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Nomenclature

Abbreviations

CMA-ES, Covariance Matrix Adaptation Evolution Strategy

CV, Cross-validation

discr, model-data discrepancy

EGO, Efficient Global Optimization

EI, Expected Improvement

GP, Gaussian Process

ML, Maximum Likelihood

PI, Pseudoinverse

Greek symbols

τ 2, nugget value.

∆, the difference between two likelihood functions.

δ(., .), Kronecker delta.

ε, noise term.

κ, condition number of a matrix.

κmax, maximum condition number after regularization.

λi, the ith largest eigenvalue of the covariance matrix.

µ(.), Gaussian process mean.

Φ(.), standard normal distribution function.

φ(.), standard normal density function.

ωi, ith weight of a linear combination.

σ2, process standard deviation, step-size.

σ2, process variance.

Σ, diagonal matrix made of covariance matrix eigenvalues.

η, tolerance of pseudoinverse.

θi, characteristic length-scale in dimension i.
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Latin symbols

c, vector of covariances between a new point and the design points X.

C, covariance matrix.

Ci, ith column of C.

ei, ith unit vector.

f : Rd → R, true function, to be predicted.

H, Hessian matrix.

I, identity matrix.

K, kernel or covariance function.

m(.), kriging mean.

m, mean of a multivariate normal distribution.

n, number of design points.

N , number of redundant points.

PIm, orthogonal projection matrix onto the image space of a matrix (typically C).

PNul, orthogonal projection matrix onto the null space of a matrix (typically C).

R, correlation matrix.

r, rank of the matrix C.

s2(.), kriging variance.

s2
i , variance of response values at i-th repeated point.

V, column matrix of eigenvectors of C associated to strictly positive eigenvalues.

W, column matrix of eigenvectors of C associated to zero eigenvalues.

X, matrix of design points.

Y (.), Gaussian process.

y, vector of response or output values.

yi, mean of response values at i-th repeated point.

Page iii



Contents

1 Introduction to black-box optimization 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Context: Black-box optimization of expensive-to-evaluate functions . . . . 3

1.3 Classification and review of black-box optimizers . . . . . . . . . . . . . . . 5

1.4 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 EGO: using Gaussian processes as surrogates 13

2.1 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Estimation of kriging parameters . . . . . . . . . . . . . . . . . . . 18

2.2.2 Modeling noise in Gaussian processes and nugget effect . . . . . . . 22

2.3 EGO algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 General principle of EGO . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Infill sampling criteria . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 An analytic comparison of regularization methods for Gaussian processes 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Kriging models and degeneracy of the covariance matrix . . . . . . . . . . 32

3.2.1 Context: conditional Gaussian processes . . . . . . . . . . . . . . . 32

3.2.2 Degeneracy of the covariance matrix . . . . . . . . . . . . . . . . . 32

3.2.3 Eigen analysis and definition of redundant points . . . . . . . . . . 34

3.3 Pseudoinverse regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Properties of PI kriging . . . . . . . . . . . . . . . . . . . . . . . . 38



CONTENTS

3.4 Nugget regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Definition and covariance orthogonality property . . . . . . . . . . . 42

3.4.2 Nugget and maximum likelihood . . . . . . . . . . . . . . . . . . . 44

3.5 Discussion: choice and tuning of the classical regularization methods . . . . 47

3.5.1 Model-data discrepancy . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Two detailed examples . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.3 Examples of redundant points . . . . . . . . . . . . . . . . . . . . . 52

3.5.4 PI or nugget? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.5 Tuning regularization parameters . . . . . . . . . . . . . . . . . . . 60

3.6 Interpolating Gaussian distributions . . . . . . . . . . . . . . . . . . . . . . 62

3.6.1 Interpolation and repeated points . . . . . . . . . . . . . . . . . . . 62

3.6.2 A GP model with interpolation properties . . . . . . . . . . . . . . 62

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Making EGO and CMA-ES Complementary for Global Optimization 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 The CMA-ES Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 The EGO-CMA Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Experimental Setup and initial observations . . . . . . . . . . . . . 72

4.3.2 Comparing EGO and CMA-ES . . . . . . . . . . . . . . . . . . . . 74

4.3.3 Comparing EGO and CMA-ES using COCO . . . . . . . . . . . . . 77

4.3.4 Combining EGO and CMA-ES . . . . . . . . . . . . . . . . . . . . 81

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 A detailed analysis of kernel parameters in Gaussian process-based opti-

mization 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Kriging model summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 EGO with fixed length-scale . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 EGO with small characteristic length-scale . . . . . . . . . . . . . . 91

5.3.2 EGO with large characteristic length-scale . . . . . . . . . . . . . . 94

5.4 Expected Improvement and its derivatives for small length-scale . . . . . . 98

Page v



CONTENTS

5.4.1 Comparison of EGO with fixed and adapted length-scale . . . . . . 100

5.5 Effect of nugget on EGO convergence . . . . . . . . . . . . . . . . . . . . . 103

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Small ensembles of kriging models for optimization 107

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 EGO algorithm overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Tuning the length-scale from an optimization point of view: a study on

self-adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 An EGO algorithm with a small ensemble of kriging models . . . . . . . . 118

6.4.1 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . 118

6.4.2 Tests of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Conclusions and perspectives 125

List of Figures vi

List of Tables xiii

List of Algorithms xiv

Bibliography xvii

Page vi



Chapter 1

Introduction to black-box optimization

1.1 Problem statement

Optimization (alternatively, mathematical programming) is a field of mathematics that

studies the problem of finding the best choice(s) among a set of candidate choices. Such

decisions appear in many domains like biology, economics, geophysics, or mechanics and

are thus at the core of many challenges in our society. For instance, worst-case analysis

in engineering design is done by solving a mathematical programming problem. Here the

problem is to find the worst-case values of design parameters in order to conservatively

check the performance of a safety-critical system. It is then possible to decide whether the

system is safe or reliable with respect to the parameter variations [BV04].

A single objective optimization problem can be formulated in the following way

min
x∈S

f(x), (1)

where f : S 7 −→ R is the objective function (or fitness function) and S is the search space

(or solution space). Sometimes the problem is to find a point with the highest function

value. To do so, it is just enough to minimize the negative of the objective function

minx∈S − f(x).

The solution(s) of the above problem denoted by x∗ might be local or global. It is said

that x∗ is a local minimum if f(x) ≥ f(x∗) for all x in a neighborhood of x∗. If the relation

f(x) ≥ f(x∗) holds for all x in the search space S, then x∗ is a global minimum. The

function illustrated in Figure 1.1 has several local optima (multimodal function) but the

one denoted by x∗ is the global optimum. In this thesis, we are interested in finding the
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global optimum (minimum) of functions.
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Figure 1.1: Illustration of a multimodal function with several local optima and one global

minimum shown by x∗.

When the search space is a subset of Rd, i.e., S ⊆ Rd, the optimization problem is called

continuous. The other types of optimization problems with respect to the set S are called

integer or mixed integer programming. In integer programming S is finite or countable

while a mixed integer programming, as the name indicate, is a mixture of continuous and

integer programming. Throughout this work we only deal with continuous problems.

The search space is mathematically defined by constraints. In general, there are three

types of constraints:

1. Box-constraints : xl ≤ x ≤ xu, in which xl and xu are the vectors of the lower and

upper bounds.

2. Equality constraints : hi(x) = 0 , i = 1, . . . , k,

3. Inequality constraints : gj(x) ≤ 0 , j = 1, . . . , l,

where hi(x) and gj(x) are functions that map the elements of S into R. If the search space

is not limited by any constraints, the problem is called unconstrained optimization.
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1.2. CONTEXT: BLACK-BOX OPTIMIZATION OF EXPENSIVE-TO-EVALUATE
FUNCTIONS

The optimization problems we consider in this work have box-constraints. So, the

search space is compact because it is closed (containing all its limit points) and bounded.

With the assumptions that S is continuous and compact the existence of a global minimum

and a global maximum is guaranteed based on the Weierstrass theorem [Rud76].

Weierstrass Theorem Let S be a compact subset of Rd and the function f be contin-

uous on S. Then there exists x1 and x2 in S such that f(x1) ≤ f(x) ≤ f(x2) ∀x ∈ S. x1

is a point of global minimum and x2 is a point of global maximum of f .

Optimization problems can also be classified based on the type of objective function

and constraints. If the objective and all constraint functions of a mathematical program-

ming are linear with respect to x it is called linear optimization. Obviously, in nonlinear

optimization the objective or constraint functions are not linear. Another important class

of optimization problems is convex optimization (versus non-convex), in which the objec-

tive and all constraint functions are convex. In convex optimization problems any locally

optimal point is globally optimal. Interested readers are referred to [BV04] for further

information about convex optimization. It is worthy to note that linear optimization is

convex whereas the convexity of a nonlinear optimization has to be tested.

1.2 Context: Black-box optimization of expensive-to-

evaluate functions

Today, numerical simulations are powerful tools to model complex phenomena because

they are typically faster and less expensive than the physical experiments. In order to find

the best input parameters of a simulator, black-box optimization, which is also referred to

as direct-search or derivative-free optimization, is a (large) family of methods of choice.

Indeed, it frequently happens in practice that the function to be optimized is given as

an executable code only. Even when the source code is available, it is often preferable

to handle the problem as a black-box problem: as the difficulties/complexities of real-

world problems are generally unknown a priori, designing a problem- specific optimization

technique is often (technically/financially) infeasible.

In this work we focus on the optimization of black-box functions which are computa-
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tionally expensive. It means that each function evaluation takes from a few minutes to a

few hours and therefore the number of function evaluations is limited. High-fidelity com-

puter simulations such as computational fluid dynamics (CFD) or finite elements analysis

(FEA) are examples of such time-consuming black-box functions.

When optimizing such expensive functions, it is critical to converge towards the global

optimum with the least possible number of function evaluations. Accordingly, algorithms

such as Genetic algorithms [Hol75] are not efficient enough in this setting because they

require several thousands of function calls.

One approach to alleviate the computation cost and speed-up the optimization pro-

cedure is to approximate the underlying function with a simpler model, known as a sur-

rogate model or a metamodel. The surrogate models are usually defined everywhere in

the design space and built on statistical grounds from a finite set of model input-outputs

[FSK08, Jon01, QHS+05]. Kriging [Cre93], polynomial regression [RPD98], artificial neu-

ral network (ANN) [Bis95], and support vector regression [SS04] are common surrogate

models. The principle of surrogate based optimization is to substitute a part of the calls

to the expensive simulations by calls to the less computationally intensive (once it is built)

surrogate.

All surrogate-based optimization methods share the following steps [FK09]:

1. Choose the design variables, i.e., the variables to be optimized over.

2. Start with an initial design of experiments (DoE) and evaluate the objective function

at the selected points.

3. Construct the surrogate model on the data points.

4. Search for a new design point(s) in the space of design variables.

5. Add the new data point(s) to the available sampled points and update the surrogate

model.

6. Iterate through steps 3 and 5 until a stopping criterion is met.

In step (2), the DoE is often space filling because the true function is generally unknown

a priori. To achieve this property, one should create the initial samples according to a

sampling plan like Latin hypercubes [MBC00]. Other sampling schemes include factorial,
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1.3. CLASSIFICATION AND REVIEW OF BLACK-BOX OPTIMIZERS

fractional factorial and central composite designs [Mon01], and low discrepancy sequences

(such as Halton and Sobol sequences [Hal60, Sob67]).

The size of the initial DoE is an algorithm’s setting that reflects typical choices to be

made in black-box optimization. If it is small, the surrogate model may not be able to

satisfactorily represent the true function and the approximation could be misleading. This

is especially the case for the multimodal landscapes. Conversely, starting the optimization

with a large number of sample points may waste expensive function evaluations by naively

filling non-optimal regions of the search space. As a “rules of thumb” it is recommended

by [JSW98] in the framework of kriging-based optimization that the size of initial DoE

should be linear in the number of dimensions d, more precisely 10× d. Reference [SLK05]

suggests that a safe choice for initial DoE is about 35% of the total computational budget.

In step (4), the strategy used for selecting a new infill sample should be an appropriate

trade-off between local exploitation of promising basins of attraction and global exploration

of landscape. During local search, the vicinity of promising points is examined to achieve

with low risk further improvement in the objective function value. The global component

of the search contributes not only to reduce the model uncertainty where there is less

information but also to escape from local optima. For more details see Section 2.3.2.

1.3 Classification and review of black-box optimizers

In black-box optimization, as the name implies, we do not have access to the analytical

formula of the objective function. The only available information to seek for the optimum is

the function value for a given input variable vector. Moreover, in this thesis, in agreement

with most practical situations, we will assume that derivative information is not available

or practically impossible to obtain. This is the case when the objective function is, for

example, expensive to evaluate or noisy. Thus, the algorithms developed for solving black-

box optimization problems must rely only on the objective function evaluations.

Many black-box optimization algorithms exist in the literature. They can be classified

based on different criteria [RS13]:

(i) Direct vs. model-based : In direct algorithms the search direction is determined by

computing objective function values directly. For instance, at each iteration of the

Nelder-Mead method [NM65] a simplex is formed and the objective function cal-
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culated at its vertices. Future simplexes are shaped from the order of the objective

functions values. When the function evaluations are costly or time-consuming, model-

based algorithms are usually preferred. In model-based algorithms a surrogate model

of the objective function is constructed, f̂ . Then, the surrogate model is used to guide

the optimization of the true function. Any mismatch between f and f̂ is assumed to

be the model error and not noise [RS13]. The Efficient Global Optimization (EGO)

[JSW98] is one of the most important model-based global optimization algorithms.

EGO uses a conditional Gaussian process to approximate the true function f from a

set of observations and sequentially adds new points which maximize the “expected

improvement” in f . Detailed explanations about EGO are provided in Chapter 2.

(ii) Local search vs. global search: Local optimization algorithms start from an initial

point and iteratively move in a neighborhood around the current best point [HS04]

until a stopping criterion is met. Global search algorithms opportunistically explore

the whole volume of S in order to locate the global optimum. An example is provided

by the DIRECT algorithm, which comes from the shortening of the phrase “DIviding

RECTangles”, by Jones et al. [JPS93], where rectangles pave the entire search space

and are divided as new values of the objective function are calculated. Since the

search domain of local algorithms is smaller, they are usually faster than global ones.

A local optimizer can be transformed into global if it is repeated several times from

different initial points [LLR04].

(iii) Stochastic vs. deterministic: Stochastic algorithms use transitions in probability

(whether explicit or not) to search while deterministic algorithm always reproduce

the same opportunist steps. The final solutions obtained by a stochastic method

change when the run is repeated.The randomness of stochastic methods makes them

capable of escaping local optima areas. But this is at the price of slowing down the

optimization procedure.

Lipschitzian-based partitioning techniques (DIRECT, [JPS93]) are deterministic al-

gorithms while evolution strategies such as Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) [HO01] are stochastic methods. CMA-ES will be explained with

more details in Chapter 4.

We now briefly describe three black-box (derivative free, continuous) optimization al-
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gorithms different in their principles from EGO and CMA-ES which will receive more

attention in Chapters 2 and 4, respectively. There exist many other useful black-box

algorithms like e.g., Cross-entropy Optimization or EMNA (Estimation of Multivariate

Normal Algorithm) [dBKMR05, SD98], Simulated Annealing [KGV83], .... Describing all

these methods is out of the scope of this manuscript.

Nelder-Mead simplex method. The Nelder-Mead method or downhill simplex method

was first proposed by John Nelder and Roger Mead [NM65]. It is a deterministic and local

direct search algorithm. This method is a heuristic method, i.e., there is no guarantee that

the algorithm converges to stationary points. A larger, related class of algorithms are the

pattern search methods [AJ02] for which convergence to stationary points on discontinuous

functions is established but which are, arguably, slower and less utilized. Note that pattern

search and Nelder Mead algorithms perform local searches (although they can visit many

basin of attraction when the size of their pattern is large enough). The Nelder-Mead

method starts with a set of points that form a simplex. In an n-dimensional space, a

simplex is a convex hull of n+ 1 points. A line segment on a line and a triangle on a plane

are examples of a simplex in 1 and 2 dimensional spaces, respectively.

At each iteration, the objective function is evaluated at the vertices of the simplex and

they are ranked from best to worst. The worst corner is replaced by another vertex whose

new function value is calculated and a new simplex is formed. The candidate vertex is

obtained by transforming the worst corner through the centroid of the remaining n points.

The main transformation operations are reflection, expansion and contraction by which

the simplex can move towards the optimum. See Figure (1.2) for more details.

Trust regions methods. Trust regions methods [Pow02, Pow09] are model-based local

search algorithms. The procedure is such that a surrogate model (often a quadratic Q(x))

of the objective function around the current k-th iterate, xk, is constructed. Since the

surrogate model may not well represent the objective function in regions far away from xk,

the search for the optimum of the model is restricted to a “trusted” region around xk. This

region is usually a ball defined as

∀ x ∈ Rn : ‖x− xk‖≤ ∆k, (2)
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Figure 1.2: A 2-dimensional illustration of the Nelder-Mead method. The function to be

optimized is Sphere function with a minimum at point (2.5, 2.5). The triangle BGW is

the initial simplex where the rank of the vertices are: B (best), G (good) and W (worst).

M is the centroid of B and G. Left: the next simplex is BGR in which R is obtained

by reflection operation. Right: the next simplex is BGE where R is obtained through

expansion operation.
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in which ∆k is the radius of the ball. The next query point, xk+1, is where the model

reaches its optimum within the trust region. Then, the actual and predicted improvements,

denoted by ∆factual and ∆fpredict, are calculated:

∆factual = f(xk)− f(xk+1), (3)

∆fpredict = Qk(xk)−Qk(xk+1). (4)

Finally, the trust region size is adapted based on the ratio ρk = ∆factual
∆fpredict

as follows [RKL14]

– If ρk ≥ 3
4
, the model is in good agreement with the objective function and we can

expand the trust region size in the next iteration.

– If ρk ≤ 1
4
, the trust region size should be shrinked in the next iteration.

– Otherwise, the size of the trust region is good and it is better to keep it.

Lipschitzian-based partitioning techniques. Here, we describe Shubert’s algorithm

[Shu72] which uses the information obtained from Lipschitz continuity of functions to seek

the optimum. In mathematical analysis, the function f is called Lipschitz-continuous if

there exist a positive constant L > 0 such that the inequality

|f(x)− f(x′)| ≤ L |x− x′| , (5)

holds for all x and x′ in the domain of f . Suppose that the function f defined in [a, b] is

Lipschitz-continuous.

According to Equation (5), f must satisfy the following two inequalities

f(x) ≥ f(a)− L(x− a)

f(x) ≥ f(b) + L(x− b). (6)

for every x ∈ [a, b]. The lines corresponding to the above two inequalities form a V-shape

beneath f as it is shown in Figure 1.3. The point of intersection of the two lines, (x1, f(x1))

in the figure, is considered as the first estimate of the function’s optimum. The algorithm

continues by performing the same procedure on the intervals [a, x1] and [x1, b], dividing

next the one with the lower function value at the intersection. The DIRECT algorithm

[JPS93] is an extension of the Schubert algorithm to many dimensions where all the possible

Lipschitz constants L are accounted for.
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Figure 1.3: First iteration of Shubert’s algorithm. The function f , blue line, is Lipschitz-

continuous in [a, b] with constant L. The dashed lines are correspond to the inequalities

defined in (6) and x1 is the intersection. x1 is the first estimate of the minimum of f .

1.4 Motivations

The Efficient Global Optimization (EGO) algorithm is a mathematically well funded and

often used method for the unconstrained global optimization of expensive-to-calculate func-

tions. It relies on a Gaussian process model of the true function (and will be presented

in details in Chapter 2). Since it was proposed in 1998 [JSW98], many alternative ver-

sions of the method have been investigated [Jon01, VVW09, GLRC10, CH14] that have

moved forward towards new infill sampling criteria (see Section 2.3.2) and new capabilities

like parallel optimization. However, many aspects of the classical EGO method are not

well understood or still deserve improvements for practical applications. This PhD thesis

addresses the following questions:

– How to deal with ill-conditioning in Gaussian Processes? Optimization with Gaus-

sian Processes systemically leads to ill-conditioning of the covariance matrix which

must be inverted as optimization iterates gather in tight clusters at high performance
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regions of the design space. After providing a new algebraic comparison of two classi-

cal regularization methods, we propose a novel approach to overcome the degeneracy

of the covariance matrix in GPs.

– How do CMA-ES and EGO algorithms, two state-of-the-art global optimization

approaches, compare? The EGO which is commonly used for the optimization of

expensive-to-evaluate functions lacks the accurate convergence to the optimum ex-

hibited by CMA-ES. After comparing the two methods, our contribution to improve

the convergence of EGO is to combine it with CMA-ES in a warm start approach.

– In the field of optimization with surrogate, a general and important question is which

surrogate most efficiently leads the search to the optimum? This question, transposed

to EGO method, translates to: what is the effect of the GP parameters on the

convergence of the EGO algorithm? Because the parameters are usually learned

by statistical estimations such as maximum likelihood or cross-validation error, this

question has not really been investigated. Yet, previous works in other fields have

observed that the best surrogate for an optimization algorithm is not the one that

corresponds the most closely to the true function [Los13, OZL06]. In this thesis, we

carefully analyze the effect of the GP parameters on the EGO performance. To the

best of our knowledge, there is no such a comprehensive study in the literature.

– In the EGO algorithm the GP parameters are estimated by statistical methods such

as maximum likelihood or cross-validation. It is still an open question to know if

these statistical approaches are the most appropriate in the context of optimization.

Indeed, at the beginning of the search, very little is known about the true function and

it is not clear that statistical approaches are the most appropriate. Furthermore, as

stated above, there is no agreement in the optimization with surrogate literature that

the best surrogate should match the true function (which is the purpose of statistical

learning). To investigate this question, we propose and study a new learning method

in which the parameters of the GP are adapted solely based on the optimization

convergence, without maximum likelihood or cross-validation.
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1.5 Thesis outline

Chapter 1 introduces the field of continuous black-box optimization and reviews some

algorithms developed to tackle such problems. It proceeds with the research objectives of

this dissertation.

Chapter 2 is an introduction to the Gaussian processes, kriging model and EGO which

is the algorithm mainly used in this work. It provides the necessary materials for the next

chapters.

Chapter 3 contributes to a better theoretical and practical understanding of the im-

pact of regularization strategies on GP regression. Differences between pseudo-inverse and

nugget regularizations are mathematically proven. A new regularization approach based on

a new distribution-wise GP is presented. Practical guidelines for choosing a regularization

strategy in GP regression ensue.

Chapter 4 first presents the Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) which is regarded as the state-of-the-art unconstrained continuous optimization algo-

rithm. Then, the search principles of EGO and CMA-ES are compared. Finally, a new

algorithm called EGO-CMA is introduced which has advantages of both algorithms.

Chapter 5 theoretically and empirically analyzes the effect of length-scale covariance

parameters and nugget on the design of experiments generated by EGO and the associated

optimization performance.

Chapter 6 proposes a new self-adaptive EGO where the parameters of the GP are

directly learned from their contribution to the optimization.

