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Dioşan for her continuous guidance and for being always there for me, since my second year

of university. I also want to thank my colleagues from Babeş-Bolyai University: Iuliana,
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srhair. Pedestrian recognition by using a dynamic modality selection approach. Pro-

ceedings of IEEE 18th International Conference on Intelligent Transportation Systems,

Las Palmas, Spain, September 15-18, pp. 1862 - 1867, 2015

8. Maria-Iuliana Bocicor, Adela-Maria Ŝırbu and Gabriela Czibula. Dynamic core
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Introduction

This PhD thesis is the result of my research in the field of applying dynamic machine

learning models for solving supervised and unsupervised classification problems. This research

was started in 2012, under the supervision of my PhD directors: Prof. Dr. Gabriela Czibula

and Prof. Dr. Abdelaziz Bensrhair and my PhD advisor Assoc. Prof. Alexandrina Rogozan.

Machine Learning (ML) is a subfield of artificial intelligence, focused on constructing

computer programs that automatically improve with experience [Mitchell, 1997a]. Machine

learning methods can be classified into: supervised, unsupervised and reinforcement learning.

The aim of supervised learning method is to infer a function from the training data, consisting

of pairs of input instaces with their target outputs. If the output of the function is contin-

uous, we will have a regression problem or if it is a class label we will have a classification

one. Thus, given a set of training examples, the supervised learning algorithms construct

a model that is able to predict the output for new examples. Unsupervised learning aims

to discover hidden patterns in data, without using a priori labels. A very popular unsuper-

vised learning technique is clustering, which implies partitioning a certain data set in groups,

whose components resemble each other according to a certain similarity measure [Jiang et al.,

2012]. Reinforcement learning is the problem in which an agent must discover its optimal

performance in an environment by maximizing the rewards [Kaelbling et al., 1996].

The research direction we are focusing on in the thesis is applying dynamic machine

learning models to solve supervised and unsupervised classification problems. We are living

in a dynamic environment, where data is continuously changing and the need to obtain a

fast and accurate solution to our problems has become a real necessity. In this context, we

aim to study and develop machine learning based models that take into account the dynamic

aspect of data. There is a large variety of applications to machine learning techniques, which

try to solve real life problems like: speech recognition, face recognition, natural language

processing, medical diagnosis, email spam detection, fraud detection, pedestrian detection,

bioinformatics, robotics etc. After a careful analysis, the particular problems that we have

decided to approach in the thesis are pedestrian recognition (a supervised classification prob-

lem) and clustering of gene expression data (an unsupervised classification problem). The

approached problems are representative for the two main types of classification (supervised

and unsupervised) and are very challenging, having a great importance in real life.

The first research direction that we approach in the field of dynamic unsupervised clas-

12
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sification is the problem of dynamic clustering of gene expression data. Gene expression

represents the process by which the information from a gene is converted into functional gene

products: proteins or RNA having different roles in the life of a cell. Modern microarray

technology is nowadays used to experimentally detect the levels of expressions of thousand

of genes, across different conditions and over time. Once the gene expression data has been

gathered, the next step is to analyze it and extract useful biological information. Data mining

is the field that offers the necessary methods to accomplish this task and one of the most

used algorithms dealing with the analysis of gene expression data approaches the clustering

problem [Stekel, 2006].

Clustering implies partitioning a certain data set in groups, where the components of each

group are similar to each other [Jiang et al., 2012]. In gene expression data sets, each gene is

represented by its expression values (features), at distinct points in time, under the monitored

conditions. The process of gene clustering is at the foundation of genomic studies that aim

to analyze the functions of genes [Song and Lee, 2012], because it is assumed that genes that

are similar in their expression levels are also relatively similar in terms of biological function.

A great number of clustering algorithms have been introduced in the literature, most of

which deal with a given static data set (that is not subject to change during the clustering

process). There are also some incremental approaches, meaning that the clustering algorithm

was designed to take into consideration new instances of data as well, as these are added to

the existing data set.

The problem that we address within the dynamic unsupervised classification research

direction is the dynamic clustering of gene expression data. In our case, the term dynamic

indicates that the data set is not static, but it is subject to change. Still, as opposed to the

incremental approaches from the literature, where the data set is enriched with new genes

(instances) during the clustering process, our approaches tackle the cases when new features

(expression levels for new points in time) are added to the genes already existing in the data

set. To our best knowledge, there are no approaches in the literature that deal with the

problem of dynamic clustering of gene expression data, defined as above.

The second research direction that we approach related to dynamic supervised classifica-

tion is pedestrian recognition, one of the most popular research directions in the domain of

object detection and computer vision. Pedestrian safety is a critical issue with global impact.

A World Health Organization report from 2015 [WHO, 2015] informs that traffic accidents are

one of the most important causes of injuries and death around the world, being responsible

for an estimated 1.25 million fatalities and millions more sustaining serious injuries. It was

remarked that the majority of deaths are not of the car occupants, but of the vulnerable road

users, consisting of motorcyclists, pedestrians and cyclists, while the number of pedestrian

fatalities increases from high to low-income countries.

Traffic safety has become a priority both for the automobile industry and the scientific

community, which have invested in the development of different protection systems. Initially,

improvements involved simple mechanisms such as seat belts, but then more advanced systems
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like antilock braking systems (ABS), electronic stabilization programs (ESP) and airbags were

built. In the last years, the focus has changed to more intelligent on-board systems. Their

goal is to anticipate accidents with the purpose of avoiding them, or reducing their severity.

Such systems are called advanced driver assistance systems (ADAS), their goal being to assist

the driver in making decisions, provide signals in potentially dangerous driving scenarios and

perform counteractive measures [Gerónimo et al., 2010]. However, in order for the ADAS to

work, it is highly necessary to develop efficient recognition systems.

There are main challenges in implementing such a system. Firstly, humans can have

variable appearances because they can adopt a large variety of poses, wear different clothes,

carry various objects and have different sizes. Secondly, pedestrians must be detected in

outdoor urban scenarios which implies very cluttered backgrounds. Thirdly, the detector

must work under a wide range of weather conditions and illumination, which vary from

direct sunlight and shadows during the day to artificial or dim lighting during the night.

Finally, partial occlusions made by common urban elements, such as parked cars, create

further difficulties because only part of the object is visible for processing.

The problem that we approach within the dynamic supervised classification field is the

development of dynamic pedestrian recognition systems, which are able to adapt to varying

environmental conditions. In order to achieve this, we integrate information from multi-

modality images such as intensity, depth and flow into dynamic models. It is known that the

first need of a pedestrian recognition system is finding a robust feature set extracted from

images, that allows cleanly discriminate the human form, even under difficult conditions.

Taking this into account, we also aim to study a new technique for extracting features from

images, by using kernel descriptors (KDs) [Bo et al., 2010], which obtained good results for

visual recognition, but to our best knowledge, have not been used in pedestrian detection so

far.

The thesis is organized in four chapters as follows.

In Chapter 1 we present the background for the unsupervised classification problem

approached in the thesis, the problem of dynamic clustering of gene expression data. We

begin with an overview on the most important clustering methods, with focus on k-means,

fuzzy c-means and hierarchical clustering algorithms, that we are going to further exploit

in our proposed approaches. We continue with a special type of clustering, the dynamic

clustering, along with a literature review in this direction. Finally, we address the problem

of dynamic clustering of gene expression data, together with a short review of the existing

approaches from the literature.

Chapter 2 is original and presents our work related to the problem of dynamic clustering

of gene expression data. We begin by defining the problem that we approach and its impor-

tance in real life, then we introduce three dynamic clustering algorithms that can handle new

collected data, by starting from a previous obtained partition, without the need to re-run

the algorithm from scratch. In the same context of dynamic data, we also propose an algo-

rithm for adaptive relational association rule mining of gene expression. We experimentally
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evaluate our approaches on a gene expression dataset, analyze and compare our results with

those obtained by other approaches from the literature. The obtained results emphasize the

effectiveness of using our dynamic models.

In Chapter 3 we present the background for the supervised classification problem ap-

proached in the thesis, the problem of dynamic pedestrian recognition. We begin by present-

ing the most important components in a pedestrian recognition system: the feature extraction

and the classification components. Therefore, we give an overview of the most commonly used

features, then we briefly present the most popular classifiers used in pedestrian detection. Fi-

nally, we provide a short literature review in the field, with emphasis on the fusion of image

modalities, for which we are going to further introduce a dynamic approach.

Chapter 4 is original and addresses the problem of pedestrian recognition in single and

multi-modality images. We begin with a comparison on several state-of-the-art features in far

infra-red (FIR) spectrum, we continue with a literature review on kernel descriptors, then we

present our studies on pedestrian recognition using these features for image representation.

In the first study we investigate how two learning algorithms, Support Vector Machines

(SVM) and Genetic Programming (GP), are able to perform pedestrian recognition using ker-

nel descriptors, extracted with three types of kernels: Exponential, Gaussian and Laplacian,

while in the second one we study how kernel descriptors perform in single vs. multi-modality

pedestrian recognition. We propose two dynamic models for pedestrian recognition, that are

able to select the most discriminative modalities for each image in particular and further use

them the classification process. Experimental evaluations on a pedestrian dataset confirm

the performance of our dynamic models.

The original contributions from the thesis are presented in Chapters 2 and 4 and are the

following:

• Three dynamic clustering algorithms, which can handle newly collected gene expression

levels by starting from a previously obtained partition, without the need to re-run the

algorithms from the beginning

– A dynamic core based clustering algorithm, based on k-means clustering algorithm

(Subsection 2.2.3.1.1) [Bocicor et al., 2014]; an heuristic to determine the optimal

number of clusters in a gene expression data set (Subsection 2.2.2) [Bocicor et al.,

2014], experimental evaluations of the dynamic core based clustering algorithm on

a real life gene expression data set, analysis of the results and comparisons with

results obtained by other dynamic approaches from the literature (Subsections

2.3.3.1 and 2.4.2) [Bocicor et al., 2014].

– A dynamic algorithm for hierarchical gene expression clustering, based on hierar-

chical agglomerative clustering algorithm (Subsection 2.2.3.2.1) [Sirbu and Boci-

cor, 2013]; experimental evaluations of the algorithm for hierarchical clustering on

a real life gene expression data set, analysis of the results and comparisons with
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results obtained by our other dynamic approaches (Subsections 2.3.3.2 and 2.4.2)

[Sirbu and Bocicor, 2013].

– A dynamic algorithm for fuzzy clustering of gene expression data (Subsection

2.2.3.3.1) [Sirbu et al., 2014a]; experimental evaluations of the algorithm for fuzzy

clustering on a real life gene expression data set, analysis of the results and compar-

isons with results obtained by our other dynamic approaches (Subsections 2.3.3.3

and 2.4.2) [Sirbu et al., 2014a]

• A dynamic algorithm for relational association rule mining of gene expression data,

which can handle the newly arrived features by adapting previously obtained rules,

without the need of re-running the mining algorithm from scratch (Subsection 2.4.3.2)

[Czibula et al., 2015a]; experimental evaluations of the algorithm for relational asso-

ciation rule mining on a real life gene expression data set and analysis of the results

(Subsection 2.4.3.3) [Czibula et al., 2015a]

• The usage of kernel descriptors for pedestrian recognition (Subsections 4.3.2 and 4.3.3)

[Andreica et al., 2013, Sirbu et al., 2014b]

– A comparison on how two machine learning algorithms: SVM and GP are able

to learn based on KD features extracted by using three kernels: Exponential,

Gaussian and Laplacian (Subsection 4.3.2) [Andreica et al., 2013]

– A comparison on how KDs perform on single vs. multi-modality images, with

parameters optimized independently on each modality: intensity, depth and flow

(Subsection 4.3.3) [Sirbu et al., 2014b]

• Two dynamic machine learning based algorithms, capable to dynamically determine

the most suitable modalities to classify an image

– A dynamic modality selection algorithm which retains one suitable modality among

intensity, depth and flow (Subsection 4.4.4) [Rus et al., 2015]; experimental evalu-

ations of the algorithm on a pedestrian data set, analysis of the results and com-

parisons to other approaches from the literature (Subsection 4.4.4.1) [Rus et al.,

2015]

– A dynamic modality fusion algorithm which fuses the modalities considered suit-

able among intensity, depth and flow (Subsection 4.4.4) [Sirbu et al., 2015]; exper-

imental evaluations of the algorithm on a pedestrian data set, analysis of the re-

sults and comparisons to other approaches from the literature (Subsection 4.4.5.1)

[Sirbu et al., 2015]



Chapter 1

Unsupervised classification.

Background.

In this chapter we are presenting the background knowledge related to the unsupervised

classification problem approached in the thesis, the problem of dynamic clustering of gene

expression data. Thus, in Section 1.1 we give a short overview on clustering, with emphasis

on k-means, fuzzy c-means and hierarchical clustering algorithms, which stand at the basis

of our proposed approaches introduced in Chapter 2. In Section 1.2 we present a special type

of clustering, the dynamic clustering, together with some existing dynamic approaches from

the literature. The problem of dynamic clustering of gene expression data is presented in

Section 1.3 followed by several dynamic approaches existing in the literature for clustering

gene expression.

1.1 Clustering

In this section we give a description of clustering, followed by a brief review of the main

clustering algorithms [Jain and Dubes, 1988, Han and Kamber, 2006].

Clustering implies partitioning a particular data set in groups, whose components are

similar to each other [Jiang et al., 2012]. According to Jain and Dubes [Jain and Dubes,

1988], clustering is a type of unsupervised classification applied on a finite set of instances

(objects), between which the relationship is represented by a proximity matrix. Kendal

and Stuart [Kendall and Stuart, 1966] suggest the term of clustering for techniques that

group variables, and classification for techniques that group individuals. However, clustering

represents the most important unsupervised learning problem in the machine learning domain.

Lance and Williams [Lance and Williams, 1967] propose a taxonomy of classification

types (see Figure 1.1), where each leaf represents a different type of classification problem.

The first level of the tree divides classification problems into exclusive and non-exclusive.

The exclusive classification is a partitioning of a set of objects, in which each object is part

of a single cluster. Non-exclusive classification can assign an object to multiple classes. A
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type of non-exclusive clustering is fuzzy clustering, in which an object is assigned to all

clusters with membership degrees ranging from 0 and 1. In the second level of the tree,

exclusive classification is divided into intrinsic and extrinsic. If the classification uses only the

proximity matrix it will be called an intrinsic classification. This type of classification is also

called unsupervised learning because are not used category labels on objects representing an

a priori known partition. Extrinsic classification uses both category labels and the proximity

matrix in order to determine a discriminant surface that separates the objects into categories.

Furthermore, in the last level of the tree, intrinsic classification is divided into hierarchical

and partitional. Jain and Dubes [Jain and Dubes, 1988] explain hierarchical classification as

a nested sequence of partitions, while partitional clustering as a single partition. The most

representative partitional clustering methods are the k-means and the k-medoids methods.

Figure 1.1: Tree of classification types [Jain and Dubes, 1988]

1.1.1 Distance metrics

An important step in clustering is determining the distance/dissimilarity among objects.

There are numerous distance metrics for clustering available in the literature. In the following

we are going to give a brief overview on them.

Let Dist be a function, where Dist : X x X → [0,∞]. It is called a metric of X if for

each x, y, z ∈ X:

• Dist(x, y) = 0, if and only if x = y (the identity axiom) [Singh et al., 2013];

• Dist(x, y) = Dist(y, x) (the symmetry axiom) [Singh et al., 2013];

• Dist(x, y) +Dist(y, z) ≥ Dist(x, z) (the triangle axiom) [Singh et al., 2013].
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To be noted that, in clustering, the distance measure can also be semi-metric (does not

verify the triangle inequality).

Euclidean distance [Singh et al., 2013] computes the root of square difference between

a pair of objects.

Dist(X,Y ) =

√√√√ n∑
i=1

(Xi − Yi)2 (1.1)

Manhattan distance [Singh et al., 2013] sums the absolute differences between pair

objects.

Dist(X,Y ) =
n∑
i=1

|Xi − Yi| (1.2)

Chebychev distance [Singh et al., 2013], also known as maximum value distance, de-

termines the absolute magnitude of the differences between a pair of objects.

Dist(X,Y ) = Maxi|Xi − Yi| (1.3)

Minkowski distance [Singh et al., 2013] is a generalised distance.

Dist(X,Y ) = (
n∑
i=1

|Xi − Yi|
1
p )p (1.4)

For p = 1, it represents the Manhattan distance and for p = 2 the Euclidean distance.

Moreover, Chebychev distance is a variant of Minkowski distance when p=∞ [Singh et al.,

2013].

Mahalanobis distance [Mahalanobis, 1936] is based on the correlation between vari-

ables. Unlike Euclidean distance, it takes into consideration the correlation of the data and

is scale-invariant [Xu et al., 2013].

Let X = (X1, X2, . . . , Xn)T be an observation from a set of observations with mean

µ = (µ1, µ2, . . . , µn)T and µ the covariance matrix. The Mahalanobis distance of X and S is

computed as:

DM (X) =
√

(X − µ)TS−1(X − µ) (1.5)

Another way of defining Mahalanobis distance is as a dissimilarity measure between two

random vectors ~x and ~y having the same distribution and the covariance matrix S:

d(X,Y ) =
√

(X − Y )TS−1(X − Y ). (1.6)

The Mahalanobis distance will be reduced to the Euclidean distance in the case when the

covariance matrix is the identity one, and to normalized Euclidean distance:

d(X,Y ) =

√√√√ N∑
i=1

(Xi − Yi)2
si

, (1.7)
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if the covariance matrix is diagonal, where si represents the standard deviation of Xi and Yi

from the sample set [Xu et al., 2013].

1.1.2 K-means clustering

The k-means algorithm takes as parameter the number of clusters k and performs a

partitioning of a set of n objects into k clusters, with the goal of achieving a high intracluster

similarity and a low intercluster similarity. The similarity between clusters is computed

against the mean value of the objects within the cluster, referred as its centroid [Han and

Kamber, 2006].

The algorithm begins by randomly selecting k objects, as cluster centroids. Each of the

remaining objects are assigned to the nearest cluster considering the distance between the

object and the centroid of the cluster, then a new centroid for the clusters is computed. The

process repeats until convergence. The commonly used convergence criterion is the square-

error

E =

k∑
i=1

∑
o∈Ci

|o−mi|2 (1.8)

where E is the sum of the square error for all instances in the data set, o an object represented

by a point in space and mi is the mean of cluster Ci. The objective of this criterion is to

create clusters as compact and separate as possible [Han and Kamber, 2006].

The time complexity of the k-means algorithm is O(lknm), where l represents the number

of iterations, k denotes the number of clusters, n is the number of objects and m indicates

the number of attributes. We have to mention that there are also variations of the classical

algorithm, which apply different optimization techniques.

Figure 1.2: Clustering a set of objects using k-means algorithm [Han and Kamber, 2006]

1.1.3 Hierarchical clustering

The hierarchical clustering algorithms perform a partitioning of objects in a tree of clus-

ters. Depending on how hierarchical decomposition is done, bottom-up by merging or top-

down by splitting, hierarchical clustering algorithms can be classified into agglomerative or

divisive.
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The agglomerative clustering method, starts with a partition in which each object is

placed in its own singleton. Then, the pair of closest clusters is merged into a single one,

creating a partition and decreasing by one the number of clusters. This step is repeated until

all objects belong to a single cluster. The divisive hierarchical clustering method performs

the same steps, but in reversed order: starts with a partition where all objects are in a single

cluster, and ends when all objects are placed in their own cluster.

The hierarchical clustering process has a tree-like representation, called dendogram, which

illustrates how objects are grouped together step by step.

Figure 1.3: Dendogram for hierarchical clustering of five objects [Han and Kamber, 2006]

In order to decide which clusters to merge, the distance between clusters is computed.

There are several measures used in the literature for the distance between two clusters,

denoted by d(Ci, Cj):

• minimum distance [Han and Kamber, 2006] : dmin(Ci, Cj) = mino∈Ci,o′∈Cj
d(o, o′)

• maximum distance [Han and Kamber, 2006] : dmax(Ci, Cj) = maxo∈Ci,o′∈Cj
d(o, o′)

• mean distance [Han and Kamber, 2006] : dmean(Ci, Cj) = d(mi,mj)

• average distance [Han and Kamber, 2006] : davg(Ci, Cj) = 1
ninj

∑
o∈Ci

∑
o′∈Cj

d(o, o′)

where d(o, o′) expresses the distance between two objects o and o′, ni represents the number

of objects from Ci and mi is the mean of Ci.

The clustering algorithm that measures the minimum distance between clusters is usually

called nearest-neighbour. Moreover, if the clustering process ends when the distance between

the closest clusters is greater than an established threshold, it is named as single-linkage

algorithm. The clustering algorithm that measures the maximum distance between clusters

is usually called farthest-neighbour. If the clustering process ends when the distance between

the closest clusters is greater than an established threshold, it is named as complete-linkage

algorithm.

In the context in which minimum and maximum distance measures are sensitive to outliers

and noisy data, representing two extremes, the mean or average distance are oftenly chosen
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as a compromise between the two. The mean distance is used for numeric data, whereas

average distance can handle also categoric data.

The time complexity of hierarchical clustering algorithm depends on the linking type. In

the case of single-link clustering the complexity is O(n2), while for complete-link is O(n2 log n)

where n is the number of objects.

1.1.4 Fuzzy C-means clustering

Fuzzy c-means clustering (FCM) [Albayrak and Amasyali, 2003], [Jain and Dubes, 1988],

or Fuzzy ISODATA, represents a clustering method which is different from hard k-means

clustering. FCM uses the idea of fuzzy partitioning, where a data instance (object) is assigned

to all clusters with membership degrees (varying from 0 to 1).

FCM uses fuzzy sets in the clustering process, associating to each object a degree of

membership to each cluster.

Denoting by k the desired number of clusters, a matrix U is used, where Uij (i ∈
{1, , 2..., k}, j ∈ {1, 2..., n} expresses the membership degree of object j to cluster i, such

that

k∑
i=1

Uij = 1, ∀j ∈ {1, 2, ..., n} (1.9)

Through an iterative process, FCM updates the cluster centroids and the membership

degrees, in order to move the cluster means to the correct place within the data set. The

convergence of FCM to the optimal solution is not ensured, because of the random initial-

ization of the initial centroids i.e the initial values for matrix U. The algorithm reports the

final values for the matrix U. Considering the final membership degrees given by the matrix

U, an object Oj is usually assigned to the cluster i = argmaxl=1,kUlj . Then, the following

formula is used:

Ki = {j | j ∈ {1, ..., n}, Uij > Urj ,∀r ∈ {1, ..., n}, r 6= i},

in order to obtain the clusters in data after applying FCM. The number of clusters formed

by FCM is at most k, because empty clusters could be obtained.

The time complexity for the FCM clustering algorithm is O(nmk2i), where i represents

the FCM passes over the dataset, the number of objects is expressed by n, the number of

clusters by k and the number of attributes by m.

1.2 Dynamic clustering

A clustering algorithm can be regarded as dynamic from several perspectives: operates

on dynamic data sets, or/and adapts in some way the clustering process (e.g. adaptation

from external feedback, dynamic thresholds). In the following we are going to briefly review
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them, together with some existing approaches from the literature, with focus on the first type

of dynamism, which will be tackled in this thesis.

Firstly, a clustering algorithm is considered dynamic if it is able to handle data sets that

are subject to change. The term dynamic represents a generalization of the terms adaptive,

incremental and temporal used in the literature to describe this particular type of clustering.

Moreover, the dynamism of the data sets can be regarded from two perspectives: when new

objects (instances) are added to the data set, or when new attributes are added to the existing

objects. Several approaches in the literature address the problem of dynamic clustering when

new objects are sequentially added to the data set.

In [Charikar et al., 2004] is proposed a hierarchical incremental clustering algorithm for

document and image classification, which is able to maintain clusters of small diameter in an

efficient manner, in the context in which new points are added.

In [Li et al., 2005] is proposed an adaptive clustering algorithm for network clustering

(SACA), which adaptively forms clusters based on an accurate clustering measure called

SCM, taking into account the connectivity of the nodes. In order to join or leave their

clusters, the nodes must fulfill the condition of improving the SCM value of the whole network.

Experiments prove the efficiency and accuracy of the method, even for large topologies.

In [Young et al., 2010] is presented a fast and stable incremental clustering algorithm that

is based on a winner-take-all partition approach. The efficiency of the method considering the

computational time and memory requirements is proved by simulations on several practical

scenarios.

In [Kulic et al., 2008] is presented an incremental clustering based on the distance, in

which newly acquired observations are represented using a Hidden Markov Model and then

compared to existing clusters. The method was applied to incremental learning of human

motion patterns using on-line observations. Experiments on a sequence of continuous human

motion data confirm the performance of their approach.

In [Aaron et al., 2014b] is presented a dynamic two phase single-pass k-means clustering

method, based on the k-means pyramid approach. In the first phase a large number of

centers is used, then in the second one the centers obtained in the first phase are clustered

into an established size. The performance of their approach is proved by experiments on

color quantization. A fuzzy c-means version of the algorithm is introduced in [Aaron et al.,

2014a].

