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Abstract

Dans le format multiple-view video plus depth, les cartes de profondeur peuvent être

représentées comme des images en niveaux de gris et la séquence temporelle correspondante

peut être considérée comme une séquence vidéo standard en niveaux de gris. Cependant les

cartes de profondeur ont des propriétés différentes des images naturelles: ils présentent de

grandes surfaces lisses séparées par des arêtes vives. On peut dire que l’information la plus

importante réside dans les contours de l’objet, en conséquence une approche intéressante

consiste à effectuer un codage sans perte de la carte de contour, éventuellement suivie d’un

codage lossy des valeurs de profondeur par-objet.

Dans ce contexte, nous proposons une nouvelle technique pour le codage sans perte

des contours de l’objet, basée sur la déformation élastique des courbes. Une évolution

continue des déformations élastiques peut être modélisée entre deux courbes de référence,

et une version du contour déformée élastiquement peut être envoyé au décodeur avec un

coût de codage très faible et utilisé comme information latérale pour améliorer le codage

sans perte du contour réel. Après que les principales discontinuités ont été capturés par la

description du contour, la profondeur à l’intérieur de chaque région est assez lisse. Nous

avons proposé et testé deux techniques différentes pour le codage du champ de profondeur

à l’intérieur de chaque région. La première technique utilise la version adaptative à la

forme de la transformation en ondelette, suivie par la version adaptative à la forme de

SPIHT. La seconde technique effectue une prédiction du champ de profondeur à partir de

sa version sous-échantillonnée et l’ensemble des contours codés.

Il est généralement reconnu qu’un rendu de haute qualité au récepteur pour un nouveau

point de vue est possible que avec la préservation de l’information de contour, car des

distorsions sur les bords lors de l’étape de codage entrâınerait une dégradation évidente

sur la vue synthétisée et sur la perception 3D. Nous avons étudié cette affirmation en

effectuant un test d’évaluation de la qualité perçue en comparant, pour le codage des

cartes de profondeur, une technique basée sur la compression d’objects et une techniques

de codage vidéo hybride à blocs.
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Abstract

In multiple-view video plus depth, depth maps can be represented by means of grayscale

images and the corresponding temporal sequence can be thought as a standard grayscale

video sequence. However depth maps have different properties from natural images: they

present large areas of smooth surfaces separated by sharp edges. Arguably the most

important information lies in object contours, as a consequence an interesting approach

consists in performing a lossless coding of the contour map, possibly followed by a lossy

coding of per-object depth values.

In this context, we propose a new technique for the lossless coding of object contours,

based on the elastic deformation of curves. A continuous evolution of elastic deformations

between two reference contour curves can be modelled, and an elastically deformed version

of the reference contours can be sent to the decoder with an extremely small coding cost

and used as side information to improve the lossless coding of the actual contour. After

the main discontinuities have been captured by the contour description, the depth field

inside each region is rather smooth. We proposed and tested two different techniques

for the coding of the depth field inside each region. The first technique performs the

shape-adaptive wavelet transform followed by the shape-adaptive version of SPIHT. The

second technique performs a prediction of the depth field from its subsampled version and

the set of coded contours.

It is generally recognized that a high quality view rendering at the receiver side is

possible only by preserving the contour information, since distortions on edges during the

encoding step would cause a sensible degradation on the synthesized view and on the 3D

perception. We investigated this claim by conducting a subjective quality assessment test

to compare an object-based technique and a hybrid block-based techniques for the coding

of depth maps.

Keywords: multi-view video plus depth, depth map coding, contours, lossless repres-

entation, elastic curves, image synthesis, quality assessment.
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Introduction

Context and Motivation

The video-plus-depth representation for multi-view video sequences (MVD) consists of

several views of the same scene with their associated depth information, which is the

distance from the camera for every point in the view. The MVD representation allows

functionalities like 3D television and free-viewpoint video [MWS06, VWS11, GPT+07],

generating large volumes of data that need to be compressed for storage and transmission.

As a consequence, MVD compression has attracted a huge amount of research effort in the

last years, while ISO and ITU are jointly developing an MVD coding standard [ISO11].

Compression should exploit all kinds of statistical dependencies present in this format:

spatial, temporal and inter-view, but also inter-component dependencies, i.e. between color

(or texture) and depth data [MSMW07b, DPPC13].

This thesis focuses in particular on depth map compression. Depth maps are not

meant to be visualized by the user, they are used instead by depth-image-based rendering

software (DIBR) to synthesize novel views to provide a more immersing experience through

multiview screens or free-viewpoint video. Classic techniques developed for texture images

do not take into account the effects caused by the compression stage on the synthetic

view. Moreover, a compression technique tailored on depth maps can exploit their peculiar

properties: objects within a depth map are usually arranged along planes in different

perspectives; as a consequence, there are areas of smoothly varying levels, separated by

sharp edges corresponding to object boundaries. These characteristics call for an accurate

encoding of contour information. Some of the approaches proposed in the literature include

modelling the depth signal as piecewise polynomials, such as wedgelets and platelets

[MMS+09], where the smooth parts are separated by the object contours. However, it

is generally recognized that a high quality view rendering at the receiver side is possible

only by preserving the contour information [GLG12], [SKN+10], since distortions on edges

during the encoding step would cause a sensible degradation on the synthesized view and

on the 3D perception. In other words, a lossless or quasi lossless coding of the contour

is practically mandatory. Moreover, depth map segmentation is eased by the nature of

the signal, and the extraction of the contours can be achieved with specifically designed

segmentation techniques [ZRS+12].
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Lossless representation is usually very expensive in terms of bit-rate requirements

[CPPV07], so the goal of this thesis is to investigate a new paradigm that performs a

lossless encoding of objects’ boundaries, exploiting the temporal and inter-view redundancy.

Once developed a technique to code the objects’ contours, a suitable representation for the

inner part has to be researched.

Contributions

An original intuition brings to the video coding domain the framework introduced by

Srivastava et al. [SKJJ10] to model a continuous evolution of elastic deformations between

two reference curves. The referred technique interpolates between shapes and makes the

intermediary curves retain the global shape structure and the important local features

such as corners and bends. Moreover, it is also relatively easy to compute the geodesic

between the two reference curves: according to the interpretation of the elastic metric,

this geodesic consists in a continuous set of deformations that transforms one curve into

another with a minimum amount of stretching and bending, and independently from their

absolute position, scale, rotation and parametrization. Classical applications of elastic

deformations of curves are related to shape matching and shape recognition.

A depth map coding framework has been developed, consisting of:

• a lossless contour coding technique. The proposed technique is based on the elastic

deformation of curves. Using the square-root velocity representation for the elements

of the curve space, a continuous evolution of elastic deformations can be modelled

between two reference contour curves. An elastically deformed version of the reference

contours can be sent to the decoder with a reduced coding cost and used as side

information to improve the lossless coding of the actual contour. Experimental results

on several multiview video sequences show remarkable gains with respect to the

reference techniques and to the state of the art.

• A simple coding scheme where depth data is represented by a set of contours defining

the various regions, while the inner part of the objects is compressed with a transform

technique. The used transform is the shape-adaptive wavelet transform, followed

by the shape-adaptive version of SPIHT (set partitioning in hierarchical trees).

Experimental results prove that the proposed technique, however very simple, is able

to compete with refined solutions such as HEVC due to the properties of the depth

signal.

• In alternative to the previous one, a novel coding scheme where depth data is

represented by a set of contours defining the various regions together with a compact

representation of the values inside each region. A 3D surface prediction algorithm is
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then used to obtain an accurate estimation of the depth field from the coded contours

and a subsampled version of the data. An ad-hoc coding strategy are used for the

low resolution data and the prediction residuals. Experimental results prove how the

proposed approach is able to obtain a very high coding efficiency outperforming the

HEVC coder at medium-low bitrates.

It is generally recognized that a high quality view rendering at the receiver side is

possible only by preserving the contour information since distortions on edges during the

encoding step would cause a sensible degradation on the synthesized view and on the

3D perception. However, to the best of our knowledge, the impact of contour-preserving

depth-coding on the perceived quality of synthesized images has not been conveniently

studied. Therefore another contribution to this work is an investigation by means of a

subjective study to better understand the limits and the potentialities of the different

compression approaches (object-based and block-based) from the user’s perspective.

Our results show that the contour information is indeed relevant in the synthesis step:

preserving the contours and coding coarsely the rest typically leads to images that users

cannot tell apart from the reference ones, even at low bit rate. Moreover, our results show

that objective metrics that are commonly used to evaluate synthesized images may have a

low correlation coefficient with MOS rates and are in general not consistent across several

techniques and contents.

Structure of the manuscript

This manuscript is composed of four distinct parts, corresponding to just as many chapters.

In the first chapter background notions on video coding are reported. Then the second

chapter introduces the developed lossless contour coding technique, based on the elastic

deformation of contours. The third chapter contains the description of the two proposed

techniques to code the inner depth field of the objects. The fourth chapter deals with a

quality assessment study performed to evaluate the developed depth map coding framework

from the user’s perspective. More precisely, the manuscript is organized as follows:

• In Chapter 1 some background notions related to video compression are presented,

including the concept of hybrid video coder and quality evaluation through objective

metrics. Then follows a detailed description of the state-of-the-art hybrid block based

compression technique: the high efficiency video coder (HEVC). It will serve as basis

for comparison in the experiments described in this manuscript. Finally the 3D

video representation is introduced, dealing with multiple-view video plus depth and

depth-image-based rendering techniques. A section dedicated to lossless compression

and to the arithmetic coder closes the chapter.

• Chapter 2 describes the lossless contour coding technique based on the elastic

deformation of contours. It is the basis of the developed depth coding framework
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and it is described in detail for every step: the computation of the geodesic from

one reference curve to the other; how to establish a correspondence between the

predicted curve and the current one, and how to use the prediction as a context to

improve the performance of the arithmetic coder. Experiments and comparisons with

other popular contour coding techniques and with the state-of-the-art technique are

detailed.

• Chapter 3 describes the two developed depth map coding technique based on the

lossless contour coding technique presented in Chapter 2. A brief overview of the

compression techniques specifically targeted at depth maps is first given. Then the

developed techniques are detailed, along with the experiments on depth maps alone

and on synthesized images, to validate the techniques in a practical case. Along with

the objective metrics, some synthesized images are reported to give the reader a visual

clue of the different artifacts introduced by the examined compression techniques.

• Chapter 4 reports the details of the subjective quality assessment study performed

to validate from the user’s perspective one of the techniques described in Chapter 3.

After a brief introduction to the basics of subjective visual quality assessment, follows

an overview of the coding techniques used for the preparation of the test material.

Then the test design is discussed and its set-up described. Finally from the presented

results comes a further validation of the proposed approach.

This manuscript ends with a summary of the proposed methods and their associated

results, as well as some perspectives for future work in this field.
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In this chapter we will discuss the general concepts of video coding (Section 1.1) up to

the last in date compression standard, HEVC, which will serve as basis for comparisons

in the manuscript (Section 1.2). The 3D video format multiple-view video plus depth is
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introduced in Section 1.3. Finally an introduction to lossless compression, with particular

care to the arithmetic coder, is provided in Section 1.5

1.1 Video Coding Principles

A video is a three dimensional signal composed of a number of images, either grayscale

or color, shown in rapid succession to create the illusion of movement. The images that

compose a video are called frames, each one indicated by Ik(m,n), where m and n define

the spatial position and k refers to the time instant. For digital videos, as always considered

in this thesis, m and n are integers. Due to the large size of raw (uncompressed) video

signals, compression is necessary for storage and transmission applications. The statistical

and psychophysical redundancy of the video signal make possible a drastic reduction of the

file size while maintaining an acceptable quality [Bov00].

In particular the statistical redundancy represents both the spatial correlation between

pixels in the same frame, and the temporal correlation between pixels in successive frames.

Typically a high degree of correlation characterize the values of the pixels in the same

area, and at the same time the temporal evolution of successive frames makes them highly

correlated. This concept is depicted in Figure 1.1. An example of use of spatial correlation

in video coding is the prediction of a frame from previous ones. Psychophysical redundancy

on the other hand exploits the response of the human visual system (HVS) to the video

stimulus and the fact that not all the information conveyed by the video will be perceived

by a human observer. An example of use of psychophysical redundancy in video coding is

the chroma subsampling: the HVS is more sensitive to variations in brightness and less to

variations in color, so generally less resources are allocated to the chroma components with

respect to the luminance [Bov00].

1.1.1 General notions of image and video compression

Compression techniques usually can be divided into two main groups: lossless and lossy

compression techniques. Lossless compression techniques allow the reconstruction of the

original data, while providing a moderate compression ratio. Lossy compression techniques,

on the other hand, can achieve a high compression ratio by accepting a lower quality for

the representation of the signal. It is possible to specify, in lossy compression techniques, a

certain bit-rate or target file size to achieve, and settle for the quality available at that

bit-rate, or to specify a certain level of acceptable quality and settle for the rate that allows

that quality. Another aspect to consider for a video codec is the complexity, which in some

conditions, e.g. on portable devices, is limited.

A very common scheme used for the compression of still images is depicted in Fig-

ure 1.2. It consists of three main parts: transformation, quantization, and entropy coding.

Transformation concentrates most of the information of the signal in few coefficients, thus
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Figure 1.1: Spatial and temporal correlation.

TransformationInput
information

Q
Entropy Compressed

informationcoding

Figure 1.2: Example of general encoder for still images.

decorrelating data; quantization reduces the total bit rate by using a finer representation

for the most important coefficients and a coarser representation for the least important

ones; finally entropy coding eliminates the remaining statistical redundancy.

Transformation

The goal of the transformation step is to reduce the correlation of the data [SR00],

concentrating most of the information of the original signal into a small number of

coefficients. The transform has to be invertible to allow the reconstruction of the signal at

the decoder side. Examples of transforms used for transform coding are the Karhunen-Loeve

transform (KLT), the Discrete-Fourier transform (DFT) and the Discrete-Cosine transform

(DCT).

The KLT [Jai89] is the optimal transformation to decorrelate the data, however it

depends on the statistics of the signal and it is built upon the assumption that the signals

are stationary, which is not true for images and videos. The most used transform for images

and videos is the DCT [Cla85]: it compacts efficiently the energy of the signal in few low

frequency components, it is not data-dependent, and it performs better than the DFT for

still images [Say12].

Quantization

After the transformation follows the quantization step, where some information is discarded

by discretizing the magnitude of the coefficients. Quantization operates an association of
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the input values, contained in the set S, to the discrete output subset C of cardinality N :

Q : x ∈ S → C = {y1, y2, . . . , yN} . (1.1)

The set S is divided into N regions Ri, and their union is equivalent to the original set:

Ri = {x ∈ S : Q(x) = yi} ,

N⋃
i=1

Ri = S . (1.2)

If for all i the amplitude of the region Ri is constant and yi coincides with the center

of the region Ri, then the quantization is said uniform. This solution is optimal only for

uniformly distributed signals.

Another approach, called non-uniform quantization is to quantize coarsely the less

probable value intervals of the signal, and more finely the most probable value intervals.

According to the Lloyd-Max algorithm, the statistics of the signal can be used to obtain the

optimal thresholds and output values for each interval, under the assumption of stationary

signals [GG92].

Adaptive quantization tries to cope with this restriction, adapting the design of the

quantizer to the varying statistics of the signal [Jay73][YO95]. Two classes of adaptive

quantization can be distinguished: backward adaptive quantization, where an already

transmitted portion of the signal is analysed both at the encoder and at the decoder to

update the statistics used for the design of the quantizer; and forward adaptive quantization,

that uses the statistics of a portion of the signal yet to quantize. In the case of forward

adaptive quantization the statistics of the signal have to be transmitted to the decoder as

a side information.

Entropic coding

The goal of the entropic coder is to remove the remaining redundancy left in the signal,

reducing the average bit-rate needed to losslessly encode a sequence of symbols. This topic

is discussed in detail in Section 1.5.

1.1.2 Predictive coding

As already mentioned at the beginning of Section 1.1, pixel values in video sequences have

a high degree of correlation both in space and in time. Already transmitted samples of the

signal can be used to make a prediction of the signal, and the difference between the signal

and its prediction can be coded to increase the coding efficiency. This approach is called

differential or predictive coding.

In a simple differential coding scheme (differential pulse-code modulation, DPCM) the
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Figure 1.3: DPCM: coder (a) and decoder (b) scheme.

prediction is done pixel by pixel. This paradigm can be synthesized by:

dn = xn − x̂n−1, (1.3)

where xn is the actual sample, x̂n−1 is the reconstructed previous symbol, and dn is the

difference of the two. The use of the reconstructed sample makes the quantization error

influence the prediction.

A general scheme for DPCM is shown in Figure 1.3. The reference for the current

symbol pn is predicted using the previous k symbols. The same prediction has to be

computed both at the coder and at the decoder, so only previously transmitted symbols

can be used. Considering f as prediction function, the prediction for the current symbol

pn can be defined as:

pn = f(x̂n−1, x̂n−2, . . . , x̂n−k). (1.4)

A good predictor produces a difference signal with a smaller variance compared to the

original one. Furthermore, a smaller distortion can be achieved if the quantization is done

on the signal dn instead of xn.

Motion estimation and compensation

A simple differential coding scheme usually fails to exploit the temporal redundancy

of video signals, for example a still object recorded by a moving camera will have a

high temporal redundancy but differential coding is not able to cope with it. Motion

estimation and compensation is a technique used to predict the current frame Ik from

a previously transmitted frame Îm by estimating and compensating the objects’ motion

[Bov00] [PPCD14]. Estimated motion vectors have to be sent to the decoder in order to

construct the prediction.

To perform motion estimation and compensation, the frame is first divided into macrob-

locks. Then the current macroblock Bp
k , in position p, is predicted by another macroblock

from the frame Îm, not necessarily in the same position. A motion vector v is thus defined,

allowing the movement of the reference macroblock from position p to position p + v.
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Figure 1.4: Motion estimation and compensation.
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Figure 1.5: Example of general encoder for still images.

The choice of the reference macroblock is done minimizing a cost function that evaluates

the similarity between two macroblocks. Given the cost function d(v):

d(v) = d
(
Bp
k , B

(p+v)
m

)
, (1.5)

the optimal motion vector v∗ in the search window W is:

v∗ = arg min
v∈W

d(v) . (1.6)

An example of motion estimation and compensation is depicted in Figure 1.4.

1.1.3 Hybrid video coder

All the current video coding standards use the paradigm of the hybrid video coder. It

uses two different techniques to remove the spatial and temporal redundancy, thus the

name “hybrid”. Transform coding is used to remove the spatial redundancy, while motion

estimation and compensation to remove the temporal redundancy.

