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Figure 2 ... Contributions principales

3 Etude des travaux connexes

Une premiére étude de I€tat de leart a conduit a la dé“nition des cri-
teres dévaluation des travaux connexes dans le contde deac&s aux donrées
RDF, y compris lsexpressivitt de sgci“cation des politiques, la résolution
des con’its généres par des dcisions contradictoires et la @ri“cation des
inferences non autorises. Nous nous sommes appag sur ces crieres pour
analyser les travaux raliggs dans le domaine du contrle deaces aux don-
nees RDF. L€tude a permis de dterminer des criteres bien traites tels que
les actions supporges, lsexpressivie’ des objets et la protection des triplets
explicites et implicites. Deautres criteres ontéte peu consi@&res, y compris
la resolution des con’its, lsexpressivié des sujets et le prol#me de fuite
inference. Nous nous sommes iates&s sur ces derniers crédres pour les
contributions de cette these.

4 Contributions

Suite a une analyse d@taillee des modles existants de contole deaces
aux données RDF, nos contributions ont concerg” quatre aspects, illustés
par la Figure 2.

4.1 Conception deun nouveau mod" ele de contr ole deacces

Nous avons coiu un nouveau modle de contole deac@s pour les don-
nees RDF appe AC4RDpBour Access Control For the Resource Description
Framework. Nous avons @&“ni la semantique formelle deun langage dclara-
tif base sur les motifs de grapheslementaires du langage SPARQL, a“n de
faciliter leint’'egration du modeéle dans les systines concrets. La esmantique
du modele est &“nie par le sous-graphe positif(autorise) a partir du graphe
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The Web is becoming the main information dissemination for private and
public organizations. A huge amount of information is exchanged every day.
The traditional web is used to transmit, receive, and display content encapsu-
lated as documents. These documents were intended for human consumption
and could not be understood by machinesThe Semantic Webalso referred
to asweb of datacan be conceptualized as an extension of the current Web so
as to enable the creation, sharing and intelligent re-use of machine-readable
content on the Web.

1.1 Context

Linked Data [Bizer 2009 is simply about using the Web to create typed links
between data from di erent sources. Technically, Linked Data refers to a set
of best practices for publishing and connecting structured data on the Web in



Berners-Lee 2006 Berners-Lee discusses the four basic
principles for linked data as:

1. Use URIs as names for things
2. Use HTTP URIs so that people can look up those names

3. When someone looks up a URI, provide useful information, using the
standards (RDF, SPARQL)

4. Include links to other URIs, so that they can discover more things

The Linked (Open) Data trend ! is followed by institutions (eg., Higher Ed-
ucation and Research in Francé), local authorities (eg., Cities of Lyon and
Grenoble?®), Thematic databases (eg., Dbtune, MusicBrain2), Organizations
(BBC in its internal content production systems Kobilarov 2009), geograph-
ical and of course general data (eg., GeoNames, Wikipedj

Linking data distributed across the Web requires a standard mechanism
for specifying the existence and meaning of connections between items de-
scribed in this data. This mechanism is provided by the Resource Description
Framework (RDF), which is examined in detail in Chapter2. Figure 1.1shows
datasets that have been published in Linked Data form&t The “gure shows
datastores that belong to di erent thematic domains (government, publica-
tions, life sciences, etc). The size of the Web of Data is estimated to over 3400
open sources for a total volume of over 85 billion triples (statement$) and
more than 8500 sources on the open data portal of the European Unfon

RDF has gained a lot of attention, and as a result an increasing number of
data sets are now being represented with this language. From this popularity
stemmed the need to e ciently store, query and reason over large amounts of

thttp://www .mckinsey.com/business-functions/business-technology/
our-insights/open-data-unlocking-innovation-and-performance-with-
liquid-information

http://data  .enseignementsup-recherche .gouv.fr

Shttp://data  .grandlyon .comand http://data  .beta.metropolegrenoble .fr

4http://dbtune  .org and http://linkedbrainz .org

Shttp://www .geonamesorg/ontology and wiki .dbpedia.org

Shttp://lod-cloud  .net/

"https://www .w3org/wiki/TaskForces/CommunityProjects/
LinkingOpenData/DataSets/LinkStatistics

8https://open-data  .europa.eu/fr/data
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9 AllegroGraph  1° StarDog 1!, Jena TDB !? and Sesame
Native Store 3. RDMS-backed RDF stores such agirtuoso  1# and Jena
SDB %, use a relational database to store triples. One of the key concepts of
the Semantic Web architecture ar&Named Graphswhich is a simple extension
of the RDF data model that transforms RDF triples toquads Named graphs
are sets of triples identi“ed by IRIs, allowing descriptions to be made of that
set such as provenance information, context and other metadata.

As the demand for data and information management increases, there is
also a critical need for maintaining the security of the data sources, appli-
cations, and information systems. Dierent “elds of study have been in-
troduced to design appropriate approaches able to provide security guar-
antees. These security “elds involve authenticationLpmport 1981, access
control [Griths 1976 ], cryptography [Die 1976, Rivest 197§ and audit-
ing [Agrawal 2004. Following the evolution of these “elds, database systems
0 er new security paradigms to cope with vulnerabilities induced by new fea-
tures (e.qg., distribution, heterogeneity, autonomy, reasoning).

The protection of resources against unauthorized accesses, is one of the
main features of todays systems. One of the main security services needed
to achieve data protection is access control. Access control ensures that a
user can access only resources she/he is allowed to see. Historically, the “rst
access control model was de“ned bysfi ths 1976 ] in the framework of the
System R DBMS. In this model, the protected objects are tables and views,
and the possible access modes that subjects can exercise on tables correspond
to SQL operations that can be executed on tables. Later, other access control
models have been proposed for di erent data models such as object-oriented
DBMS [Rabitti 1991] and XML [Damiani 2003.

In this thesis, we focus on the security challenges that mainly arise in
Linked Data context, particularly the selective disclosure of RDF data.

Swwwistore .com

Ohttp:/ffranz ~ .com/agraph/allegrograph/

Yhttp://www .stardog .com/

2https:/liena  .apache.org/documentation/tdb/index  .html
Bhttp://www .rdf4j .org/

Yhttp://virtuoso .openlinksw .com/

BShttps:/liena  .apache.org/documentation/sdb/



% To
realize value from your data, you need to be able to share it among many
stakeholders-internal lines of business, partners, researchers, and many oth-
ers. But you also have a moral, ethical, and often legal, obligation to make
sure that data is used responsibly. That means protecting individualse pri-
vacy and assuring that their data is used only for legitimate purposes. As you
gather more data from more parts of your organization, that gets very tricky
very fast. [...] It quickly becomes clear that this is about more than simply
checking a box for whether data is ssecureZ. ltes incredibly valuable to have
all that data in one place where it can be analyzed, but you need to assure that
di erent types of stakeholders can see only the information they legitimately
need, and no more.

1.2 Problem statement

In this thesis, we are interested in RDF data disclosure and inference leakage
problem. The problem of providing access controls to RDF data has attracted
considerable attention of both the security and the database community in
recent years. Our goal is to de“ne an authorization policy to be integrated to
RDF stores in order to control RDF data disclosure. Moreover, we must ensure
that the disclosed data can not be used to infer con“dential information. In
this context, we are interested in the following issues :

1.2.1 Selective RDF data disclosure

Given the sensitive nature of information, di erent portions of RDF data may
require di erent access rights with respect to the privileges of the requester. In
this thesis, we are interested in selectively disclosing information based on the

8https://ctovision .com/2015/12/big-data-unlocks-valuable-
information-across-organizations-but-only-if-you-can-protect-it/



17, Graph-based security is available
in Virtuoso '8 or in Stardog version 3.1° as well. The issue with these
models is that the access control policies are de“ned over named graphs which
must be created with respect to policies. For instance if a policy states that the
nurses have access to patientes records, then all triples related to the patientes
records must be gathered into one named graph over which the policy is
de“ned. Moreover, complex policies may lead to the creation of several named
graphs. Having a large number of complex policies may lead the administrator
to create several named graphs that may be di cult to manage. In addition,
a redundancy problem arises because a triple may belong to several named
graphs. Some RDF stores such adlegroGraph 2% support triple pattern
based access contrlwhich allows the de“nition of simple authorizations such
asdeny or allow access to triples representing patientse recardéowever, more
expressive policies can not be speci“ed. For instance an authorization such as
Deny access to patientse records if they have canagnnot be speci‘ed.

Given the open nature of the web where the RDF data are published,
the subject may not be known by the system prior to the submission of a
query. Hence, the selective disclosure can not only rely on traditional identity
based and role based access control policies. Attribute Based Access Control
(ABAC) model gives more "exibility by de“ning authorizations on the basis
of subjectes and objectes attributes. ABAC avoids the need for explicit au-
thorizations to be directly assigned to individual subjects prior to a request
to perform an operation on the object.

1.2.2 Inference leakage

The second issue is to ensure that sensitive information can not be in-
ferred once the data have been disclosed to the user. This problem is
known in the access control literature as thénference problem[Farkas 2002
called in this manuscript the Inference leakage problem According to the
World Wide Web Consortium (W3C), inference on the Semantic Web us-
ing the Resource Description Framework (RDF) improve the quality of
data integration on the Web, by discovering new relationships, automati-

7http://4store  .org/trac/wiki/GraphAccessControl
Bhttp://docs .openlinksw .com/virtuoso/rdfgraphsecurity .html
¥http://docs .stardog .com/#_security
2Ohttp://franz  .com/agraph/allegrograph
2thttp:/ffranz  .com/agraph/support/documentation/v4/
security .html#filters



Hayes 201§t Authorization models for RDF data have been pro-
posed to control accesses to RDF data, both in the presence of infer-
ence rules Reddivari 2005 Lopes 2012 Papakonstantinou 2012 Jain 2004
or not [Abel 2007 Flouris 201Q Rachapalli 2014. However, the issue is that
inference capabilities can be used by a malicious user to infer sensitive infor-
mation from authorized ones.

To illustrate the inference leakage problem, suppose that RDF triples
stating that someone has a cancer are labeled as con“dential (e.g. triples
similar to (?p ;rdf :type ;:Cancerous with ?p denoting a person), while
the ones stating that a person has a tumor are publice(g, triples
of the form (? ;:hasTumor;?2t)). If there exists a public triple stat-
ing that the domain of the :hasTumor predicate is Cancerous (e.g.
(:hasTumor, rdfs :domain; :Canceroug) then, using the RDFS rule that re-
lates the domain of a predicate to the type of its subjects, sensitive information
can be inferred from the authorized triples. The situation is even worse when
the deduction system is enriched with user-de“ned rules.

