
HAL Id: tel-01266291
https://hal.science/tel-01266291

Submitted on 2 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic power management of MPSoC using networks
of neural cliques
Bartosz Boguslawski

To cite this version:
Bartosz Boguslawski. Dynamic power management of MPSoC using networks of neural cliques. Elec-
tronics. Télécom Bretagne; Université de Bretagne Occidentale, 2015. English. �NNT : �. �tel-
01266291�

https://hal.science/tel-01266291
https://hal.archives-ouvertes.fr

N° d’ordre : 2015telb0370

SSoouuss llee sscceeaauu ddee ll’’UUnniivveerrssiittéé eeuurrooppééeennnnee ddee BBrreettaaggnnee

Télécom Bretagne

En accréditation conjointe avec l’Ecole Doctorale Sicma

Dynamic power management of MPSoC using networks of neural
cliques

Thèse de Doctorat

Mention : Sciences et Technologies de l'Information et de la Communication

Présentée par Bartosz Boguslawski

Département : Electronique

Laboratoire : Lab-STICC Pôle : CACS

Directeur de thèse : Claude Berrou

Soutenue le 5 novembre 2015

Jury :

M. Michel Paindavoine, Professeur, Université de Bourgogne (Rapporteur)
M. Gilles Sassatelli, Directeur de Recherche CNRS, LIRMM (Rapporteur)
M. Claude Berrou, Professeur, Télécom Bretagne (Directeur de thèse)
M. Patrick Loumeau, Professeur, Télécom ParisTech (Examinateur)
M. Frédéric Heitzmann, Ingénieur de Recherche, CEA Leti (Examinateur)
M. Fabrice Seguin, Maître de Conférences, Télécom Bretagne (Examinateur)
M. Vincent Gripon, Chargé de Recherche, Télécom Bretagne (Examinateur)

Abstract

Doctor of Philosophy - Télécom Bretagne

Dynamic power management of MPSoC using networks of neural cliques

by Bartosz Boguslawski

The challenge of combining high-performance and energy efficiency is clearly present

in today’s electronics applications. This objective can be reached with Multiproces-

sor System-on-Chip (MPSoC) platforms that provide high-level of adaptability, perfor-

mance, reliability and energy efficiency. Nevertheless, they have to be accompanied with

a power management decision unit that continuously adapts their operation. This leads

us to neural networks that can provide comparable properties to those of the cerebral

cortex. We use an associative memory that relies on neural cliques to store information

and sparse activity to retrieve it. We analyze these networks in power management

applications using real-world data. We show that in order to be compatible with real-

world applications, the initially proposed model of networks of neural cliques has to

be improved. We propose several methods to do so within which the most efficient

relies on a proposed concept of twin neurons. Sparse activity in these networks opens

opportunities for low-power implementations. We show that neural cliques are more

energy-efficient than power management solutions relying on game theory or Content-

Addressable Memory (CAM). Furthermore, we propose a novel 3D interconnect ap-

proach for high-performance neural cliques’ implementation. We show important gains

in terms of total interconnect length and power consumption.

Résumé

Docteur de Télécom Bretagne

Gestion dynamique de consommation de MPSoC par un réseau de cliques

neurales

par Bartosz Boguslawski

Les applications microélectroniques d’aujourd’hui nécessitent de combiner haute perfor-

mance et efficacité énergétique. Cet objectif est accessible grâce aux ”Multiprocessor

System-on-Chip” (MPSoC) qui fournissent un haut niveau d’adaptabilité, de perfor-

mance, de fiabilité et d’efficacité énergétique. Néanmoins, ils doivent être couplés à des

systèmes de décision et de gestion de la consommation qui adaptent en permanence

leur mode de fonctionnement. Cela nous amène à considérer les réseaux de neurones,

lesquels ont vocation à offrir des propriétés comparables à celles du cortex cérébral. Ils

peuvent notamment servir comme mémoire associative, avec un processus de relecture

très économe en énergie. Nous analysons ces réseaux dans des applications de gestion de

l’alimentation, avec des données du monde réel. Nous montrons que pour être compati-

ble avec des applications réalistes, le modèle de réseaux de cliques neurales initialement

proposé doit être amélioré. Nous proposons plusieurs améliorations et présentons le

concept de neurones jumeaux. L’activité parcimonieuse dans ces réseaux ouvre des op-

portunités pour des implémentations à faible consommation. Nous montrons que les

cliques neurales sont plus efficaces en termes d’énergie que des solutions de gestion de

l’alimentation reposant sur la théorie des jeux ou des ”Content-Addressable Memory”

(CAM). En outre, nous proposons une nouvelle approche d’interconnexion 3D pour

l’implémentation physique de cliques neurales à haute performance. Nous montrons

des gains importants en termes de longueur totale d’interconnexion et consommation

d’énergie.

Acknowledgements

Remerciements

Je tiens tout d’abord à remercier mon directeur de thèse, Claude Berrou. Gardant

toujours une vue d’ensemble sur ma thèse, il m’a appris à prendre du recul sur mes

travaux. Ses contributions ne se limitant pas aux aspects purement techniques mais,

comme il le dit si bien ”Une thèse, c’est une formation complète”, j’ai du apprendre à

expliquer des concepts complexes de manière simple, discuter, poser des questions, ap-

procher des problèmes... Et même manger des fruits de mer (en provenance de Bretagne,

bien évidemment).

Aussi ai-je eu la chance d’avoir de très bons encadrants : Frédéric Heitzmann, Fabrice

Seguin et Vincent Gripon. Tous ont passé un temps infini à répondre avec moi aux

questions que nous nous sommes posées. Grâce à eux, je garderai de très bons souvenirs,

pas seulement du bureau mais aussi au travers des autres activités que nous avons

partagées. Fabrice m’a montré son nom inscrit sur la tour Eiffel (oui !). Fred m’a une

fois demandé d’emporter mes baskets lors d’un déplacement professionel, et aujourd’hui

je ne peux plus me passer de course à pied. Et Vincent m’a fait découvrir Montréal le

soir et m’a fait goûter la poutine. Me rappeler de ces instants me donnera toujours le

sourire.

J’adresse également un grand merci au chef du LISAN, Fabien Clermidy, pour son

support, nos nombreuses discussions et l’environnement de travail très riche et motivant

qui reigne au sein de son laboratoire. Je n’oublie pas non plus Rodolphe Héliot qui a été

la première personne à me présenter le sujet qui est devenu ma thèse et qui a toujours

cru en moi.

Merci aussi à tous les membres du jury, Michel Paindavoine, Gilles Sassatelli, Patrick

Loumeau et bien sûr Claude, Fred, Fabrice et Vincent. Merci pour l’intérêt porté à mon

travail et nos échanges lors de ma soutenance.

Je voudrais remercier les autres doctorants avec lesquels j’ai eu la chance de travailler,

notamment Benôıt Larras de Télécom Bretagne et Hossam Sarhan du CEA. C’était une

très bonne expérience et un vrai plaisir.

Durant ma thèse, j’ai eu la chance de travailler en deux endroits - à Télécom Bretagne et

au CEA Leti. Grâce à cela, j’ai rencontré des personnes formidables qui sont devenues de

très bons collègues et mes amis. Ils sont nombreux et se reconnâıtront. Pour les pauses

café, la grimpe, le ski - tous ces moments fantastiques que nous avons passés ensemble,

iv

v

je ne trouve pas de mots pour exprimer à quel point je vous suis reconnaissant. Un

simple merci ne suffit pas !

J’adresse enfin le merci le plus important à ma famille, notamment mes parents qui

m’ont depuis toujours préparé pour cette aventure. Sans leur soutien, je n’aurais jamais

été capable d’en arriver là. Merci à ma Rebecca pour son aide, sa présence et son amour.

“Words must be weighed, not counted.”

Polish saying

To my parents. . .

vii

Contents

Abstract ii

Acknowledgements iv

Contents viii

List of Figures xii

List of Tables xiv

Abbreviations xv

Symbols xvii

Introduction 1

Context and motivation . 1

Objective . 3

Contribution . 4

Report organization . 4

1 MPSoC power management 6

1.1 Introduction . 6

1.2 MPSoC architecture . 7

1.2.1 Generalities and definitions . 7

1.2.2 Communication schemes for MPSoCs 9

1.2.3 Dividing MPSoC on Voltage/Frequency Islands 10

1.3 Power management on MPSoC . 11

1.4 State-of-the-art of power management decision units 12

1.4.1 Low-level decision units . 13

1.4.2 High-level decision units . 13

1.5 MPSoC power model and optimization formulation 14

1.6 Game theory for power management on MPSoC 17

1.7 CAM-SRAM associative memory for power management on MPSoC . . . 18

1.7.1 Generalities and definitions . 18

1.7.2 CAM-SRAM as a decision unit . 20

1.8 Conclusion . 21

viii

Contents ix

2 Introduction to neural networks and networks of neural cliques 23

2.1 Introduction . 23

2.2 Biological neural networks . 25

2.3 Artificial neural networks . 27

2.3.1 McCulloch-Pitts model . 28

2.3.2 Hopfield Neural Networks - memorize information 29

2.3.3 Spiking Neural Networks - model biological networks and compute 30

2.3.4 Deep learning - learn information 32

2.4 Networks of neural cliques . 33

2.4.1 Message definition . 35

2.4.2 Network structure . 35

2.4.3 Message storing procedure . 36

2.4.4 Message retrieval procedure . 37

2.4.5 Density and error probability definitions 38

2.4.6 Neural cliques as associative memory 39

2.4.7 Network dimensioning guidelines 40

2.5 Conclusion . 41

3 Non-uniformly distributed data in networks of neural cliques 43

3.1 Introduction . 43

3.2 Non-uniform distribution problem positioning 45

3.3 Strategies to store non-uniform data . 47

3.3.1 Random clusters . 47

3.3.2 Random bits . 48

3.3.3 Using compression codes . 49

3.3.4 Performance comparison . 50

3.4 Twin neurons for efficient real-world data distribution in networks of neu-
ral cliques . 53

3.4.1 Introducing twin neurons . 53

3.4.2 Theoretical analysis . 55

3.4.3 Performance comparison . 59

3.4.3.1 Comments on Huffman coding technique 60

3.4.3.2 Comparison . 61

3.4.4 Influence of distribution’s standard deviation 64

3.5 Real-world data in two practical applications 65

3.5.1 MPSoC power management for LTE receiver 65

3.5.1.1 LTE receiver implemented on MAGALI platform 65

3.5.1.2 Network of neural cliques used as power management unit 65

3.5.1.3 Simulation results . 67

3.5.2 Dynamic management of PVT variations 67

3.5.2.1 Introduction . 67

3.5.2.2 Multiprobe sensor for PVT variations 68

3.5.2.3 Network of neural cliques used as dynamic management
unit . 68

3.5.2.4 Network of neural cliques dimensions 69

3.5.2.5 Simulation results . 70

3.6 Conclusion . 71

Contents x

4 Hardware neural cliques in practical applications 72

4.1 Introduction . 72

4.2 Analog and digital ASIC implementation 74

4.2.1 Analog circuit . 74

4.2.2 Digital circuit . 76

4.2.3 Comparison . 77

4.3 Hardware 3D considerations . 77

4.3.1 General introduction to 3D neural networks 78

4.3.2 3D technology . 78

4.3.3 3D neural cliques . 79

4.3.4 Methodology . 79

4.3.5 Simulation model . 81

4.3.6 General study results . 82

4.3.7 Case study simulation results . 86

4.4 MPSoC power management: comparison with game theory decision unit . 88

4.4.1 Generic neural cliques structure . 88

4.4.2 General comparison with game theory decision unit 91

4.4.3 MPSoC power management for MC-CDMA transmitter 93

4.4.3.1 MC-CDMA transmitter implemented on FAUST platform 93

4.4.3.2 Network of neural cliques used as power management unit 94

4.4.3.3 Energy gains . 94

4.5 MPSoC power management: comparison with CAM-SRAM associative
memory . 97

4.5.1 Neural cliques-based associative memory - implementation com-
plexity . 98

4.5.2 CAM-based associative memory - implementation complexity . . . 99

4.5.3 Implementation complexity comparison 100

4.5.4 LTE receiver implemented on MAGALI platform 101

4.5.4.1 Dimensions of CAM and SRAM 101

4.5.4.2 Dimensions of neural cliques 102

4.5.4.3 Simulation results . 102

4.6 Conclusion . 105

Conclusion and perspectives 106

Contribution and conclusion . 106

Perspectives . 107

Implementation . 108

Applications . 110

A Process variability in neural cliques analog circuits 112

B Programming the synapses 114

List of Publications 117

Bibliography 118

Contents xi

Résumé 134

List of Figures

1 MPSoC-type mobile system . 2

1.1 MPSoC architecture . 8

1.2 CMOS circuit and the used notation . 11

1.3 Low-level decision unit example . 12

1.4 Example of an application . 16

1.5 Game theory power management scheme 18

1.6 CAM-SRAM associative memory . 19

2.1 Biological neural network elements . 25

2.2 Biological neuron’s potential over time . 25

2.3 Generic neuron model . 28

2.4 McCulloch-Pitts neuron . 29

2.5 STDP weight modification . 31

2.6 Illustration of deep learning . 32

2.7 Networks of neural cliques general structure, notation and an exemplary
network . 35

2.8 Evolution of the error rate with regard to the number of stored messages . 39

3.1 (a) Network with uniformly distributed messages. (b) Network with non-
uniformly distributed messages . 45

3.2 Evolution of the error rate with regard to the number of stored messages
for different types of data distributions . 46

3.3 Network with a random cluster added . 47

3.4 Adding least used combination of bits . 49

3.5 Evolution of the error rate with regard to the number of stored messages
for different strategies . 51

3.6 Evolution of the error rate with regard to the number of stored mes-
sages for different strategies with minimal material used to approach the
performance close to uniform case . 51

3.7 Message storing procedure for twin fanals; pseudocode. 55

3.8 Error rate for FSA and uniform distributions, with network from (Gripon
and Berrou, 2011a) used. First segment equal one (π). 56

3.9 Error rate for FSA and uniform distributions, with compression codes or
twin fanals used for FSA. First segment equal one (π). 57

3.10 Error rate for FSA and uniform distributions, with network from (Gripon
and Berrou, 2011a) used. First segment different from one (π). 58

3.11 Error rate for FSA and uniform distributions, with compression codes or
twin fanals used for FSA. First segment different from one (π). 59

xii

List of Figures xiii

3.12 Performance comparison for different proposed strategies when multiples
fanals are stimulated . 62

3.13 Optimal and predicted connections limit values with regard to the number
of stored messages . 62

3.14 The saturation parameter used to predict connections limit value with
regard to the number of stored messages 63

3.15 Error rate when using twin fanals for different values of σ of non-uniform
distribution . 64

3.16 LTE receiver application graph . 65

3.17 Network of neural cliques structure for LTE receiver power management . 66

3.18 Overview of the variability management system 69

4.1 Schematic of the synapse circuit . 74

4.2 Schematic of a fanal in a cluster of size four 75

4.3 Schematic of the full WTA circuit . 75

4.4 Schematic of the digital circuit implementing one cluster 76

4.5 2D network example . 79

4.6 3D network (folded network from Figure 4.5) 80

4.7 Total wire length gain compared to 2D in function of the number of
clusters in each direction . 82

4.8 Maximal RC delay gain compared to 2D in function of the number of
clusters in each direction . 83

4.9 (a) Total wire length gain (b) maximal RC delay gain in function of the
total number of fanals n for different network dimensions 84

4.10 Network of neural cliques structure for 3D case study 86

4.11 Homogeneous MPSoC with six VFIs and two applications mapped 88

4.12 (W − L) clusters for generic power management 89

4.13 (f) clusters for generic power management 89

4.14 Fanal’s response with respect to input current at node Ak 90

4.15 Three time steps composing the overall time response of the network to
obtain a result in the (f) clusters . 91

4.16 Time response of a cluster with regard to the number of synapses per
fanal during different steps of retrieval process 92