In MPEG standards the video sequence is organized in “groups of pictures” (GOPs),

and the frames in a GOP can be distinguished in intra (or I), and inter frames (P and

B). An example of GOP is shown in Figure 1.5. I-frames, or intra frames, are encoded
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separately from other frames. Temporal redundancy is not taken into account and the

transform coding paradigm allows the exploitation of only the spatial redundancy. In inter

frames the temporal redundancy is exploited. More specifically for P-frames, or predicted

frames, motion estimation and compensation is performed using as reference only previous

I and P-frames of the same GOP. On the other hand for B-frames previous and following

I and P-frames of the same GOP can be used as reference for motion estimation and

compensation.

The generic scheme of the hybrid video coder is reported in Figure 1.6. The switch

makes the system work in one of the two modes: intra-frame and inter-frame. With

reference to the Figure 1.6, in intra-frame mode the frame Ik is first transformed by

the DCT, then quantized and finally compressed with a variable length code (VLC). In

inter-frame mode, a previously decoded frame Ĩm, along with motion vectors (MV) is used

to predict the current frame Ik. The encoder includes then a decoder (Q−1 and IDCT

blocks) and a buffer to store previously decoded frames, along with motion estimation and

compensation procedures (ME and MC blocks, respectively). ek is the difference between

the current frame Ik and the prediction Îk. The channel buffer adapts the bit-rate to the

channel by controlling the quantization step. Usually with slowly changing videos the

MV do not need many resources to be coded, so the quantization step can be reduced,

improving the quality of the pictures. On the other hand, if the video is rapidly changing

the MV will take a large amount of the available resources to be coded. To maintain the

same bit-rate the quantization has to be coarser, leading to a loss of image details, but

since the human visual system is unable to appreciate small spatial details in a quickly

changing video the overall quality is usually not affected.

The hybrid video decoder scheme is depicted in Figure 1.7. It is simpler than the

coder as it contains only the variable length decoder (VLC), inverse transform and inverse

quantizer (IDCT and Q−1, respectively), and the motion compensation procedure (MC).

This asymmetry is convenient for all the applications where the video is encoded once and

decoded many times.

1.1.4 Quality evaluation: objective metrics

The solution to the problem of the evaluation of lossy compression techniques for videos and

images can be conducted through subjective or objective methods [Ric04]. In Subjective

methods a group of people is asked to judge the quality of the signal. Subjective methods

are generally more accurate than objective metrics, but at the same time slower and more

expensive. Objective metrics use the statistical properties of the signals to assess their

quality and they can be distinguished into perceptual and non-perceptual metrics.

In this section the definition of some common objective metrics is reported.
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Mean absolute difference - MAD The mean absolute difference is a measure of

statistical dispersion equal to the average absolute difference between x, the original signal,

and x′, the compressed one. It is defined as:

MAD =
1

N

N∑
i=1

|xi − x′i| , (1.7)

where N is the number of samples.

Mean square error - MSE A more common measure in the domain of image and

video compression, the mean square error differs from the MAD for the use of the square

of the difference instead of the absolute difference. It is thus defined as:

MSE =
1

N

N∑
i=1

(xi − x′i)2 , (1.8)

where N is the number of samples.

Peak signal-to-noise ratio - PSNR Another common metric is the peak signal-to-noise

ratio. It is related to the MSE and widely used to measure the quality of the reconstruction

of lossy compression codecs. The PSNR is defined as:

PSNR = 10 log10

(
2552

MSE

)
. (1.9)

The PSNR indicates with a gain (expressed in dB) the degree of similarity between the

original signal and the reconstructed signal. It is generally calculated on the whole image,

and it is generally used as an approximation of the human perception for image quality.

However, relying strictly on pixel comparisons it does not take into account any level of

biological factors of the human visual system [HTG08].

Structural similarity index - SSIM While MSE or PSNR estimate absolute errors,

the structural similarity index and its multi-scale extension (MS-SSIM) consider image

degradation as perceived change in structural information: pixels that are spatially close

have strong inter-dependencies. Mean, variance and cross-correlation of images are used to

compute a modified local measure of spatial correlation [WBSS04]. In addition, SSIM takes

into account also some perceptual phenomena, such as luminance and contrast masking

[RS08].

Although originally designed for still images, SSIM has become very popular to assess

the quality of video sequences as an alternative to the PSNR: the correlation with perceptual

quality is generally higher. The main critique moved to its use is that it lacks temporal

assessment methods, just like the PSNR [ZZRW13].
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Other objective metrics Two more objective metrics have been used in this work:

Weighted Signal-to-Noise Ratio and Visual Information Fidelity, a pixel-based and a non

pixel-based metric, respectively. They have been designed to assess the image quality from

the user’s perspective, taking into account aspects of the human visual system (HVS).

The Weighted Signal-to-Noise Ratio (WSNR) [MV93] uses the mean square error

weighted by a contrast sensitivity function (CSF) that mimics the behaviour of the human

eye: a typical band-pass filter whose peak lies at around 4 cycles per degree, with sensitivity

dropping both at very low and high frequencies [KB92].

The Visual Information Fidelity (VIF) [SB06] uses a different approach: natural images

can be modelled as the output of a stochastic source and then distorted. The mutual

information between the distorted and the reference images, in the context of natural image

sources, can quantify perceptual image fidelity [SBdV05].

1.2 High efficiency video coder

High Efficiency Video Coding (HEVC or H.265)is a video compression standard jointly

developed by MPEG and VCEG approved in 2013. It is considered as the state-of-the-art

for video coding, improving in many ways the previous H.264/MPEG-4 AVC [OSS+12],

adding support for higher resolution and more notably by reducing by half the bit-rate

while keeping the same level of quality.

A brief overview of the coding standard is provided in this section, as it is used for

comparisons in many experiments reported in this thesis. Readers interested in more

detailed explanations are invited to consult the excellent references [SOHW12][SSB14].

1.2.1 Basic structures

HEVC adopts the hybrid video coder paradigm, achieving significant gain adding more

flexibility to the various procedures and structures. Efficient representation of video

sequences with various resolutions relies, among other factors, on coding, prediction and

transform units.

Coding unit HEVC uses different sizes for coding units, allowing the codec to be

optimized for different contents. With the coding tree unit structure (CTU) the image

is segmented in different coding units (CU, conceptually correspondent to macroblocks

in previous codecs). The largest coding unit (LCU) is first chosen, then the coding

units resulting from the partitioning of the LCUs are organized in a quad-tree structure

[HMK+10], that provides a clean and efficient structure, a cheap representation of the tree

structure, and that can make use of well-know decision algorithms. The available sizes for

CU are 64× 64, 32× 32, 16× 16, or 8× 8.
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Figure 1.8: Relationship between coding units (CU), prediction units (PU) and transform units
(TU).

Prediction unit The prediction unit is defined for each leaf node CU. It is the basic

unit used for prediction and it can split the CU symmetrically or asymmetrically. In

Figure 1.8 the relationship between CU and PU is shown, along with different types of

splitting for PUs: a PU of size 2N × 2N will have four symmetric and four asymmetric

splitting structures. The asymmetric splitting is introduced to allow an efficient coding for

irregular object boundaries, without this feature an oversegmentation into many small CU

may have occurred.

Transform unit Transform units, used for the transform and quantization process, can

be defined in a similar fashion to the PUs to support arbitrary shape transforms. The TUs

are organized in a quad-tree hierarchy and in intra mode their size is the same or smaller

than the PU, while in inter mode their size is the same as the CU and it can be smaller

only if the CU has the smallest size.

The Figure 1.8 shows the relationship between CUs, PUs and TUs.

Slices and tiles In HEVC there are two structures that break processing dependencies

of entire frames into smaller parts: slices and tiles.

A sequence of independently decodable CTUs is a slice, and a picture can be divided

into any number of slices. Each slice is then divided into slice segments, where the first

one contains the full slice header and the others are dependent from it. This substructure

is introduced to allow low-delay transmission by sending slice segments and not full slides

at the time. The subdivision of a picture into slides is illustrated in Figure 1.9(a).

Tiles are rectangular independently decodable sets of CTUs. The introduction of tiles
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Figure 1.9: Subdivision of a picture in slices (a), and tiles (b). Wavefront parallel processing of a
picture (c).

allows a more flexible classification of CTUs, a higher pixel correlation compared to slice, a

higher level of parallelization and better coding efficiency as tiles do not contain header

informations [SOHW12][MSH+13]. The subdivision of a picture into tiles is illustrated in

Figure 1.9(b).

Another technique that allows parallel decoding is the wavefront parallel processing

(WPP). A picture or a slice is divided into rows of CTUs, and each row can be decoded as

soon as the data needed for the prediction becomes available from the previous row. The

wavefront parallel processing is illustrated in Figure 1.9(c).

1.2.2 Coding

Residual coding A residual signal is coded for each CU. The supported transform sizes

are 32× 32, 16× 16, 8× 8, and 4× 4. The transform used is the discrete cosine transform

(DCT), with the exception of 4× 4 luma residuals, where the discrete sine transform (DST)

is used. The change of transform leads to the bit-rate reduction of approximately 1% for

intra-predictive coding.

Transformed coefficients are then quantized, and the quantization parameter QP is

used to set the quantization step q. QP can be an integer from 0 to 51, and it specifies q

through the following relationship:

q = 2
QP−4

6 . (1.10)

QP can be specified per sequence, frame, or CTU.

HEVC performs rate-distortion optimization (RDO) to select the best combination of

transform size and intra-prediction mode.

Intra prediction Intra prediction in a certain CU follows the TU tree. The prediction

is computed using the already decoded TUs that are spatial neighbours of the current one.

In HEVC there are 35 different intra modes for TU spatial prediction, with size ranging

from 4× 4 to 32× 32: 33 directional, one planar, and DC mode, as shown in Figure 1.10.
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Figure 1.10: Modes and directional orientations for intra prediction.

currentreferences

Figure 1.11: Multi-reference frame system of HEVC. PU can be taken from different reference
pictures to make a prediction for the current frame.

Inter prediction: motion estimation and compensation HEVC uses candidate list

indexing and it has two reference lists for motion estimation: L0 and L1. Each list can

contain 16 references, however the maximum number of unique pictures is 8: a weighted

prediction is performed, so an image may occur more than once in the lists. Figure 1.11

illustrates a simple example of the multi-reference frame system.

The available prediction modes are “advanced motion vector prediction” (AMVP) and

“merge”. In AMVP a list of candidate MVs is created, then the best candidate index

is transmitted, plus the difference between the prediction and the real MV. In order to

reconstruct the MV the decoder has to build the same candidate list, pick the best candidate

MV, and add the difference. In merge mode no delta MV is transmitted and the candidate

list is computed from neighbouring MVs; conceptually it is a sort of “SKIP” mode.

Inter-prediction uses PU samples taken from a reference picture, identified by the

reference picture index, dislocated by the components of the motion vector. The resolution

for the positioning of PB samples is of 1/4 the distance between the elements of the luma
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and for the chroma determined by its sampling. For example, motion vectors for the

chroma are specified in 1/8-pel for the format 4:2:0.

Sub-pixel precision increases the accuracy of the estimation, but it requires more

memory and computational power. Consequently in the HEVC standard some limits are

set: only intra-prediction is possible for 4× 4 regions, while 4× 8 and 8× 4 regions are

limited to unidirectional (forward) inter-prediction, and the smallest region that allows

bidirectional prediction is 8× 8.

1.2.3 In-loop filters

The HEVC standard provides two in-loop filters: deblocking and sample adaptative offset.

The deblocking filter is performed on the 8 × 8 grid, deblocking first the vertical

edges, and then the horizontal edges. Since the grid is fixed and there is no filter overlap,

parallelization is possible.

After the deblocking filter, the sample adaptive offset (SAO) is applied in the prediction

loop to each CTU. This filter aims at reducing the “banding” artifacts that may appear in

smooth areas by adding an adaptive offset to the decoded samples.

1.2.4 Entropy coding

Finally, HEVC performs the entropy coding using CABAC (context-adaptive binary

arithmetic coder). Entropy coding is discussed in detail in Section 1.5 and with particular

attention to video codecs in Section 1.5.3.

1.3 3D video representation and coding

To offer a more realistic experience than the traditional video, 3D video formats (3DV

formats) were proposed, allowing 3D display systems to support the depth perception of a

visual scene. To create the illusion of depth, the display systems currently available use

hi-resolution displays and parallax barriers, special-purpose glasses, or a microprism array

in the case of auto-stereoscopic displays [BWS+07]. Another goal of 3DV formats is to

provide free view-point video (FVV), a video where viewpoint and direction of the camera

can be set by the user.

While stereoscopic video requires only two views, multiview displays and free view-point

video require a higher number of views of the scene. Moreover, in FVV, it is possible to

synthesize novel views to allow the user to navigate freely in the scene.

Depth-based representations are a class of emerging 3D video formats: a depth map,

or the distance between the camera and the objects in the scene, is associated to a view

to provide geometry information. In Figure 1.12 a scene represented with the video plus

depth format is reported. Depth-image-based rendering techniques (DIBR) make use of

the depth information to synthesize novel views, to adjust the depth perception in some
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(a) (b)

Figure 1.12: Video plus depth format: texture (a) and depth map (b) from the same view point.

stereo displays, or advanced stereoscopic processing. The format that uses only one view

with its associated depth map cannot handle occlusions, thus the multiview video plus

depth (MVD) has been considered for 3D video representation. In MVD a single scene is

recorded simultaneously by an array of N cameras, arranged in different spatial positions,

while the depth information can be estimated from different views or obtained with special

range cameras. The drawback of MVD is that the amount of data required for storage

and transmission increases proportionally with N . However the redundancy of this class

of signals, present both in the spatial and time domain, can be exploited for compression

[VM13].

1.3.1 Depth representation

Depth maps provide a general geometric description of the scene for 3D video formats.

The distance information is generally recorded as a grayscale depth image.

For synthetic sequences the geometric information is directly available, while for natural

images it has to be either recorded by range cameras, that measure the time-of-flight of a

laser or light pulse, or estimated from different views. Depth estimation techniques rely

on the principle that the same point in two different views will be slightly displaced, and

the measure of the displacement (or disparity) is related to the distance from the camera

system. Let us consider a simple camera system with two parallel cameras, as depicted

in Figure 1.13. Be P a point with distance z from the camera system, which is composed

of two cameras at distance ∆s, with focal length f . The point P will be projected on the

sensors of the two cameras with a displacement with respect to the center on the right

of d1 for the first camera, and to the left of d2 for the second camera. So the following

relations can be extrapolated:
d1
xd

=
f

z
, (1.11)
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Figure 1.13: Relation between depth and disparity values.

for the camera on the left, and
d2

∆s − xd
=
f

z
, (1.12)

for the camera on the right. The disparity d for each pixel is the sum of the two displacements

d1 and d2:

d = d1 + d2 =
fxd
z

+
f(∆s − xd)

z
=
f∆s

z
. (1.13)

Leading to the following expression for the relationship between d and z:

d =
f∆s

z
. (1.14)

The inverse values of z are usually quantized to operate with 8-bit resolution data, taking

in account zmin and zmax for optimal usage of the depth range. The inverse depth values

Id(z) are defined as:

Id(z) = round

255 ·

(
1
z −

1
zmax

)
(

1
zmin
− 1

zmax

)
 (1.15)

If the two cameras are aligned, the disparity estimation is a 1-D problem because the

displacement can only be horizontal. The existent approaches for disparity estimation

can be distinguished in local and global methods. Local methods compute disparity

independently for each block of the image, minimizing the cost function. On the other

hand, global methods, other than minimizing the cost function per block, apply smoothness

constraints to deal with the problems caused by uniform areas or changes in illumination

[EG14].
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Cam01 Synthesized view Cam02

c1(u1, v1) c2(u2, v2)ck(uk, vk)

(1− k)d kd

Figure 1.14: View synthesis with depth-image-based rendering (DIBR), from cam01 and cam02 to
a virtual view.

1.3.2 Depth-image-based rendering

The technique called depth-image-based rendering uses the depth map and the texture

video of one or two views to generate a synthetic view in a different point in space. The

the rendering (or warping) process first projects the reference image into a 3D space, then

it back-projects the scene onto the target image plane [Dar09] [McM97].

In current video solution, a strictly parallel camera scenario is enforced, and the DIBR

process is simplified to a horizontal sample shift problem, from the original frame to the

target frame. The shift values are calculated from the equations 1.14 and 1.15:

d = f∆s
Id(z)

255

(
1

zmin
− 1

zmax

)
+

1

zmax
. (1.16)

The focal length f , the inverse depth values Id(z), the baseline ∆s and the values zmin and

zmax have to be known.

In Figure 1.14 an example of the synthesis principle is shown, where a novel view is

synthesized between the two cameras cam01 and cam02. k ∈ [0, 1] is the parameter that

represents the relative position from cam01 and cam02, c1 and c2 are the texture samples

from the two cameras, at positions (u1, v1) and (u2, v2) respectively. The relations between

original and shifted versions of c1 and c2 are:

ck1(uk, vk) = c1(u1 + (1− k)d, v1) , ck2(uk, vk) = c2(u2 + kd, v2) . (1.17)

Color blending can be applied if the two samples exhibit different color, resulting in:

ck(uk, vk) = (1− k)ck1(uk, vk) + kck2(uk, vk). (1.18)

Using k < 0 or k > 1, one can also extrapolate a view outside the original range of the two

cameras. Moreover, if one of the two samples is not available due to occlusion problems or

because it is out of the view field of one of the two cameras, the synthesized texture sample

ck(uk, vk) is obtained by shifting the available sample without color blending [MSD+08].



22 1. Background Notions

1.3.3 Compression

Efficient compression of the 3D video signal requires the exploitation of all the existent

redundancy. To maintain a backward compatibility with existing 2D video services, a

standard 2D video coding technique is used for one of the views and then additional coding

tools are added for each 3D component to the 2D coding structure [VM13]. 3D coding

schemes can be based on different paradigms, like:

• inter-view prediction, given the high degree of similarity between different views,

pictures from other views are used to predict the current one [MSMW07a] [VWS11]

[PMCPP13] [MJCPP13c];

• view synthesis prediction, DIBR techniques are used to make a synthetic prediction

for the current picture [MBXV06] [YV09] [VCG+12] [PMC+16];

• depth resampling and filtering, a reduction of resolution for depth maps can lead to

substantial rate reduction, however ad-hoc resampling and filtering techniques are

then needed to achieve a good quality for synthesized depth maps [OYVH09];

• inter-component parameter prediction, the movement vectors for the depth map can be

inherited from its associated video [WSW12] [MJPPC13] [MJCPP13a] [MJCPP13b];

• depth modeling, the depth signal has different properties from 2D video, such as the

typical smooth areas and sharp edges, and many codecs are especially tailored for

this kind of characteristics. An overview of the different techniques proposed to code

depth maps is provided in Section 3.1

1.4 MPEG-4 Visual: video objects

The Visual part of the MPEG-4 standard provides technologies to view, access and

manipulate video objects rather than pixels. This paradigm is well-suited for Internet,

wireless and mobile interactive applications.

