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Contexte et organisation de la thèse

Motivations

Le travail de cette thèse a initialement été motivé par une application, à savoir la commande

d’un système électropneumatique. En effet, l’IRCCyN est doté, depuis 2008, d’un tel système

Plestan and Girin [2009] (voir Figure 1), l’objectif de cette plateforme étant d’évaluer des lois

de commande dans le contexte des systèmes non linéaires incertains et perturbés. En effet, ce

Figure 1 – Photo du système électropneumatique de l’IRCCyN

système est typiquement non linéaire avec des incertitudes et est perturbé par des forces ex-

ternes. Pour ce type de système, la commande par modes glissants présente des avantages grâce

à sa robustesse et à la propriété de convergence en temps fini. Parmi les résultats obtenus sur

des actionneurs électropneumatiques, on peut citer ceux issus d’une commande par modes glis-

sants du premier ordre Bouri and Thomasset [2001]; Smaoui et al. [2005, 2001], d’ordre deux

Smaoui et al. [2005], et d’ordre supérieur Laghrouche et al. [2004]; Girin et al. [2009].

La commande par modes glissants d’ordre supérieur force la variable de glissement (qui est liée

à l’objectif de commande) et ses dérivées à converger vers zéro, tout en limitant le problème

du chattering. Cependant, la variable de glissement et ses dérivées d’ordre supérieur se doivent

d’être connues afin de calculer la commande. L’utilisation de ces dérivées d’ordre supérieur

introduit du bruit, ainsi que du retard, en raison du processus de dérivations successives. Ainsi,

dans le cas de la commande en position d’un actionneur électropneumatique, il est indispensable

de calculer sa vitesse et son accélération, ce qui introduit du bruit sur la commande. Aussi, il y

a un grand intérêt à proposer des solutions de commande par modes glissants ayant un recours

1
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limité aux dérivées d’ordre supérieur de la variable de glissement. Par exemple, l’algorithme

du super-twisting Levant [1998] est une loi de commande par retour de sortie; cependant, il ne

peut être appliqué qu’à des systèmes avec un degré relatif égal à un par rapport à la variable de

glissement.

A noter que, dans les cas pratiques, les dérivées de la variable de glissement sont déduites de la

mesure, en utilisant des différentiateurs numériques. Cependant, en raison du bruit de mesure,

la mauvaise précision de l’estimation peut introduire des perturbations supplémentaires dans

la loi de commande Levant [1998]; Yan et al. [2014b] et donc réduire de manière significative

l’efficacité de la loi de commande.

Cette thèse est consacrée au développement de stratégies de commande par modes glissants

d’ordre supérieur avec une réduction du nombre de dérivées de la variable de glissement. Dans

le cadre de la commande par modes glissants d’ordre deux, un des objectifs de cette thèse

est de proposer une nouvelle loi de commande qui assure l’établissement d’un régime glis-

sant réel d’ordre deux, en temps fini, en utilisant uniquement l’information de la variable

de glissement. De plus, contrairement au super-twisting, cet algorithme devra être appli-

cable aux systèmes de degré relatif égal à 1 ou 2.

En outre, dans cette thèse, la recherche d’une solution pour la commande par modes glissants

d’ordre trois est également faite. D’un point de vue applicatif, cela est intéressant car le système

électropneumatique présente une degré relatif égal à 3, dans le cas de la commande de sa posi-

tion. Dans le cas de la commande par modes glissants d’ordre trois, l’objectif de ce travail

a été de supprimer l’utilisation de la dérivée d’ordre deux de la variable de glissement

dans la loi de commande.

Enfin, d’après les résultats de Plestan et al. [2010b]; Taleb et al. [2013], le mécanisme d’adapta-

tion du gain est un outil très intéressant pour simplifier le processus de réglage de la lois de

commande et améliorer ses performances (l’adaptation du gain limitant son amplitude, et donc

le chattering). Ainsi, une autre partie de cette thèse est axée sur le développement de pro-

cessus d’adaptation du gain.

Organisation et contributions de la thèse

A l’issue d’une introduction générale présentant le concept de mode glissant, le mémoire

est divisé en trois parties, détaillant les contributions de cette thèse.

• La Partie I est dédiée à la présentation de trois différents types de commande par modes

glissants d’ordre deux. Le point commun de ces trois stratégies est l’utilisation de gains

commutants. Leurs performances sont comparées à la fin de cette partie à travers des

exemples académiques.

• Dans le Chapitre 3, la formalisation de commandes par modes glissants avec com-

mutation du gain est présentée. Pour les lois de commande présentées sous cette

forme, le gain commute entre deux niveaux: un niveau avec une faible amplitude,

et un autre niveau avec un gain large. Ce formalisme a été présenté dans Yan

et al. [2016e]. L’intérêt principal de ce formalisme est de réécrire plusieurs straté-

gies de commande par modes glissants d’ordre deux de manière uniforme. Afin

d’assurer l’établissement d’un régime glissant réel d’ordre deux, certaines condi-

tions basées sur une analyse géométrique des trajectoires du système sont données

pour la durée de l’application du grand gain. Ensuite, l’algorithme du twisting

Levantovsky [1985] (notée TWC) et une commande par modes glissants d’ordre

deux par retour de sortie Plestan et al. [2010a] (notée 2SMOFC) sont reformulés à

partir de la commutation du gain.
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• Le Chapitre 4 présente une nouvelle approche appelée Twisting-like Yan et al.

[2016d] (notée TWLC). Cette méthode peut être appliquée aux systèmes avec un

degré relatif égal à deux par rapport à la variable de glissement. La caractéris-

tique principale de cette méthode est que seule la variable de glissement est util-

isée. De plus contrairement à la méthode 2SMOFC, le grand gain est appliqué pen-

dant plusieurs périodes d’échantillonnage. Grâce à cette dernière caractéristique, le

temps de convergence du système est nettement amélioré par rapport à la méthode

2SMOFC et s’approche de celui obtenu par le twisting, d’où le nom de twisting-like.

L’utilisation du TWLC comme algorithme de différentiation est également présenté

dans ce chapitre.

• Des comparaisons entre les méthodes TWC, 2SMOFC et TWLC sont faites dans le

Chapitre 5 sur un exemple académique et sur un système pendulaire.

• La Partie II se concentre sur la commande par modes glissants avec gain adaptatif. La

première contribution de cette partie est le développement des versions adaptatives pour

les nouveaux algorithmes 2SMOFC et TWLC. Une autre contribution de cette partie

est la proposition d’une stratégie de commande par modes glissants d’ordre trois (notée

3SMC). Par rapport à la méthode par modes glissants d’ordre supérieur quasi-continu

Levant [2005b], cette technique utilise un ordre de différentiation réduit de la variable de

glissement. En outre le résultat d’adaptation du gain des méthodes 2SMOFC et TWLC

est étendu pour cette commande par modes glissants d’ordre supérieur.

• Dans le Chapitre 7, les versions adaptatives des algorithmes 2SMOFC et TWLC

sont présentées. L’adaptation du gain est basée sur la durée entre deux commutations

successives du signe de la variable de glissement. Ensuite, le gain est ajusté en

utilisant seulement l’information du signe de la variable de glissement.

• Dans le Chapitre 8, une loi de commande par modes glissants d’ordre trois (3SMC)

est proposée Yan et al. [2016c]. Dans le cas standard de la commande par modes

glissants d’ordre trois, les dérivées premières et secondes de la variable de glisse-

ment doivent être connues. Dans ce nouvel algorithme, l’utilisation de la dérivée

seconde est supprimée. Cela permet d’éviter l’introduction, par le dérivateur, de

bruit supplémentaire. De plus, l’adaptation du gain est également abordée afin de

simplifier son réglage.

• La Partie III présente l’application des nouvelles stratégies de commande à deux sys-

tèmes expérimentaux.

• Le Chapitre 9 traite du problème de commande de la position d’un système élec-

tropneumatique. Il s’agit typiquement d’un système non linéaire avec incertitudes

et perturbation. Des lois de commande basées sur la théorie des modes glissants ont

déjà montré leur intérêt sur ce type d’applications, par rapport à d’autres Chillari

et al. [2001]; Brun et al. [1999]. En premier lieu, les commandes par modes glis-

sants d’ordre deux TWC, 2SMOFC et TWLC sont appliquées au système électrop-

neumatique, et leurs performances comparées. Ensuite, les versions adaptatives des

méthodes 2SMOFC et TWLC sont mises en oeuvre. L’effet de l’utilisation d’un

gain adaptatif est mis en évidence à partir des résultats expérimentaux. Enfin, la

commande par modes glissants d’ordre trois (3SMC), présentée dans le chapitre 8,

est appliquée. Ses performances sont comparées à celles obtenues avec la com-

mande par modes glissants d’ordre supérieur (HOSMC) Levant [2005b].

• Dans le Chapitre 10, la commande de l’attitude d’un système volant (hélicoptère à

3 degrés de liberté Quanser Quanser [2006]) est abordée. Puisque les hélices sont
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sensibles aux vibrations, ce système nécessite une entrée continue. Ainsi, une ver-

sion “intégrale” de la méthode TWLC est développée Yan et al. [2016b]. Cette

loi de commande permet d’obtenir une entrée continue. Grâce aux essais expéri-

mentaux, la performance de cette nouvelle méthode de commande est comparée à

l’algorithme du super-twisting Levant [1998].
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This chapter provides an overview of the sliding mode concept. Section 1.1 is devoted to the

introduction of the basic concepts of the first order sliding mode control. Then, the chattering

phenomenon is presented and solutions developed to reduce the chattering are presented. Sec-

tion 1.3 is devoted to the high order sliding mode control, whereas sliding mode control with

gain adaptation is described in Section 1.4. Finally, the motivations for research works in this

thesis are exposed in Section 1.6, as well as the organization and contribution of the thesis in

Section 1.7.

1.1 Principle of sliding mode control

The sliding mode control approach is an efficient tool to the complex control problem of

nonlinear uncertain systems. The main advantages of sliding mode control consist in its low

7
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sensitivity to parameter uncertainties and disturbances, the finite time convergence and its rela-

tive simplicity for application. The principle of the sliding mode control is to force the system

trajectories to reach a domain (named sliding surface) in a finite time. This domain is attractive:

once the system trajectory has reached it, it is insensitive to the perturbations and uncertain-

ties, and the dynamics of the closed-loop system is linked to the sliding surface definition. The

design of the sliding mode control is made in two steps. The first one consists in defining the

sliding surface from the control objective (it is generally described as a differential equation

involving the system output). The second step consists in designing a discontinuous control

law, in order to force the system trajectories to reach and to remain on the sliding surface after

a finite time, in spite of the uncertainties and perturbations.

In the sequel, one considers the uncertain nonlinear system

ẋ = f(x, t) + g(x, t) · u
y = h(x)

(1.1)

with x ∈ X⊂R
n the system state (X being a bounded subset of Rn), and u ∈ R the control

input. The control output is y ∈ R
1. Functions f(x, t) and g(x, t) are differentiable uncertain

vector-fields.

1.1.1 Sliding variable and sliding surface

Define the function σ(x, t) : X × R
+ → R as a sufficiently differentiable function which

can be viewed as a fictive output for system (1.1) (in the sequel, details concerning the relation

between σ and y will be given). The function σ is named sliding variable. The sliding surface

S is defined by

S = {x ∈ X , t ≥ 0|σ(x, t) = 0} (1.2)

Definition 1.1.1 (Utkin [1992]). There exists an ideal sliding mode (or called sliding motion)

on S if, after a finite time tF , the solution of system (1.1) satisfies σ(x, t) = 0 for all t ≥ tF .

The sliding surface can be considered as a hypersurface in the state space. Once the system

trajectories are evolving on the sliding surface, the dynamics of the system is determined by its

definition. Furthermore, the choice of S (and then of σ) must lead to the convergence of the

system output towards the control objective.

The standard sliding mode control firstly proposed by Utkin [1977] is the first order sliding

mode control. It can be applied to systems with relative degree equal to one with respect to the

sliding variable.

Definition 1.1.2 (Isidori [2013]). Consider system (1.1), with the sliding variable σ. It is said

to have the relative degree r, if the Lie derivatives locally satisfy the conditions

Lgσ = LfLgσ = . . . = Lr−2
f Lgσ = 0, Lr−1

f Lgσ 6= 0 .

The relative degree of the sliding variable is interpreted as the minimum number of times that

one has to differentiate σ, with respect to time in order to make appearing explicitly of u .

Supposing that the control objective is to make the output y(t) of system (1.1) track a reference

signal yref(t), then the control task is to force the tracking error

e = y(t)− yref(t) (1.3)

towards zero. Consider the following assumption

1. For a sake of clarity, the sliding mode concepts are presented in single input-single output (SISO) case.
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Assumption 1.1.1. The relative degree of system (1.1) with respect to the tracking error e equals

r, i.e.

e(r) = y(r)(t)− y
(r)
ref(t)

= ψ(x, t) + b(x, t)u
(1.4)

with b(x, t) 6= 0.

Then, consider the following definition of the sliding variable

σ(x, t) = e(r−1) + . . .+ c2ë + c1ė+ c0e , (1.5)

the coefficients ci (0 ≤ i ≤ r − 2) being chosen such that the polynomial

P (λ) = λr−1 +
r−1∑

i=0

ciλ
i (1.6)

is a Hurwitz polynomial. Therefore, the convergence of σ to zero leads to the asymptotic

convergence of the tracking error e to zero. Moreover, the sliding variable has a relative degree

equal to one, given that

σ̇(x, t) = er +
r−2∑

i=0

cie
i+1

= ψ(x, t) +

r−2∑

i=0

cie
i+1 + b(x, t)u

= a(x, t) + b(x, t)u

(1.7)

with

a(x, t) = ψ(x, t) +

r−2∑

i=0

cie
i+1 (1.8)

Consider now the following assumption

Assumption 1.1.2. Function a(x, t) is a bounded uncertain function, whereas b(x, t) is a posi-

tive and bounded function. Thus, there exist positive constants aM , bm, bM such that

|a(x, t)| ≤ aM
0 < bm ≤ b(x, t) ≤ bM

(1.9)

for x ∈ X and t ≥ 0.

Once the sliding variable is defined, the second step consists in designing the control input u in

order to stabilize system (1.7) in a finite time, and in spite of uncertainties on both functions a
and b.

1.1.2 First order sliding mode control input design

The control input u must be designed in order to force the system trajectories to reach and

evolve on the sliding surface (1.2) in spite of the uncertainties and perturbations. This task can

be achieved by applying Lyapunov function technique.

Definition 1.1.3. A function V : Rn → R is a candidate Lyapunov function if

• V (0) = 0;
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• ∀x ∈ X \ {0}, one has V (x) > 0.

Then, the sign of the derivative of the candidate Lyapunov function gives the information about

the system stability. For the sliding variable σ (1.5), a candidate Lyapunov function takes the

form

V (σ) = 1
2
σ2 (1.10)

which is positive definite; so Definition 1.1.3 is satisfied. In order to ensure the asymptotic

convergence of the sliding variable σ, the time derivative of V has to be negative definite i.e.

V̇ (σ) = σσ̇ < 0 . (1.11)

The inequality (1.11) is called the attractive condition. Remark that in order to achieve the finite

time convergence of σ towards zero, a more strict condition called η-attractive condition Utkin

[1992] reading as

σσ̇ ≤ −η|σ|, η > 0 (1.12)

must be fulfilled. It means that

V̇ ≤ −η
√
2V . (1.13)

This latter yields that

d
√

2V (t)

dt
≤ −η (1.14)

then
√

2V (t)−
√

2V (0) ≤ −ηt . (1.15)

One has

ηt ≤ |σ(0)| − |σ(t)| . (1.16)

Consequently, σ reaches zero in a finite time tF with

tF ≤ |σ(0)|
η

. (1.17)

Therefore, a control u computed to satisfy condition (1.12) will drive the sliding variable σ to

zero in a finite time. A such control u takes the form

u = −Ksign(σ) . (1.18)

The control gain K must be chosen large enough to ensure the η-attractive condition. Then,

from (1.12), the gain K must verify

K ≥ |a(x, t)|+ η

b(x, t)
. (1.19)

From Assumption 1.1.2, a sufficient condition reads as

K ≥ aM + η

bm
(1.20)

Then, with the control input (1.18) where the gain verifies (1.20), the convergence of σ to zero

is ensured in a finite time tF given by (1.17). Once the system trajectory is evolving on the

sliding surface, the dynamics of the system is determined by the parameters in the definition of

the sliding variable (1.5). Then, given the feature (1.6), the tracking error will asymptotically

converge to zero.
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1.1.3 Example

In order to clarify the first order sliding mode control design, an academic example in

Laghrouche [2004] is introduced. Consider the following system which is under the form (1.1)

ẋ1 = x2
ẋ2 = u+ αsin(y)
y = x1

(1.21)

with α ∈ R, αsin(y) being a matched perturbation. Define the sliding variable as

σ = x2 + c1x1 with c1 > 0 . (1.22)

Then, the sliding surface is given by

S = {x ∈ X |x2 + c1x1 = 0} . (1.23)

Once the system trajectories are evolving on the sliding surface, one has x2 = ẋ1 = −c1x1. It

yields that x1(t) = x1(0)e
−c1t. Then, the system output y = x1 will exponentially converge to

zero, with a convergence rate defined by c1. Then, design the control input as

u = −Ksign(σ) . (1.24)

According to (1.19), the gain K must be large enough such that

K ≥ η + |c1ẏ|+ α|sin(y)| . (1.25)

If it is the case, the controller forces the system trajectories to the sliding surface in a finite

time.

Figure 1.1 displays the system trajectories on the phase plane, where the sliding surface is

represented by the red dotted line crossing the origin point. The initial condition is chosen on

the x1−axis (x2 = 0). In a finite time, the system trajectory reaches the sliding surface. Then,

the system dynamics is determined by the definition of the sliding surface (i.e. by the choice

of c1). Figure 1.2 shows the states variables (top), the control input (middle) and the sliding

variable σ (bottom). Thanks to the discontinuous control input, the system states x1 and x2
converge to zero in spite of the perturbation.

1.2 Chattering phenomenon

The “ideal” sliding motion σ = 0 requires the switching of the control input at an infinite

frequency. Obviously, in practice, only the switching at a finite frequency can be achieved.

Then, in practical cases, the discontinuous control input causes an oscillation phenomenon,

called chattering phenomenon Utkin and Lee [2006]. The chattering may be a harmful phe-

nomenon because it leads to low control accuracy, high wear of moving mechanical parts, and

high heat losses in power circuits. There are two main reasons which can cause the chattering:

firstly, it can be caused by fast dynamics which have been neglected Utkin and Shi [1996]; the

second reason is the use of digital controllers with finite sampling period Guldner and Utkin

[2000]. Since the control is constant within a sampling period, the limited sampling frequency

leads to the chattering as well. In the previous example, the simulation has been made with

a limited sampling period. So, if one makes a zoom around the sliding surface (σ = 0) (see

Figure 1.3), under the discontinue control input, the chattering phenomenon clearly appears.
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Figure 1.1 – Trajectory of system (1.21) in the phase plane (x1, x2).
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Figure 1.2 – Top. State variables x1 and x2 versus time (sec); Middle. control input u versus

time (sec); Bottom. sliding variable σ versus time (sec).

In order to reduce the chattering phenomenon, several solutions have been proposed. For exam-

ple, a method consists in replacing the “sign” function by an approximate continuous one, in a

vicinity of the sliding surface S Burton and Zinober [1986]. In this case, the system is said to

have a “pseudo” sliding motion Yu and Potts [1992]. In the sequel, some approximate functions

are introduced.

The saturation function. The function sign(σ) (Figure 1.4 (a)) is replaced by a linear function

when the system trajectory is evolving around a vicinity of the sliding surface with a width of

./p_intro/exp11.eps
./p_intro/exp111.eps
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Sliding surface

σ = 0

Chattering

Figure 1.3 – The chattering phenomenon.

2δ (see Figure 1.4 (b)). Its expression is given by

sat(σ, δ) =

{
sign(σ) if |σ| > δ
σ

δ
if |σ| ≤ δ

(1.26)

The atan function. For a small enough parameter δ, the function

v(σ, δ) =
2

π
atan(

σ

δ
) (1.27)

is an accurate approximation of the sign function. The graph of this function with δ = 0.02 is

shown in Figure 1.4 (c).

The htan function. Another solution is to use the hyperbolic tangent function

v(σ, δ) = htan(
σ

δ
) (1.28)

with 0 < δ < 1. Its graph with δ = 0.1 is given by Figure 1.4 (d).

Note that replacing the sign function by its continuous approximation allows to reduce the

chattering, but also reduce the robustness of the controller.

Another solution to reduce the chattering phenomenon, that is displayed in the sequel, consists

in designing high order sliding mode controller.

1.3 High order sliding mode control

The standard sliding mode control can be applied to systems with relative degree equal to

one with respect to the sliding variable. As viewed previously, the high frequency switching of

the control input induces chattering phenomenon. Since the two last decades, the development

of high order sliding mode control attracts a lot of attention such as the works Bartolini et al.

[1998]; Levant [2003, 2005a]; Laghrouche et al. [2007]. This class of controllers consists in

driving the sliding variable and a finite number of its consecutive time derivatives to zero in

a finite time. By this way, the discontinuous control acts on high order time derivative of the

sliding variable which leads to the chattering attenuation.

./p_intro/cht.eps
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Figure 1.4 – Sign function and some approximate functions.

Definition 1.3.1. Shtessel et al. [2014] Consider system (1.1) with the sliding variable σ(x), let

r ≥ 1 be an integer. Then, if

1. the successive time derivatives σ, σ̇, . . . σ(r−1) are continuous functions of x;

2. the set

{x ∈ X |σ = σ̇ = . . . = σ(r−1) = 0} (1.29)

is a nonempty integral set;

3. the Filippov set of admissible velocities at the r-sliding points (1.29) contains more than

one vector;

the motion on the set (1.29) is said to exist in an rth-order sliding mode. The set (1.29) is called

the rth- order sliding mode set.

If the controller switches with an infinite frequency, the system trajectories will theoretically

reach in a finite time the rth-order sliding set. However, in reality, it is impossible to satisfy this

condition, such sliding mode cannot be attained. The sliding motion can only take place in a

vicinity of the rth-order sliding mode set. This behavior is called real rth-order sliding mode.

Definition 1.3.2. Levant [2003] Consider the nonlinear system (1.1) and the sliding variable

σ, let r ≥ 1 be an integer; consider also an integer r ≥ 1. Assume that the successive time

derivatives σ, σ̇, . . . , σ(r−1) are continuous functions. The manifold defined as (Te being the

sampling period of the control law)
{
x | |σ| ≤ µ0T

r
e , · · · , |σ(r−1)| ≤ µr−1Te

}
(1.30)

with µi ≥ 0 (with 0 ≤ i ≤ r − 1), is called “real rth-order sliding mode set”, which is non-

empty and is locally an integral set in the Fillipov sense. The motion on this manifold is called

“real rth-order sliding mode” with respect to the sliding variable σ.

In the sequel, only some algorithms which are involved in the thesis work, are presented. How-

ever, readers can found other high order sliding mode controllers in

• the works Bartolini et al. [1996, 1998, 1999, 2001]; Plestan et al. [2010a] concerning

second order sliding mode control;

• the papers Levant [2005a]; Laghrouche et al. [2007]; Plestan et al. [2008a] about higher

order sliding mode control.

./p_intro/sign.eps
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1.3.1 Twisting and super-twisting algorithms

Consider the system (1.1) and the sliding variable σ(x, t), the objective of the second order

sliding mode control being to drive σ and its first time derivative to zero in a finite time i.e.

σ = σ̇ = 0 . (1.31)

Twisting control [Levantovsky [1985]]

This method can be applied to a class of systems with a relative degree equal to one or two with

respect to the sliding variable. Consider the system (1.1), and without loss of generality, define

from the control objective the sliding variable σ(x, t) with a relative degree equal to two. One

gets

σ̈ = a(x, t) + b(x, t) · u (1.32)

with functions a(x, t) and b(x, t) supposed to be bounded. Suppose that there exist positive

constants aM , bm, bM such that

|a(x, t)| ≤ aM
0 < bm ≤ b(x, t) ≤ bM

(1.33)

for x ∈ X and t > 0. The twisting algorithm Levantovsky [1985]; Shtessel et al. [2014] reads

as

u(t) = −K1sign (σ)−K2sign (σ̇) . (1.34)

If K1 and K2 satisfy the conditions

K1 > K2 > 0 , (K1 −K2)bm > aM
(K1 +K2)bm − aM > (K1 −K2)bM + aM ,

(1.35)

the controller guarantees the establishment of a second order sliding mode with respect to σ
in a finite time. Remark that in the twisting algorithm, both the sliding variable and its time

derivative are required.

Super-twisting control [Levant [1998]]

The super-twisting algorithm Levant [1998] can be only applied to systems with a relative de-

gree equal to one with respect to the sliding variable. Then, the discontinuity acts on the first

time derivative of the control input. Due to the structure of the algorithm, a continuous input is

obtained, which means that the chattering is reduced. Consider the system (1.1), the dynamics

of the sliding variable reading as

σ̇ = a(x, t) + b(x, t) · u (1.36)

with functions a(x, t) and b(x, t) supposed to be bounded. There exist positive constants

C, bm, bM , UM , q such that

|ȧ|+ UM |ḃ| ≤ C
0 < bm ≤ b ≤ bM
|a/b| < qUM
0 < q < 1

(1.37)

Then, the super-twisting algorithm is given by Levant [1998]

u = −λ|σ|1/2sign(σ) + u1

u̇1 =

{
−u if |u| > UM
−αsign(σ) if |u| ≤ UM

.
(1.38)

With α > C/bm and large enough λ, the controller (1.38) ensures the establishment of a second

order sliding mode with respect to σ i.e. σ = σ̇ = 0.
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1.3.2 High order sliding mode controllers

Among various algorithms Laghrouche et al. [2007]; Plestan et al. [2008a]; Levant [2005b]

only the quasi-continuous sliding mode controller Levant [2005b] is detailed in the following:

this algorithm will be used for the electropneumatic system for performances comparisons.

Consider the system (1.1), and suppose that the sliding variable σ is defined such that the relative

degree of (1.1) with respect to σ equals r, which is constant and known. It means that

σ(r) = a(x, t) + b(x, t)u (1.39)

with functions a(x, t) and b(x, t) supposed to be bounded. There exist positive constants

aM , bm, bM such that
|a(x, t)| ≤ aM
0 < bm ≤ b(x, t) ≤ bM

(1.40)

for x ∈ X and t > 0. The quasi-continuous controller is defined by the following algorithm

Levant [2005b]
ϕ0,r = σ, N0,r = |σ|, ψ0,r = sign(σ)

ϕi,r = σ(i) + βiN
(r−i)/(r−i+1)
i−1,r ψi−1,r

Ni,r = |σ(i)|+ βiN
(r−i)/(r−i+1)
i−1,r

ψi,r =
ϕi,r

Ni,r
, i = 1, . . . .r − 1

(1.41)

with β1, . . . , βr−1 being positive constants, and

u = −αψr−1,r(σ, σ̇, . . . , σ
(r−1)) . (1.42)

If the control gain α is chosen large enough depending on aM , bm, bM , the control law (1.42)

guarantees the establishment of a rth-order sliding mode with respect to σ (1.39) in a finite time

Levant [2005b]. For specific r ≤ 3, the control form is given as follows.

