École doctorale SDU2E

MEMOIRE POUR L'OBTENTION DU DIPLOME D'HABILITATION A DIRIGER DES RECHERCHES

Spécialité doctorale “Sciences de la Terre et de l’Univers”

présenté et soutenu publiquement par

Olivier Merlin
le 5 avril 2016

Suivi des ressources en eau par télédétection multi-capteur: désagrégation de données spatiales et modélisation descendante des processus hydrologiques

Jury
M. Filipe AIRES, Directeur de Recherche CNRS, LERMA Rapporteur
Mme Agnès DUCHARNE, Directrice de Recherche CNRS, METIS Rapportrice
M. Jean-Philippe GASTELLU-ETCHEGORRY, Professeur UPS, CESBIO Président
Mme Florence HABETS, Directrice de Recherche CNRS, METIS Examinatrice
M. Frédéric JACOB, Directeur de Recherche IRD, LISAH Examinateur
M. Yann KERR, Directeur de Recherche CNES, CESBIO Parrain
M. Jean-Pierre LAGOUARDE, Directeur de Recherche INRA, ISPA Rapporteur

Centre d’Études Spatiales de la Biosphère (CESBIO)
UMR 5126
Table des matières

Table des figures iii
Liste des tableaux v
Curriculum vitae vii

1 Introduction 1
 1.1 Avant propos ... 1
 1.2 Contexte ... 2
 1.3 Télédétection de l’humidité du sol 3
 1.4 Modélisations hydrologiques en lien avec la télédétection 4
 1.5 Mes recherches au sein du CESBIO 4

2 Désagrégation à base physique de données spatiales 7
 2.1 Introduction ... 7
 2.2 Désagrégation des données d’humidité du sol 7
 2.2.1 Méthodes basées sur les données optiques 8
 2.2.2 DISPATCH : chronologie d’une méthode à base physique ... 9
 2.2.3 Produit CATDS .. 16
 2.2.4 Applications ... 19
 2.3 Désagrégation des données de température de surface 20
 2.3.1 Désagrégation basée sur le NDVI 20
 2.3.2 Intégration d’autres variables 22
 2.4 Evaluation des méthodes de désagrégation 26
 2.4.1 Stratégies de validation 26
 2.4.2 Campagnes de mesures extensives 29
 2.5 Résumé et conclusions .. 30

3 Modélisation des flux de surface par approches descendantes 33
 3.1 Introduction ... 33
 3.2 Température de surface : une variable intégratrice des états de surface 33
 3.3 Evapotranspiration et bilan d’énergie de la surface (SEB) 35
 3.3.1 Modèles résiduels et modèles en fraction évaporative 35
 3.3.2 Synergie des modèles en fraction évaporative 37
 3.3.3 Vers une décontextualisation des modèles en fraction évaporative 39
 3.4 Evaporation du sol .. 40
 3.4.1 Etat de l’art des modélisations à grande échelle 41
 3.4.2 Modélisation phénoménologique de l’efficacité évaporative du sol 43
 3.4.3 Lien avec la texture du sol 45
 3.5 Mesures in situ ... 46
 3.5.1 Températures extrêmes 46
 3.5.2 Lysimétrie .. 47
 3.6 Résumé et conclusions .. 48
TABLE DES MATIÈRES

4 Perspectives
 4.1 Introduction .. 51
 4.2 Poursuivre les développements de DISPATCH et SEB 52
 4.2.1 Désagrégation des données d’humidité de surface 52
 4.2.2 Désagrégation des données de température de surface 53
 4.2.3 Liens entre efficacité évaporative et disponibilité en eau du sol 54
 4.3 Vers un couplage DISPATCH-SEB ... 54
 4.3.1 Un couplage centré sur l’évaporation du sol (DISPATCH-E) 54
 4.3.2 Vers un couplage désagrégation-modélisation des composants du bilan d’énergie 55
 4.4 Modélisation de l’humidité en zone racinaire 56
 4.4.1 Etat de l’art .. 56
 4.4.2 Approche du projet H2020 REC .. 57
 4.5 Vers une spatialisation des processus de surface en deux étapes 57
 4.6 Conclusions ... 60

Bibliographie .. 63
<table>
<thead>
<tr>
<th>Numéro</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Illustration des données SMOS (à gauche) et des sorties DISPATCH (à droite) du 22 janvier 2011 sur une région du bassin du Murray Darling en Australie.</td>
</tr>
<tr>
<td>2.2</td>
<td>SSM des produits SMOS niveau 3 et DISPATCH 1 km sur le bassin du Murrumbidgee en Australie, pour la date du 22 novembre 2010 (Malbêteau et al., 2016a). Les zones où les données DISPATCH ne sont pas disponibles (e.g. nuages) sont masquées sur les deux images.</td>
</tr>
<tr>
<td>2.3</td>
<td>Méthode de partition de la LST entre la température du sol et la température de la végétation, suivant la position du point observé dans l'espace à deux dimensions LST-fraction de végétation (Moran et al., 1994). Les points en gris sur les graphes correspondent aux données ASTER acquises le 17 août 2011 sur la zone irriguée d’Urgell en Espagne et échantillonnées à 90 m de résolution.</td>
</tr>
<tr>
<td>2.4</td>
<td>Application de DISPATCH à 100 m de résolution avec les données ASTER collectées les 16 août et 4 octobre 2011 sur la zone irriguée d’Espagne (Merlin et al., 2013a).</td>
</tr>
<tr>
<td>2.5</td>
<td>La SEE simulée par deux modèles (linéaire et non-linéaire) est tracée en fonction de la SSM. Pour deux observations de SEE à HR et BR, l’écart entre la SSM désagrégée obtenue avec le modèle linéaire et celle obtenue avec le modèle nonlinéaire est noté $\Delta \theta_{\text{HR}}^\text{nonlin}$ (Merlin et al., 2013a).</td>
</tr>
<tr>
<td>2.6</td>
<td>Echantillonnage des données SSM à BR en extrayant un pixel sur deux de la grille 0 à 0.2° de résolution. La procédure génère 4 grilles de SSM à la résolution de 0.4° (BR).</td>
</tr>
<tr>
<td>2.7</td>
<td>Schéma représentant les entrées et sorties du processeur DISPATCH à 1 km de résolution.</td>
</tr>
<tr>
<td>2.8</td>
<td>Images du 21 mars 2011 de la LST MODIS/Terra (gauche) et la LST (droite) issue de la conversion des TBs Landsat-7 sur une zone autour de Marrakech.</td>
</tr>
<tr>
<td>2.9</td>
<td>Comparaison sur une zone irriguée au Mexique des images de LST obtenues sans désagrégation (D0), avec une méthode de désagrégation basée sur le NDVI (D1), avec une méthode de désagrégation basée sur le NDVI et l’albédo de surface (D2) et par ASTER à 90 m de résolution.</td>
</tr>
<tr>
<td>2.10</td>
<td>Graphes de la LST BR tracée en fonction de l’albédo de surface agrégée à BR (a), LST HR en fonction de l’albédo de surface HR (b) et LST HR en fonction de la fraction de végétation verte HR (c). Les températures extrêmes sont estimées en interprétant les bords du polygone en (a), en cohérence avec les polygones obtenus à HR en (b) et (c).</td>
</tr>
<tr>
<td>2.11</td>
<td>Images sur une zone irriguée en Australie de la LST à 250 m de résolution en sortie de 7 méthodes de désagrégation, comparées à l’image LST ASTER agrégée à 250 m de résolution.</td>
</tr>
<tr>
<td>2.12</td>
<td>Images de la LST observée à 90 m de résolution par ASTER (gauche), LST simulée à 90 m de résolution par une modélisation forcée par le rayonnement DART (centre) et différence de LST observée moins simulée (droite) sur la vallée d’Imlil (Haut Atlas, Maroc) le 5 septembre 2014 (Malbêteau et al., 2016b).</td>
</tr>
<tr>
<td>2.13</td>
<td>Graphes de la SSM désagrégée à 1 km de résolution en fonction de la SSM in situ dans les cas avec et sans désagrégation et pour les données BR SMOS et AMSR-E collectées sur la zone de Yanco en 2010-2011 (Malbêteau et al., 2016a).</td>
</tr>
<tr>
<td>2.14</td>
<td>Illustration d’images multi-spectrale/multi-résolution (échelle arbitraire) obtenues par avion lors de l’expérience NAFE’06 (Merlin et al., 2008a).</td>
</tr>
<tr>
<td>2.15</td>
<td>Campagne extensive de mesures de la température du sol à l’aide de 135 thermochrons déployés dans une petite vallée du Haut Atlas marocain, avec l’acquisition simultanée d’images ASTER.</td>
</tr>
</tbody>
</table>
3.1 La température de surface comme variable intégratrice des états de surface.
3.2 Interprétation physique des polygones LST-f_{gv} (a) et LST-albédo (b,c) selon le modèle WDI de Moran et al. (1994) en (a), le modèle SEB-1S de Merlin (2013) en (b) et le modèle S-SEBI de Roerink et al. (2000) en (c). L’interprétation S-SEBI prévoit un croisement des lignes associées aux bords sec et humide (point 1) et n’est pas compatible (point 2) avec l’interprétation des bords sec et humide de Moran et al. (1994).
3.3 La nouvelle interprétation physique des bords de l’espace LST-albédo améliore l’estimation de l’EF (=IJ/IK) et de l’ET.
3.4 La combinaison des deux espaces LST-f_{gv} et LST-albédo améliore l’estimation de l’ET.
3.5 Les Tends du sol ($T_{s,wet}$ en bleu et $T_{s,dry}$ en rouge) simulées par un modèle de bilan d’énergie forcé par les données météorologiques sont comparées aux mesures in situ (a) et les Tends du sol simulées par un modèle basé sur les corrélations spatiales (à la résolution ASTER) des espaces LST-f_{gv} et LST-albédo sont comparées aux Tends simulées à partir des données météorologiques (b). Les symboles correspondent à des temps et/ou des zones d’études différents (Stefan et al., 2015).
3.7 Le $\theta_{1/2}$ inversé des données SEE et θ est tracé en fonction de la fraction de sable (a) et la fraction d’argile (b) pour les sites avec un nombre d’acquisitions supérieur à 500.
3.8 Site sur un périmètre irrigué autour de Marrakech (en haut) des mesures des Tends du sol à la surface de deux carrés de terre (a et b), l’un conservé sec et isolé à 15 cm de profondeur par une bâche plastique, l’autre irrigué en continu durant les mesures ibutton et les mesures ibutton de $T_{s,wet}$ et $T_{s,dry}$ sont tracées (en bas) en fonction du temps pendant la période de passage des capteurs ASTER/Landsat/MODIS (Stefan et al., 2015).
3.9 Installation (en haut) d’un lysimètre Smart Field Lysimeter (SFL) sur sol nu entre deux rangs de framboisiers d’une parcelle expérimentale du réseau LAB-net au Chili ainsi qu’un exemple de séries de mesures issues du SFL (en bas) comparées à des mesures de rayonnement global R_g, de rayonnement net R_n, et d’humidité du sol (Olivera-Guerra L. et al., 2015).
4.1 Schéma de couplage (DISPATCH-SEB) entre les méthodes de désagrégation DISPATCH et la modélisation des flux de surface SEB à partir de la télédétection multi-spectrale multi-résolution.
4.3 Perspective à long terme d’une modélisation mixte intégrant l’ensemble des observations satellitaires.
Liste des tableaux

2.1 Données d’entrée du processeur DISPATCH à 1 km de résolution.

2.2 Les métriques utilisées (dans quelques études récentes) pour évaluer la performance des méthodes de désagrégation des données de SSM et de LST. La colonne BR est cochée lorsque les métriques à HR sont comparées aux métriques à BR sans désagrégation (en comparant l’observation BR aux estimations de référence à fine échelle). On indique aussi la nature spatiale, temporelle et/ou spatio-temporelle de la comparaison entre données satellitaires et estimations de référence.

3.1 Module d’évaporation du sol de quelques modèles de surface.
Curriculum vitae

MERLIN Olivier
Né le 27 décembre 1977
Nationalité française

Tel/fax (+212) (0)5 24 43 16 26 – Courriel olivier.merlin@cesbio.cnes.fr

Fonctions

CR1 CNRS affecté au Centre d’Etudes Spatiales de la Biosphère (CESBIO) – UMR 5126 CNES-CNRS-UPS-IRD.

Mis à disposition à l’IRD depuis octobre 2013 – Laboratoire Mixte International (LMI) Télédétection et Ressources en Eau en Méditerranée semi-Aride (TREMA), Marrakech, Maroc.

Responsable scientifique d’un produit SMOS de niveau 4 au CATDS (Centre Aval de Traitement des données SMOS).

Initiateur d’une collaboration tripartite France-Maroc-Chili au sein du LMI TREMA2.

Domaines de recherches

- Télédétectection de variables biophysiques dans les domaines optique (bandes courtes longueurs d’ondes et infrarouges thermiques) et micro-ondes ;

- Développements méthodologiques en télédétection multi-capteur : combinaison d’observations multispectrale, désagréagation de données spatiales ;

- Modélisation des processus hydrologiques de surface par approches descendantes : de l’observation spatiale vers les flux et paramètres de surface ;

- Validation des observations satellitaires, des méthodes de changement d’échelle et des modèles de surface à partir d’expérimentations sur le terrain.
Résumé d’un parcours

Formation

2000 Diplôme d’ingénieur de l’Ecole Nationale Supérieure de Physique de Grenoble (ENSPG-INPG), option Énergétique et nucléaire.

1999 Année de césure au niveau Master of Science à l’Université de Texas A&M, College Station, États-Unis.

Expérience professionnelle et mobilité géographique

12/14-02/15 Mission de 3 mois au Chili dans le cadre du projet ANR JCJC MIXMOD-E. Campagne de validation commune avec l’Universidad de Chile.

10/12-présent CR1 CNRS au CESBIO. Suivi des ressources en eau par télédétection multi-capteur.

10/08-10/12 CR2 CNRS au CESBIO. Suivi des ressources en eau par télédétection multi-capteur.

05/08-08/08 Stage postdoctoral au CESBIO. Désagrégation des données de température de surface.
01/06-03/08 Stage postdoctoral au département de Civil & Environmental Engineering, Université de Melbourne, Australie. Projet de l’Australian Research Council (ARC). *National Airborne Field Experiment : cartographie de l’humidité des sols à haute résolution spatiale*.

09/02-12/05 Thèse BDI CNRS/CNES au CESBIO. *Synergie des observations multi-spectrales : applications en hydrologie*.

09/03-06/05 Enseignements de 1ère année universitaire en physique et mathématiques.

09/01-07/02 Ingénieur CDD au CESBIO. *Traitement des données SMMR et SSMI pour l’étude de la neige à l’échelle globale : dates d’apparition et de fonte, hauteur de neige*.

02/01-08/01 Projet de fin d’études au CESBIO. *Estimation des flux de surface à partir de données bi-directionnelles dans l’infra-rouge thermique*.

08/99-06/00 Projet de Master of Science à l’Université de Texas A&M, Etats-Unis. *Analyse des doses reçues par le personnel navigant des compagnies aériennes*.

Animation et coordination scientifique

Partenariat, Collaborations

Mes collaborations aux échelles nationale et internationale s’articulent autour de trois activités :

- le développement et la validation de produits satellitaires d’humidité du sol. La méthodologie DIS-PATCH (DISaggregation based on Physical And Theoretical scale CHange) et son produit d’humidité à 1 km de résolution sont utilisés par les équipes de l’Université de Monash en Australie, l’UCAM au Maroc, l’entreprise isardSAT et l’Observatoire de Terres de l’Ebre en Espagne, l’Université de Sherbrooke au Canada et l’Université de Ghent en Belgique. Les expériences de Cal/val en Australie tirent parti d’une collaboration entre l’Université de Monash, le Commonwealth Scientific and Industrial Research Organisation (CSIRO), la NASA, l’U.S. Department of Agriculture (USDA), le Massachusetts Institute of Technology (MIT), l’University Amsterdam et le CESBIO.

- le développement et la validation de modèles de l’évapotranspiration. Les modèles SEB-1S et SEB-4S (Bilan d’Energie de la Surface à 1 et 4 sources), les techniques associées de désagrégation de données de température de surface et leurs versions améliorées sont issus de nombreuses collaborations nationales et internationales avec l’Instituto Tecnologico de Sonora au Mexique et l’expérience Yaqui du chantier MedMex (Modélisation Et Données Multi-sources pour la gestion des EauX en zone aride), les UMR LISAH à Montpellier et EMMAH à Avignon, l’UCAM au Maroc et l’Université du Chili.

Contrats de recherche

- **Programme Européen H2020**
 Co-porteur du projet REC “Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact – a multi-sensor remote sensing approach” (2015-2019, 896 k€ dont ∼230 k€ pour le CESBIO et ∼240 k€ pour l’UCAM via le LMI TREMA). REC propose le développement d’un algorithme opérationnel innovant qui permettra 1) de cartographier quotidiennement l’humidité dans la zone racinaire à l’échelle de la parcelle agricole et 2) de quantifier les différents composants du bilan d’eau de la parcelle à partir des données de télédétection multi-capteur (Sentinel-1,2, Landsat, MODIS et SMOS).

- **Programme de l’ESA Data User Element – Innovators III**

- **Programme du CNRST Marocain**
• **Programme TOSCA du CNES**
 Membre du projet EVASPA.v3.0 “EVapotranspiration Assessment from SPAce version 3.0” (2015, \sim 15 k€ pour le CESBIO). Cette proposition s’inscrit dans le cadre de la phase A de la mission THIRSTY. L’objectif est de construire la version 3.0 du logiciel EVAPSPA de calcul de l’évapotranspiration réelle basée sur les données infrarouge thermique. Cette version doit être modulaire et intégrer les derniers développements (dont le modèle SEB-4S).

• **Programme de l’Australian Research Council (ARC)**

• **Programme de l’ANR JCJC**

• **Programme National de Télédétection Spatiale (PNTS)**

• **Programme de l’ESA Science Support to Earth Explorers**
 Membre du projet SMOS + Hydrology Study (2011-2013, 300 k€). Cette étude met en œuvre un système d’assimilation original des données SMOS (température de brillance observée ou humidité inversée) dans le modèle VIC (Variable Infiltration Capacity) couplé à un schéma de routage. L’objectif est de tester le potentiel des produits SMOS pour la prévision des crues sur le bassin du Mississippi aux États-Unis et le bassin du Murray Darling en Australie.

• **Programme du FEDER**
 Membre du projet “SMOScat : Monitorització de la humitat del sòl amb resolució augmentada a partir de dades del satèl·lit SMOS” (2010-2012, 300 k€, dont 30 k€ pour le CESBIO). L’objectif scientifique est de fournir des cartes d’humidité du sol à une résolution spatiale et temporelle adéquate 1) au développement des stratégies agricoles, 2) à la gestion des ressources en eau et 3) à la prévision d’événements météorologiques extrêmes (inondations, incendies) à partir des données SMOS.
Activités dans le domaine de la gestion et de l’évaluation de la recherche

- Coordination du projet ANR MIXMOD-E (10 co-proposants du CESBIO, une dizaine de participants extérieurs en Espagne, Maroc, Chili, Etats-Unis, Royaume Uni et Australie) et du projet H2020 REC (10 co-proposants du CESBIO).

- Administration par intérim du LMI TREMA sur la période de 09/2014 à 10/2015.

- Membre (jusqu’à 10/2013) de la commission documentation de l’Observatoire Midi Pyrénées qui a pour missions de définir les acquisitions en livres et périodiques, de faire le relais entre les utilisateurs, les directeurs d’Unité et la bibliothèque et d’améliorer le dialogue entre les tutelles sur la question des ressources électroniques.

Information et communication

Acteur dans le documentaire « Berbères des cimes » (B. Cédat, 53 min.)

Formation à et pour la recherche

Thèses

- Directeur de la thèse de Yoann Malbétateau (2013-2016, allocation ministérielle, dérogation d’encadrement accordé par l’école doctorale SDU2E) intitulée “Suivi des ressources en eau par une approche combinant la télédétection multi-capteur et la modélisation phénoménologique”.

Publications co-signées correspondantes :

Communications co-signées correspondantes (* = avec actes) :

4) Merlin O., C. Mattar, L. Olivera, C. Duran, A. Santamaria, V. Stefan, and Y. Malbétateau, New remote sensing tools for water resource management in irrigated areas, CONICYT Workshop, Universidad de Chile, Santiago, Chile, Jan. 2015.

- Co-directeur (Directeur Yann Kerr) et encadrant principal (80%) de la thèse de Vivien Stefan (2013-2016, ANR MIXMOD-E) intitulée “Régionalisation et suivi multi-échelle de l’évaporation du sol à partir des données disponibles et d’une approche de modélisation mixte”.

—Invited
Publications co-signées correspondantes :

Communications co-signées correspondantes (* = avec actes) :

1) **Stefan V.**, S. Mangiarotti, **O. Merlin**, André Chanzy, Global modeling of Soil Evaporative Efficiency for a range of soil types, Statistical and mathematical tools for the study of climate extremes, Cargèse, Corsica, France, 9-13th November 2015.

3) **Merlin O.**, C. Mattar, L. Olivera, C. Duran, A. Santamaria, **V. Stefan**, and Y. Malbèteau, New remote sensing tools for water resource management in irrigated areas, CONICYT Workshop, Universidad de Chile, Santiago, Chile, Jan. 2015.

Co-encadrant (10% + suivi à distance) de la thèse de Najib Djamai (Directrice Ramata Magagi de l’Université de Sherbrooke, Canada) durant un stage de 04/13 à 07/13 intitulé “Développement d’une méthode de désagrégation de l’humidité du sol estimée à partir du satellite SMOS”.

Publications co-signées correspondantes :

Communications co-signées correspondantes (* = avec actes) :

Co-directeur (50%) de la thèse d’Abdelhakim Amazirh (Directeur Salah Er-Raki de l’UCAM, 2016-2018) intitulée “Suivi de l’humidité en zone racinaire par modélisation des flux de surface et télédétection multi-spectrale (thermique, micro-ondes et courtes longueurs d’ondes)”.

Invited
Publication co-signée correspondante :

Communications co-signées correspondantes :

Communication co-signée correspondante :

Ingénieurs CDD

– Co-encadrant (50%) du travail de Luis Olivera-Guerra (Directeur Cristian Mattar, Université du Chili) durant un stage du 11/14 au 02/15 intitulé “Évaluation des flux d’eau et d’énergie à partir des mesures lysimétriques et météorologiques sur une culture en rang pour des applications en télédétection” (Université du Chili, IRD Chili, ANR MIXMOD-E) et un stage du 05/15 au 06/15 intitulé “Télédétection de la fraction évaporative à partir de la température et de l’albédo de surface dans des conditions de surface variées” (LMI TREMA, ANR MIXMOD-E).

Publications co-signées correspondantes :

Communications co-signées correspondantes (* = avec actes) :

3) Merlin O., C. Mattar, L. Olivera, C. Duran, A. Santamaria, V. Stefan, and Y. Malbêteau, New remote sensing tools for water resource management in irrigated areas, CONICYT Workshop, Universidad de Chile, Santiago, Chile, Jan. 2015.

– Encadrant principal (80%) du travail de Beatriz Molero (Directeur Yann Kerr) portant sur l’“Implémentation au CATDS d’un produit DISPATCH à 1 km de résolution et le développement de l’interface d’entrée de DISPATCH à 100 m de résolution” (10/13-10/14, TOSCA).

Publications co-signées correspondantes :

Communications co-signées correspondantes:* avec actes*:

Stages de Master ou Projets de fin d'études

- Abdelhakim Amazirh, “Modélisation de l’humidité en zone racinaire à partir des différents flux de surface observés et simulés”, Master Energetique et Environnement, EnEnv, Université Cadi Ayyad, Faculté des Sciences Semlalia, co-encadrement avec Saïd Khabba, LMI TREMA, mars-juin 2015.

Publication co-signée correspondante :

- Stefan Bacon, “Automatisation de la récupération et la conversion des données satellites pour les entrées DISPATCH”, M1 Intelligence Artificielle et Reconnaissance des Formes, UPS, CESBIO, mars-juin 2013.
Publications co-signées correspondantes :

Publications

Articles soumis

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

Communications

(invitées dans des congrès) ..

\includepdf[pages={2}]{document.pdf}

(à des congrès, symposiums) ...

51) Tomer S. K., Al Bitar A., Sekhar M., Merlin O., Bandyopadhyay S. and Kerr Y., Synergy between passive (SMOS) and active (RADARSAT-2) microwave soil moisture over Berambadi, India, EGU General Assembly, Vienna, Austria, Apr. 2013.

(lors de séminaires, workshops)

77) Merlin O., C. Mattar, L. Olivera, C. Duran, A. Santamaria, V. Stefan, and Y. Malbêteau, New remote sensing tools for water resource management in irrigated areas, CONICYT Workshop, Universidad de Chile, Santiago, Chile, Jan. 2015.

Chapitre 1

Introduction

Sommaire

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Avant propos</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Contexte</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Télédétection de l’humidité du sol</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Modélisations hydrologiques en lien avec la télédétection</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Mes recherches au sein du CESBIO</td>
<td>4</td>
</tr>
</tbody>
</table>

1.1 Avant propos

Mes recherches en télédétection et hydrologie ont largement porté sur les méthodes de désagrégation de données. La désagrégation est l’art d’améliorer la résolution spatiale des données satellitaires disponibles en prenant soin de conserver une incertitude satisfaisante à la résolution ciblée. J’ai développé l’une des premières approches de désagrégation des données d’humidité du sol dans le contexte de la mission SMOS. Cette méthode se base sur un lien spatial entre l’humidité du sol inversée des données micro-ondes à basse résolution, et l’évaporation du sol dérivée du thermique observé à plus haute résolution. La nature physique de la désagrégation, notamment via la modélisation de l’évaporation du sol, est une source d’améliorations de la méthode.

C’est avec un modèle SVAT que j’ai commencé à formaliser un lien multi-échelle entre l’humidité et l’évaporation du sol. Les SVATs simulent les transferts de masse (eau, carbone, etc.) et d’énergie (sous les formes radiative, convective, évaporative et conductive) entre le sol, la végétation et l’atmosphère. Ces modèles sont dits “complexes” parce qu’ils possèdent de nombreux paramètres, “physiques” puisque la majorité de leurs paramètres sont mesurables, et “intégrés” comme ils couplent un maximum de processus. En intégrant l’ensemble des processus et flux de surface, la modélisation SVAT capitalise nos connaissances sur les surfaces continentales et les interactions surface-atmosphère.

 Avec mon parcours de “télédécteur”, le premier processus que j’ai modélisé est l’évaporation du sol. Ce n’est pas un hasard car l’évaporation est l’un des processus de surface les mieux contraints par les variables issues de la télédétection dont l’humidité du sol en surface, la température de surface et la couverture végétale. Or la modélisation de l’évaporation du sol dans les SVATs est généralement de nature empirique. Fort de ce constat, mes recherches se sont progressivement orientées vers des modélisations qui nécessitent moins de paramètres et qui sont plus directement liées aux observations disponibles. Je qualifie ces modélisations de descendantes par analogie avec certaines approches de modélisation en hydrologie.

La notion de modélisation descendante a souvent été utilisée en hydrologie lorsqu’il s’agit de construire des modèles dont la nature permet des procédures de calibration univoques à partir des observations disponibles. Je me suis appuyé sur ce concept pour assurer un meilleur couplage entre observations satellitaires et modélisations de certains processus hydrologiques. Avec le recul de ces années d’après thèse (2005-2015), j’identifie une ligne directrice de mon parcours scientifique comme étant la modélisation descendante des processus hydrologiques en lien avec les observations satellitaires disponibles.