Chapter 7 concludes the dissertation and proposes potential extensions for future re-

search.
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Chapter 2

EGO: using Gaussian processes as sur-

rogates

2.1 Gaussian processes

Gaussian processes define a probability distribution over functions. They can be seen as

generalization of the multivariate normal distribution to infinitely many dimensions where

the input vector x plays the role of index. Formally, a GP is a collection of random

variables, any finite number of which have a multivariate Gaussian distribution [RW05].

A GP is fully determined by a mean and a covariance function (or kernel). Consider

a Gaussian process Y with mean and covariance function denoted by µ(.) and K(., .),

respectively. They are defined as:

Y ∼ GP(µ,K) : µ(x) = E(Y (x)) , K(x,x′) = Cov(Y (x), Y (x′)). (1)

By definition, for any n ∈ N and any set X = (x1, . . . ,xn) of input vectors, the associated

n-dimensional vector Y = (Y (x1), ..., Y (xn)) has a multivariate Gaussian distribution:

Y ∼ N (µ,C) , µ =




µ(x1)
...

µ(xn)


 , C =




K(x1,x1) . . . K(x1,xn)
... . . . ...

K(xn,x1) . . . K(xn,xn)


 .

Now we wish to calculate the probability distribution at some new points {X∗,Y∗},
while {X,Y} is given. The vector Y∗ has the following normal distribution:

Y∗ ∼ N (µ∗,C∗∗ = K (X∗,X∗)) . (2)
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Accordingly, the joint probability distribution of Y and Y∗ is
Y
Y∗


 ∼ N




µ

µ∗


 ,


 C C∗
C>∗ C∗∗




 , (3)

where C∗ = K(X,X∗). Finally, the conditional distribution of Y∗ given Y can be

expressed as (see e.g.,[BCdF09])

p (Y∗|Y) = N
(
µ∗ + C>∗C

−1(Y− µ),C∗∗ −C>∗C
−1C∗

)
. (4)

As can be seen, various quantities can be obtained from the normal distribution properties.

This makes GPs an important tool in statistical learning.

The structure of a GP’s sample path such as smoothness and periodicity is determined

by its kernel. Since covariance functions are closed under addition and multiplication, it

is possible to create sophisticated structures through combining them [DNR11, DGR12].

Covariance functions are positive definite symmetric functions and hence, the associated

covariance matrices are positive semidefinite: v>Cv ≥ 0 ∀v ∈ Rn. Table 2.1 presents some

well-known covariance functions in which σ2 is the process variance. In the expression for

the Matérn kernel, Γ is the Gamma function and Hν is the modified Bessel function of the

second kind of order ν.

Table 2.1: Some covariance functions used in GP modeling

Covariance function Expression

Matérn σ221−ν

Γ(ν)

[√
2ν
θ
‖x− x′‖

]ν
Hν

(√
2ν
θ
‖x− x′‖

)

Squared exponential σ2 exp
(
−‖x−x′‖2

2θ2

)

Exponential σ2 exp
(
−‖x−x′‖

θ

)

Power exponential σ2 exp

(
−
(
‖x−x′‖

θ

)θ′)
, 0 < θ′ ≤ 2

The covariance functions introduced in Table 2.1 are called stationary because their

values depend only on the Euclidean distance between their input vectors. Note that a
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2.1. GAUSSIAN PROCESSES

stationary covariance function is translation invariant. A stationary covariance function is

said isotropic (or homogeneous) [Gen02], if it depends only on the Euclidean norm between

x and x′, i.e., K(x,x′) = K(‖x− x′‖). Otherwise, it is said anisotropic. For example, a

stationary anisotropic squared exponential covariance function is presented below:

K (x,x′) = σ2

d∏

i=1

exp

(
−|xi − x

′
i|2

2θ2
i

)
. (5)

In Equation (5), the parameters θi > 0 , i = 1, . . . , d are called characteristic length-scale

and determine the correlation strength between Y (xi)’s. The smaller θi, the least two

response values at given points are correlated in coordinate i, and vice versa. Figure 2.1

shows sample paths of a GP with two different length-scale.
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Figure 2.1: Sample paths of a GP with two different length-scales in 1D, θ = 0.1 (left) and

θ = 1 (right). The covariance function is squared exponential.

When the covariance function is Matérn, the GP’s sample paths are bν − 1/2c times

differentiable. Hence, the process with Matérn 5/2 is twice differentiable and with Matérn

3/2 only once [RGD12]. As ν → ∞, the Matérn kernel becomes squared exponential.

Consequently, the process is infinitely differentiable and, therefore, the process is very

smooth. Moreover, exponential kernel is a Matérn kernel with ν = 1/2 and the GP is

only continuous. Figure 2.2 illustrates the sample paths of a GP generated by different

covariance functions.
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(b) Exponential
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(c) Matérn ν = 3/2
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(d) Matérn ν = 5/2

Figure 2.2: Three sample paths of a GP when the covariance function is: (a) squared

exponential, (b) exponential, (c) Matérn ν = 3/2 and (d) Matérn ν = 5/2. Squared

exponential and exponential kernels have the most and the least smooth sample paths.

The parameters θ and σ2 are identical in the pictures.

Page 16



2.2. KRIGING

2.2 Kriging

In this thesis, a conditional Gaussian process is referred to as kriging model. Kriging was

first developed in the fields of geostatistics to predict quantities based on their spatial

correlation [Cre93]. The term “kriging” comes from the name of a South African mining

engineer D. Krige, who applied statistical methods to analyze mining data [Kri53]. Kriging

has been successfully used in the field of computer experiments after the work of Sacks et

al. [SWMW89].

Equation (6) represents a kriging model, YKG(x). It is composed of two parts: the

first one is the regression model
p∑
i=1

βiφi(x), also known as kriging trend, in which βi , i =

1, . . . , p, is the coefficient of basis function φi(x). The kriging trend determines the trend

in data. Note that in practice the kriging trend could be any functions. The second part

is the centered Gaussian process Y ∼ GP(0, K). The coefficients of the kriging trend are

estimated from data and the centered GP is learned from the residuals.

YKG(x) =

p∑

i=1

βiφi(x) + Y (x). (6)

Depending on the kriging trend, three types of kriging model are specified in the liter-

ature.

– Simple kriging: the trend is known.

– Universal kriging: the trend is an unknown function.

– Ordinary kriging: the trend is constant but unknown.

Let X = {x1, . . . ,xn} be a set of n design points and y = {f(x1), . . . , f(xn)} the

associated function values at X. Suppose that the observations are a realization of a

stationary Gaussian process Y (x). The kriging model is the Gaussian process conditional

on the observations, (Y (x) | Y (X) = y). For a simple kriging model with the constant

trend µ, the prediction (kriging mean) and the prediction variance (kriging variance) at a

point x are

m(x) = µ+ c(x)>C−1(y− 1µ) = µ+ r(x)>R−1(y− 1µ), (7)

s2(x) = σ̂2 − c(x)>C−1c(x) = σ̂2
(
1− r(x)>R−1r(x)

)
. (8)
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Here, 1 is a n× 1 vector of ones, r(x) is the vector of correlations between a point x and

the n sample points, ri = Corr(Y (x), Y (xi)), and R is an n×n correlation matrix between

sample points, Rij = Corr(Y (xi), Y (xj)). In Equation (8), the kriging variance does not

depend on the observations y. Moreover, the kriging variance is always smaller than the

process variance, because of additional information provided by the observations. Figure

2.3, displays the Gaussian process learning from data points.
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Figure 2.3: Sample paths of a GP (thin solid lines). Left: unconditional GP where the

trend (dashed line) is: 3x − 2. Right: the GP is learned from data points (bullets); the

kriging prediction is the posterior mean.

The kriging mean given by Equation (7), interpolates at sample points and the kriging

variance, Equation (8), is null there. Indeed at the location of every sample point, say ith

sample, r(xi) is equal to Ri, the ith column of the correlation matrix. In this case, the

term r(xi)>R−1 is equal to the vector ei = (0, . . . , 0, 1, 0, . . . , 0) in which the ith element

is 1. Therefore, m(xi) = µ+ (yi − µ) = f(xi) and s2(xi) = σ2 (1− r(xi)) = 0.

2.2.1 Estimation of kriging parameters

In a universal kriging model, to estimate the trend coefficients, one can use the least square

method. According to the Gauss-Markov theorem [Kru68], in a linear regression model,

if the error terms, εi, fulfill some properties, the ordinary least squares is the Best Linear
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Unbiased Estimator (BLUE). It means that the BLUE estimator has the lowest variance

of the estimate among all other linear, unbiased estimators. These properties are:

1. E(εi) = 0 , ∀i (error terms have zero mean),

2. Var(εi) = σ2 , ∀i (error terms have the same variance, “homoscedasticity”),

3. Cov(εi, εj) = 0 , ∀i 6= j (error terms are uncorrelated).

The third condition of the Gauss-Markov theorem does not hold for kriging models.

However, it is possible to transform the model into the Gauss-Markov framework. After

taking n sample points, the kriging model (Equation (6)) can be written in matrix form as

follows:

y = Φb + Y , (9)

where Φ is an n × p matrix whose ijth element is: Φij = φj(xi). Also, b = [β1, . . . , βp]
>

and Y = [Y (x1), . . . , Y (xn)]> ∼ N (0,C). For the positive definite matrix C−1 there

exists a matrix B such that C−1 = B>B. If both sides of Equation (9) are multiplied by

B, it gives:

By︸︷︷︸
y∗

= BΦ︸︷︷︸
Φ∗

b + BY︸︷︷︸
Y∗

. (10)

Now the linear regression model y∗ = Φ∗b + Y∗ is consistent with the Gauss-Markov

theorem because the error terms Y∗ are uncorrelated. The proof makes use of the fact

that Cov(Y) = C = B−1
(
B−1

)>, see Equation (11).

Cov(Y∗) = Cov(BY) = BCov(Y)B> = BB−1
(
B−1

)>B> = I. (11)

Finally, the coefficients are estimated using Equation (10)

b̂ =
(
Φ>∗Φ∗

)−1
Φ>∗ y∗ =

(
Φ>C−1Φ

)−1
Φ>C−1y =

Φ>R−1y
Φ>R−1Φ

. (12)

This modified estimation method is called generalized least squares, see [Han07] for more

details.

The other unknown parameters, σ2 and the θ, are often estimated by maximum likeli-

hood (ML). In a simple kriging model the likelihood function is the probability density of

the observations

L(θ, σ2|y) = P (y|θ, σ2) =
1

(2π)n/2|C|1/2 exp

(
−(y− 1µ)>C−1(y− 1µ)

2

)
, (13)
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where |C| is the determinant of the covariance matrix. It is more convenient to work with

the natural logarithm of the likelihood function that is:

lnL(θ, σ2|y) = −n
2

ln(2π)− 1

2
ln|C|−1

2
(y− 1µ)>C−1(y− 1µ). (14)

The ML estimator of the process variance σ2 is

σ̂2 =
1

n
(y− 1µ)>R−1(y− 1µ). (15)

Substituting σ̂2 on (14) we get the concentrated likelihood, also known as profile likelihood,

which depends only on θ

2 lnL(θ|y) = −n ln(2π)− n ln σ̂2 − ln|R|−n. (16)

Finally, θ, as defined in Section 2.1, is estimated by maximizing Equation (16) subject to

the constraint that all elements of θ are positive.

The quality of model prediction depends on the accuracy of the parameters estimated

by ML. When the likelihood function is flat around the optimum, the estimated parameters

may have high potential error, see Figure 2.4. Sasena [Sas02] in his thesis introduced a

metric to detect the plateau in the likelihood function. He came up with the following test

2 lnL(θ∗|y) ≥ −n ln(2π)− n lnVar(y)− n. (17)

If the optimal value of the log-likelihood function failed the test, then there is a high chance

that the likelihood function was flat. The idea is based on the fact that when the length-

scales are small, the correlation matrix approaches the identity matrix and σ̂2, Equation

(15), degenerates to Var(y). Therefore, the log-likelihood function, Equation (16), becomes

−n ln(2π)−n lnVar(y)−n. Other methods to avoid this problem are restricted maximum

likelihood (REML) [PT71] and penalized likelihood function [LS05].
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(a) Log-likelihood function, θ̂ ≈ 0.2.
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(b) Kriging model with θ̂ ≈ 0.2.
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(c) Log-likelihood function, θ̂ ≈ 1.6.
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(d) Kriging model with θ̂ ≈ 1.6.

Figure 2.4: Approximation of the true function (dashed line) by kriging model (kriging

mean: thick line, kriging variance: thin lines). (a) There is a plateau in the log-likelihood

function and θ̂ is not confident. (c) The log-likelihood function is strongly peaked.
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2.2.2 Modeling noise in Gaussian processes and nugget effect

One basic assumption of the kriging models introduced so far is that the function evalua-

tions at design points are deterministic. However, this assumption is not always correct.

For example, in stochastic computer simulations, if the simulation runs are repeated with

the same input vector, we will observe different responses. In this case, the response values

are considered noisy and the kriging model is expressed by

YKG(x) =

p∑

i=1

βiφi(x) + Y (x) + εx, (18)

where the error term εx is an additive Gaussian white noise:

(εx, εx′) ∼ N


0,


σ

2
ε 0

0 σ2
ε′




 .

In this case YKG(x) has an extra covariance with itself only and the (simple) kriging mean

and variance are modified as [RW05]

m(x) = µ+ c(x)> (C + ∆)−1 (y− 1µ) , (19)

s2(x) = σ2 − c(x)> (C + ∆)−1 c(x). (20)

Here, ∆ is a diagonal matrix containing the noise variances, ∆ii = σ2
εi
. Accordingly,

the kriging mean no longer interpolates data points and the kriging variance does not

vanish there. Also, s2(x) is globally more inflated than in the noiseless case [RGD12].

If the probability distribution of noises is the same at every point, we say that noises are

homogeneous, otherwise we say that they are heterogeneous. Figure 2.5 illustrates a kriging

approximation with heterogeneously noisy observations.

With stochastic simulations, a naive way to estimate the noise variances is to repeat the

simulation runs at each point and then calculate the variance of the outputs, see Equation

(21). Another method is to estimate noise variances simultaneously with other parameters

of kriging model in likelihood function.

∆̂ =




Var (y(x1)) 0
. . .

0 Var (y(xn))


 . (21)
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Figure 2.5: Kriging with heterogeneously noisy observations where noise variances are:

∆ = diag ((0.02, 0.1, 0.03, 0.08, 0.01)). The bars are ± two times the standard deviation of

the noise. The kriging mean does not interpolate the data points and the kriging variance

is not zero there.

Sometimes, there is a jump in the simulator outputs, although deterministic, because

of numerical instabilities in computations. This phenomenon can happen when a slight

change in the input vector yields completely different outputs [RGD12]. To take into

account such discontinuity (jump), one can use nugget in his model. When a nugget, τ 2,

is added to the model, the covariance function is modified as follows:

Kτ (x,x′) = K(x,x′) + τ 2δ(x,x′), (22)

where δ(., .) is the Kronecker’s delta. Figure 2.6 shows how a nugget effect can handle the

discontinuities in responses.

A kriging model with nugget can interpolate data points because the nugget term is

added not only to the main diagonal of the covariance matrix C but also to the covariance

vector c(x), see Equation (19). Moreover, the process variance increases to σ2 + τ 2. How-

ever, both kriging models (with nugget and noisy observations) have the same prediction

except at the design points, see Figure 2.7.
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Figure 2.6: Left: kriging model without nugget. Right: kriging with nugget equal to 0.1.

The true function is sin(x) (dashed line). The response value at point x = 3.1 is 0.5 instead

of sin(3.1) = 0.04.
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Figure 2.7: Kriging with noisy observations (solid) vs. kriging with nugget (dotted). The

nugget value and the noise variance are 0.2. Predicting with nugget or noisy observations

is identical everywhere but the design points. The kriging model with nugget has larger

variance because the process variance is σ2 + τ 2.
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In the presence of nugget the likelihood function is modified as follows

2 lnLτ (θ, σ
2, τ 2|y) = −n ln(2π)− n ln σ̂2

τ − ln|Rτ |−n, (23)

where σ̂2
τ = 1

n
(y − 1µ)>R−1

τ (y − 1µ) and Rτ = σ2

σ2+τ2
R + τ2

σ2+τ2
I. Here, the likelihood

function depends on θ, σ2 and τ 2. The inversion of Rτ can be done by means of the

Woodbury formula [Woo50]. The inverse of the matrix A + aI in which A is positive

semidefinite and a > 0 using Woodbury formula reads [YNN11]

(A + aI)−1 = A−1 −A−1(A−1 + a−1I)−1A−1. (24)

2.3 EGO algorithm

2.3.1 General principle of EGO

The general idea of the EGO algorithm is summarized below. Starting with an initial

Algorithm 2.1 Efficient Global Optimization Algorithm (EGO)

Create an initial design: X = [x1, . . . ,xn]
T .

Evaluate function at X and set y = f(X).

Fit a kriging model on the data points (X,y).

while not stop do

xn+1 ← arg maxx∈S EI(x) and add xn+1 to X.

yn+1 ← f(xn+1) and add yn+1 to y.

Re-estimate the parameters and update the kriging model.

end while

DoE, EGO sequentially adds one point to the existing design points based on the EI infill

sampling criterion. Then, the parameters of covariance functions are re-estimated and the

kriging model is updated. This process continues until a stopping criterion is met. Jones

et al. [JSW98] proposed to stop EGO when the EI is less than 1% of the current best

objective function value. A discussion of the stopping criteria used in surrogate-based

optimization algorithms can be found in [CH13]. In this work, we use a fixed number of

function evaluations for stopping criterion.
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2.3.2 Infill sampling criteria

EGO iteratively creates a design of experiments aimed at finding a point with the lower

function value thanks to the global optimization oriented infill sampling criterion, also

known as acquisition function. There are different types of infill sampling criteria, see

[BCdF09, Jon01], but the expected improvement (EI) measure is particularly popular.

Some advantages of the EI criterion are:

1. It does not have any arbitrary parameters to be tuned.

2. Under certain assumptions, the EI criterion will lead to a convergence of EGO to the

global optimum [Loc97].

3. EI can be used as a stopping criterion in the EGO algorithm: if the maximum value

of EI is consistently low, the optimization could be terminated [FJ08, JSW98].

4. It has the capability of being implemented on parallel architectures, [SLK04, GLRC10].

The EI magnitude at a point indicates the amount of improvement one should expect

if the function is evaluated there. The improvement over the best objective function value

observed so far, fmin = min(y), is defined as [MTZ78]

I = max {0, fmin − YKG(x)},

where h(x) = fmin−YKG(x) has normal distribution: h(x) ∼ N (fmin −m(x), s2(x)). The

expected improvement is calculated through
∫ h=∞

h=0

1√
2πs(x)

exp

(
−(h− fmin +m(x))2

2s2(x)

)
dh, (25)

which yields

EI(x) =





(fmin −m(x))Φ
(
fmin−m(x)

s(x)

)
+ s(x)φ

(
fmin−m(x)

s(x)

)
if s(x) > 0

0 if s(x) = 0 .
(26)

Here, Φ and φ denote the cumulative distribution function (cdf) and probability density

function (pdf) of the standard normal distribution, respectively. Sometimes a predeter-

mined target T ∈ R is used in EI instead of fmin, see e.g. [QVPH09]. Finally, the next

infill sample is taken where the EI is maximum: xn+1 = arg maxx∈S EI(x).

Page 26



2.3. EGO ALGORITHM

EI is a non-negative function and, in the noiseless case, it vanishes at data points. It is

strictly increasing with s(x) and decreasing with m(x) [PWG13]. The EI magnitude will

augment at a location point x if:

1. m(x) is small with respect to fmin which increases the first term of EI.

2. s(x) is high which increases the second term of EI.

It means that the first term controls the local search and the second term contributes in

global search. That is why the expected improvement is a compromise between exploiting

the surrogate model and exploring the search space.

Besides the above-mentioned advantages of EI, the main disadvantage is that EI does

not allow the user to have control over exploration / exploitation. To mitigate this pitfall,

different methods are proposed. For instance, Schonlau [Sch97] in his PhD thesis introduces

the generalized expected improvement criterion. Generalized expected improvement has an

additional non-negative integer parameter g such that increasing this parameter shifts the

emphasis from local exploitation to global exploration. In this case, the improvement is

defined as

Ig(x) = max {0, (fmin − Y (x))g}. (27)

It can be seen when g = 1, Ig(x) yields EI.

In another work, a weighted expected improvement criterion is proposed by Sóbester

et al. [SLK05]

WEI(x) =





w(fmin −m(x))Φ
(
fmin−m(x)

s(x)

)
+ (1− w)s(x)φ

(
fmin−m(x)

s(x)

)
if s(x) > 0

0 if s(x) = 0 ,
(28)

where the weighting factor w ∈ [0, 1] controls the balance between local and global search.

WEI(x) does purely local search when w = 1 and global search if w = 0. Lizotte et al.

[LGS12] modifies the EI criterion by introducing an additional parameter ξ ≥ 0

EIξ(x) =





(fmin − ξ −m(x))Φ
(
fmin−ξ−m(x)

s(x)

)
+ s(x)φ

(
fmin−ξ−m(x)

s(x)

)
if s(x) > 0

0 if s(x) = 0 ,
(29)

in which higher values of the parameter ξ biases the search towards exploration and vice

versa.
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In practice, there might be some difficulties with the maximization of EI. EI is often

highly multimodal function. Moreover, it is possible that the EI and its gradient become

numerically zero since Φ and φ in Equation (7) diminish exponentially when the term

Z = fmin−m(x)
s(x)

is small [LGS12]. For example, in R (version i386 3.2.1) the functions

Φ and φ, with the corresponding commands pnorm and dnorm, are numerically zero for

Z ≤ −39. However, EI can be considered as non expensive function since it does not

require calculating the function f . This maximization is usually performed by stochastic

optimization algorithms. As an example in [JR13] and in the Scilab KRISP toolbox [Jan13]

the optimization of EI is done by CMA-ES [Han09b]. Note that using stochastic methods

in EGO, makes it a stochastic algorithm.

Page 28



Chapter 3

An analytic comparison of regulariza-

tion methods for Gaussian processes

Gaussian Processes (GPs) are often used to predict the output of a parameterized deter-

ministic experiment. They have many applications in the field of Computer Experiments,

in particular to perform sensitivity analysis, adaptive design of experiments and global

optimization. Nearly all of the applications of GPs to Computer Experiments require the

inversion of a covariance matrix. Because this matrix is often ill-conditioned, regularization

techniques are required. Today, there is still a need to better regularize GPs.

The two most classical regularization methods to avoid degeneracy of the covariance

matrix are i) pseudoinverse (PI) and ii) adding a small positive constant to the main

diagonal, i.e., the case of noisy observations. In this chapter, we will refer to the second

regularization technique with a slight abuse of language as nugget. This chapter provides

algebraic calculations which allow comparing PI and nugget regularizations. It is proven

that pseudoinverse regularization averages the output values and makes the variance null at

redundant points. On the opposite, nugget regularization lacks interpolation properties but

preserves a non-zero variance at every point. However, these two regularization techniques

become similar as the nugget value decreases. A distribution-wise GP is introduced which

interpolates Gaussian distributions instead of data points and mitigates the drawbacks of

pseudoinverse and nugget regularized GPs. Finally, data-model discrepancy is discussed

and serves as a guide for choosing a regularization technique.