• For r = 2, the control input is given by

u = −ασ̇ + β1|σ|1/2sign(σ)
|σ̇|+ β1|σ|1/2

. (1.43)

• For r = 3, one gets

u = −ασ̈ + β2(|σ̇|+ β1|σ|2/3)−1/2(σ̇ + β1|σ|2/3sign(σ))
|σ̈|+ β2(|σ̇|+ β1|σ|2/3)1/2

(1.44)

For the tuning of the control gain α, the redundantly large estimation of aM , bm, bM may lead

to an oversized gain, then enhances the chattering phenomenon. So, there is a real interest to

develop an adaptation algorithm for the gain. In the next section, the gain adaptation concept is

presented.

1.4 Sliding mode control with gain adaptation

As viewed previously, in many cases, tuning of controller gains is not a trivial task, because

the gain is depending on the bounds of uncertainties. The determination of these bounds can

require tedious process of identification, and usually induces overestimation of the gain. Then,

the gain adaptation offers a solution to the control problem for which the bounds of uncertainties

and perturbations are unknown or not well-known. The gain adaptation allows a gain adjustment

with respect to a predefined criterion and then strongly simplifies the tuning process. As used

in Shtessel et al. [2012], the gain adaptation is based on the following principle:
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• if the system trajectories are not evolving on the sliding surface, it could be caused by a

not sufficiently large gain or a too long convergence time. In this case, the control gain

must be increased in order to reduce the convergence time and ensure the establishment

of the sliding mode;

• on the other hand, if the system trajectories are evolving on the sliding surface, it means

that the control gain is large enough to reject the perturbations and to guarantee the sliding

mode, then it has to be reduced.

Consider the system (1.1), and the sliding variable dynamics is defined as

σ̇ = a(x, t) + b(x, t)u (1.45)

where function a(x, t) is a bounded uncertain function and b(x, t) is positive and bounded.

Thus, there exist positive constants aM , bm, bM such that

|a(x, t)| ≤ aM
0 < bm ≤ b(x, t) ≤ bM

(1.46)

for x ∈ X and t > 0.

There exist several gain adaptation laws for second order sliding mode controllers Taleb et al.

[2013]; Taleb and Plestan [2012]; Estrada et al. [2013]. However, for a sake of clarity, only the

gain adaptation law for standard sliding mode control is presented in this section.

In Plestan et al. [2010b], an adaptive gain algorithm is designed for a first order sliding mode

control

u = −K(t)sign(σ) (1.47)

with K(t) the time varying gain. The design of the adaptation gain law is usually composed by

two parts: the design of a sliding mode detector and the design of a gain adaptation law.

Sliding mode detector. Through the parameter ǫ, define the real first order sliding surface

as

S = {x ∈ X ||σ| < ǫ} (1.48)

It means that, when the sliding variable reaches the vicinity of zero with accuracy ǫ, one declares

that a real first order sliding mode is established. Note that it is totally related to Definition 1.3.2.

Gain adaptation law. The time varying gain K(t) is defined through the following dynam-

ics

K̇ =

{
Γ|σ|sign(|σ| − ǫ) if K > µ
µ if K ≤ µ

(1.49)

with K(0) > 0, Γ > 0, ǫ > 0 and µ > 0 very small. The parameter µ is introduced only to

ensure a positive gain K. Given (1.49), one has

• K̇ > 0 if |σ| > ǫ : real sliding mode is not established, then the gain increases;

• K̇ < 0 if |σ| < ǫ : real sliding mode is established, then the gain decreases.

By this way, the sliding mode is ensured in a finite time by a bounded gain K Plestan et al.

[2010b].

1.5 High order differentiation problem

As viewed previously, for the second order sliding mode control, the twisting method re-

quires both the sliding variable and its time derivative. It is not the case of super-twisting
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algorithm, but it can be applied only to systems with relative degree equal to one with respect

to the sliding variable, which means that the sliding variable will contain the time derivatives of

the output in many cases. For rth-order sliding mode controller (1.42), the r − 1th-order time

derivatives of the sliding variable are required.

In practice, the numerical differentiators are used to estimate the derivatives. As presented in

Yan et al. [2014b], there exist many numerical differentiation approaches, including the most

common Euler method and the high order sliding mode differentiator that is detailed below.

High order sliding mode differentiator.

Let the input signal f(t) be a function defined on [0,+∞] and consisting of a bounded Lebesgue-

measurable noise with unknown features and an unknown basic signal f0(t), whose k-th time

derivative has a known Lipschitz constant L > 0. Its time derivatives f
(i)
0 (t), i = 0, 1, . . . , k,

can be estimated by the differentiator Levant [2003]

ż0 = v0

v0 = −λ̂kL1/k+1|z0 − f |k/k+1 × sign(z0 − f) + z1

żi = vi

vi = −λ̂k−iL1/k−i+1|zi − vi−1|k−i/k−i+1

×sign(zi − vi−1) + zi+1

żk = −λ̂0L sign(zk − vk−1)

i = 0, . . . , k − 1

(1.50)

with zi the estimation of f
(i)
0 and λ̂0, . . . , λ̂k the differentiator parameters.

Remark 1.5.1. According to Levant [2003], a possible choice for the parameters λ̂0, . . . , λ̂k,
(k ≤ 5) is

{λ̂i}k−1
i=o = 1.1, 1.5, 2, 3, 5

By substituting expressions vi in (1.50), one gets the non-recursive form

żi = −λk−iL(i+1)/(k+1)|z0 − f |(k−i)/(k+1) × sign(z0 − f) + zi+1

żk = −λ0Lsign(z0 − f)
(1.51)

with λ0, λ1, . . . , λk > 0 the new coefficients calculated from (1.50). The expressions of the high

order sliding mode differentiator for k = 2 reads as

ż0 = z1 − λ2L
1/3|z0 − f |2/3sign(z0 − f)

ż1 = z2 − λ1L
2/3|z0 − f |1/3sign(z0 − f)

ż2 = −λ0Lsign(z0 − f) .
(1.52)

It allows to estimate the first and second time derivatives of f0(t).

Example.

Consider the signal f(t), which is composed by a basic signal f0(t) and a bounded Lebesgue-

measurable noise n(t), i.e.

f(t) = f0(t) + n(t) (1.53)

with f0(t) = 5sin(t) and n(t) chosen as a white noise with amplitude 10−2. The signal is

measured with a sampling period Te = 0.01s. The objective is to estimate the first and second

order time derivatives of the basic signal f0(t) by using Euler method and high order sliding
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mode differentiator (1.52). The parameter for the high order sliding mode differentiator is tuned

as L = 5. The estimation results are presented in Figure 1.5-1.6.

For the first order differentiation (see Figure 1.5), the Euler differentiator is sensitive to the

noise and the estimation result is less accurate than the one obtained with high order sliding

mode differentiator. Calculating the standard deviation of the estimation error for t ∈ [5, 10]s,

the performance of high order sliding mode differentiator (with std = 0.003) is better than the

one of Euler method with (with std = 0.015).

For the estimation of second order derivative (see Figure 1.6), the Euler differentiator can not

offer a reasonable estimation. And the high order sliding mode differentiator gives a much

better result. However, it appears a time delay which is more or less unavoidable.
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Figure 1.5 – Top. Signal f(t) versus time (sec); Middle. Analytical first order time derivative

ḟ0(t) (red dotted line) and estimated first order derivative using Euler method (black line) versus

time (sec); Bottom. Analytical first order time derivative ḟ0(t) (red dotted line) and estimated

first order derivative using high order sliding mode differentiator (black line) versus time (sec).

1.6 Motivations

The work of this thesis is firstly motivated by the control problem of an electropneumatic

system. Since 2008, such system Plestan and Girin [2009] (see Figure 1.7) is equipped at labo-

ratory IRCCyN. The objective of this platform is to evaluate the performances of control laws in

the context of nonlinear systems with uncertainties and perturbations. This system is a typical

nonlinear system with uncertainties and is perturbed by external forces. In the last decades,

many robust control laws have been proposed to deal with the pneumatic system control. In

Girin and Plestan [2009], the experimental electropneumatic actuator systems are designed,

and state feedback control laws have been developed for the nonlinear model of the electrop-

neumatic system. In Bouri and Thomasset [2001], sliding mode control laws have been applied

to the electropneumatic system. In Chillari et al. [2001], an experimental comparison is made

between several pneumatic position control methods. The sliding mode control shows its ad-

vantages due to its robustness features and the guarantee of finite time convergence.

One can cite results with first order sliding mode controllers Bouri and Thomasset [2001];

Smaoui et al. [2001], second order sliding mode ones Smaoui et al. [2005], and high order slid-

ing mode ones Laghrouche et al. [2004]; Girin et al. [2009]. Note that high order sliding mode

./p_intro/1dif.eps
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Figure 1.6 – Top. Signal f(t) versus time (sec); Middle. Analytical second order time deriva-

tive f̈0(t) (red dotted line) and estimated second order derivative using Euler method (black

line) versus time (sec); Bottom. Analytical second order time derivative f̈0(t) (red dotted line)

and estimated second order derivative using high order sliding mode differentiator (black line)

versus time (sec).

Figure 1.7 – Photo of electropneumatic system

controllers Levant [1993, 1998, 2003]; Shtessel et al. [2014] keep main features of sliding mode

(robustness, finite convergence) but with strong reduction of the chattering phenomenon.

However, as claimed previously, for the high order sliding mode control, including the twist-

ing control Levantovsky [1985] and the quasi-continuous control Levant [2005b], the sliding

variable and its derivatives should be available. The use of these high order time derivatives

introduce more disturbance, due to numerical differentiation process. Then, for the control of

electropneumatic system, the velocity and acceleration should be estimated from the measure-

ment of the position, which introduces disturbance into the controller. So, there is a really

interest to develop new sliding mode control laws with a reduced use of time derivatives of the

sliding variable. Such controllers already exist for example the super-twisting algorithm (1.38)

./p_intro/2dif.eps
./p_intro/photo_banc_pneumatique_2.eps
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is an output feedback control law; however, it can only be applied to systems with a relative

degree equal to one with respect to the sliding variable.

In practice, the numerical differentiators such as the Euler differentiator and the high order

sliding mode differentiator Levant [2003], are used to estimate the derivatives. However, as

presented in the previous section, for a noisy measurement, a bad estimation accuracy may lead

to a possible degradation of the controller performance Levant [1998]; Yan et al. [2014b].

In order to over come such problem a solution is the sub-optimal controller proposed by Bar-

tolini et al. [1997]. This method can be applied to the system with relative degree equal to two

with respect to the sliding variable, and the use of time derivative of the sliding variable is re-

moved. Nevertheless, this control law uses extremal detection of the sliding variable or the sign

change of its time derivative, which can be highly sensible to the noise.

This thesis is dedicated to the development of high order sliding mode control with reduced

use of time derivatives of the sliding variable. In the context of second order sliding mode

control, one of the objective of this thesis is to design a new control law which ensures the

establishment of a real second order sliding mode, in a finite time, using only the infor-

mation of the sliding variable. Moreover, in opposition to the super-twisting algorithm, this

method should be applicable to systems with relative degree equal to one or two with respect to

the sliding variable.

Furthermore, in the position control of the electropneumatic system, the output has a relative

degree equal to three. So, in this thesis, the research on third order sliding mode control is also

made. In the case of third order sliding mode control, the objective is to remove the use of

the second order time derivative of the sliding variable in the controller.

As introduced in Section 1.4, the gain adaptation mechanism is a very useful tool to simplify

the gain tuning process and to improve the performance of the controller. So, an other part

of this thesis is focused on the development of adaptive gain algorithm for the proposed

controllers.

1.7 Organization and contribution of the thesis

This thesis is divided into three parts:

• Part I is dedicated to the presentation of three second order sliding mode control methods.

A common point shared by these methods is the use of gain commutation technique. Their

performances are compared.

• In Chapter 3, the gain commutation formalism is presented. In this formalism, the

control input is switching between two levels: a level with small magnitude and an-

other one with large magnitude Yan et al. [2016e]. The main interest of this control

formalism is to uniformly rewrite various second order sliding mode control laws.

In order to ensure the establishment of second order sliding mode, some constraints

based on a geometric analysis of the system trajectories are given on the duration

of the large magnitude input application. Then, the twisting algorithm Levantovsky

[1985] (denoted TWC) and a second order sliding mode output feedback control

Plestan et al. [2010a] (denoted 2SMOFC) are reformulated in the gain commutation

form.

• Chapter 4 presents a new control approach named Twisting-like control (denoted

TWLC) Yan et al. [2016d]. This method can be applied to systems with relative

degree equal to two with respect to the sliding variable. The main feature of this

method is that only the information of the sliding variable is used. Compared to the

2SMOFC, the large gain input is applied during several sampling periods. Thanks
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to this latter feature, the convergence time for this proposed method is strongly im-

proved with respect to 2SMOFC and close to the one obtained with twisting control,

where the name twisting-like comes. The use of TWLC as a differentiator is pre-

sented as well.

• The comparisons between TWC, 2SMOFC and TWLC are made in Chapter 5

through an academic example and a pendulum system.

• Part II is focused on the sliding mode control with gain adaptation. The first contribution

is the development of adaptive gain law for 2SMOFC and TWLC presented in Part I.

Moreover, the result is extended to higher order sliding mode control. Indeed, an other

contribution is the design of adaptive third order sliding mode control method (denoted

3SMC) Yan et al. [2016c]. Compared to the quasi-continuous high order sliding mode

control, this method uses a reduced differentiation order of the sliding variable.

• In Chapter 7 the adaptive versions of 2SMOFC and TWLC are presented. The gain

adaptation law is based on the time gap between two successive sign commutations

of the sliding variable. Then, the gain is adjusted using only the information of the

sign of the sliding variable.

• In Chapter 8, an adaptive third order sliding mode is proposed Yan et al. [2016c].

Only the first and second order time derivatives of the sliding variable should be

known. For this new algorithm, the use of second order time derivative is removed.

This feature helps to avoid the additional disturbance introduced by the high order

differentiator. Moreover, the gain adaptation is also used to simplify the gain tuning

process.

• Part III presents the applications of these new control laws on experimental systems.

• Chapter 9 deals with the position control problem of the electropneumatic system.

This is a typical nonlinear system with uncertainties and perturbations. The sliding

mode methods show their advantages for the control of such systems. Firstly, se-

cond order sliding mode control laws TWC, 2SMOFC and TWLC are applied to the

electropneumatic system, and their performances compared. Secondly, the adaptive

versions of 2SMOFC and TWLC are applied. The effect for the use of gain adapta-

tion mechanism is highlighted from the experimental results. Finally, the third order

sliding mode controller (3SMC) presented in Chapter 8 is applied. Its performance

is compared with higher order sliding mode controller (HOSMC) Levant [2005b].

• In Chapter 10, the attitude control of an Unmanned Aerial Vehicles system with

three degrees of freedom Quanser [2006] is considered. Due to the high sensitivity

of the actuators to the vibration, continuous control input is required for this system.

Then, in this chapter the integral version of twisting-like control (integral TWLC)

is developed Yan et al. [2016b]. This control law can be applied to the system with

relative degree equal to one, and gives a continuous input. Through the experimental

tests, the performance of this new control law is compared to the super-twisting

algorithm.

Some of the results presented in this thesis have been published or are under revision pro-

cess for publication in journals and conferences.
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• Xinming Yan, Antonio Estrada, and Franck Plestan, “Adaptive pulse output feedback

controller based on second order sliding mode: methodology and application”, IEEE
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2
Introduction

As an important class of high order sliding mode control, the second order sliding mode

control (2SMC) is well-known. The main property of 2SMC is the finite time convergence to

zero (or to a vicinity of 0) of the sliding variable and its time derivative.

The twisting control (TWC) Levantovsky [1985], Shtessel et al. [2014] is a well-known 2SMC

method. This method is applicable to systems with relative degree equal to 1 or 2, and guar-

antees the establishment of a second order sliding mode in finite time. However, a drawback

of this controller is that both the sliding variable and its time derivative must be known. In

practice, the sliding variable is usually measured with noise, and the use of numerical differen-

tiators in this case may lead to a degradation of the controller performances Levant [1998], Yan

et al. [2014b]. The super-twisting algorithm Levant [1998] may be the most popular solution of

output feedback second order sliding mode controller (2SMC). However, it can only be applied

to a system with relative degree equal to one (r = 1).

In order to overcome these drawbacks, an output feedback 2SMC algorithm (denoted 2SMOFC)

using only the sign of the sliding variable and a switching gain strategy have been proposed in

Plestan et al. [2010a], and then completed by Estrada and Plestan [2012], Estrada et al. [2013],

Estrada and Plestan [2014]. This method deals with a class of nonlinear systems with sampled

control input such that the relative degree with respect to the sliding variable is equal to 1 or 2.

The main feature of this method is that a large gain input is applied during a single sampling

step, when a switching of the sliding variable sign is detected. By this way, the control law

ensures the establishment of a real second order sliding mode in a finite time. However, a dis-

advantage of this controller is that the convergence time strongly depends on the sampling step.

When the sampling step tends to zero, the effect of the gain switching strategy is reduced, and

the convergence time is increasing.

It appears that TWC and 2SMOFC use a similar strategy that can be called “switching gain”

method. It means that the control input can switch between two levels: a low level with small

magnitude and a high level with large gain. The first contribution of this part consists in propos-

ing an unified control form based on a switching gain strategy. Thanks to this unified formalism,

TWC and 2SMOFC are both reformulated; so that the advantages and disadvantages of each

control law can be shown clearly.

The second objective of this part is to propose a new second order sliding mode control method

based on the switching gain strategy. Similar to the 2SMOFC, the main idea is also to apply a

large gain input when the sign switching of the sliding variable is detected. However, instead of

27



28 CHAPTER 2. INTRODUCTION

applying the high level control input during only one sampling period, it can be applied with a

time varying duration. By this way, the use of derivative of the sliding variable is removed and

the convergence time can be also improved.

Then, this second contribution consists in the presentation of a new output feedback control law

named “twisting-like” control Yan et al. [2016d] (denoted TWLC). This name is given due to

its performances close to those of twisting algorithm. Inherited from 2SMOFC, this control law

only requires the sign of the sliding variable. Compared to TWC, this feature allows to avoid

the additional noise introduced by the differentiator. Moreover, by improving the switching

gain strategy of 2SMOFC, the system convergence time under this new controller is no longer

sensitive to the sampling period and may reach dynamic performances close to those obtained

by TWC.

2.1 Organization

This part is organized as follows: in Chapter 3, the unified switching gain form is presented

and the convergence analysis tools are given. Then, the TWC and 2SMOFC are reformulated in

the switching gain form, and their convergences are proved. The Twisting-like controller, pre-

sented in Chapter 4, is the main contribution of this part. The use of TWLC as a differentiator is

presented as well. The comparisons between TWC, 2SMOFC and TWLC are made in Chapter

5 through an illustrative example and an application to a pendulum system.

2.2 System presentation

For the study of 2SMC, some general considerations have to be stated. Consider the uncer-

tain nonlinear system

ẋ = f(x, t) + g(x, t) · u (2.1)

with x ∈ X⊂R
n the state vector (X being a bounded subset of Rn) and u ∈ R the control input.

Functions f(x, t) and g(x, t) are differentiable uncertain vector-fields. Define from the control

objective the sliding variable σ(x, t), with relative degree equal to 2. It means that the control

objectives are fulfilled when σ = 0 and

σ̈ = a(x, t) + b(x, t) · u (2.2)

with functions a(x, t) and b(x, t) supposed to be uncertain. Then, the second order sliding mode

control problem of system (2.1) with respect to σ is equivalent to the finite time stabilization

around the origin of

ż1 = z2
ż2 = a(x, t) + b(x, t) · u (2.3)

with z1 = σ, z2 = σ̇. Suppose that the following assumptions are fulfilled.

Assumption 2.2.1. The system trajectories are supposed to be infinitely extendible in time for

any bounded Lebesgue measurable inputs.

Assumption 2.2.2. The controller is updated in discrete-time with the sampling period Te which

is a strictly positive constant. The control input u is constant between two successive sampling

steps, i.e

∀t ∈ [kTe, (k + 1)Te[ u(t) = u(kTe) . (2.4)
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Assumption 2.2.3. The function a(x, t) is a bounded uncertain function and b(x, t) is positive

and bounded. Thus, there exist positive constants aM , bm, bM such that

|a(x, t)| ≤ aM
0 < bm ≤ b(x, t) ≤ bM

(2.5)

for x ∈ X and t > 0.

For the continuous system (2.3), the objective is to force z1 and z2 to zero in a finite time.

However, if a sampled controller with positive sampling period Te is considered, only a real

second order sliding mode can be established after a finite time.

Definition 2.2.1 (Levant [1993]). A real second order sliding mode is established for z1 if, after

a finite time,

|z1| < µ0T
2
e , |ż1| < µ1Te

hold for some positive constants µ0, µ1.
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As presented previously, two different types of 2SMC, the twisting control Levantovsky

[1985] (TWC) and the second order sliding mode output feedback control Plestan et al. [2010a]

(2SMOFC) use a similar strategy: the so-called “switching gain” concept. It means that the

control input can switch between two levels: a low level with small magnitude and a high level

with large magnitude. The motivation of the work developed in this chapter is to find an unified

formalism for these two control laws. Moreover, in order to verify the convergence of system

(2.3) under these control laws, new convergence analysis tools are proposed.

3.1 Presentation of an unified formalism

Consider system (2.3); the so-called “switching gain” strategy means that the control input u
can switch between two levels: a low level u = uL, and a high level u = uH , with |uL| < |uH|.
More precisely, the switching gain control strategy can be described as follows

u(kTe) =

{
uL(kTe) = U(kTe) if kTe /∈ TH

uH(kTe) = γU(kTe) if kTe ∈ TH
(3.1)

with γ > 1, k ∈ N, and TH allowing to define the time interval during which uH is applied.

In order to reformulate the second order sliding mode control laws (TWC and 2SMOFC) under

this formalism, one defines U as

U(kTe) = −Kmsign(z1(kTe)) (3.2)

31



32 CHAPTER 3. TWC AND 2SMOFC UNDER AN UNIFIED FORM

with Km > 0, and Te being the sampling period. This class of controllers is composed of three

parts:

• the general control form (3.1)-(3.2);

• two gain parameters: Km and γ;

• a switching gain condition TH.

The main features of this formalism can be summarized as follows.

Remark 3.1.1. Consider the control form (3.1)-(3.2).

• The control input can switch between four values ±Km and±γKm, except when z1(kTe) =
0;

• the sign of the input u depends only on the sign of sliding variable z1.

• the amplitude of u is time-varying and is related to the definition of TH.

In order to analyze the convergence condition for system (2.3) under such controller, a new

tool presented in the next section gives rules for the tuning of parameters Km, γ and for the

design of TH.

3.2 Convergence analysis of closed-loop system

In this section, convergence conditions are given for the class of control laws which can be

written as (3.1)-(3.2). Consider system (2.3) under Assumptions 2.2.1-2.2.3, and introduce the

following notations

• Denote u∗(t) as

u∗(t) =

{
−K∗

m(t) · sign(z1(kTe)) if kTe /∈ TH

−K∗
M(t) · sign(z1(kTe)) if kTe ∈ TH

(3.3)

with K∗
m and K∗

M defined by

K∗
m(t) = b(x, t)Km − a(x, t)sign(z1(kTe))

K∗
M(t) = b(x, t)γKm − a(x, t)sign(z1(kTe))

(3.4)

Then, system (2.3) can be rewritten as

ż1 = z2
ż2 = u∗

(3.5)

Before presenting the convergence analysis tool, the following notations are stated.

• Denote
Kmax
m = max(K∗

m) = bMKm + aM
Kmin
m = min(K∗

m) = bmKm − aM
Kmax
M = max(K∗

M) = γbMKm + aM
Kmin
M = min(K∗

M) = γbmKm − aM .

(3.6)

• Denote t = ti the instant when the system trajectory crosses z2-axis for the ith time, with

z1(ti) = 0.

• Denote T is the time at which the ith z1-sign switching is detected 1, i.e.

sign(z1(T
i
s)) 6= sign(z1(T

i
s − Te)) (3.7)

1. In this thesis, the time value with capital letter t = T ∗

∗
represents a sampling time whereas the time value

with letter t = t∗
∗

presents an instant on continuous time.
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• Define also τi as the duration of large scale control between T is and T i+1
s , i.e.

[T is , T
i
s + τi] =

{
kTe|T is ≤ kTe ≤ T i+1

s and u(kTe) = uH
}

(3.8)

Consider the control laws under the form (3.1)-(3.2), for which the ith large input is applied

when the z1-sign switching is detected (i.e. starts from T is) and with the duration of τi. Then,

the following theorem is given to analyze the convergence of system (2.3).

Theorem 3.1 (Yan et al. [2016d]). Consider system (2.3) controlled by the switching gain

form controller (3.1)-(3.2) and fulfilling Assumptions 2.2.1-2.2.3. Then, the system trajec-

tory tends to be closer from the origin if the following conditions hold

• Km >
aM
bm

• γ > 2 +
bM
bm

• The duration of the large magnitude control τi satisfies

∫ T i
s+τi

T i
s

K∗
M(t)dt ≥ |z2(ti)|+Kmax

m Te −∆

∫ T i
s+τi

T i
s

K∗
M(t)dt ≤ |z2(ti)|+Kmax

m Te +∆′

(3.9)

with ∆ the positive root of

(
1

Kmin
m

− 1

Kmin
M

)∆2 = (
z22(ti)

Kmax
m

− z220
Kmin
M

), (3.10)

∆′ the positive root of

(
1

Kmax
m

− 1

Kmax
M

)∆′2 = (
z22(ti)

Kmax
m

− z220
Kmin
M

) (3.11)

and

z220 = (|z2(ti)|+Kmax
m Te)

2 + 2Kmin
M (|z2(ti)|Te + 1

2
Kmax
m T 2

e ) . (3.12)

Remark 3.2.1. In order to ensure that the gainK∗
m defined by (3.4) is always positive (Kmin

m >
0), the gain Km must be chosen such that

Km > aM/bm . (3.13)

Moreover, in order to make sure that the magnitude of high level control input is always larger

than the low one, (i.e. Kmin
M > Kmax

m ) the following condition must be satisfied

γ > 2 +
bM
bm

. (3.14)

For the duration of the large gain input τi, if it is too short, the effect of switching gain will be

reduced, then it leads to a too long convergence time. On the other hand, if this duration is too

long, the duration for the small gain input will be reduced, which also weaken the switching

gain effect. So, the constraints for the duration τi is given by (3.9).
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Figure 3.1 – Gain switching zone in the phase plane (z1, z2).