Ce mémoire pour l’obtention du diplôme d’habilitation à diriger des recherches est structuré en quatre chapitres. Le premier chapitre introduit le contexte et le cheminement scientifique de mes recherches. Le
chapitre fait une synthèse de mes travaux sur la désagrégation des données d’humidité du sol et de température de surface, en lien avec la modélisation hydrologique. Le troisième chapitre présente plusieurs approches de modélisation descendante de l’évaporation du sol et de l’évapotranspiration, en lien avec les données de télédétection. Enfin, le quatrième chapitre ouvre des perspectives nouvelles à ces travaux en proposant une synergie entre désagrégation de données et modélisations hydrologiques, en montrant le caractère générique de l’approche descendante et en identifiant une synergie possible avec la modélisation physique et intégrée des surfaces continentales.

Je souhaite que cette habilitation me permette de continuer à explorer –et de faire découvrir à de jeunes chercheurs par mes encadrements– les capacités étonnantes et prometteuses des approches descendantes en télédétection et hydrologie.

1.2 Contexte

L’humanité consomme globalement 4 000 km3 d’eau par an, ce qui représente environ 10% des ressources en eau douce mobilisables dans le monde (Oki and Kanae, 2006). Bien que la consommation humaine soit très inférieure au volume d’eau disponible, plus de 2 milliards de personnes vivent dans des zones de pénurie en eau du fait d’une distribution inégale de la ressource dans l’espace et dans le temps. Les ressources sont donc limitées et l’augmentation de la population a une influence notable sur la disponibilité en eau (Vörösmarty et al., 2000). L’agriculture en particulier est très consommatrice en eau, ce qui rend critique la relation entre disponibilité en eau et production agricole pour une population en croissance continue. La problématique des ressources actuelles et de son évolution future est particulièrement sévère dans les pays du pourtour Méditerranéen où l’irrigation représente jusqu’à 80-90% de l’eau mobilisée (FAO, 2015). Ces pays disposent seulement d’1% des ressources en eau douce du globe, tandis qu’ils rassemblent plus de la moitié de la population “pauvre en eau”, c’est-à-dire disposant en moyenne de moins de 1000 m3 par an et par habitant. Cette zone est aussi parmi les plus sensibles au changement climatique (Stocker et al., 2014). Selon les projections de l’IPCC, la situation de pénurie des pays Méditerranéens pourrait être accentuée par une diminution de la pluviométrie impliquant une réduction de la productivité de l’agriculture pluviale de 50% à l’horizon 2020 (Bates et al., 2008).

Afin de comprendre les effets des changements et de mettre en place des mesures d’adaptation à ces changements, l’hydrologie et la gestion des ressources en eau sont deux disciplines complémentaires et intrinsèquement liées. Les hydrologues s’intéressent aux effets des changements naturels et induits par les activités humaines sur les précipitations, le ruissellement, l’humidité du sol et les statistiques de disponibilité en eau. Les gestionnaires de la ressource sont concernés par les effets de ces changements sur l’approvisionnement en eau d’une région, la planification et la gestion des ouvrages hydrauliques pour les différents usages de l’eau (agriculture, hydro-électricité, industrie, villes, etc.). De plus, l’eau est une ressource qui est constamment renouvelée via le cycle hydrologique. Si les réservoirs naturels et artificiels peuvent aider à augmenter les capacités de mobilisation, ce sont les flux entre les différents composants du cycle qui sont au centre à la fois du suivi hydrologique des surfaces et de la gestion de la ressource. Le suivi des ressources en eau passe donc par une représentation ou modélisation des flux hydrologiques : l’infiltration dans le sol, l’évapotranspiration à l’interface surface-atmosphère et les écoulements de surface et souterrains.

1.3. Télédétection de l’humidité du sol

Parmi les données disponibles à grande échelle, la télédétection occupe une place singulière car seules les observations satellites sont capables de fournir des mesures intégrées à l’échelle du support (résolution de grille) et du domaine (global) d’application des modèles. De plus, la télédétection multi-capteur offre des données multi-résolution, ce qui est un atout considérable en hydrologie. Une question souvent posée est la spatialisation des modèles à des échelles multiples. Par exemple, la consommation des cultures est évaluée à l’échelle de la parcelle agricole, les écoulements de surface sont estimés à l’échelle d’un bassin versant et la circulation atmosphérique est conditionnée par les flux de surface à la méso-échelle. La recherche en télédétection et hydrologie apparaît donc comme un enjeu majeur pour le suivi des ressources en eau. Une expertise en télédétection est nécessaire pour définir des stratégies de couplage de ces données avec les modèles hydrologiques, voire de modéliser les processus hydrologiques à partir des observations satellites. Et réciproquement, une compréhension spatialisée des processus hydrologiques peut permettre d’améliorer les jeux de données globaux issus de la télédétection.

1.3 Télédétection de l’humidité du sol

L’humidité du sol en surface (SSM) contrôle le partage des eaux de pluie en évaporation, infiltration et ruissellement : elle représente donc une variable cruciale en hydrologie. Par télédétection il possible d’estimer la SSM sur les premiers centimètres du sol avec une répétitivité de quelques jours. De nombreuses bandes du spectre électromagnétique sont sensibles aux variations de SSM. Néanmoins, la technique la plus prometteuse se base sur l’observation dans le domaine des micro-ondes (MO). Les MO ne sont pas significativement affectées par les conditions atmosphériques et les faibles fréquences, en particulier, sont fortement liées au contenu en eau dans les premiers centimètres du sol et dans les végétaux (Schmugge et al., 2002). Il existe deux techniques d’observation MO très différentes : les techniques actives et passives. Les observations actives ou radar sont obtenues par l’émission d’une impulsion d’énergie MO et la mesure de l’intensité du signal rétrodiffusé par la surface visée. Cette intensité est directement reliée aux conditions de surface dont le contenu en eau du sol et de la végétation et la rugosité de surface. Les radiomètres MO sont des capteurs passifs qui mesurent le rayonnement MO naturellement émis par les surfaces terrestres. L’absorption d’énergie MO due à la présence d’eau se traduit par la possibilité d’inverser la SSM à l’aide de modèles de transfert radiatif.

La résolution des observations MO varie entre quelques dizaines de mètres pour les radars à quelques dizaines de kilomètres pour les radiomètres. Les signaux radar ont une intensité beaucoup plus grande que l’énergie MO émises par les surfaces terrestres ce qui, en termes de sensibilité instrumentale, permet d’atteindre des résolutions spatiales beaucoup plus fines. La mission Sentinel-1 de l’ESA, par exemple, opère en bande C (5.4 GHz) avec un radar à synthèse d’ouverture (SAR) capable de résoudre une taille de pixel de 10 m environ (Torres et al., 2012). L’inconvénient est qu’il n’existe pas actuellement de produit opérationnel de la SSM issu de ce type de données. Bien que les radars aient un potentiel pour le suivi de la SSM (Balenzano et al., 2011), l’impact de la couverture végétale, de sa structure et de la rugosité du sol sur le signal de rétrodiffusion reste difficile à modéliser à haute résolution spatiale sur des zones étendues (Satalino et al., 2014). Ainsi, les approches radar à haute résolution spatiale se basent classiquement sur des calibrations spéciﬁques pour chaque site (Zribi et al., 2011). Toutefois, l’impact des effets perturbateurs sur les données MO actives diminue avec la résolution d’observation, ce qui permet d’estimer la SSM à partir des diffusionomètres en bande C de type ASCAT (Advanced SCATterometer, Nacimi et al. 2009) avec une résolution spatiale de 50 km.

La majorité des jeux de données de SSM disponibles à l’échelle globale sont issus des radiomètres MO de type AMSR-E (Advanced Microwave Scanning Radiometer-EOS, Njoku et al. 2003) en bande C et SMOS (Soil Moisture and Ocean Salinity, Kerr et al. 2010) et SMAP (Soil Moisture Active and Passive Entekhabi et al. 2010) en bande L (1.4 GHz). Une difficulté est que la radiométrie MO nécessite une grande antenne pour détecter les signaux avec une sensibilité suffisante. Or la taille des antennes qu’il est possible d’embarquer à bord des lanceurs est réduite, limitant actuellement la résolution des données bande L à environ 40 km. La résolution spatiale des données de SSM est donc peu adaptée voire incompatible avec de nombreuses applications comme la gestion des bassins versants, la prévision des risques d’inondation, la gestion de l’irrigation et la prévision des rendements. Dans ce contexte, des approches de désagrégation des données SMOS sont développées pour améliorer leur résolution spatiale (Merlin et al., 2013a; Piles et al., 2014). Une synthèse des méthodes de désagrégation de la SSM est proposée dans le Chapitre 2 de ce mémoire.
1.4 Modélisations hydrologiques en lien avec la télédétection

Le suivi hydrologique des surfaces continentales repose sur des modèles capables de prédire les flux d’eau dans l’espace et dans le temps. Ces modèles peuvent être de natures différentes. Un modèle est qualifié d’“empirique” lorsqu’il est issu de l’expérience (par exemple un modèle pluie-débit) et de “physique” lorsqu’il est conçu à partir de lois physiques (par ex l’équation de Darcy-Richards). A cause de la très grande hétérogénéité des surfaces continentales, la mise en œuvre des lois physiques nécessite généralement une discrétisation fine de l’espace et du temps (Or et al., 2013). A l’inverse, un modèle empirique ne se base que sur les observations disponibles (Yapo et al., 1996). On distingue ainsi deux approches de modélisation : une “ascendante discrétisée” et l’autre “descendante globale” (Sivapalan et al., 2003). La première approche discrétise le milieu en éléments assez fins de manière à représenter leurs interactions -flux de matières et d’énergie- à partir des équations de la physique de base. La seconde vise à modéliser un phénomène -évaporation, infiltration et ruissellement- à partir des observations disponibles, en cohérence avec les lois fondamentales, mais sans pour autant être nécessairement issue d’une simplification de ces lois.

L’implémentation de modèles, de plus en plus complexes et fonctionnant à des résolutions de plus en plus fines, est rendue possible grâce à la puissance de calcul croissante (Wood et al., 2011). Cependant, il est important de garder à l’esprit que la modélisation discrétisée nécessite un grand jeu de paramètres d’entrée qu’il est aujourd’hui impossible de renseigner avec une précision connue (Beven and Cloke, 2012). En particulier, si les données de terrain fournissent des mesures précises et quasi exhaustives des flux d’eau dans le sol et à l’interface surface-atmosphère, elles ne sont souvent représentatives que d’une petite zone de quelques cm² à plusieurs ha. Ainsi, la calibration d’un modèle discrétisé suppose une certaine uniformité des propriétés du milieu, ou du moins, elle se base sur une interpolation voire une extrapolation (empirique) des mesures en situ localisées.

La télédétection multi-capteur est riche en information puisque de nombreuses variables biophysiques peuvent être extraites dans les diverses bandes ou domaines spectraux. Schématiquement, la couverture de végétation et l’albédo sont observés dans les bandes visible (VIS) et proche infrarouge (PIR) des capteurs de type MODIS (MODerate resolution Imaging Spectroradiometer), Landsat et Sentinel-2, la température de surface (LST) dans les bandes infrarouge thermique (IRT) des capteurs MODIS, Landsat et ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer), et la SSM dans les basses fréquences MO des capteurs de type AMSR-E, SMOS et SMAP. Toutefois, si le jeu de variables accessibles par télédétection est comparé à la quantité d’information nécessaire pour spatialiser un modèle physique intégrant l’ensemble des transferts d’eau dans le sol et à l’interface surface-atmosphère, la modélisation ascendante reste largement sous-conditionnée par les observations spatiales. À titre d’exemple, la profondeur de pénétration est inférieure à 1 mm dans l’optique et de l’ordre de quelques cm dans les MO. On observe donc en général qu’une spatialisation réelle de processus hydrologiques ne peut être réalisée qu’à partir de modèles descendants contrôlés par un petit jeu de paramètres.

Un défi actuel pour la communauté hydrologique est de représenter l’hétérogénéité des surfaces à l’aide de la télédétection. Tandis que de nombreuses équipes de recherche implémentent à grande échelle des modèles discrétisés largement surparamétrés, peu d’études visent à estimer des paramètres hydrologiques directement et essentiellement par télédétection. Dans ce contexte, la modélisation descendante apparaît comme un outil intéressant du point de vue de la spatialisation des processus, peu exploitée et complémentaire à l’approche ascendante. Plusieurs modèles descendants de l’évapotranspiration et de l’évaporation du sol sont présentés dans le Chapitre 3 de ce mémoire.

1.5 Mes recherches au sein du CESBIO

1.5. MES RECHERCHES AU SEIN DU CESBIO

intermédiaire 3D. Les modèles 1D ont pour but de représenter et prédire de manière mécaniste la réponse des écosystèmes (flux d’eau et de carbone) aux contraintes climatiques et anthropiques en utilisant des formulations orientées processus et des observations in situ des projets SudOuest et SudMed. Les modèles 2D à l’échelle régionale ont pour but de coupler les données de télédétection multi-capteur avec la modélisation de surface en inversant des paramètres biophysiques (à partir de modèles de transfert radiatif), en assimilant des observations de télédétection dans les modèles de surface et en résolvant les problèmes d’échelle par des méthodes d’agrégation et de désagrégation. Les modèles 3D à l’échelle intermédiaire ont pour but d’incorporer les processus dominants qui contribuent au fonctionnement des surfaces avec un focus sur le rayonnement dans le domaine optique. Selon cette structuration, la complexité des approches de modélisation (SVAT, bilan d’énergie, rayonnement, modèles de rendement des cultures, etc.) représente un compromis entre recherche et applications. Dans le projet ANR MIXMOD-E (2013-2017) que je coordonne, les approches de modélisation ascendantes/mécanistes (1D) et descendantes/basées sur la télédétection (2D) sont combinées pour améliorer potentiellement la régionalisation des deux types de modèles 1D et 2D. Au delà d’une simple comparaison entre les modèles 1D et 2D, le point d’articulation de la synergie entre les modèles 1D et 2D dans cette proposition est la régionalisation physique de l’évaporation du sol en utilisant les données disponibles in situ et par télédétection. En outre, le modèle DART 3D est utilisé en entrée des modèles, ce qui étend la synergie aux modèles 1D, 2D et 3D.

CHAPITRE 1. INTRODUCTION
Chapitre 2

Désagrégation à base physique de données spatiales

Sommaire

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Désagrégation des données d’humidité du sol</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Méthodes basées sur les données optiques</td>
<td>8</td>
</tr>
<tr>
<td>2.2.2 DISPATCH : chronologie d’une méthode à base physique</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3 Produit CATDS</td>
<td>16</td>
</tr>
<tr>
<td>2.2.4 Applications</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Désagrégation des données de température de surface</td>
<td>20</td>
</tr>
<tr>
<td>2.3.1 Désagrégation basée sur le NDVI</td>
<td>20</td>
</tr>
<tr>
<td>2.3.2 Intégration d’autres variables</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Evaluation des méthodes de désagrégation</td>
<td>26</td>
</tr>
<tr>
<td>2.4.1 Stratégies de validation</td>
<td>26</td>
</tr>
<tr>
<td>2.4.2 Campagnes de mesures extensives</td>
<td>29</td>
</tr>
<tr>
<td>2.5 Résumé et conclusions</td>
<td>30</td>
</tr>
</tbody>
</table>

2.1 Introduction

Certaines variables extraites par télédétection sont potentiellement très utiles pour calibrer, forcer ou contraindre dans le temps les modèles de surface. C’est le cas de l’humidité du sol en surface (SSM) qui contrôle la partition des précipitations en évaporation du sol, infiltration et ruissellement de surface. C’est aussi le cas de la température de surface (LST) qui, en première approximation, est linéairement liée aux flux turbulents convectif et evaporatif de la surface. De plus, la LST est une variable intégratrice des états de surface et révélatrice du bilan couplé d’eau et d’énergie. Pourtant, la résolution spatiale des observations de SSM et LST n’est pas toujours compatible avec l’échelle d’application des modèles. Pour des applications hydrologiques (gestion des ressources, prévision des risques d’inondation) et des applications agronomiques (gestion de l’irrigation, prévision des rendements), la désagrégation apparaît comme un moyen d’améliorer la résolution spatiale des données disponibles. Ce chapitre décrit dans leur contexte les différentes méthodes de désagrégation des données SSM et LST que j’ai développées ces 10 dernières années.

2.2 Désagrégation des données d’humidité du sol

Les radiomètres micro-ondes (MO) embarqués sur les satellites héliosynchrones ont une résolution spatiale d’au moins plusieurs dizaines de kilomètres. Plus spécifiquement la SSM inversée des données AMSR-E (Advanced Microwave Scanning Radiometer-EOS; Njoku et al., 2003) en bande C et des données
SMOS (Soil Moisture and Ocean Salinity; Kerr et al., 2010) en bande L ont une résolution spatiale d’environ 50 et 40 km, respectivement. SMAP (Soil Moisture Active and Passive; Entekhabi et al., 2010) est une nouvelle mission en bande L lancée en 2015. Elle combine les observations MO actives (3 km de résolution) et passives (40 km de résolution) pour fournir un produit de SSM à 9 km de résolution. Parallèlement la résolution spatiale des données optiques couvre une très large gamme, de quelques dizaines de mètres pour Landsat et ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) à 1 km pour MODIS (MODerate resolution Imaging Spectroradiometer) et plusieurs km pour les capteurs embarqués sur des satellites géostationnaires. Bien que les capteurs optiques aient un potentiel pour détecter les variations de SSM, leur sensibilité à d’autres facteurs environnementaux comme les conditions météorologiques et la couverture végétale, rend l’estimation directe difficile. Néanmoins, la synergie entre les données MO à basse résolution et les données optiques à haute résolution (Zhan et al., 2002) est susceptible de favoriser le développement de produits de SSM à des résolutions améliorées.

2.2.1 Méthodes basées sur les données optiques

Les méthodes qui combinent les données MO et optiques pour estimer la SSM à haute résolution spatiale sont généralement basées sur l’approche du triangle (Carlson et al., 1994) ou du trapézoïde (Moran et al., 1994). Toutes les deux relient de manière similaire les variations de la LST aux variations de SSM et de la couverture végétale (Carlson, 2007; Petropoulos et al., 2009). Dans l’approche du trapézoïde cependant, la fraction de végétation stressée, c’est à dire soumise à un déficit d’eau en zone racinaire, est ajoutée comme troisième variable explicative des variations de la LST. Une température de végétation qui s’élève au dessus de la température d’une végétation bien irriguée peut s’expliquer par la présence de stress hydrique.

En regroupant les méthodes basées sur le triangle et le trapézoïde, nous distinguons deux types d’approche selon la nature purement empirique (régression polynomiale de Chauhan et al., 2003) ou semi-physique (basée sur l’évaporation, Merlin et al., 2008) de l’équation de changement d’échelle. La régression polynomiale consiste à 1) exprimer la SSM comme une fonction polynomiale des variables dérivées de l’optique (LST, indice de végétation, albédo de surface) à haute résolution spatiale, 2) appliquer l’expression polynomiale à basse résolution pour ajuster les coefficients du polynôme et 3) appliquer à haute résolution le polynôme précédemment calibré à basse résolution.

On remarque que l’approche de régression polynomiale (Chauhan et al., 2003; Hemakumara et al., 2004; Hossein and Easson, Jul. 2008) est davantage une approche de fusion ou de combinaison des données MO et optiques qu’une méthode de désagrégation car la loi de conservation de SSM à basse résolution n’est en général pas satisfaite. A cause de la nature non linéaire de la fonction polynomiale, la moyenne à basse résolution de la SSM estimée à haute résolution n’est pas égale à la SSM observée à basse résolution. Il existe une ambiguïté à ce sujet dans la bibliographie car les méthodes polynomiales sont généralement assimilées aux méthodes de désagrégation.

Les approches de désagrégation de SSM basées sur l’évaporation utilisent les mêmes variables dérivées de l’optique que les méthodes polynomiales. Cependant, elles établissent physiquement un lien spatial entre l’efficacité évaporative (rapport de l’évaporation réelle sur l’évaporation potentielle) et SSM. Il est ainsi possible d’utiliser d’autres variables impliquées dans le processus d’évaporation pour améliorer la relation spatio-temporelle entre l’efficacité évaporative dérivée des données optiques et SSM (Merlin et al., 2008b).

Piles et al. (2011) ont développé une méthode de régression polynomiale en combinant les données SMOS et MODIS pour fournir des données de SSM à 10 km et 1 km de résolution. Leur approche se base sur les travaux de Chauhan et al. (2003) à la différence près que l’albédo de surface (dérivé de l’optique à haute résolution dans Chauhan et al.) est remplacé dans la fonction polynomiale par la température de brillance (TB) observée à basse résolution par le radiomètre MO et sur-échantillonnée à haute résolution. La méthode de Piles et al. (2011) a été appliquée sur la zone l’expérience AACES (Australian Airborne Cal/Val Experiments for SMOS, Peischl et al., 2012) pendant la période de mise en service de SMOS. Les résultats montrent que la corrélation entre SSM SMOS et les mesures in situ est légèrement dégradée par la régression polynomiale.

Parallèlement aux méthodes polynomiales, Kim and Hogue (2012) ont développé une méthode (appelée UCLA) de désagrégation de SSM qui se base sur l’évaporation. L’approche est tirée d’une formulation de la fraction évaporative de Jiang et Islam (2003) et d’une équation linéaire de changement d’échelle entre la fraction évaporative et SSM. L’originalité de la méthode UCLA tient à la représentation à basse
résolution du status hydrique de la végétation, dans la définition d’un indice de SSM estimé à haute résolution (approche trapézoïdale). L’algorithme a été implémenté sur la zone de SMEX04 (Jackson et al., 2008) avec le produit AMSR-E de niveau 3 et les données MODIS. L’évaluation des résultats à partir de mesures terrain indique que les méthodes basées sur l’évaporation (Kim and Hogue, 2012; Merlin et al., 2008b) améliorent significativement la variabilité spatiale du produit AMSR-E.

Figure 2.1 – Illustration des données SMOS (à gauche) et des sorties DISPATCH (à droite) du 22 janvier 2011 sur une région du bassin du Murray Darling en Australie.

2.2.2 DISPATCH : chronologie d’une méthode à base physique

Je présente ici une chronologie de l’algorithme de désagrégation aujourd’hui appelé DISPATCH (Merlin et al., 2013a) et dont la première version a été publiée en 2005 (Merlin et al., 2005). DISPATCH signifie DIṣaggregation based on Physical And Theoretical scale CHange (Merlin et al., 2012a). La méthode est qualifiée de physique car elle se base sur le processus d’évaporation du sol pour établir un lien entre données optiques et MO. Elle est aussi qualifiée de théorique car le changement d’échelle s’appuie sur des outils mathématiques comme les dérivées partielles, les développements en série de Taylor et la technique de projection (définie plus bas). L’évolution de cette méthode depuis 2005 et sa maturation s’illustre bien par l’analyse de l’équation de changement d’échelle. Cette équation relie la SSM désagrégée à haute résolution (notée HR dans la suite) à la SSM observée à basse résolution (notée BR) et représente donc le coeur de la méthodologie.

Dans Merlin et al. (2005), l’équation de changement d’échelle s’écrit :

\[
θ_{HR} = θ_{BR} + f_1 \times (T_{s,HR} - T_{s,BR})
\]

(2.1)

avec \(θ_{HR}\) la SSM désagrégée à HR, \(θ_{BR}\) la SSM observée à BR (typiquement 40 km avec SMOS), \(T_{s,HR}\) la température du sol estimée à HR avec les données optiques, \(T_{s,BR}\) sa valeur moyenne au sein du pixel BR et \(f_1\) un paramètre à estimer à BR. On remarque un trait horizontal sur la variable \(T_s\) dans l’équation (2.1). Ce trait symbolise la projection de \(T_s\) dans un espace où cette variable est une fonction univoque de SSM. Autrement dit, la température du sol projetée \(\overline{T_s}\) est corrigée des effets de variables autres que SSM, pour considérer que \(\overline{T_s}\) ne dépend que de SSM. En pratique, la projection fait intervenir un bilan d’énergie que l’on fait tourner à HR en forçant la SSM à \(θ_{HR}\) et les autres variables (forçage météorologique) ou
paramètres (propriétés du sol) à leur valeur estimée à HR ou BR. Formellement, la projection d’une variable \(X\), fonction de SSM et d’autres variables \(Y\) et \(Z\) peut être généralisée avec l’équation suivante :

\[
\overline{X_{HR}} = X_{HR} - \left[X_{sim}(\theta_{HR}, Y_{HR}, Z_{HR}) - X_{sim}(\theta_{HR}, Y_{BR}, Z_{BR}) \right]
\]

avec \(X_{sim}\) un modèle de \(X\) fonction de SSM, \(Y\) et \(Z\).

En supposant que le forçage météorologique et les propriétés de sol sont connues, il reste à estimer le paramètre \(f_1\). Dans Merlin et al. (2005), nous exploitons l’information angulaire des TBs de la configuration d’observation SMOS pour inverser directement \(f_1\) à BR. Il s’agit de trouver la valeur de \(f_1\) qui minimise la différence entre les TBs simulées à HR (à partir de \(\theta_{HR}\)) puis agrégées à BR et les TBs observées à BR. Cette procédure a été validée dans Merlin et al. (2006a) à partir des TBs angulaires de l’instrument aéroporté PBMR (Push Broom Microwave Radiometer ; Schmugge et al., 1994) utilisé lors de l’expérience Monsoon’90 (Kustas and Goodrich, 1994).

Si l’estimation de \(f_1\) à partir des observations MO multi-angulaires est théoriquement valable, la procédure d’inversion est particulièrement sensible aux incertitudes sur les TBs. Or la modélisation du transfert radiatif (Mo et al., 1982; Brunfeldt and Ulaby, 1984) qui permet de relier la SSM aux TBs nécessite de nombreux paramètres tels que l’épaisseur optique de la végétation, la rugosité du sol et d’autres paramètres qui contrôlent la dépendance angulaire des TBs à ces paramètres. Par conséquent, l’information angulaire nécessaire pour inverser \(f_1\) risque d’être noyée dans les incertitudes du modèle de transfert radiatif liées aux erreurs sur les paramètres d’entrée. Il a donc fallu explorer une autre voie. Dans Merlin et al. (2008c), nous avons testé d’autres indicateurs de la SSM que \(T_s\) pour lesquels le paramètre \(f_1\) ne varie pas beaucoup dans le temps et/ou peut être estimé indirectement à partir d’autres sources d’information que SMOS.

Un premier indicateur de la SSM est la fraction évaporative de la surface notée \(EF\) et définie comme :

\[
EF = \frac{LE}{Rn - G}
\]

avec \(LE\) la chaleur latente (W m\(^{-2}\)), \(Rn\) le rayonnement net (W m\(^{-2}\)), \(G\) le flux de conduction dans le sol (W m\(^{-2}\)) et \((Rn - G)\) l’énergie disponible à la surface. Un deuxième indicateur est l’efficacité évaporative de la surface notée \(EE\) et définie comme :

\[
EE = \frac{LE}{LE_p}
\]

avec \(LE_p\) la chaleur latente potentielle (W m\(^{-2}\)), définie comme l’évapotranspiration de la surface dans des conditions optimales non stressées, c’est-à-dire pour une résistance de surface minimale. La raison pour laquelle nous avons choisi \(EF\) et \(EE\) comme indicateurs de la SSM est que ces deux rapports sont en général quasi constants durant la journée (Shuttleworth et al., 1989; Saito and Brutsaert, 1991; Crago and Brutsaert, 1996; Crago, 1996; Gentine et al., 2007). De plus, ils sont plus directement liés à la SSM (Kustas et al., 1993) et moins dépendants du rayonnement incident que l’évapotranspiration ou la LST (Nishida et al., 2003). Avec les deux nouveaux proxy, le paramètre \(f_1\) peut donc être supposé relativement constant dans le temps et la relation de changement d’échelle s’écrit (Merlin et al., 2008b) :

\[
\theta_{HR} = \theta_{BR} + f_1 \times (SMI_{HR} - SMI_{BR})
\]

avec SMI l’indicateur de SSM égal à \(EF\) ou \(EE\). De manière similaire à l’équation (2.1), le SMI est remplacé dans l’équation (2.5) par sa variable projectée notée SMI, c’est à dire corrigée des effets de la végétation à HR (relativement aux effets à BR) sur \(EF\) et \(EE\). Le paramètre \(f_1\) est calibré pendant une période d’entraînement à partir des mesures in situ de l’expérience Monsoon’90. La comparaison des proxy \(EF\) et \(EE\) indique que l’EE est plus directement liée à la SSM, en particulier pour les valeurs élevées de SSM. La variabilité diurne de \(EF\) due aux variations de rayonnement incident et d’humidité relative, semble expliquer la supériorité de l’approche de désagréation basée sur l’EE (Merlin et al., 2008c).