In [Li and Chen, 2010] is proposed a fuzzy k-means incremental clustering approach,

based on k centers and vector quantization. The authors use k centers in order partition

data points into maximum k clusters, then vector quantization to assign new coming data

points to clusters. Two centroids clustering is used to create a tree for k-means and reduce

the time for calculating incremental data objects, also to decide if the new object should be

added to an existing group or form a new cluster. Several data sets are used for validating

the proposed approach.

In [Li et al., 2015] is introduced a batch dynamic incremental c-means clustering method
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based on rough fuzzy set, BD-RFCM, in which new available data is not added one by one to

the data set, but in form of cluster. The affiliation between a cluster from new incremental

data and a cluster from original data is measured by the inclusion degree, which is similar

to the membership degree of fuzzy set. Experiments on a synthetic data set confirm the

effectiveness and correctness of the algorithm.

Most of the existing clustering methods, such as the k-means algorithm [Jain, 2010]

or hierarchical agglomerative clustering algorithm (HACA) [Han and Kamber, 2006], start

with a known set of objects, characterized by a set of attributes (features). All attributes are

simultaneously used when computing objects’ similarity. However, various applications where

the feature set characterizing the instances increases exist, thus, re-clustering is required. An

option in this situation would be to apply the clustering algorithm from the beginning on the

attribute-extended objects, but would not be efficient. In order to overcome this problem,

Şerban and Câmpan introduce in [Serban and Campan, 2005] and [Serban and Campan,

2006] two adaptive clustering algorithms that are able to identify a new partition of the set

of objects, when the features set increases. The methods start from the set of clusters that

was obtained by applying k-means, respectively HACA before the feature set was extended.

This partitioning is adapted considering the newly added features. The authors show that

the result is obtained more efficiently than applying k-means, respectively HACA from the

beginning on the extended data set.

The idea of adaptive clustering introduced in [Serban and Campan, 2005, Serban and

Campan, 2006] is used in chapter 2 and extended to handle the problem of dynamic clustering

of gene expression data.

An earlier work [Wu and Gardarin, 2001] addresses the problem of gradual clustering by

treating features sequentially in the clustering algorithm. Their algorithm, based on DB-

SCAN, reduces the number of distance calculations by using the triangle inequality. First, it

stores the distances between a representative object and objects in n-dimensional space, then

further use them to avoid distance calculations in (n+m)-dimensional space. Experimental

evaluations confirm the efficiency of their approach.

Secondly, a clustering algorithm is considered dynamic if it performs an adaptation of

the clustering. In [Su et al., 2009] is presented an incremental clustering algorithm which

dynamically changes the radius threshold value and scanns the dataset only once according

to the memory capacity. Experimental evaluations performed on mushroom dataset illustrate

the effectiveness of the method.

In [Bagherjeiran et al., 2005] is introduced an adaptive clustering model which uses exter-

nal feedback to improve cluster quality. Execution time is speeded up by using past experience

in an adaptive environment, in which the reward values of successive clusterings are learned

through Q-learning.

[Davidson et al., 2007] presents an efficient approach for incremental constrained cluster-

ing, that addresses the situation when the constraints are incrementally given. An efficiently

update of the clustering is performed, in order to verify the new and the old constraints,
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instead of re-partitioning the entire data set.

1.3 Clustering of gene expression data

Nowadays, microarray technology and the more modern next-generation sequencing tech-

nology allow the collection of veru large genetic data in the form of gene expression. These

new technologies offer the possibility to measure the expression levels, or the activity of thou-

sands of genes belonging to cells from different organisms, as the cells are exposed to different

environmental conditions. The amount, time or location of expression of a certain gene are

important characteristics to be determined, as they have a great impact on the well function-

ing of cells or of an organism, on a broader scale. One of the most notorious procedures used

to analyse the gene expression data obtained from microarray or nextgeneration sequencing

experiments is clustering [Stekel, 2006].

A great number of algorithms have been proposed for clustering gene expression data

sets that are not subject to change. Among these, we mention approaches based on the

k-means [Bagirov and Mardaneh, 2006] or the fuzzy k-means algorithms [Arima et al., 2003],

on artificial neural networks [Yuhui et al., 2002] or methods using self organizing maps in

conjunction with hierarchical clustering [Herrero and Dopazo, 2002], with k-means clustering

[Yano and Kotani, 2003] or with particle swarm optimisation [Xiao et al., 2003].

Concerning clustering of dynamic gene expression data sets, to our knowledge, there are

no approaches in the literature that deal with the dynamic clustering problem in the context

when new expression levels are added to the existing genes. Although, as mentioned, no

techniques exist that cluster gene expression data containing instances with an increasing

number of features, there are a series of incremental clustering methods designed to work for

data sets in which the number of instances may increase over time. We will present in the

following some of these incremental approaches, as well as other studies that use dynamic or

incremental clustering methods.

Sarmah and Bhattacharyya [Sarmah and Bhattacharyya, 2010] present a density based

approach technique for clustering gene expression data, which can also be applied for in-

cremental data. Their algorithm, GenClus [Sarmah and Bhattacharyya, 2010], obtains a

hierarchical cluster solution and has as an advantage the fact that it does not require the

number of clusters as input. InGenClus, the incremental version of GenClus, uses the result

offered by GenClus and is able to update it when new genes are added to the data set, there-

fore decreasing the computational time. The algorithms are evaluated using real-life data

sets and the reported results prove a good performance.

In [Das et al., 2009a] the authors propose an incremental clustering algorithm for gene

expression data - incDGC, based on a clustering algorithm they had previously introduced.

The main idea is that when a new gene is introduced into the data set, the current clustering

should only be affected in the neighborhood of this gene. This algorithm does not need

as input the number of clusters and it helps avoiding performing the clustering each time
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the data set is updated. The algorithm was evaluated on three data sets and it proved to

outperform other clustering algorithm, like as k-means or hierarchical clustering.

Lu et al. [Lu et al., 2004] introduce an Incremental Genetic K-means Algorithm (IGKA),

which computes an objective value that the authors define and clusters centroids incremen-

tally under the condition that the mutation probability from the genetic algorithm part is

small, which leads to high costs of centroid calculation.

Bar-Joseph et al. present in [Bar-Joseph et al., 2002] a clustering algorithm for time series

gene expression data that performs the clustering on continuous curve representations of the

data, obtained using statistical spline estimation.

In [Das et al., 2009b] the authors present a clustering method that uses a dynamically

computed threshold value to compute the membership of an object to a cluster.

In [Das et al., 2011] is presented a regulation based clustering approach, PatternClus [Das

et al., 2011], for clustering gene expression data. An incremental version of PatternClus,

in which clusters are incrementally identified in the context of a continuously increasing

database, was also introduced. The proposed algorithm obtained better z-score values, when

compared to k-means and hierarchical clustering.

An and Doerge [An and Doerge, 2012] introduce a novel dynamic clustering approach

that deals with the time dependent nature of the genes so that the genes in the same cluster

may have different starting and ending points or different time durations.



Chapter 2

New approaches for dynamic

clustering of gene expression data

In this chapter, we address the problem of dynamic clustering of gene expression data and

we propose three dynamic clustering algorithms, which can handle newly collected data, by

starting from a previously obtained partition, without the need to re-run the algorithm from

the beginning. In the same context of dynamic data, an algorithm for adaptive relational

association rule mining of gene expression is also proposed [Czibula et al., 2015a]. The models

introduced in this chapter are original, and were introduced in [Bocicor et al., 2014, Sirbu,

2014, Sirbu and Bocicor, 2013, Sirbu et al., 2014a, Czibula et al., 2015a].

The chapter is organized as follows. Section 2.1 defines the problem of dynamic clustering

of gene expression data and its relevance, as well as some practical applications of solutions

to this problem. Section 2.2 begins by presenting some theoretical considerations regarding

our proposed approaches, based on two techniques that were proposed in the literature which

handle the problem of clustering a set of objects, when the attribute set characterizing these

objects increases [Serban and Campan, 2005, Serban and Campan, 2006] and continues in

with an heuristic that we introduced foridentifying identify the optimal number of clusters in

a gene expression data set, along with our dynamic approaches for clustering gene expression

data.

Further, the proposed algorithms are experimentally tested on a real life gene expression

data set and the results are reported in Section 2.3 [Bocicor et al., 2014, Sirbu, 2014, Sirbu

and Bocicor, 2013, Sirbu et al., 2014a]. A discussion of these results, as well as comparisons

of our algorithms with other techniques from the literature are given in Section 2.4 [Bocicor

et al., 2014, Sirbu, 2014, Sirbu and Bocicor, 2013, Sirbu et al., 2014a]. In the same section we

introduce an adaptive model for association rule mining of gene expression, which is able to

adapt previously obtained rules when feature-set is extended, without performing re-mining

from scratch [Czibula et al., 2015a]. Finally, Section 2.5 outlines the conclusions of this

chapter and presents possible further work.

The original contributions of this chapter are the following:

27



CHAPTER 2. NEW APPROACHES FOR GENE EXPRESSION CLUSTERING 28

• A dynamic core based clustering algorithm, which can handle newly collected gene

expression data by starting from a previously obtained partition, without the need to

re-run the algorithm from the beginning (Subsection 2.2.3.1.1) [Bocicor et al., 2014].

– An heuristic to compute the optimal number of clusters in a gene expression data

set (Subsection 2.2.2) [Bocicor et al., 2014].

– Experimental evaluations of the dynamic core based clustering algorithm on a real

life gene expression data set, analysis of the results and comparisons with results

obtained by other dynamic approaches in the literature (Subsections 2.3.3.1 and

2.4.2) [Bocicor et al., 2014].

• A dynamic algorithm for hierarchical clustering of gene expression data, which can

handle the newly arrived data by adapting a previously obtained partition, without the

need of re-running the algorithm from scratch (Subsection 2.2.3.2.1) [Sirbu and Bocicor,

2013]

– Experimental evaluations of the algorithm for hierarchical clustering on a real

life gene expression data set, analysis of the results and comparisons with results

obtained by our other dynamic approaches (Subsections 2.3.3.2 and 2.4.2) [Sirbu

and Bocicor, 2013].

• A dynamic algorithm for fuzzy clustering of gene expression data, which can handle

the newly arrived data by adapting a previously obtained partition, without the need

of re-running the algorithm from scratch (Subsection 2.2.3.3.1) [Sirbu et al., 2014a]

– Experimental evaluations of the algorithm for fuzzy clustering on a real life gene ex-

pression data set, analysis of the results and comparisons with results obtained by

our other dynamic approaches(Subsections 2.3.3.3 and 2.4.2) [Sirbu et al., 2014a].

• A dynamic algorithm for relational association rule mining of gene expression data,

which can handle the newly arrived data by adapting previously obtained rules, without

the need of re-running the mining algorithm from scratch (Subsection 2.4.3.2)[Czibula

et al., 2015a]

– Experimental evaluations of the algorithm for relational association rule mining on

a real life gene expression data set and analysis of the results (Subsection 2.4.3.3)

[Czibula et al., 2015a].

2.1 Problem statement and relevance

In this section we aim at addressing the problem of dynamic clustering of gene expression

data and its relevance, as well as some practical applications of solutions to this problem.



CHAPTER 2. NEW APPROACHES FOR GENE EXPRESSION CLUSTERING 29

2.1.1 Problem definition and motivation

The emergence of microarray technology, that allows measuring the levels of expression

of thousands of genes conducted to an exponential increase in the quantity of gene expression

data. Still, all this data would be useless unless relevant biological information was extracted

from it, therefore thorough exploratory analysis are usually required and performed. One of

the mostly used techniques for this analysis and, most frequently, the first step, is clustering.

Clustering refers to creating a set of groups (clusters) and assigning each instance of a

data set to one of these groups, according to a certain similarity measure. In what concerns

gene clustering, the goal is twofold: firstly, by dividing the huge amount of gene expression

data into clusters, this data becomes easier to process and analyse; secondly, but not less

important, it is assumed that genes having similar expression patterns in a period of time

(during the experiments) are likely to have similar biological functions and therefore clustering

can also be considered an initial stage in the process of determining gene functions.

Gene expression data is usually collected in order to investigate the progress of different

biological processes, as they evolve under different conditions and over time. Since biological

processes are dynamic and time varying, they are best described by time series gene expression

data [An and Doerge, 2012]. A time series data set consists of data obtained from biological

experiments: samples of cells or tissues are prelevated from the same organism at different

time points, through the evolution of the biological process. Therefore, for each of the targeted

genes, the level of expression is measured at several distinct points in time. The data set will

then be composed of thousands of genes (instances), each gene being characterized by a set

of attributes (features): its expression levels (which can be quantified as real numbers) at

different points in time.

However, there are some processes worth studying that may take days, or even months

(e.g. diseases that progress over time), as well as experiments that are conducted over longer

durations of time. For such cases, researchers must either wait until the experiment finishes

and the expression levels of the genes are available at all moments of time, or analyse data

gradually, as the experiment progresses. Gene expression clustering might be performed

during the evolution of the experiment, at intermediate time steps, when genes would be

characterized by only a subset of features. The main disadvantage is that as the experiments

advance and new data becomes available (expression levels of the targeted genes for new

points in time), the clustering process must once again start from scratch, which requires

considerable time (especially as the number of the genes in such data sets is extremely high),

in the end leading to a slower and more inefficient processing of the data.

2.1.2 Practical applications

Nowadays, in this postgenomic era, one of the greatest concerns of scientists is to deeply

understand the functioning of organisms. One step towards this understanding is the analysis

of genes and clustering offers one way to achieve this analysis.
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Among the most important practical applications of gene clustering is the identification

of gene functions. Genes with similar expression profiles will be clustered together, therefore

facilitating the prediction of the functions of unknown genes or the identification of gene sets

that are regulated by the same mechanism [Luan and Li, 2003]. The information offered by

gene clustering is often used for genome annotation [Pejaver et al., 2011]. In practice, gene

clustering is used for different applications. Among these, we mention the study of molecular

mechanisms of plant-pathogen interaction to the goal of determining those genes in certain

plants or vegetables that are resistant to different pathogens [Lopez-Kleine et al., 2013].

Further, another application is in the pharmaceutical industry, where biosynthetic gene clus-

ters identified in microbial genomes could lead to the development of novel pharmaceuticals

[Frasch et al., 2013].

Biological systems are inherently dynamic, therefore the gene information is extracted

at different moments in time. Clustering can be used for analysis at any point and thus

the conclusions extracted from the obtained partitions can be practically used as previously

mentioned. The contribution of our algorithm is that it can obtain partitions as new data

is gathered, using the partitions obtained in a former phase of data collection and without

having to re-apply the clustering algorithm from the beginning. The final goal of the method

is to cluster genes. The clustering result is useful for analyzing gene expression data and to

apply this analysis for any of the practical purposes described above.

2.2 Methodology

2.2.1 Theoretical considerations

In the following we introduce our approaches for dynamic clustering of gene expression

data. Our proposals start from the ideas of incremental clustering previously introduced in

[Serban and Campan, 2005, Serban and Campan, 2006] that are extended in the following to

handle the problem of dynamic clustering of gene expression data.

We first introduce some theoretical considerations, common for all methods that we pro-

pose.

We consider that X = {G1, G2, . . . , Gn} is the set of genes to be classified. A gene is mea-

sured m times and is characterized by an m-dimensional vector Gi = (Gi1, . . . , Gim), Gik ∈
<, 1 ≤ i ≤ n, 1 ≤ k ≤ m. An element Gik from the vector characterizing the gene Gi

represents the expression level of gene Gi at time point k.

Let {K1,K2, . . . ,Kp} be the cluster set identified in X by using the k-means, hierarchical

or fuzzy c-means algorithms. Each cluster is a set of genes, Kj = {Gj1, G
j
2, . . . , G

j
nj},

1 ≤ j ≤ p. The mean, also called centroid, of the cluster Kj is denoted by fj , where

fj =


nj∑
k=1

Gj
k1

nj
, . . . ,

nj∑
k=1

Gj
km

nj

.

The similarity measures or distances widely used for gene expression data are the Eu-
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clidean distance and the Pearson correlation [Kim et al., 2007]. The measure we use for

discriminating genes is the Euclidean distance: d(Gi, Gj) = dE(Gi, Gj) =

√
m∑
l=1

(Gil −Gjl)2.

We have chosen this type of distance for the present study because it takes into account the

magnitude of the changes in gene expression [Kim et al., 2007].

The set of attributes consisting of the m expression levels of the genes coming from

m consequent measurements is then extended with s (s ≥ 1) new features, coming from

new measurements, numbered as (m + 1), . . . , (m + s). The genes’ extended vectors are

G′i = (Gi1, . . . , Gim, Gi,m+1, . . . , Gi,m+s), 1 ≤ i ≤ n.

Our aim is to analyse how the extended genes are grouped into clusters, starting from

the grouping obtained before the attribute set extension. Our goal is to achieve an increased

performance in comparison with the process of partitioning from the beginning.

The main idea is that, when the k-means or fuzzy c-means clustering process is ended,

all genes are closer to the mean of their cluster than to the means of other clusters. In this

way, for any cluster j and any gene Gji ∈ Kj , the inequality 2.1 below holds.

d(Gji , fj) ≤ d(Gji , fr), ∀j, r, 1 ≤ j, r ≤ p, r 6= j. (2.1)

By K ′j is denoted the set composed by the same genes as Kj , after the feature set was

extended, and by f ′j , the centroid of the set K ′j (∀1 ≤ j ≤ p). After the feature set was

increased, it is not certain that the sets K ′j , 1 ≤ j ≤ p form clusters. The newly added features

can change the genes’ placement into clusters, obtained such that the similarity within each

cluster to be maximized and similarity between clusters to be mininimized. Taking into

account that the genes’ features have equal weights (and normal data distribution) it is very

likely that by adding new features to the genes, the old partitioning in clusters is similar

to the actual one. Certainly, the clusters after extending the feature set could be obtained

by applying the clustering algorithm (k-means or HACA or fuzzy c-means) on the set of

extended genes. But, this process can be computationaly costly, that is why we focus on

replacing it with one less expensive, which preserves the accuracy of the obtained results. In

the following, we will refer the sets K ′j as clusters.

2.2.2 Identifying the number of clusters

It is well known that a problem with the k-means and fuzzy c-means algorithms is that

the choice of the initial centroids may lead to the convergence of the squarred error value

to a local minimum, instead of a global one. On the other hand, in HACA, the process of

merging clusters must stop when a certain number of clusters is reached. To identify the

optimal number of clusters in the gene data set, as well as the initial centroids for applying

k-means, or fuzzy c-means algorithm, we propose the heuristic bellow.

For obtaining the number p of clusters in the data set, we are searching for p representative

genes (one in each cluster). This process is an iterative one and is summarized bellow:
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(i) The number p of clusters is initialized with 0.

(ii) The gene with the maximum average distance from all other genes is selected as the

representative gene from the first cluster. The number p of representative genes becomes

1.

(iii) For selecting the next representative gene we reason as in the following. For each gene

that was not previously selected as representative, the average distance (davg) beween

that gene and the representatives (which were already chosen) is computed. The gene

selected as the next representative will be the gene g which maximizes davg and is

greater than a given positive threshold denoted by distMin. In the case when such a

gene is not found, the iterative process of selecting the initial centroids stops, otherwise

p is increased and step (iii) is performed again.

We remark that step (iii) presented above assures that near genes will be placed in the

same cluster, instead of being assigned to different clusters.

2.2.3 Our approaches

2.2.3.1 The Core Based Dynamic Clustering of Gene Expression (CBDCGE)

Approach

The first step of this approach consists of applying the k-means algorithm on the initial

data set, the one in which each gene is characterized by m expression values, at m time points.

We start from the observation that, after the intial k-means clustering process is finished, the

distance between each gene and its cluster mean is smaller than the distance to any other

cluster’s mean. Hence, for any cluster j and any gene Gji ∈ Kj , inequality 2.2 below holds.

d(Gji , fj) ≤ d(Gji , fr), ∀j, r, 1 ≤ j, r ≤ p, r 6= j. (2.2)

Considering the partitioning into clusters obtained on the set of genes before the feature

set extension, our focus is to identify conditions in which an extended gene Gj′i remains

correctly assigned to the cluster K ′j . Therefore, we compare the distance between the gene

Gj′i and the mean of its cluster (f ′j) with the distance to the centroids of the other clusters.

Starting from the approach introduced in [Serban and Campan, 2005] it can be easily

proven that when inequality (2.2) is verified for an extended gene Gj′i and the cluster K ′j , for

each added feature (∀ l ∈ {m+ 1, . . . ,m+ s}), then the gene Gj′i is closer to the centroid f ′j

than to other centroid f ′r (1 ≤ j, r ≤ p, r 6= j).

Gjil ≥

nj∑
k=1

Gjkl

nj
. (2.3)



CHAPTER 2. NEW APPROACHES FOR GENE EXPRESSION CLUSTERING 33

2.2.3.1.1 The CBDCGE algorithm

The CBDCGE algorithm which will be described in the following adapts the idea from

[Serban and Campan, 2005] for the particular problem of dynamic gene expression clustering.

We will use the inequality (2.3) for determining within each cluster K ′j , 1 ≤ j ≤ p, the

genes that are very likely to remain grouped together in their cluster, instead of moving to

another group after extending the feature sete. These objects are considered to represent the

core of their cluster. The idea of our approach is to compute, for each cluster Kj , its core,

denoted by Corej .

Let us denote by StrongCorej = {Gj′i |G
j′
i ∈ K ′j , G

j′
i satisfies the inequality (2.3) ∀ l ∈

{m + 1, . . . ,m + s}}. We denote by WeakCorej the set of genes in K ′j verifying inequality

(2.3) for at least the average number of features (computed from all genes belonging to K ′j)

for which (2.3) holds.

For an added feature l (m + 1 ≤ l ≤ m + s), and a cluster K ′j , the gene which has

the maximum value for the feature l among all genes from K ′j verifies inequality (2.3). It

is possible that cluster K ′j does not contain any gene which satisfies inequality (2.3) for all

added features m+1, . . . ,m+s. But if such genes exist, these genes are nearer to the centroid

f ′j than to the other centroids f ′r, ∀1 ≤ r ≤ p, r 6= j) and they will form the StrongCorej . In

this case, Corej will be chosen as the nucleus StrongCorej of the j-th cluster in the CBDCGE

algorithm. In the case when StrongCorej is the empty set, then we will consider as nucleus

for the j-th cluster the most stable genes from K ′j (those genes that satisfy inequality (2.3)

for as many features as possible). These genes will form the set WeakCorej .

The cluster cores, selected as described above, will represent the nuclei in the dynamic

clustering process. If the clusters remain unchanged, then all genes from Corej will certainly

remain in the same cluster. This will not be the case for all core genes, but for most of them.

The Core Based Dynamic Clustering of Gene Expression (CBDCGE) algorithm will be

presented below.

The algorithm begins with computing the cores for the old clusters. These cores are

considered as the initial clusters in the adaptive process. Then, the CBDCGE performs the

same steps as the k-means algorithm. We have to mention that if at a certain iteration a

cluster from the partition becomes empty, it is removed from the partition.

2.2.3.2 The Dynamic Hierarchical Clustering of Gene Expression (DHCGE)

Approach

This approach is based on the hierarchical aglommerative clustering algorithm (HACA)

and on the idea described in [Serban and Campan, 2006]. Therefore, we begin from the

partitioning into clusters of the data set with m expression values characterizing each gene

obtained by HACA. Then, we analyse the conditions necessary for the extended gene Gj′i

to be well located in the cluster K ′j . Thus, we compute the distances between Gj′i and the

means of its old and new clusters (fj and f ′j) and we compare them with the distances to
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Algorithm 1 The CBDCGE algoritm [Bocicor et al., 2014], [Serban and Campan, 2005]

Algorithm Core Based Dynamic Clustering of Gene Expression is

Input: - X = {G1, . . . , Gn} the m-dimensional genes

- X ′ = {G′
1, . . . , G

′
n} the (m+s)-dimensional extended genes

- the distance metric d between the genes,

- K = {K1, . . . ,Kp} the partitioning of X,

- noMaxIter a gived maximum number of iterations

Output: -K ′ = {K ′
1, . . . ,K

′
p} the new partition of genes in X ′

Begin

For each cluster Kj ∈ K

@ compute core Corej as the core of clusterKj

Compute the centroid f ′j of K ′
j

EndFor

While (K ′ is changed between two consecutive iterations) and

(the number of iterations is less than noMaxIter ) do

For each cluster K ′
j do

K ′
j := {G′

i | d(G′
i, f

′
j) ≤ d(G′

i, f
′
r), ∀r , 1 ≤ r ≤ p, 1 ≤ i ≤ n}

If K ′
j = ∅ then

@ remove K ′
j from the partition K ′

EndIf

EndFor

For each cluster K ′
j do

Compute the centroid f ′j of K ′
j

EndFor

EndWhile

End.
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the old and new means means of the other clusters K ′r (∀1 ≤ r ≤ p, r 6= j). The genes from

the j-th cluster that are verifying the conditions from (2.3) are considered to be sufficiently

close to each other and will remain in the same cluster. The rest of the genes from cluster

Kj will be distributed each one in a singleton. This way, k′ clusters will be obtained. For

getting to the desired number k of clusters, the clusters are merged as in the classical HACA

algorithm, but in a smaller number of steps, as we do not start from singletons in most of

the cases. The “linkage metric” used in our experiments is “average-link”.