Proof. The proof of Theorem 3.1 is made in two steps

• the domain in which the system trajectories are going to evolve, just after the ith-detection

of z1-sign switching, is defined; given that the duration τi is not a priori known, one has

to consider the “worst” case: one evaluates the largest domain in which the system is

evolving with u = uH ;

• the second step consists in evaluating the minimal and maximal values of τi-duration

ensuring that, at the i+ 1th-detection of z1-sign switching, the system trajectory is closer

from the origin.

Step 1. Suppose that ti = tE which is the time at which sign(z1) is switching, but it is not

detected (see point E in Figure 3.1): system trajectory crosses z2-axis such that z1(tE) = 0 and

z2(tE) < 0. Consider the worst case, which corresponds to a delay for the detection of z1-sign

switching converging towards Te, i.e. tF − tE = Te. Early from the point F, u = uH : in this

case, the trajectory is evolving in the domain delimited by the two red curves of Figure 3.1

during a duration τi. The two curves delimiting the domain are obtained by the following way,

• from F to Q, one has ż2 = Kmin
M whereas from Q, ż2 = Kmax

M . Given the perturbations

bounds and the magnitude of the control input, it is the more external possible trajectory

obtained from F;

• for the right-hand side red curve, from F to Q’, ż2 = Kmax
M whereas, from Q’, ż2 = Kmin

M ;

it is the more internal possible trajectory.

Step 2. Denote now the point E’ as the symmetric point of E with respect to the origin. Suppose

that, all along the black trajectory between I and E’, u = uL, and evaluate the more external

possible trajectory, which means that it is the trajectory for which the point P is the lefter

./part1/figure/szonep.eps
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possible one. This trajectory is obtained by supposing that, from E’ to P, ż2 = Kmax
m whereas

from P to I, ż2 = Kmin
m . Furthermore, this (black) trajectory obtained by supposing that u = uL,

intersects the (red) trajectories obtained with u = uH in two points, I and I’. It means that,

considering the worst case, the point E’ is reached from E if

• u = uH between F and I, and u = uL between I and E’

• or u = uH between F and I’, and u = uL between I’ and E’.

Therefore, a sufficient condition to ensure the convergence is that, denoting TSW the time at

which the control input u is switching between uH to uL, one has

z2(I) ≤ z2(TSW ) ≤ z2(I
′). (3.15)

By considering (3.3)-(3.4)-(3.5), what follows is aim to prove that under the condition (3.15)

the system trajectory will not pass beyond the point E’ on z2-axis. By this way the system tra-

jectory will reach closer to the origin and the convergence of system (2.3) is then guaranteed.

The following discussion is made to present what happens when the gain switching occurs at

different points.

• Suppose that the gain of the control input u∗ switches from K∗
M to K∗

m at point I. Then,

consider the worst case with K∗
m = Kmin

m until the trajectory reaches the more left hand

side point P. Finally, suppose K∗
m = Kmax

m so that the trajectory can reach the highest

point E’ when it crosses z2-axis. It means that for a general case the system trajectory

will pass beyond point E’ on z2-axis.

• Suppose that the switching of the control gain occurs at point I’. Consider also the worst

case with K∗
m = Kmax

m . The trajectory will track the curve I’-E’, such that it reaches

the highest point E’ when it crosses z2-axis. It means that for a general case the system

trajectory will pass beyond point E’ on z2-axis neither.

• If the switching gain occurs between points I and I’, the system trajectory will be on the

right side of the curve I-P-I’. By this way the trajectory will reach a point “lower” than

point E’ on z2-axis.

In conclusion under the condition (3.15), the system trajectory will reach closer to the origin,

and the convergence is guaranteed.

Now determine the constraints on τi such that (3.15) is fulfilled. In order to calculate the vertical

coordinate of point I and I’, the expressions of curves E’-P-I and F-Q-I’ are given by

z1 =
z22

2Kmax
m

+ z1(P ) if z2 ≥ 0

z1 =
z22

2Kmin
m

+ z1(P ) if z2 ≤ 0

(3.16)

with z1(P ) = − z22(tE)

2Kmax
m

. Parabolas F-Q and Q-I’ are respectively defined as

z1 =
z22 − z220
2Kmin

M

between F and Q

z1 =
z22

2Kmax
M

− z220
2Kmin

M

between Q and I′
(3.17)
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with
z220 = z22(tF ) + 2|z1(tF )|Kmin

M ,

z22(tF ) = z22(tE) + (Kmax
m )2T 2

e + 2|z2(tE)Kmax
m Te|,

|z1(tF )| = |z2(tE)|Te +
1

2
Kmax
m T 2

e .

(3.18)

Remarking that

|z2(tF )| = |z2(tE)|+Kmax
m Te (3.19)

and

z2(TSW ) = z2(tF ) +

∫ T i
s+τi

T i
s

K∗
M(t)dt , (3.20)

The term

∫ T i
s+τi

T i
s

K∗
M(t)dt in (3.20) represents the length of system trajectory projected on z2

axis under the large gain control input. In order to ensure that the gain switching point locates

“between” (in the sense of z2 coordinate) point I and I’, this length should satisfy

∫ T i
s+τi

T i
s

K∗
M(t)dt ≥ |z2(tF )| − |z2(I)|

∫ T i
s+τi

T i
s

K∗
M(t)dt ≤ |z2(tF )|+ |z2(I ′)|

(3.21)

where |z2(tF )| is given by (3.19). Then, consider the more general notation denoting, tE = ti
and tF = T is , from (3.21) the convergence condition reads as

∫ T i
s+τi

T i
s

K∗
M(t)dt ≥ |z2(ti)|+Kmax

m Te −∆

∫ T i
s+τi

T i
s

K∗
M(t)dt ≤ |z2(ti)|+Kmax

m Te +∆′ .

(3.22)

with ∆ = −z2(I) and ∆′ = z2(I
′). By calculating the intersections I and I’ of curves E’-P-I

and F-Q-I’, the two positive numbers ∆ and ∆′ can be obtained from
(

1

Kmin
m

− 1

Kmin
M

)

∆2 =

(
z22(ti)

Kmax
m

− z220
Kmin
M

)

(3.23)

and (
1

Kmax
m

− 1

Kmax
M

)

∆′2 =

(
z22(ti)

Kmax
m

− z220
Kmin
M

)

(3.24)

with

z220 = (|z2(ti)|+Kmax
m Te)

2 + 2Kmin
M (|z2(ti)|Te + 1

2
Kmax
m T 2

e ) . (3.25)

Remark 3.2.2. A too small |z2(ti)| may cause no real number root for (3.10)-(3.11). It means

that the point (0, z2(ti)) has been already in a vicinity of zero. In this case, the condition (3.15)

fails, the system trajectory can no longer converge closer to the origin. However, it will not

cause divergence problem, because the system trajectories have already reached the vicinity of

zero.

In Theorem 3.1, the constraints of large gain input duration τi are given (3.9). In order to obtain

more explicit constraints on τi, the following corollary is presented which gives a sufficient but

not necessary condition for the convergence.
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Corollary 3.2.1 (Yan et al. [2016e]). Consider system (2.3) controlled by the switching

gain form controller (3.1)-(3.2) and fulfilling Assumptions 2.2.1-2.2.3. Suppose that, at

instant t = ti, the system trajectory crosses z2-axis for the ith time, i.e. z1(ti) = 0. Then,

the system trajectory tends to be closer from the origin at t = ti+1, if Km > aM/bm and

γ > 2 + bM/bm and the duration of the large scale control τi satisfies

|z2(ti)|+Kmax
m Te −∆

Kmin
M

≤ τi ≤
|z2(ti)|+Kmax

m Te +∆′

Kmax
M

(3.26)

with ∆ and ∆′ defined by (3.10)-(3.11).

Proof. Knowing that K∗
M(t) ≥ Kmin

M and K∗
M(t) ≤ Kmax

M for ∀t ∈ [T is , T
i
s + τi], one has

∫ T i
s+τi

T i
s

K∗
M(t)dt ≥ τiK

min
M

∫ T i
s+τi

T i
s

K∗
M(t)dt ≤ τiK

max
M .

(3.27)

Then, if the following inequalities hold the condition (3.9) is also satisfied:

τiK
min
M ≥ |z2(ti)|+Kmax

m Te −∆
τiK

max
M ≤ |z2(ti)|+Kmax

m Te +∆′ (3.28)

The condition (3.26) ensures.

As presented previously, the twisting-control (TWC) Levantovsky [1985]; Levant [1993]; Sht-

essel et al. [2014] and the second order sliding mode output feedback control law (2SMOFC)

Plestan et al. [2010a], can be viewed by this switching gain strategy. So, in the following sec-

tions, these two control laws are reformulated in this form. Furthermore, the convergence of

system (2.3) under these control laws is also analyzed by using Theorem 3.1 and Corollary

3.2.1.

3.3 Twisting control under switching gain form

The twisting control (TWC) is applicable to systems with relative degree equal to two 2 and

ensures the establishment of a second order sliding mode with respect to the sliding variable

in a finite time. In this section, system (2.3) is considered, the standard form of TWC is re-

called. Then, TWC is revisited through the switching gain form, and the convergence of system

trajectory under this controller is analyzed.

3.3.1 Control algorithm

Consider system (2.3); the twisting algorithm Levantovsky [1985]; Shtessel et al. [2014] reads

as

u(t) = −K1sign (z1(t)−K2sign (z2(t))) . (3.29)

2. If one attempts to apply the TWC to a system with relative degree equal to one, the discontinuity should act

on the derivative of the control input.
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This controller guarantees the establishment of a second order sliding mode with respect to σ
in a finite time i.e. σ = σ̇ = 0. If the system is sampled with a positive sampling period Te, a

real second order sliding mode is established Levant [1993].

Theorem 3.2 (Levantovsky [1985]). Consider system (2.3) under Assumptions 2.2.1-2.2.3,

with the control law reading as

u(kTe) = −K1sign (z1(kTe)−K2sign (z2(kTe))) (3.30)

with k ∈ N. If K1 and K2 fulfill the conditions

K1 > K2 > 0 , (K1 −K2)bm > aM
(K1 +K2)bm − aM > (K1 −K2)bM + aM ,

(3.31)

then a real second order sliding mode with respect to z1 is ensured after a finite time.

Under this control law, the amplitude of the input

switches between four values ±(K1 +K2) and ±(K1 −
K2) 3. As shown in the figure on the left, for the first and

third quadrants on the (z1, z2) phase plane, the large mag-

nitude control input is applied. For the other two quad-

rants, the small gain is applied. This property offers the

possibility to revisit TWC with the switching gain form

proposed in Section 3.1. If one defines Km and γ as

Km = K1 −K2

γ = (K1 +K2)/(K1 −K2),
(3.32)

the TWC can be written as

u =

{
−Kmsign(z1) if z1z2 ≤ 0
−γKmsign(z1) if z1z2 > 0

. (3.33)

Then the twisting algorithm (3.30) can be written in the switching gain control form (3.1)-(3.2),

with TH defined as

TH = {kTe | sign(z1(kTe)) · sign(z2(kTe)) = 1} . (3.34)

Theorem 3.3 (Yan et al. [2016e]). Consider system (2.3) under Assumptions 2.2.1-2.2.3

and controlled by (3.1)-(3.2) with TH defined as (3.34). Then, if Km > aM/bm and γ >
2 + bM/bm, a real second order sliding mode with respect to z1 is established after a finite

time.

The definition of TH is a key-point in the switching gain form, and strongly impacts the strategy

of the large gain input application.

Duration of the large gain input. From (3.34), it is obvious that the duration of applica-

tion of the large gain is time varying. The large input uH is applied when z1 and z2 have the

3. There exist exceptional singularities when z1 = 0 or z2 = 0, but for a sampled measurement, it is not

practically possible that these both variables are exactly equal to zero. Then, these singularities can be neglected.

./part1/figure/gain_twc.eps
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same sign. Recalling that T is (resp. T i+1
s )is the time at which the ith (resp. (i + 1)th) z1-sign

switching is detected, and τi the duration of uH for T is ≤ kTe ≤ T i+1
s , it yields that this duration

is a multiple of the sampling period, i.e. for i > 0,

τi = kiTe < T i+1
s − T is (3.35)

ki being defined such that

sign(z2(T
i
s + kiTe)) 6= sign(z2(T

i
s + (ki − 1)Te)) . (3.36)

Then, in the next section, the convergence of system (2.3) under the control law (3.1)-(3.2)-

(3.34) is proved.

3.3.2 Convergence analysis

As shown in the left figure, the gain switching point for the

twisting control occurs when the system trajectory crosses

z2-axis. Without loss of generality, suppose that at instant

t = ti the system crosses z2-axis for the ith time, and at t =
T is the ith z1-sign switching is detected. Given that the delay

of the detection between ti and T is is less than one sampling

step, consider the worst case, i.e. T is− ti = Te. As shown in

(3.35)-(3.36) , the large input uH switches off just after the

system trajectory crosses z1-axis at instant t = TSW .
If z2(ti) < 0 one has z2(TSW ) ≥ 0, otherwise z2(TSW ) ≤ 0 with z2(ti) > 0. It means that the

length of the system trajectory projection on z2-axis under large gain input is always larger than

|z2(T is)|. It yields
∫ T i

s+τi

T i
s

K∗
M(t)dt ≥ |z2(ti)|+Kmax

m Te . (3.37)

According to Theorem 3.1, it is clear that the first line of condition (3.9) is satisfied. On the

other hand, the time delay to detect the ith sign switching of z2 should also be less than one

sampling step. So, one has |z2(TSW )| < Kmax
M Te, which leads to

∫ T i
s+τi

T i
s

K∗
M(t)dt < |z2(ti)|+Kmax

m Te +Kmax
M Te . (3.38)

If one considers the case where the system trajectory does not initially take place in a very

vicinity of origin at instant ti, it is reasonable to suppose that |z2(ti)| is large enough such that

∆′ > Kmax
M Te. Then, the condition (3.9) in Theorem 3.1 is fulfilled, and the system trajectory

will converge closer to origin. If it is not the case, it means that the system trajectories have

already reached the vicinity of zero. This process can be repeated for the next gain commutation.

Then, under the control of switching gain form TWC, the system trajectory reaches a vicinity

of zero after a finite time. The system trajectories can no further converge to origin, when

∆′ = Kmax
M Te. Then, replacing this latter into (3.12), one gets that the final convergence

domain for TWC is that

|z2(t)| ≤ µ1Te (3.39)

where µ1 is the positive solution of the second order equation

(
1

Kmax
m

− 1

Kmin
M

)µ2
1 − 4µ1 −

5

2
Kmax
m = (

1

Kmax
m

− 1

Kmax
M

)Kmax2

M . (3.40)
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And the z1 is also in the vicinity of zero with

|z1(t)| ≤ (
µ2
1

2Kmin
M

+ µ1 − 1
2
Kmin
m )T 2

e . (3.41)

The establishment of real second order sliding mode is verified.

3.4 Second order sliding mode output feedback control un-

der switching gain form

As presented in the introduction of this part, the second order sliding mode output feedback

control law (2SMOFC) Plestan et al. [2010a] has been designed to remove the use of time

derivative of the sliding variable in the controller. This latter is applicable to systems with

relative degree equal to 1 or 2. It ensures the establishment of a real second order sliding mode

in a finite time, by using only the information of the sliding mode variable. In this section, the

2SMOFC is rewritten in the switching gain form and the convergence of system (2.3) under this

control law is analyzed using Corollary 3.2.1.

3.4.1 Control algorithm

Consider the system (2.3), under Assumptions 2.2.1-2.2.3. The 2SMOFC algorithm Estrada

and Plestan [2012] reads as 4

u(kTe) = −K(kTe)sign(z1(kTe)) (3.42)

with k ∈ IN , and K defined as

K(kTe) =

{
Km if kTe /∈ TH

γKm if kTe ∈ TH
(3.43)

with

TH = {kTe | sign(z1((k − 1)Te)) 6= sign(z1(kTe))}. (3.44)

Theorem 3.4 (Estrada and Plestan [2012]). Consider system (2.3) under Assumptions 2.2.1-

2.2.3 and controlled by (3.1)-(3.2) with TH defined as (3.44). Then, with a sufficient large

gain Km > aM/bm and γ > 3, a real second order sliding mode with respect to z1 is

established after a finite time.

Duration of the large gain input: Given the definition of TH (3.44), the duration τi of the

large gain application is constant and equal to Te. Then, in the next section, the convergence of

system (2.3) under the 2SMOFC, presented in Theorem 3.4, is proved.

3.4.2 Convergence analysis

In order to prove the convergence of the system trajectory the following assumption is re-

quired.

4. Note that the results in Plestan et al. [2010a] have been originally written under a switching gain control

form.
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Assumption 3.4.1. Recalling that the sign switching of z1 is detected at T is = kiTe, ki ∈ N,

i ∈ N, one supposes that there exists n > 1 such that

∀i ∈ N ∩ [0;n], |z2(T is)| ≥ Kmax
M · Te. (3.45)

It means that the system trajectory is not initially evolving in the vicinity of the origin.

Otherwise, it is less interesting to analyze the convergence, when the system trajectories have

already reached the vicinity of zero.

Knowing that the time delay to detect the z1-sign switching is less than one sampling period,

i.e. T is − ti < Te, and for t ∈ [ti, T
i
s [ the small gain control input is applied, it yields that

|z2(T is)| ≤ |z2(ti)|+Kmax
m Te . (3.46)

Consider also Assumption 3.4.1. One has

|z2(T is)| ≥ Kmax
M Te . (3.47)

From (3.46)-(3.47), one has

|z2(ti)|+Kmax
m Te ≥ Kmax

M Te . (3.48)

From the above inequality, it is obvious that

TeK
max
M ≤ |z2(ti)|+Kmax

m Te +∆′ (3.49)

holds with ∆′ ≥ 0. Recalling that for 2SMOFC τi ≡ Te, one obtains

τi = Te ≤ |z2(ti)|+Kmax
m Te +∆′

Kmax
M

. (3.50)

Then, the right hand side of inequality(3.26) holds. According to expression (3.10), ∆ increases

if Kmin
M increases. So, one can always find KM large enough such that

TeK
min
M ≥ |z2(ti)|+Kmax

m Te −∆ . (3.51)

Then, one obtains

τi = Te ≥ |z2(ti)|+Kmax
m Te −∆

Kmin
M

. (3.52)

Then, the left hand side of inequality (3.26) holds. According to Corollary 3.2.1, the system

trajectory tends to be closer towards the origin. By repeating this process at each time that the

system trajectory crosses z2-axis, the system finally converges to a vicinity of zero under the

control of 2SMOFC. Moreover, in Estrada and Plestan [2014], the final convergence domain is

given for a class of systems.

Lemma 3.4.1 (Estrada and Plestan [2014]). Consider system (2.3), with a = 0 and b = 1,

controlled by the 2SMOFC presented in Theorem 3.4. Then, for any γ > 3, Km > 0, the

final convergence domain is given by

|z1| < 1
2
Km[η(γ)− 1]2T 2

e , |z2| < Kmη(γ)Te, (3.53)

with

η =
γ2 − γ − 2

2(γ − 3)
. (3.54)
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3.5 Summary

The main contributions of this chapter are summarized as follows :

• An unified switching gain form is proposed, in order to present several second order

sliding mode controllers by a similar way.

• A convergence analysis tool is given, which is based on analytic analysis of system tra-

jectories.

• The control input for the twisting control (TWC) switches between two magnitudes.

Thanks to this feature, TWC is revisited in the switching gain form.

• For TWC, the large gain input is applied when z1 and z2 have the same sign. By proving

that the duration τi satisfies the constraints given in Theorem 3.1, the convergence of

system trajectories under TWC is verified.

• The key-point of the second order sliding mode output feedback control (2SMOFC) is the

application of large gain input during a signal sampling period, after each detection of z1
sign commutation. It can be also presented in the switching gain form.

• For 2SMOFC, the duration τi is always equal to Te, and one can always find a large

enough gain KM , such that the convergence of system trajectory under 2SMOFC is en-

sured.
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As presented in the previous chapter, the twisting control (TWC) and the second order slid-

ing mode output feedback control (2SMOFC) can be reformulated in the switching gain form.

The advantage of the 2SMOFC is that it is using only the sign of z1, and requires no information

on z2. However, its main drawback is that the application of the high magnitude control during

just one sampling period induces a low convergence rate. It means that the convergence time

(which is finite) is large compared to the TWC.

Based on the 2SMOFC method, a possible improvement can be made, if the large scale control

input is applied during a time varying duration longer than one sampling period. By this way,

the dynamic performance of system (2.3) under this controller could be close to the performance

of TWC. Furthermore, the use of derivative of the sliding variable is removed.

The main contribution of this chapter consists in the presentation of a new output feedback

control law named “twisting-like” control Yan et al. [2016d] (denoted TWLC), which is written

under the switching gain form and based on a time-varying duration τi. This control law only

requires the sign of the sliding variable. Compared to TWC, this feature allows to avoid addi-

tional noise introduced by the differentiation. Moreover, by applying the large gain control for

multiple sampling periods, the convergence time of this new controller is no longer sensitive to

the sampling period and is strongly improved with respect to the 2SMOFC.

The TWLC requires only the measurement of the sliding variable, and this feature allows to use

this controller as a differentiator to estimate the time derivative of a sampled signal. The design

of the “twisting-like” differentiator is also presented in this chapter.
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4.1 Control algorithm

As previously written, the design of the TWLC is based on the switching gain form (3.1)-

(3.2). Compared to the 2SMOFC, instead of applying uH during a constant duration Te, a new

algorithm for the computation of τi is given, which offers the possibility to apply uH during

multi sampling periods. Recall that for the TWC the duration τi is also time-varying, but its

evaluation depends on both z1 and z2.

Consider the system (2.3), under Assumptions 2.2.1-2.2.3. The TWLC algorithm Yan et al.

[2016d] reads as (k ∈ IN)

u(kTe) = −K(kTe)sign(z1(kTe)) , (4.1)

with the gain K defined as

K(kTe) =

{
Km if kTe /∈ TH

γKm if kTe ∈ TH
(4.2)

and the gain switching condition given by

TH = {kTe | T is ≤ kTe ≤ T is + τi, i ∈ IN} (4.3)

As previously, T is is the time at which the ith z1-sign switching is detected. The gain switch-

ing condition (4.3) depends on an online updated variable τi which is the duration of uH for

t ∈ [T is , T
i+1
s [.

Duration of the large gain input: Recall that

Kmax
m = bMKm + aM , Kmin

m = bmKm − aM

Kmax
M = γbMKm + aM , Kmin

M = γbmKm − aM .

If the gain is tuned such that Km > aM/bm and γ > 2 + bM
bm

, one has

Kmin
m > 0 , Kmin

M > Kmax
m . (4.4)

Then, the computation of τi reads as

τi = max(τ ′i , Te) (4.5)

with

τ ′i = Te · floor
[

2α
τi−1K

min
M + τ̄i−1K

min
m

Kmax
M Te

− 1

]

(4.6)

in which the function floor(·) rounds the element of the argument to the nearest integer towards

minus infinity. α and τ̄i are defined as

α =

√

Kmin
m

√
Kmax
M +

√

Kmin
m

(4.7)

and

τ̄i = max(0, T i+1
s − T is − τi) . (4.8)

Remark that τ̄i is the duration of the small gain control

u = uL for t ∈ [T is , T
i+1
s [ (see Figure on the left). Then, τi

can be computed by the iteration process (4.5)-(4.8), with

the initial conditions T 0
s = 0 and τ0 = 0. It is important

to notice that in (4.5)-(4.8), only the information of z1 and

the bound of the perturbation are required. Then, this out-

put feedback control law is summarized by the following

theorem.

./part1/figure/conv_twlc.eps


4.2. CONVERGENCE ANALYSIS 45

Theorem 4.1 (Yan et al. [2016d]). Consider system (2.3) under Assumptions 2.2.1-2.2.3

and controlled by (4.1)-(4.2). Define TH as (4.3) with τi given by (4.5)-(4.8). Then, there

always exist some large enough Km > aM/bm and γ > 2+ bM/bm, such that a real second

order sliding mode is established with respect to z1 in a finite time.

4.2 Convergence analysis

In this section, the convergence analysis of TWLC is made thanks two lemmas. By a similar

way than the convergence proof for 2SMOFC, one also supposes that the system trajectory is

initially evolving outside a vicinity of the origin.

Assumption 4.2.1. Recalling that the sign switching of z1 is detected at instants T is = kiTe,
i ∈ N, one supposes that there exists n > 1 such that

∀i ∈ N ∩ [0;n], |z2(T is)| ≥ Kmax
M · Te. (4.9)

• The main result is given by Lemma 4.2.2 which proves that τi computed by (4.5)-(4.8)

satisfies the condition (3.26) in Corollary 3.2.1.

• Lemma 4.2.1 can be viewed as a preliminary result of Lemma 4.2.2, which states that for

the z1-sign commutation detection points, |z2(T is)| has a minimal value.

Lemma 4.2.1 (Yan et al. [2016d]). Consider system (2.3) under Assumptions 2.2.1-2.2.3-

4.2.1 and controlled by (4.1)-(4.3). Recalling that T is is the time at which the ith z1-sign

switching is detected, one has, for all i > 2,

|z2(T is)| ≥ αL (4.10)

with

α =

√

Kmin
m

√
Kmax
M +

√

Kmin
m

< 1 (4.11)

and L = |z2(T is)− z2(T
i−1
s )| being the vertical distance between two points at two succes-

sive instants T i−1
s and T is .

Proof. The objective is to identify the case for which one has the maximal convergence rate.

Consider the Figure 4.1-Left describing the system trajectory in the phase plane. Some partic-

ular points are described by Table 4.1, particularly points B (tB = T i−1
s ) and F (tF = T is) that

are two successive z1-sign switching detection points. The vertical distance between these two

points is denoted L. Firstly, defining the convergence rate δ as

δ =
|z2(T i−1

s )|
|z2(T is)|

,

one should admit that for a given z2(T
i−1
s ) the maximal value of δ is obtained when there is no

delay for the sign switching detection (it is the case in Figure 4.1-Right). It is obvious that, if

there is any delay between points E and F, one has |z2(tF )| > |z2(tE)| and δ < |z2(tB)|
|z2(tE)|

. So, the

first constraint in order to get surly maximal δ is that the sampling period Te equals zero.