The scene in the MPEG-4 visual standard consists of one or more video objects. Each

video object is characterized by its temporal evolution, shape, motion, and texture. In this

context the MPEG-4 standard could benefit from the lossless contour coding technique

proposed in Chapter 2. Only some particular aspects of the standard are discussed in this

section, readers interested in more detailed explanations are invited to consult the excellent

references [EH00] [VS01].

1.4.1 Structure

The audio-visual object is the fundamental unit of the MPEG-4 standard, and the foundation

of the object-based representation. The scene is described in a hierarchical way, using the

following structures:
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Video Session (VS)

Video Object (VO)

Video Object Layer (VOL)

Group of VOPs (GOV)

Video Object Plane (VOP)

VS1 VS2

VO1 VO2

VOL1 VOL2

GOV1 GOV2

VOP1 VOPk VOPk+1 VOP1 VOP2

VS2...VSN

VO2...VON

VOL2...VOLN

GOV2...GOVN

VOP1...VOPk VOPk+1...VOPN VOP1...VOPN

Layer 1 Layer 2

Figure 1.15: Example of MPEG-4 video structure.

• Visual Object Sequence (VS): the complete MPEG-4 scene which may contain any

2D, 3D, natural or synthetic object;

• Video Object (VO): it corresponds to a particular object in the scene;

• Video Object Layer (VOL): each video object can be encoded in one or more layers,

to provide scalability functionalities;

• Group of Video Object Planes (GOV): this structure provides random access points

in the bitstream, using independently encoded groups of video object planes;

• Video Object Plane (VOP): it is a video object at a certain time instant. VOPs

can be encoded independently the one from the other, or dependently using motion

estimation and compensation techniques.

The hierarchy is depicted in Figure 1.15

A VOP can contain the encoded video data of a time sample of a video object, or a

sprite [KGS+08]. A sprite is a video object that has a wider extension than the video itself,

usually it represents static or quasi static backgrounds (also referred to as “background

mosaic”), to be slightly modified (warping, brightness changes) according to the framing of

the video. Both video data and sprites are coded using macroblocks. A macroblock contains

the texture information (luma and chroma, in the format 4:2:0), motion information, and

shape information.
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In MPEG-4 each video object is coded separately, using for VOPs a hybrid coding

scheme for efficiency and backward compatibility.

1.4.2 Shape coding tools

The shape coding scheme in MPEG-4 visual relies on motion estimation to compress the

shape information. Only a general description of the scheme adopted by MPEG-4 natural

video standard for shape coding is in the scope of this manuscript. Interested readers are

referred to [JBB+98] [KKM+98] for further information.

The shape information can be coded as binary or grayscale image. With binary shape

information each pixel is labelled with 1 if it belongs to the video object at that time

instant, and with 0 if it does not. The binary shape information is usually represented as

an image of the same size as that of the bounding box of a VOP.

Using more values other than 0 and 1 in shape information leads to gray scale shape

coding. It introduces the representation of transparent objects to reduce aliasing effects.

Binary shape coding

In MPEG-4 visual, the shape of every VOP is coded along with its texture and motion.

The shape of the VOP is enclosed by a bounding box made up by blocks of size 16× 16.

The position of the bounding box is chosen in order to have the minimum number of blocks

16× 16 with non transparent pixels. These blocks are called binary alpha blocks (BAB)

and can be transparent if they do not contain the VOP, opaque if they are completely

filled by the VOP, and “boundary” if they contain just part of the VOP. The basic tools

for encoding BABs are motion compensation and the Context based Arithmetic Encoding

(CAE) technique [BE97].

Grayscale shape coding

The structure for grayscale shape information is basically the same of the binary one,

with the difference that every pixel can have a value from 0 to 255, according to the

level of transparency of the pixel. Gray scale shape information is lossy encoded using a

block-based motion compensated DCT, using binary shape coding for the coding of its

support.

1.5 Lossless coding

The notion of information conveyed by a transmitted symbol is intuitively related to the

degree of uncertainty of the symbol. Resting upon this observation, a measure of the

information associated with an event in a probability space can be defined. Being X a

discrete random variable with values x ∈ X and density function pX(x), the self-information
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associated with the event {X = x} is defined as:

I(x) = − log pX(x). (1.19)

The self-information can be seen as a random variable I(X) = − log pX(X), as x ∈ X varies.

The mean of I(X) is called entropy and can be seen as the measure of the uncertainty of

X. The entropy is defined by:

H(X) = E [I(X)] = −
∑
x∈X

pX(x) log pX(x). (1.20)

Using 2 as the base of the logarithm gives us a measure in bits [Sha48].

Information theory [Sha48] [CT91] shows us that the average number of bits needed to

code each symbol from a stationary and memoryless source, modelled with a RV X cannot

be smaller than its entropy H(X). Moreover, a sequence of N i.i.d. random variables X

can be compressed without information loss into NH(X) bits, as N tends to infinity, or

more bits in case N is a finite number.

Entropy coding aims at reducing the average bit-rate needed to losslessly encode a

sequence of symbols, ideally up to its entropy. If a sequence is coded with fixed-length

block codes, the average bit-rate would be r = log2N . A simple approach to obtain a

better performing code is to use a unique prefix code to each unique symbol that occurs in

the input, where the length of the codewords is inversely proportional to the probability

of the symbol, i.e. short codewords are used for probable symbols and long codewords

for symbols with low probability. This approach is called variable-length coding (VLC).

Notable examples of this strategy are Huffman coding, an optimal prefix code [Huf52],

Lempel-Ziv coding [ZL77], and arithmetic coding [Sha48] [Abr63].

1.5.1 Arithmetic coding

Due to the fact that in Huffman coding the length of the codewords has to be integer,

there can be up to 1 bit of information inefficiency for each codeword. Blocks of input

symbols can be used to reduce this loss, but the complexity increases exponentially with

the length of the blocks. Arithmetic coding uses a totally different approach to achieve a

higher efficiency: the entire message is encoded as a whole into a single number n, with

n ∈ [0, 1[. The compression provided by an arithmetic coder is provably optimal for an

i.i.d. source, and near-optimal for sources that are not i.i.d.[CT91]. In general the first step

for compression algorithms that implement arithmetic coding is to estimate a model of the

probability mass function of the symbols. Source modelling also monitors the statistical

properties of the data for they may vary over time. As the estimation of the symbol

probabilities becomes more accurate, the output will be closer to optimal. To this purpose

statistics are gathered and data contexts identified.



26 1. Background Notions

The arithmetic coding for a certain sequence of symbols proceeds as follows [HV92]

[Sai04]:

1. the interval [0, 1[ is set as current interval;

2. for each symbol:

(a) the current interval is divided into subintervals, whose number is equal to

the cardinality of the input alphabet and each segment is proportional to the

probability of the symbol it represents;

(b) the subinterval that corresponds to the symbol to code is selected as new current

interval;

3. the coder produces a string of bits that can distinguish the final current interval from

all the others.

Some mechanism to indicate the end of the stream is needed, be it a end-of-stream symbol

coded at the end, or an external indicator of the length of the sequence.

Example Let us detail a practical example: to encode the sequence of symbols [a c

END], emitted by a source described by the (static) probabilities of its output symbols:

p(a) = 0.6, p(b) = 0.2, p(c) = 0.1, p(END) = 0.1.

The arithmetic coding process proceeds as follows:

Current Subintervals

interval Action a b c END Input

[0.000, 1.000[ subdivide [0.000, 0.600[ [0.600, 0.800[ [0.800, 0.900[ [0.900, 1.000[ a

[0.000, 0.600[ subdivide [0.000, 0.360[ [0.360, 0.480[ [0.480, 0.540[ [0.540, 0.600[ c

[0.480, 0.540[ subdivide [0.480, 0.516[ [0.516, 0.528[ [0.528, 0.534[ [0.534, 0.540[ END
[0.534, 0.540[ stop

Once reached the final interval [0.534, 0.540[, the encoder has just to output a single

number that identifies it. The final interval is in binary [0.1000010110, 0.1000011100[, so

the number that allows the identification of the output interval with the minimum number

of bits is 0.10000110. The output of the encoder will then be 1000011.

The decoding procedure starts by subdividing the main interval [0, 1[ into 4 partitions,

proportional to the symbol probabilities, then locates the input number 1000011 (equivalent

in decimal to 0.538). The interval that contains the input number is again divided according

to the symbol probabilities and the process is repeated until the END symbol is reached.

The decoding process is outlined in Figure 1.16
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Figure 1.16: Example of arithmetic decoding. The input number is 0.538, leading to the decoding
of [a c END].

1.5.2 Context coding

This class of lossless compression techniques do not use prior assumptions on the statistics

of the data. Previously transmitted symbols provide a context to be exploited to compress

efficiently the data instead [Say12]. These coding techniques analyse the history of the

sequence to estimate the probabilities of the symbol to be coded.

Example This technique is particularly suited for text coding for the inherent context

present in words and phrases. Let us consider an example where the the word to code is

probability. After the coding of the first four letters p r o b, the next letter to code is a,

whose probability is estimated to be around 0.06 for the English language, without any

other prior knowledge. However, considering the fact that the preceding letter is b, the

probability values for letters like q or z become very little while the probability value for

the letter like a increases. In this example b is said to be the first-order context for a, ob

the second-order context, and so on.

The probability of occurrence for the correct symbol increases with the length of the

context, reducing the number of bits required to encode the symbol. However a high order

of context is impractical, as the dictionary increases exponentially: if the input alphabet

has cardinality M , the number of first-order contexts is M , for a second-order context the

number increases to M2, for a third order M3 and so on.

A popular class of algorithms that copes with this problem is based on the prediction

with partial match (ppm), proposed by Cleary and Witten [CW84].

1.5.3 Entropy coding in video coding standards

In the H.264/MPEG4-AVC video coder the entropy coding stage is provided by a context-

adaptive variable-length code (CAVLC) for the Baseline and Extended profiles. Main and

higher profiles use a context-adaptive binary arithmetic coder (CABAC) [MWS06]. The

quite recent standard HEVC uses CABAC for all profiles [SOHW12].

In CAVLC [BL11] contexts, previously transmitted symbols, are used to improve the

entropy coding performance of the coder: an adaptive estimation of the context-conditional
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probability distributions allows the construction of different VLC tables, matching the

conditional probabilities of the context.

At the expenses of more processing and difficulties in parallelization, CABAC [MSW03]

has even better coding performances and leads to a bit-rate reduction of 10-20% [MWS06]

compared to CAVLC. CABAC is composed of three components: binarization, context

modeling, and binary arithmetic coding. The binarization step maps non-binary symbols

into sequences of bits, which can in turn be processed by an arithmetic coder or a bypass

loop.
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Lossless contour coding
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In depth representation, arguably the most important information lies in object contours.

As a consequence, an interesting approach consists in performing a lossless coding of the

contour map, possibly followed by a lossy coding of per-object depth values.

In this context, a new technique for the lossless coding of object contours, based on the

elastic deformation of curves [SKJJ10], can be proposed: using the square-root velocity

representation for the elements of the space of curves, one can model a continuous evolution

of elastic deformations between two reference contour curves. An elastically deformed

version of the reference contours can be sent to the decoder with an extremely small coding

cost and used as side information to improve the lossless coding of the actual contour.
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Indeed, relevant results are achieved by using elastic deformation of curves to provide more

effective context information to encode a curve in between the two reference ones: we use

the portion of the predicted curve corresponding to the a certain point on the curve we want

to code, along with already encoded samples, to estimate the most probable direction of the

following point of the contour. This direction is in turn used to parameterize the probability

distribution of the symbol corresponding to the next point in the curve representation.

Finally, this symbol is encoded with a context-based arithmetic encoder.

Experimental results show remarkable rate reductions with respect to standards (around

−65% with respect to JBIG2), to commonly used algorithms (around −20% with respect

to arithmetic coding plus differential chain coding), and to the state-of-the-art method in

[DCF12] (around −6.5%).

The outline of the chapter is as follows. We first recall basic notions on shape representation,

elastic deformations of curves and how they are used in the context of depth map coding,

as well as the basics of arithmetic edge coding using the method of [DCF12] in Section

2.1. The proposed technique is then described in Section 2.2, experimental results and

conclusions are presented respectively in Section 2.3 and Section 2.4.

2.1 Background notions

2.1.1 Shape representation and coding

The definition of “shape” usually relies on practical, ordinary examples that consider an

object or a data set and one of its properties which is invariant to translation, rotation

and scaling [Sma12] [DM98]. The concept of connectivity can be used to provide a more

rigorous definition: any connected set of points is a shape [CC00]. This definition is valid

either in a continuous space or in a discrete one. The shapes considered in the following

chapters have the property of having been spatially quantized, as they are obtained from

the capture of the image of an object through a digital acquisition device (e.g. a camera).

In the case of a digital image a discrete shape will thus correspond to a finite set of points

in the orthogonal lattice.

To represent a shape one needs to choose a set of characterizing features that allow the

reconstruction of the shape from such features, be it exactly or within a certain degree

of precision. Two shapes are equivalent if all their properties are equal. This notion

can be expressed using the feature vectors of the shapes, F If FA = FB the shapes A

and B are equivalent. The similarity of two shapes can be defined in a similar fashion,

only the distance between the feature vectors has to be smaller than a certain quantity:

||FA − FB|| < ε.

Different kind of approaches can be used to represent shapes, in particular three main

groups can be distinguished: representation based on transforms, on regions, and on
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contours.

Transform-based techniques are not only used for shape representation, as in the

transformed domain it can be easier to obtain descriptors for the shape. They can be

linear transforms (e.g. Fourier, Karhunen-Loève, cosine, wavelet, etc.) or non-linear

(e.g. Time-frequency distributions, mathematical morphology, etc.)

Region-based techniques can be distinguished into region-decomposition techniques,

bounding regions, and extraction of internal features. In region-decomposition techniques

the shape is decomposed in simpler structures, such as polygons, and represented with a

combination of them. Using a bounding region is another possibility to represent a shape:

an approximation is provided using a bounding box, a Feret box, or a convex hull. As for

the internal features, the shape is represented by a set of features extracted from its internal

region. Examples of this category are the skeleton transform and distance transform.

Contour-based techniques will be discussed in detail, as they will be used extensively in

Chapter 2. Three classes can be distinguished:

• set of contour points: the shape is represented simply by a set of point, with no order

relationship between them;

• parametric contours: a parametric representation can be attained by adding a

sequential order to a set of points;

• curve approximation: the shape outline is decomposed into a set of geometric

primitives, like straight line segments (polygon approximation) or splines [O’C97]

[KKM+98] [KBE00].

For a parametric representation a simple vector of values (x(t), y(t)) can be used, where

x and y are the coordinates of the contour points and t is the parameter. An equivalent

complex representation can be defined as:

u(t) = x(t) + y(t), (2.1)

where u(t) is the contour signal, x(t) is its real part, y(t) its imaginary part, and  the

imaginary unit.

2.1.2 Chain-coding and differential chain-coding

Chain-coding is the most common method to losslessly encode boundary pixels. A chain-

code follows the contour of an object and encodes the direction of the next boundary pixel

with respect to the current one [Fre61]. Since an object tends to have a quite regular

contour it is usually more convenient to code the difference of direction with respect to the

previous one, thus leading to differential chain-codes [Fre78]. An example of differential

chain-coding of the 8-connected contour of an object is given in Fig. 2.1: using the dotted

pixel as starting point, the contour of the object can be coded as: (3), 2, -1, 0, 3, -1, -1, 3,
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Figure 2.1: Object contour, symbols of chain code with respect to a central pixel and the differential
chain-code if the previous symbol was a “0”.

-1, 2, 0, 1, 0. The first symbol, indicated in parenthesis, has to be coded separately from

the others and it belongs to the set of chain-code symbols.

To code a shape with a (differential) chain-coding technique the sequence of symbols is

fed into an entropic encoder, such as a variable length encoder or an arithmetic encoder,

possibly using contexts to improve its performance [CAB10].

2.1.3 Elastic deformation of curves

Srivastava et al. [SKJJ10] introduced a framework to model a continuous evolution of

elastic deformations between two reference curves. The referred technique interpolates

between shapes and makes the intermediary curves retain the global shape structure and

the important local features such as corners and bends.

In order to achieve this behavior, a variable speed parametrization is used, specifically

square-root velocity (SRV), so that it is possible to bend one shape into another as well

as stretch or compress a certain part of it. Let us introduce some notation. The curve

defining the shape is denoted by p, and t ∈ [0, 1] is the curve parameter, leading to:

p : [0, 1]→ (x, y) ∈ R2, (2.2)

where (x, y) are the coordinates of each point in the contour. Then, p is represented in the

SRV space by q:

q : [0, 1]→ (x, y) ∈ R2, (2.3)

q(t) =
ṗ√
||ṗ||

, (2.4)

where || · || is the Euclidean norm in R2 and ṗ = dp
dt . This transformation is reversible (up

to a translation): the curve p can reversely be obtained from q by:

p(t) =

∫ t

0
q(s)||q(s)||ds. (2.5)

Introducing the SRV representation is very interesting because it can be shown that the
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i0 b3 i1
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Figure 2.2: Geodesic path of elastic deformations b̃s from the curve i0 to i1 (in dashed blue lines).
b3 is one of the contours bt extracted from the intermediate frames between the two
reference ones, a good matching elastic curve b̃0.2 along the path is highlighted.

simple L2 metric in this space corresponds to an “elastic” metric for the original curve space

[MSJ07] i.e. a metric that measures the amount of “stretching” and ”bending” between two

curves, independently from a translation, scale, rotation and parametrization. Moreover,

using the SRV it is also relatively easy to compute the geodesic between the two curves:

according to the interpretation of the elastic metric, this geodesic consists in a continuous

set of deformations that transforms one curve into another with a minimum amount of

stretching and bending, and independently from their absolute position, scale, rotation

and parametrization [SKJJ10].

An example of the geodesic connecting two curves is shown in Fig. 2.2. We show in

black two contours extracted from the depth of the video sequence “ballet” using the Canny

edge detector. These depths correspond to the views 1 and 8, at time instant 2. In red

we show the extracted contours of intermediary views, while in dashed blue we show a

sampling of the elastic geodesic computed between the two extreme curves: it is evident

that the elastic deformations along the geodesic reproduce very well the deformations

related to a change of viewpoint. Similar results where obtained in the temporal domain:

given the initial and final shapes, elastic deformations are able to represent the temporal

deformation of the contour of an object, at least in the case where there is a small temporal

gap between the initial and final instants.