4.17 MC-CDMA TX application graph . 93

4.18 Energy gain compared to global frequency with regard to total number
of possible latency L values . 95

4.19 Breakdown of decision time and computation in case of game theory and
neural cliques decision units . 96

4.20 Implementation complexity in function of information bits stored 100

4.21 The structure of the document with contribution 108

B.1 Schematic of the programmable synapse circuit 114

List of Tables

1.1 Comparison of heterogeneous and homogeneous MPSoC architectures . . 9

1.2 Decision units state-of-the-art summary 21

3.1 The limiting number of messages that can be stored when using each
strategy until the error rate reaches 0.1. 52

3.2 Comparison of Huffman shuffle and Huffman simple techniques 61

3.3 LTE receiver application parameters . 66

3.4 MPSoC power management results . 66

3.5 Variability management results . 70

4.1 Comparison of analog and digital implementations of networks of neural
cliques Larras et al. (2013a) . 77

4.2 Total wire length gain in percentage compared to 2D for a given number
of clusters in x and y direction . 85

4.3 Maximal RC delay gain in percentage compared to 2D for a given number
of clusters in x and y direction . 85

4.4 The gains obtained for 3D neural cliques used as power management
controller . 87

4.5 Comparison between neural cliques and game theory decision unit 92

4.6 MC-CDMA TX application parameters 93

4.7 Comparison between neural cliques and CAM 103

4.8 Comparison between neural cliques and CAM and SRAM couple 104

B.1 SRAM memory for connection activation bits 115

xiv

Abbreviations

IoT Internet-of-Things

MPSoC Multiprocessor System-on-Chip

PE Processing Element

CAM Content-Addressable Memory

NoC Network on Chip

NI Network Interface

GALS Globally Asynchronous Locally Synchronous

VFI Voltage/Frequency Island

DVFS Dynamic Voltage and Frequency Scaling

FDSOI Fully Depleted Silicon on Insulator

FIFO First In, First Out

LDM Local Decision Maker

SRAM Static Random Access Memory

MC Memory Cell

SL Searchline

ML Matchline

HNN Hopfield Neural Network

SNN Spiking Neural Network

STDP Spike-Timing-Dependent-Plasticity

DBN Deep Belief Network

WTA Winner Takes All

LsKO Losers Kicked Out

FSA First Segment Anomaly

RO Ring Oscillator

PVT Process Voltage and Temperature

xv

Abbreviations xvi

TSV Through-Silicon-VIA

NV Non-Volatile

PUF Physical Unclonable Function

FPGA Field-Programmable Gate Array

NLP Natural Language Processing

Symbols

f clock frequency Hz

Vdd supply voltage V

P power W

Pdyn dynamic power W

Pstat static power W

Pshort short circuit power W

Pswitch switching power W

Isc short circuit current A

C capacitance F

α switching activity factor

Ileak leakage current A

Estat static energy J

L latency deadline s

Edyn dynamic energy J

X time to process a task s

N number of clock cycles needed to finish a task

T clock period s

EHdyn dynamic energy in high-activity state J

ELdyn dynamic energy in low-activity state J

E total energy J

Vnom nominal supply voltage V

Tnom nominal clock period s

Enom nominal energy J

Edd dynamic energy per clock cycle at Vdd J

Tdd clock period at Vdd s

xvii

Symbols xviii

γ energy reduction per clock cycle in low-activity state

ν number of VFIs in the MPSoC

s game theory action

u game theory outcome

z number of matchlines

w search word length

x output word length

y number of entries in RAM

g integration function

a activation function

q number of signals at neuron’s input

v excitatory signal at neuron’s input

ζ inhibitory signal at neuron’s input

σ neuron’s activation threshold

n total number of neurons in neural network

M number of messages

m a message

wij weight between neurons i and j

c number of segments in a message, number of clusters

` segment’s maximal value, cluster size

δ minimal distance between two cliques

d network density

ce number of segments erased in a message

Pc probability of a correct message retrieval after one iteration

Pe probability of a incorrect message retrieval after one iteration

p probability of choosing value one on the first segment of FSA

distribution

d′ density between the first cluster and any other one for any

value on the first segment that is not one for FSA distribution

d′1 density between the first cluster and any other one for

the first segment equal one for FSA distribution

π first segment equals one in a message drawn from FSA

distribution

Symbols xix

π first segment different from one in a message drawn from FSA

distribution

ε first segment is erased in a message drawn from FSA

distribution

ε first segment is not erased in a message drawn from FSA

distribution

Pe,πε error probability after one iteration for πε case of FSA

distribution

Pe,πε error probability after one iteration for πε case of FSA

distribution

Pe,πε error probability after one iteration for πε case of FSA

distribution

Pe,πε error probability after one iteration for πε case of FSA

distribution

n1 number of fanals associated to value one in the first cluster

for FSA distribution

Pr process

Temp temperature ◦C

V̂ approximated voltage V

T̂emp approximated temperature ◦C
−→
F frequency vector Hz

VT threshold voltage V

h length of a vector at the output of the transcoder in digital

implementation of neural cliques

k fanal’s index in digital implementation of neural cliques

IUNIT unitary current A

Af+s area occupied by one fanal circuit and all its synapses µm2

Afanal area occupied by fanal circuit µm2

Asynapse area occupied by synapse circuit µm2

ψs number of synapses connected to one fanal

dist(i,j)(i′,j′) Manhattan distance between two fanals with

coordinates (i, j) and (i′, j′) µm

τ2D RC delay in a 2D circuit s

Symbols xx

Rper µm resistance per unit length Ω

Cper µm capacitance per unit length F

τ3D RC delay in a 3D circuit s

RTSV resistance of a TSV Ω

CTSV capacitance of a TSV F

disttotal total wire length µm

τmax maximal RC delay s

W workload

fglob global frequency Hz

cin number of input clusters

cout number of output clusters

ψ total number of connections

p number of transistors necessary to implement a connection

κ implementation complexity

b number of transistors necessary to implement a buffer

t number of transistors necessary to implement a fanal

Introduction

Context and motivation

The increasing density of transistors per chip provides more and more computing power

within a single chip. Computing systems become increasingly integrated and attractive

for new, previously inaccessible application fields. They become ubiquitous and have to

be mobile. Supporting the variety of applications and providing a sufficient autonomy

means that these systems have to be efficient both in terms of speed and energy.

This is relevant for all the components of a complete system. Internet-of-Things (IoT)

microcontrollers for wireless sensor nodes (Bol et al., 2013), on-chip interconnect network

routing (Qi et al., 2010), memories (Noguchi et al., 2015), dedicated hardware acceler-

ators (Kuo et al., 2009), wireless communication (Lu et al., 2013), sensors (Boukhayma

et al., 2014), just to name a few - nowadays, they all have to provide high-performance

and consume as little energy as possible.

To support this large variety of applications, multiple dedicated components are inte-

grated on one chip and interconnected with a communication infrastructure. Depending

on the application running, different components are used to provide the necessary per-

formance. This type of architecture is called Multiprocessor System-on-Chip (MPSoC)

and is present throughout this report.

Figure 1a shows an MPSoC-type mobile system. Dedicated computation units are rep-

resented with squares, the lines depict the communication infrastructure. We call the

computation units Processing Elements (PEs). PEs can be general purpose processors

but also hardware accelerators (e.g. audio/video coders/decoders), memories, peripher-

als (e.g. Bluetooth, USB) among others. In the classical design, illustrated in Figure 1b,

all the PEs work at their maximal performance (marked in red). This guarantees that

1

Introduction 2

(a) (b)

? ? ?

? ? ?

? ? ?

(c) (d)

Figure 1: (a) MPSoC-type mobile system (b) Classical design for the most demanding
application (c) Flexible PEs can adapt to the current requirements (d) How to find the

optimal settings for each PE?

all the applications targeted for this platform are executed at the highest speed, and

therefore all the time-related constraints are preserved. However, from the energetic

point of view, this is the worst-case design. Since all the PEs work at their maximal

capabilities, they consume a maximal amount of energy. Now, as mentioned before, the

MPSoC platform supports a large group of applications, not all of them having the same

performance requirements for all the PEs. In the given example, the MPSoC is embed-

ded in a smartphone. Obviously, a smartphone may run a lot of different applications

with very diverse computing requirements. The user does not need the whole device’s

computing power to write a simple text message. Moreover, not only the application

may change, but the environment is dynamic as well. The processing of a signal from

a base station changes with regard to the distance between the smartphone and the

base station. When the phone is close to the base station, the signal processing tasks

can be simplified. Another consequence of the classical design system from Figure 1b

is excessive heating of the PEs. As they all work at the highest speed, they dissipate a

maximal amount of power that is then converted into heat. If no special care is taken,

this may lead to unexpected behavior or even irreversible system breakdown.

We can improve the classical design by adding a certain flexibility to the PEs. What

if each PE had a knob that allows to slow it down or speed it up according to the

Introduction 3

current needs (application type, environment, temperature-safe operation, ...)? When

the application or its constraints are changed, when the smartphone moves closer to the

base station, or some of its PEs are heating too much, one simply adapts the knobs.

This situation is illustrated in Figure 1c. Different colors represent different positions of

the PEs’ knobs.

Even if it sounds quite easy, the control of the knobs is not an obvious task (Figure 1d).

Given that PEs do not have the same characteristics, knowing that they depend on

each other, what is the optimal position of each knob to globally consume the least

energy without altering the application operation? Even more importantly, how to find

the good solution for all the knobs fast enough to reconfigure the system in real-time?

Furthermore, the decision process is complex, requires a significant computing power

and can consume a significant amount of energy as well. Possibly the decision time and

energy demand are too important compared to the potential gains. A fast and efficient

decision system is needed, which is difficult to achieve with today’s silicon technology.

One can see that in the context of MPSoCs, the aforementioned need for high-performance

and low-energy consumption is clearly the issue in hand. Nonetheless, human brain is

a good example of a performant and energy-efficient system. Although this organ con-

sumes just 20W (Drubach, 1999), it surpasses the fastest supercomputer Tianhe-2 that

consumes 17.8MW (Sengupta and Stemmler, 2014), in tasks such as decision making,

classification, associations, information cross breeding or production of new one, func-

tioning in presence of noise, uncertainty and errors (Whitworth, 2008, Rojas, 1996). The

gap between the energy efficiency of the two shows that there is a lot of inspiration to

be derived from the human brain to electronics.

Objective

The challenge of combining high-performance and energy efficiency raised above is really

fundamental for this work. The objective is to apply a recently introduced type of neural

networks based on neural cliques (Gripon and Berrou, 2011a) to an application requiring

high speed and energy efficiency. This type of neural network showed a huge gain in

performance compared to state-of-the-art neural networks (Gripon and Berrou, 2011a).

It relies on an efficient way to store information and sparse activity to treat it. That

Introduction 4

opens opportunities for low-power implementations. Since the abovementioned MPSoC

architecture fits very well into this context, it is the main application targeted in this

document. The objective is to explore whether networks of neural cliques can be used

to propose a high-performance and energy efficient hardware solution for such a type of

application.

Contribution

The contributions presented in this report are as follows:

• The analysis of networks of neural cliques in a context of real-world applications

and more specifically in terms of real-world data.

• The proposal of a theoretical analysis and evaluation of multiple ways to adapt net-

works of neural cliques to real world-data. The validation on power and variability

management applications. Adapting networks of neural cliques to real world-data

is essential to use it in practically any real-world application.

• The proposal of a specific neural cliques’ architecture for hardware MPSoC power

management controller and validation on several test-cases. The proposed solu-

tion offers a very good compromise between decision speed, energy efficiency and

decision optimality compared to state-of-the-art controllers.

• The exploration of numerous improvements of the neural cliques’ hardware imple-

mentation improving its functionality and efficiency.

Report organization

The first chapter explains the MPSoC architecture in detail and elaborates on power

management techniques. Later, the concept of using an associative memory for power

management is presented for the first time. In the end of this chapter, a comparison of

strong and weak points of each type of power management control is given.

The second chapter introduces biological and artificial neural networks. The goal is to

outline the basic concepts of neural networks to ease the introduction of networks relying

Introduction 5

on neural cliques. The rest of the chapter presents the principles of networks of neural

cliques.

The next chapter attempts to use networks of neural cliques for the first time in a

practical scenario with a real-world type of data. It is shown that real-world data impacts

the functioning of these networks, and therefore it is essential to propose methods to

counterbalance these effects if real-world applications are targeted. We propose, evaluate

and compare multiple approaches. The most efficient method relies on a concept of twin

neurons and is analyzed in depth both formally and by simulations. To assess the model

adapted to real-world data, twin neurons are used as power and variability management

controller to optimize power consumption of electronic circuits.

Later, chapter 4, proposes neural cliques’ hardware structure for MPSoC power man-

agement application. It is then compared to a state-of-the-art method. A comparison

with a Content-Addressable Memory (CAM)-based associative memory is also provided.

Further, some additional points on hardware implementation, such as process variability

robustness, synapses programming or efficient interconnect are discussed. We propose

a compact interconnect approach using 3D technology to reduce interconnect delay and

energy consumption.

Finally, detailed contributions and conclusions are given. The presented work leads to

numerous perspectives that are discussed both in terms of implementation and applica-

tions in the closing part.

Chapter 1

MPSoC power management

Introduction

How to obtain high-performance and energy efficiency?

Chapter 1 MPSoC power management

Low-power systems require power management

Chapter 2 Introduction to neural networks and networks of neural

cliques

The human brain combines high-performance and energy efficiency.

Networks of neural cliques provide efficient storage-retrieval

functionality

1.1 Introduction

This chapter presents the MPSoC architecture and explains how it can be exploited

to allow for dynamic power management. Then, state-of-the-art of power management

decision units is outlined. A detailed power model is given and power optimization is

formally defined. Later, functioning of CAM-SRAM associative memory is explained

and it is shown how to use it for power management. The chapter is concluded with a

comparison of different types of power management decision units.

6

Chapter 1. MPSoC power management 7

1.2 MPSoC architecture

1.2.1 Generalities and definitions

Let us first discuss how MPSoC-type architectures emerged. We used to associate

high-performance computing with scientific applications, e.g. medical imaging, bio-

science, electrical simulations. Nowadays, the meaning of this term is changing. High-

performance computing includes also embedded computing, multimedia, voice recogni-

tion, video compression/decompression, high-speed communication. These new applica-

tions imply real-time constraints which means that if some task is not finished in time,

the whole system may fail. Furthermore, if a task is finished too early, the whole system

may not necessarily benefit. This means that more flexibility is needed to fine-tune the

system to time-related constraints.

Apart the need for a new level of flexibility, the second reason to search for new com-

puting architectures is the increasing technological variability (Borkar, 2005). The tran-

sistor’s dimensions continue to scale down which causes reliability issues. It is unlikely

that all the parts of the chip are equally efficient. Technological improvements are

not sufficient, new architectural approaches are indispensable. Consequently, shifting

to parallelism instead of increasing the operation frequency is preferred. Replicating a

computation unit multiple times introduces redundancy and allows for control and error

correcting schemes. For example, computation results of one unit can be controlled and

corrected if needed by another unit. Isolating faulty parts of the system is also possible.

If, due to variability issues, a unit does not provide sufficient performance, its parameters

may be tuned as well. Moreover, as the computation is distributed, it is advantageous

in terms of radiation hardening as well.

The third reason is that modern mobile systems have to provide extremely low-power

operation since they operate on batteries. This can be achieved using dedicated accel-

erators with specifically optimized instruction sets to offer the best performance/energy

efficiency trade-off (Wolf et al., 2008). At the same time, multitasking requires multiple

resources to allow for parallel processing. Embedding multiple types of units allows

performing different functions concurrently.

Since the design cost and time-to-market metrics are important for business prosperity,

new systems have to be designed with minimal effort. As a consequence, it is important

Chapter 1. MPSoC power management 8

to obtain an easily scalable architecture that can be quickly adapted to the current

market needs. It is therefore important to search for regular, distributed approaches to

avoid the complete redesign of each new product.

Processing
Element

Sensors

DVFS

Network Interface

Asynch.
Router

V/F island

MPSoC

Processing
Element

...
Figure 1.1: MPSoC with power management capability. Dynamic Voltage and Fre-
quency Scaling (DVFS) allows to modify the power mode of the Voltage/Frequency
Island (VFI). Each VFI groups a number of Processing Elements. Communication

between VFIs is possible through the Network Interface and routers.

Knowing requirements for the new architecture, we proceed to the description of MP-

SoCs. This architecture responds very well to all the abovementioned points.

Figure 1.1 presents an MPSoC architecture. The tasks are executed on PEs. Depending

on the type of PEs, two different categories of MPSoCs are distinguished:

• Heterogeneous MPSoCs which are composed of different types of PEs designed to

perform their specific tasks (dedicated accelerators).

• Homogeneous MPSoCs which are composed of one type of PE instantiated multiple

times where all the elements necessary for the targeted application are embedded

inside the PE.

A comparison of both types of MPSoCs is given in (Jalier et al., 2010). In Table 1.1

we present a general comparison of heterogeneous and homogeneous MPSoC architec-

tures. Thanks to dedicated PEs, heterogeneous MPSoC provide good energy efficiency

and performance. Memory management is simplified thanks to the fact that a certain

memory block is addressable only by certain PEs and consequently, at a given moment,

Chapter 1. MPSoC power management 9

Table 1.1: Comparison of heterogeneous and homogeneous MPSoC architectures

Heterogeneous Homogeneous

Energy efficiency + -

Performance + -

Memory management + -

Flexibility - +

Scalability - +

it is easier to determine which data is manipulated by which PE. Contrary to heteroge-

neous MPSoCs, homogeneous MPSoCs are configurable after the fabrication and much

easier to scale (by increasing the number of PEs) (Saponara and Fanucci, 2012). The

choice between the two depends on the targeted group of applications. Generally speak-

ing, homogeneous MPSoCs are well suited for data-parallel systems where many simpler

tasks have to be performed on independent data streams. Heterogeneous MPSoCs target

high-performance applications with low-power requirements.

1.2.2 Communication schemes for MPSoCs

To allow possibly large number of PEs to communicate, an efficient communication

scheme is necessary. The traditional bus-based communication becomes the bottleneck

since only one communication transaction at a time is allowed by the arbitration result.

Consequently, the communication bandwidth of each PE is inversely proportional to the

number of PEs in the MPSoC. A hierarchical communication structure with few buses

could alleviate the limitations of single bus structure, yet it requires a bigger design

effort, several communication protocols and application specific PEs’ grouping (Tsai

et al., 2012). That is why Network on Chip (NoC) is proposed as a new communication

scheme for MPSoCs (Kumar et al., 2002). It consists of Network Interfaces (NIs), routers

and links (cf. Figure 1.1). The NI provides an interface between the PEs and the router,

converts data into network packets and implements asynchronous-synchronous interfaces

(Beigné et al., 2005). Routers route data between the source and destination through

the links. NoC is usually organized in a mesh topology due to its simple layout and easy

routing resulting in reduced-complexity routers. NoC allows for Globally Asynchronous

Locally Synchronous (GALS) systems which means that there are local areas which

work within the same clock domain but globally the system is asynchronous. As a

Chapter 1. MPSoC power management 10

result, the problem of clock skew is avoided and the power consumption related to clock

propagation is reduced (Kumar et al., 2002). Furthermore, thanks to the distributed

NoC architecture, routing decisions are made based on the local information at the

routers. This allows for easier scaling.