CHAPTER 3. AN ANALYTIC COMPARISON OF REGULARIZATION METHODS
FOR GAUSSIAN PROCESSES

3.1 Introduction

Although GPs can model stochastic or deterministic spatial phenomena, the focus of this

work is on experiments with deterministic outputs. Computer simulations provide ex-

amples of such noiseless experiments. Furthermore, we assume that the location of the

observed points and the covariance function are given a priori. This occurs frequently

within algorithms performing adaptive design of experiments [BGL+12], global sensitivity

analysis [OO02] and global optimization [JSW98].

Kriging models require the inversion of a covariance matrix which is made of the co-

variance function evaluated at every pair of observed locations. In practice, anyone who

has used a kriging model has experienced one of the circumstances where the covariance

matrix is not numerically invertible. This happens when observed points are repeated,

or even are close to each other, or when the covariance function makes the information

provided by observations redundant.

In the literature, various strategies have been employed to avoid degeneracy of the

covariance matrix. A first set of approaches proceed by controlling the locations of design

points (the Design of Experiments or DoE). The influence of the DoE on the condition

number of the covariance matrix has been investigated in [SB97]. [Ren09] proposes to

build kriging models from a uniform subset of design points to improve the condition

number. In [OGR09], new points are taken suitably far from all existing data points to

guarantee a good conditioning.

Other strategies select the covariance function so that the covariance matrix remains

well-conditioned. In [DM97] for example, the influence of all kriging parameters on the

condition number, including the covariance function, is discussed. Ill-conditioning also

happens in the related field of linear regression with the Gauss-Markov matrix Φ>Φ that

needs to be inverted, where Φ is the matrix of basis functions evaluated at the DoE. In

regression, work has been done on diagnosing ill-conditioning and the solution typically

involves working on the definition of the basis functions to recover invertibility [Bel91]. The

link between the choice of the basis functions and the choice of the covariance functions is

given by Mercer’s theorem, [RW05].

Instead of directly inverting the covariance matrix, an iterative method has been pro-
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posed in [Gib97] to solve the kriging equations and avoid numerical instabilities.

Two generic solutions to overcome the degeneracy of covariance matrix are the pseu-

doinverse (PI) and the “nugget" regularizations. They have a wide range of applications

because, contrarily to the methods mentioned above, they can be used a posteriori in com-

puter experiments algorithms without major redesign of the methods. This is the reason

why most kriging implementations contain PI or nugget regularization.

The singular value decomposition and the idea of pseudoinverse have already been

suggested in [JSW98] to overcome degeneracy. The Model-Assisted Pattern Search (MAPS)

software [STT00] relies on an implementation of the pseudoinverse to invert the (covariance)

matrices.

The most often used approach to deal with ill-conditioning in the covariance is to in-

troduce a “nugget” [BDJ+98, SWN03, Nea97, AC12], that is to say add a small positive

scalar on the covariance diagonal. The popularity of the nugget regularization may be

either due to its simplicity or to its interpretation as the variance of a noise on the observa-

tions. The value of the nugget term can be estimated by maximum likelihood (ML). It is

reported in [Pep10] that the presence of a nugget term significantly changes the modes of

the likelihood function of a GP. Similarly in [GL09], the authors have advocated a nonzero

nugget term in the design and analysis of their computer experiments. They have also

stated that estimating a nonzero nugget value may improve some statistical properties of

the kriging models such as their predictive accuracy [GL12]. However, some references like

[RHK11] recommend that the magnitude of nugget remains as small as possible to preserve

the interpolation property.

Because of the diversity of arguments regarding GP regularization, we feel that there

is a need to provide analytical explanations on the effects of the main approaches. This

chapter provides new results regarding the analysis and comparison of pseudoinverse and

nugget kriging regularizations in the context of deterministic outputs. Our analysis is made

possible by approximating ill-conditioned covariance matrices with the neighboring truly

non-invertible covariance matrices that stem from redundant points. Some properties of

kriging regularized by PI and nugget are stated and proved. The chapter finishes with the

description of a new type of regularization associated to a distribution-wise GP.
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3.2 Kriging models and degeneracy of the covariance

matrix

3.2.1 Context: conditional Gaussian processes

Let Y (x)x∈D be a GP with kernel K(., .) and zero mean (µ(.) = 0). X = (x1, ...,xn)

denotes the n data points where the samples are taken and the corresponding response

values are y = (y1, ..., yn)> = (f(x1), ..., f(xn))
>. The posterior distribution of the GP

(Y (x)) knowing it interpolates the data points is still Gaussian with mean and covariance

[RW05]

mK(x) = E(Y (x)|Y (X) = y) = c(x)>C−1y , (1)

cK(x,x′) = Cov(Y (x), Y (x′)|Y (X) = y)

= K(x,x′)− c(x)>C−1c(x′) , (2)

where c(x) = (K(x,x1), ..., K(x,xn))
> is the vector of covariances between a new point

x and the n already observed sample points. The n × n matrix C is a covariance matrix

between the data points and its elements are defined as Ci,j = K (xi,xj) = σ2Ri,j, where

R is the correlation matrix. Hereinafter, we call mK(x) and vK(x) = cK(x,x) the kriging

mean and variance, respectively.

3.2.2 Degeneracy of the covariance matrix

Computing the kriging mean (Equation (1)) or (co)variance (Equation (2)) or even samples

of GP trajectories, requires inverting the covariance matrix C. In practice, the covariance

matrix should not only be invertible, but also well-conditioned. A matrix is said to be

near singular or ill-conditioned or degenerated if its condition number is too large. For

covariance matrices, which are symmetric and positive semidefinite, the condition number

κ(C) is the ratio of the largest to the smallest eigenvalue. In this chapter we assume that

κ(C)→∞ is possible.

There are many situations where the covariance matrix is near singular. The most

frequent and easy to understand case is when some data points are too close to each other,
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where closeness is measured with respect to the metric induced by the covariance function.

This is a recurring issue in sequential DoEs like the EGO algorithm [JSW98] where the

search points tend to pile up around the points of interest such as the global optimum

[RHK11]. When this happens, the resulting covariance matrix is no longer numerically

invertible because some columns are almost identical.

Here, to analyze PI and nugget regularizations, we are going to consider matrix de-

generacy pushed to its limit, that is true non-invertibility (or rank deficiency) of C. Non

invertibility happens if a linear dependency exists between C’s columns (or rows). Sec-

tion 3.5.3 provides a collection of examples where the covariance matrix is not invertible

with calculation details that will become clear later. Again, the easiest to understand and

the most frequent occurrence of C’s rank deficiency is when some of the data points tend

towards each other until they are at the same xi position. They form repeated points, the

simplest example of what we more generally call redundant points which will be formally

defined shortly. Figure 3.6 in Section 3.5.3 is an example of repeated points. Repeated

points lead to strict non-invertibility of C since the corresponding columns are identical.

The special case of repeated points will be instrumental in understanding some aspects of

kriging regularization in Sections 3.3.2 and 3.4.2 because the eigenvectors of the covariance

matrix associated to null eigenvalues are known.

The covariance matrix of GPs may loose invertibility even though the data points are

not close to each other in Euclidean distance. This occurs for example with additive GPs for

which the kernel is the sum of kernels defined in each dimension, K(x,x′) =
d∑
i=1

Ki(xi, x
′
i).

The additivity of a kernel may lead to linear dependency in some columns of the covariance

matrix. For example, in the DoE shown in Figure 3.5, only three of the first four points

which form a rectangle provide independent information in the sense that the GP response

at any of the four points in fully defined by the response at the three other points. This

is explained by a linear dependency between the first four columns, C4 = C3 + C2 −C1,

which comes from the additivity of the kernel and the rectangular design [DGR12]:

C4
i = Cov(xi1, x

4
1) + Cov(xi2, x

4
2) = Cov(xi1, x

2
1) + Cov(xi2, x

3
2) ,
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and completing the covariances while accounting for x2
2 = x1

2, x3
1 = x1

1, yields

C4
i = Cov(xi,x3) + Cov(xi,x2)− Cov(xi,x1) = C3

i + C2
i −C1

i .

Note that if the measured outputs y1, . . . , y4 are not additive (y4 6= y2 + y3 − y1), none of

the four measurements can be easily deleted without loss of information, hence the need

for the general regularization methods that will be discussed later.

Periodic kernels may also yield non-invertible covariance matrices although data points are

far from each other. This is illustrated in Figure 3.9 where points 1 and 2, and points 3

and 4, provide the same information as they are one period away from each other. Thus,

C1 = C2 and C3 = C4.

Our last example comes from the dot product (or linear) kernel (cf. Section 3.5.3). Because

the GP trajectories and mean are linear, no uncertainty is left in the model when the

number of data points n reaches d + 1 and when n > d + 1 the covariance matrix is no

longer invertible.

3.2.3 Eigen analysis and definition of redundant points

We start by introducing our notations for the eigendecomposition of the covariance matrix.

Let the n × n covariance matrix C have rank r, r ≤ n. A covariance matrix is positive

semidefinite, thus its eigenvalues are greater than or equal to zero. The eigenvectors as-

sociated to strictly positive eigenvalues are denoted Vi, i = 1, . . . , r, and those associated

to null eigenvalues are Wi, i = 1, . . . , (n − r), that is CVi = λiVi where λi > 0 and

CWi = 0. The eigenvectors are grouped columnwise into the matrices V = [V1, . . . ,Vr]

andW = [W1, . . . ,Wn−r]. In short, the eigenvalue decomposition of the covariance matrix

C obeys

C = [V W] Σ [V W]>, (3)

where Σ is a diagonal matrix containing the eigenvalues of C, λ1 ≥ λ2 ≥ . . . ≥ λr > 0 and

λr+1 = . . . = λn = 0. V spans the image space and W spans the null space of C, Im(C)

and Null(C), respectively. [V W] is an orthogonal matrix,

[V W]>[V W] = [V W][V W]> = VV> + WW> = I . (4)

VV> is the orthogonal projection matrix onto Im(C). Similarly, WW> is the orthogonal

projection matrix onto Null(C). For a given matrix C, the eigenvectors Wi are not
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uniquely defined because any linear combination of them is also an eigenvector associated

to a null eigenvalue. However, the orthogonal projection matrices onto the image and null

spaces of C are unique and will be cornerstones in the definition of redundant points.

Before formally defining redundant points, we present the examples of singular covari-

ance matrices of Section 3.5.3. These examples are two dimensional to allow for a graphical

representation. The kernels, designs of points, eigenvalues and eigenvectors and the VV>

projection matrix are given.

The first example detailed in Section 3.5.3 has two groups of repeated data points (points

1, 2 and 6, on the one hand, points 3 and 4, on the other hand), in which there are 3

redundant, points. The covariance matrix has 3 null eigenvalues. It should be noted that

the off-diagonal coefficients of the VV> projection matrix associated to the indices of re-

peated points are not 0.

Figure 3.7 shows how additive kernels may generate singular covariance matrices: points

1, 2, 3 and 4 are arranged in a rectangular pattern which makes columns 1 to 4 linearly

dependent (as already explained in Section 3.2.2). The additive property makes any one

of the 4 points of a rectangular pattern redundant in that the value of the GP there is

uniquely set by the knowledge of the GP at the 3 other points. The same stands for points

5 to 8. Two points are redundant (1 in each rectangle) and there are two null eigenvalues.

Again, remark how the off-diagonal coefficients of VV> associated to the points of the

rectangles are not zero. Another example of additivity and singularity is depicted in Fig-

ure 3.8: although the design points are not set in a rectangular pattern, there is a shared

missing vertex between two orthogonal triangles so that, because of additivity, the value

at this missing vertex is defined twice. In this case, there is one redundant point, one null

eigenvalue, and all the points of the design are coupled: all off-diagonal terms in VV> are

not zero.

Finally, Figure 3.9 is a case with a periodic kernel and a periodic pattern of points so that

points 1 and 2 provide the same information, and similarly with points 3 and 4. There are

2 null eigenvalues, and the (1,2) and (3,4) off-diagonal terms in VV> are not zero.

In general, we call redundant the set of data points that make the covariance matrix

non-invertible by providing linearly dependent information.
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Definition 1 (Redundant points set).

Let C be the n × n non-invertible positive semidefinite covariance matrix of a Gaussian

process. It has rank r, r < n. V is the n × r matrix of the eigenvectors associated to

strictly positive eigenvalues. R is a set of at least two redundant points indices if for any i

and j in R, (VV>)ij 6= 0.

Redundant points could be equivalently defined with the W matrix since, from Equa-

tion (4), VV> and WW> have the same non-zero off-diagonal terms with opposite signs.

Subsets of redundant points are also redundant. The degree of redundancy of a set of points

R is the number of zero eigenvalues of the covariance matrix restricted to the points in

R, i.e., [Cij] for all (i, j) ∈ R2. The degree of redundancy is the number of points that

should be removed from R to recover invertibility of the covariance restricted to the points

in R. When r = n, C is invertible and there is no redundant point. An interpretation of

redundant points will be made in the next Section on pseudoinverse regularization.

In the repeated points example of Section 3.5.3, the two largest redundant points sets

are {1, 2, 6} and {3, 4} with degrees of redundancy 2 and 1, respectively. The first additive

example has two sets of redundant points, {1, 2, 3, 4} and {5, 6, 7, 8} each with a degree of

redundancy equal to 1. In the second additive example, all the points are redundant with

a degree equal to 1. In the same section, the periodic case has two sets of redundant points

of degree 1, {1, 2} and {3, 4}. With the linear kernel all data points are redundant and in

the given example where n = d+ 2 the degree of redundancy is 1.

3.3 Pseudoinverse regularization

3.3.1 Definition

In this Section, we state well-known properties of pseudoinverse matrices without proofs

(which can be found, e.g., in [BIC66]) and apply them to the kriging equations (1) and

(2). Pseudoinverse matrices are generalizations of the inverse matrix. The most popu-

lar pseudoinverse is the Moore–Penrose pseudoinverse which is hereinafter referred to as

pseudoinverse.

When C−1 exists (i.e., C has full rank, r = n), we denote as β the term C−1y of the

kriging mean formula, Equation (1). More generally, when C is not a full rank matrix, we
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are interested in the vector β that simultaneously minimizes1 ‖Cβ − y‖2 and ‖β‖2. This

solution is unique and obtained by βPI = C†y where C† is the pseudoinverse of C. Each

vector β can be uniquely decomposed into

β = βPI + βNull(C), (5)

where βPI and βNull(C) belong to the image space and the null space of the covariance

matrix, respectively. The decomposition is unique since, C being symmetric, Im(C) and

Null(C) have no intersection.

The pseudoinverse of C is expressed as

C† = [V W]


diag

(
1
λ

)
r×r 0r×(n−r)

0(n−r)×r 0(n−r)×(n−r)


 [V W]> , (6)

where diag( 1
λ

) is a diagonal matrix with 1
λi
, i = 1, . . . , r, as diagonal elements. So βPI

reads

βPI =
r∑

i=1

(
Vi
)> y
λi

Vi. (7)

Equation (7) indicates that βPI is in the image space of C, because it is a linear combi-

nation of eigenvectors associated to positive eigenvalues. A geometrical interpretation of

βPI and pseudo-inverse is given in Figure 3.1. The kriging mean (Equation (1)) with PI

regularization can be written as

mPI(x) = c(x)>
r∑

i=1

(
Vi
)> y
λi

Vi. (8)

Similarly, the kriging covariance (2) regularized by PI is,

cPI(x,x′) = K(x,x′)− c(x)>
r∑

i=1

((
Vi
)> c(x′)
λi

)
Vi

= K(x,x′)−
r∑

i=1

((
Vi
)> c(x)

)((
Vi
)> c(x′)

)

λi
.

(9)

1Indeed, in this case the minimizer of ‖Cβ−y‖2 is not unique but defined up to any sum with a vector

in the Null(C)
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Figure 3.1: Geometrical interpretation of the Moore-Penrose pseudoinverse. In the left

picture, infinitely many vectors β are solutions to the system Cβ= y. But the minimum

norm solution is C†y. The right picture shows the orthogonal projection of y onto the

image space of C, PIm(C)(y), which is equal to CC†y (Property 1).

3.3.2 Properties of PI kriging

The PI kriging mean averages the outputs. Before proving this property, let us illustrate

it with the simple example of Figure 3.2: there are redundant points at x = 1.5, x = 2 and

x = 2.5. We observe that the kriging mean with PI regularization is equal to the mean

of the outputs, mPI(1.5) = −0.5 = (−1 + 0)/2, mPI(2) = 5 = (1.5 + 4 + 7 + 7.5)/4 and

mPI(2.5) = 5.5 = (5 + 6)/2. The PI averaging property is due to the more abstract fact

that PI projects the observed y onto the image space of C.

Property 1 (PI as projection of outputs onto Im(C)).

The PI kriging prediction at X is the projection of the observed outputs onto the image

space of the covariance matrix, Im(C).

Proof : The PI kriging means at all design points is given by

mPI(X) = CC†y . (10)

Performing the eigendecompositions of the matrices, one gets,

mPI(X) = [V W]


 diag(λ) 0

0 0




 V>

W>


 [V W]


 diag( 1

λ
) 0

0 0




 V>

W>


y

= VV>y (11)
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1.0 1.5 2.0 2.5 3.0

-4
-2

0
2

4
6

8

x

y

Figure 3.2: Kriging mean mPI(x) (thick line) and prediction intervals mPI(x)± 2
√
vPI(x)

(thin lines). Kriging mean using pseudoinverse goes exactly through the average of the

outputs. The observed values are y = (−2,−1, 0, 1.5, 4, 7, 7.5, 6, 5, 3)>. mPI(1.5) = −0.5,

mPI(2) = 5, and mPI(2.5) = 5.5. Note that vPI is zero at redundant points.

The matrix

PIm(C) = VV> = (I−WW>) (12)

is the orthogonal projection onto the image space of C because it holds that

PIm(C) = P>Im(C);

P2
Im(C) = PIm(C);

∀v ∈ Im(C) , PIm(C)v = v;

and ∀u ∈ Null(C) , PIm(C)u = 0 �

Redundant points can be further understood thanks to Property 1 and Equation (11):

points redundant with xi are points xj where the observations influences mPI(xi). The

kriging predictions at the redundant data points mPI(xi) and mPI(xj) are not yi and

yj, as it happens at non-redundant points where the model is interpolating, but a linear

combination of them. The averaging performed by PI becomes more clearly visible in the

important case of repeated points.
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Property 2 (PI Averaging Property for Repeated Points).

The PI kriging prediction at repeated points is the average of the outputs at those points.

Proof : Suppose that there are N repeated points at k different locations with Ni points

at each repeated location,
k∑
i=1

Ni = N , see Figure 3.3. The corresponding columns in the

covariance matrix are identical,

C =


C1, ...,C1

︸ ︷︷ ︸
N1 times

, . . . ,Ck, ...,Ck

︸ ︷︷ ︸
Nk times

,CN+1, ...,Cn


 .

In this case, the dimension of the image space, or rank of the covariance matrix, is n−N+k

and the dimension of the null space is equal to
k∑
i=1

(Ni − 1) = N − k.
To prove this property we need to show that the matrix P defined as

P =




JN1

N1

. . . 0

0
JNk
Nk

In−N



, (13)

is the projection matrix onto the image space of C, or P = PIm(C). In matrix P, JNi is

the Ni ×Ni matrix of ones and In−N is the identity matrix of size n−N . If P = PIm(C),

based on Property 1, mPI(X) is expressed as

mPI(X) = PIm(C)y =




y1

...

y1

...

yk
...

yk

yN+1

...

yn




, (14)

in which yi =

Ni∑
j=N1+...+Ni−1+1

yj

Ni
. It means that the PI kriging prediction at repeated points

is the average of the outputs at those points.
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It is easy to see that P> = P and P2 = P. We now check the two remaining charac-

teristic properties of projection matrices

1. ∀u ∈ Null(C) , Pu = 0

2. ∀v ∈ Im(C) , Pv = v.

We first construct a set of non-orthogonal basis vectors of Null(C). The basic idea is that

when two columns of the covariance matrix C are identical, e.g., the two first columns,

C =
(
C1,C1, . . .

)
, then vector u1 = (1,−1, 0, . . . , 0)>/

√
2 belongs to Null(C) because

C1 −C1 = Ce1 −Ce2 = C(e1 − e2︸ ︷︷ ︸
u1

) = 0. (15)

Generally, all such vectors can be written as

uj =
ej+1 − ej√

2
, j =

∑

l≤i−1

N l + 1, . . . ,
∑

l≤i

N l − 1 , i = 1, . . . , k .

There are N − k = dim(Null(C)) such uj’s which are not orthogonal but linearly inde-

pendent. They make a basis of Null(C). It can be seen that Puj = 0 , j = 1, . . . , N − k.
Since every vector in Null(C) is a linear combination of the uj’s, the equation Pu = 0

holds for any vector in the null space of C which proves the first characteristic property of

the projection matrix.

The second property is also proved by constructing a set of vectors that span Im(C).

There are n−N + k such vectors. The k first vectors have the form

vi = ( 0, . . . , 0︸ ︷︷ ︸
N1+...+Ni−1 times

, 1, . . . , 1︸ ︷︷ ︸
Ni times

, 0, . . . , 0)>/
√
Ni , i = 1, . . . , k. (16)

The n − N other vectors are: vj = ej−k+N , j = k + 1, . . . , n − N + k. Because these

n−N + k vj’s are linearly independent and perpendicular to the null space (to the above

uj , j = 1, . . . , N − k), they span Im(C). Furthermore, Pvi = vj , j = 1, . . . , n−N + k.

The equation Pv = 0 is true for every v ∈ Im(C), therefore, P is the projection matrix

onto the image space of C and the proof is complete. �

Property 3 (Null variance of PI regularized models at data points).

The variance of Gaussian processes regularized by pseudoinverse is zero at data points.
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Therefore vPI(·) is null at redundant points.

Proof : From Equation (2), the PI kriging variances at all design points are

vPI(X) = cPI(X,X) = K(X,X)− c(X)>C†c(X) = C−C>C†C = C−C = 0 ,

thanks to the pseudoinverse property [Str09], CC†C = C. �

3.4 Nugget regularization

3.4.1 Definition and covariance orthogonality property

When regularizing a covariance matrix by nugget, a positive value, τ 2, is added to the main

diagonal. This corresponds to a probabilistic model with an additive white noise of variance

τ 2, Y (x) | Y (xi) + εi = yi, i = 1, . . . , n, where the εi’s are i.i.d. N (0, τ 2). Nugget

regularization improves the condition number of the covariance matrix by increasing all the

eigenvalues by τ 2: if λi is an eigenvalue of C, then λi + τ 2 is an eigenvalue of C+ τ 2I and

the eigenvectors remain the same (the proof is straightforward). The associated condition

number is κ(C + τ 2I) = λmax + τ2

λmin + τ2
. The nugget parameter causes kriging to smoothen the

data and become non-interpolating.

Property 4 (Loss of interpolation in models regularized by nugget).

A conditional Gaussian process regularized by nugget has its mean no longer, in general,

equal to the output at data points, mNug(xi) 6= yi, i = 1, n.