1.2.3 Enforcement and performance

Speci“c issues arise from the enforcement of the access control. The “rst issue
is the impact of access control enforcement on the systemes performance : we
must ensure that the enforcement of the access control incurs a low overhead
in the RDF store performance. The second issue regards the mechanisms
needed to enforce the access control. The enforcement mechanism must be
deployable in the RDF store with minimal additional mechanisms and ideally,
with no alteration of its internal components

1.3 Related work study

A “rst study of the state of the art has led to the de“nition of the evaluation
criteria in order to compare the related works in access control to RDF data,
including the expressiveness of policy speci“cation languages, con”ict reso-
lution generated by con”icting decisions and the veri“cation of unauthorized
inferences. The study has resulted in the determination of well treated criteria
such as the supported actions, the expressiveness of objects and the protection
of explicit and implicit triples. Other criteria have not been deeply considered,



Figure 1.2: Main contributions

including con”ict resolution, the expressiveness of the subjects and the infer-
ence leakage. In Chapte we introduce the Semantic Web and a recalling of

the syntax and semantics of the RDF Data Model. We give an overview about
SPARQL 1.1 RDF query language, and how it can be used to process RDF
data. We de“ne inference, in particular RDFS inferencing, which allows the

deduction of new data from those explicitly de“ned. We give an overview of

the most known access control models found in the literature, followed by the
con”ict resolution strategies used to resolve con”icts that stem from the use

of negative authorizations. Next, we present the works that were proposed
to control access to RDF data, and the criteria used to compare them. We
“nally present the criteria that have not been well considered, which are the

basis of our proposals.

1.4 Contributions

We present in the following, the main contributions of this thesis depicted by
Figure 1.2

1.4.1 Access control model for RDF

We de“ne in Chapter 3 the formal semantics of a triple-level access control
model for RDF. The semantics are de“ned by means pbsitive (authorized)
subgraphfrom the base graph, over which the useres query is evaluated. This
makes the model independent from the query language. Our model supports
negative authorizations to handle real-life exceptions. This leads to possible



4 an
approach based on a static analysis. The idea is to detect, at the time
of specifying the con“dentiality policy, whether authorizations and infer-
ence rules interact in such a way they can lead to sensitive information
disclosure. Several authorization models for RDF which consider inference
use annotations to determine whether the inferred triples are accessible or
not [Reddivari 2005 Lopes 2012 Papakonstantinou 201P The problem is
that these approaches do not guarantee that forbidden information cannot be
inferred again, once the data have been disclosed. The inference leakage prob-
lem in the case of RDFS has been investigated by Jain and Farkakih 2004,
but the base RDF graph kept in the RDF store is needed and con”ict resolu-
tion strategies are hard-coded in their algorithm. We identify and formalize a
consistency propertythat captures the inference leakage arising when inference
rules and authorizations interact, as exempli“ed informally in this introduc-
tion. Intuitively, a policy is consistent w.r.t. a set of inference ruleRR if
the authorized subgraphG* of a closed graphG is itself closed that is, no
new facts can be produced usinB another time. This property ensures that
con“dential information can not be inferred from authorized information with
respect to a set of inference rules. To solve the issue, we propose an algorithm
that, given a policy P and a set of inference ruleR, but without any prior
knowledge ofG, checks if the consistency property holds. The algorithm is
proved correct and it is constructive: whenever the answer is positive, a set of
counterexample graphs is computed. This answer can be used by the adminis-
trator to analyze and then solve the issue. We show how the counterexamples
could be used by the administrator to “x the policy, or how to use them as
integrity constraints that do not allow updates which could lead to inference



3 are de“ned without speci-
fying the subject for which permissions are assigned. This allows to use any
upstream access control model to map the users to their assigned permis-
sions. We propose in Chapteb a high level access control language which
permits the de“nition of global policies which are then compiled into subject
speci“c policies enforced by our access control model. We have chosen to
de“ne our policies on the basis of the user attributes following the Attribute
Based Access Control Approach (ABAC), where access to protected resources
is based on users having speci“c attributes (eg. name, role, date of birth,
address, phone number, etc.). This approach allows a much “ner approach
of access control combining not only user attributes, but other environmental
information, such as location and time. Rather than just using the role of a
user to decide whether or not to grant access to protected resource, ABAC
combines multiple attributes to make a context-aware decision regarding in-
dividual requests for access. ABAC is implemented through XACML which
is a declarative language to de“ne policies which are structured as a tree of
sub-policies. We de“ne the syntax and semantics of a language inspired by
XACML by de“ning the main components of the proposed solution and show-
ing how the useres policy is created and enforced. Intuitively, a global policy
can be represented in dree structure where the intermediate nodes represent
policies, the leaves are authorizations and nodes edges are labeled twithets
representing attribute based conditions. The latter are evaluated using key/-
value pairs representing attributes provided by subjects. The subject provides
her/his attributes in a request which is evaluated over the global policy tree
to determine her/his assigned authorizations. Based on these authorizations,
the subjectes query is evaluated over her/his positive subgraph returning the
her/his accessible triples.

1.4.4 Policy enforcement

In Chapter 6, we propose an enforcement framework based on data-
annotations for our access control model. We propose an approach where
we annotate every triple of the base graph with a bitset representing its ap-
plicable authorizations. Similarly, users are assigned bitsets representing the
authorizations applicable to them. We show the annotation process of the
base graph, and how the user query is evaluated over the annotated graph,



Haslhofer 201}, no additional mechanisms are needed
to enforce our model, in contrast to approaches that use speci“c extensions of
RDF data model to store annotations. The annotation process is performed by
transforming the authorizations into (CONSTRUGjlieries that are evaluated
using the RDF store query engine. Once the base graph annotated, it is made
available to the requesters. When a query is sent from a requester, her/his
positive subgraph is computed by makingpgical and between the requesteres
bitset, and the triplees bitset. The result is used to determine the triplees that
take part of the positive subgraph. The requesteres query is then evaluated
over her/his positive subgraph and the result is returned to the user. Finally
we show the results of experiments of our solution implemented on a concrete
RDF store. We show that our implementation incurseasonable overheact
runtime (about +50%) with respect to the optimal solution which consists in
materializing the useres accessible subgraph.
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In this chapter, we start by introducing the Semantic Web (aka Web of
Data) and recalling the syntax and semantics of the RDF Data Model. We
present an overview of the RDF query language SPARQL, and how it can be
used to process RDF data. We presennference in particular RDFS infer-
encing, a key feature of the Semantic Web, which allows the deduction of new
data from those explicitly de“ned. We give an overview of the most known ac-
cess control models found in the literature, followed by the con”ict resolution
strategies used to resolve con’icts that stem from the use of negative autho-
rizations. We present the works that have been proposed to control access to
RDF data, and the criteria used to compare them. We “nally give the sum-
mary of our study by showing the criteria that have not been well considered,
which are the basis of our proposals.



2.1). RDF(S)
and OWL speci“cations have been suggested as mature recommendations.

Figure 2.1: Semantic Web Layers

2.1.1 Graph Data Model

Graph database models can be de“ned as those in which data structures for
the schema and instances are modeled as graphs or generalizations of them,
and data manipulation is expressed by graph-oriented operations and type con-
structors [Angles 2008 The graph data model used in the semantic web is
RDF (Resource Description Framework [Hayes 201}



Cyganiak 2014. URIs represent
common global identi“ers for resources across the Web. An IRl is an extension
of a URI which allows the use of Unicode characters. The syntax and format
of IRIs is very similar to the well-known uniform resource locators (URLS);
e.g., http://lexample .com/hospital#alice . In fact, URLs are just special
cases of IRIs. Another form of IRIs is a Uniform Resource Name (URN),
which identi“es something that is not associated to a Web resource but on
which people on the Web want to write about such as books. To represent
value data types such as numbers, booleans and strings, RDF u&ésrals.

In RDF, a resource which do not have an IRI can be identi“ed usinglank
nodes Blank nodes are used to represent these unknown resources, and also
used when the relationship between a subject node and an object node is n-ary
(as is the case with collections). The purpose of RDF is to promote encoding,
exchanging and reusage of structured metadata. RDF allows to decompose
knowledge into small portions calledriples or statements Triples have the
form «(subject ; predicate :object )Z built from pairwise disjoint countably
in“nite sets |, B, and L for IRIs, blank nodes, and literals respectively. The
subject represents the resource for which information is stored and is identi-
“ed by an IRI. The predicate is a property or a characteristic of the subject
and is identi“ed by an IRI. The object is the value of the property and is
represented by an IRI of another resource or a literal.

For ease of notation, in RDF, one may de“ne gre“x to represent a
namespace, such asdf :type where rdf represents the namespachttp:
IIwww.w30rg/1999/02/22-rdf-syntax-ns

Note 2.1.1 In this manuscript, we explicitly write rdf and rdfs when the
term is from the RDF or the RDFS standard vocabulary. However, we do not
pre“x the other terms for the sake of simplicity.

For instance the triple (:alice ;:hasTumor, :breastTumor) states that alice
has a breast tumor. A collection of RDF triples is called arRDF Graph
and can be intuitively understood as a directed labeled graph where resources
represent the nodes and the predicates the arcs as shown in FigQr2

De“nition 2.1.2 (RDF graph) An RDF graph (or simply graphZ, where
unambiguous) is a “nite set of RDF triples.
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Figure 2.2: An example of an RDF graplGy

Example 2.1.3 Figure 2.2 depicts a graphGq constituted by tripleset; to
ets, both pictorially and textually.

In this manuscript, we reuse the formal de“nitions and notation used by &'ez
and Gutierrez Perez 2009 Throughout the manuscript, P (E) denotes the
“nite powerset of a setE and F  E denotes a‘nite subset F.