These observation lead us to conceive a lossless coding technique for object contours:

supposing that the encoder and the decoder share a representation of the initial and final

shape, they can reproduce the exactly same geodesic path between them. Then, the decoder

will conveniently decide which point of the geodesic (one of the blue curves in Fig. 2.2)
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shall be used as context information to encode an intermediary contour (one of the red

curve in the same figure). The encoder will only have to send a value s? ∈ [0, 1] to identify

this curve. If this curve is actually similar to the one to be encoded, it is possible to exploit

this information to improve the lossless coding of the latter. However the use of elastic

deformation of curves for contour coding is not as easy as it appears, and the solution to

this problem is one of the main contribution of this thesis.

We observe that this use of the elastic deformation tool is quite different from what

it was proposed in the past. Classical applications of elastic deformations of curves are

related to shape matching and shape recognition, and the only previous paper using elastic

curves in compression is [AEDF+15]. However, in that paper, elastic curves are used in the

context of distributed video coding, in order to improve the motion-compensated fusion of

background and foreground objects, while here it is used for the lossless coding of contours.

2.1.4 Arithmetic edge coding

One of the most recent and best-performing technique for lossless coding of edges was

introduced by Daribo et al. in [DCF12], and even though it is conceived in a block-based

coding environment, we retain it as a base to develop a part of our contour-based coding

technique. Their main idea is that contours of a physical object possess geometrical

structures that can be exploited to predict the direction of the next symbol, given a window

of consecutive previous samples. A chain code is used to represent a contour, and each

symbol is encoded with an arithmetic encoder that uses a probability distribution adaptively

computed using the previous symbols. The probability distribution is centred around the

estimated most probable direction, which in turn is obtained using linear regression on a

suitable window of previous samples: the underlying assumption is that contours exhibit

linear trends. The prediction of directions and the assignment of the probability values

can be reproduced at the decoder, provided that some parameters are transmitted as side

information.

For curves that represent object boundaries in MVD this method has much better

performance than other popular techniques [DCF12], however as we noticed in our study

further improvements are possible. On the one hand the linear regression can be replaced

with a more effective estimator for the direction of the next symbol. On the other hand the

encoding algorithm does not take advantage from temporal correlation of contours and the

prediction of the most probable direction cannot cope with sudden changes of direction.

Our proposed method uses temporal correlation of contours to produce an elastic

estimation of the current curve; this curve is subsequently employed to improve the

statistical model of each symbol of the chain code, resulting in a remarkable improvement

of the coding rate. The two reference curve used to produce the elastic deformation are

encoded using a modified version of the arithmetic edge coding technique described by

Daribo et al. [DCF12], where the linear regression is substituted with the angle of the
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average direction of the symbols in the considered window of samples.

2.2 Proposed technique

We propose a technique to encode the contour of an object in a single view video sequence,

in a multiview set of images or in a multiview video sequence, and in any context where

two reference curves are available. The targeted application is depth coding in MVD

applications, and this for two reasons: first, contour information is extremely important for

depth, and its lossless representation is necessary for obtaining a good subjective quality

for synthesized views; second, extracting contours from a depth map is relatively easy,

since they are typically made up of smooth regions separated by sharp discontinuities.

However, in this thesis we do not investigate the contour extraction from depth images,

but uniquely their lossless coding; moreover, we point out that our method can also be

applied on contours extracted from natural videos, as we show in the experimental results.

In this last case, contours are typically extracted from precise segmentation maps: our

method efficiently encodes both contours automatically extracted from depths and contours

obtained by segmentation.

As already mentioned, our method apply to the case where we have a set of contours

related to the same object, be them representing the temporal evolution of the object

borders or their deformation related to the change of viewpoint: the example in Fig. 2.2

refers to the latter case. However, without loosing generality, we consider the following use

case. We have a set of K ≥ 3 contours (K = 8 in Fig. 2.2). We refer to the parametric

representation of the first contour as i0[n] = (xi0 [n], yi0 [n]), with n ∈ {1, 2, . . . , Ni0};
likewise, i1[n] with n ∈ {1, 2, . . . , Ni1} is the parametric representation of the last contour,

and bt[n] with n ∈ {1, 2, . . . , Nt} the one of the generic t-th intermediate curve, with

t ∈ {1, . . . ,K − 1}. We propose an “intra method” (i.e. without temporal or inter-view

prediction) to encode i0 and i1, and a “bidirectional method” (i.e. with prediction from

two already encoded curves) for the curves bt. We will refer to the intra-coded contours as

“I-contours” and to the K − 2 intermediate contours, to which our prediction based method

is aimed, as “B-contours”.

I-contours

Indeed, the I-contours are supposed to be available at the encoder and at the decoder

before the B-contours in order to develop a prediction method to code the latter. To encode

the I-contours i0 and i1 we propose a small yet effective modification to the arithmetic

edge coding technique described in [DCF12]. In particular, we consider a window of

previously transmitted points, and we use them to estimate a probability distribution for

the symbol that represents the next point in the curve. The predictor for the most probable

direction of the next symbol is the angle of the average direction of the symbols in the
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window of samples, described in detail in Section 2.2.2. An outline of the coder is given in

Section 2.2.3.

B-contours

Let us now describe the proposed method for the B-contours. The basic idea is independent

from the value of K and from the structure of dependencies (or, borrowing the terms from

the classical hybrid video coding paradigm, from the GOP structure). More precisely, in

order to encode bt, we consider the geodesic path between i0 and i1. The elastic deformation

tool allows us to easily generate any intermediate curve on the geodesic (dashed blue curves

in Fig. 2.2), simply by specifying a position parameter s ∈ [0, 1]. Let us refer to b̃s[n] the

parametric representation of a curve on the geodesic. We observe that b̃0 = i0 and b̃1 = i1.

Since i0 and i1 are available at the encoder and the decoder, they both can produce the

same curve b̃s, for any s, and use it as side information for the lossless encoding of bt.

Intuition suggests that the encoder and the decoder could agree in using s = t
K−1 as the

position on the geodesic used to predict bt. However, as we will show in the experimental

section, a significant coding gain can be obtained if we let the encoder select a suitable

value for s, let it be s?, and use it for the encoding. Of course, s? should be transmitted to

the decoder using a suitable number of bits. The choice of s? and the number of coding

bits will be discussed in the experimental section. Likewise, the problem of the optimal

“GOP structure” will be discussed in Section 2.3.4. In the rest of the current section, in

order to simplify the discussion, we will consider a simple IBIBIB. . . configuration. This

is equivalent to having K = 3: in other words, we encode an object contour knowing the

previous and the future curves. The proposed method can however be applied to any value

of K without major modifications. Other coding structures are shown in the experimental

part at Section 2.3.4.

In the rest of this section we will explain how to select a suitable part of the elastic curve

b̃s to be used as context to encode the current edge symbol; how to use this information to

determine the most probable direction for the next symbol on the contour; and which side

information needs to be sent to the decoder such that it can replicate the same behaviour

as the encoder.

2.2.1 Correspondence function

In this section we consider the encoding of a single curve bt using the elastic representation

b̃s? , with s? suitably selected by the encoder. The curves are sampled respectively on Nb

and N
b̃

points. To simplify the notation, we will drop the subscript t and s? where this

does not give rise to ambiguities.

To use the suitable portion of the synthetic curve b̃ as side information to code the

current point on b, it is essential to have a function that associates each point of b to

the corresponding point of b̃. This function is generated at the encoder and has to be
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transmitted to the decoder. In order to establish this association between the two curves,

we use Dynamic Time Warping [M0̈7] (DTW). First, it is needed to establish a feature

space F for the curves: a distance in this space will then be used to create the DTW

function. Since we want to link the parts of the curve that have the same characteristics in

terms of lobes, spikes and such, we tried several features such as curvature, direction of the

tangent vector, and its first order derivative. The direction of the tangent vector proved to

be precise and reliable and was selected for the use with DTW.

Let us use a complex representation that associates to every point (x, y) the complex

number p = x+ y, and let us refer to the sequence of directions of the tangent vector of

the curve c = (xc, yc) as ϕc:

∀n ∈ {1, · · · , Nc}, ϕc[n] = arg (pc[n]− pc[n− 1]) ∈ F , (2.6)

where F = [−π, π[. Computing Eq. (2.6) for b and b̃ we obtain the sequences of features

ϕb and ϕ
b̃

defined on Nb and N
b̃

points respectively.

A typical behavior of two feature sequences is shown in Fig. 2.3; while the two sequences

have similar shapes, they are not aligned. To perform the alignment we need a local

distance measure (or local cost measure), defined as d : F × F → R+. The local distance

measure d(ϕb [n], ϕ
b̃
[m]) should be small when the two features are similar, large otherwise.

Since in our case F ⊂ R, we can use as distance the square of the direction difference:(
|ϕb − ϕb̃ | mod π

)2
. By evaluating the local cost measure for every couple of elements in

the sequences, we obtain the cost matrix C ∈ RN×M , where the generic element is defined

as follows:

C(n,m) = d(ϕb [n], ϕ
b̃
[m]) =

(∣∣∣ϕb [n]− ϕ
b̃
[m]
∣∣∣ mod π

)2
.

We have to find now the sequence ψ, defined as a sequence of couples:

ψ[`] = (ν?` , µ
?
` ) ∈ {1, · · · , N} × {1, · · · ,M},

such that:

(ν?, µ?) = arg min
(ν,µ)

L∑
l=1

C (ν[`], µ[`])

under the conditions:

• boundary condition, ψ[1] = (1, 1) and ψ[L] = (N,M);

• monotonicity of ν?[`] and µ?[`];

• step size, ψ[`]− ψ[`− 1] ∈ {(0, 1), (1, 0), (1, 1)}.

In practice ψ is a sequence of indices (ν?[`], µ?[`]) of the curves ϕb and ϕ
b̃
, such that ϕb [ν

?[`]]

and ϕ
b̃
[µ?[`]] are best matched under the aforementioned constraints. The association by

DTW of the two sequences is shown in dotted black lines in Fig. 2.3.
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Figure 2.3: Example of association of two sequences by Dynamic Time Warping.
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Figure 2.4: Ballet : correspondence function. In blue the association of the two curves using the
DTW of the direction of the tangent vector, in dashed red the approximation with a
first order polynomial. While n and m are the indices of samples on the curves b and b̃,
respectively.

In our application the correspondence function obtained with DTW on the direction

of the tangent vector is very close to being affine and it can thus be approximated with

a first order polynomial. The approximation has two main effects: first it reduces the

number of bits needed to code the function; moreover it prevents sudden variations on the

correspondence function that are rather related to outliers than actual values. However,

one may wonder whether it is worth computing the exact DTW only for approximating

at a first order: maybe a simple rescaling of the “temporal” axis from N points to M

points could be as effective as the approximated DTW, without needing to compute the

correspondence function. We have dealt with this issue with a simple heuristic approach:

we compared the coding rate of our algorithm in two cases: in the first, we use the first

order approximation of the DTW function; in the second we use a rescaling of N/M . We

observed that using the DTW gives an average rate reduction of 5.33%. For this reason,

we kept the DWT in our system.

In Fig. 2.4 there is an example of DTW and its linear approximation. The resulting

correspondence between the points of the two curves is shown in Fig. 2.5. We see that
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b̃

b

Figure 2.5: Ballet : correspondences between the elastic curve b̃ (dashed blue) and the curve to
code b (red).

all the main features of the curves are located and put in correspondence, so that for

each point of the actual curve b there is an associated point on the elastic curve b̃, whose

neighborhood is the side information we want to use to enhance the coding of b.

2.2.2 Context

The correspondence function allows to associate the current point to a portion of the elastic

curve, centered in the corresponding point. This information is used as side information to

have more accurate probability values for the next symbol. We called this information the

context, and for each point of the curve b, it is composed by:

• v0, a vector of N0 points of the curve b transmitted so far (in red in Fig. 2.6);

• v1p: the “past” on the elastic curve (in dashed blue in Fig. 2.6), a vector of Np points

of b̃ corresponding to v0; more precisely, v1p is constituted of the points between

those corresponding to the terminal points of v0;

• v1f : the “future” on the elastic curve, a vector of Nf points of the elastic curve b̃

following the current correspondent point on b̃ (in dark blue in Fig. 2.6).

Of course v1p and v1f are only available for B-contours, for I-contours only v0 is available.

We use the context to obtain the most probable direction for the next symbol, then we use

this result to define a distribution using the von Mises statistical model [MJ99].
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Figure 2.6: Extracts from the curves b (red) and b̃ (dashed blue). The correspondences between
the two curves are indicated with thin dotted black lines. The dashed lines represent
the extracted direction for the vectors of points v0, v1p and v1f .

Direction extraction

For all the set of points of the different curves we have to estimate the direction of the

next symbol. In the case of the I-contours only the set of points p0 are used, while in the

case of B-contours all the three sets of points v0, v1p and v1f are used.

Several approaches can be used to extract a direction from a set of ordered points.

E.g. in [DCF12] a linear regression on v0 is used. We found that the angle of the average

direction is even more effective. Using the same complex representation as in 2.2.1, the

estimated direction α can be obtained using the following formula:

α (v) = arg

(
1

N − 1

N∑
n=2

(v[n]− v[n− 1])

)
∈ [−π, π[, (2.7)

where v is the complex representation of a generic vector of N points, and is defined as

v = [x1 + y1, x2 + y2, · · · , xN + yN ]; arg is the argument of a complex number.

Most probable direction

Applying Eq. 2.7 on the complex representation of v0, we obtain α0, the angle of the

average direction based solely on the previously transmitted samples. Likewise, α1p and

α1f are the average directions based on the vectors v1p and v1f of the curve b̃. We develop

a method to estimate θ, the most likely direction of next symbol of b: we use α1f to adjust

the direction α0. In this way, we manage to seize the sudden changes and go along the

long trends.

A simple and intuitive formula to take into account the context for the prediction of

the most probable direction is:

θ = (1− q)α0 + qα1f , (2.8)
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with q ∈ [0, 1]. This way we can weight the directions of the past of the curve b and the

future of the curve b̃. To decide the weight q, we observe that the side information of the

elastic curve is not essential when the curves are regular, while it becomes fundamental

next to the occurrence of a sudden change. So q should be small if for the current point

the directions extracted from the two curves are similar (so that θ is close to α0), and close

to 1 if they are not (so that θ is close to α1f ):

q =
max {|α0 − α1p|, |α0 − α1f |}

π
. (2.9)

The value of q is related to the modulus of the difference of directions, and it is large if α0

is very different from α1p or α1f because a dissimilarity in the neighborhood of the current

point suggests a change which is not predicted solely from α0.

Adaptive statistical model

We retain the statistical model described in [DCF12] to assign values to the symbols for

the next edge. It is based on the von Mises distribution and the distribution parameters

are set according to the information extracted from the curves b and b̃. The von Mises

distribution is the Gaussian distribution for angular measurements and it is defined as

[MJ99]:

p(β|µ, κ) =
eκ cos(β−µ)

2πI0(κ)
, (2.10)

where I0(·) is the modified Bessel function of order 0, µ is the mean and in this case it

coincides with the estimated direction θ, 1/κ is the variance of the distribution. As in

reference [DCF12], we set κ as a function of the predicted direction θ: when θ is aligned

with the axis of the pixel connection grid, intuition tells us that it is more convenient to

give a higher probability value to the symbol that represents that direction. So κ is set to:

κ = ρ cos(2θ̂), (2.11)

where θ̂ = min{|θ − γi|}, and γi are the angles of the pixel connection grid (
{

0, π8 ,
2π
8 , · · ·

}
in the case of an 8-connected grid). The parameter ρ represents a “confidence level” of the

prediction: as it grows it makes the distribution more unbalanced, so the more precise is

the prediction based on the context, the larger it should be to achieve higher coding gains.

2.2.3 Coding

The curve b, represented with a differential chain code, is encoded with a context-based

arithmetic coder [Sai04] which for each symbol uses the probability vector assigned by the

adaptive statistical model. The encoder needs to transmit to the decoder the parameters

involved in the coding process:
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Figure 2.7: Synthetic scheme of the coder for the lossless contour coding technique for I-contours.

• s?, the selected point on the geodesic path;

• the correspondence function, approximated by a first order polynomial, so two

parameters;

• the parameter ρ;

• N0 and Nf .

With this information the decoder can reproduce the behavior of the encoder and it will

compute the same probability values for each point of the curve b. We observe that Np

does not need to be sent, since it is deduced by applying the correspondence function to

v0.

The proposed technique to code the I-contours (i.e. the reference contours i0 and i1) is

summarized in Fig. 2.7. The computation of the probability distribution for each symbol

is done using a window of previously encoded symbols of length N0, using Eq. 2.7 as the

estimator for the most probable direction, and the adaptive statistical model described in

2.2.2. The decoder for the I-contours is exactly the same as the encoder: using a window of

already received symbols, the probability distribution for the next symbol can be computed

and the bit-stream correctly decoded.

The lossless contour coding technique for B-contours is summarized in Fig. 2.8: to code

the curve b we first use the reference curves i0 and i1 to make an elastic prediction. Then the

dynamic time warping is performed to establish a correspondence function between b and

the selected elastic deformation b̃s. The curve b̃s, along with the correspondence function,

provides a useful context to estimate with more accuracy the probability distribution for

each symbol of b. The symbols of the curve to code b and their probability distributions

are then fed to an arithmetic encoder that produces the bit stream BSb .

The decoder side of the contour coding technique for B-contours is summarized in

Fig. 2.9. The first step is again the elastic prediction from the reference contours i0 and i1,

which is used in conjunction with the correspondence function and the parameters N0, Nf ,

ρ and s, to estimate for each symbol the same probability distribution as the encoder. The

bit stream BSb is thus decoded into the symbols that compose the curve b.
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Figure 2.8: Synthetic scheme of the coder for the lossless contour coding technique for B-contours.
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Figure 2.9: Synthetic scheme of the decoder for the lossless contour coding technique for B-contours.
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2.3 Experimental results

The proposed method has been evaluated using the multiview sequences: ballet, a real

world sequence provided by Microsoft Research with resolution 1024 × 768; mobile, a

synthetic sequence provided by Philips), its resolution is 720× 540; lovebird, a real world

sequence provided by the ETRI/MPEG Korea Forum, whit resolution 1024 × 768; and

beergarden, a sequence where the two main actor are real and the background is synthetic,

whose resolution is 1920× 1088 and it was provided by Philips. We encoded the curves

corresponding to the main object in the depth sequences for a fixed time instant or view.

To test our algorithm we used also masks extracted from the real world monoview sequences

such as stefan and foreman, which have CIF and QCIF resolutions: 352×288 and 176×144,

respectively.