1.2.3 Dividing MPSoC on Voltage/Frequency Islands

Having multiple PEs and a communication structure enabling GALS, it is possible to

divide the MPSoC on a number of Voltage/Frequency Islands (VFIs). Each VFI works

with its own clock frequency f and supply voltage Vdd. To simplify, the couple (f, Vdd) is

called power mode. To be able to apply the power modes, specific actuators are necessary.

For that reason, each VFI integrates Dynamic Voltage and Frequency Scaling (DVFS)

actuator that sets a given power mode. Nowadays, DVFS actuators allow switching

between two different power modes in time of the order of tens of nanoseconds (Kim

et al., 2008, Truong et al., 2009, Beigné et al., 2009). The authors of (Kim et al., 2008)

show different tradeoffs in DVFS actuator’s design in terms of voltage scaling time,

voltage variation of the load transient response and switching efficiency. It is shown

that it is possible to switch between two voltages in 50ns. Small voltage variation of

5% is ensured. To guarantee stable operation, when changing the voltage to a higher

level, low-to-high frequency transitions are allowed once the voltage settles. Similarly,

when changing the voltage to a lower level, firstly the frequency is scaled down and

then, followed by the voltage transition. Further, as stated in (Kim et al., 2008), to take

advantage of the fast switching capabilities of DVFS actuators, fast algorithms have to

be developed to provide DVFS actuators with power modes that have to be set.

Additionally, each VFI is equipped with a set of sensors to provide an information

about the current working conditions, such as temperature, consumed power or other.

The number of PEs within a single VFI can be traded to balance the cost of adding

additional circuitry (NI, DVFS, sensors) and the flexibility of the MPSoC.

MPSoC provides the possibility to fine-tune the system to the current time constraints.

Its distributed architecture, enabling parallel computation, responds well to variability

issues and suits well multitask applications. Integrating dedicated accelerators allows

for high-performance and energy-efficient computation. Its regular architecture reduces

time-to-market and simplifies the scalability.

Chapter 1. MPSoC power management 11

1.3 Power management on MPSoC

Equipping each VFI with the DVFS actuator allows for adapting (f, Vdd) to current

requirements. In this section it is explained how this can reduce the power consumption

of the MPSoC.

PMOS

NMOS

Vdd

GND

IN
OUT

CIscIleak

Ileak

Figure 1.2: CMOS circuit and the used notation. Load capacitance C, short circuit
current Isc and leakage current Ileak are marked.

The power consumption of a CMOS integrated circuit consists of dynamic power Pdyn

and static power Pstat and is given by (Shauly, 2012):

P = Pdyn + Pstat = (Pshort + Pswitch) + Pstat = IscVdd + αCV 2
ddf + IleakVdd (1.1)

The dynamic power Pdyn consists of short circuit power Pshort and switching power

Pswitch. Pshort is related to short circuit current Isc which flows from Vdd to ground for

a short time when both NMOS and PMOS transistors are active. Pswitch is a result of

charging and discharging the load capacitance C. The parameter α is called switching

activity factor and its typical value is 0.2 for logic blocks designed for 65nm technology

(Morifuji et al., 2006). Even when the transistors are not switching, there is some leakage

current Ileak that contributes to the total power consumption through the static power

Pstat. This is represented in Figure 1.2.

We can see that Pdyn can be directly reduced by lowering the clock frequency f when

possible. Since the supply voltage Vdd required for stable operation is determined by

f , it is also possible to reduce Vdd accordingly. Reducing Vdd allows for minimizing the

Chapter 1. MPSoC power management 12

static power Pstat as well. Static power Pstat can be further reduced by keeping the chip

temperature low (Deo, 2010), layout optimization techniques (Shauly, 2012) or tech-

nological improvements, e.g. Fully Depleted Silicon on Insulator (FDSOI) technology

(Vitale et al., 2010).

Equation (1.1) shows how we can reduce the power consumption by using DVFS ac-

tuators to adapt (f, Vdd) to the application needs. We call the process of adapting the

power modes power management. However, to exploit this opportunity, DVFS actuators

have to be provided with a decision on which power modes have to be set.

1.4 State-of-the-art of power management decision units

The above sections show that the MPSoC architecture allows for a new level of perfor-

mance, flexibility and energy consumption reduction opportunities. However, there is a

need for an energy efficient and fast decision unit that provides DVFS actuators with

power modes that are set to reduce the power consumption. This section reviews the

state-of-the-art of these decision units for power management on MPSoC.

We divide the state-of-the-art decision units into two main categories:

• Low-level decision units which take the decision based on local information.

• High-level decision units which take the decision based on global information.

PE

F
I
F
O

OscFilter

Stall
Counter

Decision unit

Voltage Switching
Circuit V

dd

f

FIFO utilization

stall

Figure 1.3: Low-level decision unit from (Truong et al., 2009). Decision is made based
on two signals from the PE. Either FIFO utilization containing current fullness of the

PE’s input data buffer FIFO or stall asserted whenever the PE is inactive.

Chapter 1. MPSoC power management 13

1.4.1 Low-level decision units

Low-level decision units are based on local microarchitectural control dedicated to pro-

vide DVFS actuators with the decision on power modes. The authors of (Kim et al.,

2008) propose to exploit memory-bound intervals in the application to slow down the

PE. Up to 60% energy savings are achieved for the presented benchmarks. Nevertheless,

the effectiveness of such an approach depends directly on the number of memory-bound

cycles. The authors show that for some benchmarks, their decision unit provides a lim-

ited power benefit compared to static configuration. Another type of low-level decision

unit is proposed in (Truong et al., 2009). Its structure is depicted in Figure 1.3. The

decision is made based on two signals from the PE: FIFO utilization and stall. FIFO

utilization provides the information about the current fullness of the PE’s input data

buffer FIFO (First In, First Out). This signal is then averaged over time using a filter

and fed into the decision unit. If the FIFO is often full the decision unit decides to

speed up the PE. Otherwise the PE is slowed down. The stall signal serves as an alter-

native method to control the speed of the PE. This signal is asserted whenever the PE

is inactive. This is caused by either reading an empty FIFO or writing to a full FIFO.

The decision unit counts the number of cycles the PE stalls, and when it reaches a user

defined threshold, the PE is slowed down accordingly. Since the decision is taken based

on the local information, it is not guaranteed that it is globally optimal. Furthermore,

adapting the thresholds for decision taking is left to the user. A decision unit relying

on control automation theory is proposed in (Almeida et al., 2011). Once again, the

decision is taken based only on local information. Moreover, it takes 100ms to reach

the stable response of the decision unit. Such a time response does not allow taking

advantage of the fast switching capabilities of DVFS actuators.

1.4.2 High-level decision units

High-level decision units have a global scope of the system and can provide a decision

that is globally optimal or close to optimal. The operating system can serve as such

a global decision unit (Zhuravlev et al., 2013). Based on the system state that resides

in memory it adapts the settings of each VFI. However, in a system with distributed

memory, the system state is distributed as well. This slows down the decision process

and implies slower time response of the software. That is why hardware approaches are

Chapter 1. MPSoC power management 14

explored. The work (Toprak-Deniz et al., 2007) proposes to use the principles of analog

computation to obtain a decision unit minimizing energy consumption under timing con-

straints. The advantage of the analog computation is that it fully adapts to variations

in process and temperature. Nonetheless, the decision unit’s response time is 50µs, yet

it controls only three PEs. Such a time response does not allow taking advantage of

the fast switching capabilities of DVFS actuators. Moreover, no estimations are given

about the decision unit’s performance when the number of PEs scales. The authors

of (Mansouri et al., 2010a) proposed a distributed high-level decision unit relying on a

hybrid subgradient and consensus method. Although each VFI uses only local infor-

mation from its neighborhood, the provided decision is close to optimal. Nevertheless,

only theoretical study of the proposed algorithm is presented. The response time and

hardware cost are not evaluated. Still, one iteration of the algorithm is estimated to take

several ms, and tens of iterations are necessary for the algorithm to converge. Another

approach is proposed in (Puschini et al., 2009). The proposed decision unit relies on

game theory. In this case each VFI is a player that plays in such a way to maximize

its own gain. This type of decision unit has a time response from few to hundreds of

µs (at clock frequencies from 100 to 500MHz) for up to 100 VFIs (Puschini et al., 2008,

Mansouri et al., 2010b).

Since the game theory decision unit is evaluated on hardware level and serves as one of

the references for the decision unit proposed in this work, we describe it more in detail

in Section 1.6. First however, we exploit the model of power dissipation in MPSoCs to

formally define the energy optimization problem.

1.5 MPSoC power model and optimization formulation

We consider an MPSoC platform with an application mapped on it. As already men-

tioned before, the power consumption of a CMOS circuit consists of static and dynamic

power. Here, we consider the static power Pstat constant, though in a more complex

model, it can be a function of the supply voltage, temperature, and so forth. Con-

sequently, the static energy Estat depends only on the execution latency L when the

application is running and equals:

Estat = LPstat. (1.2)

Chapter 1. MPSoC power management 15

Conversely, the dynamic energy Edyn is a function of the circuit’s activity. The task

assigned to the VFIi, is processed in time:

Xi = NiTi, (1.3)

where Ni is the number of clock cycles needed to finish the computation and Ti is the

clock period. During Xi the VFI consumes EHdyn,i. Until the application is launched

again, the circuit is in low-activity state when classic low-power techniques, as clock

gating (Shinde and Salankar, 2011), are used. Therefore, during L − Xi it consumes

ELdyn,i. The total energy consumed by the VFIi during the application execution is:

Ei = EHdyn,i + ELdyn,i + LPstat. (1.4)

The short circuit power Pshort is comparatively insignificant to the switching power

Pswitch (Zhuravlev et al., 2013) and is not taken into account in the calculations. As a

result, the dynamic power Pdyn becomes:

Pdyn = Pswitch = αCV 2
ddf = αC

V 2
dd

T
. (1.5)

To obtain the characteristics of the MPSoC, a nominal supply voltage Vnom and nominal

clock period Tnom are set. This gives the nominal dynamic energy Enom:

Enom = PdynTnom = αCV 2
nom. (1.6)

Since αC is constant:

αC =
Enom
V 2
nom

=
Edd
V 2
dd

. (1.7)

Where Edd is the dynamic energy at Vdd. Thus:

Edd = Enom

(
Vdd
Vnom

)2

. (1.8)

Since the frequency is proportional to the supply voltage, the dynamic energy consump-

tion per clock cycle is:

Edd = Enom

(
Tnom
Tdd

)2

, (1.9)

where Tdd is the clock period at Vdd.

Chapter 1. MPSoC power management 16

At this point, we can express the whole energy consumed by VFIi working with the

clock period Ti, with regard to its nominal parameters Enom, Tnom:

Ei(Ti) =

[
Ni + γi

(
L

Ti
−Ni

)]
Enom,iT

2
nom,i

T 2
i

+ LPstat,i, (1.10)

where γi is the ratio of the energy consumed per clock cycle in the low-activity state

to the energy consumed per clock cycle in the high-activity state, weighted by the time

spent in each state:

γi =
ELdyn,i

/(L−Xi)

EHdyn,i/Xi
. (1.11)

Given the latency deadline L, and the number ν of VFIs, the optimization is formulated

as follows:

minimize
ν∑
i=1

Ei(Ti)

subject to
ν∑
i=1

(Xi = NiTi) ≤ L.
(1.12)

Thus, the objective of the optimization is to minimize the total energy consumption of

the system, considering local clock periods as state variables, and preserving the time

constraint. An exemplary application is depicted in Figure 1.4. One has to adapt the

clock period of each VFI in the application graph to balance energy consumption and

processing time, accordingly to the global latency constraint L. The blocks do not

necessarily have the same characteristics which is represented with their different sizes.

The first block is set to a high-energy consuming power mode, and therefore its task

is processed quickly. The second one works in a less-energy consuming power mode,

whereas the last block is set to its slowest and most energy-efficient mode.

Input Output
E1(T1) X1(T1) E2(T2) X2(T2) Eυ(Tυ) Xυ(Tυ)

L

Figure 1.4: Example of an application. The total energy consumption has to be
minimized, latency constraint L has to be preserved. VFIs have different characteristics
represented with different sizes of the blocks. Each VFI consumes an energy E and

processes its task in time X that depend on its clock period T .

Chapter 1. MPSoC power management 17

In our energy model, for a given latency constraint L, global static power has a constant

contribution. Therefore, it is discarded in the optimization process.

1.6 Game theory for power management on MPSoC

Game theory is firstly proposed in (Neumann and Morgenstern, 1944). A game is com-

posed of several players. Each player has a number of possible actions s to play. Any

player chooses the actions it plays such that it maximizes its own outcome u. The out-

come of each player depends not only on its own actions but also on the actions played

by other players. The game consists of multiple game cycles, to give the players a chance

to improve their outcomes by choosing new actions, this time knowing the impact of

the actions played by others on the global outcome. After a number of game cycles,

when all the players cannot improve their outcomes anymore, they do not change their

actions between two game cycles. Such a situation indicates that the game reached an

equilibrium. In the context of MPSoC power management, the players do not cooperate

between each other when taking the decision. This type of game is called noncooperative.

A noncooperative game has at least one equilibrium, known as Nash equilibrium (Nash,

1951). Game theory is widely used in domains such as economy, sociology, biology,

engineering, among others.

To obtain a power management control scheme, each VFI is associated with a player.

This is illustrated in Figure 1.5. The actions s are different power modes (f, Vdd). After

the game is finished, the power modes are set by DVFS actuators.

Depending on the test-case scenario, game theory-based decision unit allows for 38%

energy consumption reduction (compared to a given energy budget) (Puschini et al.,

2009) or 23% temperature reduction (Puschini et al., 2008). Several implementations

are explored (Mansouri et al., 2010b). A software version of the decision unit is flexible

and allows for algorithm’s parameters tuning by updating the program. However, since

it is implemented in a general purpose processor, its area is not optimized (0.122mm2

per VFI, 4% of VFI’s area) and it has a long time response (6.05µs for one game cycle).

Hence, a hardware implementation designed for the 65nm ST technology is also explored.

A Local Decision Maker (LDM) that realizes the player’s functionality is integrated in

each VFI. Thanks to hardware optimization, the area is reduced to 0.014mm2 per VFI

Chapter 1. MPSoC power management 18

DVFS

VFI

PE

...

PE

u

s

DVFS

PE

...

PE

u

s

DVFS

PE
...

PE

u

s

DVFS

PE

...

PE

u

s

VFI

VFI VFI

Figure 1.5: Game theory power management scheme. Each player tries to maximize
its outcome u by playing actions s.

with a slight time response increase (7.52µs for one game cycle). Nevertheless, the

authors claim that the hardware implementation scales much better compared to the

software one.

Since high-level decision units do not allow for exploiting fast switching capabilities of

DVFS actuators, another approach for a decision unit is introduced in the next section.

1.7 CAM-SRAM associative memory for power manage-

ment on MPSoC

1.7.1 Generalities and definitions

In traditional indexed memories, data is addressed using a known pointer. The prin-

ciple of associative memories is different: data retrieval is accomplished presenting a

part (possibly small) of it. Thanks to the partial input, the rest of the information is

recalled and consequently no address is needed. Associative memories are widely used in

Chapter 1. MPSoC power management 19

practical applications, for instance databases (Lin et al., 1976), intrusion detection (Pa-

padogiannakis et al., 2010), processing units’ caches (Jouppi, 1990) or routers (Huang

et al., 2001).

MCMC MC

MCMC MC

MCMC MC

search data registers/drivers

w

z

SL0 SL0 SL1 SL1 SL2 SL2

ML0

ML1

ML2
ML sense

amps

en
co

de
r

de
co

de
r

RAM y

x

Figure 1.6: CAM-SRAM associative memory.

One of classical methods to implement an associative memory is Content-Addressable-

Memory (CAM) and Random Access Memory (RAM) couple (Pagiamtzis and Sheik-

holeslami, 2006). A CAM consists of memory cells (MC), vertical searchlines (SL),

horizontal matchlines (ML), and an encoder, Figure 1.6. At the beginning of the oper-

ation, all the z matchlines are precharged high corresponding to all the lines matching.

The input to the system based on a CAM and RAM couple is the search word of length

w. This search word is broadcast through the searchlines on the matrix of memory cells.

It is then compared in parallel to all the memory cells. All the matchlines that have

at least one bit that is different, are discharged. The state of the matchlines is fed into

the encoder that outputs the encoded address of the location where the output word

corresponding to the search word is stored. This address is then decoded and used to

access the output word of length x stored in the RAM with y entries. Since low-power

integrated circuits are targeted in this work, the Static RAM (SRAM) is chosen as the

memory. The variables z and y are not necessarily the same. For example, there may

be several search words leading to the same output word. That is why, in general case,

we include two variables.

Chapter 1. MPSoC power management 20

1.7.2 CAM-SRAM as a decision unit

As we have seen before, low-level decision units do not offer a sufficient quality of control.

High-level decision units provide a decision that is close-to-optimal, yet they are more

complex, energy consuming and slow compared to DVFS actuators. Can an associative

memory be used as a decision unit that combines good decision quality, low complexity,

energy consumption and fast time response?

The optimization (1.12) can be solved with an offline optimization system for a number

of latency constraint L values. The solution is a set of associations between L and Ti

values. To each latency value corresponds a set of clock periods Ti (or frequencies fi)

that have to be set by DVFS actuators to minimize the total energy consumption and

preserve the latency L constraint.

CAM-SRAM associative memory can be used as power management decision unit that

stores in CAM the L values coded on w bits and the corresponding Ti values coded

on x bits all stored in one entry of SRAM. Then, during the MPSoC operation, L is

used as the search word to find the output word with the Ti set subsequently by DVFS

actuators.