We identify conditions necessary for an extended gene Gj′i to be “correctly” located in

K ′j , considering Kj as the cluster which contains Gji by applying HACA. These conditions

are a particularization of those from [Serban and Campan, 2006] for gene expression and

illustrate when a gene that is placed in a particular cluster remains closer to its cluster than

to any other clusters after its feature extension. For the mathematical representation of these

conditions, as well as for the general theorem, we refer the reader to [Serban and Campan,

2006].

The first condition requires a gene Gi ∈ Kj to be closer to its cluster’s centroid than to

any other centroid after the initial clustering process is over. This will not be fulfilled for

every genes against the clusters formed by HACA. But, considering the fact that HACA uses

the average-link linkage metric, there is a considerable chance that a lot of genes will comply

to this condition. The second condition refers to the features that are added to each gene

and expresses a mathematical inequality that has to be satisfied by the new components

(m + 1), . . . , (m + s) of the genes. All genes Gi ∈ Kj which, after the initial hierarchical

clustering process, are closer to their cluster’s centroid than other centroids and whose exten-

sions fulfill the requirements expressed in inequality 2.3 are similar enough to each other and

sufficiently dissimilar to the genes from other clusters. From this reason, after the feature set

was extended, they can be grouped together in the same cluster.

2.2.3.2.1 The DHCGE algorithm

Our DHCGE algorithm starts from the partition obtained by HACA. Further, our method

is based on identifying cores [Serban and Campan, 2006] inside existing clusters. These cores

are composed of those genes that are very likely to remain in the same group, after the new

attributes are added to all instances of the data set.

As in [Serban and Campan, 2006], we denote by StrongCorej the set of genes from the

cluster K ′j that fulfill both conditions expressed in inequalities 2.2 and 2.3 , therefore they

are closer to the mean of their cluster than to any other mean, after the addition of the

new attributes and implicitly, they are correctly placed in their cluster. Similar to [Serban

and Campan, 2006], we denote by WeakCorej the set of genes that fulfill the following

requirements: (i) they were closer to the mean of their cluster than to any other mean,

before the extension; (ii) they satisfy the second condition expressed in inequality 2.3 after

the extension, for at least the average number of clusters (computed for all genes belonging
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to K ′j) for which all the genes in K ′j satisfy this second condition.

If, for cluster K ′j , the set StrongCorej is not empty, then it will be considered as the core

Corej for cluster K ′j . Else, for Corej not to be empty, the most stable genes between all

genes in K ′j will be taken as seed for cluster j, i.e. the genes from the set WeakCorej . The

genes in the WeakCorej might or might not be as stable as those in the StrongCorej . If the

two conditions from 2.2 and 2.3 are fulfilled, then it is sure that the genes are closer to the

center of the cluster they already belong to than to any other cluster center, meaning that

the conditions are sufficient ; but they are not also necessary. Thus, there is the possibility

that in also in WeakCorej there are genes being closer to the center of the cluster K ′j than

to any other.

The DHCGE algorithm begins by identifying the cores of the clusters obtained by applying

HACA on the initial data set. Then, when the feature set is extended, the algorithm begins

the clustering process starting from these cores and continuing as the traditional HACA.

The advantage over applying HACA from scratch is that DHCGE does not start again from

clusters composed of one gene, therefore the clustering process is accelerated. We mention

that the linkage metric we used to group two genes together in the hierarchical process, we

used the average link metric. For two clusters Ki and Kj , the distance given by the average

link metric is expressed by the following equation:

d(Ki,Kj) =

∑
a∈Ki

∑
b∈Kj

d(a, b)

| Ki | × | Kj |
. (2.4)

The Dynamic Hierarchical Clustering of Gene Expression algorithm is given in Algorithm

1. When the reached number of clusters is the formerly determined using the heuristic

described in Section 2.2.2, then the algorithm stops.

2.2.3.3 The Fuzzy Dynamic Clustering of Gene Expression (FDCGE) Approach

The first step of this approach consists of applying fuzzy c-means on the initial data set,

the one in which each gene is characterized by m expression values, at m time points. It is

known that, when the fuzzy c-means clustering is completed, all genes are nearer to the mean

of their cluster that to other means.

Considering the partitioning into clusters obtained on the set of genes before the feature

set extension, our focus is to identify conditions in which an extended gene Gj′i is correctly

located its cluster K ′j . Starting from the approach introduced in [Serban and Campan, 2005]

it can be easily proven that when inequality (2.5) is verified for an extended gene Gj′i and its

cluster K ′j , for each added feature (∀ l ∈ {m+ 1, . . . ,m+ s}), then the gene Gj′i is nearer to

its mean f ′j of cluster K ′j than to the means f ′r,∀1 ≤ j, r ≤ p, r 6= j.

Gjil ≥

nj∑
k=1

Gjkl

nj
. (2.5)
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Algorithm 2 The DHCGE algoritm [Sirbu and Bocicor, 2013], [Serban and Campan, 2006]
Algorithm Dynamic Hierarchical Clustering of Gene Expression is

Input:

- X = {G1, . . . , Gn} the m-dimensional genes

- X ′ = {G′
1, . . . , G

′
n} the (m+s)-dimensional extended genes

- the metric dE between the multi-dimensional genes

- K = {K1, . . . ,Kp} the initial grouping of genes

Output:

- K ′ = {K ′
1, . . . ,K

′
p}, the partition of extended genes from X ′

Begin

@heuristically compute the number nc of clusters

For each cluster Kj ∈ K do

@ compute core Corej as the core of clusterKj

@ compute OCorej ← Kj \ Corej
EndFor

K ′ ← ∅
For i = 1 to nc do

If Corei is not empty then

K ′ ← K ′ ∪ {Corei}
EndIf

For each G ∈ OCorei do

K ′ ← K ′ ∪ {G}
EndFor

EndFor

While | K ′ |> p do

@ select from K ′ two clusters C1 and C2 having the minimum distance dE(C1, C2)

@ merge clusters C1 and C2 into a cluster C

@ remove from the partition K ′ the clusters C1 and C2 and add the cluster C

EndWhile

End.
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2.2.3.3.1 The FDCGE algorithm

We will use the inequality (2.5) in order to determine inside each cluster the genes that

are likely to remain in their cluster, instead of moving into other cluster after extending the

feature set. These genes form the nucleus of their cluster. The idea of our approach is to

compute, for each cluster Kj , its nucleus, denoted by Nucleusj .

Let us denote by StrongNucleusj = {Gj′i |G
j′
i ∈ K ′j , G

j′
i satisfies the inequality (2.5) ∀ l ∈

{m+1 . . . ,m+s}}. We denote by WeakNucleusj the set of genes in K ′j satisfying inequality

(2.5) for at least the average number of features (computed from all genes belonging to K ′j)

for which (2.5) holds. The idea behind computing, for each cluster K ′j , the StrongNucleusj ,

WeakNucleusj is the same as for the algorithm CBDCGE, described in Section 2.2.3.1.

The cluster nuclei selected as mentioned above, will be considered as starting point in

the adaptive fuzzy clustering method. If the clusters remain unchanged, then all genes from

Nucleusj will certainly remain the same cluster. This will not be the case for all genes in

the nuclei, but for most of them.

The algorithm begins by computing the clusters’ nuclei, which will be further used as

initial clusters in the iterative process. Then, the FDCGE performs the same steps as the

classical fuzzy c-means method. We have to mention that if at a certain iteration a cluster

from the partition becomes empty, it is removed from the partition.

2.3 Experimental evaluation

In this section we aim to experimentally evaluate our dynamic clustering algorithms on

gene expression data. The data set used in our experiments, the evaluation measures, as well

as the obtained results are presented in the following sections. The results are original and

were introduced in [Bocicor et al., 2014, Sirbu, 2014, Sirbu and Bocicor, 2013, Sirbu et al.,

2014a]

2.3.1 Gene expression dataset

For the computational experiments performs for evaluating the performance of our meth-

ods a real-life data set was used. It is taken from [DeRisi et al., 1997] and chosen for the

following reasons:

• It is publicly available.

• It is a time series gene expression data set.

• It has been experimented on by several works approaching the clustering problem, thus

giving us the possibility to provide a comparison of our results with existing ones.

Microarray technology was used by the authors of [DeRisi et al., 1997] to measure the

levels of expression of 6400 genes belonging to the organism Saccharomyces cerevisiae, during
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its metabolic modification from fermentation to respiration. The expression levels for the

enes were measured at seven time points during the process: 0, 9, 11.5, 13.5, 15.5, 18.5 and

20.5 hours.

Before proceeding with the evaluation of the dynamic clustering algorithm, a pre-processing

step must be applied on this data. First, we exclude the genes with missing expression levels

and then the genes that are not expressed or whose expression values do not change are

filtered out. To this purpose, we used the MATLAB Bionformatics Toolbox [Henson and

Cetto, 2005], which offers functions that allow us to remove genes having small variance over

time or having very low absolute expression values, as well as genes with low entropy profiles.

Following this pre-processing, the data set is reduced to a total number of 614 genes.

2.3.2 Evaluation measures

We present in the following a set of evaluation measures that will be further considered

for computing the quality of the partitions provided by the proposed clustering algorithms.

The measures (IntraD, Dunn and Dist) evaluate a partition from a clustering perspective

and the (Z-score) evaluates a partition from a biological point of view.

We consider a partition K = {K1, . . . ,Kp}, where each cluster consists of a set of genes.

A. IntraD - Intra-cluster distance of a partition

The IntraD(K) represents the intra-cluster distance of K and is defined as:

IntraD(K) =

p∑
j=1

nj∑
i=1

d2(Gji , fj)

where Kj is a set of genes {Gj1, G
j
2, . . . , G

j
nj} and fj is the center of Kj . Better partitions

(from a clustering perspective) are reflected in small IntraD values .

B. Dunn - Dunn Index

The Dunn index [Pakhira et al., 2004] of a partition K is defined as:

Dunn(K) =
dmin
dmax

where dmin represents the smallest distance between two genes from different clusters and

dmax is the largest distance among two genes from the same cluster. The Dunn index takes

values from the interval [0,∞]. The greater the value of this index, the better a partition is,

therefore the Dunn index should be maximized.

C. Dist - Overall distance of a partition

The overall distance of K, expressed by Dist(K), is computed as:

Dist(K) =

p∑
j=1

dj
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where dj is computed as the sum of distances between all pair of genes from Kj , i.e

dj =
∑

G1,G2∈Kj

d(G1, G2)

Better partitions (from a clustering perspective) are reflected in small Dist values .

D. Z-score.

Z-score [Gibbons and Roth, 2002] is a figure of merit, indicating the relationship between

a clustering result and the functional annotation of the used genes, within the gene ontology

created by the Gene Ontology Consortium [Ashburner et al., 2000]. A higher value of the

z-score shows that the obtained clusters are more significant from a biological perspective

and therefore a more accurate clustering. To compute the z-score for a partition we used

the ClusterJudge software, which implements the algorithm described in [Gibbons and Roth,

2002].

2.3.3 Results

Considering an initial number of features (denoted by m) characterizing the genes from

the considered data set (Subsection 2.3.1), and different values for the threshold distMin

used for determining the initial centroids in the k-means and fuzzy c-means processes (see

Subsection 2.2.2), the experiments are conducted as follows:

1. The initial number nc of clusters and the starting means are identified in data set using

the heuristic presented in Subsection 2.2.2. The k-means, HACA, respectively fuzzy c-

means algorithm is applied on the data set consisting of m-dimensional genes, starting

from the identified centroids and a partition K is provided. In our implementation if

at a certain iteration in the k-means algorithm a cluster becomes empty, it is removed

from the partition.

2. The set of features is now increased with s new features, denoted as (m+1), . . . , (m+s).

The CBDCGE, DHCGE, respectively FDCGE adaptive algorithm (Subsection 2.2.3.1.1,

2.2.3.2.1, 2.2.3.3.1) is now applied, by adapting the partition K and considering the

instances extended with the newly added s features.

3. The partition into clusters provided by CBDCGE algorithm (denoted by Kalgname) is

compared with the one provided by the k −means algorithm applied from scratch on

the m+s-dimensional instances (denoted by K′). We mention that the initial centroids

considered in the partitional clustering process are the centroids identified at step 1.

The comparison of the obtained partitions is made considering the evaluation measures

presented in Subsection 2.3.2 (considering the clustering and biological perspectives)

and also the number of iterations performed by the clustering algorithms. Excepting
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the first iteration, which involves the computation of cores, our dynamic algorithms

perform the same operations as the tradional ones in the iterations.

2.3.3.1 CBDCGE algorithm

For testing the performance of the algorithm we conducted several experiments, in each

one we start with a different number of features an then we add the rest of the attributes

(up to seven which is the total number of attributes). The gene expression levels (features)

are in chronological order.

Since k-means based clustering methods are very sensitive to the selection of initial cen-

troids, it is very likely that the initial centroids may have an impact on the accuracy of

the obtained results. Thus, we performed a comparative analysis on different methods for

centroids’ identification within the CBDCGE algorithm, as follows:

Heuristic 1

The first heuristic method for selecting centroids is the one described in Subsection 2.2.2.

Heuristic 2

The second heuristic method for determining the appropriate number p of clusters, intro-

duced in [Sirbu, 2014], is based on selecting p representative genes, as following:

(i) p is initially set to 0.

(ii) The gene with the maximum average distance from all other genes is selected as the

representative gene from the first cluster. The number p of representative genes becomes

1.

(iii) For selecting the next representative gene we apply the following reasoning. For each

gene that was not previously selected as representative, the minimum distance (dmin)

beween that gene and the representatives (which were already chosen) is computed. The

gene selected as the next representative will be the gene g which maximizes dmin and

is greater than a given threshold (distMin). In the case when such a gene is not found,

the iterative process of selecting the initial centroids stops, otherwise p is increased and

step (iii) is performed again.

Actually, the difference between the two heuristics is that the first one uses the average

distance (davg), while the second one the minimum distance (dmin).

Random

The third way of choosing centroids is a random selection of p centroids, p being the

number of clusters heuristically identified as above.
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No. No. of No.of IntraD Dunn Dist Z-score

clusters iterations

1 distMin = 3.231 nc = 63

K′ 62 21 411.7653 0.1345 13604.5546 5.4240

KCBDCGE 49 12 421.0210 0.1632 11319.7105 7.1500

2 distMin = 3.233 nc = 62

K′ 61 21 417.6670 0.1472 15449.8604 5.2920

KCBDCGE 49 25 417.4004 0.1945 11119.4377 8.0740

3 distMin = 3.26 nc = 61

K′ 60 19 423.3145 0.1356 15811.1460 5.6460

KCBDCGE 49 20 423.1767 0.1957 11976.0106 7.3780

4 distMin = 3.44 nc = 47

K′ 47 24 440.9141 0.1586 17209.7174 6.2650

KCBDCGE 43 23 437.4579 0.18087 16150.0690 7.3010

5 distMin = 3.45 nc = 46

K′ 46 26 444.9301 0.1586 18100.0294 6.0810

KCBDCGE 43 20 433.2875 0.1923 15451.7017 8.0780

6 distMin = 3.47 nc = 44

K′ 44 21 448.1514 0.1586 17251.2868 7.8660

KCBDCGE 43 14 445.0609 0.1848 17734.6491 9.2680

7 distMin = 3.51 nc = 42

K′ 42 23 451.5669 0.1655 19597.3680 7.7190

KCBDCGE 40 15 436.4608 0.1664 15665.8960 10.5900

Table 2.1: Results for the first experiment.

2.3.3.1.1 First experiment

In our first experiment, we are initially considering 5 attributes (i.e m = 5) and after-

wards the set of features is extended with 2 attributes (i.e s = 2). Table 2.1 presents the

results obtained in our experiment. Considering different values for distMin we indicate the

initial number nc of clusters (heuristically determined as indicated above), and for the par-

titions KCBDCGE and K′ we indicate: the number of clusters in the partition, the number of

iterations performed by the algorithm and the values of the evaluation measures (indicated

in Subsection 2.3.2). We mention that the values reported for z-score are averaged over ten

repeated experiments, for each value of distMin.

Analyzing the results indicated in Table 2.1, we observe the following:

1. Excepting the second case and third case (lines 2 and 3 in Table 2.1) CBDCGE performs

less iterations than performs k-means applied from scratch.
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2. The partitions obtained by the CBDCGE method are better (considering all the eval-

uation measures presented in Subsection 2.3.2) than the partitions obtained applying

k-means from scratch. In all the cases the Dunn index computed on the results ob-

tained by the CBDCGE is greater than the one obtained by applying k-means from

scratch, which denotes more compact and well separated clusters. The same holds for

the z-score measure, implying that the partitions obtained by CBDCGE are biologically

more relevant. In what concerns the IntraD and Dist measures, they also indicate bet-

ter partitions, exception being only two cases when either one or the other are greater

for the k-means algorithm applied from scratch (line 1 - for IntraD and line 6 for Dist).

Considering the previous analysis, we can conclude that for the first experiment the parti-

tions obtained adaptively (applying CBDCGE method) are better than the ones obtained by

applying k-means from scratch. Also, the number of iterations performed by the clustering

algorithm (excepting one case) is smaller for the CBDCGE method.

2.3.3.1.2 Second experiment

In the second experiment we have performed the evaluation of the CBDCGE method, by

initially considering 6 attributes (i.e m = 6) and afterwards extending the set of features with

1 attribute (i.e s = 1). Table 2.2 presents the results obtained in this experiment. Consid-

ering different values for distMin we indicate the initial number nc of clusters (heuristically

determined determined as indicated in Subsection 2.2.2) and for the partitions KCBDCGE and

K′ we indicate: the number of clusters, iterations performed and the values of the evaluation

measures (indicated in Subsection 2.3.2). As in the case of the first experiment, the values

reported for z-score are averaged over ten repeated experiments, for each value of distMin.

Analyzing the results indicated in Table 2.2 we observe the following:

1. Excepting the first case (line 1 in Table 2.2) and the fourth case (line 4 in Table 2.2)

CBDCGE method performs a smaller number of iterations than k-means applied from

scratch.

2. The partitions obtained by the CBDCGE method are better (considering all the eval-

uation measure presented in Subsection 2.3.2) than the partitions obtained applying

k-means from scratch. Excepting the second case (line 4 in Table 2.2) the Dunn index

computed on the results obtained by the CBDCGE is greater than the one obtained

by applying k-means from scratch. The z-score is always greater and both the IntraD

and Dist measures are lower, all these indicating a better clustering result obtained by

CBDCGE.

Considering the previous analysis, we can conclude that for the second experiment the

partitions obtained adaptively (applying CBDCGE method) are better than the ones ob-

tained by applying k-means from scratch. Also, the number of iterations performed by the

clustering algorithm (excepting two cases) is smaller for the CBDCGE method.
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No. No. of No.of IntraD Dunn Dist Z-score

clusters iterations

1 distMin = 4.38 nc = 63

K′ 62 21 411.7653 0.1345 13604.5546 5.6500

KCBDCGE 54 22 401.7995 0.1763 9276.8868 8.5700

2 distMin = 4.401 nc = 62

K′ 61 21 417.6670 0.1472 15449.8604 5.5350

KCBDCGE 53 18 406.4398 0.1525 10003.3949 7.5120

3 distMin = 4.6 nc = 45

K′ 45 26 446.8450 0.1586 18359.2485 6.5640

KCBDCGE 40 12 437.5520 0.1896 14658.3710 9.6970

4 distMin = 4.66 nc = 42

K′ 42 23 451.5669 0.1655 18757.3680 7.8520

KCBDCGE 40 23 438.2164 0.1615 14074.2680 8.2860

Table 2.2: Results for the second experiment.

2.3.3.1.3 Third experiment

In order to decide the most appropriate heuristic for selecting the initial centroids in the

adaptive clustering process, we conducted two experiments. In each one we started from a

different number of initial features and then we added the rest of the attributes.

In both experiments the centroids were identified in three ways: using Heuristic 1, Heuris-

tic 2 and randomly. For the randomly chosen centroids, an average obtained by five conse-

quent runs was provided.

Experiment 1

In this experiment, the initial data set contains m = 5 features and the remaining s = 2

features are added subsequently. The obtained results are presented in Table 2.3 and Figures

2.1a-2.3a.

From these results we can conclude the following:

• The minimum number of iterations and the smallest Dist value are achieved by using

Heuristic 1, both in K ′ and KCBDCGE .

• The smallest IntraD value is achieved by randomly choosing centroids, both in K ′ and

KCBDCGE .

• The highest Dunn value is achieved by using Heuristic 2, both in K ′ and KCBDCGE .

• The highest Z−score value is achieved by randomly choosing centroids in K ′ and using

Heuristic 1 in KCBDCGE .
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No. No. of No.of IntraD Dunn Dist Z-score

clusters iterations

1 Heuristic 1 distMin = 3.47 nc = 44

K′ 44 21 448.1514 0.1586 392.0747 7.717

KCBDCGE 40 14 445.0609 0.1894 412.4337 9.951

2 Heuristic 2 distAvg = 1.13 nc = 44

K′ 44 11 440.1101 0.2686 20685.6718 6.042

KCBDCGE 41 12 448.1529 0.2102 17133.5209 7.654

3 Random nc = 44

K′ 44 15 424.8114 0.1363 10912.56594 7.8844

KCBDCGE 43 14 427.7379 0.1535 11593.03042 9.22

Table 2.3: Results for the first experiment.

No. No. of No.of IntraD Dunn Dist Z-score

clusters iterations

1 Heuristc 1 distMin = 4.66 nc = 42

K′ 42 23 451.5669 0.1655 446.604 8.23

KCBDCGE 40 23 438.2164 0.1621 351.8567 8.5044

2 Heuristc 2 distAvg = 1.51 nc = 42

K′ 42 18 445.1501 0.2664 21649.7054 7.288

KCBDCGE 40 18 436.7869 0.2163 16133.5829 9.244

3 Random nc = 42

K′ 42 15 430.68062 0.14342 11368.6995 9.0144

KCBDCGE 41 14 428.36222 0.19498 11848.0839 9.0853

Table 2.4: Results for the second experiment.

• From a biological point of view (considering the Z − score evaluation measure), in all

three cases the adaptive clustering outperforms the re-clustering from scratch process.

Experiment 2

In this experiment, the initial data set contains m = 6 features and the remaining s = 1

features are added subsequently. The obtained results are presented in Table 2.4 and Figures

2.1b-2.3b.

From these results we can conclude the following:

• The minimum number of iterations and the smallest IntraD value are acheived by

randomly choosing centroids, both in K ′ and KCBDCGE .

• The highest Dunn value is achieved by using Heuristic 2, both in K ′ and KCBDCGE .
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(a) First experiment. (b) Second experiment.

Figure 2.1: Illustration of the values of Dunn index obtained by using Heuristic 1, Heuristic

2 and random centroids, both for K ′ and KCBDCGE .

• The smallest Dist value is achieved by using Heuristic 1, both in K ′ and KCBDCGE .

• The highest Z−score value is achieved by randomly choosing centroids in K ′ and using

Heuristic 2 in KCBDCGE .

• The Z − score evaluation measure, indicates in all three cases that the adaptive clus-

tering outperforms the re-clustering from scratch.

(a) First experiment. (b) Second experiment.

Figure 2.2: Illustration of the values of IntraD obtained by using Heuristic 1, Heuristic 2 and

random centroids, both for K ′ and KCBDCGE .

Statistical analysis

Since for the problem we approach in this thesis, gene expression clustering, the most

relevant evaluation measure is the biological one, we performed a statistical analysis of Z-

score values. We computed 95% Confidence Interval [Brown et al., 2001] for the average of the

differences between the Z-scores obtained using the adaptive and from scratch approaches.

All the Z-score values from the two experiments were considered. We obtained the (0.53,
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(a) First experiment. (b) Second experiment.

Figure 2.3: Illustration of the values of Z-score obtained by using Heuristic 1, Heuristic 2 and

random centroids, both for K ′ and KCBDCGE .

1.95) Confidence Interval for the average. Thus, there is a 95% confidence that the Z-score of

the partition obtained adaptively exceeds the Z-score of the partition obtained by applying

the k-means from scratch with a value that lies within the specified range.

Due to the variation of the results, we can not conclude which heuristic is the best. It

depends on the evaluation measure (e.g. Heuristic 2 is the best from Dunn index perspective,

but is not the best from IntraD perspective), the type of algorithm (adaptive/from scratch),

the number of features added (for the adaptive approach). Even if there are cases in which

choosing centroids randomly gives better results than using heuristics, it does not represent

a reliable option, as an inappropriate choice could strongly degenerate results.