This property can be understood as follows. A conditional GP with invertible covariance

matrix is interpolating because c(xi)>C−1y = Ci>C−1y = e>i y = yi. This does not stand

when C−1 is replaced by (C + τ 2I)−1.

Recall that the term C−1y in the kriging mean of Equation (1) is denoted by β. When

nugget regularization is used, β is shown as βNug and, thanks to the eigenvalue decompo-

sition of (C + τ 2I)−1, it is written

βNug =
r∑

i=1

(
Vi
)> y

λi + τ 2
Vi +

n∑

i=r+1

(
Wi
)> y
τ 2

Wi. (17)

The main difference between βPI (Equation (7)) and βNug lies in the second part of βNug:

the part that spans the null space of the covariance matrix. In the following, we show that

this term cancels out when multiplied by c(x)>, a product that intervenes in kriging.
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Property 5 (Orthogonality Property of c and Null(C)).

For all x ∈ D, the covariance vector c(x) is perpendicular to the null space of the covariance

matrix C.

Proof : The kernel K(., .) is a covariance function [Aro50], hence the matrix

Cx =


K(x,x) c(x)>

c(x) C


 (18)

is positive semidefinite.

Let w be a vector in the null space of C. According to the definition of positive

semidefinite matrices, we have

 1

w



>

Cx


 1

w


 = K(x,x) + 2

n∑

i=1

K(x, xi)wi + 0 ≥ 0. (19)

The above equation is valid for any vector γw as well, in which γ is a real number. This

happens only if
n∑
i=1

K(x, xi)wi is zero, that is to say, c(x)> is perpendicular to the null

space of C. �

As a result of the Orthogonality Property of c and Null(C), the second term in Equa-

tion (17) disappears in the kriging mean with nugget regularization which becomes

mNug(x) = c(x)>
r∑

i=1

(
Vi
)> y

λi + τ 2
Vi. (20)

The Orthogonality Property applies similarly to the kriging covariance (Equation (2)),

which yields

cNug(x,x′) = K(x,x′)− c(x)>
r∑

i=1

(
Vi
)> c(x′)

λi + τ 2
Vi

= K(x,x′)−
r∑

i=1

((
Vi
)> c(x)

)((
Vi
)> c(x′)

)

λi + τ 2
.

(21)

Comparing equations (8) and (20) indicates that the behavior of mPI and mNug will be

similar to each other if τ 2 is small. The same holds for kriging covariances (hence variances)

cPI and cNug in equations (9) and (21).
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Property 6 (Equivalence of PI and nugget regularizations).

The mean and covariance of conditional GPs regularized by nugget tend toward the ones of

GPs regularized by pseudoinverse as the nugget value τ 2 tends to 0.

In addition, equations (9) and (21) show that cNug is always greater than cPI . These

results will be illustrated later in the Discussion Section.

3.4.2 Nugget and maximum likelihood

It is common to estimate the nugget parameter by maximum likekihood (Equation (28)).

As will be detailed below, the amplitude of the nugget estimated by ML is increasing with

the spread of observations at redundant points. It matches the interpretation of nugget as

the amount of noise put on data: an increasing discrepancy between responses at a given

point is associated to more observations noise.

In Figure 3.3 two vectors of response values are shown, y (bullets) and y+ (crosses),

located at k different x sites. The spread of response values y+ is larger than that of y at

some redundant points. Let s2
i and s+

i
2, 1 ≤ i ≤ k, denote the variances of y and y+ at

the redundant points,

s2
i =

N1+...+Ni∑
j=N1+...+Ni−1+1

(yj − yi)2

Ni − 1
, (22)

and the same stands with y+ and its variance s+
i

2. The nugget that maximizes the likeli-

hood, the other GP parameters being fixed (the length-scales θi and the process variance

σ2), is increasing when the variance of the outputs increases.

Theorem 1.

Suppose that there are observations located at k different sites. If we are given two vectors

of response values y and y+ such that

1. s+
i

2 ≥ s2
i for all i = 1, . . . , k and

2. yi = y+
i for all i = 1, ..., k,

then the nugget amplitudes τ̂ 2 and τ̂+
2
that maximize the likelihood with other GP param-

eters being fixed are such that τ̂+
2 ≥ τ̂ 2.
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y

x1 x2 ... xk

Figure 3.3: The response values y and y+ are denoted by bullets and crosses, respec-

tively. At each location, the mean of y and y+ are identical, yi = y+
i, but the spread of

observations in y+ is never less than that of y at redundant points.

Proof : Before starting the proof, we need equations resulting from the positive definiteness

of the covariance matrix C:

y = PNull(C)y + PIm(C)y (23)

PIm(C)y =
n−N+k∑

i=1

〈y,Vi〉Vi (24)

PNull(C)y =
N−k∑

i=1

〈y,Wi〉Wi (25)

∥∥PNull(C)y
∥∥2

=
∥∥y−PIm(C)y

∥∥2
, (26)

where 〈., .〉 denotes the inner product.

The natural logarithm of the likelihood function is

lnL(y|θ, σ2) = −n
2

ln(2π)− 1

2
ln|C|−1

2
y>C−1y, (27)

where after removing fixed terms and incorporating nugget effect, becomes:

−2 lnL(y|τ 2) ≈ ln
(∣∣C + τ 2I

∣∣)+ y>
(
C + τ 2I

)−1 y. (28)
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The eigenvalue decomposition of matrix C + τ 2I in (28) consists of

(
V1, ...,Vn−N+k,W1, ...,WN−k) (29)

Σ = diag(τ 2 + λ1, ..., τ
2 + λn−N+k, τ

2, ..., τ 2

︸ ︷︷ ︸
N−k

). (30)

If Equation (28) is written based on the eigenvalue decomposition, we have

−2 lnL(y|τ 2) ≈
n∑

i=1

ln(τ 2 + λi) +
1

τ 2

N−k∑

i=1

〈y,Wi〉2 +
n−N+k∑

i=1

〈y,Vi〉2
τ 2 + λi

, (31)

or equivalently

−2 lnL(y|τ 2) ≈
n∑

i=1

ln(τ 2 + λi) +
1

τ 2

∥∥y−PIm(C)y
∥∥2

+
n−N+k∑

i=1

〈PIm(C)y,Vi〉2
τ 2 + λi

, (32)

with the convention λn−N+k+1 = λn−N+k+2 = ... = λn = 0. In the above equations, ≈
means “equal up to a constant”. Based on (14), the term y−PIm(C)y in Equation (32) is

y−PIm(C)y =




y1 − y1

...

yN1 − y1

...

yN1+...+Nk−1+1 − yk
...

yN1+...+Nk − yk
0
...

0




, (33)

where yi, i = 1, ..., k, designates the mean of response values at location i.

According to equations (33) and (22),
∥∥y−PIm(C)y

∥∥2
=

k∑
i=1

Nis
2
i . Hence, Equation (32)

using s2
i is updated as

−2 lnL(y|τ 2) ≈
n∑

i=1

ln(τ 2 + λi) +
1

τ 2

k∑

i=1

Nis
2
i +

n−N+k∑

i=1

〈PIm(C)y,Vi〉2
τ 2 + λi

. (34)

Let function ∆(τ 2) express the difference between−2 lnL(y|τ 2) and −2 lnL(y+|τ 2).

Remark that PIm(C)y = PIm(C)y+ because of our hypothesis yi = y+i , i = 1, ..., k. The
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function ∆(τ 2) is defined as

∆(τ 2) ≡ − 2 lnL(y+|τ 2) + 2 lnL(y|τ 2) =
1

τ 2

k∑

i=1

Ni

(
s+
i

2 − s2
i

)
, (35)

and is monotonically decreasing.

Now we show that τ̂+
2
, the ML estimation of nugget from y+, is never smaller than

τ̂ 2, the ML estimation of nugget from y. Firstly, τ̂+
2
cannot be smaller than τ̂ 2. Indeed,

if τ 2 ≤ τ̂ 2, then

−2 lnL(y+|τ 2) = −2 lnL(y|τ 2) + ∆(τ 2) (36)

≥ −2 lnL(y|τ̂ 2) + ∆(τ 2)

≥ −2 lnL(y|τ̂ 2) + ∆(τ̂ 2)

= −2 lnL(y+|τ̂ 2),

which shows that τ̂+
2 ≥ τ̂ 2. Secondly, if s+

i
2 is strictly larger than s2

i , then τ̂+
2
> τ̂ 2 because

the slope of −2 lnL(y+|τ 2) is strictly negative at τ 2 = τ̂ 2: The derivative of −2 lnL(y+|τ 2)

with respect to τ 2 can be written as
d

dτ 2

(
−2 lnL(y+|τ 2)

)
=

d

dτ 2

(
−2 lnL(y|τ 2)

)
+
d∆(τ 2)

dτ 2
. (37)

Since τ̂ 2 = arg min−2 lnL(y|τ 2), the second term in the right hand side of the above

equation is equal to zero. Therefore, the derivative of −2 lnL(y+|τ 2) with respect to τ 2

reduces to

d

dτ 2

(
−2 lnL(y+|τ̂ 2)

)
=

d

dτ 2

(
1

τ 2

k∑

i=1

Ni

(
s+
i

2 − s2
i

))
=
−1

τ 4

k∑

i=1

Ni

(
s+
i

2 − s2
i

)
. (38)

The above derivative is strictly negative because s+
i

2 − s2
i is positive and the proof is

complete. �

3.5 Discussion: choice and tuning of the classical regu-

larization methods

This section carries out a practical comparison of PI and nugget regularization methods,

which are readily available in most GP softwares [STT00, RGD12]. We start with a dis-

cussion of how data and model match, which further allows to decide whether nugget or

PI should be used. Finally, we provide guidelines to tune the regularization parameters.
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Note that nugget regularization should be used when the observed data is known to

be noisy since it has a physical meaning [RGD12]. The loss of the interpolating property

at data points associated to nugget regularization is here a beneficial filtering effect. This

discussion on non-deterministic outputs is out of the scope of this work.

3.5.1 Model-data discrepancy

Model-data discrepancy can be measured as the distance between the observations y and

the GP model regularized by pseudoinverse.

Definition 2 (Model-data discrepancy). Let X be a set of design points with associated

observations y. Let V and W be the normalized eigenvectors spanning the image space

and the null space of the covariance matrix C, respectively. The model-data discrepancy is

defined as

discr =
‖y −mPI(X)‖2

‖y‖2
=
‖WW>y‖2

‖y‖2
(39)

where mPI(. ) is the pseudoinverse regularized GP model of Equation (10).

The last equality in the definition of discr comes from Equations (11) and (12). The

discrepancy is a normalized scalar, 0 ≤ discr ≤ 1, where discr = 0 indicates that the model

and the data are perfectly compatible, and vice versa when discr = 1. The definition of

redundant points does not depend on the observations y and the model-data discrepancy is

a scalar globalizing the contributions of all observations. An intermediate object between

redundant points and discrepancy is the gradient of the squared model-data error with

respect to the observations,

∇y‖y−mPI(X)‖2 = WW>y . (40)

It appears that the gradient of the error, ‖y − mPI(X)‖2, is equal to the model-data

distance, WW>y. This property comes from the quadratic form of the error. The mag-

nitude of the components of the vector WW>y measures the sensitivity of the error to a

particular observation. At repeated points, a gradient-based approach where the y’s are

optimized would advocate to make the observations closer to their mean proportionally to

their distance to the mean.

In other words, −WW>y is a direction of reduction of the model-data distance in

the space of observations. Because the distance considered is quadratic, this direction is
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colinear to the error, (y−mPI(X)). The indices of the non-zero components of WW>y

also designate the redundant points.

3.5.2 Two detailed examples

A common practice when the nugget value, τ 2, is not known beforehand is to estimate it by

ML or cross-validation. We showed that the ML estimated nugget value, τ̂ 2, is increasing

with the spread of responses at redundant points. This is one situation (among others, e.g.,

the additive example hereafter) where the data and the model mismatch, and τ̂ 2 is large.

Figure 3.4 is an example where τ̂ 2 is equal to 7.06. Some authors such as in [Wag10, Bac13]

recommend using cross-validation instead of ML for learning the kriging parameters. In

the example of Figure 3.4, the estimated nugget value by leave-one-out cross-validation,

denoted by τ̂ 2
CV , is 1.75. The dash-dotted lines represent the kriging model regularized by

nugget that is estimated by cross-validation. The model-data discrepancy is discr = 0.36

and WW>y = (0, 0,−3, 3, 0, 0)> which shows that points 3 and 4 are redundant and their

outputs should be made closer to reduce the model-data error. Whether or not in practice

the outputs can be controlled is out of the scope of our discussion. But our analysis

considers data points that are not compatible with the model.

We now give a two-dimensional example of a kriging model with additive kernel defined

over X = [(1, 1), (2, 1), (1, 2), (2, 2), (1.5, 1.5), (1.25, 1.75), (1.75, 1.25)], cf. Figure 3.5. As

explained in Section 3.2.2, the first four points of the DoE make the additive covariance

matrix non-invertible even though the points are not near each other in Euclidean distance.

Suppose that the design points have the response values y = (1, 4,−2, 1, 1,−0.5, 2.5)>

which correspond to the additive true function f(x) = x2
1− x2

2 + 1. The covariance matrix

is the sum of two parts

Cadd = σ2
1K1 + σ2

2K2 ,

where σ2
i are the process variances and σ2

iKi the kernel in dimension i = 1, 2.

To estimate the parameters of Cadd, the negative of the likelihood is minimized (see

Equation (28)) which yields a nugget value τ̂ 2 ≈ 10−12 (the lower bound on nugget used).

A small nugget value is obtained because the associated output value follows an additive

function compatible with the kernel: there is no discrepancy between the model and the

data. Because of the small nugget value, the models regularized by PI and nugget are very
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Figure 3.4: Comparison of kriging regularized by PI (solid lines), nugget estimated by

ML (dashed lines) and nugget estimated by cross-validation (dash-dotted lines). X =

[1; 1.5; 2; 2.00001; 2.5; 3] and y = (−2, 0, 3, 9, 6, 3)>. The estimated nugget values are τ̂ 2 =

7.06 and τ̂ 2
CV = 1.75.

close to each other (the left picture in Figure 3.5).

Let us now introduce model-data discrepancy in this example: the observations of

the first four data points no longer follow an additive function after changing the third

response from -2 to 2; additive kriging models cannot interpolate these outputs. The nugget

value estimated by ML is equal to 1.91, so mNug(x) does not interpolate any of the data

points (x1 to x7). Regarding mPI(x), the projection onto Im(C) make the GP predictions

different from the observations at x1, x2, x3 and x4. For example, mPI(x4) = 2. The

projection applied to points x5 to x7 where no linear dependency exists show that mPI(x)

is interpolating there, which is observed on the right picture of Figure 3.5.

Our observations reflect that large estimated values of nugget (whether by ML or cross-

validation) indicate model-data discrepancy. This agrees with the calculated discrepancies:

in the last additive kernel example when all the outputs were additive, discr = 0 and

WW>y = (0, 0, 0, 0, 0, 0, 0)> (no redundant point); when the value of the third output

was increased to 2, discr = 0.37 and WW>y = (−1, 1, 1,−1, 0, 0, 0)> showing that points

1 to 4 are redundant and that, to reduce model error, points 1 and 4 should increase their
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Figure 3.5: Contour plots of kriging mean regularized by pseudoinverse (solid line) vs.

nugget (dashed line) for an additive GP. The bullets are data points. Left: the response

values are additive, y = (1, 4,−2, 1, 1,−0.5, 2.5)> and τ̂ 2 = 10−12. Right: the third obser-

vation is replaced by 2, creating non-additive observations and τ̂ 2 ≈ 1.91; mNug(x) is no

longer interpolating, mPI(x) still interpolates x5 to x7.

Page 51



CHAPTER 3. AN ANALYTIC COMPARISON OF REGULARIZATION METHODS
FOR GAUSSIAN PROCESSES

outputs while points 2 and 3 should decrease theirs.

Of course, for the sole purpose of quantifying model-data discrepancy it is more efficient

to use Formula (39) which involves one pseudo-inverse calculation and two matrix prod-

ucts against a nonlinear likelihood maximization with repeated embedded C eigenvalues

analyses for the nugget estimation.

3.5.3 Examples of redundant points

This section gives easily interpretable examples of DoEs with associated kernels that make

the covariance matrix non-invertible. The eigenvalues, eigenvectors and orthogonal projec-

tion matrix onto the image space (cf. also Section 3.2.3) are described.

Repeated points

Repeated design points are the simplest example of redundancy in a DoE since columns

of the covariance matrix C are duplicated. An example is given in Figure 3.6 with a

two-dimensional design, and a classical squared exponential kernel. The eigenvalues and
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
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0.20 0.30
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


Figure 3.6: Kernel and DoE of the repeated points example
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eigenvectors of the covariance matrix associated to Figure 3.6 are

λ =




3.12

1.99

0.90

0.00

0.00

0.00




, V =




− 0.55 0.19 0.00

−0.55 0.19 0.00

−0.22 −0.64 −0.21

−0.22 −0.64 −0.21

−0.09 −0.28 0.96

−0.55 0.19 0.00




and W =




0.00 −0.30 0.76

−0.71 0.12 −0.39

−0.04 0.66 0.26

0.04 −0.66 −0.26

0.00 0.00 0.00

0.71 0.18 −0.37




,

with the orthogonal projection matrix onto Im(C)

VV> =




0.33 0.33 0.00 0.00 0.00 0.33

0.33 0.33 0.00 0.00 0.00 0.33

0.00 0.00 0.50 0.50 0.00 0.00

0.00 0.00 0.50 0.50 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00

0.33 0.33 0.00 0.00 0.00 0.33




Points {1, 2, 6} and {3, 4} are repeated and redundant.

First additive example

The first example of GP with additive kernel is described in Figure 3.7. As explained

in Section 3.2.2, the rectangular patterns of points {1, 2, 3, 4} and {5, 6, 7, 8} create linear

dependencies between the columns ofC. The eigenvalues and eigenvectors of the covariance

matrix are,

λ =




9.52

3.58

2.60

2.31

1.46

0.39

0.09

0.06

0.00

0.00




, V =




− 0.30 −0.32 0.45 −0.15 0.34 −0.10 0.22 0.40

−0.33 −0.24 0.29 −0.43 −0.22 −0.30 −0.43 0.04

−0.38 −0.22 −0.01 0.31 0.22 0.59 0.17 0.17

−0.41 −0.14 −0.17 0.04 −0.34 0.40 −0.47 −0.19

−0.38 0.01 −0.37 0.03 −0.40 −0.29 0.43 0.18

−0.28 0.45 0.03 0.44 −0.13 −0.27 −0.15 0.40

−0.25 0.19 −0.38 −0.62 0.11 0.13 0.30 −0.07

−0.15 0.64 0.02 −0.22 0.38 0.15 −0.29 0.15

−0.34 −0.13 −0.24 0.26 0.54 −0.43 −0.10 −0.51

−0.25 0.34 0.59 0.05 −0.22 0.08 0.35 −0.54



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Figure 3.7: Kernel and DoE of the first additive GP example

and W =




0.00 0.50

0.00 −0.50

0.00 −0.50

0.00 0.50

0.50 0.00

−0.50 0.00

−0.50 0.00

0.50 0.00

0.00 0.00

0.00 0.00




.
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The projection matrix onto the image space is

VV> =




0.75 0.25 0.25 −0.25 0.00 0.00 0.00 0.00 0.00 0.00

0.25 0.75 −0.25 0.25 0.00 0.00 0.00 0.00 0.00 0.00

0.25 −0.25 0.75 0.25 0.00 0.00 0.00 0.00 0.00 0.00

−0.25 0.25 0.25 0.75 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.75 0.25 0.25 −0.25 0.00 0.00

0.00 0.00 0.00 0.00 0.25 0.75 −0.25 0.25 0.00 0.00

0.00 0.00 0.00 0.00 0.25 −0.25 0.75 0.25 0.00 0.00

0.00 0.00 0.00 0.00 −0.25 0.25 0.25 0.75 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00




.

The redundancy between points 1 to 4 on the one hand, and 5 to 8 on the other hand, is

readily seen on the matrix.

Second additive example

This example shows how an incomplete rectangular pattern with additive kernels can also

make covariance matrices singular. In Figure 3.8, the point at coordinates (0.3, 0.4), which

is not in the design, has a GP response defined twice, once by the points {1, 2, 3} and

once by the points {4, 5, 6}. This redundancy in the DoE explains why C has one null

eigenvalue:

λ =




5.75

2.90

2.07

0.80

0.49

0.00




, V =




− 0.50 0.34 −0.01 0.18 0.66

−0.49 0.25 0.20 0.57 −0.40

−0.48 0.17 −0.29 −0.69 −0.01

−0.32 −0.39 −0.65 0.17 −0.35

−0.36 −0.28 0.66 −0.33 −0.28

−0.20 −0.75 0.09 0.15 0.45




, W =




− 0.41

0.41

0.41

−0.41

−0.41

0.41




.
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Figure 3.8: Kernel and DoE of the second additive GP example

The orthogonal projection matrix onto the image space of C tells us that all the points in

the design are redundant,

VV> =




0.83 0.17 0.17 −0.17 −0.17 0.17

0.17 0.83 −0.17 0.17 0.17 −0.17

0.17 −0.17 0.83 0.17 0.17 −0.17

−0.17 0.17 0.17 0.83 −0.17 0.17

−0.17 0.17 0.17 −0.17 0.83 0.17

0.17 −0.17 −0.17 0.17 0.17 0.83




.

Periodic example

The kernel and DoE of the periodic example are given in Figure 3.9.

The eigenvalues and eigenvectors of the associated covariance matrix C are,

λ =




2.00

2.00

1.01

0.99

0.00

0.00




, V =




− 0.50 0.50 0.01 −0.01

−0.50 0.50 0.01 −0.01

−0.50 −0.50 0.01 −0.01

−0.50 −0.50 0.01 −0.01

−0.03 0.00 −0.70 0.72

0.00 0.00 −0.72 −0.70




and W =




0.00 0.71

0.00 −0.71

0.71 0.00

−0.71 0.00

0.00 0.00

0.00 0.00




.
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Figure 3.9: Kernel and DoE of the periodic example

There are two null eigenvalues. The projector onto the image space is

VV> =




0.50 0.50 0.00 0.00 0.00 0.00

0.50 0.50 0.00 0.00 0.00 0.00

0.00 0.00 0.50 0.50 0.00 0.00

0.00 0.00 0.50 0.50 0.00 0.00

0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 1.00




which shows that points 1 and 2, on the one hand, and points 3 and 4, on the other hand,

are redundant.

Dot product kernel example

The non-stationary dot product or linear kernel is k(x,x’) = 1 + x>x’.

We consider a set of three one dimensional, non-overlapping, observation points: X =
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


0.20

0.60

0.80


. The associated eigenvalues and eigenvectors are,

λ =




3.90

0.14

0.00


 , V =




− 0.49 0.83

−0.59 −0.09

−0.64 −0.55


 and W =




0.27

−0.80

0.53




The projection matrix onto the image space of C is

VV> =




0.93 0.21 −0.14

0.21 0.36 0.43

−0.14 0.43 0.71




Because there are 3 data points which is larger than d + 1 = 2, all points are redundant.

