T. , ?. N}-?-{nar-(-t-)-t-?-t-n, and }. , Then T is defined to be the union of all the trees in T n for some n. For two trees T 1 , T 2 in T , we say that T 2 extends T 1 or also T 1 T 2 if T 2 ? T 1, addition if T 1 ? T 2 we write T 1 T 2 . We illustrate the tree of trees by the following picture: 7.3. NON-UNIVERSALITY IN CONTINUOUS RELATIVIZATION

T. Therefore, [[i]] for some i, j ? N. Also as B ? i Nar i (T n ) and as ? B we have that ? ? Nar(Nar j (T n )) In particular by Fact 7.3.2 we have that ? i (Nar j (T n )) ? and as ? k (T ) ? i (Nar j (T n )) we also have that ? k (T ) ? which is a contradiction Construction claims

. Also, the search for ? is done in priority over e-strategies. If we find no such prefix, then we set ? s = ? s?1 Otherwise let n = ? and do the following: In case o < ? we set ? s = ? s?1 n ?(o + 1)?0 ? . In case o = ?, let ? be the smallest prefix of A s?1 such that [X e,s d ?1] ? U ? e,s . Using Lemma 7.3.2 we find k such that ? ? k (T ? ) cancels noise around A s?1 above Nar(T ? ) = T ??o . Using Construction claim 2 and claim 3, let t be the last stage smaller than s such that ? t n+1 = ??k. Note that we have A, case at stage s ? 1, some value ? s?1 (n) is equal to ? + 1 whereas ? s?2

N. In, Then either k ? i in which case A s cannot not extend stem(T ? ) and (*) is true at stage s, or k = i, in which case, if stem(T ? ) A s , the string stem(T ? ) is comparable with stem Then by Fact 7.3.3 we have that stem(T ? ) A s iff stem(T ? ) ? j (T ?, iff stem(T ? ) A s ? . Therefore, by induction hypothesis, as (*) is true at stage s ? it is true at stage s

. Actually, 1) is not in S, therefore we can apply Lemma 7.3.5: For every stage t ? s + 1, we have A t stem(T ?sm?k?sm?k ) But as stem(T ?sm?k?sm?k ) stem(T ? ) we then have for any t ? s + 1 that A t stem

R. Ash and C. Doléans-dade, Probability and measure theory. ELSE- VIER, 1999.

R. Baire, Sur les fonctions de variables r??elles, Annali di Matematica Pura ed Applicata, vol.3, issue.1, pp.1-123, 1899.
DOI : 10.1007/BF02419243

H. Becker and R. Dougherty, On disjoint Borel uniformizations Advances in mathematics, pp.167-174, 1999.

L. Bienvenu, F. Stephan, and J. Teutsch, How powerful are integervalued martingales? Theory of Computing Systems, pp.330-351, 2012.

J. Gregory and . Chaitin, A theory of program size formally identical to information theory, Journal of the ACM (JACM), vol.22, issue.3, pp.329-340, 1975.

J. Gregory and . Chaitin, Information-theoretic characterizations of recursive infinite strings, Theoretical Computer Science, vol.2, issue.1, pp.45-48, 1976.

C. Chong, A. Nies, and L. Yu, Lowness of higher randomness notions, Israel Journal of Mathematics, vol.45, issue.1, pp.39-60, 2008.

C. Tat, C. , and L. Yu, Randomness in the higher setting

J. Paul and . Cohen, Set theory and the continuum hypothesis, DoverPublications.com, 1966.

A. Joshua, . Cole, G. Stephen, and . Simpson, Mass problems and hyperarithmeticity, Journal of Mathematical Logic, vol.7, issue.02, pp.125-143, 2007.

S. Barry and C. , Computability theory, 2003.

A. Day and D. Dzhafarov, Limits to joining with generics and randoms, Proceedings of the 12th Asian Logic Conference, 2012.

A. Day and J. Miller, Cupping with random sets, Proceedings of the American Mathematical Society, vol.142, issue.8, pp.2871-2879, 2014.

K. De-leeuw, F. Edward, C. E. Moore, N. Shannon, and . Shapiro, Computability by Probabilistic Machines, Automata studies, vol.34, pp.183-198, 1955.

R. Downey, D. Hirschfeldt, A. Nies, and F. Stephan, Trivial Reals, Electronic Notes in Theoretical Computer Science, vol.66, issue.1, pp.36-52, 2002.

R. Downey, A. Nies, R. Weber, and L. Yu, Abstract, The Journal of Symbolic Logic, vol.64, issue.03, pp.1044-1052, 2006.

R. Downey and D. Hirschfeldt, Algorithmic randomness and complexity. Theory and Applications of Computability, 2010.

R. Downey and R. Shore, There is no degree invariant half-jump, Proceedings of the American Mathematical Society, pp.3033-3037, 1997.

H. Verena, . Dyson, P. James, . Jones, C. John et al., Some diophantine forms of Gödel's theorem, Archive for Mathematical Logic, vol.22, issue.1, pp.51-60, 1980.

S. Feferman, Some applications of the notions of forcing and generic sets, Fundamenta Mathematicae, vol.56, issue.3, pp.325-345, 1964.