RDF Semantics The W3C document Hayes 201} de“nes a model-
theoretic semantics for RDF 1.1. Model-theoretic semantics for a language
assumes that the language refers towaorld, and describes the minimal con-
ditions that a world must satisfy in order to assign an appropriate meaning
for every expression in the language. A particular world is called anterpre-
tation. An RDF interpretation is a mapping from IRIs and literals into a set,
together with some constraints upon the set and the mapping.
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Harris 2013, RQL [Lassner 200
SeRQL PBroekstra 2003, TRIPLE [ Sintek 2002, RDQL [Seaborne 2004and
N3 [Berners-Lee 2011 An RDF Query Language is a formal language used
for querying RDF Triples from an RDF Store also calledTriple Store. An
RDF store is a database specially designed for storing an retrieving RDF
triples. SPARQL (SPARQL Protocol and RDF Query Language) is a W3C
recommendation and has established itself as the de facto language for query-
ing RDF data. SPARQL borrowed part of its syntax from the popular and
widely adopted Structured Query Language (SQL). The main mechanism for
computing query results in SPARQL is subgraph matching: RDF triples in
both the queried RDF data and the query patterns are interpreted as nodes
and edges of directed graphs, and the resulting query graph is matched to the
data graph using variables. The SPARQL building blocks argraph patterns
which are built from pairwise disjoint countably in“nite setsl, V and L for
IRIs, variables, and literals respectively.

De“nition 2.1.6 (Triple Pattern, Graph Pattern) A term t is either
an IRI, a variable or a literal. Formally t T=1 V L A tuple
t TP =TxTxTis called aTriple Pattern (TP) . A Basic Graph Pattern
(BGP), or simply a graph, is a “nite set of triple patterns. Formally, the set
of all BGPs isBGP= P (TP).

Given a triple patterntp TP, var(tp) is the set of variables occurring
in tp. Similarly, given a basic graph patternB BGP, vanB) is the set
of variables occurring in the BGP de“ned bwarB) = {v| tp B v

var(tp)}.

In this manuscript, we do not explicitly use blank nodes which are replaced
by variables Blank nodes of RDF are semantically equivalent to existentially
guanti“ed variables [Polleres 200 Not to distinguish between blank nodes
and variables signi“cantly reduces the overhead of formal de“nitions but it
does not change the expressiveness of the framework. Moreover, we use an
extended version of RDFter Horst 2003 which allows variables in property
position. When graph patterns are considered as instances stored in an RDF
store, we simply call themgraphs

The evaluation of a graph patternB on another graph patternG is given
by mapping the variables ofB to the terms of G such that the structure of B



2.1.9shows the evaluation of a triple pattern.

Example 2.1.9 Let B be de“ned asB = {(?p;rdf :type ;:Patient )}. B is

a triple pattern with a variable in the subject position which will be used to
match all triples of type Patient. The evaluation oB on the example graph
Gy of Figure 2.2is B g, = { }, where isde‘nedas :7?p :alice .

Example 2.1.10shows the evaluation of a basic graph pattern.

Example 2.1.10 Let B be dened as B = {(?d ;:service ;7s),
(?d ;:treats ;?p)}. B returns the doctors, their services and the patients
they treat. The evaluation ofB on the example graphG, of Figure 2.2
is Bg, = {}, where is de‘ned as : ™ bob, ?s zonc and
?p :alice .

Formally, the de“nition of BGP evaluation captures the semantics of SPARQL
restricted to the conjunctive fragment of SELECTqueries that do not use
FILTER OPTand UNIOMperators (seeRerez 2009for further details).



:Cancerous

Figure 2.3: Graph Pattern evaluation

Another key concept of the Semantic Web i:iamed graphsin which a
set of RDF triples is identi“ed using an IRI. This allows to represent meta-
information about RDF data such as provenance information and context. In
order to handle named graphs, SPARQL de“nes the concept dhtaset A
dataset is a set composed of a distinguished graph called ttefault graph
and pairs comprising an IRl and an RDF graph constituting nhamed graphs.

De“nition 2.1.11 (RDF dataset) An RDF dataset is a set :
D = {G()a ulaGl PRGN UnaGn}

whereG; BGP, u; I, andn 0. In the dataset, G, is the default graph,
and the pairs u;, G; are named graphs, withy; the name ofG;.

SPARQL Query result forms SPARQL has four query result forms :

€ SELECTeturns all, or a subset of, the variables bound in a query pattern
match

€ CONSTRUf&Turns an RDF graph constructed by substituting variables
in a set of the BGP de“ned as template.

€ DESCRIBEeturns an RDF graph that describes the resources

€ ASKreturns a boolean indicating whether a query pattern matches or
not an instance in the queried RDF graph.



Abiteboul 1995 Chap. 12].

De“nition 2.1.13 (Rule Semantics, Closure) Given a graph patternG

BGP and an inference ruler = (tp  tpy,...,tpx), the set of triples (imme-
diately) deduced fromG by r is (G) = {(tp) | {tp1,...,tpx} c}. We
extend the operator (G) to sets of inference ruleR, r(G)= , 5 ((G).

Given a set of inference ruleR, let (G;j); n be the in“nite sequence of basic
graph patterns de“ned byGy = G and for anyi N, Gj;1 = G r(Gi).
The closureof G w.rt. R is Ck(G) = , Gi. We write CI(G) whenR is
clear from the context. We say that a graph islosedwhenClkr (G) = G

The above closure takes a graph and a set of inference rules and iteratively
applies the rules over the union of the original graph and the inferences until
a “xpoint. The following lemma shows that the closure is “nite.



2.1.8 ensures that only a“nite
number of mappings ; can be obtained: it is bounded byl'V whereV is the
total number of variables that appears in the heads of the rules frolR and
T is number of terms ofG. This contradicts the hypothesis. |}

The following is an example of the application of an inference rule on a
given graph.

Example 2.1.15 Consider the following inference rule which states that if a
doctor is assigned to a service and treats a patient, then this patient is admitted
to the doctores service.

(2d;: service ;?s)(?d;:treats ;?p) _
(?p;: admitted ; ?s) = RAdm

The rule is applied onGy of Figure 2.2 by replacing the variables with the
terms of the graph.

(: bob;: service ;:onc)(bob;:treats ;alice )
(alice ;:admitted ;onc)

Example 2.1.16 shows the closure computation of a graph using inference
rules.

Example 2.1.16 Consider the graphGy of Figure 2.2, and inference rules
RDom and RSc, in Table 2.1 (more details about these rules can be found
in the next section). If we apply the inference rul®@Dom using triples et;
and et, then we inferit,. Afterwards, RSc, is applied toet, and it to infer
its. Thus, Clroom Rrsc,}(Go) = Go { ity,its}. Assume that we add rule
RAdm . Referring to the graphGy of Figure 2.2, its closure now contains
a new inferred triple Clrpom ,rsc,,radm }(Go) = Go { ity,its,ito}. The new
inferred triples are depicted by dashed arrows in Figu24.
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2.1.1.4 RDF Schema (RDFS)

RDF provides a way to express simple statements about resources, using
named properties and values. However, RDF user communities also need a
way to de“ne the vocabularies (terms) they intend to use in those statements,
speci“cally to indicate that they are describing speci“c kinds or classes of re-
sources, and will use speci“c properties in describing those resources. RDFS
is the schema language for RDF, and provides a way to specify thecabulary
(also known asontology) that will be used in an RDF graph. It allows to
de“ne how individuals are related to one another, the properties we use to
de“ne our individuals and how they are related to other sets of individuals
and to one another. In RDFS, a class corresponds to a group of resources






2.1shows a subset of RDFS inference rules used
in our examples. We refer the reader tdHayes 201#for the rest of the rules.

RDom states that if there exists a triple with a given property, then its
subject is an instance of this property domainRRan is similar to RDom and
generates the fact that the triple object is an instance of the property range.
RSc; and RSp; de“ne the subclass and subproperty transitivity respectively.
RSc, de“nes the type propagation, in other words if a resource is an instance
of a given class, then it is also an instance of the parents of this clagSp,
de“nes the property propagation, which mean that if two resources are related
with a property then they are related with the parents of this property.

2.2 Access control

Access control refers to the process of regulating access to protected data based
on pre-de“ned security policies. The advantage of using policies is that the
system behavior can be managed without the need of reimplementation. The
development of an access control system requires the de“nition of the regula-
tions according to which access is to be controlled and their implementation as
functions executable by a computer system. The development process is usu-
ally carried out with a multi-phase approach based on the following concepts
[Samarati 200]:

€ Security policy: it describes the most abstract view of the system. At
this level access control rules are de“ned. The requirements of the sys-
tem are described in order to comply with some speci“cation (e.g., laws,
regulations). This description does not provide any method on how it
should be enforced.

€ Security model: it formalizes the rules de“ned in the security policy
and describes the way they should work. This level aims at providing a
framework where proof of properties could be accomplished.

€ Security mechanism: it describes the low level methods that are used to
enforce the rules formalized at the security model level.

2.2.1 Access control models

The most well-known access control models in the literature are : ldentity
Based Access Control (IBAC) where the access to objects is based on the



Wang 2004 and Organization Based Access Control (Or-
BAC) [Cuppens 200B

In the following we give more details on IBAC, MAC, RBAC and ABAC
models.

2.2.1.1 Identity-Based Access Control (IBAC)

In the IBAC model, the access to objects is based solely on the identity of the
subject and the rights speci“ed for that identity on each object. In this model,
privileges can be passed from a subject to another, where an administrative
policy regulates grants and revocations of the privileges. The access control
matrix provides a basic framework for describing IBAC. It was “rst proposed
by Lampson [Lampson 1974 for resource protection within operation sys-
tems. In this model, authorizations are represented as a matripg| x | O]
where |S| is the set of subjects andO| the set of objects. The matrix is
arranged as a two-dimensional array where each row is labeled by a subject
and each column labeled by an object. Each entry of the matrix speci“es the
actions of the subject on the object. For instance, a matrix entry fos and

o which containsread, grants to s the right to read o. The drawback of the
access control matrix is that it will be enormous in size if used in large systems
and most of its cells are likely to be empty. In practical systems, there exists
multiple ways to implement the access control matrix. A popular approach is
using ACLs (Access Control List). An ACL is associated with an object and
consists of a number of entries de“ning the rights assigned to each subject
on that object. Another way to implement the access control matrix is the
C-List (Capability list) where each subject is associated with a list of objects
and the rights that the subject has on them.

2.2.1.2 Mandatory Access Control (MAC)

A di erent approach of controlling access to resources is the MAC model in
which access to resources is controlled based on the perspective attributes
of the subject and object. Such approach was motivated by the problem
of Trojan Horses which the DAC model su ers of. Unlike DAC where the
owner de“nes the access rights, in MAC accesses are centrally controlled. In
this model, mandatory policies govern access on the basis of subjects and



Bell 1973. In the BLP model clearance and sensitivity levels
take values from the set oficcess classes

De“nition 2.2.1 (Access class) An access class consists of two compo-
nents : a security level and a category set. The security level is an element of
a totally ordered set of levels. The category set is a subset of an unordered set
speci“c to the application area.