Next, one considers the effect of the switching gain to δ. As shown in Figure 4.1-Right, if
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the gain commutation appears before that the trajectory crosses z1-axis, then the trajectory will

track the red dotted line. In another case, if the switching appears after that the trajectory crosses

z1-axis, then the trajectory will track the green dotted line. In these both cases, the convergence

rate is not maximal given that |z2(T is)| is larger.

Aop (Bop)

z1

z2

A

C 

EF

z1

z2

D 

B 

L 

Cop（Dop）

Eop（Fop）

General Case Maximal δ Case

Figure 4.1 – Left. System trajectory in (z1, z2) phase plane in the general case; Right. System

trajectory with maximal δ in (z1, z2) phase plane.

Point Instant Control u∗ Description

A tA K∗
m z1(tA) = 0, z2(tA) > 0

B tB −K∗
M tB − tA ≤ Te

C tC −K∗
m tC − tB = τi−1

D tD −K∗
m z1(tD) > 0, z2(tD) = 0

E tE −K∗
m z1(tE) = 0, z2(tE) < 0

F tF K∗
M tF − tE ≤ Te, tF − tC = τ̄i−1

Table 4.1 – Points describing the trajectory in (z1, z2) phase plane in case of real system (Figure

4.1-Left).

The maximal convergence rate δMax can actually be obtained only if

• there is no delay in the sign switching detections;

• the gain is switching from Kmax
M to Kmin

m when the trajectory crosses z1-axis (point Dop

in Figure 4.1-Right).

Remark that this latter item corresponds to the twisting algorithm in ideal conditions (i.e. the

sampling period converges towards zero). In this case, one has

tCop
− tBop

=
z2(tBop

)

Kmax
M

z1(tCop
) =

1

2
Kmax
M (tCop

− tBop
)2

(4.12)

and

tFop
− tCop

=
−z2(tFop

)

Kmin
m

z1(tCop
) =

1

2
Kmin
m (tFop

− tCop
)2

(4.13)

./part1/figure/rvse1.eps
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Then, from (4.12)-(4.13), one gets

δMax =
|z2(Bop)|
|z2(Fop)|

=

√
Kmax
M

√

Kmin
m

. (4.14)

This maximal value only depends on the gain Kmax
M and Kmin

m . Now, considering the system

trajectories in a general case, with L being the distance betweenB and F (see Figure 4.1-Left)).

Because δ ≤ δMax, for the general case, one has

|z2(tB)|
|z2(tF )|

≤
√
Kmax
M

√

Kmin
m

(4.15)

Then, recalling L = |z2(tF )− z2(tB)|, one has

|z2(tF )| ≥ αL (4.16)

with α =
1

1 + δMax
.

Lemma 4.2.2 (Yan et al. [2016d]). Consider system (2.3) under Assumptions 2.2.1-2.2.3

and 4.2.1, controlled by (3.1)-(3.2). Define TH as (4.3) with τi given by (4.5)-(4.8). Then,

there always exist some large enough Km and γ such that the condition (3.26) in Corollary

3.2.1 holds at every gain commutation point.

Proof. The proof of Lemma 4.2.2 consists in considering two cases: first-of-all, one considers

the minimal value of τi, which can be not lower than the sampling period Te. The second case

will be devoted to larger values of τi.

Case 1: τi = Te
1.

Given that the time delay between ti and T is is less than one sampling step, one has

|z2(T is)| ≤ |z2(ti)|+Kmax
m Te. (4.17)

At t = T is , one also supposes that the system trajectory does not reach a very vicinity of origin:

then, under Assumption 4.2.1, one has

|z2(T is)| ≥ Kmax
M Te . (4.18)

It yields

|z2(ti)|+Kmax
m Te ≥ Kmax

M Te. (4.19)

It is now obvious that the inequality

TeK
max
M ≤ |z2(ti)|+Kmax

m Te +∆′ (4.20)

holds with ∆′ ≥ 0. According to (3.10), the term ∆ increases if Kmin
M increases. So, one can

always find a parameter γ large enough such that

TeK
min
M ≥ |z2(ti)|+Kmax

m Te −∆. (4.21)

By this way, one proves that inequality (3.26) holds.

1. This is the case of the second order sliding mode output feedback control (2SMOFC), presented in Section

3.4
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Case 2: τi > Te.

From (4.6), one has

τiK
max
M ≤ 2α(Kmin

M τi−1 +Kmin
m τ̄i−1)−Kmax

M Te. (4.22)

Suppose that z2(ti) < 0 (one can get similar results with z2(ti) > 0). From (4.21), given that

τi > Te, one can ensure

τiK
min
M ≥ |z2(ti)|+Kmax

m Te −∆ (4.23)

with large enough KM . The left-hand side of inequality (3.26) is satisfied. On the other hand,

according to Lemma 4.2.1, one has

z2(ti)−Kmax
m Te ≤ z2(T

i
s) ≤ −αL (4.24)

which means that

|z2(ti)|+Kmax
m Te ≥ αL (4.25)

with L ≥ Kmin
M τi−1 +Kmin

m τ̄i−1. Then, one gets

τiK
max
M ≤ 2(|z2(ti)|+Kmax

m Te)−Kmax
M Te. (4.26)

From (4.21), it is obvious that there always exists KM large enough such that

−TeKmax
M ≤ −TeKmin

M ≤ −|z2(ti)| −Kmax
m Te +∆ (4.27)

Then, by substituting −TeKmax
M by its upper bound into (4.26), one obtains

τiK
max
M ≤ |z2(ti)|+Kmax

m Te +∆. (4.28)

From (3.10) and (3.11), one has

(
1

Kmin
m

− 1

Kmin
M

)∆2 = (
1

Kmax
m

− 1

Kmax
M

)∆′2. (4.29)

Furthermore, one can always find KM large enough such that

1

Kmin
m

− 1

Kmin
M

≥ 1

Kmax
m

− 1

Kmax
M

(4.30)

which gives ∆ ≤ ∆′. Then, from (4.28), one gets

τiK
max
M ≤ |z2(ti)|+Kmax

m Te +∆′ . (4.31)

The right-hand side of inequality (3.26) is satisfied: the proof of Lemma 4.2.2 is completed.

Remark 4.2.1. Lemma 4.2.2 proves that thanks to the definition of τi by (4.5)-(4.8), the con-

vergence condition given by Corollary 3.2.1 is fulfilled. It yields that under Assumption 4.2.1,

the system trajectory is converging towards zero. The convergence process will stop when the

system trajectory reaches in a finite time a vicinity of zero in the phase plane such that

|z2(T is)| ≤ Kmax
M Te. (4.32)

So, there exists a finite time tf such that

∀t ≥ tf |z2(t)| ≤ Kmax
M Te . (4.33)
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Moreover, one has

|z1(T is)| ≤ Td · |z2(T is)| (4.34)

with Td < Te being the delay of the sign switching detection. Remarking that z1(t) reaches its

maximum value when z2 equals zero, one has

|z1| ≤ |z1(T is)|+ |z2(T is)|2/2Kmin
m . (4.35)

Then, using (4.32)-(4.34), one has

∀t ≥ tf |z1(t)| ≤ (1 +
Kmax
M

2Kmin
m

)Kmax
M T 2

e . (4.36)

Then, according to Definition 2.2.1, the real second order sliding mode with respect to z1 is

established. For this final converged domain, the duration of the large gain input will be reduced

as one sampling period. So, for the final stable stage, the TWLC and 2SMOFC will get similar

behavior and convergence domain.

4.3 Twisting-like algorithm: a differentiation solution

For standard high order sliding mode control Levant [1993, 2003], the knowledge of the sliding

variable and its time derivatives is required. In many practical cases, the sliding variable is de-

rived from the measured output, whereas the differentiators are used to evaluate the derivatives

of the sliding variable. Previous section has shown that the TWLC ensures the establishment of

a real second order sliding mode with respect to the sliding variable in a finite time. Moreover

this controller requires only the information of the sliding variable. This feature offers the pos-

sibility to use TWL algorithm as a differentiator. In this section, the design of the differentiator

based on twisting-like algorithm is presented.

4.3.1 Differentiator design

Consider a signal F (t) satisfying the following conditions:

• F (t) is a locally bounded function defined on [0,∞);

• the second time derivative of F (t), F̈ (t), is bounded by a known constant L > 0;

• F (t) is measured with a sampling period Te.

In order to estimate its first order time derivative, consider the system

ξ̇1 = ξ2
ξ̇2 = u

(4.37)

with the initial condition ξ1(0) = F (0), ξ2(0) = 0. Then, define the sliding variable as σ =
ξ1 − F (t). Denote z1 = σ and z2 = σ̇. One gets

ż1 = z2

ż2 = −d
2F

dt2
+ u

(4.38)

System (4.38) is similar to system (2.3): therefore, by applying TWLC as the control input u,

z1 and z2 converge to a vicinity of zero after a finite time. Then, from (4.37), ξ2 can be viewed

as an estimation of the time derivative of F (t).
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Theorem 4.2. Consider system (4.38), with z1 = ξ1 − F (t), z2 = ξ2 − dF
dt

, and the control

input u given in Theorem 4.1 with aM = L and bm = bM = 1. Then, there always exist

some large enough Km > L, γ > 3 and a finite time tF , such that

|ξ2(t)−
dF

dt
| < µTe ∀t ≥ tF (4.39)

with µ > 0.

Proof. According to Theorem 4.1, by applying TWLC to system (4.38), a real second order

sliding mode with respect to z1 is established after a finite time. Then, there exists a finite time

tF such that

|ż1| ≤ µTe, ∀t ≥ tF (4.40)

with µ > 0, which gives

|ξ2(t)− dF
dt
| ≤ µTe . (4.41)

4.3.2 Simulation

The objective of the subsection is to illustrate the previous result. Define the signal F (t) =
20sin(t) + 5cos(2t), which is measured with a white noise of amplitude 5 × 10−3 under a

sampling period Te = 0.001s. The objective is to estimate its time derivative. Then, the TWLC

is applied to system (4.38), with the parameters tuned as

aM = L = 40 bm = bM = 1

Km = 120 γ = 6 .

The performance of the twisting-like differentiator (denoted TWLD) is shown with Figure 4.2.

It shows that, after a finite time, ξ2 converges to the derivative of F (t).

4.4 Summary

The main contributions of this chapter are summarized as follows :

• The twisting-like control (TWLC) is presented in the switching gain form. This control

approach can be applied to systems with relative degree equal to two, and only the sign

of the sliding variable is required in the controller.

• The key-point for TWLC is the time varying duration τi of the large gain input. Compared

to the second order sliding mode output feedback control (2SMOFC) presented in Section

3.4, the large gain input for TWLC is applied during a time varying duration τi. Its com-

putation depends on the control gain Km, KM and the time gap between two successive

z1-sign commutations. Thanks to the application of uH during multiple sampling peri-

ods, the performance of system (2.3) under TWLC is close to the performance of twisting

control. Furthermore, the use of time derivative of the sliding variable is removed.

• Thanks to the definition of τi by (4.5)-(4.8), the convergence condition given by Corollary

3.2.1 is fulfilled. So, the establishment of a real second order sliding mode is ensured after

a finite time for system (2.3) under TWLC.
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Figure 4.2 – Simulations - use of TWLD algorithm. Top. Signal F (t) (red dotted line) and

ξ1(t) versus time (sec); Bottom. Signal dF
dt

(red dotted line) and ξ2(t) versus time (sec).

• The TWL algorithm also offers a solution to estimate the time derivative of a sample

measured signal.

./part1/figure/diff/TWL1.eps
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In Chapter 4, the twisting control (TWC), the second order sliding mode output feedback

control (2SMOFC) and the new twisting-like control algorithm (TWLC), have been formulated

in an unified switching gain form (3.1)-(3.2). For this class of control laws, the control gain is

switching between a large magnitude and a smaller one. The large input is applied when the

commutation of the sliding variable sign is detected. The main difference between each control

law is the duration of the large gain input. In this chapter, detailed comparisons about the perfor-

mances between these three control laws are firstly made through a simulation example. Then,

these control laws are applied to a pendulum system in order to compare their performances.

5.1 Academic example

Consider system (2.3) with the functions a and b defined respectively as a = 5sin(ωt) and b = 1
i.e.

ż1 = z2
ż2 = u+ 5sin(ωt)

(5.1)

with ω = 0.2π and initial conditions being z0 = [10 10]T . The simulations have been made with

a control input sampling time Te = 0.01sec, which is 10 times higher than the integration step

(10−3 s) used to simulate the system. A comparison is made between the three methods TWC,

2SMOFC and TWLC. These control laws are written in the switching gain form (3.1)-(3.2), and

the domain TH is defined for each control law as

53
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• Twisting controller (TWC):

TH = {kTe | sign(z1(kTe)) · sign(z2(kTe)) = 1} . (5.2)

• Second order output feedback controller (2SMOFC):

TH = {kTe | sign(z1((k − 1)Te)) 6= sign(z1(kTe))} . (5.3)

• Twisting-like controller (TWLC):

TH = {kTe | T is ≤ kTe ≤ T is + τi, i ∈ IN} (5.4)

with τi representing the duration of the large gain input for t ∈ [T is , T
i+1
s [, computed by

(4.5)-(4.8).

The parameters for these three controllers are tuned uniformly as Km = 15, Te = 0.01sec

and γ = 5. Then, the single difference between these three control laws is the duration of the

large gain input τi defined by TH. The performances of system (5.1) obtained with these three

controllers are displayed in Figures 5.1-5.2-5.3. Furthermore, the mean value of the tracking

accuracy |z1| and the input u for the last ten seconds are calculated in Table 5.1.

Figure 5.1 represents z1 and z2 (Top and Middle), and the control input u (Bottom). The system

trajectories in the phase plane (z1, z2) are shown by Figure 5.2. From these two figures, one

can conclude that, with OFTWC, z1 and z2 converge to a vicinity of zero in a finite time. Based

on a more detailed data comparison in Table 5.1, the tracking accuracy for these three control

laws are at the same level. With the TWC, one gets a faster convergence time. However, in

this case both z1 and its derivative z2 are required. For the TWLC, with the convergence of

the system trajectories towards the vicinity of zero, the duration τi will be also reduced (see

(4.5)-(4.8)). Consider the final stable phase where τi is equal to one sampling period. Then, the

performance of TWLC is identical to the performance of 2SMOFC. So, for the stable phase,

one obtains similar mean(|z1|) and mean(|u|) for TWLC and 2SMOFC. For these two latter

control laws, the large gain input is applied during one sampling period, which explains the

smaller mean(|u|) compared to TWC. For this stage, the application of the large gain input for

one sampling period has been sufficient to maintain the system trajectories in the vicinity of

origin. Furthermore, the oversize control magnitude for TWC causes a less accuracy. More-

over, considering the convergence phase, the TWLC induces a much faster convergence time,

compared to the 2SMOFC.

In order to make a further comparison, define the “energy” applied by the ith large gain control

(which starts at instant T is and ends at instant T iend) as

Ei =

∫ T i
end

T i
s

|uH|dt . (5.5)

Remark that for the three controllers, the gain Km is constant and has the same value. Then, the

“energy” of the large gain control only depends on its duration.

The “energy” applied by the three controllers is plotted in Figure 5.3. It shows that the “energy”

used by 2SMOFC is impulsive with constant amplitude. For TWC, during the convergence

phase, high “energy” is sent by uH ; then, the “energy” is reduced once the convergence is

achieved. The “energy” sent by TWLC during the convergence phase is not as high as TWC,

but much larger than 2SMOFC. From the energy distribution scheme, one can also conclude

that the performance of TWLC is close to the one of TWC.

This test has been repeated with different sampling periods, and the control accuracies are eval-

uated for t ∈ [70sec, 80sec] (see Table 5.2). Basically, when the sampling period is multiplied
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2, the accuracy of z1 is multiplied by 4 and z2 by 2. It proves that a real second order sliding

mode has been established. To summarize, the proposed new algorithm, TWLC, ensures the

establishment of a real second order sliding mode for system (5.1), using only the information

of z1. This control law inherits output feedback feature from 2SMOFC and also the advantage

of fast convergence time from TWC.
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Figure 5.1 – System states and control input. Top. z1 versus time (sec); Middle. z2 versus time

(sec); Bottom. control input u versus time (s).
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Figure 5.2 – System trajectory in the phase plane (z1, z2).

mean(|z1|) mean(|u|) Convergence time

TWC 0.0059 44.4631 <5s

2SMOFC 0.0035 34.2581 >50s

TWLC 0.0035 34.2581 <10s

Table 5.1 – Comparison between TWC, 2SMOFC and TWLC
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Figure 5.3 – Large gain control energy E versus time (s).

Te = 0.01s Te = 0.02s Te = 0.04s Te = 0.08s

TWC
mean(|z1|) 0.0059 0.0211 0.0765 0.2576

mean(|z2|) 0.4893 0.8585 1.5196 2.8701

2SMOFC
mean(|z1|) 0.0035 0.0132 0.0506 0.1876

mean(|z2|) 0.3091 0.6107 1.2067 2.3701

TWLC
mean(|z1|) 0.0035 0.0132 0.0506 0.1876

mean(|z2|) 0.3091 0.6107 1.2067 2.3701

Table 5.2 – Tracking accuracies under different sampling periods.

5.2 Control of a pendulum system

In this section, the three controllers are applied to a pendulum system and their performances

are compared.

5.2.1 System description

O

u
R(t)

x1

Figure 5.4 – Pendulum scheme Levant [2007]

Figure 5.4 shows the scheme of a variable-length pendulum system Levant [2007] evolving

./part1/figure/sp/e.eps
./part1/figure/sim/pendulum.eps
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in a vertical plane. The system dynamics reads as

ẋ1 = x2

ẋ2 = −2
Ṙ(t)

R(t)
x2 −

g

R(t)
sin(x1) +

1

mR(t)2
u

(5.6)

with x1, x2 respectively the angular position and velocity of the rod, m = 1kg the load mass,

g = 9.81ms−2 the gravitational constant, R(t) the distance from the fix point O and the

mass, and u the control torque. R(t) is a non-measured disturbance and reads as R(t) =
1 + 0.01 sin(8t) + 0.02 cos(4t). Function R(t) and its time derivative Ṙ(t) are such that

0.974 ≤ R(r) ≤ 1.026 and −0.1601 ≤ Ṙ(t)
R(t)

≤ 0.0887.

5.2.2 Control design

Define the sliding variable σ(x, t) = x1−xc, with the reference trajectory xc = 0.5 sin(0.5t)+
0.5 cos(t). The system is initialized such that σ(0) = −0.5rads−1 . One has

σ̈ =

[

−2Ṙ(t)

R(t)
x2 −

g

R(t)
sin(x1)− ẍc

]

+

[
1

mR(t)2

]

u . (5.7)

Then, defining z1 = σ and z2 = σ̇, one obtains a system under the form (2.3)

ż1 = z2
ż2 = a(x, t) + b(x, t) · u (5.8)

with

a(x, t) = −2Ṙ(t)

R(t)
x2 −

g

R(t)
sin(x1)− ẍc

b(x, t) =
1

mR(t)2
.

(5.9)

For |x2| ≤ 10rad/s , the functions a and b are bounded with |a(t)| < 13.898 and 0 < 0.950 ≤
b(t) ≤ 1.0541. The angle x1 is supposed to be measured with a white noise of amplitude

10−5, whereas x2 is estimated by using a first order Levant differentiator Levant [1998] from

the measurement of x1. The simulations have been made with a control input sampling time

Te = 0.001s, which is 100 times higher than the integration step (10−5 s). The three SOSM

control laws, TWC, 2SMOFC and TWLC are applied to system (5.8). The gain Km has to

fulfill Km > aM/bm, which leads to Km > 14.63. In the simulations, the parameters for the

three control laws are uniformly chosen as Km = 100, γ = 5.

5.2.3 Comparison results

The performances of these control laws are presented in Figures 5.5-5.7. More detailed

comparisons can be made from Table 5.3, including the mean value of |σ|, |σ̇| and u, as well as

the standard deviation of σ, calculated for the last 5 seconds of the simulations. The simulation

results show that these three control laws make the system trajectories converging, in a finite

time, in a neighborhood of desired trajectories. However, due to the noisy measurement, the use

of differentiator in TWC causes an accuracy degradation. The tracking accuracies of 2SMOFC

and TWLC reach the same level, but the large gain duration τi in 2SMOFC, being only one

sampling step, leads to a longer convergence time. Not affected by the estimation quality of z2,

TWLC has a shorter convergence time than TWC.
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The simulations are repeated with a reduced sampling period Te = 10−4s, and the compari-

son between the three control laws is shown in Figure 5.8. According to Table 5.3, the tracking

accuracy with TWC has been improved thanks to a better estimation of x2 from the differen-

tiator. Due to the fact that the final convergence domain has been reduced, the convergence

time for TWC slightly increases. However, due to a too small sampling period, the large gain

duration τi of 2SMOFC has been also reduced, the convergence rate becomes very low, and its

convergence time is finally over 30 seconds. Moreover, the performance of TWLC is improved

due to a lower delay for the σ-sign switching detection. Furthermore, its convergence time does

not depend on the sampling period.
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Figure 5.5 – TWC : State variables of system (5.8), sliding variable and control input. (a). x1
versus time (sec); (b). x2 versus time (sec) (c). σ versus time (sec); (d). u versus time (sec).
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Figure 5.6 – 2SMOFC : State variables of system (5.8), sliding variable and control input. (a).

x1 versus time (sec); (b). x2 versus time (sec); (c). σ versus time (sec); (d). u versus time (sec).
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Figure 5.7 – TWLC : State variables of system (5.8), sliding variable and control input. (a). x1
versus time (sec); (b). x2 versus time (sec); (c). σ versus time (sec); (d). u versus time (sec).
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Figure 5.8 – Sampling period Te = 10−4s : Sliding variable σ versus time (sec) for the three

control laws. Top. TWC; Middle. 2SMOFC; Bottom. TWLC.

TWC 2SMOFC TWLC

mean(|σ|) 0.031 1.88× 10−4 1.87 × 10−4

std(σ) 0.034 2.25× 10−4 2.23 × 10−4

mean(|σ̇|) 1.24 0.10 0.11

mean(|u|) 480.56 252.64 253.04

Convergence Time (CT) <0.6s >3s <0.4s

mean(|σ|) for Te = 10−4s 4.32× 10−4 7.64× 10−6 7.62 × 10−6

CT for Te = 10−4 <1.2s >30s <0.5s

Table 5.3 – Comparison between TWC, 2SMOFC and TWLC.
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Conclusion

The main contributions of this part are summarized as following:

• The switching gain form is presented, which is an unified formalism of a class of second

order sliding mode control laws.

• The twisting control and the second order sliding mode output feedback control are refor-

mulated in the switching gain form. This reformulation is interesting because it allows to

compare these both controllers with a new one named twisting-like controller.

• The twisting-like controller ensures the establishment of a real second order sliding mode

with respect to the sliding variable in a finite time. The main features of this control law

can be summarized as follows

• Only the measurement of σ is required but not its derivative;

• The performances (convergence time and accuracy) of this control law are close to

those obtained with twisting control;

• A gain switching strategy is used for this control law and the switching conditions

depend on the detection of the sign commutations of σ and an online updated vari-

able τi.

• The twisting-like control can be used as a differentiator, which offers an estimation of the

first time derivative of a measured signal.

• Comparisons between TWC, 2SMOFC and TWLC, have been shown that the conver-

gence time of TWLC has been strongly improved with respect to 2SMOFC and is closed

to the one obtained with TWC. Moreover, thanks to the remove of the use of time deriva-

tive of the sliding variable, the additional disturbance caused by the differentiator is re-

duced for TWLC.
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6
Introduction

In the previous part, an unified switching gain control form has been presented and three

strategies of second order sliding mode control, Twisting control (TWC), Second order sliding

mode output feedback control (2SMOFC) and Twisting-like control (TWLC) have been for-

mulated in this framework. A common feature of these control laws is that the control gain

switches between two constants: a large value and a small one.

The robustness of these control laws against matched perturbations is directly related to the

value of their control gain. Overestimated perturbations bounds lead to large control gains, and

then large chattering amplitude. An adaptation mechanism of the control gain allows to reduce

the gain according to the actual perturbations (avoiding the assumption of the “worst” case sce-

nario). The idea of reducing the chattering and relaxing the requirement of perturbation bounds

knowledge has played a crucial role in the interest to develop SM controllers with adaptive or

time-varying gain. Adaptive controllers based on sliding mode theory have been developed

since several years Estrada and Plestan [2012]; Estrada et al. [2013]; Taleb et al. [2014]. An

adaptive version of twisting control has been presented in Taleb et al. [2013]. The first contri-

bution of this part consists in presenting the adaptive version of the second order sliding mode

control laws 2SMOFC and TWLC. Moreover, the extension of adaptive 2SMOFC towards third

order sliding mode is also introduced in this part.

In Estrada and Plestan [2014], a gain adaptation law is proposed for the 2SMOFC. Due to the

feature that only the sign of the sliding variable is measured, an original mechanism is used

to adjust the gain. Such mechanism is based on the time elapsed between two successive sign

commutations of the sliding variable. This gain adaptation does not only simplify the gain tun-

ing process, but also reduces the chattering caused by an overestimated large gain.

Considering the TWLC presented in Chapter 4, the z1-sign commutation is the trigger to apply

the large gain control u = uH . Due to this latter feature, a drawback of this controller is that, if

the system trajectory is initially far from the origin, there will be a quite long time until that the

first z1-sign commutation occurs. It means that, during this time interval, no large gain will be

applied, which may lead to a long convergence time.

In Yan et al. [2016d], an adaptation law is proposed for TWLC. This gain adaptation mechanism

allows not only to reduce the gain when a real sliding mode is established, but also to reduce

the convergence time.

With the adaptive version of 2SMOFC and TWLC, the establishment of the real 2SM is en-

sured after a finite time. Moreover, compared to the TWC, the use of the time derivatives of the
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sliding variable has been removed. Then, in this work, the effort has been made to extend the

2SMOFC to the higher order sliding mode (more than two) approaches.

In Yan et al. [2016c], a third order sliding mode control approach (denoted 3SMC) has been pro-

posed and is presented in the sequel. This new 3SMC is based on the 2SMOFC . Compared to

the standard third order sliding mode controller (for example, Defoort et al. [2009]; F.Dinuzzo

and A.Ferrara [2009]; Trivedi and Bandyopadhyay [2012]), the main advantage of this new

method is that only the sliding variable and its first order derivative are required. Moreover, an

adaptation gain law is proposed which allows to reduce the gain (and then the chattering) and

to simplify the tuning.

6.1 Organization

This part is organized as follows: Chapter 7 focuses on the adaptive second order sliding

mode control: adaptive versions of 2SMOFC and TWLC are presented. In Chapter 8, an adap-

tive new third order sliding mode controller is proposed, for which the design of the control law

and the parameter tuning are presented.