S. Feferman and C. Spector, Incompleteness along paths in progressions of theories, The Journal of Symbolic Logic, vol.14, issue.04, pp.383-390, 1962.
DOI : 10.2307/2371894

J. Franklin and K. Ng, Difference randomness, Proceedings of the American Mathematical Society, vol.139, issue.01, pp.345-360, 2011.

M. Richard and . Friedberg, Two recursively enumerable sets of incomparable degrees of unsolvability (solution of Post's problem, Proceedings of the National Academy of Sciences of the United States of America, p.236, 1944.

P. Gács, On the symmetry of algorithmic information, Soviet Math. Dokl, vol.15, pp.1477-1480, 1974.

P. Gács, Every sequence is reducible to a random one, Information and Control, vol.70, issue.2-3, pp.186-192, 1986.

K. Gödel, ¨ Uber formal unentscheidbare sätze der principia mathematica und verwandter systeme i. Monatshefte für mathematik und physik, pp.173-198, 1931.

K. Gödel and G. W. Brown, The consistency of the axiom of choice and of the generalized continuum-hypothesis with the axioms of set theory. Number 3, 1940.

J. Herbrand, Sur la non-contradiction de l'arithmétique, Journal für die reine und angewandte Mathematik, pp.1-8, 1932.

D. Hirschfeldt, A. Nies, and F. Stephan, Using random sets as oracles, Journal of the London Mathematical Society, vol.75, issue.3, pp.610-622, 2007.
DOI : 10.1112/jlms/jdm041

G. Hjorth and A. Nies, Randomness via effective descriptive set theory, Journal of the London Mathematical Society, vol.75, issue.2, pp.495-508, 2007.
DOI : 10.1112/jlms/jdm022

W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical Association, vol.1, issue.301, pp.13-30, 1963.

M. Steven and . Kautz, Degrees of random sets, 1991.

S. Alexander and . Kechris, The theory of countable analytical sets. Transactions of the, pp.259-297, 1975.

S. Alexander and . Kechris, Classical descriptive set theory, 1995.

T. Kent and A. Lewis, On the degree spectrum of a ? 0 1 class. Transactions of the, pp.5283-5319, 2010.

A. Bjørn-kjos-hanssen, F. Nies, L. Stephan, and . Yu, Higher Kurtz randomness, Annals of Pure and Applied Logic, vol.161, issue.10, pp.1280-1290, 2010.

. Stephen-cole-kleene, On notation for ordinal numbers, The Journal of Symbolic Logic, vol.28, issue.04, pp.150-155, 1938.

. Stephen-cole-kleene, Recursive predicates and quantifiers. Transactions of the, pp.41-73, 1943.

. Stephen-cole-kleene, On the forms of the predicates in the theory of constructive ordinals (second paper) American journal of mathematics, pp.405-428, 1955.

N. Andrei and . Kolmogorov, On tables of random numbers Sankhy¯ a: The Indian Journal of Statistics, Series A, pp.369-376, 1963.

N. Andrei and . Kolmogorov, Three approaches to the quantitative definition of information. Problems of information transmission, pp.1-7, 1965.

A. Ku?era, Measure, ?? 1 0 -classes and complete extensions of PA, Recursion theory week, pp.245-259, 1985.

S. Kurtz, Randomness and genericity in the degrees of unsolvability, Dissertation Abstracts International Part B: Science and Engineering, vol.42, issue.9, p.1982, 1982.

S. Kurtz, Notions of weak genericity. The Journal of symbolic logic, pp.764-770, 1983.

A. Ku?era and T. Slaman, Randomness and Recursive Enumerability, SIAM Journal on Computing, vol.31, issue.1, pp.199-211, 2001.

H. Alistair and . Lachlan, Uniform enumeration operations, The Journal of Symbolic Logic, vol.40, issue.03, pp.401-409, 1975.

H. Lebesgue, Sur les fonctions représentables analytiquement, Journal de mathematiques pures et appliquees, pp.139-216, 1905.

L. Levin, Some theorems on the algorithmic approach to probability theory and information theory, Dissertation in mathematics, 1971.

L. Levin, The concept of a random sequence, In Dokl. Akad. Nauk SSSR, vol.212, pp.548-550, 1973.

L. Levin, Laws of information conservation (nongrowth) and aspects of the foundation of probability theory, Problemy Peredachi Informatsii, vol.10, issue.3, pp.30-35, 1974.

A. Lévy, Basic set theory, 1979.

A. Lewis, A. Montalbán, and A. Nies, A weakly 2-random set that is not generalized low. Computation and Logic in the Real World, p.474, 2007.

M. Li and P. Vitányi, An introduction to Kolmogorov complexity and its applications, 2009.

N. Lusin, Sur les ensembles non mesurables B et l'emploi de la diagonale Cantor, CR Acad. Sci. Paris, vol.181, pp.95-96, 1925.