With less than 3 data points, the null space of C is empty.

3.5.4 PI or nugget?

On the one hand, models regularized by PI have predictions, mPI(. ), that interpolate

uniquely defined points and go through the average output at redundant points (Property

2). The associated kriging variances, vPI(. ), are null at redundant points (Property 3). On

the other hand, models regularized by nugget have predictions which are neither interpolat-

ing nor averaging (Property 4) while their variances are non-zero at data points. Note that

kriging variance tends to σ2 as the nugget value increases (see Equation (21)). These facts

can be observed in Figure 3.10. Additionally, this Figure illustrates that nugget regular-

ization tends to PI regularization as the nugget value decreases (Property 6). If there is a

good agreement between the data and the GP model, the PI regularization or equivalently,

a small nugget, should be used. This can also be understood through the Definition of

model-data discrepancy and Property 1: when discr = 0, the observations are perpendic-

ular to Null(C) and, equivalently, mPI(X) = y since mPI(. ) performs a projection onto

Im(C). Vice versa, if the model-data discrepancy measure is large, choosing PI or nugget

regularization is a matter of choice: either the prediction averaging property is regarded

as most important and PI should be used, or a non-zero variance at redundant points is

favored and nugget should be selected; If the discrepancy is concentrated on few redun-

dant points, nugget regularized models will distribute the uncertainty (additional model

Page 58



3.5. DISCUSSION: CHOICE AND TUNING OF THE CLASSICAL
REGULARIZATION METHODS

1.0 1.5 2.0 2.5 3.0

-4
-2

0
2

4
6

8

x

y

1.0 1.5 2.0 2.5 3.0

-4
-2

0
2

4
6

8

x

y

Figure 3.10: One dimensional kriging regularized by PI (solid lines) and nugget (dashed

lines). The nugget amplitude is 1 on the left and 0.1 on the right. The cut-off eigenvalue

for the pseudoinverse is η = 10−3. mNug(x) is not interpolating which is best seen at the

second point on the left. On the right, the PI and nugget models are closer to each other.

Same X and y as Figure 3.4.
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variance) throughout the x domain while PI regularized models will ignore it. Based on

the above argument, the decision for using PI or nugget regularizations should be problem

dependent.

3.5.5 Tuning regularization parameters

How small can a nugget value be? Adding nugget to the main diagonal of a covariance

matrix increments all the eigenvalues by the nugget amplitude. The condition number of

the covariance matrix with nugget is κ(C+ τ 2I) = λmax+τ2

λmin+τ2
. Accordingly, a “small" nugget

is the smallest value of τ 2 such that κ(C+ τ 2I) is less than a reasonable condition number

after regularization, κmax (say, κmax = 108). With such targeted condition number, the

smallest nugget would be τ 2 = λmax−κmaxλmin
κmax−1

if λmax−κmaxλmin ≥ 0, τ 2 = 0 otherwise.

Computing a pseudoinverse also involves a parameter, the positive threshold η be-

low which an eigenvalue is considered as null. The eigenvectors associated to eigenvalues

smaller than η are numerically regarded as null space basis vectors (even though they may

not, strictly speaking, be part of the null space). A suitable threshold should filter out

eigenvectors associated to points that are almost redundant. The heuristic we propose is

to tune η so that λ1/η, which is an upper bound of the PI condition number2, is equal to

κmax, i.e., η = λ1/κmax.

In the example shown in Figure 3.11, the covariance matrix is not numerically invertible

because the points 3 and 4 are near x = 2. The covariance matrix has six eigenvalues,

λ1 = 34.89 ≥ ... ≥ λ5 = 0.86 ≥ λ6 = 8.42 × 10−11 ≈ 0 and the eigenvector related to

the smallest eigenvalue is W1 = (e4 − e3)/
√

2. In Figure 3.11, we have selected η = 10−3,

hence κPI(C) = 40.56. Any value of η in the interval λ6 < η < λ5 would have yielded the

same result. But if the selected tolerance were e.g., η = 1, which is larger than λ5, the

obtained PI kriging model no longer interpolates data points.
2By PI condition number we mean κPI(C) = ‖C‖‖C†‖= λ1/λr ≤ λ1/η
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Figure 3.11: Effect of the tolerance η on the kriging model regularized by PI. Dashed line,

η = 1; continuous line, η = 10−3. Except for η, the setting is the same as that of Figure

3.10. When the tolerance is large (η = 1), the 5th eigenvector is deleted from the effective

image space of C in addition to the 6th eigenvector, and the PI regularized model is no

longer interpolating. Same X and y as Figure 3.4.
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3.6 Interpolating Gaussian distributions

3.6.1 Interpolation and repeated points

In our context of deterministic experiments, we are interested in interpolating data. The

notion of interpolation should be clarified in the case of repeated points with different

outputs (e.g., Figure 3.3) as a function cannot interpolate them. Here, we seek GPs that

have the following interpolation properties.

Definition 3 (Interpolation properties at repeated points). A GP exhibits interpolation

properties when

– its trajectories pass through uniquely defined data points (therefore the GP has a null

variance there),

– and at repeated points the GP’s mean and variance are the empirical average and

variance of the outputs, respectively.

The following GP model has the above interpolation properties for deterministic out-

puts, even in the presence of repeated points. In this sense, it can be seen as a new

regularization technique, although its potential use goes beyond regularization.

3.6.2 A GP model with interpolation properties

Here, we introduce a new GP model with the desirable interpolation properties in the

presence of repeated points. This model which is called distribution-wise model is not

degenerated and, therefore, can be regarded as a regularization method. Moreover, it is

computationally more efficient than the point-wise GP models.

Following the same notations as in Section 3.3.2, the model is built from observations

at k different x sites. The basic assumption is that, at each location, we consider repeated

points as realizations of random variables of known joint Gaussian probability distribution.

In distribution-wise GP, it is assumed that the distribution at each location is observed

(hence known), as opposed to usual conditional GPs where only values of the process are

observed, hence the name “distribution-wise GP”. Let Z(xi) ∼ N (µZi , σ
2
Zi

) denotes the

probability distribution at location xi , i = 1, . . . , k . Together, the k sets of observations
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make the random vector Z = (Z(x1), . . . , Z(xk)) ∼ N (µZ ,ΓZ) in which the diagonal

elements of the matrix ΓZ is made of the σ2
Zi
’s.

The distribution-wise GP is derived in two steps through conditioning: first it is as-

sumed that the vector Z is given, and the usual conditional GP (kriging) formula can be

applied; then the randomness of Z is accounted for and the conditional mean and vari-

ance of the distribution-wise GP, mDist and vDist respectively, come from the laws of total

expectation and variance applied to Z and the GP outcomes ω ∈ Ω:

mDist(x) = EZ
(
EΩ(Y (x)|Y (xi) = Z(xi) , 1 ≤ i ≤ k

)
=

EZ
(
cZ(x)>C−1

Z Z
)

= cZ(x)>C−1
Z µZ (41)

where the index Z is used to distinguish between the point-wise and the distribution-wise

covariances. For example, C is n× n and not necessarily invertible while CZ is k × k and

invertible. The variance is calculated in a similar way

vDist(x) = EZ
(
VarΩ(Y (x)|Y (xi) = Z(xi) , 1 ≤ i ≤ k

)
+

VarZ
(
EΩ(Y (x)|Y (xi) = Z(xi) , 1 ≤ i ≤ k

)
=

cZ(x,x)− cZ(x)>C−1
Z cZ(x) + cZ(x)>C−1

Z (VarZZ)︸ ︷︷ ︸
ΓZ

C−1
Z cZ(x) . (42)

The distribution-wise GP model interpolates the mean and the variance of the distri-

butions at the k locations. At an arbitrary location i, the term cZ(x)>C−1
Z that appears

in both mDist and vDist becomes e>i because cZ(xi) is the ith column of CZ in this case.

As a result

mDist(xi) = cZ(xi)>C−1
Z µZ = µZi (43)

vDist(xi) = cZ(xi,xi)− cZ(xi)>C−1
Z cZ(xi) +

cZ(xi)>C−1
Z ΓZC−1

Z cZ(xi) = σ2
Zi
. (44)

In practice, µZ and ΓZ can be approximated by the empirical mean and variance.

Suppose repeated points are grouped by sites, e.g., y1, . . . , yN1 are the observations at x1.

Recall that the output empirical mean and variance at xi are yi and s2
i that we gather in

the vector y and the k × k matrix Γ̂ whose diagonal elements are s2
i ’s. Then, the mean
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and the variance of the distribution-wise GP are expressed as

mDist(x) ≡ cZ(x)>C−1
Z y, (45)

vDist(x) ≡ cZ(x,x)− cZ(x)>C−1
Z cZ(x) + cZ(x)>C−1

Z Γ̂C−1
Z cZ(x). (46)

As an example, a distribution-wise GP is illustrated in Figure 3.12 where the output

empirical mean and variance are used in the model.

1.0 1.5 2.0 2.5 3.0

-5
0

5
1
0

x

y

Figure 3.12: Distribution-wise GP, mDist(x) (thick line) ±2
√
vDist(x) (thin lines). At the

redundant point x = 2, the outputs are 1.5, 4, 7 and 7.5. The mean of the distribution-wise

GP passes through the average of outputs. Contrarily to PI (cf. Figure 3.2), distribution-

wise GP preserves the empirical variance: the kriging variance at x = 2 is equal to s2
x=2 =

5.87.

So far, we have observed that both vDist and vNug are non-zero at repeated points.

However, there is a fundamental difference between the behaviors of a distribution-wise

GP and a GP regularized by nugget; as the number of observations Ni at a redundant

point xi increases, vNug(xi) tends to 0 while vDist(xi) remains equal to σ2
Zi
.

This can be analytically seen by assuming that there is only one location site, x1, with

several observations, say n. In this situation, the correlation between every two observations

is one and so, the kriging variance regularized by nugget at x1 is

vNug(x1) = σ2
(

1− [1, . . . , 1]
(
R + τ 2/σ2I

)−1
[1, . . . , 1]>

)
. (47)
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Here, the correlation matrix R is a matrix of 1’s with only one strictly positive eigenvalue

equal to λ1 = n, all other eigenvalues being equal to 0. The eigenvector associated to λ1 is

(1, . . . , 1)>/
√
n. Adding nugget will increase all the eigenvalues of R by τ 2/σ2.

In Equation (47) one can replace (R + τ 2/σ2I)−1 by its eigendecomposition that is,




1/
√
n

... W

1/
√
n







σ2/nσ2 + τ 2 0

σ2/τ 2

. . .

0 σ2/τ 2





1/
√
n . . . 1/

√
n

W>


 . (48)

This replacement yields

vNug(x1) =
τ 2

nσ2 + τ 2
σ2, (49)

since [1, . . . , 1] is perpendicular to any of the other eigenvectors making the columns of W.

Consequently, vNug(x1) → 0 when n → ∞. Figure 3.13 further illustrates the difference

between distribution-wise and nugget regularization models in GPs. The red bullets are

data points generated by sampling from the given distribution of Z’s,

Z ∼ N







2

3

1


 ,




0.25 0 0

0 0 0

0 0 0.25







and the right plot has more data points at x = 1 than the left plot. We observe that the

distribution-wise GP model is independent from the number of data points and, in that

sense, it “interpolates the distributions”: the conditional variance of the distribution-wise

GP model does not change with the increase in data points at x = 1 while the variance

of the GP model regularized by nugget decreases; the mean of the distribution-wise GP is

the same on the left and right plots but that of the GP regularized by nugget changes and

tends to the mean of the distribution as the number of data points grows.

3.7 Conclusions

This chapter provides a new algebraic comparison of pseudoinverse and nugget regular-

izations, two classical solutions to overcome the degeneracy of the covariance matrix in

Gaussian processes (GPs). We propose a practical strategy when confronted with bad
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Figure 3.13: Distribution-wise GP (solid lines) versus a GP model regularized by nugget

(dashed lines). At x = 1, the number of repeated points is 3 (left) and is 100 (right).

vNug(x = 1) (thin dashed lines) shrinks as the number of repeated points increases while

vDist(x = 1) remains constant.

conditioning in GP regression. The analysis focuses on the interpolation properties of

GPs when outputs are deterministic. Clear differences between pseudoinverse and nugget

regularizations arise by looking at redundant points as a limit case of covariance matrix

degeneracy. We have proved that, contrarily to GPs with nugget, GPs with pseudoinverse

average the values of outputs and have null variance at redundant points. In GPs regular-

ized by nugget, the discrepancy between model and data translates into a departure of the

GP from observation points throughout the domain. In GPs regularized by pseudoinverse,

this departure only occurs at redundant points, but the variance is null there.

We have proposed a distribution-wise GP model that interpolates normal distributions

instead of data points. This model does not have the drawbacks from both nugget and

pseudoinverse regularizations: it not only averages the outputs at redundant points but

also preserves the redundant points variances.

Distribution-wise GPs shed a new light on regularization, which starts with the creation

of redundant points by clustering. A potential benefit is the reduction in covariance matrix

size. Further studying distribution-wise GPs is the main continuation of this work.
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Chapter 4

Making EGO and CMA-ES Comple-

mentary for Global Optimization

Abstract

The global optimization of expensive-to-calculate continuous functions is of great practical

importance in engineering. Among the proposed algorithms for solving such problems,

Efficient Global Optimization (EGO) and Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) are regarded as two state-of-the-art unconstrained continuous optimization

algorithms. Their underlying principles and performances are different, yet complementary:

EGO fills the design space in an order controlled by a Gaussian process (GP) conditioned

by the objective function while CMA-ES learns and samples multi-normal laws in the

space of design variables and uses it to find a descent direction towards a local minimum.

This work proposes a new algorithm, called EGO-CMA, which combines EGO and CMA-

ES. In EGO-CMA, the EGO search is interrupted early and followed by a CMA-ES search

whose starting point, initial step size and covariance matrix are calculated from the already

sampled points and the associated conditional GP. EGO-CMA improves the performance

of both EGO and CMA-ES in our experiments.

4.1 Introduction

One approach to deal with expensive and multimodal optimization problems is to use GP

as (meta)models for the objective function. For example, EGO algorithm has become



4.1. INTRODUCTION

a standard for continuous global optimization in less than twenty dimensions when the

number of function evaluations is inferior to 1000.

Another popular algorithm in continuous global optimization is the stochastic Covari-

ance Matrix Adaptation Evolution Strategy (CMA-ES, [HO01]). CMA-ES is interpreted

as a robust local search method in [HO96]. Its robustness is attributed to invariance prop-

erties with respect to objective function scaling and coordinate system rotations. This

algorithm was consistently found to be highly performing in the BBOB contests for low,

moderate, and highly multimodal functions for problems dimensions between 5 and 40

[HAR+10] if it is coupled with a restart mechanism. In [AH05, Han09a], restart strategies

are proposed to prevent premature convergence of CMA-ES to local optima.

A comparison of how EGO and CMA-ES search a design space shows fundamental

differences: while EGO is a deterministic space-filling strategy, CMA-ES can be seen as

a converging1 stochastic algorithm. Such a difference in principles, i.e., being space-filling

for EGO and converging for CMA-ES, makes them complementary. In this chapter, we

propose to start a global optimization with EGO and rapidly switch to CMA-ES for a ro-

bust local convergence. The cooperation between the two algorithms goes beyond a plain

succession as the Gaussian process learned by EGO allows improving the initial value of

CMA-ES parameters such as the starting point and the covariance matrix.

Past works on global optimization of costly functions have already involved augmenting

Evolution Strategies (ESs) with metamodels [Jin11, KHK06, LSS13]. The general idea is

to replace some evaluations of the true objective function with metamodel estimates and

trigger true evaluations through an error rate measure. In [KHK06], CMA-ES has been

coupled with a local regression metamodel, making the lmm-CMA algorithm, where the

metamodel allows savings in the ranking of the candidate solutions. References [LSS12,

LSS13] present the s*ACM-ES (surrogate Assisted Covariance Matrix adaptation Evolution

Strategy), an algorithm with a ranking support vector machine as metamodel and where

the number of iterations (generations) done with the metamodel depend on its error rate.

Kriging has sometimes been the metamodel added to the ESs. The motivation for using

kriging is the availability of a prediction uncertainty. In [USZ03], a pre-selection of the most
1by “converging", we mean that the CMA-ES algorithm, in finite time, will devote most of its evaluations

for fine tuning the location of the current best point, as exemplified in Section 4.3.2.
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promising points is done based on a kriging model, which enables sampling more solutions

and makes the search more efficient. Two criteria are investigated as performance measures,

the (mean) objective function prediction and the probability of improvement over the best

observed point. In [BSK04], kriging serves as a local metamodel and various performances

are measured by different compromises between search intensification around the current

best solution and exploration. In [KEDB10], a local kriging enables dealing with noisy

objective functions by easing the estimation of the objective function expectation.

The optimization algorithm introduced in this chapter is based on a new idea: using

first EGO for exploration and then CMA-ES from the best point obtained by EGO for final

convergence. The motivation is that EGO is efficient in the early design of experiments

(DoE) stage of the optimization (volume search), while CMA-ES is a converging search

process that efficiently switches from volume to local search.

4.2 The CMA-ES Algorithm

First introduced by Hansen, Ostermeier, and Gawelczyk [HOG95], CMA-ES adapts a

complete covariance matrix of multivariate normal distribution. It is considered as the

state-of-the-art algorithm for unconstrained continuous numerical black-box optimization

if sufficient budget is afforded. It efficiently optimizes unimodal functions and has superior

performance on ill-conditioned and non-separable functions [HK04].

CMA-ES is an iterative stochastic optimization algorithm such that in each iteration a

population of individuals (search points) are generated, according to a multivariate normal

distribution. Then, some individuals are selected to become the parents in the next iter-

ation based on their objective function value. This process allows individuals with better

function values are generated over the course of optimization. Let m(g) be the mean vector

of the multivariate normal distribution in generation g. The ith individual denoted by

x(g+1)
i is generated according to:

x(g+1)
i ∼ N

(
m(g),

(
σ(g)
)2
C(g)

)
= m(g) + σ(g)N

(
0,C(g)

)
, for i = 1, ..., λ, (1)

where σ(g) ∈ R+ is called mutation step size and C(g) ∈ Rd×d is a covariance matrix and d

is the number of variables. The former controls the step length and the later governs the

shape of the distribution ellipsoid.
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We denote the i-th best search point by x(g+1)
i:λ . The mean of the next generation is

obtained from x(g+1)
1:λ , ...,x(g)

λ:λ as follows:

m(g+1) =

µ∑

i=1

ωix
(g+1)
i:λ = m(g) + σ(g)

µ∑

i=1

ωiyi:λ (2)

µ∑

i=1

ωi = 1, ω1 > ω2... > ωµ > 0, (3)

where yi:λ =

(
x(g+1)
i:λ − m(g)

)
σ(g) and the weights ωi are strictly positive and normalized. This

update moves the mean vector towards the best solutions.

As we observe, the update of the mean vector is done by µ best individuals that are

selected based on their function value. That the selection is only based on the fitness

ranking makes the algorithm invariant to any monotonous transformation of the objective

function. Furthermore, CMA-ES is invariant to angle preserving transformation of search

space i.e., rotation, reflection and transformation. Invariance is a favorable property be-

cause it implies identical performance of the search algorithm on equivalence classes of

objective functions [HK04].

Usually, the weights are assigned in such a way that µeff ≈ λ/4 in which the measure

µeff denotes the variance effective selection mass. µeff is defined as µeff =

(
µ∑
i=1

ω2
i

)−1

and µeff = µ if ωi = 1/µ. This measure is frequently used to calibrate and tune parameters

in the algorithm.

The adaptation of the covariance matrix C(g) and the step size σ(g) uses the notion of

“evolution path", denoted by p(g)
c and p(g)

σ respectively. The evolution path expresses the

correlation between consecutive steps and stores information of the previous updates, see

[HO01] for more information. The update of p(g)
c , p(g)

σ , the covariance matrix and the step

size is given by

p(g+1)
c = (1− cc)p(g)

c +
√
cc(2− cc)µeff

m(g+1) −m(g)

σ(g)
, (4)

p(g+1)
σ = (1− cσ)p(g)

σ +
√
cσ(2− cσ)µeffC(g)−

1
2 m(g+1) −m(g)

σ(g)
, (5)

C(g+1) = (1− ccov)C(g) +
ccov
µcov

p(g+1)
c p(g+1)T

c

+ ccov

(
1− 1

µcov

) µ∑

i=1

ωiyi:λy
T
i:λ, (6)
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σ(g+1) = σ(g) exp

(
cσ
dσ

(
‖p(g+1)

σ ‖
E‖N (0, I)‖

))
, (7)

where cc, cσ, ccov, cσ and dσ are the parameters of the algorithm. The default values of the

parameters can be found in [HK04].

The initialized covariance matrix is the identity matrix, C(0) = I. The initial values of

the evolution paths are: p(g)
σ = p(g)

c = 0. Notice that x(0) and σ(0) are problem dependent.

For example, too small initial step size should be avoided in the optimization of multimodal

functions.

Default parameter values of λ and µ and the weights are

λ = 4 + b3 ln(d)c, µ = bλ
2
c, (8)

ωi =
ln(µ+ 1)− ln(i)

µ ln(µ+ 1)− ln(µ! )
. (9)

We end up this section by giving a summary of CMA-ES algorithm.

Algorithm 4.1 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Initialize the distribution parameters: m(0),C(0), σ(0).

Set parameters λ and µ to their default values.

while not stop do

Generate new population sampled from multivariate normal distribution:

x(g+1)
i = N

(
m(g),

(
σ(g)
)2 C(g)

)
= m(g) + σ(g)N

(
0,C(g)

)
, for i = 1, ..., λ.

Update the mean value m(g), the step size σ(g) and the covariance matrix C(g).

end while

4.3 The EGO-CMA Algorithm

4.3.1 Experimental Setup and initial observations

The optimization algorithms compared in this work are EGO, CMA-ES, and (later) EGO-

CMA. They are tested on three well-known functions called Sphere, Ackley, and Rastrigin.

These functions are defined in Table 4.1. The Sphere function is unimodal, separable and

differentiable function. This function is used to observe the pure convergence speed of the

algorithms. The Ackley function has many local minima with a large hole at the center
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which is the location of the global minimum. The Rastrigin function is highly multimodal,

but locations of the minima are regularly distributed. In the optimization procedure, the

Table 4.1: Test functions

Function Expression Defined region

Sphere f(x) =
d∑
i=1

(xi)
2 [-5.12, 5.12]

Ackley f(x) = −a exp

(
−b
√

1
d

d∑
i=1

x2
i

)
− exp

(
1
d

d∑
i=1

cos (cxi)

)
[-32.768, 32.768]

+ a− exp(1), a = 20, b = 0.2, c = 2π

Rastrigin f(x) = 10d+
d∑
i=1

[x2
i − 10 cos(2πxi)] [-5.12, 5.12]

search spaces of the functions have been rescaled to [−5, 5]d, d = 2, 5, 10. All the test

functions have one global minimum located at (2.5, . . . , 2.5)1×d. The total number of calls

to the objective function or budget is 70×d. The initial design points of EGO are obtained

by Latin Hypercube Samples (LHS) of size 3× d.
We repeat EGO three times on each function. CMA-ES being a stochastic optimizer,

it arguably exhibits larger performance variation so its runs are repeated ten times from

three different starting points. For running EGO and CMA-ES, we use the R packages

DiceOptim2 and cmaes3 with their default parameter values.