6.2 System presentation

Consider the uncertain nonlinear system

ẋ = f(x, t) + g(x, t) · u (6.1)

with x ∈ X⊂R
n the system state (X being a bounded subset of Rn) and u ∈ R the control

input. Functions f(x, t) and g(x, t) are differentiable partially known vector-fields.
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7.1 Problem statements

The two control laws, 2SMOFC and TWLC, are applicable to systems with a relative degree

equal to two. Consider the system (6.1) and define from the control objective the sliding variable

σ(x, t), with relative degree equal to 2. It means that the control objectives are fulfilled when

σ = 0 and

σ̈ = a(x, t) + b(x, t) · u (7.1)

with functions a(x, t) and b(x, t) supposed to be uncertain. Then, the control problem of system

(6.1) is equivalent to the finite time stabilization around the origin of

ż1 = z2
ż2 = a(x, t) + b(x, t) · u (7.2)

with z1 = σ, z2 = σ̇. Suppose that the following assumptions are fulfilled

Assumption 7.1.1. The system trajectories are supposed to be infinitely extendible in time for

any bounded Lebesgue measurable input;
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Assumption 7.1.2. The controller is updated in discrete-time with the sampling period Te which

is a strictly positive constant. The control input u is constant between two successive sampling

steps i.e

∀t ∈ [kTe (k + 1)Te[ u(t) = u(kTe) ; (7.3)

Assumption 7.1.3. Function a is a bounded uncertain function and b is positive and bounded.

Thus, there exist positive constants aM , bm, bM such that

|a(x, t)| ≤ aM
0 < bm ≤ b(x, t) ≤ bM

(7.4)

for x ∈ X and t > 0.

7.2 Adaptive version of second order sliding output feedback

control

In Section 3.4, a first version of 2SMOFC is given by Theorem 3.4. In this case, the gain

Km is supposed to be a constant. In this section, the gain Km becomes a time-varying function

which allows to simplify the tuning process and to reduce the chattering, by adjusting the gain

magnitude.

7.2.1 Recall of the non-adaptive control law

Consider the system (7.2), under Assumptions 7.1.1-7.1.3. The 2SMOFC algorithm Estrada

and Plestan [2012] reads as

u(kTe) = −K(kTe)sign(z1(kTe)) (7.5)

with k ∈ IN , K being defined as

K(kTe) =

{
Km if kTe /∈ TH

γKm if kTe ∈ TH
(7.6)

and

TH = {kTe | sign(z1((k − 1)Te)) 6= sign(z1(kTe))}. (7.7)

In Section 3.4, it has been proved that with some large enough constantKm and γ, a real second

order sliding mode with respect to z1 is ensured in a finite time. A necessary condition for the

tuning of Km is that it must be larger than aM/bm. From a practical point of view, the bound

of the uncertainty could not be known precisely, and the “worst” case may never happen. Then,

an oversized gain Km induces large control magnitude and then can increase the chattering. In

the sequel, a novel version of 2SMOFC with gain adaptation is presented.

Remark 7.2.1. Compared to the constant gain version of 2SMOFC presented in Theorem 3.4,

in this chapter, the control gainKm is no longer a constant, but becomes a time varying function

Km(t), whose computation is detailed next.
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7.2.2 Gain adaptation law

The gain adaptation algorithm developed for the 2SMOFC should answer to the following

requirements:

• with the adaptation law, the gain Km(t) should be reduced when the system trajectories

have converged to a vicinity of the origin;

• the gain Km(t) increases when the system trajectories have left or have not reached a

vicinity of the origin;

• the detection of whether the system has reached the vicinity of the origin, must be based

on z1.

In Yan et al. [2016a] a mechanism satisfying the above requirements is proposed which is based

on the time elapsed between two successive z1-sign commutations. Recall that T is (i ∈ N, i > 0)

is the time at which the ith z1-sign switching is detected. i.e.

sign(z1(T
i
s)) 6= sign(z1(T

i
s − Te)) (7.8)

and set T 0
s = 0. Then, the gain adaptation algorithm is summarized by the following theorem.

Theorem 7.1 (Yan et al. [2016a]). Consider the system (7.2), under Assumptions 7.1.1-

7.1.3. The control input u is defined by (7.5)-(7.6) (where the constant Km is replaced by

time varying function Km(t)) with γ > 1, by TH defined as (7.7) and by the gain Km(t)
fulfilling the following rules

• Km(t) is constant over each sampling period Te i.e. ∀t ∈ [kTe, (k+1)Te[, Km(t) =
Km(kTe);

• Km(0) > 0;

• the adaptation law of Km reads as

∀t ∈ [T is , T
i+1
s [, K̇m(t) = Γ · sign(t− T is − βTe) (7.9)

with Γ > 0 and β > 1 (β /∈ N).

Then, the establishment of a real second order sliding mode with respect to z1 is ensured.

Remark 7.2.2.

• This gain adaptation law helps to simplify the tuning process for Km, it allows to adjust

the gain without knowing the bound of the perturbations and uncertainties.

• The duration between two successive z1-sign commutations is a key-point of the gain

adaptation law. Denote ηi ∈ N the number of sampling periods between T is and T i+1
s

T i+1
s − T is = ηiTe.

If ηi = 1, no commutation between Km and γKm would take place and no convergence

can be ensured Plestan et al. [2010a]. On the other hand, when a real second order

sliding mode is established, the sliding variable is changing its sign at high frequency

Bartolini et al. [2002], which implies that ηi is bounded.
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• The main idea of the gain adaptation law consists in counting the number of sampling

periods between two successive z1-sign commutations, and checking if this number is

lower than a value fixed by the parameter β: if it is the case, it means that a real second

order sliding mode is established, then the gain can be reduced; if it is not the case, the

detection fails and the gain is increasing.

• The parameter β allows to evaluate if the trajectory in (z1, z2)-phase plane is evolving

with a relative high frequency around the origin. This latter feature of trajectories dy-

namics is directly connected to the establishment of a real second order sliding mode.

Proof. Without loss of generality, suppose that the i + 1-th z1-sign commutation occurs at a

time larger than T is+Ceil(β)Te
1. If it not the case, it means that the number of sampling period

between T is and T i+1
s have been smaller than β then, the convergence to a vicinity of the origin

is considered to be obtained: given (7.9), the gain Km is decreasing.

From equation (7.9), for t ∈ [T is , T
i
s + Ceil(β)Te[, one has

K̇m(t) = −Γ (7.10)

which gives

Km(T
i
s + Ceil(β)Te) = Km(T

i
s)− Γ · Ceil(β)Te (7.11)

By a similar way, for t ∈ [T is + Ceil(β)Te, T
i+1
s [, one has

K̇m(t) = Γ (7.12)

which gives

Km(T
i+1
s ) = Km(T

i
s + Ceil(β)Te) + Γ · (T i+1

s − T is − Ceil(β)Te) (7.13)

Then, from (7.11)-(7.13), one gets

Km(T
i+1
s ) = Km(T

i
s) + Γ · (T i+1

s − T is)− 2ΓCeil(β)Te

= Km(T
i
s) + ηiTeΓ− 2ΓCeil(β)Te

(7.14)

Denote T i+1
s − T is = ηiTe then, by comparing ηi to 2Ceil(β),

• if ηi > 2Ceil(β), it means that the switching frequency of the sign of the sliding variable

is at a relative low level. The system trajectories have not yet converged: it could be due

to the fact that the gain is not large enough and then has to be increased, i.e.

ηi > 2Ceil(β) ⇒ Km(T
i+1
s ) > Km(T

i
s); (7.15)

• in the opposite case, it means that the switching frequency of the sign of the sliding

variable is at a relative high level. It means that the system trajectories have converged:

the gain can be considered large enough and then can be decreased, i.e.

ηi < 2Ceil(β) ⇒ Km(T
i+1
s ) < Km(T

i
s). (7.16)

From Km-dynamics (7.9), it is clear that, until the convergence to a vicinity of the origin of

the (z1, z2)-phase plane is not detected, the gain is increasing. Given its dynamics, it is obvious

that Km is reaching in a finite time a sufficiently large gain with respect to uncertainties and

perturbations, in order to make the closed-loop system (7.2) converging to a vicinity of the

origin. Once this convergence is detected, Km-dynamics allows to reduce the gain which could

become too small with respect to uncertainties and perturbations: then, the detection of the

convergence statement fails inducing that the gain is increasing again, and so on.

1. The function Ceil is defined as follows: given α ∈ R and α∗ ∈ N, Ceil(α) = min{α∗ ∈ N|α∗ ≥ α}.
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Remark 7.2.3. The tuning rule of β is given as β > 1. If 0 < β ≤ 1, the single possibility

to reduce the gain would be to have ηi ∈ {0, 1}. In this case, there is no more interval time

to apply the large gain γKm; knowing that the application of γKm is absolutely necessary to

make the system converge Plestan et al. [2008b], one concludes that, if 0 < β ≤ 1, the system

trajectories are diverging.

7.2.3 Simulations

Some simulations are presented in this section. Consider system (7.2) with

a(t) = 6 sin(10t) + 0.5sign(sin(10t))

b(t) = 1 + 0.1 sin(40t)

which gives

bm = 0.9, bM = 1.1, aM = 6.5. (7.17)

Assumption 7.1.3 is fulfilled: recall that these bounds are unknown. The system is controlled

by (7.5)-(7.6) with adaptation law (7.9). The sampling period is Te = 0.01 sec. The initial

conditions are set as z(0) = [1 0]T . Then, the comparison between standard 2SMOFC and

its adaptive version is made, the parameter configurations being detailed by Table 7.1. The

control gain for adaptive 2SMOFC is time varying with Γ = 100, and the gain Km for standard

2SMOFC is tuned equal to the average value of adaptive gain. The simulation result is plotted

in Figure 7.1, and detailed comparisons are made in Table 7.2. The convergence time is defined

as the time when T i+1
s − T is < 2Ceil(β)Te fulfilled. It shows that thanks to the gain increasing

before the establishment of 2SM, the convergence time obtained with adaptive 2SMOFC is

improved with respect to its standard version. Moreover, comparing their absolute means values

and standard deviations, the gain adaptation algorithm improves the tracking accuracy for both

z1 and z2.

2SMOF Adp 2SMOF

γ = 10, Km = 17
γ = 10, Km(0) = 100
Γ = 100, β = 3.1

Table 7.1 – Parameter configurations of 2SMOF and adaptive 2SMOF.

2SMOFC Adp 2SMOFC

Convergence time 2s 0.3s

mean(|z1|) 0.064 0.017

std(z1) 0.171 0.074

mean(|z2|) 0.917 0.673

std(z2) 1.253 1.766

mean(Km) 17 17.14

Table 7.2 – Comparison between standard 2SMOFC and adaptive 2SMOFC.

Then, the simulation is repeated, in order to investigate the effect of parameter β in the gain

adaptation algorithm (7.9). Figure 7.2 displays simulation results with several values of β =
{0.9, 1.1, 2.1, 3.1} .
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Figure 7.1 – Standard 2SMOFC vs Adaptive 2SMOFC: (a). z1 versus time (sec); (b). z2
versus time (sec); (c). control input u versus time (sec); (d). gain Km(t) versus time (sec).

Remark 7.2.4. The “sign” function not being defined at 0, the values of β are not chosen as

integers: then, in (7.9), there is no ambiguity on the sign value. However, note that, for a

nonzero sampling period Te, the behavior of Km is the same for β ∈]k , k + 1[, k ∈ IN .

The convergence of z1 in a vicinity of 0 is obtained for β > 1. However, when β < 1, the

system is diverging given that the gain Km is always increasing. In order to show the influence

of the tuning of β and Te, Table 7.3 presents root mean square (rms) values of z1 and Km once

the real 2SM is established. It appears that the accuracy is improved when the sampling period

Te is reduced. Furthermore, when the parameter β is increased, according to (7.16), the gain

Km is reduced. However, for the final sliding mode phase, the duration between two successive

z1-sign switching is longer, which leads to a lower accuracy. Then, it is necessary to get a

compromise between Te and β.
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Figure 7.2 – z1(t) (left) and Km(t) (right) versus time (sec) with β = {0.9, 1.1, 2.1, 3.1}.
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β = 1.1 β = 2.1 β = 3.1
Te rms(z1) rms(Km) rms(z1) rms(Km) rms(z1) rms(Km)

0.01s 4.8× 10−3 13.51 7.2× 10−3 12.10 9.9× 10−3 12.00

0.001s 5.3× 10−5 15.67 5.4× 10−5 8.91 5.8× 10−5 7.84

Table 7.3 – Root mean squares of z1 and Km in steady state, for different values of Te and β

7.3 Adaptive version of twisting-like control

The twisting-like control law (TWLC) introduced in Chapter 4 (see Theorem 4.1) is an

improvement control strategy based on the 2SMOFC, the TWLC allowing a faster convergence.

The following features are shared by these two control laws:

• applicable to systems with relative degree equal to one or two;

• only the measurement of the sign of the sliding variable is required;

• a real second order sliding mode with respect to the sliding variable is ensured in a finite

time.

In the previous section, an adaptation gain law has been developed for the 2SMOFC. In this

section, an adaptation gain algorithm is developed for the TWLC in Theorem 7.2.Similar to

Theorem 7.1, these both gain adaptation laws are using the time gap between two successive

sign switching of the sliding variable as a sliding mode detector.

7.3.1 Recall of the non adaptive control law

Consider the system (7.2), under Assumptions 7.1.1-7.1.3. The TWLC algorithm Yan et al.

[2016d] reads as (k ∈ IN)

u(kTe) = −K(kTe)sign(z1(kTe)) (7.18)

with the gain K defined as

K =

{
Km if kTe /∈ TH

γKm if kTe ∈ TH
(7.19)

and the domain TH defined as

TH = {kTe | T is ≤ kTe ≤ T is + τi, i ∈ IN} (7.20)

The value of τi is obtained from

τi = max(τ ′i , Te) (7.21)

with

τ ′i = Te · floor
[

2α
τi−1K

min
M + τ̄i−1K

min
m

Kmax
M Te

− 1

]

(7.22)

and

Kmax
m = bMKm + aM , Kmin

m = bmKm − aM ,

Kmax
M = γbMKm + aM , Kmin

M = γbmKm − aM .



74 CHAPTER 7. ADAPTIVE SECOND ORDER SLIDING MODE CONTROL

The parameters α and τ̄i are respectively defined as

α =

√

Kmin
m

√
Kmax
M +

√

Kmin
m

(7.23)

and

τ̄i = max(0, T i+1
s − T is − τi) . (7.24)

As the 2SMOFC, the main difficulty for the development of a gain adaptation algorithm for

TWLC is that only the sign of the sliding variable is available. The gain adaptation algorithm

introduced in Section 7.2 could offer a solution for such class of control laws. This mechanism is

based on the time elapsed between two successive z1-sign commutations. However, with a finite

gain, there exists also an additional problem. Indeed, for the TWLC, the z1-sign commutation is

the trigger to apply the large gain control u = uH . Therefore, if the system trajectory is initially

far from the origin, there would be a quite long time until the first z1-sign commutation occurs.

It means that during this time interval no large gain would be applied, which may leads to a

long convergence time. This is the main reason to develop a new gain adaptation algorithm in

order to reduce the convergence time.

7.3.2 Gain adaptation law

A gain adaptation law is developed for the TWLC. Under this adaptation mechanism, the

gain Km should satisfy the following requirements

• Km should be reduced when the system trajectories have converged to a vicinity of the

origin;

• the gainKm increases when the system trajectories have left or have not reached a vicinity

of the origin;

• if during a given time interval, no sign commutation of the sliding variable is detected,

the gain Km should increase in order to reduce the convergence time.

Then, a new gain adaptation algorithm is described in the following theorem.

Theorem 7.2 (Yan et al. [2016d]). Consider the system (7.2) with Assumptions 7.1.1-7.1.3

fulfilled and under the control law (7.18)-(7.24) (with the constant gainKm replaced by the

time varying function Km(t)). Denote T is the time of the i-th detected change of z1-sign.

The adaptation mechanism for gain Km(t) reads as

Km(t) =







Ki
m if t ∈ [T is , T

i+1
s [ and t− T is ≤ ε(T is − T i−1

s )

Kmax if t ∈ [T is , T
i+1
s [ and t− T is > ε(T is − T i−1

s )

Ki
m = min

(
max

(
Ki−1
m + Γ · (T is − T i−1

s − βTe) , 0
)
, Kmax

)

(7.25)

with β ∈ N
⋆, ε ≥ 1, Γ > 0 and Kmax > aM/bm. Using this adaptation law, the controller

(7.18)-(7.24) ensures the establishment of a real second order sliding mode with respect to

z1.

Remark 7.3.1.
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• The gainKm is updated when the switching of z1-sign is detected;Km is constant between

two successive z1-sign switching points.

• As Theorem 7.1, the idea consists in counting the number of sampling periods between

two successive z1-sign commutations. It has been presented in Yan et al. [2016a], that the

establishment of real second order sliding mode can be detected through the comparison

between T is − T i−1
s and βTe. If a real second order sliding mode is established then,

T is − T i−1
s ≤ βTe , and the gain is reduced. If it is not the case, the gain increases.

• The parameter β allows to evaluate if the trajectory in (z1, z2)-phase plane is evolving

with a relative high frequency around the origin. This latter feature of trajectories dy-

namics is directly connected to the establishment of a real second order sliding mode.

From this evaluation, the gain is increased or decreased.

• The gain is forced to have its maximum value if, since the latest detection time T is , no

z1-sign switching is detected for a “relatively” long time. This latter is defined by the

parameter ε: the smaller ε is, the faster convergence time is, but with a larger gain.

Proof. Consider the system (7.2) under the control law (7.18)-(7.24) and Assumptions 7.1.1-

7.1.3 fulfilled. The adaptation law for Km(t) reads as (7.25). This gain adaptation strategy can

be summarized by Figure 7.3.

• The gain is forced to have its maximum value if, since the latest detection instant T is , no

z1-sign switching can be detected for a relatively long time which is defined by ε.
Set T 0

s = T−1
s = 0. Then, if t − T is > ε(T is − T i−1

s ), with i ∈ N and ε > 1, one has

Km = Kmax. According to Theorem 4.1, the system converges closer to zero. It yields

that T i+1
s − T is ≤ T is − T i−1

s .

• If T i+1
s − T is ≥ βTe, it means that the sign switching frequency of the sliding variable is

at a relative low level. In other words, the system trajectories have not yet converged to

the final vicinity of zero: the gain should be increased to shorten the convergence time,

i.e.

Ki+1
m = min(Ki

m + Γ · (T i+1
s − T is − βTe), Kmax) (7.26)

which yields Kmax ≥ Ki+1
m ≥ Ki

m.

• In the opposite case, if T i+1
s − T is < βTe, it means that the sign switching frequency

of the sliding variable is at a relative high level: the system trajectories have converged.

Therefore, the gain can be considered large enough and then can decrease, i.e.

Ki+1
m = max(Ki

m + Γ · (T i+1
s − T is − βTe), 0) (7.27)

which yields 0 ≤ Ki+1
m ≤ Ki

m.

7.3.3 Simulations

Consider system

ẋ1 = x2
ẋ2 = a(t) + b(t)u
y = x1

(7.28)

with
a(t) = 6sin(10t) + 0.5sign(sin(10t))
b(t) = 1 + 0.1sin(40t) .

(7.29)



76 CHAPTER 7. ADAPTIVE SECOND ORDER SLIDING MODE CONTROL

True

False

True

False

Figure 7.3 – Scheme of adaptive TWLC

The main advantage of the adaptation gain law for the TWLC consists in reducing the conver-

gence time, when there is no sign commutation of the sliding variable. In order to highlight the

contribution of this improved adaptation algorithm, in the simulation example, the state variable

x1 is forced to track a square form reference signal x1ref = −5sign(sin(0.2πt)) (see Figure 7.4

(a)). It means that, periodically, the system trajectories will be far from the objectives. Then,

the control objective is to force the output y to track a constant reference 5 or −5. The points for

which x1ref changes, can be treated as a reinitialization of the system. So, in this case, consider

ẋ1ref = 0. Define the sliding variable σ as

σ = x1 − x1ref . (7.30)

./part2/figure/schem_adp_twlc.eps
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Denote z1 = σ, z2 = σ̇; then, the control problem is equivalent to stabilize

ż1 = z2
ż2 = a(t) + b(t)u .

(7.31)

Function a(t) is bounded by aM = 6.5. Function b(t) satisfies 0.9 ≤ b(t) ≤ 1.1. The simulation

test is made with sampling period Te = 0.01s, and the initial conditions are set as x1(0) = 1,

x2(0) = 0. The performance of the standard TWLC and the adaptive TWLC are compared. The

parameter tuning of these two control laws are detailed in Table 7.4. For the adaptive TWLC,

the gain Km(t) is time-varying, and its dynamics depends on the parameter Γ. The constant

gain Km for standard TWLC is chosen close to the average value of the time varying one in

the adaptive controller. The performance of standard TWLC is displayed by Figure 7.4. Figure

7.4 (a) shows that when the reference signal jumps, the sliding variable will be pushed far

away from zero. During a relative long time, there is no sign switching for the sliding variable,

which leads to a longer convergence time. The performance of the adaptive version TWLC is

presented in Figure 7.5. Thanks to the gain adaptation algorithm (7.25), after the discontinuous

point of the reference signal, the gain Km is forced to its maximum value Kmax, which allows

to reduce the convergence time. A real second order sliding mode is said to be established,

if T i+1
s − T is < βTe fulfills. Then, the convergence time can be calculated around the points

t = 0, t = 5, t = 10, t = 15. A detailed comparison is made in Table 7.5. The average

convergence time obtained with adaptive TWLC is improved with respect to standard version.

Then, this reduction of the convergence time leads to the smaller tracking error for x1.

TWLC Adp TWLC

γ = 10, Km = 100
γ = 10, Km(0) = 20
Γ = 100, β = 3.1
ε = 10, Kmax = 200

Table 7.4 – Parameters of standard and adaptive TWLC.

TWLC Adp TWLC

Average convergence time 2.12s 1.32s

mean(|σ|) 1.26 0.97

std(σ) 2.60 2.4

mean(Km) 100 99.99

Table 7.5 – Comparison between standard and adaptive TWLC.

7.4 Summary

The main contributions of this chapter are summarized as follows :

• A gain adaptation algorithm is proposed for 2SMOFC. It is based on the time elapsed

between two successive sign commutations of the sliding variable.

• It has been proved that, under this adaptive mechanism, the gain Km decreases when the

system trajectory reaches a vicinity of zero, and increases in the opposite case.

• Through the simulations, it shows that the convergence time and the tracking accuracy

obtained with adaptive 2SMOFC are improved with respect to its standard version.
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Figure 7.4 – Standard TWLC: (a). x1 and x1ref versus time (sec); (b). x2 versus time (sec);

(c). control input u versus time (sec); (d). gain Km(t) versus time (sec).
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Figure 7.5 – Adaptive TWLC: (a). x1 and x1ref versus time (sec); (b). x2 versus time (sec);

(c). control input u versus time (sec); (d). gain Km(t) versus time (sec).

• Analyzing the roles played by the parameter β, it appears that, when the parameter β is

increased, the gain Km is reduced but the accuracy is lower.

• A gain adaptation algorithm is developed for TWLC. Under this adaptive mechanism the

gain Km decreases when the system trajectory reaches a vicinity of zero, and increases in

the opposite case. Moreover, a jump of the gain is designed, if no sign commutation of

the sliding variable is detected during a predefined time interval.

• According to the simulation results, the gain adaptation law allows to further improve the

tracking accuracy and the convergence time, compared to the standard TWCL.

./part2/figure/fig/con_twlc.eps
./part2/figure/fig/adp_twlc1.eps
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In Chapter 3 and 4, two second order sliding mode control laws 2SMOFC and TWLC have

been presented under an unified formalism, based on gain switching strategy. These control

laws are applicable to systems with relative degree equal to one or two and the use of time

derivative of the sliding variable is not required. Then, in Chapter 7, gain adaptation algorithms

have been developed for these two control laws respectively. The objective of this chapter is

to extend these methods to higher order sliding mode (more than two). The study is based on

the concept used for 2SMOFC, and the extension is made for third order sliding mode control

(denoted 3SMC). This new controller can be applied directly to systems with relative degree

equal to three with respect to the sliding variable, but it is also applicable to the cases of relative

degree equal to one or two.

8.1 Problem statement

Consider the system (6.1) and define, from the control objective, the sliding variable σ(x, t)
with relative degree equal to three, i.e.

σ(3) = a(x, t) + b(x, t) · u (8.1)

79
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with functions a(x, t) and b(x, t) deduced from (6.1). Then, the control problem is equivalent

to the finite time stabilization of the system

ż1 = z2
ż2 = z3
ż3 = a(x, t) + b(x, t) · u

(8.2)

with z = [z1, z2, z3]
T = [σ, σ̇, σ̈]T . Suppose that the following assumptions hold

Assumption 8.1.1. The trajectories of system (8.2) are supposed to be infinitely extendible in

time for any bounded Lebesgue measurable input.

Assumption 8.1.2. For x ∈ X and u ∈ IR, the vector z is evolving in a bounded open subset

of IR3, i.e. z ∈ Z ⊂ IR3 .

Assumption 8.1.3. The control input u is updated in discrete-time with the positive sampling

period Te. The control input u is constant between two successive sampling steps i.e

∀t ∈ [kTe, (k + 1)Te[, u(t) = u(kTe) . (8.3)

Assumption 8.1.4. Functions a and b are bounded uncertain functions, and there exist positive

constants aM > 0, bm > 0 and bM > 0 such that

|a(x, t)| ≤ aM , 0 < bm < b(x, t) < bM (8.4)

for x ∈ X and t > 0.

The objective is here to develop a new controller, based on high order sliding mode concept, for

the system (8.2), which meets the following requirements

• a real third order sliding mode with respect to z1 should be ensured in a finite time;

• the use of time derivatives of the sliding variable used in the control law has to be reduced

with respect to the full state feedback HOSM controller Levant [2003].

Definition 8.1.1. Levant [1993] The system (8.2) is said to perform a real third order sliding

mode with respect to z1 if the system trajectory satisfies in a finite time |z1| ≤ µ0T
3
e , |z2| ≤ µ1T

2
e

and |z3| ≤ µ2Te with Te the sampling period used for control application, and µ0, µ1, µ2

positive constants independent of Te.

8.2 Presentation of the control law

In Yan et al. [2016c], a new third order sliding mode controller is proposed. Its main feature

is that only the sliding variable and its first order time derivative are required. It means that,

considering system (8.2), this 3SMC requires only the informations of z1 and z2, which meets

the requirements mentioned just above.