W. Markwald, Zur Theorie der konstruktiven Wohlordnungen, Mathematische Annalen, vol.34, issue.1, pp.135-149, 1954.
DOI : 10.1007/BF01361115

A. Donald and . Martin, Borel determinacy, Annals of Mathematics, pp.363-371, 1975.

P. Martin-löf, The definition of random sequences, Information and Control, vol.9, issue.6, pp.602-619, 1966.

P. Martin-löf, On the Notion of Randomness, Studies in Logic and the Foundations of Mathematics, pp.73-78, 1970.

V. Ju and . Matijasevi?, Enumerable sets are diophantine, In Dokl. Akad. Nauk SSSR World Scientific, vol.191, pp.279-282, 1970.

J. Miller, Abstract., The Journal of Symbolic Logic, vol.212, issue.03, pp.907-913, 2004.
DOI : 10.1007/BF01694181

J. Miller and L. Yu, On initial segment complexity and degrees of randomness . Transactions of the, pp.3193-3210, 2008.

. Benoit-monin, Higher randomness and forcing with closed sets, LIPIcs-Leibniz International Proceedings in Informatics Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

Y. Moschovakis, ), Pacific Journal of Mathematics, vol.18, issue.2, pp.329-342, 1966.

A. Mostowski, On definable sets of positive integers. Fundamenta mathematicae, pp.81-112, 1947.

A. Albert and . Muchnik, On the unsolvability of the problem of reducibility in the theory of algorithms, In Dokl. Akad. Nauk SSSR, vol.108, p.1, 1956.

A. Nies, Lowness properties and randomness, Advances in Mathematics, vol.197, issue.1, pp.274-305, 2005.

A. Nies, Non-cupping and randomness, Proceedings of the American Mathematical Society, vol.135, issue.03, pp.837-844, 2007.

A. Nies, Computability and Randomness, 2009.

A. Nies, Logic blog 2013. arXiv preprint arXiv:1403, 2014.

A. Nies, F. Stephan, A. Sebastiaan, and . Terwijn, Abstract, The Journal of Symbolic Logic, vol.54, issue.02, pp.515-535, 2005.
DOI : 10.1007/BF01694181

P. Odifreddi, Classical recursion theory: The theory of functions and sets of natural numbers, 1992.

B. David, . Posner, W. Robert, and . Robinson, Degrees joining to 0 ? . The Journal of Symbolic Logic, pp.714-722, 1981.

L. Emil and . Post, Recursively enumerable sets of positive integers and their decision problems, Bulletin of the American Mathematical Society, vol.50, issue.5, pp.284-316, 1944.

E. Gerald and . Sacks, Degrees of unsolvability. Number 55, 1963.

E. Gerald and . Sacks, Measure-theoretic uniformity in recursion theory and set theory. Transactions of the, pp.381-420, 1969.

E. Gerald and . Sacks, Higher recursion theory, 2010.

P. Claus and . Schnorr, Process complexity and effective random tests, Journal of Computer and System Sciences, vol.7, issue.4, pp.376-388, 1973.

A. Shen, On relations between different algorithmic definitions of randomness, Soviet Mathematics Doklady, vol.38, pp.316-319, 1989.

R. Joseph and . Shoenfield, On degrees of unsolvability, Annals of mathematics, pp.644-653, 1959.

A. Richard, . Shore, A. Theodore, and . Slaman, Defining the turing jump, Mathematical Research Letters, vol.6, issue.56, pp.711-722, 1999.

A. Theodore, . Slaman, R. John, and . Steel, Definable functions on degrees, pp.37-55, 1988.

J. Ray and . Solomonoff, A preliminary report on a general theory of inductive inference. Citeseer, 1960.

J. Ray and . Solomonoff, A formal theory of inductive inference. part i. Information and control, pp.1-22, 1964.

R. Solovay, Draft of a paper (or series of papers) on Chaitin's work, Unpublished notes, 1975.

C. Spector, Recursive well-orderings. The Journal of Symbolic Logic, pp.151-163, 1955.

R. John and . Steel, Forcing with tagged trees, Annals of Mathematical Logic, vol.15, pp.55-74, 1978.

R. John and . Steel, A classification of jump operators, The Journal of Symbolic Logic, vol.47, issue.02, pp.347-358, 1982.

F. Stephan and L. Yu, Lowness for Weakly 1-generic and Kurtz-Random, Theory and applications of models of computation, pp.756-764, 2006.
DOI : 10.1007/11750321_72

M. Suslin, Sur une définition des ensembles mesurables B sans nombres transfinis, CR Acad. Sci. Paris, vol.164, issue.2, pp.88-91, 1917.

H. Tanaka, A basis result for ? 1 1 -sets of positive measure, pp.115-127, 1967.

A. Mathison and T. , Systems of logic based on ordinals, Proceedings of the London Mathematical Society, pp.161-228, 1939.

J. Von-neumann, Zur Einführung der transfiniten Zahlen Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae, sectio scientiarum mathematicarum, pp.199-208, 1923.

L. Yu, Lowness for genericity Archive for Mathematical Logic, pp.233-238, 2006.

L. Yu, Descriptive set theoretical complexity of randomness notions, Fundamenta Mathematicae, vol.215, issue.3, pp.219-231, 2011.
DOI : 10.4064/fm215-3-2