L’application du changement d’échelle avec l’EE comme proxy de SSM (Merlin et al., 2008c) nécessite 1) une estimation robuste de l’EE à partir des données optiques et 2) une méthode fiable de partition entre l’évaporation du sol (plus directement liée à la SSM) et la transpiration des plantes (plus directement liée à l’humidité du sol en zone racinaire). La direction qui a été prise dans Merlin et al. (2008b) est d’estimer l’efficacité évaporative du sol (SEE) définie par :

\[
SEE = \frac{LE_s}{LE_p}
\]
avec LE, l’évaporation du sol (W m\(^{-2}\)) et LE\(_{p}\), l’évaporation potentielle du sol (W m\(^{-2}\)) définie comme le LE pour un sol saturé d’eau. La SEE est estimée à HR en normalisant la \(T_{s,HR}\) dérivée des données optiques :

\[
\text{SEE}_{HR} = \frac{T_{s,\text{dry}} - T_{s,HR}}{T_{s,\text{dry}} - T_{s,wet}}
\]

(2.7)

avec \(T_{s,\text{dry}}\) (K) et \(T_{s,wet}\) (K) les températures extrêmes d’un sol nu pour les conditions \(\theta \sim 0\) et \(\theta = \theta_{sat}\) (humidité du sol à saturation), respectivement. Les températures extrêmes du sol nu peuvent être estimées en extrapolant les bord sec et humide de l’espace formé en traçant la LST en fonction du NDVI (Normalized Difference Vegetation Index). Ainsi, l’équation de changement d’échelle devient :

\[
\theta_{HR} = \theta_{BR} + \left(\frac{\partial \text{SEE}}{\partial \theta}\right)^{-1}_{BR} \times (\text{SEE}_{HR} - \text{SEE}_{BR})
\]

(2.8)

avec \((\partial \text{SEE}/\partial \theta)^{-1}\) l’inverse de la dérivée d’un modèle SEE(\(\theta\)) estimée à BR. Dans Merlin et al. (2008b), le modèle de SEE est celui de Komatsu (2003) :

\[
\text{SEE}(\theta) = 1 - \exp\left(- \frac{\theta}{\theta_C}\right)
\]

(2.9)

avec \(\theta_C\) un paramètre semi-empirique exprimé en fonction d’un paramètre de sol et de la résistance aérodynamique \(r_{ab}\) (s m\(^{-1}\)). Ce modèle a l’avantage de prendre en compte l’hétérogénéité des propriétés du sol et les variations de la \(r_{ab}\) au sein de la procédure de changement d’échelle. Cette version de la méthode a été validée à la résolution de 10 km partir des observations aéroportées de l’expérience NAFE’06 (National Airborne Field Experiment 2006, Merlin et al., 2008) en Australie.

Comme le modèle de Komatsu (2003) a été développé pour des couches très fines (quelques mm) de sol, nous avons aussi testé d’autres modèles de SEE théoriquement plus adaptés à la couche de sol (0-5 cm) observé par les radiomètres MO en bande L (Merlin et al., 2010a). En particulier, deux autres modèles semi-empiriques ont été identifiés. Un premier modèle est issu de Noilhan and Planton (1989) :

\[
\text{SEE}(\theta) = 0.5 - 0.5 \cos\left(- \frac{\pi \theta}{\theta_{fc}}\right)
\]

(2.10)

avec \(\theta_{fc}\) l’humidité du sol à capacité au champ et \(\theta\) l’humidité du sol sur la couche 0-1 cm. Un second modèle (Lee and Pielke, 1992) est basé sur la même fonction cosinus :

\[
\text{SEE}(\theta) = \left[0.5 - 0.5 \cos\left(- \frac{\pi \theta}{\theta_{fc}}\right)\right]^2
\]

(2.11)

avec \(\theta\) l’humidité du sol sur la couche 0-2 cm. La comparaison des trois modèles (équations 2.9-2.11) sur la zone de l’expérience NAFE’06 montre que l’algorithme de désagrégation est sensiblement plus précis avec un modèle de SEE basé sur la fonction cosinus, mais plus robuste avec le modèle exponentiel (Merlin et al., 2010a).

Une nouvelle équation de changement d’échelle est proposée en combinant les approches projective (Merlin et al., 2005) et dérivée (Merlin et al., 2008b) :

\[
\theta_{HR} = \theta_{BR} + \left(\frac{\partial \text{SEE}}{\partial \theta}\right)^{-1}_{BR} \times (\text{SEE}_{HR} - \text{SEE}_{BR})
\]

(2.12)

Pour des raisons d’applicabilité avec les données disponibles, l’équation de changement d’échelle utilisée dans la dernière version (2015) de DISPATCH est la (2.8). Une image DISPATCH à 1 km de résolution sur le bassin du Murrumbidgee en Australie est présentée sur la Figure 2.2. Les améliorations récentes
de la méthodologie concernent principalement l’estimation de la SEE à partir des données visible (VIS), proche infrarouge (PIR) et infrarouge thermique (IRT) qui comprend trois étapes : 1) la partition de la LST entre la température du sol et la température de végétation, 2) la correction des facteurs environnementaux autres que la couverture végétale et 3) l’expression de la SEE en fonction de la SSM.

Concernant la partition de la LST, une avancée significative a été réalisée dans Merlin et al. (2012a) en intégrant une approche dérivée de Moran et al. (1994). Il s’agit de séparer les températures de sol et de végétation en prenant compte trois paramètres : la couverture végétale, la SSM et le status hydrique de la végétation. Le problème de partition est complexe car il est sous-déterminé par l’ensemble des observables disponibles. Il manque en particulier une information à HR qui permettrait de découpler explicitement les flux d’évaporation et de transpiration : soit un paramètre de contrôle de l’évaporation du sol comme la SEE ou la SSM (ce que l’on cherche via la désagrégation de l’humidité SMOS), soit un paramètre de contrôle de la transpiration de la végétation tel que le niveau de stress, ou le déficit en eau, ou encore l’humidité en zone racinaire. Une solution à ce problème de sous-détermination consiste à borner les conditions physiquement acceptables des températures de chaque composant sol/végétation, grâce à une interprétation de l’espace formé par la LST et la couverture végétale dérivée du NDVI.

Pour illustrer cette approche de partition, la figure 2.3 représente l’espace LST-fraction de couvert pour des données ASTER à 90 m de résolution. L’espace est divisé en quatre sous-zones : les zones Évaporation et Transpiration où la LST est principalement contrôlée par l’évaporation du sol et la transpiration de la végétation, respectivement et les zones Mixte humide et Mixte sèche où la LST est contrôlée par l’évapotranspiration en condition relativement humide et sèche, respectivement. La distinction de ces quatre zones permet d’estimer dans chaque cas la température des composants sol et végétation, comme la moyenne des températures minimale et maximale acceptables, c’est à dire qui restent contenues dans l’enveloppe des points observés représentée par le polygone ABCD (Merlin et al., 2012a). Les températures minimale et maximale des composants sol/végétation sont extrapolées pour chaque point d’observation à partir des sommets du polygone et de la position du point observé, en faisant l’hypothèse d’une relation quasi linéaire entre la LST et la couverture végétale (Merlin and Chehbouni, 2004).

Figure 2.2 – SSM des produits SMOS niveau 3 et DISPATCH 1 km sur le bassin du Murrumbidgee en Australie, pour la date du 22 novembre 2010 (Malbétèau et al., 2016a). Les zones où les données DISPATCH ne sont pas disponibles (e.g. nuages) sont masquées sur les deux images.
2.2. DÉSAGRÉGATION DES DONNÉES D’HUMIDITÉ DU SOL

Figure 2.3 – Méthode de partition de la LST entre la température du sol et la température de la végétation, suivant la position du point observé dans l’espace à deux dimensions LST-fraction de végétation (Moran et al., 1994). Les points en gris sur les graphes correspondent aux données ASTER acquises le 17 août 2011 sur la zone irriguée d’Urgell en Espagne et échantillonnées à 90 m de résolution.
Concernant les facteurs qui perturbent la relation entre la SEE et la température du sol (estimée par la méthode décrite au dessus), nous avons proposé dans Merlin et al. (2013a) une correction simple des effets d’altitude. La correction consiste à retrancher sur la SEE les effets d’altitude à HR relativement aux effets moyens à l’échelle du pixel SMOS. L’idée est de corriger la LST avec la relation suivante :

\[T_{HR}^{alt} = T_{HR} + 0.006 \times (Alt_{HR} - Alt_{BR}) \]

(2.13)

avec \(T_{HR}^{alt} \) la LST corrigée des effets d’altitude, \(T_{HR} \) la LST observée, \(Alt_{HR} \) l’altitude du pixel HR et \(Alt_{BR} \) l’altitude moyenne du pixel BR. La constante de \(-0.006^\circ/m\) est une valeur moyenne du taux de décroissance de la température de l’air avec l’altitude. On remarque que l’équation (2.13) revient à la projection de \(T \) par rapport à l’altitude \(Alt \) (cf. l’équation 2.2 qui définit la notion de projection d’une variable \(X \)). La LST corrigée peut ensuite être utilisée pour estimer la température du sol comme décrit précédemment.

Merlin et al. (2012a) ont aussi introduit la fonction d’antenne de SMOS dans l’équation de changement d’échelle. Cela consiste à recalculer la valeur moyenne des SSM désagrégées à HR à l’intérieur d’un pixel SMOS à partir d’une pondération de chaque pixel HR. Cette pondération dépend de la distance de ce pixel par rapport au centre du pixel SMOS. On simplifie le calcul en négligeant l’énergie MO émise par les surfaces à l’extérieur du pixel SMOS considéré, c’est à dire à une distance de plus de \(\sim 20 \) km du centre du pixel SMOS. Une fois l’intégrale de SSM calculée sur le pixel SMOS, la distribution de SSM désagrégée est réajustée par rapport au niveau moyen observé. Nous avons donc :

\[\theta_{wef}^{HR} = \theta_{HR} + \theta_{BR} - \frac{1}{\int_{wef}^{HR} \int_0^{BR/2} wef(r) \times \theta_{HR} \, dr} \]

(2.14)

avec \(\theta_{wef}^{HR} \) la SSM désagrégée après correction, \(\theta_{HR} \) la SSM désagrégée issue de l’équation (2.8), \(wef \) la fonction d’antenne (ou mean wef comme fonction de pondération moyenne) et \(r \) la distance entre le centre du pixel SMOS et le pixel HR. La correction à BR de la SSM désagrégée a une amplitude relativement faible estimée à \(0.003 \) m²/m³ en moyenne sur la zone de l’expérience AACES. Elle peut cependant atteindre \(0.02 \) m²/m³ dans des conditions où la SSM est très hétérogène à HR (Merlin et al., 2012a).

Avec l’équation de changement d’échelle de Merlin et al. (2012a), Merlin et al. (2013a) ont analysé l’impact de la nonlinéarité de la relation entre SEE et SSM, sur les résultats de la désagrégation. Deux modèles de SEE sont considérés : un modèle qui relie linéairement la SEE à SSM (Budyko, 1956; Manabe, 1969) :

\[SEE(\theta) = \frac{\theta}{\theta_P} \]

(2.15)

avec \(\theta_P \) un paramètre semi-empirique qui dépend des propriétés du sol et un autre modèle simple qui représente une nonlinéarité au premier ordre entre SEE et SSM :

\[SEE(\theta) = \left(\frac{\theta}{\theta_{sat}} \right)^P \]

(2.16)

avec \(P \) un paramètre semi-empirique qui dépend à la fois des propriétés du sol et de la demande évaporative (Merlin et al., 2011). Les deux modèles sont testés avec les données de l’expérience SMOScat sur la zone irriguée d’Urgell en Espagne. Les résultats montrent que l’approximation linéaire de l’équation (2.15) est satisfaisante à la résolution de 1 km. Par contre, l’application de DISPATCH à 100 m de résolution (voir illustration de la figure 2.4) nécessite une meilleure prise en compte de la nonlinéarité entre SEE et SSM. À 100 m de résolution, la très grande variabilité spatiale de SSM sur la zone irriguée, rend l’approximation linéaire peu efficace. En représentant la SEE avec l’équation (2.16), la pente de la régression linéaire entre SSM désagrégée et mesures in situ augmente de 0.2 à 0.5 (Merlin et al., 2013a). La figure 2.5 illustre l’impact de la représentation de la relation \(SEE(\theta) \) sur les sorties de DISPATCH. De manière générale, plus la plage de SSM au sein d’un pixel SMOS est large, plus les effets de nonlinéarité apparaissent, avec une saturation de la SEE pour les valeurs élevées de SSM.

Les évolutions successives de la méthodologie DISPATCH et sa stabilisation autour de l’équation (2.8), nous indique que le fondement du changement d’échelle est aujourd’hui relativement mûr. La principale source d’incertitude est désormais liée à la modélisation de la SEE à partir des deux types d’informations disponibles : 1) la modélisation de la SEE en fonction de la LST et des réflectances dans le VIS et PIR et 2) la modélisation de la SEE en fonction de la SSM. Les améliorations de DISPATCH passent donc par une revisite des modèles de SEE, que nous discuterons dans le Chapitre 3.
2.2. DÉSAGRÉGATION DES DONNÉES D'HUMIDITÉ DU SOL

Figure 2.4 – Application de DISPATCH à 100 m de résolution avec les données ASTER collectées les 16 août et 4 octobre 2011 sur la zone irriguée d’Urgell en Espagne (Merlin et al., 2013a).

Figure 2.5 – La SEE simulée par deux modèles (linéaire et non-linéaire) est tracée en fonction de la SSM. Pour deux observations de SEE à HR et BR, l’écart entre la SSM désagrégée obtenue avec le modèle linéaire et celle obtenue avec le modèle nonlinéaire est noté $\Delta \theta_{HR}^{\text{nonlin}}$ (Merlin et al., 2013a).
Table 2.1 – Données d’entrée du processeur DISPATCH à 1 km de résolution.

<table>
<thead>
<tr>
<th>Produit</th>
<th>Variables</th>
<th>Résolution</th>
<th>Projection/grille</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMOS CLF31A/CLF31D</td>
<td>SM</td>
<td>25 km/3 jours</td>
<td>EASE grid</td>
<td>NetCDF</td>
</tr>
<tr>
<td>MODIS MOD11A1/MYD11A1</td>
<td>LST_day, QC</td>
<td>1 km/1 jour</td>
<td>USGS Sinusoidal</td>
<td>HDF</td>
</tr>
<tr>
<td>MODIS MOD13A2</td>
<td>NDVI, QC</td>
<td>1 km/16 jours</td>
<td>USGS Sinusoidal</td>
<td>HDF</td>
</tr>
<tr>
<td>GTOPO30</td>
<td>MNT</td>
<td>0.01°</td>
<td>WGS84</td>
<td>GeoTIFF</td>
</tr>
</tbody>
</table>

2.2.3 Produit CATDS

Parallèlement aux développements méthodologiques décrits au dessus, une chaîne de traitement automatique des données DISPATCH a été réalisée à la résolution de 1 km avec les données MODIS. La chaîne DISPATCH fournit 1) un soutien à la recherche permettant l’évaluation de la méthode dans des conditions variées ; 2) la possibilité d’inclure les données désagrégées dans des projets applicatifs comme la gestion de l’irrigation et la prévision des risques (e.g. inondation, invasion acridienne, feu de forêt, etc.) ; et 3) un produit SMOS de niveau 4 qui sera prochainement disponible au CATDS (Centre Aval de Traitement des données SMOS, www.catds.fr) à l’échelle quasi globale, depuis mai 2010 (fin de la période de mise en service de SMOS) jusqu’à aujourd’hui.

Le processeur DISPATCH est composé d’une interface d’entrée qui gère le pré-traitement des données d’entrée, d’un code principal qui implémente l’équation de changement d’échelle (2.8) avec le modèle de SEE de l’équation (2.15) et d’une interface de sortie qui gère le post-traitement des données de sortie (Merlin et al., 2015 ; Malbétéeau et al., 2016a ; Molero et al., 2015). La première version du DII (DISPATCH Input Interface) a été réalisée par Stefan Bacon durant son stage de M1 en 2013. Cette version a ensuite été améliorée et finalisée pour une implémentation au CATDS par Beatriz Molero dans le cadre d’un CDD en 2014 financé par le TOSCA. Les interfaces d’entrée et de sortie sont codées en language python et le code principal en C. Le gros du travail consistait à automatiser le pré-traitement des données d’entrée, sachant que DISPATCH tourne avec les données issues de produits différents et de capteurs à des résolutions spatiales et temporelles variées.

Les données d’entrée du processeur DISPATCH sont composées des produits LST et NDVI MODIS, d’un MNT (Modèle Numérique de Terrain) et de la SSM SMOS. Les caractéristiques de ces données sont décrites dans le tableau 2.1. Les produits LST utilisés sont le MOD11A1 version 5 issu d’observations IRT quotidiennes à bord de Terra à 10h30 (orbite descendante) et le MYD11A1 version 5 issu d’observations IRT quotidiennes à bord d’Aqua à 13h30 (orbite ascendante). Les données NDVI utilisées sont extraites du produit MOD13A2 qui combine sur des périodes de 16 jours les observations de réflectances dans les bandes VIS et PIR acquises quotidiennement à bord de Terra. Les trois produits MODIS sont échantillonnés à une résolution spatiale de 1 km, projetés sur une grille sinusoidale et présentés sous le format HDF par le DAAC (Distributed Active Archive Center) de l’USGS d’où ils sont téléchargés gratuitement (e4ft101.cr.usgs.gov/). Les données d’altitude utilisées dans l’équation (2.13) sont fournies par le MNT GTOPO30 à une résolution de 30 secondes d’arc (environ 0.01°) et distribuées gratuitement par le centre de données EROS de l’USGS. Le processeur DISPATCH développé pour le CATDS utilise le produit SMOS de niveau 3 CLF31A (orbite ascendante) et CFL31D (orbite descendante). Ces données globales et quotidiennes sont présentées sous le format NetCDF sur la grille EASE (Equal Area Scalable Earth) avec une projection cylindrique et une résolution de 0.25°. Le produit de niveau 3 est généré par le segment sol du CATDS à partir des produits SMOS de niveau 1, en traitant séparément les orbites ascendante et descendante. Tandis que les produits de niveau 3 avant 2014 utilisent la version 1.0 de la grille EASE et les produits après 2014 utilisent la version 2.0. Les algorithmes et produits de niveau 3 sont décrits dans Kerr et al. (2013) et Kerr et al. (2014).

Le pré-processeur DII a été créé pour automatiser les étapes décrites dans Merlin et al. (2012a) et Merlin et al. (2013a), préparer les données d’entrée et faciliter l’application de la méthode DISPATCH à des produits de SSM différents (SMOS, AMSR-E, SMAP, etc.). Le DII est actuellement en phase d’implémentation au CATDS (Molero et al., 2015). Les paramètres d’entrée sont la date et la tuile MODIS identifiée par ses indices (h,v) dans les axes est-ouest et nord-sud. Le DII est ainsi exécuté pour chaque paire date-tuile : i) les fichiers de données sont sélectionnés par date-tuile, ii) les variables nécessaires sont extraites des produits du tableau 2.1 et sont transformées en images, iii) ces images sont reprojétées dans un système commun (projection géographique sur le sphéroïde WGS84) sur des grilles à HR pour
2.2. DÉSAGRÉGATION DES DONNÉES D’HUMIDITÉ DU SOL

les données auxiliaires et à BR pour les données SSM et iv) ces images sont présentées dans un format compatible avec le programme principal.

Deux grilles sont définies à l’échelle globale : une grille HR à 0.01° de résolution avec des nœuds de grille situés sur les coins des pixels et une “grille 0” à 0.20° de résolution avec des nœuds de grille situés au centre des pixels. Dans un premier temps les données MODIS et MNT sont reprojectées sur la grille HR et les images SSM sont reprojectées sur la grille 0. Dans un deuxième temps, les images reprojectées de SSM sont sous-échantillonnées avec une résolution égale au double de la résolution précédente, en distinguant 4 grilles distinctes (grille 1–4) de résolution 0.4°. Comme illustrées sur la figure 2.6, ces grilles sont produites en faisant glisser une fenêtre de 0.4° sur la grille 0, de telle sorte que les nœuds de grilles coïncident. L’image de SSM est alors ré-échantillonnée pour chacune des 4 grilles en attribuant à chaque pixel BR de 0.4° la valeur du pixel concentrique de 0.2°.

Figure 2.6 – Echantillonnage des données SSM à BR en extrayant un pixel sur deux de la grille 0 à 0.2° de résolution. La procédure génère 4 grilles de SSM à la résolution de 0.4° (BR).

Dans l’application de DISPATCH, la sélection des pixels BR se base sur les pixels avec plus de 2/3 de leur surface non couverte par les nuages et plus de 90% de surface émergée (des mers). La sélection des pixels HR se base sur un masquage des données MODIS qui ne présentent pas une qualité suffisante. Nous utilisons les indices de qualité (QC dans le tableau 2.1) des produits LST. Un QC égal à 0 est indicateur d’une qualité optimale, avec une incertitude sur la LST inférieure à 1 K et une incertitude sur l’émissivité inférieure à 0.01. Un QC égal à 17 est indicateur d’une qualité relativement bonne avec une incertitude sur la LST inférieure à 1 K, mais une incertitude sur l’émissivité comprise entre 0.01 et 0.02. Les pixels MODIS où l’incertitude estimée sur la LST est supérieure à 1 K sont écartés.

Une fonction importante du DII est de générer un ensemble de données d’entrée pour chaque observation BR (c’est à dire pour chaque orbite SMOS). L’ensemble des données d’entrée est composé de l’image SSM à BR et des images LST MODIS collectées par Terra et Aqua le jour de l’observation BR, le jour avant ou le jour après. L’utilisation de l’ensemble de ces images MODIS génère jusqu’à 6 jeux de données indépendants. Sachant que les données de SSM sont ré-échantillonnées sur 4 grilles, l’ensemble se compose donc d’au maximum 24 combinaisons associant l’observation BR et les données MODIS à HR. À noter que l’on suppose implicitement qu’aucune pluie ne se produise entre les passages MODIS et SMOS et que la variabilité spatiale de SSM estimée à partir des données MODIS (au moment du passage MODIS) reste valable au moment du passage SMOS. L’intérêt de cet ensemble de données d’entrée réside dans 1) la réduction des erreurs aléatoires par une moyennage de l’ensemble des sorties DISPATCH et 2) l’augmentation de la couverture spatio-temporelle en maximisant la surface observée par MODIS et non couverte par les nuages.

Au sein du processeur, l’équation de changement d’échelle est appliqué de manière indépendante sur chaque élément de l’ensemble d’entrée (constitué d’au plus 24 éléments). La SSM DISPATCH notée \(\theta_{HR} \) est alors estimée comme la moyenne des SSM de l’ensemble de sortie. Un schéma est fourni dans la figure 2.7. L’incertitude de SSM désagrégée, notée \(std \), est calculée comme l’écart type des valeurs pour chaque pixel de 0.01°. Le nombre d’éléments de sortie utilisés dans ces calculs statistiques est appelé \(compte \). On fixe un compte minimum de 3 par pixel de 0.01° pour calculer la moyenne et son écart type. Le produit DISPATCH est constitué des images à HR (0.01°) des trois variables de sorties (\(\theta_{HR} \), \(std \) et \(compte \)) sur
l’étendue d’une tuile MODIS.

Figure 2.7 – Schéma représentant les entrées et sorties du processeur DISPATCH à 1 km de résolution.

Il est possible de générer des produits DISPATCH différents en fonction de la stratégie employée pour calibrer le paramètre θ_P de l’équation (2.15) et du nombre de jours d’observation MODIS utilisés en entrée. Le produit choisi pour le CATDS correspond à 3 jours d’observation MODIS (le jour du passage SMOS et un jour avant et après) et une calibration journalière du paramètre θ_P calculé comme θ_B/SEE_B.

Le processeur DISPATCH à 1 km de résolution a été réalisé de manière à pouvoir intégrer à moyen terme le futur processeur DISPATCH à 100 m de résolution. Si l’algorithme DISPATCH est relativement mûr à la résolution de 1 km avec les données MODIS, son implémentation à 100 m passe par la correction atmosphérique des données Landsat, disponibles depuis le site de l’USGS mais sans correction dans l’IRT. Un premier pas vers le développement d’un DII à 100 m de résolution a été réalisé par Beatriz Molero lors de son CDD au CESBIO. Afin d’assurer un chevauchement optimal des données SMOS et Landsat, mais aussi pour limiter les effets de nonlinéarité liés au gain en résolution spatiale (de 40 km à 100 m), le futur algorithme opère le changement d’échelle en cascade. La SSM est désagrégée successivement d’une résolution de 40 km à une résolution intermédiaire (avec les données MODIS) et de cette résolution intermédiaire à 100 m (avec les données Landsat). Par conséquent, DISPATCH combine de manière intrinsèque les données MODIS et Landsat. Une première approche de correction atmosphérique des TBs Landsat consiste à établir à 1 km de résolution une relation de conversion avec les LST MODIS acquises à bord de Terra et appliquer cette relation à 100 m de résolution. Cette méthode illustrée sur la figure 2.8 est relativement simple et potentiellement opérationnelle.

Figure 2.8 – Images du 21 mars 2011 de la LST MODIS/Terra (gauche) et la LST (droite) issue de la conversion des TBs Landsat-7 sur une zone autour de Marrakech.
2.2. DÉSAGRÉGATION DES DONNÉES D’HUMIDITÉ DU SOL

2.2.4 Applications

DISPATCH a été testé sur plusieurs sites de calibration/validation où des mesures in situ et/ou aériophorées sont disponibles. Des sites aux États-Unis ont été utilisés : les Southern Great Plains du centre de l’Oklahoma où a eu lieu notamment l’expérience SGP’97 avec le radiomètre bande L aériophroré ESTAR (Electronically Scanned Thinned Array Radiometer ; Jackson et al., 1999; Merlin et al., 2005), le bassin de Little Washita en Oklahoma du sud (Molero et al., 2015) et le bassin de San Pedro et son sous-bassin de Walnut Gulch en Arizona où a eu lieu l’expérience Monsoon’90 avec le radiomètre bande L PBMR (Push Broom Microwave Radiometer ; Schmugge et al., 1994; Merlin et al., 2006a,b, 2008c) et où l’USDA opère des stations de mesure de la SSM sur le long terme (Jackson et al., 2008; Kim and Hogue, 2012; Molero et al., 2015).

Lors de mon séjour postdoctoral à l’Université de Melbourne (2006-2008) et dans le cadre des collaborations qui ont suivi, les évolutions de DISPATCH ont grandement bénéficié des mesures in situ et aériophorées du radiomètre bande L PLMR (Polarimetric L-band Microwave Radiometer ; Merlin et al., 2009a) effectuées dans la région de Yanco et sur le bassin du Murrumbidgee dans le sud-est de l’Australie (Merlin et al., 2008b, 2009b, 2010a, 2012a; Malbêteau et al., 2016a). La méthode a aussi été évaluée avec des mesures terrain extensives réalisées en 2011-2012 sur une zone irriguée en Espagne (Merlin et al., 2013a), des mesures in situ pluri-annuelles sur la plaine du Haouz au Maroc (Merlin et al., 2015) et les données in situ et aériophorées du radiomètre bande L PALS (Passive/Active L-band Sensor) des expériences CanEX-SM10 et SMAPVEX12 dans les prairies canadiennes (Magagi et al., 2013; Djamai et al., 2015a,b).