The set of the access classes is partially ordered according to relation called
dominance relation

De*“nition 2.2.2 (Dominance relation) Let L and C be the set of security
levels and categories respectively. Let=(L;,SC) and ¢, = (L, SCy), with
Li,Lx L andSGC,SC¢ C, be two access classes. We say tltadominates
¢« denoted byc ¢ if the following holds :

€ L; L the security level ofg is greater than or equal to the security
level ofc;

€ SC SC the category set of; includes the category set ody.

Access classes with the dominance relationship between them therefore form
a lattice [Denning 1976.
TS,{Army, Nuclear}

TS,{Army}  S,{Army, Nuclear} TS,{Nuclear}

S, {Army} TS,{} S,{Nuclear}

8, {}

Figure 2.5: Security lattice example



2.5 shows an example of a security lattice. The
seurity levels are de“ned as follows{Top Secret (TS), Secret (S) ,
Confidential (C) , Unclassified (U) } whereTS > S > C > .Uhe cate-
gory set refers to the military application domain {Army, Nuclear}.

In the context of "ow control, the BLP model follows two principles that
are required to hold.

€ no read-up : The subject clearance must dominate the object sensitivity
level, in other words a subjecs with an access class; can read an object
with an access class, If ¢ .

€ no write-down : The subject clearance must be dominated by the object
sensitivity level, i.e. a subjects with an access classs can write an
object with an access class, if ¢,  Gs.

Satisfaction of these principles prevents information "ows from high levels to
low levels.

2.2.1.3 Role-Based Access Control (RBAC)

The principle purpose of RBAC is to specify and enforce enterprise-speci“c
security policies in a way that maps naturally to an organizationes structure.
Moreover, RBAC facilitates security administration by granting authoriza-
tions to roles instead of individual users. Role based policies regulate userse
access to the information on the basis of the activities the users execute in
the system. A role can be de“ned as a set of actions and responsibilities as-
sociated with a particular work activity. Access authorizations on objects are
speci“ed for roles and a user playing a role is allowed to execute all accesses
assigned to this role. A user can have multiple roles and similarly a role can
be granted to di erent users. Some RBAC approaches allow users to exercise

JrH

UA PA .
<> Permissions

UuSer_session session_roles

Figure 2.6: RBAC architecture



Baldwin 1990, and di erent types of RBAC models have been
proposed in the literature Ferraiolo 2001, [Sandhu 1994

Figure 2.6illustrates the basic concepts of standard RBAC which is de“ned
by a set of userdJ, a set of rolesR and a set of permission®. A permission is
an approval of a particular mode of access to one or more objects in the system.
Users are associated with roles using relatidA. Similarly, permissions are
associated with roles by relatiorP A. Users activate sessions to interact with
RBAC system. A session is a mapping of one user to possibly many activated
roles. The activated roles determine which permissions are available to the
user at a given time during the session. Administration has been further
reduced by the use of roles hierarchy to allow the propagation of access control
privileges. Role hierarchies are a natural means for structuring roles to re”ect
an organizationes lines of authority and responsibility§andhu 2000 The
hierarchy is de“ned as a partial order relation gy on R. A role inherits
all permissions of less-powerful (junior) roles which avoids the need to assign
these permissions explicitly. This reduces the administration overhead, but on
the other hand increases the enforcement overhead because the permissions
of the junior roles need to be considered in the decision computation. In this
case a user is authorized for permissignif there exist rolesr andr such that
(ur) UA,r ryr and(p,r) PA.

2.2.1.4 Attribute Based Access Control (ABAC)

Whereas traditional access control systems were based on the identity of the
requester or through prede“ned attribute types such as roles or groups as-
signed to that requester, in open environments such as the Internet, this ap-

proach is not e ective because often the requester and the resource belong to

| Access requestor | PxﬁP
\

Y \
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=

A
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R ——>

Figure 2.7: XACML Architecture




Ramli 201]. XACML architecture
consists of several logical components (see Fig&&).

First of all, a reference monitor concept is used to intercept access requests.
This component is called a Policy Enforcement Point (PEP). Access requests
are transmitted from the PEP to a Policy Decision Point (PDP) for retrieval
and evaluation of applicable policies. Policies are speci“ed and stored in Policy
Administration Point (PAP). The PDP gets the attributes of subjects, objects,
and the environment from the Policy Information Points (PIP). The XACML
policy language is based on three main elements: PolicySet, Policy, and Rule.
A PolicySet is a set of single policies or another PolicySet. Policies are sets

<Request>
<Subject>
<Attribute Attributeld=":1.0:subject:subject-id">
alice
</Attribute>

<Attribute Attributeld=":subject:role" DataType="http://www.w3.0rg/2001/
XMLSchema#string">
<AttributeValue>
nurse
</AttributeValue>
</Attribute>
</Subject>
<Resource>
<Attribute Attributeld=":resource:resource-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue>
recordl
</AttributeValue>
</Attribute>
</Resource>
<Action>
<AnyAction />
</Action>
</Request>

Figure 2.8: XACML Request example



2.8 shows an example of a XACML request, from the
subject alice who is a nurse, requesting access to recordl. Fig@r@ is an
example of a policy targeting recordl. The policy contains one rule which
permits access to nurses. Hence alice request will return permit.



2.9 resolves con”icts with deny-overrides algo-
rithm. In the next section we describe the con’ict resolution and we give
details about the strategies known in the literature.

2.2.2 Con”ict resolution

Negative authorizations have been introduced by Bertino 1997 to extend
the System R access control model by the possibility of specifying explicit
denials. This feature enables adding of exceptions in existing permissions. An
access control model that supports positive and negative authorizations has a
sign (e ect) “eld in permission tuple.

De“nition 2.2.5 (Authorization tuple) From a conceptual point of view,
an authorization is de“ned by the tuple subject; sign; access right; object
The sign is either positive or negative, and determines whether the subject
can perform the access right on the object.

Traditionally, positive and negative authorizations have been used in mutual
exclusion using adefault policy that determines the sign of a permission cor-
responding to two classical approaches namelySgmarati 2001

€ Closed Policy denies all accesses, unless a corresponding positive au-
thorization permits it.

€ Open Policy. a policy where accesses are by default allowed, and denied
if there exists an explicit negative authorization.

The open policy has usually found application in those scenarios where the
need for protection is not strong and by default access is to be granted. The
closed policy is the mostly adopted where denying access by default ensures
better protection. In the recent access control models, negative and positive
authorizations are combined to handle exceptions, giving rise to other issues,
namely:

€ Completeness how to treat objects which have no de“ned authoriza-
tion?






Jain 200§. The Datalog model extends the
relational one with deductive rules, thus one may devise a transformation
that encodes graphs and rules into a Datalog program that uses a unique 3-
ary relation symbol for triples [Polleres 200}, and then rely on access control
mechanisms for deductive databases, such as the one by BarBarker 2003.
Unfortunately, it seems that problems that arise when dealing with RDF data
have not received much attention from the database community. We argue
this because RDF is thought to be openly used between independent web
sources, with shared or even standardized inference rules. In contrast, the
Datalog model is more centralized, with rules and data under the control of
a single authority. Several access control models related to RDF data have
been proposed:

€ Abel et al. [Abel 2007 propose a query rewriting mechanism to enforce
authorizations. Their framework evaluates the applicable policies and
expands the query depending on the result of the evaluation. The mod-
i“ed query is then sent to the RDF store which executes it like a usual
RDF query. The authors used a speci“c language to de“ne their policies.

€ Flouris et al. [Flouris 201Q propose an annotation based access control
language with its formal semantics for “ne-grained authorizations on
RDF data. In their proposal, authors propose to enforce their policy.
The triples are speci“cally annotated as accessible or not accessible using
access control permissions.

€ Costabelloet al. [Costabello 2012 propose a context-aware access con-
trol model. The authors present an ontology based on existing vocab-
ularies and relies on SPARQLASKqueries to determine whether the
requester has the necessary attributes to access the resource. They use
context information to rewrite the user SPARQL query which is exe-
cuted over the accessible named graphs only.

€ Reddivari et al. [Reddivari 2003 propose an access control language for
RDF stores that considers update operations. They use meta-rules to
de“ne con’ict resolution strategies and default policies. They propose
a query-time approach, where each triple in the user query result is
checked whether it is accessible or not.

€ Lopeset al. [Lopes 201Ppropose an annotation approach using an ex-
tended version of RDF calledAnnotated RDF [Udrea 201(. They pro-
pose an access control annotation domain where each triple is anno-
tated with a label and labels are propagated through inference rules.



Lopes 201(

€ Papakonstantinou et al. [Papakonstantinou 2012 propose a “exible
model that de“nes the access label of a triple as an algebraic expres-
sion. Their model assigns abstract labels to RDF triples and computes
the access decision using abstract operators that encode inference and
propagation. Their main contribution is the e cient handling of updates
by easy determination of the labels that are a ected by these updates.
When a triple is assigned di erent tokens, they use a con”ict resolu-
tion operator which returns one concrete token that represents the “nal
decision.

€ Jain et al. [Jain 2004 propose a label-based model to control access to
RDF data. Security labels are assigned to graph patterns. The patterns
are mapped to the triples to determine their security classi“cations.
They propose an algorithm that detects unauthorized inferences where
higher security triples may be inferred from lower security triples.

2.3.1 Comparison of related works

In order to study the works related to the domain of controlling access to RDF
data, we de“ned a set of comparison criteria. The study summary is shown
in Table 2.2 In the following, we give the details about the criteria and the
results of the study.

Authorization object An important aspect of access control models is
their granularity with respect to the protected objects. Most of the works de-
“ne authorizations over graph patterns to ease administration.Jain 2006 and
[Reddivari 2003 de“ne their authorizations over simple Triple Patterns which
does not allow the speci“cation of expressive policies. For instance an autho-
rization such asDeny access to patients records if they have canceannot
be speci“ed. Flouris 201Q, [Abel 2007 and [Papakonstantinou 2012 models
are more expressive by using BGPs in their authorizationsCpstabello 201
authorizations are coarse-grained as they are de“ned over Named Graphs.

