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Summary 
The goal of this work was the investigation of the anatomical and functional 

connectivity of neuronal networks and the development of novel tools for this 

purpose. Since the latter aspect is a major focus of current neuroscience, we first 

sought a novel viral tracer enabling sparse neuronal reconstruction and neuron 

classification. We then applied this and other techniques to probe neuronal 

connectivity defects in Fragile X Syndrome. 

In the first part we discussed the merits and drawbacks of a emerging 

technique using a new type of viral vector that allows in a unique manner mapping of 

the input of a given brain area. 

In the second part we developed, departing from this viral vector, a new 

variant to facilitate the tracing and reconstructing of morphologic features of neurons. 

We showed the strength of this anterograde variant of the recombinant glycoprotein-

deleted rabies virus for computational reconstruction of all key morphological 

features of neurons: dendrites, spines, long-ranging axons throughout the brain and 

bouton terminals. 

In the third part we examined alterations in the wiring of brain structures in 

the Fragile X Syndrome (FXS). FXS is the most common inherited mental retardation 

and most frequent genetic form of autism, leading to learning and memory deficits, 

repetitive behavior, seizures and hypersensitivity to sensory (e.g. visual) stimuli. One 

of the eminent hypotheses in the autism field assumes a local hyper- connectivity 

phenotype but hypo-connectivity for long-ranging connections. To test this hypothesis 

in a FXS mouse model we used magnetic resonance imaging, to scan the entire brain 

and measure the anatomical and functional connectivity. This allowed us to identify 

connectivity alterations in several areas that we further explored using viral tracers. 

Using retrograde rabies virus to count the number of neurons projecting to such areas 

we confirmed an altered input connectivity to the primary visual cortex, which could 

contribute to the altered visual information processing. We discovered an overall 

reduced anatomical and functional long-range connectivity between several brain 

areas, identifying FXS as pathology of neuronal connectivity, which might explain the 

difficulties several rescue strategies aiming at molecular targets are currently facing. 

Keywords: Viral tracing, Fragile X Syndrome, Connectivity 
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Titre en français: 
Neuronale connectivité dans le cerveau de souris en condition normale et en 

syndrome du X fragile 

 

Résumé en français: 

 
Le but de ce travail est l'étude de la connectivité anatomique et fonctionnelle des 

réseaux neuronaux et le développement des nouveaux outils à cet effet. Car le dernier 

aspect est une préoccupation majeure de la neuroscience actuelle, nous avons 

developpé d'abord un nouveau traceur virale permettant la reconstruction neuronale. 

Nous avons ensuite appliqué cet et d'autres techniques pour sonder les défauts de 

connectivité neuronale dans le syndrome de l'X fragile.  

Dans la première partie, nous avons discuté les avantages et inconvénients d'une 

technique émergente en utilisant un nouveau type de vecteur viral qui permet une 

unique application pour l’étude du cerveau.  

Dans la deuxième partie, nous avons développé, au départ de ce vecteur viral, une 

nouvelle variante de faciliter le traçage et reconstruction des caractéristiques 

morphologiques de neurones. Nous avons montré la force de cette variante 

antérograde du virus de la rage recombinant glycoprotéine supprimé pour la 

reconstruction de calcul de toutes les caractéristiques morphologiques clés de 

neurones: les dendrites, épines, les axones longs envergure dans tous les terminaux du 

cerveau et les boutons.  

Dans la troisième partie, nous avons examiné les modifications dans la connectivité 

des structures cérébrales dans le syndrome du X fragile (FXS). FXS est le retard 

mental héréditaire la plus fréquente et la forme génétique la plus fréquente de 

l'autisme, ce qui conduit à l'apprentissage et de la mémoire des déficits, les 

comportements répétitifs, des convulsions et une hypersensibilité à des stimuli 

sensoriels (visuels). Une des hypothèses éminents dans le domaine de l'autisme 

suppose une phénotype de hyper-connectivité locale mais de hypo-connectivité pour 

les connexions longue portée. Pour tester cette hypothèse dans un modèle de souris 

FXS nous avons utilisé l'imagerie par résonance magnétique, pour balayer la totalité 

du cerveau et de mesurer la connectivité anatomique et fonctionnel. Cela nous a 

permis d'identifier des altérations de connectivité dans plusieurs domains. Après nous 
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avons utilisé des traceurs viraux pour explorer un de ceux domains plus detaillé. En 

utilisant le virus de la rage rétrograde à quantifier le nombre de neurones projetant 

vers ces zones, nous avons confirmé une connectivité d'entrée modifié pour le cortex 

visuel primaire, ce qui pourrait contribuer au traitement visuel altéré de l'information. 

Nous avons découvert une connectivité réduite à longue portée globale anatomique et 

fonctionnelle entre plusieurs régions du cerveau, l'identification FXS comme une 

pathologie de la connectivité neuronale, ce qui pourrait expliquer les difficultés de 

plusieurs stratégies de sauvetage visant des cibles moléculaires sont actuellement 

confrontés. 

 

Mots clés en français: Traçage Virale, Syndrome du X Fragile, Connectivité 
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Titel: 
Studie der neuronaler Konnektivität des Gehirns der Maus im normalen Zustand und 

im Fragilen X-Syndrom 

 

Zusammenfassung: 
Das Ziel dieser Arbeit war die Untersuchung der anatomischen und funktionellen 

Konnektivität neuronaler Netze und die Entwicklung neuer Werkzeuge für diesen 

Zweck. Da der letztgenannte Aspekt ein wichtiger Schwerpunkt der aktuellen 

neurowissenschaftlichen Forschung ist haben wir zuerst einen neuartigen viralen 

Tracer entwickelt der die neuronale Rekonstruktion erleichtert. Des weiteren haben 

wir dieses Virus zusammen mit anderen Techniken angewendet, um Änderungen der 

neuronalen Konnektivität im Fragilen-X-Syndrom zu untersuchen.  

Im ersten Teil erörterten wir die Vorteile und Nachteile einer Schwellentechnik, die es 

mit Hilfe eines neuen viralen Vektors in einzigartiger Weise erlaubt, die Eingänge in 

bestimmte Hirnregion zu bestimmen.  

Im zweiten Teil haben wir, ausgehend von diesem viralen Vektor, eine neue Variante 

entwickelt, um die Sichtbarmachung und Rekonstruktion von morphologischen 

Eigenschaften von Neuronen zu erleichtern. Wir zeigten die Stärke dieser anterograde 

Variante des rekombinanten Tollwut-Virus für die Rekonstruktion aller wichtigen 

morphologischen Merkmale von Neuronen: Dendriten, Spines, lange Axone durch 

das Gehirn und axonale Boutons.  

Im dritten Teil untersuchten wir Veränderungen in der Verdrahtung von 

Hirnstrukturen im Fragilen X Syndrom (FXS). FXS ist die häufigste vererbte geistige 

Behinderung und häufigste genetische Form des Autismus. FXS führt zu Lern-und 

Gedächtnisdefiziten, repetitiven Verhaltensweisen, Epilepsie und 

Überempfindlichkeit auf Sinnesreize (z.B. visuell). Eine der bedeutendsten 

Hypothesen in dem Gebiet des Autismus geht von einer lokalen hyper-Konnektivität 

aber einer hypo-Konnektivität für weit enfernte Verbindungen aus. Um diese 

Hypothese in einem FXS-Mausmodell zu testen verwendeten wir 

Magnetresonanztomographie, um das gesamte Gehirn zu scannen und die 

anatomischen und funktionellen Konnektivität zu messen. Dies erlaubte uns, in 

mehreren Bereichen, Konnektivitätsänderungen zu identifizieren. Diese Änderungen 

konnten wir anschließend unter Verwendung von viralen Tracern weiter untersuchen. 
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Durch das Verwenden eines retrograden Tollwutvirus konnten wir die Anzahl von 

Eingangsverbindung von Neuronen zu einem dieser Bereiche, dem primären visuellen 

Kortex, quantifizieren. Wir entdeckten insgesamt eine Reduktion der anatomischen 

und funktionellen Langstrecken-Verbindungen zwischen mehreren Hirnarealen. Dies 

identifiziert FXS als eine Pathologie der neuronalen Konnektivität, und bietet eine 

Erklärungsmöglichkeit für die Schwierigkeiten der zur Zeit getesteten Medikamente 

im FXS. 

 

Schlüsselwörter: Virales Tracing, Fragiles-X-Syndrom, Konnektivität im Gehirn 
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L'étude de la connectivité neuronale  

dans le cerveau de la souris dans des conditions normales  
et le syndrome de l'X fragile 

 5	  
 
Résumé en français 
 
 

L'objectif de cette thèse était l'étude de la connectivité anatomique et 10	  

fonctionnelle des réseaux neuronaux et le développement des nouveaux 

outils à cet effet. Car le dernier aspect est une préoccupation majeure de la 

neuroscience actuelle, nous avons développé d'abord un nouveau traceur 

virale permettant la reconstruction neuronale. Nous avons ensuite appliqué 

cet et d'autres techniques pour sonder les défauts de connectivité neuronale. 15	  

Ici, nous avons étudié la connectivité neuronale du cerveau de la souris 

normale, et dans une forme héréditaire d'un retard mental, le syndrome de l'X 

fragile. 

 

Comment est-ce que l'information sensorielle est traitée dans le 20	  

cerveau, la perception codé, et le comportement généré? Une réponse à ces 

questions nécessite une compréhension des mécanismes du fonctionnement 

des circuits neural du cerveau. Le fonctionnement de ces circuits neuronaux 

est déterminé par leur structure, les propriétés physiologiques des connexions 

neuronales, et les propriétés d'intégration des neurones. Ainsi, la 25	  

compréhension des calculs du cerveau est inévitablement liée à la 

connaissance de la relation entre la structure de ses circuits neuronaux et de 

leur fonction. Le virus de la rage a des propriétés remarquables comme un 

traceur rétrograde de populations neuronales reliées par des synapses. 

Récemment, le développement d'une variante supprimé du géné de 30	  

glycoprotéine basée sur le virus de la rage a permis le dépistage et 

l'exploration fonctionnelle de connexions de neurones monosynaptiques 

définies. Cette méthodologie peut être facilement combiné avec l'expression 
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d'une variété de gènes, optogénétique,  électrophysiologie, les tests 

comportementaux et de conduire des études d'intégration dʼinformation dans 

les circuits neuronaux.  

 

Dans la revue comprise dans la première partie, nous avons expliqués 5	  

les principes de base de cette technologie. Nous avons ensuite montrés 

comment, dans des études récentes, cʼétait adapté pour révéler des aspects 

spécifiques de la structure des circuits neuronaux et éclaircir leur principe de 

fonctionnement. Nous avons aussi discutés les avantages considérables et le 

potentiel. On a également présente de ce que on croit sont les insuffisances 10	  

majeurs de cette nouveaux vecteur. Enfin, nous donnons un aperçu de la 

façon dont cette approche complémenté par dʼautres récents développements 

technologiques dans le domaine de l'analyse des circuits neuronaux et le 

genre de questions qui peuvent être traitées en utilisant une combinaison de 

ces approches. Cet type modifié du virus de la rage est un outil puissant pour 15	  

l'analyse des circuits neuronaux. Il ouvre de nouvelles possibilités avec 

uniques applications pour lʼétude du cerveau. 

 

Dans la deuxième partie, nous avons développé, au départ de ce 

vecteur viral, une nouvelle variante pour faciliter le traçage et la reconstruction 20	  

des caractéristiques morphologiques de neurones. Ici, nous avons prouvé 

l'utilité de cette nouvelle variante antérograde du virus de la rage. On a  

démontré lʼutilité de cet vecteur pour des nouvelles approches 

neuroanatomiques impliquant une infection neuronales sois en gros ou 

clairsemées dans une région du cerveaux. Cette technologie exploite les 25	  

caractéristiques avantageux et uniques des vecteurs du virus de la rage. 

Notamment un haut niveau d'expression de transgènes qui se développe 

autonome et rapide, combiné avec une cytotoxicité assez limitée. Notre 

vecteur permet la longue portée et à petite échelle traçage sans ambiguïté de 

l'ensemble arbre de axonale des neurones individuels dans le cerveau. Nous 30	  

avons montré la force de cette variante antérograde du virus de la rage pour 
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la reconstruction de calcul de toutes les caractéristiques morphologiques clés 

de neurones: les dendrites, épines, les axones longs envergure dans tous les 

terminaux du cerveau et les boutons. Notamment, ce niveau de l'étiquetage 

peut être réalisé après l'infection avec une seule particule virale. Le vecteur 

est efficace dans les souris sur une gamme d'âges (jusqu'à 14 mois) et par 5	  

conséquent, il peut être utilisé pour aider les études de maladies 

neurodégénératives ou le vieillissement du cerveaux. Le vecteur infecte de 

nombreux types différentes de cellules neuronaux et des cellules gliales dans 

toutes les régions du cerveau testés. Enfin, ce type de virus peut également 

être facilement combiné avec différentes variantes du virus de la rage, comme 10	  

le type rétrograde. Ensemble avec d'autres technologies modernes, cet outil 

offre de nouvelles possibilités pour l'enquête de l'anatomie et de la 

physiologie des circuits neuronaux. 

 

Dans la troisième partie, nous avons examiné les modifications dans la 15	  

connectivité des structures cérébrales dans le syndrome du X fragile. Le 

syndrome du X fragile est le retard mental héréditaire la plus fréquente. Cʼest 

également la cause la plus courante et la plus bien décrit dʼun seule gène 

d'un trouble du spectre autistique (TSA) chez l'homme. Le syndrome du X 

fragile se produit avec une prévalence de 1/4000 à 1/8000 mâle et femelle 20	  

dans enfants.  Les symptômes comprennent apprentissage et de mémoire 

déficits, une prévalence élevée de comportement autistique, des convulsions, 

hypersensibilité aux stimuli sensoriels et modifications / perturbations dans le 

traitement des informations sensorielle. Le modèle de souris knock-out FMR1 

(Fmr1 KO) présente plusieurs caractéristiques neuropathologiques qui sont 25	  

semblables à ceux des patients FXS humains, qui souffrent d'une perte de 

fonction du gène FMR1.  

 

Alors que de nombreuses études se concentrent sur la dérégulation 

des récepteurs neuronaux ou compartiments individuels nos connaissances 30	  

sur l'organisation du réseau est clairsemée. Aujourd'hui, nous ne avons que 



Studying Neuronal Connectivity in the Mouse Brain in 
Normal Condition and Fragile X Syndrome 

	  

L'étude de la connectivité neuronale dans le cerveau de la souris dans des conditions 
normales et le syndrome de l'X fragile 

Thèse présenté par Matthias Georg Haberl 4	  

quelques indications sur les changements de réseau à petite échelle et nous 

ne savons pas comment ils sont impliqués dans la maladie, ou comment ils 

contribuent aux changements cognitifs et de perception dans FXS. Au niveau 

cellulaire, une connectivité anatomique modifié a été proposé de jouer un rôle 

à la fois dans le syndrome du X fragile et TSA. Les deux, morphologie des 5	  

épinés dendritique et la croissance axone sont pensés de être altéré chez les 

souris KO FMR1. Par conséquent, une altération des circuits du cerveau est 

censée de jouer un rôle important dans FXS. Plusieurs rapports ont indiqué 

des changements dans la connectivité à courte portée du néocortex chez les 

souris KO Fmr1 mais souvent ceux qui sont apparus au cours d'une étroite 10	  

fenêtre de temps et a disparu dans adolescence. Cela pose la question de 

savoir si les changements de câblage jouent effectivement un rôle dans l'âge 

adulte dans FXS? Ici, une connaissance approfondie des déficits dans le 

câblage du circuit neuronal serait nécessaire pour combler le fossé entre les 

altérations trouvés au niveau moléculaire / micro-circuits et les déficits 15	  

comportementaux / intellectuelle. 

Un câblage structurel adéquat est crucial pour le maintien de la 

fonction cérébrale normale, comme le traitement de l'information sensorielle. 

Connexions à longue portée entre différentes zones du cerveau sont cruciales 

pour le transfert séquentiel fidèle de l'information sensorielle de manière 20	  

prédictive et de rétroaction. Connexions allant courts doivent être intacts à 

intégrer et traiter les informations étape par étape dans chaque zone. Ici, 

nous émettons l'hypothèse que les deux, la connectivité entre l'intérieur et 

dans les zones du cerveau peuvent être modifiés en raison des déficits FXS, 

qui ont été décrites précédemment dans la colonne vertébrale et des 25	  

morphologies excroissance axonale. Pourtant, à long terme sous-jacents FXS 

câblage déficits ont été largement inexploré en tant que mécanisme potentiel 

déficits cognitifs sous-jacents. Une des hypothèses éminents dans le domaine 

de l'autisme suppose une phénotype de hyper-connectivité locale mais de 

hypo-connectivité pour les connexions longue portée. Pour tester cette 30	  

hypothèse dans un modèle de souris du syndrome du X fragile nous avons 
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utilisé différentes techniques de l'imagerie. Conséquent, nous plaçons pour 

quantifier cerveau et au niveau local caractéristiques structurelles de 

connectivité dans le modèle de la souris Fmr1 KO et les corréler à la 

connectivité fonctionnelle. 

Ici nous avons utilisé l'imagerie résonance magnétique, pour balayer la 5	  

totalité du cerveau et de mesurer la connectivité anatomique et fonctionnelle. 

Cela nous a permis d'identifier des altérations de connectivité dans plusieurs 

domaines. On a calculé le tenseur de diffusion (DTI) pour mesurer l'intégrité 

structurelle de la matière blanche chez les souris KO Fmr1 et trouvé une 

organisation réduite ou nombre d'axones dans les faisceaux de fibres du 10	  

corps calleux ci-dessous plusieurs aires corticales. Après nous avons utilisé 

des traceurs viraux pour explorer un de ceux domaines plus détaillé. On a 

utilisé le virus de la rage rétrograde pour quantifier le nombre de neurones 

projetant vers ces zones. Nous avons trouvé une connectivité d'entrée modifié 

pour le cortex visuel primaire, ce qui pourrait contribuer au traitement visuel 15	  

altéré de l'information. La marquage rétrograde a révélé que le nombre 

d'entrées de longue allant à cette zone est réduite. Globalement, nous 

trouvons une évolution vers plus d'entrée locale et moins long allant. 

Utilisation de l'état-repos IRM fonctionnelle (IRMf) nous avons constaté que, 

en fait, les changements structurels correspondent à une fonction de 20	  

synchronisation / découplage de plusieurs zones du cerveau, qui sont 

cruciaux pour le traitement de l'information sensorielle, visuelle et auditive. 

 

 Les changements dans la façon dont le cerveau est câblé fournir une 

explication raisonnable pour les déficits dans le traitement de l'information 25	  

sensorielle et pourrait également être liée à des déficits d'apprentissage, soit 

en étant la cause ou l'effet étant d'un tel changement. Nous proposons que 

les mesures non invasives de la connectivité du cerveau - démontrés ici à la 

souris - pourraient être répétées chez des patients humains. Notre étude 

souligne ainsi biomarqueurs appropriés qui pourraient être appliquées pour 30	  

tester l'efficacité des interventions thérapeutiques. Cela peut faciliter et 
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améliorer les résultats des essais cliniques, en testant leur capacité d'inverser 

les déficits de câblage du cerveau chez le syndrome du X fragile. 

L'arrêt récent de plusieurs essais de médicaments à grande échelle 

souligne la nécessité d'une meilleure compréhension des mécanismes de 

FXS. Ces médicaments ne ont pas apporté l'effet avantageux prévu par 5	  

exemple sur les patients Arbaclofen (Seaside Therapeutics / Roche) ou 

Mavoglurant / mGluR5 (AFQ056) (Novartis), même se ils agissent sur les 

cibles moléculaires particulièrement bien décrits (mGluR5 et GABAR). 

Modifications dans le câblage anatomique fournissent un mécanisme qui 

pourrait expliquer (i) les effets drastiques trouvés sur le traitement de 10	  

l'information sensorielle dans les circuits neuronaux et (ii) les complications 

dans les stratégies de sauvetage visant à guérir phénotypes moléculaires. 

Nous croyons que notre travail ne sera pas seulement renforcer notre 

compréhension des déficits pathologiques du syndrome du X fragile (et TSA) 

mais aussi qu'il fournira un cadre pour tester l'efficacité de nouveaux agents 15	  

thérapeutiques pour leur capacité à inverser les changements dans le 

câblage anatomique et fonctionnelle dans souris FXS et à l'avenir chez les 

patients humains. 

Important de notre étude a été spécifiquement réalisée uniquement 

chez les souris adultes (9-12 semaines postnatal). Études et des essais pré-20	  

cliniques antérieures ont souvent été réalisées dans des cultures cellulaires 

ou de jeunes animaux (par exemple le début du traitement chronique chez la 

souris à 4-5 semaines). Il est donc important de tenir compte des tests 

supplémentaires, à la fois in vivo et ex vivo qui évalue les mesures 

intermédiaires telles que la capacité d'agents thérapeutiques potentiels pour 25	  

inverser les déficits de câblage. Effectuer ces essais chez les animaux 

adultes peut fournir de meilleures indications pour l'efficacité clinique chez les 

patients adultes FXS depuis câblage neuronal est beaucoup plus plastique 

dans les jeunes animaux ou des nourrissons, où le cerveau est toujours en 

cours effets de recâblage et élagage fortes. Nous suggérons que notre 30	  

approche a le potentiel pour devenir un pipeline d'analyse pour tester les 
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nouveaux médicaments candidats. Ces candidats médicaments peuvent être 

identifiés à une vitesse de plus en plus grandes projections pour les petites 

molécules bioactives avec un effet souhaitable. Un composé potentiel de FXS 

est la petite molécule récemment identifié (FRAX486) qui agit en inhibant une 

protéine modulant la dynamique du cytosquelette d'actine. Le composant a 5	  

été utilisé chez des souris adultes et muni des effets positifs sur plusieurs 

déficits comportementaux. Il serait donc intéressant de tester si ce 

médicament serait efficace pour inverser les fonctions de connectivité trouvés 

ici. Pour tester cela, nous pourrions examiner les mêmes paramètres de 

connectivité structurelle et fonctionnelle chez les souris adultes avec et sans 10	  

traitement. 

Un dernier point qui doit être considéré est la complexité de FXS et la 

variabilité des phénotypes associés. La cause de cette variabilité ne est pas 

tout à fait clair, mais il dépend probablement de plusieurs autres facteurs 

génétiques ou environnementaux. Il semble donc raisonnable que 15	  

probablement pas tous les patients FXS sont également affectés par des 

changements de mGluR et l'activité de GABA ou des fonctions de 

connectivité. Certains patients développent une forte épilepsie, qui pourrait 

être causée par une excitation / inhibition déséquilibre et pourrait être corrigée 

en ciblant des récepteurs GABA. Selon les déficits neurologiques chez 20	  

chaque patient peut être traité pour la combinaison des problèmes les plus 

graves, il / elle rencontrera. Dans l'ensemble, plutôt que de supprimer 

médicaments prometteurs du marché parce qu'ils ne fournissent pas 

l'avantage dans un assez grand nombre de patients, il serait préférable de 

développer une médecine personnalisée pour les patients FXS. Voici le 25	  

câblage à grande échelle et la connectivité fonctionnelle ont l'avantage qu'ils 

peuvent être mesurés dans le patient et les prévisions pourraient être faites 

sur la manière bénéfique certains traitements pourraient être. 
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List of Abbreviations 

 
AAV Adeno-Associated Virus  

ADHD Attention Deficit Hyperactivity Disorder 

Am Amygdala  

ASD Autism Spectrum Disorder  

Au Auditory Cortex  

BOLD Blood Oxygen Level Dependent Signal 

CA1, CA3 Hippocampal regions: Cornus Ammonis 1 and 3 

CAV Canine Adeno-Virus 

CNS Central Nervous System  

CPu Caudate Putamen  

DH Dorsal Hippocampus 

DLG Dorsal Lateral Geniculate Nucleus  

DT-MRI; DTI Diffusion Tensor Magnetic Resonance Imaging  

DG  Hippocampal region: Dentate Gyrus 

EC Entorhinal Cortex 

EEG Electroencephalography 

FA Fractional Anisotropy 

FLN Fraction of Labeled Neurons  

Fmr1KO  Fmr1 Gene Knock out 

FMRP Fragile X Mental Retardation Protein  

FXS Fragile X Syndrome  

GABA  Gamma-Aminobutyric Acid 

GFAP  Glial Fibrillary Acidic Protein 

LGP Globus Pallidus  

GM Grey Matter  

L 1-6 Layers 1-6 of the cortex 

LGN Lateral Geniculate Nucleus  

LTD Long-Term Depression  

L Gene encoding the Polymerase of the Rabies Virus 

LV Lentivirus  

M Gene encoding the Matrixprotein of the Rabies Virus 
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MBP Myelin Basic Protein 

MD Mean Diffusivity  

mGluR5 Metabotrobic Glutamate Receptor 5 

Mo Motor Cortex 

MRI Magnetic Resonance Imaging 

NA  Numerical Aperture 

PF Parafascicular Nucleus  

PFA  Paraformaldehyde 

Pi Piriform Cortex  

PtA Pretectal Area 

RABV Rabies Virus 

ROI Region of Interest 

RS Retrosplenial Cortex  

rs-fMRI resting state functional MRI 

S1 Primary Somatosensory Cortex  

SAD Street Alabama Dufferin B19 strain of rabies virus  

SAD∆G Glycoprotein deleted variant of SAD 

SAD∆G-eGFP Glycoprotein deleted variant of SAD, expressing 

enhanced green fluorescent protein 

SAD∆G-eGFP (EnvA) Glycoprotein deleted variant of SAD, enveloped with a 

surface protein derived from the subgroup A avian 

sarcoma and leukosis virus 

SAD∆G-mCherry 

(VSVCtm) 

mCherry expressing Glycoprotein deleted variant of 

SAD, enveloped with a vesicular stomatits virus 

derived surface protein 

T Tesla 

UTR Untranslated Region 

V1 Primary Visual Cortex  

VH Ventral Hippocampus  

VPN Ventral Posterolateral Nucleus and Ventral 

Posteromedial Nucleus 

WM  White Matter 

WT Wild type 
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1. General Introduction 

 
The brain is the most complex organ in our body conversely it is the least 

understood. But what is it that makes our brain so complicated? 

The human brain contains a large number of cells − with an estimated of 1011 

neurons and 3x1012 glial cells − almost 10 times greater than the number of 

hepatocytes and similar to the number of dermal cells but in comparison only 1/10th of 

the number of erythrocytes that we have in our blood (Bianconi et al., 2013). We have 

a good understanding of how red blood cells or most organs of our body work. In 

contrast, neuroscience cannot, to date, give a clear answer to the question of how 

many cell types comprises the brain. For example it has been shown in the last years 

that glial cells are not a single group of cells but in fact arise from different origins 

and are classified at least into three broad groups: microglia, macroglia (like 

astrocytes) and others. These groups should probably be further subdivided (Cahoy et 

al., 2008), based on additional properties, such as gene expression patterns. On the 

other hand, neurons have a single common feature, they are all electrically excitable, 

but at the same time they are also highly diverse. The criteria for classifying neurons 

in subgroups are still highly debated but good candidates could be gene profiles, 

neurotransmitters expression or the pattern of their processes (Fishell and Heintz, 

2013). The cell types problem is tightly linked to a large diversity of cell connections 

and interactions happening in the brain. Both neurons and glial cells can possess 

numerous processes, which can either be extremely ramified and fine (Bushong et al., 

2002), e.g. astrocytes for removing neurotransmitters from the synaptic cleft, or in the 

case of neurons develop over several millimeters to connect one to another. The 

extreme complexity of the anatomical properties of brain cells is one of the main 

reasons why the brain is difficult to study. In addition, although not discussed further, 

the multitude of plasticity mechanisms that can also alter communication between 

neurons, without changing the anatomy. The anatomy however provides a frame of 

possibilities and limitations, showing us which brain areas and cells are directly 

interacting. 

Camillo Golgi (1844-1926) and Santiago Ramón y Cajal (1852–1906) were 

pioneers in the field of labeling and ‘reconstructing’ the neuron morphology and 

presented us the first impressive portraits of brain cells (Figure 1.1; (Sotelo, 2003)). 
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Both researchers worked with a silver-chrome staining method that Golgi had 

developed, leading to a black staining of random cells ('la reazione nera'; see Figure 
1.1) and permitting the visualization of neural networks (Golgi, 1873). Since these 

early days of neuroanatomy our knowledge of the neuronal wiring has increased 

drastically and numerous diagrams of isolated brain circuits within, or between brain 

areas have been developed (e.g. Figure 1.2).  

 

 
Figure 1.1 The organization of a follum of the cerebellar cortex.   

This drawing, made by Ramón y Cajal in 1894 for a conference at the Medical Sciences Academy of 

Catalonia, places all neural cells and afferent fibres in a three-dimensional perspective. In this 

parasagittal section, dots represent the parallel fibres. Figure from (Sotelo, 2003) 
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Figure 1.2 Simplified wiring diagram of the hippocampus  

The entorhinal cortex (EC) receives sensory information that is afterwards sent to the hippocampus 

trough several pathways. The EC projects directly to the dentate gyrus via the perforant path. Other 

layers of the EC project to the distal regions of CA1 cells. Granule cells of the DG region send their 

axons to the proximal regions of CA3 pyramidal cells. CA3 pyramidal cells form a densely 

interconnected, associative network. CA3 pyramidal cells also project to the proximal regions of CA1 

cells. Finally CA1 works as the main output region of the hippocampus, sending fibers to the deeper 

layers of EC. Further modulatory input to hippocampal neurons is received by fibers from other brain 

areas such as the septum. Figure modified from (Neves et al., 2008) 

 

Before we just storm out looking for a full description of all circuits in the 

brain, which we (unfortunately?) do not possess and also will not have in any time 

soon, it would be important to define what is it that we are looking for? For one, 

drawing maps of the neuronal network is a cartographic endeavor, describing in a way 

similar to what is being done with electrical circuits, a sequence of (electrical) units, 

arranged in series or parallel. Having circuit maps of the brain bears the advantage 

that we can compare them, find patterns, common schemes and/or alterations in 

disease. However, when looking at single cell resolution we will either have to reduce 

the maps to the important parts, otherwise it will become too complicated (see the 

simplified diagram of the hippocampus Figure 1.2), or even better annotate a factor 

of relevance to each link (see Figure 1.3). Such an annotation could reflect how 

commonly the connection occurs, how strong it typically is or even if it is functionally 
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relevant. Important features beyond the connection/non-connection of the circuit are 

which cell types are involved, and information about the synapse types and locations. 

Among the distinct brain areas in the human brain the one that sticks out as the 

most puzzling is the neocortex. This layered structure that has colonized around 85% 

in the human brain and is crucial for all our higher cognitive function. Structurally, it 

is tremendously intertwined in a complex fashion and many of its neurons seem to not 

respect their layer boundaries, with input and output from/to countless areas. In fact, 

regarding neuronal contacts in the neocortex, only a few general rules are applicable, 

which help us to understand the information flow through the cortex. Those common 

cortical denominators, called canonical circuits (Figure 1.3), have been discussed 

recently together with the course that has been taken for finding those paths of the 

neocortex (Douglas and Martin, 2007). 

 

 

 

 

Figure 1.3 Canonical neocortical circuits 

Quantitative map of anatomical connections 

between the major excitatory and inhibitory 

neuron types in area 17 of the cat, including the 

X-type and Y-type afferents to area 17 from the 

dorsal LGN. Each arrow is labeled with a number 

indicating the proportion of all the synapses that 

are formed between excitatory neurons. Figure 

from (Binzegger et al., 2004) 

 

The development of new methods for studying brain wiring has always been a 

substantial part of neurosciences, allowing us to address numerous different aspects of 

anatomical and functional connectivity (e.g. frequency, density or type of 

connection). Such methods are all indispensable to improve our understanding of the 

brain. In line with this notion, the first goal of my Ph.D. project was to implement and 

develop new techniques that would allow a new perspective on the brain wiring. Each 

of the methods has merits and drawbacks and in Chapter 2.1 both will be discussed 

for a cutting-edge technique that has been introduced in the last years, the mono-

trans-synaptic tracing, a method that allows the identification of the input of a defined 

set of neurons. 

we were able to estimate the spatial (in cortical depth) and
temporal dynamics of spike events and transmembrane
potentials over the important time window during which
cortex resolves perception. Of course, electrical pulse

stimuli are not the same as sensory stimuli, but they do
offer a probe of the fundamental dynamics of the cortical
circuitry. Using this systems identification approach we
were able to identify a minimal circuit capable of

Fig. 5 Top Left. Canonical microcircuit for the neocortex proposed in
1989 to explain the intracellular responses observed in cortical neurons
following electrical pulse activation of thalamic afferents. The circuit
components underlying these responses were dissected by ionophoretic
application of neurotransmitter agonists and antagonists. The circuit is
composed of three populations of neurons, which interact with one another:
one population is inhibitory (smooth cells, filled synapses), and two are
excitatory (open synapses), representing superficial (P2+3) and deep (P5+
6) layer pyramidal neurones. The layer 4 spiny stellate cells (4) are
incorporated with the superficial group of pyramidal cells. Some neurons
within each population receive excitatory input from the thalamus.
Continuous versus dashed lines indicate that thalamic drive to the
superficial group is stronger. The inhibitory inputs activate both GABAA
and GABAB receptors on pyramidal cells. The thick continuous line
connecting smooth cells to P5+6 indicate that the inhibitory input to the
deep pyramidal population is relatively greater than that to the superficial
population. However, the increased inhibition is due to enhanced GABAA
drive only. The GABAB inputs to P5+6 are similar to those applied to P2+

3. Top Right. Quantitative map of anatomical connections between the
major excitatory and inhibitory neuron types in area 17 of the cat, including
theX-type andY-type afferents to area 17 from the dorsal LGN. Each arrow
is labeled with a number indicating the proportion of all the synapses that
are formed between excitatory neurons (A), from excitatory onto inhibitory
neurons (B), from inhibitory onto excitatory neurons (C), and between
inhibitory neurons (D). For details see Binzegger et al. (2004). Bottom:
Connection matrix for cat area 17. Colour codes for the number of
synapses that all presynaptic neurons of a cell type (absciscae) form with
an individual postsynaptic neuron of a given cell type (ordinate). Color
bar is indicated to the right. Cell type abbreviations are as follows: ‘b2/3’,
‘b4’, ‘b5’ basket cells in layer 2/3, 4 and 5; ‘db2/3’ double bouquet cell in
layer 2/3; ‘p2/3’, ‘p4’, ‘p5’, ‘p6’ pyramidal cells in layer 2/3, 4, 5 and 6.
‘ss4’ spiny stellate cells in layer 4. Spiny stellate cells and pyramidal cells
in layer 5 and 6 were further distinguished by the preferred layer of the
axonal innervation (‘ss4(L4)’ (not shown), ‘ss4(L2/3)’, ‘p5(L2/3)’, ‘p5
(L5/6)’, ‘p6(L4)’ and ‘p6(L5/6)’)

Neuroinform
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Chapter 2.2. describes the development and application of a new viral vector 

which we developed during this PhD project to facilitate the tracing and 

reconstruction of morphological features of neurons. We demonstrate the capacity and 

potential of this anterograde variant of the recombinant glycoprotein-deleted rabies 

virus for sparse labeling and computational reconstruction of all key morphological 

features of neurons: dendrites, spines, long-ranging axons throughout the brain and 

bouton terminals (Haberl et al., 2014). 