La méthodologie DISPATCH est générique dans le sens où elle peut être appliquée aux produits SMOS, ainsi qu’à d’autres produits obtenus à des résolutions spatiales comparables (10-50 km) AMSR-E, AMSR2, ASCAT et SMAP. Une étude récente de Yoann Malbêteau compare pour la première fois les produits de désagrégation issus de SMOS et AMSR-E. DISPATCH est appliqué aux produits SMOS et AMSR-E de niveau 3 sur le bassin du Murrumbidgee pendant 1 an (2010-2011) et les données désagrégées sont comparées aux mesures de 38 stations distribuées au sein de la zone d’étude. Dans la région semi-aride de Yanco, la désagrégation pendant les mois d’été améliore la corrélation entre données satellite et en site de 0.63 à 0.78 et de 0.42 à 0.71 pour les passages SMOS et AMSR-E du matin, et de 0.37 à 0.63 et de 0.47 à 0.73 pour les passages SMOS et AMSR-E de l’après-midi, respectivement. L’intercomparaison des produits désagrégés montre que l’amélioration fournie par DISPATCH est comparable pour SMOS et pour ASMR-E et que l’approche est transférable à d’autres produits. Les études comparatives sont utiles pour préparer des longues séries temporelle de la SSM à 0.01° de résolution en combinant les données désagrégées issus de plusieurs produits (Malbêteau et al., 2016a).

Une suite naturelle à ces travaux consiste à assimiler le produit DISPATCH dans les modèles de surface (e.g. Crow and Wood, 2003; Reichle and Koster, 2005). L’assimilation temporelle des données désagrégées permet de combiner la représentation statique/spatiale de SSM (par la désagrégation spatiale) avec la représentation dynamique/temporelle de SSM (par la simulation des échanges à l’interface sol-végétation-atmosphère). Cette synergie spatio-temporelle a été imaginée et testée pour la première fois dans Merlin et al. (2006b). Les résultats en termes de SSM et de flux de surface indiquent que la désagrégation améliore les réanalyses de l’assimilation, et réciproquement que l’assimilation de la SSM désagrégée améliore la représentation spatiale de SSM au moment de l’observation. De plus l’échelle spatiale à laquelle le forçage météorologique (notamment la pluie) est disponible au sein du pixel BR n’impacte pas de manière significative les résultats pour une fréquence d’assimilation variant de 1/1 jour à 1/5 jours.

La majorité des méthodes d’assimilation sont dites “optimales”, car elles prennent en compte explicitement l’incertitude à la fois sur l’observation et sur les sorties de modèles, via les erreurs attribuées à la physique de la modélisation, aux paramètres et aux variables de forçage. Il convient ici de souligner un point important : l’optimalité des méthodes d’assimilation est conditionnées par 1) une calibration du modèle précise à l’échelle d’observation, de sorte que les simulations ne soient pas biaisées par rapport aux observations disponibles et 2) une connaissance précise des incertitudes sur les observations et sur les données de forçage du modèle aux échelles d’application. En pratique, ces deux conditions sont rarement réalisées. L’assimilation de données passe donc souvent par une normalisation, arbitraire ou justifiée empiriquement, des sorties du modèle par des ajustements de paramètres (Montzka et al., 2011) ou des observations (Reichle et al., 2004). En prévision de l’assimilation des données DISPATCH, un effort important a été fait pour quantifier l’incertitude DISPATCH avec la notion d’ensemble d’entrée et de sortie (voir la section Produit CATDS) comparable aux filtres de Kalman ensemble (Evensen, 1994) ou
particulaires (Moradkhani et al., 2005).

Les données DISPATCH issues des produits SMOS commencent à être utilisées en assimilation dans les modèles. Bandara et al. (2015) inversent les propriétés hydrauliques du sol à la résolution de 5 km sur la zone de Yanco en assimilant les données DISPATCH 1 km dans le modèle JULES (Joint UK Land Environment Simulator). Sur la même zone et en utilisant le même modèle de surface, Dumedah et al. (2015) estiment l’humidité en zone racinaire à partir des données DISPATCH 1 km. Le couplage assimilation-désagrégation a un impact positif sur les données désagrégées et les résultats de l’assimilation, fournissant tous deux une amélioration de l’humidité estimée en surface et dans la zone racinaire. Lievens et al. (2015) compare les schémas d’assimilation dans le modèle VIC (Variable Infiltration Capacity) des données SMOS sous les formes de SSM à 40 km de résolution, de TB à 40 km de résolution et de SSM désagrégée à 9 km de résolution. Les meilleurs résultats en termes de SSM et de débit dans les rivières sont obtenus par l’assimilation de la SSM non désagrégée. Malgré l’amélioration à fine échelle par la désagrégation des produits SSM (Malbêteau et al., 2016a), la couverture spatio-temporelle des données DISPATCH est deux fois plus faible que celle des données SMOS, ce qui impacte les résultats d’assimilation. Dans cette veine, Djamai et al. (2015b) assimilent l’humidité DISPATCH 1 km dans le modèle CLASS (Canadian Land Surface Scheme) avec un forçage atmosphérique fourni à une résolution de 30 km. Lors des jours nuageux où les données DISPATCH sont indisponibles, la distribution de SSM simulée par CLASS est renormalisée sur la base de la comparaison durant les jours clairs entre la SSM simulée par CLASS et estimée par DISPATCH.

L’utilisation de la méthodologie et du produit DISPATCH dans plusieurs projets internationaux depuis 2010 témoigne de l’originalité de l’approche et du large domaine d’applicabilité de ces données :

- ESA SMELLS (2015-2016) : la SSM à haute résolution spatiale est choisie comme un indicateur clé du potentiel reproducteur des criquets pèlerins, afin de mieux anticiper les risques d’invasion acridienne.
- ARC Moisture-Monitor (2014-2016) : de nombreuses campagnes intensives de mesures de la SSM sont mises en œuvre pour calibrer/valider les données satellitaires et les algorithmes de désagrégation, dont ceux de SMAP et DISPATCH.
- FEDER SMOScat (2010-2012) : spatialisation de la SSM SMOS et calibration/validation des données DISPATCH sur une zone irriguée pour la gestion des ressources en eau.

2.3 Désagrégation des données de température de surface

La problématique de la désagrégation des données de LST est légèrement différente de celle de la désagrégation des observations de la SSM, car les données satellite de LST existent à HR avec les capteurs Landsat et ASTER. Néanmoins, la résolution temporelle des capteurs ASTER/Landsat est de 16 jours, ce qui est relativement long comparé au temps caractéristique d’assèchement du sol en surface (3 jours selon les spécifications des missions spatiales dédiées à la SSM) et des changements qui ont lieu dans les zones fortement anthropisées (notamment l’irrigation des cultures). L’objectif des méthodes de désagrégation spatiale de la LST est donc d’améliorer la résolution temporelle des données à HR spatiale.

2.3.1 Désagrégation basée sur le NDVI

L’utilité des données de télédétection dans l’IRT en hydrométéorologie et en agriculture est intimement liée à la résolution spatiale et temporelle d’acquisition. D’un côté, la fréquence temporelle des données MODIS à 1 km de résolution et GOES (Geostationary Operational Environmental Satellites) à 5 km de résolution est supérieure à 1 image par jour. MODIS et GOES sont en effet utilisés en routine pour
suivre les sécheresses et les déficits d'eau en lien avec le forçage climatique à l'échelle continentale (e.g. Nishida et al., 2003; Anderson et al., 2007; Stisen et al., 2008). D’un autre côté, la fréquence temporelle des données ASTER à 90 m de résolution et Landsat à 100 m de résolution est plus faible que 1 image tous les 15 jours. Les données ASTER sont certes utilisées pour estimer l’évapotranspiration des surfaces dans des paysages très hétérogènes (e.g. Schmugge et al., 1998; French et al., 2005; Courault et al., 2009), mais la longueur du cycle de revisite ne permet pas un suivi saisonnier (e.g. Norman et al., 1995a, 2003; Sellers et al., 1995). Grâce au lien entre LST et status hydrique (e.g. Jackson et al., 1981; Boulet et al., 2007; Er-Raki et al., 2008), le potentiel des données IRT combinant la HR spatiale et temporelle est considérable dans les domaines de l’agriculture et de la gestion des ressources en eau. En pratique, pour être directement utilisables sur les parcelles agricoles, les données de LST devraient avoir une résolution spatiale et temporelle d’environ 40 m et 1 jour de revisite respectivement (Seguin et al., 1999).

Afin de réduire l’écart entre la faible résolution spatiale des données IRT disponibles et la HR spatiale nécessaire sur les zones agricoles, une solution consiste à désagréger les images BR à haute fréquence temporelle. La première approche de désagrémentation de la LST observée par satellite a été développée par Agam et al. (2007a) qui utilisent la fraction de couverture de végétation verte dérivée du NDVI. Aujourd’hui, la plupart des approches de désagréation de la LST se basent sur un indice de végétation comme le NDVI dérivé à une résolution spatiale plus fine que celle des données IRT (Kustas et al., 2003; Agam et al., 2007a; Inamdar et al., 2008). Etant donnée la grande différence de température entre un sol nu et une culture bien irriguée, cette approche s’est avérée efficace sur des zones dont les status hydriques du sol et de la végétation sont relativement uniformes. Agam et al. (2007a) et Inamdar et al. (2008) ont cependant souligné que le NDVI n’explique pas toutes les variabilités de la LST. Inamdar et French (2009) ont proposé une méthode de désagréation des données GOES à partir de l’émissivité de surface MODIS à 1 km. Les auteurs trouvent que l’approche basée sur l’émissivité est plus précise que celle basée sur le NDVI. Un inconvénient est que cette méthode n’est pas applicable au cas de la désagrémentation des données MODIS avec l’émissivité ASTER. En effet les couverts agricoles et les flux d’eau évoluent plus rapidement que la période de revisite des données ASTER qui est de 16 jours ou plus (selon la présence de nuages et des délais associés à la programmation des acquisitions).

La principale limitation des approches basées sur le NDVI est que la relation entre LST et NDVI n’est pas unique (Agam et al., 2007a). Elle n’est pas unique car i) le NDVI est surtout sensible à la végétation verte (c’est à dire la végétation photosynthétiquement active; Gutman and Ignatov, 1998) et ii) le NDVI dépend d’autres paramètres que le fraction de végétation verte comme la SSM et la fraction de végétation non-photosynthétiquement active (Moran et al., 1994). En particulier, le NDVI au dessus d’un sol nu et au dessus d’une végétation sénescente est en général très faible, alors que la température radiométrique d’un sol nu peut être significativement plus grande que celle d’une végétation sénescente. La différence de température entre sol nu et végétation sénescente peut être expliquée par une diminution de la résistance aerodynamique avec la hauteur de végétation qui facilite la libération d’énergie par convection (e.g. Shuttleworth and Wallace, 1985) et/ou par la diminution du rayonnement net induite par l’augmentation de l’albédo de surface (e.g. Menenti et al., 1989). De même, la LST d’un champ inondé peut être très différente de la LST d’une culture à maturation. La fraction d’eau libre est donc une variable importante pour représenter les variations spatiales de la LST. Sur les surfaces émergées, la SEE est une signature de la capacité du sol à évaporer son contenu en eau proche de la surface et donc de contrer une augmentation de sa température thermodynamique. La SEE est donc aussi une variable essentielle pour décrire les variations spatiales de la LST. De plus, une connaissance de la SEE est utile pour découpler les effets des status hydriques du sol et de la végétation sur le bilan d’énergie de la surface dont la LST est la résultante. A titre d’exemple, le CWSI (Crop Water Stress Index Idso et al. 1981, Jackson et al. 1981) peut détecter le stress des plantes à partir d’une différence de température entre l’air et des feuilles. L’application du CSWI sur des zones partiellement couvertes est néanmoins sujette à de grandes incertitudes car le sol en arrière plan peut avoir une température différente de celle des plantes (Jackson et al., 1981), en fonction de la SEE.

Les algorithmes robustes de désagrégmentation de la LST devraient donc prendre en compte toutes les variables principales impliquées dans le bilan d’énergie de la surface. Cela revient à 1) observer ces variables à HR spatiale et temporelle et 2) développer un cadre général dans lequel ces variables peuvent être intégrées de manière cohérente dans une procédure de désagrémentation. En dépit de ses limitations intrinsèques, l’approche de désagrégment basée sur le NDVI est l’une des meilleures méthodes existantes. L’objectif des travaux présentés ci-dessous est de compléter l’approche classique de Agam et al. (2007a)
22

dans les conditions où la variabilité spatiale du status hydrique du sol et de la végétation est significative. La méthodologie met à profit les capacités uniques de l’instrument Formosat-2 (Chern et al., 2008) qui fournit des données à HR spatiale (8 m) et temporelle (potentiellement 1 par jour). Les séries temporelles de réflectances Formosat-2 permettent une analyse fine de la saisonalité des canopées pendant le cycle de culture (Duchemin et al., 2008; Hadria et al., 2010). En particulier, ces données peuvent être utilisées pour inverser les fractions de couverture de la végétation photosynthétiquement et non-photosynthétiquement active.

2.3.2 Intégration d’autres variables

L’approche générale que j’ai suivie pour compléter la méthode de référence basée sur le NDVI est de considérer d’autres variables disponibles à HR et de définir une approche permettant de les insérer dans le schéma de désagrégation. Merlin et al. (2010a) ont d’abord étendu l’approche de Agam et al. (2007a) aux conditions où le status hydrique de la végétation est hétérogène. Pour cela une méthode d’estimation de la fraction de végétation sénescence a été imaginée à partir d’une série temporelle d’albédo de surface. Merlin et al. (2012b) ont ensuite mis en œuvre une méthode de désagrégation générique, testée avec deux facteurs supplémentaires de la variabilité de la LST que sont la fraction d’eau libre et la SEE. La fraction d’eau libre est estimée à HR par un seuillage de la bande moyen infrarouge (MIR) ASTER et la SEE est dérivée à partir des TBs bande L mesurées à HR par avion durant l’expérience NAFE’06. A noter que la BR est la résolution de MODIS (1 km) dans ces deux études. Concernant la HR, elle est fixée par la résolution de l’IRT ASTER (90 m) dans Merlin et al. (2010a) et par la résolution des TBs aéroportées (250 m) dans Merlin et al. (2012b). Dans les deux cas, les LST ASTER disponibles à HR permettent d’évaluer les méthodes de désagrégation des LST BR.

Nous définissons d’abord le “changement d’échelle nul” noté D0. Il s’écrit :

\[T_{HR}^{D0} = T_{BR} \] (2.17)

avec \(T_{HR} \) et \(T_{BR} \) la LST désagrégée à HR et observée à BR, respectivement. Aussi triviale puisse apparaître l’équation (2.17), il est important de la considérer comme la version 0 de la désagrégation (ou hypothèse nulle) afin de s’assurer d’une amélioration des méthodes proposées.

Nous formalisons ensuite la méthode basée sur le NDVI, notée D1 :

\[T_{HR}^{D1} = T_{BR} + p_1 \times (f_{gv,HR} - f_{gv,BR}) \] (2.18)

avec \(p_1 \) (K) un paramètre estimé à l’échelle de la zone d’étude, \(f_{gv,HR} (-) \) la fraction de végétation verte et \(f_{gv,BR} (-) \) la fraction de végétation verte à HR et \(f_{gv,HR} (-) \) sa moyenne au sein de chaque pixel BR. La fraction de végétation verte est estimée à HR en normalisant le NDV par ses valeurs extrêmes obtenus sur les pixels de sol nu (NDVI minimum) et les pixels couverts à 100% de végétation verte (NDVI maximum). En pratique, les valeurs minimum et maximum de NDVI pour une image à HR sans corps d’eau (lac, parcelle inondée, etc.) sont typiquement ~0.15 et ~0.90, respectivement. Le paramètre \(p_1 \) est la pente de la régression linéaire entre LST BR et \(f_{gv} \) BR.

Les équations de changement d’échelle qui suivent ont été publiées dans Merlin et al. (2010b) et Merlin et al. (2012b). Dans Merlin et al. (2010b) il s’agit de partir de l’équation (2.18) et d’introduire une correction pour prendre en compte la variabilité à HR de la fraction de végétation sénescence (\(f_{sv} \)), qui n’est pas considérée dans la méthode d’Agam et al. (2007a). Le schéma de désagrégation D2 s’écrit :

\[T_{HR}^{D2} = T_{BR} + \overline{p_1} \times \overline{(f_{gv,HR} - f_{gv,BR})} \] (2.19)

avec \(f_{gv,HR} \) la fraction de végétation verte projetée dans des conditions uniformes de fraction de végétation sénescence, \(f_{gv,BR} \) la valeur moyenne au sein de chaque pixel BR et \(\overline{p_1} \) la pente estimée à l’échelle de la zone d’étude de la régression linéaire entre LST BR et \(f_{gv,BR} \). La notion de variable projetée est la même que celle introduite dans Merlin et al. (2005) et définie dans l’équation (2.2) pour le cas de la désagrégation des données SSM. Cet outil renforce (artificiellement) la corrélation spatiale entre deux variables en représentant la dépendance de ces deux variables à d’autres variables auxiliaires. Dans Merlin et al. (2010b), la technique de projection est appliquée sur la fraction de végétation verte pour améliorer la corrélation spatiale entre LST et \(f_{gv} \), en représentant à travers \(f_{gv} \) la dépendance de LST à \(f_{sv} \).
La fraction f_{sv} utilisée dans la projection de f_{gv} (Équation 2.19) est estimée pour chaque pixel HR à partir d’une série temporelle de f_{gv} et d’albédo de surface (a) dérivées des réflectances Formosat. La combinaison de ces deux informations indépendantes (f_{gv} et a) donne une estimation des valeurs d’albédo pour chaque composant de la surface : sol nu, végétation verte, végétation sénescence. Dans le cas d’un sol brun argileux typique des régions agricoles, les valeurs extrêmes de a sont atteintes sur les pixels de sol nu (a_s) et les pixels couverts de végétation sénescente (a_{sv}). L’albédo de la végétation verte a_{gv} correspond à la valeur de l’albédo de surface pour une fraction de végétation verte maximale, au pic de la croissance des cultures. La fraction de végétation sénescence f_{sv} est ainsi obtenue comme une combinaison linéaire de f_{gv}, a, a_s, a_{gv} et a_{sv} (Merlin et al., 2010b). Les résultats de désagrégation D0, D1 et D2 sont illustrés dans la Figure 2.9 pour un jour de passage ASTER sur la zone irriguée de Yaqui au Mexique.

![Diagramme Figure 2.9](image)

Figure 2.9 – Comparaison sur une zone irriguée au Mexique des images de LST obtenues sans désagrégation (D0), avec une méthode de désagrégation basée sur le NDVI (D1), avec une méthode de désagrégation basée sur le NDVI et l’albédo de surface (D2) et par ASTER à 90 m de résolution.

Dans Merlin et al. (2012b), l’approche de désagrégation de Merlin et al. (2010b) est généralisée en intégrant d’autres variables que f_{gv} et f_{sv} via le bilan d’énergie de la surface. Le changement d’échelle utilise maintenant une équation de transfert radiatif dont les sources (les composants sol, végétation verte, végétation sénescence et eau libre) sont caractérisées thermodynamiquement par un modèle de bilan d’énergie. Ce modèle s’appuie sur une interprétation cohérente des espaces bi-dimensionnels formés par la LST et chacune des autres variables auxiliaires disponibles à HR, c’est à dire les espaces LST-f_{gv}, LST-a, LST-T_B. Il s’agit d’une généralisation de la méthode de Moran et al. (1994) utilisée précédemment pour l’estimation de la température sol au sein de DISPATCH (voir Figure 2.3).

L’équation de transfert radiatif est une version linéarisée (Merlin et al., 2010b; Anderson et al., 1997; Merlin and Chehbouni, 2004) de la loi de Stephan-Boltzmann avec les températures à la puissance 4 :

$$T_{sim} = f_{ow} T_{v,wet} + (1 - f_{ow}) \left[f_{gv} T_{v,wet} + f_{sv} T_{v,dry} + (1 - f_{sv} - f_{gv}) \times \left(SEET_{s,wet} + (1 - SEE) T_{s,dry} \right) \right]$$

(2.20)

avec T_{sim} la LST simulée par l’équation de transfert radiatif, f_{ow} la fraction d’eau libre et $T_{v,wet}$, $T_{v,dry}$, $T_{s,wet}$ et $T_{s,dry}$ les températures extrêmes correspondantes à une végétation bien irriguée (qui transpire au taux potentiel), une végétation soumise à un déficit hydrique maximum (non transpirante), un sol saturé en eau et un sol parfaitement sec, respectivement. On remarque que 1) la température de l’eau libre est approximée à la température de végétation non stressée (Carlson, 2007) et 2) l’approche pour l’estimation de la température du sol est cohérente avec le modèle linéaire de SEE utilisé dans DISPATCH (voir équation 2.7).

Les températures extrêmes des composants de surface sont déterminées à l’aide d’une interprétation cohérente des espaces LST-a à HR et BR illustrée dans la Figure 2.10. Avant d’interpréter l’espace LST-a à BR (Figure 2.10a), considérons l’espace LST-a à HR (Figure 2.10b) qui donne une meilleure distribution des points grâce à la bonne représentativité des conditions extrêmes observées à HR. Les quatre bords
du polygone sont interprétés comme étant le bord sol nu entre A et B, le bord humide entre B et C, le bord à pleine couverture entre C et D et le bord sec entre D et A. La correspondance avec les sommets du polygone de l’espace LST-f_{gv} de Moran et al. (1994) est remarquable (Figure 2.10c). Dans le cas de la désagrégation de la LST BR, la LST HR n’est pas disponible. Il s’agit donc de développer une approche pour estimer les températures extrêmes $T_{s,dry}$, $T_{s,wet}$, $T_{v,wet}$ et $T_{v,dry}$ à partir de l’espace LST-a à BR. L’algorithme utilisé s’appuie sur 3 contraintes : 1) $T_{v,wet}$ est supposée proche de la température de l’air (hypothèse souvent faite dans les modèles de l’évapotranspiration), 2) les valeurs d’albédo sont connues pour chaque composant (sol, végétation verte et végétation sénescence) et 3) les bords humide et sec sont quasi parallèles. Le troisième point se défend par la notion de contrôle convectif de la LST, qui se traduit par une augmentation des échanges d’énergie avec la hauteur de végétation (donc une diminution de la LST lorsqu’on se déplace de A vers D ou de B vers C) quelque soit le status hydrique de la surface (Merlin et al., 2010b; Stefan et al., 2015).

Les développements théoriques exposés au dessus nous permettent de reformaliser les méthodes D1 et D2 dans la perspective de créer un lien avec le bilan d’énergie. On note D1’ la nouvelle méthode de désagrégation basée sur le NDVI :

$$T_{D1}^{HR} = T_{BR} + \Delta T_{D1}^{HR}$$

(2.21)

avec ΔT_{HR} la différence de LST simulée à HR en utilisant f_{gv} à HR et BR :

$$\Delta T_{HR}^{D1'} = T_{sim,HR}(f_{gv,HR}, f_{sv,HR}, f_{ow,HR}, SEE_{BR}) - T_{sim,BR}$$

(2.22)

avec $T_{sim,HR}$ la LST simulée par l’équation de transfert radiatif dans (2.20). De la même manière, on note D2’ la nouvelle méthode de désagrégation basée sur le NDVI et l’albédo de surface. La différence de température simulée à HR s’écrit :

$$\Delta T_{HR}^{D2'} = T_{sim,HR}(f_{gv,HR}, f_{sv,HR}, f_{ow,HR}, SEE_{BR}) - T_{sim,BR}$$

(2.23)

en utilisant deux variables estimées à HR, f_{gv} et f_{sv}. L’avantage de l’approche basée sur le bilan d’énergie est qu’elle permet d’intégrer l’ensemble des variables liées au bilan d’énergie, sous la seule condition qu’elles puissent être observées à HR. Avec la fraction d’eau libre (méthode D3’), la différence de températures simulées à HR devient :

$$\Delta T_{HR}^{D3'} = T_{sim,HR}(f_{gv,HR}, f_{sv,HR}, f_{ow,HR}, SEE_{BR}) - T_{sim,BR}$$

(2.24)

En ajoutant la SEE dérivée des TBs aéroportées (méthode D4’), la différence de températures simulées à HR s’exprime comme :

$$\Delta T_{HR}^{D4'} = T_{sim,HR}(f_{gv,HR}, f_{sv,HR}, f_{ow,HR}, SEE_{HR}) - T_{sim,BR}$$

(2.25)

Les résultats obtenus pour D0, D1, D1’, D2, D2’, D3’, D4’ sur la zone de NAFE’06 sont présentés dans la Figure 2.11.
2.3. DÉSAGRÉGATION DES DONNÉES DE TEMPÉRATURE DE SURFACE

Les méthodes de désagrégation des données LST, comme l’ensemble des méthodes de télédétection basées sur la LST (modèle de l’évapotranspiration, DISPATCH, etc.), sont généralement appliquées en plaine où les effets topographiques peuvent être négligés. Afin d’étendre l’applicabilité de ces méthodes aux vallées et pentes de montagne, nous proposons dans le cadre de la thèse de Yoann Malbêteau de représenter explicitement et à des résolutions multiples les effets de l’altitude et de l’éclairement sur la LST (Malbêteau et al., 2016b). Une approche originale de modélisation et de correction topographique a été testée sur la vallée d’Imlil dans le Haut Atlas marocain. Il s’agit de modéliser la LST en fonction de l’altitude et de l’exposition solaire de chaque pixel IRT ASTER. Les outils utilisés sont : 1) un MNT à la résolution de l’IRT (90 m pour ASTER), 2) le modèle 3D DART (Discrete Anisotropic Radiative Transfer; Gastellu-Etchegorry et al., 2004) qui simule le rayonnement solaire avec les effets d’environnement à partir de la date et du MNT, 3) une image IRT ASTER, 4) une méthode d’estimation des effets d’éclairement et d’altitude sur la LST au moment du passage ASTER à partir de la LST satellitaire, l’éclairement simulée par DART, l’altitude issue du MNT, la fraction f_{gw} issue de Landsat et un bilan d’énergie double source. Cette méthode est multi-résolution car elle peut être facilement mise en œuvre avec un MNT à des résolutions variées, de l’ordre de 2 m pour le MNT Pleiades, 30 m pour SRTM (Shuttle Radar Topography Mission) et 1 km pour le GTOPO30 utilisé par le processeur de DISPATCH. Les résultats de cette méthode sont illustrés dans la Figure 2.12 pour un passage ASTER sur une zone de 5 km par 5 km. La LST simulée représente correctement les variabilités spatiales de la LST ASTER attribuées aux effets topographiques, mais ne prend pas en compte les autres facteurs de variabilité que sont en particulier la couverture végétale et la SSM. La différence des images observée et simulée met en évidence des anomalies négatives de LST en bas de vallée. Ces anomalies correspondent aux cultures plus humides que les pentes de sol nu environnantes, qui sont généralement sèches en dehors des épisodes pluvieux. La modélisation des effets topographiques de la LST permet donc de corriger la LST de ces effets et potentiellement d’extraire l’information sur la SSM et l’évapotranspiration des surfaces. Réciproquement, elle permet de désagréger les données LST en montagne.

Figure 2.11 – Images sur une zone irriguée en Australie de la LST à 250 m de résolution en sortie de 7 méthodes de désagrégation, comparées à l’image LST ASTER agrégée à 250 m de résolution.
2.4 Évaluation des méthodes de désagrégation

Si la désagrégation est censée améliorer la résolution spatiale des données, elle peut aussi dégrader l’information à HR par rapport à l’observation BR. L’évaluation quantitative des données désagrégées est donc cruciale. De plus, l’agrégation ou procédure inverse à la désagrégation est un moyen de réduire de manière systématique les incertitudes aléatoires sur les données HR. Il existe ainsi un compromis entre résolution spatiale en sortie de désagrégation et précision des données désagrégées à HR, ou encore une résolution de désagrégation optimale fonction de la précision demandée. Avant l’utilisation des données désagrégées, il est donc primordial de vérifier l’exactitude des données HR relativement aux données BR. Dans cette section nous proposons des indicateurs de performance des méthodes de désagrégation de données et des protocoles de mesures spatialisées utiles pour la validation.