The idea of the new control law is to stabilize the system (8.2) step-by-step. Firstly, the con-

troller forces z1 to converge to a vicinity of zero. Then, the next step is to vanish z2 and z3
without breaking the accuracy of z1. The design of this new 3SMC is composed by three main

steps

1. definition of two “layers”;

2. definition of “internal sliding” variable σ̄;

3. design of the control law.
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8.2.1 Definition of two layers

The convergence of system (8.2) to a vicinity of the origin is made in two steps: firstly the

convergence of z1; then, the convergence of z2 and z3. Starting from this fact two layers L1 and

L2 are defined according to z1 such that

L1 = {z ∈ Z | |z1| > µKmT
3
e }

L2 = {z ∈ Z | |z1| ≤ µKmT
3
e }

(8.5)

with Te the sampling step and µ a positive constant (see Figure 8.1). Note that the definition of

these both layers is linked to Definition 8.1.1 of real third order sliding mode.

t

z1

μ Km Te3

μ Km Te3

0

L1

L2

L2

L1

Figure 8.1 – Definition of the layers L1 and L2.

The control objectives are defined with respect to the both layers

• Layer L1. When z ∈ L1, the main control objective is to force z1 to converge to a vicinity

of zero, which makes the system trajectory reach L2.

• Layer L2. Once z1 belongs to L2, the main task is no longer the control of z1, but to force

z2 and z3 to reach a vicinity of 0, in order to ensure the establishment of a real third order

sliding mode.

8.2.2 Definition of the sliding variable

The control objectives are different for the two layers: so, an “internal” sliding variable σ̄
(different from the sliding variable σ defined for system (6.1)) is defined respectively for both

L1 and L2 layers.

• Layer L1. When system trajectories are evolving in L1, according to the control objec-

tive, the definition of the internal sliding variable σ̄ must lead to the finite time conver-

gence of z1. The definition of σ̄ is based on the terminal sliding mode control concept

Feng et al. [2002] and reads as (with α > 0)

σ̄ = z2 + αz
2/3
1 sign(z1). (8.6)

• Layer L2. The objective of the control law in L2 is now to vanish z2 and z3. Then, by

defining the internal sliding variable as

σ̄ = z2, (8.7)

./part2/figure/yt.eps
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the establishment of a real 2SM with respect to σ̄ leads to the convergence of z2 = σ and

z3 = σ̇ to a vicinity of zero.

Note that σ̄ depends on z1 and z2, but not on z3. Given that L1 and L2 are also defined only by

z1, the control law proposed here is independent on σ̈.

8.2.3 Control design

Once the internal sliding variable σ̄ defined, the 2SMOFC (see Section 3.4) is used to ensure

the convergence of σ̄. Recalling that the 2SMOFC requires only the knowledge of σ̄, it means

that only σ and σ̇ are required. The scheme of the 3SMC can be presented by Figure 8.2. The

3SMC is basically composed by

1. the layer detection (8.5);

2. the construction of internal sliding variable σ̄;

3. the 2SMOFC (presented in Theorem 3.4).

System

3SMC

Layer

detection2SMOFC

u

Figure 8.2 – 3SMC scheme.

Theorem 8.1 (Yan et al. [2016c]). Consider system (8.2) under Assumption 8.1.1-8.1.4,

and the internal sliding mode variable defined as

σ̄ = z2 + αz
2/3
1 Γ(z1) (8.8)

with α > 0 and the function Γ(z1) defined as

Γ(z1) =

{
sign(z1) if z ∈ L1

0 if z ∈ L2
(8.9)

with L1 and L2 defined by (8.5). Consider the control input defined as

u(kTe) = −K(kTe)sign(σ̄(kTe)) (8.10)

./part2/figure/sh_3sm.eps
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with K(t) defined as

K(kTe) =

{
Km if kTe /∈ TH

γKm if kTe ∈ TH
(8.11)

and

TH = {kTe |sign(σ̄((k − 1)Te)) 6= sign(σ̄(kTe))} (8.12)

Then, there exist a sufficiently large but finite gainKm, a sufficiently large γ > 3, a positive

parameter α and a large enough parameter µ such that, under the control law (8.8)-(8.12),

a real third order sliding mode with respect to z1 is established in a finite time.

8.3 Convergence analysis

The convergence analysis for the 3SMC proposed in Theorem 8.1. is based on four Lemmas.

• Lemma 8.3.1 shows that the control law (8.8)-(8.12) ensures the establishment of a real

second order sliding mode (2SM) with respect to the internal sliding variable σ̄ in a finite

time.

• Lemma 8.3.2 ensures that, if z ∈ L1, then one gets z ∈ L2 in a finite time.

• Lemma 8.3.3 and 8.3.4 claim that, once the system trajectories are evolving in L2 and

once a real 2SM with respect to σ̄ has been established, then z2 and z3 converge to a

vicinity of zero in a finite time. A 3SM with respect to z1 is then established.

Lemma 8.3.1 (Yan et al. [2016c]). Consider system (8.2) under Assumption 8.1.1-8.1.4.

There always exist sufficiently large but finite gain Km and a sufficiently large parameter γ
such that, under the control law (8.8)-(8.12), a real 2SM with respect to σ̄ is established in

a finite time.

Proof. Consider the internal sliding variable σ̄ defined by (8.8); one has, if z ∈ L1

¨̄σ = a(x, t) + b(x, t)u+ α[−2
9
z
−4/3
1 z22 +

2
3
z
−1/3
1 z3]sign(z1) , (8.13)

and, if z ∈ L2, ¨̄σ = a(x, t) + b(x, t)u. Then, by defining a∗ as

a∗ =

{

α[−2
9
z
−4/3
1 z22 +

2
3
z
−1/3
1 z3]sign(z1) if z ∈ L1

0 if z ∈ L2
(8.14)

one has
¨̄σ = a(·) + a∗(·) + b(·)u (8.15)

Remarking that Z is a bounded open subset of IR3, for z ∈ Z and x ∈ X , there exists a

positive a∗M such that |a∗(·)| < a∗M . It yields that |a + a∗| < aM + a∗M . By tuning the gain

Km as Km > (aM + a∗M )/bm and according to Theorem 3.4, a real 2SM with respect to σ̄ is

established in a finite time.

Remark 8.3.1. The function a∗ is bounded, but its bound a∗M depends on the bound of z3. In

order to avoid the use of the information of z3 in the gain tuning process, a gain adaptation law

will be presented in the next section. It allows to adjust the gain to satisfyKm > (aM+a∗M)/bm
without any information on z3.
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Lemma 8.3.2 (Yan et al. [2016c]). Suppose that the trajectories of system (8.2) are evolving

in L1. Then, under the control law (8.8)-(8.12) with Km, γ and µ sufficiently large, once

the real 2SM with respect to σ̄ is established, the system trajectories will pass from L1 to

L2 in a finite time.

Lemma 8.3.2 does not claim that, once they reach L2, the system trajectories are maintained

inside it and never escape out. Due to perturbations, uncertainties and intrinsic features of the

controller, the trajectories may leave L2. But, thanks to the control law, they will be force to

reach back L2 in a finite time. It means that the convergence domain may be slightly wider than

L2, this domain being given by Lemma 8.3.4.

Proof. From Lemma 8.3.1, suppose that a real 2SM with respect to σ̄ is established, then, there

exists a constant k0 > 0 such that

|σ̄| < k0T
2
e . (8.16)

If the trajectories of system (8.2) are evolving in L1, from (8.8), and given that ż1 = z2, one has

ż1 = −αz2/31 sign(z1) + σ̄. (8.17)

Then, consider the following candidate Lyapunov function V = 1
2
z21 . Differentiating V with

respect to time, one gets

V̇ = z1ż1 = |z1|(−αz2/31 + σ̄ · sign(z1)). (8.18)

Define δ(z1, t) = αz
2/3
1 − σ̄ · sign(z1). If z ∈ L1, then, from (8.5)-(8.16), there always exists

a sufficient large µ such that δ(z1, t) > δ∗ > 0, with δ∗ a positive number defined by δ∗ =

αµ2/3K
2/3
m T 2

e − k0T
2
e . Finally, one gets V̇ = z1ż1 < −δ∗|z1| < 0 which yields that z1 will

converge to a vicinity of zero in a finite time. In other words, z will reach L2 in a finite time.

Lemma 8.3.3 (Yan et al. [2016c]). Denote t∗i (i = 1, 2, . . .) the instants for which z2(t
∗
i ) = 0

(see Figure 8.3). Suppose that at instant t = t∗i , the system trajectories are evolving in L2

and a real second order sliding mode with respect to σ̄ has been established. Then, there

always exists a L > 0 independent from Te, such that

|z1(t∗i )− z1(t
∗
i+1)| ≤ LKmT

3
e (8.19)

z
1

z
2

t=t i+1* t=t i+3* t=t i
*t=t i+2*

Figure 8.3 – Definition of t∗i in the phase plane (z1, z2).

./part2/figure/ti1.eps
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Proof. From Lemmas 8.3.1 and 8.3.2, suppose that under the control law (8.8)-(8.12), a real

second order sliding mode with respect to σ̄ is established and the system trajectories are evolv-

ing in L2. The system performs a series of "spiral lines" in the phase plane (z1, z2) and a series

of "quadrangle" lines in the phase plane (z2, z3) (see Figure 8.4). In order to describe the state

z2

L1 L2

A

B

E

C

D

z1 z2

z3

A

B

D

C

E

Figure 8.4 – Left. System trajectory in phase plane (z1, z2) (blue) and switching surface S = 0
(red dotted); Right. System trajectory in phase plane (z2, z3).

Point Instant Control Description

A tA = t∗i Km z2(tA) = 0 and z3(tA) > 0
B tB −γKm switch of the gain

C tC −γKm z3(tC) = 0
D tD −Km switch of the gain

E tE = t∗i+1 −Km z2(tE) = 0 and z3(tE) < 0

Table 8.1 – Points describing the state trajectory

trajectories, once the system has reached L2, a succession of points classified in chronological

order are defined (see Table 8.1 and Figure 8.4). Without loss of generality, denote t∗i = tA and

t∗i+1 = tE . Remark that

• Te ≥ tB − tA ≥ 0 : the delay to detect the sign switching of z2 can not be longer than one

sampling step;

• tD − tB = Te : the duration of KM application is only one sampling step.

Denote Σ = |z1(t∗i ) − z1(t
∗
i+1)| as the distance between points A and E in the phase plane

(z1, z2). In the sequel, Σ is evaluated in two cases : ideal and perturbed system.

Ideal system. Assume that system (8.2) fulfills a = 0, b = 1. When the system trajectories are

evolving in L2, only z2 and z3 are controlled : system (8.2) can then be reformulated as

ż2 = z3
ż3 = u(z2, t)

(8.20)

Considering this reduced second order system, according to Lemma 3.4.1, after a finite time z2
and z3 satisfy

|z2| < 1
2
Km[η(γ)− 1]2T 2

e , |z3| < Kmη(γ)Te, (8.21)

./part2/figure/par_yva.eps
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with η = γ2−γ−2
2(γ−3)

. Then, the task is to estimate the maximum value of Σ. The worst case (i.e.

the largest value for Σ) occurs when z3(tB) = ηKmTe and when tB − tA tends to one sampling

step. Then, in the sequel, one takes tB − tA = Te. Given that between tA and tB , ż3 = Km, one

gets

z3(tA) = z3(tB) +Km(−Te) = (η − 1)KmTe
z2(tB) = Te(z3(tB) + z3(tA))/2

= (η − 0.5)KmT
2
e

z1(tB) = z1(tA) + 1/2z3(tA)T
2
e + 1/6KmT

3
e

= z1(tA) + (0.5η − 1/3)KmT
3
e

(8.22)

By a similar way, since between tB and tD, ż3 = −γKm, it comes

z3(tD) = z3(tB)− γKmTe = (η − γ)KmTe
z2(tD) = z2(tB) + z3(tB)Te − 1/2γKmT

2
e

= (2η − 0.5γ − 0.5)KmT
2
e

z1(tD) = z1(tB) + z2(tB)Te + 1/2z3(tB)T
2
e

− 1/6γKmT
3
e

= z1(tA) + (2η − 1/6γ − 5/6)KmT
3
e .

(8.23)

Between D and E, the control input equals to −Km, which gives

tE − tD = z3(tE)−z3(tD)
−Km

. (8.24)

Then, one has

z2(tE)− z2(tD) = z3(tD)(tE − tD)− Km

2
(tE − tD)

2 (8.25)

Replacing (8.23) and (8.24) in (8.25), one gets

z23(tE) = (η2 + 4η − 2γη + γ2 − γ − 1)K2
mT

2
e . (8.26)

After reductions and remarking that z3(tE) < 0, one gets

z3(tE) = −(η − 1)KmTe = −z3(tA) (8.27)

and

tE − tD = (2η − γ − 1)Te . (8.28)

Given that, in the case γ > 3,

2η − γ − 1 =
γ + 1

γ − 3
,

one has tE − tD > 0, which enables to write :

z1(tE) = z1(tD) + z2(tD)(tE − tD)
+ 1/2z3(tD)(tE − tD)

2 − 1/6Km(tE − tD)
3 .

(8.29)

It implies Σ = |z1(t∗i )− z1(t
∗
i+1)| ≤ LKmT

3
e with

L = 1/6(4η3 − 12η2γ + 24η2 + 9ηγ2

− 12ηγ − 9η − 2γ3 + 5γ − 1) .
(8.30)

Lemma 8.3.3 is proved for non perturbed case.

Perturbed system. Consider now the system (8.2) under Assumptions 8.1.1-8.1.4 and define

u∗ = a(·)− b(·)u. Then, when the system trajectories are evolving in L2, the control of system

(8.2) can be reduced as

ż2 = z3, ż3 = u∗. (8.31)



8.3. CONVERGENCE ANALYSIS 87

System (8.31) has a similar form to (8.20). Define the small and large gains for the input u∗ as

K∗
m = bKm − a · sign(z2)

K∗
M = γbKm − a · sign(z2). (8.32)

One has
K∗
m ∈ [bm ·Km − aM , bM ·Km + aM ]

K∗
M ∈ [γbm ·Km − aM , γbM ·Km + aM ]

(8.33)

Define γ∗ as

γ∗ =
K∗

M

K∗

m
∈ [γmin, γmax] (8.34)

with γmin and γmax deduced from (8.33)-(8.34). Define also

η∗ = γ∗2−γ∗−2
2(γ∗−3)

. (8.35)

Replace γ and η respectively by γ∗ and η∗ in (8.30) and introduce the following function

Σ∗(γ∗) = 1/6(4η∗3 − 12η∗2γ∗ + 24η∗2 + 9η∗γ∗2 − 12η∗γ∗

−9η∗ − 2γ∗3 + 5γ∗ − 1) .
(8.36)

Then, Σ∗(γ∗) ·K∗
mT

3
e can be viewed as the approximation of |z1(t∗i )−z1(t∗i+1)| for the perturbed

system, and one has

|z1(t∗i )− z1(t
∗
i+1)| < L∗KmT

3
e (8.37)

with L∗ = (bM + aM
Km

) · sup
γ∗

Σ∗.

Lemma 8.3.3 is proved for perturbed system.

Lemma 8.3.4 (Yan et al. [2016c]). Suppose that the trajectories of system (8.2) are evolving

in L2, and a real 2SM with respect to σ̄ has been established. Then, under the control law

(8.8)-(8.12) with Km, γ and µ sufficiently large, a 3SM with respect to z1 is established in

a finite time. Moreover, the accuracy of the states is given by

|z1| ≤ µ0KmT
3
e , |z2| ≤ 2µ0KmT

2
e , |z3| ≤ 4µ0KmTe

with µ0 = µ+ L.

Proof. From Lemma 8.3.1 and 8.3.2, one admits, that under the control law (8.8)-(8.12), a real

2SM with respect to σ̄ is established and the system trajectories are evolving in L2. Then, two

cases may happen:

Case 1 : The system trajectories are maintained in L2. In this case, given that z ∈ L2, which

implies |z1| ≤ µKmT
3
e , it is obvious that a real third order sliding mode with respect to z1 is

established, and the accuracy satisfies

|z1| ≤ µKmT
3
e , |z2| ≤ 2µKmT

2
e |z3| ≤ 4µKmTe.

Case 2 : Due to perturbations and non-zero sampling time, the system trajectory may transiently

pass to L1 and according to Lemma 8.3.2, the trajectory will go back to L2 in a finite time.

Consider the worst case : the system trajectory reaches L1 at instant t = t∗i with |z1(t∗i )| =
µKmT

3
e and z2(t

∗
i ) = 0. After a “half circle”, at instant t = t∗i+1, z1 reaches its maximum. From

Lemma 8.3.3, there exists some positive L such that |z1(t∗i ) − z1(t
∗
i+1)| ≤ LKmT

3
e ; it gives

|z1| ≤ µ0KmT
3
e with µ0 = µ + L. It implies that the accuracy of z2 and z3 satisfies at least

|z2| ≤ 2µ0KmT
2
e and |z3| ≤ 4µ0KmTe. The real third order sliding mode with respect to z1 is

proved.
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8.4 Gain adaptation law

In order to ensure the convergence, the gain has to be tuned large enough w.r.t. the perturbations.

In practice, the bound of the perturbations is hard to determine. And as mentioned in Remark

8.3.1, the tuning condition for the gain depends on the bound of z3. So, instead of a constant

gain, a self tuning rule of Km is proposed. This gain adaptation law helps to improve the

performance of the controller and avoids using any information of z3.

Proposition 8.4.1 (Yan et al. [2016c]). Consider the system (8.2) with Assumptions 8.1.1-8.1.4

fulfilled, under the control law (8.8)-(8.12). Consider the adaptation law of Km:

• if Km ≤ Kmm, K̇m = Kmm,

• if Km > Kmm

K̇m =

{
−Λ if z(t) ∈ L2

Λ if z(t) ∈ L1
(8.38)

with Kmm > 0 and Λ > 0.

The concept can be described as follows:

• if z ∈ L1, it means that there is no 3SM, which could be due to a too low gain. Then, the

gain is forced to increase;

• given that perturbation is bounded, and the system state z is evolving in a bounded subset,

the gain will become large enough in a finite time. Then the condition Km > (aM +
a∗M )/bm holds, the convergence is ensured. Then, thanks to (8.8)-(8.12), z ∈ L2 in a

finite time;

• if z ∈ L2, 3SM is established: the gain is decreasing in order to avoid the escaping from

L2 due to an oversized gain.

8.5 Parameter tuning rules

8.5.1 Tuning of γ

Consider system (8.2) under Assumptions 8.1.1-8.1.4; in order to establish a 2SM with

respect to σ̄, from Theorem 3.4, the parameter γ has to be also tuned large enough. Define u∗

as

u∗ = a(x, t) + a∗(z) + b(x, t)u . (8.39)

where the function a∗ is defined by (8.14). Then, dynamics of σ̄ reads as

¨̄σ = u∗ (8.40)

Firstly, consider kTe 6∈ TH. One has

u∗ = −Km · sign(σ̄(kTe)) · b(x, t) + a(x, t) + a∗(z) (8.41)

Now, introduce K∗
m defined by

K∗
m = Km · b(x, t)− (a(x, t) + a∗(z)) · sign(σ̄(kTe)) . (8.42)

Then, the control input u∗ takes the following form

u∗ = −K∗
m · sign(σ̄(kTe)) if kTe 6∈ TH (8.43)
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and

θ =
aM + a∗M
Km

. (8.44)

with K∗
m ∈ [(bm − θ)Km, (bM + θ)Km]. One supposes that under the adaptation law (8.38) the

gain Km is large enough such that θ < bm, which yields K∗
m > 0. Consider now kTe ∈ TH ,

which gives

u∗ = −γKm · sign(σ̄(kTe)) · b(x, t) + a(x, t) + a∗(z). (8.45)

As previously, one gets

u∗ = −K∗
M · sign(σ̄(kTe)) if kTe ∈ TH (8.46)

with

K∗
M = γKm · b(x, t)− (a(x, t) + a∗(z)) · sign(σ̄(kTe)) . (8.47)

In this case, one has

K∗
M ∈ [(γbm − θ)Km, (γbM + θ)Km] . (8.48)

Defining γ∗ as

γ∗ =
K∗
M

K∗
m

, (8.49)

one gets

γ∗ ∈
[
γbm − θ

bM + θ
,
γbM + θ

bm − θ

]

. (8.50)

According to Estrada and Plestan [2012], the establishment of a real 2SM is ensured by setting

γ∗ > 3. Then, the tuning rule of γ is given by

γ >
3bM + 4θ

bm
. (8.51)

Moreover, under the gain adaptation law (8.38), if the system trajectories keep evolving in L1,

in a finite time the gain will increase large enough such that Km > (aM +a∗M)/bm holds. Then,

one has θ/bm < 1 and tuning rule of γ can be given by the following proposition.

Proposition 8.5.1 (Yan et al. [2016c]). Consider system (8.2) under Assumptions 8.1.1-8.1.4,

and controlled by (8.8)-(8.12) with the gain adaptation law (8.38). Then, a sufficient condition

on the parameter γ to ensure the establishment of a 3SM with respect to z1 is

γ >
3bM
bm

+ 4 (8.52)

8.5.2 Tuning of µ

The role of µ is to define L1 and L2. Theoretically, with a smaller µ, one could get better

accuracy with respect to z1. However, in practice, the output is usually measured with noise,

and it is obvious that the width of L2 should be at least larger than the noise amplitude. The

following proposition gives a necessary condition for this parameter.

Proposition 8.5.2 (Yan et al. [2016c]). Consider system (8.2) under Assumptions 8.1.1-8.1.4,

controlled by (8.8)-(8.12), and suppose that the state is measured with noise, z̄1 = z1+ε, where

ε is a bounded white noise. Then, the width of L2 should be tuned large enough thanks to µ
such that

µKmmT
3
e > |ε| .
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8.6 Simulations

Consider the system

ż1 = z2
ż2 = z3
ż3 = (sin(z1) + 2) u+ 20sin(t)

(8.53)

One has bm = 1, bM = 3, aM = 20. The objective is to stabilize z = [z1 z2 z3]
T in a vicinity of

the origin. The simulation is made with sampling period Te = 0.01s, and the initial condition is

stated as z(0) = [5 0 −10]T . The 3SMC (8.8)-(8.12) with gain adaptation law (8.38), is applied

with the parameters tuned as follows

α = 2 µ = 55
γ = 10 Km(0) = 100
Kmm = 20 Λ = 500

(8.54)

The gain Km(t) is such that, after a finite time, the gain will increase large enough such that

Km > (aM + a∗M )/bm holds. Then, the parameter γ = 10 is tuned according to Proposition

8.5.1. The parameters α and µ are tuned to get the best performance.

The performance of the 3SMC is presented through Figure 8.5-8.6. Figure 8.5 displays the

system state variables, which show that z1 firstly converges towards zero, then z2 and z3 reach a

vicinity of zero after a finite time as well. In Figure 8.6(a), it is shown that the system trajectories

initially take place in layer L1, and during two seconds, the controller forces the trajectories to

get into layer L2. Then, a high frequency switching between the two layers appears, which

means that the system trajectories are maintained around the boundary of L2. Moreover, once

the system trajectories reach layer L2 (see Figure 8.6(b)), the gain Km is reduced, that allows

to relax the control input and to reduce the chattering.

This simulation test is repeated under different sampling periods. The ratio between the mean

tracking errormean(|z|) and the mean value of the control gainmean(Km) are calculated once

the steady state is established (t ∈ [15, 20]s). From the results in Table 8.2, one can notice that,

when the sampling period is multiplied by two, mean(|z1|)/mean(Km) is multiplied by eight,

mean(|z2|)/mean(Km) by four and mean(|z3|)/mean(Km) by two. According to Definition

8.1.1, it shows that a real third order sliding mode with respect to z1 is established, with µ0, µ1,

µ2 depending on the control gain Km.

Te = 0.01s Te = 0.02s Te = 0.04s

mean(|z1|)/mean(Km) 6.34× 10−5 4.94× 10−4 0.0041

mean(|z2|)/mean(Km) 0.0022 0.0084 0.032

mean(|z3|)/mean(Km) 0.12 0.24 0.46

Table 8.2 – Tracking accuracy under different sampling periods

8.7 Summary

The main contributions of this chapter are summarized as follows :

• A third order sliding mode control law (3SMC) is proposed.

• The main feature of this new control law is that only the information of the sliding variable

and its first order time derivative are required, which allows to reduce the use of time

derivatives with respect to standard 3SMC.



8.7. SUMMARY 91

0 2 4 6 8 10 12 14 16 18 20
-5

0

5
(a)

z 1

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5
(b)

z 2

0 2 4 6 8 10 12 14 16 18 20
-200

0

200
(c)

time(s)

z 3

Figure 8.5 – Adaptive 3SMC: (a). z1 versus time (sec); (b). z2 versus time (sec); (c). z3 versus

time (sec).
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Figure 8.6 – Adaptive 3SMC: (a). Layer detection versus time (sec); (b). Km versus time

(sec); (c). Control input u versus time (sec); (d). Internal sliding variable σ̄ versus time (sec).

• It has been proved that, this 3SMC ensures the establishment of a real third order sliding

mode after a finite time.

• In order to simplify the tuning and improve the performance, a gain adaptation law has

been proposed for this control law. It allows to relax the control gain when the system

trajectories reach a vicinity of the origin, and to increase the gain when the system trajec-

tories are far from the origin.

• Some tuning rules are given for two parameters of the new controller.
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Conclusion

The main contributions of this part are summarized as following:

• Adaptive version of second order sliding mode output feedback control (2SMOFC) and

Twisting-like control (TWLC) have been presented.

• Compared to their standard versions of 2SMOFC and TWLC presented in Part I, the

adaptive versions allow to reduce the convergence time, to improve the accuracy and to

reduce the chattering.

• A new third order sliding mode control law (3SMC) is proposed. This new control law

only requires the information of the sliding variable and its first order time derivative.

• This 3SMC ensures the establishment of a real third order sliding mode in a finite time.

• A gain adaptation law is designed for this proposed 3SMC, which helps to simplify the

parameter tuning and to improve the accuracy as well.
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Application to an electropneumatic system
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9.1 Introduction

Pneumatic actuators are widely used in the field of industry, due to their advantages in high

power-weight ratio and low cost. However, the pneumatic actuator is a system which is quite

difficult to control in an accurate way. Its dynamics is usually described by a fourth order non-

linear model Belgharbi et al. [1999] and with unavoidable uncertainties. These latter are caused

by friction, (external) perturbations and parametric uncertainties (for example, the mass flow

rate, which is a key-data to estimate the pressure in the actuator chamber, is very difficult to

be estimated). This work is motivated by the control problem of a pneumatic actuator position.

The control laws applied to pneumatic system must not only guarantee the high accuracy but

have to ensure the robustness with respect to uncertainties and perturbations.