Still, for both experiments we have performed, we can conclude that from a biological

perspective (considering the Z − score evaluation measure) a better approach is to use an

heuristic for the initial centroids selection, instead of a random choice.

2.3.3.1.4 Discussion

Considering the experimental results presented in Section 2.3.3.1, an analysis of the CB-

DCGE algorithm is further provided. Furthermore, we present a study on the relevance of

the considered features, as well as a comparison of our method to similar approaches in the

literature.

a) Analysis of the results

The clustering technique that we proposed in this paper is generally suitable for dynamic

data sets, in which the features characterizing the instances are continuously subject to

change. Particularly, as biological processes and experiments are dynamic, clustering the

gene expression data resulting from these led to the need of a dynamic approach.

Our dynamic core based clustering algorithm has two main advantages over the traditional

k-means algorithm applied from the beginning: less iterations and better clustering accura-
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cies. As can be seen in Tables 2.1 and 2.2, the number of iterations used by our dynamic

algorithm for providing a solution is, on average, smaller that the one needed by k-means,

run from the beginning, for the whole set of features. We have to mention that the running

time of both algorithms is very small, around 3 seconds, therefore the dynamic algorithm

performs similarly with the k-means from scratch in terms of execution time.

Figure 2.4: Illustration of the evaluation measures’ values for the first experiment.

In what concerns the clustering accuracy, we used four evaluation measures (see Subsec-

tion 2.3.2) to help us evaluate each clustering result. Regarding the measures IntraD and

Dist we mention that a decrease in their values signifies better partitions, while for the Dunn

and for the Z-score greater values result from better clustering. The fact that our CBDCGE

algorithm leads, in most cases, to better partitions than the k-means algorithm applied on

the whole set of attributes, is illustrated in Figures 2.4 and 2.5. By analysing the top two

plots of each of these figures, it can be clearly observed that, except for one case (Figure

2.5, Dunn, case 4), both the Dunn and the Z-score of our algorithm are greater than those

obtained for k-means. The last two plots of the same figures show that, in almost all cases

(except for Figure 2.4, IntraD, case 7 and Dist, case 6), the values of IntraD and Dist for

CBDCGE are lower than those computed for k-means.

Another benefit of our approach, is that by using the heuristic presented in Subsection

2.2.2, it does not need the number of clusters. This value is computed by the algorithm,

using a positive threshold, distMin, which represents the minimum distance to be used when

deciding whether to assign genes to the same or to different clusters. By its definition, the

increasing of distMin leads to the decreasing of the number of clusters. From Table 2.1 we

note that the most biologically relevant clustering for the first experiment is obtained is for

distMin = 3.51, while Table 2.2 indicates that for the second experiment, the best value of
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Figure 2.5: Illustration of the evaluation measures’ values for the second experiment.

distMin is 4.6.

Regarding the number of new attributes, corresponding to new measurements, as the data

set we used is composed of genes which were measured during a total of seven time points,

we chose to use the first five time points for the initial partition and then incrementally add

two attributes, in the first experiment or one, in the second. Table 2.5 presents the average

values of the four evaluation measures for both algorithms (k-means applied from scratch and

our adaptive algorithm CBDCGE ) and for each of the two experiments. We remark that for

the second experiment three out of the four considered evaluation measures, computed for

CBDCGE, indicate that when only one attribute is added the obtained clustering is more

accurate: apart from the Dunn, whose value is lower for the second experiment, compared

to the first, the values of both the IntraD and Dist measures decrease and the Z-score is

greater. The same table also demonstrates that the CBDCGE algorithm outperforms the k-

means applied from scratch, as all the evaluation measures’ values indicate better partitions:

the values for IntraD and Dist are smaller, while those for the Dunn and the Z-score are

greater.

b) Study on features’ relevance

Information gain

In the following we aim at analyzing the influence of the information gain (IG) of the

added features on the efficiency of the dynamic clustering process. The information gain

measure is a measure from information theory and expresses the expected decrease in entropy

determined by splitting the instances according to a given feature [Mitchell, 1997b]. For
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Experiment Algorithm IntraD Dunn Dist Z-score

First experiment
K′ 434.0442 0.1513 16717.7089 6.3276

KCBDCGE 430.5522 0.1826 14202.4964 8.2627

Second experiment
K′ 431.9611 0.1515 16542.7579 6.4003

KCBDCGE 421.0019 0.1700 12003.2302 8.5163

Table 2.5: Average values of the considered evaluation measures obtained for k-means and

CBDCGE algorithms, after the two experiments.

computing the information gain of the attributes, the partition provided by applying k-means

on the m+ s-dimensional genes is used.

As gene expression levels take values in the < space, for computing the information gain of

the attributes we have to discretize their values. This was achieved by dividing their interval

of variation into several sub-intervals.

Table 2.6 presents, for each experiment and each different number of sub-intervals we used,

the features decreasingly ordered by their information gain (the added features are marked

with bold), as well as a percentage indicating the information gain of the new features with

respect to the one of the existing attributes.

Experiment
No. of

Order of feature
IG of new features /

subintervals IG of old features (%)

First experiment

3 7 6 5 4 1 2 3 92.20%

4 7 6 4 5 1 2 3 88.20%

5 7 6 5 4 1 2 3 82.45%

6 7 6 4 5 1 2 3 76.69%

Second experiment

3 7 6 5 4 1 2 3 51.37%

4 7 6 4 5 1 2 3 50.78%

5 7 6 5 4 1 2 3 51.25%

6 7 6 4 5 1 2 3 50.66%

Table 2.6: The information gain measure for the attributes.

From Table 2.6 we can notice that the IG of the newly added attributes is rather high,

when compared to the IG of the first set, especially for the first experiment. This may lead

to a greater difficulty in adapting the partition (obtained by using the first set of attributes)

for the CBDCGE algorithm. As mentioned before, the second experiment indicates that

when only one attribute is added the obtained clustering is more accurate and this could be

explained since in the second experiment the information gain introduced in the system is

lower. Another conclusion is that that the IG of the attributes is monotonically related to

the number of sub-intervals considered for the variation, as for both the existing and the new

attributes the IG generally grows as the number of sub-intervals increases.
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We have to mention two characteristics of the CBDCGE algorithm. First, the time

complexity of the CBDCGE is not increased by the initial cores’ computation step. The

second characteristic is that the computation of the cluster’ cores (using inequality 2.3) is

based only on the current cluster.

Considering the above analysis of experimental results one can conclude that applying

the adaptive CBDCGE method is effective for dynamic clustering of gene expression data.

Features’ correlation

For studying how the sets of features are correlated with each other and to analyze how

the correlation of the newly added attributes to the existing ones could influence the result

of the clustering algorithm, we used the Pearson correlation coefficient [Tuffery, 2011]. This

is a value ranging from −1 to 1 that measures the degree of linear correlation between two

random variables. For each feature, we computed the Pearson correlation coefficient with

the rest of the features. Figure 2.6 illustrates the average correlations among the features.

By computing the mean M of the average correlations of initial features (the first five), we

notice that the average correlations of the last two features (the new ones) are both higher

than M . From this we can conclude that the adaptation process occurs in a simpler manner.

Figure 2.6: Illustration of the average correlations of the features.

Table 2.7 illustrates the ratios between the mean of the average correlations of the newly

added features and the mean of the average correlations of the existing ones. We notice that

for the second experiment this ratio is higher, thus indicating that when only one feature is

added, the correlation between the new information and the existing one is stronger. This

could be yet another reason for which the results obtained in the second experiment are more

accurate than those obtained by the first.
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Experiment
Mean correlation of new features

Mean correlation of old features

First experiment 0.97

Second experiment 1.17

Table 2.7: Features’ correlations.

2.3.3.2 DHCGE algorithm

For testing the DHCGE algorithm, we have conducted two experiments. In each one we

started from a different number of initial features and then we added the rest of the attributes

(up to seven, which is the total number of attributes).

Both experiments are subject to the process we describe next. We start with m initial

features and we calculate the optimum number of clusters nc for each case, as presented in

Subsection 2.2.2. Regarding the dMin threshold (Subsection 2.2.2), we use several different

values and for each such value the following steps are performed. The traditional hierarchical

agglomerative clustering method is applied on the data sets containing the initial m features

and this algorithm stops when the number of clusters reached is nc. The partition obtained so

far is denoted by K. Further, the data set is extended with s features: (m+1), . . . , (m+s). On

this extended data set, we apply the DHCGE algorithm, which starts from the previously

obtained partition K. To compare the results obtained by our algorithm, the traditional

HACA is also run (from scratch) on the m + s-dimensional data set, until the number of

obtained partitions is equal to nc. The comparison is made using the evaluation measures

presented in Subsection 2.3.2 and the number of iterations performed by each algorithm.

2.3.3.2.1 First experiment

In this experiment, the initial data set contains m = 5 features and the remaining s = 2

features are added subsequently. Table 2.3.3.2.1 shows, for each considered value of the

threshold dMin, the computed optimum number of clusters nc, the number of performed

iterations and the three considered evaluation measures, for both DHCGE (partition denoted

by KDHCGE) and the HACA (partition denoted by KHACA) algorithms. We mention that

HACA is applied from scratch on the new data set containing all the m + s = 7 attributes.

For each value of dMin, the reported results for Z-score are averaged over 10 repeated

experiments.

Table 2.3.3.2.1 shows that the number of iterations needed by the DHCGE algorithm is

smaller than the one needed by HACA, in all four cases. We can also notice a reduction

in the running time of our dynamic algorithm in all the cases. The Moreover, the three

considered evaluation measures also prove that, generally, the obtained partitions are better

for the DHCGE : IntraD is smaller in three out of the four cases and Dist is smaller in all

four cases, this indicating a more accurate clustering; the Z-score indicates that in three
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No.
No.of

IntraD Dist Z-score
Time

iterations (s)

1 dMin = 3.23 nc = 63

KHACA 551 471.6626 82162.4895 2.3710 28

KDHCGE 444 467.4943 55584.5283 2.7940 21

2 dMin = 3.26 nc = 61

KHACA 553 475.0851 82376.9315 2.1000 29

KDHCGE 455 482.3278 69249.0666 3.2850 22

3 dMin = 3.47 nc = 44

KHACA 570 529.1520 103157.8724 4.9500 29

KDHCGE 469 522.3940 86874.1104 3.9670 21

4 dMin = 3.51 nc = 42

KHACA 572 558.0713 154399.2198 4.8390 29

KDHCGE 474 532.6680 94543.0836 5.1090 23

Table 2.8: Results obtained for the first experiment.

tests, the partitions obtained by DHCGE are more biologically relevant than the ones the

traditional HACA achieves. We can therefore conclude that for this experiment, the quality

of the partitions obtained adaptively by DHCGE is improved with regard to HACA and the

result is reached after fewer iterations.

2.3.3.2.2 Second experiment

In this second experiment, we considered the initial data set as having m = 6 features

and the remaining s = 1 feature is added subsequently. Table 2.9 shows, for each value of

the threshold dMin, the computed optimum number of clusters nc, the number of performed

iterations and the three considered evaluation measures, for both algorithms, DHCGE and

HACA, the latter being applied from scratch on the new data set containing all the m+s = 7

attributes. For each value of dMin, the reported results for Z-score are averaged over ten

repeated experiments.

As for the previous experiment, the number of iterations performed by DHCGE is less

than the one HACA needs, in all four cases, as shown in Table 2.9. Still, the other evaluation

measures show that the partitions obtained by our algorithm are not as good compared to

those obained by HACA, as in the first experiment. IntraD indicates that HACA obtains

better partitions in three out of four cases, but from Table 2.9 we notice that the difference

in these cases is minor. Dist, however indicates more accurate clustering for DHCGE, in

three out of four cases. Concerning the Z-score, we note that in two of the tests the clusters

obtained by DHCGE have a higher biological relevance, while in the other two, those achieved

by HACA are more relevant. We remark that for this second experiment, DHCGE clearly
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No.
No.of

IntraD Dist Z-score
Time

iterations (s)

1 dMin = 4.38 nc = 63

KHACA 551 471.6626 82162.4895 2.3490 30

KDHCGE 369 472.7752 66836.8512 1.8320 18

2 dMin = 4.40 nc = 62

KHACA 552 473.7939 82325.5096 2.4740 28

KDHCGE 369 474.5243 66908.912 2.1270 17

3 dMin = 4.60 nc = 45

KHACA 569 527.4638 103154.4945 4.7480 29

KDHCGE 367 536.0378 110093.9625 5.2700 16

4 dMin = 4.66 nc = 42

KHACA 572 558.0713 154399.2198 4.7960 30

KDHCGE 369 540.6549 109955.9118 5.5990 16

Table 2.9: Results obtained for the second experiment.

outperforms HACA (with regard to all three evaluation measures) in the last case, while for

the other cases each measure indicates differently: in the first two cases IntraD and Z-score

imply that HACA is more accurate, but Dist implies otherwise; in the third case, IntraD

and Dist indicate that HACA obtains better results, while Z-score shows that the partitions

obtained by our algorithm DHCGE are more biologically significant.

2.3.3.3 FDCGE algorithm

We have conducted three experiments for evaluating the performance of the FDCGE

algorithm. In each of these, we start with an initial number of features m and subsequently

add the new s features (considering that the total number of features for our experiments is

7).

For each experiment, we considered different values for the threshold distMin and for

each such value, the following steps are performed:

1. Using the heuristic presented in Subsection 2.2.2, we identified the initial centroids

in the fuzzy c-means process and we computed the optimum number of clusters nc

accordingly.

2. The fuzzy c-means algorithm is applied on the data set containing the genes character-

ized by the m initial features, starting from the centroids determined in the previous

step. Following this process, a partition is obtained, which will be denoted by K. We

mention that if at a certain point during the running of the algorithm one cluster

becomes empty, it is removed and therefore the number of clusters is decreased.
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3. The new s features are added so that the genes are now instances in an (m + s)-

dimensional space. Our fuzzy dynamic algorithm is applied on the new, feature enriched

data set, using the previously obtained partition K. The obtained result is denoted by

KFDCGE .

4. The fuzzy c-means is applied from scratch on the data set containing the (m + s)-

dimensional instances and a new partition is obtained, denoted by K′. This result will

be compared to the one obtained by our dynamic fuzzy algorithm, in order to analyze

its performance with regard to traditional fuzzy c-means.

2.3.3.3.1 First experiment

In the first experiment we started with m = 4 features representing the gene values for

the first four moments in time and we subsequently added the last s = 3. For each considered

value of the threshold distMin, Table 2.10 shows the optimum initial number of clusters nc

retrieved by the heuristic we used, as well as the values obtained for the evaluation measures

presented in Subsection 2.3.2, both for our FDCGE algorithm and for the fuzzy c-means

algorithm applied from scratch on the complete data set, with all the m + s = 7 features.

For each value of distMin, the reported results for Z-score are averaged over ten repeated

experiments.

No. No. of IntraD Dunn Dist Z-score

clusters

1 distMin = 2.58 nc = 63

K′ 63 111.4800 0.0917 24927.8000 4.3400

KFDCGE 63 93.3800 0.0979 2470.8600 4.7450

2 distMin = 2.59 nc = 62

K′ 62 111.4600 0.0917 25097.7800 4.1120

KFDCGE 62 92.7400 0.0979 2477.5400 6.0250

3 distMin = 2.69 nc = 53

K′ 53 113.2700 0.0917 27486.7300 4.6330

KFDCGE 53 94.5700 0.1101 2889.7400 5.3410

4 distMin = 2.8 nc = 45

K′ 45 110.4200 0.0935 26714.19 5.0990

KFDCGE 45 97.22 0.1027 3698.15 5.8830

5 distMin = 2.82 nc = 42

K′ 42 111.6700 0.0861 30384.7600 5.0210

KFDCGE 42 97.8700 0.1141 4216.2700 5.4790

Table 2.10: Results for the first experiment.
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We remark that for this experiment the evaluations measures indicate that in all cases,

FDCGE is more performant than the fuzzy c-means applied from the beginning. The intra-

cluster distance IntraD is smaller, while the Dunn index and Z-score are higher, in all 5 runs.

Considerable improvement can be noticed in the case of the overall distance of a partition

Dist, as its values computed for the clustering obtained by FDCGE are significantly lower

than those reported for fuzzy c-means, this indicating compact clusters and better partitions.

2.3.3.3.2 Second experiment

In this experiment the data set contains genes represented by m = 5 features and the

values corresponding to the last s = 2 moments in time are added afterwards. Table 2.11

illustrates the results obtained for this experiment, showing the same information as for the

previous case: for each value of the threshold distMin we retrieved the initial number of

clusters, as well as the values of the evaluation measures (as before, the Z-score was averaged

over 10 experiments for each value of distMin).

By looking at the columns corresponding to the Dunn index and Dist, we observe that

according to these measures, FDCGE always outperforms fuzzy c-means, applied from scratch

on the entire 7-feature data set. Regarding the IntraD we notice that except one test, all

the values of this measure are smaller for our algorithm, this indicating better partitions.

However, the Z-score is not as good as the other measures, as there are 3 cases in which the

partitions obtained by fuzzy c-means are better, but nevertheless in the other 4 cases, the

clustering result obtained by FDCGE is more biologically relevant. An important remark is

that considering all the 7 tests made for this experiment, the average values of the evaluation

measures indicate that our algorithm is more efficient than the traditional fuzzy c-means.

These values are shown in Table 2.13, on the second row.

2.3.3.3.3 Third experiment

In this last experiment the initial set of features is composed of the genes’ expression levels

for the first m = 6 moments in time and the last s = 1 feature is further added. The obtained

results are depicted in Table 2.12, which depicts the values of the evaluation measures and

the heuristically obtained number of clusters for 4 considered tests. According to IntraD and

Dist, FDCGE invariably outperforms fuzzy c-means, as the values for the partitions obtained

by our dynamic approach are smaller, thus indicating better clustering. The Dunn index and

Z-score are better for our algorithm only in 2 out of 4 tests, therefore suggesting that from the

perspective of these two measures our algorithm and fuzzy c-means perform approximately

equally. However, when computing an average of the values for each of these measures and

each algorithm (see Table 2.13), we observe that 3 out of the 4 evaluation measures (among

which the one indicating the biological significance of the clustering) prove that the FDCGE

algorithm is more accurate.

We have to mention that the running time of fuzzy c-means and FDCGE algorithms is
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No. No. of IntraD Dunn Dist Z-score

clusters

1 distMin = 3.231 nc = 63

K′ 63 111.1700 0.0917 24964.4400 4.2890

KFDCGE 63 178.9000 0.1247 3027.6300 4.6560

2 distMin = 3.26 nc = 61

K′ 61 111.6800 0. 917 24826.3700 4.4210

KFDCGE 61 92.4100 0.1238 2793.7600 4.3230

3 distMin = 3.44 nc = 47

K′ 47 111.58 0.0935 27321.3000 4.3650

KFDCGE 47 98.2000 0.1195 3646.8700 6.4040

4 distMin = 3.45 nc = 46

K′ 46 110.8700 0.0923 27659.66 5.6780

KFDCGE 46 97.8300 0.0994 3875.2900 5.4110

5 distMin = 3.47 nc = 44

K′ 44 110.8700 0.0923 28898.2900 5.1910

KFDCGE 44 97.8300 0.0994 3690.66 4.4760

6 distMin = 3.51 nc = 42

K′ 42 110.1900 0.0703 29405.2700 4.3430

KFDCGE 42 99.7300 0.1198 4492.8500 7.0180

Table 2.11: Results for the second experiment.

very small, around 3 seconds, therefore the dynamic algorithm performs similarly with the

fuzzy c-means from scratch in terms of execution time.

2.4 Discussion

We provide an analysis of the dynamic clustering methods that we proposed and com-

parisons to related work from the literature, based on the experimental evaluation from the

previous section.

2.4.1 Comparative analysis of our algorithms

To our knowledge, except for the dynamic clustering algorithms that we have proposed

in [Bocicor et al., 2014, Sirbu and Bocicor, 2013, Sirbu et al., 2014a], there are no other

approaches that deal with gene expression data sets for which new features (values for ex-

pression levels of genes at new time points) are added dynamically. For this reason, we will

provide a comparison between the three models we proposed.

We cannot provide a thorough comparison of our results to existing ones, as except
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No. No. of IntraD Dunn Dist Z-score

clusters

1 distMin = 4.38 nc = 63

K′ 63 111.6300 0.0917 24749.2000 4.1900

KFDCGE 62 95.1300 0.0490 2413.7900 3.3480

2 distMin = 4.401 nc = 62

K′ 62 111.4656 0.0917 25104.1767 4.1990

KFDCGE 62 95.7149 0.0663 2803.7793 4.2850

3 distMin = 4.5 nc = 53

K′ 53 112.98 0.0917 27429.8700 3.5050

KFDCGE 53 97.1700 0.1217 2705.8900 5.1240

4 distMin = 4.6 nc = 45

K′ 45 111.95 0.0935 28552.5400 5.8020

KFDCGE 45 97.5700 0.1179 3270.6300 5.2470

Table 2.12: Results for the third experiment.

Experiment Algorithm IntraD Dunn Dist Z-score

First
K′ 111.6600 0.0909 26922.2520 4.6410

KFDCGE 95.1560 0.1045 3150.5120 5.4946

Second
K′ 111.1685 0.0892 26832.7410 4.686

KFDCGE 108.2114 0.1194 3471.4829 5.0100

Third
K′ 112.0064 0.0921 26458.9470 4.4240

KFDCGE 100.3339 0.0887 8373.6217 4.5010

Table 2.13: Average values of the considered evaluation measures after the three experiments.

for the two techniques that we mentioned above, there are none that approach the case in

which new features are added to existing genes. However, we can asses the performance of

FDCGE with regard to biological relevance, as compared to other incremental clustering

algorithms, in which new objects are dynamically added to the initial data set (as opposed

to new features for existing instances). The algorithms presented in the papers [Sarmah

and Bhattacharyya, 2010] and [Das et al., 2009a] report z-scores of 7.39 (GenClus algorithm

[Sarmah and Bhattacharyya, 2010]) and 7.07 (incDGC algorithm [Das et al., 2009a]), while

the best Z-score obtained by our algorithm is 7.01, which is satisfactory. Still, we intend

to experimentally evaluate our method for different values of distMin, which may lead to

higher values for the Z-score.

Regarding the running time of the dynamic algorithms, we mention that it is influenced by

the time required for the cores’ computation. This step is performed only once at the begining

of the algorithm. The improvement in running time of the dynamic approaches is significant
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Figure 2.7: Comparison of CBDCGE, DHCGE, FDCGE, starting with m = 5 features

Figure 2.8: Comparison of CBDCGE, DHCGE, FDCGE, starting with m = 6 features

when the number of iterations performed by the classical clustering algorithms (non-dynamic)

is large enough. In this case, an important reduction in the number of iterations brought by

the dynamic approaches may lead to an important improvement in the execution time. This

may be observed for the DHCGE algorithm. For the CBDCGE and FDCGE algorithms

the improvement is not visible since the number of iterations performed is small.

2.4.2 Comparison to related work

Since there are no other algorithms that approach the problem of the dynamic clustering

of gene expression when new expression levels are added to the existing genes, we cannot

provide a thorough comparison of our results to other. However, we note that the biological

relevance of the partitions obtained using CBDCGE, quantified in the z-score, is significant.

Although our algorithm was designed with the purpose of providing an adaptive cluster-

ing technique for dynamic gene expression data sets, instead of a novel clustering method,

we remark that, in terms of z-score, it outperforms other existing incremental clustering al-

gorithms proposed for gene expression data sets, which are changing, in the sense that they

are enriched with new instances [Sarmah and Bhattacharyya, 2010, Das et al., 2009a]. Figure

2.9 illustrates the values of the z-scores reported by the algorithms GenClus [Sarmah and
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Bhattacharyya, 2010] and incDGC [Das et al., 2009a] for the same data set that was used

in our experiments. The same figure depicts the averaged z-score over all the experimental

evaluations of our algorithm CBDCGE.

Figure 2.9: Comparative Z-scores.

Compared to applying the traditional k-means algorithm from the beginning over and

over each time new values of gene expression become available, our dynamic core based clus-

tering algorithm generally obtained better clustering accuracies, in terms of the considered

evaluation measures. Moreover our algorithm needs a smaller number of iterations to achieve

the solution. This can be seen in Tables 2.1 and 2.2. Still, to see how the number of iterations

is being modified even for larger gene expression data sets, we experimented on the data set

presented in Subsection 2.3.1, without applying all the pre-processing steps. More specifi-

cally, from the 6400 existing genes, we only eliminated the ones that have missing expression

levels for certain time points, thus remaining 6276 instances. For this data set, we applied

the traditional k-means and our CBDCGE algorithms, similar to what we have presented in

the two experiments in Subsection 2.3.3.1. In first experiment we begun with 5 features and

then added the last 2 and in second one we started with 6 features and subsequently added

the last one. Table 2.14 illustrates the percent by which the number of iterations is reduced,

showing two considered cases for each experiment. From this table we can conclude that the

number of iterations used by our CBDCGE algorithm is reduced in all four cases, once even

with almost 50%.