2.4.1 Stratégies de validation

En fonction du réalisme de l’équation du changement d’échelle et de l’incertitude des données d’entrée disponibles aux échelles d’application, la désagrégation est susceptible d’améliorer ou de dégrader l’exactitude des données à HR. Selon la norme ISO de 1994, le terme d’exactitude (accuracy en anglais) se réfère ici à une combinaison de justesse (trueness en anglais) et de fidélité (precision en anglais) des mesures. Nous venons de décrire deux méthodologies de désagrégation des données de SSM (DISPATCH) et LST. Evaluer de manière spécifique une méthode de désagrégation est compliqué à cause de 1) l’impact des incertitudes sur les données d’entrée disponibles à des résolutions multiples et 2) l’éventuelle non représentativité des mesures (souvent in situ) utilisées comme référence à l’échelle de validation c’est à dire l’échelle du pixel HR. Le problème de validation des méthodes de désagrégation est rendu encore plus complexe par la rareté des mesures de terrain spatialisées. Comme la désagrégation est un traitement avant tout spatial des données, l’exercice de validation devrait dans l’idéal se faire dans l’espace, c’est à dire au moment du passage du satellite en comparant les données désagrégées aux mesures in situ en plusieurs points.

Il est intéressant de souligner une différence dans la manière de valider les méthodes de désagrégation des données de SSM et de LST. La possibilité d’observer par satellite la LST à HR au même moment que l’observation BR est un avantage considérable sur le cas de la SSM. En particulier les capteurs ASTER et Landsat fournissent une estimation de la LST à 100 m de résolution environ, en quasi simultanée avec les observations kilométriques MODIS à bord de Terra. Il n’en est pas de même pour les données de SSM. Si les données radar ont un potentiel évident pour le suivi de la SSM à HR (e.g. Balenzano et al., 2011), il n’existe pas aujourd’hui d’algorithme opérationnel d’inversion de la SSM à partir de ces données. Les estimations spatialisées de SSM peuvent être obtenues à HR par inversion des données bande L aéroportées (Merlin et al., 2008a; Peischl et al., 2012), mais seulement durant des périodes relativement courtes (1
2.4. ÉVALUATION DES MÉTHODES DE DÉSAGRÉGATION

Table 2.2 – Les métriques utilisées (dans quelques études récentes) pour évaluer la performance des méthodes de désagrégation des données de SSM et de LST. La colonne BR est cochée lorsque les métriques à HR sont comparées aux métriques à BR sans désagrégation (en comparant l’observation BR aux estimations de référence à fine échelle). On indique aussi la nature spatiale, temporelle et/ou spatio-temporelle de la comparaison entre données satellites et estimations de référence.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Référence</th>
<th>RMSD</th>
<th>R</th>
<th>B</th>
<th>S</th>
<th>BR</th>
<th>Espace</th>
<th>Temps</th>
<th>Espace-temps</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSM</td>
<td>Choi and Hur (2012)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Espace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Das et al. (2014)</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>Espace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Fang et al. (2013)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Ines et al. (2013)</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Kim and Hogue (2012)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Merlin et al. (2012a)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Merlin et al. (2013a)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Merlin et al. (2015)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Parinussa et al. (2013)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Piles et al. (2011)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Sánchez-Ruiz et al. (2014)</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Shin and Mohanuty (2013)</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Song et al. (2014)</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Srivastava et al. (2013a)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Srivastava et al. (2013b)</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSM</td>
<td>Zhao and Li (2013)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LST</td>
<td>Agam et al. (2007a)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LST</td>
<td>Agam et al. (2007b)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LST</td>
<td>Bindhu et al. (2013)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LST</td>
<td>Mechri et al. (2014)</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LST</td>
<td>Merlin et al. (2010b)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LST</td>
<td>Merlin et al. (2012b)</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LST</td>
<td>Zhan et al. (2013)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

mois) et sur des surfaces de ~1000 km² (typiquement un pixel SMOS) par jour. En fait, la possibilité ou non d’observer la variable de désagrégation à HR impacte fortement les stratégies de validation.

Un effort très important est réalisé afin de quantifier l’incertitude de nombreux produits satellites de SSM (e.g. Entekhabi et al., 2010b) et de LST (e.g. Wan et al., 2002). Pour autant, peu d’études se sont intéressées spécifiquement aux stratégies d’évaluation des méthodes de désagrégation. Le tableau 2.2 liste quelques méthodes récentes de désagrégation des données de SSM et de LST. Pour chaque méthode, nous indiquons les métriques utilisées pour quantifier l’exactitude des données désagrégées, si les résultats sont comparés à ceux obtenus sans appliquer la désagrégation, ainsi que la nature (spatiale, temporelle et/ou spatio-temporelle) de la comparaison entre données HR et mesures de référence à fine échelle. Une première observation est que la plupart des auteurs utilisent l’écart quadratique moyen (RMSD) et la corrélation (R) entre données désagrégées et mesures de référence. L’utilisation du biais moyen (B) et de la pente de la régression linéaire (S) entre données désagrégées et mesures de référence est moins générale.

Deuxièmement nous observons que 40 % environ des publications récentes n’incluent pas une comparaison des métriques obtenues à HR avec et sans désagrégation, ce qui ne permet pas une évaluation quantitative de l’apport positif de la désagrégation à fine échelle. Enfin troisièmement les données désagrégées de LST sont généralement évaluées dans l’espace avec les images HR issues des capteurs satellites Landsat et ASTER. A cause d’un manque de données spatialisées de la SSM, les méthodes de désagrégation dédiées aux données de SSM sont le plus souvent évaluées sur la base de séries temporelles collectées par des stations automatiques permanentes ou semi-permanentes.

Dans ce contexte, nous avons proposé un nouvel indicateur de performance des méthodes de désagrégation, appelé Gdown (Merlin et al., 2015). L’originalité principale de cet indicateur est d’évaluer le gain de la désagrégation relativement au cas sans désagrégation. En tant que première métrique spécifique aux méthodes de désagrégation, Gdown vient combler une lacune des stratégies de validation actuelles. Gdown...
est défini comme :

\[G_{\text{down}} = p_{\text{effi}} \times G_{\text{effi}} + p_{\text{just}} \times G_{\text{just}} + p_{\text{fide}} \times G_{\text{fide}} \] (2.26)

avec \(G_{\text{effi}} \), \(G_{\text{just}} \) et \(G_{\text{fide}} \) les gains de désagrégation en termes d’efficacité, de justesse et de fidélité et \(p_{\text{effi}} \), \(p_{\text{just}} \) et \(p_{\text{fide}} \) 3 coefficients reliés par le critère \(p_{\text{effi}} + p_{\text{just}} + p_{\text{fide}} = 1 \). Si aucune information n’est disponible à priori pour privilégier un gain partiel en particulier, les 3 coefficients peuvent être fixés à 1/3. Le premier terme de l’équation (2.26) est le gain (en efficacité ou efficiency en anglais) sur la pente de la régression linéaire, relativement au cas sans désagrégation :

\[G_{\text{effi}} = \frac{|1 - S_{\text{HR}}| - |1 - S_{\text{BR}}|}{|1 - S_{\text{BR}}| + |1 - S_{\text{HR}}|} \] (2.27)

avec \(S_{\text{HR}} \) et \(S_{\text{BR}} \) la pente de la régression linéaire entre l’humidité satellitaire à HR et BR et les mesures in situ, respectivement. Le deuxième terme de l’équation (2.26) est le gain (en justesse ou trueness en anglais) sur la corrélation de la série temporelle, relativement au cas sans désagrégation :

\[G_{\text{just}} = \frac{|1 - R_{\text{BR}}| - |1 - R_{\text{HR}}|}{|1 - R_{\text{BR}}| + |1 - R_{\text{HR}}|} \] (2.28)

avec \(R_{\text{HR}} \) et \(R_{\text{BR}} \) la corrélation de la série temporelle calculée pour les données satellitaires à HR et BR. Le troisième terme est le gain (en fidélité ou precision en anglais) sur le biais moyen, relativement au cas sans désagrégation :

\[G_{\text{fide}} = \frac{|B_{\text{BR}}| - |B_{\text{HR}}|}{|B_{\text{BR}}| + |B_{\text{HR}}|} \] (2.29)

avec \(B_{\text{HR}} \) et \(B_{\text{BR}} \) le biais moyen calculé pour les données satellitaires à HR et BR.

Lorsque l’échelle d’observation augmente (ou que la résolution spatiale diminue), on assiste à une diminution systématique de la variance spatio-temporelle de la variable observée. Ainsi, du point de vue de la variabilité spatio-temporelle de SSM et de son impact sur les stratégies de validation, la S entre observation BR et mesures (in situ) de référence devrait être inférieure à 1. Le but principal des méthodes de désagrégation est alors d’améliorer la représentativité spatiale de SSM à plus HR spatiale. Si l’approche de changement d’échelle est efficace, alors la S entre données satellitaires et mesures in situ devrait se rapprocher de 1 dans le cas de la désagrégation, relativement au cas sans désagrégation. Parmi les métriques suivantes RMSD, R, B et S, S est probablement l’indicateur le plus adapté pour évaluer une méthode de désagrégation. Néanmoins, les métriques R, B et S sont complémentaires et donc R et B fournissent des informations utiles et complémentaires à S.

Dans Merlin et al. (2015), Gdown est testé sur une période de 4 ans en comparant les données DISPATCH à 1 km de résolution avec les mesures collectées par 6 stations de l’observatoire Tensift au Maroc. Un produit DISPATCH sans désagrégation est obtenu en fixant \(\theta = 0 \) dans l’équation (2.15) de sorte que la dérivée \(\partial \theta / \partial \text{SEE} \) s’annule et l’équation de changement d’échelle (2.8) devienne \(\theta_{\text{HR}} = \theta_{\text{BR}} \). L’avantage principal de ce produit non désagrégé (semblable à l’équation 2.17 dans le cas de la LST) est qu’il possède les mêmes caractéristiques spatio-temporelles (les mêmes trous associés au recouvrement des masques de nuages MODIS) que le produit DISPATCH désagrégé. Il permet donc d’évaluer le produit DISPATCH de manière non biasée, en cohérence avec la couverture spatio-temporelle des données désagrégées. Avec les données sur le Tensift, le coefficient de corrélation entre Gdown et le gain de désagrégation en termes de R, B et S varie entre 0.5 et 0.8. Le nouveau indicateur apparaît comme une bonne métrique de la performance de DISPATCH. En particulier, le signe de Gdown (positif dans le cas d’une désagrégation effective et négative dans le cas inverse) est indépendant des incertitudes sur les données SMOS et de la représentativité spatiale à HR des mesures in situ (localisées). A l’inverse, le RMSD entre données désagrégées et in situ n’est pas corrélé (coefficient de corrélation égal à 0.0) avec les gains de désagrégation en termes de R et S.

L’approche Gdown est utilisée dans Malbêteau et al. (2016a) qui montrent que l’efficacité de désagrégation de DISPATCH est plus faible en hiver que durant les mois d’été, où sa performance est optimale. Logiquement, de meilleurs résultats sont obtenus dans la zone semi-aride que dans une zone tempérée du bassin Murrumbidgee en Australie. L’amélioration des données HR en sortie de DISPATCH en termes de S, B et R est visible dans la Figure 2.13, dans les cas de l’application de DISPATCH aux données SMOS et AMSR-E sur la zone de Yanco.
2.4. EVALUATION DES MÉTHODES DE DÉSAGRÉGATION

Mesures in situ (m3 m$^{-3}$)
DISPATCH SSM (m3 m$^{-3}$)
Mesures in situ (m3 m$^{-3}$)
DISPATCH SSM (m3 m$^{-3}$)
AMSR-E L3
DISPATCH BR
SMOS L3
DISPATCH HR
DISPATCH BR
DISPATCH HR

Figure 2.13 – Graphes de la SSM désagrégée à 1 km de résolution en fonction de la SSM in situ dans les cas avec et sans désagrégation et pour les données BR SMOS et AMSR-E collectées sur la zone de Yanco en 2010-2011 (Malbêteau et al., 2016a).

2.4.2 Campagnes de mesures extensives

La gamme des résolutions spatiales disponibles par télédétection avionnée s’étend typiquement de 1 m à 1 km (Jackson et al., 1999; Panciera et al., 2008; Merlin et al., 2008a). Un échantillon des images dans le VIS, PIR, IRT et MO bande L collectées lors de l’expérience NAFE’06 est présenté sur la Figure 2.14. Ces données acquises à une résolution intermédiaire sont potentiellement très utiles pour combler le fossé entre les mesures réalisées à l’échelle ponctuelle (quelques mètres) sur le terrain et les observations satellites. En particulier, les données aéroportées sont intéressantes pour évaluer les modèles développés à partir des mesures in situ et développer des paramétrisations valables aux échelles intégrées en conditions hétérogènes. En bande L elles peuvent couvrir typiquement un pixel satellite par jour. Ceci permet de simuler des pixels SMOS ou SMAP et de tester les techniques de désagrégation (Kim et Barros, 2002; Merlin et al., 2008b; Djamai et al., 2015a) et d’assimilation (Entekhabi et al., 1994; Walker et al., 2001; Bandara et al., 2015) à une l’échelle cohérente avec les observations satellites avant leur application sur des données réelles. De nombreuses expériences aéroportées ont été réalisées aux États-Unis avec (pour n’en citer que quelques unes des plus remarquables) Monsoon’90 (Kustas and Goodrich, 1994), SGP’97 (Jackson et al., 1999) et les expériences SMEX (Jackson et al., 2008), en Australie avec NAFE (Merlin et al., 2008a), AACES (Peischl et al., 2012) et la série des expériences SMAPEX (Panciera et al., 2014), et au Canada avec CanEX-SM10 (Magagi et al., 2013) et SMAPVEX12 (McNairn et al., 2015). Chacune de ces campagnes de mesures a permis des avancées significatives dans la validation et le développement des méthodes de désagrégation des données de SSM. Des images acquises par avion sont aussi utilisées pour tester des méthodes de désagrégation des données LST (e.g. Agam et al., 2007a). Leur utilisation est cependant moins cruciale que dans le cas de la désagrégation des données SSM, dans la mesure où des données satellites LST existent déjà à HR spatiale avec les capteurs ASTER et Landsat.

Les vols aéroportés sont néanmoins coûteux et nécessitent une logistique importante pour la planification des lignes de vol en amont, jusqu’au traitement des données en aval. Par conséquent, les données avionnées sont relativement rares. De plus, les mesures par avion sont aussi des observations de télédétection qui doivent être validées par des mesures terrain. Pour ces deux raisons, la validation des méthodes de désagrégation dans des conditions variées s’appuie largement sur l’utilisation des mesures in situ, notamment pour les méthodes dédiées à la SSM. On distingue deux types de mesures in situ : 1) les réseaux de stations permanentes ou semi-permanentes qui fournissent des séries avec une excellente densité temporelle et 2) les campagnes de mesures manuelles qui fournissent des estimations multi-résolution avec une excellente densité spatiale. Dans les deux cas, les mesures de la SSM sont souvent réalisées par
CHAPITRE 2. DÉSAGRÉGATION À BASE PHYSIQUE DE DONNÉES SPATIALES

Figure 2.14 – Illustration d’images multi-spectrale/multi-résolution (échelle arbitraire) obtenues par avion lors de l’expérience NAFE’06 (Merlin et al., 2008a).

des sondes TDR (Time Domain Reflectometry) ou FDR (Frequency Domain Reflectometry) qui allègent considérablement le protocole de mesure directe par gravimétrie. Ces sondes nécessitent cependant une calibration par la méthode gravimétrique (e.g. Merlin et al., 2007). Les deux types de mesures in situ de SSM (stationnelles et spatialisées) sont très complémentaires. Les mesures spatialisées sont disponibles sur des périodes courtes mais permettent une validation directe des sorties de désagrégation, en prenant en compte la représentativité spatiale des mesures in situ à des résolutions multiples. Les mesures stationnelles sont disponibles sur des périodes multi-annuelles, mais sont souvent peu représentatives à l’échelle de l’observation satellitaire, ce qui nécessite une stratégie de validation adaptée (comme l’approche Gdown par exemple).

Concernant les mesures in situ de LST, l’échantillonnage manuel et spatialisé est possible mais il est plus délicat à mettre en œuvre que pour la SSM du fait que la LST varie à l’échelle de quelques minutes. Dans le cadre du projet ANR MIXMOD-E et de la thèse de Yoann Malbêteau une campagne de mesures spatialisées de LST a été réalisée dans une vallée du Haut Atlas marocain à l’aide de 135 thermomètres. Les capteurs de température sont des thermochrons ibutton, systèmes robustes à faible coût et autonomes qui enregistrent le temps et la température. Ils ont été installés à ∼1 cm de la surface du sol et déployés sur 45 points de mesure à des altitudes variées et selon des expositions contrastées (voir sur la Figure 2.15), pour mesurer en continu et en spatialisé la température du sol d’avril à octobre 2014. Un défi majeur dans l’application des modèles basés sur la LST en milieu non plat est la prise en compte des effets topographiques et des conditions d’éclairage sur la LST observée par MODIS, ASTER et Landsat. Dans la version actuelle de DISPATCH par exemple, une correction simple de la LST est implantée à partir du taux de décroissance de la température de l’air en fonction de l’altitude (équation 2.13). Les mesures spatialisées fournies par les ibuttons serviront de base pour tester et valider de nouvelles méthodes de correction des effets topographiques sur la LST, par une prise en compte de l’éclairage solaire.

2.5 Résumé et conclusions

En télédétection, les méthodes de désagrégation permettent d’améliorer la résolution spatiale des données BR disponibles, tout en conservant une incertitude satisfaisante à HR pour les applications à fine échelle. Dans ce chapitre, je viens de présenter deux méthodologies développées durant ces 10 dernières années. L’une appelée DISPATCH est dédiée à la désagrégation des données SSM issues des radiomètres MO tels que SMOS, AMSR-E et SMAP. L’autre est dédiée à la désagrégation des données LST issues des capteurs IRT à résolution kilométrique tels que MODIS et prochainement Sentinel-3. Ces deux méthodes sont à base physique puisqu’elles s’appuient sur le processus d’évaporation ou d’évapotranspiration pour
2.5. RÉSUMÉ ET CONCLUSIONS

établir un lien spatial entre informations auxiliaires disponibles à HR et SSM ou LST. A travers ces processus, il existe une équivalence entre l’humidité ou la disponibilité en eau du sol pour l’évapotranspiration et la LST ou variable résultante du processus d’évapotranspiration.

Une différence essentielle entre les variables SSM et LST est que l’humidité est majoritairement une cause de l’évapotranspiration et la LST majoritairement un effet de l’évapotranspiration. C’est la raison pour laquelle les méthodologies de désagrégation pour SSM et LST se basent sur des équations de changement d’échelle différentes (équation 2.8 pour SSM et équation 2.21 pour la LST), alors que la modélisation sous-jacente est identique (cf. figures 2.3 et 2.10). En effet, il est intéressant de remarquer que les deux méthodes reposent sur un bilan d’énergie de la surface formalisé à partir des espaces bi-dimensionnels constitués par la LST et d’autres variables auxiliaires à HR (f_{gw}, a, TB, etc.). Du fait de la similitude entre les deux méthodologies, DISPATCH-SM et DISPATCH-LST feront référence dans la suite du document aux méthodes de désagrégation physique des données SSM et LST. Dans les deux cas, les équations de changement d’échelle sont génériques et peuvent théoriquement être appliquées à d’autres variables (avec les mêmes relations de cause-effet) que la SSM et la LST.

Le développement et l’amélioration des méthodes de désagrégation nécessitent des stratégies de validation cohérentes. Si l’évaluation de la LST désagrégée bénéficie de la disponibilité de données satellites à HR avec ASTER et Landsat, l’évaluation de la SSM désagrégée passe souvent par l’utilisation de mesures in situ localisées. Une nouvelle métrique Gdown est proposée pour évaluer de manière spécifique les méthodes de désagrégation, en réduisant l’effet des incertitudes sur l’observation à BR et l’impact du manque de représentativité à HR des mesures de référence. L’approche Gdown est applicable aux méthodes de désagrégation de données de SSM, de LST et d’autres variables géophysiques.

Les pistes de recherche en cours et futures autour de ces méthodes DISPATCH-SM/LST concernent : 1) l’amélioration de la modélisation de l’évaporation du sol, de l’évapotranspiration, ainsi que de la partition évaporation/transpiration, 2) l’intégration d’autres variables du bilan d’énergie de la surface disponibles issues de cartes de sol, de réanalyses et/ou de nouvelles observations satellitaire et 3) la validation dans des conditions variées de sol et de climat. En parallèle, il serait très intéressant d’un point de vue applicatif de développer un algorithme opérationnel de DISPATCH-SM à 100 m de résolution. Ce schéma inclurait la désagrégation en cascade des données SMOS/SMAP à 1 km de résolution avec les données MODIS et des données DISPATCH 1 km à 100 m de résolution avec les données Landsat.

Figure 2.15 – Campagne extensive de mesures de la température du sol à l’aide de 135 thermochrons déployés dans une petite vallée du Haut Atlas marocain, avec l’acquisition simultanée d’images ASTER.
CHAPITRE 2. DÉSAGRÉGATION À BASE PHYSIQUE DE DONNÉES SPATIALES
Chapitre 3

Modélisation des flux de surface par approches descendantes

Sommaire

3.1 Introduction ... 33
3.2 Température de surface : une variable intégratrice des états de surface .. 33
3.3 Evapotranspiration et bilan d’énergie de la surface (SEB) 35
 3.3.1 Modèles résiduels et modèles en fraction évaporative 35
 3.3.2 Synergie des modèles en fraction évaporative 37
 3.3.3 Vers une décontextualisation des modèles en fraction évaporative . 39
3.4 Evaporation du sol .. 40
 3.4.1 Etat de l’art des modélisations à grande échelle 41
 3.4.2 Modélisation phénoménologique de l’efficacité évaporative du sol 43
 3.4.3 Lien avec la texture du sol .. 45
3.5 Mesures in situ ... 46
 3.5.1 Températures extrêmes ... 46
 3.5.2 Lysimétrie ... 47
3.6 Résumé et conclusions .. 48

3.1 Introduction

Les approches de modélisation que je qualifie de descendantes caractérisent l’estimation de flux de surface par forçage et/ou calibration de modèles à partir des observations satellitaires. Cette notion a souvent été utilisée en hydrologie (Sivapalan et al., 2003) lorsqu’il s’agit de construire des modèles dont la nature permet une inversion des paramètres de manière univoque à partir des observations disponibles aux échelles d’application. Je m’appuie sur ce concept pour assurer un meilleur couplage entre observations satellitaires et modélisations hydrologiques. Dans ce chapitre je présente plusieurs exemples de modèles descendants de l’évapotranspiration (ET), de la partition entre l’évaporation du sol et la transpiration des plantes, et de l’évaporation du sol en lien avec les données de température de surface (LST) et d’humidité du sol en surface (SSM).

3.2 Température de surface : une variable intégratrice des états de surface

Afin d’expliciter les relations entre la LST et les états de surface, nous écrivons le bilan d’énergie de la surface qui s’exprime généralement comme :

\[R_n - G = H + LE \] (3.1)
avec Rn le rayonnement net, G le flux de conduction dans le sol, H le flux de chaleur sensible et LE le flux de chaleur latente (réfié à l’ET par une constante : la chaleur latente de vaporization de l’eau). La LST T intervient dans chacun des quatre termes : sous la forme T^4 dans Rn selon la loi de Stefan-Boltzmann, de gradient vertical $\partial T/\partial z$ dans G, de différence avec la température de l’air $T - T_a$ dans H et comme variable de la fonction de pression de vapeur saturante $e_{sat}(T)$ dans LE. Ainsi, les algorithmes de bilan d’énergie procèdent généralement par une boucle itérative sur T, d’abord en initialisant sa valeur en conditions neutres ($T = T_a$), puis en cherchant la valeur de T qui minimise l’écart entre l’énergie disponible à la surface $Rn - G$ et la somme des flux turbulents $H + LE$, l’ensemble de ces flux étant conditionné par le forçage météorologique (Merlin et Chehbouni, 2004). A l’équilibre thermodynamique, c’est à dire lorsque l’équation (3.1) est vérifiée (c’est typiquement le cas au pas de temps des données météorologiques de la demi-heure), la LST est la variable résultante des flux énergétiques entrants et sortants. Comme les bilans d’énergie et d’eau à la surface sont couplés via le processus d’ET, la LST est aussi une résultante des flux d’eau. Ainsi, la LST intègre à l’échelle quasi-instantanée (horaire) l’ensemble des caractéristiques (paramètres et états) de la surface impliquées dans les bilans d’eau et d’énergie. Le schéma de la Figure 3.1 illustre les liens entre T et les conditions environnementales (forçage météorologique, topographie), la couverture végétale (densité, phénologie, etc.), la disponibilité en eau du sol (SSM et humidité du sol en zone racinaire), les propriétés hydrodynamique du sol (texture, porosité, etc.) et les propriétés radiatives (albédo, émissivité) des différents composants de la surface. La LST est donc extrêmement riche en information sur les états de surface. Cette richesse est indéniablement un atout pour caractériser les surfaces et/ou calibrer/valider les modèles de flux de surface. Mais elle peut représenter un inconvénient lorsqu’il s’agit d’extraire une information spécifique comme l’humidité du sol (Merlin et al., 2013a) ou la texture du sol (Merlin et al., 2016), car cela suppose de s’affranchir des autres facteurs de variabilité. L’utilisation des données de LST en hydrologie s’appuie donc sur la quantification et la correction des effets perturbateurs (e.g. variabilités des conditions météorologiques, présence de pixels mixtes sol/végétation, effets topographiques, etc.) aux échelles d’application (Malbétan et al., 2016b). En particulier, une approche couramment utilisée pour réduire l’impact des variabilités temporelles des conditions météorologiques sur la LST consiste à normaliser les données par les valeurs minimale et maximale (endmembers) atteintes dans des conditions extrêmes de surface sèche/humide (Stefan et al., 2015).

![Figure 3.1 – La température de surface comme variable intégratrice des états de surface.](image-url)
3.3 Evapotranspiration et bilan d’énergie de la surface (SEB)

L’ET est un flux majeur du cycle hydrologique qui joue un rôle essentiel sur la disponibilité de l’eau du sol, la prévision des précipitations et des crues et dans la projection des changements d’occurrence des vagues de chaleur et des sécheresses. Pour comprendre le fonctionnement hydrologique des surfaces continentales et concevoir des mesures d’adaptation aux changements, l’ET devrait être modélisée et observée avec précision sur des grandes zones. A cet égard, la télédétectio apparaît comme l’une des techniques les plus prometteuses et rentables pour la cartographie et le suivi de l’ET. Si l’ET n’est pas directement observable par télédétectio, certaines variables inversées comme la couverture foliaire et la LST peuvent être utilisées en forçage des modèles de l’ET. Parmi la grande variété des approches existantes, la plus communément utilisée consiste à forcer la méthode FAO-56 (Allen et al., 1998; Allen, 2000; Allen et al., 2005) avec les données de NDVI (Bausch and Neale, 1989). L’ET est calculée comme une fonction d’une ET de référence dérivée des données météorologiques, d’un coefficient culturel et d’une phénologie de la végétation estimée à partir de la couverture végétale \(f_g \) (dérivée du NDVI).

