.24-227, 2008.
DOI : 10.1093/bioinformatics/btn275

URL : https://hal.archives-ouvertes.fr/inria-00357805

. Nagoshi, Circadian Gene Expression in Individual Fibroblasts, Cell, vol.119, issue.5, pp.693-705, 2004.
DOI : 10.1016/j.cell.2004.11.015

. Nakayama, Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication, The EMBO Journal, vol.19, issue.9, pp.2069-81, 2000.
DOI : 10.1093/emboj/19.9.2069

. Naldi, Logical modelling of regulatory networks with GINsim 2.3, Biosystems, vol.97, issue.2, pp.134-139, 2009.
DOI : 10.1016/j.biosystems.2009.04.008

. Naldi, Efficient Handling of Large Signalling-Regulatory Networks by Focusing on Their Core Control, Proceedings of the Computational Methods in Systems Biology -10th International Conference, CMSB, pp.288-306, 2012.
DOI : 10.1007/978-3-642-33636-2_17

. Naldi, the Consortium for Logical Models Cooperative development of logical modelling standards and tools with colomoto, Bioinformatics, 2015.

. Naldi, Dynamically consistent reduction of logical regulatory graphs, Selected Papers from the 7th International Conference on Computational Methods in Systems Biology, pp.2207-2218, 2011.
DOI : 10.1016/j.tcs.2010.10.021

URL : https://hal.archives-ouvertes.fr/hal-01284743

T. Novák, B. Novák, and J. J. Tyson, A model for restriction point control of the mammalian cell cycle, Journal of Theoretical Biology, vol.230, issue.4, pp.1383-1388, 2004.
DOI : 10.1016/j.jtbi.2004.04.039

T. Novák, B. Novák, and J. J. Tyson, Design principles of biochemical oscillators, Nature Reviews Molecular Cell Biology, vol.39, issue.12, pp.981-91, 2008.
DOI : 10.1111/j.1749-6632.1979.tb29471.x

. Ohtsubo, Human cyclin E, a nuclear protein essential for the G1-to-S phase transition., Molecular and Cellular Biology, vol.15, issue.5, pp.2612-2624, 1995.
DOI : 10.1128/MCB.15.5.2612

. Perez-roger and I. Perez-roger, Myc activation of cyclin e/cdk2 kinase involves induction of cyclin e gene transcription and inhibition of p27(kip1) binding to newly formed complexes, Oncogene, issue.20, pp.142373-81, 1997.

C. S. Pittendrigh, Circadian Rhythms and the Circadian Organization of Living Systems, Cold Spring Harbor Symposia on Quantitative Biology, vol.25, issue.0, pp.159-184, 1960.
DOI : 10.1101/SQB.1960.025.01.015

. Qu, Dynamics of the Cell Cycle: Checkpoints, Sizers, and Timers, Biophysical Journal, vol.85, issue.6, pp.853600-3611, 2003.
DOI : 10.1016/S0006-3495(03)74778-X

. Rape, The Processivity of Multiubiquitination by the APC Determines the Order of Substrate Degradation, Cell, vol.124, issue.1, pp.89-103, 2006.
DOI : 10.1016/j.cell.2005.10.032

. Reddy, Qualitative analysis of biochemical reaction systems, Computers in Biology and Medicine, vol.26, issue.1, pp.9-24, 1996.
DOI : 10.1016/0010-4825(95)00042-9

. Regev, Representation and simulation of biochemical processes using the pi-calculus process algebra, Proceedings of the sixth Pacific Symposium of Biocomputing, pp.459-470, 2001.

. Relógio, Ras-Mediated Deregulation of the Circadian Clock in Cancer, PLoS Genetics, vol.3, issue.11, 2014.
DOI : 10.1371/journal.pgen.1004338.s013

. Relógio, Tuning the Mammalian Circadian Clock: Robust Synergy of Two Loops, PLoS Computational Biology, vol.5, issue.12, p.1002309, 2011.
DOI : 10.1371/journal.pcbi.1002309.s007

. Rivard, Abrogation of p27Kip1 by cDNA Antisense Suppresses Quiescence (G0 State) in Fibroblasts, Journal of Biological Chemistry, vol.271, issue.31, pp.27118337-18341, 1996.
DOI : 10.1074/jbc.271.31.18337

A. Rizk, Résolution de contraintes temporelles pour l'analyse de systèmes biologiques, 2011.

. Rizk, On a Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications to Systems Biology, CMSB'08: Proceedings of the fourth international conference on Computational Methods in Systems Biology, pp.251-268, 2008.
DOI : 10.1007/978-3-540-88562-7_19