A lot of clustering algorithms that have been used to cluster gene expression data need the

number of clusters as a priori information. Among these, we mention k-means [Bagirov and

Mardaneh, 2006], self organizing maps or genetic algorithms. Compared to these techniques,

our approach has the advantage that the number of clusters is not requires, but is computed

according to the heuristic described in Subsection 2.2.2. We remark, however, that there exist

other algorithms in the literature that do not need this number a priori: GenClus [Sarmah

and Bhattacharyya, 2010] and incDGC [Das et al., 2009a].
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Experiment Algorithm
No. of No. of Iteration

clusters iterations reduction (%)

Experiment 3

KCBDCGE 176 36
2.77%

K′ 175 35

KCBDCGE 185 59
47.45%

K′ 184 31

Experiment 4

KCBDCGE 118 51
7.84%

K′ 118 47

KCBDCGE 128 54
12.96%

K′ 127 47

Table 2.14: Reduction of the number of iterations.

2.4.3 Adaptive association rule mining of gene expression data

Starting from the idea of dynamic clustering of gene expression, when expression levels

are added to the existing genes, we explored another dynamic process that takes place in the

same context of feature-set extension: association rule mining.

Association rule mining [Calders et al., 2014] implies idemtifying attribute value condi-

tions which appear often together in data [Tan et al., 2005, Vimieiro and Moscato, 2014].

Considering a set of instances characterized by a list of features, ordinal association rules

[Campan et al., 2006a] are a specific type of association rules which determine ordinal rela-

tionships between the features values that are valid for a specified percentage of instances.

Since the features can have various domains, ordinal association rules are not expressive

enough [Czibula et al., 2012]. Therefore, relational association rules were introduced in [Ser-

ban et al., 2006] for capturing capture different types of relationships between features. A

relational association rule is considered to be interesting if its support and confidence exceeds

a given threshold. The DRAR method (Discovery of Relational Association Rules) was in-

troduced for mining interesting relational association rules within data sets [Serban et al.,

2006].

In this section we present the problem of association rule mining in the context of gene

expression data and briefly describe our adaptive model for mining relational association

rules.

2.4.3.1 Relational association rules on gene expression

In the following we give an example that illustrates how can the DRAR algorithm [Serban

et al., 2006] be applied on the gene expression data set presented in Subsection 2.3.1, in order

to discover interesting association rules.

The first 20 of 65 instances of the data set considered in our example is given in Table

2.15. Scaling to [0,1] was performed, using the Min-Max normalization method. As all
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attributes in the experiment have float values, three possible binary relations between float

valued attributes were defined: =, <, >.

a1 a2 a3 a4 a5 a6 a7

-0.532 0.028 -0.333 -0.102 1.172 2.087 0.992

-0.538 -0.316 0.39 0.781 0.389 1.649 1.498

-0.358 0.138 1.14 0.813 0.121 2.018 1.495

0.126 0.105 0.086 0.557 0.784 1.838 1.613

0.029 -0.203 -0.16 0.719 0.852 2.062 1.082

-0.044 -0.129 0.14 0.817 0.66 1.957 1.086

-0.105 -0.266 0.326 0.769 0.655 1.725 0.785

-0.468 -0.837 0.186 1.354 0.809 1.887 1.674

0.005 -0.24 0.149 0.604 0.746 1.878 1.383

0.009 -0.079 -0.047 0.58 1.025 1.983 0.943

-0.01 -0.057 -0.137 0.584 0.841 2.196 1.344

-0.269 -0.676 0.034 0.9 0.568 2.02 1.42

-0.021 -0.222 -0.086 0.488 0.801 1.618 0.827

-0.269 -0.429 0.908 0.662 0.55 1.629 1.183

0.031 0.027 0.597 0.792 0.648 1.799 2.042

0.009 0.013 -0.2 0.629 1.576 1.802 1.906

0.148 0.408 0.116 0.727 0.717 2.063 1.822

-0.034 0.231 0.409 0.709 0.484 2.219 1.877

-0.758 0.087 0.558 0.382 0.451 1.758 1.592

-0.098 0.173 0.115 0.504 0.808 1.897 1.219

0.075 -0.057 0.296 0.524 0.157 1.731 1.529

0.281 0.079 0.039 0.417 0.608 1.921 1.381

Table 2.15: The first 20 of 65 instances of the gene expression data set

In Table 2.16 we depict all the interesting association rules and their confidence, which

were discovered by applying DRAR algorithm, considering the minimum support as 1 and

the minimum confidence as 0.6. In Table 2.17 are presented only the maximal interesting

association rules. The attributes characterizing the instances are denoted by a1, a2,...,a7.

Each line from Table 2.17 expresses a relational association rule of a certain length,

which was discovered in the data set indicated in Table 2.15 with a specified confidence. For

example, the first line in Table 2.17 refers to the relational association rule a1 > a4 of length

2 (i.e the rule contains two attributes) having a confidence of 0.83. That is, the value of the

attribute a1 is greater than the value of the attribute a4 in 83% of instances within the data

set (i.e in 56 instances).

The results above show that interesting relational association rules can be found in the

gene expression dataset. Further analysis of the discovered relational association rules by an



CHAPTER 2. NEW APPROACHES FOR GENE EXPRESSION CLUSTERING 63

Length Rule Confidence

2 a1 > a3 0.86

2 a1 > a4 0.83

2 a1 > a5 0.8

2 a1 > a6 0.84

2 a1 > a7 0.63

2 a2 > a3 0.86

2 a2 > a4 0.8

2 a2 < a5 0.86

2 a2 > a6 0.83

2 a2 > a7 0.64

2 a3 <= a4 0.72

2 a3 <= a5 0.64

2 a3 <= a7 0.78

2 a4 > a6 0.66

2 a4 <= a7 0.61

2 a5 > a6 0.61

2 a5 <= a7 0.66

2 a6 <= a7 0.72

3 a1 > a3 <= a4 0.69

3 a1 > a3 <= a5 0.63

3 a1 > a3 <= a7 0.69

3 a1 > a6 <= a7 0.63

3 a2 > a3 <= a4 0.66

3 a2 > a3 <= a5 0.61

3 a2 > a3 <= a7 0.69

3 a2 > a6 <= a7 0.66

Table 2.16: Interesting relational association rules

expert in the field, may provide relevant information regarding genes’ functions.

2.4.3.2 Adaptive association rule mining

The method DRAR for relational association rule mining starts with a set of instances,

characterized by different features and discovers interesting relational association rules within

a data set. But there are applications like dynamic gene expression data sets, where the

feature set evolves. In this situation, the relational association rules could be obtained by

applying the mining algorithm from scratch over and over again, when new features are

available, but this can be inefficient.

In [Czibula et al., 2015a] we proposed a new adaptive association rule method, named
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Length Rule Confidence

2 a1 > a4 0.83

2 a1 > a5 0.8

2 a1 > a7 0.63

2 a2 > a4 0.8

2 a2 > a5 0.86

2 a2 > a7 0.64

2 a4 > a6 0.66

2 a4 <= a7 0.61

2 a5 > a6 0.61

2 a5 <= a7 0.66

3 a1 > a3 <= a4 0.69

3 a1 > a3 <= a5 0.63

3 a1 > a3 <= a7 0.69

3 a1 > a6 <= a7 0.63

3 a2 > a3 <= a4 0.66

3 a2 > a3 <= a5 0.61

3 a2 > a3 <= a7 0.69

3 a2 > a6 <= a7 0.66

Table 2.17: Maximal interesting relational association rules

Adaptive Relational Association Rule Mining (ARARM), that is capable to efficiently mine

relational association rules within the set of instance, when the feature set is extended. The

ARARM method starts from the set of interesting rules that was established by applying

DRAR before the feature set changed and adapts it considering newly added features. The

result is obtained faster than applying DRAR on the gene data set after feature extension.

In the following, we introduce the adaptive relational association rule mining approach,

as well as an algorithm called ARARM (Adaptive Relational Association Rule Mining) that

is capable to efficiently mine relational association rules within a data set, when the feature

set increases.

Let us consider a data set R = {r1, r2, . . . , rn} consisting of n-dimensional instances

(objects). An instance is described by a list of m features, (a1, . . . , am) and is represented by

an m-dimensional vector ri = (ri1, . . . , rim). Between the features values different types of

relations can be defined. By Rel we denote the set of all relationships which can be defined

between the features values. As presented in Section 2.4.3.1, interesting relational association

rules that are able to express relations (from the set Rel) between the features values may

be discovered using the DRAR method [Serban et al., 2006].

The set of features is subsequently increased with s features, denoted by m+1, . . . ,m+s,

the objects vectors becoming rexti = (ri1, . . . , rim, ri,m+1, . . . ri,m+s), 1 ≤ i ≤ n. The set of
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extended instances is denoted by Rext = {rext1 , rext2 , . . . , rextn }.
Considering certain minimum support and confidence thresholds (denoted by smin and

cmin), we want to analyze the problem of mining interesting relational association rules

within the data set Rext, i.e. after object extension, and starting from the set of rules

discovered in the data R before the feature set extension. We aim at obtaining a better time

performance compared to process of mining from the beginning. By RAR we express the

set of interesting relational association rules from the data set R, and by RARext the set of

interesting relational association rules from the extended data set Rext [Czibula et al., 2015b].

Certainly, the newly arrived features can generate new relational association rules. The

new set of rules RARext could be of course obtained by applying the DRAR method from

scratch on the extended instance, aiming to replace this process with a less expensive one,

while preserving the completeness of the rules generation process. More specifically, we will

propose a method called ARARM (Adaptive Relational Association Rule Mining), which

starts from the set RAR of rules mined from the data set before feature extension and adapts

it (considering the newly added features) in order to obtain a set of interesting relational

association rules from the set of extended objects Rext. Definitely, through the adaptive

process, we want to preserve the completeness of the DRAR method.

Let us denote by l the maximum length of the rules from the set RAR and by RARk

(1 ≤ k ≤ l) the set of interesting relational association rules of length k mined in the data

set R (before the feature set extension), where RAR =
l⋃

k=1

RARk.

In the following we will briefly present the idea of discovering the set RARext through

adapting the set RAR of rules mined in the data set R before feature extension.

The ARARM algorithm identifies the interesting relational association rules using an

iterative process which generates length-level rules, then verifies the candidates in order to

comply the minimum support and confidence. ARARM performs multiple iterations over

Rext. During the first iteration, the algorithm computes the interesting 2-length rules. All the

subsequent iterations over the data are performed of two phases. The k-length (k ≥ 2) rules

from Rext will certainly contain the k-length rules fromRAR (the interesting rules discovered

in the data set before extension) - if such rules exist. But, there is another possibility to obtain

a k-length rule in the extended data set, through generating a candidate rule through joining

two k−1-length rules fromRARext (generated at the previous iteration). In the second phase

the support and confidence of the generated candidates are calculated. Only the interesting

rules are kept and will be considered in the next step of the algorithm The process ends when

no news interesting rules are found [Czibula et al., 2012].

At a certain iteration performed by the ARARM algorithm, the candidate generation

process is essentially the same as the candidates generation process of the DRAR method

[Campan et al., 2006b]. More specifically, for joining two k−1 length rules in order to obtain a

k-length candidate rule, there are more possibilities (see [Czibula et al., 2015a]). Similarly to

the proof presented in [Campan et al., 2006b] it may be proven that the candidate generation
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process ensures the correctness and completeness of the ARARM algorithm.

Regarding the binary relations that may be defined between the attributes domains, we

mention that we do not assume particular properties (such that the transitivity property),

both DRAR and ARARM are working with general relationships between the attributes

domains.

The most important step in the ARARM algorithm is the candidate generation process,

which is also computationally expensive. This function has as a parameter a set Rules of

k-length relational association rules and returns a set of k + 1 length relational association

rules generated from Rules through the join operations. The main idea of the candidate

generation process is the following. All distinct combinations of two rules (r1, r2) from the

set Rules are considered. If r1 and r2 match for join, the rule rjoin obtained by joining r1

and r2 is constructed and is added to the resulting set of rules. Obviously, since r1 and r2

are k-length rules, rjoin will be a k + 1-length rule.

It has to be stated that running the ARARM method with m = 0 provides the set of

interesting relational association rules mined in the data set of s-dimensional entities. Thus,

this running is equivalent with applying the DRAR method on the data set of s-dimensional

entities. Two rules are joined during the adaptive candidate generation process only if at

least one rule has at least an attribute from the additional attributes, which are present only

in the enlarged attribute set. Obviously, it is not necessary to join rules which contain only

attributes from the original attribute set, since the joint rules are already known (these rule

are in the set RAR of relational rules mined in the set of m-dimensional entities). This way,

when generating the k-length relational association rules from the extended data set of m+s

dimensional entities, the candidate generation process is not applied on the set of k−1 length

rules from the set off interesting rules extracted from the data set of m-dimensional entities.

Thus, unlike in the DRAR algorithm applied from scratch on the m+ s dimensional entities,

the join operations between the k − 1 length rules from the data set of entities before the

attribute set extension are skipped.

The time savings in the ARARM running time come from the time reduction of the

candidate generation process as well as from an reduced number of support and confidence

computations. Obviously, the step of computing the support and confidence for the rules from

the set RAR is skipped, since for these rules we already have their support and confidence.

Certainly, the reduction in the execution time of the ARARM increases with the increase of

the set RAR. This usually happens when decreasing the number s of added attributes. A

smaller number of added attribute means a larger set of already known rules and this implies

a smaller number of rules generated by the function that generates candidates, as well as less

time for support and confidence computations.



CHAPTER 2. NEW APPROACHES FOR GENE EXPRESSION CLUSTERING 67

2.4.3.3 Experimental evaluation

In the following we present a set of experiments ment to evaluate the effectiveness of

ARARM of the gene expression data set presented in 2.3.1. Like in the dynamic cluster-

ing experiments, we are initially considering m attributes (measurements of gene expression

levels) and afterwards we extend the set of features with s attributes. We consider in the ex-

periments different values for the confidence threshold (cmin) and different type of relational

rukes (maximal rules vs. all rules). The threshold smin is set to 1. For each experiment, the

set of interesting relational association rules on the m+ s dimensional instances are obtained

in two ways:

1. by applying the DRAR method from scratch on the data set after the feature set

extension (containing all m+ s features).

2. by adapting (through the ARARM algorithm) the rules obtained on the data set before

the feature set extension (containing m features).

We mention that the same set of interesting relational association rules is discovered

in data, independent to the way the rules were generated (1. or 2.), but, obviously, we are

expecting the running time of the adaptive algorithm to be lower than the running time of the

DRAR method applied from scratch. We also have to mention that two relations between the

features values are considered in the relational association rule mining process: Rel = {≤, >}.
The experiments are performed using the ARARM API, introduced in [Czibula et al., 2015a].

Table 2.18 illustrates the performance of the ARARM method, for each of the performed

experiment. The running times are given in milliseconds and for each experiment, the lower

running time value is marked with bold. It can be observed that the time needed to obtain

the rules adaptively is less than the time needed to obtain the rules from scratch, indicating

that our approach is more efficient for identifying association relational rules when the feature

set is extended than applying the mining process from the beginning.

Figure 2.10: Time reduction using ARARM

For concluding about the efficiency of the adaptive method against the non-adaptive one,

we depict in Figure 2.10, the reduction (in percentage) of the running time of ARARM with
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Experiment cmin No. of No. of added Type No. of Time from Time

attributes attributes of rules scratch adaptive

(m) (s) rules (ms) (ms)

1 0.3 3 4 Maximal 53 118 38

2 0.3 4 3 Maximal 53 118 32

3 0.3 5 2 Maximal 53 118 19

4 0.3 6 1 Maximal 53 118 12

5 0.3 3 4 All 114 31 33

6 0.3 4 3 All 114 31 15

7 0.3 5 2 All 114 31 13

8 0.3 6 1 All 114 31 4

9 0.4 3 4 Maximal 33 49 13

10 0.4 4 3 Maximal 33 49 12

11 0.4 5 2 Maximal 33 49 12

12 0.4 6 1 Maximal 33 49 10

13 0.4 3 4 All 64 20 9

14 0.4 4 3 All 64 20 7

15 0.4 5 2 All 64 20 6

16 0.4 6 1 All 34 20 2

17 0.5 3 4 Maximal 21 28 15

18 0.5 4 3 Maximal 21 28 7

19 0.5 5 2 Maximal 21 28 6

20 0.5 6 1 Maximal 21 28 4

21 0.5 3 4 All 38 11 7

22 0.5 4 3 All 38 11 5

23 0.5 5 2 All 38 11 4

24 0.5 6 1 All 38 11 2

Table 2.18: Results for the gene expression data set for smin = 1

respect to the running time of DRAR.

As further work we intend to extend the proposed approach and apply it to supervised

and unsupervised classification problems.

2.5 Conclusions and further work

This chapter presented three models for dynamic clustering of gene expression data in

the context where expression levels for new time points are added to the existing genes. The

algorithms are capable of adapting the previously obtained partitions when new features

(measurements of gene expression levels) are added to the data set, without performing
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re-clustering from scratch. In the same context of dynamic gene expression data we also

introduced a method for adaptive relational association rule mining that is able to adapt the

previously obtained set of interesting rules when new gene expression levels are added to the

existing genes, without applying the mining algorithm from scratch.

These algorithms were presented in the original papers [Bocicor et al., 2014, Sirbu and

Bocicor, 2013, Sirbu et al., 2014a, Czibula et al., 2015a]. The experimental evaluation that

was performed on a real-life gene expression data set show that, in most of the cases, the

clustering is reached more effectively and is also more accurate by using our proposed methods

than by using the k-means, hierarchical agglomerative clustering, respectively fuzzy c-means

algorithm from scratch on the feature-extended data. Also, the relational association rules

are achieved faster using our method than applying the mining algorithm from the beginning.

Still, there are some cases when is better to perform a full-repartitioning of the extended

set of objects, instead of adapting the existing partition. Examples of such situation could

be: adding of a large number of expression levels for new time points or adding attributes

with high information gain or contradictory information against the old attributes.

Further work can be done in order to determine situations when is more appropriate

to adapt (using CBDCGE, DHCGE or FDCGE ) the partition of the feature-extended set

instead of recomputing the partition from scratch using a classic clustering approach. We

also plan to extend the experimental evaluation on other publicly available data sets and

to investigate methods to automatically identify the distance threshold for the clusters (e.g.

supervised learning).



Chapter 3

Pedestrian detection. Background.

In this chapter we are presenting the background knowledge related to the supervised

classification problem approached in the thesis, the problem of dynamic pedestrian recognition

with onboard cameras, which represents a very challenging task with great importance in real

life.

In the literature there are two important approaches for object detection: using the

classical three step architecture, which involves the identification of regions of interest in an

image, feature extraction and classification (see Figure 3.1) or using deep learning, which

uses special neural networks like convolutional neural networks (see Figure 3.2) in order to

learn multiple levels of features and classify. Unlike the classical architecture, deep learning

works on entire images and needs large datasets with complex scenarios for training. Since

in the thesis we focus on the classification part, we decided to exploit the first architecture,

which is more flexible and proved high performances for pedestrian detection.

Therefore, we begin by presenting the most important components in a pedestrian recog-

nition system that follows the first architecture: the feature extraction and the classification

components. Thus, in Section 3.1 we give an overview of the most commonly used features,

then in Section 3.2 we briefly present the most popular classifiers used in pedestrian detec-

tion. Finally, in Section 3.3 we provide a short literature review in the field, with emphasis

on the fusion of image modalities, for which we are going to introduce a dynamic approach

in Chapter 4.

3.1 Feature extraction

Object representation plays a very important role in an object recognition system. In

our particular case of pedestrian detection, choosing the most pertinent features for pedes-

trian characterization is a very challenging problem, as it is still uncertain how the human

brain performs the recognition based on visual information [Parra Alonso et al., 2007]. An

important step before feature computing is finding a region of interest (ROI), an area where

the potential pedestrian could be found. According to [Gavrila and Munder, 2007] there are

several ways to obtain ROIs:

70
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Figure 3.1: General steps in a pedestrian detection system

Figure 3.2: A multi-scale convolutional network [Sermanet et al., 2011]
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1. Standard background substraction method, which can be used for surveillance applica-

tions, but is unsuitable for the case of moving camera

2. Sliding window approach, which implies shifting ROI windows of various scales over

the images, while performing classification on each window

3. Detection of independently moving objects method, which is based on the idea of de-

tecting deviations (from the expected background motion) in the optical flow field

4. Stereovision: based on disparity space.

After ROI have been identified, the feature extraction process can start. Features can

be divided in global and local. Global features take the image as a whole. They include

contour representations, texture features and shape descriptors, e.g. Local Binary Patterns,

Histogram of Oriented Gradients and Haar features. Unlike global features, local features

are calculated at several points in the image (points of interest), having the advantage of

being more robust to occlusion and clutter [Lisin et al., 2005]. Examples of local features

are Scale-Invariant Feature Transform, Speeded Up Robust Features, Haaris. There are also

hybrid systems that combine local and global features to exploit the advantages of both

representations [Lisin et al., 2005], [Besbes et al., 2015]. From another perspective, features

can be classified into static (the ones mentioned above) and motion, which are able to capture

motion from a sequence of images.

In the following we are presenting an overview on several global and local features, along

with a family of motion features.

3.1.1 Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) [Dalal and Triggs, 2005] are local feature descrip-

tors commonly used in computer vision and pattern recognition, which are based on the idea

that local object shape can, in most of the situations, be represented using the distribution of

edge directions or local intensity gradients, even without exactly knowing the corresponding

edge positions or gradients.

Their implementation supposes splitting the image window into small spatial cells (re-

gions) and then computing a local histogram of edge orientations or gradient directions for

the pixels within each cell. The final representation is obtained by combining the histogram

entries. Contrast normalization of the local responses is performed for better invariance to

illumination or shadowing, by collecting a measure of local histograms over larger spatial

regions, called blocks, and using them for normalizing the cells in the block (see Figure 3.3)

[Dalal and Triggs, 2005].

HOG features are used by most of existing pedestrian detectors.
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Figure 3.3: Feature extraction using HOG [Dalal and Triggs, 2005]

3.1.2 Histograms of Flow

Histograms of Flow (HOF) are motions features, introduced in [Dalal et al., 2006]. Their

advantage compared to other motion features like the once introduced in [Viola et al., 2005]

is that they are able to capture human motion from moving cameras against dynamic back-

ground, unlike the other ones that work only with static camera and background.

HOF use differential flow in order to cancel the effects of camera motion and voting similar

to the one used in HOG to achieve a robust coding. The authors express by Ix and Iy, the

images which contain horizontal, respectively vertical optical flow components, by (Ix, Iy) the

2D flow image and Ixx , I
x
y , I

y
x , I

y
y the corresponding x and y derivate differential flow images.

Two two familes of schemes are used: Motion Boundary Histograms (MBH) and Internal

Motion Histograms (IMH). In the first one, Ix and Iy are considered independent images for

which they perform HOG like computations, while in the second one, they use (Ixx , Iyx) and

(Ixy , I
y
y ) as pairs for angular voting and the derivates are raplaced by spatial differences taken

at a larger scale. Based on these schemes, they introduce several descriptors: IMHdiff, IMHcd,

IMHmd and IMHwd which proved to achieve high performances for pedestrian detection.

Walk et al. [Walk et al., 2010a] introduced a lower-dimensional variant of HOF, IMHd2,

and used it in the state of the art pedestrian detector MultiFtr+Motion from the benchmark

presented in [Dollar et al., 2012].
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3.1.3 Local Binary Patterns

Local Binary Patterns (LBP) [Ojala et al., 1996] are one of most widely used texture

descriptors in computer vision, due to its invariance to gray level changes. The main steps

in computing LBP are:

1. The ROI is divided into cells, e.g. 8× 8 pixels.

2. Each pixel in a given cell is compared with the pixels from its neighbourhood (see

Figures 3.4, 3.5) , obtaining a bit string ( ”1” if the center pixels value is smaller than

the neighbours value and ”0” otherwise)

3. A histogram is computed over each cell, based on the decimal valued of transformed

bit-string.

4. The final feature vector is obtained by concatenating and normalizing the histograms

of all cells

Figure 3.4: Basic LPB operator [Ahonen et al., 2006]

Figure 3.5: Examples of the extended LBP operator, with the circular (8, 1), (16, 2), and

(24, 3) neighborhoods [Huang et al., 2011]

3.1.4 Scale-Invariant Feature Transform

Scale-invariant feature transform (SIFT) [Lowe, 2004] are local features, invariant to

image scale and rotation, used in computer vision and pattern recognition.The main steps in

SIFT computation, presented in [Lowe, 2004] are:

1. Scale-space extrema detection. All scales and image locations are searched through a

difference-of-Gaussian function in order to determine potential points of interests which

are invariant to scale and orientation.
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2. Keypoint localization: Location and scale is determined at each candidate location,

keypoints being selected based on measures of their stability.