Using associative memory simplifies the decision unit since no complex optimization is

done during the MPSoC operation. If the application running on the MPSoC is well

characterized and all the possible L values are known, we can find the solutions for all

the possible cases. In the opposite case, a subset of L values is stored in CAM and the

closest one is applied. This may result in a slightly less optimal decision and excessive

energy consumption. However, the solutions stored in the associative memory are closer

to optimal than, for example, obtained with the game theory decision unit. This is due

to the fact that the solutions are found offline with complex mathematical software tools.

Therefore, there is a trade-off in terms of the number of stored L values and decision

quality. The question of the energy gains with regard to the number of stored L values

is analyzed later in Subsection 4.4.3.3.

Since CAM operation is fully parallel, the response is obtained in a single clock cy-

cle. However, CAM relies on a brute-force search, each stored entry is examined for

a match. Search process is independent of the search word. Although evaluating the

search in parallel speeds up the circuit’s operation, it also means that the whole circuit

Chapter 1. MPSoC power management 21

Table 1.2: Decision units state-of-the-art summary

Low-level High-level CAM-SRAM Our goal

-based

Decision speed + - + +

Decision quality - + + +

Decision unit’s energy efficiency + - - +

is switching for each search. Consequently, a large amount of power is consumed. The

dissipated energy comes mostly from the matchlines that are all charged for each search

and then discharged in case of a miss. Searchlines also represent an important part of

the CAM’s consumption that increases with the memory size (Agrawal and Sherwood,

2006). Additionally, we can imagine scenarios where other constraints are used as the

search word depending on the system requirements. For CAMs the way the data is

split between the search word and the output word is fixed. Ternary CAM (TCAM)

expands CAM functionality allowing ”don’t care” bits matching both 0 and 1 values,

thereby offering more flexibility. However, this comes at an additional cost as the mem-

ory cells must encode three possible states instead of the two in case of binary CAM.

Consequently, the cost of parallel search within such a memory becomes even greater

(Agrawal and Sherwood, 2006). We can see that the classical associative memory lacks

energy efficiency combined with flexibility required in adaptive systems as MPSoCs.

1.8 Conclusion

This chapter introduces the MPSoC architecture and explains how it allows for power

management to obtain an energy-efficient operation under applicative constraints. Dif-

ferent types of power management decision units are outlined and three categories,

namely low-level, high-level and CAM-SRAM associative memory-based decision units

are distinguished. Each type of decision unit has its strong and weak points. Table

1.2 presents the summary of the state-of-the-art decision units. Thanks to their sim-

plicity, low-level decision units allow for high decision speed and the controller itself is

energy efficient. However, since they do not have the global scope of the system, they

do not guarantee that the decision is globally optimal. This limitation can be addressed

with high-level decision units that have the global scope of the system. Nevertheless,

this comes with an additional complexity that results in low decision speed and high

Chapter 1. MPSoC power management 22

decision unit’s energy consumption. Thanks to its parallel operation, CAM-SRAM as-

sociative memory provides high decision speed. Since the decisions are obtained offline

with complex mathematical tools, the decision is close to optimal. Yet, CAM relies on

a brute-force approach that results in a high decision unit’s energy consumption. Con-

sequently, there is a need for a new approach that offers high decision speed, decision

quality and is energy efficient. The chapter that follows, introduces networks of neural

cliques that are later applied to obtain a new type of decision unit that replies to these

requirements.

Chapter 2

Introduction to neural networks

and networks of neural cliques

Chapter 1 MPSoC power management

Low-power systems require power management

Chapter 3 Non-uniformly distributed data in networks of neural

cliques

Networks of neural cliques have to be adapted to real-world

applications

Real-world data exhibits non-uniformity

Chapter 2 Introduction to neural networks and networks of neural

cliques

The human brain combines high-performance and energy efficiency.

Networks of neural cliques provide efficient storage-retrieval

functionality

2.1 Introduction

The previous chapter concluded that associative memories could be a good approach to

design a power management decision unit. However, classical methods rely on a brute-

force approach that results in a high energy consumption. We propose to use another

method. A long-established hypothesis is that some parts of the human brain rely on

associations between concepts, i.e. a form of associative memory. Moreover, the human

23

Chapter 2. Introduction to neural networks and networks of neural cliques 24

brain is known to be extremely energy efficient. That is why we are interested in artifi-

cial models of neural networks. This chapter is devoted to biological and then, artificial

neural networks. It is important to know the biological principles to understand how

artificial models benefit from those findings. Even if some abstract models are loosely

connected to biological equivalents, the fundamentals stay the same. After introduc-

ing some of the state-of-the-art architectures, networks of neural cliques are described

in detail. Since this recently introduced model works as an associative memory and

outperforms state-of-the-art solutions, it is used later in this work.

Chapter 2. Introduction to neural networks and networks of neural cliques 25

2.2 Biological neural networks

Cell body

Dendrites

Axon Dendrites of postsynaptic neuron

Synapse
Signal direction

Figure 2.1: Biological neural network elements.

Biological neural networks essentially consist of neural cells or neurons and the contact

points between the neurons, called synapses. A neuron is made of dendrites, cell body

and axon. This is illustrated in Figure 2.1. The cell body contains the nucleus where

all the information that the cell needs to grow, repair itself and perform its metabolism

is stored. Furthermore, the cell body is filled with cytoplasm with chemicals needed for

the cell to perform its functions. Dendrites that extend from the cell body resemble the

branches of a tree. At the other end of the cell body is the axon that provides the way

to connect to another neuron or other types of cells.

-70
-55

0

40

Resting potential

Action potential

5

V [mV]

t [ms]

Failed stimulation

Figure 2.2: Biological neuron’s potential over time.

Signals in biological neural networks are transmitted electrochemically which means

that electrical signals (voltages) are caused by chemicals. A signal enters the cell body

through dendrites and leaves the cell body through axon. The place where the signal

Chapter 2. Introduction to neural networks and networks of neural cliques 26

passes from one neuron to another, i.e. the contact point between the end of the axon

and the dendrite, is the synapse. The signal arriving at the end of the axon releases tiny

vesicles containing chemical neurotransmitters (Brown, 2001). At the other end of the

synapse, the neurotransmitters attach to receptors of the neighboring neuron. These

receptors influence the electrical response of the postsynaptic neuron, i.e. they modify

its excitability. In other words, the postsynaptic neuron is made more (excitation) or

less (inhibition) likely to continue to transfer a signal.

The chemicals (sodium, potassium) in the cell body and outside the cell have an electrical

charge. The concentrations of the ions (electrically charged chemicals) inside and outside

the cell result in a certain potential difference between the cell and its environment.

Figure 2.2 shows how the neuron’s potential changes over time. When the neuron does

not transfer any signal, it maintains a resting potential which is equal to about -70mV.

This means that the potential inside the neuron is 70mV less than outside. If the sum

of the signals received at the synapses reaches a certain threshold, an action potential is

released. The action potential is often called a spike or an impulse. The stimulus at the

synapses causes some of the positively charged ions (sodium ions) to move inside the

neuron and cause its depolarization. Consequently, the potential of the neuron increases.

When it reaches around -55mV, the action potential is fired, i.e. the potential of the

neuron abruptly increases. The behavior of all neurons is binary, if the threshold is not

reached the action potential is not fired. Otherwise, the full action potential is released.

This is known as the all-or-none principle. When the action potential is fired, some of

the positively charged ions (potassium ions) leave the cell and reverse the depolarization

(repolarization). The neuron potential reaches back -70mV. A temporal period follows

where the potential reduction continues below -70mV (hyperpolarization). Gradually,

the ion concentrations return to the resting state. Neurons need several milliseconds to

react to a stimulus. This is rather slow compared to electronics which achieve switching

times of a fraction of nanosecond.

The human neocortex accounts for 76% of the brain’s volume and is responsible for such

functions as conscious thought, language or spatial reasoning. There are roughly 20

billion neurons in the human neocortex (Pakkenberg et al., 2003) each neuron having

between 1000 and 10000 synapses. The neurons are organized in cortical microcolumns

(Johansson and Lansner, 2007). Each microcolumn contains between 80 and 120 neu-

rons. Microcolumns form macrocolumns (also called hypercolumns). Each macrocolumn

Chapter 2. Introduction to neural networks and networks of neural cliques 27

contains from 50 to 100 microcolumns. Several macrocolumns are grouped to form a

functional area of the brain. A long-established hypothesis is that neocortex operation

relies on associations between concepts, i.e. it is a form of associative memory (Palm,

1982, Rolls and Treves, 1997). The authors of (Jones, 2010) and (Johansson and Lansner,

2007) state that the microcolumn is the most basic information processing unit in the

brain, not a single neuron. This hypothesis is supported by the fact that the neurons

within the microcolumn are reciprocally connected (Thomson and Bannister, 2003) and

consequently, they are all driven by the same stimulus.

To summarize, biological neural networks consist of elementary units as input channels,

a cell body and an output channel. The cell body performs a simple function as the

input signals’ summation and responds only if a certain condition occurs on its input

channels. Biological neural networks have a distributed structure with no central control

unit. Artificial neural networks rely on these principles as well.

2.3 Artificial neural networks

Artificial neural networks have been studied since the 40s. Some of the proposed artifi-

cial neural networks build on biological findings and therefore, have a certain degree of

biological realism (or plausibility). Such theoretical models may help to understand the

human brain and, for instance, allow developing new methods to treat neurological disor-

ders. In other cases, the objective is to construct highly parallel information-processing

systems, somewhat inspired from biological neural networks. Therefore, abstract mod-

els are proposed where biological plausibility is not the issue in hand. Such biologically

inspired information-processing systems are more effective than classical algorithms in

a certain group of applications.

Since artificial neural networks form a broad research field, we present a selection of a

few models. Firstly, we introduce the historically important model (McCulloch-Pitts

model). Next, we describe three models that have different objectives: 1) memorize

(Hopfield Neural Networks), 2) model and compute (Spiking Neural Networks), 3) learn

(Deep learning).

Chapter 2. Introduction to neural networks and networks of neural cliques 28

g a a(g(v1, v2, ..., vq))

v1

v2

vq

...

Figure 2.3: Generic neuron model.

2.3.1 McCulloch-Pitts model

Some of the earliest research comes from McCulloch and Pitts resulting in the proposal of

McCulloch-Pitts networks (Pitts and McCulloch, 1947). It is assumed that the synapses

are represented with connections between the neurons and that they are unidirectional,

i.e. they transmit signals in a predetermined direction. For McCulloch-Pitts networks

there is no limit on the number of connections going out from a neuron. This property is

called the unlimited fan-in. Figure 2.3 depicts a generic neuron model. The operation of

a neuron consists in two functions: an integration function g and an activation function

a. The integration function g reduces the q signals v received at the input of the neuron

to a single value. This single value is used as an argument to the activation function a

that computes the output of the neuron. In McCulloch-Pitts networks the connections

transmit only ones or zeros, that is they are unweighted. The connections are of excita-

tory or inhibitory type. To distinguish the type of connections, excitatory connections

are labeled with v and inhibitory connections with ζ. The integration function g is the

sum of the input signals:

g(v) =

q∑
i=1

vi. (2.1)

The activation function is the step function with threshold σ:

a(g(v), ζ) =


1 if g(v) ≥ σ

0 if g(v) < σ ∨ ∃ζ = 1.

(2.2)

The neuron’s output equals one if there are no inhibitory signals at the input and the

result of the integration function g is greater or equal to the threshold σ. Figure 2.4

shows a McCulloch-Pitts neuron with two excitatory inputs and one inhibitory input

signal.

Chapter 2. Introduction to neural networks and networks of neural cliques 29

+ σ a(g(v1, v2), ζ1)

v1

v2

ζ1

Figure 2.4: McCulloch-Pitts neuron.

McCulloch-Pitts neurons can be organized in networks to realize more complex models.

More specifically, they can be organized in layers, so that the neurons in the second layer

receive signals only from the outputs of the neurons in the first layer. For example, they

can be used to compute logical functions. It is proven (Rojas, 1996) that a McCulloch-

Pitts network of two layers can realize any logical function F : {0, 1}q → {0, 1}. Fur-

thermore, weighted connections transmitting real values can be introduced. Also, the

aforementioned absolute inhibition can be replaced with relative inhibition where con-

nections are weighted with negative factors. It is shown that all this variations result

in equivalent networks. The choice between different variants is a trade-off between the

complexity of the network’s topology and the complexity of its elements (Rojas, 1996).

2.3.2 Hopfield Neural Networks - memorize information

Since the neocortex operation relies on associations between concepts, artificial neural

networks for associative memory are also proposed. The concept of associative memory

is introduced in Section 1.7. The most prominent model in this category is proposed

by Hopfield in (Hopfield, 1982). Throughout this document, we consider that neuro-

inspired associative memories store messages (also called patterns) that they are later

capable of retrieving given a sufficiently large part of their content. The message def-

inition is detailed in the following section. Hopfield Neural Networks (HNNs) consist

of neurons that are all interconnected with each other except being connected to itself.

The connections are weighted and their values are restricted to integers. Each neuron

in the network of n neurons has its index. Supposing that the set of messages to store

contains M messages m1,m2, ...,mM the weight between neurons i and j is obtained as

Chapter 2. Introduction to neural networks and networks of neural cliques 30

follows:

wij =


M∑
k=1

mk
im

k
j if i 6= j

0 otherwise.

(2.3)

Therefore, the messages are projected onto the connection weights. HNNs can store

messages of length n.

After adapting the weights, HNNs can be used to retrieve a previously stored message

when only a part of it is known. The state of neurons represents the values in the

message. Initially, all the neurons are set to zero. Then, the neurons corresponding to

the known part of the message are set to their values. Classically, during the retrieval

procedure, neurons in HNNs can present two states: -1 or 1. However, they can be

modified to work with 0 and 1 states as well. As earlier, the inputs of neuron are

denoted by v and the output (or state) of neuron is denoted by a. To retrieve a message,

HNN is subject to several iterations in which the states of neurons are updated such

that:

ai =


1 if

n∑
j=1

wijvj ≥ 0

−1 otherwise.

(2.4)

When HNN converges to a stable point, that is the states of all the neurons do not

change between two iterations, the retrieved message is obtained by reading the states

of the neurons. The convergence analysis of HNNs is provided in (Rojas, 1996).

2.3.3 Spiking Neural Networks - model biological networks and com-

pute

Spiking Neural Networks (SNN) form another family of artificial neural networks. The

spikes represent the action potential from biological neurons. The main aim of SNNs is

to realize neural computation. This implies that spikes are related to the quantities rel-

evant to the computations. The main assumption underlying SNNs is that the behavior

of neurons depends on the timing of spikes rather than their specific shape or amplitude

(Gerstner and Kistler, 2002). Numerous experiments on animals show that the tim-

ing of spikes is a means for coding information (Bialek et al., 1991, Heiligenberg, 1991,

Kuwabara and Suga, 1993). A few models to describe the behavior of SNN’s neurons

are proposed. The most biologically realistic is the Hodgkin-Huxley model (Hodgkin

Chapter 2. Introduction to neural networks and networks of neural cliques 31

presynaptic

postsynaptic

w

presynaptic postsynaptic

Figure 2.5: STDP weight modification.

and Huxley, 1952). Despite the fact that it compares well to data from biological ex-

periments, its complexity entails difficulties in simulations of large networks. That is

why several simplified models as Leaky-Integrate-and-Fire (Lapicque, 1907, Stein, 1965)

or Izhikevich’s (Izhikevich, 2003) neurons are proposed. The connection weights of

SNNs are modified based on the coincidence of pre- and postsynaptic spikes. Spike-

Timing-Dependent Plasticity (STDP) is a commonly used approach (Song et al., 2000).

Figure 2.5 illustrates its principle. In this rule, the weight of a connection is increased

if a presynaptic spike is followed by a postsynaptic spike. If a presynaptic spike fires

after the postsynaptic spike the weight of a connection is decreased. The change in the

weight depends exponentially on the difference in time domain between the spikes.

Comprehensive descriptions of SNNs are given in (Paugam-Moisy and Bohte, 2009,

Vreeken, 2003, Ponulak and Kasinski, 2011, Gröning and Bohte, 2014). Neural com-

putation relying on SNNs is used, for instance, to design hardware accelerators (Belhadj

et al., 2014a). Such an architecture can be used in multiple computing applications

thanks to the possibility to adapt the weights of the connections.

Chapter 2. Introduction to neural networks and networks of neural cliques 32

2.3.4 Deep learning - learn information

Currently, in many domains (e.g. vision) state-of-the-art methods for learning are based

on deep learning. Deep learning allowes adapting weights of neural networks with multi-

ple layers, typically ten hidden layers (hidden layer is a layer that is used neither as input

nor output of the network). Networks made of multiple hidden layers prove to be more

efficient than shallow networks (with a single hidden layer) (Bengio, 2009). Moreover,

a network with a depth insufficient for the targeted task requires more neurons than

a network with a depth matched to the problem. In addition, some studies show that

the human brain processes information through multiple stages of transformation and

representation, i.e. a type of deep architecture (Serre et al., 2007).

input pixels
(input layer)

edges
(1st hidden layer)

contours and corners
(2nd hidden layer)

sub-objects
(3rd hidden layer)

objects
(output layer)

Sunskyboat

Figure 2.6: Illustration of deep learning.

The core idea behind deep learning is introducing representations that are expressed

by other, simpler representations. In other words, building complex concepts out of

simple concepts resulting in a hierarchical structure. This allows a deep network to

learn abstract information from raw data, for instance, a natural language description

Chapter 2. Introduction to neural networks and networks of neural cliques 33

of an image obtained from a set of pixels. To illustrate this, Figure 2.6 shows the stages

of identifying objects on an image by a neural network made of multiple hidden layers.