In the last years new tools have been introduced and used to study the brain 

wiring in healthy brains and cognitive disorders and it has become evident that several 

brain diseases exhibit alterations in the neuronal wiring. Most prominent among those 

are neurodegenerative diseases (Greicius and Kimmel, 2012) but also schizophrenia 

(Uhlhaas, 2013) and developmental disorders like autism spectrum disorders (ASD) 

(Geschwind and Levitt, 2006). Fragile X Syndrome (FXS) is the most frequent 

genetic cause of ASD and most common inherited mental retardation, leading to 

learning and memory deficits, repetitive behavior, seizures and hypersensitivity to 

sensory stimuli (O'Donnell and Warren, 2002). ASDs and FXS are both thought to 

have a wiring component as a feature of their deficits (Geschwind and Levitt, 2006; 

He and Portera-Cailliau, 2013). As described in Chapter 2.3 we applied a 

combination of neuroanatomical tools to define the how the circuits are changed in 

FXS on the large- and small-scale. We used magnetic resonance imaging, to scan the 

entire brain and measure the anatomical and functional connectivity. This allowed us 

to identify connectivity alterations in several areas, which we further explored using 

viral tracers. Using retrograde rabies virus to visualize and quantify the number of 

neurons projecting to such an area we confirmed an altered input connectivity to the 

primary visual cortex, which could contribute to the altered visual information 

processing found in FXS. 
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1.1. Novel Tools for Studying Brain Wiring 

 
Brains are unique in the complexity with which individual cells are connected 

to one another. Untangling these interconnections is a tremendous challenge given 

that e.g. the human brain consists of ~85 billion neurons most of which form over 

1000 contacts with other neurons. Large efforts in neuroscience are devoted to 

delineate these connections for the purpose of creating maps of the brain structure, 

with the hope it will be helpful to understand the function of the brain. The 

extraordinary thing about the structure of neurons is their shape, usually having many 

extensions, which we know now serve as wires for the physical transmission of their 

communication signals. With this in mind we can also describe the questions about 

the neuronal anatomy differently - in terms of communication - and it becomes more 

evident why structure is an important feature. It contains the knowledge about where 

the neurons receive signals from and where they transmit to. The list of techniques 

used for these questions is long. Such techniques can reveal connections between 

brain-areas (Goñi et al., 2014) or even of between single-cell (Vélez-Fort et al., 2014), 

some methods are able to proof functional connections of defined cells (Debanne et 

al., 2008), others are able to provide quantitative measures of synaptic connectivity 

and synapse location (Binzegger et al., 2004). None of the techniques currently 

available is sufficient alone, to provide us a complete description of all connections 

and the connection strength in a complex brain, but most of the techniques can be 

used in a complementary fashion and will advance our knowledge when well 

combined. Neural circuits consist of local connections - where pre- and postsynaptic 

partners reside within the same brain area - and long-distance connections, which link 

different areas. Connectivity studies can therefore address short- and/or long-ranging 

connections. In this chapter I will introduce the concepts of two powerful techniques, 

which were used in this work: (i) the tracing of neuronal networks with viral vectors, 

which is invasive, but provides cellular resolution about the structure; and (ii) the 

non-invasive magnetic resonance imaging, limited to the macroscale, but which 

allows us to glean a structural and functional overview of connections of the whole 

brain. 

 



	  
21 

1.1.1 Viral Tracing Tools to Unravel Neuronal Circuits 
 

Due to several important features, viral vectors are widely used for studying 

the structure and function of neuronal circuits and more recently to achieve cellular 

precision. One major advantage of viral vectors is that they are ideal for expressing 

transgenes, allowing us to label circuits and monitor or manipulate the activity within 

these circuits (Osakada and Callaway, 2013). In transneuronal viruses, this feature is 

further combined with their ability to cross multisynaptic pathways and still achieve 

sufficient protein expression after several steps, making them ideal for the study of 

neuronal circuits (reviewed (Callaway, 2008)). 

A number of different viruses are commonly used to study neuronal circuits 

and for each question at hand the best vector should be identified beforehand. Those 

vectors differ in a number of properties the most important among those are ease of 

handling, ease of production, packaging size, diffusion in the tissue, cellular uptake 

point, cell tropism, expression levels, expression speed and cytotoxicity. 

Gold standards for the type of viral tracer that infects cells at the cell 

body/dendrite and fills their axonal projections anterogradely - which are called 

anterograde tracers (Figure 1.4 A) - are lentivirus (LV) and adeno-associated virus 

(AAV). LVs provide the advantages of a relatively strong and fast protein expression 

(e.g. fluorescence labeling) and large packaging size (Jakobsson and Lundberg, 

2006), whereas AAVs exhibit basically no cytotoxicity, can infect large brain areas 

and provide a different tropism, targeting preferentially inhibitory and excitatory cells 

(Nathanson et al., 2009) but suffering from a lower packaging capacity (Aschauer et 

al., 2013; Wu et al., 2010). AAVs can be thoroughly purified and concentrated to 

extremely high titers, further reducing side effects that are often introduced to the 

injected brain tissue by impurities coming from the production process (McClure et 

al., 2011).  

Anterograde tracers are commonly used to label the projections and thereby 

target regions of a particular brain area or to reconstruct features of neuronal 

morphology. Retrograde tracers, on the other hand, are mainly used to identify the, 

classify and study neurons projecting to a certain target area. Anterograde and 

retrograde tracers alone or together have been used over decades to identify brain 

pathways. Recently three different large-scale mapping projects injected such tracers 
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into hundreds of target areas in the mouse brain (Hunnicutt et al., 2014; Oh et al., 

2014; Zingg et al., 2014) providing us now with a large online repository about the 

neuronal circuits. 

Retrograde tracers get taken up by axon terminals of neuronal projections and 

label also the cell bodies of those projecting neurons (Figure 1.4 B). Commonly used 

retrograde tracers are chemical tracers like horseradish peroxidase, cholera-toxin 

subunit B, or fluoro-gold. Neurotropic viruses like rabies virus or pseudorabies virus 

(mainly the Bartha strain) are often used to trace multiple steps trans-synaptically as 

described below. In our hands the use of viral tracers in general has the advantage that 

it can provide an intense, complete labeling of the cells, which facilitates the 

subsequent counting and localization of projecting cells, which might not always be 

achieved by chemical tracers. Chemical retrograde tracers also do not reveal whether 

axons branching in the region of interest make synaptic contacts onto particular cells. 

Such information can be gathered using transsynaptic viruses, which label chains of 

synaptically connected neurons. They cross from one neuron to another and replicate 

at each step, therefore amplifying their signal, which chemical tracers will not do. 

Commonly used transneuronal tracers (reviewed in (Callaway, 2008)) are herpes 

viruses and different types of rabies strains (reviewed in (Kelly and Strick, 2000)). 

Recently, a genetically modified rabies virus variant has been engineered that allows 

monosynaptic trans-synaptic tracing in a retrograde manner, defining the presynaptic 

‘input map’ into neurons (Figure 1.4 C). 

 

 
Figure 1.4 Scheme of different tracer types. A) Anterograde tracers label cells and projections from 

the cell body. B) Retrograde tracer enter the cells at the axons and label those projecting cells. C) 

Mono-trans-synaptic retrograde tracer, label specifically the pre-synaptic connections of a defined 

subset of cells, thereby labeling the input of the starter cells. Modified from (Ginger et al., 2013) 

 

The next section provides a description/discussion of how a new recombinant 

glycoprotein-deleted variant of the SAD-strain of rabies virus has been created and 
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further how the new vector is now being widely used for two experimental settings (i) 

as retrograde tracer (not trans-synaptic) and (ii) as retrograde mono-trans-synaptic 

tracer for mapping the input of specific brain regions or neurons. 

 

1.1.2 Rabies Virus Based Mono-Trans Synaptic Input Mapping 
 

Unfortunately trans-neuronal viral tracers cross multiple synapses and it is 

suspected that they cross some (e.g. stronger) synapses faster than others making the 

distinction between first and higher-order connections close to impossible. Therefore, 

the development of a trans-synaptic tracer that is restricted to mono-synaptic 

connected cells was a ground-breaking development in the field of circuit 

neuroscience. The method is based on a pseudotyped rabies virus derived from the 

vaccine strain of rabies virus, Street Alabama Dufferin (SAD) B19. Rabies virus is a 

single-stranded enveloped RNA-virus and a member of the Rhabdoviridae family. 

The negative stranded RNA contains only five genes, encoding for the nucleoprotein 

(N), the phosphoprotein (P), the matrixprotein (M), the glycoprotein (G) and the 

polymerase (L). It was possible to reconstitute the SAD B19 strain from the 

individual cDNAs and an antisense genome construct. As a result the function of all 

gene products can be examined and modifications can be engineered in the virus 

genome (Conzelmann and Schnell, 1994). Furthermore, it permitted the introduction 

of foreign genes, rendering rabies virus useful as vector for transgene expression. The 

next important step was the development of a recombinant rabies virus strain, 

SAD∆G, in which the endogenous gene encoding the G protein was deleted 

(Mebatsion et al., 1999). This renders the virus incapable of crossing synapses 

(Etessami et al., 2000). The retrograde variant of this virus is generated by 

pseudotyping this recombinant virus with its own glycoprotein, thereby generating the 

single-step retrograde tracer SAD∆G -(SAD-G) (Wickersham et al., 2007a). 

To generate the mono-trans-synaptic tracer, the virus was instead pseudotyped 

with an envelope protein (EnvA) derived from the subgroup A avian sarcoma and 

leukosis virus -(ASLV-A) (Wickersham et al., 2007b). This pseudotyping makes the 

virus infectious exclusively to cells expressing the TVA viral receptor, a protein 

found in birds but not in mammals. The resulting pseudotyped virus is hereafter 

referred to as SAD∆G-eGFP(EnvA). Therefore, mammalian neurons can only be 
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infected by SADΔG-eGFP(EnvA) if they express the TVA receptor. In these infected 

neurons trans-complementation with rabies G protein is necessary to enable trans-

synaptic spreading. With its own glycoprotein rabies virus spreads in a retrograde 

manner and therefore labels the pre-synaptically connected cells by eGFP expression. 

This spreading is restricted to a single synaptic step, because the presynaptic cells do 

not express the rabies virus glycoprotein (RG). By tracing cells infected with this 

modified rabies virus, one can visualize neurons that are directly pre-synaptic to a 

given target neuron. This approach provides an interesting tool for tracing circuits for 

studying connectivity within the brain. Our review in Chapter 2.1 summarizes recent 

developments of the RABV based mono-trans-synaptic tracing technology showing 

the wide toolbox it opens to dissect neuronal circuit structure and function. We 

described further details about rhabdoviridae in general and their use as viral tracers 

in a recent book chapter, which is attached as Appendix, Manuscript N. 4 Use of 

Rhabdoviruses to Study Neural Circuitry. Melanie Ginger*, Guillaume Bony*, 

Matthias Haberl and Andreas Frick (Appearing in Biology and Pathogenesis of 

Rhabdo- and Filoviruses by World Scientific Publishing Co.). 

 

1.1.3 Using Magnetic Resonance Imaging to Study Brain Networks 
 

Magnetic resonance imaging (MRI) is a widely employed non-invasive 

technology for taking images of tissue using a strong magnetic field. MRI is being 

used for a range of different types of applications and can be used repeatedly on a 

patient since it does not involve a harmful procedure like the ionizing radiation used 

for X-ray computer tomography. While the underlying mechanisms of MRI are 

complex as their physical, biophysical mechanisms can just be correctly described 

using quantum mechanics, the overview here will cover mainly the practical aspects, 

which are required to understand and interpret the results.  

 

Diffusion Tensor Imaging 

Diffusion tensor MR imaging (DT-MRI) is an advanced non-invasive imaging 

technique to measure the large-scale structural connectivity of brains. DT-MRI is 

based on the diffusion of water in the brain tissue in multiple orientations. At every 

voxel the combination of several vectors, each corresponding to the diffusion in a 



	  
25 

different direction, is reconstructed into a diffusion ellipsoid. The directionality and 

anisotropy of the ellipsoid gives information about how structured the brain tissue is. 

Cellular membranes, axonal bundles and organelles, all restrict the diffusion of the 

water in the tissue. Therefore the shape and the size of the diffusion ellipsoid reflects 

whether and how cells and fibers have a preferential orientation. This technique is 

therefore frequently used to look at tissue that has a parallel orientation like the 

axonal bundles of the white matter (WM) and in some cases for grey matter (Basser et 

al., 1994). The diffusion tensor can be analyzed with respect to its mean diffusivity 

(MD) revealing how restricted the overall diffusion is due to cells in the tissue. The 

MD is calculated per voxel as the average of the vectors into three perpendicular 

directions. Another commonly used parameter is the diffusion anisotropy (or 

fractional anisotropy, FA), which reveals the directionality or in other words, how 

pointy (the maximal FA value is 1) or round the ellipse (the minimal FA value is 0) is 

shaped. The FA value of cerebro-spinal fluid is 0 since it can diffuse equally in all 

directions, whereas the values in parallel fiber bundles or the white matter (WM) are 

high. It is important to note that DT-MRI however deals inadequately with crossing 

fibers and therefore the FA is rarely used in the grey matter. For example, the FA 

value could approach 0 in a scenario where three fibers cross perpendicular to each 

other in one voxel, since now the ellipsoid would have no preferred orientation. 

Images of single slices are usually acquired in 100 ms or less to eliminate the chance 

of a head motion, since even a tiny shift can lead to significant artifacts in the 

acquisition and reconstructed image (Alexander et al., 2007). 

DT-MRI has often been used in to study the structural integrity in cognitive 

diseases, e.g. for Alzheimer’s Disease where a reduced FA in the WM and an 

increased MD in the grey matter was found. This data has to be interpreted carefully, 

but usually additional methods can help to define the origin of changes in DT-MRI 

values. In Alzheimer’s Disease patients it was found that the altered FA and MD 

values correspond to a degradation of myelin and axons in the WM and a neuronal 

loss in the grey matter, respectively (Clerx et al., 2012). 

 

Resting-state functional MRI 

Activity in a brain region causes a locally and temporary increased blood flow (Roy 

and Sherrington, 1890). A change in the blood flow causes a shift in the blood 
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oxygenation level or in the ratio of oxyhemoglobin and deoxyhemoglobin. Since 

oxygenated and deoxygenated blood are different in their magnetic susceptibility this 

change can be detected with an MRI scanner as a signal variation. This Blood Oxygen 

Level Dependent Signal (BOLD) is measured for the use of functional Magnetic 

Resonance Imaging (fMRI). Since brain areas are active even in the absence of 

external stimuli, fluctuation in the BOLD signal can be measured during resting state 

(rs-fMRI). Rs-fMRI provides indications about the functional connectivity of 

different brain areas by correlating their activity states over repeated measurements. A 

commonly used method for analyzing the signals is based on seed-points or regions of 

interest (ROIs). In this analysis, the signal of defined ROIs is used to calculate their 

correlation to the signal at other ROIs in the brain. The correlation coefficient is used 

to infer whether, and how strong, the respective ROIs are functionally connected. 

Among the non-invasive techniques for measuring brain connectivity rs-fMRI 

provides a high spatial resolution (typically 500µm - 1 mm) over the entire brain, 

even though only a limited temporal resolution (few seconds). Although, rs-fMRI 

cannot prove whether the brain areas are directly connected, it can demonstrate 

interactions. An extensive review about the merits and drawbacks of fMRI can be 

found in Logothetis (2008) (Logothetis, 2008). To address shortcomings of this 

technique it is often complemented with other techniques, for example 

electroencephalography (EEG), which provides a high temporal resolution (less than a 

ms) but lacks the spatial resolution, or with methods that can provide conclusive 

evidence for a structural connection. 
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1.2 Fragile X Syndrome and Brain Wiring Defects 
 

Fragile X Syndrome (FXS) is the most common form of inherited mental 

retardation passed along by the X-Chromosome affecting approximately 1/4000 males 

and 1/8000 females (Bassell and Warren, 2008; Garber et al., 2008). FXS is caused by 

a mutation silencing a single gene, Fmr1, encoding the Fragile X mental retardation 

protein (FMRP). FMRP is a regulatory protein controlling the expression and function 

of a large number of other proteins, which causes the myriad of effects found in its 

absence in FXS. In order to understand how the cellular defects lead to the 

behavioural symptoms that patients with FXS develop we also need a better 

understanding about changes on the intermediate level, the neuronal networks. 

 

1.2.1 Cause of the Fragile X Syndrome 
The primary cause of FXS is the absence of the gene product of the Fmr1 

gene, the Fragile X mental retardation protein (FMRP) (Pieretti et al., 1991). The 

cause of the silencing of the Fmr1 gene is an excessive expansion of the CGG 

trinucleotide repeat in the 5’ untranslated region (UTR) of the gene (O'Donnell and 

Warren, 2002). The number of CGG repeats is normally ~6-54, 55-200 in premutation 

carriers and >200 in FXS patients (Willemsen et al., 2011). In the case that more than 

200 CGG repeats are accumulated, the CpG island in the 5’-untranslated region 

(UTR) becomes hypermethylated, which causes a suppressed transcription and 

therefore a lack of the FMRP protein (Sutcliffe et al., 1992). Trinoclueotide repeats 

can expand from one to the next generation and cause that the offspring of a 

premutation carrier develops FXS (Loesch and Hagerman, 2012; O'Donnell and 

Warren, 2002). A recent study estimated that 1/151 females (or ~1 million women in 

the United States) and 1/468 males, (or ~320,000 men in the United States) are carrier 

of a FXS premutation (Seltzer et al., 2012). 

 

1.2.2 Fragile X Phenotype 
The most striking deficit observed in FXS patients is a mild to severe mental 

retardation. Their intelligence quotient (IQ) is typically in the range of 40-70 

(Merenstein et al., 1996). In addition, FXS patients usually suffer from a number of 

neurological and behavioral alterations. The most frequent symptom, found in almost 
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all male and around 30% of the female patients, is a pronounced attention deficit 

hyperactivity disorder (ADHD)(McLennan et al., 2011). Another common feature is 

hypersensitivity to sensory stimuli, in particularly of tactile, auditory and visual 

modalities (Hagerman and Hagerman, 2002; Miller et al., 1999). Indeed, 

hypersensitivity to visual stimuli and visual avoidance is present in more than 90% of 

male patients (Merenstein et al., 1996). FXS patients often exhibit autistic features, 

with autism occurring in ~30% of the males with FXS and autism spectrum disorder 

(ASD) in an additional ~30% of males that did not meet the criteria for autism. In fact 

social anxiety is one of the most common problems of FXS patients (Harris et al., 

2008; Kaufmann et al., 2004). Many patients also suffer from epilepsy, more 

specifically ~15% of FXS patients experience seizures (Berry-Kravis, 2002; Berry-

Kravis et al., 2010) and ~70% of FXS patients have irregular EEGs spiking patterns 

(Berry-Kravis, 2002; Sabaratnam et al., 2001). Difficulties with their vision are also 

common in FXS patients (in ~25%), often caused by strabismus and refractive errors 

(Hatton et al., 1998).	  Besides these pronounced neurological, cognitive and sensory 

problems, FXS often also leads to visible alterations in the peripheral tissues causing 

prolonged faces, macroorchidism, and hyperextensible joints (Hagerman and 

Hagerman, 2002). 

 

1.2.3 Fragile X Mental Retardation Protein (FMRP) Function  
FMRP occurs in a number of different tissues but it is foremost expressed in 

neurons of the central nervous system (CNS) and in testes. FMRP operates as RNA-

binding protein (Darnell et al., 2001; Siomi et al., 1994). It targets a large variety of 

mRNA molecules, with up to as many as 800 mRNAs as binding partners (Brown et 

al., 2001). This equals ~ 4% percent of all mRNA transcripts that occur in the 

mammalian brain (Bassell and Warren, 2008). A recent study identified that hundreds 

of targets of FMRP are mRNAs encoding part of the pre- and postsynaptic proteome 

(Figure 1.5; (Darnell et al., 2011)). This large number of interactions explains why a 

single-gene deficit leads to such a complex sequence of events and makes it difficult 

to assess the full extent of the consequences of this cognitive disorder. It could further 

explain why FXS is one of the few single gene mental retardation disorders, since the 

loss FMRP might affect so many other genes that compensatory mechanisms are 

insufficient to avoid strong cognitive defects. FMRP has a number of RNA binding 
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motifs (Darnell et al., 2001; Siomi et al., 1994) (metadata recently reviewed in (Suhl 

et al., 2014)) through which it mainly represses the translation of mRNAs (Li et al., 

2001) and only in the case of a few proteins increased translation levels where found 

in the absence of FMRP (Zalfa et al., 2003). It is thought that phosphorylated FMRP 

suppresses translation of target mRNAs and conversely dephosphorylated FMRP 

enhances translation (Ceman et al., 2003). It has further been shown that FMRP can 

also reversibly stall polyribosomes, hindering the translation of the associated 

mRNAs (Darnell et al., 2011). 

In addition to its strong effects on the translational level, FMRP is also 

thought to have a role in the transport of mRNAs to the synapse. For example, it was 

shown that blocking the FMRP mediated transport to the synapse lead to altered spine 

morphology, resembling the changes found in the absence of FMRP (Dictenberg et 

al., 2008). 

 

 

Figure 1.5 Comparison of FMRP target 

mRNAs with the curated dataset of mouse 

brain synaptic proteins (from the Genes to 

Cognition database, G2Cdb). 

This identified a strong overlap with the 

postsynaptic proteome (>30% of FMRP targets) 

and also, to a lesser extend, with the presynaptic 

proteom (13% of FMRP targets) 

Adapted from (Darnell et al., 2011) 

 

 

1.2.4 Fragile X Mouse Model 
 A number of different approaches have been taken to get a better understanding 

of FXS and the role of FMRP in health and disease. The help of different genetically 

modified organisms, most importantly Drosophila (Zhang et al., 2001) and knock-out 

mice (1994) have brought a wealth of findings that are important for human patients. 

In fact much of what we know today about the function of FMRP in vivo was 

originally discovered in studies using those two animal models. 

Fmr1, which is the homologue gene in the mouse of the human FMR1 is 97% 

identical to the human gene at the amino acid level and to 95% identical at the 
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nucleotide level in the coding region (Ashley et al., 1993). Also the expression 

patterns of FMR1 and Fmr1 are similar in human and mouse tissues (Verheij et al., 

1995). The first Fmr1 knockout (Fmr1KO) mouse was generated by introducing a 

neomycin gene into exon 5 of the murine Fmr1 gene through homologous 

recombination in embryonic stem cells (1994). Many parallels to human FXS patients 

have been found in the Fmr1KO mouse model with biochemical and behavioral tests 

(Bakker and Oostra, 2003; Kooy, 2003). For example, Fmr1KO mice also suffer from 

cognitive impairments, even though they are less severe than those described in FXS 

patients (D'Hooge et al., 1997; Dobkin et al., 2000; Kooy et al., 1996; Van Dam et al., 

2000; 1994). The knockout mice also display macroorchidism (1994), which is 

common in male FXS patients and various other important aspects of the disease, 

including sensory hypersensitivity and thin, immature dendritic spines. Craniofacial 

abnormalities have been reported in zebrafish (Tucker et al., 2006) they were not 

found in an MRI study of Fmr1KO mice (Ellegood et al., 2010). Although Fmr1 KO 

mice do not express FMRP, the Fmr1 promoter in those mice is intact and residual 

Fmr1 transcription was found in these mice. To resolve the uncertainty whether the 

residual transcript functions in some way the Fmr1 KO2 mouse line, a complete null 

knockout mouse, has been created by excision of the Fmr1 promoter and first exon 

(Mientjes et al., 2006). These animal models have become vital not only for studying 

the cellular basis of deficits in FXS but also for testing promising drugs that can 

rescue individual or several of the cellular, behavioral or cognitive deficits. 

 

1.2.5 Mechanisms of Fragile X Syndrome 
Concurrent Theories 

The currently dominant mechanistic hypothesis about FXS is known as 

‘mGluR theory’ (Bear, 2005; Bear et al., 2004) (reviewed in (Bhakar et al., 2012)). 

This theory proposes (a) that the core symptoms in FXS are caused by an over-

activation of the metabotrobic glutamate receptor 5 (mGluR5) because (b) the 

principal role of FMRP for the synaptic function is to control the mGluR-dependent 

forms of long-term plasticity. A number of indications support this theory: (i) FMRP 

is increasingly synthesized in response to mGluR activation (Weiler et al., 1997) (ii) 

mGluR-dependent long-term depression (LTD) is elevated in Fmr1KO mice in the 

hippocampus and cerebellum (Hou et al., 2006; Huber et al., 2002; Koekkoek et al., 
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2005) (iii) mGluR5 blockers, like MPEP showed correction of several symptoms in 

the KO mouse model (reviewed in (Berry-Kravis et al., 2011; D'Hulst and Kooy, 

2009)) and even reversal of already established FXS phenotypes (Michalon et al., 

2012). 

Today the theory is widely accepted, but despite all hopes the drug tests in 

humans showed much less effect than expected and the disease might be more 

complex than initially thought. Novartis stopped in April 2014 the drug trials done 

with the mGluR5 antagonist mavoglurant (AFQ056) as a consequence of negative 

results in the large international clinical trial in adult FXS patients 

(http://www.fraxa.org/novartis-discontinues-development-mavoglurant-afq056-

fragile-x-syndrome/). Drug trials of two large pharmaceutical companies are ongoing 

with GRN-529 (Pfizer) and RG7090 (Roche), which both also target mGluR5 

receptors. 

Besides the mGluR theory a second prominent theory has been developed to 

describe the disease status in Fragile X, the ‘GABA theory of Fragile X Syndrome’. 

GABA is the principal inhibitory neurotransmitter in adults. The GABA theory is 

based on the observation that expression levels of GABA receptor type A is reduced 

(D'Hulst et al., 2006) in animal models of FXS and a decreased GABAergic inhibition 

was found in the hippocampus (Curia et al., 2009) and amygdala (Olmos-Serrano et 

al., 2010). An impaired inhibition could contribute to epilepsy and other symptoms of 

Fragile X. To this end several groups proposed rescue approaches targeting GABA 

receptors to restore the excitation/inhibition balance with the hope to cure the ADHD 

and hyperexcitability phenotypes (Braat and Kooy, 2014; Heulens et al., 2010; 2012). 

Again transforming the results from animal research into a successful human 

application have been difficult. Seaside Therapeutics announced in May 2013 the end 

of any clinical trials with their GABA-B agonist Arbaclofen (STX209) for FXS 

patients, although positive results were reported in a number of patients. 

 

 Apart from those two prominent receptor alterations in the absence of Fmr1 an 

increasing number of differences have been found with potential implications for the 

cellular and network function and which might contribute to certain behavioral 

phenotypes. Several groups reported a circuit hyperexcitability, or extended upstates 

in the activity of networks (Gibson et al., 2008; Gonçalves et al., 2013). Most likely 
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there are several factors that contribute to this hyperexcitability, ranging from 

receptor and cellular mechanisms to changes in the network. 

 On the cellular level, besides the mGluR5 and GABA receptors, also a number 

of other alterations have been described that may contribute to the phenotype of the 

disease. Cellular excitability was shown to be altered and a broadening of action 

potentials was found (Deng et al., 2013). In the hippocampal CA3-CA1 synapse a 

recent study found an elevated release probability during repetitive activity (Wang et 

al., 2014). Synaptic plasticity was shown to be altered in a number of studies using 

different stimulating protocols, animal ages, brain areas. A reduced long-term 

potentiation was found in the anterior somatosensory cortex (at 8-10 weeks) (Li et al., 

2002) in the primary olfactory cortex (only from 6 months on) (Larson et al., 2005), 

in the anterior cingulated cortex and the lateral amygdala (at 6-8weeks) (Zhao et al., 

2005), the visual cortex layer (L)5 (Wilson and Cox, 2007), and the temporal cortex 

(2-3 months) (Hayashi et al., 2007). Apart from the deficits on the synaptic and 

cellular level it is also important to understand whether the circuitry is intact or 

altered in FXS to get a better understanding about the cause of the cognitive defects in 

FXS. 

 

1.2.6 Neuroanatomy in Fragile X Syndrome 
Defective brain wiring can have devastating neurological and psychiatric 

consequences and those defects are suspected to underlie several brain disorders 

including autism (Geschwind and Levitt, 2006; Müller et al., 2011). FXS is the 

leading single gene mutation causing ASD and several ASDs have already been 

associated with structural changes in the synaptic contacts and connectivity alterations 

(reviewed in (Peça and Feng, 2012)). Yet, the data about circuit alterations in FXS is 

sparse when we compare it to the numerous studies addressing basic functions of 

FMRP (recently reviewed in (Darnell and Klann, 2013)). However, among the list of 

putative targets of FMRP there are a number of mRNAs known to regulate 

cytoskeletal structure (reviewed in (Bagni and Greenough, 2005)). Moreover, several 

studies already suggested that changes occur in the circuitry of FXS patients and 

animal models, which will be summarized in the subsequent sections. 

Studies addressing the wiring of the brain in FXS have been conducted mainly 

on two levels, first top-down approaches - mostly implicating human patients - that 
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looked at large scale structural (reviewed in (Lightbody and Reiss, 2009)) and 

functional network connectivity (Hall et al., 2013; van der Molen et al., 2014), and 

second using bottom-up approaches that examined local networks or single cells in 

the different animal models (Patel et al., 2014). 

To date we have not found studies combining those different approaches or 

providing the link of small- to large-scale network alterations in FXS. Even though it 

would be of major importance to improve our understanding of this complex 

syndrome given that sensory information is processed on different scales in parallel. 

Each individual brain area may act as a computational unit with a very defined 

function, but the real functionality required to process sensory information will only 

emerge, by arranging these individual processing units in the very specific manner our 

brains do. Therefore the wiring on the small scale is inseparably linked to the wiring 

on the large scale, both are equally relevant and just in conjunction they allow that the 

sensory information is faithfully processed in the brain network. Affected networks 

could be involved in visual, auditory, somatosensory sensation and motor control or 

more elusive functions as perception, learning and memory or motivation. Therefore 

in any neurologic disorder it is possible that altered networks may play a role either 

being the cause or consequence and depending on the type and number of networks 

affected this may be reflected in specific or global deficits. While it will become very 

difficult to untangle if network changes are the cause or a consequence it would be a 

good first step to identify which networks are mainly affected. Studies of behavior 

and performance are an excellent starting point to identify the candidate brain 

areas/pathways that should be further inspected. Also large-scale studies, performed 

on the whole brain, may provide good indications. Fragile X Syndrome is an 

intellectual disability and the range of neurological changes and behavioral effects in 

human patients and mouse models is wide, as described above. In the subsequent 

paragraphs large- and fine-scale studies of brain network alterations in Fragile X 

Syndrome in humans and model organisms will be discussed in more detail. Since 

those studies did not establish direct links between findings in the large and fine scale 

networks they will be treated in separate sections. 
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1.2.6.1 Large-Scale Neuroanatomy in Fragile X Syndrome  
From studies in human FXS patients we know about a number of changes in 

the size of several brain structures (caudate nucleus, hippocampus, superior temporal 

gyrus, cerebellar vermis, amygdala). Furthermore, also changes in the activation of 

certain brain areas where found (insula, the caudate, hippocampus) when individuals 

with FXS perform cognitive tasks e.g. involving eye gaze processing (reviewed in 

(Lightbody and Reiss, 2009)). 