3. Orientation assignment : Several orientations are assigned to each keypoint location,

considering local image gradient directions. All following operations are performed on

image data which has been previously transformed relative to the allocated orientation,

location and scale, in this way achieving invariance to these transformations.

4. Keypoint descriptor : All local image gradients are computed at the determined scale

in the regions surrounding the keypoints, being converted into a representation which

can handle important local shape distortion and variation in illumination (see Figure

3.6).

Figure 3.6: SIFT keypoints displayed as vectors illustrating scale, orientation, and location.

[Lowe, 2004]

3.1.5 Speeded Up Robust Features

Speeded Up Robust Features (SURF) [Bay et al., 2006] (see Figure 3.7) are local features,

scale and rotation invariant, used in computer vision for object recognition or 3D reconstruc-

tion. They are partly inspired by SIFT descriptors, but the authors proved that SURF

detector is faster than SIFT, due to the integral images they make use of. The descriptor is

based on 2D Haar wavelet responses sums around the point of interest.

3.1.6 Haar Wavelets

Haar wavelets [Oren et al., 1997] were the first features used in a real time vision system

[Viola and Jones, 2001]. Their main advantage is the fast computation, making use of integral

images. In [Oren et al., 1997] the main configurations were proposed: horizontal, vertical

and corner (see Figure 3.8), then in [Viola et al., 2005] they were extended. The features are

obtained by computing the difference between the sum of intensities in two rectangular areas

with different configurations and sizes (see Figure 3.8).
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Figure 3.7: SURF keypoints for a sunflower field (a) and a graffiti (b) [Bay et al., 2006]

Figure 3.8: Haar wavelets configurations: vertical (a), horizontal (b) and corner (c) [Oren

et al., 1997]

3.2 Classification

The performance of a pedestrian detection system is influenced by two important factors:

the extracted features and the learning model. Support Vector Machines and boosting are

widely used due to their good performance and extensibility [Dollar et al., 2012]. In the

literature there are also approaches using Artificial Neural Networks and more recently, Deep

Learning (e.g deep neural networks - DNNs), convolutional deep neural networks (CNNs),

deep belief networks (DBNs) or recurrent neural networks (RNNs) [Deng and Yu, 2014].

3.2.1 Support Vector Machines

Support Vector Machines (SVM) [Vapnik, 1998] are supervised learning models used for

classification and regression. Generally, classification is defined for the situation when there

are m objects, each one belonging to one of the n classes, and a classification task would

be to assign the belonging class to a new given object. In the case of binary classification

using SVM, being given a set of training exampleswith their associated labels (one of the

two categories), the SVM training algorithm constructs a model which is able to predict the

category of a new example (see Figure 3.9).
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SVMs apply linear classification to non-linear classification problems with a technique

known as ”kernel trick”, which implies using a kernel function that maps data from the input

space into a higher dimensional one, in which data becomes linearly separable. A separatting

hyperplane is found by maximizing the margin between the different classes.

Let T = (xi, yi)i=1,m be the training set, where xi ∈ <d represents the input instance

(data point) and yi the class label of the object xi yi ∈ {−1,+1}. In the training phase

of SVM, the input data points are mapped to a higher dimensional space. In this space, a

maximal separating hyperplane is determined. In order to build a maximal margin classifier,

the following convex quadratic programming problem has to be solved [Diosan et al., 2012]:

minimisew,b,ξ
1
2w

Tw + C
∑m

i=1 ξi

subject to: yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, ∀i ∈ {1, 2, . . . ,m}.
(3.1)

The coefficient C, also known as penalty error or regularization parameter, is a parameter

which controls the compromise between maximizing the margin and minimizing the classifica-

tion error. For larger C values, the SVM might choose a separating hyperplane with smaller

margin, as long as the number of correctly classified instances is maximized. On the other

hand, if the margin is too small and the pattern of future data to predict varies more from

the one used for training, the performance of the classification will be affected. Therefore,

the choice of C parameter is crucial for achieving a high classification performance. The

most popular manner to determine the optimal value of C is through cross-validation. The

training data is randomly partitioned into k folds having approximately equal size. Then,

k − 1 folds are used for learning and the remaining one for testing. The process is repeated

for all the folds (k times) and an average of the performances is computed [Olson and Delen,

2008].

The optimal hyperplane algorithm introduced originally by Vapnik in 1963 was a linear

classifier [Vapnik, 1995]. Nevertheless, in 1992, Boser, Guyon and Vapnik [Boser et al., 1992]

have proposed a way to build non-linear classifiers by using the kernel trick. The idea behind

kernel methods is to map the input data points into a higher dimensional space, where the

separating hyperplane must be found. The definition of this mapping φ implies describing

an inner product for the feature space through a kernel function: K(x, y) = φ(x)Tφ(y)

[Schölkopf, 2000]. The goal is to determine the result of the inner product, for which is not

needed to know the nature of the feature space or to have an explicit representation of φ.

Therefore, the only requirement is to compute the kernel function on all the pairs of input

instances [Olson and Delen, 2008].

In the literature there is a large variety of kernels that can be used. Examples of such

kernels are: Linear, Polynomial, Normalised Polynomial, Laplacian, Gaussian or Euclidean.

The choice of a suitable kernel function K is crucial for the learning process and must be per-

formed depending on the particular problem that has to be solved. This should also consider

a compromise between the model’s complexity and the classification accuracy, since there are
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situations in which a high speed of the classification is more important than obtaining a very

high accuracy (e.g. real time applications).

Figure 3.9: Classification using SVM

3.2.2 Adaptive Boosting

Adaptive Boosting (AdaBoost) [Freund and Schapire, 1997] is a machine learning algo-

rithm that biulds a strong classifier by combining weak classifiers (often rule-of-thumb) in

an iterative greedy mode. AdaBoost is well known due to its speed optimized by the use of

cascades and can be combined with any classifier to find weak rules. Its disadvantage is that

is sensitive to noise and outliers.

In the following we give a brief description of the main steps of the algorithm, as presented

in [Schapire, 2013]. Given a set of n training examples (x1, y1), (x2, y2), . . . (xn, yn), where xi

is a feature and yi a label, several iterations are performed. In each iteration, a distribution

is computed over the training examples and a weak learning algorithm is applied in order to

determine a weak hypothesis with low weighted error relative to the considered distribution.

The final hypothesis is obtained by computing the sign of the weighted combination of weak

hypotheses.

3.2.3 Artificial neural networks

Artificial neural networks (ANNs) are a type of machine learning model inspired by biolog-

ical neural networks. They are composed by neurons organized in layers and interconnected

by axons, allowing a large number of possible combinations. ANNs are able to provide a

non-linear decision and can also work with raw data, without needing an explicit feature ex-

traction process. Their advantage is that they are not sensitive to incomplete or noisy data,

being able to learn complex patterns, but they need a high training time and have many

parameters to be tuned.
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3.3 Literature review

Significant research has been performed in the area of pedestrian detection and recogni-

tion. In [Enzweiler and Gavrila, 2009] the authors present the components of a pedestrian

detection system and compare several state-of-the-art systems on the same datasets. Wavelet

features are combined with AdaBoost, HOG is used in conjuction with SVM and Shape-

texture with Neural Networks that use local receptive fields. The authors conclude that the

classifier which uses HOG with SVM achieves the best results among the considered models.

[Enzweiler and Gavrila, 2009].

In [Dollar et al., 2012] a challenging monocular visible dataset (the Caltech database) is

proposed, together with an detailed comparison of several pedestrian detectors. Their study

indicates that the best algorithms are the ones that make use of motion information.

A very recent research direction in pedestrian detection is oriented towards deep learning.

In [Ouyang and Wang, 2013] is introduced a framework for deep learning that learns four com-

ponents of a pedestrian detection system: feature extraction, deformation handling, occlusion

handling and classification, in order to maximize their strengths. Experimental evaluations

on Caltech data set indicate that their deep model outperforms the best-performing pedes-

trian detector at that moment. In [Angelova et al., 2015] is proposed a Large-Field-Of-View

deep network for pedestrian detection, which is able to process larger image regions much

faster than typical deep networks. The main idea of their method is to perform classification

simultaneously at multiple locations. Experimental evaluations on Caltech data set show

that their method is faster than joint deep one [Ouyang and Wang, 2013].

Even if deep learning is a promising approach for pedestrian detection, an important

difficulty is finding appropriate data sets to train on. Since it works on the whole image,

opposite to the classical approaches which involve the sliding window technique, it needs

very large annotated data sets with complex scenarios.

Another recent direction of research, on which we are going to focus in the next chap-

ter, approaches the combination of different features (multi-feature) and modalities (multi-

modality), extracted from visible domain like intensity, motion information extracted from

optical flow and depth information from the disparity map [Miron et al., 2015]. Some ap-

proaches combine depth and motion for hypothesis generation (see [Nedevschi et al., 2009],

[Enzweiler et al., 2008]), but since in the thesis we address the classification problem, we

are going to focus only on the ones which integrate them in the classification stage. Choos-

ing a suitable fusion scheme in order to combine the information extracted is crucial. In

the literature there are two classical fusion schemferes: the early fusion, at the low level of

features and the late fusion, at the high level of matching scores. Of course, there are also

approaches based on hybrid fusion schemes. In the following we are going to briefly present

some representative approaches from the literature from each category.

In [Dalal et al., 2006] is proposed a detector that uses a combination of appearance

descriptors obtained from a single frame of a video and motion descriptors obtained from
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optical flow or spatio-temporal derivates of the succeeding frame. The authors apply both low-

level and high-level fusion schemes. In the low-level fusion appearance and motion features

are concatenated in a large feature vector that feeds a single classifier, while in the high-level

fusion a two stage classification is used. First, individual classifiers are trained on each type

of features, then a classifier is used to combine their outputs. Their experiments show that

the high-level fusion approach is slightly better than the low-level one and could be improved

by combining the components in a more complex manner.

In [Wang et al., 2009] is proposed a human detector with partial occlusion handling, that

combines HOG and LBP into one feature vector, using a low-level fusion scheme. Experiments

indicate that their model outperforms other existing detectors on the INRIA dataset.

In [Rohrbach et al., 2009] is proposed a high-level fusion of spatial features obtained from

dense stereo and intensity images. Two classifiers are trained on features extracted from

depth, respectively intensity images, then their outputs are combined utilizing a set of fusion

rules: maximum, product, sum and SVM rules. Experiments on Daimler pedestrian data set

show that their high-level fusion approach outperforms the state-of-art intensity only model

and the low-level fusion approach using a joint feature space.

In [Oliveira et al., 2010] is presented an approach that combines HOG and local receptive

fields (LRF) features at the classification level. Each type of feature is classified using both

multilayer perceptrons (MLP) and SVM, then all outputs are fused using two fusion schemes:

majority voting and fuzzy integral. Experiments on Daimler-Chrysler data set indicate good

performances.

In [Walk et al., 2010b] are explored combinations of different classifiers: SVM and MPL-

Boost, respectively HIKSVM and MPLBoost, on the same feature set obtained by joining

appearance and motion features (HOG and histogram of oriented flow). Experiments on sev-

eral pedestrian data sets indicate a performance improvement over the individual classifiers.

In [Enzweiler et al., 2010] are used for the first time together appearance, motion and

stereo features for pedestrian recognition. The authors propose a multi-modality approach,

which combines features extracted from images in three modalities: intensity, depth and flow

into a mixture-of-experts framework. Later, in [Enzweiler and Gavrila, 2011] the framework

is extended, being able to combine information from multiple features and cues. On pose-

level are used shape cues based on Chamfer shape matching, on modality-level are considered

intensity, depth and flow modalities and on feature level are used HOG and LBP. Individual

expert classifiers on pose, modality and feature levels are integrated through a probabilistic

model. Experiments on Daimler data set illustrate an important performance boost over the

state-of-art classifier using intensity only and the joint feature approach.

In addition to the multi-feature and multi-modality approaches, there are models which

fuse information from different domains (multi-domain) like visible and far infrared domains

(see [Apatean et al., 2010], [Besbes et al., 2011]).

It was proved in the works above, that fusing information from multi-modality images

leads to an important performance boost of the pedestrian recognition system. In the litera-
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ture there are approaches using low-level fusion, by concatenating features from all modalities

into a large feature vector, or high-level fusion at classification level. Even if they achieve good

results, there are drawbacks to both approaches. The modality concatenation approach has

the disadvantage of high dimensionality, sensitivity to miss-calibration and miss-functioning

of on-board cameras and cannot be trained independently on each modality. The matching

scores fusion approach like sum, product, majority vote, can only use different weights for

the modalities, but not for each image in particular. With this in mind, our research ques-

tion is the following. Can a dynamic model eliminate the non-discriminative modalities for

each image in particular, representing a bounding box within an image frame, for reducing

complexity and improve performance? In the next chapter we are going to introduce a few

approaches for pedestrian recognition, including two dynamic models that aim to answer to

this research question. Even if our models are applied to the multi-modality fusion, they can

be generalized in order to handle multi-feature or multi-domain fusion.



Chapter 4

New approaches to pedestrian

classification

In this chapter, we address the problem of pedestrian recognition in single and multi-

modality images. The models introduced in this chapter are original, and were introduced in

[Andreica et al., 2013, Sirbu et al., 2014b, Rus et al., 2015, Sirbu et al., 2015, Besbes et al.,

2015].

The structure of the chapter is as follows. In Section 4.1 we define the problem of pedes-

trian recognition and its relevance, then we continue in Section 4.2 with a comparison of

several state-of-the-art features in far infra-red (FIR) spectrum. In Section 4.3 we aim to

investigate the effectiveness of using kernel descriptors, a generalization of HOG, for solving

the pedestrian recognition task. Even if kernel descriptors proved to obtain good perfor-

mances for visual recognition, to our best knowledge, they have not been used for pedestrian

detection so far.

We begin by presenting a short literature review on kernel descriptors, then we continue

with our studies on pedestrian recognition using these features for image representation.

In the first study we investigate how two learning algorithms, Support Vector Machines

and Genetic Programming (GP), are able to perform pedestrian recognition using kernel

descriptors, extracted with three types of kernels: Exponential, Gaussian and Laplacian,

while in the second one we study how kernel descriptors perform in single vs. multi-modality

pedestrian recognition.

In Section 4.4 we propose two dynamic models for pedestrian recognition, that are able

to select the most discriminative modalities for each image in particular and further use

them the classification process. The first one, Dynamic Modality Selection (DMS) selects

one suitable modality to classify an image, while the second one, Dynamic Modality Fusion

(DMF) performs a fusion of the modalities that are considered suitable. Finally, in Section

4.4.6 we present our software built in order to train and test our dynamic models.

The original contributions of this chapter are the following:

• A comparison of several state-of-the-art features in FIR spectrum on a new dataset

82
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(Subsection 4.2) [Besbes et al., 2015]

• The usage of kernel descriptors for pedestrian recognition (Subsections 4.3.2 and 4.3.3)

[Andreica et al., 2013, Sirbu et al., 2014b]

– A comparison on how two machine learning algorithms: SVM and GP are able

to learn based on KD features extracted by using three kernels: Exponential,

Gaussian and Laplacian (Subsection 4.3.2) [Andreica et al., 2013]

– A comparison on how KDs perform on single vs. multi-modality images, with

parameters optimized independently on each modality: intensity, depth and flow

(Subsection 4.3.3) [Sirbu et al., 2014b].

• A dynamic modality selection algorithm which retains one suitable modality for the

classification of an image among intensity, depth and flow (Subsection 4.4.4) [Rus et al.,

2015]

– Experimental evaluations of the algorithm on a pedestrian data set, analysis of

the results and comparisons to other approaches from the literature (Subsection

4.4.4.1) [Rus et al., 2015]

• A dynamic modality fusion algorithm which fuses the modalities considered suitable for

the classification of an image among intensity, depth and flow (Subsection 4.4.4) [Sirbu

et al., 2015]

– Experimental evaluations of the algorithm on a pedestrian data set, analysis of

the results and comparisons to other approaches from the literature (Subsection

4.4.5.1) [Sirbu et al., 2015]

4.1 Problem statement and relevance

Pedestrian detection is one of the most popular research directions in the domain of object

detection and computer vision. The number of vehicles has exponentially increased on the

road over the last two decades. As a consequence the number of car accidents has increased

too and along with that grew the need to develop better traffic safety mechanisms. Pedestrians

represent a great part of the traffic and in order to protect them, different pedestrian detection

systems were developed. The goal of these systems, called ADAS, is to improve driver’s

perception, in order to avoid collisions to pedestrians. A study performed by ABI Research

shows that Mercedes-Benz, Volvo and BMW dominate the market of cars enhancing ADAS

systems. It is very difficult to develop a very precise ADAS, mostly because of the way a

pedestrian’s appearance can vary. A pedestrian can change pose, carry different objects, have

different shapes and heights, wear different clothes.

The main requirements of a pedestrian detection system are:
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Figure 4.1: ADAS pedestrian detection

• Robustness. Such a system must be capable to recognize pedestrians with different

appearances, heights, clothes, under occlusions and in difficult environment conditions

(fog, snow, rain, dark).

• Precision. Unrecognized pedestrians can lead to dangerous situations, while many false

alarms can reduce driver’s confidence in the system.

• Real time. The system must detect the pedestrians very fast in order to give the driver

enough time to react.

• Cost. The cost of a pedestrian recognition system should not be higher than the cost

of the car. Sensors like Lidar or infrared cameras are very expensive. The system that

we propose needs only a stereo camera.

As presented in the previous chapter, pedestrian detection is performed in several steps.

Firstly, regions of interest (ROIs) are identified within an image frame (hypothesis genera-

tion), then ROIs are classified into pedestrian/non-pedestrian (hypothesis refinement). In this

thesis we are focusing on the latter step, which is reduced to a binary classification problem.

Generally, classification is defined for the situation when there are m objects, each one

belonging to one of the n classes, and a classification task would be to assign the belonging

class to a new given object. The classification task is performed in two steps: a training step

and a testing step.

In the training step, a classification model is learned from the training set, formed by

tuples and their labels. Let Im = {Im1, Im2, . . . , Imn} be the set of images to be classified in
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our particular problem of pedestrian classification, each image belonging to one of the classes

C = {pedestrian, non− pedestrian}. For each image (in our case a ROI within a frame) is

computed a set of features, described by an m-dimensional vector, Fi = (Fi1, . . . , Fim), Fik ∈
<, 1 ≤ i ≤ n, 1 ≤ k ≤ m. An element Fik from the vector characterizing the image Imi

represents the kth feature belonging to ith image. The training phase can be seen as the

process of learning a mapping function f : Im → C, for which f(x) = y, which are able to

predict the label y for a given image x.

In the testing step, the learned model is used for classifying unseen tuples from the test

set. For evaluating the classification performance, the class label predicted by the classifier

is compared to the actual one.

In order to optimize classifiers’ parameters, training is usually performed in two phases:

a learning phase, in which a model is learned on a subset of the training set and a validation

phase, where the model is tested on the remaining examples from the training set. The most

widely used optimimization technique, cross-validation, extends this idea and applies this

process k times on mutually exclusive subsets of data, taking into account the average of the

performances.

4.2 Feature comparison in FIR domain

It is known that HOG features are among the best in the visible domain. In this section

we aim to investigate how they perform in far infrared (FIR) images and also provide a com-

parison with other state-of-the-art features: HC Surf, Haar and Haar-like. This comparison

is our contribution to the work presented in [Besbes et al., 2015], in which Bassem et al. in-

troduce a new approach for pedestrian detection in FIR daytime images using a hierarchical

codebook of SURF.

4.2.1 Dataset

In the experiments we use the Tetravision image database, provided by the Artificial

Vision and Intelligent Systems Laboratory (VisLab) of Parma University [Bertozzi et al.,

2006]. The images, representing daytime road scenes, were taken with on-board stereo-vision

cameras in visible and FIR spectrum and then manually annotated. We chose for training

a subset of images containing pedestrians with a large variability in appearances, scales and

view points.

The training set contains 987 examples:

• 500 - pedestrians

• 487 - non-pedestrians

The test set contains a total number of 2092 examples:

• 1089 - pedestrians
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• 1003 - non-pedestrians

4.2.2 Experimental evaluation

Haar, Haar-like and HOG features were extracted from resized bounding boxes (BBs) of

64 × 128 pixels in FIR images. From the Haar wavelet we collected 64 features computed

at the fourth level decomposition. While the coefficients of Haar wavelets were used with

RBF-SVM classifiers, the Haar-like features [Viola and Jones, 2004] were trained on a cascade

of boosted classifiers with 11 stages. For HOG features, we computed histograms with 9 bins

on cells of 8×8 pixels, with a block size of 2×2 cells overlapping by one cell size.

Features HC Surf Haar Haar-like HOG

Classifiers RBF-SVM boosted linSVM

cascade

F-measure 96.2 91 95.43 95.7

(%)

Table 4.1: Comparison of state-of-the-art features in FIR domain [Besbes et al., 2015]

The results presented in table 4.1 show that, the HC local/global SURF-feature repre-

sentation introduced in [Besbes et al., 2015] achieves, on FIR images, the highest F-measure

allowing a significant improvement of performance when compared with Haar and wavelet

based features. Whereas, we observe that the proposed feature representation slightly outper-

forms the state-of-the-art Haar-like and HOG features. One should recall that the presented

results are obtained within the pedestrian detection framework introduced in [Besbes et al.,

2015], since the features were extracted from the BB provided by the ROI generation com-

ponent. For this comparison, we considered the state-of-the-art features, not in the visible

spectrum where they have been proposed, but on FIR images.

4.2.3 Conclusions

It was proved that HOG features achieve very good results, both in visible and FIR

images. Recently, in [Bo et al., 2010] is introduced a framework for feature extraction,

kernel descriptors, considered by the authors a generalization of HOG. Since they seem very

promising and, to our best knowledge, they have not been used for pedestrian recognition so

far, we aim in the following section to investigate their effectiveness for pedestrian recognition,

in both single and multi-modality images in visible spectrum.

4.3 Pedestrian recognition using kernel descriptors

In this section we begin by presenting a background on kernel descriptors, then we continue

with a couple of studies that we performed in order to investigate their performance on the
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particular task of pedestrian classification.

4.3.1 Background on kernel descriptors

Kernel descriptors (KDs) [Bo et al., 2010] can be seen as a generalization of orienta-

tion histograms (including HOG), which are a particular type of match kernels over patches

(regarded as a collection of blocks). Moreover, kernel descriptors intend to overcome some

drawbacks of histograms based approaches, in which similarity between different image re-

gions is determined based on their histogram. For computing the histogram, pixel values as

discretized into bins, therefore quantization errors might be introduced.

The advantage of kernel descriptors is that the pixel attribute values are not discretized,

but are converted into rich patch-level features. Therefore, the similarity between different

images regions is determined based on a match kernel function. For computation efficiency

reasons, approximate, low dimensional match kernels are computed.

Kernel descriptors can also be applied hierarchically over sets of kernels. In the hierar-

chical approach [Bo et al., 2011b], image features are obtained by recursively applying kernel

descriptors.

In [Wang et al., 2013], a supervised version of kernel descriptors is introduced, named

Supervised Kernel Descriptors (SKDES). In this supervised approach, the authors use the

bag-of-words (BOW) image classification pipeline and large margin criterion in order to learn

the low level patch representation, making the patch features more compact and achieving

better performance than KDs.

In [Bo et al., 2011a], Depth Kernel Descriptors are introduced for object recognition,

consisting of a set of kernel features on depth images for modeling 3D shape, size and depth

edges. The authors show that their features achieve a better performance than 3D ones like

Spin and that they obtain an improvement of the capabilities of recognition in RGB-D and

depth.

In the following, we are presenting three matching kernels: the gradient match kernel, the

color kernel and the local binary pattern kernel, that were introduced in [Bo et al., 2010],

and the approach used by the authors to learn compact features.

Image variantions can be identified by the gradient match kernel, Kgrad, which is com-

posed by three kernels: a kernel of magnitudes (represented by a linear one), an orientation

kernel and a position kernel:

Kgrad(P,Q) =
∑
z∈P

∑
z′∈Q

m̃(z)m̃(z′)ko(θ̃(z), θ̃(z
′))kp(z, z

′) (4.1)

where kp(z, z
′) = exp(−γp||z − z′||2) is a Gaussian position kernel between two pixels (given

by their position inside a region of the image), which is normalized to [0,1], and ko(θ̃(z), θ̃(z
′))

is a Gaussian kernel over orientations.

For the estimation of the difference among the orientations at pixels z and z′, the nor-

malized gradient vectors from (4.2) are used in the kernel function ko
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θ̃(z) = [sin(θ(z))cos(θ(z))] (4.2)

The normalized linear kernel weights the contribution of each pixel using gradient mag-

nitudes, being the same as the one from orientation histograms. The aim of the orientation

kernel ko is to compute the distance between the gradients of two pixels, while the position

kernel kp is destinated to compute the spatial distance between two pixels [Bo et al., 2010].