L’opéralité de la méthode FAO-56 forçée par les séries temporelles de NDVI est excellente, grâce à une cohérence remarquable entre la complexité de la paramétrisation du modèle et la disponibilité des données d’entrée (météorologiques et NDVI). Cependant, une limitation de la méthode FAO-56 est que les coefficients utilisés (sous la forme de coefficient simple ou double) sont calibrés à partir des mesures in situ ce qui, étant donné l’hétérogénéité spatiale et temporelle de ces coefficients, restreint sa validité aux échelles intégrées (Long and Singh, 2010). De plus, le contrôle de l’humidité sur l’ET dans la formulation en double source se base sur un modèle de bilan hydrique et sur une connaissace à priori des volumes et des dates d’irrigation. Une autre variable de télédétectio pertinente pour le suivi de l’ET est la LST. L’atout principal de la LST en complément du NDVI est que la température est potentiellement une signature à la fois de l’ET et de la disponibilité en eau du sol via le bilan d’énergie. C’est en particulier le cas dans les régions semi-arides où l’énergie disponible n’est pas limitante.

3.3.1 Modèles résiduels et modèles en fraction évaporative

Il existe deux grandes catégories de modèles basés sur les données LST : (i) les méthodes de bilan résiduel et (ii) les méthodes en fraction évaporative (EE, définie comme le rapport de la chaleur latente sur l’énergie disponible) ou efficacité évaporative (EE, définie comme le rapport de l’ET réelle sur l’ET potentielle). La première catégorie de modèles estime l’ET comme le terme résiduel du bilan d’énergie de l’équation (3.1), c’est à dire l’énergie disponible à la surface moins le flux de chaleur sensible. Nous citons notamment deux modèles très utilisés TSEB (Two-Source Energy Balance, Norman et al. 1995) et SEBS (Surface Energy Balance System, Su et al. 2002). Le calcul du flux de chaleur sensible nécessite généralement l’expression d’une ou de plusieurs résistances de surface. Dans le cas d’une représentation à double source, le flux de chaleur sensible \(H_s \) se décompose en deux termes, un pour le sol \((H_s) \) et un pour la végétation \((H_v) \). Le flux de chaleur sensible de la végétation s’exprime comme :

\[
H_v = \rho C_p \frac{T_v - T_a}{r_{ah}} \tag{3.2}
\]

avec \(T_v \) la température de la canopée et \(r_{ah} \) la résistance aérodynamique au dessus de la végétation. Le flux de chaleur sensible du sol s’exprime comme :

\[
H_s = \rho C_p \frac{T_s - T_a}{r_{ah} + r_s} \tag{3.3}
\]

avec \(T_s \) la température du sol et \(r_s \) la résistance au transfert de chaleur à travers le couvert végétal. La deuxième catégorie de modèles estime l’ET comme l’ET potentielle multipliée par l’EE (Moran et al., 1994) ou comme l’énergie disponible multipliée par l’EF (Roerink et al., 2000). Ces modèles sont souvent dit “contextuels” car la méthodologie du calcul de EE ou EF implique une détermination des valeurs extrêmes de la LST dans les conditions parfaitement sèche et humide; conditions qui, suivant le contexte, peuvent être ou ne pas être présentes au sein de l’image à la résolution d’observation. Par une analogie entre la demande évaporative et l’énergie disponible, ces modèles “contextuels” incluent les méthodes basées sur l’EF et sur l’EE. En pratique, l’EE ou l’EF sont estimées de la même manière à partir d’une normalisation de la LST :

\[
EE = \frac{T_{dry} - T}{T_{dry} - T_{wet}} \tag{3.4}
\]
avec \(T_{dry} \) et \(T_{wet} \) les valeurs extrêmes de \(T \) dans des conditions de surface parfaitement sèche et humide, respectivement. Il est intéressant de remarquer que la nature contextuelle des modèles de l’EF (ou l’EE) ne concerne que l’estimation des limites de LST et non pas l’estimation de l’EF (ou l’EE). C’est la raison pour laquelle nous préférons ici la dénomination “modèles de l’EF” à “modèles contextuels”. Cette distinction nous permettra (voir partie suivante) d’envisager une dé-contextualisation des modèles de l’EF/EE par une amélioration du calcul des températures extrêmes (Stefan et al., 2015). On remarque que l’EF/EE est reliée de manière linéaire à la température \(T \) dans l’équation (3.4). L’hypothèse de linéarité peut être vérifiée à l’aide d’un modèle de bilan d’énergie à base physique (Merlin et al., 2016).

Les modèles contextuels ou de l’EF/EE ont été examinés par Kalma et al. (2008) et Li et al. (2009). Les limites physiques de la LST ou températures extrêmes (Tends) sont estimées par une procédure en deux étapes. D’abord, les Tends qui correspondent aux conditions sèches et humides des composants sol et végétation sont localisées au sein de l’espace défini par la LST et l’albédo (Roerink et al., 2000; Merlin, 2013) et/ou l’espace défini par la LST et \(f_{gw} \) (Tang et al., 2010; Merlin, 2013; Long and Singh, 2012). Ensuite, les limites sèches et humides sont interpolées sur la plage des valeurs de couverture végétale, en reliant les sommets des polygones par des lignes droites (Moran et al., 1994) ou courbes (Carlson, 2007). Enfin, une fois les limites de LST déterminées, pour tout point de l’espace LST-albédo ou de l’espace LST-\(f_{gw} \), l’EE (ou l’EF) est calculée comme le rapport de la distance séparant le point de la ligne identifiée comme le bord sec sur la distance séparant le bord sec et la ligne identifiée comme le bord humide. En général, les deux sous-modèles (EE/EF et Tends) sont indépendants. Cela signifie que des algorithmes différents de Tends peuvent être implémentés avec le même sous-modèle de l’EE/EF. La nature contextuelle des modèles basés sur l’EE/EF est ainsi attribuée aux sous-modèles de Tends et non pas aux modèles de l’EE/EF.

Les modèles de l’ET basés sur l’EF/EE ne nécessitent pas ou peu de paramètres en entrée et sont donc facilement transférables d’une région à l’autre. En particulier, il n’est pas nécessaire de calibrer les résistances de surface des modèles basés sur le bilan résiduel (Jiang and Islam, 1999). Depuis Price (1990), un grand nombre d’études ont utilisé l’espace LST-\(f_{gw} \) (connu comme la méthode du triangle ou du trapèzoïde) pour estimer l’ET (Price, 1990; Gillies et al., 1997; Jiang and Islam, 2003; Venturini et al., 2004; Stisen et al., 2008) et caractériser des variables ou phénomènes liés à l’ET comme la résistance de surface à l’ET (e.g. Nemani and Running, 1989), l’humidité du sol (Sandholt et al., 2002; Merlin et al., 2008b; Mallick et al., 2009; Kim and Hogue, 2012; Merlin et al., 2013a), les régimes de rétroaction des précipitations sur la surface (Brussell, 2006), les sécheresses (Wan et al., 2004), le contenu en eau des combustibles pour la gestion des feux de forêt (Chuvieco et al., 2004) et les changements de couverture végétale (e.g. Julien and Sobrino, 2009). Alternativement à l’espace LST-\(f_{gw} \), l’espace LST-albédo a aussi été proposé pour suivre l’ET sur des zones étendues (Menenti et al., 1989; Roerink et al., 2000). Le modèle Simplified Surface Energy Balance Index (S-SEBI, Roerink et al., 2000) détermine les bords humide et sec en interprétant les corrélations observées entre la LST et l’albédo (Menenti et al., 1989). S-SEBI a été appliqué avec succès dans de nombreuses études (e.g. Gómez et al., 2005; Sóbrito et al., 2005, 2007; Fan et al., 2007; Galleguillos et al., 2011a,b). La droite humide est définie comme la limite basse de l’espace LST-albédo. Elle a généralement une pente positive qui s’explique par un contrôle évaporatif sur la LST. La droite sèche est définie comme la limite haute de l’espace LST-albédo. Elle a généralement une pente négative qui s’explique par un contrôle radiatif sur la LST (Roerink et al., 2000).

En comparaison avec les modèles “physiques” basés sur le bilan résiduel, les modèles de l’EF/EE peuvent sembler quelque peu empiriques. Il est vrai que la relation linéaire entre LST et l’EF/EE de l’équation (3.4) peut sembler simpliste a priori. En fait, la linéarité de la LST avec les flux turbulents est affectée par la dépendance des formulations de la résistance aérodynamique à la différence \(T - T_a \). Mais cet effet est relativement faible et l’hypothèse de linéarité entre LST et flux turbulents (et donc l’EF/EE) reste valable sur la gamme complète des valeurs de l’EE (Merlin et al., 2016). Au delà de l’équation (3.4), l’interprétation des bords sec et humide est le socle des modèles de l’EF/EE. Elle permet d’estimer la sensibilité de la LST à différentes variables du bilan d’énergie, dont l’humidité du sol. Elle permet aussi de développer de nouveaux modèles de l’ET en s’appuyant sur les espaces bien connus (e.g. LST-\(f_{gw} \)) et éventuellement en généralisant l’approche à d’autres espaces. La Figure 3.2 présente une comparaison des bords sec et humide identifiés selon les modèles WDI (Water Deficit Index; Moran et al., 1994), SEB-1S (1-Source Surface Energy Balance; Merlin, 2013) et S-SEBI. On observe deux incohérences. Premièrement S-SEBI prévoit un croisement des lignes associées aux bords sec et humide pour des valeurs d’albédo acceptables. Deuxièmement l’amplitude des valeurs de LST sur le bord humide n’est pas la même.
3.3. EVAPOTRANSPIRATION ET BILAN D’ÉNERGIE DE LA SURFACE (SEB)

3.3.2 Synergie des modèles en fraction évaporative

Chacun des deux espaces LST-f_{gv} et LST-albédo peut être utilisé pour estimer l’ET à partir d’une identification similaire des bords sec et humide. Etant donné que f_{gv} et l’albédo fournissent des informations complémentaires sur la surface, des synergies sont attendues entre les deux approches. Spécifiquement, l’albédo est sensible à la couverture totale de la végétation y compris la végétation verte (f_{gv}) et la végétation sénescrante (Merlin et al., 2010b, 2012a,b), alors que le NDVI n’est sensible (en première approximation) qu’à la végétation verte. Ainsi, les approches basées sur l’espace LST-f_{gv} confondent les sols nus avec les sols pleinement ou partiellement couverts de végétation sénescrante, alors que l’approche basée sur l’espace LST-albédo est théoriquement capable de différencier ces deux cas. Merlin et al. (2010a) et Merlin et al. (2012a) ont développé des méthodes de désagrégation de la LST à partir de relations observées entre la LST et f_{gv} et entre la LST et la fraction de végétation sénescrante (dérivée de l’albédo). En utilisant la méthode du triangle, Merlin et al. (2008b) ont développé une procédure de désagrégation (DISPATCH) de la SSM à partir de relations observées entre la LST et f_{gv}. La version actuelle de DISPATCH représente le status hydrique de la végétation à l’aide de la température de végétation stressée, qui peut être estimée dans l’espace LST-albédo (Merlin et al., 2012b). Si les exemples ci-dessus illustrent des utilisations conjointes des espaces LST-f_{gv} et LST-albédo, la synergie potentielle entre ces deux espaces en terme d’estimation de l’ET n’a été que rarement exploitée à ce jour.

Le modèle SEB-1S est proposé avec l’objectif de s’appuyer sur les deux espaces LST-f_{gv} et LST-albédo simultanément. Originellement développé pour le suivi des zones agricoles irriguées à partir des données de type ASTER/Landsat, SEB-1S revisite la manière dont l’EF est estimée à partir des données de LST et d’albédo (S-SEBI, Roerink et al. 2000). En particulier, SEB-1S propose une nouvelle interprétation de l’espace LST-albédo en cohérence avec l’espace LST-f_{gv} : le bord “humide” associé à l’énergie disponible (EF=1) dans S-SEBI est interverti avec le bord associé à la couverture végétale maximale (voir Figure 3.3). Cette nouvelle interprétation améliore l’estimation de l’ET (résultats présentés dans la Figure 3.3) et met en évidence pour la première fois une synergie entre les modèles de l’EF/EE basés sur l’espace LST-albédo comme S-SEBI et les modèles de l’EF/EE basés sur l’espace LST-f_{gv} (e.g. Moran et al., 1994). Un autre exemple qui illustre la synergie potentielle entre les deux espaces pour estimer l’ET est la détermination des températures extrêmes. Comme les mêmes Tends apparaissent aux coins des polygones des deux espaces LST-f_{gv} et LST-albédo, il est possible d’améliorer la précision des Tends grâce aux
techniques d’extrapolation qui prennent compte de la position des coins des deux espaces simultanément (Merlin, 2013).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3_3.png}
\caption{La nouvelle interprétation physique des bords de l’espace LST-albédo améliore l’estimation de l’EF (=IJ/IK) et de l’ET.}
\end{figure}

Le modèle SEB-4S exploite la synergie des espaces LST-\(f_{gr}\) et LST-albédo pour représenter une partition des flux en quatre composants des surfaces agricoles : la végétation verte non-stressée, la végétation non-transpirante, la végétation sénescence (encore sur pied) et le sol nu. Une connaissance de la partition de l’ET entre l’évaporation du sol et la transpiration des plantes serait très utile pour estimer la consommation et le besoin en eau des cultures. Le terme d’évaporation correspond à la partie de l’ET qui n’est pas utilisable pour la productivité des cultures et le terme de transpiration est, dans le cas de stress de la végétation, directement lié au contenu en eau de la zone racinaire ou autrement dit le besoin en eau des cultures. Si les mesures indépendantes d’évaporation et de transpiration sont très peu disponibles sur le terrain, les données de télédétection dans les diverses bandes spectrales ont un fort potentiel pour estimer la partition évaporation/transpiration à l’échelle des parcelles. Afin d’estimer cette partition, la modélisation SEB-1S a été étendue à une représentation multi-source des parcelles agricoles. A partir d’un système de 4 équations à 4 inconnues, les flux SEB-4S sont calculés en cinq étapes : 1) l’estimation de l’albédo et des températures extrêmes pour chaque composant, 2) l’estimation des températures réelles de chaque composant à la résolution de l’image thermique, 3) l’estimation de l’EF du sol, 4) l’estimation des fractions de chaque composant et 5) le calcul des flux turbulents pour chaque composant. Les simulations SEB-4S de l’ET ont été validées sur la zone irriguée de Yaqui au Mexique (voir Figure 3.4). Une campagne en cours de mise en place au sein du laboratoire TREMA fournira les données in situ permettant de tester la partition SEB-4S à l’aide de micro-capteurs flux de sève et de lysimètres.
3.3. EVAPOTRANSPIRATION ET BILAN D’ÉNERGIE DE LA SURFACE (SEB)

3.3.3 Vers une décontextualisation des modèles en fraction évaporative

Dans le cadre de la thèse de Vivien Stefan, plusieurs méthodes d’estimation des Tends ont été testées à deux échelles différentes : l’échelle d’une station météorologique qui fournit des données de forçage pour des calculs théoriques des Tends et l’échelle d’une scène ASTER extraite sur une zone d’environ 100 km2. Des données météorologiques in situ ont été utilisées pour forcer un modèle de bilan d’énergie du sol en conditions sèche (SSM prescrite à zéro) et humide (SSM prescrite à l’humidité du sol à saturation). En parallèle, des mesures in situ des Tends du sol ont été relevées. À l’échelle de l’image satellitaire, les algorithmes de Tends basés sur une synergie des espaces LST-f_{gv} et LST-albédo (*Merlin*, 2013; *Merlin et al.*, 2014) ont été appliqués sur les données ASTER à ∼100 m de résolution et sur ces mêmes données...
agrégées à la résolution de MODIS (1 km). La Figure 3.5 illustre la forte cohérence entre les Tends du sol mesurées in situ (échelle de 4 m2), simulées par un modèle de bilan d’énergie forcé par les données météorologiques mesurées à 2 m par une station classique (échelle de représentativité d’une station) et simulées par un modèle de Tends basé sur les corrélations spatiales des données ASTER à 100 m de résolution au sein des espaces LST-f_gv et LST-albédo (tracés pour une étendue spatiale de \sim100 km2). Ces comparaisons mettent en évidence la nature relativement adimensionnelle des Tends -les Tends sont par définition indépendantes de l’échelle spatiale- tant que les conditions météorologiques peuvent être supposés homogènes.

Figure 3.5 – Les Tends du sol ($T_{s,wet}$ en bleu et $T_{s,dry}$ en rouge) simulées par un modèle de bilan d’énergie forcé par les données météorologiques sont comparées aux mesures in situ (a) et les Tends du sol simulés par un modèle basé sur les corrélations spatiales (à la résolution ASTER) des espaces LST-f_gv et LST-albédo sont comparées aux Tends simulées à partir des données météorologiques (b). Les symboles correspondent à des temps et/ou des zones d’études différents (Stefan et al., 2015).

L’originalité de l’étude présentée dans Stefan et al. (2015) repose sur trois aspects : 1) il s’agit à notre connaissance de la première évaluation directe des Tends du sol à partir de mesures in situ, 2) la détermination des bords sec et humide s’appuie sur les deux espaces LST-f_gv et LST-albédo alors que les études précédentes ont été basées sur un espace seulement (Allen et al., 2007; Tang et al., 2010; Long et al., 2011; Long and Singh, 2012; Long et al., 2012) et 3) la sensibilité des simulations de l’ET à la résolution d’observation est examinée en fonction des méthodes d’estimation des Tends, soit à partir des images soit à partir de la modélisation du bilan d’énergie. Les résultats indiquent un comportement différent des modèles de Tends basés sur les images, selon la résolution spatiale des observations. A la résolution des données ASTER, les modèles de Tends basés sur les images sont plus précis en termes de calcul de l’ET que les modèles basés sur un bilan d’énergie théorique. À la résolution MODIS, c’est l’inverse : les modèles théoriques de Tends surpassent les modèles basés sur les images. Ces résultats nous incitent à envisager l’application d’un modèle théorique de r_{ah} pour décontextualiser les modèles de l’EE/EF appliqués aux données à moyenne résolution de type MODIS.

3.4 Evaporation du sol

L’évaporation contribue globalement pour 20 à 40% de l’ET (Lawrence et al., 2007; Schlesinger and Jasechko, 2014) et provient majoritairement (à la hauteur de 65%) de l’humidité des sols et non pas des surfaces d’eau libre (Good et al., 2015). L’évaporation du sol est une condition aux limites essentielle entre le sol et l’atmosphère. Ce processus est donc représenté dans de nombreux modèles pour des applications agronomiques, hydrologiques, météorologiques et climatiques à des échelles multiples : de la parcelle agricole où les volumes d’eau d’irrigation sont alloués (e.g. Allen, 2000), au bassin versant où les décisions d’aménagement hydraulique sont prises (e.g. Wood et al., 1992), à la méso-échelle des modèles de circulation atmosphérique (e.g. Sakaguchi and Zeng, 2009). Des estimations précises de l’évaporation du sol
3.4. EVAPORATION DU SOL

sont notamment utiles pour quantifier la partition de l’ET entre l’évaporation du sol et l’évaporation et la transpiration des plantes (Williams et al., 2004; Kool et al., 2014). Une connaissance de cette partition est fondamentale pour assurer un suivi de l’absorption d’eau par les plantes et les périodes de stress hydrique (Porporato et al., 2001; Er-Raki et al., 2010) dans un environnement où les ressources en eau sont limitées et de mieux comprendre les interactions surface-atmosphère (Feddes et al., 2001).

L’évaporation des sols non saturés est un processus complexe, notamment à cause du couplage des transferts de masse et d’énergie à l’interface surface-atmosphère qui impliquent 1) des transports sous forme d’eau liquide et de vapeur dans les pores proches de la surface, 2) l’énergie solaire incidente pour le changement d’état et 3) le transfert de vapeur à travers la couche limite atmosphérique (Philip and de Vries, 1957; Milly, 1984; Chanzy and Bruckler, 1993; Bittelli et al., 2008; Smits et al., 2012; Or et al., 2013). Le contrôle du sol sur l’évaporation provient de deux phénomènes principaux : le gradient de la concentration de vapeur d’eau (Cw) entre la surface évaporative et l’atmosphère et la diffusion de vapeur d’eau lorsque la surface évaporative est située sous la surface du sol. La Cw en équilibre avec l’eau liquide du site évaporant est gouvernée par la loi de Gibbs qui relie Cw au potentiel matriciel de l’eau du sol et à la température. La diffusion de vapeur d’eau dépend à la fois de la profondeur du site évaporant et de la porosité exempte d’air. Les modèles physiques complets comme ceux basés sur les équations de Philip and de Vries (1957) sont capables de représenter les gradients de température et de potentiel de l’eau ainsi que la diffusion de vapeur. De tels modèles sont forcés par les conditions météorologiques mais sont cependant très sensibles aux propriétés hydrauliques des sols (SHPs), à l’initialisation des variables d’état (profil d’humidité) et aux conditions aux limites basses (Chanzy et al., 2008). De plus les simulations prennent un temps de calcul significatif et la résolution numérique de ces équations est parfois mal conditionnée et donc instable. Ces caractéristiques compliquent l’implémentation des modèles complets sur de grandes zones, étant donné qu’elle nécessiterait de nombreuses unités de simulation et la possibilité de renseigner l’ensemble des paramètres de sol dans chaque unité. L’alternative la plus commune est de considérer des modèles fonction de la SSM. La SSM n’est qu’un proxy des quantités attribuées au sol qui contrôlent le taux d’évaporation. Il serait théoriquement nécessaire de considérer l’ensemble des sites évaporatifs (qui peuvent être situés à différents niveaux dans le sol) ainsi que les relations entre potentiel de l’eau et contenu en eau. Ces propriétés sont reliées à la SSM mais peuvent aussi être gouvernées par d’autres facteurs comme la demande climatique ou la structure du sol en surface. Enfin, l’épaisseur de la couche considérée pour caractériser la SSM a aussi un impact sur les paramètres des modèles de l’évaporation (Merlin et al., 2011).

3.4.1 État de l’art des modélisations à grande échelle

Il existe de nombreux modèles de l’évaporation du sol basés sur la SSM. Tous ces modèles tentent de représenter la limitation de l’évaporation à partir de la SSM (eau liquide) et la demande évaporative en utilisant des approches empiriques ou semi-empiriques (Viterbo and Beljaars, 1995; Pitman, 2003). Rétrospectivement, l’un des premiers modèles de l’évaporation du sol qui a été appliqué à grande échelle et connu sous le nom de modèle à simple réservoir (bucket model; Manabe, 1969) s’écrit :

\[
\text{SEE} = \frac{\theta}{\theta_c},
\]

avec la SEE (-) l’efficacité évaporative du sol défini comme le rapport de l’évaporation du sol réelle sur l’évaporation potentielle du sol, \(\theta \) (m\(^3\) m\(^{-3}\)) la SSM et \(\theta_c \) (m\(^3\) m\(^{-3}\)) un paramètre égal à 0,75 fois l’humidité du sol à capacité au champ. Depuis le modèle bucket, de nombreuses tentatives ont été réalisées pour améliorer la représentation ci-dessus, notamment en séparant les composants de sol et de végétation à l’aide de formulations à source double (Shutlesworth and Wallace, 1985). L’évaporation du sol est désormais modélisée en utilisant l’une des quatre méthodes suivantes, à savoir la formulation en résistance de surface (\(r_{ss} \)) :

\[
LE_s(r_{ss}) = \frac{\rho C_p}{\gamma} \times \frac{e_{sat}(T_s) - e_a}{r_{ah} + r_{ss}},
\]

la formulation en \(\alpha \) :

\[
LE_s(\alpha) = \frac{\rho C_p}{\gamma} \times \frac{\alpha e_{sat}(T_s) - e_a}{r_{ah}},
\]

la formulation en \(\beta \) :

\[
LE_s(\beta) = \beta \times \frac{\rho C_p}{\gamma} \times \frac{e_{sat}(T_s) - e_a}{r_{ah}}
\]
ou la formulation avec un seuil \(LE_{s,\text{max}} \) :

\[
LE_s(LE_{s,\text{max}}) = \min(LEp_s, LE_{s,\text{max}})
\]

(3.9)

avec \(LE_s \) (W m\(^{-2}\)) la chaleur latente du sol, \(\rho \) (kg m\(^{-3}\)) la densité de l’air, \(C_P \) (J kg\(^{-1}\) K\(^{-1}\)) la capacité calorifique spécifique de l’air, \(\gamma \) (Pa K\(^{-1}\)) la constante psychrométrique, \(r_{ss} \) (s m\(^{-1}\)) la résistance à la diffusion de vapeur dans les grandes pores du sol, \(\alpha \) (-) un facteur qui réduit la pression de vapeur saturante à la pression de vapeur réelle à la surface du sol, \(e_a \) (Pa) la pression de vapeur de l’air, \(LEp_s \) (W m\(^{-2}\)) l’évaporation potentielle du sol et \(LE_{s,\text{max}} \) (W m\(^{-2}\)) le flux d’eau maximum que le sol est capable de soutenir en dessous de la surface du sol. En fonction des auteurs, la méthode de seuil est aussi appelée méthode de la demande et de l’offre, ou la méthode de Priestley-Taylor et \(LEp_s \) est estimée à partir des méthodes aérodynamique, de Penman ou de Priestley-Taylor. La formulation en \(LE_{s,\text{max}} \) est équivalente à la formulation en \(\beta \) quand \(LE_{s,\text{max}} \) est paramétrée comme une fraction de \(LEp_s \). A noter que \(LE_s \) peut aussi être modélisée en combinant les formulations en \(\alpha \) et \(r_{ss} \), ou en combinant les formulations en \(\alpha \) et \(\beta \).

Une revue complète et détaillée des méthodes en \(\alpha, \beta, r_{ss} \) et \(LE_{s,\text{max}} \) est proposée par Mahfouf et Noilhan (1991), (Lee and Pielke, 1992), (Ye and Pielke, 1993), (Mihailovic et al., 1995), (Dekic et al., 1995) et (Cahill et al., 1999). La forme de \(\alpha, \beta, r_{ss} \) ou \(LE_{s,\text{max}} \) est obtenue de manière physique ou empirique. Les expressions physiques sont dérivées à partir de considérations thermodynamiques (Philip and de Vries, 1957) ou en simplifiant les lois de la diffusion de Fick (e.g. Dickinson et al., 1986; Wetzel and Chang, 1988; Sakaguchi et Zeng, 2009). Elles simplifient la physique sous-jacente au processus de l’évaporation et nécessitent un certain degré d’empirisme pour surmonter les hypothèses simplificatrices (e.g. Sakaguchi et Zeng, 2009). Les modèles empiriques reposent sur des expressions ad hoc (e.g. Manabe, 1969; Noilhan and Planton, 1989) ou sur des ajustements de courbe en utilisant un jeu de données expérimentales (e.g. Sun, 1982; Sellers et al., 1992). Une liste des modules d’évaporation du sol de quelques schémas de surface est présentée dans le tableau 3.1. Bien que de nombreuses formulations ont été développées depuis les années 1960, il n’existe pas aujourd’hui de consensus sur un meilleur moyen de modéliser l’évaporation sur de grandes étendues (Desborough et al., 1996; Sakaguchi et Zeng, 2009). Néanmoins, une revue bibliographique nous permet de tirer un certain nombre de conclusions : 1) les formulations existantes basées sur \(\theta \) diffèrent selon quatre aspects : les valeurs limites basse et haute de \(\theta \), la nonlinéarité de la relation entre évaporation et \(\theta \), les données d’entrée nécessaires autres que \(\theta \) et la profondeur des mesures de \(\theta \), 2) des expressions empiriques simples peuvent être plus précises que d’autres modèles à base physique (Dekic et al., 1995; Mihailovic et al., 1995; Yang et al., 1998), 3) la formulation en \(\beta \) semble plus robuste que celle en \(\alpha \) (Cahill et al., 1999; Van den Hurk et al., 2000) et 4) ces formulations n’ont pas encore été évaluées avec des observations pour une large gamme de sols et dans des conditions atmosphériques variées.
3.4. EVAPORATION DU SOL

3.4.2 Modélisation phénoménologique de l’efficacité évaporative du sol

Le choix de modéliser l’efficacité évaporative du sol (SEE) et non l’évaporation du sol directement est motivé par le fait que la SEE, en tant que variable normalisée, aide à découpler les deux principaux facteurs contrôlant l’évaporation du sol: la demande évaporative \((LE_p) \) et la disponibilité en eau du sol. La SEE favorise la séparation des cycles d’évaporation associées 1) aux variations journalières, saisonnières et climatiques de la \(LE_p \) et 2) les variations de la disponibilité en eau du sol associées aux précipitations naturelles (pluie) et/ou d’origine humaine (irrigation). On remarque ici que la formulation de SEE ne découpe qu’en partie seulement les effets de disponibilité en eau du sol et de \(LE_p \) à cause de la dépendance du profil de l’humidité à la \(LE_p \) (Merlin et al., 2011) et parce que \(LE_p \) et \(LE_p \) sont en général liées (en référence à la relation complémentaire de Lintner et al., 2015). De plus la partie advective contribue aussi à la SEE avec la baisse de température qui réduit \(C_w \) au niveau de la surface évaporative (Chanzy and Bruckler, 1993). Néanmoins, la normalisation de l’évaporation réelle par la demande évaporative enlève l’effet du premier ordre de \(LE_p \) sur \(LE \) et fixe les bornes de la SEE entre approximativement 0 (une surface de sol n’est jamais sèche à 100%) et 1. Les limites sont théoriquement atteintes quand la disponibilité en eau du sol est respectivement négligeable (\(\theta = \theta_{sat} \), SEE = 0) et maximum (\(\theta = \theta_{sat} \), SEE = 1) quelle que soit la demande évaporative. L’évaporation du sol peut alors être estimée en multipliant la SEE modélisée par \(LE_p \), qui est dérivée uniquement des données météorologiques.