From the last century, many robust control laws have been proposed to deal with the pneumatic

system control. In Brun et al. [1999], Morioka et al. [2000], Girin and Plestan [2009], experi-

mental electropneumatic actuator systems have been designed, and state feedback control laws
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have been developed from a nonlinear model of electropneumatic systems. Due to the presence

of perturbation and uncertainties, robust control is required. In Smaoui et al. [2006], Smaoui

et al. [2001], a nonlinear robust control strategy based on backstepping method is developed

for the electropneumatic system. In Bouri and Thomasset [2001], Girin and Plestan [2009],

Paul et al. [1994], sliding mode control laws have been applied to electropneumatic systems.

In Chillari et al. [2001], experimental comparisons have been made between several control

methods. The sliding mode control shows its advantages due to its robustness features and the

guarantee of finite time convergence. The objective of this chapter is to address the control

problem of pneumatic system using the new control strategies developed in this thesis.

Recall that, in Part I, different types of second order sliding mode control methods have been

presented, including the second order sliding mode output feedback control (2SMOFC) and

the twisting-like control (TWLC). In Chapter 8, a third order sliding mode controller (3SMC)

has been introduced. Compared to the standard HOSM controller, the maximal differentiation

order of the sliding variable used in the controller is reduced. For the electropneumatic system

control, the position can be measured, but the velocity and acceleration (if necessary in the con-

trollers) are usually deduced from the position by using numerical differentiators. Thanks to

the reduced differentiation order, controllers developed in the sequel for the electropneumatic

system could improve “standard” control approaches by reducing the introduction of noise in

the controller. By this way, the twisting-like approach proposed in Chapter 4 is firstly adapted

to be the basis of the control, but also to be qualified in order to estimate the velocity of the

actuator. Moreover, the gain adaptation algorithms presented in Part II, can also be applied in

order to improve the accuracy and simplify the tuning process.

All the experimental applications have been made on the electropneumatic system of IRCCyN

lab (see Figure 9.1), Nantes, France, which is described in the sequel.

Figure 9.1 – Photo of electropneumatic system

9.2 Description of electropneumatic system

The pneumatic system (see Figure 9.2) is composed of two actuators. The first one, named

the “main actuator”, is a double acting pneumatic actuator and is composed of two chambers

denoted P andN . The piston diameter is 80mm and the rod diameter is 25mm. It is controlled

./p_intro/photo_banc_pneumatique_2.eps
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by two servodistributors, which can hold high frequency discontinuous inputs. The source pres-

sure is 7 bar and the maximum force developed by the actuator is 2720 N . The air mass flow

rates entering in the chambers are modulated by two three-way servodistributors. The pneu-

matic jack horizontally moves a load carriage of mass M . This carriage is coupled with the

second pneumatic actuator, referred as the “perturbation actuator”. This latter has the same

mechanical characteristics as the main one, but the air mass flow rate is modulated by a sin-

gle five-way servodistributor, and produces a dynamical load force on the main actuator. The

pneumatic system has a software architecture based on a dSpace board. In the sequel, only the

control of the main actuator position is considered. The “perturbation” one is controlled by a

force PID controller provided by the experimental set-up constructor.

Datagate DS 1104

Control Control

PID Controller

ServodistributorsPressures sensors

Position sensor

Force sensor

Main actuator Perturbation actuator

Chamber P Chamber N

Moving mass M

Figure 9.2 – Scheme of pneumatic system.

The model of the experimental set-up reads as Taleb et al. [2013]

ṗP =
krT

VP (y)
[αP + βP · w − S

rT
pP v]

ṗN =
krT

VN(y)
[αN − βN · w +

S

rT
pNv]

v̇ =
1

M
[S(pP − pN)− bvv − Fext(t)]

ẏ = v

(9.1)

with y the main actuator piston position, v its velocity, pP and pN the pressures in the both

chambers (respectively P and N chambers). Fext is the external force produced by the “pertur-

bation” actuator. w is the control input of the system. The volume of each chamber is defined

as
VP (y) = V0 + S · y
VN(y) = V0 − S · y (9.2)

Table 9.1 displays the values of the physical parameters of the experimental set-up.

The functions αX and βX (X = {P,N}) are defined as 5th-order polynomials w.r.t. chamber

pressure pX Belgharbi et al. [1999] such that the functions qmX
, defined by

qmP
= α (pP ) + β (pP , sign (w))w = αP + βP · w

qmN
= α (pN)− β (pP , sign (w))w = αN − βN · w

(9.3)

./part3/figure/banc1.eps
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Parameters Notation Value

Mass M 3.4 kg
Piston surface S 0.0045m2

Half-cylinder volume V0 3.40 10−4 m3

Perfect gas constant r 287 J.kg−1.K−1

Temperature T 293◦K = 20◦C
Polytropic constant k 1.2

Viscous friction coeff. bv 50

Table 9.1 – Physical parameters of the experimental set-up.

represent the mass flow rate in each chamber of the actuator. Define X as the physical domain

X = {x |1 bar ≤ pP ≤ 7 bars, 1 bar ≤ pN ≤ 7 bars,

− 72 mm ≤ y ≤ 72 mm, |v| ≤ 1 m/s}.
with x = [pP pN v y]T . According to previous works Taleb et al. [2013], one can admit the

following assumptions

• the uncertainty terms are supposed to be bounded, sufficiently smooth, small with respect

to the nominal value and unknown;

• Fext and its time derivatives are supposed to be bounded;

• only y, pP and pN are measured by sensors.

9.3 Experimental tests environment

The experimental tests are made with a sampling period Te = 1 ms. The initial conditions

of the electropneumatic system are

y(0) = 0.07m, v(0) = 0m · s−1, pP (0) = 1 bar, pN(0) = 1 bar. (9.4)

As shown in Figure 9.3, the main actuator is forced by the control law to track a reference signal

yref(t) under the perturbation force Fext(t). The objective of the benchmark is to evaluate the

performances of 2SMOFC, TWLC and 3SMC, in case of trajectory tracking and in presence

of time varying perturbations. The position trajectory reference yref(t) is composed by two

sinusoidal signals with different frequencies and is formally defined as

yref(t) = 0.04cos(0.2πt) for 0 ≥ t ≥ 20 s
yref(t) = 0 for 20 < t < 30 s
yref(t) = 0.04cos(0.4πt) for 30 ≥ t ≥ 50 s

(9.5)

The objective consists in evaluating the performances of the control solution, in case of slow/fast

dynamics with presence of perturbation. The perturbation force has a sinus form with frequency

of 0.1 Hz and magnitude of 500 N.

In the experimental tests, the velocity v is estimated from the position, by the twisting-like

differentiator (TWLD) presented in Section 4.3. The acceleration a required by the Twisting

control (but not by the other controllers), is also estimated by a TWLD from the estimated

velocity. The parameters of TWLD are tuned as

Km = 0.5, γ = 6
bm = bM = 1, aM = 0.1

(9.6)
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Figure 9.3 – Top. Position reference yref (m) versus time (sec); Bottom. Perturbation force

Fext (N) versus time (sec).

9.4 Second order sliding mode control

In Part I, two second order sliding mode control methods have been presented, the second

order sliding mode output feedback control (2SMOFC) and the twisting-like control (TWLC).

These methods can be applied to systems with relative degree equal to one or two. Their main

feature is that only the sign of the sliding variable is required. Compared to the classic twist-

ing control, the use of time derivative of the sliding variable is removed. In this section, the

2SMOFC and TWLC are applied to IRCCyN electropneumatic system and their performances

are compared to the twisting control. Furthermore, the adaptive version of 2SMOFC and TWLC

are also tested.

9.4.1 Control design

The problem is to design a control law w based on standard or adaptive 2SMOFC and

TWLC that make the output (the position y) of the pneumatic actuator follow a prescribed

profile yref(t) in spite of the disturbance Fext(t) and uncertainties. The sliding variable σ(x, t)
is defined as

σ(x, t) = v − ẏref(t) + λ (y − yref(t)) (9.7)

with λ > 0. From (9.1)-(9.7), one gets

σ̈ = Ψ(t, x) + Φ(x, t)w (9.8)

./part3/fig/cfp/ref.eps
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with

Ψ =
krTS

M

(
αP
VP

− αN
VN

)

− kS2

M

(
pP
VP

+
pN
VN

)

v+
1

M

(

−bv v̇ − Ḟext −M · y(3)ref

)

+λ (v̇ − ÿref)

=
krTS

M

(
αP
VP

− αN
VN

)

− kS2

M

(
pP
VP

+
pN
VN

)

v− 1

M

(

Ḟext +M · y(3)ref

)

+
Mλ− bv
M2

[S(pP − pN)− bvv − Fext]− λÿref

Φ =
krTS

M

(
βP
VP

+
βN
VN

)

.

(9.9)

Given that some parameters are uncertain (for example, additional mass ∆M can load the ac-

tuator whereas the control has been designed for a mass M) and given that there are external

perturbations, one rewrite the functions Ψ and Φ as

Ψ = ΨNom +∆Ψ,
Φ = ΦNom +∆Φ,

(9.10)

that is, there is a nominal term and an uncertain term. In Taleb et al. [2013], it has been nu-

merically shown that, under current operating conditions, the bounded functions ΨNom and

ΦNom only depend on the measured or estimated variables, and ΦNom > 0. Then, consider the

following control law

w = ΦNom
−1 (−ΨNom + u) (9.11)

with u being the “new” control input of σ-dynamics. Substituting (9.10) and (9.11) in (9.8), one

gets

σ̈ = ∆Ψ−∆ΦΦ−1
NomΨNom

︸ ︷︷ ︸
a

+
(
1 + ∆ΦΦ−1

Nom

)

︸ ︷︷ ︸

b

·u .
(9.12)

For the electropneumatic system (9.1),

• The system trajectories are supposed to be infinitely extendible in time for any bounded

Lebesgue measurable input;

• the servodistributors are controlled by microprocessors, and the control input is updated

in discrete-time with the sampling period Te which is a strictly positive constant. The

control input u is constant between two successive sampling steps i.e

∀t ∈ [kTe, (k + 1)Te[ u(t) = u(kTe) ; (9.13)

• under the operating conditions, the functions Ψ and Φ are bounded with ΦNom > 0, then,

according to (9.12), there exist positive constants aM , bm, bM such that

|a(x, t)| ≤ aM
0 < bm ≤ b(x, t) ≤ bM

(9.14)

for x ∈ X and t > 0. In the experimental tests the estimated bounds are given as

aM = 500, bm = 0.99, bM = 1.01.

Thus, consider equation (9.12) which can be easily rewritten in the form of system (2.3) with

z1 = σ and z2 = σ̇. Assumptions 2.2.1-2.2.3 are satisfied. Then, the three types of second order

sliding mode control methods presented in Chapter 3 and 4 (TWC, 2SMOFC and TWLC) can

be applied.
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Remark 9.4.1. Remark that the three control methods (TWC, 2SMOFC and TWLC) do not

have the same features. Therefore, the control scheme used for TWC (see Figure 9.4) needs

two differentiators (TWL differentiator introduced in Section 4.3) while 2SMOFC and TWLC

(Figure 9.5) require only a single differentiator. More precisely, one has

• if the control u appearing in (2.3) is TWC, then z1 = σ and z2 = σ̇ are required; therefore

it is necessary to use two first order differentiators, a first one to obtain an estimation of

v (which appears in definition (9.7) of σ), and a second one for v̇ (see Figure 9.4);

• in the case of 2SMOFC and TWLC, only z1 = σ is required; only one differentiator is

used to compute v (see Figure 9.5).

1st order

 Diff

Twisting

Controller

Electropneumatic

System

Preloop

1st order 

Diff

Reference

signal

Figure 9.4 – Control scheme for TWC

1st order

Diff

2SMOFC

or

TWLC

Electropneumatic

System

Preloop

Reference

signal

Figure 9.5 – Control scheme for 2SMOFC and TWLC

9.4.2 Experimental results

2SMC without adaptation

Firstly, the 2SMOFC and TWLC without gain adaptation are applied to the electropneumatic

system. Furthermore a comparison with TWC is also made. In order to make a reasonable

comparison, the same definition of the sliding variable is used for TWC, 2SMOFC and TWLC.

./part3/figure/scheme_TW.eps
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TWC 2SMOFC TWLC

K1 = 7500, K2 = 5000
λ = 40

Km = 2500 γ = 5
λ = 40

Km = 2500, γ = 5
λ = 40,

Table 9.2 – Parameters for the three 2SM controllers.

The parameters for these control laws are tuned such that their control gains have the same

amplitude. The final configuration of the three control laws are detailed in Table 9.2.

Then, performances of these three control laws are shown by Figure 9.6-9.8. It shows that, un-

der these three sliding mode control laws, the main actuator can track the reference signal with

high accuracy after a finite convergence time. Figure 9.6 represents the performance of TWC.

As mentioned previously, both the sliding variable and its first time derivative are required by

TWC; so, an other TWLC differentiator is used to estimate the acceleration a from v. However,

according to Yan et al. [2014b], for a noisy measured signal, the use of high order differentiator

may introduce disturbance into the controller: from the detailed comparison in Table 9.3, the

degradation of tracking accuracy for TWC is obvious. Compared to TWC, the 2SMOFC and

TWLC require only the information of the sliding variable. Without using the second differ-

entiator, one gets with these both latter controllers a better tracking accuracy. And comparing

the average control magnitude mean(|w|) and the pressure Pp, these two latter controllers cost

less energy. However, for 2SMOFC, the large gain input is applied during only one sampling

period, this feature inducing a relatively longer convergence time (see Figure 9.7). Assume that

the convergence of the system trajectories is finished, when the tracking error is stable at an

accuracy less than 5mm. Then, the response time can be calculated from sub-plots (b), when

the reference changes its wave form. In Table 9.3, mean(resptime) represents the average re-

sponse time, which is calculated right after each point of discontinuity (0 sec, 20 sec and 30

sec). Thanks to the online computed τi (see equations (4.5)-(4.8)), with TWLC, the duration of

the large gain input could be more than one sampling period. From Figure 9.8,and the compar-

ison in Table 9.3, one can see that TWLC inherits both the fast convergence time of TWC and

the high tracking accuracy of 2SMOFC.

TWC 2SMOFC TWLC

mean(|y − yref |) 3.5× 10−3 2.8× 10−3 2.2× 10−3

std(y − yref) 0.012 0.011 0.011

mean(|w|) 5.97 1.95 2.14

mean(resp time) 0.87 1.73 0.58

Table 9.3 – Experimental results for 2SMC without adaptation

Adaptive 2SMC

A key point of these experimental tests is that the reference signal is composed by signals with

different frequency. In order to track the reference signal with higher frequency, a large gain

is usually required, which is not the case when the frequency is lower. So, there is a real

interest to use the gain adaptation laws. In the sequel, the adaptive versions of 2SMOFC and

TWLC (see Section 7.2-7.3) are applied to system (9.12). Note that there exist other adaptive

sliding mode control strategies which have been applied to the electropneumatic system, such

as the adaptive twisting control Taleb et al. [2013] and the adaptive super-twisting control Taleb
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Figure 9.6 – Experimental results of TWC. (a). Reference position (red dotted) and measured

position y (m) (black solid) versus time (sec); (b). Position tracking error (m) versus time

(sec); (c). Control input w (V ) versus time (sec); (d). Pressure in chamber P pP (bar) versus

time (sec).
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Figure 9.7 – Experimental results of 2SMOFC.(a). Reference position (red dotted) and mea-

sured position y (m) (black solid) versus time (sec); (b). Position tracking error (m) versus

time (sec); (c). Control input w (V ) versus time (sec); (d). Pressure in chamber P pP (bar)
versus time (sec).

and Plestan [2012]. However, the super-twisting method is only applicable to the system with

relative degree equal to one with respect to the sliding variable. For the twisting control, both

the sliding variable and its time derivatives should be known, and the gain adaptation law is

developed based on a different concept. So, for a sake of clarity, the comparison is made only

between adaptive versions of 2SMOFC and TWLC. For these two methods, their initial gain

has been fixed at Km(0) = 2000. The parameters of 2SMOFC are tuned as Table 9.4, in order

./part3/fig/cfp/fig/tw1.eps
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Figure 9.8 – Experimental results of TWLC. (a). Reference position (red dotted) and mea-

sured position y (m) (black solid) versus time (sec); (b). Position tracking error (m) versus

time (sec); (c). Control input w (V ) versus time (sec); (d). Pressure in chamber P pP (bar)
versus time (sec).

to get its best performances (in the term of tracking accuracy and convergence time). Then,

parameters for TWLC are tuned in order to get the similar dynamics for the gain adaptation as

2SMOFC.

Adaptive 2SMOFC

λ = 40 γ = 5
Γ = 800 β = 4.1
Km ∈ [0, 3500]

Adaptive TWLC

λ = 40 γ = 5
Γ = 800 β = 8
ε = 100
Km ∈ [0, 3500]

Table 9.4 – Parameters for adaptive 2SMOFC and TWLC.

Then, the performances of the closed-loop system under the adaptive 2SMOFC and TWLC are

presented by Figure 9.9-9.10. It shows that, at the initial point, the position y is far from the

target then, the control gain Km is growing (for the adaptive TWLC, the gain Km(t) instantly

reaches 3500 in εTe = 0.1 sec). Once the position reaches the reference signal and the real sec-

ond order sliding mode is established, the gain starts to reduce in order to improve the tracking

accuracy. If one compares the average gain firstly for t ∈ [0, 20] and secondly for t ∈ [30, 50],
it shows that, with the increasing of the reference signal frequency, the gain Km also increases

by taking into account the higher frequency of the reference. As previously, assume that the

convergence phase is finished when the tracking error is stable with an accuracy less than 5mm.

Through the detailed comparison in Table 9.5, one can say that the adaptation gain law helps to

improve the tracking accuracy and also the convergence time compared with Table 9.3. More-

over, the adaptive version of the TWLC keeps its advantages on the faster convergence time and

better accuracy compared to the 2SMOFC.
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Figure 9.9 – Experimental results of adaptive 2SMOFC.(a). Reference position (red dotted)

and measured position y (m) (black solid) versus time (sec); (b). Position tracking error (m)
versus time (sec); (c). Control input w (V ) versus time (sec); (d). Control gain Km versus time

(sec).
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Figure 9.10 – Experimental results of adaptive TWLC. (a). Reference position (red dotted)

and measured position y (m) (black solid) versus time (sec); (b). Position tracking error (m)
versus time (sec); (c). Control input w (V ) versus time (sec); (d). Control gain Km versus time

(sec).

9.5 Third order sliding mode control

In the context of electropneumatic system control, the objective is to force the position of the

actuator to track a reference signal. According to (9.1), the position tracking error ey = y−yref
has a relative degree equal to three. Then, in this section, the third order sliding mode control

presented in Chapter 8 is applied to the electropneumatic system. A comparison is also made
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Adp 2SMOFC Adp TWLC

mean(|y − yref |) 2.4× 10−3 1.5× 10−3

std(y − yref) 0.011 0.009

mean(Km) 2606 3137

mean(resp time) 0.97 0.49

Table 9.5 – Experimental results for adaptive 2SMOFC and TWLC

between this 3SMC and a higher order sliding mode controller (HOSMC) proposed in Levant

[2005b].

9.5.1 Control design

Define the sliding variable from the control objective as

σ = y − yref(t). (9.15)

The relative degree of system (9.1) with respect to σ (9.15) equals three and is constant. From

(9.1) and (9.15), one gets

σ(3) = Ψ′(x, t) + Φ′(x, t) · w (9.16)

with

Ψ′ =
krTS

M

(
αP
VP

− αN
VN

)

− kS2

M

(
pP
VP

+
pN
VN

)

v− 1

M

(

Ḟext +M · y(3)ref

)

− bv
M2

[S(pP − pN)− bvv − Fext]

Φ′ =
krTS

M

(
βP
VP

+
βN
VN

)

.

(9.17)

Furthermore, for x ∈ X , Ψ′ and Φ′ have a nominal known part (named Ψ′
N(x, t) and

Φ′
N(x, t) respectively) and an unknown bounded uncertain part (named ∆Ψ′ and ∆Φ′ respec-

tively) such that

Ψ′ = Ψ′
Nom +∆Ψ′ Φ′ = Φ′

Nom +∆Φ′ . (9.18)

Note that the function Φ′ fullfills Φ′
Nom > 0 and |∆Φ′|/Φ′

Nom < 1. Define the control input

(with u the “new” control input)

w =
1

Φ′
Nom

(−Ψ′
Nom + u) . (9.19)

Note that only measured or estimated states are used in (9.19). Then, applying w (9.19) to

(9.16), one gets

σ(3) = ∆Ψ′ −∆Φ′Φ′
Nom

−1
Ψ′
Nom

︸ ︷︷ ︸
a

+
(

1 + ∆Φ′Φ′
Nom

−1
)

︸ ︷︷ ︸

b

u .
(9.20)

For the electropneumatic system (9.1),

• the system trajectories are supposed to be infinitely extendible in time for any bounded

Lebesgue measurable input;
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• for the current operating conditions, x ∈ X and u ∈ IR, the vector z is evolving in a

bounded open subset of IR3

z ∈ Z ⊂ IR3 (9.21)

• the control input u is updated in discrete-time with the positive sampling period Te. The

control input u is constant between two successive sampling steps i.e

∀t ∈ [kTe, (k + 1)Te[, u(t) = u(kTe) ; (9.22)

• according to (9.20), there exist positive constants aM > 0, bm > 0 and bM > 0 such that

|a(x, t)| ≤ aM , 0 < bm < b(x, t) < bM (9.23)

for x ∈ X and t > 0.

Then, a 3rd-order sliding mode controller for system (9.1) with respect to sliding variable

σ (9.15) is equivalent to the finite time stabilization of (8.2) with z = [z1 z2 z3]
T = [σ σ̇ σ̈]T

and Assumption 8.1.1-8.1.4 fulfils. The third order sliding mode control law (8.8)-(8.12) can

be applied to the electropneumatic system.

9.5.2 Experimental results

The controller (8.8)-(8.12) and adaptation law (8.38) are tested on this set-up. The parame-

ters are tuned as follows in order to get the best performance in term of tracking accuracy and

convergence time

Km(0) = 2000 Kmm = 100
µ = 150 α = 2
γ = 5 Λ = 800 .

The performances of this adaptive 3SMC are presented by Figure 9.11. In a finite time, the

position and velocity converge to the reference trajectory in spite of the perturbation force. The

tracking error and the layer detection are presented in Figure 9.12. It shows that when the wave

form of the reference trajectory changes, the system trajectories are transitorily evolving in L1

which makes the gain increase. After a finite time, the system trajectories reach again L2: then,

the gain starts to decrease. Then, high frequency switching between the two layers appears and

the real third order sliding mode is established with an accuracy slightly larger than the width

of L2.

A comparison is made between the proposed controller and the Quasi-Continuous HOSM con-

troller Levant [2005b]. The control gain α is tuned at the similar level as the average value of

Km for adaptive 3SM i.e. α = 3500. Note that, for the HOSM controller, the acceleration must

also be estimated by a differentiator (in this case, TWLD has been used). The performance of

the HOSMC is presented by Figure 9.13. A detailed comparison between these two methods is

given in Table 9.6. Thanks to the remove of second order derivative used in the control law, the

3SMC shows its advantages in the tracking accuracy. Moreover, the adaptation gain law helps

to reduce the convergence time.

9.6 Conclusion

• This chapter deals with the position control problem of an electropneumatic system which

is an uncertain and perturbed nonlinear system.
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Figure 9.11 – Experimental results of adaptive 3SMC. (a). Reference position (red dotted)

and measured position y (m) (black solid) versus time (sec); (b). Control gain Km versus time

(sec); (c). Control input w (V ) versus time (sec).
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Figure 9.12 – Experimental results of adaptive 3SMC. (Top). Position tracking error y−yref
(m) versus time (sec); (Bottom). Layer detection L versus time (sec).

Adaptive 3SMC HOSM

Mean(|ey|) 2.2× 10−3 5.9× 10−3

Std(ey) 0.012 0.017

Mean(|w|) 3.33 1.42

mean(resp time) 0.61 1.70

Table 9.6 – Comparison between adaptive 3SMC and HOSMC

• Three second order sliding mode control laws, the twisting control (TWC), the second

./part3/adp_fig/adp_3sm.eps
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Figure 9.13 – Experimental results of HOSMC. (a). Reference position (red dotted) and

measured position y (m) (black solid) versus time (sec); (b). Position tracking error versus

time (sec); (c). Control input w (V ) versus time (sec).

order sliding mode output feedback control (2SMOFC) and the twisting-like control

(TWLC) are firstly applied to the system : the TWLC shows its advantages on the better

tracking accuracy and a faster convergence time.

• Adaptive versions of 2SMOFC and TWLC are also applied to the electropneumatic sys-

tem. The gain adaptation law helps to improve the tracking accuracy and to reduce the

convergence time. The previously presented adaptive third order sliding mode control

(adaptive 3SMC) is also tested on the experimental system.

• Thanks to the suppression of high order differentiation of the sliding variable in the con-

troller, the 3SMC performs better tracking accuracy and a faster convergence time, com-

pared to a Quasi-Continuous HOSM controller Levant [2005b].
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This chapter deals with the attitude control problem of an Unmanned Aerial Vehicle system

named 3DOF Quanser helicopter Quanser [2006]. The scheme of the controller has been ini-

tially developed in Odelga et al. [2012] and used in Chriette and Plestan [2012]; Chriette et al.

[2015]; Plestan and Chriette [2012]: it allows to decouple the system thanks to the introduction

of both virtual inputs for travel and elevation angles, and to design a desired reference for the

pitch angle. Moreover, such system requires a continuous control input due to the high sensi-

tivity of its actuators versus the vibrations. Then, based on the twisting-like control (TWLC)

presented in Chapter 4, an integral twisting-like control (integral TWLC) is developed Yan et al.

[2016b]. This control law can be applied to systems with a relative degree equal to one, and

provides a continuous input. In the experimental tests, the performance of this new method is

compared to the super-twisting algorithm.

10.1 Description of 3DOF helicopter

The 3DOF Quanser helicopter studied in this chapter (see Figure 10.1, parameters are given

in Table 10.1) is composed by the helicopter body, which is a small arm with one propeller

at each end, and an arm (named in the sequel “helicopter arm”), which links the body to a

fixed basis. Although the system cannot exhibit translational motion, given that it is fixed

to a support, it can rotate freely around three axis. The helicopter position is characterized

by the pitch, travel and elevation angles. The pitch motion corresponds to the rotation of the

helicopter body around the helicopter arm, the travel motion corresponds to the rotation of the

helicopter arm around the vertical axis, and the elevation motion corresponds to the rotation of

113
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the helicopter arm around the horizontal axis.