Figure 4.1 illustrates one typical run of EGO and CMA-ES on the Sphere function in

dimension 5. The solid line represents each function value obtained by the optimization

algorithm and the dashed-dotted line shows the best observed function value so far. In the

left picture, EGO makes early progress and then tries to explore the rest of the search space.

Here, the exploration is unfruitful because Sphere function is unimodal and the global

minimum has been already detected. While CMA-ES, right picture, steadily converges to

the minimum as the number of calls to the objective function increases. Such an observation

was confirmed on the other test functions and started the idea of combining EGO for the

early exploration phase and CMA-ES for the final converging phase.
2https://cran.r-project.org/web/packages/DiceOptim/index.html
3https://cran.r-project.org/web/packages/cmaes/index.html
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Figure 4.1: One typical run of EGO (left) and CMA-ES (right) on the Sphere function,

d = 5. Solid line: f history during optimization. Dashed line: best f .

4.3.2 Comparing EGO and CMA-ES

To compare EGO and CMA-ES the median of the best function value obtained by each

algorithm is calculated. In addition, we consider three different starting points for CMA-

ES. The results of this comparison in dimension 5 and 10 are illustrated in Figure 4.2.

The analysis of convergence curves of EGO and CMA-ES reveals that EGO is quick

at the beginning. But after some iterations, EGO loses its efficiency. Moreover, it does

not converge to the global optimum. On the other side, CMA-ES shows a monotone

improvement, as we see this phenomenon in higher dimension with larger budget. Here

we use a 2D example to better understand the search principle of EGO and CMA-ES.

Figure 4.3 demonstrates the search points obtained by each algorithm in the optimization

of Ackley function in dimension 2. EGO is a space-filling algorithm; i.e., it tries to find

the global optimum by filling the holes in the search space. This space-filling characteristic

resulted from the expected improvement criterion. While the search points in CMA-ES

tend to converge the optimum and not filling the space.

To investigate the characteristics of the two algorithms in higher dimensions, we use a

criterion called discrepancy. This criterion measures how far a given distribution of points
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Figure 4.2: Median of the best objective function vs. number of calls of EGO and CMA-

ES (with three different starting points) in dimensions 5 (left) and 10 (right) on functions:

Sphere (first row), Ackley (second row), and Rastrigin (third row). Generally, EGO makes

early progress and then loses efficiency while CMA-ES steadily converges to the optimum.
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Figure 4.3: Illustration of the search points obtained by EGO (left) and CMA-ES (right)

in the optimization of Ackley function. The bullets are the points generated by the op-

timization algorithms. The crosses in the leftmost picture are the initial DoE for EGO.

The asterisk in the rightmost picture is the starting point of CMA-ES. EGO is space-filling

while the search points in CMA-ES tend to converge the optimum.
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deviates from a perfectly uniform one [DHF15]. Let |S| denotes the number of points in a

set, S, then the discrepancy of the design matrix X is given by [DK10]:

D(X) =

∥∥∥∥
|X ∩ cd|

n
− V ol

(
cd
)∥∥∥∥ (10)

where ‖.‖ represents an appropriate norm over all d dimensional rectangular subsets, cd,

of the unit hypercube [0, 1]d.

A small value ofD(X) means that the designX is close to a uniform design. If EGO and

CMA-ES are compared based on the discrepancy criterion, the discrepancy of the points

obtained by EGO is less than CMA-ES. The reason is that while EGO tends to fill the

space, CMA-ES tries to converge the (optimum) point. For example, the discrepancy of

the two algorithm has been calculated on Ackley function in dimensions 5. In this example,

the discrepancy of EGO and CMA-ES are about 0.002 and 0.12, respectively.

4.3.3 Comparing EGO and CMA-ES using COCO

Here, we further investigate the performance of EGO and CMA-ES by using Comparing

Continuous Optimisers (COCO) [HAFR09] methodology. The numerical experiments are

carried out on 24 noise-free real-parameter test functions [HFRA09]. These test functions

have properties such as multimodality, non-convexity, ill-conditioning and non separability

which are related to real-world problems. All functions are defined in [−5, 5]d and have

their global optimum in [−4, 4]d. For each function and each dimension d, 15 trials are

performed on 15 different function instances (a function with different optimal value).

An optimization problem is defined from a function instance and a target function value.

Let fopt be the optimal function value and ∆f be the precision to reach. Then, the target

function value is defined as: ftarget = fopt + ∆f . Solving a problem (i.e., a successful trial)

means finding a solution whose function evaluation is below the target value. Note that

the algorithm can also be restarted. The number of evaluations needed to solve a problem

is called runtime. In the COCO framework, the Expected Running Time (ERT), which is

the expected number of function evaluations to reach a target value for the first time, is

used to measure the performance of an algorithm.

The COCO results are presented using the bootstrapped empirical cumulative distri-

bution of ERT divided by the problem dimension, also known as the Empirical Cumulative

Distribution Function (ECDF). In the bootstrapping process, for each target, 100 instances
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of ERT are generated. Each ERT instance is calculated by repeatedly drawing single trials

with replacement, from 15 algorithm runs, until obtaining a successful trial [PH12]. We

refer to [HAFR09] for more information.

Figures 4.4 and 4.5 show the ECDF plots of EGO, CMA-ES and random search (denoted

by RandSearch) in dimensions 3 and 5, respectively. The budget, indicated by a cross on

each curve, is 70 × d for EGO and 500 × d for CMA-ES and random search. The results

are illustrated based on the function groups which are:

1. separable functions f1 − f5,

2. unimodal functions with moderate conditioning f6 − f9,

3. unimodal ill-conditioned functions f10 − f14,

4. multimodal functions f15 − f19,

5. multimodal functions with weak structure f20 − f24.

It can be seen that EGO is able to solve more problems than CMA-ES at the beginning

of the search. However, the performance of CMA-ES constantly improves and the slope of

its empirical cumulative distribution curve is often steeper. Both algorithms have similar

performance on separable functions (f1 − f5). CMA-ES outperforms EGO on moderate

conditioning and ill-conditioned functions (f6 − f9 and f10 − f14). But the performance of

EGO is better than CMA-ES on multimodal functions with weak structure (f20 − f24).
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Figure 4.4: Bootstrapped empirical cumulative distribution of the number of objective

function evaluations divided by dimension for all functions and subgroups in 3D. The

targets are chosen from 10[−8..2] such that the bestGECCO2009 artificial algorithm just

not reached them within a given budget of k × d, with k ∈ 0.5, 1.2, 3, 10, 50. The “best

2009” line corresponds to the best ERT observed during BBOB 2009 for each selected

target.
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Figure 4.5: Bootstrapped empirical cumulative distribution of the number of objective

function evaluations divided by dimension for for all functions and subgroups in 5D. See

caption of Figure 4.4 for more details.
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4.3.4 Combining EGO and CMA-ES

We now introduce the EGO-CMA algorithm, which first explores the search space with

EGO and then switches to CMA-ES in order to converge to the optimum.

The switch occurs after the best observed f has not improved for at least 0.1 × budget

analyses and if one of the following conditions is met (based on several observations):

i) 50 percent of the budget is exhausted or

ii) EI < 0.01×
(
f bestDoE − f best

)
.

EI is the average of the maximum expected improvement over the 5 last iterations. f bestDoE

and f best are the best f values in the initial design of experiments and the current best

point, respectively. When the switch takes place, the best point obtained by EGO, xbest,

becomes CMA-ES’s starting point. Furthermore, EGO-CMA uses of the fitted kriging

mean as an approximation to the true function to warm start CMA-ES.

Let us provide some background on CMA-ES initialization. Consider first the optimiza-

tion of a convex-quadratic function fH(x) = 1
2
(x − x∗H)>H(x − x∗H), where H is positive

definite and x∗H is the optimum. H can be decomposed into H = BD2B>, where B is

made of the eigenvectors of H as columns (B>B = BB> = I) and D is a diagonal matrix

with the square roots of H’s eigenvalues as diagonal elements. The optimal ES covariance

matrix has lines of equiprobable mutation aligned with the level sets of the objective func-

tion [Rud92]. This happens when the covariance matrix of the search distribution, C (from

(1) without superscript), is proportional to the inverse of H and so we set

C = BD−2B> . (11)

The step size σ can now be tuned by performing a change of variable to turn to a

spherical landscape : define the new variable t = DB>(x − x∗H), the objective function

becomes fH(t) = 1
2
t>t. In the t-space, the CMA-ES search points distribution (1) becomes

t ∼ DB>(m − x∗H) + σN (0, I). In terms of t, one optimizes a spherical function with

a spherical distribution, a situation in which one would like that the average step length

(the expectation of the square root of a χ2
d random variable times σ) equals the distance

to the optimum

σ
√
d− 0.5 =

∥∥DB>(m− x∗H)
∥∥ ⇒ σ =

∥∥DB>(m− x∗H)
∥∥

√
d− 0.5

. (12)
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We can now return to the EGO-CMA description. EGO is stopped and CMA-ES is

started at m(0) = xbest. To obtain σ(0) and C(0) from the above quadratic considerations,

we take the second order Taylor expansion of the kriging mean (an approximation to the

objective function) at point xbest :

f(x) ≈ fH(x) = m(xbest) +∇m(xbest)>(x− xbest) +
1

2
(x− xbest)H(x− xbest) .

The initial covariance of CMA-ES is set equal to the inverse of the Hessian of the kriging

mean at xbest,

C(0) = H−1 . (13)

Cases when H is not strictly positive definite, among which the non invertibility case, are

discussed later. Minimization of fH gives x∗H, an approximation to the optimum, by which

we can complete Equation (12) and calculate σ(0) :

x∗H − xbest = −H−1(xbest)∇m(xbest)

⇒ σ(0) =

∥∥DB>H−1(xbest)∇m(xbest)
∥∥

√
d− 0.5

. (14)

We now discuss the cases when the Hessian matrix is not strictly positive definite, i.e.,

fH is concave in some directions. fH is convexified, i.e., the Hessian is forced to be positive

definite, by substituting 10−6 for the negative eigenvalues in D2. However, this might

increase the condition number of the Hessian matrix that is the ratio of the largest to the

smallest eigenvalue, cond(H) = λmax
λmin

. To improve the condition number, we add a positive

value, τ 2, to the main diagonal of the Hessian matrix, Hconv = BD2
convB

> = B(D2 +

τ 2I)B>. τ 2 can be calculated by defining an upper bound on the condition number, CU ,

λmax + τ 2

λmin + τ 2
≤ CU ⇒ τ 2 ≥ CUλmin − λmax

1− CU . (15)

In our experiments, we set the condition number limit CU equal to 104 and the initial

CMA-ES covariance and step size (equations (13) and (14)) are calculated with Hconv and

Dconv. Finally, the step size is bounded through

0.3 10−8

√
d
× ‖DconvB>(u− l)‖≤ σ(0) ≤ 0.3√

d
× ‖DconvB>(u− l)‖ . (16)
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4.4 Simulation Results

The performance of EGO-CMA is tested by repeating each run of EGO-CMA 5 times

on each test function, see Figure 4.6. In the figure, the time (number of calls) that the

algorithm switches from EGO to CMA-ES is indicated by a cross. For the Sphere function,

EGO quickly detects the basin of attraction of the global minimum which allows EGO-CMA

to further increase the accuracy. However, with the more multimodal Ackley function, the

switch occurs at more diverse times of the search.
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Figure 4.6: 5 runs of EGO-CMA on Sphere (left) and Ackley function (right) in dimension

5. The crosses show the time (number of calls) that the algorithm switchs from EGO to

CMA-ES.

Finally the performance of EGO-CMA is compared to EGO and CMA-ES. The com-

parison in dimensions 5 and 10 is shown in Figure 4.7. On average, we observe a better

performance of EGO-CMA over EGO and CMA-ES. For example, the accuracy of EGO-

CMA is about 10−8 for the Sphere function with a gain of two orders of magnitude over

CMA-ES. The switch from EGO to CMA-ES in EGO-CMA can clearly be seen on the

Sphere function before 100 function evaluations as the EGO-CMA curve first follows EGO

and then is parallel to CMA-ES.

The question is that whether in the EGO-CMA algorithm starting CMA-ES with the
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Figure 4.7: Median of the best objective function vs. number of calls of EGO, CMA-ES

(with three different starting points) and EGO-CMA in dimensions 5 (left) and 10 (right)

on functions: Sphere (first row), Ackley (second row), and Rastrigin (third row).
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inverse of Hessian of kriging mean at xbest as the initial covariance matrix for CMA-ES is

helpful. To answer the question, we perform two experiments in which a Quadratic function

with the condition number of 103 is optimized by EGO-CMA. In the first experiment the

initial covariance matrix of CMA-ES is H−1 and in the second one is the identity matrix,

I. The runs are repeated 5 times and the median of them are compared, see Figure 4.8. It

is seen that using H−1 significantly improves the algorithm’s performance.
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Figure 4.8: Median of the best objective function vs. number of calls of EGO-CMA in

dimensions 5 (left) and 10 (right) on Quadratic function with the condition number of

103. Using H−1 instead of I as the initial covariance matrix of CMA-ES in the EGO-CMA

algorithm can significantly improve the algorithm’s performance.

4.5 Conclusions

This chapter presents a new algorithm, EGO-CMA, for unconstrained continuous black-

box optimization. The EGO-CMA combines the strengths of EGO and CMA-ES in such

a way that search domain is first explored by EGO and a point with the lowest function

value is selected, xbest. Then CMA-ES, as a robust local search, is started from xbest in

order to converge the minimum with high accuracy. Besides, the initial values of CMA-ES

step-size and covariance matrix are improved. The results of our experiments show that
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the EGO-CMA algorithm outperforms EGO and CMA-ES in most of the cases.
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Chapter 5

A detailed analysis of kernel param-

eters in Gaussian process-based opti-

mization

Abstract

The efficiency of EGO algorithm is mainly determined by the Gaussian process covari-

ance function which must be chosen together with the objective function. Traditionally, a

parameterized family of covariance functions is considered whose parameters are learned

by maximum likelihood or cross-validation. In this chapter, we theoretically and empiri-

cally analyze the effect of length-scale covariance parameters and nugget on the design of

experiments generated by EGO and the associated optimization performance.

5.1 Introduction

The way the kriging model is learned from data points is essential to the EGO performance.

A kriging model is mainly described by the associated kernel and this kernel determines

the set of possible functions processed by the algorithm to make optimization decisions.

Several methods alternative to cross-validation or Maximum Likelihood (ML) have been

proposed to tune the kernel parameters. For example, a fully Bayesian approach is used in

[BBV11]. In [Jon01], the process of estimating parameters and searching for the optimum

are combined together through a likelihood which encompasses a targeted objective. In



CHAPTER 5. A DETAILED ANALYSIS OF KERNEL PARAMETERS IN
GAUSSIAN PROCESS-BASED OPTIMIZATION

[WZH+13], the bounds on the parameter values are changing with the iterations following

an a priori schedule. Nevertheless, we feel that the existing methods for learning kernel

parameters are complex so that the basic phenomena taking place in the optimization when

tuning the kernel cannot be clearly observed. This study allows to more deeply understand

the influence of kriging parameters on the efficiency of EGO by studying the convergence

of EGO with fixed parameters on a unimodal and a multimodal function. The effect of

nugget is also investigated.

5.2 Kriging model summary

To make this chapter self-contained, we provide a short introduction to the kriging model.

But for more details see Chapter 2. Let X = {x1, . . . ,xn} be a set of n design points and

y = {f(x1), . . . , f(xn)} the associated function values at X. Suppose the observations are

a realization of a stationary GP, Y (x). The kriging model is the GP conditional on the

observations, Y (x) | Y (x1) = y1, . . . , Y (xn) = yn, also written in a more compact notation,

Y (x) | Y (X) = y. The GP’s prediction (simple kriging mean) and variance of prediction

(simple kriging variance) at a point x are

m(x) = µ+ r(x)>R−1(y− µ1), (1)

s2(x) = σ2
(
1− r(x)>R−1r(x)

)
. (2)

Here, µ and σ2 are the constant process mean and variance, 1 is a n × 1 vector of ones,

r(x) is the vector of correlations between point x and the n sample points,

r(x) = [Corr(Y (x), Y (x1)), . . . ,Corr(Y (x), Y (xn))], and R is an n × n correlation matrix

between sample points of general term Rij = Corr(Y (xi), Y (xj)). The covariance function

(i.e., the kernel) used here is the isotropic Matérn 5/2 function defined as [RW05]

k(x,x′) = σ2Corr(Y (x), Y (x′)) = σ2
(

1 +
√

5‖x−x′‖
θ

+ 5‖x−x′‖2
3θ2

)
exp

(
−
√

5‖x−x′‖
θ

)
, (3)

in which the parameter θ > 0 is characteristic length-scale that controls the correlation

strength between pairs of response values. More generally, all stationary isotropic covari-

ance functions have such a characteristic length-scale. Anisotropic covariance functions

have d such length-scales, one per dimension, as can be seen below with the usual tensor
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product kernel,

k(x,x′;θ) = σ2

d∏

i=1

ki

( |xi − x′i|
θi

)
(4)

In order to simplify the analysis, we will focus in the following on the unique length-

scale case, θ1 = · · · = θd = θ. The smaller the characteristic length-scale θ, the least two

response values at given points are correlated, and vice versa, see Figure 5.1.
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Figure 5.1: Kriging mean (thick solid line) along with the 95% confidence intervals (thick

dashed lines), i.e., m(x)± 1.96s(x), for θ = 0.1 (left) and θ = 1 (right). The thin lines are

the sample paths of the GP. As θ changes, the class of possible functions considered for

the optimization decision changes. Therefore, θ is a central decision for the optimization

that deserves an in-depth study.

When a nugget, τ 2, is added to the model, the covariance function becomes

kτ2(x,x′) = k(x,x′) + τ 2δ(x,x′), (5)

where δ(., .) is the Kronecker’s delta. Adding nugget to the model means that the ob-

servations are perturbed by an additive Gaussian noise N (0, τ 2). The resulting kriging
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predictions, m(x), are smoother as they no longer interpolate the observations1. Nugget

also increases kriging variance throughout the search domain since, beside the changes in

the covariance matrix R, the term σ2 becomes σ2 + τ 2 in Equation (2).

Classically here, the process mean and variance, without nugget, are estimated by the

following ML closed-form expressions [RW05],

µ̂ =
1>R−1y
1>R−11

, σ̂2 =
(y− 1µ̂)>R−1(y− 1µ̂)

n
, (6)

so that the only kernel parameters left are θ and τ 2.

At any point x in S, the improvement is defined as the random variable I(x) =

max(0, fmin − Y (x)) where fmin is the best objective function value observed so far. The

improvement is the random excursion of the process at any point below the best observed

function value. The expected improvement can be calculated analytically as

EI(x) =





(fmin −m(x))Φ
(
fmin−m(x)

s(x)

)
+ s(x)φ

(
fmin−m(x)

s(x)

)
if s(x) > 0

0 if s(x) = 0 ,
(7)

where Φ and φ denote the cumulative distribution function and probability density func-

tion of the standard normal distribution, respectively. The first term in Equation (7) is

dominated by the contribution of kriging mean to the improvement while the second term

is dominated by the contribution of kriging variance. The EGO algorithm consists in the

sequential maximization of EI, xn+1 ∈ arg maxx∈S EI(x) followed by the updating of the

kriging model with X ∪ {xn+1} and the associated responses y.

5.3 EGO with fixed length-scale

We start by discussing the behavior of EGO with two different fixed length-scales (small

and large). The magnitude of length-scale is measured with respect to the longest possible

distance in the search space, Distmax which, in our d-dimensional box search space is equal

to (UB − LB)
√
d. θ is large if it is close to or larger than Distmax and vice versa. Here,

1Strictly speaking, if the covariance function of Equation (5) is directly input into the kriging model,

the trajectories are discontinuous and interpolating the observations. Therefore, often, nugget is only put

on the covariance matrix and not on the covariance vector, which means that the observations are noisy

but the prediction is not. This last strategy to handle noise is called “noise.var=′′ in the DiceKriging

package [RGD12] and is further discussed in Chapter 2, Section 2.2.2.
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LB = −5 and UB = 5. Figure 5.5 illustrates the kriging models on the Ackley test function

(defined below) in 1 dimension and the associated EIs for small and large length-scales.

5.3.1 EGO with small characteristic length-scale

When θ is small, there is a low correlation between response values so that data points

have an influence on the process only in their immediate neighborhood. As θ → 0 and

away from the data points, the kriging mean and variance of Equations (1) and (2) turn

into the constants µ and σ2, respectively, thus the EI becomes a constant flat function:

when x is away from xi, EI(x) → EIasymp := (fmin − µ̂)Φ
(
fmin−µ̂

σ̂

)
+ σ̂φ

(
fmin−µ̂

σ̂

)
, where

µ̂→
n∑
i=1

yi

n
and σ̂2 →

n∑
i=1

(yi−µ̂)2

n
since R tends to the identity matrix in Equation (6).

Proposition 1 (EGO iterates for small length-scale). Without loss of generality, we as-

sume that the best observed point is unique. As the characteristic length-scale of the GP

kernels tend to 0, the EGO iterates are located in a shrinking neighborhood of the best

observed point.

This proposition is explained and proved below.

Irrespectively of the function being optimized and the current DoE (provided the best

observed point is uniquely defined), the set of design points created by EGO with small

θ has characteristically repeated samples near the best observed points. An example is

provided in Figure 5.2 where θ = 0.001. Elements of proof of this phenomenon is given

below.

