M. Aubry and D. Chataur, Cooperads and coalgebras as closed model categories, Journal of Pure and Applied Algebra, vol.180, issue.1-2, pp.1-23, 2003.
DOI : 10.1016/S0022-4049(02)00174-3

URL : http://doi.org/10.1016/s0022-4049(02)00174-3

M. Anel and A. Joyal, Sweedler theory of (co)algebras and the bar-cobar constructions, 2013.

J. Adámek and J. Rosický, Locally presentable and accessible categories, 1994.
DOI : 10.1017/CBO9780511600579

V. [. Bousfield and . Gugenheim, On pl de rham theory and rational homotopy type, Mem. Amer, Math. Soc, vol.179, 1976.
DOI : 10.1090/memo/0179

K. Bayeh, V. Hess, M. Karpova, E. K¸edziorekk¸edziorek, B. Riehl et al., Left-Induced Model Structures and Diagram Categories, Contemp. Math. Amer. Math. Soc, vol.641, pp.49-81, 2015.
DOI : 10.1090/conm/641/12859

URL : http://arxiv.org/abs/1401.3651

I. [. Berger and . Moerdijk, Axiomatic homotopy theory for operads, Commentarii Mathematici Helvetici, vol.78, issue.4, pp.805-831, 2003.
DOI : 10.1007/s00014-003-0772-y

URL : http://arxiv.org/abs/math/0206094

C. Berger and I. Moerdijk, The Boardman???Vogt resolution of operads in monoidal model categories, Topology, vol.45, issue.5, pp.807-849, 2006.
DOI : 10.1016/j.top.2006.05.001

G. Caviglia, A Model Structure for Enriched Coloured Operads, 2014.

. J. Clm, A. Chuang, W. H. Lazarev, and . Mannan, Cocommutative coalgebras : homotopy theory and koszul duality

[. Cisinski and I. Moerdijk, Dendroidal sets as models for homotopy operads, Journal of Topology, vol.4, issue.2, pp.257-299, 2011.
DOI : 10.1112/jtopol/jtq039

URL : https://hal.archives-ouvertes.fr/hal-00440931

C. Gabriel, J. Drummond-cole, and . Hirsh, Model structures for coalgebras, Proc. Amer, pp.1467-1481, 2016.

]. W. Dk80a, D. M. Dwyer, and . Kan, Calculating simplicial localizations, J. Pure Appl. Algebra, vol.18, pp.17-35, 1980.

M. Dehling and B. Vallette, Symmetric homotopy theory for operads, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142687

G. Faonte, Simplicial nerve of an A-infinity category, ArXiv e-prints, 2013.

K. Fukaya, Y. Oh, H. Ohta, and K. Ono, Lagrangian intersection Floer theory : anomaly and obstruction. Part I, AMS/IP Studies in Advanced Mathematics, vol.46, 2009.

E. Getzler and P. Goerss, A model category structure for differential graded coalgebras, 1999.

J. [. Getzler and . Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, p.9403055, 1994.

G. Paul, J. F. Goerss, and . Jardine, Simplicial homotopy theory, Progress in Mathematics, vol.174, 1999.

[. Hinich, Homological algebra of homotopy algebras, Communications in Algebra, vol.65, issue.10, pp.3291-3323, 1997.
DOI : 10.1016/0022-4049(85)90019-2

URL : http://arxiv.org/abs/q-alg/9702015

S. Philip and . Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol.99, 2003.

K. Hess, M. Kedziorek, E. Riehl, and B. Shipley, A necessary and sufficient condition for induced model structures, 2015.

J. Hirsh and J. Millès, Curved Koszul duality theory, Mathematische Annalen, vol.620, issue.10, pp.1465-1520, 2012.
DOI : 10.1007/s00208-011-0766-9

URL : https://hal.archives-ouvertes.fr/hal-00551946

]. A. Joy, K. Joyal, and . Lefevre-hasegawa, The theory of quasi-categories and its applications, p.310337, 2003.

M. Livernet, Non-formality of the Swiss-cheese operad, Journal of Topology, vol.239, issue.1079, pp.1156-1166, 2015.
DOI : 10.1007/BF02684341

J. Lurie, Higher topos theory, Annals of Mathematics Studies, vol.170, 2009.
DOI : 10.1515/9781400830558

I. Moerdijk and B. Toen, Simplicial methods for operads and algebraic geometry, Carles Casacuberta and Joachim Kock, 2010.
DOI : 10.1007/978-3-0348-0052-5

S. Merkulov and B. Vallette, Deformation theory of representations of prop(erad)s. I, J. Reine Angew, Math, vol.634, pp.51-106, 2009.

I. Moerdijk and I. Weiss, Dendroidal sets, Algebraic & Geometric Topology, vol.7, issue.3, pp.1441-1470, 2007.
DOI : 10.2140/agt.2007.7.1441

URL : https://hal.archives-ouvertes.fr/hal-00619248

I. Moerdijk and I. Weiss, On inner Kan complexes in the category of dendroidal sets, Advances in Mathematics, vol.221, issue.2, pp.343-389, 2009.
DOI : 10.1016/j.aim.2008.12.015

[. Positselski, Two kinds of derived categories, Koszul duality, and comodulecontramodule correspondence, Mem. Amer. Math. Soc, vol.212, issue.996, p.133, 2011.

A. Polishchuk and L. Positselski, Quadratic algebras, 2005.
DOI : 10.1090/ulect/037

]. D. Qui69 and . Quillen, Rational homotopy theory, Ann. of Math, issue.2, pp.90-205, 1969.

]. D. Sul77 and . Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math, issue.47, pp.269-331, 1977.

]. G. Tab05 and . Tabuada, Une structure de catégorie de modèles de quillen sur la catégorie des dgcatégories, C. R. Math. Acad. Sci. Paris, vol.340, issue.1, pp.15-19, 2005.

]. B. Val14 and . Vallette, Homotopy theory of homotopy algebras, pp.1411-5533, 2014.

]. P. Vdl02, Van der Laan, Operads up to Homotopy and Deformations of Operad Maps, arXiv:math, QA, p.208041, 2002.

[. Weiss, Dendroidal sets, 2007.