Initial neuroanatomical studies in FXS patients focused on gross-scale volume 

measurements of the brain structures. The first brain abnormality found in human 

FXS patients was a reduced size of the cerebellar vermis (the structure that connects 

the right and left hemisphere of the cerebellum) by using magnetic resonance imaging 

(MRI) (Reiss et al., 1988). The same deficit was confirmed in later studies, looking 

during development and adulthood to the cerebellar vermis (Hoeft et al., 2008). It is 

thought that this bears relevance for the behavioural deficits in FXS patients since the 

cerebellum is important for visual-spatial processing, learning, executive function and 

language (Stoodley and Schmahmann, 2009) and the vermis is linked to the amygdala 

and hippocampus (Hessl et al., 2004). In fact it was possible to use the posterior 

vermis size to predict the visual-spatial performance and executive function in FXS 

patients (Gothelf et al., 2007). 

The second unusual change that is consistently found in FXS patients is an 

enlarged caudate nucleus (Hallahan et al., 2011). The caudate nucleus is part of (the 

striatum and) the basal ganglia, a system which is responsible not only for voluntary 

movement but also several other non-motor functions like learning, memory, sleep, 

and social behavior and plays a major role in planning (Grahn et al., 2008). Several 

studies found an inverse correlation between the IQ and the caudate size in FXS 

patients (Gothelf et al., 2007; Reiss et al., 1995) but the link remains to be understood. 

A few studies also noticed a reduced volume of the amygdala in FXS patients 

at young and adolescent age (Gothelf et al., 2007; Hazlett et al., 2009; Kates et al., 

1997). The amygdala is major player in emotions and has therefore it also been 

carefully examined on the cellular level, which also found alterations in FXS models 

(Zhao et al., 2005). It is thought that changes in the amygdala and insula are related to 

the anxiety and emotional troubles found in FXS patients. It is unclear what the 

reasons are for regional changes of brain volume in FXS but it has been suggested 
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that it could be linked to changes in the synaptic pruning and dendritic maturation 

during development with deficient or absent FMRP (Lightbody and Reiss, 2009). 

 

The brain areas are not only affected individually but also the connections 

between them are changed in FXS. Changes were found in the white matter of FXS 

patients by using DT-MRI. A loss of axonal order or structure was found in fronto-

striatal pathways and in parietal sensory-motor tracts indicated by lower Fractional 

Anisotropy (FA) values in the DT-MRI (Goraly et al., 2003; Haas et al., 2009). In a 

later study Hall, et al., (2013) looked at large-scale resting-state networks in children 

and adolescent (aged 10-23 years) FXS patients and identified region-specific 

alterations in brain structures (Hall et al., 2013). The FXS patients showed a 

widespread reduction in their functional connectivity across multiple cognitive and 

affective brain networks. Five large-scale networks were identified that were 

significantly decreased in their functional connectivity: the salience, precuneus, left 

executive control, language, and visuospatial networks. The salience network is 

thought to play a role in recruiting brain regions for sensory information processing; 

the precuneus is involved in self-referential processing, imagery, and memory and is 

suggested to be a core node or hub of the default mode network. Both, structural and 

functional abnormalities were found in the left insular cortex. The insula has also 

been implicated in autism spectrum disorders and is thought to be important for a 

variety of functions, including interoceptive awareness and emotions. The authors 

further suggested that their method of combining structural and functional in this 

study could also be used to establish an imaging biomarker for FXS (Hall et al., 

2013). 

A recent study used resting-state EEG to characterize functional brain 

connectivity and brain network organization in male FXS patients and healthy 

controls.	  A decrease in global functional connectivity was found for upper alpha (8-15 

Hz) and beta frequency bands (16-31 Hz). For theta oscillations (4-7 Hz), the authors 

saw an increased connectivity in long-range (fronto-posterior) and short-range 

(frontal-frontal and posterior-posterior) clusters (van der Molen et al., 2014). 

 

Over the last years the resolution of MRI studies has been constantly 

improving and it became therefore possible to also use this technique to study the KO 
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mouse model. While earlier studies did not see large differences (Kooy et al., 1999) a 

more recent study using a 7.0 Tesla MRI scanner in developing mice (postnatal age 

P30) found that cerebellum and striatum both decreased in size. Significant volume 

decreases were also discovered in two regions in two deep cerebellar nuclei (nucleus 

interpositus and the fastigial nucleus). The authors saw a decrease in NeuN positive 

signal (and conversely a increase in GFAP positive cells) and concluded that the 

decreased size is due to a loss of neurons in the deep cerebellar nuclei. Here DT-MRI 

measurements did not reveal any significant changes in the white matter structures of 

the Fmr1KO mice compared to the WT mice (Ellegood et al., 2010). 

 

1.2.6.2 Fine-Scale Neuroanatomy in Fragile X Syndrome 
When considering the structural deficits on the fine scale the literature can be 

grouped in the (i) cellular defects, mainly addressing the dendritic spine morphology 

and density and (ii) short range networks within the immediate proximity. 

 

Neuronal Structure in Fragile X Syndrome  

 An altered spine phenotype – with increased density and a shift towards long, 

thin immature appearing spines - is often proclaimed as a major hallmark in FXS and 

in fact it is probably the most commonly described structural change, which has been 

described in both human patients (Hinton et al., 1991) and animal models (reviewed 

in (Bagni and Greenough, 2005; He and Portera-Cailliau, 2013)). Over time however 

the picture has become increasingly complex and the initially thought striking 

phenotype is not found in all brain areas and actually, for unclear reasons, several 

studies could not confirm the previous findings. Figure 1.6 summarizes the 

complicating findings concerning the spine phenotype in mouse models of FXS. The 

prevalent opinion today is that Fmr1KO mice have an increased number of spines due 

to defects in dendritic pruning (Galvez et al., 2003; Pfeiffer and Huber, 2007) but 

several studies reported the deficits occur just transiently (Nimchinsky et al., 2001). 

Even though we know now that the spine phenotype is more complex than initially 

thought (e.g. see (Wijetunge et al., 2014)) it has been and still is often being used as a 

parameter to evaluate for example the efficacy of a rescue approach (Dolan et al., 

2013; Henderson et al., 2012) and it is speculated to provide a possible link between 

several causes of ASDs (Tang et al., 2014). 
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Figure 1.6 The spine phenotype in the Fragile X knock-out mouse model 

Regional distributions of reported spine defects in the brain of Fmr1 KO mice. Data on dendritic 

spines in Fmr1 KO mice are displayed on a sagittal view of the mouse brain. Data from the adult 

brain, developing brain (P20), and in vitro results from dissociated neurons in culture 

(hippocampus only) are shown in the top, middle and bottom rows, respectively. Colored stripes 

indicate the existence of published studies reporting different results on either spine density or 

maturity. The relative thickness of the colored stripes reflects approximately the relative number 

of studies supporting one finding or another. Studies that used imaging in living neurons (in vivo 

or in acute/organotypic brain slices) are indicated by arrowheads next to the stripes. Note that 

results of studies are much more consistent for the spine immaturity phenotype than for the spine 

density phenotype. Abbreviations used in the figures: BF: barrel field; OB: olfactory bulb; S1: 

somatosensory cortex; V1: visual cortex.  Figure adapted from (He and Portera-Cailliau, 2013). 

 

 Curiously much less is known about the counterpart of the spines, the 

presynaptic boutons in FXS. This is remarkable given that a study using a mosaic 

model of Fmr1 KO mouse, found a reduced connectivity in the CA3-CA3 network, 

which was independent of the FMRP in the postsynaptic cell, but instead determined 

by the pre- or absence of FMRP in the presynaptic cell (Hanson and Madison, 2007). 
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A later study, also using the mosaic model, showed that FMRP in the presynaptic cell 

was responsible for the loss of connection strength onto inhibitory neurons (Patel et 

al., 2013). Even though the pre-dominant opinion is that FMRP acts mostly on the 

postsynapse by regulating translation and pruning of spines there are indications that 

FMRP plays a role in the initial axonal guidance. FMRP expression has been 

observed in axons and axon growth cones (Antar et al., 2006), and growth cones from 

developing neurons of Fmr1KO mice exhibit a hyper-abundance of filopodia and a 

reduction in dynamicity in hippocampal cultures (Antar et al., 2006). In the zebrafish, 

a knockdown of Fmr1 was associated with abnormal axon branching (Tucker et al., 

2006); although it was later contested as an artifact by using a newly generated 

zebrafish null knock-out (Broeder et al., 2009). In drosophila, FMRP is required for 

efficient activity-dependent pruning of axon branches in the Mushroom Body (Tessier 

and Broadie, 2008). Immunoelectron microscopy revealed FMRP in axons and 

presynaptic terminals (Akins et al., 2012; Christie et al., 2009). In the analysis of 

mRNA translational profiles of Fmr1KO mice a large number of different presynaptic 

FMRP targets appeared were revealed (Brown et al., 2001; Darnell and Richter, 2012) 

and proteomic studies found that the levels of various presynaptic proteins was 

affected due to the loss of FMRP (Klemmer et al., 2011; Liao et al., 2008). In the 

drosophila a neuronal overexpression of the Fmr1 homologue, dfxr, resulted in fewer 

and larger synaptic boutons, while knocking the gene out caused enlarged synaptic 

terminals, which was mediated through a regulatory role in the microtubule-

dependent growth of synapses (Zhang et al., 2001). 
 

Small-Scale Networks in Fragile X Syndrome 
 Our knowledge about the short-range connectivity in FXS is limited, derived 

from individual studies and restricted to a few brain areas at a defined age or during a 

narrow time window. Most of those studies examined the connectivity in the 

neocortex of Fmr1 KO mice. 

 Gibson et al. examined the within-layer excitation in L4 of the somatosensory 

cortex in Fmr1 KO mice and found that it is extensively reduced (~50%) to fast 

spiking (FS) inhibitory neurons and to a lesser extend also decreased to excitatory 

spiny stellate neurons as well as the between neighboring excitatory neurons (Gibson 

et al., 2008). This loss of connection to FS neurons was later attributed to the lack of 
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FMRP in the presynaptic neuron, resulting in a reduced neurotransmitter release 

(Patel et al., 2013). Bureau et al. also found a reduction in intralayer connectivity 

within the same barrel column in the Fmr1KO mice. Photostimulation of L4 neurons 

lead to a less intense response in L3 neurons but when examining the strength of 

individual connections from L4 to L3 the authors found them to be unaltered. This 

suggests that a reduced number of connections is the reason for the changes seen in 

the Fmr1 KO. Interestingly, filling of individual L4 cells and axon reconstruction 

showed similar axonal arborization in L2/3, speaking against a problem in axon 

growth. Furthermore the authors noted that the connectivity, which they found altered 

at 2 weeks of age was normal again at 4 weeks of age (Bureau et al., 2008). Opposed 

to the decrease in local connectivity in the previous studies, Teste-Silva et al. found 

an increased mid-range connectivity in Fmr1 KO mice. Here L5 pyramidal cells in 

the medial prefrontal cortex were examined in 25 – 100 µm distance and an increased 

connectivity was found in between them in Fmr1KO mice (Testa-Silva et al., 2012). 

Interestingly the connectivity changes found in all of those studies were only transient 

and disappeared at a later point during development even though the synaptic strength 

changes remained (Bureau et al., 2008; Gibson et al., 2008; Testa-Silva et al., 2012). 

A more recent study looking at the interconnectivity of L5A pyramidal cells, 

specifically the intratelencephalic type, using paired recordings surprisingly found a 

different effect due to an impairement in synaptic pruning. The L5A-L5A 

connectivity decreased between the third and fifth postnatal weeks in WT animals, 

which indicates a period of connection pruning, while it did not decrease in the 

Fmr1KO mice, leaving these neurons in a hyperconnected state at postnatal day P30. 

The use of the mosaic mouse model showed that the pruning was dependent on the 

postsynaptic neuron (Patel et al., 2014). 

 Besides the neocortex it has also been inferred that the wiring in the amygdala is 

affected in Fmr1 KO mice. Recordings from principle neurons in the basolateral 

amygdala (BLA) showed a decreased number of spontaneous and miniature inhibitory 

postsynaptic currents (sIPSCs and mIPSCs), which is likely the result of a reduced 

input from surrounding inhibitory neurons (Olmos-Serrano et al., 2010). 

 Taken together these data suggest that FMRP plays a role in the formation or 

maintenance of connections in cortical and subcortical areas, which could be 

exhibited by the axon guidance or the spine pruning, but most likely it has an 
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important role regulating both. 

 

Network States 

The wiring and the excitation/inhibition balance as well as the synaptic strength and 

intrinsic properties of neurons, all contribute to the response a network exhibits to a 

given stimulus. Since so many of these parameters were found to be altered it is not 

surprising that also the response and the dynamics of the network are changed in FXS. 

And a number of studies (Gibson et al., 2008; Gonçalves et al., 2013; Hays et al., 

2011; Ronesi et al., 2012) found a hyperexcitable cortical network in the Fmr1KO 

mice that reacted with a prolonged activated state upon stimulation, which could 

explain the epileptic features often found in FXS . 
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1.3 Aims of this Study 
The aim of this work was to study the anatomical and functional connectivity 

of neuronal networks and develop novel tools for this purpose. At the beginning of 

this study rabies virus was available as a retrograde polysynaptic, as a retrograde 

mono-transsynaptic and as a single-cycle retrograde vector. For several research 

questions it would be beneficial, to use the same viral vector to infect neurons at the 

injection site - and hence mark those neurons and their projections anterogradely - 

together with one of the retrograde variants to label the input. We therefore first set 

out to develop an anterograde variant of the rabies virus, which would allow us to also 

study the morphological features of the cells in the injection site together with the 

input after a single stereotactic injection. 

We applied this technique in combination with other approaches to probe 

neuronal connectivity defects in Fragile X Syndrome (FXS). One of the 

morphological hallmarks of FXS is an alteration in the shape/number of spines, the 

major sites for synaptic input. In addition, FMRP regulates the RNAs of molecules 

that regulate the anatomical connectivity (cytoskeleton, axon and dendrite branching, 

spines) within cortical circuits. In fact an altered anatomical and functional 

connectivity has been proposed to play a role in both FXS and ASDs (Geschwind and 

Levitt, 2007), yet our understanding of the nature of these defects is limited due to the 

complex nature of these syndromes.  

Profound knowledge of deficits in the neuronal circuits will be necessary to 

bridge the gap, between alterations on the molecular level/local circuitry, and the 

global changes in behavior and cognition. Correct wiring is critical for maintaining 

normal brain function and for the processing of sensory information. In particular, the 

long-range connections between different brain areas are crucial for a successful 

sequential processing and transmission of sensory information from lower to higher 

hierarchical areas. Since hypersensitivity to visual, auditory, tactile, and olfactory 

stimulation is a prominent feature of human FXS patients and Fmr1KO mice, we 

were interested in studying connectivity changes both to- and in between- the 

neocortical sensory areas. We hypothesized that long-range connections between 

brain areas might be altered in FXS given the deficits previously found in axonal 

outgrowth and spine morphologies. Yet, long-range wiring deficits underlying FXS 

have been largely unexplored as a potential mechanism underlying cognitive deficits. 
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Therefore we set out to quantify brain-wide connectivity features in the Fmr1KO 

mouse model and to correlate them with functional connectivity features. We have 

probed changes in neuronal connectivity, and the functional consequences of these 

changes on information processing in the neocortical circuits in Fmr1KO mouse 

model of Fragile X Syndrome. For this, we used a combination of cutting-edge 

approaches ranging from viral tracing, magnetic-resonance-imaging and optical 

imaging to novel anatomical quantification methods. 
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2. Results 
 
2.1. Novel Tools to Unravel the Neuronal Wiring 
 

2.1.1 Mono-trans-synaptic input mapping 
 
Newly developed methods need a phase of thorough evaluation and often 

improvement to aim for the highest standards and ensure that the results are 

reproducible, can be fully trusted and biases are avoided by all means possible. 

Mono-trans-synaptic tracing with a glycoprotein deleted variant of rabies virus has 

been a method offering unprecedented possibilities of mapping the input of a group of 

or individual cells. In the next section we described in a review article the results that 

have been gained with this method by several groups over the last couple of years 

until the date of publication as well as possibilities and limitations the method bears. 

A more recent update on this matter can be found in our recent book chapter, in the 

Appendix. 
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An understanding of how the brain processes information requires knowledge of the
architecture of its underlying neuronal circuits, as well as insights into the relationship
between architecture and physiological function. A range of sophisticated tools is
needed to acquire this knowledge, and recombinant rabies virus (RABV) is becoming
an increasingly important part of this essential toolbox. RABV has been recognized for
years for its properties as a synapse-specific trans-neuronal tracer. A novel genetically
modified variant now enables the investigation of specific monosynaptic connections. This
technology, in combination with other genetic, physiological, optical, and computational
tools, has enormous potential for the visualization of neuronal circuits, and for monitoring
and manipulating their activity. Here we will summarize the latest developments in this fast
moving field and provide a perspective for the use of this technology for the dissection of
neuronal circuit structure and function in the normal and diseased brain.

Keywords: connectivity, wiring diagram, neuronal tracer, synapses, monosynaptic

INTRODUCTION
How does the brain process information, encode perception,
and generate behavior? An answer to these questions requires a
mechanistic understanding of the operation of the brain’s neu-
ral circuits. The operation of these neural circuits is determined
by their structure, the physiological properties of the neuronal
connections, and the integrative properties of the neurons. Thus,
an understanding of the brain’s computations is inevitably linked
to knowledge of the relationship between the structure of its
neuronal circuits and their function (Lichtman and Denk, 2011;
Rancz et al., 2011). Rabies virus (RABV) has outstanding prop-
erties as a retrograde tracer of synaptically connected neuronal
populations (Kelly and Strick, 2000; Wickersham et al., 2007a;
Ugolini, 2011). Recently, the development of a glycoprotein gene-
deleted (!G) RABV based method has enabled the tracing and
functional investigation of monosynaptic connections of defined
neurons (Wickersham et al., 2007b; Callaway, 2008; Marshel
et al., 2010). This methodology can be readily combined with the
expression of a variety of genes, optical/electrophysiology meth-
ods, and behavioral assays to drive integrative studies of neural
circuits (Callaway, 2008; Arenkiel and Ehlers, 2009; Osakada et al.,
2011; Wickersham and Feinberg, 2012).

In this review we present an update on recent developments
in the field of RABV !G based trans-synaptic tracing technology.
We explain the basic principles of this technology, and show how,
in recent studies, it has been adapted to reveal specific aspects
of neuronal circuit structure/function. We also discuss what we

believe to be the major potential and shortcomings of recombi-
nant RABV technology. Lastly, we provide an overview of how this
approach complements other recent technological developments
in the field of neural circuit analysis and the kind of questions that
can be addressed using a combination of these approaches.

TRANS-SYNAPTIC TRACERS FOR THE STUDY OF NEURAL
CIRCUIT CONNECTIVITY
POLYSYNAPTIC TRACERS
Conventional anterograde and retrograde tracers have signifi-
cantly advanced our knowledge of connectivity between different
brain areas (Cowan, 1998; Luo et al., 2008; Lichtman and Denk,
2011). These tracers reveal which brain areas are connected to one
another and the location and identity of the projections neurons.
However, since these tracers do not cross synapses, they are unable
to establish direct synaptic connectivity between neurons.

Polysynaptic tracers, on the other hand, have the ability to
spread from one neuron to another, permitting the identification
of networks of synaptically connected neurons. These polysynap-
tic tracers can be divided into two types: non-viral and viral
tracers. Non-viral polysynaptic tracers are, for the most part, lim-
ited to certain types of plant lectin and bacterial toxins (Cowan,
1998; Carter and Shieh, 2010). These tracers have a number
of advantages including their safety, ease of use and ability to
be genetically encoded. However, they also suffer from one or
more shortcomings (reviewed in references Callaway, 2008; Luo
et al., 2008; Lichtman and Denk, 2011; Wickersham and Feinberg,
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2012), importantly severe dilution of signal with each synaptic
step.

These limitations can be overcome by the use of certain polysy-
naptic viral tracers, in particular those belonging to the classes
of α-herpes viruses (herpes simplex virus type 1 and pseudora-
bies virus) and RABV (reviewed in Callaway, 2008; Ekstrand
et al., 2008). In contrast to non-viral tracers, trans-synaptic viral
labeling is amplified rather than diluted due to the replicative
nature of viruses. This labeling can be revealed by the expression
of suitable morphological markers such as native viral proteins
or reporter molecules in the case of recombinant virus strains
(reviewed in Ekstrand et al., 2008). Not all of the polysynaptic
viral tracers spread exclusively at synaptic sites, thereby labeling
neurons that are not necessarily connected by synapses. The CVS
derived strains of RABV and the Bartha strain of pseudorabies
virus (PRV), however, have been shown to spread in a synapse-
specific manner (reviewed in references Callaway, 2008; Ekstrand
et al., 2008; Luo et al., 2008; Ugolini, 2011). Furthermore, these
two viruses spread in a defined (retrograde) direction, enhanc-
ing their value for neural circuit analysis. RABV has two main
advantages over PRV, namely a significantly reduced cytotoxicity
and the ability to be used in primates (Callaway, 2008). The rela-
tive merits of these polysynaptic viruses for neural circuit analysis
have been discussed in detail elsewhere (Callaway, 2008; Ekstrand
et al., 2008; Ugolini, 2011).

Altogether, these features make RABV a very useful virus for
the study of neural circuit connectivity (Ugolini, 1995; Kelly
and Strick, 2000; Callaway, 2008; Ugolini, 2011). However, the
fact that native RABV (like other trans-synaptic viruses) is a
polysynaptic tracer causes potential ambiguity in the interpre-
tation of how many synaptic steps have been crossed at any
given time. For instance, such ambiguity would occur if RABV
crosses synapses at different rates depending on their strength
or simply because of differences in the RABV transport time
along presynaptic axons that span several orders of magnitude in
length (for discussion of synapse strength see references Ugolini,
1995, 2011; Callaway, 2008; Wickersham and Feinberg, 2012).
Furthermore, it is not possible to concomitantly use this method
for both circuit tracing and the manipulation of first-order con-
nections (see below), since higher-order connections will also be
affected.

RABV AS A MONOSYNAPTIC TRACER
Revealing first-order connections
An elegant solution to this problem led to a technique, which
has come to be known as monosynaptic trans-synaptic tracing
(Wickersham et al., 2007b) or mono-trans-synaptic tracing for
short (Miyamichi et al., 2011). Mono-trans-synaptic tracing uses
a pseudotyped, recombinant RABV to identify direct presynap-
tic inputs to a defined target cell population. These connections
are “mono-synaptic” because trans-synaptic traversal is limited
to one synaptic step between initial infected cells (i.e., the source
cells) and their immediate presynaptic partners. The exquisite
specificity of the RABV ensures that only synaptically connected
neurons are labeled.

To implement this highly specific tracing system, Wickersham
et al. (2007b) employed a deletion mutant RABV (RABV !G)

(Mebatsion et al., 1996a), deficient in the expression of the RABV
envelope glycoprotein (RG) (Figures 1A,B). RG is essential for
the assembly of infectious virus particles during the natural life
cycle of RABV (Mebatsion et al., 1996a), as well as for mediat-
ing trans-synaptic crossing of the virus (Mebatsion et al., 1996a;
Etessami et al., 2000) (Figure 1B). Infectious properties can be
rescued by cultivating the virus in a trans-complementing cell
line (pseudotyping; Figures 1C,D). The resulting virus, how-
ever, behaves as a single-cycle tracer and is trapped in the
source cells. Exogenous expression of RG in the same source
cell population is sufficient to rescue the trans-synaptic capa-
bilities of the virus—but in a highly restricted manner, which
is limited to first order connections (Wickersham et al., 2007b)
(Figure 1E).

In the original description of the method, pseudotyping was
employed as a means of limiting the initial infection to a defined
source cell population. To achieve this, Wickersham et al. (2007b)
exploited the envelope glycoprotein (EnvA) of the avian sarcoma
and leukosis virus, whose cognate receptor (TVA) has no homo-
logue in mammalian cells (Bates et al., 1993; Young et al., 1993;
Federspiel et al., 1994). Ectopic TVA expression is required to
permit infection by RABV !G(EnvA) and needs to occur in the
same cells expressing RG, to correctly demarcate the source cell
population (Figure 1E). In order to visualize the resulting trans-
synaptically labeled neurons, RABV was modified to express a
fluorescent protein (eGFP) and source cells are distinguished by
the addition of a second fluorescent marker (Wickersham et al.,
2007b) (Figure 1B). Pseudotyping can also be achieved with a
variety of viral glycoproteins provided that the glycoprotein is
suitably engineered to contain the cytoplasmic domain of the
native RABV glycoprotein (Mebatsion et al., 1995; Conzelmann,
1998; Choi et al., 2010; Choi and Callaway, 2011). In such cases,
the source cell population is defined by the resulting tropism of
the pseudotyped virus.

Features of RABV vectors
RABV is, in many ways, the prototypic neurotropic virus since
its life cycle is entirely adapted to survival and spread in the
nervous system. RABV derived vectors thus possess a number
of features, which endow them with excellent properties for a
viral tracer. These include efficient long-range transport in neu-
rons, low cytotoxicity, and high-level gene expression (Mebatsion
et al., 1996b; Wickersham et al., 2007a; Dietzschold et al., 2008).
Wild-type RABV has a broad host species range that includes
almost all terrestrial mammals, bats, and birds (Gough and
Jorgenson, 1976; Nel and Markotter, 2007), and this likely extends
to all RABV derived vectors making them suitable for use in a
range of animal model systems. The RABV genome (Conzelmann
et al., 1990) is small, modular, and readily accepts foreign genes
without the issues of instability inherent to other RNA viruses
(Mebatsion et al., 1996b; Conzelmann, 1998). Moreover, RABV
is confined to the cytoplasm throughout its life cycle (Albertini
et al., 2011). This precludes integration into the host genome and
the subsequent disruption or inappropriate transcriptional acti-
vation of host genes, which is reported to occur for other vectors
such as lentivirus (Sakuma et al., 2012). The highly stable and
tightly bound ribonucleoprotein core (Albertini et al., 2011) also
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FIGURE 1 | RABV—the trans-synaptic tracing toolbox. (A) The RABV
genome encodes five proteins including the envelope glycoprotein (G).
(B) Deletion of G (!G) is sufficient to prevent trans-synaptic spreading and
results in a single-cycle vector. A gene of interest can then be inserted in the
place of the deleted G. This gene of interest can encode a fluorescent protein
such as GFP, permitting the visualization of virally traced neurons. It can also
permit the expression of an almost unlimited choice of genetically encoded
tools for the manipulation/visualization of neuronal circuits, e.g., biosensors,
synapse markers, activators/repressors of neuronal activity. (C) RABV !G can
be pseudotyped, either with its native glycoprotein or an engineered surface
protein (e.g., EnvA). Pseudotyping restores the normal infection capabilities

or enables cell-type selective infection, respectively. (D) RABV !G coated
with its native glycoprotein is taken up by axon terminals and can be used to
trace neurons in a retrograde manner. (E) EnvA pseudotyped RABV !G
[RABV !G(EnvA)] only infects neurons expressing the TVA receptor.
Trans-complementation with RG enables RABV !G to cross one synaptic
step to infect the presynaptic partners of a defined neuron or neuronal
population. The virus is then trapped in these presynaptic partner cells and
cannot spread further due to the deficiency of RG in these presynaptic cells,
hence limiting the strategy to a mono-trans-synaptic event. Initially infected
source cells are identified by the expression of an additional fluorescent
marker.
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prevents recombination between the RNA genome and cellular
RNAs.

Transgene expression from a RABV vector is integrally tied
to viral genome expression and is thus constitutively ON. RABV
transcription starts at the 3′ end (upstream of the N gene;
Figure 1A) and proceeds sequentially throughout the genome.
Attenuation at gene boundaries generates a gradient of transcripts
with respect to gene order (reviewed in references Conzelmann
et al., 1990; Albertini et al., 2011), resulting in a finely tuned
ratio of gene products in the native virus (reviewed in references
Conzelmann, 1998; Albertini et al., 2011). This feature can be
manipulated to some extent to influence the level of expression
of a transgene. In addition, “engineered” gene border transcrip-
tion signals (Finke et al., 2000) or regulatory elements from other
RNA viruses can also be deployed to modify transgene expres-
sion levels (Marschalek et al., 2009). RABV !G vectors expressing
a single transgene have typically made use of the endogenous
transcription signals, which normally flank the glycoprotein gene
(Wickersham et al., 2007b; Osakada et al., 2011). In addition, it
is possible to insert additional cistrons as long as each is flanked
by suitable transcription start/stop signals (Conzelmann, 1998;
Osakada et al., 2011). This principle was used to express two-
independent genes from a RABV !G vector (Osakada et al.,
2011). In this case 3.6 kb of exogenous sequence was effectively
integrated into the RABV !G viral genome and subsequently
packaged into infectious particles. Unlike other vectors, the most
important factor limiting “cloning capacity” is probably not the
total insert size, but instead the number of additional tran-
scription initiation start sites introduced with the exogenous
genes.

The RABV genome never encompasses a DNA form and this
poses particular constraints on RABV derived vectors. Certain
genetic tools such as lox P sites, tet-regulatory sequences or cell-
specific promoters simply do not function with a negative-sense
single-stranded RNA [(−)ssRNA] virus since a double stranded
DNA binding site or substrate is required. Unfortunately, this pre-
cludes the use of a number of genetic tools that are normally
employed for cell-specific or inducible expression of the viral-
driven transgene (see Figure 4). The (−)ssRNA RABV genome
also presents practical difficulties for the production of recom-
binant viral particles. Although improved methods for RABV
!G rescue have recently been described (Wickersham et al.,
2010; Osakada et al., 2011; Ghanem et al., 2012), reverse genet-
ics approaches, required for the recovery of infectious RABV !G
from cloned DNA, remain several orders of magnitude less effi-
cient than for positive strand RNA or DNA viruses (Schnell et al.,
1994; Ghanem et al., 2012). This being said, it is worth noting
that once a new recombinant form of RABV !G has been recov-
ered from DNA, it is straightforward to amplify the virus using an
RG-expressing cell line (Osakada et al., 2011).

STRATEGIES FOR TRACING MONOSYNAPTIC CONNECTIONS
TO SPECIFIC BRAIN REGIONS, NEURON TYPES, OR
INDIVIDUAL NEURONS
TARGETING SPECIFIC BRAIN REGIONS
A specific brain region can simply be targeted via stereotaxic
injection of CNS competent viral vectors expressing TVA/RG,

followed several days later by injection into the same region of the
RABV !G(EnvA). For example, mono-trans-synaptic tracing was
crucial for determining synaptic connections between oxytocin-
expressing neurons of the hypothalamic accessory magnocellular
nucleus and neurons of the central amygdala (Knobloch et al.,
2012).

TARGETING A DEFINED NEURONAL CELL POPULATION
While the aforementioned approach maps the connectivity of
multiple neuron types within the respective brain structure, it
may be desirable to target a defined neuronal cell population. In
the next paragraphs we will highlight the variety of approaches
that have been developed to achieve neuron type specific mono-
trans-synaptic tracing.

One way to achieve this is by taking advantage of an ever-
increasing list of mice expressing cre-recombinase in specific neu-
ronal cell types (e.g., reference Gong et al., 2003). TVA/RG is then
selectively expressed in these cell types using a cre-dependent viral
vector (Wall et al., 2010; Watabe-Uchida et al., 2012) (Figure 2A).
This strategy was applied to map reciprocal synaptic connections
between PKC-δ− and PKC-δ+ interneurons in the central amyg-
dala (Haubensak et al., 2010), and to perform brain-wide labeling
of neurons providing direct input to dopaminergic neurons of the
midbrain (Watabe-Uchida et al., 2012).

Alternatively, neuron types can be targeted based on their
expression of cell surface receptors that recognize specific ligands.
For example, a specific class of interneurons in the neocortex
expresses the receptor ErbB4 that binds the soluble ligand neureg-
ulin β1. A recent study took advantage of this interaction to
target ErbB4-positive neurons by pseudotyping RABV !G with
an avian virus envelope protein (EnvB) that binds to a neureg-
ulin β1-EnvB receptor (TVB) bridge protein (Choi and Callaway,
2011). A lentivirus was pseudotyped in the same way to per-
mit RG expression in the same source cell population (Choi and
Callaway, 2011). Such approaches may also be of interest for stud-
ies of schizophrenia, which have been linked to a dysfunction
in neuregulin signaling (Mei and Xiong, 2008). This approach
could also provide a means for targeting RABV !G infection
to particular cell populations in situations where genetic-based
targeting approaches are not available, for example in primate
systems (Choi and Callaway, 2011).

An alternative way to target a very specific source cell pop-
ulation is the use of a helper virus capable of propagating
exclusively in dividing cells. Certain retroviruses, such as the
Moloney murine leukemia virus (MMLV), are restricted in this
manner and have classically been used to mark newly born
neurons in the dentate gyrus of the hippocampus (reviewed
in van Praag et al., 2002; Ming and Song, 2005). Stereotaxic
injection of the MMLV expressing TVA/RG/fluorescent marker,
followed by subsequent injection of RABV !G(EnvA) was thus
used as a means of following the functional integration of newly
born granule cells into existing neuronal circuits (Vivar et al.,
2012).