Triples protection The purpose of this part of study is to check whether
the proposed models consider the implicit triples or only explicit ones. As
the semantics of an RDF graph are given by its closure, it is important for
an access control model to take into account the implicit knowledge held by






Reddivari 2009
model, the implicit triples are checked at query time. Inference is computed
during every query evaluation, and if one of the triples in the query result
could be inferred from a denied triple, then it is not added to the result.
In the [Jain 2004 label-based model the implicit triples are automatically
labeled on the basis of the labels assigned to the triples used for inference.
[Lopes 201Ppropose an approach inspired from provenance where each triple
is annotated with a label and labels are propagated through inference rules
to the implicit triples. [ Papakonstantinou 201Ppropose a "exible model that
de“nes the access label of a triple as an algebraic expression (abstract tokens).
The labels are propagated to the implicit triples through the inference rules.
[Flouris 2014Q, [Abel 2007 and [Costabello 201Rconsider explicit triples only.

Considered inference rules In this part of study, we examined the pro-
posed models with respect to the supported inference rules. All the ana-
lyzed works that consider inference, support the RDFS rules only except
[Lopes 201P who extend inference rules with labels in order to propagate
them to implicit triples. Their model allows to specify a custom rules in order
to provide application speci“c inferencing.

Inference leakage detection As speci“ed earlier, the inference leakage
problem arises when denied triples are inferred from the accessible ones.
[Jain 2004 was the only work that considered the inference leakage problem.
They proposed an algorithm that detects unauthorized inferences by checking
if triples with high security label, may be inferred from lower security triples.

Default policy  As described in Sectior2.2.2 a Default Policy is used to
achieve completeness of the access control model. The Default Policy in the
models proposed byJain 200§ and [Abel 2007 is hard-coded, whereas in
the [Reddivari 2009, [Flouris 201Q and [Papakonstantinou 2012 models, it
can be speci“ed by administrators. Costabello 201Pand [Lopes 201Pdo not
mention how they treat the triples without de“ned authorizations.

Con’ict resolution Con’ict resolution strategies allow us to remove in-
consistencies that may occur when multiple authorizations with di erent
e ects are applicable to the same triples. In the model ofJdin 200§ a
partial order is de“ned between security labels, and when more than one
pattern maps to the same triple, the most restrictive or the lowest upper



Costabello 2012 and [Lopes 2012 resolve con”icts by hard-coding theDTP
strategy, whereas Reddivari 2009 and [Flouris 2010 models allow the spec-
i“cation of PTPor DTPstrategies only. Papakonstantinou 201P de“ne the
strategies at an abstract level which is mapped to concrete strategies such as
DTPor PTRP

Language semantics Access control models use policy languages to de-
“ne which objects are accessible and which are not. Onlydin 2004,
[Costabello 201P and [Flouris 201Q gave the formal semantics of their lan-
guage.

Subject speci“cation Information about the subject is used by the access
control system to determine its accessible objects. It can be based on simple
credentials such as user name and password, or on context information and
attributes. [Costabello 201P [Abel 2007, [Reddivari 2003 and [Lopes 201}
use attribute-based approach to determine the accessible triples of the re-
quester, whereasHapakonstantinou 2012 and [Jain 2004, [Flouris 201Q did

not consider subject speci“cation.

Actions  The purpose of access control mechanisms is to check whether or
not the subject has the authorization to perform the action on the data. The
actions that can be performed on RDF data ar€reate, Read Update and
Delete (CRUD). Since version 1.1, updates are supported in SPARQL by
the use of keywords :insert , modify and delete . The model proposed by
[Reddivari 2003 supports RDF updates. They consider insertion by de“ning
the three actions, namely,insert for adding a triple, insertModelfor adding
an implicit triple and insertSetfor adding a set of triples. Regarding triples
deletion, they de“ned three actions, namelyemovefor removing a triple,
removeModelor removing an implicit triple and removeSetor removing a set
of triples. [Costabello 201P also consider RDF updates using SPARQL 1.1
update language.

Query language In this part of study we examined the di erent works
with respect to the supported query languages. Lppes 201P demonstrate
how AnQL [Lopes 201D an extension of the SPARQL query language can
be used to enforce access control, by rewriting using the requesters creden-
tials to rewrite a SPARQL query to an AnQL query. [Costabello 201D ex-
press access conditions as SPARQASKqueries in order to determine the



Flouris 201Q and [Abel 2007 support SeRQL query language
whereas Reddivari 2003 supports RDQL only.

Enforcement approach In this part of study, we examined the di erent
works with respect to the used enforcement approach. The latter can be
pre-processing post-processingor annotation based

€ The pre-processing approaches enforce the policy before evaluating the
query. For instance, the query rewriting technique consists in reformu-
lating the user query using the access control policy. The new reformu-
lated query is then evaluated over the original data source returning the
accessible data only. This technique was used b@dstabello 201Pand
[Abel 2007 where the user query is rewritten with respect to the policy,
and then evaluating the expanded query on the original dataset.

€ In the post-processing approaches, the query is evaluated over the orig-
inal data source. The result of the query is then “ltered using the
access control policy to return the accessible dataR¢ddivari 2009 use
a post-processing approach by evaluating the query over the original
graph, “ltering the triples in the query result and then returning the
authorized triples to the requester.

€ The rest of the works use annotation approach to enforce their mod-
els. In this case, every triple is annotated with access control infor-
mation. During query evaluation, only the triples annotated with a
permit access are returned to the user. In the label-based model pro-
posed by Jain 2004, each triple is annotated with a label that rep-
resents its security classi“cation. Flouris 201Q annotate each triple
with a boolean stating whether it is accessible or notLppes 201Pan-
notate the triples with non-recursive Datalog with negation programs
which evaluation decision de“nes whether the triple is accessible or not.
[Papakonstantinou 201P annotate the triples with abstract labelsthat
encode inference and propagation of labels along the RDFS inference
rules. To evaluate the label, each application provides its owsoncrete
policy and semantics which allows the application to decide whether a
triple is accessible or not.



2.2. Suppose we
want to protect Gy by applying the policyP ={deny access to triples hav-
ing :breastTumor property, allow access to all resources which are in-
stance of Patient }. If we apply the inference ruleRDom and RSc, we
get Clroom rsc,}(Go) = Go { itg,itz}. With the propagation approaches
which consider inference Llopes 2012 Papakonstantinou 201p the triple its
=(:alice ;rdf :type ;:Patient )} will be denied since it is inferred from de-
nied triples (et;). Hence the fact that alice is a patient will not be returned in
the result even though the policy clearly allows access to it.

Another problem which the propagation techniques su er from, is the infer-
ence leakage. In fact, even some implicit triples are labeled as denied by the
policy, they could be inferred from triples labeled as accessible. To illustrate,
consider the following example.

Example 2.4.2 We want to protect the graphG, of Figure 2.2 in presence
of RDom inference rule, using the policyP ={allow access to triples having
:breastTumor property, deny access to all resources which are instance of
:Canceroug . As the closure of the graptClrpom ;(Go) = Go { iti}, there

is one implicit triple i.e. it;. With the propagation techniques which consider
inference Lopes 2012 Papakonstantinou 2012Jain 2004, it, will be assigned
two labels, a deny label from the policy and a permit label inherited from the
premiseset; and ety. After resolving con”icts, it; will be denied and will
not be returned to the requester, whereast; and et, will be. Using a local
reasoner, the requester could appRDom on et; and et, to infer it,, hence
an information leakage through inference. Note that eveiréddivari 2003
query-time approach su er from the inference leakage problem.

The propagation approaches that consider the inference leakage problem such
as Pain 2004, propose solutions after the labeling operation. In fact, they
check the labeled graph to detect information leakage.



Abel 2007, rewrite SeRQL queries using path expres-
sions found in the body of the useres applicable policies, combined with ZORZ
keyword. A query with a triple pattern ?s ?p ?0 will be reformulated to a
guery that may be computationally expensive since it combines all the possi-
ble policies which leads to a long path expression. Moreover, not all the user
queries can be handled. More complex queries such as path queries are not
supported.

In the post-processing approaches, policies conditions are usually not based
on the data content but on the subject attributes Reddivari 2003. The query

is evaluated on the RDF store, and the policies are checked afterward on the
result triples. The query answer time may be considerably too large. As an
example, suppose an unauthorized user submits a query asking for all avail-
able triples in the store. A post-processing approach would retrieve all the
triples “rst and then “Iter them all out.

The data annotation approaches that use custom language such
as |Lopes 201P rewrite the user query to include annotations based on the
access control policy. The query that contains annotations is then evaluated
over an extension of RDF that supports annotations. Similarly to the rewrit-
ing technique, these approaches are tied to the query language. Moreover,
additional mechanisms are needed in the RDF store to support custom lan-
guages and extended RDF models. Other approaches use the graph name
position to store a boolean representing the access decisiéto(iris 2014Q.
Which means that for each triple, all the user pro“les decisions must be com-
puted and stored at the design time. Moreover, this kind of approaches does
not support incremental re-computation of annotations, as the latter do not
store any information about the policy.



3 the syntax and semantics of
an expressive “ne-grained access control model for RDF. In our model,
authorizations are de“ned using SPARQL BGPs, which allows the def-
inition of “ne-grained policies Moreover, instead of hardcoding the
con”ict resolution strategy or selecting one from prede“ned strategies,
we proposed a more liberal approach. Indeed, abstracting the con”ict
resolution function allows the administrator to de“ne not only the classi-
cal con”ict resolution strategies but also custom strategies, which makes
our model more expressive.

€ Modularity: Our model semantics are de“ned by means of positive sub-
graph which relies on the access control policy and the base graph, with-
out reference to a concrete query language such as SPARQL, in contrast
to models driven by query rewriting. In our model, the supported set of
inference rules is not be limited to RDFS rules. User de“ned rules can
be used as well. Indeed, to cope with inference, it su ces to replace the
base graphG by its closure CI(G) according to a set of inference rules.
This makes our model independent from the entailment engine as well.
Moreover the implicit triples are considered as the explicit ones and do
not depend on the triples used to infer them. In our model, the entity
to which the authorizations are granted or denied is left implicit. The
upstream mapping from requesters to authorizations may use any model
from the literature. In Chapter 5 we propose a XACML-inspired policy
language that allows the de“nition of subject attribute-based policies.