The curves for ballet, mobile, lovebird and beergarden depths were obtained using the

Canny edge detector [Can86]. Depth maps are not as complex as texture images and the

use of the Canny edge detector produced very good results in our test cases. We extracted

the contours of very precise segmentation maps for the sequences stefan [CBS09], [CB09]

and foreman [Lin].

The coding scheme concentrates almost all the computational load at the encoder side. In

particular for the B-contours the choice of the values of (Np, Nf , ρ, s) can be made by trying

out every possible combination and selecting the one that gives the least bit-rate. This

full search method, however optimal, is extremely costly in terms of time and complexity.

We thus introduced a greedy algorithm that optimizes one variable at a time to find a

sub-optimal solution.

2.3.1 Coding of I-contours and B-contours

To code the I-contours we replaced the linear regression (LR) with the more effective

average direction (AD) in the technique described in [DCF12], whereas for the coding of

the B-contours we can take advantage of the context provided by the elastic curves (EC),

thus achieving better coding gains. In Tab. 2.1 are shown the results for a set of images

taken from the test sequences. The reported values take into account the side information

cost needed by each method. We notice that just altering the direction extraction method

from LR to AD the average coding cost is reduced by 4.88%, while passing from AD to

AD with EC context leads to a reduction of 1.82%, for a total reduction of 6.53%. If on

the other hand we use the LR with the EC context, the rate reduction is 2.25%.

2.3.2 Side information cost

We will now account for the cost to transmit the four parameters s?, N?
p , N?

f and ρ?, as

well as the correspondence function.
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linear regression average direction
linear regression average direction + EC context + EC context

ballet 1428.20 1375.20 1386.94 1338.78
beergarden 1687.67 1610.33 1656.67 1575.58

lovebird 1424.82 1370.73 1382.08 1341.73
mobile 711.71 642.29 697.15 639.12

foreman 411.73 396.82 398.15 390.20
stefan 745.33 701.00 738.33 700.00

average 1068.24 1016.06 1043.22 997.57

Table 2.1: Coding results (in bits) for the different contributions of the developed tools to the
technique proposed in [DCF12], applied to object contours. Two different methods
to extract the probable direction from a set of points: linear regression, and average
direction, without and with EC context.

The correspondence function is the result of a linear approximation and experiments

show that 10 bits are enough to code the two parameters of the straight line with sufficient

precision.

For N?
p and N?

f we decided to use 1 bit for the range of Np ({5, 6}), and 2 bits for the

range of Nf ({6, 7, 9, 11}), once again based on experimental results. On the other hand

the optimal ρ has a wider range of values, and we observed that typical values can be

represented by the set {6.6 + k∆}, with ∆ = 0.1 and k = 0, . . . , 31, for a cost of 5 bits.

We observe that the accuracy of the representation of the position on the geodesic s?

has a quite large influence on the coding efficiency. Using for example 2 bits to code the

possible positions we have 4 curves to use as side information to code the curve b, using 3

bits leads to 8 curves, in general using a fixed length representation with bs bits permits us

to choose among 2bs different curves. The chance of finding a good matching curve to use

as a side information increases with bs, but for every bit added the complexity doubles, and

we are increasing the cost of the representation too. If some values are more probable than

others it is worth to consider a variable length code to reduce the cost of the representation.

We thus used an experimental approach and compared two different ways to code s?: a

fixed length coding, with length from 2 to 10, and an Exponential-Golomb code. In Tab. 2.2

we see that, performing the average on different curves and on different sequences, a fixed-

length coding leads to better performance if the number of bits used for the representation

of s? approaches to 6 or more. To compare the proposed method to other techniques we

choose the best performing 10 bits fixed length coding.

For the I-contours we only have to transmit as side information the parameters N?
p

and ρ?, corresponding to an overall cost of 6 bits. On the other hand the decoding of the

B-contours needs the correspondence function as well as the four parameters N?
p , N?

f , ρ?

and s?, corresponding to an overall cost of 28 bits.
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Sequence 2 bits 3 bits 4 bits 5 bits 6 bits · · ·
ballet 1338.20 1329.00 1323.80 1323.80 1323.40

beergarden 1573.33 1565.33 1559.33 1560.33 1559.00
lovebird 1370.45 1347.18 1336.73 1334.18 1331.27
mobile 638.29 635.29 635.43 635.57 634.57

foreman 390.27 388.27 388.45 388.91 387.00
stefan 705.00 695.67 693.00 693.00 691.67

average 1002.59 993.46 989.46 989.30 987.82

Sequence · · · 7 bits 8 bits 9 bits 10 bits Exp-Golomb
ballet 1321.40 1319.80 1318.20 1316.20 1320.80

beergarden 1559.67 1554.67 1554.33 1554.00 1559.00
lovebird 1328.73 1328.18 1324.73 1323.91 1332.09
mobile 634.86 635.71 635.00 634.71 635.71

foreman 386.82 387.09 386.55 387.09 388.09
stefan 689.33 688.33 689.33 690.00 694.00

average 986.80 985.63 984.69 984.32 988.28

Table 2.2: Average coding cost (in bits) for different ways of coding s?: fixed length coding up to
10 bits and Exp-Golomb.

2.3.3 Greedy algorithm

Resting on experimental results for each variable we selected a range of typical values. We

initialize the greedy algorithm (GA) with a starting point (Np0, Nf0, ρ0, s0), corresponding

to the solution in which every value is the closest to the center of the coded range, and then

the GA optimizes the variables in the order Np, Nf , ρ, s. Keeping fixed Nf0, ρ0 and s0 the

GA runs the proposed technique to select the Np that minimizes the bit rate. Once N?
p

has been found the algorithm starts again to optimize Nf from the point (N?
p , Nf0, ρ0, s0).

Then again for ρ and s, until it reaches the solution (N?
p , N

?
f , ρ

?, s?).

The search order for the parameters is set according to our observations of the optimum

parameter distributions after the full search for many sequences: N?
p has a very peaked

distribution, so the selected value after the first step of the GA should actually be the best

one. N?
f , on the contrary, has an almost uniform distribution, thus making difficult to

locate the best value; it is however required to select it before ρ?, because the best value of

ρ is influenced by the selected values of Np and Nf . Still based on our observations, the

last parameter to select is s.

As we can see in Tab. 2.3, the average loss with respect to the full search is 0.82%, but

the number of calculations the encoder has to do is approximately reduced by a factor of

250.

Regarding the overall time needed for the coding of a curve, we can distinguish fixed

and variable time contributions. The elastic estimation is fixed but we can decide how

many frames to leave in between the two reference ones. On the other hand the execution

time for the choice of the parameters can vary greatly: a full search is very costly, and even

if the greedy algorithm speeds up the whole process, one can also decide to keep the same
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Sequence Full Search Greedy Algorithm

ballet 1309.60 1316.20
beergarden 1548.00 1554.00

lovebird 1305.18 1323.91
mobile 631.43 634.71

foreman 380.82 387.09
stefan 684.00 690.00

average 976.51 984.32

Table 2.3: Average coding cost (in bits) for the full search and the greedy algorithm.

parameters (or a subset of the parameters) for a certain number of frames.

2.3.4 Comparisons

We compare our technique to various methods to code the differential chain code of the

contours: Adaptive Arithmetic Coder (AAC), Context Based Arithmetic Coder (CBAC),

and the technique proposed in [DCF12].

In the compression of B-contours we achieve gains up to 10% compared to the method

of [DCF12], but to make a fair comparison we have to consider for our technique both

I-contours and B-contours of the GOP structure. To study the influence of the GOP

structure on the coding performance we used the following:

• IBIBIB. . . is very effective for the B-contours, since the two reference frames are very

close and the prediction is very accurate, but the I-contours have a non negligible

cost on the final outcome. Using this GOP structure produced in our experiments an

average bit rate of 1000,19 bits per contour;

• IBBIBB. . . and IBBBIBBB. . . are non-hierarchical structures with fairly distant I-

contours, they produced an average bit rate of 1004.03 and 1010.28 bits per contour

respectively;

• I1B1B2B3I2. . . is a hierarchical structure with 5 frames in the GOP, in which B2 is

predicted using I1 and I2, B1 using I1 and B2. It produced an average bit rate of

997,57 bits per contour.

The hierarchical structure proved to be the most effective GOP structure: the cost of

the I-contours is low and the elastic prediction for B2 is just slightly less accurate than

the ones for B1 and B3. This result is expected, given the previous study on depth map

compression with traditional hybrid techniques that shows the importance of the prediction

order [MPP08].

In Tab. 2.4 the average results for the test sequences are shown, and in every case our

technique performs better than the references. The overall average gain with respect to

the second best coding technique in the group, the one proposed in [DCF12], is 6.53%. If
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Sequence # symbols JBIG2 AAC CBAC [DCF12] Proposed Gain

ballet 1125.00 3968.00 1715.40 1585.60 1428.20 1338.78 6.26%
beergarden 1369.00 4226.67 2052.33 1882.67 1687.67 1575.58 6.64%

lovebird 1302.09 3153.45 1886.55 1740.36 1418.82 1341.73 5.43%
mobile 661.86 1915.43 837.14 696.00 711.71 639.12 10.20%

foreman 330.00 1776.73 517.18 522.91 411.73 390.20 5.23%
stefan 565.00 2106.67 859.33 877.33 745.33 700.00 6.08%

average 892.16 2857.82 1311.32 1217.48 1067.24 997.57 6.53%

Table 2.4: Average coding cost (in bits) for various sequences in the view domain (ballet) and in
the time domain (mobile, lovebird, beergarden, stefan). The tested methods are: JBIG2,
Adaptive Arithmetic Coder (AAC), Context Based Arithmetic Coder (CBAC) with 1
symbol context, the one proposed in [DCF12], and the proposed technique (all the side
information cost accounted). In the last column are reported the gains of the proposed
technique over the other best performing one in the group.

we consider instead the gain of the proposed technique with respect to JBIG2, which is not

optimized for this kind of data but has been chosen to code the boundary information in

[GLG12], it is 65.09%. Over other standard techniques, such as AAC and CBAC (with one

symbol context, the best choice in our tests) the average gains are of 23.93% and 18.06%,

respectively.

2.4 Conclusions

In this chapter, we have described a novel technique for lossless coding of object contours for

MVD, originally proposed in [CCPP14]. Using elastic deformation between two reference

contour curves, we obtained a useful side information for the coding of the actual contour.

The price paid with the coding cost for the side information is fully rewarded with significant

gains with respect to the reference techniques and to the state of the art. We have also

improved the technique described in [DCF12] by substituting its prediction method with

the average direction method.

The technique and results presented in this chapter are published in the journal article

[CCPP14]. So far only a monodimensional elastic interpolation has been considered, but

we expect a more precise estimation if we can take into account 4 or 8 reference curves from

different views and different times, thus leading to further improvements of the technique.

This will be the subject of further study.

In the next chapter we will examine some application of this contour coding technique

to depth map coding, showing that this approach can give interesting results, even if

compared to state-of-the-art techniques, such as HEVC Intra.
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Depth maps can be represented by means of grayscale images and the corresponding

temporal sequence can be thought as a standard grayscale video sequence and thus

compressed with standard video coding techniques. However depth maps have different

properties from natural images: representing the distance from the camera and the objects

in the scene, they present large areas of smooth surfaces (high level of redundancy)

separated by sharp edges. In terms of compression performance, arguably better results

can be obtained by exploiting ad-hoc approaches tailored to the specific properties of this

representation. In this chapter we present two novel coding schemes where the depth data

is represented by a set of contours defining the various regions together with a compact

representation of the values inside each region.

As we will see in Section 3.1, segmentation information has been widely used for depth

compression but the coding of the segments shape is critical and most available approaches

are not able to propagate the information across multiple frames. In order to exploit
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the temporal or inter-view redundancy of object contours and code more efficiently the

contour information, we use for the two presented coding schemes the lossless contour

coding technique with elastic deformation of curves described in Chapter 2. After the main

discontinuities have been captured by the contour description, the depth field inside each

region is rather smooth.

We proposed and tested two different techniques for the coding of the depth field inside

each region. The first one is very simple and uses the Shape Adaptive Wavelet Transform,

followed by SA-SPIHT (Set Partitioning In Hierarchical Trees). The second one on the

other hand is more complex and uses a 3D surface prediction algorithm in order to obtain

an accurate estimation of the depth field from the contours and a subsampled version of

the data. Follows an ad-hoc coding strategy for the low resolution data and the prediction

residuals. Experimental results prove how the proposed approaches are able to compete

with, and in some cases outperform, the state of the art. Moreover it is important to notice

that in the proposed techniques is performed a lossless contour coding: preserving the

sharp edges between the various surfaces is a relevant property since the positive impact

of contour-preserving compression techniques on synthesized images, obtained through

DIBR (Depth Image Based Rendering) approaches [Feh04], has been confirmed by means

of subjective tests. A detailed discussion on the subject is reported in Chapter 4.

The outline of the chapter is as follows. We first make a short overview of different

codecs specifically targeted at depth maps in Section 3.1, then we will describe the proposed

techniques EC+SA-SPIHT and EC+3D surface prediction, along with experimental results,

in Sections 3.2 and 3.3, respectively.

3.1 Related work

The vast majority of the techniques specifically targeted at depth map compression exploits

the key idea that depth maps are made of smooth regions divided by sharp edges. To

attempt a simple classification of the many approaches proposed in the literature we can

divide them into two main categories: block-based coding techniques and non block-based

coding techniques [CPD13].

Block-based coding techniques

Among the block based coding techniques we can take as example the work by Morvan et al.

[MFdW07]: a quad-tree decomposition divides the depth image into blocks of different

size and each block is approximated with a function. To model the signal in each block

are used a constant function, a linear function, a piece-wise constant function (wedgelet),

or a piece-wise linear function (platelet), if the approximation provided by these function

for the block is not good enough, the block is then divided into four sub-blocks, and the

modelling functions are checked again against the sub-block. The process is repeated until
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each leaf of the quad-tree is approximated. This technique has been further explored in

[MMS+08] and enanched and refined in [SBB11].

To better adapt to the content, in particular to the sharp edges that characterize

depth maps, many transforms have been proposed. In [SKN+10] Shen et al. describe

edge-adaptive transforms (EAT) that can be used for any edge structure. For each block

the first step is to locate the edges in between adjacent pixels. Then the pixels of the block

are mapped on a graph, where each pixel is connected to its neighbours unless they are

separated by an edge. Finally an EAT can be applied on this graph. The main idea is to

have sets of pixels separated by an edge in different graphs, thus avoiding filtering across

the edges by applying a transform only to the values of the connected pixels.

The idea of graph-based transform (GBT), along with transform domain sparsification

(TDS) has been discussed in [CKO+11] by Cheung et al. Again, to code blocks that contain

relevant edges in depth maps, the GBT is used: avoiding the filtering across the edges,

that results in large non-zero high frequency coefficients, compensate for the graph coding

overhead. TDS was proposed to define per-pixel sensitivity of the synthesized view to

errors in the depth map. After computing this metric a search is performed for a sparse

depth signal in an orthogonal transform domain, achieving compression gain introducing a

controlled distortion in the synthesized view. The combination of GBT and TDS is used

for the blocks of the depth image, under a unified optimization framework.

The coding of depth videos has also been considered, e.g., in [DCF12] the idea that

pixels with similar depth have similar motion is exploited: whether a block presents an edge,

it is divided in two sub-blocks before performing motion estimation, and the estimation is

done separately for each sub-block. In this case the overhead caused by the need of lossless

coding of the contour is compensated by the very small prediction residuals. Another

possibility is to exploit adaptive interpolation schemes able to correctly handle edge regions,

for example the approach in [OYVH09] by Oh et al. subsamples the depth information

and then reconstructs it with an adaptive interpolating filter.

Non block-based coding techniques

Traditional block-based coding paradigms, widely used for natural images, are less effective

for depth map coding as a consequence of their distinctive characteristics. As a result many

ad-hoc techniques that do not follow a block-based coding scheme have been proposed.

An example for a novel representation of depth maps was proposed by Farin et al.

in [FPdW07]. To obtain a high compression for an elevated number of views triangular

meshes are produced to provide a 3D scene representation. To avoid evident artefacts

along the borders in view synthesis, the mesh is constructed to have no triangle placed

along the discontinuities, and to each node two values are assigned to better model depth

discontinuities.

The same approach of just one 3D representation for a large number of views was adopted
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by Maceira et al. in [MMRH15], only instead of a mesh, a 3D plane-based representation

is used. The similarity between the texture and the depth signals is used in order to build

a partition of the depth, then a plane fitting is performed to approximate each region.

The aforementioned techniques, although well adapted to the sharp edges of depth

images, are not able to provide a pixel-wise accuracy of the object boundaries, fundamental

for a high quality synthesis of novel views. Another possible solution is thus to exploit a

segmentation of the depth map in order to decompose it into a set of homogeneous regions

that can be represented by simple models or low resolution approximations. Examples

of approaches belonging to this family are [SSO09], [ZC09],[MC10], [Jag11], and [GLG12].

The segmentation or edge information they all use can have a relevant impact on the total

bit-rate, for this task efficient contour coding schemes are needed. Typical contour coding

techniques rely for contours on chain coding and differential chain coding [KKM+98], on

polygon approximation [KBE00], on Hausdorff-distance constrained coding [HMS13a], and

more frequently on JBIG [ISO93] to encode the whole segmentation map. Even if they are

quite effective, these techniques do not exploit the temporal redundancy of contours of the

same objects in different time instants or views.

Sanchez et al. in [SSO09] propose a wavelet-based scheme, in combination with an

edge-preserving lifting scheme to avoid filtering across the edges. The cost of sending the

contour map to the decoder is balanced with the reduction of larger coefficients generated

typically near the edges. The solution proposed by Zanuttigh and Cortelazzo in [ZC09] still

exploits segmentation, but followed by a linear prediction scheme: a subsampled version of

the depth map is used to perform a 3D surface prediction for the points inside the regions

recorded on the segmentation map. A further refinement layer encodes the residuals with

a JPEG2000 coder. Milani and Calvagno in [MC10] proposed a scheme that exploits a

scalable decomposition into progressive silhouettes: the regions obtained by merging of the

segmentation elements are approximated with their relative average, this representation

provides a first approximation of the depth map. Again a refinement layer codes the

residuals with a standard H.264/AVC coder. In a similar fashion, in [Jag11], Jager uses

piecewise-linear functions to approximate the surfaces, which are not necessarily parallel

to the image plane but are generally characterized by linear gradient in depth images.

Another method, proposed by Gautier et al. in [GLG12], transmits to the decoder the

map of the contours, the values of the pixels along the edges, and a subsampled version

of the depth map. The decoder uses the received depth values as seeds to perform an

interpolation by means of a diffusion algorithm.