When the length-scale is small, the observations have a low range of influence. In the

limit case, one can assume that in a vicinity of ith design point the correlation between

Y (xi) and the other observations is zero, i.e., Corr(Y (xi), Y (xj))→ 0 , 1 ≤ j ≤ n , j 6= i,

so that R → I. Let x be in the neighborhood of xi, Bε(xi) = {x ∈ S : ‖x− xi‖≤ ε},
for a sufficiently small ε and away from the other points of the Design of Experiments

(DoE) j 6= i so that the correlation vector tends to r(x) → [0, . . . , 0, r, 0, . . . 0] where

r = Corr(Y (x), Y (xi)). In this situation, the kriging mean and variance can be fully

expressed in terms of the correlation r (a scalar in [0, 1]):

m(r) =µ̂+ r(yi − µ̂) = µ̂(1− r) + ryi, (8)

s2(r) =σ̂2(1− r2), (9)
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Figure 5.2: Left: search points obtained during 20 iterations of EGO with a small length-

scale (θ = 0.001) on the Sphere function whose contour lines are plotted. Crosses are the

initial design points. The points accumulate in the vicinity of the design point with the

lowest function value. Right picture: zoom around the best observed point; the contour

lines show the kriging mean.
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It is visible from the above equations that, among the points of the DoE, the expected

improvement will be the largest near the best observed point as, for any given r, the

variance will be the same and the mean will be the lowest. If many points of the DoE

share the same best performance fmin, we will consider xmin, the most isolated2 one. By

setting yi = fmin in Eqs. (8) and (9), the expected improvement (Equation (7)) in the

vicinity of the best observed point becomes,

EI(r) =(1− r)(fmin − µ̂)Φ

(
fmin − µ̂

σ̂

√
1− r
1 + r

)
+

σ̂
√

1− r2φ

(
fmin − µ̂

σ̂

√
1− r
1 + r

)
. (10)

Dividing both sides of Equation (10) by σ̂ and introducing the new variable A := fmin−µ̂
σ̂

,

the normalized expected improvement EI(r)/σ̂, reads

EI(r)/σ̂ = (1− r)AΦ

(
A

√
1− r
1 + r

)
+
√

1− r2φ

(
A

√
1− r
1 + r

)
. (11)

The normalized improvement is handy in that, for small length scale, it sums up what

happens for all objective functions, design of experiments and kernels in terms of only two

scalars, the correlation r and A. Note that because fmin ≤ yi , ∀i, A ≤ 0. Instances of

normalized EI are plotted for a set of A’s in [−2,−0.001] in the left of Figure 5.3. The

value of EI when r → 0+ is the asymptotic value of expected improvement as x moves

away from data points. The maximum of EI (equivalently EI/σ̂) is reached at r? which

is strictly larger than 0. All the values of r? are represented as a function of A in the right

plot of Figure 5.3. As A decreases (i.e., fmin further drops below µ̂, or the best observation

improves with respect to the other observations), r? tends to 1, that is EGO will create

the next iterate closer to xmin, which makes sense since the point gets better. Vice versa,

as the advantage of the best observation reduces (A diminishes), r? approaches 0, which

means that EGO will put the next iterate further from xmin. Note that the analytical

formulas for the first and second derivative of EI with respect to r are given in Section 5.4.
2the most isolated in terms of the metric used by the covariance functions of the GP.
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Figure 5.3: Left: Normalized EI as a function of r ∈]0, 1] in the vicinity of the sample

point with the lowest function value for a small length-scale. Right: location of the next

EGO iterate (r? where EI is maximized) as a function of A.

5.3.2 EGO with large characteristic length-scale

Proposition 2 (EGO iterates for large length-scale). As the characteristic length-scale

of the GP kernels increases, θ → ∞, the EGO algorithm degenerates into the sequential

minimization of the kriging mean m(x).

This behavior of EGO can be understood by seeing that as the length-scale increases,

the points have more influence on each other and the uncertainty, as described by kriging

variance s2(x) in Equation (2), vanishes. Then, we will see that maximizing the expected

improvement is equivalent to minimizing the kriging mean when kriging variance is null.

Let us demonstrate the above statements. We first establish that the term r(x)>R−1r(x)

in the kriging variance of Equation (2) tends to 1. As θ → ∞, all the responses Y (x) are

strongly correlated, therefore r(x) and R become a vector and a matrix of 1’s. This

matrix R has only one non-zero eigenvalue that equals n, the matrix size [AC12]. The

corresponding eigenvector is v =
√
n
n

(1, . . . , 1)>.

To invert such a non-invertible matrix, we use Moore-Penrose pseudoinverse [Str88],

which is equivalent to regularizing it with a very small nugget (see [MLRD+16]). The
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pseudoinverse of R, denoted by R†, is

R† = [v W]




1
n

01×(n−1)

0(n−1)×1 0(n−1)×(n−1)


 [v W]> , (12)

in which W contains the n − 1 eigenvectors associated with the zero eigenvalues. Regu-

larizing R−1 as R† in r(x)>R−1r(x) and since r(x)> → (1, . . . , 1) as θ →∞ , it is easy to

show that r(x)>R†r(x) = 1. As a result, s2(x) → 0 and EI(x) → fmin −m(x). In this

case, the EGO search degenerates to an iterative minimization and updating of the kriging

mean m(x).

Minimizing kriging mean does not define a valid global optimization scheme for two

reasons. Firstly, because premature convergence occurs as soon as the minimum of m(x)

coincides with an observation of the true function [Jon01]: when m(xn+1) = f(xn+1) where

xn+1 = arg minx∈S m(x), the EGO iterations with large θ stop producing new points,

however xn+1 ∪ X may not even contain a local optimum of f . Secondly, it should be

remembered that the kriging mean discussed here is that stemming from large length-

scale, which may not allow an accurate prediction of the objective function considered:

it would suit a function like the sphere with a Matérn kernel, but it would not suit a

multimodal function like Ackley.

The DoE created by EGO with large θ can vary greatly depending on the function

and the initial DoE. On the one hand, if the function is regular and well predicted by

m(.) around xn+1, like the Sphere function, the kriging mean rapidly converges to the true

function and points are accumulated in this region which may or not be the global optimum.

Figure 5.4 illustrates both situations (true and false convergence) with the DoEs created

by an EGO algorithm with large length-scale on a unimodal and a multimodal function

(Sphere and Rastrigin functions, respectively). The Rastrigin function is defined as

fRastrigin(x) = 10d+
d∑

i=1

(
x2
i − 10 cos(2πxi)

)
. (13)

On the other hand, if m(xn+1) is different from f(xn+1), the kriging mean changes a lot

between iterations because new observations have a long range influence. The kriging mean

overshoots observations in both upper and lower directions (cf. the dotted blue curve in

the upper left plot of Figure 5.5). The resulting DoE is more space-filling than the DoE of

small length scale. An example of such DoE is provided at the bottom right of Figure 5.5.

Page 95



CHAPTER 5. A DETAILED ANALYSIS OF KERNEL PARAMETERS IN
GAUSSIAN PROCESS-BASED OPTIMIZATION

-4 -2 0 2 4

0
20

40
60

x

f

-4 -2 0 2 4

0
10

20
30

40
50

60

x

f

Figure 5.4: DoE created by EGO with θ = 100. For such a large θ, the global search turns

into the sequential minimization of the kriging mean. Left: premature convergence of the

algorithm in a local minimum of the Rastrigin function because m(xn+1) = f(xn+1). The

true optimum is at x? = 2.5 in the neighboring basin of attraction. Right: the algorithm

converges to the global minimum of the unimodal Sphere function. In both functions the

global minimum is located at 2.5.
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Figure 5.5: Ackley function (black solid line and defined in (21)) approximated by a kriging

model (mean ± std. deviation, thick/thin lines) with θ = 0.001 (dashed pink) and θ = 100

(dotted blue). The crosses are the initial DoE. Top, right: EIs at iteration 1 with the

stars indicating the EI maximums. Bottom, red bullets: DoEs created by EGO after 20

iterations with θ = 0.001 (left) and θ = 100 (right).
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5.4 Expected Improvement and its derivatives for small

length-scale

When the length-scale is small, the normalized expected improvement tends to the following

analytical expression

EI(r)

σ
= (1− r)AΦ

(
A

√
1− r
1 + r

)
+
√

1− r2φ

(
A

√
1− r
1 + r

)
, (14)

where r is the correlation with the best observed point and A = fmin−µ̂
σ̂

. Such expression

applies to any objective functions, designs of experiment and kernels as long as the length-

scale tends to 0. We want to calculate the first and the second derivatives of the normalized

expected improvement with respect to r: To do so, we need to calculate the derivative of

each term. Here, we present the derivatives of the terms Φ
(
A
√

1−r
1+r

)
, φ
(
A
√

1−r
1+r

)
and

√
1−r
1+r

which are

∂

∂r
Φ

(
A

√
1− r
1 + r

)
= A

(
∂

∂r

√
1− r
1 + r

)
φ

(
A

√
1− r
1 + r

)
, (15)

∂

∂r
φ

(
A

√
1− r
1 + r

)
= −

(
A

√
1− r
1 + r

)
∂

∂r

(
A

√
1− r
1 + r

)
φ

(
A

√
1− r
1 + r

)
, (16)

∂

∂r

√
1− r
1 + r

=
−
√

1− r
2(1 + r)3/2

− 1

2
√

1− r2
. (17)

After calculating all the derivatives and simplification, the first derivative of EI(r)
σ

with

respect to r can be written as

∂EI(r)

σ∂r
= −AΦ

(
A

√
1− r
1 + r

)
− r√

1− r2
φ

(
A

√
1− r
1 + r

)
. (18)

In Figure 5.6, the first derivative of EI(r)
σ

for different values of A is numerically calculated.

The location of a stationary point, r?, is where ∂EI(r?)
σ∂r

= 0, and it is also numerically

estimated.
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Figure 5.6: First derivative of EI(r)
σ

with respect to r for different values of A. The location

of the stationary point becomes closer to r = 0 as A→ 0−. In other words, for (negative)

values of A different from 0, r is finite and the maximum of the EI is achieved near the

best known point.

To determine the nature of the stationary points, the second derivative of EI(r)
σ

, i.e.,
∂2EI
σ∂r2

, is required which is:

∂2EI

σ∂r2
=

[
A2(1− r)− (1 + r)

(1 + r)5/2(1− r)3/2

]
φ

(
A

√
1− r
1 + r

)
. (19)

In the left picture of Figure 5.7 the second derivative of EI(r)
σ

, ∂2EI
σ∂r2

, with the same A values

as used in Figure 5.6 is shown. In the right picture, the value of ∂2EI
σ∂r2

is plotted at the

stationary points r?. It can be seen that the second derivatives are always negative. In

other words, the curvature of the function EI(r)
σ

at any stationary points is negative and

the function has a maximum there.
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Figure 5.7: Left: second derivative of EI(r)
σ

when A equals to −2,−1,−0.5,−0.1,−0.01.

The second derivative is negative most of the time excepted when A is small and r is close

to 0 (compare to Figure 5.3). Right: the value of ∂2EI
σ∂r2

is plotted for different values of r?.

This curvature is always negative.

5.4.1 Comparison of EGO with fixed and adapted length-scale

In the sequel, the efficiency of EGO with different fixed length-scale is compared with the

standard EGO whose length-scale is learned by ML. Tests are carried out on two isotropic

functions, the unimodal sphere and the highly multimodal Ackley functions:

fSphere(x) =
d∑

i=1

(xi)
2, (20)

fAckley(x) = −20 exp

(
−0.2

√
1
d

d∑
i=1

x2
i

)
− exp

(
1
d

d∑
i=1

cos (2πxi)

)
+ 20− exp(1). (21)

Each optimization is repeated 5 times on 5 dimensional instances of the problems, d = 5.

The initial DoE is fixed and has size 3×d. The search length is 70×d. To allow comparisons

of the results, the functions are scaled (multiplied) by 2
fmaxDoE−f

min
DoE

, where fminDoE and fmaxDoE are

the smallest and the largest value of function f in the initial DoE.

Figure 5.8 shows the results of the comparison in terms of median objective functions.

Moreover, the first and the third quartiles are plotted in Figure 5.9. The θ values belong
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to the set {0.01, 0.1, 1, 5, 10, 20}. On both test functions, the algorithm does not converge

quickly towards the minimum when θ = 0.01 or θ = 0.1 because, as explained in Section 5.3,

it focuses on the neighborhoods of the best points found early in the search. On the Sphere

function, EGOs with large length-scale, θ = 20 or θ = 10, have performances equivalent to

that of the standard EGO. Indeed, the Sphere function is very smooth and, as can be seen

on the rightmost plot of Figure 5.8, ML estimates of θ are equal to 20 (the upper bound

of the ML) rapidly after a few iterations. With the multimodal Ackley function, the best

fixed θ is equal to 1. It temporarily outperforms the standard EGO at the beginning of

the search (until about 70 evaluations) but then ML allows decreasing the θ’s until about

0.5 (see rightmost plot) and fine tuning the search in the already located high performance

region. Note however that this early advantage of θ = 1 over the adapted θ seem to be

dependent on the initial DoE (cf. experiment with an alternative DoE in Figure 5.10).
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Figure 5.8: Median of the best objective function vs. number of calls of standard EGO

and EGO with different fixed length-scale on the Sphere (left) and the Ackley (middle)

functions, d = 5. Right: evolution of θ learned by ML in standard EGO.
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Figure 5.9: Dispersion of the results of Figure 5.8 : first and the third quartiles of the

results for the Sphere (left) and Ackley (right) functions.

In order to investigate the effect of initial DoE on the above results, we repeat the same

experiments with another fixed DoE. The results with the new DoE are given in Figure

5.10. These results are similar to those already reported in Figure 5.8, therefore suggesting

a low sensitivity of EGO to the initial DoE. The main difference is visible in the initial

iterations (before 100 calls) for the multimodal Ackley function and questions the early

advantage at using θ = 1 over θ adapted by ML.

A complementary view on convergence, focusing on distances to the optimum in the

x-space and the whole set of search points created, as opposed to the objective function

of the best point in the convergence plots (e.g., Figure 5.8), is given in Figure 5.11. Each

curve represents the probability distribution of search points closer to the global minimum

than a given distance. The procedure for calculating this density is to divide the number

of points closer to the global minimum by the total number of the points of the search

(here 350 when d = 5). The distances are normalized by dividing them by the square root

of the problem dimension. This measure is invariant with respect to the monotonic scaling

of the objective function. However, such curves that show the distribution of the points

created by the algorithm are not used for ranking the algorithm.

For small distances to the optimum (< 0.3 ×
√
d), the algorithms hierarchy recovered
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Figure 5.10: Median of the best objective function vs. number of calls of standard EGO

and EGO with different fixed length-scale on the Sphere (left) and the Ackley (middle)

functions, d = 5. Although the initial DoE is different from the one used in Figure 5.8, the

EGO performance does not change a lot.

from these graphs is based on the best points and is similar to that of Figure 5.8. For

larger distances, we find out that EGO with fixed θ = 1 performs very well at creating

many points within a distance of 1×
√
d to the optimum.

5.5 Effect of nugget on EGO convergence

To investigate the effect of nugget on EGO, we carry out the same test protocol as above

but the length-scales are set by ML and two scenarios are considered: 1) the nugget τ 2 is

estimated by ML, 2) a fixed nugget is taken from the set τ 2 ∈ {10−2, 10−4, 10−6, 10−8, 0}
(τ 2 = 0 means no nugget). Figure 5.12 shows the results. For both test functions, when

the nugget value is large (10−2 or 10−4 or ML estimated on Ackley), EGO exhibits the

worst performances: it does not converge faster and stops further from the optimum. The

reason is that a large nugget deteriorates the interpolation quality of a kriging model when

observations are not noisy like here. On the Sphere function, EGO rapidly locates the

area of the optimum but the EI without nugget, which is null at data points, pushes the
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Figure 5.11: Density of points closer to the optimum than a given distance on Sphere (left)

and Ackley (right) functions. Each curve is the median of 5 runs.

search away from it. However, a nugget value equal to 10−6 or 10−8 hardly slows down

convergence and significantly improves the accuracy with which the optimum is found.

Indeed, by increasing the uncertainty s2(x) everywhere including in the immediate vicinity

of data points, where it would be null without nugget, nugget increases the EI there and

allows a higher concentration of EGO iterates near the best observed point. The nugget

learned by ML on the Sphere tends to 0 which, as just explained, is not the best setting

for optimization.

On Ackley, besides large nugget values (τ 2 ≥ 10−4) which significantly degrade the

EGO search, values ranging from τ 2 = 0 to 10−6 do not notably affect performance. In

this case, the global optimum is not accurately located after 70× d evaluations of f , there

is no need to allow through nugget an accumulation of points near the best observation.

Note that on both functions, when considering the best point found so far, ML estima-

tion of nugget is not a good strategy.

Finally, the dispersion of all the search points the across the x-space is characterized

in Figure 5.13 through the number (the density) of points closer to the optimum than

a given distance (cf. previous section for a more detailed definition). For the Sphere

function, τ 2 = 10−6, 10−4 and 10−2 allow locating more points in a larger neighborhood of
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Figure 5.12: Median of the best objective function vs. number of calls to f for EGO with

different nugget values on the Sphere (left) and Ackley (middle) functions in dimension 5.

Right: ML estimated nugget, τ 2, vs. number of calls to f .

the optimum, respectively. For the Ackley function, no to moderate (τ 2 = 10−4) nuggets

produce similar densities of points around the optimum; τ 2 = 10−2 seems to be often

missing high performance areas; the ML estimate of τ 2, which after initial oscillations

between 0 and 5.10−2, stabilizes over 5.10−2, puts 7% of the search points within a distance

of 0.07 ×
√
d of the optimum (which makes it the best strategy at this distance to the

optimum) but then puts the remaining points far from the optimum.

5.6 Conclusions

To sum up, this chapter carefully explains the DoEs generated by EGO with fixed length-

scale and nugget. In terms of performance, ML estimation of the length-scale is a good

choice but ML estimation of nugget is not recommended (a fixed small nugget value should

be preferred). Based on our tests, as a perspective, EGO strategies starting with a large

fixed length-scale and then decreasing it while keeping a small amount of nugget should be

efficient while avoiding ML estimations which require O(n3) computations [CJ08]. Space-

filling strategies can be created either by random jumps or by extrapolation. The reason

for promoting large length-scale early in the search is motivated by extrapolation rather

pure exploration.

Page 105



CHAPTER 5. A DETAILED ANALYSIS OF KERNEL PARAMETERS IN
GAUSSIAN PROCESS-BASED OPTIMIZATION

0.002 0.010 0.050 0.500 5.000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log distance to optimum /
√
d

cu
m
u
la
ti
ve

p
ro
b
ab

il
it
y

Nug=10-2

Nug=10-4

Nug=10-6

Nug=10-8

NoNug
EstimNug

0.05 0.20 0.50 2.00 5.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log distance to optimum /
√
d

cu
m
u
la
ti
ve

p
ro
b
ab

il
it
y

Nug=10-2

Nug=10-4

Nug=10-6

Nug=10-8

NoNug
EstimNug

Figure 5.13: Cumulative probability of search points under different scenarios of nugget

values on Sphere (left) and Ackley (right) function.
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Chapter 6

Small ensembles of kriging models for

optimization

The Efficient Global Optimization (EGO) algorithm uses a conditional Gaussian Process

(GP) to approximate an objective function known at a finite number of observation points

and sequentially adds new points which maximize the Expected Improvement criterion

according to the GP. The important factor that controls the efficiency of EGO is the

GP covariance function (or kernel) which should be chosen according to the objective

function. Traditionally, a parameterized family of covariance functions is considered whose

parameters are learned through statistical procedures such as maximum likelihood or cross-

validation. However, it may be questioned whether statistical procedures for learning

covariance functions are the most efficient for optimization as they target a global agree-

ment between the GP and the observations which is not the ultimate goal of optimization.

Furthermore, statistical learning procedures are computationally expensive. The main al-

ternative to the statistical learning of the GP is self-adaptation, where the algorithm tunes

the kernel parameters based on their contribution to objective function improvement. Af-

ter questioning the possibility of self-adaptation for kriging based optimizers, we propose

a novel approach for tuning the length-scale of the GP in EGO: At each iteration, a small

ensemble of kriging models structured by their length-scales is created. All of the mod-

els contribute to an iterate in an EGO-like fashion. Then, the set of models is densified

around the model whose length-scale yielded the best iterate and further points are pro-

duced. Numerical experiments are provided which motivate the use of many length-scales.

The tested implementation does not perform better than the classical EGO algorithm in
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a sequential context but show the potential of the approach for parallel implementations.

6.1 Introduction

The EGO optimization algorithm uses a kriging model, which is a conditional Gaussian

process (GP) [RW05], for predicting objective function values and quantifying the predic-

tion uncertainty. The shapes of sample paths of a GP such as its smoothness, periodicity,

etc. are controlled by the covariance function of the process, also known as its kernel. Tra-

ditionally, a parameterized family of covariance functions is considered whose parameters

are estimated.

The kernel parameters are often estimated by statistical approaches like maximum

likelihood (ML)[Yin91] or cross validation (CV) [ZW10]. ML and CV are compared in

[Bac13] when the covariance structure of a GP is misspecified. It is recommended in

[LS05] to use a penalized likelihood for the kriging models when the sample size is small.

However, the efficiency of such statistical approaches, which aims at learning the objective

function globally, remains questionable in the context of optimization. For example, in

the EGO algorithm if the design points do not carry enough information about the true

function, the parameters are not estimated correctly. Theses parameters are then plugged

into the expected improvement (EI) criterion that may lead to disappointing results [Jon01,

BBV11].

Not surprisingly, several methods alternative to ML and CV have been proposed to

tune the kernel parameters. For instance, in [FB08] the kernel parameters are estimated

with a log normal prior density assumption over them. A fully Bayesian approach is used

in [BBV11, TCR15]. In [JSW98, FJ08], the process of estimating parameters and searching

for the optimum are combined together through a likelihood which encompasses a targeted

objective. In [WZH+13], the bounds on the length-scales values are changing with the

iterations following an a priori schedule.

Another drawback of statistical learning procedures such as ML and CV in the context

of moderately expensive functions1 is their computational complexity as they involve the

repeated inversion of an n × n covariance matrix (where n is the number of available
1We call “moderately expensive” functions that take between 10 seconds and an hour to be evaluated

at one point.
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observations) where each inversion needs of the order of n3 operations.

This chapter considers isotropic kernels and investigates an alternative approach to

tuning the length-scale parameter. In this approach, a small set of length scales (hence GP

models) is first tested as alternative ways to consider the objective function, independently

of their statistical relevance. The set is completed based on the direct contribution of the

best model to the optimization. The method is based on ensembles of surrogates. It can

also be seen as weakly self-adaptive in the sense of self-adaptive algorithms [B9̈6, HO01]

where no statistical measure intervenes in the building of the representation which the

optimization algorithm has of the objective function.

Ensembles of surrogates have attracted a lot of attention from the machine learning

community for prediction [HWB13], but fewer contributions seem to address surrogate en-

sembles for optimizing. Several approaches have been proposed that aggregate the meta-

models of the ensemble into a hopefully better metamodel either by model selection or by

mixing the models. This better metamodel is then used by the optimization algorithm

[ARR09, CLRM13, GHSQ07].

On the opposite, other previous optimization methods take advantage of all the meta-

models in the set as a diversity preserving mechanism (in addition to, of course, a way

to reduce the number of calls to the objective function), in the context of evolutionary

computation [JS04, LLJ13] or more generally [VHW13]. The algorithm studied in this

text belongs to this category.

Another classification can be made with respect to the homogeneity (all metamodels

are of the same type) or heterogeneity of the ensemble. There has been recent contributions

to optimization algorithms that rely on a homogeneous set of kriging models: in [Kle14]

the ensembles are built by bootstrap on the data and serve as a way to estimate model

uncertainty for later use in optimization; in [VVW08], the metamodels are the trajectories

of a GP and their contributions are aggregated through an uncertainty reduction criterion

(on the entropy of the global optima of the trajectories). The optimization algorithm

investigated here also relies on an homogeneous ensemble of GP models.
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6.2 EGO algorithm overview

EGO is a sequential model-based optimization algorithm. It starts with an initial de-

sign of experiments (DoE). At each iteration, one point which maximizes the Expected

Improvement (EI) according to the current kriging model is added to the DoE. Then, the

kernel parameters are re-estimated and the kriging model is updated. The location of xn+1,

where xn+1 = arg maxx∈S EI(x), depends on the current DoE, X, y, the kriging trend,

µ, and the kernel parameters: the length-scale, θ, and the process variance, σ2. We use

xn+1 = g(X, µ, θ, σ2) to denote that xn+1 is a function of the above-mentioned parameters.