€ Veri“ability : In Chapter 4, we formally characterize the issue that arises
when inference rules produce facts which would have been forbidden
otherwise. This issue occurs when the positive subset of a closed graph
is not, itself, closed. We show that it can be statically checked, without
knowledge of the base grapls, whether a policy is consistent w.r.t. a
set of inference rules.

€ Applicability: Our model is de“ned with triple-based authorizations
which are both natural for SPARQL knowledgeable administrators and
are naturally converted to e cient SPARQL CONSTRUG{eries to be
run on the store. In Chapter3, we show that our policies can capture
guite complex access control requirements with exceptions that occur



6 a data-annotation-based
enforcement approach to our model and we show that no additional
mechanisms are needed to apply our enforcement.

€ Performance We focus our attention on search queries on graphs. We
show in Chapter6 that our implementation incurs reasonable overhead
at runtime (about +50%) with respect to the optimal solution which
consists in materializing the useres accessible subgraph. We show that
the query evaluation overhead is independent from the size of the base
graph and the number of policy authorizations.
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In this chapter, we de“ne an access control model for RDF callédC4RDF
(Access Control For the Resource Description Framework), that uses the in-
gredients from Section2.1 (P. 14). First, we de“ne atomic authorizations
and policies, then we give their formal semantics. Con’ict resolution strate-
gies are used to resolve such con”icts by selecting the preferred authorizations
to apply, with respect to some properties of the authorizations. Whereas most
of the works hard-code their strategies, others de“ne them as parameters that
are “xed by the administrator during policy design. We propose a more liberal
approach by de“ning our policy using arabstract con”ict resolution function
ch which is de“ned by the administrator. We present three conditions that
must be respected by the authorization policy to be well-formed. In Sectin
we give examples of how to buikth to apply simple strategies such adTP
Moreover, we show how to build more elaborate strategies suchMSTRo
handle exceptions.



5 an attribute based high level language that allows to de“ne global
policies. When a user requests access, her/his policy is enforcedAG4RDF

3.1.1 Authorization semantics

We de“ne authorizations using basic SPARQL constructions, namely basic
graph patterns, in order to facilitate the administration of access control and
to include homogeneously authorizations into concrete RDF stores without
additional query mechanisms.

De“nition 3.1.1 (Authorization) Let E = {+,.} be the set of applicable
e ects. Formally, an authorization a = (e,h,D is a element of Auth =
E x TP x BGP. The componente is called the e ect of the authorization
a, h and b are called its head and body respectively. We use the function
eect:Auth E (resp., head: Auth TP, body: Auth BGP) to denote the
“rst (resp., second, third) projection function. We callhb(a) = {heada )}
body(a) the underlying graph pattern of the authorizationa .

We use the concrete syntax GRANDENYh WHEREZ to represent an
authorization a = (e, h,b. We use theGRANKeyword whene = + and the
DENX%eyword whene = .... ConditionWHEREis elided whenb is empty.



3.1. Au-
thorization a ; grants access to triples with predicatehasTumor Authoriza-
tion a, states that all triples of type: Cancerous are denied. Authorizations
a 3 and a 4 state that triples with predicate: service and :treats respectively
are permitted. Authorization a 5 states that triples about admission to the on-
cology service are speci“cally denied, whereas the authorizatiag states that
such information are allowed in the general case ; grants access to prop-
erties domain anda g denies access to any triple which object i€ancerous
Finally, authorization a ¢ denies access to any triple, it is meant to be a default
authorization.

Given an authorizationa  Auth and a graphG, we say thata is applicable to
atriplet G ifthere exists a substitution such that the head ofa is mapped

to t and all the conditions expressed in the body @& are satis“ed as well. In
other words, we evaluate the underlying graph patterhb(a ) = {heada )}
bodya) against G and we apply all the answers ofhb(a) ¢ to heada) in
order to know whicht G the authorization a applies to. In a concrete
system, this evaluation step would be computed using the mechanisms used
to evaluate SPARQL queries. In fact, given an authorizatiora , the latter

is translated to a SPARQL query which is evaluated oveG. The result
represents the triples over whicta is applicable.

De“nition 3.1.3 (Applicable Authorizations) Given a “nite set of au-
thorizations A P (Auth) and a graphG  BGP, the function ar assigns to
each triplet G, the subset ofapplicable authorizationsfrom A :

arnG,A)(t)={a A | hb(a) ¢.t = (heada)) }

Table 3.1: Example of authorizations

a; = GRANPp;:hasTumor, ?t)

a, = DENY(?p;rdf :type ;:Canceroug

a3 = GRANTd; :service ;7s)

a4, = GRANTd;:treats ;?p)

as = DENY(?p;:admitted ;?s)
WHERHK?s ; rdf :type ;:Oncology)}

as = GRANT?p;:admitted ;?s)

a; = GRANT™p;rdfs :domain;?s)

ag= DENY(?s;?p;:Cancerous

ag= DENY(?s;?p;?0)
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Figure 3.1: Authorizations applicable toit ,

Example 3.1.4 Consider the graphCIl(Gy) shown in Figure2.4 (P. 23) and
the set of authorizationsA shown in Table3.1. The applicable authorizations
on triple it, are computed as follows :ar(Cl(Gp),A)(ity) = {as,ae,ag}.
The mappings fromhb(a s), hb(a ) and hb(a g) to CI(Gy) are illustrated by
Figure 3.1.

The scopeof an authorization over a given graphG is the set of triples
in G to which the authorization is applicable. The scope is computed by the
evaluation of the BGPs forming the authorization (see De“nitior2.1.8(P. 19)).
Please note that the fragment de“ned in De“nition3.1.1is basically used to
de“ne our access control model, and it is not meant to replace the generic
SPARQL query language on RDF stores, as our approach is independent from
the query language.

De“nition 3.1.5 (Authorization scope) Given a graphG BGPand an
authorization a Auth, the scope ofa on G is de“ned by the following
function scope BGPx Auth BGP.

scopéG)(a) = {t G| hb(a) .t =(heada)) }

Example 3.1.6 Consider authorization ag in Table 3.1, and the graph
Cl(Go) in Figure 2.4 (P. 23). The scope ofag is computed as follows :

scopéag) = {ety,itq}.



3.2

De“nition 3.1.7 (Policy, Con”ict Resolution Function) An (au-
thorization) policy P is a pair P = (A, ch), satisfying the following
well-formedness conditions, wherd is a “nite set of authorizations and
ch P(A)\{} A is a con”ict resolution function:

€ Totality: G BGP. t G.ar(G,A)(t) =
€ Closedness: A A.A = chlA) A

€ Monotony: B A,B
ch(B )= a)

.ch(B) = a (B B.a B

The subset ofP (Auth) x (P (Auth) Auth) that satis“es the above well-
formedness conditions is denoted yol.

The well-formedness conditions are properties which ensure that the con-
"ict resolution functions behave well when applied to set of authorizations.
The Totality property avoids a corner case. We explain in Sectidh2 how
to enforcedefault decisionsthat ensure this property. The Closednessprop-
erty guarantees that the selected authorization is taken from the input. The
Monotony property is more technical but it captures an intuitive requirement
that is: the con”ict resolution function makes consistent choicgsvhich means
its answer is kept the same when lesser choices are available.
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G —C(G)—~ar(Cl(G),4)—~ch —~ G+

Figure 3.2: Evaluation strategy for policies

Example 3.1.8 An example policy isP = (A,ch) where A is the set of
authorizations in Table 3.1 and ch is de“ned as follows. For all hon-empty
subsetB of A, ch(B) is the “rst authorization (using syntactical order of
Table 3.1) of A that appears inB . Totality stems froma g, as it is applicable
to any triple. Closedness and Monotony directly stem from the de“nition of
ch.

We are ready to give semantics of policies by composing the functicars
ch and then e ect in order to compute the authorized subgraph of a given
graph.

De*“nition 3.1.9 (Policy Evaluation, Positive Subgraph) Given a pol-
icy P=(A,ch) Poland a graphG BGP, the set of authorized triples that
constitutes the positive subgraphof G according toP is de“ned as follows,
writing G* whenP is clear from the context:

Gr={t G]|(eect ch ar(G,A))(t)=+1}

As illustrated by Figure 3.2, to construct the positive subgraph, the “rst
step consists in computing the closure of the base graph, then assigning each
triple of the result with its applicable authorizations. The next step consists
in applying ch on the applicable authorizations and assigning every triple with
the decision of the chosen authorization. The last step consists in generating
the positive subgraph which contains the triples assigned with positive e ect.
Algorithm 1 allows the computation of the positive subgraph, given a policy,

a set of inference rules and a base graph.

Example 3.1.10 Let us consider the policyP = (A, ch) de“ned in Exam-
ple3.1.8and the graphGg of Figure 2.2 (P. 16). The “rst step consists in com-
puting the closure of the base graph, in this casgl(Go) shown in Figure2.4
(P. 23). The next steps of computing every triple decision are illustrated by
columns of Table3.2. Regarding the tripleit, = (: alice ;:admitted ;:onc),
ar(Cl(Gp),A)(it,) = {as,as,a9}. Since as is the “rst among authoriza-
tion in Table 3.1 and its eect is ... we deduce thatit, Cl(Go)p. By






3.1
Let us consider the subset of authorizatior® = {a;,ag,a¢}. The subset of
negative and positive authorizations iB are de“ned as follows:B = {a ;},
B* ={agag}

A function ch applies theDTRPTR strategy if it returns a negative (positive)
authorization from the input set, when the latter contains at least one negative
(positive) authorization.

De“nition 3.1.13 ( DTRPTH property) A function ch applies the
DTRPTPH strategy if it satis“es the DTRPTH property. The DTPand PTP
properties are de“ned as follows:

DTPproperty: B A. a B+~ chB) B
PTPproperty: B A. a B* <chB) BT”

Regarding the MSTRstrategy, it is particularly adequate to capture ex-
ceptions in policies in a natural way. For instance, in Tabl&.1, the autho-
rization a s that denies admissions to oncology service is an exception of the
authorization a g which allows admissions in general. According to thRISTP
strategy, a s should prevail overa . A function ch applies theMSTRtrategy
if it returns an authorization that have no other more speci“c authorization.
Semantically, an authorizationa ; is more speci“c than a, if for any given
graph G, the scope ofa; in G is a subset of the scope &, in G, formally,



3.1
There exists a substitution mapping betweenas and ag s.t. = {?p
S ?s} and hb(ag) hb(as) headas) = headas), hence
as msAs,

After de“ning the speci“city relation, we can now check if a functiorch satis-
“es the MSTRroperty, i.e. when it returns one of the smallest authorizations
with respect to ys

De“nition 3.1.16 ( MSTPproperty) A function ch applies theMSTHRtrat-
eqgy if it satis“es the following property:

Let ysbe the speci“city relation between authorizations
MSTRroperty: B A.ch(B)= a (a B.a ys a usa)

3.2 Building Policies

In this section, we illustrate the applicability of policies as de“ned in De"-
nition 3.1.7 by showing how to constructch functions for applying con”ict
resolution strategies known in the literature. Note that ourch function is
responsible for resolving con”icts between authorizations, as well as applying
the default strategy.