The color match kernel, Kcol, describes image appearance and is based on two kernels:

a color kernel and a position kernel:

Kcol(P,Q) =
∑
z∈P

∑
z′∈Q

kc(c(z), c(z
′))kp(z, z

′) (4.3)

where c(z) represents the color (the intensity or the RGB values) of the pixel from position

z. The color kernel, kc(c(z), c(z
′)) = exp(−γc||c(z)− c(z′)||2) measures how similar two pixel

values are [Bo et al., 2010].

The shape variations can be identified by the shape match kernel, Kshape, which is also

composed by three kernels: one of standard deviations of pixel values in a neighbourhood,

one of pixel value differences in a local window and a position kernel [Bo et al., 2010][Diosan

and Rogozan, 2012].

Kshape(P,Q) =
∑
z∈P

∑
z′∈Q

s̃(z)s̃(z′)kb(b(z), b(z
′))kp(z, z

′) (4.4)

where s̃(z) = s(z)/
√∑
z∈P

s(z)2 + εs, s(z) measures the dispersion of pixel values in a local

window (e.g. the 3 x 3 neighborhood around z), εs is a small fixed value, and b(z) is a

binary column vector, which binarizes the pixel value differences in local neighbouring region

surrounding z.

The normalized linear kernel s̃(z)s̃(z′) weights the contribution of each locally binary

pattern, and the Gaussian kernel kb(b(z), b(z
′)) = exp(−γb||b(z) − b(z′)||2)) measures the

shape similarity using local binary patterns [Bo et al., 2010].

The similarity between image patches is calculated in a principled way through match ker-

nels, but when image patches are large, evaluating kernels might be computational expensive

[Bo and Sminchisescu, 2009]. In order to efficiently obtain the corresponding representation

of an image by using KDs, the authors have proposed a solution of two steps: firstly, several

basis vectors are selected from the support region (selection being performed such as the

match kernels to be approximated by a good precision) and, secondly, the compact basis

vectors are learned (by using Kernel Principal Component Analysis)

4.3.2 KDs representation in SVM vs. GP

Since the most important conditions for achieving a performant classification algorithm

are using an appropriate representation of objects to be classified and an effective algorithm

for making decisions, we aim to investigate how efficiently can kernel descriptors represent
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data for two different learning algorithms: SVM and GP. Features are extracted using three

type of kernels: Exponential (4.5), Gaussian (4.6) and Laplacian (4.7).

KExp(x, y) = exp(−|x− y|
2σ2

) (4.5)

KGauss(x, y) = exp(−|x− y|
2

2σ2
) (4.6)

KLapl(x, y) = exp(−|x− y|
σ

) (4.7)

Why Kernels? Because, by definition, they catch the similarity between arbitrary inputs,

being able, in the same time, to integrate invariance (that is present in the case of image

processing), to capture dependencies and to perform an efficient computation and storage.

Why SVM? It is well known that linear SVMs are currently the most frequently used

classifiers in Computer Vision [Lampert, 2009] since its training time is approximately lin-

ear in data dimensionality and, also, approximately linear in number of training examples.

Furthermore, the evaluation time (per test example) is linear in data dimensionality and is

independent of number of training examples. According to [Lampert, 2009] SVMs with non-

linear kernel are usually used for small to medium sized Computer Vision problems because

their training time is generally cubic in number of training examples, while their evalua-

tion time is generally linear in number of training examples. Furthermore, the classification

accuracy is usually higher compared to linear SVMs. Shortly, linear SVMs are very fast in

training and evaluation, while non-linear kernel SVMs achieve better results, but do not scale

well.

Why GP? There are several arguments that sustain the utility of GP-based methods in

solving classification problems, in general, and object recognition, in particular. Firstly, a

GP-based method is able to perform an implicit and automatic transformation of data (the

original features can be pre-processed by different methods: selection of a subset of original

attributes, weighting the original attributes, construction of new features as functional ex-

pressions involving the original attributes). The feature selection is part of the evolutionary

process of GP that involves individuals encoded as variable-length chromosomes, while the

feature construction benefits of the GP individual’s ability to combine the attributes trough

different operations. Secondly, GP is able to extract various models (like classification rules

or discriminant functions) from data. Furthermore, due to its capability to evolve complex

discriminant functions, GP is able to solve both linear classification problems and non-linear

classification problems without apriori specifying the problem type (linear or non-linear).

When a linear classifier can not solve the problem, two solutions can be considered:

• a combination of several linear classifiers (as in the case of ANN or Boosting which

actually encode decision functions which depend non-linearly on input data) or
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• a data pre-processing step, when the original input data is transformed form the orig-

inal space of representation (non-linear) into a new space that is, in general, a higher

dimensional one and where the data becomes linearly separable. Usually this step is

performed through the kernel functions (as in the case of SVMs). For instance a set of

points can be non-linearly separable in Cartesian coordinates, but linearly separable in

Polar coordinates.

Unlike other machine learning algorithms, GP automatically combines these two solutions

during the evolution process, its individuals being able to automatically encode both type of

classifiers (linear and non-linear). Related to how GP can solve Computer Vision tasks, the

discriminant functions evolved by the GP algorithm are very akin to the kind of mathematical

operations and transformations usually applied to image processing. GP are flexible. It is

well known that GP individuals are able to represent a great variety of learning formalisms

(eg. decision trees, classification rules, discriminant functions), but also learning mechanisms

(like those involved in ANNs or SVMs). Flexibility also concerns the adaptability of GP

techniques to various tasks through its elements (fitness function, genetic operation, evolving

mechanisms). GP ensures interpretability of the evolved classifiers since the size of GP

individuals influences the comprehensibility of the model; the bigger the classifier, the harder

to interpret for humans. GP is able to ensure a competitive performance.

Therefore, we intend to study a GP-based classifier that is able to solve the given problem,

obtaining improvements that concern several aspects:

• performance of the classification – a better classifier in terms of accuracy

• human-independent models – GP individuals are able to automatically decide in two

very important aspects: knowledge and model representation. Instead of performing a

distinct pre-processing step, the GP method is able to automatically and simultaneously

select the most relevant features and construct a relevant model.

• less complex models – GP is able to automatically apply the principles of Occam’s

razor: if two models have the same performance (in our case if two decision algorithms

ensure the same classification accuracy) the less complex model should be preferred.

Taking into account all these aspects, we have used in our numerical experiments the

following methodology: several features are extracted directly from images through kernel

descriptors and, afterwards, two algorithms (an SVM and a GP-based classifier) are con-

sidered in order to learn the decision model. In both cases, the learning takes place in a

cross-validation framework.

4.3.2.1 Feature extraction

For extracting features we used the framework proposed by L. Bo in [Bo et al., 2010], for

which we tested different kernel functions.
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In the first step, based on the code developed by Xiaofeng Ren for kernel descriptors (http :

//www.cs.washington.edu/ai/MobileRobotics/projects /kdes/), various kernel functions for

extracting local features from an image were tested. Since the data set we work with contains

only gray images, we investigated only the gradient kernel descriptor [Bo et al., 2010], which

is able to capture image variations. As presented in Section 4.3, the gradient kernel descriptor

is based on three kernels: one of magnitudes, one of orientation and a position one.

The kernel of magnitudes is a linear one and we cannot replace it with another type of

kernel, because of the equivalence to the histogram of gradients that must be preserved. The

other two kernels from the composition of the gradient kernel descriptor, the orientation kernel

which calculates the similarity of gradient orientations and the position kernel that quantifies

the spatial closeness of two pixels, are in fact Gaussian kernels. Therefore, we changed the

implementation in order to evaluate other kernels like Exponential and Laplacian for both

orientation and position kernels.

4.3.2.2 Learning algorithms

In order to learn a classifier for discriminating between pedestrians and non-pedestrians,

we used two machine learning algorithms: SVM and GP.

4.3.2.2.1 SVM

Regarding the SVM, we have considered the LibSVM tool [Chang and Lin, 2001] because it

is reliable and has many features implemented. Unlike Bo’s framework [Bo et al., 2010], which

uses the primal formulation of SVM, we chose an implementation of the Sequential Minimal

Optimization method [Platt, 1999], due to is capability to solve the quadratic programming

optimization problem very fast.

In order to determine the most appropriate kernel for the classifier, we applied a Lin-

ear kernel, a Gaussian kernel, a Polynomial kernel and a Normalised Polyomial kernel with

different parameters, deciding for the linear one.

4.3.2.2.2 GP

For the evolutionary classifier a linear and efficient GP version is actually utilized: Multi

Expression Programming (MEP)[Oltean, 2005]. MEP uses a linear representation of chromo-

somes and a mechanism to select the best gene for providing the output of the chromosome,

unlike other GP techniques which use a fixed gene for output. Furthermore, no extra pro-

cessing in order to repair newly obtained individuals is required.

The advantages of dynamic-output chromosome over fixed-output chromosome are no-

table mostly in the situations in which the complexity of the target expression is not known.

Variable-length expressions can be implicitly provided, while other techniques like Grammati-

cal Evolution or Linear GP require special genetic operators that insert or remove chromosome

parts for achieving such a complex functionality. Moreover, due to code reuse, the MEP has
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exponential length while the encoded expression may have polynomial length [Oltean et al.,

2009].

4.3.2.3 Experimental evaluation

Several numerical experiments about how the discussed learning algorithms (an SVM

and a GP-based classifier) are able to solve a particular image classification task (pedestrian

recognition) are presented in this section. To evaluate the performance of the considered

classifiers, the Daimler-Chrysler (DC) crop wise data sets (18 × 36 pixels image size) have

been used as provided in [Munder and Gavrila, 2006]. Actually, a binary classification problem

was solved: separate the images that contain pedestrians from the images that do not. There

are considered 4480 images: 2240 for training the classifier and 2240 for testing. redWe could

have improved the learning process by using more examples for training than for testing, or

using cross validation and bootstrapping, but the purpose of the experiment was only to

compare the performance of the kernels within the Gradient kernel descriptors.

For evaluating the classification performance, accuracy rate was actually computed, which

represents the percent of correctly classified samples from a given data set (see Equation 4.8).

Accuracy =
TP + TN

TP + FP + FN + TN
(4.8)

computed positive examples computed negative examples

real positive examples True positive False negative

real negative examples False positive True negative

Table 4.2: Confusion matrix

True Positives (TP), False Negatives (FN), False Positives (FP) and True Negatives (TN)

represent components of confusion matrix given in Table 4.2.

However, the accuracy rate indicates performance of the classification in a confidence

interval. For deciding if a system outperforms another one, the confidence intervals of their

performance must be computed. A system is considered to outperform another one if their

confidence intervals are disjoint. For our statistical analysis we considered a confidence in-

terval of 95% (see Equation 4.9):

∆I = 1.96×
√
Acc(100−Acc)

N
% (4.9)

where N is the number of examples from the testing set.

In Table 4.3 are presented the accuracy rates (and their confidence intervals) by consider-

ing different kernels (when the image descriptors are actually constructed) and two learning

algorithms (SVM and MEP). The performance measures are computed by taking into account

the test images and the best identified classifiers (SVM with the best hyper-parameters and

MEP with an optimal configuration).
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Gaussian Exponential Laplacian

SVM 0.657 ± 0.010 0.535±0.010 0.599 ± 0.010

MEP 0.682 ± 0.009 0.667 ± 0.009 0.737 ± 0.009

Table 4.3: Accuracy rates (%) obtained by SVM and MEP algorithms on images represented

by different kernel descriptors.

Several remarks can be done by analysing the results indicated in Table 4.3.

Concerning the kernel descriptors, our results indicate that the Gaussian kernel seems

to be able to extract the most relevant features from images when the SVM classifier is

used, while the Laplacian kernel provides more significant information for MEP. Even if the

Gaussian kernel is largely involved in feature extraction process [Bo et al., 2010], our results

suggest that a deeper study should be performed regarding the proper selection of the kernel

involved in the feature extraction process. This study might also reveal some criteria for

selecting the most appropriate kernel descriptor to use for the input data of a particular

problem.

Regarding the learning algorithm, the evolutionary one seems to be able to better gener-

alise over unseen data compared to SVM, obtaining better accuracy rates for all three con-

sidered feature extraction methods. Even if GP obtained better accuracy rates that SVM, we

are going to use further the SVM from the following reasons: GP has variable performance

from run to run, caused by the initialization of chromosomes therefore introducing a bias, it

needs a large amount of time for training due to complexity (each chromosome is a model).

Moreover, we want to compare our results with the ones from the literature and to make

sure that the improvement comes from or dynamic approaches and not from the learning

algorithm.

4.3.2.4 Conclusions

A study on how two learning algorithms are able to perform pedestrian recognition in

images is presented in this section. Daimler-Chrysler benchmark image dataset is involved

in our numerical experiments.

The first step is to convert each image in a numerical representation relevant for the

classifier. Several kernel descriptors are considered on this purpose: Exponential, Gaussian

and Laplacian kernels. A statistical algorithm, SVM, and an evolutionary approach, MEP,

are used for the learning phase for which the input data is represented by the previously

extracted features.

Better accuracy rates are obtained when using the evolutionary model for all considered

kernel descriptors. Regarding the kernel descriptors used, SVM learning indicates that the

Gaussian is the best one, while MEP achieves the best results by using the Laplacian kernel.

Therefore, we can not conclude which is the most efficient kernel descriptor and we intend to

perform a further study of how the kernel selection influences the quality of recognition.
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4.3.3 Single vs. multi-modality pedestrian recognition

In this section we aim at investigating how does the kernel descriptor based classifier work

for single vs. multi-modality images. For the multi-modality approach we considered three

modalities from visible domain: intensity, depth and flow. We decided to address only the

visible domain, since it’s less expensive and employs less complex models.

4.3.3.1 Feature extraction

For the feature extraction phase we chose kernel descriptors [Bo et al., 2010], presented

in Section 4.3, because they overcome some drawbacks of histograms based techniques as

mentioned in Section 4.3.

4.3.3.2 Learning algorithm

For the learning phase we use Support Vector Machines (SVM) [Vapnik, 1995]. There

are two types of kernels used by SVMs: linear and non-linear. Even if the non-linear SVMs

perform better than the linear ones, the improvement of results is paid with high compu-

tational costs and memory which is a big problem for pedestrian detection systems which

must perform in real-time. From these reasons, we chose Liblinear [Fan et al., 2008], a very

popular implementation of linear SVM.

4.3.3.3 Experimental evaluation

In this section we aim at presenting the experimental evaluation of single and multi-

modality classifiers, using kernel descriptors for image representation.

In the experiments we use Daimler pedestrian dataset [Enzweiler et al., 2010], which

contains a collection of manually labelled bounding boxes containing pedestrians and non-

pedestrians in images captured in an urban environment [Enzweiler et al., 2010]. Additional

samples were created for each manually labelled pedestrian, by geometric jittering, while

the non-pedestrian samples were obtained through a shape detection pre-processing. Dense

stereo was calculated considering the semi-global matching algorithm [Hirschmuller, 2005],

while dense optical flow using structure and motion-adaptive regularized flow [Wedel et al.,

2009]. The dataset contains 48 x 96 px image crops in three modalities: intensity, depth and

optical flow, which represents the reason for choosing this dataset. Figure 4.2 illustrates a

pedestrian in each of these modalities.

The training set contains a total number of 84577 examples:

• 52112 – pedestrians

• 32465 – non-pedestrians

The testing set contains a total number of 41834 examples:

• 25608 – pedestrians
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(a) Intensity (b) Flow (c) Depth

Figure 4.2: Pedestrian sample from Daimler dataset in (a) intensity, (b) flow and (c) depth

images.

• 16235 – non-pedestrians

In our experiments we perform a fusion of features extracted by using KDs from three

type of images: intensity, depth and flow. The features are extracted using the software from

[Bo et al., 2010] and the learning is performed using Liblinear [Fan et al., 2008].

4.3.3.3.1 Evaluation measures

Designing classifiers for image recognition is a complex task, generally conducted by op-

timizing a single criterion: prediction accuracy. A such performance measure falls short of

expectations when data are described by skewed class distributions or in the case of unbal-

anced training data. A solution to this problem is given by a more complex criterion utilised

in the training phase of the classification: the Receiver Operating Characteristics (ROC)

curve [Fawcett, 2006].

Some concepts must be utilised in order to define the ROC curve. Suppose that the

input images and their characteristics are represented by a sample X = {x1,x2, . . . ,xn} and

their target classes Y = {y1, y2, . . . , yn}. Therefore, the classification algorithm must produce

predictions as to the labels of those input samples.

The fraction of detected pedestrians out of the total actual pedestrians represents the

true positive rate (TPR). The fraction of non-pedestrians classified as pedestrians out of the

total actual non-pedestrians represents the false positive rate (FPR). In machine learning, the

TPR is known recall (sensitivity), while the FPR is called the fall-out and can be computed

as one minus specificity.

It is known that SVM is a scoring classifier. In order to obtain the corresponding labels,

it is required to apply a threshold on those scores, tranforming the classifier into a discrete

classifier. In the case of a single decision model, by varying the values of the threshold,

all possible FP vs. TP rates are obtained. The ROC curve is obtained by representing
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graphically the TP rates against the FP rates. Based on this graph it is possible to visualise

the classification error rates per class, instead of just the general error of both classes [Fawcett,

2006].

Therefore, in order to measure the performance of our models, we plot the ROC curve,

which shows the performance of the classifier when its threshold is varied. The ROC curve

captures more information than the single accuracy measurement and facilitates the devel-

opment of method which adapt to varying conditions [Fawcett, 2006]. Thus, this graph is a

better objective for training classification algorithms than accuracy.

For comparing two models, we use the FPR at 90% detection rate, which is the reference

value in the literature. Good performances are indicated by small values for FPR.

4.3.3.3.2 Parameter optimization

Since the performance on the classification process strongly depends on the parameters

involved in both stages (feature extraction and learning), our approach involves an optimiza-

tion phase dedicated to identify the best parameters of the decision model.

First of all, the parameters involved in the description computing are optimized. Taking

into account that the images we work with are gray, we use the Gradient Kernel Descriptor.

The orientation kernel and the position kernel are Gaussian kernels, as we concluded from

the previous experiment that they achieve the best performance in conjunction with SVM

classifier. In order to obtain the best representation for our particular images containing

pedestrians and non-pedestrians, the parameters of the gradient kernel descriptor from Ren’s

implementation, kdesdim and contrast, have to be optimized on each type of image (intensity,

depth and flow). The kdesdim parameter establishes the number of features that are extracted

from each patch, whereas the gradient kernel usues the contrast parameter. These two

parameters are optimized by using a cascade approach.

For each combination of parameters an SVM model is trained on a learning set and tested

on a validation set. The best performance obtained on the validation set will indicate the

best parameters of kernel descriptors. The optimization process is performed independently

for each image modality (intensity, depth and flow).

After the optimization phase has been done, the optimal values of KD’s parameters are

utilised for determine the best image representation. These optimal characteristics are utilised

by the SVM algorithm in order to construct a decision model by using the training data.

In order to optimize it’s parameters, we extract from each type of image, KDs with varying

kdesdim and contrast values.

• As the default value for contrast from Ren’s implementation is 0.8, we search the

optimum in the interval [0.65, 0.85] with step 0.01.

• For the kdesdim parameter we search in the interval [30, 70] with step 2.



CHAPTER 4. NEW APPROACHES TO PEDESTRIAN CLASSIFICATION 97

• We mention that the boundaries of the search intervals have been empirically discovered

through experiments.

The total number of features extracted by KD is number of patches * kdesdim. In a 48 x

96 px image with an 8 x 8 px KD grid, there are 55 patches, so the number of features ranges

in the interval [1650, 3850]. Since our guide line is HOG descriptor [Dalal and Triggs, 2005]

which extracts 1980 features, we search for kdesdim values that provide a number of features

around this value.

For each combination of parameters an SVM model is trained on a learning set and

tested on a validation set. The sets are obtained by dividing the training set presented in the

previous section, in two subsets:

• Learning set: 2/3 from training set which contains: 34.741 pedestrians and 17.371

non-pedestrians

• Validation set: 1/3 from training set which contains: 17.371 pedestrians and 10.822

non-pedestrians

In the following we present the results achieved on the validation set, by varying kdesdim

and contrast values. From space reasons, we present only the most relevant results. The

parameters that minimize the FPR obtained at 90% detection rate (the ones in bold) are

chosen for each type of image:

• kdesdim = 54 and contrast = 0.78 for intensity images

• kdesdim = 54 and contrast = 0.76 for depth images

• kdesdim = 56 and contrast = 0.69 for flow images

The various FPRs obtained by different KD’s parameters and presented in Tables 4.4-4.9

indicate that the performance of the classification process in influenced by the KD’s param-

eters and the optimization process is able to identify the values that are able of improving

the pedestrian recognition.

4.3.3.3.3 Single-modality classification

In the previous section we presented the optimal KD parameters for each image modality.

The values were discovered through an optimization process, which was performed on the

training set (divided in learning and validation subsets). Using these parameters we extract

KD features for each type of image from the entire training set and then we learn an SVM

model.

The results obtained on the testing set for each of the three classifiers are presented in

Figures 4.3 and 4.5. We can notice that the best results, reflected by the smaller FPR, are

obtained on intensity images.
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Kdesdim FPR

40 0.009056

42 0.010164

44 0.010164

46 0.009148

48 0.009425

50 0.009887

52 0.009518

54 0.008963

56 0.009056

58 0.009056

60 0.008963

Table 4.4: FPR at 90% on intensity

images for contrast=0.8 and different

kdesdim values on validation set

Contrast FPR

0.74 0.008224

0.75 0.008224

0.76 0.008409

0.77 0.008409

0.78 0.008132

0.79 0.008963

0.8 0.008963

0.81 0.008316

0.82 0.008316

0.83 0.008409

0.84 0.008871

Table 4.5: FPR at 90% on intensity

images for kdesdim=54 and different

contrast values on validation set

Kdesdim FPR

40 0.026797

42 0.026797

44 0.026982

46 0.026797

48 0.026335

50 0.026335

52 0.025873

54 0.025781

56 0.026150

58 0.026243

60 0.025873

Table 4.6: FPR at 90% on depth

images for contrast=0.8 and different

kdesdim values on validation set

Contrast FPR

0.73 0.024949

0.74 0.024949

0.75 0.025042

0.76 0.024395

0.77 0.025504

0.78 0.025504

0.79 0.025504

0.8 0.025781

0.81 0.026612

0.82 0.026520

0.83 0.026150

Table 4.7: FPR at 90% on depth images

for kdesdim=54 and different contrast

values on validation set

In order to analyse the results statistically we have used a 95% confidence interval for the

FPR. Thus, Figure 4.3 depicts the confidence intervals obtained on the test set and reinforces

our conclusion (related to best results obtained on intensity images) from a statistical point

of view, also.
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Kdesdim FPR

40 0.055165

42 0.051469

44 0.052208

46 0.051377

48 0.050545

50 0.052208

52 0.051377

54 0.051654

56 0.050083

58 0.050083

60 0.048697

Table 4.8: FPR at 90% on flow images for

contrast=0.8 and different kdesdim values

on validation set

Contrast FPR

0.66 0.048327

0.67 0.048512

0.68 0.048327

0.69 0.048235

0.7 0.048790

0.71 0.048512

0.72 0.049067

0.73 0.048882

0.74 0.048974

0.75 0.049436

0.76 0.049344

Table 4.9: FPR at 90% on flow images for

kdesdim=56 and different contrast values

on validation set

4.3.3.3.4 Multi-modality classification

After having analysed the effect of each modality independently for KD features, we now

evaluate the effect of using modality fusion. The fusion is performed by joining the features

extracted from intensity, depth and flow images. An SVM model is learned on the obtained

feature vectors.

The results obtained on the testing set for the single-modality and the joint features

classifiers are presented in Figure 4.5. We can observe an improvement when fusing the

information provided by different modalities. Furthermore, the statistical analysis, based

on confidence intervals (that can be observed in Figure 4.4), consolidates the improvement

Figure 4.3: Single-modality classification performance on testing set. FPR at 90% detection

rate and the corresponding confidence intervals.
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achieved by the fusion of all three modalities over the single modality classifiers.

Figure 4.4: Single-modality vs. multi-modality classification performance on testing set. FPR

at 90% detection rate and the corresponding confidence intervals.

Figure 4.5: Single-modality vs. multi-modality classification performance on testing set, using

KD features. FPR at 90% detection rate.

4.3.3.3.5 KDs vs. HOG in pedestrian recognition

Kernel Descriptors [Bo et al., 2010] are considered a generalization of HOG features [Dalal

and Triggs, 2005], which are specific type of match kernels over patches.

In the following we aim to compare the performances of KDs and HOG on single and

multi-modality classification. Therefore, in Figure 4.6 are presented the results obtained on

Daimler data set using HOG features. By comparing the results achieved by KDs (Figure

4.5), with the ones obtained by HOG (Figure 4.6), we can conclude that KDs do not reach
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the performances of HOG. This could be caused by the dimensionality reduction step that

is performed within KDs using kernel principal component analysis. Further work could be

carried out in order to optimize this step.
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Figure 4.6: Single-modality vs. multi-modality classification performance on testing set,

using HOG features. FPR at 90% detection rate.