The idea of exploiting crack-edges is used in [TSA14] by Tabus et al. Crack-edges are

defined as the lines that separate pixels of different values and are used to define regions

of constant depth value. To have a efficient representation of the depth map with these

elements redundancy between adjacent regions is exploited, as well as edges positions.

Crack-edges are used also in the approach proposed by Mathew et al. in [MTZ13], where a

breakpoint field representing crack-edges is exploited, in order to avoid filtering across the
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edges in the wavelet reconstruction.

Other techniques

Depth maps and texture images are highly correlated, so it is possible to use the texture

component to achieve high compression gains for the coding of depth maps. To give some

examples, color data has been used to assist the compression of depth information in the

works [FLWM15], [MZZF11], [MC11a], [HMS13b] and [GBG15]. In addition, the approach

in [MC11b] performs an object classification on the scene and adapts the depth coding

strategy according to the motion characteristics.

The approach of [ZJZ+09], while coding jointly texture and depth, also adopts a

segmentation of the depth image followed by region-based coding scheme because of the

impact that depth values along object borders have on the rendered virtual view images.

3.2 Depth map coding with elastic deformation of contours

and SA-SPIHT

The depth map coding technique presented in this section has been proposed in our paper

[CCPP14], and even though its main goal was to show the potential of the lossless contour

coding based on elastic deformation, we found that a relatively simple codec based on this

tool may be competitive with the state of the art. This may be considered a validation of

the elastic deformation-based approach.

3.2.1 Technique description

We resort to an existing object-based technique since it can immediately benefit from

an improved contour coding method. Despite the simplicity of the approach the results

are satisfying, due to the nature of the data we want to compress. In summary, the new

object-based compression technique is composed of:

• lossless coding of the segmentation map. We apply the the lossless contour coding

technique described in Chapter 2 with the contours of the objects. We use a

hierarchical GOP structure I1B1B2B3I2, in which B2 is predicted using I1 and I2, B1

using I1 and B2, and so on, as described in 2.3.4. This part provides a lossless coding

with inter-frame prediction;

• Shape Adaptive Wavelet Transform (SA-WT) for each object, followed by SA-SPIHT

(Set Partitioning In Hierarchical Trees), followed by an arithmetic coder [CPVZ04].

We remark that for the inner part of the objects we thus have an entirely “Intra”

technique. We have chosen this technique because it is reasonable and simple, and it

complements perfectly with our lossless coding technique.
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Figure 3.1: Coder and decoder schemes of the proposed technique EC + SA-SPIHT.

A synthetic scheme of the proposed depth map coding technique is shown in Fig. 3.1.

While the lossless contour coding technique has been widely discussed in Chapter 2, a brief

description of the technique to code the inner parts of the object is provided here.

Once the depth map has been segmented in homogeneous regions, we use a transform

coding technique based on the shape-adaptive wavelet transform: SA-WT, using the

algorithm of Li and Li [LL00], whose good performance and simple implementation make

it adopted in the MPEG-4 standard. The number of level decomposition is set to 5 and

Daubechies 9/7 biorthogonal filters are used. The most relevant features of the SA-WT

are that no new redundancy is introduced and the number of coefficients is the same as

the number of pixels in the original object. Moreover the spacial relationship among pixels

is retained and there are no new frequencies introduced in the transform domain. Finally,

for rectangular objects the SA-WT is equivalent to the regular WT.

The SPIHT [SP96] algorithm follows the SA-WT, in the shape-adaptive extension

proposed in [CPVZ04]. The SPIHT algorithm is a bit-plane coder of the wavelet coefficients

that exploits the similarities across the sub-bands in a wavelet decomposition of an image.

For each bit-plane there are essentially two tasks, locating the significant bits, and specifying

their value and sign. The most important coefficients are coded first, and increasingly all

the coefficient to obtain a more refined copy of the original image can be coded. The shape-

adaptive version of SPIHT proposed in [CPVZ04] is very similar to the basic algorithm

with the differences that only active nodes, that is nodes belonging to the support of the

SA-WT transform, are considered, and that the tree of coefficients has a single ancestor in

the lowest frequency band.
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After the encoding of the coefficients of the different objects, the RD curves of all

objects are analysed to allocate among them the available bits for a desired encoding rate.

This step is necessary for a object-based coder, and although RD criteria are usually used

for bit allocation, there is another degree of freedom as the allocation could be done also

according to different criteria.

3.2.2 Experimental setting

To make a meaningful comparison we used HEVC Intra to compress the depth maps.

We believe that the comparison is fair because in the case of HEVC Intra the arithmetic

coder for the lossless coding part take advantage of the context updating, and there is

no temporal prediction. Likewise, in our technique, the lossless coding part exploits the

temporal redundancy, while the object coding is totally “Intra”. Moreover it would not

be fair to make a comparison with HEVC Inter because we have no temporal prediction

for the objects, neither would be easy to develop an object-based coder with temporal

prediction.

Once defined the compression technique, we use the decoded depths to synthesize new

views and make a comparison with the images generated by the uncompressed depth maps.

Given any two adjacent views of the multiview sequence, we generated three equally spaced

synthetic intermediate views. To test our depth maps compression technique we used the

multiview sequences ballet, beergarden, lovebird and mobile, synthesizing 6, 15, 30 and 54

frames, respectively. In order to assess the quality of the virtual views, we compared them

to synthesized images obtained by applying the same DIBR algorithm to the uncompressed

depths and views, and thus we obtained the RD points related to our techniques and to

HEVC Intra.

3.2.3 Results

A first comparison between the proposed technique EC + SA-SPIHT and HEVC Intra can

be done by computing the PSNR of the compressed depth maps. For the sequence ballet

there is a significant gain of the proposed technique over HEVC Intra, up to 3.5 dB, in the

range of 0.01 to 0.05 bpp, as reported in Figure 3.2(a). For the sequence beergarden, starting

from 0.075 bpp, there is an almost constant gain of 1.3 dB of the proposed technique over

HEVC Intra, as reported in Figure 3.2(b). The two techniques perform equally good for

the sequence lovebird, where the proposed technique reaches the same PSNR of HEVC

Intra starting from 0.01 bpp. The Figure 3.2(c) depicts the behaviour of the two codecs

in the bit-rate range. Finally, there is a significant advantage of HEVC Intra over the

proposed technique for the sequence mobile, as shown in Figure 3.2(d). This is due to the

fact that the edges are already blurred in the original depth map, reducing the effectiveness

of coding strategies based on the assumption of sharp edges between different regions.

These comparisons are informative about the effectiveness of the proposed coding strategy,
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Figure 3.2: Depth map coding technique EC + SA-SPIHT: PSNR of the compressed depth maps
for the sequences ballet (a), beergarden (b), lovebird (c), and mobile (d).

but they do not provide any clue about the validity of the approach for DIBR use.

The compressed depth maps are used in conjunction with the DIBR engine to synthesize

novel views. The synthesized images obtained with depth maps compressed with the

proposed technique are compared to the synthesized images obtained with depth maps

compressed with HEVC Intra. In order to take into account the artifacts introduced by the

DIBR software, the reference for this kind of images are the synthesized images obtained

with uncompressed depth maps [EYUHG10].

PSNR and SSIM are computed and showed in Figure 3.3 and Figure 3.4, respectively.

In particular, concerning the PSNR of the synthesized images, the Bjontegaard metric

[Bjo01], computed on the RD points showed in the graphs, points out that the proposed

technique outperforms HEVC Intra for ballet, beergarden and mobile, achieving respectively

+2.6 dB, +0.16 dB and +0.88 dB, while the PSNR was practically identical for lovebird.

The SSIM metric, more refined than the PSNR as it takes into account some perceptual

phenomena of the human visual system, shows that for the sequences beergarden, lovebird

and mobile, the performance of the two codecs is very similar, as shown in Figure 3.4(b),

(c) and (d). The two codecs however introduce very different artifacts. The HEVC Intra

codec introduces typical fragmentation artifacts along the borders in the synthesized view,

as shown in Figure 3.5(b1) and put in evidence in the detail in Figure 3.5(b2). On the

other hand, the artifacts produced by the proposed EC + SA-SPIHT codec are more subtle
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Figure 3.3: Depth map coding technique EC + SA-SPIHT: PSNR of the synthesized images obtained
using the compressed depth maps for the sequences ballet (a), beergarden (b), lovebird
(c), and mobile (d).
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Figure 3.4: Depth map coding technique EC + SA-SPIHT: SSIM of the synthesized images obtained
using the compressed depth maps for the sequences ballet (a), beergarden (b), lovebird
(c), and mobile (d).
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to detect. Due to the coarse representation of the geometric information of the scene, the

object textures or the background may be slightly misplaced, as shown in Figures 3.5(c1)

and (c2). This kind of errors affect heavily the PSNR, while a human observer may not

perceive any difference if the synthesized images obtained using depth maps compressed

with the proposed method are compared to the reference, synthesized images obtained

using uncompressed depth maps. The reference image for the example of Figure 3.5 are

reported as Figure 3.5(a1) and (a2).

These results, however pertinent to quite specific test conditions (limited set of sequences,

limited range), show that our technique can perform at least as well as HEVC Intra, or

even better depending on the sequence: these results imply that the proposed approach

is worth considering. This is even more relevant in sight of the fact that in general,

object-based coding techniques achieve not very good results in image compression. It has

been shown that the cost of lossless contour coding is one of the elements that undermine

these techniques the most [CPPV07].
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(a1) uncompressed (a2) uncompressed, detail

(b1) HEVC Intra (b2) HEVC Intra, detail

(c1) EC + SA-SPIHT (c2) EC + SA-SPIHT, detail

Figure 3.5: Sequence lovebird : different artifacts introduced by HEVC Intra (b) and the proposed
technique EC + SA-SPIHT (c). The reference image (a), obtained using uncompressed
depth maps, is reported to show the artifacts introduced by the rendering. HEVC Intra
is used at QP 44, and the bit-rate of the technique EC + SA-SPIHT is set to match
exactly the one of HEVC.
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3.3 Depth map coding with elastic deformation of contours

and 3D surface prediction

The technique presented in Section 3.2.1 is very effective when the objects have a distance

from the camera that ranges from medium to high. In that case the coarse representation

of the geometry of the inner part of the objects do not cause any problem in the synthesis

of novel views. On the other hand, when an object is very close to the camera, it can have

a uneven depth region, which would require a large amount of bits to be coded with an

acceptable quality for synthesis purposes. We therefore developed a novel coding scheme

where the depth data is represented by a set of contours defining the various regions

together with a compact representation of the values inside each region. A 3D surface

prediction algorithm is then exploited in order to obtain an accurate estimation of the

depth field from the contours and a subsampled version of the data. The low resolution

data and the prediction residuals are compressed with ad-hoc strategies.

3.3.1 Technique description

The general workflow of the proposed approach is shown in Figure 3.6. The first step is

the segmentation of the depth maps in order to extract the main objects and structures

in the scene. The segment contours are then compressed using the approach described

in [CCPP14] and the average depth value in each segment is stored. The depth maps

and the segmentation data are subsampled and the difference between the subsampled

representation and the segment averages is compressed using a differential prediction

scheme followed by the HEVC coder. Then a surface prediction algorithm derived from

[ZC09] is used to predict the input depth maps from the subsampled data and the contours.

Finally, the residuals between the prediction and the input depth map are lossy compressed

using the HEVC coder.

After the segmentation and the coding of the segment contours, the next step is the

subsampling of depth data. The depth map is simply subsampled according to a regular

grid (see Fig. 3.7c) and the average depth values in the segments are subtracted from

the subsampled data. The sampling factor ∆ is selected according to the resolution and

the amount of detail of the depth data. In the experimental set-up presented in 3.3.2,

sampling grids of 16× 16 or 32× 32 were used. The subsampled data is basically a low

resolution depth map of size (W/∆) by (H/∆), where W and H are the dimensions of the

original depth map. This information is compressed in lossless way in order to prevent

blurring on the edges and averaging between neighboring samples of different segments,

which would make useless the benefits of the segmentation step. In order to obtain a high

coding gain, the samples of the first depth image (Intra depth frame) are first scanned on

a raster order and converted into a sequence of couples (r, l) according to a run-length

coding strategy. Then, both runs and lengths are coded using a Lempel-Ziv 78 algorithm,
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Figure 3.6: Coder and decoder schemes for the depth map coding technique EC + 3D surface
prediction.
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which permits obtaining good coding gains with a limited complexity. For the following

frames, a DPCM strategy is tailored in order to exploit temporal redundancy. Depth

samples are first predicted from the previous frames (zero-motion prediction), and the

prediction residual is coded like depth samples of the Intra depth frame. We resort to this

simple technique because due to the very low resolution of the input images the size of the

produced files is minimal.

The high resolution contour information and the low resolution depth data can be used

to produce a very accurate prediction of the input high resolution depth map. For this

step we used an approach derived from [ZC09] that here we briefly report. The key idea

is that the depth map is made of a set of smooth surfaces represented by the segmented

regions. For each region a set of samples is available, i.e., the subsampled depth map pixels

belonging to that region. Each pixel pi of the high resolution depth map is thus surrounded

by 4 samples of the grid (see Fig. 3.8) and the idea is to predict it by interpolating only

the grid samples belonging to the same region. If all the 4 samples belong to the same

region of pi, the estimation of pi is simply given by the bilinear interpolation of the 4

samples. When instead the sample is close to the contour of one of the segmented regions,

some of the 4 samples could belong to different regions and the value of pi is estimated by

interpolating only the values of the grid samples that belong to the same region. Up to the

symmetry and excluding the trivial case of samples that correspond to grid points, there

are 5 possible cases (see Fig. 3.8).

a) If all the 4 samples are inside the same region pi is simply given by the bilinear

interpolation of the 4 samples.

b) If pi is surrounded by 3 samples belonging to the same region it is estimated by

assuming that it lies on the plane defined by the 3 points.

c) If pi is surrounded by 2 neighbors in the region and 2 outside (e.g., when it is close to

an edge) a prediction of the two points outside of the region is performed by assuming

that each of them lies on the line passing through the closest available point and the

symmetrical point with respect to the available one (the orange points in Fig. 3.8c).

These points are used to compute pi by bilinear interpolation.

d) If pi has just one neighbor in the same region the value of this sample is taken as

estimate.

e) If pi has no neighbors the average depth value of the region is used.

This approach allows to obtain a very accurate prediction of the input depth map, with

only some small artifacts typically on the edges not captured by the segmentation.

Finally, the residual difference between the estimated and actual depth map is computed

and lossy compressed using the HEVC coding engine. In this case, the main RExt profile

is used, enabling rate-distortion optimization.
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(a)

(b)

(c)

(d)

Figure 3.7: (a) Sample depth map from the dancer sequence; (b) segmented depth map; (c) detail
of the segmented depth map with the subsampling grid (red dots represent the position
of the grid samples); (d) depth map predicted from the contour and the low resolution
samples.
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(e)(a) (d)(c)(b)

Figure 3.8: Grid samples: the 5 possible configurations. The unknown yellow pixel is estimated by
using only the green pixels (plus the orange ones in case c).

3.3.2 Experimental setup

The performance of the proposed approach was evaluated on three different sequences with

different resolutions and characteristics. The first is the dancer sequence, an high resolution

(1920× 1088) synthetic scene, the second is the lovebird sequence, a real world sequence

with a resolution of 1024 × 768 and the third is the mobile sequence, another synthetic

scene with resolution 720 × 540. We compared the proposed approach with the HEVC

standard video coder (Intra mode, main profile) and with the segmentation-based depth

coding approach of [ZC09]. Sampling grids of 16× 16 (sequences lovebird and mobile) or

32× 32 (sequence dancer) were used.

3.3.3 Results

Figure 3.9(a) shows the performance of the proposed and competing approaches on the

dancer sequence. There is a large performance gain (up to 4 dB) with respect to [ZC09] in

the considered bit-rate range. The two approaches share the idea of exploiting segmentation

and low resolution approximation, but the contour coding strategy of this work is more

efficient than the arithmetic coder of [ZC09] and the proposed low resolution samples and

residual compression strategies largely outperform the JPEG2000 based coding used in

that work. The comparison with HEVC is more though: at low and medium bit-rates (up

to 0.01 bpp) the proposed approach is able to outperform HEVC thanks to the efficient

representation of the contours and to the very low information content of the residuals.

The performance gain reaches around 2 dB at around 0.006 bpp. Notice how the contours

remain sharp and not blurred on the whole bit-rate range while HEVC achieves this result

only at high bit-rates. Figure 3.9(b) shows the results for the lovebird sequence: even if

the resolution is different and the scene is a real world one (not synthetic), the results are

very similar to the previous one, with the proposed approach able to outperform [ZC09] at

all bitrates and HEVC for bitrates up to 0.02 bpp corresponding to around 53 dB. The

mobile sequence (Figure 3.9(c)) is more challenging for our approach since the edges are

already blurred in the input depth maps. This reduces the effectiveness of coding strategies

based on the assumption of sharp edges between the various regions like the proposed one
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Figure 3.9: Comparison of the performances of the proposed approach with the HEVC coder and
with the method of Zanuttigh et al. [ZC09]. The test sequences are dancer, lovebird,
and mobile.

and [ZC09] (that on this sequence has very poor performances). However our approach is

still able to outperform HEVC at low bitrates. The maximum gain is around 3 dB in the

bit-rate that goes from the minimum to 0.022 bpp.

The compressed depth maps are used in conjunction with the DIBR engine to synthesize

novel views. The synthesized images obtained with depth maps compressed with the

proposed technique are compared to the synthesized images obtained with depth maps

compressed with HEVC Intra. In order to take into account the artifacts introduced by the

DIBR software, the reference for this kind of images are the synthesized images obtained

with uncompressed depth maps [EYUHG10]. In order to assess the quality of the virtual

views, we compared them to synthesized images obtained by applying the same DIBR

algorithm to the uncompressed depths and views. The comparison can be done either

visually or by objective metrics.

From a subjective point of view the edge preserving capabilities of the proposed approach

are particularly influential when the depth is used for view warping and interpolation.

At the same time the proposed algorithm can introduce non-perceptible or non-annoying

artifacts and objective metrics can assign low scores for them even if for a human observer

the degradation is relatively acceptable.
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Figure 3.10 shows a synthesized view of the lovebird sequence. Depth data compressed

at around 0.008 bpp with both HEVC Intra and the proposed approach. From the figure it

is clear how depth compressed with the proposed approach leads to a better interpolation,

in particular notice how the regions close to the people edges have much smaller artifacts.