This complex problem is broken in series of simpler, increasingly abstract tasks. Firstly,

the pixels are input to the network. Based on the pixels, we can identify edges by

comparing the brightness of the adjacent pixels. The following layer, that is fed with

the edges, finds the contours and corners which are basically collections of edges. Given

the contours and corners, the next layer, finds specific collections of contours and corners

and detects sub-objects. Based on the collections of sub-objects, objects present in the

image are identified.

The main factor limiting the application of deep neural network architectures is adapting

the parameters of the network, i.e. learning. The first successful report on deep learning

comes from 2006 when Deep Belief Networks (DBN) are introduced (Hinton et al., 2006).

The often used principle is to greedily learn each layer locally. Other methods exploiting

similar idea are also proposed (Bengio et al., 2007, Ranzato et al., 2007, Weston and

Ratle, 2008, Mobahi et al., 2009).

Artificial neural networks form a broad research field. Here, we give descriptions of one

of the first introduced models (McCulloch-Pitts model), a neuro-inspired associative

memory (HNN), a common model to perform neural calculations (SNN) and the most

powerful, yet the most complex architecture (deep learning). The following section

introduces a recently proposed neural network model on which builds the rest of this

work.

2.4 Networks of neural cliques

As concluded in Section 1.8 an associative memory can be used as a power management

decision unit. Consequently, we focus on approaches that realize an associative function.

In practice one can distinguish two main families of associative memories, namely CAM-

SRAM and neuro-inspired memories. A classical way to implement such a controller

would be a CAM-SRAM associative memory. Although it allows for fast and close-to

optimal decision, brute-force approach results in a high energy consumption. Moreover,

it lacks the flexibility required in adaptive systems as MPSoCs.

Chapter 2. Introduction to neural networks and networks of neural cliques 34

In order to assess the performance of associative memories, several parameters can be

introduced. A crucial one (Gripon and Rabbat, 2013) is termed memory efficiency and

is defined as the best ratio of the total number of bits stored to the total number of

bits used to store the memory itself, for a targeted performance. Note that this ratio is

trivially one for indexed memories. Another important parameter is the computational

complexity that depends on the operations needed to perform the retrieval. Again,

this parameter makes usually no sense for traditional memories in which computational

complexity is often considered to be of O(1). In terms of physical implementation, the

efficiency impacts circuit’s area, whereas the computational complexity dynamic power

consumption.

Neuro-inspired associative memories combine lower complexity with higher flexibility, at

the cost of reduced efficiency. We already know HNN model in which stored messages

are projected onto the connection weights of a fully interconnected set of neurons. Nev-

ertheless, when the size of this network is increased the efficiency decreases (Berrou and

Gripon, 2010). This limits opportunities for large networks and is not satisfactory in

terms of biological plausibility. Sparse networks originally proposed by Willshaw (Will-

shaw et al., 1969) use a small subset of connections to store each message, resulting in a

much better efficiency (Palm, 2013). Further, works from (Salavati and Karbasi, 2012)

are also known to allow for storing large number of messages.

Recently Gripon and Berrou proposed a new model (Gripon and Berrou, 2011a) that

can actually be seen as a particular Willshaw network with cluster structure. This

modification allows for efficient retrieval algorithm without diminishing performance.

The network (Gripon and Berrou, 2011a) relies on a neural clique which is an assembly of

neurons representing a piece of information stored in the neural network. The elementary

part of information is called message and is associated with the clique. This model

is able to store a large number of messages-cliques and retrieve them, even when a

significant part of the input is erased. The simulations of the network working as a

data structure (used to check if a given information is known by the network, can be

used as an intrusion detection system) or an associative memory proved a huge gain in

performance compared to HNN (when using comparable material) (Gripon and Berrou,

2011a). The fact that the network is able to retrieve messages with erasures on any

position, or in the presence of noise, gives it an advantage over CAMs (and TCAMs

that allow erasures on more positions than CAMs but still not all the positions). These

Chapter 2. Introduction to neural networks and networks of neural cliques 35

interesting properties originate in error correcting codes that underlie this network’s

principles (Gripon and Berrou, 2011b).

The rest of this chapter outlines the theory of networks (Gripon and Berrou, 2011a)

that are called networks of neural cliques in the remaining part.

2.4.1 Message definition

Throughout this work, it is considered that associative memories store messages m that

they are later capable of retrieving given a sufficiently large part of their content. In order

to ease the readability of this document, and without loss of generality, it is considered

that a message consists of c sub-messages or segments. Each segment is a value in range

from 0 to `− 1. An exemplary message, for c = 4 and ` = 4, is m = {2, 0, 2, 3}. It is

sometimes convenient to think of messages as binary vectors of given length. A simple

conversion of the above message gives m = {10, 00, 10, 11}.

2.4.2 Network structure

...l ...l

c clusters

(i, j) (i', j')w(i, j)(i', j')

cluster fanal

0 1

3 2

0 1

3 2

0 1

3 2

0 1

3 2

I II

IIIIV

w(2, 2)(1, 3)

w(2, 2)(4, 1)

w(1, 3)(4, 4)

w(4, 1)(4, 4)

w(4, 1)(1, 3)

w(2, 2)(4, 4)

(a) (b)

Figure 2.7: (a) The network general structure and notation. Different shapes (circles,
squares) represent fanals belonging to different clusters. (b) Exemplary network with
c = 4, ` = 4 and message m = {2, 0, 2, 3} stored. The numbers inside each fanal

correspond to its index.

In order to store messages, we use a network that consists of binary neurons and binary

connections. The authors of (Gripon and Berrou, 2011a), use the term fanal (which

means lantern or beacon) instead of neuron for two reasons: a) at a given moment,

Chapter 2. Introduction to neural networks and networks of neural cliques 36

in normal conditions, only one fanal within a group of them can be active and b) for

biological inspirations, fanals do not represent neurons but microcolumns (Aliabadi et al.,

2013). Figure 2.7a represents the general structure of the network and the notation. All

the n fanals are organized in c disjoint groups called clusters. Fanals belonging to

different clusters are represented with different shapes. Each cluster groups ` = n/c

fanals. A node in the network is identified by its index (i, j), where i corresponds to the

cluster number and j to the number of the fanal inside the cluster. The connections are

allowed only between fanals belonging to different clusters, i.e. it is a multipartite graph.

The connection between two fanals is denoted by a binary weight w(i,j)(i′,j′). Contrary

to, for example, HNN, the connections do not possess different weights, the connection

exists or not. Hence, the weight (or adjacency) matrix of such a network consists of

values {0, 1} where 1 indicates the connection between two fanals, and 0 the lack of the

connection. Figure 2.7b shows an example of a network with c = 4 and ` = 4.

2.4.3 Message storing procedure

To store a message m in the network, each of its c segments is associated with a distinct

cluster, and more precisely with a unique fanal in its cluster (the one which index corre-

sponds to the value of the segment). Then, this subset of fanals is fully interconnected

forming a clique representing the message in the network. This term is also used in

neurobiology to describe such groupings of neurons (Lin et al., 2006). When a new mes-

sage shares the same connection as an already stored message, this connection remains

unchanged. Therefore, the result of the storage procedure is independent of the order in

which messages are presented to the network. As an example, in Figure 2.7b, message

m = {2, 0, 2, 3} is stored. Dividing the network into clusters, reduces the number of

possible connections. Moreover, each message is stored using a small number of fanals.

Such a message representation leads to a good minimal distance δ between cliques that

is equal to:

δ = 2(c− 1). (2.5)

The minimal distance δ between two cliques stored in a network with c = 4 clusters

equals six. This property allows for good distinction between cliques.

Chapter 2. Introduction to neural networks and networks of neural cliques 37

2.4.4 Message retrieval procedure

We call retrieval the process of retrieving a previously stored message when only part

of its corresponding fanals is known. After the storing of all messages, the retrieval

process is organized as follows. First, the known segments of the input message are

used to stimulate appropriate fanals, i.e. the value on the given segment indicates which

fanal should be chosen. These fanals are said to be active. After the initial stimulation,

message passing phase comes next. The activated fanals send unitary signals to other

clusters through all of their connections. Then, each of the fanals calculates the sum

of the signals it received. However, as shown in (Gripon and Berrou, 2012), summing

only the signals from distinct clusters slightly improves the performance. Within each

cluster the fanal having the largest sum is chosen and its state becomes 1, i.e. it is

made active. The other fanals inside the cluster present the state equal to 0. The rule

according to which the active fanal inside the cluster is elected is called Winner Takes

All (WTA). Such a rule is also present in biological neural networks (Lee et al., 1999,

Coultrip et al., 1992). Other rules, such as Losers Kicked Out (LsKO) are also studied

Aboudib et al. (2014). Here, we use the WTA rule. By reading the state of the fanals in

the unknown clusters, one can identify the values on the missing segments. The whole

process may be iterative, allowing the fanals to exchange information with each other,

such that ambiguous clusters (those containing more than one active fanal) will hopefully

be correctly retrieved. When more than one iteration is needed (input with significant

noise or erasures resulting in non-unique fanal with the largest sum) an extra value is

added to the score of the last winners in the next iteration. More details on adjusting

this memory effect are given in (Gripon and Berrou, 2011a). Thanks to this iterative

retrieval procedure the network converges step-by-step to the targeted previously stored

message. In some cases though, it may happen that the output message is not correct,

leading to nonzero error probability in the retrieval process.

As a result of the strong correlation brought by the connections of the clique embodying

a message in the network, it is possible to retrieve the stored message based on partial

or noisy information put into the network.

Chapter 2. Introduction to neural networks and networks of neural cliques 38

2.4.5 Density and error probability definitions

As previously stated, storing messages in networks corresponds to creating subgraphs

(cliques) of interconnected fanals. When the number of stored messages increases, these

subgraphs share an increasing number of connections. Therefore, distinguishing between

messages is more difficult. As a logical consequence, there is an upper bound on the

number of distinct messages we can store then retrieve for a targeted maximum error

probability. The network density d is defined as a ratio of the established connections to

all the possible ones. Therefore, the density is a parameter of first importance to assess

the network’s performance. A density close to 1 corresponds to an overloaded network.

In this case the network is not able to retrieve stored messages correctly. For a network

that stored M uniformly distributed messages expected density d is expressed by the

following formula or its first-order approximation:

d = 1−
(

1− 1

`2

)M
≈ M

`2
when M � `2. (2.6)

The probability of correctly retrieving a message with ce positions erased in a network

constructed of c clusters is given by:

Pc =
(
1− dc−ce

)(`−1)ce . (2.7)

This equation is valid for a single iteration. The probability of error increases with d.

Note that in case of large density, simulations confirm that iterations improve the ability

of the networks for retrieving messages correctly.

Figure 2.8 shows the evolution of the error retrieval rate for a network with c = 8 and

` = 256. Half the clusters are not provided with information. This means that only four

randomly chosen segments of a message are known, the remaining are erased. Hence,

only four fanals are initially stimulated in four clusters. Figure 2.8 shows a theoretical

curve for a single iteration and the network density. We see the interest of the iterative

character of the retrieval procedure when comparing the one-iteration curve with the

curve where four iterations are performed. The simulation shows that the network of

n = 2048 fanals can store up to 15000 uniform messages of 64 bits each and retrieve

them with a very high probability (error rate 0.029 for four iterations allowed) even

when half the clusters are not provided with information. As claimed in (Gripon and

Chapter 2. Introduction to neural networks and networks of neural cliques 39

E
rr

or
 r

at
e

Uniform (1-iter. theoretical) Uniform (4-iter. simulated)

Density

Number of stored messages (M)

Figure 2.8: Evolution of the error rate with regard to the number of stored messages.
The network composed of eight clusters of size 256, four randomly erased positions.
For each point 100 networks are evaluated doing 100 tests per network. The arrows

indicate standard deviations of the error rates.

Berrou, 2011a), compared to state-of-the-art and for the same amount of material used,

this is unprecedented performance.

2.4.6 Neural cliques as associative memory

Neural cliques rely on a different principle than CAM-SRAM associative memory. The

content of the input (known segments of the message) guides the retrieval process. The

values present in the input indicate the fanals that are stimulated. Then, these fanals

send signals only to the fanals that were connected to them during the storing proce-

dure. As a result of the retrieval procedure, the fanals corresponding to the unknown

segments are activated and the missing segments are retrieved. In terms of hardware

implementation, all the parts of the circuit that are not related to the searched data are

not activated. This is not the case for CAM-SRAM (described in Subsection 1.7.1) and

therefore, neural cliques are a good candidate for low-power associative memories.

Chapter 2. Introduction to neural networks and networks of neural cliques 40

Interestingly, biological studies show that in the brain only 1-4% neurons are active at a

given time (Attwell and Laughlin, 2001, Lennie, 2003). It seems that the brain developed

similar type of sparse activity representation that allows for exceptional energy efficiency.

2.4.7 Network dimensioning guidelines

The dimensions of networks of neural cliques are defined by the number of clusters c

and their size `. The clusters do not necessarily have to be of the same size, i.e. we can

have c1 clusters of size `1, c2 clusters of size `2 and so on.

The dimensions depend on the application and the designer’s objectives. In some ap-

plications the objective is to store and retrieve the largest possible number of messages

with the lowest error rate. In others, the main goal is to reduce the complexity of the

network, even at the cost of retrieval performance. Most often a compromise between

the two is necessary.

Given a number n of fanals, bigger clusters allow to store more messages. Since ` is

larger, the connection density increases slower with the number of stored messages (cf.

2.6). On the contrary, if ` is fixed, increasing c does not allow to store more messages.

Given a length of messages to store, we can dimension the network in a number of ways.

Namely, given messages of 64 bits, we can organize the network in eight clusters of 256

fanals. This results in n = 2048 fanals and 1835008 possible connections. It is shown

in Section 2.4.5 that in such a network we can store 15000 messages and retrieve them

with a very low error rate. However, if we do not want to store that many messages, and

their length is still 64 bits, we can reduce ` to obtain lower complexity. For instance,

a network with ` = 16, c = 16 allows to store messages of 64 bits as well. Since the

density grows faster as the messages are stored, the error rate increases faster as well.

However, n equals now 256 and the number of possible connections is 30720.

Furthermore, if all the clusters are not of the same size, it is preferable to avoid large

differences in their sizes. Large inequalities lead to high densities in small clusters and

may hamper the retrieval process. In this case small clusters can be combined to form a

bigger one. For instance, two clusters of four fanals that represent two bits in messages,

can be combined to form a cluster of 16 fanals representing four bits.

Chapter 2. Introduction to neural networks and networks of neural cliques 41

Other aspects come into play when moving toward real-world applications where physical

parameters are stored in networks. It is recommended to assign a cluster to each physical

parameter. Otherwise, if the number of distinct values of one of the parameters is

increased, the number of fanals in the cluster explodes. That is because all the possible

combinations of parameters have to be represented. In case parameters are separated in

distinct clusters, only one new fanal is necessary.

Further adjustments can be done when application characteristics are taken into account.

Networks can be divided into clusters of different types, i.e. input clusters, output

clusters, input/output clusters. This is applicable if the application characteristics are

known beforehand, namely, when we know that a subset of segments in messages are

always used as inputs, others are always used as outputs and some are used as inputs

or outputs depending on the current application requirements. Fanals in input clusters

are simplified by removing the WTA functionality, whereas fanals in output clusters are

simplified by removing external stimulation functionality. Additionally, in some cases,

it is possible to remove some connections. This may be the case for output clusters. If

the stimuli received from the input clusters are enough to differentiate between fanals in

output clusters, there is no need to keep the connections between the output clusters.

The following list summarizes the network dimensioning guidelines:

• Bigger clusters allow to store more messages.

• Increasing the number of clusters c does not allow to store more messages.

• The complexity can be traded for the maximal possible number of messages to

store.

• It is preferable to avoid large differences in cluster’s sizes.

• It is recommended to assign a cluster to each physical parameter.

• One should take advantage of application’s characteristics to simplify the network.

2.5 Conclusion

In this chapter basic principles of biological neural networks are introduced. Further,

several artificial neural networks are described. Firstly, some of the architectures present

Chapter 2. Introduction to neural networks and networks of neural cliques 42

in state-of-the-art, then networks of neural cliques on which relies the present work

are described. The essential definitions and notation used in subsequent chapters are

given. Neural cliques associative memory shows unprecedented performance in terms of

number of messages that can be stored and retrieved successfully. During the network’s

functioning there are always only a few parts that are active, i.e. the activity in the

network is sparse. Similarly to the human brain, this is crucial for energy efficiency.

The notion of density is of special importance. As is it shown in the next chapter,

density is crucial for obtaining good performances, especially in practical applications.

Chapter 3

Non-uniformly distributed data

in networks of neural cliques

Chapter 3 Non-uniformly distributed data in networks of neural

cliques

Networks of neural cliques have to be adapted to real-world

applications

Real-world data exhibits non-uniformity

Chapter 2 Introduction to neural networks and networks of neural

cliques

The human brain combines high-performance and energy efficiency.

Networks of neural cliques provide efficient storage-retrieval

functionality

Chapter 4 Hardware neural cliques in practical applications

How to obtain a power management decision unit that combines high

decision speed, high decision quality and high energy efficiency?

3.1 Introduction

The network as presented in (Gripon and Berrou, 2011a) is analyzed only for uniform

i.i.d. (independent identically distributed) values among all the messages. In terms of

the network construction this means that the number of connections going out from

43

Chapter 3. Non-uniformly distributed data in networks of neural cliques 44

each node is uniformly distributed across the whole network. It is well known that non-

uniformity of messages to store can lead to dramatic decrease in performance (Knoblauch

et al., 2010). On the other hand, it is expected that real-world applications may contain

highly correlated data.