URL : https://hal.archives-ouvertes.fr/inria-00419781

. Rizk, A general computational method for robustness analysis with applications to synthetic gene networks, Bioinformatics, vol.25, issue.12, pp.12-69, 2009.
DOI : 10.1093/bioinformatics/btp200

URL : https://hal.archives-ouvertes.fr/inria-00419708

. Rizk, Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures, Theoretical Computer Science, vol.412, issue.26, pp.4122827-2839, 2011.
DOI : 10.1016/j.tcs.2010.05.008

URL : https://hal.archives-ouvertes.fr/hal-01431314

. Ro¸suro¸su, G. Havelund-]-ro¸suro¸su, and K. Havelund, Rewriting-Based Techniques for Runtime Verification, Automated Software Engineering, vol.32, issue.3, pp.151-197, 2005.
DOI : 10.1007/s10515-005-6205-y

. Seth, Cell cycle regulation of the c-Myc transcriptional activation domain., Molecular and Cellular Biology, vol.13, issue.7, pp.134125-4136, 1993.
DOI : 10.1128/MCB.13.7.4125

D. Srivastava, Subsumption and indexing in constraint query languages with linear arithmetic constraints, Annals of Mathematics and Artificial Intelligence, vol.8, issue.3-4, pp.315-343, 1993.
DOI : 10.1007/BF01530796

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.5668

K. Stal, L. J. Stal, and W. E. Krumbein, Temporal separation of nitrogen fixation and photosynthesis in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp., Archives of Microbiology, vol.119, issue.1, pp.76-80, 1987.
DOI : 10.1007/BF00423140

. Stoll, Continuous time boolean modeling for biological signaling: application of Gillespie algorithm, BMC Systems Biology, vol.6, issue.1, p.116, 2012.
DOI : 10.1371/journal.pcbi.1000595

URL : https://hal.archives-ouvertes.fr/inserm-00762304

. Stoma, STL-based Analysis of TRAIL-induced Apoptosis Challenges the Notion of Type I/Type II Cell Line Classification, PLoS Computational Biology, vol.102, issue.5, p.1003056, 2013.
DOI : 10.1371/journal.pcbi.1003056.s010

URL : https://hal.archives-ouvertes.fr/hal-00750063

M. Sugita, Functional analysis of chemical systems in vivo using a logical circuit equivalent. II. The idea of a molecular automaton, Journal of Theoretical Biology, vol.4, issue.2, pp.179-92, 1963.
DOI : 10.1016/0022-5193(63)90027-4

. Thobe, Computational Methods in Systems Biology, 12th International Conference, CMSB 2014 Proceedings, chapter Model Integration and Crosstalk Analysis of Logical Regulatory Networks, pp.32-44, 2014.

R. Thomas, Boolean formalization of genetic control circuits, Journal of Theoretical Biology, vol.42, issue.3, pp.563-85, 1973.
DOI : 10.1016/0022-5193(73)90247-6

R. Thomas, Regulatory networks seen as asynchronous automata: A logical description, Journal of Theoretical Biology, vol.153, issue.1, pp.1-23, 1991.
DOI : 10.1016/S0022-5193(05)80350-9

D. Thomas, R. Thomas, and R. Ari, Biological feedback, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00087681

. Thomas, Dynamical behaviour of biological regulatory networks???I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state, Bulletin of Mathematical Biology, vol.29, issue.2, pp.247-276, 1995.
DOI : 10.1007/BF02460618

. Traynard, Trace simplifications preserving temporal logic formulae with case study in a coupled model of the cell cycle and the circadian clock (best student paper award), CMSB'14: Proceedings of the twelth international conference on Computational Methods in Systems Biology, number 8859 in Lecture Notes in BioInformatics, pp.114-128, 2014.

. Traynard, Model-Based Investigation of the Effect of the Cell Cycle on the Circadian Clock Through Transcription Inhibition During Mitosis, CMSB'15: Proceedings of the thirteenth international conference on Computational Methods in Systems Biology, pp.208-221, 2015.
DOI : 10.1007/978-3-319-23401-4_18

URL : https://hal.archives-ouvertes.fr/hal-01236264

. Traynard, Logical modeling of the mammalian cell cycle, pp.1512-0337, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01246595

. Tyson, . Novák, J. J. Tyson, and B. Novák, Models in biology: lessons from modeling regulation of the eukaryotic cell cycle, BMC Biology, vol.77, issue.1, p.46, 2015.
DOI : 10.1186/s12915-015-0158-9