A frame from views 1 and 5 of the dancer sequence have been used to reconstruct view

3. Depth data compressed at around 0.005 bpp with both HEVC Intra and the proposed

approach. In Figure 3.11 the synthesized images are reported. Again HEVC coding leads

to more edge artifacts in proximity of the borders.

Figure 3.12 shows the PSNR of the synthesized images obtained using the depth maps

compressed with the proposed technique and with HEVC Intra, while in Figure 3.13 is

shown the SSIM. For the sequences dancer and lovebird the synthesized images produced

with depth maps compressed with HEVC have a higher PSNR and SSIM in the considerate

bit-rate range, while at low bit-rates (up to 0.017 bpp) the proposed approach has an

advantage (up to 3 dB at the minimum bit-rate).
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(a1) uncompressed (a2) uncompressed, detail

(b1) HEVC Intra (b2) HEVC Intra, detail

(c1) EC + 3D surface prediction (c2) EC + 3D surface prediction, detail

Figure 3.10: Sequence lovebird : different artifacts introduced by HEVC Intra (b) and the proposed
technique EC + 3D prediction (c). The reference image (a), obtained using uncom-
pressed depth maps, is reported to show the artifacts introduced by the rendering.
HEVC Intra and the technique EC + 3D prediction are used at around 0.008 bits per
pixel.
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(a1) uncompressed (a2) uncompressed, detail

(b1) HEVC Intra (b2) HEVC Intra, detail

(c1) EC + 3D surface prediction (c2) EC + 3D surface prediction, detail

Figure 3.11: Sequence dancer : different artifacts introduced by HEVC Intra (b) and the proposed
technique EC + 3D prediction (c). The reference image (a), obtained using uncom-
pressed depth maps, is reported to show the artifacts introduced by the rendering.
HEVC Intra and the technique EC + 3D prediction are used at around 0.005 bits per
pixel.
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Figure 3.12: Depth map coding technique EC + 3D surface prediction: PSNR of the synthesized
images obtained using the compressed depth maps for the sequences dancer (a),
lovebird (b), and mobile (c).
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Figure 3.13: Depth map coding technique EC + 3D surface prediction: SSIM of the synthesized
images obtained using the compressed depth maps for the sequences dancer (a),
lovebird (b), and mobile (c).



70 3. Shape-based depth map codecs

3.4 Conclusions

This chapter focuses on segmentation-based coding of depth maps, introducing the concepts

of elastic deformation of curves in the context of depth map coding. Two depth map

coding techniques have been discussed. Both of them use the lossless contour coding

technique discussed in Chapter 2 to describe the object contours of a segmented scene,

while the approaches to represent the inner part of the objects are on SA-SPIHT for the

first technique, and a prediction from a subsampled version of the original depth map for

the second one.

The results obtained with the proposed techniques show that with smart contour coding

even segmented coding approaches are able to compete with HEVC Intra. Moreover the

preservation of the contour information allows a very high quality synthesis of novel views.

The technique EC + SA-SPIHT presented in this chapter is published in the journal art-

icle [CCPP14], while the technique EC + 3D surface prediction is published in [CZM+16].
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The video-plus-depth representation for multi-view video sequences (MVD) consists

of several views of the same scene with their associated depth information, which is the

distance from the camera for every point in the view [DPPC13]. Depth information allows

synthesizing virtual view points, for such applications as 3D television and free-viewpoint
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video, but it requires ad-hoc compression techniques, since those developed for texture

images are not well suited for depth maps.

A key point in depth image compression is that depth maps are not meant to be

visualized but only used for rendering of virtual views. Various techniques have been

specifically proposed to code the depth information associated to the views and recent

approaches include contour-based and object-based coding of depths, as we have seen in

Section 3.1. This approach seems reasonable because the properties of depth maps differ

greatly from the ones of texture images. Objects within a depth map are usually arranged

along planes in different perspectives. As a consequence there are areas of smoothly

varying levels, separated by sharp edges which correspond to object boundaries. It is

generally recognized that a high-quality view rendering at the receiver side is possible only

by preserving the contour information [GLG12], [DCF12], [SKN+10], since distortions on

edges during the encoding step would cause a sensible degradation on the synthesized view

and on the 3D perception. In case the edges of the depth map are losslessly compressed and

the inner part is coarsely compressed, the typical artifact consists in a slight displacement

of an object, with clear sharp edges. This leads to low scores for objective metrics like

PSNR, which are very sensitive to this kind of errors, while it should leave a low impact

on the perceived quality. To the best of our knowledge no study has been done so far

to validate this claim [BPLC+11a] [BKP+11] [BPLC+12] [DJC+15], so we conducted a

subjective test to assess the quality of synthesized images, obtained using DIBR software

and depth maps compressed either with an object-based technique, or a hybrid block-based

technique.

In Chapter 2 a lossless contour coding technique that uses elastic deformation of curves

to losslessly encode the object contours is described, while in Section 3.2.1 is described

a technique that uses the shape-adaptive wavelet transform to represent the inner parts

of the objects. In a practical bit-rate range the combination of these two techniques

proved to be competitive, in terms of objective quality metrics (PSNR and SSIM), with

HEVC [SOHW12], state-of-the-art technique for hybrid block-based coding. Just like other

contour-based methods, the technique EC + SA-SPIHT presents totally different artifacts

in synthesized images with respect to HEVC, and their impact is difficult to evaluate with

classical metrics like the PSNR.

The results of the subjective test show that the contour information is indeed relevant

in the synthesis step: preserving the contours and coding coarsely the rest typically leads to

images that users cannot tell apart from the reference ones, even at low bit rate. Moreover,

our results show that objective metrics that are commonly used to evaluate synthesized

images may have a low correlation coefficient with MOS rates and are in general not

consistent across several techniques and contents.

The rest of the chapter is organized as follows: in Section 4.1 the basics of subjective

visual quality assessment are given; in Section 4.2 an overview of the coding techniques

used for the preparation of the test is presented; the Section 4.3 deals with the test design,
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the participants, the test environment, the used stimuli and the test procedure; finally the

Section 4.4 contains the results, followed by the conclusions.

4.1 Background notions on quality assessment

The evaluation of lossy compression techniques for videos and images can be conducted

through objective or subjective methods [Ric04]. Objective metrics are simply computed

from the signals’ values and they can be distinguished into perceptual and non-perceptual

metrics. Subjective methods on the other hand ask a group of people to judge the quality

of the signal.

The most common objective metrics for video quality evaluation are described in

Section 1.1.4.

4.1.1 Subjective quality assessment tests

In a subjective visual quality assessment test, the viewers, usually called “participants”,

provide a set of responses to the received “stimuli”, the images or video sequences. To

consider these responses as a reliable measure of perceptual impressions, the experimenter

must control a set of external conditions. The experimenter in particular has the choice of

the stimuli, as well as their order and repetitions; the number and the characteristics of the

subjects; the environment for the experiment, as well as its methodology, which includes

the question that the subject has to answer, along with the rating scale. The variables

that the experimenter controls are called independent variables.

The response of a subject to a stimulus is the dependent variable, and the whole test is

designed so that the variation in the subjective responses is caused only by the prompted

stimuli.

The experimenter formulates a question to be answered in order to confirm or reject

the null hypothesis, which indicates how likely it is that the research hypothesis is true or

false. Example of null hypothesis is that the images compressed with technique “A” and

the images compressed with technique “B” have the same quality at equal bit-rate.

As only a limited number of people can participate to a subjective test, the experiment

has to be correctly designed to generalize the confirmed or rejected hypothesis [BZ07]. In

order to verify whether a test is correctly designed we can check the two properties of

objectivity and reproducibility. Objectivity property refers to the fact that if we perform

another test in another laboratory, with another test method and other subjects but using

the same stimuli, we should get statistically similar results. While if for our test the

reproducibility property is verified, a test that uses the same stimuli and test methodology,

in another laboratory, with different people, produces statistically comparable data. To

obtain objective and reproducible results, all the external conditions and the research

question must be carefully determined and the collected results reported in all the details
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[Win05] [BHH78] [SC67].

4.1.2 Design of a subjective test

The aim of the experiment defines the research question, which can be focused either on a

specific characteristic of the stimuli, or on the overall impression that the subjects receive

from the stimuli [Int05].

An image or a video is a complex signal, and when such a stimulus is presented to a

subject it is likely that he perceives multiple attributes (such as sharpness, contrast, etc.)

at the same time. A perceptual measurement aims to measure a specific attribute of the

stimuli, thus the question to be asked to the participants will not be about the overall

perceived quality of the pictures or video sequences, but just about the specific attribute

under study, with a detailed and clear formulation. To measure different attributes, it is

recommended to evaluate them separately.

Unlike perceptual measurements, the affective measurement has the purpose of quanti-

fying the general impression of the stimulus, such as acceptance, liking, or annoyance. All

the attributes, the environment and the context, the state of mind of the subject, are all

blended into a single impression. A short training is needed to explain the experimental

design and the research question. Three classes of affective measurement can be defined:

acceptance tests, where the subject is asked to report the degree of liking of the stimulus;

appropriateness tests, where the degree of liking is contextualized; preference tests, where

a preference choice has to be made between different stimuli.

Stimuli and subjects

The test material has to be representative of the data used in a realistic scenario and at the

same time its characteristics should be challenging for the attributes that the experimenter

wants to take into analysis [ITU12b]. The number of stimuli to be used in a test is variable

and depends on the factors that the experimenter is considering. Ideally every combination

of treatments should be showed to the subjects (full factorial design), but this approach

leads to a very large number of stimuli. Given that every session should not last more

than 30 minutes, a fractional factorial design is preferred: the stimuli set contains a just a

significant fraction of all possible stimuli [BHH78].

As the test material has to be relevant for a use in a realistic scenario, the same is

true for the subject who participate in the test. We can distinguish two categories: expert

and untrained (or naive). Concerning their area of expertise, the experts represent a

sensitive part of the total population and they take part in a subjective test when the

experimenter wants a detailed evaluation of the stimuli. On the other hand for affective

tests the untrained subjects are preferred, as they reproduce a random sampling of the

population [DS12] [ITU12b]. Depending on the nature of the study, näıve or experienced

participants are used for the assessment.
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Experimental set-up

In order to perform a meaningful test for quality assessment, the experimental set-up

should recreate the usage conditions for the targeted application. At the same time all the

external experimental parameters that could bias the impression of the subjects must be

restrained.

A standardization effort has been done in order to facilitate the test reproducibility.

Recommendations and set-up parameters for the reproduction system and the environment

where the test is performed are indicated in [ITU12b] and [ITU12a]. However, as the

technology evolved very rapidly over the last years, the experimenter can define an ad-hoc

configuration to study a particular application, as long as he provides a detailed description

of the test environment in his report.

Test methods

Once decided the target application and the aim of the test, the experimenter has to choose

a test method: the question to be asked to the subjects, and how the subjects have to

answer. Rating scales are used to translate the impression perceived by the subject from a

stimulus into a measure.

Scaling methods are either direct or indirect. In direct scaling methods the overall

impression perceived by the subject is directly translated into a category or a number,

proportional to the magnitude of the sensation caused by the stimulus [Ste46]. Regarding

indirect scaling methods, they are used to measure the perceived impression by comparing

the effects of two stimuli: the more they are different the more the subject will perceive

different sensations. By indicating the stimulus that is considered better than the other, if

they are not perceived as equal, the experimenter can construct a matrix of probabilities

that can in turn be converted into scores on interval scales [BZ07].

Among common test methods we can mention double stimulus, single stimulus, and

stimulus comparison methods, all accurately described in the ITU recommendations

[ITU12b], [ITU07] and [ITU99]. Double stimulus methods belong to the direct scaling

methods family. Two stimuli are presented to the subject, at the same time or sequentially,

one of the two being the reference and the other the test stimulus. The subject has then to

evaluate both, or just the test stimulus, to measure the fidelity of the test stimulus to a

reference one.

A common implementation of double stimulus methods is the DSIS test (Double Stimulus

Impairment Scale): the viewer is asked to evaluate only the test stimuli using a rating

scale composed of five intervals (ITU-R five-grade discrete impairment scale [ITU12b]). An

example of the scale is reported in Figure 4.1, and it can be discrete or continuous.

In single stimulus methods there is no reference and only one stimulus is shown at the

time. The user will have to choose the degree of acceptance of the stimulus on a discrete

or continuous scale. This kind of methods have the advantage of being closer to real-world
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Figure 4.1: Rating scales: ITU-R 5 grade discrete (a) and continuous (b) quality interval scale,
ITU-R 5 grade discrete (c) and continuous (d) impairment interval scale.

application than double stimulus methods, but at the same time small differences may not

be perceived.

On the other hand, stimulus comparison methods allow to precisely discriminate

different stimuli. Pairwise-comparison methods are considerate the most precise: stimuli

are presented in pairs and the subject has to use a scale to establish a better-worse relation

between the two. The problem related to this approach is that the sessions tend to be very

long.

4.1.3 Analysis of subjective results

Once the results have been collected, a pre-process is needed to detect and potentially

remove the outliers. The data can then be analysed using appropriate statistics, depending

on the experiment design and the nature of the study. Common statistics, as reported in

[ITU12b] and [ITU04], are Spearman’s correlation coefficient, root mean square error and

mean opinion score.

Outlier detection and removal

The data the experimenter deals with is a collection of scores. There are many ways to

perform the outlier detection, a common one is that if the experimenter cannot make any

assumption on the score distribution, a score x is considered as an outlier if its value is out

of the interquartile range by a distance of more 1.5 times the interquartile range.

x is outlier: x < Q1− 1.5 · IQR | x > Q3 + 1.5 · IQR (4.1)

where IQR = Q3−Q1, and Q1 and Q3 are the first and third quartile, respectively. Then,

if the number of outliers among the scores of a subject is greater than the threshold of 10%

or 20%, he is labelled as an outlier and all of his scores are discarded [DSGLE11] [DS12].
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Mean opinion score

To summarize the collected data the experimenter can compute and report the value of

descriptive statistics like mean, standard deviation or variance, as well as the box-plot

diagram, which graphically describe the score distribution through its quartiles.

The opinions of the subjects are also averaged into the Mean Opinion Score (MOS) to

provide a concise representation of the appreciation for each stimulus. Given a stimulus j,

its MOS can be calculated as:

MOSj =
1

N

N∑
i=n

xnj , (4.2)

where N is the number of subjects left after the outlier removal, and xnj is the rating given

by subject n to the stimulus j [ITU12b].

To measure the general agreement between the participants, MOS values should always

be reported with their confidence interval. Since the number of participants is usually

small compared to the whole population, the CI must be calculated with the Student’s

t-distribution.

CIj = tα,N−1
sj√
N
, (4.3)

where tα,N−1 is the t-value corresponding to a two-tailed t-student distribution with N − 1

degrees of freedom (the number of independent observations in the set of data) and sj is

the standard deviation of the scores assigned to the stimulus j. The significance level α for

the 100× (1− α)% CI is usually set to 0.05, i.e. a degree of confidence of 95%.

4.2 Depth map coding techniques

To produce the test material for our analysis we will compress the depth maps using

three different techniques: HEVC, the state-of-the-art hybrid block-based technique, the

technique described in Section 3.2.1, and a simple control technique.

4.2.1 Depth map coding with elastic deformation of contours and SA-

SPIHT

The technique described in Section 3.2.1 uses the elastic prediction as a context for an

arithmetic coder, to improve the probability distribution for each symbol that composes

the curve. The lossless coding of the contour is performed through an arithmetic coder,

and the input symbol probability distribution is modified on the fly according to the elastic

prediction, as we have seen in Chapter 2.

A segmentation map of the scene with different objects can be coded with our lossless

contour coding technique, and this map can be used in conjunction with an object-based

coding technique to code the depth images. The proposed method relies on the SA Wavelet

Transform [LL00], followed by SA SPIHT (Set Partitioning In Hierarchical Trees) [CPVZ04],
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Figure 4.2: Coding scheme for the technique NR (No Refinement).

followed by an arithmetic coder for the SPIHT symbols (memoryless, without context).

This provides an entirely Intra technique for the inner part of the objects. From now on

we will refer to this technique as “CC”, contour coding.

4.2.2 Advantages of lossless coding - Simple control technique

The validity of the object-based approach is suggested by the relevance of the contour

information in the synthesis step. A minimum bit budget is needed for a lossless represent-

ation of contours and this initial cost may be a relevant fraction of the total rate dedicated

to the depth map. One question that arises is whether the benefits of a lossless contour will

actually be perceived as relevant against its bit-rate cost. We investigated on this subject

by simply skipping the lossless coding part in our coding technique and using the elastic

prediction to directly generate the segmentation map to feed the object-based coder. We

rely on the SA SPIHT block to correct the possible imprecision of the coded depth map.

This control technique allows the rates to be lowered dramatically, however the quality

of the synthesized images obtained from the depths compressed with this simple technique

must be carefully evaluated. From now on we will refer to this technique as “NR”, no

refinement.

A concise scheme of the NR method is shown in Fig. 4.2. As inputs we have a depth

image and the two reference contours needed for the elastic interpolation. First the elastic

prediction is performed and the generated contours are used to arrange a segmentation

map. The resulting objects are coded with a SA wavelet transform, followed by SA SPIHT.

4.3 Subjective test

4.3.1 Test design

The subjective evaluation has been performed following the Double Stimulus Impairment

Scale (DSIS) methodology [ITU12b]. For each “round” a pair of images has been proposed
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content frames view L goal view R crop

beergarden 54-58 5 5.25 6 840×896
lovebird 1-5 6 7 8 1024×768

mobile 43-47 3 3.75 4 720×536

Table 4.1: Frames used for compression and synthesis for each sequence.

to the user, stimuli A and B, in which the stimulus A was always the reference, and stimulus

B was the image to be evaluated. The reference image is obtained using uncompressed

depths in the synthesis step, while the image to be evaluated is obtained with compressed

depths. The viewer was informed of the presence of the reference image in the pair, and

was asked to rate the drop of quality of the second image with respect to the first one,

using a continuous scale ranging from 0 to 100, in which five ranges were associated with

five distinct adjectives (“Very annoying”, “Annoying”, “Slightly annoying”, “Perceptible”,

“Imperceptible”).

4.3.2 Participants

A panel of twenty people took part in our test, 6 female and 14 male, aged from 23 to 32,

with an average of 27.65 years. The subjects reported normal or corrected-to-normal visual

acuity.

4.3.3 Test environment

The images were displayed on a DELL P2210 screen at their original resolution (reported in

Tab. 4.1). The test space was set up with mid gray non reflective background, and isolated

from external sources of light, as recommended in [ITU12b], [ITU12a]. To avoid direct

light sources in the field of view of the user, except for the screen, we placed a lamp at

6500K color temperature behind the screen to provide ambient illumination. The resulting

ambient light measured in front of the screen, when this was off, was approximately of 10

cd/m2. Viewers participated to test sessions one at the time, sitting in front of the screen

at a distance of its diagonal approximately, which corresponds roughly to three times the

height of the images used for the test. The angular resolution from that distance is about

35 pixels per degree.

