Joint safety and security modeling for risk assessment in cyber physical systems - Archive ouverte HAL Accéder directement au contenu
Thèse Année : 2016

Joint safety and security modeling for risk assessment in cyber physical systems

Modélisation conjointe de la sûreté et de la sécurité pour l’évaluation des risques dans les systèmes cyber-physiques

Résumé

Cyber physical systems (CPS) denote systems that embed programmable components in order to control a physical process or infrastructure. CPS are henceforth widely used in different industries like energy, aeronautics, automotive, medical or chemical industry. Among the variety of existing CPS stand SCADA (Supervisory Control And Data Acquisition) systems that offer the necessary means to control and supervise critical infrastructures. Their failure or malfunction can engender adverse consequences on the system and its environment.SCADA systems used to be isolated and based on simple components and proprietary standards. They are nowadays increasingly integrating information and communication technologies (ICT) in order to facilitate supervision and control of the industrial process and to reduce exploitation costs. This trend induces more complexity in SCADA systems and exposes them to cyber-attacks that exploit vulnerabilities already existent in the ICT components. Such attacks can reach some critical components within the system and alter its functioning causing safety harms.We associate throughout this dissertation safety with accidental risks originating from the system and security with malicious risks with a focus on cyber-attacks. In this context of industrial systems supervised by new SCADA systems, safety and security requirements and risks converge and can have mutual interactions. A joint risk analysis covering both safety and security aspects would be necessary to identify these interactions and optimize the risk management.In this thesis, we give first a comprehensive survey of existing approaches considering both safety and security issues for industrial systems, and highlight their shortcomings according to the four following criteria that we believe essential for a good model-based approach: formal, automatic, qualitative and quantitative and robust (i.e. easily integrates changes on system into the model).Next, we propose a new model-based approach for a safety and security joint risk analysis: S-cube (SCADA Safety and Security modeling), that satisfies all the above criteria. The S-cube approach enables to formally model CPS and yields the associated qualitative and quantitative risk analysis. Thanks to graphical modeling, S-cube enables to input the system architecture and to easily consider different hypothesis about it. It enables next to automatically generate safety and security risk scenarios likely to happen on this architecture and that lead to a given undesirable event, with an estimation of their probabilities.The S-cube approach is based on a knowledge base that describes the typical components of industrial architectures encompassing information, process control and instrumentation levels. This knowledge base has been built upon a taxonomy of attacks and failure modes and a hierarchical top-down reasoning mechanism. It has been implemented using the Figaro modeling language and the associated tools. In order to build the model of a system, the user only has to describe graphically the physical and functional (in terms of software and data flows) architectures of the system. The association of the knowledge base and the system architecture produces a dynamic state based model: a Continuous Time Markov Chain. Because of the combinatorial explosion of the states, this CTMC cannot be exhaustively built, but it can be explored in two ways: by a search of sequences leading to an undesirable event, or by Monte Carlo simulation. This yields both qualitative and quantitative results.We finally illustrate the S-cube approach on a realistic case study: a pumped storage hydroelectric plant, in order to show its ability to yield a holistic analysis encompassing safety and security risks on such a system. We investigate the results obtained in order to identify potential safety and security interactions and give recommendations.
Les Systèmes Cyber Physiques (CPS) intègrent des composants programmables afin de contrôler un processus physique. Ils sont désormais largement répandus dans différentes industries comme l’énergie, l’aéronautique, l’automobile ou l’industrie chimique. Parmi les différents CPS existants, les systèmes SCADA (Supervisory Control And Data Acquisition) permettent le contrôle et la supervision des installations industrielles critiques. Leur dysfonctionnement peut engendrer des impacts néfastes sur l’installation et son environnement.Les systèmes SCADA ont d’abord été isolés et basés sur des composants et standards propriétaires. Afin de faciliter la supervision du processus industriel et réduire les coûts, ils intègrent de plus en plus les technologies de communication et de l’information (TIC). Ceci les rend plus complexes et les expose à des cyber-attaques qui exploitent les vulnérabilités existantes des TIC. Ces attaques peuvent modifier le fonctionnement du système et nuire à sa sûreté.On associe dans la suite la sûreté aux risques de nature accidentelle provenant du système, et la sécurité aux risques d’origine malveillante et en particulier les cyber-attaques. Dans ce contexte où les infrastructures industrielles sont contrôlées par les nouveaux systèmes SCADA, les risques et les exigences liés à la sûreté et à la sécurité convergent et peuvent avoir des interactions mutuelles. Une analyse de risque qui couvre à la fois la sûreté et la sécurité est indispensable pour l’identification de ces interactions ce qui conditionne l’optimalité de la gestion de risque.Dans cette thèse, on donne d’abord un état de l’art complet des approches qui traitent la sûreté et la sécurité des systèmes industriels et on souligne leur carences par rapport aux quatre critères suivants qu’on juge nécessaires pour une bonne approche basée sur les modèles : formelle, automatique, qualitative et quantitative, et robuste (i.e. intègre facilement dans le modèle des variations d’hypothèses sur le système).On propose ensuite une nouvelle approche orientée modèle d’analyse conjointe de la sûreté et de la sécurité : S-cube (SCADA Safety and Security modeling), qui satisfait les critères ci-dessus. Elle permet une modélisation formelle des CPS et génère l’analyse de risque qualitative et quantitative associée. Grâce à une modélisation graphique de l’architecture du système, S-cube permet de prendre en compte différentes hypothèses et de générer automatiquement les scenarios de risque liés à la sûreté et à la sécurité qui amènent à un évènement indésirable donné, avec une estimation de leurs probabilités.L’approche S-cube est basée sur une base de connaissance (BDC) qui décrit les composants typiques des architectures industrielles incluant les systèmes d’information, le contrôle et la supervision, et l’instrumentation. Cette BDC a été conçue sur la base d’une taxonomie d’attaques et modes de défaillances et un mécanisme de raisonnement hiérarchique. Elle a été mise en œuvre à l’aide du langage de modélisation Figaro et ses outils associés. Afin de construire le modèle du système, l’utilisateur saisit graphiquement l’architecture physique et fonctionnelle (logiciels et flux de données) du système. L’association entre la BDC et ce modèle produit un modèle d’états dynamiques : une chaîne de Markov à temps continu. Pour limiter l’explosion combinatoire, cette chaîne n’est pas construite mais peut être explorée de deux façons : recherche de séquences amenant à un évènement indésirable ou simulation de Monte Carlo, ce qui génère des résultats qualitatifs et quantitatifs.On illustre enfin l’approche S-cube sur un cas d’étude réaliste : un système de stockage d’énergie par pompage, et on montre sa capacité à générer une analyse holistique couvrant les risques liés à la sûreté et à la sécurité. Les résultats sont ensuite analysés afin d’identifier les interactions potentielles entre sûreté et sécurité et de donner des recommandations.
Fichier principal
Vignette du fichier
77299_KRIAA_2016_archivage.pdf (4.96 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01318118 , version 1 (19-05-2016)

Identifiants

  • HAL Id : tel-01318118 , version 1

Citer

Siwar Kriaa. Joint safety and security modeling for risk assessment in cyber physical systems. Other. Université Paris Saclay (COmUE), 2016. English. ⟨NNT : 2016SACLC014⟩. ⟨tel-01318118⟩
1392 Consultations
1891 Téléchargements

Partager

Gmail Facebook X LinkedIn More