. Ünsal-kaçmaz, Coupling of Human Circadian and Cell Cycles by the Timeless Protein, Molecular and Cellular Biology, vol.25, issue.8, pp.253109-3116, 2005.
DOI : 10.1128/MCB.25.8.3109-3116.2005

R. A. Weinberg, The retinoblastoma protein and cell cycle control, Cell, vol.81, issue.3, pp.323-330, 1995.
DOI : 10.1016/0092-8674(95)90385-2

. Weisenberger, . Scheer, D. Weisenberger, and U. Scheer, A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis, The Journal of Cell Biology, vol.129, issue.3, 1995.
DOI : 10.1083/jcb.129.3.561

D. J. Wilkinson, Stochastic modelling for quantitative description of heterogeneous biological systems, Nature Reviews Genetics, vol.213, issue.2, pp.122-133, 2009.
DOI : 10.1038/nrg2509

O. Wolkenhauer, Why model? Frontiers in physiology, p.21, 2014.

. Wong, Control of E2F dynamics in cell cycle entry, Cell Cycle, issue.18, pp.103086-3094, 2014.

A. Table and . Fauré, parameter(dz3 parameter(dz4 parameter(dz5 parameter(dz6,0.31). parameter(dz7 parameter(dz8,0.73) parameter(kfx1,2.3). parameter(kdx1,0.01). parameter(kfz4,1) parameter(kdz4,1) parameter(kfz5,1) parameter(kdz5,1) parameter(kphz2,2). parameter(kdphz3,0.05). parameter(V1maxp,1). parameter(V2maxp,2.92). parameter(V3maxp,1.9). parameter(V4maxp,10.9). parameter(V5maxp,1). macro(V1max,V1maxp). macro(V2max,V2maxp). macro(V3max,V3maxp). macro(V4max,V4maxp). macro(V5max,V5maxp). parameter(kt1,3). parameter(ki1,0.9). parameter(kt2,2.4). parameter(ki2,0.7). parameter(ki21,5.2). parameter(kt3,2.07). parameter(ki3,3.3). parameter(kt4,0.9). parameter(ki4,0.4). parameter(kt5,8.35). parameter(ki5,1.94). parameter(a,12). parameter(d,12). parameter(g,5). parameter(h,5). parameter(i,12), 05). macro(PC,[Cry?Per~{p}::nucl]+[Cry?Per_nucl]), 2006.

M. Cry?per_nucl, =. Cry?per_cyto, . Ma, and =. _. Cry?per_nucl, MA(kiz4 * coefclock) for Cry?Per~{p}::cyto => Cry?Per~{p}::nucl. MA(kex2 * coefclock) for Cry?Per~{p}::nucl => Cry?Per~{p}::cyto. MA(dx2 * coefclock) for Cry?Per~{p}::nucl => _. MA(kfz5 * coefclock) for Per_cyto + Cry_cyto => Cry?Per_cyto, MA(kdz5 * coefclock) for Cry?Per_cyto => Per_cyto+Cry_cyto. MA(dz5 * coefclock) for Cry?Per_cyto => _. MA(kfz4 * coefclock) for Per~{p}::cyto + Cry_cyto => Cry?Per~{p}::cyto. MA(kdz4 * coefclock) for Cry?Per~{p}::cyto => Per~{p}::cyto+Cry_cyto. MA(dz4 * coefclock) for Cry?Per~{p}::cyto => _. MA(kphz2 * coefclock) for Per_cyto => Per~{p}::cyto

M. For-mcry and =. _. , Activation of gene Per : synthesis of mPER (mPER) coefclock * V1max * (1+a * (, kt1)^b * (PC/ki1)^c+([Bmal?Clock_nucl]/kt1)^b) for Cry?Per_nucl + Cry?Per~{p}::nucl + Bmal?Clock_nucl => Cry?Per_nucl + Cry?Per~{p}::nucl + Bmal?Clock_nucl + mPER

=. Bmal_cyto, MA(coefclock * kp5) for _=[mBMAL] => Bmal_cyto

M. Bmal_cyto and =. _. , Activation of gene Bmal : synthesis of mBmal (mBMAL) coefclock * V5max * (1+i * (, ki5)^m+(

=. Ror_cyto, MA(coefclock * kp4) for _=[mROR] => Ror_cyto

M. For-reverb_cyto and =. _. , Activation of gene Ror : synthesis of mRor (mROR) coefclock * V4max * (1+h * (, kt4)^p * (PC/ki4)^q+([Bmal?Clock_nucl]/kt4)^p) for Cry?Per_nucl + Cry?Per~{p}::nucl + Bmal?Clock_nucl => Cry?Per_nucl + Cry?Per~{p}::nucl + Bmal?Clock_nucl + mROR