Helicopter body

Helicopter arm

Figure 10.1 – Top. Scheme of Quanser 3DOF tandem helicopter; Bottom. Photo of the experi-

mental set-up (with the fan on the left hand side, producing perturbations as wind gusts, and the

control PC on foreground, with Matlab/Simulink software).

The helicopter has two DC motors, which drive two propellers. The helicopter attitude is con-

trolled by means of the thrust forces Fb and Ff generated by the two propellers i.e.

[
Ff
Fb

]

=

[
KFVf
KFVb

]

(10.1)

with KF the propeller force-thrust constant, Vf and Vb represents the voltage signal sent to

the motors. The control laws for Vf and Vb are realized by Matlab/Simulink with a positive

./part3/FiguresRevised/diagramm3.eps
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Symbol Description Value Unit

Vf & Vb DC motor voltage of the front and back motors [-24 ; +24] V
KF Propeller force-thrust constant 0.1188 N/V
g Gravity constant 9.81 m.s2

Mh Mass of the helicopter 1.426 kg
Mw Mass of the counterweight 1.87 kg
La Distance between travel axis to helicopter body 0.660 m
Lw Distance between travel axis to the counterweight 0.470 m
Lh Distance between pitch axis to each motor 0.178 m
Jε Moment of inertia about elevation 1.0348 kg.m2

Jθ Moment of inertia about pitch 0.0451 kg.m2

Jψ Moment of inertia about travel 1.0348 kg.m2

Table 10.1 – 3DOF Helicopter system specifications Quanser [2006]

sampling time Te.
Notice that this system is an underactuated system, i.e. this system has 2 control forces whereas

there are 3 degrees of freedom represented by the 3 attitude angles (the travel angle ψ, the

elevation angle ǫ and the pitch angle θ).

10.2 Dynamics of the system

Neglecting the joint friction, air resistance and centrifugal forces, the nonlinear model used

for the design of the attitude controller for the 3DOF helicopter reads as Odelga et al. [2012]

Jǫǫ̈ = g(MwLw −MhLa) cos ǫ+ La cos θ u1 + Fǫ
Jθθ̈ = Lh u2 + Fθ
Jψψ̈ = La cos ǫ sin θ u1 + Fψ

(10.2)

with the control input expressed in terms of the control forces as

[
u1
u2

]

=

[
Ff + Fb
Ff − Fb

]

. (10.3)

Front and back control motor voltages are derived from (10.1) and (10.3) and read as

Vf =
1

2KF
(u1 + u2), Vb =

1

2KF
(u1 − u2) . (10.4)

The functions Fǫ, Fθ and Fψ represent all the uncertainties and perturbations terms which are

assumed to be bounded. Furthermore,

• pitch angle θ is defined on the interval −45◦ ≤ θ ≤ +45◦, whereas

• elevation angle ǫ is defined on −27.5◦ ≤ ǫ ≤ +30◦.

From ψ-dynamics, it appears that it is not possible to control travel angle when θ = 0. Then, it

is necessary to produce a pitch motion in order to change travel angle. It is a key-point in the

design of the attitude controller.
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10.3 Design of attitude controller

A key point of the control scheme consists in defining “virtual” control inputs allowing to li-

nearize and decouple the system, by an input-output point-of-view: by this way, the system will

be viewed as three perturbed double integrators, each double integrator concerning an attitude

angle. Define

ν1 = u1 cos ǫ sin θ
ν2 = u1 cos θ

(10.5)

and

ν∗1 = ν1, ν∗2 =
1

La
[Laν2 +G cos ǫ] , (10.6)

with G = g(MwLw −MhLa). From (10.2), one gets

Jψψ̈ = Laν
∗
1 + Fψ

Jǫǫ̈ = Laν
∗
2 + Fǫ

Jθθ̈ = Lhu2 + Fθ

(10.7)

From (10.5)-(10.7), ψ is not controllable if θ = 0. So, a desired trajectory for θ should be

induced from the trajectories of ǫ and ψ. Then, the attitude controller scheme reads as follows

(see Figure 10.2)

,  

,  

,  ,  

Ref

Figure 10.2 – Attitude controller scheme Chriette et al. [2015].

• The first part of the controller allows to compute the control inputs ν1 and ν2 from the

tracking errors between ψ and ǫ and their desired trajectories ψd(t) and ǫd(t) (through ν∗1
and ν∗2 )

ν1 = ν∗1 , ν2 =
1

La
[Laν

∗
2 −G cos ǫ] . (10.8)

where ν∗1 and ν∗2 will be detailed latter.

• The second part of the controller aims to compute the control input u1. From (10.5), one

gets

u21 sin
2 θ =

ν21
cos2 ǫ

and u21 cos
2 θ = ν22 . (10.9)

Then, one has

u1 = S ·
√

ν21
cos2 ǫ

+ ν22 (10.10)

with S defined as

S =

{
sign(ν2) if ν2 6= 0
0 if ν2 = 0

(10.11)
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• The angle θ is forced to track a desired trajectory θd. From (10.5), it is obvious that θ has

to verify

tan θ =
ν1

cos ǫν2
(10.12)

Then, the desired trajectory θd reads as

θd(t) = tan−1

(
ν1

cos ǫν2

)

. (10.13)

From this latter desired trajectory, the pitch controller allows to provide u2.

10.4 Integral twisting-like control

In Chapter 4, the twisting-like controller (TWLC) has been presented. It has been initially

designed for systems with relative degree equal to two. The main features of this control law

can be summarized as follows:

• a real second order sliding mode with respect to σ is ensured in a finite time;

• only the measurement of σ is required but not its derivatives;

• the performances (in the terms of convergence time and accuracy) of this control law are

close to those obtained with twisting control;

• a switching gain strategy is used for this control law and the switching conditions depend

on the detection of the sign commutations of σ and an online updated variable τi.

In this section, the TWLC is extended to systems with relative degree equal to one, using integral

strategy, so that, one obtains a relative smooth control input allowing to reduce the chattering.

Consider a single-input uncertain nonlinear system

ẋ = f(x) + g(x)ν (10.14)

with x ∈ IRn the state vector, ν ∈ IR the control input. Function f(x) is a differentiable,

partially known, vector field. g(x) is a known non-zero function. The sliding variable σ =
σ(x, t) ∈ IR is designed so that the control objective is fulfilled if σ(x, t) = 0. The system

(10.14) has a relative degree equal to one with respect to σ, and the internal dynamics is stable.

Therefore, the sliding variable dynamics reads as

σ̇ =
∂σ

∂t
+
∂σ

∂x
f(x)

︸ ︷︷ ︸

ϕ(x, t)

+
∂σ

∂x
g(x)ν

︸ ︷︷ ︸
w

= ϕ(x, t) + w

(10.15)

One supposes that

Assumption 10.4.1. The term
∂σ

∂x
g(x) is known and define w =

∂σ

∂x
g(x)ν as the new control

input.

Assumption 10.4.2. The function ϕ(·) is uncertain and bounded, and reads as

ϕ(·) = ϕ0(·) + ∆ϕ(·), (10.16)

with ϕ0, the known nominal terms, and ∆ϕ the uncertain parts. The term ∆ϕ fulfills

|d∆ϕ
dt

| < ∆ϕM

with ∆ϕM positive constant.
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Assumption 10.4.3. The controller is updated in discrete-time with the sampling period Te,
which is a strictly positive constant.

The problem consists in establishing a real second order sliding mode with respect to σ in spite

of the uncertainties/perturbations.

The integral TWLC algorithm reads as (k ∈ IN)

w = −ϕ0(·)− ασ + v(t)
v̇(t) = u(kTe) for t ∈ [kTe, (k + 1)Te[ , k ∈ IN
u(kTe) = −K(kTe) · sign(σ(kTe))

(10.17)

with α > 0. The control input w is composed by three terms. The term −ϕ0(·) is the equivalent

control which compensates the known part of ϕ. The term v(t) is designed based on the TWLC

algorithm, which ensures the establishment of the real 2SM with respect to σ. The linear term

−ασ cooperates with the TWLC to ensure the stability of the internal dynamics of σ.

The gain K is defined as

K(kTe) =

{
Km if kTe /∈ TH

γKm if kTe ∈ TH
(10.18)

where TH represents the gain commutation condition which is given by

TH = {kTe | T is ≤ kTe ≤ T is + τi, i ∈ IN} . (10.19)

T is is the time at which the ith σ-sign switching is detected (which makes the gain switching

from the small gain Km to the large gain γKm), whereas τi is the duration of the large gain for

t ∈ [T is , T
i+1
s [.

The computation of the duration τi is detailed in the sequel.

Firstly, denote

Kmax
m = Km +∆ϕM , Kmin

m = Km −∆ϕM

Kmax
M = γKm +∆ϕM , Kmin

M = γKm −∆ϕM .

If the gain is tuned such that Km > ∆ϕM and γ > 2, one as

Kmin
m > 0 , Kmin

M > Kmax
m . (10.20)

Then, τi is defined as

τi = max(τ ′i , Te) (10.21)

with

τ ′i = Te · floor
[

2α
τi−1K

min
M + τ̄i−1K

min
m

Kmax
M Te

− 1

]

(10.22)

in which α and τ̄i are defined as

α =

√

Kmin
m

√
Kmax
M +

√

Kmin
m

(10.23)

and

τ̄i = max(0, T i+1
s − T is − τi) . (10.24)

Remark that τ̄i corresponds to the duration of the ith small gain control K = Km. For i = 0 set

T 0
s = 0 and τ0 = 0. Then, the integral TWLC is summarized by the following theorem.
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Theorem 10.1 (Yan et al. [2016b]). Consider system (10.14) with the sliding variable

σ(x, t) and its associated dynamics (10.15). Suppose that Assumptions H1-H4 are ful-

filled. Then, a real second order sliding mode with respect to σ is ensured after a finite

time, thanks to the integral TWLC (10.17)-(10.18)-(10.19) with Km > ∆ϕM and γ > 2
and τi defined by (10.21)-(10.24).

Proof. The proof of Theorem 10.1 is based on the TWLC method Yan et al. [2016d]. Consider

the sliding variable σ(x, t) and its associated dynamics (10.15) under the control law (10.17)-

(10.18)-(10.19). One has

σ̇ = ∆ϕ− ασ + v

σ̈ =
d∆ϕ

dt
− ασ̇ + u(kTe)

(10.25)

In the second order time derivative of σ, three terms appear: u(kTe) based on TWLC, −ασ̇ and

the uncertainty d∆ϕ
dt

. If −ασ̇ plays the leading role in σ̈, the convergence of σ̇ is guaranteed.

On the other hand, if u(kTe) is playing the leading role according to Yan et al. [2016d], the real

SOSM with respect to σ is ensured. So, in the sequel, three cases are considered to discuss the

roles played by u(kTe) and −ασ̇.

Case 1: Consider the case that

−ασ̇ · u ≥ 0 . (10.26)

It means that the two control terms −ασ̇ and u have the same sign. These two terms cooperate

to make σ̇ to converge. Given that Km > ∆ϕM , one has |u| > |d∆ϕ
dt

| which yields that

sign(
d∆ϕ

dt
− ασ̇ + u(kTe)) = −sign(σ̇) . (10.27)

It leads to σ̈σ̇ ≤ 0, then, σ̇ will asymptotically converge to zero. Then, with the term ασ̇ small

enough, the term u(kTe) can drive σ to zero, and ensure the establishment of second order slid-

ing mode.

Case 2: Consider now

−ασ̇ · u < 0 . (10.28)

It means that these two terms do not cooperate with each other.

Case 2.a: Suppose now

sign(
d∆ϕ

dt
− ασ̇ + u(kTe)) = −sign(σ̇) (10.29)

which means that the term −ασ̇ is playing the leading role. As proved in the first case, σ̇ con-

verges to zero. With the convergence of σ̇, the term −ασ̇ approaches to zero and the following

case will happen next.

Case 2.b: Suppose

sign(
d∆ϕ

dt
− ασ̇ + u(kTe)) = sign(u) (10.30)

It means that the term u is playing the leading role in σ̈. In this case, Km > |d∆ϕ
dt

− ασ̇| holds.

According to the result in Theorem 4.1, σ and σ̇ will converge to zero, and a real second order

sliding mode with respect to σ is ensured after a finite time.
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10.5 Experimental validation

In the experimental tests, an external perturbation is applied thanks to a fan (see Figure

10.1-Bottom), this fan being located in order to provide wind in side direction, i.e. it is mainly

acting on the travel and pitch angles. For the validation of the designed controllers, stabilization

and trajectories tracking are considered. For the trajectories tracking, desired trajectories for

elevation and travel, respectively ǫd(t) and ψd(t), are used, the desired trajectory θd(t) of the

pitch angle being computed online by the inner loop (see Figure 10.2). The trajectories used

in the sequel are time-varying desired angles defined by two sinus waves. The elevation wave

period is two times greater than the travel wave period; by this way, the desired trajectory in the

(ψ, ǫ)-workspace is cyclic and forms a turned 8-like pattern as presented by Figure 10.3 Chriette

et al. [2015]. Note that these trajectories are designed by taking into account constraints on

Figure 4.6. 3D view of the helicopter with the sinusoidal trajectory 
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Figure 10.3 – 3D Desired Trajectory. Sinusoidal trajectories.

maximal values of velocity, acceleration, and control inputs. Then, three sliding variables are

defined respectively from the reference signal ǫd(t), ψd(t) and θd(t). It yields





σψ
σǫ
σθ



 =








(

ψ̇(t)− ψ̇d(t)
)

+ λψ (ψ(t)− ψd(t))

(ǫ̇(t)− ǫ̇d(t)) + λǫ (ǫ(t)− ǫd(t))
(

θ̇(t)− θ̇d(t)
)

+ λθ (θ(t)− θd(t))








(10.31)

From (10.7), with σ = [σψ σǫ σθ]
T , one gets the expression for σ̇ as follows

σ̇ =












La
Jψ
ν∗1 − ψ̈d(t) + λψ(ψ̇ − ψ̇d(t)) +

Fψ
Jψ

La
Jǫ
ν∗2 − ǫ̈d(t) + λǫ(ǫ̇− ǫ̇d(t)) +

Fǫ
Jǫ

Lh
Jθ
u2 − θ̈d(t) + λθ(θ̇ − θ̇d(t)) +

Fθ
Jθ












(10.32)
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Assumptions 10.4.1-10.4.3 are fulfilled. The control laws [ν∗1 ν
∗
2 u2]

T are inspired from the

integral TWLC presented in Theorem 10.1 and are defined as





ν∗1
ν∗2
u2



 =











Jψ
La

(

w∗
1 − λψ(ψ̇ − ψ̇d(t)) + ψ̈d(t)

)

Jǫ
La

(w∗
2 − λǫ(ǫ̇− ǫ̇d(t)) + ǫ̈d(t))

Jθ
Lh

(

w2 − λθ(θ̇ − θ̇d(t)) + θ̈d(t)
)











(10.33)

with
w∗

1(t) = −αψσψ + vψ(t)
v̇ψ(t) = uψ(kTe) for t ∈ [kTe, (k + 1)Te[ , k ∈ IN
uψ(kTe) = −Kψsign(σψ(kTe))

w∗
2(t) = −αǫσǫ + vǫ(t)

v̇ǫ(t) = uǫ(kTe) for t ∈ [kTe, (k + 1)Te[ , k ∈ IN
uǫ(kTe) = −Kǫsign(σǫ(kTe))

w2(t) = −αθσθ + vθ(t)
v̇θ(t) = uθ(kTe) for t ∈ [kTe, (k + 1)Te[ , k ∈ IN
uθ(kTe) = −Kθsign(σθ(kTe))

KX(kTe) =

{
Km if t /∈ TH

γKm if t ∈ TH
X = {ψ, ǫ, θ}

(10.34)

The parameters of integral TWLC are defined as described in Table 10.2. The choice of these

parameters has been made in order to get accurate and robust results.

Parameters λ α Km γ ∆ϕM

Travel ψ 2 2 0.05 5 1.25× 10−3

Elevation ǫ 3 2 0.05 5 1.25× 10−3

Pitch θ 1 1 0.0125 5 1.25× 10−3

Table 10.2 – Parameters of the attitude controller based on integral TWLC.

The helicopter and its actuators are very sensitive to the vibrations: then, a smooth control input

is required. In the context of sliding mode control the super-twisting algorithm (STWC) Levant

[1993] offers a continuous input. In this section, a comparison between integral TWLC and

STWC is presented. In the current case, the super-twisting control law reads as (10.33) with

w∗
1 = −pψ|σψ|1/2sign(σψ)−

∫ t

0

qψ
2
sign(σψ(τ))dτ

w∗
2 = −pǫ|σǫ|1/2sign(σǫ)−

∫ t

0

qǫ
2
sign(σǫ(τ))dτ

w2 = −pθ|σθ|1/2sign(σθ)−
∫ t

0

qθ
2
sign(σθ(τ))dτ

(10.35)

The tuned parameters of STWC is detailed in Table 10.3. The experimental tests have been

made with perturbation produced by the fan at around t = 100 sec. Figures 10.4 and 10.5

display the obtained trajectories of attitude angles, and the system performances under integral
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TWLC and STWC. In Table 10.4, the performances of these two controllers are compared.

The mean and standard deviation of tracking errors of elevation, pitch and travel angles are

calculated respectively for t ∈ [80 sec; 200 sec].
It shows that the control inputs Vf and Vb for these two methods have a similar form. For the

tracking accuracy of elevation, the results obtained with these two control laws reach the same

level. However, the convergence time obtained with integral TWLC is shorter. Furthermore,

for the tracking performance of travel and pitch, the integral TWLC offers a smoother desired

reference θd and a better tracking accuracy.

Parameters p q
Travel ψ 0.25 0.05

Elevation ǫ 0.35 0.07

Pitch θ 0.3 0.06

Table 10.3 – Parameters of the attitude controller based on STWC.
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Figure 10.4 – Integral TWLC – Experimental results for trajectory tracking. (a) elevation

angle ǫ (black) and ǫd (red) versus time (sec); (b) pitch angle θ (black) and θd (red) versus time

(sec); (c) travel angle ψ (black) and ψd (red) versus time (sec); (d) control input Vf (red) and Vb
(blue) versus time (sec).

10.6 Conclusion

• This chapter deals with the attitude control problem of a 3DOF helicopter.

• The control scheme is designed such that the closed-loop system is decoupled into three

perturbed double integrators.
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Integral TWLC STWC

Mean(|eǫ|) (deg) 0.0850 0.1242

Mean(|eθ|) (deg) 1.3850 1.2196

Mean(|eψ|) (deg) 0.2210 0.4610

Std(eǫ) 0.1076 0.1548

Std(eθ) 1.6665 1.6984

Std(eψ) 0.2943 0.7301

Mean(|Vf |) (V) 10.1553 10.1331

Mean(|Vb|) (V) 10.1553 10.1331

Std(Vf) 1.2678 1.1168

Std(Vb) 1.2678 1.1168

ǫ convergence time <25sec >32sec

Table 10.4 – Evaluation of the performances of integral TWLC and STWC.

• The integral twisting-like control (integral TWLC) is developed and applicable to the

system with relative degree equal to one, and provides a continuous input.

• The experimental comparison is made between the integral TWLC and the super-twisting

algorithm.

• The integral TWLC shows its advantages with a faster convergence time and better track-

ing accuracy.
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Concluding remarks and future works

In this thesis, some robust control strategies have been developed based on the sliding mode

theory for nonlinear systems with uncertainties and perturbations. This work has been focused

on two topics:

• the development of high order sliding mode control laws with a reduced use of time

derivatives of the sliding variable;

• the sliding mode control with gain adaptation.

In Chapter 3 the gain commutation formalism has been presented. For the control ap-

proaches in this formalism, the control input can switch between two levels: a level with small

magnitude and another level with large magnitude. Then, the twisting control (TWC) Levan-

tovsky [1985] and the second order sliding mode output feedback control (2SMOFC) Plestan

et al. [2010a] can be rewritten in this unified frame. For TWC, the large gain input is applied

when z1 and z2 have the same sign. For 2SMOFC the large gain is applied during one sampling

period, after every detection of z1 sign commutation. The convergence analysis for these two

control strategies has been made based on a geometric analysis of system trajectories in the

phase plane.

Moreover, in Chapter 4, a new second order sliding mode control law named twisting-like con-

trol (TWLC) has been presented. The key-point for TWLC is the time varying duration τi
of the large gain input. Compared to the second order sliding mode output feedback control

(2SMOFC) presented in Section 3.4, for TWLC, the large gain input is applied during a time

varying duration τi. Its computation depends on the control gains Km, KM and the time gap

between two successive z1-sign commutations. Thanks to the application of uH during multi-

ple sampling periods, the performance of system (2.3) under TWLC is close to the one with

twisting control. Furthermore, the use of time derivative of the sliding variable is removed. The

comparisons made in Chapter 5 have shown that this new control law inherits the output feed-

back feature from 2SMOFC and also the advantage of fast convergence time from TWC. One

inconvenient for TWLC is that its algorithm for τi requires the estimated bounds for function a
and b.

In Chapter 7, the adaptive version algorithms of 2SMOFC and TWLC have been presented.

This gain adaptation algorithm is based on the time gap between two successive sign switching

of the sliding variable. Then, under this adaptive mechanism, the gain decreases when the

system trajectory reaches a vicinity of zero, and increases in the opposite case. According to

the simulation results, the gain adaptation law allows to further improve the tracking accuracy

and the convergence time, compared to the standard 2SMOFC and TWCL respectively.

In Chapter 8, an adaptive third order sliding mode has been proposed Yan et al. [2016c]. For the

third order sliding mode control, both the first and second order time derivatives of the sliding

variable should be known. For this new algorithm, the use of second order time derivative is

removed. This feature helps to reduce the additional disturbance introduced by the high order

differentiator. Moreover, the gain adaptation is also used to simplify the gain tuning process.
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Chapter 9 and 10 presented the applications of these new control laws to experimental sys-

tems. In Chapter 9 the position control problem of the electropneumatic system has been con-

sidered. This is a typical nonlinear system with uncertainty and perturbations. Three second

order sliding mode control laws, the twisting control (TWC), the second order sliding mode

output feedback control (2SMOFC) and the twisting-like control (TWLC) have been firstly ap-

plied to the system : the TWLC shows its advantages on the better tracking accuracy and a

faster convergence time. Adaptive versions of 2SMOFC and TWLC have been also applied

to the electropneumatic system. The gain adaptation law helps to improve the tracking accu-

racy and to reduce the convergence time. The previously presented adaptive third order sliding

mode control (adaptive 3SMC) has been also tested on the experimental system. Compared to a

Quasi-Continuous HOSM controller Levant [2005b], thanks to the remove of high order differ-

entiation of the sliding variable in the controller, the 3SMC performs better tracking accuracy

and a faster convergence time.

In Chapter 10, the attitude control of a Unmanned Aerial Vehicles system with three degrees of

freedom Quanser [2006] has been considered. Due to the high sensitivity of the actuators to the

vibration, continuous control input is required for this system. Then, in this chapter the integral

version of twisting-like control (integral TWLC) has been developed Yan et al. [2016b]. This

control law can be applied to the system with relative degree equal to one, and gives a continu-

ous input. In the experimental tests this method shows its advantages with a faster convergence

time and better tracking accuracy.

Some works remain to be developed in the future. This includes in particular the following

topics.

• Based on the twisting-like algorithm, the use as a second order differentiator (TWLD)

has been presented in this work. It may be interesting to extend this result to higher

order differentiation. One possible solution is to contact multiple TWLD in series. It

would be a solution for observation of uncertain nonlinear systems. However, it would

be necessary to intensively study the performances of such differentiation solutions with

respect to existing ones.

• In this lecture, the proposed third order sliding mode control law requires the sliding

variable and its first time derivative. It will be interesting to develop a third order sliding

mode algorithm that uses only the sliding variable. Consider system (8.2), the sign of z2
can be deduced from the increasing or decreasing of z1. Knowing z2-sign, z2 and z3 can

be forced to zero, by using TWLC. Then, the remaining task is to vanish z1, by designing

a control input depending on z1 and z2-sign.

• The integral twisting-like control and the super-twisting control can be applied to systems

with a relative degree equal to one, ensure a second order sliding mode and offer a con-

tinuous input. Such attempt can be also made for systems with relative degree equal to

two. Based on the 3SMC presented in this thesis, in the future work, a third order sliding

mode control law which can be applied to systems with relative degree equal to two with

a smooth input could be developed.

• It is also worth to combine the TWLC with the impulsive sliding mode control Shtessel

et al. [2013]. The impulsion helps to reduce the convergence time, when the system

trajectories are far from origin. Once it reaches a vicinity of zero, the TWLC is used to

keep the trajectories around the origin. For this latter phase, the use of time derivative of

the sliding variable can be removed.
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Thèse de Doctorat

Xinming YAN

Développement de commandes robustes basées sur la théorie des modes
glissants pour les systèmes non linéaires incertains

Development of robust control based on sliding mode for nonlinear uncertain
systems

Résumé
Le travail de thèse présenté dans ce mémoire
s’inscrit dans le cadre du développement de lois
de commande pour des systèmes non linéaires
incertains, basées sur la théorie des modes
glissants. Les méthodes classiques de la
commande par modes glissants sont des lois de
commande par retour d’état, où la variable de
glissement et ses dérivées sont nécessaires. Le
premier objectif de cette thèse est de proposer
des lois de commande par modes glissants
d’ordre supérieur avec une réduction de l’ordre
de dérivation de la variable de glissement. Le
deuxième objectif est de combiner les nouvelles
lois de commande avec un mécanisme de gain
adaptatif. L’utilisation d’un gain adaptatif permet
de simplifier le réglage du gain, de réduire le
temps de convergence et d’améliorer la
précision. Enfin, l’applicabilité de ces approches
est démontrée à travers leur application au banc
d’essais électropneumatique de l’IRCCyN, et à
un système volant à trois degrés de liberté.

Abstract
This work deals with the development of control
laws for nonlinear uncertain systems based on
sliding mode theory. The standard sliding mode
control approaches are state feedback ones, in
which the sliding variable and its time derivatives
are required. This first objective of this thesis is to
propose high order sliding mode control laws with
a reduced use of sliding variable time derivatives.
The contributions are made for the second and
third order sliding mode control. The second
objective is to combine the proposed control laws
with a gain adaptation mechanism. The use of
adaptive gain law allows to simplify the tuning
process, to reduce the convergence time and to
improve the accuracy. Finally, the applicability of
the proposed approaches is shown on IRCCyN
pneumatic benchmark. Applications are also
made on 3DOF flying system.

Mots clés
Modes glissants d’ordre deux, modes glissants
d’ordre supérieur, modes glissants adaptatifs,
système électropneumatique, système volant.

Key Words
Second order sliding mode, higher order sliding
mode, adaptive sliding mode, electropneumatic
system, flying system.
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