All of the aforementioned examples necessitate two sequen-
tial stereotaxic injections into the same brain region [e.g., virus
expressing TVA/RG, followed by RABV !G(EnvA)]. One can
bypass the first step of this procedure by using RABV !G(EnvA)
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FIGURE 2 | Strategies to reveal the secrets of defined neural circuits.
(A,B) There are several strategies to target the rabies infection to individual
neurons or specific cell types. (A) Genetic strategies such as the Cre-lox

system take advantage of cell-specific promoters to restrict Cre expression
to a defined cell-type. Injection of a Cre-dependent helper virus expressing
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FIGURE 2 | Continued
RG and TVA permits RABV !G(EnvA) infection, and subsequent
mono-trans-synaptic tracing, to be limited to a specific source cell
population. (B) Patch pipettes can be used to infect individual neurons
with the plasmids encoding RG and specific surface proteins (e.g., TVA).
These neurons are subsequently infected with pseudotyped (e.g., EnvA)
RABV !G. This allows the tracing of the presynaptic partners of specific
neurons. (C–E) RABV !G mediated expression of a number of genetic
tools permit the dissection of structure/function of specific networks in a
temporally and spatially controlled manner. (C) RABV !G mediated

expression of recombinases (Cre/FLP) permits loss- or gain-of-function
studies through conditional expression of specific genes in the infected
network. (D) Population activity of specific neuronal networks can be
monitored, for instance, by RABV !G directed expression of calcium
indicators. (E) The activity of the starter cells, and their presynaptic
network can be very specifically controlled by the expression of either
allatostatin receptor or light-activated ion channels. Binding of allatostatin
to its cognate receptor or activation of these channels by light of a
specific wavelength leads to specific inhibition/activation of RABV !G
infected neurons.

together with a bi-transgenic mouse line, in which TVA/RG is
induced in a brain region- or cell-type specific manner under the
control of a tet-regulatable promoter (Weible et al., 2010). This
approach is suited to tracing long-range connections between
nuclei that can be discretely targeted by cell-specific tetracycline
transactivator expression. However, carefully designed controls
are required to ensure that RG expression only occurs in the
targeted source cell population and not in directly presynaptic
neurons, as this would confound the interpretation of the tracing
results (first-order vs. higher-order connectivity).

Mono-trans-synaptic tracing from defined source cell popu-
lations can also be achieved using a simpler targeting strategy
which eliminates the need for the EnvA-TVA system, and instead
takes advantage of the inherent qualities of certain retrogradely-
transported viruses. Recent studies utilized this approach, by
co-injecting RABV !G pseudotyped with its native G together
with an RG-expressing retrogradely transported helper virus
(Stepien et al., 2010; Yonehara et al., 2011). The source cell
population was thus defined by their specific projection char-
acteristics, rather than by their molecular identity. Injections
were made into known target regions for the axons of cer-
tain neurons, thereby permitting the infection of axon termi-
nals. With this approach, mono-trans-synaptic tracing enabled
the identification of direct synaptic inputs to motor neurons
targeting discrete muscle groups (Stepien et al., 2010), and to
ON direction-selective retinal ganglion cells (Yonehara et al.,
2011).

STRATEGIES TO TARGET INDIVIDUAL NEURONS
The aforementioned strategies (sections “Targeting specific brain
regions” and “Targeting a defined neuronal cell population”) may
not permit the unambiguous identification of the presynaptic
partners of a given neuron, because more than one source cell
is typically targeted. Furthermore, in situations where a presy-
naptic partner of a source cell also expresses RG, an additional
trans-synaptic crossing step may occur, resulting in the labeling of
higher-order connections. One strategy to reduce this ambiguity
is exemplified by Arenkiel et al. (2011). In this study the authors
developed an elegant strategy to allow mono-trans-synaptic trac-
ing of a very sparse and defined neuronal population. They
transfected neuronal progenitor cells in the subventricular zone
of the lateral ventricles in early postnatal mice with a targeting
construct expressing TVA/RG. Adult-born granule cells derived
from these progenitors migrate to the olfactory bulb and establish
functional connections (Panzanelli et al., 2009). However, only
a small number of migrated, functionally integrated daughter

cells retained the ability to express TVA/RG, by virtue of rare
integration events leading to stable expression of this targeting
construct (Arenkiel et al., 2011). These source cells were then
infected with RABV !G(EnvA) by stereotaxic injection into the
olfactory bulb. The authors were thus able to trace microcir-
cuits derived from sparsely distributed individual source granule
cells.

The ability to target sparsely-distributed source cells may
also be important for studies of long-range connections, where
the topography or convergence of inputs needs to be exam-
ined and therefore the source cell number needs to be strictly
limited. To achieve this, a complex strategy involving a condi-
tional bi-transgenic mouse line and an AAV vector expressing
TVA/RG under the control of a tetracycline-dependent promoter
was employed (Miyamichi et al., 2011). RABV !G(EnvA) was
subsequently injected into the same region as the AAV helper
virus 14 days later. These tools not only permit tracing in a very
sparse neuronal population, but also precise temporal control
over TVA/RG expression.

Although mono-trans-synaptic tracing has most frequently
been applied to populations of source cells, it also has great power
for determining inputs into a single neuron in vitro and in vivo
(Figure 2B). To target a single neuron, the plasmids encoding the
tracing components (TVA/RG) and a fluorescent marker are first
introduced together into this neuron. Two approaches have thus
far been employed to achieve this in vivo—two-photon-guided
electroporation and whole cell recording (Marshel et al., 2010;
Rancz et al., 2011). Such in vivo approaches are painstaking, but
permit the unambiguous identification of neurons presynaptic
to a defined individual neuron. Furthermore, when combined
with for instance whole-cell recordings and sensory stimulation,
information regarding the anatomical receptive field of this neu-
ron can be linked with its synaptic receptive field (Rancz et al.,
2011).

RECENT ADVANCES IN NEURONAL CIRCUIT ANALYSIS
EMPLOYING THE RABV !G APPROACH
MAPPING OF LONG-RANGE CONNECTIONS
One of the great advantages of RABV !G mediated mono-
trans-synaptic tracing over other assays for synaptic connections
[e.g., electron microscopy (EM) and paired electrophysiolog-
ical recordings] is the ability to identify long-range synaptic
connections. For example, RABV !G has been used to map
direct long-range connections between mitral cells in the olfac-
tory bulb and their postsynaptic targets in basal forebrain regions
(Miyamichi et al., 2011). Such connections had previously been
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inferred from the presence of axons (e.g., reference Scott et al.,
1980), but direct synaptic connectivity had not been proven.
Similarly, Knobloch et al. (2012) employed the RABV !G tech-
nology as part of a complex toolkit to elucidate novel connections
between oxytocin expressing neurons in the hypothalamus and
neurons of the central amygdala. In this case, synaptic con-
nections were strongly suggested by a variety of supporting
evidence, obtained from optogenetic-based mapping and elec-
tron microscopy data. However, mono-trans-synaptic tracing was
essential for confirming the presence of a functional synapse.

RABV !G based tracing approaches have also been exploited
to map inputs into specific dopaminergic populations of the
midbrain—in this case, on the scale of the whole brain (Watabe-
Uchida et al., 2012). The authors were able to correct or refine
previous findings obtained with conventional tracing or opto-
genetic approaches. By targeting genetically defined source cell
populations they identified more specific subsets of presynapti-
cally connected neurons. In addition, the authors showed that
striatal neurons do in fact provide direct input to dopaminer-
gic neurons of the ventral tegmental area or substantia nigra
(Watabe-Uchida et al., 2012). Lastly, the exquisite labeling
of the neuronal morphology afforded by RABV-driven eGFP
expression aided the identification of the type of presynaptic
neurons.

FUNCTIONAL INTEGRATION OF POSTNATAL-BORN NEURONS
INTO A NEURAL CIRCUIT
In addition to the validation of known connections, or the
discovery of novel connections, a recent study examined the
plasticity-induced remodeling of neural circuits (Arenkiel et al.,
2011). In this study, the authors traced the connections formed
by postnatal-born, newly migrated, differentiated granule cells
following their integration into established circuits of the olfac-
tory bulb. The authors further showed that odor stimulation
resulted in increased input onto these neurons, as well as remod-
eling of their dendritic morphology. This study demonstrates
the immense power of RABV !G based monosynaptic tracing
for both screening of neural circuit changes as well as for fine
morphological analysis.

A different study (Vivar et al., 2012) describes the time-
dependent incorporation of adult-born granule cells of the den-
tate gyrus into existing neuronal circuits. To do this, the authors
performed mono-trans-synaptic tracing at various time points
after the initial labeling of adult-born daughter cells. They were
then able to demonstrate quantitative changes in the type and
number of the presynaptic neurons over time. In particular, they
showed a transient period of input coming from mature granule
cells, and that intra-hippocampal and cortical inputs increased
with time. They also identified a novel “back-projection” from
CA3 pyramidal cells. This study demonstrates the utility of
RABV !G based mono-trans-synaptic tracing for the identifica-
tion of novel connections, as well as for studying the remodeling
of circuits.

THREE-DIMENSIONAL TOPOGRAPHY OF PRESYNAPTIC NEURONS
With the use of RABV !G based trans-synaptic tracing, Stepien
et al. (2010) were able to demonstrate that distinct populations

of premotor neurons project to functionally-defined motor neu-
ron pools, and that these populations extend over a large
three-dimensional space along the spinal cord. In a related
study the authors showed that premotor interneurons control-
ling antagonistic extensor-flexor muscles are segregated from
one another along the medial lateral axis of the dorsal spinal
cord (Tripodi et al., 2011). In an unrelated study Miyamichi
et al. (2011) examined the topography of inputs from olfac-
tory bulb into different olfactory cortex regions. In doing so, the
authors were able to correlate topography of post/presynaptic
neurons and divergence/convergence of connections with the
presumed functionality of each type of olfactory processing cen-
ter. These studies demonstrate that the topography of connec-
tions can yield additional information about the functionality of
circuits.

NOVEL RABV !G VARIANTS AND THEIR UTILITY FOR NEURONAL
CIRCUIT ANALYSIS
A range of RABV !G variants have recently been described.
These variants include vectors expressing the trans-acting factors
required for conditional expression of other transgenes (e.g., Cre,
FLP recombinase; Figure 2C), a genetically encoded calcium sen-
sor (Osakada et al., 2011; Kiritani et al., 2012) (Figure 2D) and
molecules for the activation51 or silencing of circuits (Osakada
et al., 2011) [e.g., allatostatin receptor, channelrhodopsin-2
(ChR2); Figure 2E]. Variants expressing additional fluorescent
markers to permit a greater array of tracing possibilities are
also described (Wickersham et al., 2007b; Osakada et al., 2011).
These aforementioned tools can be combined with a vari-
ety of mouse models, for example those expressing Cre-or
FLP-dependent reporters or conditional mutations permitting
loss- or gain-of-function studies in defined neuronal circuits.
A RABV !G vector expressing the light-activatable ChR2 has
recently been used for the analysis of defined spino-cortical
and cortico-striatal circuits (Apicella et al., 2012; Kiritani et al.,
2012).

PERSPECTIVES FOR THE ANALYSIS OF NEURAL CIRCUIT
STRUCTURE/FUNCTION
To date, our understanding of the wiring diagrams of neuronal
circuits and the spatiotemporal dynamics of their electrical signals
is rather limited. Critical steps toward this goal are the identi-
fication of the inputs of the circuit’s diverse neuron types, and
an understanding of their interaction within the circuit. The last
years have seen numerous innovations in methods that rapidly
advance the analysis of neural circuits. These include improve-
ments in optical methods for stimulation and imaging, genetics,
and computational methods. In the next paragraphs we will dis-
cuss how the RABV !G technology in concert with these methods
can help shed light on some of the outstanding questions in this
field.

TRACING STRUCTURE—FROM THE NANOSCALE TO THE MESOSCOPIC
SCALE
RABV !G has outstanding properties for the labeling of the
fine-scale neuronal morphology, due to its high-level expression
of fluorescent proteins (Wickersham et al., 2007b). This feature
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is advantageous for visualization approaches where further sig-
nal amplification is not feasible. Such approaches include flu-
orescence imaging of entire mouse brains following a chemi-
cal clearing procedure (Dodt et al., 2007; Hama et al., 2011)
or using serial two-photon tomography (STP tomography)
(Ragan et al., 2012). Similarly, the high-intensity expression
of morphological markers permits the dynamic observation
of processes such as spine stability/turnover in living animals
(for a recent review see Holtmaat and Svoboda, 2009), and
likely satisfies the requirements for super-resolution imaging at
nanoscale resolution (for review, see references Huang et al.,
2009; Sigrist and Sabatini, 2012). Furthermore, RABV medi-
ated expression of horseradish peroxidase may be a way to
enhance the intensity of labeling required for ultrastructural tech-
niques such as serial block-face scanning electron microscopy
(Denk and Horstmann, 2004; Briggman et al., 2011; Li et al.,
2011).

RABV !G pseudotyped with RG can be used as a retrograde
tracer (Figure 1D) to infer connectivity between brain regions by
labeling cells projecting to a specific target region (Wickersham
et al., 2007a; Apicella et al., 2012; Kiritani et al., 2012). In com-
bination with large-scale fluorescence imaging techniques (Dodt
et al., 2007; Hama et al., 2011; Ragan et al., 2012) this approach
allows systematic brain-wide mapping of neuronal circuits at the
mesoscopic scale (Bohland et al., 2009) (see also Mouse Brain
Architecture Project).

Thus, the RABV !G technology has the potential to aid visu-
alization of neuronal morphology over spatial dimensions rang-
ing from the nanoscale (electron microscopy/super-resolution
light microscopy) to the entire mouse brain (light-sheet
microscopy/STP tomography).

CLASSIFYING NEURONAL CELL TYPES
One of the intractable problems with neuronal circuit anal-
ysis is the ability to define the neuronal cell types present
within such a circuit. Cellular identity is based on an ever-
more refined list of criteria such as electrical properties, pat-
terns of gene expression and morphological features (Petilla
Interneuron Nomenclature Group et al., 2008; Arenkiel and
Ehlers, 2009). Ideally one would also link cell identity to the
expression of a fluorescent marker to facilitate analysis of the
properties of these cells within a circuit (Arenkiel and Ehlers,
2009; Lichtman and Denk, 2011; Steinmeyer and Yanik, 2012).
For certain cell types this has been achieved with high speci-
ficity in transgenic mice (Gong et al., 2003) (reviewed in reference
Lichtman and Denk, 2011). Pseudotyping of RABV !G per-
mits the targeting of specific cellular populations, for example
projection neurons or those expressing a certain surface pro-
tein (Mebatsion et al., 1997; Choi and Callaway, 2011). This
enables the identification/classification of a neuron based on
its morphology, projections, and in the case of mono-trans-
synaptic tracing their connectivity properties. In the latter case,
the morphological labeling of the presynaptic neurons aids their
identification as well. RABV !G technology has been used, for
example, to characterize neurons in the primate visual cortex
(Nassi and Callaway, 2007; Nhan and Callaway, 2012) rodent neo-
cortex (Larsen, 2008; Marshel et al., 2010; Rancz et al., 2011;

Apicella et al., 2012; Kiritani et al., 2012) and rodent midbrain
together with their presynaptic partners (Watabe-Uchida et al.,
2012).

REVEALING SYNAPTIC CONNECTIVITY
The construction of neural circuit connectomes requires compre-
hensive knowledge of the underlying synaptic connectivity. We
are still lacking quantitative measurements regarding the num-
bers and sub-cellular organization of the different inputs received
by a neuron. EM, paired electrophysiological recording, and opti-
cal simulation approaches have done much to advance our knowl-
edge of synaptic connections between neurons. However, these
approaches are either time-intensive (EM, paired recordings),
currently limited to microcircuits (EM), or can only demon-
strate the existence of synaptic connections, but not their pre-
cise sub-cellular location (paired recordings, optical stimulation
methods).

The elegance and power of the RABV !G mono-trans-
synaptic tracing has now been amply demonstrated (as discussed
above). Specifically, this technology provides information about
the type, localization, and number of presynaptic neurons form-
ing synaptic connections with particular target cell types. As
such, it can be used for the validation of known neuronal synap-
tic connections (e.g., Stepien et al., 2010), but may also reveal
hitherto unknown connections or a re-organization of wiring
diagrams under physiological and pathophysiological conditions
(Figure 3A). For example, the question of whether memories
are stored in the connections formed by neurons (Seung, 2009)
could be tested using this approach. Similarly, the integration
of adult-born neurons (Arenkiel and Ehlers, 2009) into func-
tional neuronal circuits can be examined (Figure 3B). A range
of targeting approaches is now available (see above) to permit
experimental design to be tailored to meet the requirements of
a particular study. Lastly, in combination with techniques label-
ing synaptic contacts (GRASP/BLINC), mono-trans-synaptic
tracing may be used to identify the sub-cellular location of
synaptic inputs (Kim et al., 2012; Wickersham and Feinberg,
2012).

PROBING SYNAPTIC PROPERTIES AND SYNAPTIC INTEGRATION
One important parameter defining neuronal circuits is the phys-
iological properties of specific anatomical connections (i.e.,
release probability, strength, short-term dynamics etc.). So
far, the most precise method to achieve this is the use of
simultaneous electrophysiological recordings between synapti-
cally connected neurons (e.g., reference Frick et al., 2008).
Specific labeling of pre- and post-synaptic neurons with
mono-trans-synaptic tracing greatly enhances the sampling effi-
ciency of synaptic connections for a given postsynaptic neu-
ron (Wickersham et al., 2007b) (Figure 3C). In addition, the
integration of synaptic inputs from a number of presynap-
tic neurons within an individual neuron can be studied. As
an alternative approach to simultaneous electrophysiological
recordings, presynaptic partners could be stimulated optically
following RABV !G driven expression of light-activated ion
channels or heterologous receptor systems (Osakada et al., 2011)
(Figures 2E and 3C).
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FIGURE 3 | Continued
wiring diagram of experimental and control brains. (B) We can learn more
about plasticity in the adult brain by studying the integration of adult-born
neurons into existing neuronal networks. Similar approaches might be used
to study circuit integration following stem cell therapy. (C) The analysis of the
physiological properties of synaptic connections between defined neuron
types (in addition to the anatomical wiring diagram) is greatly aided by this

technique. Furthermore, the spatial and temporal integration of signals from a
larger number of presynaptic neurons can be examined in postsynaptic
neurons. (D) The population activity of a defined neuronal circuit can also be
measured during active sensory stimulation or behavior and subsequently
correlated with the anatomical input network of a defined starter population.
(E) The receptive field properties of individual neurons can be combined with
the analysis of the anatomical wiring diagram of their presynaptic network.

COMBINING PHYSIOLOGY WITH ARCHITECTURE
Information processing in neural circuits depends on the spa-
tiotemporal dynamics of the electrical signals within its neurons.
It is therefore desirable to measure or manipulate the activity
of these neurons during a particular behavioral task and to link
the cellular activity with the circuit’s structure (Figures 2D,E,
and 3D). Electrophysiology is the most direct method to mea-
sure electrical activity, and provides a very high signal-to-noise
ratio. Recently, it has become feasible to combine direct electro-
physiological measurements of individual neurons in vivo with
RABV !G mono-trans-synaptic tracing (Rancz et al., 2011)
(Figures 2B and 3E).

In other instances it is advantageous to use imaging
approaches to monitor the cellular activity of identified popula-
tions of neurons during a specific task (Figure 3D). The advent
of genetically-encoded indicators for calcium ions, membrane
potential, and neurotransmitters (for a recent review, see refer-
ence Looger and Griesbeck, 2012) makes it possible to express
such sensors of cellular activity using RABV !G technology
(Osakada et al., 2011) (Figure 2D). For instance, the cellular res-
olution afforded by two-photon microscopy imaging of changes
in calcium ions provide a proxy for action potentials in neu-
ronal populations in vivo (recently reviewed in reference Grewe
et al., 2010). Although measurements of changes in membrane
potential provide a more direct readout of electrical activity,
the lack of suitable genetically encoded voltage sensors has, so
far, hampered in vivo measurements of neuronal activity with
cellular resolution. A new class of voltage sensors may permit
this notion to become a reality (Kralj et al., 2012; Looger and
Griesbeck, 2012). These sensors can be readily incorporated into
the RABV !G expression system for combined functional neu-
ral circuit studies. Further developments in the form of new
variants (see Figure 4) are likely to increase the range of appli-
cations for which the unique properties of RABV !G vectors
can be exploited for imaging of neuronal circuits in the intact
animal.

Finally, gain- or loss-of-function experiments can also be
implemented employing the RABV !G technology (Osakada
et al., 2011). There is now a large selection of available light-
activated ion channels and heterologous receptors to control neu-
ronal excitability (for reviews see references Arenkiel and Ehlers,
2009; Fortin et al., 2011; Yizhar et al., 2011). For example, specific
firing patterns can be triggered or neurons be silenced in targeted
neuronal circuits (as defined by the RABV !G transfection strat-
egy) within freely moving mice. This optical control of neuronal
activity can then be integrated with measurements of the com-
patible readout, such as behavior, fluorescence measurements,
electrical recordings, or fMRI signals (reviewed in reference

Yizhar et al., 2011), and finally linked to the structural circuit
information.

SHORTCOMINGS OF THIS APPROACH AND ALTERNATIVE
MONOSYNAPTIC VIRAL TRACERS
UNDERSAMPLING OF PRESYNAPTIC NEURONS
Although immensely powerful, RABV !G based tracing is, like
any technology, affected by particular shortcomings. Certainly the
most perplexing issue is the undersampling of labeled presynap-
tic neurons. This has been most clearly demonstrated by targeting
single pyramidal neurons in the primary visual cortex in vivo
(Marshel et al., 2010; Rancz et al., 2011). Mono-trans-synaptic
tracing from individual layer 2/3 pyramidal neurons resulted in
the labeling of fewer than 100 presynaptic neurons (Marshel
et al., 2010), while up to ∼700 presynaptic neurons were labeled
by targeting individual layer 5 pyramidal neurons (Rancz et al.,
2011). Furthermore, mono-trans-synaptic tracing from a single
starter cell in layer 5 of the S2 somatosensory cortex resulted
in the tracing of 249 presynaptic cells (Miyamichi et al., 2011).
These differences may be partially due to cell type and/or other
factors such as plasmid delivery or regulation of transgene expres-
sion. Nonetheless, the number of labeled presynaptic neurons
was substantially lower than that expected from calculations
based on dendritic spine numbers and the average number of
synapses formed between connected pairs of neocortical pyra-
midal neurons (e.g., references Larkman, 1991; Defelipe and
Farinas, 1992; Markram et al., 1997; Feldmeyer et al., 2002).
One possible explanation for this undersampling is the level
of expression of RG which may fail to meet the stoichiometry
required for the efficient assembly and trans-synaptic crossing
of RABV particles in vivo (Marshel et al., 2010). It remains
to be shown whether certain properties of the synaptic con-
tacts (strength, activity, or molecular signature of presynaptic
neuron) could influence the efficacy of synaptic crossing. A
recently developed single-cell targeting technique using a recom-
binant polysynaptic RABV (Nguyen et al., 2012) should help shed
some light on this issue, as should a more detailed analysis of
the molecular characteristics of the synapses that are efficiently
crossed.

NEUROINVASIVENESS
At least one study has pointed to a limited time window for
experimental infection by RABV !G following intramuscular
injection. Stepien et al. (2010) reported that motor neurons are
refractory to infection by the peripheral route after approximately
postnatal day 10. This limitation most likely stems from the
fact that the RABV !G mono-trans-synaptic tracing approach
employs a recombinant virus derived from the Street Alabama
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FIGURE 4 | RABV !G virus technology—what is possible? Here we
provide an overview of the numerous tools that could, in the future, be
developed using RABV !G vectors. Such possibilities include the
expression of genetically encoded tools to aid imaging/microscopy
approaches and tools to examine loss-of-function (knockdown) or
gain-of-function of a gene/protein of interest. Other possibilities involve
retargeting using engineered envelope proteins or the possibility of

transfection using naked ribonucleoprotein (RNP) complexes. Some
approaches are not possible with RABV !G vectors including the
integration of lox P sites, cell specific promoters or tet-regulatory
sequences, or expression of shRNA. RNP, Ribonucleoprotein, core of the
RABV; EM, Electron microscopy; PALM, Photo-activated localization
microscopy; VSD, Voltage-sensitive dye; miRNA, micro RNA; shRNA,
short hairpin RNA.

Dufferin (SAD) B19 strain of RABV. This strain is highly atten-
uated for infection by the peripheral route and is only neuroin-
vasive following peripheral injection in young mice (Finke and
Conzelmann, 2005; Rasalingam et al., 2005; Dietzschold et al.,
2008). This may perhaps lead to the misconception that RABV
!G technology can only be applied over a limited postnatal time
window. For direct injections into the CNS, however, there is no
such impediment. Efficient tracing has been observed in a vari-
ety of brain areas in both rats and mice of 1–6 months of age
(Haubensak et al., 2010; Arenkiel et al., 2011; Rancz et al., 2011;
Knobloch et al., 2012; Watabe-Uchida et al., 2012).

TIME WINDOW FOR TRACING
Features that make RABV extremely efficient both as pathogen
and as viral tracer are also associated with its reduced cytotoxicity
(Dietzschold et al., 2008; Lafon, 2011; Rieder and Conzelmann,
2011; Ugolini, 2011). Deleting RG is suggested to further decrease
its cytotoxicity (Wickersham et al., 2010). Nevertheless, there is a
finite time window for RABV !G mediated tracing experiments.
RABV !G infected cortico-thalamic neurons maintain normal
electrophysiological parameters up to 12 days following infec-
tion (Wickersham et al., 2007b). However, morphological defects
or cell death were observed from 14–16 days post-infection
(Wickersham et al., 2007b; Arenkiel et al., 2011). Osakada et al.

(2011) suggest a 5–11 days (post-infection) time window for
viable physiological experiments, which would also take into
account any increased toxicity related to the nature of the virally
expressed protein. Altogether, these data suggest a sufficiently
broad time-window for RABV !G based tracing experiments.
These findings may be contrasted with the significant perturba-
tions in neuronal physiology that were reported to occur as early
as 72 h post-infection with a GCaMP2-expressing PRV strain
derived from the highly attenuated PRV-Bartha (Granstedt et al.,
2009).

ALTERNATIVE VIRUS-BASED MONO-TRANS-SYNAPTIC TRACING
TECHNIQUES
In spite of the many advantages of RABV !G, this technol-
ogy is currently restricted to mapping input to a neuronal
population. An alternative approach, permitting anterograde
trans-synaptic tracing from a defined source cell population
was recently described (Lo and Anderson, 2011). This approach
employs a modified, thymidine kinase-deleted herpes simplex
virus 1 (HSV-1) derived from strain 129 and capable of propa-
gating in a selective manner in cre-expressing starter cells. This
virus was tested in a variety of cre-expressing transgenic mouse
lines and resulted in reliable anterograde trans-synaptic map-
ping of defined neuronal circuits. Notably, this system can be
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readily combined with the large number of existing cre-/BAC-cre
transgenic mouse lines and appears to be specific with respect to
trans-synaptic transmission. Unfortunately, this approach is lim-
ited to the extent that it is not monosynaptic. In addition, it suffers
from the cytotoxicity inherent to HSV-1 viruses and may also
have the disadvantage of infecting axon terminals at the site of
injection (Lo and Anderson, 2011). A cell-targetable, anterograde
monosynaptic tracer derived from a glycoprotein-deleted vesicu-
lar stomatitis virus has recently been described (Beier et al., 2011).
However, it is uncertain whether these findings can be reproduced
in vivo (see Beier et al., 2012).

CONCLUDING REMARKS
Recent developments in the field of RABV !G technology con-
vincingly establish the importance and power of this tool for
neural circuit mapping. Combined with other imaging, physi-
ological, and behavioral approaches, it promises to open new
avenues of research permitting a greater understanding of the
mammalian connectome and its function. RABV !G is applica-
ble to a range of experimental paradigms and permits not only
the study of circuit structure, but also the ability to manipulate or
monitor its function.

RABV !G is invaluable as a viral tracer. In addition, it has
considerable potential as a neuronal expression vector. In contrast
to classical polysynaptic viral tracers, the current technology per-
mits a greater degree of control over initially infected source cells,
by virtue of pseudotyping technology and other genetic target-
ing approaches. RABV !G technology allows a comprehensive
reconstruction of the input map of defined neurons as well as
physiological monitoring of defined neuronal populations. This
tool shows great promise for improving our understanding of
neuronal circuit structure/function and its plastic modification
during physiological processes or in disease. Future strategies for
neuronal circuit analysis will involve a close alliance of genetics,
circuit tracing, light- or heterologous receptor-mediated control,
high-resolution imaging, and electrophysiology, and RABV !G
will be an essential part of this tool box.

ACKNOWLEDGMENTS
We are grateful to N. Rebola, M. Helmstaedter, S. Silva, and
members of our teams for their helpful comments. The follow-
ing funding sources are acknowledged: INSERM, Max-Planck-
Society, Region of Aquitaine, Erasmus-Mundus/ENC Network
and DFG SFB 870.

REFERENCES
Albertini, A. A. V., Ruigrok, R. W. H.,

and Blondel, D. (2011). “Chapter 1 –
Rabies virus transcription and
replication,” in Advances in Virus
Research.
(Academic Press), 1–22.

Apicella, A. J., Wickersham, I. R.,
Seung, H. S., and Shepherd, G.
M. (2012). Laminarly orthogonal
excitation of fast-spiking and low-
threshold-spiking interneurons in
mouse motor cortex. J. Neurosci. 32,
7021–7033.

Arenkiel, B. R., and Ehlers, M. D.
(2009). Molecular genetics and
imaging technologies for circuit-
based neuroanatomy. Nature 461,
900–907.

Arenkiel, B. R., Hasegawa, H., Yi,
J. J., Larsen, R. S., Wallace, M.
L., Philpot, B. D., et al. (2011).
Activity-induced remodeling
of olfactory bulb microcircuits
revealed by monosynaptic tracing.
PLoS ONE 6:e29423. doi: 10.1371/
journal.pone.0029423

Bates, P., Young, J. A., and Varmus, H.
E. (1993). A receptor for subgroup
A Rous sarcoma virus is related to
the low density lipoprotein receptor.
Cell 74, 1043–1051.

Beier, K. T., Saunders, A., Oldenburg,
I. A., Miyamichi, K., Akhtar, N.,
Luo, L., et al. (2011). Anterograde or
retrograde transsynaptic labeling of
CNS neurons with vesicular stom-
atitis virus vectors. Proc. Natl. Acad.
Sci. U.S.A. 108, 15414–15419.

Beier, K. T., Saunders, A., Oldenburg,
I. A., Miyamichi, K., Akhtar, N.,

Luo, L., et al. (2012). Correction for
Beier et al. Anterograde or retro-
grade transsynaptic labeling of CNS
neurons with vesicular stomatitis
virus vectors. Proc. Natl. Acad. Sci.
U.S.A. 109, 9219–9220.

Bohland, J. W., Wu, C., Barbas, H.,
Bokil, H., Bota, M., Breiter, H. C.,
et al. (2009). A proposal for a coor-
dinated effort for the determina-
tion of brainwide neuroanatomical
connectivity in model organisms at
a mesoscopic scale. PLoS Comput.
Biol. 5:e1000334. doi: 10.1371/jour-
nal.pcbi.1000334

Briggman, K. L., Helmstaedter, M.,
and Denk, W. (2011). Wiring speci-
ficity in the direction-selectivity cir-
cuit of the retina. Nature 471,
183–188.

Callaway, E. M. (2008). Transneuronal
circuit tracing with neurotropic
viruses. Curr. Opin. Neurobiol. 18,
617–623.

Carter, M., and Shieh, J. C. (2010).
Guide to Research Techniques in
Neuroscience. Amsterdam; Boston,
MA: Elsevier/Academic Press.

Choi, J., and Callaway, E. M. (2011).
Monosynaptic inputs to ErbB4-
expressing inhibitory neurons in
mouse primary somatosensory
cortex. J. Comp. Neurol. 519,
3402–3414.

Choi, J., Young, J. A. T., and Callaway,
E. M. (2010). Selective viral vector
transduction of ErbB4 expressing
cortical interneurons in vivo with a
viral receptor–ligand bridge protein.
Proc. Natl. Acad. Sci. U.S.A. 107,
16703–16708.

Conzelmann, K. K. (1998).
Nonsegmented negative-strand
RNA viruses: genetics and manipu-
lation of viral genomes. Annu. Rev.
Genet. 32, 123–162.

Conzelmann, K. K., Cox, J. H.,
Schneider, L. G., and Thiel, H.
J. (1990). Molecular cloning and
complete nucleotide sequence of
the attenuated rabies virus SAD
B19. Virology 175, 485–499.

Cowan, W. M. (1998). The emer-
gence of modern neuroanatomy
and developmental neurobiology.
Neuron 20, 413–426.

Defelipe, J., and Farinas, I. (1992). The
pyramidal neuron of the cerebral
cortex: morphological and chem-
ical characteristics of the synap-
tic inputs. Prog. Neurobiol. 39,
563–607.

Denk, W., and Horstmann, H. (2004).
Serial block-face scanning electron
microscopy to reconstruct three-
dimensional tissue nanostructure.
PLoS Biol. 2:e329. doi: 10.1371/
journal.pbio.0020329

Dietzschold, B., Li, J., Faber, M., and
Schnell, M. (2008). Concepts in the
pathogenesis of rabies. Future Virol.
3, 481–490.