Les modèles phénoménologiques se distinguent des modèles simplifiés décrits au dessus car ils ne sont pas dérivés de la théorie et ne sont pas construits à partir d’hypothèses \textit{ad hoc}. Les modèles phénoménologiques se basent sur des données observationnelles et non pas sur des considérations théoriques (Sivapalan et al., 2003), mais fournissent une interprétation physique ou semi-physique des paramètres. Komatsu (2003) a réalisé une première tentative de relier un paramètre expérimental de la SEE à la texture du sol et aux conditions aérodynamiques. Cependant, leur étude était basée sur une couche de surface de quelques millimètres, qui est beaucoup plus fine que l’épaisseur (typiquement quelques cm) de la couche superficielle du sol représentée par la plupart des modèles de surface. De plus, une difficulté majeure dans la paramétrisation de la SEE avec suffisamment de généralité est l’assèchement (habituellement aux alentours de midi solaire) des premiers mm du sol qui freine l’évaporation, quelle que soit la disponibilité en eau du sol en dessous de la surface (Mahrt and Pan, 1984; Dickinson et al., 1986; Soares et al., 1988; Wetzel and Chang, 1988; Van de Groen and Owe, 1994; Heitman et al., 2008; Shahraeeni et al., 2012). C’était l’argument principal qui nous a conduit à développer une nouvelle formulation de la SEE avec une forme qui s’adapte à la profondeur des mesures de \(\theta \). L’étude dans Merlin et al. (2011) propose un moyen de prendre en compte le gradient d’humidité du sol dans la couche superficielle, à l’aide d’une paramétrisation simple en fonction de l’évaporation potentielle. Ce modèle a été évalué avec succès à l’échelle journalière sur les deux sites (Lamasquère et Auradé) du chantier Sud Ouest.

Dans Merlin et al. (2011), la SEE s’exprime comme :

\[
SEE = \begin{cases}
[0.5 - 0.5 \cos(\pi \theta/\theta_{sat})]^P, & \text{if } \theta \leq \theta_{sat} \\
1, & \text{if } \theta > \theta_{sat}
\end{cases} \quad (3.10)
\]

avec \(P \) (-) un paramètre semi-empirique exprimé comme une fonction de la profondeur \(L \) des mesures de l’humidité du sol et de \(LE_p \). L’expression phénoménologique de l’équation (3.10) est fondée sur l’observation que les quantités \(L \) et \(LE_p \) ont un impact équivalent sur la SEE, ce qui signifie que 1) la SEE est contrôlée par le profil de l’humidité du sol au sein de l’épaissseur de sol \(L \) et 2) le profil d’humidité du sol est affecté par \(L \) et \(LE_p \). A ce sujet, il existe une cohérence de modélisation avec l’étude récente de Brutsaert (2014) qui décrit le flux d’eau journalier dans la colonne de sol en considérant le sol comme un domaine infini durant la phase 1 de l’évaporation, et comme une couche d’épaisseur constante dont la condition aux limites basses est un plan de flux nul durant la phase 2. La décroissance de la SEE avec une augmentation de la \(LE_p \) est généralement liée à la formation d’une couche sèche de sol au dessus du front évaporatif (Fritton et al., 1967; Yamanaka et al., 1998), associée à la modification du profil de l’humidité au sein de la couche observée. En guise d’illustration, la figure 3.6 trace la SEE simulée par le modèle de Merlin et al. (2011) en fonction de \(\theta \) et de deux jeux de paramètres différents : \((P_1, \theta_{sat,1}) = (1, 0.40) \) et \((P_2, \theta_{sat,2}) = (4, 0.45) \). La différence entre les deux courbes est notamment visible au niveau de la tangente à \(\theta_{1/2} \), définie comme la valeur de \(\theta \) pour \(SEE = 0.5 \).
Table 3.1 – Module de déperdition du sol de gelure modèles de surface

<table>
<thead>
<tr>
<th>Nom</th>
<th>Module de surface</th>
<th>Formulation</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPITRE 3. MODÉLISATION DES FLUX DE SURFACE PAR APPROCHES DESCENDANTES</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.4. EVAPORATION DU SOL

3.4.3 Lien avec la texture du sol

Les modèles d’évaporation simplifiés (voir tableau 3.1) ont généralement un lien avec le type de sol via les valeurs d’humidité du sol considérées comme des valeurs seuils pour l’évaporation. Par exemple, l’évaporation du sol est paramétré en fonction de l’humidité résiduelle \(\theta_{\text{res}} \) et de \(\theta_{f_c} \) (humidity à capacité au champ) pour la \(r_s \), de H-TEssel (Hydrology-Tiled ECMWF Scheme for Surface Exchange over Land ; ECMWF, 2014), en fonction de \(\theta_{f_c} \) pour le coefficient \(\alpha \) d’ISBA (Interaction Sol-Biosphère-Atmosphère ; Noilhan and Planton, 1989), et en fonction de \(\theta_{f_c} \) pour la \(r_s \) et \(\theta_{\text{sat}} \), la pression d’entrée d’air et le paramètre de Clapp et Hornberger (Clapp and Hornberger, 1978) pour le coefficient \(\alpha \) de la version 4.5 de CLM (Community Land Model ; Oleson et al., 2013). Si le lien avec la texture du sol est explicite avec les fonctions de pédo-transfert (PTFs) qui relient directement les SHPs au pourcentage d’argile et de sable, les modèles de l’évaporation ont rarement été testés pour des types de sol différents. C’est l’une des raisons qui nous a amenés dans le cadre du projet ANR MIXMOD-E à construire une base de données multi-site sur sol nu.

Ces sites étaient ou ont été développés dans le cadre de réseaux de stations de flux nationaux et internationaux (Ameriflux, FluxNet, la base de données Européenne, OzFlux), d’observatoires à long terme tels que AMMA (African Monsoon Multidisciplinary Analysis), HOBE (Danish Hydrological Observatory) et SudMed (South Mediterranean Observatory), ou des campagnes de terrain courtes mais intensives telles que les expériences EFEDA (Echival Field Experiment in a Desertification Threatened Area), ReSeDa (Remote Sensing Data Assimilation), Yaqui’08, HAPEX-Sahel (Hydrology-Atmosphere Pilot Experiment), IHOP (International H2O Project), Monsoon’90 et Southern Great Plains 1997 (SGP’97). Les données comprennent pour chaque site les fractions d’argile et de sable et les variables mesurées au pas de temps de la demi-heure suivantes : \(\theta \), \(LE_s \), \(H_s \), le rayonnement net du sol \(Rn_s \), \(G \) et les données météorologiques composées de \(T_a \), la vitesse du vent \(u_a \), le rayonnement solaire \(R_g \) et l’humidité relative de l’air \(h_a \) à une hauteur de référence (typiquement 2 m). Un aspect clé dans cette analyse est l’identification des périodes où les sites peuvent être considérés comme en conditions de sol nu. Un travail minutieux a été entrepris afin d’extraire à partir d’informations auxiliaires (telles que les dates de travail du sol des sites agricoles ou les séries de LAI) les périodes de sol nu (ou quasi nu) avec autant de précision que possible.

Dans l’esprit des modélisations phénoménologiques de Komatsu (2003) et de Merlin et al. (2011), un nouveau modèle de la SEE quasi instantanée (pas de temps des données météorologiques) a récemment été développé en exploitant la base de données multi-site sur sol nu décrite ci-dessus (Merlin et al., 2016). La SEE est représentée avec la formulation \(r_{ss} \) basée sur \(\theta \) et deux paramètres \(r_{ss, ref} \) et \(\theta_{\text{efolding}} \). L’approche de modélisation descendante a pour objectif d’inverser la paire \((r_{ss, ref}, \theta_{\text{efolding}}) \) de manière univoque à partir d’une série temporelle de SEE, \(\theta \) et des données météorologiques. Dans une première étape, \(r_{ss, ref} \)
et θ_{efolding} sont exprimés analytiquement en fonction des conditions météorologiques, de la valeur limite d’humidité $\theta_{1/2}$ pour laquelle $\text{SEE} = 0.5$ et la dérivée première de SEE à $\theta_{1/2}$ notée $\Delta\theta_{1/2}^{-1}$. Ceci implique 1) de faire tourner un modèle de bilan d’énergie pour deux conditions extrêmes avec $r_{\text{ss}} = 0$ et $r_{\text{ss}} \sim \infty$ à partir des données météorologiques uniquement et 2) d’approcher le point intermédiaire entre les deux points (humide et sec) de référence. Dans une deuxième étape, $\theta_{1/2}$ et $\Delta\theta_{1/2}^{-1}$ sont tous deux inversés à partir d’une série temporelle d’observations de SEE et θ en utilisant un algorithme spécialement conçu pour s’accommoder 1) des relations $\text{SEE}(\theta)$ fortement non-linéaires et 2) des écarts aléatoires ponctuellement importants de la SEE observée par rapport à la relation $\text{SEE}(\theta)$ moyenne observée.

Dans le but de tester les capacités de régionalisation du modèle de SEE à partir des données disponibles à grande échelle, une paramétrisation de $\theta_{1/2}$ est proposée comme une PTF des pourcentages d’argile et de sable séparément et également en utilisant les deux informations simultanément et $\Delta\theta_{1/2}^{-1}$ est fixée à une valeur moyenne constante pour l’ensemble des sites. Le coefficient de corrélation entre le $\theta_{1/2}$ modélisé et inversé est de 0.76 (valeur absolue) pour les PTFs basées sur les fractions d’argile et de sable séparément, tandis que la régression multi-linéaire de $\theta_{1/2}$ avec les deux fractions améliore significativement la corrélation (0.81).

![Diagramme de données](image.png)

Figure 3.7 – Le $\theta_{1/2}$ inversé des données SEE et θ est tracé en fonction de la fraction de sable (a) et la fraction d’argile (b) pour les sites avec un nombre d’acquisitions supérieur à 500.

3.5 Mesures in situ

Les modélisations s’appuient sur des mesures terrain pour décrire, comprendre et expliquer les échanges entre la surface et l’atmosphère et la dynamique des états de surface. Spécifiquement les observations in situ permettent de tester et de valider les modèles des flux de surface impliqués dans les bilans couplés d’énergie et d’eau à une échelle où le système sol-plante-atmosphère peut être caractérisé finement. Le projet ANR MIXMOD-E a permis notamment de financer la réalisation de plusieurs expériences originales dont la mesure directe des Tends du sol et la mesure lysimétrique des flux dans le sol et à l’interface sol-atmosphère dans des conditions d’éclairement solaire hétérogènes.

3.5.1 Températures extrêmes

La caractérisation des Tends est utile pour améliorer les modèles basés sur l’EF/EE, comme introduit plus haut, en estimant les Tends de manière indépendante des images satellitaires. L’estimation théorique des Tends passe par un ou plusieurs modèles de bilan d’énergie appliqués dans des conditions extrêmes d’humidité du sol. La mesure directe des Tends permet donc de valider ces modèles de bilan d’énergie, en plus spécifiquement les formulations de résistance aérodynamique dans les conditions humide et sèche.
Dans le cadre de la thèse de Vivien Stefan, une expérience simple mais originale a été mise en œuvre pour mesurer les Tends du sol au pas de temps des données météorologiques (typiquement 30 min) et pendant la période de passage des capteurs thermiques ASTER, Landsat et MODIS. Cette manipulation a été réalisée sur un périmètre irrigué de la région de Marrakech, à l’aide des capteurs ibutton disposés à la surface du sol sur deux carrés de terre de 4 m². L’un était conservé en conditions sèche, l’autre était irrigué en continu pendant les mesures. La figure 3.8 montre le site expérimental et le contraste thermique causé par l’humidité du sol et les échanges associés entre le sol et l’atmosphère. Sur notre zone d’étude, la différence entre $T_{s,wet}$ et $T_{s,dry}$ atteint couramment 20-25°C au moment des passages ASTER/Landsat/MODIS (Stefan et al., 2015).

Figure 3.8 – Site sur un périmètre irrigué autour de Marrakech (en haut) des mesures des Tends du sol à la surface de deux carrés de terre (a et b), l’un conservé sec et isolé à 15 cm de profondeur par une bâche plastique, l’autre irrigué en continu durant les mesures ibutton et les mesures ibutton de $T_{s,wet}$ et $T_{s,dry}$ sont tracées (en bas) en fonction du temps pendant la période de passage des capteurs ASTER/Landsat/MODIS (Stefan et al., 2015).

3.5.2 Lysimétrie

Un lysimètre est un cylindre ouvert en surface, rempli de sol et équipé d’une balance à sa base qui permet une pesée permanente du système. Les avantages du Smart Field Lysimeter (SFL) sur les autres lysimètres plus anciens viennent principalement du contrôle rétroactif des conditions hydrauliques en bas du cylindre. Ce contrôle est assuré par une pompe à double flux qui ajuste en continu le potentiel de l’eau à l’intérieur du lysimètre à celui mesuré à l’extérieur du cylindre (au niveau bas du cylindre). Dans les lysimètres dits gravitaires, l’eau percolte en bas du cylindre seulement lorsque le potentiel de l’eau du sol atteint la valeur zéro hPa, équivalent au niveau des eaux souterraines. Ces lysimètres sont par conséquent trop humides durant les périodes de fortes pluies, et réciproquement, ils sont trop secs durant les périodes de faibles précipitations. Le contrôle des conditions hydrauliques en bas du SFL minimise les erreurs des lysimètres gravitaires et rend le système relativement transportable de par ses dimensions (il s’installe à
la main, voir la Figure 3.9) et sa capacité à atteindre rapidement l’état d’équilibre en conditions réelles. De plus, le SFL mesure à l’aide d’une bouteille de drainage l’infiltration et la diffusion vers et depuis les couches profondes, ainsi que les éventuelles remontées de la nappe au dessus du fond du cylindre. Le SFL est un système autonome équipé de télémétrie qui mesure chaque minute l’ensemble des flux entrants (précipitations, irrigation, rosée) et sortants (évaporation, infiltration, drainage, diffusion), ainsi que le profil d’humidité, de température et de potentiel matriciel du sol. Ces mesures complètent avantageusement les tours de flux installées sur les différents chantiers du CESBIO. En particulier, le bilan de masse fourni par le SFL est une contrainte supplémentaire sur la partition entre l’évaporation et la transpiration et sur la partition entre l’ET et l’infiltration, parfaitement complémentaire aux mesures réalisées en routine sur les sites de l’Observatoire Tensift. La Figure 3.9 montre quelques photos de l’installation d’un SFL sur le site de Chimbarongo au Chili dans le cadre du projet collaboratif MIXMOD-E (décembre 2014). Les données collectées vont nous permettre de séparer les contributions du rayonnement (effets d’ombre des framboisiers) et de la disponibilité de l’eau du sol (humidité du sol et diffusion d’eau depuis les couches plus profondes) sur l’évolution de l’évaporation (Olivera-Guerra L. et al., 2015).

3.6 Résumé et conclusions

Les modélisations descendantes des processus de surface visent à caractériser les flux et la dynamique des variables d’état à partir des informations disponibles sur le système aux échelles d’application. Il ne s’agit pas d’une approche concurrente aux approches purement physiques, car les paramètres des modèles descendants sont généralement empiriques ou semi-empiriques. En revanche, les approches descendantes ont l’avantage de permettre une spatialisation (calibration distribuée dans l’espace) réelle de certains processus à partir des observations disponibles, notamment la télédétection multi-spectrale.

J’ai présenté dans ce chapitre plusieurs approches de modélisation descendante pour représenter l’ET, la partition entre l’évaporation et la transpiration et la SEE à partir des observations disponibles dans les domaines optiques et micro-ondes (MO). En particulier, les modèles SEB-1S/4S se basent sur les données visible (VIS), proche infrarouge (PIR) et infrarouge thermique (IRT) et les modèles de la SEE pourraient être calibrés à partir des données LST et SSM (inversée des MO). Dans les deux cas, les températures extrêmes (Tends) jouent un rôle essentiel puisqu’elles fixent des points de référence utilisés pour normaliser la température et assurer un lien physique entre données IRT et l’EE/EF. Ces Tends peuvent être estimées avec précision à partir d’images acquises à haute résolution sur des zones très hétérogènes (typiquement les périmètres irrigués) mais pas à partir d’images à moyenne ou basse résolution. Dans ce dernier cas, la précision des Tends peut être améliorée en utilisant un modèle de bilan d’énergie forcé par les données météorologiques.

Les deux pistes de modélisation SEB-1S/4S et SEE se rencontrent naturellement dans la représentation de la partition entre l’évaporation du sol et la transpiration des plantes au sein d’un modèle de l’ET. Pour concrétiser ces développements, un couplage des données VIS, PIR, IRT et MO est attendu. Comme ces données multi-spectrales sont aussi multi-résolution, un lien évident existe avec les méthodes de désagrégation de données spatiales. Ce couplage modélisation-désagrégation a d’autant plus de sens que certaines méthodes de désagrégation (voir chapitre précédent) se basent sur des modélisations de l’ET et de la partition entre l’évaporation et la transpiration. Une perspective majeure à ces travaux consiste donc à combiner les modélisations SEB et SEE avec DISPATCH dans un schéma couplé que l’on pourrait nommer DISPATCH-SEB.
Figure 3.9 – Installation (en haut) d’un lysimètre Smart Field Lysimeter (SFL) sur sol nu entre deux rangs de framboisiers d’une parcelle expérimentale du réseau LAB-net au Chili ainsi qu’un exemple de séries de mesures issues du SFL (en bas) comparées à des mesures de rayonnement global R_g, de rayonnement net R_n, et d’humidité du sol (Olivera-Guerra L. et al., 2015).
CHAPITRE 3. MODÉLISATION DES FLUX DE SURFACE PAR APPROCHES DESCENDANTES
Chapitre 4

Perspectives

Sommaire

4.1 Introduction .. 51
4.2 Poursuivre les développements de DISPATCH et SEB 52
 4.2.1 Désagrégation des données d’humidité de surface 52
 4.2.2 Désagrégation des données de température de surface 53
 4.2.3 Liens entre efficacité évaporative et disponibilité en eau du sol 54
4.3 Vers un couplage DISPATCH-SEB 54
 4.3.1 Un couplage centré sur l’évaporation du sol (DISPATCH-E) 54
 4.3.2 Vers un couplage désagrégation-modélisation des composants du bilan d’énergie 55
4.4 Modélisation de l’humidité en zone racinaire 56
 4.4.1 Etat de l’art ... 56
 4.4.2 Approche du projet H2020 REC 57
4.5 Vers une spatialisation des processus de surface en deux étapes 57
4.6 Conclusions .. 60

4.1 Introduction

Ces travaux ont pour objectif commun d’améliorer la représentation spatio-temporelle des processus de surface à partir des observations satellitaires disponibles dans les diverses longueurs d’ondes : visible (VIS), proche infrarouge (PIR), moyen infrarouge (MIR), infrarouge thermique (IRT) et micro-ondes (MO).
bandes C et L. Dans le prolongement de mes activités antérieures mon projet de recherche se compose de 3 grands axes :

- la continuité des développements en cours des méthodes de désagrégation DISPATCH (DISPATCH-SM pour la SSM et DISPATCH-LST pour la LST) et des modèles de bilan d’énergie de la surface (SEB),
- à moyen terme, la construction de DISPATCH-SEB (synergie entre désagrégation de données et modélisation de l’ET) et comme une extension à ces développements la modélisation dynamique de l’humidité en zone racinaire (RSM) à haute résolution spatiale (projet H2020 REC 2015-2019),
- à long terme, une généralisation de la spatialisation des processus de surface (ET, infiltration, ruissellement) en deux étapes, en tirant parti des modélisations descendante (1ère étape) et physique intégrée ou ascendante (2ème étape).

4.2 Poursuivre les développements de DISPATCH et SEB

4.2.1 Désagrégation des données d’humidité de surface

La méthode de désagrégation des données SSM dont une première version a été publiée en 2005 (Merlin et al., 2005) a suivi des évolutions importantes (Merlin et al., 2008b) jusqu’à récemment (Merlin et al., 2012a, 2013a). La nature physique de DISPATCH (DisAggregation based on Physical And Theoretical scale CHange), via la modélisation de l’évaporation du sol et son lien avec les données VIS/PIR/IRT et MO, est une source très importante d’améliorations. Au cours des prochaines années, je propose d’intégrer d’autres données disponibles qui ont un impact sur le processus d’évaporation.

La modélisation au sein de la version actuelle de DISPATCH-SM est contextuelle, c’est-à-dire qu’elle se base sur la distribution des pixels dans l’espace LST-f_{gv} (f_{gv} est la fraction de végétation dérivée d’un indice de végétation) pour estimer la limite supérieure et inférieure de température correspondant aux conditions sèche et humide respectivement. Ces limites ou températures extrêmes (Tends) sont utilisées pour estimer l’efficacité évaporative du sol (SEE, définie comme le rapport de l’évaporation du sol sur l’évaporation potentielle) qui est ensuite reliée à la SSM au sein d’une équation de changement d’échelle (voir Chapitre 2). La nature contextuelle du modèle est un inconvénient lorsqu’il s’agit d’appliquer DISPATCH-SM sur des surfaces pluviales où la plage d’humidité couverte est souvent limitée et/ou à partir des données à moyenne résolution comme MODIS qui ne permettent pas de capturer les variabilités spatiales à l’échelle des parcelles agricoles (plus petites que la résolution de 1 km).

La possibilité de dé-contextualiser un modèle de l’ET a été testé à partir d’une formulation de la résistance aérodynamique forcée par les données météorologiques à 2 m (Stefan et al., 2015). Une prochaine étape sera d’intégrer cette formulation de résistance aérodynamique au sein de DISPATCH-SM en se basant sur les données météorologiques issues, soit de réseaux in situ à l’échelle régionale, soit des ré-analyses de modèles atmosphériques globaux pour des applications à grande échelle. Une piste intéressante à creuser sera d’identifier une synergie entre les méthodes d’estimation des Tends basées sur les données satellites (Merlin, 2013; Stefan et al., 2015) et celles basées sur les résistances aérodynamiques (Moran et al., 1994; Stefan et al., 2015). De plus, l’estimation des Tends indépendamment des images MODIS permettra de déterminer a priori la sensibilité de la LST à la SSM et donc de quantifier l’incertitude des sorties DISPATCH-SM dans des conditions météorologiques et climatiques données. La quantification de l’incertitude est essentielle dans la perspective d’assimiler les données désagrégées dans les modèles de surface (Merlin et al., 2006b; Bandara et al., 2015; Dumedah et al., 2015).

Nous avons vu dans le Chapitre 2 que la LST peut être corrigée des effets d’altitude (la température de l’air diminue avec la pression atmosphérique) avant son utilisation au sein de l’espace LST-f_{gv}. Ce schéma de correction de la LST pourrait être nettement amélioré en prenant en compte les variations d’éclairement solaire en fonction de l’exposition de la surface et des réflexions multiples associées à la topographie environnante. Je propose d’apporter une méthodologie semblable à celle de Malbeteau et al.
4.2. POURSUIVRE LES DÉVELOPPEMENTS DE DISPATCH ET SEB

(2016b) pour étendre l’applicabilité de DISPATCH-SM dans des conditions où les effets topographiques sont significatifs.

Une fois que les effets atmosphériques et topographiques sur la LST seront représentés et intégrés dans la méthode de désagrégation, je m’intéresserai à la représentation des propriétés hydrodynamiques du sol, c’est à dire l’impact des variabilités de type de sol sur les sorties DISPATCH-SM. La modélisation récente de la SEE en fonction de la texture du sol (Merlin et al., 2016) sera incluse dans l’équation de changement d’échelle -via la dérivée partielle de SEE par rapport à SSM- soit à partir d’une carte de sol (e.g. celle utilisée dans les algorithmes des produits SMOS), soit en inversant les pourcentages d’argile et de sable à partir des données SMOS et MODIS.

Parallèlement aux améliorations de la physique de DISPATCH-SM, je projette de développer des liens avec d’autres algorithmes de désagrégation basés sur d’autres hypothèses. La méthodologie DISPATCH-SM, intimement liée à la modélisation physique de l’évaporation du sol, est complémentaire à la méthodologie basée sur des régressions polynomiales (Chauhan et al., 2003; Piles et al., 2014), reliant empiriquement la SSM à d’autres variables auxiliaires disponibles à haute résolution (HR). Un travail d’intercomparaison entre ces méthodes est en cours avec l’équipe australienne (Universités de Monash et de Melbourne). Cette étude devrait permettre d’identifier des synergies aux différentes échelles suivant les conditions de surface et d’observation.

Dernier point mais pas le moindre, les données optiques de type MODIS ne sont pas disponibles par temps nuageux, ce qui pénalise fortement la répétitivité des données désagrégées. C’est un inconvénient majeur lorsqu’il s’agit d’utiliser ces données pour prévoir les flux hydrologiques à cours termes (e.g. risques d’inondation). Afin de combler cette lacune, je propose d’étudier deux solutions : 1) l’assimilation des données DISPATCH-SM à HR dans un modèle dynamique de SSM forcé par les données météorologiques (notamment la pluie) disponibles et 2) la calibration lors des passages par temps clair d’un modèle de rétrodiffusion radar Sentinel-1 à partir des données DISPATCH-SM HR et l’application de ce modèle calibré pour inverser la SSM à HR par tous temps.

Sur le plan de la valorisation des données DISPATCH et de leurs utilisations pour des études hydrologiques et/ou climatiques, l’algorithme opérationnel du CATDS (Centre Aval de Traitement des Données SMOS) sera appliqué à de longues séries temporelles de données SSM BR issues des radiomètres bande C (AMSR-E depuis 2002, AMSR-2 depuis 2012), du diffusionmètre bande C ASCAT (depuis 2007) et des radiomètres bande L (SMOS depuis 2010, SMAP depuis 2015). Il est à noter que depuis l’arrêt prématuré du radar bande L de SMAP, il n’existe pas d’équivalent aux méthodes de désagrégation basée sur l’optique, capable de fournir un produit quasi global de SSM à HR. D’un point de vue applicatif, il sera aussi très intéressant de développer un algorithme opérationnel de DISPATCH-SM à 100 m de résolution.

Des premiers travaux en ce sens (Merlin et al., 2009b) nous amènent à envisager un schéma de désagrégation en cascade des données SMOS/SMAP à 1 km avec les données MODIS/Sentinel-3 et des données DISPATCH 1 km à 100 m avec les données Landsat-8.