In this chapter, the situation where non-uniform data is stored is analyzed and its in-

fluence on the network performance is explained. In order to approach the theoretical

performances in real-world applications, the model needs to be improved. Further, we

exploit the structures of these networks to introduce several techniques in order to ef-

ficiently store non-uniform data (Boguslawski et al., 2014). The most efficient method

relies on a concept of twin neurons and is analyzed in depth both formally and by sim-

ulations (Boguslawski et al., 2015a). Later, networks of neural cliques are applied to

dynamic power management applications. The networks are assessed in a practical con-

text using real-world data from simulations and measurements. It is shown that with

such a data standard networks become inoperative and one definitely needs to adapt

the model. In order to approach the theoretical performance of the model, twin fanals

are used when real-world data is stored. The results show that this solution approaches

performances close to uniformly distributed data. Note that when considering the per-

formances in terms of practical applications, not only error rate is relevant. Error rate

is an important indicator of the networks functioning when theoretical data is used. As

soon as neural cliques are applied to a practical application with real-world data, it is

particularly interesting to asses their operation with applicative performance indicators

that estimate the impact on the application. Moreover, putting all errors in one cat-

egory is not precise enough. When physical parameters are stored in the networks, a

large difference between a retrieved value and the correct one has more impact than a

small one. This is taken into account in this chapter where networks’ performance is

assessed in terms of physical parameters.

Chapter 3. Non-uniformly distributed data in networks of neural cliques 45

3.2 Non-uniform distribution problem positioning

Figure 3.1 represents a case of a network made of four clusters. There are four fanals per

cluster. Four messages are stored, each type of the line representing a different clique.

Figure 3.1a shows a network with uniformly distributed messages. Each fanal in each

cluster has the same number of connections. However, for another set of messages stored

in the network, some fanals can have much more connections than the others. This is

illustrated in Figure 3.1b. In all of the clusters except cluster I, each node has the same

number of connections. This means that on the segments II, III, IV of the messages each

of the four possible values occurred. However, in the cluster I, only one of the fanals is

always used, i.e. the value on the first segment is constant.

I II

IIIIV

I II

IIIIV

(a) (b)

Figure 3.1: (a) Network with uniformly distributed messages. (b) Network with non-
uniformly distributed messages. Different shapes (filled or empty circles or squares)
represent fanals belonging to different clusters, different types of lines represent con-
nections belonging to distinct cliques. Clusters are numbered - they represent segments

of messages.

This simple example depicts how the distribution of data stored in the network maps to

the interconnection structure.

Figure 3.2 shows the evolution of the error retrieval rate for a larger network with c = 8

and ` = 256. Half the clusters are not initially stimulated. The network of n = 2048

fanals can store up to 15000 uniform messages of 64 bits each and retrieve them with

a very high probability (error rate 0.029 for four iterations allowed). However, when

the messages are generated from the truncated Gaussian distribution (mean µ = 135,

standard deviation σ = 25), only 2000 messages can be stored (error rate 0.047). The

Chapter 3. Non-uniformly distributed data in networks of neural cliques 46

E
rr

or
 r

at
e

Uniform (1-iter. theoretical) Uniform (4-iter. simulated)

Non-uniform (4-iter.
simulated)

Odd or even values
allowed (4-iter. simulated)

Number of stored messages (M)

Figure 3.2: Evolution of the error rate with regard to the number of stored messages
for different types of data distributions. The network composed of eight clusters of size
256, four randomly erased positions. For each point 100 networks are evaluated doing

100 tests per network. The arrows indicate standard deviations of the error rates.

truncated Gaussian distribution, contrary to the uniform one, implies that on a given

segment of messages some values occur much more often than the others. Figure 3.2

presents also a curve (indicated with a dot) for a data with a specific correlation between

the values within each message. Within each message either odd or even values are only

allowed. This means that if on the first segment there is an odd value, one knows that

all the other values are odd (e.g. m = {1 3 5 7 9 11 13 15} in decimal). For this

dataset the network can store 8000 messages and retrieve them with the same error

probability as in the uniform case. The correlation in the stored data clearly shifts the

curve toward lowest number of stored messages. In this example, the same network

filled with normally distributed data, can store only 13% of the number of uniformly

distributed messages.

As in most applications data cannot be considered uniform, it is of first importance to

introduce techniques to counterbalance the effects of correlation on performance.

Chapter 3. Non-uniformly distributed data in networks of neural cliques 47

3.3 Strategies to store non-uniform data

In the following section we propose several strategies to store non-uniform data. They

essentially all consist in adding spatial diversity to the networks.

3.3.1 Random clusters

The first of the strategies relies on adding to the existing network, clusters filled with ran-

dom values drawn from a uniform distribution. These random values stored in random

clusters play a role of a so-called stamp, providing the existing clique with additional

information and supporting the message retrieval process. This way the influence of lo-

cal high density areas caused by non-uniform data is lowered and eventually neutralized

for small-enough density. Figure 3.3 illustrates the network from Figure 3.1 with one

random cluster added and one message stored. When using this technique, each message

comes with an additional segment (or several segments) which holds a value randomly

generated from an arbitrary chosen range. Then, during the retrieval, only a subset of

known non-random segments is used to initially stimulate the network. Through the

established connections they stimulate all the other clusters, random clusters as well.

Then, the latter stimulate the others and give additional support to the retrieval process.

Figure 3.3: Network with one random cluster (represented by triangles) added.

The main advantage of this technique is the fact that no additional processing on the

stored data is needed, the values that are stored in the network are directly used for the

Chapter 3. Non-uniformly distributed data in networks of neural cliques 48

initial stimulation. Thanks to the additional clusters, the necessary treatment is done

by the network itself.

Similar technique is introduced in (Knoblauch et al., 2010). The authors propose adding

to a feedforward neural network an additional intermediary layer filled with random

patterns, to improve the performance of a single-layer model in case of non-random data.

Since the two models have much in common, this technique is treated as a reference for

the rest of the introduced strategies.

After explaining other techniques, it is presented how they improve the performance

compared to adding random clusters.

3.3.2 Random bits

Another category of the proposed strategies relies on adding random uniformly generated

bits to the existing data rather than whole random values stored in separate clusters. As

a consequence, the structure of the network remains the same, only the size of clusters

is modified since the range of values is expanded by a number of random bits. In other

words, single fanal is no more associated with a given value. For instance, adding one

random bit to a segment implies randomly choosing between two fanals associated with

a given value.

Besides adding bits simply drawn from a uniform random distribution, we propose an-

other approach to generate additional bits. To each value always the least used combi-

nation of bits (or one of the least used) is added. The rule is illustrated with Figure 3.4.

For each of the values coded on eight bits a table is created where the number of oc-

currences of each additional bits’ combination is stored. For instance, for the first value

consisting of only zeros either 000 or 001 can be chosen. However, for value 00000001

only 001 can be added since 000 is already used once. This procedure continues for all

the positions in all the messages.

As it is shown later, this technique offers much better performance compared to random

clusters strategy when using comparable material. However, it requires changing the

data by adding random bits before storing it in the network. This does not imply higher

computational complexity compared to adding random clusters, since both methods

Chapter 3. Non-uniformly distributed data in networks of neural cliques 49

Figure 3.4: Adding least used combination of bits. The additional bits that are
marked with circle can be added to the initial values.

require only random numbers generation. Nevertheless, manipulating the data before

storing it, may be constraining in some applications.

3.3.3 Using compression codes

The last strategy proposed in this section is to apply algebraic compression codes. In this

work Huffman lossless compression coding is applied. This technique allows to minimize

the average number of coding symbols per message (Huffman, 1952). Note that for some

datasets arithmetic coding may perform better than Huffman code, see (Bookstein and

Klein, 1993) for comparison.

Huffman coding produces variable length codewords - the values that occur most fre-

quently are coded on a small number of bits, whereas less frequent values occupy more

space. One dictionary is constructed for each segment of all the messages. Such a pro-

cedure results in variable length segments, the most often occurring values being the

shortest. Therefore, the sizes of the frequent values that break the uniformity are min-

imized. The free space obtained within each segment is filled with random uniformly

generated bits. Now, the most often appearing values are associated with the largest

Chapter 3. Non-uniformly distributed data in networks of neural cliques 50

number of randomly chosen fanals. Decoding is possible thanks to the prefix-free prop-

erty, that is a set of bits (codeword) representing a symbol is never a prefix of another

codeword used for the same segment. For instance, a code consisting of {01, 11} is a

prefix-free code. Strictly speaking, in order to decode the retrieved encoded message,

each segment is compared bit-by-bit with its dictionary. When a codeword is met, one

knows that these bits are useful, the remaining being the random ones.

The simulations show that using compression codes is the most effective from the al-

ready presented techniques. Thanks to the properties of the used coding technique, the

frequent values are effectively redistributed across a group of fanals. Consequently, the

influence of local high density areas is minimized. Compression codes, however, require

additional operations related to coding and decoding. Since Huffman coding requires

analyzing the whole data set before encoding the very first message, this may be a

strong constraint in some applications. In this case a variation of Huffman coding such

as Adaptive Huffman coding (Vitter, 1987) can be used. In this coding technique, the

code is built as the data is transmitted, with no initial knowledge on the distribution.

3.3.4 Performance comparison

In this section performance of all the introduced strategies is evaluated. The simula-

tions are performed for the same network as in Section 3.2 and the same non-uniform

distribution.

Figure 3.5 shows the improvement in performance when using the proposed techniques.

For random clusters technique, seven random clusters of 5000 fanals each are added.

Compared to non-uniform case without using any technique the improvement is clear.

The function is non-monotonic since the significant part of the network is filled with

random values. To compare the used techniques, each of them is classified by the

amount of material it uses. The used material is considered to be the number of possible

connections. Number of connections is linearly related to the number of information bits

stored in a software or hardware implementation. The rest of the techniques (random

bits, least used bits, Huffman coding) use the closest additional material compared to

the random clusters strategy. This is obtained for eight clusters of 4096 fanals which

corresponds to four additional bits. These strategies offer much better performance

using comparable material. Their limits are explored in the rest of this subsection.

Chapter 3. Non-uniformly distributed data in networks of neural cliques 51

E
rr

or
 r

at
e

Uniform (4-iter. simulated)

Non-uniform (4-iter.
simulated)

Non-uniform, Huffman coding

Number of stored messages (M)
Non-uniform, random
clusters
Non-uniform, least used bits

Non-uniform, random bits

Figure 3.5: Evolution of the error rate with regard to the number of stored messages
for different strategies. Four randomly erased positions. Network composed of eight
clusters of size 256 for uniform and non-uniform curves. Seven random clusters of 5000
fanals added for random clusters strategy. Network composed of eight clusters of size
4096 for random bits, least used bits and Huffman coding. The material, in terms of

maximal number of connections, used for each strategy is comparable

E
rr

or
 r

at
e

Uniform (4-iter. simulated)

Non-uniform (4-iter.
simulated)

Non-uniform, Huffman coding

Number of stored messages (M)

Non-uniform, least used bits

Non-uniform, random bits

Figure 3.6: Evolution of the error rate with regard to the number of stored messages
for different strategies with minimal material used to approach the performance close
to uniform case. Four randomly erased positions. Network composed of eight clusters
of size 256 for uniform and non-uniform curves. Eight clusters of size 1024 used for all

the strategies.

Chapter 3. Non-uniformly distributed data in networks of neural cliques 52

Table 3.1: The limiting number of messages that can be stored when using each
strategy until the error rate reaches 0.1. Two additional bits used.

Technique No. messages

Least used bits 14000

Random bits 15000

Huffman coding 117000

Uniform messages 220000

Since the random clusters technique show the smallest improvement in the retrieval,

Figure 3.6 presents the other strategies with a minimal material to approach the perfor-

mance close to the uniform case. When the random bits and the least used combination

strategies are applied, two additional bits are enough to get close to the uniform data

case. This means that the size ` of the clusters equals 1024 and the material used ac-

counts for 4.9% of the material used for random clusters strategy. When three bits are

added (not shown on the plot) the performance gets already much better than for the

uniform messages, therefore two bits are the minimal necessary material needed. The

curve for Huffman coding technique also uses two additional bits (two bits turned out

to be the minimal material for the random bits, least used bits and Huffman coding

techniques). In this case the gain in performance is significant, the error rate always

stays close to zero. For the used data distribution the length of the messages sometimes

exceeds 72 bits (8 clusters × (8 bits + 1 random bit)) and consequently, adding less than

two bits is not possible. However, for different data sets minimizing the used material

could still be feasible.

Figure 3.6 does not show the limiting number of messages for Huffman coding technique.

Therefore, additional simulations for larger numbers of stored messages were carried

out. Table 3.1 shows a comparison of the strategies when two additional bits were used

(corresponds to Figure 3.6) and the error rate reaches 0.1. It also compares the results

to the case when uniform messages are stored in the network of the same size (c = 8,

` = 1024).

The analyses show clearly the importance of adapting the network to real-world data. We

propose and evaluate several strategies to avoid performance degradation. One of them

relies on supporting the cliques with additional signals coming from the added clusters.

The principle of the other techniques is to spread the same values across a group of

Chapter 3. Non-uniformly distributed data in networks of neural cliques 53

fanals. In order to apply these recently introduced memories in practical applications,

adapting the network to non-uniform messages is indispensable, as real-world data is

not necessarily uniformly distributed.

Compared to the technique inspired by the similar network model (Knoblauch et al.,

2010), other proposed strategies offer performance improvements. Especially, the strat-

egy that uses Huffman coding offers great performance enhancements, since it minimizes

the length of each message segment based on its distribution. However, Huffman coding

requires constructing the dictionaries in order to code and decode messages.

The application determines which technique should be used. If one can afford trans-

forming data before storing it in the network either random bits or compression codes

should be used. Otherwise, one should use random clusters technique where only initial

data is used when stimulating the network. Alternatively, when the used material is

constraining, random bits and compression codes are more efficient. Nevertheless, Huff-

man coding implies additional cost of coding/decoding which means that in some cases

random bits offer better performance/cost trade off.

3.4 Twin neurons for efficient real-world data distribution

in networks of neural cliques

It is interesting to explore some self-adapting techniques built in the network architecture

to overcome the limitations of Huffman coding. For instance, using several fanals to store

the same symbol in a cluster may decrease the local density in the network, without the

need to pre-analyze the whole set of messages. This is the core idea of the technique

proposed in this section.

3.4.1 Introducing twin neurons

In order to avoid the additional cost related to coding and decoding and provide an online

and flexible approach where the whole set of messages does not have to be known, a

new strategy to store non-uniform messages is developed here.

The method relying on Huffman coding is not very satisfactory in terms of biological

plausibility. Storing messages according to the procedure described in this subsection,

Chapter 3. Non-uniformly distributed data in networks of neural cliques 54

exploits the fact that neurons that are close to each other, receive inputs that are rela-

tively close and become clones of each other called twins here. (Thomson and Bannister,

2003) confirms that in the brain there exist neurons that are reciprocally connected and

consequently, driven by the same stimulus. Increasing the spatial diversity of the stored

information, allows to reduce the density of the most stressed parts of the network.

The principle of the method is to introduce twin neurons, that is changing the role

of neurons in response to data distribution. If a fanal is overloaded (has high local

density) another fanal will be designated to represent the same piece of information.

The pseudocode in Figure 3.7 outlines the new algorithm which relies on modifying the

message storing procedure. Furthermore, an association table (AssocTab) connecting

each value on each segment with a specific fanal is necessary. Initially this table is

empty. Alternatively, instead of the association table, fanals representing the same

value can be interconnected. When a fanal is initially stimulated it sends signals to

all the other fanals in its cluster associated to the same value. Then, all the activated

fanals start exchanging signals on the global (inter-cluster) level. Depending on the

hardware/software implementation cost trade-off or biological plausibility aspects any

of the solutions can be chosen. In this work, the association table is used.

Before storing messages, the fanal’s connection limit (ConnectionsLimit) is chosen.

After storing each message, the total number of outgoing connections of each fanal

belonging to the newly created clique is controlled (line 19). If this number exceeds a

formerly defined threshold, and there are unassociated fanals available in this cluster

(line 21), a new fanal is associated to this value (line 22). Similarly to, for example,

adding random bits that spread a given value over a number of fanals, the result is that

the local density is limited. In case there is no additional fanal left, the association table

remains unchanged, and for each value the last associated fanal is used. In order to

retrieve a message based on partial input, all the fanals associated to the values on the

known segments are stimulated.

As the result of this method, the network automatically adapts to the distribution of

the stored data efficiently using the available material. Limiting local densities improves

retrieval performance.

Chapter 3. Non-uniformly distributed data in networks of neural cliques 55

1: Input:
2: `
3: ConnectionsLimit
4: Messages \\ matrix; one message in each row, one segment in each column
5: SegV al \\ value on the given segment
6: SegNum \\ number of the given segment
7: AssocTab = [] \\ empty cell matrix
8:

9: Output:
10: AssocTab \\ cell matrix; number of row indicates the value in the message,
11: number of column indicates the number of segment. Each cell
12: in the matrix holds the numbers of fanals associated to the
13: given value on the given segment
14:

15: procedure TwinFanals(ConnectionsLimit)
16: for each row in Messages do
17: Store
18: for each fanal used do
19: if fan−out > ConnectionsLimit then \\ fan− out - number of fanal’s
20: outgoing connections
21: if max(AssocTable(:, SegNum)) < ` then
22: AssocTab(SegV al, SegNum)(end+1) = max(AssocTab(:, SegNum))+1
23: end if
24: end if
25: end for
26: end for
27: return AssocTab
28: end procedure

Figure 3.7: Message storing procedure for twin fanals; pseudocode.

3.4.2 Theoretical analysis

For the presented curves the improved retrieval procedure is used where only the signals

from distinct clusters are included in the sum calculated by each fanal.