4.3.4 Stimuli

The multiview sequences beergarden (provided by Philips), lovebird (ETRI/MPEG Korea

Forum) and mobile (Philips) have been used for test. An example for each content is shown

in Fig. 4.3. We produced the test material by synthesizing novel views from uncompressed

texture videos and compressed depth maps For each sequence a target view and time

instant is chosen. Depth maps are then compressed using the techniques CC, NR, and

HEVC.
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Figure 4.3: Contents of the different sequences and their resolution.
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Figure 4.4: Coding rate scheme for the different techniques used in the test.
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(a) (b)

Figure 4.5: Example of artifact introduced by the compression with the “no refinement” (NR)
technique: imprecise contours will produce in the synthesized image a gap between the
objects. The whole image is reported (a), along with a detail (b).

For HEVC, used in mode Intra, we have chosen as QPs: 27, 38, 44, 51. QP 51 is the

maximum level of compression allowed, corresponding to the smallest bit-rate for HEVC.

For CC, the use of SA-SPIHT allows to chose the exact bit-rate, so we have chosen the

lowest possible rate and the bit-rates corresponding to QPs 51, 44, and 38. And as for NR,

we have chosen again the lowest possible rate and other two to match the low rates of the

two other techniques. A simple scheme on how the rates are selected for each technique is

shown in Figure 4.4. For each sequence, 11 synthesized images are used in the test, leading

to a total of 33 comparisons in the whole test. Details about the frames and views used for

each sequence are reported in Tab. 4.1.

The use of the technique NR for this test is important to evaluate the effects of contour

coding on the synthesized image. It will be shown that the precision of the contour leads

to remarkable gains in terms of perceived quality. Moreover we used this technique at a

very low bit rate as the reference for the “very annoying” quality, for the evident artifacts

that it produces on the synthesized image. If the predicted contour lies outside the object

and the interior part is coded very coarsely, we will produce a change in the geometry of

the scene, that will result in a gap in between the objects of the synthesized image, as

shown in Figure 4.5.

Once the depths are compressed for two views, we used them to generate new synthetic

views in between the two with the Depth-Image-Based Rendering (DIBR) software [Feh04],

as shown in Fig. 4.6. The use of synthesized images for the test is justified by the plausible

scenario of Free Viewpoint Video (FVV) [BPLC+11b].

To perform the elastic prediction we need two reference curves, be them from two

different views or two different time instants of the same view. These curves represent a sort

of “intra” curves and they are coded independently from the others (and losslessly, for the

techniques CC and NR). The gap or distance between the two reference curves along the
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Figure 4.6: Elastic prediction and synthesis scheme.

view or the time axis affects the final rate: the accuracy of the prediction decreases with the

distance, but at the same time a wider gap between the two reference curves allows a lower

bit-rate. The distance of the reference curves for the elastic prediction has to be chosen

for the techniques CC and NR. To better illustrate this concept, in Fig. 4.6 we marked

with a blue R the frames used to extract a reference curve, a blue arrow representing the

geodesic path from one to another, and the distance from a reference curve to the other is

defined as the number of frames that exist in between the two. For both the techniques the

chosen value is three frames in between the two reference ones and we perform the elastic

prediction along the time axis. The synthesis is then performed using the compressed

depths of two views and their associated texture images.

Regarding the reference images, the unavailability of intermediate views and the presence

of evident synthesis artifacts lead us to the use of synthesized reference images, obtained

with the original uncompressed depths, as suggested in [EYUHG10].

4.3.5 Procedure

Each image was shown for 7 seconds and preceded by a gray screen to indicate the stimulus

(A or B) for 1.5 seconds. Every round was composed of: stimulus A, stimulus B, stimulus

A, stimulus B, voting screen, as shown in Figure 4.7. The voting screen is a pop-up

window on mid gray background. The voting window contains a continuous slider with

the five adjectives on its side, and a text box that reports the rating value and again the

correspondent adjective with a larger font size to be more evident, as shown in Fig. 4.8.

The pairs of stimuli were presented in random order. The whole test took around 22

minutes to complete for each user.
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Figure 4.7: Procedure for each round of the test.

Figure 4.8: Voting window used in the test.

4.4 Results

The subjective scores were screened in order to detect and remove possible outliers, subjects

whose scores differ greatly from the others’. We followed the procedure described in

[ITU12b] for the DSIS test methodology. As we have not done any assumption on the

distribution characteristics, values outside the interquartile range (from the 25% and the

75% percentiles) for more than 1.5 times are labeled outliers, and if there is an incidence

of outliers in a subject’s score of more than the 10%, he is considered an outlier and his

scores are not taken in account. In our results three subjects have been marked as outliers

and their scores have been discarded.

After the outlier removal, we verified that for each stimulus the score distribution is

unimodal and we computed the Mean Opinion Scores (MOS), along with the 95% confidence

interval (CI), with the assumption that the scores are following a t-Student distribution.

Objective measurements and perceived quality. In addition to the MOS, the images

were also evaluated through different objective metrics. We considered pixel-based metrics:

Peak Signal-to-Noise Ratio (PSNR) and Weighted Signal-to-Noise Ratio (WSNR) [MV93];

as well as non-pixel-based metrics: Multi-scale Structural Similarity (MSSIM) [WBSS04]

and Visual Information Fidelity (VIF) [SB06]. In Figures 4.9, 4.10 and 4.11 the results

of our subjective test and all the considered objective metrics are reported. Each column

refers to a sequence, and each row to a metric. In particular, the computed MOS scores
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Figure 4.9: Sequence beergarden: mean opinion scores (MOS) with the 95% confidence inter-
val and different objective metrics: Peak Signal-to-Noise Ratio (PSNR), Weighted
Signal-to-Noise Ratio (WSNR), Multi-scale Structural Similarity (MSSIM), and Visual
Information Fidelity (VIF). The techniques used are the simple control technique “no
refinement” (NR), the contour coding technique (CC), and HEVC Intra (HEVC).



4.4. Results 85

lovebird

0 0.5 1 1.5 2

x 10
4

0.92

0.94

0.96

0.98

1

bits per frame

M
S

S
IM

 

 

NR
CC
HEVC

0 0.5 1 1.5 2

x 10
4

35

40

45

50

55

bits per frame

P
S

N
R

 [d
B

]

 

 

NR
CC
HEVC

0 0.5 1 1.5 2

x 10
4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

bits per frame

V
IF

 

 

NR
CC
HEVC

0 0.5 1 1.5 2

x 10
4

30

35

40

45

50

bits per frame

W
S

N
R

 [d
B

]

 

 

NR
CC
HEVC

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

100

bits per frame

M
O

S

 

 

NR
CC
HEVC

Figure 4.10: Sequence lovebird : mean opinion scores (MOS) with the 95% confidence interval and dif-
ferent objective metrics: Peak Signal-to-Noise Ratio (PSNR), Weighted Signal-to-Noise
Ratio (WSNR), Multi-scale Structural Similarity (MSSIM), and Visual Information
Fidelity (VIF). The techniques used are the simple control technique “no refinement”
(NR), the contour coding technique (CC), and HEVC Intra (HEVC).



86 4. Quality assessment

mobile

0 2000 4000 6000 8000
0.95

0.96

0.97

0.98

0.99

1

bits per frame

M
S

S
IM

 

 

NR
CC
HEVC

0 2000 4000 6000 8000
35

40

45

50

55

60

65

bits per frame

P
S

N
R

 [d
B

]

 

 

NR
CC
HEVC

0 2000 4000 6000 8000
0.5

0.6

0.7

0.8

0.9

1

bits per frame

V
IF

 

 

NR
CC
HEVC

0 2000 4000 6000 8000
30

40

50

60

70

bits per frame

W
S

N
R

 [d
B

]

 

 

NR
CC
HEVC

0 2000 4000 6000 8000
0

20

40

60

80

100

bits per frame

M
O

S

 

 

NR
CC
HEVC

Figure 4.11: Sequence mobile: mean opinion scores (MOS) with the 95% confidence interval and dif-
ferent objective metrics: Peak Signal-to-Noise Ratio (PSNR), Weighted Signal-to-Noise
Ratio (WSNR), Multi-scale Structural Similarity (MSSIM), and Visual Information
Fidelity (VIF). The techniques used are the simple control technique “no refinement”
(NR), the contour coding technique (CC), and HEVC Intra (HEVC).
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|ρ| overall beergarden lovebird mobile NC CC HEVC

MSSIM 0.62 0.97 0.52 0.46 0.75 0.13 0.80
VIF 0.55 0.97 0.50 0.37 0.52 0.02 0.79

PSNR 0.56 0.96 0.50 0.35 0.52 0.15 0.75
WSNR 0.68 0.99 0.63 0.45 0.80 0.14 0.79

p-value overall beergarden lovebird mobile NC CC HEVC

MSSIM 0.00 0.00 0.11 0.15 0.03 0.68 0.00
VIF 0.00 0.00 0.12 0.26 0.16 0.96 0.00

PSNR 0.00 0.00 0.12 0.30 0.16 0.64 0.01
WSNR 0.00 0.00 0.04 0.17 0.01 0.67 0.00

Table 4.2: Spearman correlation coefficients ρ (in modulus) and p-values, calculated between the
MOS and the objective metrics, for each content and technique.

with their 95% CI are reported in the first row.

As we can see in Figures 4.9, 4.10 and 4.11, HEVC exhibits very regular trends in

its MOS scores. The resulting visible artifacts reported by the participants are mainly

edge fragmentation and blocking effect, which disappear as the bit-rate increases. MOS

scores of HEVC generally vary from the “perceptible” to the “imperceptible” range. The

technique CC exhibits in general very high scores compared to the other techniques (most

of its scores are in fact in the “Imperceptible” range), thus the coding of the contours is

generally worth its cost for the perceived quality of the resulting synthesized images. This

is especially true if we compare the MOS scores of CC to the ones of NR at the same

bit-rate: imperfections in the contour can lead to annoying artifacts and make the final

quality drop, even if they are diminished by a finer coding of the interior part. Moreover

we see that at low bit-rates a perfect contour and a coarsely coded interior part tend to

lead to an excellent perception of the synthesized image. In contrast to this assertion we

find slightly lower scores at low bit-rates for the content beergarden, where the proximity of

the objects to the camera demands a less coarse coding of the interior part to reach a very

high level of perceived quality.

Dealing with objective metrics, again in Figures 4.9, 4.10 and 4.11, at low bit-rates

HEVC generally shows better results. Pixel-based metrics like PSNR are in fact very

sensitive to the most prominent artifact produced by the CC coding technique: the different

geometry of the scene, given by the coarsely coded interior part, results in a slightly different

disposition of the objects, with respect to the image synthesized from uncompressed depths.

To a human observer it can be very difficult to tell apart the two images, but even the

shifting of few pixels for an object or the background can cause a low PSNR. On the other

hand, in terms of PSNR, the technique NR proves to be competitive with the technique

CC. The explanation lies in the fact that very localized errors, especially if they affect

the shape of the objects, are perceived as annoying by a human observer, and the tested

objective metrics are not able to take this effect into account.
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Apart from PSNR, also the more refined objective metrics WSNR, MSSIM and VIF

produce scores that can differ greatly from the scores produced during the subjective test.

The table 4.2 reports the Spearman correlation coefficients ρ (in modulus) and p-values,

calculated between the MOS and the objective metrics. Each column reports either a

content or a technique: when a content is indicated the coefficients are calculated considering

all the techniques, conversely when a technique is indicated the coefficients are calculated

considering all the contents. The metrics with the highest overall correlation coefficient are

WSNR (0.68) and MSSIM (0.62), followed by the PSNR (0.56) and finally the VIF (0.55).

While dealing with some of the techniques or some of the contents these objective metrics

could provide a good subjective MOS prediction, but they are not consistent across several

techniques and contents, in particular they showed a low correlation coefficient ρ and a

high p-value for the method CC, indicating a very low correlation.

4.5 Conclusions

This chapter addresses the issue of evaluating the effects of contour-preserving compression

techniques on synthesized images by means of a subjective test. We compared, with

subjective results and objective metrics, HEVC, the technique proposed in [CCPP14], and

the presented simple technique NR. The positive impact of contour preserving depth coding

on the perceived quality of synthesized images was confirmed by our study. Moreover

by the comparison of subjective results and objective metrics it is also clear that the

quality assessment of synthesized images in MVD through objective metrics presents

unresolved problems: algorithms can introduce non-perceptible or non-annoying artifacts

and commonly used objective metrics can assign low scores for them even if for a human

observer the degradation is relatively acceptable. Further experiments should be conducted

to take into account also temporal artifacts and 3D video perception.

This work has been published in [CCPP15a], while the original simple control technique

NR (described in Section 4.2.2) has been introduced in the short paper [CCPP15b].



Conclusion and future work

Objectives of the thesis

In the multiple-view video plus depth context, the goal of this thesis was to develop a

framework for depth map compression that delivers lossless contour coding for segmented

objects in the depth map, taking advantage of the temporal and inter-view redundancy of

the MVD format.

Three main parts of the development can be distinguished: first an original technique

aimed at lossless encoding of contours has been developed. The proposed coding scheme is

based on elastic deformation of curves, which make possible to compactly represent the

contours exploiting the temporal consistency in different frames.

The second part is the finalization of the framework with an effective technique to code

the inner depth field of the objects, given the contours coded with the lossless contour

coding technique. Two different codecs have been developed: a simple one that makes use

of the shape-adaptive wavelet transform, followed by the shape adaptive version of SPIHT

(set partitioning in hierarchical trees), and a more refined technique that uses a 3D surface

prediction algorithm to estimate the depth field from the coded contours and a subsampled

version of the data.

The third part is a quality assessment study that compares, by means of a subjective

test, the synthesized images obtained using depth maps compressed with a hybrid-block-

based coder (HEVC Intra) and depth maps compressed with the first of the proposed

contour-preserving codecs.

Summary

Contour coding

A new technique aimed at lossless coding of object contours, based on the elastic deformation

of curves, has been proposed. A continuous evolution of elastic deformations can be

modelled between two reference contour curves and An elastically deformed version of the

reference contours can be sent with a reduced coding cost to the decoder, to be used as

side information to improve the lossless coding of the actual contour. To use the suitable
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portion of the elastic curve as side information to code the current point, the two curves

are coupled by a function obtained with dynamic time warping. An accurate estimation

of the symbol probabilities is achieved “following” the elastic curve. The current curve,

represented by a differential chain code, is then encoded with an arithmetic coder that

takes as input also the vector of symbol probabilities. To perform the decoding, just a few

parameters have to be sent to correctly estimate the symbol probabilities.

Experimental results on contours extracted from several multiview video sequences

show remarkable gains with respect to the reference techniques and to the state of the art.

Depth map coding

In the context of segmentation-based coding of depth maps, two depth map coding

techniques have been proposed, bringing the concepts of elastic deformation of curves in

the context of depth map coding. Both the codecs use the lossless contour coding technique

discussed in Chapter 2 to describe the object contours of a segmented scene, while the

approaches to represent the inner part of the objects are based on the shape-adaptive

wavelet transform followed by the shape-adaptive version of SPIHT for the first technique,

and a 3D surface prediction from a subsampled version of the original depth map for the

second one.

For the first technique we resorted to an existing object-based technique since it can

immediately benefit from an improved contour coding method. Despite the simplicity of

the approach the results are satisfying, due to the nature of the data we want to compress.

This first technique is very effective when the objects have a distance from the camera that

ranges from medium to high. In that case the coarse representation of the geometry of the

inner part of the objects do not cause any problem in the synthesis of novel views because

the depth region is rather smooth. On the other hand, when an object is very close to the

camera, it can have a uneven depth region, which would require a large amount of bits to

be coded with an acceptable quality for synthesis purposes.

We therefore developed a second coding scheme where the depth data is represented by

a set of contours defining the various regions and a compact representation of the values

inside each region. A 3D surface prediction algorithm is then used in order to obtain an

accurate estimation of the depth field from the contours and a subsampled version of the

data. The low resolution data and the prediction residuals are compressed with ad-hoc

strategies.

The results obtained with the proposed techniques show that with smart contour coding

even segmented coding approaches are able to compete with HEVC Intra. Moreover the

preservation of the contour information allows a very high quality synthesis of novel views.
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Quality assessment

It is generally recognized that a high-quality view rendering at the receiver side is possible

only by preserving the contour information, since distortions on edges during the encoding

step would cause a sensible degradation on the synthesized view and on the 3D perception.

To the best of our knowledge no study had been done to validate this claim. A subjective

test was then necessary to assess the quality of synthesized images, obtained using DIBR

software and depth maps compressed either with an object-based technique, or a hybrid

block-based technique.

Three techniques have been considered: HEVC Intra, the proposed technique that

makes use of elastic deformation of contours and shape-adaptive wavelet transform and

shape-adaptive SPIHT, and a simple control technique that uses just the elastic prediction

for the contours, to evaluate the effects on the synthesis image of an inaccurate contour.

A double stimulus impairment scale test was set up, where the participants were asked

to evaluate the drop of quality of a stimulus, with respect to the reference. The results of

the subjective test show that the contour information is indeed relevant in the synthesis

step: preserving the contours and coding coarsely the rest typically leads to a slight

displacement of the objects, but from the user’s perspective this kind of artefact is not

noticeable. In most of the cases even at low bit-rates the participants could not tell apart

the images synthesized with the depth maps compressed with the proposed technique from

the reference ones.

Future works

At the time of finalizing this manuscript, several interesting perspectives can be proposed

to expand the work of this thesis.

Contour coding

So far only a monodimensional elastic interpolation has been considered, but we expect a

more precise estimation if we can take into account 4 or 8 reference curves from different

views and different times, thus leading to further improvements of the technique.

Depth map coding

To improve the coding of the inner field of the object in a depth map, the 3D surface

prediction algorithm can be used also without a proper segmentation: the prediction can be

done if just the most relevant contours are extracted from the scene. This process should

be faster than a segmentation, moreover the association of the contours in different views

or time instants can also be done performing the elastic deformation and looking for the

minimum distance in the curve space between two contours.
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Quality assessment

So far only still images have been considered for the quality assessment. Further experiments

should to be conducted to take into account also temporal artifacts and 3D video perception.

Moreover the research of an objective metric able to assess the quality of the synthesized

images (and video) should be conducted: algorithms can introduce non-perceptible or

non-annoying artifacts and most of the commonly used objective metrics could assign low

scores for them even if for a human observer the degradation is relatively acceptable.
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