Figure 6.1 illustrates how the DoE and the magnitude of length-scale affect the EI.
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Figure 6.1: Effect of DoE and length-scale on EI function. The function to be optimized is

the Sphere whose global minimum is located at 2.5. The blue and magenta curves represent

the EI of kriging models with length-scales equal to 5 and 0.2, respectively. The crosses

indicate the location of design points. The other parameters are fixed. The location of the

third sample point changes from 2 to 1.5 in the right picture.

Among the parameters of the EI criterion, X and θ play a prominent role because once

X and θ are fixed, the ML estimations of µ and σ2 have a closed-form expression [RW05]:

µ̂ =
1>R−1

(θ)y
1>R−1

(θ)1 , (1)

σ̂2 =
(y−µ̂1)>R−1

(θ)(y−µ̂1)

n
. (2)
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Accordingly, xn+1 can be expressed as a function of X and θ. For example, Figure 6.2

shows all plausible next infill sample points by changing the length-scale for a given DoE.
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Figure 6.2: Illustration of all possible next infill sample points with X = {−5,−2, 2, 5}
as the DoE. The true functions are Sphere (left, as in Figure 6.1) and Ackley (right) in

dimension 1. For θ values larger than, say θ ≥ 8, the location of xn+1 is quite stable

and close to 2.5, the location of the global minimum. While large θ’s lead to the global

optimum of the Sphere for any X, it is a coincidence for Ackley’s function.

6.3 Tuning the length-scale from an optimization point

of view: a study on self-adaptation

When the kernel parameters are estimated by ML, the selected kriging model has statistical

“best agreement" with the observed data. However, the goal of using EGO, like other

optimization algorithms, is to solve an optimization problem with the least number of

function evaluations. In other words, the main goal is the fast convergence of EGO even

if the kriging model does not represents well the true function. This idea is similar to the

notion of “self-adaptation” in evolutionary optimization [B9̈6, HO01].

To investigate the potential of tuning the length-scale θ in an optimization oriented,

greedy, self-adaptive way, we first tested a theoretical algorithm that tries a large number
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θ’s in the range [0.01, 20]. The true objective function values of the points that maximize

the expected improvement for each of these length-scale θ value is calculated, xn+1(θ|X) =

arg maxx∈S EI(x; θ). This makes this algorithm not practical in the context of expensive

problems. Then, the iterate associated to the best objective function,

xsel = arg minxn+1 f(xn+1(θ|X)), is added to the Design of Experiment X, the kriging

model is updated, and the algorithm loops. This algorithm is sketched in the flow chart

6.1.

From a one step ahead optimization point of view, the “best” length-scale, denoted by

θ∗, is the one that yields the next infill sample with the lowest objective function value,

θ∗ = arg minθ f(xn+1(θ|X)). In the examples provided in Figure 6.3, the best length-scales

are shown for the two test functions (Ackley and Sphere). In this example, the best length-

scales are different from the length-scales estimated by ML, see the caption of Figure 6.3.

Algorithm 6.1 Toy EGO with greedy θ tuning

Create an initial design: X = [x1, . . . ,xn]
T

Evaluate the functions at X, y = f(X)

while not stop (typically a limit on budget) do

Set xsel ← arg maxxj∈X(f(xj))

for θi ∈ [θmin, . . . , θmax] do

xn+1(θi|X) = arg maxx∈S EI(x; θi)

if f (xn+1(θi|X)) < f(xsel) then

xsel ← xn+1(θi|X)

end if

end for

X ← X ∪ xsel

end while
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Figure 6.3: Function values of xn+1 already shown in Figure 6.2. The asterisk indicate

the correlation length-scale, θ∗, which causes the maximum improvement in the objective

function. In this example, θ∗ is different from θ̂ML, estimated by ML,: θ∗ = 0.61271 and

θ̂ML = 5.34 (Sphere; left), θ∗ = 12.7674 and θ̂ML = 0.01 (Ackley; right), the lower bound

on θ. Both functions have their global minimum at 2.5 and the DoE is X = {−5,−2, 2, 5}.

We now analyze this approach in more details by providing some examples in 2D.

Figure 6.4 illustrates the first and the second iterations of this algorithm again on the

Sphere and Ackley functions. In this Figure, the location of the points that maximize

the expected improvement for different length-scale values is plotted on the top of the

true function contour lines. In total, 64 length-scales, started from 0.01, are used. The

length-scales are divided into eight groups. Each group consists of eight length-scales

in ascending order. The ith group is denoted by θ(i:8), i = 1, . . . , 8 and is defined as

[0.01 + 8(i− 1)× αincrement, 0.01 + 8i× αincrement) where αincrement ≈ 0.1. The infill sample

points obtained by the length-scales of a particular group have identical color, see the

legend of Figure 6.4.

The first remark that can be done, and which motivates this study, is that the points

visited as θ changes make a one dimensional manifold (obviously since it is parameterized

by the scalar θ), continuous by parts and, most interestingly, often curved towards the

global optimum of the function. The discontinuities of the trajectory are associated to
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changes of basin of attraction during the maximization of the expected improvement. This

simple observation, even though only based on a few cases, is a hint that the volume search

of global optimization algorithms might be iteratively transformed into a one dimensional

search in θ, with potentials for containing the “curse of dimensionality”: most global op-

timization algorithm like EGO and evolution strategies undergo a geometric increase in

search space volume as the number of dimensions increases; the current modified EGO

always searches along a 1-dimensional curve. The difficulties of the associated problem

and a possible implementation will be discussed in the next section.

In Figure 6.4, it can be seen that the magnitude of the “best” length-scale in the first

iteration is between 2 and 3, i.e., θ∗ ∈ θ(3:8) or θ(4:8). While EGO with a small length-scale

samples near the best observed point (cf. the black points), EGO with large length-scale

is more explorative (see yellow and grey points) [MLRT15]. The search points and the

length-scales obtained by the algorithm after 15 iterations are given in Figure 6.5. It can

be observed that, after the first iterations where the “best” length-scale magnitude, θ∗, is of

order 1, θ∗ oscillates at usually small values. Because θ∗ oscillates, self-adaptive strategies

and Bayesian strategies based on assuming a prior density over the length-scale may not

be a good strategy for optimization (at least if θ∗ makes an efficient strategy).
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Figure 6.4: First (top row) and second (bottom row) iterations of EGO in which

xn+1(θ∗|X) = arg maxx∈S EI(x|θ∗) is added to the existing DoE, the crosses, on the Sphere

(left) and the Ackley (right) functions. 64 equally distant length-scales are grouped into

eight equal sized intervals, θ(i:8), i = 1, . . . , 8. The infill sample points obtained by the

length-scales of a particular group have identical color.
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Figure 6.5: DoEs created by the toy greedy algorithm 6.1 after 15 iterations on the Sphere

(left) and the Ackley (middle) functions. Right: plot of “best” length-scale, θ∗. θ∗ oscillates

during optimization iterations and usually has a small magnitude after the first iterations.

The y-axis is in logarithmic scale.

In order to investigate the effect of initial DoE on the algorithm performance, the above

experiments are repeated with another initial DoE. Figure 6.6 shows the results which are

similar to the previous experiments. For example, the length-scales tend to be small

especially in the case of highly multimodal Ackley function. The algorithm’s behavior,

typical of small θ’s (as explained in details in [MLRT15]) is greedy, that of a local search

algorithm: local convergences can be seen in Figure 6.8 where the function to be optimized

is Rastrigin with several local minima.
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Figure 6.6: First (top row) and second (bottom row) iteration of the toy greedy algorithm

6.1 on the Sphere (left) and the Ackley functions(right). The initial DoE is different from

the one shown in Figure 6.4. For more information see the caption of Figure 6.4.
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Figure 6.7: DoEs created by the toy greedy algorithm 6.1 after 15 iterations on the Sphere

(left) and the Ackley (middle) functions. Right: plot of “best” length-scale, θ∗. The initial

DoE is different from the one shown in Figure 6.5.
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Figure 6.8: DoEs created by the toy greedy algorithm 6.1 after 15 iterations on the Rastrigin

function with two DoEs (left and middle). Right: plot of “best” length-scale, θ∗. The global

minimum is located at (2.5, 2.5).

6.4 An EGO algorithm with a small ensemble of kriging

models

6.4.1 Description of the algorithm

EGO is used for the optimization of computationally intensive functions. So, it is prac-

tically impossible to calculate f (xn+1(θ|X)) for many length-scales in order to obtain θ∗.

Herein, we propose an approach that works with a limited number of kriging models. The
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ensemble of kriging models is structured by the length-scales. The pseudo-code is given

below (Algorithm 6.2) followed by a detailed explanation of the approach.

Algorithm 6.2 EGO based on a small ensemble of kriging models

Create an initial design: X = [x1, . . . ,xn]
>.

Evaluate function at X and set y = f(X).

Set the maximum number of evaluations, tmax.

for t ← n+1 to tmax do

Define a neighborhood of radius R(t) around the current sample points.

Set X(n+1) = ∅ and Xsel = ∅.
Generate q length-scales, θ1, . . . , θq.

for i ← 1 to q do

xn+1 ← arg maxx∈S EI(x; θi).

X(n+1) ← X(n+1) ∪ xn+1.

if xn+1 is not inside the defined neighborhoods then

Xsel ← Xsel ∪ xn+1.

end if

end for

if Xsel = ∅ then
Xsel ← arg maxx∈X(n+1) (min dist(x,X))

end if

Evaluate function at Xsel and set ysel = f(Xsel).

Select θ∗, for which f(arg maxx∈S EI(x; θ∗)) = min(ysel).

Generate two length-scales close to θ∗. This yields two new infill samples by EI

maximization, Xnew = [xnew1,xnew2]
>.

Evaluate function at Xnew and set ynew = f(Xnew).

Update the DoE: X ← X ∪Xsel ∪Xnew, y ← y ∪ ysel ∪ ynew.

end for

Let (X,y) be the initial design of experiments. The covariance function we use here

is the isotropic Matérn 5/2 kernel [RW05]. Thus, there exists only one length-scale to be

tuned. The first reason for using an isotropic kernel is simplicity and clarity in the analysis.

By taking isotropic functions and kernels, a difficult aspect of the algorithm (anisotropy,
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which is related to variables sensitivity) is neutralized to focus on other (also quite complex)

phenomena. By taking isotropic kernels, the results of the numerical experiments are more

stable. The second reason is that isotropic kernels have been found to perform well for

EGO in high-dimension in the context of expensive-to-evaluate functions [HHLB13].

At each iteration, five length-scales are generated. They are sampled on a basis 10

logarithmic scale from [−2, 1] based on a Latin Hypercube Sampling (LHS) plan (that is

θ ranges from 10−2 to 101). Then, they are sorted and scaled back, θi = 10log θi , 1 ≤ i ≤
5 ; θ1 < θ2 < · · · < θ5. Corresponding to each length-scale θi, a kriging model is created

which gives a new infill sample: xn+1(θi|X) = arg maxx∈S EI(x; θi).

In the next step, the xn+1(θi|X) , 1 ≤ i ≤ 5, that are not close to the design points

are selected and the function is evaluated there. The notion of closeness is expressed by

defining a neighborhood of radius R(t) around design points, see Figure 6.9. It is important

to prevent the points from converging around early good performers, otherwise such greedy

algorithm where decisions are taken solely on the account of objective function values would

not be sufficiently explorative for global optimization. Further explanations about the

neighborhood definition are provided in the next paragraph. The eligible xn+1(θi|X) , 1 ≤
i ≤ 5, are selected and stored in the matrix Xsel. ysel contains the function values at Xsel.
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Figure 6.9: DoE and neighborhoods as balls around the design points (blue circles). The

infill samples occurring inside any neighborhood are not considered by the optimizer.
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6.4. AN EGO ALGORITHM WITH A SMALL ENSEMBLE OF KRIGING MODELS

The neighborhood defined around every design point is a ball with radius R(t) where

the index t is the iteration. As the optimization progresses, the radius shrinks according

to the following linear scheme:

R(t) =





R(1) − R(1)

tthreshold
× (t− 1) if t ≤ tthreshold

0 otherwise,
(3)

in which tthreshold is 70% of total number of iterations, tmax. The initial radius R(1), is half

of the distance between the best initial DoE (based on its f value) and the closest design

point to it. Again, defining such neighborhoods prevents the algorithm from focusing

around good points too early.

Now, among the five generated length-scales, the best one is selected and is denoted

by θ∗. Recall that the best length-scale is the one that yields f (xn+1(θi|X)) = min(ysel).

Then, two length-scales, θ∗− and θ∗+, close to θ∗ are generated. They are defined as:

– If θ∗ = θi, 2 ≤ i ≤ 4, θ∗− = θ∗ − 1
3
(θ∗ − θi−1) and θ∗+ = θ∗ + 1

3
(θi+1 − θ∗).

– If θ∗ = θ1, θ∗− = 0.01 and θ∗+ = θ∗ + 1
3
(θ2 − θ∗).

– If θ∗ = θ5, θ∗− = θ∗ − 1
3
(θ∗ − θ4) and θ∗+ = 10.

The two new infill samples obtained with the kriging models with length-scales θ∗− and

θ∗+ are stored in the Xnew matrix,

Xnew =
[
xn+1(θ∗−|X) , xn+1(θ∗+|X)

]>
. (4)

Finally, the current DoE (X, y) is updated by adding Xnew and Xsel to X and ynew and

ysel to y. This procedure continuous until the budget is exhausted.

6.4.2 Tests of the algorithm

The performance of this EGO method that is based on a small ensemble of kriging models

(5+2 models) is tested on three isotropic functions, Sphere, Ackley and Rastrigin. The

functions are defined in S = [−5, 5]d where d = 5. The total number of iterations is

15×d. Each optimization run is repeated eight times (thin black lines). Figure 6.10 shows

the results and the performance of the standard EGO method (thin blue lines) which is

repeated five times with a budget equal to 70 × d. The plots show the best objective
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functions observed so far. The initial DoE is fixed for both algorithms and has a size equal

to 3× d. The thick lines are the median of the runs.

The small ensemble version of EGO is slightly better on the sphere function because

it benefits from its greedy choice of points that are never misleading. On Rastrigin and

Ackley, the small ensemble EGO is slower early in the search, which might be due to

the schedule of R(t): because R(t) is large at the beginning of the search, the algorithm

cannot be greedy early on. Later on, still on Rastrigin and Ackley, EGO with a small

ensemble shows both the worst and best performances, therefore illustrating a tendency to

get trapped in local optima. In terms of median performance, after 250 evaluations of the

objective function (at the time when the neighborhood control ceases), the small ensemble

EGO is equivalent to EGO on Rastrigin and worse on Ackley.
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Figure 6.10: Best objective function vs. number of calls of EGO with the ensemble of

kriging models (thin black lines) and standard EGO (thin blue lines) on Sphere(top left),

Ackley (top right) and Rastrigin (bottom) functions. The thick lines show the median of

the runs.

6.5 Conclusions

We have investigated a variant of the EGO optimization algorithm where, instead of using

at each iteration a kriging model learned through a statistical estimation procedure such
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as maximum likelihood, a small set of models with different (adapted) length-scale is

employed. The motivations are threefold. Firstly, it has been noticed in two-dimensions

that the manifolds of the points that maximize expected improvement for various length-

scales approach rapidly the global optimum. Secondly, ensemble methods have a lower

computational complexity since the number of kriging covariance matrices inversions is

limited to the number of elements in the ensemble, seven in the current work. On the

contrary, maximum likelihood or cross-validation approaches require the inversion of the

covariance matrix at each of their internal iteration. Thirdly, ensemble methods may more

easily lead to parallel versions of EGO as the maximization of expected improvement can

be distributed on several computing nodes, one for each kriging model.

Our first investigations have led to the following conclusions: tuning the length-scale

to achieve an immediate improvement in the objective function may not be as efficient a

strategy as two-dimensional plots of the manifold seem to indicate; the greediness of the

method is a source of premature convergence to good performing points; optimal values of

the length scale (in the sense of short term improvement) change a lot from one iteration

to the next as the design of experiments evolves, rendering self-adaptive and Bayesian

strategies not efficient for this purpose.

Nevertheless, we believe that the idea of searching in the space of length-scales as a

proxy for searching in the space of optimization variables deserves further investigations

because of its potential for tackling the curse of dimensionality. In particular, the schedule

of the neighborhood radius, an iteration-smoothing learning procedure for the length-scales,

and alternative strategies for making the ensemble of kriging should be studied.

Page 124



Chapter 7

Conclusions and perspectives

This thesis contributes to the field of Gaussian process-based optimization. More precisely,

we have addressed the following issues:

(I) The non-invertibility of covariance matrix in Gaussian process (GP) modeling;

(II) The comparison and complementarity between the stochastic algorithm CMA-ES

and EGO;

(III) The mode of convergence of the EGO algorithm in relation to the kernel parameters;

(IV) Methods alternative to statistical learning for tuning the kernel parameters during

an EGO search.

The problem (I) was addressed in Chapter 3. In this chapter, we have provided a new

algebraic comparison of pseudoinverse and nugget regularizations, two classical solutions

to overcome the degeneracy of the covariance matrix in GPs. We have proved that, when

the covariance matrix is regularized by pseudoinverse, the Gaussian process mean averages

the outputs and its variance is zero at redundant points. In the case of nugget regulariza-

tion, the discrepancy between model and data translates into a departure of the GP from

observation points throughout the domain. We have also proposed a new regularization

approach called distribution-wise GP model in which normal distributions are interpolated

instead of data points. This approach unlike nugget and pseudoinverse regularizations

averages the outputs at redundant points and preserves the redundant points variances.

The problem (II) was addressed in Chapter 4 by introducing a new algorithm called

EGO-CMA. EGO-CMA combines the strengths of EGO and CMA-ES. EGO is a space
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filling algorithm and is used first to explore the search space. Then CMA-ES, as a con-

verging search, is started from the best point obtained by EGO to converge towards the

global optimum with high accuracy. Moreover, we have proposed a warm-start for both

the step-size and the covariance matrix of CMA-ES. The performance of EGO-CMA was

compared with that of EGO and CMA-ES. EGO-CMA had better performance in our

experiments.

The question (III) was answered in Chapter 5 by performing experiments to study the

effect of kernel parameters on the EGO performance. We have carefully explained the

design of experiments generated by EGO when the kernel parameters are fixed. To do so,

we have isolated two simple landscapes where EGO behaves differently. On purpose, one

function is unimodal (Sphere), the other multimodal (Ackley). The limit cases of small

and large length-scales have been mathematically analyzed. This study provided a solid

understanding of the EGO behavior that allows further improvement of this algorithm.

The problem (IV) was addressed in Chapter 6 by introducing a variant of the EGO

optimization algorithm. At each iteration of this algorithm, instead of learning the length-

scales by statistical techniques, a small ensemble of kriging models structured by their

length-scales is created. Then, the model whose length-scale yielded the best iterate is

selected and further points are produced through intensifying around the selected model.

Encouraging observations have been made in two dimensions. In addition, ensemble meth-

ods have a lower computational complexity than statistical learning approaches. Yet, the

proposed algorithm did not beat the traditional EGO on multi-modal functions.

The work described in this manuscript opens the way to many further investigations.

The distribution-wise GP model introduced in Chapter 3 can be used in EGO with high

number of data points. In the sequential design created by EGO it is common that some

sample points tend to pile up near local optima. A possible algorithm would, therefore, be

to cluster these points and consider them as repeated points. By this approach, the size of

the covariance matrix shrinks.

The EGO-CMA algorithm introduced in Chapter 4 can be implemented in such a way

to make a multi-start CMA-ES possible. For example, among the DoEs created by EGO,

one can select the best, say 10, design points which are “far away”. Then, each of these

points serve as an initial point of CMA-ES.
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As a continuation of Chapter 5, one should study dynamic EGO strategies where the

length-scales vary in time, starting with a large length-scale and then decreasing it. This,

again, would be an alternative to statistical learning procedures, such as maximum likeli-

hood estimation which requires O(n3) computations where n is the number of data points.

This computation cost is not negligible when the number of data points is high as it may

result in minutes to hours of computation on a standard machine.
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Abstract:

The Efficient Global Optimization (EGO) is regarded as the state-of-the-art algorithm

for global optimization of costly black-box functions. Nevertheless, the method has some

difficulties such as the ill-conditioning of the GP covariance matrix and the slow convergence

to the global optimum. The choice of the parameters of the GP is critical as it controls

the functional family of surrogates used by EGO. The effect of different parameters on

the performance of EGO needs further investigation. Finally, it is not clear that the way

the GP is learned from data points in EGO is the most appropriate in the context of

optimization.

This work deals with the analysis and the treatment of these different issues. Firstly, this

dissertation contributes to a better theoretical and practical understanding of the impact

of regularization strategies on GPs and presents a new regularization approach based on

distribution-wise GP. Moreover, practical guidelines for choosing a regularization strategy

in GP regression are given. Secondly, a new optimization algorithm is introduced that

combines EGO and CMA-ES which is a global but converging search. The new algorithm,

called EGO-CMA, uses EGO for early exploration and then CMA-ES for final convergence.

EGO-CMA improves the performance of both EGO and CMA-ES. Thirdly, the effect of

GP parameters on the EGO performance is carefully analyzed. This analysis allows a

deeper understanding of the influence of these parameters on the EGO iterates. Finally,

a new self-adaptive EGO is presented. With the self-adaptive EGO, we introduce a novel

approach for learning parameters directly from their contribution to the optimization.
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Résumé:

L’«Efficient Global Optimization» (EGO) est une méthode de référence pour l’optimisation

globale de fonctions «boites noires» coûteuses. Elle peut cependant rencontrer quelques

difficultés, comme le mauvais conditionnement des matrices de covariance des processus

Gaussiens (GP) qu’elle utilise, ou encore la lenteur de sa convergence vers l’optimum global.

De plus, le choix des paramètres du GP, crucial car il contrôle la famille des fonctions

d’approximation utilisées, mériterait une étude plus poussée que celle qui en a été faite

jusqu’à présent. Enfin, on peut se demander si l’évaluation classique des paramètres du

GP est la plus appropriée à des fins d’optimisation.

Ce travail est consacré à l’analyse et au traitement des différentes questions soulevées

ci-dessus.

La première partie de cette thèse contribue à une meilleure compréhension théorique

et pratique de l’impact des stratégies de régularisation des processus Gaussiens, développe

une nouvelle technique de régularisation, et propose des règles pratiques. Une seconde

partie présente un nouvel algorithme combinant EGO et CMA-ES (ce dernier étant un

algorithme d’optimisation globale et convergeant). Le nouvel algorithme, nommé EGO-

CMA, utilise EGO pour une exploration initiale, puis CMA-ES pour une convergence

finale. EGO-CMA améliore les performances des deux algorithmes pris séparément. Dans

une troisième partie, l’effet des paramètres du processus Gaussien sur les performances de

EGO est soigneusement analysé. Finalement, un nouvel algorithme EGO auto-adaptatif

est présenté, dans une nouvelle approche où ces paramètres sont estimés à partir de leur

influence sur l’efficacité de l’optimisation elle-même.