4.2.2 Désagrégation des données de température de surface

Les méthodes actuelles de désagrégation de la LST sont toutes limitées par le manque d’information disponible à HR sur la disponibilité en eau du sol (Merlin et al., 2010b, 2012b). Ce constat est d’ailleurs assez contradictoire avec l’objectif premier de désagréger les données kilométriques de type MODIS qui est généralement l’estimation de l’ET ou du stress hydrique de parcelles irriguées. Pourtant, les informations utilisées à HR pour désagréger la LST MODIS se composent quasiement toujours des réflectances dans le VIS et PIR dont l’information sur le contenu du sol en eau n’est pas démontrée dans des conditions diverses de type de sol et de rugosité de surface. L’amélioration des méthodes de désagrégation de la LST passe donc par une prise en compte à HR de la SSM et de la RSM.

Le cadre méthodologique qui permettrait d’intégrer ces informations auxiliaires dans un schéma de désagrégation via le bilan d’énergie existe déjà (Merlin et al., 2012b). La difficulté principale sera d’extraire l’information sur la SSM et la RSM à partir des données spatiales HR disponibles aujourd’hui ou dans un futur proche. Je propose d’étudier les approches d’estimation de la SSM à partir des données radar Sentinel-1 dans les conditions de sol nu ou partiellement couvert de végétation et les approches d’estimation de la RSM via le stress hydrique pour des couverts denses à partir du PRI (Photochemical Reflectance Index ; Gamon et al. 1997) ou des mesures de fluorescence (Cerovic et al., 1996).
4.2.3 Liens entre efficacité évaporative et disponibilité en eau du sol

Le SEB repose en grande partie sur la représentation des résistances aux flux énergétiques et d’eau, ou de manière équivalente sur une représentation de l’EE (efficacité évaporative de la surface, définie comme l’ET réelle sur l’ET potentielle). Cette EE peut se décomposer en SEE et efficacité transpirative de la végétation (VTE, définie comme la transpiration réelle sur la transpiration potentielle de la végétation). Comme mentionné dans le Chapitre 3, le choix de modéliser la SEE ou la VTE et non l’évaporation du sol ou la transpiration de la végétation directement, repose sur un effort de découplage entre la demande évaporative d’une part et la disponibilité en eau du sol d’autre part. Ce découplage est utile pour séparer les sources d’information (e.g. la demande évaporative est fonction du forçage météorologique et l’humidité du sol peut être observée par télédétection) et pour identifier plus clairement les relations entre flux de surface et humidité du sol.

Le travail de modélisation de la SEE en fonction de la SSM est bien avancé avec la possibilité de relier un paramètre à la profondeur des mesures de SSM (Merlin et al., 2011) et à la texture du sol (Merlin et al., 2016). Il reste néanmoins d’autres pistes à explorer comme la caractérisation des variabilités spatio-temporelles des paramètres de la SEE en fonction des propriétés hydrauliques du sol non déterminées par les fractions d’argile et de sable et en fonction du profil de l’humidité de la couche superficielle du sol. Concernant la VTE, il existe aujourd’hui peu d’études visant à décrire et comprendre la relation probablement fortement non linéaire entre le taux de transpiration et la RSM. Nous étendrons les recherches proposées dans Hain et al. (2009) en s’appuyant sur des instrumentations de terrain spécifiques permettant de mesurer finement la partition entre l’évaporation du sol et la transpiration de la végétation et le stress hydrique des plantes. Étant donnée la similitude entre SEE et VTE, les nouvelles modélisations de la VTE en fonction de la RSM tireront profit de notre expérience sur la représentation de la SEE en fonction de la SSM.

4.3 Vers un couplage DISPATCH-SEB

4.3.1 Un couplage centré sur l’évaporation du sol (DISPATCH-E)

L’idée du développement de DISPATCH-E provient du constat qu’à ce jour il n’existe pas d’algorithme de télédétection spécifiquement dédié à l’estimation de l’évaporation du sol que ce soit à partir des données VIS, PIR, IRT et/ou MO. Les indices de végétation issues du VIS et PIR ont été, et sont toujours, très utilisés pour estimer l’ET sur des surfaces couvertes de végétation, mais pas spécifiquement pour des sols nus ou des sols partiellement couverts (e.g. Allen et al., 1998). Les méthodes basées sur l’IRT ne permettent pas un découplage complet entre l’évaporation du sol et la transpiration des plantes au dessus de pixels mixtes en utilisant la LST et le VIS/PIR seulement. La raison est qu’il existe une équivalentialité entre le taux d’évaporation, le taux de transpiration et la LST intégrée à l’échelle du pixel. On remarque que certaines méthodes basées sur l’IRT font des hypothèses supplémentaires, soit sur la modélisation de l’évaporation (e.g. Caparrini et al., 2004), soit sur la modélisation de la transpiration (e.g. Norman et al., 1995b), pour résoudre la partition de l’ET. Afin de lever le problème d’équivalentialité, une solution basée sur les données serait d’introduire une information sur la température du sol (Moran et al., 1994) ou sur la SEE issue des données MO (Merlin et al., 2012b).

Les approches combinant l’IRT et les MO ont un grand potentiel pour contraindre le processus évaporatif du sol (Chanzy et al., 1995; Li et al., 2006). Théoriquement, la combinaison des données de LST et de SSM devrait permettre : 1) d’affiner la partition de l’ET en évaporation/transpiration au dessus de pixels mixtes (Merlin et al., 2012b), et 2) de calibrer les paramètres semi-empiriques de l’évaporation par
4.3. VERS UN COUPLAGE DISPATCH-SEB

Bien que les approches combinant l’IRT et les MO aient été imaginées depuis les années 1990, aucune n’a été implémentée à ce jour et ceci pour plusieurs raisons. Tout d’abord, les données MO passives en bande L sont relativement récentes (SMOS a été lancé en 2009). Ensuite, il existe toujours un grand écart entre la résolution spatiale (typiquement de 100 m à 1 km) des capteurs IRT et la résolution spatiale (plusieurs 10aines de km) des radionomètres MO (Merlin et al., 2009b). Enfin, il n’existe pas de formulation de l’évaporation du sol instantanée qui combine les données IRT et MO (Merlin et al., 2016). Dans le cadre du projet MIXMOD-E, l’un des objectifs sera de comprendre l’apport d’une amélioration de la modélisation de l’évaporation du sol sur les estimations de DISPATCH-SM et réciproquement, l’apport d’une amélioration des données de SSM sur la représentation multi-échelle de l’évaporation du sol.

4.3.2 Vers un couplage désagrégation-modélisation des composants du bilan d’énergie

DISPATCH-SEB est un schéma de modélisation (en construction) du bilan d’énergie qui intègre DISPATCH-SM (Merlin et al., 2013a), DISPATCH-LST (Merlin et al., 2012b), une version de SEB à quatre sources SEB-4S (Merlin et al., 2014) et une formulation de la SEE (Merlin et al., 2016). L’idée du couplage désagrégation-modélisation repose sur la recherche d’une synergie entre données et modélisations. Les algorithmes de désagrégation fournissent des données de SSM et LST à une résolution spatiale améliorée, le modèle SEB-4S contraint davantage les partitions évaporation/transpiration et T_s/T_v (température des composants sol/végétation) au sein de la désagrégation des données de SSM et LST, et la formulation de SEE assure un lien spatial entre l’évaporation du sol, T_v et la SSM. Le modèle couplé est forcé par des données météorologiques à HR ou BR (en fonction de leur disponibilité) : température de l’air, vitesse du vent, humidité relative de l’air et rayonnement solaire incident. Un tel schéma de couplage désagrégation-modélisation (voir figure 4.1) a été présenté pour la première fois à l’AGU (Merlin et al., 2013b). Il permettra d’estimer l’ensemble des flux et variables de surface à HR de manière cohérente avec la modélisation état-de-l’art de SEB et avec la télédétection multi-spectrale multi-résolution.

![Figure 4.1 – Schéma de couplage (DISPATCH-SEB) entre les méthodes de désagrégation DISPATCH et la modélisation des flux de surface SEB à partir de la télédétection multi-spectrale multi-résolution.](image-url)
4.4 Modélisation de l’humidité en zone racinaire

4.4.1 État de l’art

Les estimations de la RSM peuvent être obtenues à l’échelle de temps journalière en assimilant la SSM et/ou la LST dans un modèle SVAT (Soil Vegetation Atmosphere Transfer) forcé par les données météorologiques (Calvet et al., 1998; Crow et al., 2005; Merlin et al., 2006b; Muñoz-Sabater et al., 2007; Dumèdah et al., 2015). Les deux variables SSM et LST peuvent être reliées à la RSM parce qu’elles reflètent le bilan couplé énergie-eau de la surface (e.g. Wetzel et al., 1984; McNider et al., 1994; Chanzy et al., 1995; van den Hurk et al., 1997). Actuellement, les jeux de données de SSM à l’échelle globale ont une résolution spatiale beaucoup plus basse que la taille typique (quelques ha) des champs agricoles. Néanmoins, les capteurs MO actifs (radars) atteignent une résolution spatiale beaucoup plus fine que celles des radiomètres. Lancé le 3 avril 2014, Sentinel-1 (Torres et al., 2012) fournit actuellement des données SAR (Synthetic Aperture Radar) en bande C avec une résolution spatiale de 10-20 m, et un cycle de répétitivité sans précédent de 6 jours en combinant les passages ascendants et descendants, et de 3 jours en combinant les deux satellites disponibles à partir de 2016. Bien que les données de rétrodiffusion (backscatter ou BS) ont un potentiel pour le suivi de la SSM (e.g. Balenzano et al., 2011), il n’existe pas encore de produit opérationnel à une résolution aussi fine. Ceci est probablement dû à la difficulté de modéliser dans le temps et à grande échelle l’impact de la couverture/structure végétale et de la rugosité de surface sur le signal de BS (e.g. Satalino et al., 2014) et donc le besoin d’une calibration spécifique pour chaque site (e.g. Zribi et al., 2011).

Parallèlement, la LST peut être utilisée dans le calcul d’indices de la RSM (e.g. Boulet et al., 2007; Hain et al., 2009) notamment via la température de canopée et le flux de transpiration associé. Une étape clé dans l’estimation de la RSM par l’IRT est la partition de la LST en températures du sol et de la végétation sur des surfaces partiellement couvertes (Moran et al., 1994; Merlin et al., 2012b, 2014).

Si les premières estimations de la SSM et la RSM par télédétection MO et IRT peuvent théoriquement contraindre un modèle de surface (LSM) à l’échelle parcellaire, un tel schéma couplant la télédétection multi-capteur et la modélisation de surface doit encore être développé. Sur la question de l’assimilation de données dans un LSM, trois aspects devraient être pris en compte : 1) le niveau de complexité et de réalisme d’un LSM en lien avec les observations disponibles, 2) la précision des données de forçage à l’échelle d’application, et 3) les stratégies de calibration des processus de surface. La majorité des LSMS développés depuis les années 1980 (Sellors et al., 1986; Noilhan and Planton, 1989) ont un grand nombre de paramètres qui ne peuvent pas être mesurés directement aux échelles d’application (Franks et al., 1997; Demaria et al., 2007). L’implémentation de modèles complexes est difficile dans un contexte opérationnel. De plus, le problème de sur-paramétrisation est accru par l’introduction dans de nombreux cas de paramètres empiriques afin d’ajuster les simulations aux observations (e.g. Bittelli et al., 2008).

Ces limitations sont des arguments qui motivent le développement d’approches de modélisations descendantes forcées par les données de télédétection. Dans cette veine, Wagner et al. (1999) ont proposé un filtre exponentiel pour estimer un indice d’eau du sol (SWI) dans la zone racinaire à partir de séries temporelles de la SSM et d’un paramètre unique (T) à déterminer. Ce paramètre intègre implicitement de nombreux paramètres physiques. Plusieurs études ont démontré le potentiel de cette approche (Wagner et al., 1999; Ceballos et al., 2005; Pellarin et al., 2006; Abbergel et al., 2008). Néanmoins, le SWI ne prend pas en compte explicitement la transpiration, le drainage sous la zone racinaire et la variabilité temporelle de la conductivité hydraulique du sol, ce qui se traduit par des difficultés dans la paramétrisation de T dans le temps (Wagner et al., 1999).
4.4.2 Approche du projet H2020 REC

En accord avec l'état-de-l'art, l'approche proposée dans le projet H2020 REC repose sur un LSM qui représente les dynamiques de SSM et de RSM en lien avec les forçages d'irrigation et météorologiques et les flux d'eau à l'interface surface-atmosphère (évaporation, transpiration) et dans le sol (infiltration, drainage). L'originalité de la méthodologie est double avec 1) une utilisation en synergie des observations multi-capteur dans les différentes bandes spectrales (VIS, PIR, MIR, IRT, MO bandes C et L) disponibles à des résolutions multiples (de 10 m à 40 km) et 2) un couplage réel entre les observations multi-capteur et un LSM à l'échelle de la parcelle agricole. Un schéma de l'approche scientifique du projet est présenté dans la figure 4.2.

Nous distinguons ici les données SSM et RSM inversées de la télédétection (aussi appelées first guess) et les données SSM et RSM simulées par le LSM après assimilation des données satellites. Les données SSM first guess seront obtenues en combinant les données SAR Sentinel-1 avec les données DISPATCH 100 m afin de développer un produit de SSM à HR spatiale et temporelle. Les données RSM first guess seront dérivées d'une stratégie de normalisation reliant la VTE à un proxy de la RSM, via une méthode de partition de la LST en T_s et T_v (e.g. SEB-4S). Le niveau de complexité du LSM devra être adapté aux observations disponibles (VIS, PIR, SSM, LST) tout en représentant l'ensemble des flux d'eau entrants et sortants de la zone racinaire (irrigation, évaporation, transpiration et drainage).

Concernant les données de forçage, une attention particulière sera portée sur le terme d’irrigation, qui est le flux entrant principal sur les zones irriguées et très souvent méconnu. Une approche sera développée spécifiquement pour estimer les dates d’irrigation à partir des données SSM first guess.

En matière de calibration des processus de surface, les données SSM et RSM first guess sont des informations clé tout à fait complémentaires. La connaissance de la SSM est une contrainte forte sur l'évaporation du sol (Chanzy and Bruckler, 1993; Merlin et al., 2011) et la connaissance de la RSM, une contrainte forte sur la transpiration des plantes durant les périodes de stress hydrique (Boulet et al., 2007; Hain et al., 2009). Par conséquent, l’assimilation des deux types d’information devrait permettre de contraindre la conductivité hydraulique du sol qui couple la SSM et la RZSM dans les LSMs (Gutmann and Small, 2010). Nous proposons de développer une stratégie de calibration des propriétés hydrauliques du sol (SHPs) et des flux d’évaporation du sol, de transpiration des plantes et de drainage à partir des données satellites de SSM et de RSM.

4.5 Vers une spatialisation des processus de surface en deux étapes

Je propose ici une généralisation des approches de modélisation et des méthodes que j’ai développées durant ces dernières années, en essayant de cerner leurs forces et leurs faiblesses afin d’identifier les verrous scientifiques sous-jacents. Une question fondamentale dans le domaine de la télédétection et de l’hydrologie, à laquelle mes travaux se rattachent et essayent de répondre en partie, est la spatialisation multi-échelle des processus de surface. Par spatialisation, j’entends la calibration des paramètres de modèles dans l’espace, pour un support (ou résolution spatiale), un espacement (distance entre deux nœuds de grille) et une étendue spatiale (zone d’étude) donnée (Bloschl and Sivapalan, 1995). Dans cette calibration, la télédétection a bien entendu un rôle essentiel à jouer. Reste à examiner comment et à partir de quels modèles.

En se basant sur le constat pragmatique que de nombreux modèles peuvent convenir pour une application donnée à condition qu’ils soient correctement paramétrés, nous percevons que la calibration est une étape essentielle. En réalité, les problèmes de calibration et de modélisation sont liés et indissociables. Par exemple dans le cas d’une équifinalité, c’est-à-dire lorsque deux jeux de paramètres différents fournissent les mêmes résultats en sortie de modèle, une solution couramment utilisée consiste à privilégier les paramètres les plus sensibles, ce qui revient à simplifier le modèle. Or si l’on doit modifier un modèle pour satisfaire un besoin de calibration, c’est que le modèle en question n’est pas tout à fait adapté au contexte d’application (aux données disponibles), ou du moins qu’un travail supplémentaire de modélisation est nécessaire.

L’approche de modélisation descendante –si le terme vient de l’hydrologie, il est aussi valable en télédétection– vise à développer des modèles dont la dimensionnalité (ou nombre de paramètres) est cohérent avec les observations disponibles aux échelles d’application. Il s’agit de construire des modèles,
Figure 4.2 – Approche scientifique du projet H2020 REC (2015-2019) pour estimer la RSM à une échelle spatio-temporelle compatible avec les besoins des agences d’irrigation.
4.5. VERS UNE SPATIALISATION DES PROCESSUS DE SURFACE EN DEUX ÉTAPES

souvent semi-empiriques, dont la nature et la structure permettent une inversion des paramètres de manière univoque, sans problème d’équifinalité. La complexification d’une représentation se fait donc, non pas sur des considérations a priori, mais a posteriori en fonction des données disponibles pour une calibration du modèle aux échelles d’application. Outre l’intérêt d’une calibration bien définie, ce processus de modélisation a aussi l’avantage de permettre de vérifier les hypothèses de modélisation à chaque étape de construction des modèles (Sivapalan et al., 2003).

A l’inverse de l’approche descendante, l’approche de modélisation ascendante vise à discrétiser la surface à partir d’une conception a priori de l’échelle à laquelle les flux (eau, énergie, etc.) doivent être représentés. La construction de modèles ascendants se base généralement sur les lois de la physique (e.g. loi de Darcy) régies par des paramètres physiques, sans tenir compte de la disponibilité ou non des observations nécessaires à la calibration des paramètres aux échelles d’application. Pour spatialiser les modèles physiques à toutes les échelles, nous avons donc recours à des fonctions de pédo-transfert (PTFs) qui transforment les propriétés de sol relativement faciles à obtenir sur des grandes étendues (e.g. fractions d’argile et de sable) en valeurs de paramètres utilisables par les modèles, les SHPs. Les PTFs représentent la clé de voûte des modèles à base physique. Or les PTFs sont très incertaines et leur validité reste limitée aux conditions du jeu de données utilisé pour les générer (Soet and Stricker, 2003; Gutmann and Small, 2007).

La télédétection multi-capteur est riche en information puisque de nombreuses variables biophysiques peuvent être extraites dans les diverses bandes ou domaines spectraux : la couverture de végétation et l’albédo dans le VIS et le PIR, la LST dans l’IRT et la SSM dans les MO. De plus la quantité et la qualité des informations satellitaires sur les surfaces va croissante. Avec les nouvelles constellations de Sentinelles, les données VIS, PIR et MO bande C sont disponibles aujourd'hui avec une résolution spatio-temporelle sans précédent. De nouveaux concepts d’observation sont développés comme l’interférométrie MO passive (utilisée par SMOS), l’interférométrie radar (concept du projet de mission Surface Water and Ocean Topography, SWOT) et la télédétection de la fluorescence passive (mission FLEX récemment sélectionnée par l’ESA pour être la 8ème mission d’exploration de la Terre). Ces nouvelles données enrichissent ou enrichiront le panel des informations issues de la télédétection. Pour autant, si le jeu de variables accessibles par télédétection multi-capteur est comparé à la quantité d’information nécessaire pour spatialiser un modèle physique intégrant l’ensemble des transferts d’eau dans le sol et à l’interface surface-atmosphère, la modélisation ascendante reste largement sous-conditionnée par les observations spatiales.

En se basant sur une utilisation optimale des observations satellitaires multi-capteur, les approches descendantes permettent une spatialisation réelle de certains processus aux échelles d’application. En revanche, la nature généralement semi-empirique des paramètres associés est un inconvénient pour établir des scénarios d’évolution. De plus les modèles basées sur les données ne peuvent pas représenter les processus non- ou sous-contraints par ces données. Un va-et-vient avec les activités de modélisation physique (approche ascendante) serait donc nécessaire afin d’interpréter les variabilités spatio-temporelles non expliquées mais réellement observées par l’approche descendante. J’identifie en particulier une synergie entre modélisation descendante et ascendante qui pourrait avoir lieu au niveau des stations de mesures complètes où les modèles physiques peuvent être proprement calés par la mesure directe de l’ensemble des paramètres (sans passer par les PTFs).

Dans le Chapitre 3, nous avons présenté un exemple de modélisation descendante de l’évaporation du sol, où une formulation de la résistance au sol est proposée en fonction de la SSM et de deux paramètres observables : la valeur limite d’humidité $\theta_{1/2}$ pour laquelle SEE $= 0.5$ et la dérivée première de SEE à $\theta_{1/2}$, appelée $\Delta \theta_{1/2}^{-1}$. Les variations de $\theta_{1/2}$ ont été reliées à la texture du sol en utilisant une base de données multi-site (Merlin et al., 2016). Cette modélisation descendante de la SEE est très complémentaire aux approches ascendantes basées sur une connaissance physique et fine du sol. Il serait maintenant intéressant d’interpréter les variabilités des paramètres semi-empiriques (mais observés) $\theta_{1/2}$ et $\Delta \theta_{1/2}^{-1}$ en fonction des SHPs physiques (mais difficiles à mesurer). Les modèles de diffusion de l’eau du sol calés à l’échelle d’une tour de flux pourraient être très utiles dans cette voie.

Comme perspective à long terme de cette complémentarité imaginée entre les modèles descendants (basés sur les données multi-résolution mais semi-empiriques) et les modèles ascendants (basés sur les lois physiques mais réellement calés à l’échelle locale), je propose donc de poursuivre les recherches engagées sur le processus d’évaporation du sol. Je propose également d’étendre cette approche à d’autres processus spatialisables par télédétection. Comme illustrée sur la figure 4.3, la calibration des paramètres passe par l’utilisation d’au moins deux types d’informations complémentaires sur un même processus : la LST...

Vers une modélisation mixte et intégrée

Suivi réaliste: besoin de modélisation descendante/inversible par télédétection

Établir des scénarii d’évolution: besoin de modélisation ascendante/physique

Figure 4.3 – Perspective à long terme d’une modélisation mixte intégrant l’ensemble des observations satellitaires.

4.6 Conclusions

Mon projet de recherche propose des approches novatrices de modélisation et de spatialisation des processus hydrologiques en lien avec les observations satellitaires disponibles. L’approche descendante caractérise l’estimation de variables, flux ou paramètres de surface par inversion ou forcage de modèles. Cette notion a souvent été utilisée en hydrologie lorsqu’il s’agit de construire des modèles dont la nature et la structure permettent une inversion des paramètres aux échelles d’application à partir des observations disponibles. Je m’appuie sur ce concept dans l’optique d’assurer un meilleur couplage entre observations satellitaires et modélisations hydrologiques. Il ne s’agit pas d’une approche concurrente aux approches purement physiques, car les paramètres des modèles descendants sont généralement empiriques ou semi-empiriques. En revanche, les approches descendantes ont l’avantage de permettre une spatialisation réelle de certains flux de surface à partir de données disponibles à des échelles multiples, notamment par télédétection multi-spectrale. J’ai appliqué avec succès ce type d’approches aux processus d’évapotranspiration, d’évaporation du sol et de partition entre l’évaporation et la transpiration, et je propose d’étendre cette modélisation aux processus de l’infiltration et de ruissellement de surface.

La télédétection multi-spectrale, c’est-à-dire celle qui combine les informations issues de bandes spectrales et de capteurs différents, reste actuellement peu valorisée par les missions spatiales. La raison est que les missions satellites se basent généralement sur une technique de mesure spécifique, en général associée à un seul domaine spectral, ce qui représente déjà un investissement financier et des défis technologiques majeurs. Avec l’avènement de nouveaux programmes d’observation de la Terre comme Copernicus, qui donnent une cohérence au traitement et à l’analyse des données issues d’une constellation de
satellites fonctionnant dans les diverses bandes spectrales disponibles, les activités autour de la synergie multi-spectrale sont en train d’être facilitées.

La résolution spatiale et temporelle des variables accessibles par télédétection va fort probablement s’améliorer dans les prochaines décennies, notamment grâce à la définition de nouvelles missions dans l’IRT avec Thirsty (Lagouarde et al., 2013), aux nouvelles technologies d’interférométrie radar avec SWOT (Biancamaria et al., 2015) et peut-être bientôt l’interférométrie MO passives en spatio-temporel avec SMOS-Next (Soldo et al., 2013). La question se pose alors de la pertinence des méthodes de désagrégation de données spatiales. En accord avec les PIs des missions spatiales futures, je crois que la désagrégation de données spatiales n’est pas une fin en soi. Les sorties de méthodes de désagrégation sont imparfaites et les données désagrégées contiendront toujours une information moins riche et moins fiable que les “vraies” observations à haute résolution spatiale. Je pense néanmoins qu’il est très utile de continuer à améliorer ces méthodes pour deux raisons. D’une part elles permettent de nouvelles applications des données satellites actuellement disponibles. D’autre part, et cela représente à mon sens une perspective nouvelle, les méthodes qui se basent sur les observations multi-spectrales, permettent de tester la complémentarité des données multi-source avant même que ces données deviennent toutes disponibles à haute résolution. En bref, je dirais que les modèles de désagrégation à base physique (basés sur l’ET, l’évaporation du sol, l’infiltration, etc.) d’aujourd’hui pourraient bien être les modèles hydrologiques spatialisés à haute résolution de demain.

En parallèle de ces recherches sur les couplages entre données satellites et modélisations hydrologiques, les efforts d’observation sur le terrain doivent être poursuivis via les observatoires au long cours et les campagnes de mesures intensives ciblées. La coordination des mesures spatialisées de quelques variables clés (humidité du sol, température, flux) avec les mesures intensives et exhaustives (caractérisation du sol, du fonctionnement des plantes, la partition des flux) au niveau de quelques “super-sites” représente une base essentielle au développement des modèles.

Enfin, pour revenir à cette idée de synergie possible entre les modélisations descendante (globale, souvent empirique) et ascendante (physique, souvent discrétisée), je crois qu’il existe une échelle spatiale à laquelle une complémentarité peut émerger. Il s’agit de l’échelle locale des stations de mesures complètes où les modèles physiques peuvent être proprement calés par la mesure directe de l’ensemble de leurs paramètres. Selon cette vision, l’approche ascendante est utilisée pour interpréter physiquement les variabilités spatio-temporelles (non expliquées mais) réellement observées par l’approche descendante. L’idée derrière cette recherche de complémentarité est de tirer un meilleur parti de la télédétection multi-capteur en vue d’une spatialisation réelle et physique des processus hydrologiques.
Bibliographie

Bausch, W., and C. Neale (1989), Spectral inputs improve corn crop coefficients and irrigation scheduling, *Transactions of the ASAE (USA)*.

Beven, K. J., and H. L. Cloke (2012), Comment on “hyperresolution global land surface modeling : Meeting a grand challenge for monitoring earth’s terrestrial water” by eric f. wood et al., *Water Resources Research, 48* (1).

Merlin, O. (2013), An original interpretation of the wet edge of the surface temperature–albedo space to estimate crop evapotranspiration (SEB-1S), and its validation over an irrigated area in northwestern Mexico, Hydrol. Earth Syst. Sci., 17, 3623–3637.

Reichle, R. H., R. D. Koster, J. Dong, and A. A. Berg (2004), Global soil moisture from satellite observations, land surface models, and ground data : implications for data assimilation, J. Hydrometeor., 5, 430–442.

Rosenzweig, C., and F. Abramopoulos (1996), Land-Surface Model Development for the GISS GCM, J. Climate, 10, 2040–.

Sellers, P. J., M. D. Heiser, and F. G. Hall (1992), Relations between surface conductance and spectral vegetation indices at intermediate (100 m2 to 15 km2) length scales, *J. Geophys. Res., 97*(D17), 19,033–19,059.