Dodt, H.-U., Leischner, U., Schierloh,
A., Jährling, N., Mauch,
C. P., Deininger, K., et al.
(2007). Ultramicroscopy: three-
dimensional visualization of neu-
ronal networks in the whole mouse
brain. Nat. Methods 4, 331–336.

Ekstrand, M. I., Enquist, L. W., and
Pomeranz, L. E. (2008). The
alpha-herpesviruses: molecular

pathfinders in nervous system
circuits. Trends Mol. Med. 14,
134–140.

Etessami, R., Conzelmann, K. K.,
Fadai-Ghotbi, B., Natelson, B.,
Tsiang, H., and Ceccaldi, P. E.
(2000). Spread and pathogenic
characteristics of a G-deficient
rabies virus recombinant: an in vitro
and in vivo study. J. Gen. Virol. 81,
2147–2153.

Federspiel, M. J., Bates, P., Young, J. A.,
Varmus, H. E., and Hughes, S. H.
(1994). A system for tissue-specific
gene targeting: transgenic mice sus-
ceptible to subgroup A avian leuko-
sis virus-based retroviral vectors.
Proc. Natl. Acad. Sci. U.S.A. 91,
11241–11245.

Feldmeyer, D., Lubke, J., Silver, R. A.,
and Sakmann, B. (2002). Synaptic
connections between layer 4 spiny
neurone-layer 2/3 pyramidal cell
pairs in juvenile rat barrel cor-
tex: physiology and anatomy of
interlaminar signalling within a
cortical column. J. Physiol. 538,
803–822.

Finke, S., and Conzelmann, K. K.
(2005). Replication strategies
of rabies virus. Virus Res. 111,
120–131.

Finke, S., Cox, J. H., and Conzelmann,
K. K. (2000). Differential transcrip-
tion attenuation of rabies virus
genes by intergenic regions: gener-
ation of recombinant viruses over-
expressing the polymerase gene.
J. Virol. 74, 7261–7269.

Fortin, D. L., Dunn, T. W., Fedorchak,
A., Allen, D., Montpetit, R.,

Frontiers in Neural Circuits www.frontiersin.org January 2013 | Volume 7 | Article 2 | 12

Vol. 79. ed A. C. Jackson

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Ginger et al. Studying monosynaptic connections with RABV

Banghart, M. R., et al. (2011).
Optogenetic photochemical control
of designer K+ channels in mam-
malian neurons. J. Neurophysiol.
106, 488–496.

Frick, A., Feldmeyer, D., Helmstaedter,
M., and Sakmann, B. (2008).
Monosynaptic connections between
pairs of L5A pyramidal neurons in
columns of juvenile rat somatosen-
sory cortex. Cereb. Cortex 18,
397–406.

Ghanem, A., Kern, A., and
Conzelmann, K.-K. (2012).
Significantly improved rescue of
rabies virus from cDNA plasmids.
Eur. J. Cell Biol. 91, 10–16.

Gong, S., Zheng, C., Doughty, M. L.,
Losos, K., Didkovsky, N., Schambra,
U. B., et al. (2003). A gene expres-
sion atlas of the central nervous
system based on bacterial arti-
ficial chromosomes. Nature 425,
917–925.

Gough, P. M., and Jorgenson, R. D.
(1976). Rabies antibodies in sera of
wild birds. J. Wildl. Dis. 12, 392–395.

Granstedt, A. E., Szpara, M. L., Kuhn,
B., Wang, S. S., and Enquist, L. W.
(2009). Fluorescence-based moni-
toring of in vivo neural activity
using a circuit-tracing pseudora-
bies virus. PLoS ONE 4:e6923. doi:
10.1371/journal.pone.0006923

Grewe, B. F., Langer, D., Kasper, H.,
Kampa, B. M., and Helmchen, F.
(2010). High-speed in vivo calcium
imaging reveals neuronal network
activity with near-millisecond preci-
sion. Nat. Methods 7, 399–405.

Hama, H., Kurokawa, H., Kawano,
H., Ando, R., Shimogori, T., Noda,
H., et al. (2011). Scale: a chemi-
cal approach for fluorescence imag-
ing and reconstruction of transpar-
ent mouse brain. Nat. Neurosci. 14,
1481–1488.

Haubensak, W., Kunwar, P. S., Cai, H.,
Ciocchi, S., Wall, N. R., Ponnusamy,
R., et al. (2010). Genetic dissection
of an amygdala microcircuit that
gates conditioned fear. Nature 468,
270–276.

Holtmaat, A., and Svoboda, K. (2009).
Experience-dependent structural
synaptic plasticity in the mam-
malian brain. Nat. Rev. Neurosci. 10,
647–658.

Huang, B., Bates, M., and Zhuang,
X. (2009). Super-resolution fluo-
rescence microscopy. Annu. Rev.
Biochem. 78, 993–1016.

Kelly, R. M., and Strick, P. L. (2000).
Rabies as a transneuronal tracer
of circuits in the central nervous
system. J. Neurosci. Methods 103,
63–71.

Kim, J., Zhao, T., Petralia, R. S., Yu, Y.,
Peng, H., Myers, E., et al. (2012).

mGRASP enables mapping mam-
malian synaptic connectivity with
light microscopy. Nat. Methods 9,
96–102.

Kiritani, T., Wickersham, I. R., Seung,
H. S., and Shepherd, G. M. (2012).
Hierarchical connectivity and
connection-specific dynamics in the
corticospinal-corticostriatal micro-
circuit in mouse motor cortex.
J. Neurosci. 32, 4992–5001.

Knobloch, H. S., Charlet, A.,
Hoffmann, L. C., Eliava, M.,
Khrulev, S., Cetin, A. H., et al.
(2012). Evoked axonal oxytocin
release in the central amygdala
attenuates fear response. Neuron 73,
553–566.

Kralj, J. M., Douglass, A. D.,
Hochbaum, D. R., Maclaurin,
D., and Cohen, A. E. (2012). Optical
recording of action potentials in
mammalian neurons using a micro-
bial rhodopsin. Nat. Methods 9,
90–95.

Lafon, M. (2011). Evasive strategies in
rabies virus infection. Adv. Virus
Res. 79, 33–53.

Larkman, A. U. (1991). Dendritic mor-
phology of pyramidal neurones of
the visual cortex of the rat: III. Spine
distributions. J. Comp. Neurol. 306,
332–343.

Larsen, D. D. (2008). Retrograde trac-
ing with recombinant rabies virus
reveals correlations between projec-
tion targets and dendritic architec-
ture in layer 5 of mouse barrel cor-
tex. Front. Neural Circuits 1:5. doi:
10.3389/neuro.04.005.2007

Li, J., Erisir, A., and Cline, H. (2011).
In vivo time-lapse imaging and
serial section electron microscopy
reveal developmental synaptic rear-
rangements. Neuron 69, 273–286.

Lichtman, J. W., and Denk, W. (2011).
The big and the small: challenges of
imaging the brain’s circuits. Science
334, 618–623.

Lo, L., and Anderson, D. J. (2011).
A Cre-dependent, anterograde
transsynaptic viral tracer for map-
ping output pathways of genetically
marked neurons. Neuron 72,
938–950.

Looger, L. L., and Griesbeck, O. (2012).
Genetically encoded neural activ-
ity indicators. Curr. Opin. Neurobiol.
22, 18–23.

Luo, L., Callaway, E. M., and Svoboda,
K. (2008). Genetic dissection of
neural circuits. Neuron 57, 634–660.

Markram, H., Lubke, J., Frotscher, M.,
Roth, A., and Sakmann, B. (1997).
Physiology and anatomy of synap-
tic connections between thick tufted
pyramidal neurones in the develop-
ing rat neocortex. J. Physiol. 500(Pt
2), 409–440.

Marschalek, A., Finke, S., Schwemmle,
M., Mayer, D., Heimrich, B., Stitz,
L., et al. (2009). Attenuation of
rabies virus replication and viru-
lence by picornavirus internal ribo-
some entry site elements. J. Virol. 83,
1911–1919.

Marshel, J. H., Mori, T., Nielsen, K.
J., and Callaway, E. M. (2010).
Targeting single neuronal networks
for gene expression and cell labeling
in vivo. Neuron 67, 562–574.

Mebatsion, T., Finke, S., Weiland, F.,
and Conzelmann, K. K. (1997).
A CXCR4/CD4 pseudotype rhab-
dovirus that selectively infects HIV-
1 envelope protein-expressing cells.
Cell 90, 841–847.

Mebatsion, T., Konig, M., and
Conzelmann, K. K. (1996a).
Budding of rabies virus parti-
cles in the absence of the spike
glycoprotein. Cell 84, 941–951.

Mebatsion, T., Schnell, M. J., Cox, J. H.,
Finke, S., and Conzelmann, K. K.
(1996b). Highly stable expression of
a foreign gene from rabies virus vec-
tors. Proc. Natl. Acad. Sci. U.S.A. 93,
7310–7314.

Mebatsion, T., Schnell, M. J., and
Conzelmann, K. K. (1995). Mokola
virus glycoprotein and chimeric
proteins can replace rabies virus gly-
coprotein in the rescue of infec-
tious defective rabies virus particles.
J. Virol. 69, 1444–1451.

Mei, L., and Xiong, W.-C. (2008).
Neuregulin 1 in neural devel-
opment, synaptic plasticity and
schizophrenia. Nat. Rev. Neurosci. 9,
437–452.

Ming, G.-L., and Song, H. (2005). Adult
neurogenesis in the mammalian
central nervous system. Annu. Rev.
Neurosci. 28, 223–250.

Miyamichi, K., Amat, F., Moussavi, F.,
Wang, C., Wickersham, I., Wall,
N. R., et al. (2011). Cortical rep-
resentations of olfactory input by
trans-synaptic tracing. Nature 472,
191–196.

Nassi, J. J., and Callaway, E. M. (2007).
Specialized circuits from primary
visual cortex to V2 and area MT.
Neuron 55, 799–808.

Nel, L. H., and Markotter, W. (2007).
Lyssaviruses. Crit. Rev. Microbiol.
33, 301–324.

Nguyen, T. D., Wirblich, C., Aizenman,
E., Schnell, M. J., Strick, P. L.,
and Kandler, K. (2012). Targeted
single-neuron infection with rabies
virus for transneuronal multisynap-
tic tracing. J. Neurosci. Methods 209,
367–370.

Nhan, H. L., and Callaway, E. M.
(2012). Morphology of superior
colliculus- and middle temporal
area-projecting neurons in primate

primary visual cortex. J. Comp.
Neurol. 520, 52–80.

Osakada, F., Mori, T., Cetin, A. H.,
Marshel, J. H., Virgen, B., and
Callaway, E. M. (2011). New rabies
virus variants for monitoring
and manipulating activity and
gene expression in defined neural
circuits. Neuron 71, 617–631.

Panzanelli, P., Bardy, C., Nissant, A.,
Pallotto, M., Sassoe-Pognetto, M.,
Lledo, P. M., et al. (2009). Early
synapse formation in developing
interneurons of the adult olfactory
bulb. J. Neurosci. 29, 15039–15052.

Petilla Interneuron Nomenclature
Group (PING), Ascoli, G. A.,
Alonso-Nanclares, L., Anderson,
S. A., Barrionuevo, G., Benavides-
Piccione, R., Burkhalter, A., et al.
(2008). Petilla terminology: nomen-
clature of features of GABAergic
interneurons of the cerebral cortex.
Nat. Rev. Neurosci. 9, 557–568.

Ragan, T., Kadiri, L. R., Venkataraju, K.
U., Bahlmann, K., Sutin, J., Taranda,
J., et al. (2012). Serial two-photon
tomography for automated ex vivo
mouse brain imaging. Nat. Methods
9, 255–258.

Rancz, E. A., Franks, K. M., Schwarz,
M. K., Pichler, B., Schaefer, A.
T., and Margrie, T. W. (2011).
Transfection via whole-cell record-
ing in vivo: bridging single-cell
physiology, genetics and connec-
tomics. Nat. Neurosci. 14, 527–532.

Rasalingam, P., Rossiter, J. P.,
Mebatsion, T., and Jackson, A.
C. (2005). Comparative pathogen-
esis of the SAD-L16 strain of rabies
virus and a mutant modifying the
dynein light chain binding site of
the rabies virus phosphoprotein
in young mice. Virus Res. 111,
55–60.

Rieder, M., and Conzelmann, K.-K.
(2011). Interferon in rabies virus
infection. Adv. Virus Res. 79,
91–114.

Sakuma, T., Barry, M. A., and Ikeda,
Y. (2012). Lentiviral vectors: basic
to translational. Biochem. J. 443,
603–618.

Schnell, M. J., Mebatsion, T., and
Conzelmann, K. K. (1994).
Infectious rabies viruses from
cloned cDNA. EMBO J. 13,
4195–4203.

Scott, J. W., McBride, R. L., and
Schneider, S. P. (1980). The organi-
zation of projections from the olfac-
tory bulb to the piriform cortex
and olfactory tubercle in the rat.
J. Comp. Neurol. 194, 519–534.

Seung, H. S. (2009). Reading the book
of memory: sparse sampling ver-
sus dense mapping of connectomes.
Neuron 62, 17–29.

Frontiers in Neural Circuits www.frontiersin.org January 2013 | Volume 7 | Article 2 | 13

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Ginger et al. Studying monosynaptic connections with RABV

Sigrist, S. J., and Sabatini, B. L.
(2012). Optical super-resolution
microscopy in neurobiology. Curr.
Opin. Neurobiol. 22, 86–93.

Steinmeyer, J. D., and Yanik, M. F.
(2012). High-throughput single-
cell manipulation in brain tissue.
PLoS ONE 7:e35603. doi: 10.1371/
journal.pone.0035603

Stepien, A. E., Tripodi, M., and Arber, S.
(2010). Monosynaptic rabies virus
reveals premotor network organi-
zation and synaptic specificity of
cholinergic partition cells. Neuron
68, 456–472.

Tripodi, M., Stepien, A. E., and Arber, S.
(2011). Motor antagonism exposed
by spatial segregation and timing of
neurogenesis. Nature 479, 61–66.

Ugolini, G. (1995). Specificity of
rabies virus as a transneuronal
tracer of motor networks: transfer
from hypoglossal motoneurons
to connected second-order and
higher order central nervous system
cell groups. J. Comp. Neurol. 356,
457–480.

Ugolini, G. (2011). Rabies virus as
a transneuronal tracer of neuronal
connections. Adv. Virus Res. 79,
165–202.

van Praag, H., Schinder, A. F.,
Christie, B. R., Toni, N., Palmer,

T. D., and Gage, F. H. (2002).
Functional neurogenesis in the
adult hippocampus. Nature 415,
1030–1034.

Vivar, C., Potter, M. C., Choi, J., Lee,
J.-Y., Stringer, T. P., Callaway, E.
M., et al. (2012). Monosynaptic
inputs to new neurons in the dentate
gyrus. Nat. Commun. 3:1107. doi:
10.1038/ncomms2101

Wall, N. R., Wickersham, I. R., Cetin,
A., De La Parra, M., and Callaway,
E. M. (2010). Monosynaptic cir-
cuit tracing in vivo through Cre-
dependent targeting and comple-
mentation of modified rabies virus.
Proc. Natl. Acad. Sci. U.S.A. 107,
21848–21853.

Watabe-Uchida, M., Zhu, L., Ogawa,
S. K., Vamanrao, A., and Uchida,
N. (2012). Whole-brain mapping of
direct inputs to midbrain dopamine
neurons. Neuron 74, 858–873.

Weible, A. P., Schwarcz, L.,
Wickersham, I. R., Deblander,
L., Wu, H., Callaway, E. M., et al.
(2010). Transgenic targeting of
recombinant rabies virus reveals
monosynaptic connectivity of
specific neurons. J. Neurosci. 30,
16509–16513.

Wickersham, I. R., and Feinberg, E.
H. (2012). New technologies for

imaging synaptic partners. Curr.
Opin. Neurobiol. 22, 1–7.

Wickersham, I. R., Finke, S.,
Conzelmann, K.-K., and Callaway,
E. M. (2007a). Retrograde neuronal
tracing with a deletion-mutant
rabies virus. Nat. Methods 4, 47–49.

Wickersham, I. R., Lyon, D. C.,
Barnard, R. J. O., Mori, T., Finke,
S., Conzelmann, K.-K., et al.
(2007b). Monosynaptic restriction
of transsynaptic tracing from sin-
gle, genetically targeted neurons.
Neuron 53, 639–647.

Wickersham, I. R., Sullivan, H.
A., and Seung, H. S. (2010).
Production of glycoprotein-deleted
rabies viruses for monosynaptic
tracing and high-level gene expres-
sion in neurons. Nat. Protoc. 5,
595–606.

Yizhar, O., Fenno, L. E., Davidson, T.
J., Mogri, M., and Deisseroth, K.
(2011). Optogenetics in neural sys-
tems. Neuron 71, 9–34.

Yonehara, K., Balint, K., Noda, M.,
Nagel, G., Bamberg, E., and Roska,
B. (2011). Spatially asymmetric
reorganization of inhibition estab-
lishes a motion-sensitive circuit.
Nature 469, 407–410.

Young, J. A., Bates, P., and Varmus, H.
E. (1993). Isolation of a chicken

gene that confers susceptibility
to infection by subgroup A avian
leukosis and sarcoma viruses.
J. Virol. 67, 1811–1816.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 09 October 2012; paper pend-
ing published: 29 October 2012; accepted:
05 January 2013; published online: 24
January 2013.
Citation: Ginger M, Haberl M,
Conzelmann K-K, Schwarz MK and
Frick A (2013) Revealing the secrets
of neuronal circuits with recombi-
nant rabies virus technology. Front.
Neural Circuits 7:2. doi: 10.3389/fncir.
2013.00002
Copyright © 2013 Ginger, Haberl,
Conzelmann, Schwarz and Frick. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors
and source are credited and subject to any
copyright notices concerning any third-
party graphics etc.

Frontiers in Neural Circuits www.frontiersin.org January 2013 | Volume 7 | Article 2 | 14

http://dx.doi.org/10.3389/fncir.2013.00002
http://dx.doi.org/10.3389/fncir.2013.00002
http://dx.doi.org/10.3389/fncir.2013.00002
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Ginger et al. Studying monosynaptic connections with RABV

GLOSSARY
Anterograde tracing: Tracing of projection neurons by transport
from the cell bodies to the axon terminals.

Connectome: Here referred to as a complete map of all synaptic
connections of the brain or a neural circuit.

Mono-trans-synaptic tracing or monosynaptic trans-
synaptic tracing: The process of tracing connections between
source cells and first-order synaptically connected partners.

Neurotropic virus: Virus preferentially infecting neurons.
Polysynaptic tracer: This term is often used quite loosely to

describe tracers that spread from one neuron to another (trans-
neuronal tracer), but not always exclusively between synaptically
connected cells. In contrast to mono-trans-synaptic tracers, trac-
ing can occur between chains of connected neurons.

Pseudotyping: The process of replacing the native surface gly-
coprotein of a virus with that of another virus to alter viral
tropism.

Retrograde tracing: Tracing of projection neurons by trans-
port from the axon terminals to the cell bodies.

Reverse genetics: In the context of virology the term reverse
genetics implies the reconstitution of live infectious virus parti-
cles using cDNAs, transfected into heterologous cells, as starting
material.

Source cells: Initially infected postsynaptic neuron/s that
allows retrograde RABV !G spread upon RG transcom-
plementation, thereby revealing directly presynaptic
partners.

Trans-neuronal tracer: A tracer that passes from one neuron
to another, for which synapse specificity has not been adequately
identified.

Trans-synaptic tracer: A tracer that spreads exclusively
between neurons that are connected by synaptic contacts.

Tropism: Preferential or specific infection of, and replication
within, a certain cell-type.
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2.1.2 Anterograde Rabies Virus for 3D Reconstruction of Neuronal 

Morphology 
 
Much of our current knowledge about the circuits of the brain comes from studies 

labeling the output of a brain region, anterogradely, either in bulk or sparsely 

followed by a projection-quantification or a precise reconstruction of individual 

axons, respectively. In particular sparse labeling has always been difficult to achieve 

and cumbersome, which could be facilitated by genetic strategies. The next section 

describes the generation of a new viral vector that facilitates the reconstruction of the 

neuronal structure. The experimental methods and materials used as well as the results 

are thoroughly described in the publication included in the subsequent section. 

The computational reconstruction and figure preparation shown in Figure 2 has been 

performed by Jason Guest and Marcel Oberlaender. The author of the thesis was 

involved in the design, the performing and analysis of all experiments, partially or 

fully, and produced the here presented novel viral vectors. 
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ORIGINAL ARTICLE

An anterograde rabies virus vector for high-resolution large-scale
reconstruction of 3D neuron morphology

Matthias Georg Haberl • Silvia Viana da Silva • Jason M. Guest •

Melanie Ginger • Alexander Ghanem • Christophe Mulle •

Marcel Oberlaender • Karl-Klaus Conzelmann • Andreas Frick

Received: 24 September 2013 / Accepted: 7 February 2014
! The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Glycoprotein-deleted rabies virus (RABV DG)
is a powerful tool for the analysis of neural circuits. Here,

we demonstrate the utility of an anterograde RABV DG
variant for novel neuroanatomical approaches involving
either bulk or sparse neuronal populations. This technology

exploits the unique features of RABV DG vectors, namely

autonomous, rapid high-level expression of transgenes, and
limited cytotoxicity. Our vector permits the unambiguous

long-range and fine-scale tracing of the entire axonal arbor

of individual neurons throughout the brain. Notably, this
level of labeling can be achieved following infection with a

single viral particle. The vector is effective over a range of

ages ([14 months) aiding the studies of neurodegenerative
disorders or aging, and infects numerous cell types in all

brain regions tested. Lastly, it can also be readily combined

with retrograde RABV DG variants. Together with other

modern technologies, this tool provides new possibilities
for the investigation of the anatomy and physiology of

neural circuits.

Keywords Neuronal morphology ! Connectivity ! Sparse
labeling ! Circuit reconstruction ! Neuron-type
classification ! Alzheimer’s disease

Introduction

The reconstruction of neuronal circuits is central to many

questions in neuroscience. Indeed, knowledge of the fine-

scale morphology of neurons provides not only insight into
the identity and function of individual neurons, but also

into the function of neural circuits (Douglas and Martin

2004; Lichtman and Denk 2011; Oberlaender et al. 2012a;
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Neurocentre Magendie, U862, Bordeaux, France

M. G. Haberl
Institute of NeuroInformatics, University of Zurich, Zurich,
Switzerland

S. Viana da Silva ! M. Ginger ! C. Mulle
Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297,
Bordeaux, France

S. Viana da Silva ! M. Ginger ! C. Mulle
Interdisciplinary Institute for Neuroscience, Univ. Bordeaux,
UMR 5297, Bordeaux, France

S. Viana da Silva
PDBEB CNC, University of Coimbra, Coimbra, Portugal

J. M. Guest ! M. Oberlaender
Digital Neuroanatomy, Max Planck Florida Institute for
Neuroscience, Jupiter, FL, USA

A. Ghanem ! K.-K. Conzelmann
Max-von-Pettenkofer Institute and Gene Center of the Ludwig-
Maximilians-University Munich, Munich, Germany

M. Oberlaender
Computational Neuroanatomy Group, Max Planck Institute for
Biological Cybernetics, Tuebingen, Germany

M. Oberlaender
Bernstein Center for Computational Neuroscience, Tuebingen,
Germany

123

Brain Struct Funct

DOI 10.1007/s00429-014-0730-z



Parekh and Ascoli 2013; Svoboda 2011). Successful neu-

ronal reconstruction depends on a number of key parame-
ters: (1) Neurons must be labeled in a way that permits

visualization of all neuronal structures (dendrites, spines,

axons, boutons). (2) The full extent of neuronal processes
should be efficiently labeled. In particular, this applies to

the axons, which extend over large brain volumes (Obe-

rlaender et al. 2011). (3) Labeling would ideally permit
visualization by high-resolution light microscopy approa-

ches (such as confocal, two-photon, or super-resolution
microscopy). In effect, this means efficient expression of a

volume-filling fluorescent marker and a high signal-to-

noise ratio for the labeled structure. (4) The ideal labeling
method would not only be suited to bulk labeling of pop-

ulations of neurons, but importantly also provide intense

labeling of sparse populations of neurons, or even single
neurons. This is, because to date the most successful

reconstructions of complete neuronal morphology require

sparse or single-cell labeling since the axons of bulk
labeled neurons become indistinguishable in the densely

packed neuropil unless resolved with electron microscopy

(da Costa and Martin 2013; Helmstaedter 2013).
Viral vectors fulfill many of these criteria due to their

self-amplifying properties (ensuring a high-level expres-

sion of volume-filling markers) (Callaway 2008; van den
Pol et al. 2009). In particular, genetically modified rabies

virus (RABV) is well suited to this approach due to its

highly neurotropic nature, rapid, high-level expression of
encoded proteins and relatively low cytotoxicity (Wicker-

sham et al. 2007a; Ginger et al. 2013b). The glycoprotein

gene-deleted RABV variant, (RABV DG) is an especially
useful tool that permits the manipulation of the tropism of

the virus through pseudotyping approaches (Mebatsion

et al. 1997; Ginger et al. 2013b). This principle has pre-
viously been exploited for both retrograde labeling of

neurons (Wickersham et al. 2007a; Larsen et al. 2007;

Nhan and Callaway 2012) and for labeling inputs into a
specific cell population (i.e., mono-trans-synaptic tracing)

(Wickersham et al. 2007b; Choi et al. 2010).

Here, we employ a RABV DG-based method that allows
direct transduction of cell bodies, permitting the tracing and

complete 3D reconstruction of dendritic and axonal arbors

of sparsely labeled neurons. This method combines the
advantages of an anterograde tracer with the brilliant mor-

phological labeling previously described for recombinant

RABV DG (Wickersham et al. 2007a). This vector fulfills
all of the aforementioned criteria for neuronal labeling. Low

cytotoxicity, fast and strong expression and intense labeling

of even the most distant processes set it apart from ‘clas-
sical’ viral and non-viral anterograde neuroanatomical

tracing approaches. Moreover, the ability to infect a range

of cell types over a large age window makes this vector a
versatile tool for a large number of experimental situations.

Results

To render RABV DG capable of cell body infection, we

pseudotyped it with a chimeric envelope protein containing

the N-terminal domain of the vesicular stomatitis virus
glycoprotein (VSV-G). VSV-G binds to highly ubiquitous

receptors (Finkelshtein et al. 2013), thus conferring the

ability to transduce a wide range of cell types, a property
that has previously been exploited for the production of

VSV-G pseudotyped viral vectors such as retro- and len-

tiviruses (Burns et al. 1993). We replaced the membrane
anchor and C-terminal cytoplasmic sequence of the

authentic VSV-G with that of the RABV-G protein (RtmC)

to support selective incorporation of the protein into the
RABV DG envelope (Fig. 1a). We have generated vectors

expressing either a membrane-targeted form of tdTomato

labeling the neuronal membrane for subsequent surface
reconstruction (Fig. 1c, lower panels; Fig. 3c), or cyto-

plasmic fluorescent proteins (eGFP and mCherry) (all other

figures). The resulting vector [RABV DG (VSV GRtmC)]
consistently transduced cells at the site of injection

(Figs. 1, 2, 3, 4, 5, 6).

Important criteria determining the suitability of a viral
vector for neuronal tracing are the time course for

expression, the intensity of expression, and the morpho-

logical detail provided by the labeling. Thus, we compared
RABV DG (VSV GRtmC) with two commonly used anter-

ograde viral tracers, namely lentivirus, and adeno-associ-
ated virus (AAV). We quantified fluorescence intensity and

the signal-to-noise ratio for eGFP expressing neurons fol-

lowing injection of these vectors into the hippocampal
dentate gyrus (DG) region (Fig. 1b). Fluorescence intensity

and signal-to-noise ratio measured at the cell bodies of

transduced neurons were significantly higher for RABV
DG compared to both other vectors (one-way Anova fol-

lowed by Tukey multiple-comparison; p\ 0.001). Impor-

tantly, these superior labeling qualities were achieved (with
no sign of cytotoxicity) at much shorter time scales of

infection (6 days post infection for RABV DG (VSV

GRtmC) versus 12 and 22 days for lentivirus and AAV,
respectively). Moreover, dendrites, spines, axons, boutons,

as well as filopodia were readily distinguished within

RABV DG (VSV GRtmC) infected neurons, aiding their
visualization and reconstruction (Fig. 1c). Notably, the

labeled neurons presented here are DG granule cells,

neurons that are difficult to infect using the native RABV
(reviewed in Ohara et al. 2009).

We noted that the transduction with RABV DG (VSV-

GRtmC) occurred in a purely anterograde manner (i.e.,
infection of cell bodies and subsequent labeling of axons

and dendrites). To exclude the possibility that RABV DG
(VSV-GRtmC) is transported in a retrograde or trans-syn-
aptic manner, we performed injections into the whisker-
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related barrel cortex (BC) and visually inspected regions
known to connect to this structure. While neurons were

infected locally at the site of injection, no labeled cell

bodies were found in any of the following regions: tha-
lamic ventral posterior medial (VPm) division and poster-

ior medial (POm) division, other areas of the primary
somatosensory cortex (S1), secondary somatosensory cor-

tex (S2), primary motor cortex (M1), and contralateral S1

(not shown). In fact, we saw no infected cell outside the
local injection site in S1. This property of RABV DG
(VSV-GRtmC) permits its combined use with a retrogradely

transducing RABV DG variant (Wickersham et al. 2007a)
to unambiguously trace projections both to-, and from-, a

given region. An example for this type of experiment is

shown for the labeling of reciprocal projections between
the VPm division of mouse thalamus and the primary

somatosensory barrel cortex (S1-BC; Fig. 1d). Importantly,

we found a complete absence of retrograde infection in all
injections using RABV DG (VSV-GRtmC).

In the aforementioned examples, we demonstrate the

utility of this vector for the transduction of populations of
neurons. However, as stated previously, reconstruction of

the complete structure of a neuron, including its complex
and wide-reaching axonal arbors, requires methods for

sparse- or single-neuron labeling. This is often achieved

by intracellular filling with biocytin (or its analogs), as
most viral-based tracers are completely unsuited to this

task. RABV, however, is somewhat unique due to its
ability to amplify sufficiently from a single infectious

particle (reviewed in Callaway 2008) to confer robust,

high intensity labeling to all morphological aspects of an
infected cell. Although this property is known from the

wild-type CVS strain of RABV (Callaway 2008), it has

not been demonstrated for glycoprotein-deleted pseudo-
typed variants of the SAD B19 strain. To examine the

ability of our anterograde RABV DG vector to confer the

sparse labeling necessary for single neuron reconstruction,
we injected 5–10 viral particles into the thalamic POm

division of a 16-week-old mouse. Within the investigated

thalamic volume of *400 lm 9 400 lm 9 400 lm, only
seven cells were labeled (Fig. 2a), including three excit-

atory projecting neurons, one inhibitory interneuron and

three astrocytes (Fig. 2a, b). However, all cells were
intensely labeled throughout the extent of their processes.
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Fig. 1 Novel rabies virus variant for anterograde tracing of neuronal
morphology. a RABV DG expressing a fluorescent protein (XFP:
eGFP, mCherry or myr-TdTom) was pseudotyped with a chimeric
surface protein containing the transmembrane and cytoplasmic
domain of the native RABV glycoprotein (RtmC) and surface domain
of the G protein of VSV Indiana virus. b Comparison of fluorescence
intensity and signal-to-noise ratio of cells infected with RABV DG
(VSV GRtmC) (RABV), VSV G-pseudotyped lentivirus (LV) and
adeno-associated virus (AAV). Data are mean ± SEM ***p\ 0.001
(one-way ANOVA test). c RABV DG(VSV GRtmC) infection of the
hippocampal dentate gyrus (DG) region resulted in intense labeling of

granule cells revealing their fine morphological details including the
dendritic tree (upper middle), spines (upper right), mossy fibers (Mf),
and mossy fiber boutons (MfBs, yellow arrowheads). This permits
semi-automated volume reconstruction (lower middle and lower right
panel) of MfBs with their adjacent filopodia (e.g., red arrowhead) and
satellites (e.g., blue arrowhead). Scale bars 500 lm, upper left
25 lm, lower left 15 lm, upper middle 5 lm, upper right, lower
middle and right. d Reciprocal thalamo-cortical and cortico-thalami-
cal projections in S1 BC and VPm following co-injection of
retrograde (green) and anterograde (red) RABV DG. Scale bars
500 lm
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Using high-resolution, large-scale confocal microscopy

and automated image processing routines (Oberlaender
et al. 2007), we reconstructed the somata, dendrites and

axons of the four RABV-infected neurons within 12

consecutive 50-lm-thick brain sections (Fig. 2). The high
labeling quality in terms of fluorescent intensity, signal-to-

noise ratio, and homogeneity across cells (Fig. 2c)

including their entire axonal arbor (Fig. 2d) enabled the
automated tracing of all morphological fine-structures

within the imaged volume. To demonstrate this, we
reconstructed the complete 3D morphology of all den-

drites, the complete axon of the interneuron, and the initial

parts of the axons from the three projecting neurons.
Furthermore, we traced and reconstructed one long-range

axon. In this case, the neuron projected to the nucleus

reticularis (RT) and continued to traverse the white matter
tract before entering the vibrissal cortex (S1). This type of

axon trajectory has been reported previously for POm

neurons (Deschenes et al. 1998). The axon showed no
obvious decrease in labeling quality with distance from the

soma, allowing identification of individual boutons within

thalamus and cortex (Fig. 2d). These results clearly dem-
onstrate the ability of our anterograde RABV DG tracer to

amplify its genome sufficiently, following infection of a

cell by a single particle, to enable tracing of long-ranging
axons. As a result of this analysis, we found that the initial

axonal segments of the traced neurons were less unidi-

rectional than those described using other methods
(Deschenes et al. 1998), possibly indicating that POm

projects more diversely to regions other than S1.