3.2.1 Default Strategy

A default strategy is a decision that is selected when no other authorization
is applicable, that is whenar(G,A)(t) = . Such a default strategy can
either bedeny by defaultor permit by default In order to respect theTotality



3.1.7, we cannot simply apply adefault
decision However, we have to identify alefault authorization called universal
authorization denoted bya , that is applicable to any triple. a , is added to
the set of authorizations in order to achievdotality . In fact, the triples that
have no applicable authorizations but , will have a decision that is equal to
the e ect of a,. Hence the e ect ofa , plays the role of the default decision
of classical approaches. An authorization is applicable to any triple if it has
three di erent variables in the head, and an empty body.

De“nition 3.2.1  An authorization a,  Auth is called universal ifa, =
GRANDENYs ;p;o0) such thats;p,o0 V ands= p,p=0,5S= 0.

The following lemma shows that theTotality condition can be ensured by
adding a universal authorization.

Lemma 3.2.2 Let A be a “nite subset ofAuth. The following statements are
equivalent:

G.t G.ar(G,A)t) =
a, A.G t Ga, arGA))

Proof One direction is straightforward, if a A is such that a
ar(G, A)(t), then ar(G,A)(t) =

For the opposite direction, consider a triplg® = (?s®; ?p°¢; ?20°) with fresh
variables not already used irA, that is, t€ is such that for all authorizations
a A,itisthecasethat (?s;?p;?0) hb(a).?s=7s® ?p=7?p° ?p=7p°
Such a triplet® always exists because there is an in“nite s&t of variables but
only “nitely many appear in A. Consider the graphG® = {t®}, by hypothesis
ar(G®, A)(t®) is not empty, so consider an authorizatiora , in this set.

We show that this authorization is universal. By De“nition 3.1.3 we
know that there exists some hb(a,) ¢ with t® = (heada,)) . Thus,
by De“nition 2.1.8 (P. 19), we have that (hb(a,)) = {t°} becausehb(a )
cannot be empty. LetG? an arbitrary graph and t? = (?s?; 70 ;20%) G2
Consider the substitution that maps t® to t* de“ned by (%) = ?s?,
(?p®) = ?p?. By construction, (hb(a,)) = {t?} andt®=(heada,)) ,
thusa, ar(G? A)(t?). |

For instance, the default strategy in Table3.1is given by authorizationa g
which e ect is DENY Hence a closed policy. Note that there may be several



3.2.3 there exists a universal rulea, A.
Closednessand the Monotony are satis“ed by construction ofmin . [

There are several ways to equip with a total order. For instance, the admin-
istrator can explicitly assign a unique prevalence level to each authorization
or she/he can rely on thesyntactical order When one writes a set of autho-
rizations such as the one shown in Table.1, there is a total order given by
the order of the statements. The syntactical order is always available and it
is used, for example, in “rewalls, so that no ambiguity arises.



3.1.8
where the authorizations are ordered syntactically.

Note that given a policy P = (A, ch), we can construct a total order ., on

A with ch. From an implementation point of view, constructing a total order
from ch could improve performance of the access control enforcement. The
idea is to compute the total order , during policy design time, and replace
the original ch by min _ .

Lemma 3.2.7 Given a policy P = (A,ch), then we can construct a to-
tal order ., on A with ch function s.t. agq,a» A.a; as

ch({ai,az}) = aj.
Proof We prove that , is re’exive, antisymmetric, transitive and total.

€ Reexivity: Sincech({a,a})= a thena ,a. Thus . isre’exive.

€ Antisymmetry: If a; ,a,thench({a;,a,})= ai, henceifa;=a,
then ch({a,,a1}) = a,, which means thata, ., a;. Thus ¢, is
antisymmetric.

€ Transitivity: We prove thatif a; g,a,anda, azthena; ,as.
If ch({a,,a,,a3}) = azthench({a, as})= as from Monotony con-
dition. Contradiction with a, ,as.
If ch({a,,a,,a3})= a,thench({a. a,})= a, from Monotony con-
dition. Contradiction with a; ¢, a».
Since ch({ai,az,a3}) = as and ch({ai,a,az}) = a, then
ch({ai,az,a3}) = a; from ch Closedness Hencech({ai,a3}) = a:
from ch Monotony. Which means thata; ,a3. Thus  is transi-
tive.

€ Totality: By ch Closedness aj,a- A.ch({a,ajz}) = a; or
ch({a.,ay}) = a,. Hence,a; ,azora, ai. Thus ¢ is to-
tal.

The following proposition shows that there exists a bijection between total
orders and choice functions.

Proposition 3.2.8 Given a policyP = (A, ch), there exists a bijection be-
tween , andch



2 (P. 13), the DTPstrategy resolves con”icts by
stating that the negative authorizations prevail over the positive ones; the
PTPstrategy being its dual. The idea to capture theDTP(resp. PTP strategy
is to transform a policy P = (A, ch) into a policy P = (A, ch’) where ch-
privileges negative (resp. positive) e ects. Considering the previous discussion
on default policies, we assume that there is a unique universal authorization
ay, A. Asa, is assumed to be a default authorization, we require that
B\{a,} = ifandonlyif ch(B) = a,. Remind that B - (resp. B ") is
the subset ofB with a negative (resp. positive) e ect. WithB A, the ch~
function is formally de“ned as follows:

ch(B \{ay}) if B-\{ay}= (1)
ch(B)= chB*\{a,}) ifB-\{a,2= B*\{ay}-= 2)
ay ifB \{a,} = ©))

Similarly, the dual function ch® is de“ned by "ipping + and ... in the
de“nition of P-: The next lemma ensures that the construction is correct.

Lemma 3.2.9 (Correctness of P-) Given P = (A, ch) a policy according
to De“nition 3.1.7 with a unique universal authorizationa, A such that



3.2.3 there exists a universal rulea, A.

Closedness This property is guaranteed because the origingh function is
assumed to satisfy theClosednesgproperty.

Monotony Letch(B)= a forsomeB A andletB B witha B.
We have to show thatch'(B )= a.Ifa =a,,thenB \{a,} = by
hypothesis soB \{a,} = as well, thusch'(B )= ch(B)= a,. So
we assume now thatn = a, this impliesthata B \{a,} by the
Closednessroperty of the ch function, thus B \{ a,} = . Moreover,
ch(B \{ a,}) = ch(B) by the Monotony condition. We analyse howa
was obtained in the “rst place.

caseB\{a,} = .I1fB "\{a,} = holds, we have thatch'(B ) =
ch(B ~\{a,}) by the de“nition of ch: Thench(B “\{a.,}) =
ch(B \{ a,}) by the Monotony of the chfunction. Finally, ch(B -\
{ay})=ch(B \{ay}))= chB \{a,}) by Monotony again, so
ch(B \{ay})=ch(B)=a = ch(B).
Otherwise, we haveB “\{ a,} = . Assumptiona = a, implies
that case (3) is ruled out, sca has to be positive by case (2). By
the Closednessroperty ofch,a B -\{a,} soa is negative, a
contradiction.

caseB \{a,} = B*\{ay,}= . Notethat B "\{a,} = as
well becauseB B . IfB "\{a,} = holds, then we obtain the
equalitiesch*(B )= ch(B "\{ay})=ch(B*\{a,})= ch(B\
{a,}), similarly to the previous case. Otherwise,B \{a,})" =

, a contradiction witha B .
caseB \{a,} = Itis immediate becausech'(B ) = a, = ch(B).

The following lemma ensures thathapplies theDTPstrategy.



3.1.13.

B A.if a B~st a =ay,thenB\{a,} = , hence, bych~
de“nition, ch*(B) = ch(B -\{ a,}). Which means thatch*(B) B : Thus
chsatis“es the DTPproperty. |

Similarly, Lemmas3.2.9and 3.2.10apply to P* and ch” respectively.

Example 3.2.11 Consider the graphCl(Gg) shown in Figure2.4 (P. 23) and
the set of authorizationsA shown in Table3.1. Let us consider the authoriza-
tions applicable to tripleet;, that is ar(CI(Go),A)(ety) = {a7,ag,aq}. If we
consider thech given in Example3.1.8, that is, the syntactical order, autho-
rization a7, a positive one, is selected. However, with tH8TPconstruction,
we have thatch*({a7,ag,aq}) = ch({ag}) = as.

3.2.4 Most Speci‘c Takes Precedence ( MSTP

We showed in Sectior8.1.3that the MSTIRroperty is captured by a binary rela-
tion \sde“ned by substitutions. Clearly, the identity substitution makes s
relation re”exive and composition of substitution makes it transitive. There-
fore, it is a preorder (quasiorder) Note that \sbeing a preorder, it is not
anti-symmetric. Indeed, we may have two di erent authorizations with dif-
ferent eectsa,; anda, wherea; pysa, anda, psai. Chosing the most
speci“c authorization amounts to select the smallest authorization w.r.t g
Since \sis a preorder, then the smallest authorizations may be more than
one. As shown by Lemm&.2.5 given a total min order, we can construct a
policy P = (A, min ). The idea is to construct a total order from the preorder

vsto make achfunction that applies MSTPFirst, we consider two equivalent
authorizations as incomparable in order to make partial order ygtpfrom
the preorder s

De“nition 3.2.12  Given a set of authorizationsA .  ys7dS a binary relation
over A de“ned as follows:

€ a; A, a; A.ai;=aj a; yszifa; ys@zanda, usa:

€ a A.a ysma



3.2.12 ysTpIS re’exive.

€ Transitivity : We prove that if a; ysta2 and a, yst@ 3 then
a1 msTA 3
If a; = a,ora,= as, then transitivity is trivial.
By De“nition 3.2.12
a; wmst2 a1 ws@zanda, msa:

a, mst3 Az msAzandaz usa:

We want to prove thata; ystRzi.e. a; ys@zandasz ysa;:
Sincea; pysd.anda, psaszthena; ysas by ystransitivity.