Based on the probability of correctly retrieving a message (2.7) one can obtain the

probability of error after one iteration of the retrieval procedure as:

Pe = 1− Pc. (3.1)

The error probability in case of non-uniform data is analyzed with the following non-

uniform distribution. On the first segment the value one is chosen with probability p,

any other value is chosen with the same probability that equals 1−p
`−1 . The rest of the

Chapter 3. Non-uniformly distributed data in networks of neural cliques 56

c−1 segments are drawn uniformly. To simplify the discussion, this distribution is called

FSA (First Segment Anomaly).

As a consequence, the density between any two clusters associated to the last c − 1

segments is unchanged. Between the first cluster and any other one, the density is:

d′ = 1− (1− 1− p
`(`− 1)

)M , (3.2)

for any value on the first segment that is not one, and

d′1 = 1− (1− p

`
)M , (3.3)

for the first segment equal one.

The error probability changes depending on whether the first segment equals one (to

simplify the discussion we call this case π) or is different from one (π) and whether the

first segment is erased (ε) or not erased (ε). In the following part of this subsection, all

the theoretical error probabilities are expressed with appropriate equations.

E
rr

or
 r

at
e

πε theoretical Uniform simulated

Uniform theoretical

πε theoretical

Number of stored messages (M)

πε simulated

πε simulated

Figure 3.8: Error rate for FSA and uniform distributions, with network from (Gripon
and Berrou, 2011a) used. First segment equal one (π). Four positions are randomly
erased, results after one iteration. For each point 100 networks are evaluated doing 100

tests per network.

Chapter 3. Non-uniformly distributed data in networks of neural cliques 57

In case πε, the error probability after one iteration of the retrieval procedure is:

Pe,πε = 1−
(
1− d′c−ce

)`−1 · (1− dc−ce)(ce−1)(`−1) . (3.4)

In case πε:

Pe,πε = 1−
(
1− d′1 · dc−ce−1

)ce(`−1)
. (3.5)

In case πε:

Pe,πε =
(
1− d′c−ce

)`−2 · (1− dc−ce)(ce−1)(`−1) · (1− d′c−ce) . (3.6)

In case πε:

Pe,πε = 1−
(
1− d′ · dc−ce−1

)ce(`−1)
. (3.7)

E
rr

or
 r

at
e

πε theoretical Uniform simulated

Uniform theoretical

Number of stored messages (M)

πε simulated πε 4-iter. simulated

Figure 3.9: Error rate for FSA and uniform distributions, with compression codes or
twin fanals used for FSA. First segment equal one (π). Four positions are randomly
erased, results after one iteration unless otherwise stated. For each point 100 networks

are evaluated doing 100 tests per network.

When using one of the techniques described in the paper (compression codes or twin

fanals), the fanal corresponding to value one in the first cluster is duplicated when the

density of its connections is large enough. Ideally, the density becomes constant and

Chapter 3. Non-uniformly distributed data in networks of neural cliques 58

thus equals d′ < d. The number of fanals n1 associated to value one in the first cluster

is:

n1 =
log
(
1− p

`

)
log
(

1− 1−p
`(`−1)

) . (3.8)

As a result, in case π, Pe,πε is unchanged and Pe,πε becomes:

P ′e,πε = 1−
(
1− (1− (1− d′)n1) · dc−ce−1

)ce(`−1)
. (3.9)

In case π, Pe,πε is unchanged and Pe,πε becomes:

P ′e,πε = 1−
(
1− dc−ce

)(ce−1)(`−1) · (1− d′c−ce)n1+`−2 . (3.10)

E
rr

or
 r

at
e

Uniform simulated

Uniform theoretical πε theoretical
Number of stored messages (M)

πε simulated

Figure 3.10: Error rate for FSA and uniform distributions, with network from (Gripon
and Berrou, 2011a) used. First segment different from one (π). Four positions are
randomly erased, results after one iteration. For each point 100 networks are evaluated

doing 100 tests per network.

In the following part of this subsection the theoretical equations are verified with sim-

ulations. The parameters chosen for the analysis are c = 8, ce = 4, ` = 256, p = 0.5.

For the given parameters and distribution, n1 = 255. Figure 3.8 illustrates the cases

πε and πε. Both the equations (3.4), (3.5) and the simulation results are plotted. One

can see that the simulations correlate well with the theoretical analysis. Additionally,

Chapter 3. Non-uniformly distributed data in networks of neural cliques 59

E
rr

or
 r

at
e

πε theoretical

Uniform simulated

Uniform theoretical

πε theoretical
Number of stored messages (M)

πε simulated

πε simulated

Figure 3.11: Error rate for FSA and uniform distributions, with compression codes
or twin fanals used for FSA. First segment different from one (π). Four positions are
randomly erased, results after one iteration. For each point 100 networks are evaluated

doing 100 tests per network.

the theoretical and simulated curves for uniformly distributed messages are given for

comparison.

Figure 3.9 shows the curve for equation (3.9) for compression codes or twin fanals. As

expected in this case, the performance after one iteration is the same whether compres-

sion codes or twin fanals are used or not. The additional curve for four iterations shows

the performance improvement.

Figure 3.10 illustrates the cases πε and πε. Equations (3.6), (3.7) correlate well with the

simulation results. The equation (3.10) and the corresponding simulations are shown in

Figure 3.11. One can notice significant performance improvement.

3.4.3 Performance comparison

Before comparing twin fanals to other techniques we propose another strategy based on

Huffman coding that is further adapted to practical applications. Then, we proceed to

performance comparison.

Chapter 3. Non-uniformly distributed data in networks of neural cliques 60

3.4.3.1 Comments on Huffman coding technique

The intrinsic characteristic of Huffman coding is the variable codeword’s length. This

parameter depends on the size and distribution of the dataset. It is possible that some of

the codewords exceed the available cluster size `. In this case, no random bits are added

to this segment and the remaining bits are pushed to the next segment. Moreover, after

adding random bits, the bits from all the segments are shuffled in such a way that even

and odd bits from each of the segments are stored in separate clusters. This means that

in each cluster the chosen fanal depends not only on the value on the same segment

in the initial message but also on the other segments. This implies that erasures are

allowed only on the messages after the coding. As pointed out in (Boguslawski et al.,

2014), this characteristic makes this technique an effective solution for applications in

which one can afford transforming data before storing it in the network. To simplify the

discussion, in the present section this technique is called Huffman shuffle.

As a consequence of the abovementioned property, each time the known segments of a

message are used to stimulate the network, only one fanal in each cluster is selected. In

case of the strategy that relies on twin fanals, erasures are possible on the initial mes-

sages. This is important in terms of practical applications. Nevertheless, when retrieving

messages, one does not know which fanal was used to create the clique representing the

concerned message and all the fanals associated to the known segments are stimulated.

If a unique fanal is stimulated in each cluster, the problem solved by the network is

much easier and one can expect better performances.

To compare the techniques two cases can be considered: 1) messages are transformed

before storing them in the network, 2) messages are not transformed before storing

them in the network. In case of 1) the messages are modified such that they contain the

number of fanal that was associated to a specific value in each message. Consequently,

in all the strategies only a unique fanal is stimulated in each cluster. In case of 2) the

association table is used to find the fanals to stimulate when a message is presented to

the network. In this scenario, all the fanals associated to a value present in the message

are stimulated. The first case, where erasures are allowed only on the transformed

messages, can be applied to a very limited set of applications. Since the focus here is on

applications and real-world data, the techniques are compared in the second scenario. If

Huffman shuffle is applied in the second scenario, after all the described processing steps

Chapter 3. Non-uniformly distributed data in networks of neural cliques 61

Table 3.2: Comparison of Huffman shuffle and Huffman simple techniques

Huffman shuffle Huffman simple

Data transformed before storage yes no

Erasures allowed on initial messages no yes

(before coding)

Multiple fanals initially stimulated no yes

Versatility - +

(adding random bits, pushing bits to the next segment, shuffling bits) one fanal can be

associated to many different values. To eliminate the impact of the interdependencies

between different segments and to adapt Huffman shuffle to the case 2), a new strategy

is added to the comparison. The bits that exceed the available space are now simply

cut instead of being pushed to the next segment. Furthermore, there are no bit-shuffle

operations. This technique is called Huffman simple here. To provide a fair comparison,

the non-uniform distribution is chosen so that the amount of codewords that exceed the

space available in the cluster (` = 1024, 10 bits, the same size as before for Huffman

coding) is negligible (< 1%). This occurs for the truncated Gaussian distribution with

µ = 135, σ = 65. The characteristics of both techniques relying on Huffman coding are

summarized in Table 3.2.

3.4.3.2 Comparison

Figure 3.12 shows the results when multiple fanals can be stimulated in each cluster.

First note the performance of the network (Gripon and Berrou, 2011a) in case of the

non-uniform distribution (` = 256, the same as in Figure 3.2). Then, several techniques

are applied to the same network as in case of the former techniques (` = 1024). Random

bits allow storing more messages, however they are outperformed by the other proposed

strategies. Twin fanals present the best performance, Huffman simple being slightly less

effective. As stated earlier Huffman shuffle is not adapted to stimulating multiple fanals.

In fact, it reaches retrieval error rate equal to 0.97 when only 1000 messages are stored.

Figure 3.13 shows the connections limit values for each point of the curve for twin fanals.

Each of this values was obtained by varying the connections limit and choosing the one

that gave the lowest error rate. The connections limit parameter (ConnectionsLimit)

can be connected to density d for a uniform distribution (2.6) and expressed as saturation

Chapter 3. Non-uniformly distributed data in networks of neural cliques 62

E
rr

or
 r

at
e

Number of stored messages (M)
Huffman simpleHuffman shuffle

Twin fanals*Network from [13]
Random bits

Figure 3.12: Performance comparison for different proposed strategies when multiples
fanals are stimulated. Four positions are randomly erased. For each point 100 networks
are evaluated doing 100 tests per network. Multiple fanals are stimulated in each cluster.

The arrows indicate standard deviations of the error rates.

Number of stored messages (M)

C
on

ne
ct

io
ns

 li
m

it

Optimal connections limit

Connections limit based on averaged s value

Figure 3.13: Optimal and predicted connections limit values with regard to the num-
ber of stored messages. For low numbers of stored messages any connections limit can

be chosen.

Chapter 3. Non-uniformly distributed data in networks of neural cliques 63

s:

s =
ConnectionsLimit

(c− 1)`d
. (3.11)

(c−1)` gives the maximal number of connections per fanal. By weighting this value with

d one obtains the expected number of fanal’s connections. Dividing ConnectionsLimit

by this number gives the saturation of the network.

Number of stored messages (M)

Sa
tu

ra
tio

n
pa

ra
m

et
er

Figure 3.14: The saturation parameter used to predict connections limit value with
regard to the number of stored messages. For low numbers of stored messages any

connections limit can be chosen.

Based on the density which is a function of the number of stored messages M the

approximate optimal value of the connections limit can be predicted. Figure 3.14 shows

how the saturation depends on the number of stored messages based on the optimal

connections limit values. Figure 3.13 shows also the connections limit values obtained

from an averaged s value as s(c − 1)`d. The proximity of the optimal and predicted

connections limit values in the range where the network is not overloaded, shows that

the technique based on twin fanals is also easy to adjust to the stored data.

According to the obtained results, the strategy that relies on twin fanals presents the

best performance. Moreover, it allows to avoid the coding/decoding overhead which

is important in practical applications, especially in the ones presented in the following

chapter, where the system’s time response and low complexity are crucial.

Chapter 3. Non-uniformly distributed data in networks of neural cliques 64

3.4.4 Influence of distribution’s standard deviation

As shown in the preceding sections, the distribution of the data stored in the network

influences the retrieval performance. Here the standard deviation of the non-uniform

data distribution is varied to show what is the impact on the performance of the network

when using twin fanals. The experiments are done for truncated Gaussian distributions

with different standard deviations. Additionally to the distribution chosen in the section

IV.D with σ = 65, a distribution with σ = 25 and σ = 100 are used. Figure 3.15 shows

how the retrieval process is impacted when the stored data is more non-uniform (σ =

25) and more uniform (σ = 100) than the previously chosen one. When comparing these

curves to the results in Figure 3.12, one can see how the retrieval performance depends

on the considered distribution’s parameter.

E
rr

or
 r

at
e

Number of stored messages (M)

σ = 25 σ = 100

Figure 3.15: Error rate when using twin fanals for different values of σ of non-
uniform distribution. Four positions are randomly erased. For each point 100 networks
are evaluated doing 100 tests per network. The arrows indicate standard deviations of

the error rates.

Chapter 3. Non-uniformly distributed data in networks of neural cliques 65

3.5 Real-world data in two practical applications

3.5.1 MPSoC power management for LTE receiver

3.5.1.1 LTE receiver implemented on MAGALI platform

In order to obtain data to store in the network, an applicative test case on MAGALI

telecom chip is considered (Clermidy et al., 2009). MAGALI is a semi-heterogeneous

MPSoC, i.e. there is a number of different PEs but each is reproduced several times.

The available resources communicate through a NoC. Each PE can work with one of 256

frequencies in range between 20 and 790MHz (Clermidy et al., 2010). The application

mapped on the platform is the LTE receiver. It consists of six tasks: TRX OFDM,

Channel Estimation, Coefficient Interpolation, MIMO Decoding, RX Bit and Channel

Decoding, Figure 3.16. The parameters of the application, necessary to calculate the

energy (1.10), were characterized at fnom,i = 400MHz and are summarized in Table 3.3.

The five operating modes presented in the table differ in reachable data rates (Clermidy

et al., 2009).

TRX OFDM

TRX OFDM

Channel
Estim.

Coef.
Interpol.

MIMO
Decoding

RX Bit
Channel

Decoding

Channel
Estim.

Coef.
Interpol.

MIMO
Decoding

Antenna 1

Output
Antenna 2

Figure 3.16: LTE receiver application graph. The memory buffers between the pro-
cessing blocks are not presented.

3.5.1.2 Network of neural cliques used as power management unit

Since there are 256 frequencies available, each PE is associated a cluster of 256 fanals.

The frequencies that are applied to the PEs depend on the latency constraint L and

the operating mode. There is therefore a cluster of 5 fanals for modes and a cluster for

Chapter 3. Non-uniformly distributed data in networks of neural cliques 66

Table 3.3: LTE receiver application parameters (Mansouri et al., 2010a). Character-
ized at fnom,i = 400MHz.

TRX Channel Coef. MIMO RX Channel

OFDM Estim. Interpol. Decoding Bit Decoding

Ni [clk cycles]

Mode 1 39200 91296 1668 12210 6445 16·103

Mode 2 3336 24420 12890 32·103

Mode 3 3336 24420 7855 32·103

Mode 4 16680 122100 39275 160·103

Mode 5 16680 122100 34665 264·103

Enom,i 47.67 180.55 198.94 198 93.84 247.74

[pJ/clk cycle]

Table 3.4: MPSoC power management results

Data type Neural cliques Error rate No. L constraint
network type violations

Uniform random Standard 0 -
Real Standard 0.71 87
Real Twin fanals, conn. lim. = 6 0.07 8
Real Twin fanals, conn. lim. = 10 0.03 3

L. L is ranging from 0.7 to 2ms. 51 latency values are considered in this application

and consequently one cluster of 51 fanals is created. The impact of the L cluster’s size

on the power management efficiency is analyzed in subsection 4.4.3.3. Each time the

system needs to be reconfigured, the L cluster and mode cluster are stimulated and the

set of frequencies is retrieved from the network. This is illustrated in Figure 3.17.

L

51

mode

5

f1

256

f2

256

f6

256...{ {inputs outputs

Figure 3.17: Network of neural cliques structure for LTE receiver power management.
Latency L and operating mode are stimulated and the set of frequencies is retrieved

from the network.

Chapter 3. Non-uniformly distributed data in networks of neural cliques 67

3.5.1.3 Simulation results

The results of the evaluated experiments are summarized in Table 3.4. Firstly, to test

the network, a random uniformly distributed set of frequencies is stored. The network

is simulated for each of the possible L values. The simulations show that in this case

each of the stored frequencies is retrieved correctly.

Then, the actual values of the frequencies are stored in the network and the same test

procedure is applied. This time the error rate (the amount of messages in which at least

one frequency was not retrieved correctly) clearly increases. As a consequence of the

incorrectly retrieved frequencies, there are 87 out of 255 L constraints that are violated.

Note that there may be more incorrectly retrieved frequencies that not necessarily need

to lead to L constraint violation. Nevertheless, they result in non-optimal solutions

which imply an excessive energy consumption.

In order to approach the optimal retrieval process of random uniform frequencies, twin

fanals introduced in section 3.4 are applied. The structure of the network remains

the same, the number of fanals does not change, only the message storing procedure

is modified. The connection limit is set to 6. In this case, the error rate is reduced

and there are eight constraint violations. The connection limit can be varied to find

an optimal value. The minimal number of constraint violations was obtained for the

connection limit equal to ten. The error rate and the number of constraint violations

are slightly reduced.

3.5.2 Dynamic management of PVT variations

3.5.2.1 Introduction

As we already know, a solution to avoid worst-case design is to partition the system on a

number of parts allowing each to work at its best operating point determined by applica-

tive constraints. As the technology scales down and the supply voltage is reduced, the

intra-die variability becomes an increasing challenge. The fabrication process becomes

less reliable and causes static process (Pr) variations. Dynamic parameters as voltage

(V) and temperature (Temp) variations also have an increasing impact on the timing and

power consumption. Consequently, the optimal operating point set by a power decision

Chapter 3. Non-uniformly distributed data in networks of neural cliques 68

unit, can be shifted by dynamic voltage drops and temperature variations. We can,

however, integrate some sensors in our system that provide the information regarding

current working conditions (V , Temp). Based on that information, each part adjusts

again its operating point to reduce the power consumption or preserve the functionality.