To better characterize the efficacy/versatility of our
vector, we performed injections into a variety of brain areas

and over a range of ages. RABV DG (VSV GRtmC) trans-
duced cells in all mouse brain areas tested, i.e., somato-

sensory cortex, thalamus, hippocampal dentate gyrus,

substantia nigra and cerebellum (Figs. 1c, d, 2b, 3, 4).
RABV DG (VSV-GRtmC) was capable of transducing

excitatory and inhibitory neurons, as well as glial cells, as

illustrated in Figs. 2, 4 and 6. For example, in the cerebel-
lum, we found that the virus efficiently transduced inhibi-

tory stellate cells, basket cells and Purkinje cells, as well as

the excitatory granule cells. Notably, this vector mediated
efficient and intense cell labeling in mice of all ages tested

(1–15 months), permitting its use for the neuroanatomical

study of neurodegenerative disorders (AD) or aging, as
demonstrated in Fig. 5.
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Fig. 2 3D reconstruction of thalamic neurons sparsely labeled with
RABV DG (VSV-GRtmC). a Three excitatory neurons, one inhibitory
interneuron (soma/dendrites: red, axon: blue) and three astrocytes
(green) were reconstructed within the imaged volume in thalamus and
cortex. b Cells were reconstructed from 12 consecutive 50-lm-thick
brain sections (long dashes of the anterior–posterior axis). Maximum
projection images of three sections containing the neuronal somata are
shown (red within the anterior–posterior axis). c Left zoom of panel b.
Right Semi-automated reconstructions of the neuronal skeletons are
superimposed. In case of the interneuron in panel 3, only the soma and
axonal arbor are shown. Please note: Reconstructed branches that are

not visible in the projection image, such as the gap in the axon in panel
1, were traced in adjacent brain sections. d One axon was traced into
cortex. Maximum projections superimposed with semi-automated
reconstructions are shown from exemplary parts of the axon (blue
within the anterior–posterior axis, panel b). It branched first within RT
(*1), where individual boutons (at arrow locations, not reconstructed)
indicated potential synapse locations; traversed through the WM (*2,
*3), where the axon was perfectly visible; and entered the vibrissal
cortex, where labeling quality did not decrease with distance from the
soma (i.e., individual boutons were still clearly visible). Scale bars
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To investigate its tropism in the neocortex in greater

detail, we performed injections into layer 5 of S1-BC
(Fig. 6), where the composition of cell types has been

previously well characterized (i.e., *70 % neurons vs.

*30 % glial cells (Tsai et al. 2009; Meyer et al. 2011)).
We found that *71 % of the labeled cells in layer 5 were

neurons (and thus 29 % were glial cells). Interestingly,

only 0.4 % of infected neurons were inhibitory interneu-
rons in contrast to the *80 % excitatory versus *20 %

inhibitory neurons previously reported for layer 5 of the

barrel cortex (Meyer et al. 2011). This suggests a strong
bias for the transduction of excitatory neurons, as previ-

ously reported for VSV-G pseudotyped lentiviral vectors

(Nathanson et al. 2009). To further characterize the types
of infected glial cells, we used markers for astrocytes

[S100b, (Zuo et al. 2004)] and microglia [Iba1, (Schafer

et al. 2012)]. We found that *15 % of infected cells fell
into the former category (Fig. 6g–i), while virtually no

microglia were labeled (data not shown). We would like to

point out, however, that glial cells form a non-homoge-
neous group of differing origins and several markers co-

exist in the various types (Cahoy et al. 2008). Our finding is

therefore only the first step in characterizing the infection
of various glial cell types by RABV DG (VSV GRtmC).

Nonetheless, our data provide evidence for the ability of

pseudotyped RABV DG variants to infect glial cells and

thus extends the range of cell types that may be amenable

to manipulation with RABV DG.

Discussion

Here, we demonstrate the utility of RABV DG (VSV-

GRtmC) for neuroanatomical studies involving not only bulk
populations of neurons, but also sparse or individual neu-

rons. Our vector is exclusively anterograde, permits rapid

high intensity labeling, without cytotoxic side effects and
can be used over a sufficiently extended time window to

permit physiological experiments. In addition, it can

transduce a range of cell types/brain areas in both young
and aged animals. These qualities are unequaled by any

other type of viral tracer, and in addition render it useful for

the study of aging or neurodegenerative disorders (Fig. 5)
where age/toxicity might be a factor limiting labeling

success.

We show that RABV DG (VSV-GRtmC) is able to
amplify sufficiently from single-particle infection of a host

cell to confer the high intensity labeling necessary for

automated detection of morphological features (without
prior amplification of the signal) (Fig. 2). Most other viral

vectors such as lentivirus and AAV do not provide suffi-

cient labeling intensity for reconstruction upon sparse
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infection. Indeed, only Sindbis virus (Ghosh et al. 2011)

has been reported to amplify sufficiently from a single

particle to allow the visualization of long-ranging axonal
structures from individual neurons in 3-week-old animals.

However, extreme cytotoxicity and reduced efficacy in

adult animals (Chen et al. 2000) hamper the practical use of
Sindbis virus for the purpose of quantitative morphological

tracing.

Our vector may be regarded as a viable alternative to
classical single cell labeling approaches, such as those based

on biocytin delivery via patch pipettes. The latter are limited

by low success rates for recovering complete axonal mor-
phologies [e.g., *60 % (Oberlaender et al. 2012b)] and

require histological post-processing to stain the biocytin-

labeled structures. Moreover, reduced penetrability of axon
bundles such as the white matter limits the success of tracing

long-range axons using biocytin-labeling (where post-pro-

cessing with immunological agents is required). RABV DG
(VSV-GRtmC), on the other hand, is not affected by any of
these issues (Fig. 2). In addition to the aforementioned

qualities, the large size of RABVDG (VSV-GRtmC) particles

limits diffusion, allowing very targeted infection of a spa-
tially restricted brain volume. We propose that co-injection

of RABV DG (VSV-GRtmC) variants expressing different

fluorescentmarkers, togetherwith large-scale reconstruction
of single-cell morphology, could aid the classification of

neuron types within a specific brain region or nucleus.

Recently, a glycoprotein-deleted form of another closely
related rhabdovirus, the vesicular-stomatitis-virus (rVSV),

has also been used as a single-cycle (i.e., non-trans-synaptic)

anterograde tracer (van den Pol et al. 2009). Despite strong
morphological labeling following fluorescent marker
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Fig. 4 Transduction in the cerebellum. A multiple-step injection at
different depths was applied to investigate the transduction efficacy of
RABV DG (VSV-GRtmC) in the cerebellar cortex. a Injection scheme,
black bar illustrates the virus injections into different depths along the
needle track. b Injection overview of RABV DG (VSV-GRtmC)
infected cells (red) overlaid with calbindin- (CB?) positive cells
(green). b, c Transduced cells were found in the molecular layer
(ML), the Purkinje cell layer (PCL) and at high abundance in the
granule cell layer (GCL). c In the molecular layer both of the

inhibitory types, stellate cells (St) and basket cells (Ba) were
efficiently transduced. Within the Purkinje cell layer (PCL), the
calbindin (CB?) immunoreactivity (d) and the distinct branching
pattern of the dendritic trees (e) confirmed the transduction of
Purkinje cells. f Numerous labeled cells were found in the granule cell
layer, where *80 % of the transduced cells co-labeled for NeuN
indicating that the abundant granule cells are transduced efficiently.
Scale bars 500 lm (b) 25 lm (c, d, f) and 10 lm (e)
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expression, the use of this virus is limited due to severe, fast-

onset cytotoxic effects that cause shut-down of the host cell
transcription and nuclear export (Faul et al. 2009). This

cytotoxicity strongly restricts the time window for many

anatomical/physiological studies to *1 day post infection,
even for attenuated variants of rVSV DG (Beier et al. 2011).

The presumed amphotropic qualities of the chimeric

VSV-G envelope protein likely enable transduction of a
wider range of species and cell types than those presented

here. Of note, a similar VSV-G pseudotyped RABV DG
vector has recently been described (Gomme et al. 2010).

This vector was also shown to be anterograde (Wickersham

et al. 2013), although it may have a slightly different tro-
pism due to differences in the transmembrane domain of

the glycoprotein-packaging construct. Our findings, toge-

ther with the latter study, suggest novel applications for
RABV DG in addition to its use as a retrograde (Wicker-

sham et al. 2007a) or mono-trans-synaptic tracer (Wick-

ersham et al. 2007b). For example, RABV DG (VSV-
GRtmC) may be used to define a spatially confined starter

cell population for mono-trans-synaptic tracing. It may also

be employed as a tool to manipulate/monitor neural circuit
activity following the expression of, for example, calcium/

voltage indicators or photo-activatable channels (Osakada

et al. 2011). In addition, it can be readily combined with
retrogradely transducing RABV variants. Unlike other

previously reported combinations of anterograde and ret-

rograde agents, the present approach enables the exploita-
tion of two vectors with the same diffusion characteristics,

high quality of labeling and short time course for expres-

sion as shown in Fig. 1d. Lastly, this tool together with

other technologies, e.g., permitting dendritic or synaptic

protein profiling (Ginger et al. 2013a; Micheva et al. 2010)
or gross-scale reconstruction approaches (as described

here), could greatly aid the classification of cell-type

identity. In conclusion, the combination of different RABV
variants with optical, physiological and computational

approaches, offers a wide range of possibilities for the

investigation of the structure–function relationship of
neuronal circuits.

Methods

Engineering of the hybrid glycoprotein

The chimeric VSV/SAD G (VSV GRtmC) cDNA was con-
structed to encode the ectodomain (aa 1–454) of VSV

Indiana G (kindly provided by Dr. John K. Rose) fused to

the entire transmembrane and cytoplasmic domain (amino
acids 450–524) (Mebatsion et al. 1995) of RABV SAD G.

This construct differs from the packaging construct

employed byWickersham et al. (2013), which contained the
surface- and trans-membrane domain of the VSV glyco-

protein and cytoplasmic domain of the RABV glycoprotein.

Virus production

The production of G-gene deficient RABV SAD DG-eGFP
and SAD DG-mCherry was described previously (Wick-

ersham et al. 2007a). SAD DG myr-TdTom was con-

structed in the same way to encode a protein in which two

b

2

1
a

*

1

2

1*

Fig. 5 Labeling and surface reconstruction in aged animals. RABV
DG-mCherry(VSV-GRtmC) infection of hippocampal dentate gyrus
neurons in a 15-month-old APP/PS1 mouse—a mouse model for
Alzheimer’s disease—enables the fine-detailed reconstruction of
dendrites and spines (a), as well as of axonal boutons (b). a Strong
labeling facilitated automated reconstruction of the dendritic tree (left
and middle panel; scale: 15 lm) and of dendritic spines (right panels
1 and 1*; scale 5 lm) of a dentate gyrus cell using Imaris (Bitplane,

Zurich, Switzerland). This labeling also revealed anatomical abnor-
malities like tortuous dendrites, which have previously been described
as an effect of aging in humans [right panel 2 (Tsamis et al. 2010].
b Similar to the dendrites/spines, the axons of granule cells (mossy
fibers) and their boutons in the CA3 area of the hippocampus were
strongly labeled (upper and middle panel). Automated surface
reconstruction (Imaris) of an isolated mossy fiber bouton showing
its fine morphological details (lower panel). Scale bars 5 lm
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tandem copies of a myristoylation signal are fused to
tdTomato for membrane targeting (Trichas et al. 2008).

Stocks of VSV GRtmC-pseudotyped rabies viruses

[hereafter referred to as RABV DG XFP (VSV GRtmC)]
were prepared essentially as described in (Rancz et al.

2011), with the exception that BSR T7/5 cells (Buchholz

et al. 1999) were used instead of BHK-21 cells and
pCAGGS VSV/SAD G was used as the transcomple-

menting plasmid. Cells were replated 24 h after infection

with the initial starter stock and the supernatant media
discarded and replaced with new media. VSV

GRtmC-pseudotyped virus was harvested 3 days post

c

d e

a bmCherry

mCherry

Overlay

Overlay

NeuN

GAD67

*

*

*

*

*
*

*

*

f

*g hmCherry OverlayS100- i

Fig. 6 Tropism of RABV DG (VSV-GRtmC) in CNS. Determination
of cell-type identity of RABV DG (VSV-GRtmC) infected mCherry
expressing cells in layer 5 of the barrel cortex (representative images
in a, d and g) in 50-lm-thick sections using immunohistochemistry
against NeuN (total neuron marker; b), GAD67 (marker of inhibitory
interneurons; e) and S-100b (marker of astrocytes, h). Overlay of
mCherry and cell-specific marker (c, f and i). Images are either max

projections (a–c, g–i) derived from selected planes of a multi-plane
image stack or a single plane (d–f) obtained from laser scanning
confocal microscopy. Stars in panel e indicate GAD67 positive cells.
A single mCherry-/GAD67 positive neuron is indicated by an arrow
in (f). Arrows in panel i indicate mCherry-/S-100b positive cells.
Scale bars 50 lm
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infection. Titers of the different variants of pseudotyped

rabies virus were in the range of 2 9 106–5 9 107 infec-
tious particles/ml, estimated by serial dilution and infection

of the BHK-21 cell line.

Stereotaxic injections

All experimental procedures were performed in accor-
dance with French law and the European Directive cov-

ering the use of experimental animals (2010/63/EU) and
approved by the Ethics Committee of Bordeaux (approval

# 5012024-A). Stereotaxic injections were performed as

previously described (Cetin et al. 2006) in C57Bl/6 J
mice (aged 1–15 months) or in 15-month-old APP/PS1

mice [a mouse model for Alzheimer’s disease (Reiserer

et al. 2007)]. In brief, viral vectors were injected into the
brains of isoflurane anesthetized and head-fixed mice

using a 10-ll glass syringe fitted with a 35-gauge needle

or a pulled glass pipette. Volume and speed of the
injections were controlled using a WPI Ultra Micro

Pump. The stereotaxic coordinates were as follows: (1)

Thalamic ventral posteromedial (VPm) nucleus: anterior/
posterior (A/P) -1.70 mm, lateral (L) 1.60 mm, dorso/

ventral (D/V) 3.20 mm; (2) thalamic posteromedial

(POm) nucleus: A/P -1.80 mm, L 1.25 mm, D/V
2.75 mm; (3) hippocampal dentate gyrus (DG): A/P

-1.90 mm, L 1.20 mm, D/V 1.90 mm; (4) layer 5 (L5) of

primary somatosensory barrel cortex (BC): A/P
-0.94 mm, L 3.00 mm, D/V 0.80 mm; (5) cerebellum:

A/P -5.68 mm, L 0.68 mm, D/V 1.70–0 mm (6) amyg-

dala: A/P -0.82 mm, L 2.45 mm, D/V 4.75 mm; (7)
substantia nigra: A/P -3.00 mm, L 1.56 mm, D/V

4.1 mm. A/P and L coordinates are given with respect to

the bregma, D/V coordinates with respect to the brain
surface. Injection volumes were 200–600 nl for RABV

DG XFP (VSV GRtmC), 400 nl for AAV (diluted 1/50)

and 600 nl for lentivirus. Sparse labeling was achieved by
diluting anterograde rabies virus to titers of *2 9 104

infectious particles/ml and injection of 250 nl, which

resulted in injection of 5–10 infectious particles.

Mouse perfusion and brain sectioning

Mice were deeply anesthetized with a lethal dose of sodium

pentobarbital and then transcardially perfused with 30 ml

normal Ringer’s solution (135 mM NaCl, 5.4 mM KCl,
1 mM CaCl2, 1.8 mM MgCl2, 5 mM HEPES, pH 7.4)

followed by 100 ml of a 4 % PFA solution (prepared in 19

phosphate buffered saline (PBS, pH 7.4). Fixed brains were
dissected and postfixed in 4 % PFA solution for either

24 h, or 6 h in the case where immunohistology was per-

formed. Free-floating slices (50 lm) were cut using a vi-
bratome (Leica).

Immunohistological determination of the cellular

tropism of RABVDG(VSV-GRtmC)

Cell types were identified using antibodies against NeuN

(dilution: 1:500; Millipore, clone A60, MAB377) to mark

neurons, the 67 kDa isoform of glutamate decarboxylase
GAD67 (1:1,500 dilution; Millipore, clone 1G10.2,

MAB5406) to label GABAergic neurons (Meyer et al.

2011), S100b (1:1,500; Sigma S2532) to mark astrocytes
(Zuo et al. 2004), or against Iba1 (1:500; Wako Cat. #019-

19741) to mark microglia (Schafer et al. 2012). NeuN and

S100b were detected using Alexa488-conjugated goat anti-
mouse H ? L (Life technologies), and GAD67 was

detected using Alexa647-conjugated goat anti-mouse

(subtype IgG2A) (Life technologies).
Immunohistochemical protocols were adapted from

Meyer et al. (2011). In brief, free-floating slices were

blocked with MOM blocking reagent (Vector Labs) (1 h)
in the presence of 0.5 % triton X-100, then for 30 min in

3 % BSA, 4 % NGS, 0.5 % triton in 19 PBS. Slices were

incubated 40 h with the primary antibody in 3 % BSA, 2 %
NGS in 19 PBS at 4 "C, washed two times with 0.1 M PB

then two times with 0.1 M PB ? 1 % NGS. Slices were

then incubated 2 h at RT with the secondary antibody
(1:500) in the presence of 0.3 % triton X-100, washed five

times with 0.1 M PB, counter-stained with TO-PRO-3 to

label nuclei (1:5,000; Life Technologies), and mounted in
prolong gold mounting media. The number of RABV DG
(VSV GRtmC) transduced cells expressing cell-type specific

markers was quantified by manually counting the immu-
nohistochemically stained cells in confocal images stacks.

High-resolution microscopy, tracing and quantification

For reconstruction of thalamic neurons, images were

acquired using a prototype confocal laser scanning system
(based on LAS AF SP5, Leica Microsystems), equipped

with a glycerol immersion objective (HCX PL APO 63x,

1.2 N.A.), a tandem scanning system (Resonance Scanner),
spectral detectors with hybrid technology (GaAsP photo-

cathode), and mosaic scanning software [Matrix Screener

(beta-version), provided by Frank Sieckmann, Leica Mi-
crosystems]. Mosaic image stacks of volumes up to

2 mm 9 2 mm 9 0.05 mm (in thalamus) and 0.6 9 0.6

9 0.05 mm (in cortex) were acquired at a resolution of
0.094 lm 9 0.094 lm 9 0.5 lm per voxel (2.59 digital

zoom, 89 line average, 8 kHz scanning speed, *20 9 20

and *6 9 6 fields of view in thalamus and cortex,
respectively) for each of 12 consecutive 50-lm-thick brain

sections. 3D reconstructions were performed using previ-
ously described automated tracing algorithms (Oberlaender

et al. 2007). Automated tracings were proof-edited

(Dercksen et al. 2012) and semi-automatically aligned
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across brain sections (Dercksen et al. 2009) using Amira

Visualization Software (Visage Imaging).
All remaining images were acquired using either a

commercial confocal microscope (Leica SP5) or a com-

mercial spinning disk system (Leica SP2). Hippocampal
mossy fiber boutons were reconstructed from image stacks

using the Imaris surface tool (Bitplane, Zurich, Switzer-

land). To compare the fluorescence intensities and signal-
to-noise ratios of RABV DG (VSV GRtmC), lentivirus-

(LV), and adeno-associated virus (AAV) infected brain
sections were imaged with identical microscopy settings.

Image stacks were acquired at 16 bit-depth at a resolution

of 141.47 nm 9 141.47 nm 9 125.89 nm per voxel (639
magnification, 1.79 digital zoom, 1024 9 1024 pixel per

image, 39 line average, 700 Hz scanning speed). Cellular

somata were detected automatically in these 3D image
stacks using Imaris, and the maximum fluorescence

intensity of the somata was quantified as arbitrary unit

(0–65536 levels of grey) from 16 bit images. Background
levels were calculated for each image stack as the average

mean intensity value of several larger distributed areas

devoid of any cellular processes (i.e., signal). For illustra-
tion purposes, the intensity levels of all three images in

Fig. 1b were enhanced to the same extent. Cell counts for

immunological cell-type characterizations were performed
manually with the use of Amira Visualization Software

(Visage Imaging) on confocal image stacks.

Fluorescence intensity comparison

Fluorescence intensities were compared using brains of
mice injected at 4 months of age with either lentivirus

(MND-eGFP-WPRE, a kind gift of Dr. N. Abrous), AAV

2/9 CAG eGFP-WPRE (Penn Vector Core), or RABV DG-
eGFP(VSV GRtmC). Injected animals were killed at 6 days

post infection (RABV DG), 12 days post infection (lenti-

virus), or 22 days post infection (AAV). eGFP-labeled
cells were imaged and analyzed as described above.

Statistics

Significance was evaluated using one-way ANOVA fol-

lowed by a post hoc Tukey test for multiple comparisons
using GraphPad Prism 6 software (San Diego, CA).

*** p\ 0.001. Data are represented as mean ± SEM.
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2.2. Connectivity Features in the Fmr1KO mouse 
 
The following manuscript describes experiments that were performed to probe defects 

in the structural and functional connectivity in a mouse model of Fragile X Syndrome. 

This project was partially performed as EuroBioImaging project in the BioImaging 5	  

Core for Magnetic Resonance Imaging in the group of Prof. Heerschap (UMC 

Radboud, Nijmegen). The experimental work was performed by: 

Matthias Haberl: experimental design; antero- and retrograde virus production; viral 

tracer injections; analysis of tracer injections; preparation of all figures 

Valerio Zerbi: design of MRI protocols; analysis of resting state functional MRI (rs-10	  

fMRI) and of diffusion tensor MRI (DT-MRI) 

Andor Veltien: image acquisition of rs-fMRI and DT-MRI 

Melanie Ginger: retrograde virus production 
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Abstract 

Structural and functional wiring of the brain provides the fundamental basis that 30	  

determines its capabilities and limitations. Fragile X syndrome, a frequent form of 

inherited mental retardation and cause of autism in humans, leads to learning and 

memory deficits, a high prevalence of autistic behavior, seizures, hypersensitivity to 

sensory stimuli and alterations in the processing of sensory information. Here, we 

probed alterations in the functional and structural connectivity, both locally and in the 35	  

long-range, of neocortical circuits in the Fmr1 KO mouse model. To measure these 

various connectivity aspects, we combined ultra-high-field in vivo diffusion tensor 

MRI, resting-state functional MRI and viral tracing. Our results show a hyper-

connectivity phenotype for local neocortical circuits, but a hypo-connectivity for 

long-ranging ones. This anatomical data is matched by a functional decoupling of 40	  

various neocortical regions from one another. We therefore identify Fragile X disease 

as a “connectopathy”, which could explain altered sensory information processing in 

this disorder, and the complications of rescue strategies acting on molecular targets. 

 

Introduction 45	  

Fragile X syndrome (FXS) is the most prevalent inherited mental retardation 

and most common single gene cause of autism spectrum disorder (ASD) in humans, 

occurring with a prevalence of 1/4000 in male and 1/8000 in female children1. 

Symptoms include learning and memory deficits, a high prevalence of autistic 

behavior, seizures, hypersensitivity to sensory stimuli and alterations/perturbations in 50	  

the processing of sensory information2. The Fmr1 knock-out (KO) mouse model3 

exhibits several neuropathologic features that are similar to those in human FXS 

patients, which suffer a loss of function of the FMR1 gene4. While many studies focus 

on the misregulation of individual neuronal receptors or compartments our knowledge 

about the network organization is sparse. Today we only have some indications about 55	  

small-scale network changes and we do not know how they are involved in the 

disease, or how they contribute to the cognitive and perceptional changes in FXS. At 

the cellular level, an altered anatomical connectivity has been proposed to play a role 

in both FXS and ASD5. Both dendritic spine morphology and axon outgrowth6 are 

thought to be altered in Fmr1 KO mice. Therefore altered brain circuits are believed 60	  

to play an important role in FXS. Several reports indicated changes in the neocortical 
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short-range connectivity in Fmr1 KO mice but often those appeared during a narrow 

time window and disappeared in adolescence7-10. This poses the question of whether 

wiring changes actually play a role in the adulthood in FXS? Here, a profound 

knowledge of deficits in the neuronal circuit wiring would be necessary to bridge the 65	  

gap between alterations found on the molecular/micro-circuit level and 

behavioral/intellectual deficits. 

Correct structural wiring is critical for maintaining normal brain function, like 

the processing of sensory information. Long-range connections between different 

brain areas are crucial for the faithful sequential transfer of sensory information in a 70	  

feedforward and feedback manner. Short-ranging connections need to be intact to 

integrate and process the information step-wise in each area. We hypothesized that 

both, the connectivity within and in between brain areas might be altered in FXS 

given the deficits, which have been described previously in axonal outgrowth and 

spine morphologies. Yet, long-range wiring deficits underlying FXS have been 75	  

largely unexplored as a potential mechanism underlying cognitive deficits. Therefore 

we set out to quantify brain-wide and local structural connectivity features in the 

Fmr1 KO mouse model and correlate them to the functional connectivity. 

Here we used diffusion tensor imaging (DTI) to measure structural integrity of 

the white matter in the Fmr1 KO mice and found a reduced organization or number of 80	  

axons within the fiber bundles of the corpus callosum below several cortical areas. 

Retrograde labeling from one adjacent and therefore presumably affected region, the 

primary visual cortex, revealed that in fact the number of long-ranging inputs to this 

area is reduced. Overall we find a shift towards more local and less long ranging 

input. Using resting state functional MRI (rs-fMRI) we found that in fact the 85	  

structural changes correspond to a functional de-synchronization/decoupling of 

several brain areas, which are crucial for the processing of sensory, visual and 

auditory information. 
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Results 
 90	  
Altered diffusion tensor fractional anisotropy  

We hypothesized that an altered network organization/connectivity in the 

neocortex could lead to the deficits that have been described in the processing of 

sensory information in FXS and ASD. Therefore we measured the large-scale 

anatomical connectivity of adult mice of the Fmr1 KO FXS model3 ultra-high-field 95	  

MRI (11.7 T). We used diffusion tensor imaging (DTI) to measure structural 

connectivity parameters. In particular we measured the fractional anisotropy (FA) 

values, which allow an exploration of the organization and integrity of the structures 

in parallel oriented tissue. We found that the white matter is significantly affected in 

several parts of the brain (Fig. 1). In particular, the FA values were decreased in the 100	  

corpus callosum below the visual cortex, auditory cortex and parts of the 

somatosensory cortex. 

 

 
Fig 1. Reduced structural integrity of the corpus callosum in Fmr1KO mice 

Diffusion tensor imaging (DTI) in the Fmr1 KO mice shows a reduced fractional anisotropy 

in the white matter, indicating a reduction in the number of axons, or less organized fibers. 

The FA values of the corpus callosum were collectively measured in several horizontally 

planes from -0.2mm -2.7mm and separately from -3.2mm to -3.7mm from the bregma, with 

an interplane distance of 0.5mm (WT: n=12; Fmr1KO: n=8). The FA values were 

significantly reduced in Fmr1 KO mice at -1.2mm (p=0.0274) -2.2mm (p=0.0178) and at -

3.2mm (in both hemispheres; right: p=0.0423; left p=0.0314); unpaired t-test. 

 

105	  
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Local- and long-ranging structural input connectivity in Fmr1 KO mice 105	  

Our results show that the organization of the white matter is structurally 

altered, and that the primary visual cortex (amongst others) may be strongly affected 

by these changes. To test whether this white matter defect is caused by a 

reorganization of anatomical connections, we quantified projections into the primary 

visual cortex. In particular, we investigated alterations in the local connectivity of the 110	  

visual cortex versus long-ranging projections into this region. To address these 

questions, we employed a retrograde rabies virus (SAD∆G-eGFP(SAD G)) injected 

into the primary visual cortex (V1). To control the precise location of the injection 

site and the diffusion of the virus in the tissue we co-injected a local/anterograde 

variant of the virus SAD∆G-mCherry(VSVCtm)11. The average diffusion of the virus in 115	  

the tissue is ~200µm with a maximal distance of locally infected cells at ~500µm 

(Table 1) distance calculated from the center of mass of the infected cells. All labeled 

cells were introduced as fiducal markers into a 3D average brain model (MRI 

generated; 16µm resolution) of the C57/Bl6 mouse12, to compute the Euclidian 

distance in the whole-brain from the injection site (Fig. 2). The average distance of 120	  

input to the brain region is at ~1mm distance. A summary of the most important 

values calculated from the tracer injections can be found in Table 1. We found a 

reduced average distance of presynaptic cells in the Fmr1 KO mice. Conversely the 

contribution of presynaptic cells from within the visual cortex is increased in the 

Fmr1 KO mice. 125	  

 
Table 1. Quantification of the labeled cells 

The center of mass of the anterogradely labeled cells determines the center of the injection 

site. The distance of the anterogradely labeled cells gives an indication about the maximum 

diffusion of rabies virus in the tissue. The distribution of the retrogradely labeled cells is 

indicated for cells in the Cortex, the Visual Cortex and the Primary Visual Cortex. 

Key: Total: all retrogradely labeled cells; Cortex: all retrogradely labeled cells in the cortex;  

Vi (Visual Cortex): all retrogradely labeled cells in the primary and secondary visual cortex 

V1 (primary visual cortex): all retrogradely labeled cells in the primary and secondary 

visual cortex 

 WT KO 

Anterogradely/Locally labeled cells   

Average distance from injection point (µm) 198,24 ± 11,97 219,22 ± 12,60 
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Max distance from injection point (µm) 475,62 370,03 

   

Retrogradely labeled cells   

Total number of labeled cells 1173 1495 

Max distance from injection point (µm) 5736,33 6625,49 

Average distance from injection point (µm) 1191,33 ± 24,45 738,81 ± 20,96 

Median (µm) 1003 410,8 

   Cortex   

Percentage of cells in Ctx, from Total (%) 95,82 92,37 

Max distance from injection point (µm) 5341,76 5997,16 

Average distance from Injection point (µm) 1127,68 ± 22,87 610,71  ± 17,82 

   Visual Cortex   

Percentage of cells in Vi, from Ctx (%) 76,25 89,50 

Percentage of cells in Vi, from Total (%) 73,06 82,68 

Max distance from injection point (µm) 2489,91 2580,75 

Average distance from injection point (µm) 871,69 ± 18,79 434,35 ± 9,36 

    Primary Visual Cortex   

Percentage of cells in V1, from Vi (%) 63,83 88,19 

Percentage of cells in V1, from Total (%) 46,63 72,91 

Max distance from injection point (µm) 2311,47 2210,50 

Average distance from injection point (µm) 647,96 365,67 
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Fig. 2. Input to the primary visual cortex of Fmr1 KO mice 

(a) Example image displaying the injection site. (b) Overview of the 3D model with all 

retrogradely labeled cells in green. (c) Recoloring of the retrogradely labeled cells into, 

primary visual cortex, secondary visual cortex other cortical areas and the thalamus. (d) 

Distance of the retrogradely labeled cells to the injection site in the Fmr1 KO mice and the 

WT mice. The relative number of cells (in % of total), plotted as cumulative and relative 

frequency per distance to the injection site, indicates a strong increase in the cells with less 

than 1mm distance. 

 
Functional connectivity in the neocortex of Fmr1 KO mice 

To evaluate the relevance of the anatomical deficits we proceeded by 130	  

assessing whether the structural alterations in Fmr1 KO mice would 



	   82	  

correspond/correlate to an altered functional connectivity (Fig. 3). Resting state 

functional MRI (rs-fMRI) measurements were performed in head-restrained Fmr1 KO 

(n=7) and wild-type (n=10) mice under light isofluorane aneasthesia. We performed 

rs-fMRI experiments to measure the functional connectivity of somatosensory, 135	  

auditory, visual, and motor cortex and the dorsal and ventral hippocampus, as well as 

the subcortical areas (Fig. 3, Supplementary Fig. S1). 
 
 

 
Fig 3. Functional decoupling of brain areas in Fmr1KO mice 

Upper panel: Difference of the Z-scores of rs-fMRI measurements calculated as average  

Z-score of Fmr1 KO mice minus average Z-score of WT mice. Lower panel: Statistically 

significant differences in the functional connectivity matrix are color coded for the p-value. 