Now we prove thataz ysa . For the sake of the contradiction, sup-
pose thatas ysa1. Sincea; ysarthenasz ysa, by ystransitiv-
ity. Which is a contradiction with a3z ysa,, henceas pysa;. Since
a; wsdsandasz ypsajthena; ysra 3z by De“nition 3.2.12

€ Anti-symmetry : We prove that if a; = a, and a; ystR2 then
dz2 wMsTPA1
By De“nition 3.2.12
ai wust2 a1 msAzanda; usa:
For the sake of the contradiction, suppose thata, ysr@:1 I.€.
a, msdianda,; yusa», contradiction. Hencea, ystea 1.

Hence \stpis partial order  |j

After making a partial order ygtpfrom the preorder s we can now con-
struct a total order ystpusing the partial order ystpand the total lexical
order |gx already de“ned by the administrator. ystprepresents atopo-
logical sort (i.e. linear extension) of the partially ordered authorizations.
Many algorithms could be used for the topological sort, such as Kahnes Algo-
rithm [Kahn 1963. We adapted Kahnes Algorithm to make it deterministic,
where instead of selecting a random authorization, we select the smallest one
with respect to | gx Algorithm 2 takes as parameters, the total order gy
and H* a Directed Acyclic Graph (DAG) where the nodes represent autho-
rizations in A, and edges represent the irre”exive related authorizations with
,i.e.(a banda =b) a b.

Algorithm 2 starts by inserting all authorizations without incoming edges
into a setS. Then it starts a loop where the smallest authorizatiora in S



4 and 15, the next selected authorization is the smallest one w.r.t | gx
from the rest of the not processed authorizations.

Lemma 3.2.14 Let ns be the set of the not sorted authorizations de“ned as
ns={ala A a L}



4 and 15.

The following holds:
For each iteration i, authorizationa = min _(ns;) has no incoming edges,
and it is the next authorization that will be inserted intoL, i.e. L[i] =
min _ (ns;).

Proof Firstwe prove thata = min _ (ns;) has noincoming edges. Suppose
that a has an incoming edge fronb. b is not in L, otherwise the edge
b a would have been removed by Lin&0 during some previous iteration.
Henceb ns;. Since there is an edgé a thenb a ,thusb gxa
since | gxis a linear extension of . Since we do not consider atomic loops,
thena = b. Sinceb gxa thena = min _(ns;) which contradicts the
hypothesis.

We prove that the next authorization that will be inserted intoL isa =
min _(ns;). Suppose thata is not the next authorization to be inserted
toL, hence b S ns; s.t. b = min LEX(Si). Sinceb ns; anda =
min LEX(nsi) thena |gxb.

a = min _(ns)) means thata has no incoming edges, hen@ S
(Lines11and 12). Sinceb = min _(S) and a Sithenb |gxa .

Sincea |gxb andb |gxa thena = Db.

Note that if the total order |gxis already a linear extension of the partial
order , then Algortithm 2 will generate a total order that is equal to gy
which is showed by the following lemma.

Lemma 3.2.15 If |gxis a linear extension of ygrpthen | gx=

Proof We show that at the end of Algorithm2 :
Ifi jthenL[i] exL[j], andifL[i] (exL[j]theni j.

We prove thatifi j thenL[i] (gxL[j]. Letb = L[i]Jandc = L[j]. Since
i ] then at the beginning of iterationi both b and ¢ were inns. Hence
at iteration i, and by Lemma3.2.14 b = min _ (ns;) and sincec  ns; then
b exc, thusL[i] exL[].

We prove that if L[i] exL[[]theni j. Letb = L[iJandc = L[j].
Supposeb | gxC andi>j . Thenc was inserted intoL beforeb. At iteration
j, and by Lemma3.2.14 ¢ = min _(ns;), and sinceb nsj thenc | exb.



2, we generate a total order denoted by ystp from yste
and |gx After generating the total order over authorizations, we can now
de“ne the ch that applies the MSTRy choosing the smallest authorization
w.rt uste formally, ch= min y

STP

Lemma 3.2.16 ( MSTRtrategy application) Given a policy P
(A,min ), the function min __ applies theMSTRtrategy.

Proof We prove that min __ satis“es the MSTPproperty (see De“ni-
tion 3.1.19. B A. By de“nition min __returns the smallest autho-
rization with respect to min e Sincemin st is a linear extension of ystp
then a B.a ys7tdnin ore & mMsTPMIN MSTF,hence the satisfaction of
the MSTRroperty. |

Finally, the obtained structure P = (A, min ) is a fully-"edged policy.

MST

Figure 3.3: ystPDAG

Example 3.2.17 Consider the policyP = (A, min ) whereA is the set
of authorizations A shown in Table3.1. Algorithm 2 takes as parameters
the total syntactical order of the Table3.1, and the DAG HAMSTPdepicted by
Figure 3.3. Table 3.3 shows the values d& and L at the end of each iteration
of the loop between lineg and 15. The result of the Algorithm is a total
order equal to gxsince the latter is a linear extension of ysrpas shown by
Lemma3.2.15
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Access control models o er protection against direct accesses to sensitive
information; however, indirect accesses to sensitive information may still be
possible via inferences. Indeed, security violations via inferences calleder-
ence problem(inference leakage problem) occurs when sensitive information
can be inferred from authorized data. In this chapter we show how static
veri“cation could be used to detect policy inconsistencies with respect to in-
ference. In Section4.1 we give an overview about the inference problem in
di erent data models, and we show the di erent techniques to deal with it.
In Section 4.2, we formally de“ne the inference leakage problem which arises
when con“dential triples are inferred from authorized triples. We formalize
the consistency propertythat captures the inference leakage problem. This
property ensures that con“dential information can not be inferred from autho-
rized information with respect to a set of inference rules. To solve the issue,
we propose in Sectiord.3 a static veri“cation algorithm which is run at policy
design time. The algorithm checks if the interaction between policy authoriza-
tions and inference rules may lead to inference leakage. It generates a set of
counterexampleBGPs which represent graphs over which the policy presents
an inference leakage problem. In Sectioh3.2 we show how to use the answer
of the algorithm to “x the policy, or how to use them as integrity constraints
that do not allow updates which could lead to inference leakage.



Farkas 2002 for a survey) exists in all types of
database systems and has been studied extensively within the context of mul-
tilevel databases. Early works on the inference problem focused on statistical
database security Adam 1989. The main requirement for securing statical
databases is to allow users to make statistics by giving access to groups of en-
tities while protecting the con“dentiality of the individual entities. The prob-
lem is that a user might obtain con“dential information about an individual
entity by correlating di erent statistics. Another kind of inference problem
appeared on data models which use semantic constraints such as functional
dependenciesJu 1987. Here, sensitive information can be disclosed from
non-sensitive data and meta-data. We illustrate with the example used by
[Su 1987. Assume that a company database consists of the relation scheme
EMP-SAL, which has three attributes: Name, Rank, and Salary. The re-
lation < Name, Salary > is a secret, but usem requests the following two
queries: ListRank and Salary of all employees and List theName and Rank
of all employees. None of the queries violates the security requirement because
they do not contain the secureck Name, Salary > pair; however, suppose!
is aware of the constraint that all employees having identical ranks have the
same salaries, then she/he can infer the salary of employees.

Several works have been devoted to detect and deal with inference leak-
ages. Inference control techniques can be divided according to the time of the
inference detection controlj.e. static and dynamic approaches:

€ Static approaches In the static approaches $u 1987, all processing is
done o ine during design time. Once a security violation via inferences
is detected, the system is modi“ed to repair such violations. Modi“ca-
tions are done on the database schema or on the access control policy.
The main advantage of this approach is that it is computationally less
expensive than the dynamic approach. However, this approach may re-
sult in reduced availability of data because the inference problem may
not materialize in a particular database instance.

€ Dynamic approaches In the dynamic approaches
( [Thuraisingham 1987), the processing is done during runtime.
Every issued query is checked whether or not it could lead to con*-
dential data disclosure. If an inference violation is detected, the query
is either refused or modi“ed to avoid such violations. Most of these
approaches keep a log of all queries issued by the user so they can
be combined with the current one to check if the query is allowed or
not. Whereas this kind of approaches increase availability, they are



Jain 20049 used a static approach by de“ning an
algorithm that detects inference violations using the policy and the base graph
(see Section2.3). Since we focus on the publication of RDF triples in the
context of linked data, we concentrate on fast query answering, hence we
favor the static approach. Before we show how to detect whether a policy
presents a problem of inference leakage, we de“ne the consistency property.

4.2 Consistency property

The inference rules which are applied to a graph re”ect the particular knowl-
edge conveyed by the graph. Hence, the real semantics of a graph are rep-
resented by its closure, regardless it is materialized or not. Thus, inference
leakage has to be considered in the closure of a graph, rather than considering
only the base graph which is under control of a trusted RDF store. The in-
teraction between authorizations and inference rules raises the issue of policy
violation because it could lead to con“dential data leakage. A malicious user
who knows the inference rules could use a local reasoner and apply the infer-
ence rules over her/his accessible triples to infer triples she/he is not supposed
to access. To illustrate this issue, consider the following example.

Example 4.2.1 Assume a set of inference ruleR = {RDom ,RAdm }, as
shown in Example2.1.16 (P. 22). We want to apply the policy de“ned in
Example 3.1.10 (P. 50) on the graph Clk(Gp) of Figure 2.2 (P. 16). Ac-
cording to Example3.1.10 (P. 50), the authorized subgraph i§Cl (Go))p =

{ety, ety, ets, et} . If one computes the closure ofClk (Go))r, she/he obtains
(Ck(Go))p { it1,it2}. Whereas the policy states that triple& ; and it, must

be denied, they are deduced from the authorized subgraph, hence the inference
leakage. Figured.l illustrates the inference leakage usingDom .

We formally characterize the issue that arises when inference rules produce
facts that would have been forbidden otherwise. This issue occurs when the
positive subset of a closed graph is not, itself, closed.

De“nition 4.2.2 (Consistency between Rules and Policies) An  au-
thorization policy P = (A, ch) is consistentw.r.t. a set of inference rulesR
if, for any graph G BGP, the following holds:

Ck((CR(G))p) = (Ck(G))r











































































































































