4.3.3.4 Conclusions

We proposed an approach in which each image was represented by using Gradient Kernel

Descriptor, whose parameters (kdesdim and contrast) were optimized by using a validation

set of data. The extracted optimized features were incorporated finally into an linear SVM

classifier in order to construct a decision model that can be utilised in order to label unseen

images. In addition to the parameter optimization, a feature fusion was investigated by

considering three modalities associated to an image: intensity, depth and flow.

We have studied how the multi-modality (intensity, depth, motion) usage vs. single-

modality usage influence the results of pedestrian classification. Optimized KD-based features

have different performances across modalities. The results obtained by using a single modality

indicate that intensity has the best performance on tested dataset, followed by depth and

flow. Nevertheless, the fusion of all modalities achieves to the most performant pedestrian

classifier.

As further work we plan to perform an optimization of the Gaussian kernel used by

Gradient Kernel Descriptor, also to investigate other types of fusion and to consider other

datasets.
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4.4 Pedestrian detection using dynamic modalities

It was proved that the fusion of features extracted from multi-modality images like inten-

sity, depth and flow, improves the performance of pedestrian recognition (see Section 4.3.3).

We have also proved it for KD features in Section 4.3.3.3. However, in some conditions,

pedestrians are recognized only in a particular modality. For example, a pedestrian in an low

contrast image is more difficult to be recognized in intensity than in other modalities.

In this section we propose two machine learning based algorithms that are able to dynam-

ically select the most discriminative modalities for each image sample, representing a ROI

within an image frame, that will be further used in the classification process.

4.4.1 Modality pertinence analysis

It is well known that the use of information from multi-modality images leads to a signifi-

cant boost in the performance of a pedestrian recognition system. One of the best approaches

so far is to concatenate the features extracted from each modality and build a large feature

vector, but it requires strong camera calibration settings and non-discriminative modalities

could lead to missclassification of some particular images.

In the following we present a comparative analysis of the classification performance of

single and multi-modality classifiers, using KD features. As we can see in the Figure 4.7, il-

lustrating the percent of correctly classified images using single modality classifiers: intensity,

depth or flow, almost a quarter from the total number of images can be correctly classified

using single modality classifiers in one or two modalities, but not in all three modalities. We

have to mention that in this figure Intensity, Depth does not refer to a fusion of the two

modalities, the interpretation being that 9.4% of the images were correctly recognized both

in the intensity based and depth based classifiers. Moreover, we can see in Figure 4.8 that

there are situations in which the classifier obtained by concatenating all the modalities is not

able to classify correctly the images, while single or bi-modality classifiers do. In this figure,

ID refers to the classifier that concatenates intensity and depth. This can be explained by

the negative impact of non-discriminative modalities within a feature fusion.

We believe that the relative pertinence of the modalities is not a static parameter that

could be estimated once for all, but varies dynamically from an image frame to another, from a

bounding box to another, according to the environmental conditions (illumination, occlusions,

cluttered backgrounds). Starting from this observation, we aim to design a dynamic model

that, based on the features extracted from an image in a given modality representing a ROI

within an image frame, is able to decide if that modality is suitable for the classification of

that image. Our goal is to dynamically include the modalities in the fusion, frame by frame,

in order to reduce complexity and improve performance. In the following, we shortly review

the main fusion schemes from the literature, together with the disadvantages that we aim to

overcome in our dynamic models.
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Figure 4.7: Percent of correctly classified images using single-modality classifiers on KD

features

Figure 4.8: Number of images missclassified by the IDF classifier and correctly classified by

single or bi-modality classifiers

4.4.2 Fusion models

Nowadays, developing complex systems requires the integration of several sources that

provide complementary information, which can be achieved through a fusion process. In the

literature, there are two classical fusion schemes applied for object classification:

• an early fusion, performed prior to classification, at the low-level of pixels (data fusion)

or features (feature level, see Figure 4.10) and

• a late fusion, posterior to classification, at the high-level of matching scores (see Figure

4.11).

Since one of our dynamic models focuses on fusion, in the following we briefly describe

one from each category, that has been already used in pedestrian recognition, together with

some drawbacks of these approaches that we want to overcome in the dynamic models that
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Figure 4.9: Information fusion in object recognition - possible taxonomy. Solid line are used

in order to emphasize the fusion elements that our model approaches, while the doted lines

denote other models from literature.

Figure 4.10: Early fusion general scheme - feature concatenation

Figure 4.11: Late fusion general scheme - decision fusion
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we propose. A more detailed classification of information fusion in object recognition can be

seen in Figure 4.9.

4.4.2.1 Fusion by feature concatenation

Feature concatenation [Wang et al., 2009] is a low-level approach, which involves the

construction of a joint feature space, that will forward feed the classifier. In the context

of multi-modality pedestrian classification, the feature vector will concatenate the features

extracted from all the modalities, e.g. intensity, depth and flow.

The drawback to this approach that we want to overcome in our dynamic models is that

it cannot adapt to varying environmental conditions, which is crucial for a robust pedestrian

detection system. This is caused by the fact that it uses the same modalities in all conditions,

without being able to choose the most pertinent ones depending on the situation. Moreover,

it is very sensitive to errors caused by the miss-calibration of on-board cameras or a miss-

functioning of one camera among them. Even if the cameras are mounted on a fixed platform

on the vehicle, passing over hills or holes could miss-calibrate them and a new calibration

process would be required online.

4.4.2.2 Matching scores’ fusion

There are several types of matching scores’ fusion like: majority vote, sum, product,

minimum, maximum, native Bayes or Demster-Shafer. Majority vote fusion [Oliveira et al.,

2010] is a high-level approach, which involves a fusion of classification scores. In the context

of multi-modality classification, the classifiers in each modality (intensity, depth and flow)

give a vote (pedestrian/non-pedestrian). The final class (pedestrian/non-pedestrian) is the

one that receives most of the votes.

The drawback to this approach in case of the fusion among intensity, depth and flow is

a large number of false positives, since the FP rate increases from intensity to depth and

flow (see [Enzweiler et al., 2010]). On the other hand, some pedestrians are recognized

only in a particular modality, for e.g. in flow. For instance, if the classifiers in intensity

and depth decide that the image contains a non-pedestrian, the majority vote will lead to

a missclassification. Because some pedestrians can be discriminated only in a particular

modality, the problem of missclassification will occur also in other types of fusion that weight

the importance of a modality in the same manner for all images (bounding boxes within a

given frame), in a static way, or use the confidence indicator of the classifier in each modality.

4.4.3 Modality selection component

The modality selection component represents the core of the dynamic models that we

propose, being responsible of determining the most suitable modalities for classifying an

image. Its design is based on a hybrid approach, which involves two types of classifiers: a

pedestrian classifier, capable to distinguish between pedestrians and non-pedestrians, and a
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modality pertinence classifier that decides whether a modality is suitable or not for a given

image.

The main idea of the modality pertinence classifier is to learn from the experience of the

pedestrian classifier in a particular modality if that modality is suitable or not for the clas-

sification of an image, representing a bounding box within a frame. We consider a modality

suitable for an image, if the pedestrian classifier was able to correctly classify the image using

that modality on a validation set.

Taking into account that the modality classifier learns from the experiences of the pedes-

trian classifier in a modality, we can intuitively assume that its performance is significantly

influenced by the number of experiences, therefore we applied and further compared two

learning methods.

4.4.3.1 Learning on a subset

In order to train the modality pertinence classifier we first need to train a pedestrian

classifier, as its output will be considered in the modality pertinence classifier.

In the first step, we train a pedestrian classifier for each modality: intensity, depth and

flow on the learning set, representing 2/3 from the training set, and applied the model on the

validation set, representing 1/3 from the training set. The input of the pedestrian classifier

consists of KD features extracted from images in intensity, depth or flow and the output is a

class label: ”pedestrian (P)” or ”non-pedestrian (NP)”.

In the second step, we train a modality pertinence classifier for each modality: intensity,

depth and flow on the validation set. The input of the pertinence classifier consists of KD

features extracted from intensity, depth or flow images and the output is a class label: ”suit-

able (S)” if the class predicted by the pedestrian classifier is the same with the actual class,

and ”not-suitable (NS)” otherwise.

4.4.3.2 Learning with cross validation

This approach is meant to enlarge the sets used for training the pedestrian and modality

pertinence classifiers, by performing cross validation (CV) with three folds. In the following

we are going to detail this process.

We split the training set into three folds: foldA, foldB and foldC and perform the

following steps:

• learn a pedestrian classifier on foldA and foldB and apply on foldC

• learn a pedestrian classifier on foldA and foldC and apply on foldB

• learn a pedestrian classifier on foldB and foldC and apply on foldA

At the end of this process, we will have the predicted classes for all the examples from

the training data, which will be used for building the modality pertinence classifier, in the

previously presented manner.
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4.4.4 Dynamic modality selection

In this section, we introduce the first dynamic model that we propose for pedestrian

recognition called Dynamic Modality Selection (DMS), which is able to dynamically select

for each image, representing a bounding box in a frame, the most relevant image modality

among intensity, depth and flow.

DMS uses the modality pertinence classifier presented in section 4.4.3 in order to find

the modalities suitable for the current image and chooses one among them, according to a

modality relative confidence indicator.

The steps performed by DMS are the following:

• check for all modalities if they are suitable for a given image, using the modality per-

tinence classifiers

• if there is more than one modality supposed to be suitable for the given image, choose

the most confident one, which satisfies Max{|PiP − PNPi |, i ∈ {I,D, F}}, where PP

represents the probability of being a pedestrian, while PNP the probability of being a

non-pedestrian (modality relative confidence indicator)

• classify the image into pedestrian or non-pedestrian, using the most confident from

the suitable modalities discovered in the first step, or the most confident among all

modalities if none of them is considered suitable

In Figure 4.12 we present the architecture of DMS.

Figure 4.12: The architecture of DMS
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4.4.4.1 Experimental evaluation

We conducted two experiments, in each one using a different mode for learning the modal-

ity classifiers. In the first one we trained the modality classifier on a subset of the training set

(the validation set), while in the second one we performed the training on the whole training

set, by cross validation.

The context of the experiments is the same as in the ones presented in Section 2: Daimler

dataset, gradient KDs extracted from intensity, depth and flow images and support vector

machines with Liblinear library.

In the training phase, which is performed offline, we train:

• three modality pertinence classifiers, one for each modality: MCI , MCD and MCF on

the training set (see section 4.4.3)

• three pedestrian classifiers, one for each modality: PCI , PCD and PCF on the training

set.

In the testing phase, which is performed online, for each image in intensity, depth and

flow:

• we apply the modality pertinence classifier for each modality, resulting a set of suitable

modalities, e.g. {I,D}

• we select one modality according to the modality relative confidence indicator, e.g. I

• classify with the classifier corresponding to the retained modality: e.g. PCI

The modality selection component plays a significant role in the DMS classifier. As you

can see in Figure 4.13 the performance of DMS increases together with the increase of the

number of examples used for training the modality selection classifier, since the DMS trained

with CV outperforms the DMS trained on a subset.

In Figure 4.14 we present the results obtained by the DMS classifier on the testing set,

in comparison with the results achieved by the single-modality classifiers (intensity, depth

and flow). In Figure 4.15 we compare our results to the ones obtained by the fusion models

presented in section 4.4.2: the classifier trained on the concatenated modalities, evaluated

for KD features in [Sirbu et al., 2014b], and the majority vote classifier.

We can notice that DMS achieves better performance than the single-modality classifiers

and the majority vote classifier, and is very close to the performance obtained by concate-

nating the three modalities.

4.4.4.2 Conclusions

We proposed a dynamic single-modality selection approach which is able to select the

most suitable modality to classify an image.

The advantages of our method over the joint modalities approach consist of:
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Figure 4.13: Classification performance for DMS with subset vs. cross validation modality

selection, using KD features . FPR at 90% detection rate.
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Figure 4.14: Single modality vs. DMS classification performance on testing set, using KD

features. FPR at 90% detection rate.

• lower complexity – the amount of time needed for training individual classifiers is less

than the one needed to train a classifier on a large feature vector, obtained by joining

all modalities
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Figure 4.15: Modality fusion vs. DMS classification performance on testing set, using KD

features. FPR at 90% detection rate.

• the individual classifiers can be trained independently on different datasets

The results achieved by the joint modalities classifier are slightly better than the ones

obtained by DMS, but taking into account that its performance is strongly influenced by

the amount of experiences of the pedestrian classifier in each modality (number of training

examples for the modality classifiers) from which it could achieve a performance boost, we

find DMS a promising alternative for the joint modalities classifier.

In the next section, we propose a model which combines the modality selection and the

joint modalities approaches for obtaining a benefit from the advantages of both models.

4.4.5 Dynamic modality fusion

In this section we present the second dynamic model for pedestrian recognition, Dynamic

Modality Fusion (DMF), which is able to dynamically determine the most suitable modalities

for a given image and perform a fusion of the features extracted from them.

DMF also uses the modality classifier presented in section 4.4.3 in order to find the

modalities suitable for the current image, but unlike DMS which selects only one modality,

it takes into account all the modalities which were considered suitable and further uses them

in the classification process.

The steps performed by DMF are the following:

• check for all modalities if they are suitable for the given image, using the modality

classifiers
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• if in the first step we get more than one modality that is supposed to be suitable for

the given image, join the features extracted from all suitable modalities

• if no modality is considered suitable, join the features extracted from all modalities

• classify the image into pedestrian or non-pedestrian, using the modalities discovered in

the first step

In Figure 4.16 we present the architecture of the DMF model.

Figure 4.16: The architecture of DMF

4.4.5.1 Experimental evaluation

We conducted two experiments, in each one using a different mode for learning the modal-

ity classifiers. In the first one we trained the modality classifier on a subset of the training

set (on a half of the training set), while in the second one we performed the training on the

whole training set, by Cross Validation.

The context of the experiments is the same as in the ones presented in Section 2: Daimler

dataset, gradient KDs extracted from intensity, depth and flow images and support vector

machines with Liblinear library.

In the training phase, we trained:

• three modality classification models, one for each modality: MCI , MCF and MCD,

on half of the training set in the first experiment and on the whole training set in the

second one
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• seven pedestrian-non-pedestrian classification models one for each combination of modal-

ities: PCI , PCD, PCF , PCID, PCIF , PCDF and PCIDF , on the training set.

In the testing phase, for each image in intensity, depth and flow:

• we applied the modality classifier for each modality, resulting a set of suitable modali-

ties, e.g. {I,D}

• we join the KD features extracted from the suitable modalities, e.g KD(I),KD(D)

• classify with the classifier corresponding to the selected modalities: e.g. PID

The modality selection component plays a very important role also in DMF classifier. As

you can see in Figure 4.17 the performance of DMF increases together with the increase of

the number of examples used for training the modality selection classifier. The performance

boost of CV approach over learning on a subset is less notable than for DMS due to the fact

that in this experiment the error rate is very small and that we started from more training

examples (1/2 of the training set) and added less new training examples.

The aim of the first experiment is to compare the performance of our dynamic model

with those of classifiers based on a single modality. Both approaches use the KD extracted

from images. Thus, in Figure 4.18 we present the results obtained by the DMF classifier

on the testing set, in comparison with the results achieved by the single-modality classifiers

(intensity, depth and flow).

Figure 4.17: Classification performance for DMS with subset vs. cross validation modality

selection, using KD features. FPR at 90% detection rate.

Then, a second experiment is dedicated to compare the classification results obtained by

the proposed approach to the ones obtained by the fusion models presented in section 4.4.2.
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Figure 4.18: Single modality vs. DMF classification performance using KD features. FPR at

90%.
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Figure 4.19: Static modality fusion vs. DMF classification performance on testing set, using

KD features. FPR at 90%.

Again, all the compared classifiers use the KD features extracted from images. There are also

other fusion models described in the literature [Enzweiler and Gavrila, 2011], but since they

are based on other image descriptors, a fair comparison with our models seems impossible.
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In Figure 4.19 the DMF model is compared to static fusion approaches where the classifier

is trained on the concatenated modalities, evaluated for KD features in [Sirbu et al., 2014b],

and for a majority vote classifier. We can notice that DMF outperforms both models, but its

improvement over the joint modalities classifier is rather small. In the next section we are

going to present some perspectives of improvement of the DMF.

4.4.5.2 Conclusions

We proposed a dynamic multi-modality fusion approach which is able to select the most

suitable modalities to classify an image and join the features extracted from them.

The advantage of DMF over the joint modality approach is that is less prone to the errors

caused by non pertinent modalities, while the advantage over the single modality classifiers

rises from the situations when the individual modality classifiers cannot discriminate correctly

between pedestrian and non-pedestrians, unless they join their features. Considering all the

aspects mentioned above, we find DMF model, a promising approach for multi-modality

pedestrian recognition.

Further work could be done to investigate methods to improve the modality selection com-

ponent and also to apply DMF on other datasets. Some possible directions of improvement

could be the integration of image based modality-pertinence indicators, a deeper optimization

of kernel descriptors (the Gaussian kernels from Gradient Kernel Descriptor and the dimen-

sionality reduction step) or the addition of other features like Shape Kernel Descriptors.

4.4.6 System architecture

In this section we present an overview on the software that we developed in order to train

and test our dynamic models: Dynamic Modality Selection and Dynamic Modality Fusion.

We used a layered architecture consisting of three layers: presentation layer, business layer

and data layer (see Figure 4.20), which facilitates the extension of the system with other

modules. We have to mention that this software was built for experimental purposes and

includes only the feature extraction, classification and evaluation modules, but can be easily

extended by adding a detection module.

In the following we are presenting the most important packages and classes of our system

by layers, as shown in Figures 4.22 and 4.21. The implementation of the system implies other

classes and methods that are not presented in the diagrams.

4.4.6.1 Business layer

The main packages of the business layer are the classification package and the evaluation

package.
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4.4.6.1.1 Classification package

This package contains the interface IDynamicModality and two implementation classes

DynamicModalitySelection and DynamicModalityFusion.

The interface IDynamicModality contains methods for training the pedestrian classifiers

and the modality pertinence classifiers and for predicting/testing.

The method trainPedestrianClassifiers receives as input the training files with intensity,

depth, respectively flow features in CSV format and returns a list of SVM models, one for

each image modality.

The method trainModalityPertinenceClassifiers receives as input the training files with

intensity, depth, respectively flow features in CSV format and returns a list of SVM models,

one for each image modality. There are several steps performed in this method. First, the

training set is split into three folds, then a pedestrian classifier is learned on each combination

of two folds and tested on the remaining one. Having the predicted values for the whole

training set, they are compared with the actual labels. If the predicted label is the same with

the actual one, an example containing the KD features and suitable label will be added to

the modality pertinence classifier’s training file, otherwise and example with notSuitable will

be added. After having the training file, an SVM model is built. This process is performed

for all image modalities.

The method predict receives as input the test files with intensity, depth, respectively flow

features in CSV format, the modality pertinence classifiers and the pedestrian classifiers and

the name of the file that will contain the SVM output and classifies the examples from the

test files. The format of the output file is: predictedClass probabilityPedestrian.

There are two implementation classes for this interface: DynamicModalitySelection and

DynamicModalityFusion, which have custom implementations for the trainPedestrianClassi-

fier and predict methods.

In the trainPedestrianClassifier method from the the class DynamicModalitySelection,

three SVM models are built, one for each modality, while in the method belonging to Dy-

namicModalityFusion class seven models are built, one for each combination of modalities.

In the predict method from the class DynamicModalitySelection, a check is performed for

all modalities in order to decide if they are suitable, using the modality pertinence classifiers.

If they are, classification into pedestrian or non-pedestrian will be performed, using the

pedestrian classifier corresponding to the chosen modality. If there is more than one modality

considered suitable, the most confident one will be chosen and if none of them is considered

suitable, the most confident among all modalities will be chosen.

In the the predict method from the class DynamicModalityFusion the suitable modalities

are also discovered using the modality pertinence classifiers. If there is more than one modal-

ity considered suitable, their features are concatenated, then classification into pedestrian or

non-pedestrian is performed, according to the pedestrian classifier that corresponds to that

combination of modalities.
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4.4.6.1.2 Evaluation package

This package contains the classes Evaluation and EvaluationMeasure and the enumeration

EvaluationMeasureType.

The class Evaluation contains a method evaluationPerformance which receives as input

the output file with the SVM predictions and a file with the actual class labels, each label on a

new line and returns a list of evaluation measures: accuracy, F-measure, recall and precision.

The displayROC method receives the same parameters and displays the ROC curve.

4.4.6.2 Data layer

The most important packages of the data layer are the feature extraction and the data

package.

4.4.6.2.1 Feature extraction package

This package contains the interface IFeatureExtraction and its implementation KDFea-

tureExtraction. The interface IFeatureExtraction contains a method extractFeatures that is

responsible for extracting features from a given image. The method receives as parameter the

path of the image and returns a list of float values, corresponding to the features extracted.

The class KDFeatureExtraction implements the FeatureExtraction interface for KD features.

4.4.6.2.2 Data package

This package contains the class DataPreprocessor which has a method extractKDFea-

turesToCSV responsible for extracting KD features from a folder with images and writing

them on a CSV file. This method is called for the folders with training and test images from

the pedestrian dataset, for positive and negative examples.
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Figure 4.20: Highlevel system architecture

Figure 4.21: Simplified class diagram of the data layer
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Figure 4.22: Simplified class diagram of the business layer



Conclusions

In this thesis we have focused on applying dynamic machine learning models to solve

supervised and unsupervised classification problems. The particular problems that we have

decided to approach are gene expression clustering and pedestrian recognition, because they

are very challenging, have a great importance in real life and are representative for the two

types of classification: unsupervised and supervised.

In the first research direction, we have introduced three dynamic models for clustering

gene expression data, in the context where expression levels for new time points are added

to the existing genes. The algorithms (CBDCGE, DHCGE and FDCGE) are capable of

adapting the previously obtained partitions when new measurements of gene expression levels

are added to the dataset, without performing re-clustering from scratch. The experimental

evaluations that we have performed on a real-life gene expression data set show that, in most

of the cases, the clustering is reached more effectively and is also more accurate by using

our proposed methods than by applying the k-means, hierarchical agglomerative clustering,

respectively fuzzy c-means algoritms from the beginning on the extended data. There are

situations when the partitions are too difficult to adapt after the addition of new attributes

and a full repartition should be considered.

In the same context of dynamic gene expression data, we have proposed a new adaptive

association rule mining method (ARARM), which is capable to adapt the set of interesting

rules discovered when new gene expression levels are added to the dataset, without performing

re-mining from scratch. Experiments on the same gene expression dataset show that ARARM

reaches the solution faster than applying the mining algorithm from the beginning.

Furher work in the first research direction could be done in order to determine in which

cases it is more appropriate to adapt (using CBDCGE, DHCGE or FDCGE) the partition

of the feature-extended object set than to recompute partition from scratch using a classic

clustering approach. We also plan to extend the experimental evaluations on other publicly

available datasets and to investigate methods to automatically identify the distance threshold

for the clusters (e.g. using supervised learning).

In the second research direction, we have addressed two problems. First, we have per-

formed a study on the efficiency of using kernel descriptors in pedestrian recognition, since

they obtained good results for visual recognition and to our knowledge have not been used

for this task so far. Then, we have introduced two dynamic algorithms, DMS and DMF, that

119
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are able to determine the most suitable modalities among intensity, depth and flow to classify

an image, representing a bounding box within an image frame, and further include them in

the classification process.

Kernel descriptors have proved to achieve good performances both in single and multi-

modality images. We have optimized the parameters of the gradient kernel independently on

each modality, using a grid search algorithm. The selection of the most appropriate kernel

(Exponential, Gaussian, Laplacian) is influenced not only by the images, but also by the

learning algorithm. Even if they are considered a generalization of HOG, they do not reach

their performances and this could be caused by the KPCA component used for dimensionality

reduction.

Experimental evaluations on a pedestrian dataset show that the dynamic modality selec-

tion and fusion models, DMS and DMF, represent promising approaches for multi-modality

pedestrian recognition. The first one has the advantages of lower complexity, individual

training on modalities, while the second one achieves a higher performance boost. Moreover,

the dynamic fusion schemes that we have proposed in our models are generic and could be

applied to other problems which need a dynamic integration of the sources.

Further work in the second research direction could be done to extend and improve our

dynamic models e.g. integrating image based modality-pertinence indicators, adding other

features to the fusion like LBP, or using others from visible domain like HOG, HOF or from

FIR domain, using other classifiers like Adaboost, and also to evaluate them on other datasets.

Moreover, improvements could be brought to kernel descriptors by optimizing the Gaussian

kernels (position kernel and orientation kernel for Gradient Kernel Descriptor) and adapting

the dimensionality reduction process in order to retain the most relevant information.
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