Resting state fMRI measurements revealed a reduced functional connectivity between several 

brain areas in the Fmr1 KO mice (n=7) compared to age-matched wild type mice (n=10). The 

functional decoupling affected largely connections from hippocampus to neocortical areas 

and the intracortical connectivity. The auditory cortex is less linked to the dorsal and ventral 

hippocampus, to the visual cortex and to the retrosplenial cortex. The connectivity between 

visual cortex and the motor and somatosensory cortices is also deficient. Overall all measured 

cortical areas appear to be strongly affected. None of the examined connections showed a 

statistically significant increased functional connectivity. The pre-dominant pattern is a 
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functional decoupling of numerous brain areas. Key: Dorsal hippocampus (DH), ventral 

hippocampus (VH), auditory cortex (Au), motor cortex (Mo), primary somatosensory cortex 

(S1), primary visual cortex (V1), retrosplenial cortex (RS), Piriform Cortex (Pi), Amygdala 

(Amy), Pretectal Area (PtA), Caudate Putamen (CPu), lateral geniculate nucleus (DLG), 

globus pallidus (LGP), parafascicular nucleus (PF), ventral posterolateral nucleus and ventral 

posteromedial nucleus (VPN). Right hemisphere (R), left hemisphere (L). 

 140	  
 
Discussion 
 

We found converging connectivity changes in Fmr1 KO mice, structurally on 

a whole-brain and single-cell-resolution level and a corresponding functional 145	  

decoupling of several brain areas, in particular in the neocortex. Alterations in the 

way the brain is wired provide a reasonable explanation for deficits in the sensory 

information processing and could also be linked to learning deficits either by being 

cause or being effect.  

In particular we found a reduced fractional anisotropy in several parts of the 150	  

corpus callosum, which could indicate that either the number of axons running 

through these areas is reduced or that they are running less in parallel, e.g. they could 

be ascending more into the cortex. Since these measurements allow more than one 

interpretation we decided to inject viral tracers that allowed us to quantify the number 

of connections. The retrograde tracer allowed us to determine more specifically how 155	  

these changes could be caused. When examining the connections arriving to the visual 

cortex we found a reduced number of neuronal input from long-ranging connections 

to V1 in the Fmr1 KO mice. Conversely we found an increased number of local 

connections (<1mm of distance). This shift could lead to an imbalance in the 

cognitive processing of sensory information, by underrepresentation of external 160	  

information in the cortex and overrepresentation of ongoing activity in the own brain 

area. We hypothesized that this overrepresentation of the local information and a 

reduction of input from other regions would cause the region to be more isolated and 

functionally decoupled from other brain areas. We tested this idea using resting state 

functional MRI and found that this decoupling in fact occurs between V1 and several 165	  

other brain areas. Interestingly a reduced functional connectivity appears to be a 

widespread phenomenon, which we found between several cortical and subcortical 

areas. We conclude that connectivity changes are an important feature in FXS, which 
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should be further assessed. The altered communication of the sensory cortical areas 

might play an important role in the overall processing of sensory information in FXS 170	  

and contribute largely to the cognitive and behavioral defects in the disease. 

We consider that combining non-invasive measurements with a fine-scale 

dissection of circuit structure is an important step for a better understanding of the 

neuropathology. We expect that this work will pave the way in the future in two 

directions. First we hope it will lead to future studies in human FXS patients to 175	  

determine the role that connectivity changes play in the human disease. And secondly 

we think this study should provide a useful framework/baseline, to test the effects of 

therapeutic agents for their ability to reverse wiring deficits in Fmr1 KO. The 

prospect of those two directions would offer a mode for a fast MRI based-assessment 

of rescue approaches and facilitate the transition of strong candidate drugs to human 180	  

patients, providing new objective criteria to evaluate their success. 

 
Materials and Methods 
 
Adult (9-12 weeks old) male Fmr1 KO2 mice3 in a C57BL/6 background and male 185	  

wild-type littermates were used in all experiments. Genotypes were determined by a 

PCR analysis of DNA extracted from tail samples. All experiments and analysis were 

performed with the experimenter being blind to the genotype. 

 
Virus production 190	  

RABV SAD ∆G-eGFP (RG) was produced as described previously11. VSV GRtmC-

pseudotyped SAD ∆G-mCherry was produced as described previously using BSR 

T7/5 cells11. 

 

Stereotaxic injections 195	  

All stereotactic injections and subsequent experiments were performed according to 

French law and the European Directive covering the use of experimental animals 

(2010/63/EU) and approved by the Ethics Committee of Bordeaux (approval 

#5012024-A). Stereotaxic injections were performed in Fmr1 KO and WT mice at 10-

12 weeks of age. The stereotactic injections of viral vectors were performed in 200	  

isofluorane anesthetized and head-fixed mice using a 10µl glass syringe fitted with a 

34-gauge needle or a pulled glass pipette. Injection volume and speed were controlled 



	   85	  

using a WPI Ultra Micro Pump. The coordinates for the injections were (i) 

anterior/posterior (A/P) 3.0 mm, lateral (L) 0.94 mm, dorso/ventral (D/V) 0.5 mm for 

the primary visual cortex (V1). A/P and L coordinates are given with respect to the 205	  

bregma, D/V coordinates with respect to the brain surface. Viral injections were 

performed with 200nl viral solution consisting of 1/10th anterograde rabies virus 

(VSVtm) mCherry together with 9/10th retrograde (RG) eGFP rabies virus. 

Anterograde RABV was utilized to verify injection coordinates and to normalize the 

amount of injected viral solution. Subsequent comparisons between animals were 210	  

done normalizing the number of retrogradely infected cells to the number of locally 

(anterogradely) labeled cells in the same animal. Ratios of the retrogradely labeled 

cells in different areas were calculated in relation to the total number of retrogradely 

labeled cells in the same animal. 

  215	  

Mouse brain slice preparation 

Mice were perfused and brains sectioned as described previously11. Briefly, mice were 

administered a lethal dose of sodium pentobarbital and then trans-cardially perfused 

with 30ml normal Ringer’s solution followed by 100ml of a 4% PFA solution in 1 X 

phosphate buffered saline (PBS). The mouse brains were dissected and postfixated in 220	  

4% PFA solution and slices were cut using a vibratome (Leica). For whole-forebrain 

sectioning brains where emerged in 10% Gelatine, post-fixed 2h in 4% PFA, 

sectioned in 50µm slices and mounted using Prolong Gold Antifade Reagent. 

Immunohistology was used for signal amplification for the axon quantification using 

dsRed antibody (polyclonal Rabbit) and Alexa 594 goat anti-rabbit. 225	  

 

Fluorescence microscopy and analysis 
Images of the entire forebrain where acquired using a scanning mosaic widefield 

fluorescence acquisition system (Nanozoomer, Hamamatsu) equipped with a 20X 

0.75 NA objective. Images were acquired by scanning each section at multiple (~5-6) 230	  

z-positions with 8µm step size. Analysis of retrogradely and locally labeled cells was 

performed blind to the genotype by placing manually fiducal markers on the cell 

position. Images where segmented using the mouse brain atlas (‘The Mouse Brain in 

Stereotaxic Coordinates’, Paxinos and Franklin) and fiducal points where transformed 

into a 3D average brain atlas, using Vaa3D software13, to compute the Euclidian 235	  
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distance of each marker in the whole-brain in xyz directions from the injection site. 

The precise coordinates of each injection site was confirmed by calculating the center 

of mass of infected cells by the local tracer SAD∆G-mCherry(VSV-G). 

 

MR imaging 240	  

MRI was performed on mice from the same line of mice in adult male mice (9-12 

weeks old). Breeding of the Fmr1 KO mice3 in a C57BL/6 background and wild-type 

littermates was continued in Nijmegen (Netherlands) in the same conditions. MRI 

measurements were performed with an 11.7 T BioSpec Avance III small animal MR 

system (Bruker BioSpin, Ettlingen, Germany) equipped with an actively shielded 245	  

gradient set of 600 mT/m and operated by Paravision 5.1 software. We used a circular 

polarized volume resonator for signal transmission and an actively decoupled mouse 

brain quadrature surface coil for signal reception (Bruker BioSpin). During the MR 

experiments, low-dose isoflurane was used (3.5% for induction and ~1.5% for 

maintenance), slightly adjusted throughout the experiment to maintain a fast and 250	  

stable breathing frequency (>130 bpm). The mice were placed in a stereotactic device 

in order to immobilize the head. Body temperature was measured with a rectal 

thermometer and maintained at 37° C by a heated air flow device. 

After standard adjustments and shimming, rsfMRI datasets were acquired using a 

single shot spin echo sequence combined with echo-planar imaging (SE-EPI) 255	  

sequence. Six hundred repetitions with a repetition time (TR) of 1.8s and echo time 

(TE) of 16.9ms were recorded for a total acquisition time of 18 minutes. Other 

imaging parameters: field of view = 25 × 25 mm; image matrix = 96 × 96; spatial 

resolution = 260 × 260 × 500 µm; number of slices = 9. 

Diffusion of water was imaged as described previously14,15. In short, 22 axial slices 260	  

covering the whole brain were acquired with a four-shot SE-EPI protocol. B0 shift 

compensation, navigator echoes and an automatic correction algorithm to limit the 

occurrence of ghosts and artefacts were implemented. Encoding b-factors of 0 s/mm2 

(b0 images; 5×) and 1000 s/mm2 were used and diffusion-sensitizing gradients were 

applied along 30 non-collinear directions in three-dimensional space. Other imaging 265	  

parameters: TR = 7.55 s; TE = 20ms; field of view = 20 × 20 mm; image matrix = 128 

× 128; spatial resolution = 156 × 156 × 500 µm; total acquisition time = 18 min. 
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Functional connectivity measurements 270	  

The rsfMRI datasets were processed as described previously (Zerbi et al., J 

Neuoscience 2014 online); briefly, the data were first realigned using a least squares 

method and rigid-body transformation with Statistical Parametric Mapping (SPM) 

mouse toolbox (SPM5, University College London, 16). 

The mean SE-EPI images of each mouse were then used to generate and normalize 275	  

the data into a study-specific template through linear affine and non-linear 

diffeomorphic transformation (ANTs. V1.9, http://picsl.upenn.edu/ANTS/). On the 

template, seventeen areas were selected in left and right hemisphere and back-

transformed in each subject space using the inverse of the affine and diffeomorphic 

transformations. Brain regions where segmented based on based on a MRI atlas12, and 280	  

includes: dorsal hippocampus (DH), ventral hippocampus (VH), auditory cortex (Au), 

primary motor cortex (M1), somatosensory cortex (So), primary visual cortex (V1), 

retrosplenial cortex (RS), Piriform Cortex (Pi), Amygdala (Amy), Pretectal Area 

(PtA), Caudate Putamen (CPu), lateral geniculate nucleus (DLG), globus pallidus 

(LGP), parafascicular nucleus (PF), ventral posterolateral nucleus and ventral 285	  

posteromedial nucleus (VPL, VPM). In-plane spatial smoothing (0.4×0.4mm) and 

temporal high-pass filtering (cut-off at 0.01Hz) were applied to compensate for small 

across-mouse misregistration and temporal low frequency noise using the FEAT tool 

of FSL (FSL 5.0, 17). Functional connectivity (FC) between ROIs was calculated from 

the BOLD time series after movement regression using total correlation analyses 290	  

implemented in FSLNets (FSLNets, V0.3, www.fmrib.ox.ac.uk/fsl). Pearson’s 

correlation values were Fisher transformed to Z-scores for group comparisons and 

statistical analysis. 

 

Diffusion tensor MRI parameters estimation  295	  

The calculation of the two commonly used DT-MRI parameters, mean diffusivity 

(MD) and fractional anisotropy (FA), was performed following a protocol as 

described previously15. Briefly, the diffusion images were first realigned with SPM 

mouse toolbox, to compensate for small movement artefacts; thereafter, the datasets 

were spatially normalized to a study-specific template through linear affine and non-300	  

linear diffeomorphic transformation using ANTs. Following these pre-processing 
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steps, the diffusion tensor was estimated for every voxel using the PATCH 

algorithm18. 

Regions of interest in several white matter (WM) and grey matter (GM) areas were 

drawn on the template image based on an anatomical atlas (‘The mouse brain in 305	  

stereotaxic coordinates’, Keith B.J. Franklin, George Paxinos, 1997) and the resulting 

FA and MD values were measured for further statistical analyses. 

 

Supplementary Material 
 310	  

 
 

Supplementary Fig S1. Functional Connectivity Matrix of WT and Fmr1KO mice 

Resting state fMRI measurements were performed in Fmr1KO mice (n=7) and age-matched 

wild type mice (n=10). The intracortical functional connectivity is very strong in the wildtype 

animals whereas it is less in the Fmr1 KO mice. Key: Dorsal hippocampus (DH), ventral 

hippocampus (VH), auditory cortex (Au), motor cortex (Mo), primary somatosensory cortex 

(S1), primary visual cortex (V1), retrosplenial cortex (RS), Piriform Cortex (Pi), Amygdala 
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(Amy), Pretectal Area (PtA), Caudate Putamen (CPu), lateral geniculate nucleus (DLG), 

globus pallidus (LGP), parafascicular nucleus (PF), ventral posterolateral nucleus and ventral 

posteromedial nucleus (VPN). Right (R) and left hemisphere (L). 
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3. General Discussion and Future Perspectives 

 

During this work we developed a new anterograde viral tracer, based on the 

glycoprotein-deleted variant of rabies virus, and tested its potential for studying 

neuronal circuits. We found that the rapid high-level expression of transgenes, and 

limited cytotoxicity is advantageous to delineate the neuronal morphology and to 

reconstruct neuromorphological features. Importantly the intense labeling is 

independent of the age of the animal, which provides an advantage over several other 

viral tracers that normally depend on cellular promoters (Gray et al., 2011; Hong et 

al., 2007). We tested the new anterograde tracer for bulk and sparse labeling. Diluting 

the virus and injecting only a few viral particles (<10) allowed us to sparsely label 

neurons in vivo, still achieving intense labeling and therefore facilitating subsequent 

reconstructions. Stereotactically co-injecting the anterograde variant together with the 

retrograde (not trans-synaptic) glycoprotein-deleted rabies virus allows us to study a 

brain region of interest in a combined fashion. We can thus precisely define the center 

of the injection site (as the center of mass of anterogradely labeled cells), meanwhile 

having the input of this region labeled together with the axonal projections coming 

from it, in a different color. 

We took advantage of this approach and combined it in a quantitative way, 

together with non-invasive whole-brain measurements of structural and functional 

connectivity. We employed these techniques to study connectivity features in the 

Fmr1 KO mouse model. We found alterations of both local- and long-range 

connections when comparing the Fmr1 KO mice to WT littermates.  

In particular, using DTI we found a reduced FA in the corpus callosum 

adjacent to several cortical areas. Those deficits in the WM integrity might be caused 

by a reduction in the number of axons in these areas, less in parallel-organized axons 

or a reduction in the myelination of the axons. Each of these interpretations could 

have strong implications for the function of long-ranging connections. Myelination 

provides an important mechanism for the signal transmission (Hildebrand et al., 1993) 

and recent evidence suggests that along individual axons the thickness of myelin can 

vary substantially (Tomassy et al., 2014). It would be possible that the regulation of 

myelination is disturbed in FXS, e.g. by changes in the oligodendrocytes, the type of 

glial cells that are responsible for the myelination in the CNS. In fact, evidence 
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suggests that - unlike earlier reports proposed - FMRP is not only expressed in 

oligodendrocyte progenitor cells and immature oligodendrocytes (Pacey and Doering, 

2007; Wang et al., 2004), but also in mature oligodendrocytes (Giampetruzzi et al., 

2013). Furthermore, also the mRNA of Fmr1 was found in the corpus callosum of 

adult mice (Hinds et al., 1993). Furthermore in vitro studies showed that FMRP can 

act as a translational repressor of myelin basic protein (MBP), which is a crucial 

protein for the formation of myelin in the CNS (reviewed in (Boggs, 2006)). This 

however would suggest that a lack of FMRP in the oligodendrocytes would lead to an 

increase of MBP. An increased myelination would restrict the water diffusion, and 

should lead to increased rather than decreased FA values. More recent evidence from 

in vivo studies showed that the MBP and other myelin proteins are similar in the Fmr1 

KO mouse compared to wild type mice. Furthermore this study found that the FMRP 

concentrations in the oligodendrocytes in vivo are likely too small to act as 

translational repressor on MBP or other proteins, and that in comparison, the level of 

FMRP present in cortical neurons nearby the oligodendrocytes is much higher 

(Giampetruzzi et al., 2013). 

We therefore consider that the reason for the reduction in FA reported here is 

most likely due to a mechanism altering neuronal features, rather than acting through 

the oligodendrocytes. To investigate the two possible neuronal mechanisms that might 

play a role in the reduced FA, we would need to quantify the number of axons, and 

also examine how they run in the tissue (parallel or dispersed). A decreased number 

of axons would, in the worst-case scenario, mean that the number of cells sending 

projections to the adjacent cortical areas is reduced. We therefore decided to quantify 

the number and the origin of cells projecting to one of the presumably affected 

cortical regions, the primary visual cortex (V1). When quantifying their average 

distance to the injection site we found less long-distance connections and that more of 

the input is coming from the immediate proximity (<1mm of distance). Overall, we 

see a hyper-connectivity phenotype for local neocortical circuits, but a hypo-

connectivity for long-ranging ones. In the literature, a local change in connectivity has 

been described in several publications (Bureau et al., 2008; Patel et al., 2014; Testa-

Silva et al., 2012), but very often this change was only seen transiently (Bureau et al., 

2008; Testa-Silva et al., 2012). Whereas in other studies it was suggested that a 

change is due to a deficit in the pruning of synapses, which occurs between the 2nd 



	  
93 

and the 5th postnatal week in mice (Patel et al., 2014). These somewhat contradictory 

results did not leave an indication how the connectivity of small-networks would be 

manifested in adult Fmr1 KO mice. Here we found that both, the short- and long-

range wiring is altered and conclude that the connectivity features might play an 

important role in sensory and cognitive deficits of adults with FXS.  

The overall large number of neurons labeled in the short-range distance (>90% 

in both genotypes) might appear surprising at first. However, a recent study 

performed in macaque monkeys quantified the input into several visual areas as 

fraction of labeled neurons (FLN). The authors found that the FLN from subcortical 

areas makes only 1.3% of the total neurons labeled and that the long-ranging cortico-

cortical connectivity is also low with 3% FLN. Local intrinsic connectivity on the 

other hand is extremely high with 80% FLN, while neighboring areas comprise 15% 

cumulative FLN (Markov et al., 2011). The authors concluded that the “high 

investment in local projections highlights the importance of local processing”. This is 

a reasonable conclusion, considering the dominance of intrinsic connectivity over 

exterior input. Whereas the additional prominent connection strength from 

neighboring areas is another proof of the wiring efficacy of the brain, which is often 

described as the concept of small-world networks (Bullmore and Sporns, 2009; Watts 

and Strogatz, 1998). This implies that functionally related brain areas should be kept 

in close physical proximity to reduce the wiring costs for the organism. 

 

We used rs-fMRI to further assess, in the Fmr1KO mouse model, whether the 

structural alterations in the KO mice would lead to an altered functional processing in 

the brain. We found that the resting-state functional connectivity was significantly 

reduced between numerous brain areas. Which led us to the conclusion that (i) the 

alteration in the connectivity is causing, or at least involved in functionally relevant 

changes in the neuronal network; (ii) that this phenomenon is not specific for V1 but 

rather widespread in the brain of Fmr1 KO mice. We therefore propose that FXS in 

characterized by a strong component of connectivity deficits, which should be further 

explored to understand their role in the cognitive deficits. 
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3.1 Deficits of Connectivity in FXS as a Potential Biomarker 
Hypersensitivity to visual, auditory, tactile, and olfactory stimulation is a feature that 

is common to both human FXS patients and Fmr1 KO mice. We were therefore 

interested in studying connectivity changes to- and in between- the neocortical 

sensory areas. We examined which anatomical alterations occur in brain wiring and 

neuronal connectivity in FXS and what functional role they play in the brain. We 

found connectivity changes in Fmr1 KO mice, structurally on a large- and fine-scale 

level, and a corresponding functional decoupling of several brain areas, in particular 

in the neocortex. Changes in the way the brain is wired provide a reasonable 

explanation for deficits in the sensory information processing and could also be linked 

to learning deficits, either by being the cause or being the effect of such change. We 

propose that the non-invasive measurements of brain connectivity – demonstrated 

here in the mouse − could be repeated in human patients. Our study thus points to 

suitable biomarkers that could be applied for testing the efficacy of therapeutic 

interventions. This could facilitate and improve the outcome of clinical trials, by 

testing their capability of reversing brain wiring deficits in FXS. 

The recent discontinuation of several large-scale drug trials emphasizes the 

need for a better mechanistic understanding of FXS. Those drugs did not bring the 

anticipated advantageous effect on patients e.g. Arbaclofen (Seaside 

Therapeutics/Roche) or Mavoglurant/mGluR5 (AFQ056) (Novartis), even though 

they act on particularly well-described molecular targets (mGluR5 and GABAR). 

Alterations in the anatomical wiring provide a mechanism that could explain (i) the 

drastic effects found on the processing of sensory information in the neuronal circuits 

and (ii) the complications in rescue strategies aiming at curing molecular phenotypes. 

We believe that our work will not only strengthen our understanding of the pathologic 

deficits of FXS (and ASDs) but also that it will provide a framework for testing the 

effectiveness of novel therapeutic agents for their capability to reverse changes in the 

anatomical and functional wiring in FXS mice and in the future in human patients. 

Importantly our study was specifically performed only in adult mice (9-12 

weeks postnatal). Previous pre-clinical studies and tests have often been performed in 

cell cultures or young animals (e.g. starting chronic treatment in mice at 4-5 weeks 

(Michalon et al., 2012)). It is thus important to consider additional tests, both in vivo 

and ex vivo which evaluate intermediate measures  like the capability of potential 
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therapeutics to reverse wiring deficits. Performing those trials in adult animals can 

provide better indications for clinical efficacy in adult FXS patients since neuronal 

wiring is much more plastic in the young animals or infants, where the brain is still 

undergoing strong rewiring and pruning effects. We suggest that our approach has the 

potential to become an analysis pipeline to test the new drug candidates. Such drug 

candidates can be identified at an increasing speed in large screenings for bioactive 

small molecules with a desirable effect (Dominguez et al., 2014). One potential 

compound for FXS is the recently identified small molecule (FRAX486) that acts by 

inhibiting a protein modulating the actin cytoskeleton dynamics (Dolan et al., 2013). 

The component has been used in adult mice and provided positive effects on several 

behavior deficits. It would therefore be interesting to test whether this drug would be 

efficient to reverse the connectivity features found here. To test this we could 

examine the same parameters of structural and functional connectivity in the adult 

mice with and without treatment. 

A last point that should be considered is the complexity of FXS and the 

variability of associated phenotypes. The cause of this variability is not entirely clear 

but it likely depends on several other genetic or environmental factors. Therefore it 

seems reasonable that probably not all FXS patients are equally affected by changes 

in mGluR and GABA activity or connectivity features. Some patients develop strong 

epilepsy, which could be caused by an excitation/inhibition imbalance and might be 

corrected by targeting GABA receptors. Depending on the neurologic deficits in each 

patient might be treated for the combination of the most severe problems he/she 

experiences. All in all, rather than removing promising drugs from the market because 

they do not provide the benefit in a sufficiently large number of patients it would be 

better to develop a personalized medicine for FXS patients. Here large-scale wiring 

and functional connectivity have the advantage that they can be measured in the 

patient and predictions could be made how beneficial certain treatments might be. 
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3.2. Alternative Tracers 
 

The most important aspects and limitations concerning mono-trans-synaptic 

tracing and anterograde viral tracing have been discussed in the Publications N.1 and 

N.2 respectively. 

In spite of their numerous advantages, rabies virus derived vectors – even 

glycoprotein deleted forms − are still mostly limited by eventual cytotoxic side 

effects. This cytotoxicity is in part due to certain aspects of rabies virus biology. 

However the high level production of virally encoded genes, including transgenes, 

which is an advantage for tracing, may also contribute to this cytotoxicity.  

Reducing the toxicity of RABV to permit long-term infection might therefore 

be achieved by reducing the expression levels of the rabies virus polymerase, which 

can for example be achieved by changing the position of the polymerase (L) gene of 

the rabies virus (Finke et al., 2000) to a different position further downstream. 

Another interesting target for manipulating the virus to reduce neurotoxicity could be 

the matrixprotein (M). This is an essential protein for the assembly of the virus, but at 

the same time it has a crucial regulatory role for the balance of virus transcription and 

replication. While a reduced M expression causes an increased transcription and 

reduced replication (Finke and Conzelmann, 2003; Finke et al., 2003) an increased M 

expression might reduce the transcription and therefore decrease the translation and 

make the infection less exhaustive for the cell metabolism. 

In some cases, like long-term studies, alternative approaches might be 

favorable. While there are different options for anterograde viral vectors that exhibit 

very low toxicity, most notable AAVs, the options are more limited for retrograde 

vectors. To date most of them are either not single-cycle vectors, and cross further 

trans-synaptic steps to connected neurons, or are toxic to the cell or both. The most 

promising candidates as alternative retrograde vectors are (i) a retrograde serotype of 

the AAV (Towne et al., 2010) (ii) lentivirus pseudotyped with the rabies virus 

glycoprotein (Kato et al., 2007) and (iii) a Canine Adeno-Virus (CAV). Despite 

enormous efforts, the first two still exhibit a low retrograde efficacy and often lead to 

only a small number of retrogradely labeled cells or are mixed with somatically 

infected cells and further they were shown to work mainly for specific projections 

(Aschauer et al., 2013; Carpentier et al., 2012; Kato et al., 2014; Nelson et al., 2013). 

Meanwhile, CAV has been improved over the last years and it is now possible to 
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reach high titers and efficient retrograde tracing. To date there is only a limited 

number of studies that applied this technique this far to questions about the neural 

circuitry, even though the potential is promising. It has been shown that CAV is 

specific for neurons and does not infect glial cells (Soudais et al., 2001) has a large 

cloning capacity 27-kb  and leads to a long-lasting transfection shown up to 1 year, 

but the expression levels seem to somewhat decrease over time (Soudais et al., 2004). 

Notably CAV serotype 2 was recently combined with designer drug 

application technology (DREADD) (Boender et al., 2014), which might be of great 

interest to explore the effects of neuromodulators and alter them in long-term 

experiments. There is however some concern about pathway specific tropism (Senn et 

al., 2014) and the retrograde tracing properties (mono- versus polysynaptic) have not 

been evaluated extensively. 

All of the viral vectors mentioned in chapter 3 are under constant 

development, to reduce toxicity, increase expression levels, increase packaging size, 

achieve cell type specificity and it is therefore difficult to specify a single best 

technique, each having its own merits and drawbacks, which need to be taken into 

consideration. Therefore the viral vector should be chosen carefully for a specific 

purpose, to find the best type for each experiment, considering all advantages and 

disadvantages. 
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3.3 Future Perspectives 
Based on our findings we suggest the following long-term experimental plan: 

(1) In order to verify the local hyperconnectivity, we have begun to quantify the local 

axonal arbors (i.e. the output) of bulk-infected neurons in the visual cortex. To 

quantify the axonal arbors of neurons we recently developed a novel anterograde 

RABV ∆G based method, conferring intense labeling of neuronal structures (Haberl 

et al., 2014). We are now using this approach with algorithms delineating the axonal 

arborization of the infected neurons (Broser et al., 2008). We are therefore combining 

anterograde RABV injections in V1 with confocal scanning microscopy in the same 

area over several layers, and the white matter. Automated tracing and quantification 

methods are applied to measure changes in the number and localization of axons. 

From this data we will establish an axonal density plot ranging from layer 1-6 and the 

white matter in Fmr1 KO and in WT mice. This approach should provide an 

additional quantitative measure of the local connectivity of neocortical circuits of 

Fmr1 KO mice and of the number of outgoing connections. 

(2) We are currently measuring the spine density of excitatory neurons in the target 

area, in order to evaluate how changes in the local- and long-ranging connectivity 

could influence the density. We therefore started reconstructing sparsely labeled 

pyramidal neurons in layer 3 of adult Fmr1 KO and WT mice. We are using 3D 

reconstruction software (Imaris, Bitplane) to quantify the number of spines per 

dendritic segment. We will then test whether the spine density changes occur in the 

second generation of the Fmr1 KO mouse model. We will determine whether the 

spine density correlates with the calculated sum of changes of local pre-synaptic cells 

and long ranging pre- synaptic cells as well as the local axonal density. 

(3) In the next step we will further define the local contribution of excitatory / 

inhibitory input to the observed changes by quantifying the number of retrogradely 

labeled GABAergic interneurons in the intra-areal fraction of labeled neurons. We 

will therefore use immunohistochemistry to stain GABAergic neurons and quantify 

the number of RABV labeled inhibitory neurons in both conditions. This will allow us 

to determine whether the local change of presynaptic neurons implies a change in the 

ratio of excitatory vs. inhibitory input. 

(4) Once these experiments regarding the characterization of the connectivity 

phenotype in Fmr1KO mice are completed, this knowledge will provide a baseline for 
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testing the effect of different drugs on correcting alterations of the cortical wiring in 

FXS. Since we are correlating fine- structural measurements with non-invasive 

functional and structural magnetic-resonance imaging (MRI) we hope that the MRI 

measurements can be performed similarly on human patients. Since they can be 

performed repeatedly and provide another objective criteria to evaluate the efficacy of 

therapeutic agents. 
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The ability to completely map all synaptic connections (i.e. the connectome) of 
the brain would provide neuroscientists the possibility to test predictive 
hypotheses about the brain organization/behavioral capability, compare 
variations between two brains and find common denominators between species. 
Yet, the techniques to take on such a challenging task in the mammalian brain 
(with ~1011-1015 synapses depending on the species) are just evolving. Large 
research and funding efforts are underway devoted to the unravelling of the 
synaptic connectivity of individual neurons, specific neuron types, and of neural 
circuits to link their function to the underlying structure. Modern 
methodological approaches from a variety of disciplines are applied to tackle the 
immense complexity of the task. Amongst those approaches, recombinant 
neurotropic viruses of the rhabdoviridae family (in particular rabies virus and 
vesicular stomatitis virus) have become important tools. Advances in molecular 
biology, mouse genetics and in virology have increased the repertoire of tools 
available for defining the initial targets for infection as well as permitting 
improved tracing of synaptically connected neurons. At the same time, new 
constructs enhance our ability to manipulate circuits and to monitor their 
activity. Recombinant neurotropic viruses based strategies, together with 
optogenetic, electrophysiological, imaging methods and behavioural tasks 
enable previously unimaginable experiments. In this chapter, we will summarize 
the most recent advances in the use of recombinant rhabdoviruses for 
understanding the function and structure of neuronal circuitry. 
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1. Introduction 
 
Recent years have seen a surge of interest in mapping the functional 
architecture of the brain. Magnetic resonance imaging approaches have 
greatly contributed to the overall map of distinct brain regions and the 
functional (non-directional) interaction of these regions (e.g.(1)). 
According to the Allen Brain Atlas (http://www.alleninstitute.org/) there 
are more than 700 brain structures and we are only at the beginning of 
our quest to understand the precise synaptic organization within and 
between these neural circuits. Entire maps of the synaptic connectivity of 
these neural circuits would enable the possibility to decipher their role in 
defined behavioral tasks. This endeavor is evidenced by large-scale 
initiatives such as the Human Brain Project, as well as the plethora of 
articles describing connectivity data at a nano-, meso- and macroscopic 
level (2-4). The evolution of sophisticated chemical and optical 
approaches (e.g. CLARITY, two-photon tomography, array tomography 
(5-7) - permitting the visualization of functional circuits on a brain-wide 
scale - are an essential part of this initiative.  However, the 
characterization of the anatomical wiring diagram on such a scale also 
requires tools for marking and identifying interconnected neurons. 
Traditionally this has been performed using two main tracing 
approaches, based on either chemical/biochemical tracers, or on 
neurotropic viruses. Whilst each method has a number of strengths and 
limitations, the crucial advantages of several neurotropic viruses are their 
highly synapse-specific inter-neuronal transfer and self-amplifying 
nature, thereby enabling the visualization of fine-detailed morphological 
features of strictly synaptically connected neurons  
(e.g. (8-10)). In addition to the ability to visualize neuronal circuits, the 
capacity to control and monitor their activity is also essential for 
understanding their function. This latter aspect is almost exclusively 
within the domain of neurotropic viruses, due to their amenability to 
genetic manipulation. 
 
Most studies of neuronal circuit organization have exploited two main 
classes of virus –the alpha herpes viruses and rhabdoviruses (11, 12). 
The focus of this chapter is the use of recombinant rhadoviruses for the 
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dissection of the structure and function of neuronal circuits. Alternative 
approaches employing, for example alpha herpes viruses or 
chemical/biochemical tracers are reviewed elsewhere (e.g. (11, 13-17)). 
   
2.  Rhabdoviruses for the Analysis of Neuronal circuits 
 
2.1 Rabies and vesicular stomatitis viruses 
 
Certain rhabdoviruses, such as rabies virus (RABV) and the vesicular 
stomatitis virus (Indiana strain; VSV) are ideally suited to studies of 
neuronal circuit organization due to their ability to infect the nervous 
system (18). To the best of our knowledge, however, the only 
rhabdoviruses that have thus far been used for circuit analysis are and the 
closely related lyssavirus, rabies virus. Conceivably, other lyssaviruses 
might also be useful for studies in the nervous system due to their 
infectious properties.  Rabies virus (RABV) has a long history of use as a 
transneuronal tracer and is thus, in many ways, the prototypic 
neurotropic tracer. Through the pioneering work of Strick, Ugolini and 
colleagues, much is known about the specific features of this tracer, in 
particular it’s exclusively retrograde, trans-synaptic spread and the high 
level expression of its gene products (reviewed in (9, 11)). The native 
RABV is a poly-synaptic trans-synaptic tracer, meaning that after it has 
crossed synapses of the first-order neurons it will continue to do so, 
thereby infecting second- and then higher-order neurons (Fig. a, b).  
Although this property has certain advantages for addressing particular 
experimental questions (for example the flow of information from the 
CNS to the periphery) it is also a limitation, not in the least because of 
the convergent nature of many circuits (11, 19). Indeed, over the course 
of the trans-synaptic crossing and infection it becomes impossible to 
distinguish first-order from second- or high-order connected neurons.  
 
Vesicular stomatitis virus (VSV) is a relative new-comer to the field of 
neuronal circuit analysis and it is uncertain whether wild-type forms are 
trans-synaptic in nature, or if they spread by diffusion (20, 21) reviewed 
in (22). Recent studies, using recombinant forms of VSV have indicated 
that they are also trans-synaptic. Glycoprotein-deleted forms of both 
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VSV and RABV have been described (22-26), demonstrating not only 
the important role of the envelope glycoprotein in trans-synaptic spread, 
but also the diversity of applications feasible with these glycoprotein-
deleted vectors. We will therefore dedicate our discussion mostly to the 
potential of recombinant glycoprotein-deleted forms of both RABV and 
VSV for studying the physical wiring diagram of defined circuits, and for 
monitoring and manipulating their activity. 
 
2.2 Glycoprotein-deleted rhabdoviruses 
 
To overcome the limitations of ‘classical’ poly-synaptic viral tracers, a 
novel strategy was developed that restricted tracing to first order or 
‘mono-synaptic’ synapses (8, 11). This strategy, which has come to be 
known as monosynaptic trans-synaptic tracing (or mono-trans- synaptic 
tracing, for short) was a consequence of several critical 
developments/innovations from the field of virus biology: 
(1) The ability to rescue infectious rhabdovirus particles entirely from 
transfected DNA and thus manipulate the rhabdovirus genome (27-30). 

Schematic representation of different tracing possibilities 
A) A retrograde poly-synaptic tracer moves from the dendrite of the post-synaptic neuron 
to the axon of the pre-synaptic, whereas an anterograde tracer (B) moves from the axon 
of a presynaptic neuron to the dendrites of a post-synaptic neuron.  In both cases tracing 
is not limited to a single order synapse – the tracer continues to spread to the next neuron 
in a chain of synaptically-connected neurons. C) A mono-synaptic retrograde tracer, on 
the other hand, is only capable of crossing first order synapses from a postsynaptic 
neuron (orange) to those immediately presynaptic to it (green). D) Photomicrograph of a 
network of neurons traced in this manner. The single source cell (red/yellow) is 
connected to the presynaptic neurons in green.  Panel C adapted from (9). 
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(2) The finding that the infectious properties of glycoprotein-deleted 
forms of rhabdovirus (Rbd∆G) could be rescued by either trans-
complementation with their own glycoprotein or hybrid glycoproteins 
from other viral species (8, 23, 25, 31-34). 
(3) The demonstration that Rbd∆G is incapable of trans neuronal 
spreading (8, 22-24, 26). 
(4) The development of the EnvA/TVA targeting system (35-37), which 
has also been used in cancer biology (38) and which permits targeting 
approaches which circumvent the natural tropism of a virus.  Note that an 
avian virus receptor for subgroup B and its related glycoprotein 
(EnvB/TVB) has also been used in some studies (39-41). 
 
As a result of further innovations, namely the introduction of a 
fluorescent marker into the viral genome (24)and approaches for trans-
complementing the missing glycoprotein, the prototypic monosynaptic 
trans-synaptic tracing approach was developed (8). Since this approach 
was first developed for RABV, and has now been very well characterized 
using this virus, we will devote a larger part of our discussion to this 
work.  
 
3 Mono-trans-synaptic tracing using RABV ∆G 
 
Essentially this approach involves the production of a pseudotyped form 
of RABV∆G employing a hybrid glycoprotein containing sequences 
pertaining to the extracellular domain of a bird virus glycoprotein (avian 
sarcoma and leukosis virus EnvA glycoprotein). The resulting 
pseudotyped vector, RABV ∆G XFP(EnvA) (where XFP is any 
fluorescence marker) is incapable of infecting mammalian cells (8). 
Ectopic expression of the receptor for the EnvA glycoprotein (TVA) 
together with a trans-complementing rabies virus glycoprotein (RG), 
however, is sufficient to permit infection of a limited population of 
neurons.  Since these neurons (or source cells) express RG, the 
production of infectious RABV ∆G particles in these cells permits trans-
neuronal crossing, driving subsequent labeling of both the source cells 
and those immediately pre-synaptic to the source cell population (Fig. c, 
d). 
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Because of the constraints of the aforementioned tracing approach, the 
only neurons infected are the source cells and their first order pre-
synaptic partners (source cells are distinguished by the expression of an 
additional fluorescent marker). The major consequence is of this 
development is the loss of ambiguity with the analysis of transneuronal 
tracing experiments.  It is not only possible to discern the identity of the 
source cell population, but it also, for the most part, eliminates the 
problem of convergent connectivity patterns.  
 
To understand the importance of this development, it is important to 
understand that the unequivocal synaptic pairing of neurons can only 
otherwise be demonstrated by paired electrophysiological recordings or 
by electron microscopy (EM).  Light-mediated activation of the 
presynaptic neuron, for example by the expression of a light-sensitive ion 
channel such as channel rhodopsin (ChR2) in the presynaptic cell, can be 
used to infer connectivity. However other methods such as light 
activation, paired with electrophysiological recordings are needed to 
confirm this finding. While EM and paired electrophysiological 
recordings remain the gold standard for proving connectivity, they are 
unsuited to brain-wide circuit discovery or global circuit mapping 
approaches. The development of this mono-synaptically restricted tracing 
approach was this a major boon for field of circuit analysis. 
 
Innovative targeting strategies (see below) permit the experimenter to 
determine, with more or less specificity, the identity of the target cell 
population.  This permits not only the extraction of detailed information 
about the cell-type composition of certain circuits, but in certain cases, 
the elucidation of entirely novel connectivity patterns (e.g. (42-44)). A 
second major advantage is the ability to both map and manipulate the 
circuit under investigation. Thirdly, although this point remains the issue 
of some debate, this strategy also removes the aspect of ambiguity, 
which might theoretically arise, if certain circuits would be traced with 
more efficiency than others (see below). Lastly, the deletion of the 
glycoprotein has the effect of enhancing the survival of infected neurons, 
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reducing cytotoxicity (45, 46), and perhaps improving expression of the 
transgene (46). 
 
3.1 Different strategies for mono-trans-synaptic tracing 
 
As mentioned previously, the great advantage of the mono-trans-synaptic 
tracing approach is the ability to determine the identity of the source or 
starter cell population. In effective terms, this means devising a means of 
delivering the machinery required for mono-trans-synaptic tracing (i.e. 
TVA, RG and additional fluorescent marker) and limiting the expression 
of these factors to a more-or-less defined population of neurons. Various 
approaches have been developed to achieve this and may be roughly 
grouped into three main strategies – the use of accessory viruses, DNA 
transfection approaches or the use of transgenic animals.  For a more 
detailed discussion of this issue, the reader is referred to a recent review 
(9, 47-49).  
 
3.1.1 The use of accessory viruses to determine the source cell 
population. 
 
The wide range of expression vectors used in modern neuroscience have, 
in most cases, provided ample possibilities for addressing the problem of 
targeting the sources cell population. These vectors can be adapted, for 
example by the use of a cell-type specific promoter, to target initial 
infection and thus mono-trans-synaptic tracing to a particular neuron 
type (50). More frequently, the use of a Cre-restricted expression vector 
is used, in conjunction with a transgenic or knock-in mouse expressing 
Cre in a particular neuron type (e.g. (51-56). In other cases, a more 
complex strategy involving a conditional bi-transgenic mouse line and an 
adeno associated virus (AAV) vector expressing TVA/RG under the 
control of a tetracycline-dependent promoter has been employed (57, 
58). It has also been possible to take advantage of the inherent properties 
of certain certain vectors. For example retrovirus-mediated expression 
limits, with certain caveats (see (43)), the expression of TVA, RG and 
fluorescent marker encoding transgenes to proliferating neurons, a 
characteristic of early progenitors or neuroblasts. This approach permits 
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the tracing of de novo circuits formed as adult-born neurons integrate 
into an existing network (as described in (42, 43, 59)). AAV serotype 6 
(AAV6) and herpes simplex virus (HSV), on the other hand, have the 
quality of being retrogradely transported.  Approaches in which RG-
expressing AAV6 and HSV vectors are coinjected with an alternatively 
pseudotyped form of RABV ∆G, which also has exclusively retrograde 
properties (see below) have permitted mono-trans-synaptic tracing from 
source cell population defined by their ‘projection/connectivity 
signature’ rather than by their molecular identity (60-62) 
(63, 64). In this case the EnvA/TVA system is unnecessary because 
spatial targetting is used to limit infection to a specific population of 
projection neurons. Lastly, accessory vectors have been repackaged 
using novel pseudotyping strategies to limit their tropism to particular 
cellular populations (e.g. as described in (39, 40)). 
 
3.1.2 Transfection approaches to delineate the source cell population.   
 
In contrast to the aforementioned approaches permitting the ‘bulk’ 
targeting of populations of neurons, single cell transfection techniques 
can be used to identify neurons providing inputs into an individual 
neuron. To achieve this, expression plasmids encoding the tracing 
components are introduced using either two-photon-guided 
electroporation or whole cell patch-clamp mediated transfection (65, 66). 
Although painstaking, and difficult to achieve, such approaches enable 
the unambiguous identification of neurons presynaptic to a defined 
individual neuron. In combination with instance whole-cell recordings 
they provide unparalleled information about both the physiology and the 
connectivity matrix of a particular neuron.   
 
In addition to the targeting of single neurons, in vivo transfection 
approaches as also highly suited to the targeting of specific populations 
of neurons, through, for example, the use of in utero- or early postnatal 
electroporation techniques. This approach has been used to target, as 
source cells, the neuronal progenitors of either olfactory bulb granule 
cells (67), or layer 2/3 pyramidal neurons in the neocortex (68). Further 
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specificity was achieved by spatial and temporal separation of the initial 
electroporation event and subsequent RABV ∆G(EnvA) infection. 
 
3.1.3 The use of transgenic mouse for targeting of a source cell 
population. 
 
A more generic option for source cell targeting is the use of a transgenic 
mouse line expressing TVA and RG, or TVA alone in a conditional 
manner.  Both proteins can be placed under the control of a tetracycline-
regulatable promoter (69) limiting their expression to a selccted cell 
populations by the choice of an appropriate tetracycline trans-activator 
driver line (tTA).  This has enabled, for example, mono-trans-synaptic 
tracing from a defined population of neurons of the medial entorhinal 
cortex (70). Similarly, a floxed-STOP mouse line delivering either TVA, 
RG and fluorescent marker or TVA and RG, both in a Cre-dependent 
manner has been used to permit targeted tracing in combination with 
specific Cre driver lines (44, 59). The advantage of these approaches is 
that there is no need for two surgical procedures – RABV ∆G (EnvA) 
can be injected in a single operation.  However, this approach is best 
suited to the analysis of long-range connections rather than local 
connections.  Lastly, mice expressing TVA only in a Cre dependent 
manner (71) or through the use of a highly restricted promoter have also 
been described (43). In these two cases RG was delivered separately 
through the use of accessory virus.  This measure was designed to limit 
false positives through lower levels of ectopic TVA expression.   
 
3.2 Recent advances in mono-trans-synaptic tracing technology 
 
Although the advances in mono-trans-synaptic tracing technology have 
recently been summarized in review form (9), we feel that the flurry of 
new work implicating this technology and arising over the last year 
merits an updated assessment of the current ‘state of the art’. 
 
Mono-trans-synaptic tracing may be used to address a multitude of 
questions, as well as providing a means of confirming findings from 
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other mapping approaches or for the discovery of novel connectivity 
patterns. Here we highlight the most interesting aspects of recent studies. 
 
3.2.1.Dissecting the relationship between structure and function 
 
The distribution of inputs can be used to extract information about the 
underlying functionality of a circuit. For example, there are two major 
outputs in the striatum and mono-trans-synaptic tracing from these two 
cell populations identified an asymmetry of inputs from cortical and 
subcortical brain areas respectively (53). There are also examples in 
which RABV∆G and mono-trans-synaptic tracing have been used to 
describe neuronal subpopulations within a well-defined brain nucleus 
based on their projection diagram (see (56, 72)). In the latter, the authors 
described a novel di-synaptic circuit transmitting sensory information 
from the retina to the visual cortex via an intermediate structure in the 
thalamus. Interestingly, this circuit was spatially segregated - in both the 
neocortex and thalamus – from a parallel circuit bringing different visual 
information from the retina to the visual cortex. 
 
In addition, it is also possible to incorporate genetically encoded sensors 
into the RABV ∆G genome to monitor circuit modulation (for example 
see (64)). Elaborate toolboxes —encompassing mono-trans-synaptic 
tracing, retrograde tracing, classical tracers, optogenetics, pharmacology 
and behaviour studies — can now be put to use, as exemplified by 
Lammel et al (73).  Importantly, these tools (e.g. RABV ∆G-mediated 
expression of ChR2) can even be used to mediate a behavioural response 
at the neuronal population level (73). 
 
3.2.2 The use of mono-trans-synaptic tracing as an aid to circuit 
discovery. 
 
Betley et al (56) demonstrate the utility of the mono-trans-synaptic 
approach for aiding circuit discovery. Another remarkable possibility 
with RABV ∆G is to identify the inputs of a specific neuron type. 
Indeed, the brain is made of a large number of structures, each composed 
of a vast amount of neuron types. For example, the cortex contain more 
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than ten interneuron subtypes (74) and nine excitatory neuron subtypes 
(75). Using transgenic mice, with or without additional vectors, it is 
possible to target a specific cell type for primary infection, such as 
parvalbumin positive interneurons or mitral cells in the olfactory bulb 
(55) or vasoactive-intestinal peptide positive interneurons of the primary 
visual cortex (58). Such approaches have also been used to target mono-
trans-synaptic tracing to a specific layers of the entorhinal cortex, an 
important structure for spatial learning paradigms (70). 
 
The mono-trans-synaptic tracing technology has also been applied 
successfully to the identification of spinal cord circuits. For example, the 
segregation and topography of premotor circuits associated with specific 
muscle targets has been shown (60-62).  
 
 
3.2.3 Analysis of circuit remodelling 
 
One approach, for which this technique is ideally suited, is the analysis 
of circuit remodelling, following, for example activity or normal 
developmental programmes.   
Arenkiel et al (67) showed that odour stimulation resulted in enhanced 
tracing, resulting from an increased input onto olfactory bulb newborn 
neurons of odour-stimulated mice, as well as remodeling of their 
dendritic morphology. Novel connections from long range-inhibitory 
neurons were observed with adult-born neurons of the olfactory bulb 
(43). Interestingly, this study also suggested that migrating neuroblasts 
form transient connections with neurons of the rostral migrating stream 
and subependymal zone as they migrate to the OB. The integration of 
adult neurons into hippocampal circuits have also been described (42, 43, 
59) albeit over different time-scales. Athough common patterns 
immerge, a number of novel connectivity diagrams were reported such as 
a transient input from CA3 (42), novel inputs from a region adjoining the 
ventral tegmental area (59) and early connection with neurons in the 
subgranular zone of the dentate gyrus (43). 
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Takatoh et al (44) used a modified mono-trans-synaptic tracing approach 
to map the premotor circuits involved in the control of coordinated 
whisking by premotor neurons.  They analyzed the premotor neuron 
distribution at two distinct developmental stages, before and after the 
onset of whisking (i.e. postnatal day 11-14), and they were able to 
identify a developmental addition of projecting neurons in the premotor 
circuitry, which could explain the emergence of whisking. These 
brainstem premotor neurons also received input from the motor cortex, 
an area that has long been implicated in the control of whisking 
behaviour.  Thus this study not only extended our knowledge of the 
circuits involved in the control of sensory information gathering, but also 
demonstrated age-dependent circuit remodeling using the mono-trans-
synaptic tracing technique. 
 
3.2.4 Confirming the wiring diagram 
 
In addition to the aforementioned uses of this technology, RABV ∆G-
mediated mono-trans-synaptic tracing may be used to confirm 
connectivity information obtained from other approaches.  For example, 
the identity of the presynaptic layer 5 cell type providing input into layer 
2/3 pyramidal neurons of the somatosensory neocortex (68) has been 
previously described using electrophysiological and optogenetic methods 
(reviewed in (76)). In addition, mono-trans-synaptic tracing has been 
used to confirm novel connectivity patterns discovered using other 
methods (see (51, 63, 77, 78). Farrow et al. (79) used mono-trans-
synaptic tracing to confirm the identity of an inhibitory neuron providing 
presynaptic input to a defined class of ganglion cells. The identity of the 
presynaptic neuron was inferred by prior pharmacological experiments 
and by knowledge of the anatomical landscape of the retina. 
Undoubtedly, the intense morphological labeling conferred by the high 
level expression of RABV ∆G encoded fluorescence marker was an 
important aspect permitting the reconstruction of long-range axons from 
these neurons which extend over 1mm in the retina. 
 
4. Other Tracing Strategies Using RABV ∆G 
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4.1 RABV ∆G as a single cycle retrograde tracer  
 
In addition to its use for mono-trans-synaptic tracing, RABV ∆G, 
pseudotyped with its native glycoprotein, or that of a closely related 
RABV strain  (RABV ∆G RG), acts as a classical retrograde tracer (23, 
24, 46).  RABV ∆G (RG) infects axon terminals (24) and is retrogradely 
transported to the cell body and dendrites of target neurons in the same 
manner as wild-type replication competent forms.  However in the 
absence of trans-complementation, it remains confined to the initially 
infected neuron – thus acting as a ‘single cycle’ tracer (80). This enables 
the identification and also the concurrent modulation, monitoring and/or 
manipulation of neurons based on their projection characteristics.  This 
approach has been used to label specific projection neurons of the 
somatosensory cortex of rodents and visual cortex of monkeys and cats 
(81-83). Concurrent injection of RABV ∆G variants expressing different 
fluorophores has been used to map the inputs from lateral entorhinal 
cortex to olfactory bulb and anterior piriform cortex in order to 
understand how connectivity shapes odour discrimination (84). 
Retrogradely-targeted RABV∆G has also been used to express ChR2 to 
study the post-synaptic elements of circuits involving defined projection 
neurons (85-87). RABV ∆G (RG) expressing Cre can be used to created 
conditional loss- or gain-of-function in defined projection neurons.  
Using such an approach, for example, Dölen et al (88) ablated oxytocin 
receptor function in a particular population of neurons projecting to the 
nucleus accumbens. Retrograde tracing approaches have also been used 
to confirm results obtained using mono-trans-synaptic tracing approaches 
(e.g. (44, 53, 55). However care is needed interpreting such findings due 
to the lack of precise knowledge regarding the identity of the neurons 
receiving these inputs. Finally, a novel kind of retrograde tracing 
approach was recently described in which target neurons expressing 
TVA were infected with RABV ∆G (EnvA) via their axon projections 
(89). While lacking the specificity of infection mediated via the axon 
terminals, it permits the un-ambiguous discrimination of TVA-
expressing neurons based on their projection characteristics. 
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4.2 RABV ∆G as a single cycle antergrade tracer  
The ability to pseudotype RABV ∆ G using an alternative envelope 
protein permits the development of new vectors with altered tropism (e.g. 
(31, 32)). To extend this observation, we pseudotyped RABV ∆G with a 
chimeric glycoprotein containing the ectodomain of the VSV 
glycoprotein (VSV-G) and transmembrane- and cytoplasmic domain of 
RG (10).  In doing so, we wished to target infection to neuronal cell 
bodies rather than their axons, permitting infection of neurons located at 
the site of infection.  Indeed, we found that RBAV ∆G pseudotyped in 
this manner can act as an anterograde tracer rather than a retrograde 
tracer. Comparable findings were reported using a similar vector 
(pseudotyped with a chimeric glycoprotein containing the ecto- and 
transmembrane domains of VSVG and cytoplasmic domain of RG (90, 
91).  These vectors have a range of advantages, namely rapid, Golgi-like 
labeling of neuronal structures at the site of injection and compatibility 
with retrograde RABV ∆G forms, permitting reciprocal tracing of 
projection both to- and from a region (10, 91). Importantly, these vectors 
are suitable for use in aged animals, making them amenable to use in 
aging or neurodegeneration studies(10). This feature is not possible with 
most neurotropic vectors. Lastly, we were able to demonstrate that 
RABV ∆G can amplify from a single particle, conferring sufficient 
labeling to permit automated single neuron reconstruction approaches 
(10). The axon labeling achieved using this vector was superior to that 
achieved using intracellular introduction of biocytin – a method that has 
traditionally been use as a gold standard for single neuron reconstruction 
(16). This vector has a strong tropism for excitatory neurons but also 
permits the transduction of astrocytes (10) extending the range of cell 
types that can be transduced using RABV ∆G. 
 
5. RABV as a Poly-synaptic Tracer 
 
This subject has been the topic of numerous reviews ((13-15, 92)). We 
will therefore briefly highlight a number of interesting and innovative 
studies using this approach. Ohara et al (93) developed a recombinant 
form of the attenuated RABV strain, the HEP-flury strain, modified to 
express the envelope glycoprotein derived from the CVS strain, as well 
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as a number of fluorescent markers. These recombinant virus variants 
can be injected into different brain structures to examine convergent 
circuits in two colors (93-95). To overcome the difficulties in resolving 
first-order from higher-order connections in a polysynaptic tracing 
experiment, wild-type RABV was co-injected with cholera-toxin, a 
classical retrograde tracer (96). A complementary approach was 
previously suggested by López et al (97), who injected conventional 
biochemical tracers together with RABV to label inputs to- and from the 
thalamus. Finally, a recently developed single-cell targeting technique 
using a recombinant poly-synaptic RABV (98) may point the way to new 
strategies for the targeting of individual neurons. 
 
6. Vesicular Stomatitis Virus as a Tracer of Neuronal Circuits 
 
Although lesser known in neuroscience research, vesicular stomatitis 
virus (VSV) is also eminently suited to certain neuronal tracing 
applications. Possessing a broader tropism than RABV, it is also capable 
of infecting neuronal cells.  Recombinant forms, suitable to genetic 
manipulation, permit the construction of a variety of vectors.  Although 
capable of spreading in the CNS (20, 99), the specific trans-synaptic 
nature of its spread has only recently been confirmed using recombinant 
forms of the vector (26, 100, 101). Similar to RABV, glycoprotein 
deleted forms of VSV (VSV∆G) have been developed (22, 25, 26, 34). 
VSV readily accepts foreign transgenes and is also amenable to 
pseudotyping approaches (e.g. (22, 26, 34, 101, 102). VSV ∆G encoding 
eGFP  and pseudotyped with its own glycoprotein was capable of 
infecting a broad range of cells in the CNS and resulted in confined focal 
infection, suggesting that like RABV, the glycoprotein gene is also 
responsible to trans-synaptic spreading.  Recent studies confirm this 
finding and suggest that the nature of the glycoprotein can determine the 
direction of spreading of the recombinant virus (26, 100). Interestingly, 
this VSV can be engineered to spread in both an anterograde and 
retrograde direction permitting analysis of both inputs to and outputs 
from a target region (100).  VSV ∆G can also be also be used to trace 
mono-synaptically connected circuits, however thus far this has only 
been demonstrated for the retrograde direction in vivo.  The use of VSV 
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∆G vectors pseudotyped with the avian sarcoma and leukosis virus 
(EnvA) glycoprotein permit specific targeting of a defined starter cell 
population, as established for RABV ∆G.   Traced neurons exhibit fine 
morphological labeling, as has been demonstrated for RABV.  The 
advantage of this system over RABV ∆G-mediated tracing/expression 
system is the extreme rapidity of transgene expression (within ~1h of 
infection (22, 100)). This vector is thus well suited to experiments in 
vitro systems such as cultured tissue where a rapid result is needed at a 
particular development time-point.  In may thus also be useful in acute 
slices.  The disadvantage, however, is the rapid toxicity.  Calcium 
imaging experiments (calcium dynamics are used as a surrogate measure 
for electrical activity) showed that neurons infected with VSV ∆G were 
indistinguishable from WT neurons 24 post inoculation in brain slices 
prepared from infected mice (22). Similar findings were reported by 
Beier et al (100), however by 2 days post infection, electrophysiological 
properties of infected neurons had become aberrant, thus demonstrating a 
very narrow time-window for physiological experiments (100). 
 
A novel circuit tracing approach has also been demonstrated in which the 
specificity of tracing is limited at the level of the pre-synaptic neuron 
(101) VSV ∆G has been engineered to express a chimeric glycoprotein 
containing extracellular sequences derived from the EnvA glycoprotein. 
This restricted tracing to presynaptic neurons expressing TVA (in this 
case engineered by Cre dependent expression using a ChAT-Cre, 
conditional TVA bitransgenic mouse). This vector was then pseudotyped 
with the rabies virus glycoprotein to permit axon infection and long-
range retrograde transport of the pseudotyped vector. Following injection 
into the lateral geniculate nucleus (a nucleus essential for processing 
visual information from the retina (and which receives inputs from a 
wide range of retinal ganglion cells, RGC), trans-synaptic tracing was 
limited to starburst amacrine cells (SACs) immediate presynaptic to 
RGCs. Using this technique, Beier et al, described novel elements of the 
RGC-SAC circuitry.  They also extended their description of the 
specificity of trans-synaptic tracing using VSV.  In spite of the extensive 
overlap of neuronal processes, there was no infection of neurons with 
closely apposed structures. However, this approach may be limited to 
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certain types of synapses, because no tracing was observed via dendro-
dendritic synapses. 
 
7.  Caveats  
Although this is an extremely powerful approach, a number of caveats 
remain.  Firstly, the long-standing principles about the specificity of 
tracing using the RABV (13, 92, 103) are derived mostly from studies 
using native (non-recombinant) forms of the virus, mostly derived from 
the Challenge Virus Standard (CVS). As noted (13) it is possible that 
other strains differ in their trans-neuronal tracing qualities.  To date, 
almost all mono- trans- synaptic tracing studies have been performed 
with glycoprotein-deleted recombinant RABV derived from the highly 
attenuated Street Alabama Dufferin-derived strain, SAD B19.  The trans-
neuronal tracing qualities of this virus have now been evaluated in 
numerous brains regions and the following features immerge. 
Glycoprotein deleted SAD B19-based mono-trans-synaptic tracing is, in 
all but one example (see below), exclusively retrograde.  Tracing occurs 
in an entirely synapse-specific manner (65, 67). A number of synapses of 
various modalities are crossed, including certain ‘non-canonical’ 
synapses such as dendro-dendritic synapse (but see also below). There is 
no evidence of the infection of ‘fibers of passage’ (e.g. (43)) although 
certain studies (44, 67) suggest that glial cells may be infected.  The 
significance of the later observation has not fully been investigated.  In 
our own work in the neocortex and hippocampus, we find no evidence of 
the infection of glial cells using EnvA-pseudotyped RABV ∆G of SAD 
B19 origin, but each brain area may be different. Finally, it is an oft-cited 
‘fact’ that peripheral innoculation leads to transduction of motor neuron 
endplates, but not sensory neurons(15, 92). Recent studies show that this 
is not necessarily true for either SAD-B19 derived vectors or wildtype 
CVS-strains (44, 104, 105). Recent experiments using vectors derived 
from glycoprotein-deleted forms of the HEP-Flury strain of show that it 
can also function as an effective trans-neuronal tracer when trans-
complemented with exogenously expressed glycoprotein (Mori and 
Morimoto, 2014).  The specificity of tracing with this novel vector has 
not be characterized in detail and it is difficult to extrapolate these 
characteristics from other studies using this strain (e.g. (93, 95)) because 
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in the latter case the vector has been engineered to express a CVS-
derived glycoprotein.  
 
In spite of its enormous potential, mono-transynaptic tracing, like any 
other experimental approach, also has its limitations. Factors relating to 
the nature of the rabies negative-sense single-stranded RNA genome 
preclude the use of certain genetic tools possible with other neurotropic 
viruses (reviewed in (9, 11).  Undersampling of presynaptic populations 
(55, 65) and the restricted time window (less than postnatal day 11) for 
use of the SAD B19-derived forms for tracing from the peripheral 
nervous system (60) are all significant factors to consider in the design of 
a tracing experiment.  Most perturbing is the observation that this 
approach sometimes fails to reveal known synaptic connections. For 
example Wall et al (53) reported a dramatic under-labelling of striatal-
inputs from substantia nigra pars compacta. This nucleus represents an 
important source of dopaminergic input to the striatum – a finding that 
was confirmed by injection of a non-trans-synaptic retrograde RABV∆G 
tracer (see also below).  Wall and colleagues (53) speculate that the 
unusual structure of this synapse, which features a large extracellular 
space, may impede trans-synaptic tracing.  Deshpande et al (43) observed 
a similar perplexing lack of tracing of between adult born neurons of the 
OB and mitral cells. This may reflect an aspect of their atypical dendro-
dendritic synapses synapse or may represent some feature inherent to this 
type of new-born neurons, that the synapse lacks an essential molecule 
for trans-synaptic crossing.  The molecules required for trans-synaptic 
crossing have not entirely been defined, although certain candidate 
molecules have been proposed (namely nicotinic acetylcholine receptor, 
neuronal cell adhesion molecule, low affinity nerve growth factor 
receptor (106)). It is thus possible that certain molecules may absent or 
present in limiting quantities in certain synapses. Another potential 
limitation, is that RABV ∆G particles cross synapses in a stochastic 
manner and that neurons with multiple inputs onto a source cell have a 
greater chance of being labeled in a given time window than those with 
sparse inputs (44). Another unanswered question is whether the 
probability of trans-synaptic crossing could linked to synaptic strength. 
This question is difficult to test experimentally, but evidence in its favour 
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comes from the finding that trans-synaptic tracing was more favourable 
in animals trained on a running wheel that sedentary animals.  Although 
one study has shown that the activity of a synapse does not play a role in 
the efficiency of crossing (67), this may also strongly depend on the cell 
type involved. Lastly, rabies virus has been considered to be a gold 
standard for trans-neuronal tracing because of its obligate retrograde 
mode of passage.  However, recent finding suggest that in certain cases 
this may not be the case. Zampieri et al.(105) showed that not only can 
RABV ∆G infect peripheral sensory neurons, but it is also capable, in 
certain cases, of anterograde transport. In so doing, they were able to 
dissect circuits involving sensory neurons, motor neurons and certain 
inhibitory neurons of the peripheral nervous. Reassuringly, perhaps, they 
demonstrated that anterograde transport is limited to the peripheral 
nervous system and does not occur in the CNS. The authors speculate 
that this may be due to different cytoskeletal dynamics in sensory 
neurons (c.f. CNS neurons). It is important to note, however, that this 
was demonstrated in P4 mice and is yet to be demonstrated in mature 
animals. VSV on the other hand has a limited history as a trans-synaptic 
tracer. Thus more studies are required to unequivocally establish its 
properties.  It is important to note that although capable of crossing 
synapses in both the anterograde and retrograde direction, mono-trans-
synaptic tracing has not yet been demonstrated in vivo.  Lastly, it will be 
important to demonstrate whether attenuated forms of VSV such as those 
possessing the M15R mutation (107) can be used for physiological 
studies in vivo. 
 
8. Perspectives 
 
Recent developments in the field of RABV ∆G technology convincingly 
establish the importance and power of this tool for neural circuit 
mapping. Combined with other imaging, physiological, and behavioral 
approaches, it promises to open new avenues of research permitting a 
greater understanding of the mammalian connectome and its function. 
RABV ∆G is applicable to a range of experimental paradigms and 
permits not only the study of circuit structure, but also the ability to 
manipulate or monitor its function. VSV ∆G is a relatively new tracer 
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and its capabilities remain to be tested.  It is likely that certain features of 
this vector namely the rapidity of replication and potential for 
anterograde mono-trans-synaptic tracing in vivo and ease of accepting 
alternative glycoproteins will lead to its preferred use in certain 
experimental questions. 
 
A number of new targeting vectors and RABV ∆G variants have greatly 
extended the capabilities of the RABV ∆G toolbox.  Many of these 
innovations may also be possible with VSV.  The development of RABV 
variant expressing calcium sensors (64, 108), glutamate sensors (64), 
ChR2 (73), subcellular markers (91) and Cre recombinase (88, 108) 
extends the spectrum of approaches possible using this technology. In 
addition, the demonstration, for the first time that mono-trans-synaptic 
tracing may be targeted to non-rodent species greatly enhances the 
potential of this approach (50). RABV and VSV have been shown to 
have a very broad host range, including all mammalian species, birds and 
even insects (reviewed in (18)). Thus given the appropriate targeting 
strategy, experiments in other model systems ranging from perhaps 
drosophila to primates may soon be possible. The concomitant use of 
optical approaches (109, 110) will also greatly increase the potential of 
this technology for high-throughput screening approaches, making these 
vectors suitable for the global understanding of circuit level defects in 
models of pathology. Taken together these tools shows great promise for 
improving our understanding of neuronal circuit organisation/function as 
well as its plastic modification during physiological processes or in 
disease.  
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