3.5.2.2 Multiprobe sensor for PVT variations

In order to provide the adjustment policy with current (V , Temp) approximations, specific

sensors have to be embedded in the system. Here, a low-cost digital sensor Multiprobe

(Vincent et al., 2011) is considered. Multiprobe is made of seven Ring Oscillators (RO)

that are designed to have different sensitivities to process, voltage and temperature

(PVT) variations. These sensors, embedded in different parts of the circuit, experience

the same static and dynamic variations as the parts they are placed close to. Therefore,

after a calibration phase, based on the frequencies of the ROs, current approximations

(V̂ , T̂emp) of (V , Temp) can be found. Frequency of a RO depends in a complex way on

the PVT parameters and it is impossible to obtain (V̂ , T̂emp) from a single frequency

(Vincent et al., 2014). Since there are no models available, solving a set of equations in

case of several ROs is mathematically infeasible.

An estimation method to obtain (V̂ , T̂emp) from the frequencies of Multiprobe is pro-

posed in (Vincent et al., 2014). The proposed method relies on statistical tests of

goodness-of-fit. First, the data from the sensors is specially adapted to the further

treatment. Then, the statistical tests are evaluated, a brute-force search in the database

obtained during the calibration phase is performed and a weighted mean of the closest

found entries is calculated. This method provides satisfactory estimation precision yet

is quite complex. Moreover, the estimation computed by a dedicated hardware block

can be obtained in 25µs which is not fast enough to follow fast voltage variations (order

of magnitude of few µs).

3.5.2.3 Network of neural cliques used as dynamic management unit

Networks of neural cliques can be used to provide (V̂ , T̂emp) pairs corresponding to

frequencies of the ROs, Figure 3.18. The main focus here, is on the impact of the data

Chapter 3. Non-uniformly distributed data in networks of neural cliques 69

Networks of neural
cliques

Models M

F({V,Temp}) {V,Temp}
{V,Temp}

Multiprobe

{Vi,Tempj
}

Figure 3.18: Overview of the variability management system.

distribution. However, as it is shown later, time response of hardware implementation of

the networks is in the order of tens of ns which allows following fast voltage variations.

In order to obtain data to store in the network, electrical simulations of the Multiprobe

sensor are performed with Eldo circuit simulator. The message set was obtained for V

ranging from 0.7V to 1.3V with step of ∆V = 10mV and Temp ranging from -40◦C to

120◦C with step of ∆T = 10◦C. In this work only two ROs of the Multiprobe are used to

retrieve (V̂ , T̂emp) couples. The simulations show that the impact of reducing the number

of used frequencies is negligible on the accuracy of the retrieved (V̂ , T̂emp). Among the

two kept ROs one is specifically designed to be more sensitive to temperature variations

than the other. Due to the characteristics of the ROs, in the database containing 1037

models linking the frequencies with (V̂ , T̂emp) points, a number of models share the

same frequencies leading to different (V̂ , T̂emp) couples. In such an ambiguous case both

(V̂ , T̂emp) solutions are equitable and are output by the network. In a target system the

network can be followed by an additional processing step which calculates a mean value

of the obtained (V̂ , T̂emp) responses. Since the focus of this chapter is on exploring the

impact of data distribution, these models are removed from the database. After this

step there are 1018 models that are stored in the network.

3.5.2.4 Network of neural cliques dimensions

The ROs can output 256 and 512 (temperature-sensitive RO) different frequency values.

Therefore, they are associated two clusters of 256 and 512 fanals respectively. In addi-

tion, there is a cluster to store Temp values made of 17 fanals and a cluster of 61 fanals to

store V values. Each time the (V̂ , T̂emp) are demanded by the variability management

Chapter 3. Non-uniformly distributed data in networks of neural cliques 70

Table 3.5: Variability management results

Data type Neural cliques Error rate MAEV MAETemp σV σTemp

network type

Uniform random Standard 0.2 10.7 10.64 54.9 29.12
Real Standard 0.54 4.3 24.1 9 37.62
Real Twin fanals, 0.49 3.6 22.95 7.9 37.21

conn. lim. = 3
Real Twin fanals, 0.24 1 2.03 3.2 5.44

conn. lim. = 3,
increased size

system, the frequency clusters are stimulated and (V̂ , T̂emp) couple is obtained from the

network.

3.5.2.5 Simulation results

The results are assessed in terms of the error rate (the amount of messages in which

at least one of the (V̂ , T̂emp) parameters is not retrieved correctly) and mean absolute

errors:

MAEV =
1

M

M∑
i=1

|V̂i − Vi|, (3.12)

MAETemp =
1

M

M∑
i=1

|T̂empi − Tempi | (3.13)

where M is the number of stored models. Additionally, the standard deviations associ-

ated to these errors are reported.

All the obtained results are summarized in Table 3.5. First, a random uniformly dis-

tributed set of frequencies is stored. The network is simulated for all the stored models.

When the actual values of the frequencies are stored in the network and the same test

is applied, the error rate increases significantly. The mean absolute error and standard

deviation increased in case of temperature. In case of voltage the error and standard

deviation decreased which together with the error rate means that there are more errors

but they are smaller.

Then, as in the previous section, twin fanals are applied. The network’s dimensions stay

the same. As a consequence, the error rate is slightly reduced and the error and standard

deviation of V are lower than in the former experiments. The temperature retrieval is

Chapter 3. Non-uniformly distributed data in networks of neural cliques 71

slightly improved as well compared to real data stored in non-adapted network. In order

to improve the retrieval significantly, the network’s dimensions are changed. When T

cluster is increased to 500 fanals, the results are further improved. For both networks

in which twin neurons were used, the connection limit was set to 3. This value proved

to be the optimal one.

3.6 Conclusion

Networks of neural cliques are associative memories able to store and successfully re-

trieve a large number of messages. In this chapter, their performances are theoretically

studied exploiting non-uniformly distributed information. When facing real-world ap-

plications, the information that is stored in the networks is not necessarily uniformly

distributed. The solution based on Huffman compression coding offers great perfor-

mance enhancements and allows efficient storage of non-uniform messages at the cost of

high computational complexity. In some applications this can be a limiting factor.

Therefore, we propose a method with a limited complexity. Introducing twin fanals

avoids complex coding and decoding phases and is biologically plausible. It allows era-

sures on initial messages without transforming data before the storage. Furthermore,

there is no constraint in terms of data distribution parameters as it is the case with

Huffman coding. The presented results show that thanks to spreading frequent values

among a group of fanals, twin fanals offer better performances than Huffman coding-

based technique.

To asses the proposed improvements, in the rest of the chapter, twin neurons are used

with real-world data. It is shown that adapting the model (Gripon and Berrou, 2011a)

is indispensable for using these networks in practical applications. Two test-cases in

power management domain are exploited to obtain real-world data. When the networks

presented in (Gripon and Berrou, 2011a) are applied to these applications, their per-

formance is largely degraded leading to non-functional system. In order to approach

the theoretical performance of the model, twin fanals are used when real-world data

is stored. The results show that this solution approaches performances close to uni-

formly distributed data. Therefore, adapting the basic model is effective for using these

networks in practical applications.

Chapter 4

Hardware neural cliques in

practical applications

Chapter 4 Hardware neural cliques in practical applications

How to obtain a power management decision unit that combines high

decision speed, high decision quality and high energy efficiency?

Conclusion and perspectives

Chapter 3 Non-uniformly distributed data in networks of neural

cliques

Networks of neural cliques have to be adapted to real-world

applications

Real-world data exhibits non-uniformity

4.1 Introduction

In this chapter we propose a hardware neural cliques structure to design a power man-

agement decision unit. Both general studies and practical test-cases are included. Neural

cliques decision unit is compared to high-level decision unit relying on game theory and

CAM-SRAM associative memory. Comparison between our proposal and game theory

reveals significant gains in terms of decision speed and energy consumption of the deci-

sion unit. Moreover, the quality of the decision is also higher, meaning that an MPSoC

controlled by neural cliques consumes less energy as well. The comparison between

72

Chapter 5. Hardware neural cliques in practical applications 73

neural cliques and CAM-SRAM associative memory shows that neural cliques are less

complex and more energy efficient. Later, some points on hardware implementation are

discussed. In the end of this chapter, we propose a compact interconnect approach using

3D technology for interconnect delay and energy reduction.

Chapter 5. Hardware neural cliques in practical applications 74

4.2 Analog and digital ASIC implementation

This section presents ASIC implementations proposed in Larras et al. (2013a). The rest

of the sections in this chapter present our proposals in terms of using these circuits as

a power management decision unit. These include different dimensioning optimizations

and hardware improvements.

4.2.1 Analog circuit

Figure 4.1: Schematic of the synapse circuit Larras et al. (2014).

The first analog circuit for networks of neural cliques is proposed in Larras et al. (2013a).

The network circuit is built of two types of blocks: the fanal circuit and synapse circuit.

The fanal circuit has two functions: 1) compute the sum of the received signals and

2) WTA functionality. The synapse circuit is transporting signals between fanals. The

response of the fanal circuit is expressed in terms of voltage, yet the operations inside

the fanal circuit are done with currents. To allow exchanging signals between fanals, the

synapse circuit does a voltage-to-current conversion. The synapse circuit is shown in

Figure 4.1. It consists of a current source switched by means of transistor MS
3 controlled

by its gate voltage. The unitary current IUNIT is mirrored with a current mirror MS
1 ,

MS
2 . This way the voltage coming from a fanal or an external (initial) stimulation is

converted into a unitary current signal.

Figure 4.2 shows the fanal circuit in a cluster of four fanals. All the synapses of a fanal

are connected to its input Ak, k ∈ {1, ..., `}. All the currents are summed at this node.

That is how computing the sum of the received signals is realized. This sum is then

Chapter 5. Hardware neural cliques in practical applications 75

C1

Figure 4.2: Schematic of a fanal in a cluster of size four Larras et al. (2014).

C C C

Figure 4.3: Schematic of the full WTA circuit Larras et al. (2014). Each two transis-
tors are embedded in one fanal.

Chapter 5. Hardware neural cliques in practical applications 76

mirrored by a current mirror Mk
3 ,M

k
4 . Transistors Mk

1 ,M
k
2 incorporate a part of the

WTA circuit that is formed together with all the other fanals in the cluster. The full

circuit is obtained by connecting the gates of Mk
1 of fanals in a cluster. This is illustrated

in Figure 4.3. The gate and source potentials of all the transistors Mk
1 are the same.

If the current IM1
3

is the highest among the currents IMk
3
, since all the transistors Mk

1

operate at the same gate voltage VC , the VM1
1

voltage is also the highest of all VMk
1

voltages. Moreover, since the VC voltage is limited at VMk
1
− VT

Mk
2

, the branch with the

largest current defines the VC value and sets all other Mk
2 devices in the subthreshold

region (since the VMk
1

voltage is lower than in the dominant branch).

Unlike in the theoretical model, in the analog implementation there are no distinct

iterations in the retrieval process. Once stimulated, the circuit converges continuously

to a solution. However, during the retrieval process it is possible to observe intermediate

states that correspond to different iterations.

Electronic circuits are subject to PVT variations that cause variance in they perfor-

mance. This is particularly true for analog circuits. The process variability in neural

cliques analog circuits is discussed in Appendix A.

Programmable synapses are discussed in Appendix B.

4.2.2 Digital circuit

h h+m

m

h

Figure 4.4: Schematic of the digital circuit implementing one cluster Larras et al.
(2013a).

Chapter 5. Hardware neural cliques in practical applications 77

Table 4.1: Comparison of analog and digital implementations of networks of neural
cliques Larras et al. (2013a)

Digital Analog Ratio analog/digital

Surface area [µm2] 39168 81732 ×2.1

Time response [ns] 208.44 37 ÷5.63

Energy consumption per message [nJ] 16.2 0.0139 ÷1165

Efficiency [kbit/s/µm2] 25.48 68.77 ×2.7

The first dedicated digital circuit for networks of neural cliques is proposed in Larras

et al. (2013a). It relies on a pipelined architecture allowing hardware reuse. Its structure

is illustrated in Figure 4.4. One cluster is depicted here. At a given clock cycle, the

set of input bits corresponds to the signals received through the synapses of the given

fanal. Each input signal is stored in a one-bit register. A transcoder made of a chain of

adders converts the inputs into an h-bit vector, where h is log2 of the number of inputs

bits. The index m of the fanal is added to this vector. At each clock cycle, an h-bit

comparator compares the vectors of the current fanal and the highest score so far. In

the end of the process, the index of the fanal with the highest sum is output.

4.2.3 Comparison

A comparison of the analog and digital implementations is done in Larras et al. (2013a).

A network of c = 8 clusters and ` = 26 fanals in each cluster is simulated. Such a

network is applied to store eight-letter words from Latin alphabet and retrieve them

based on partial or noisy input. Both circuits are designed for the 1V supply ST CMOS

65nm technology. The implementation results are summarized in Table 4.1. The analog

implementation is better in terms of time response and energy consumption. The over-

head in the circuit’s surface is acceptable when other gains are taken into account. This

is expressed by the efficiency metric which combines the number of bits output by the

network per second for an equivalent area.

4.3 Hardware 3D considerations

In this part, we propose a compact interconnect approach for networks of neural cliques

using 3D technology (Boguslawski et al., 2015b). We present a general study to explore

Chapter 5. Hardware neural cliques in practical applications 78

the gains coming from 3D technology and we validate the proposed method on a power

management test-case.

4.3.1 General introduction to 3D neural networks

Due to the number of elements that are interconnected, neural networks are wire-

dominated systems. This entails challenges in hardware implementation - high latency,

energy consumption and large memory requirements among others. One way to over-

come these issues is to use a shared, multiplexed communication medium as bus or NoC.

Nevertheless, this approach comes with performance reduction and strongly limits the

application field. To obtain high-performance neural networks, physical connections are

needed for all the synapses. That is why first neural networks in 3D technology are

arising. 3D technology relies on stacking few dies one on another and communicating

between them over Through-Silicon-VIAs (TSVs). This allows to overcome the limita-

tions of 2D circuits and provide compact connections for all the synapses. In Belhadj

et al. (2014b) a 3D SNN based accelerator is proposed. The authors report 52% energy

savings and 64% bandwidth improvement. The authors of Clermidy et al. (2014) study

a two-layer neural network for objects recognition in a video stream and demonstrate

that the total connections’ length is reduced three times. The work Joubert et al. (2012)

shows that 3D technology can also be used to design spiking neurons (TSV-neuron) by

exploiting the TSV’s capacitance.

4.3.2 3D technology

As technology node advances, the impact of wiring interconnects parasitics, i.e. resis-

tance and capacitance increases. 3D stacking technology affords an effective technique

to reduce the wiring length. Different techniques to produce a 3D circuit exist. Here, we

focus on 3D technology using TSVs as vertical interconnections. However, the proposed

approach is valid using other 3D technologies.

TSVs are used to interconnect stacked dies. The pitch value of TSVs varies depending

on the fabrication process. In Gutierrez et al. (2014) a TSV with a pitch of 1.2µm

is presented. The main advantage of 3D technology is to replace the long horizontal

wires, which introduce large parasitics, by vertical connections, i.e. TSVs, with lower

Chapter 5. Hardware neural cliques in practical applications 79

parasitics. Proper partitioning is needed to achieve such a goal. In the next sections,

we show how to partition a 2D neural cliques network to create a 3D one.

4.3.3 3D neural cliques

The clique that represents a piece of information stored in the network contains more

information than the necessary minimum Gripon and Berrou (2011b). That is why it

allows the retrieval based on partial and/or noisy information. Consequently, the hard-

ware implementation is wire-dominated. The long wires impact the energy consumption

and time response since all the fanals in the clique have to exchange some signals be-

tween them. For that reason, it is interesting to organize fanals in 3D so that they create

3D cliques with shorter connections, and therefore lower energy consumption and time

response.

The analog circuit described in 4.2.1 provides a high-performance implementation with

physical connections for all the synapses. A significant wiring is necessary to interconnect

all the parts of the network. This interconnect is optimized here using 3D technology.

4.3.4 Methodology

x

y
12 12

12 12

12 12

12 12

12 12

12 12

12 12

12 12

I II

IIIIV

(i, j)=(1, 1)

(i', j')=(4, 4)

Figure 4.5: 2D network example. Different shapes (circles, squares) represent fanals
belonging to different clusters. Each fanal has 12 synapses to connect to other fanals.

The thick line represents the wire necessary to connect two fanals.

Chapter 5. Hardware neural cliques in practical applications 80

I

IV

II

III

Figure 4.6: 3D network (folded network from Figure 4.5). Different shapes (circles,
squares) represent fanals belonging to different clusters. The thick line represents the

wire necessary to connect two fanals.

Since the clique is created by interconnecting the fanals from distinct clusters, the wires

span all over the network. Moreover, the performance of the system depends on the

longest wire in the clique since all the fanals activated in the retrieval process exchange

the signals through their connections. Therefore, in such a wire-dominated structure, it

is beneficial to reduce the length of the connections in the clique to reduce the delays and

the energy consumption due to the signals exchanged between the fanals. This can be

obtained by folding the network. Figure 4.5 shows an exemplary network. The network

is made of four clusters of four fanals each. Fanals belonging to specific clusters are

represented with different shapes. Each fanal has 12 synapses to provide all the possible

connections. For the simplicity, the length of the wires is measured with the number of

hops between the fanals in terms of the Manhattan distance. The Manhattan distance

is obtained based on horizontal or vertical paths, as opposed to the diagonal distance.

In the presented example the fanal (i, j) = (1, 1) in the cluster I is connected with the

fanal (i′, j′) = (4, 4) in the cluster III. This connection represents the longest possible

distance that equals six (the number of dotted lines that have to be crossed). Figure 4.6

shows the same network after folding. One can see that the clusters II and III are moved

to another layer and put below the clusters I and IV. To realize the connection from

Figure 4.5 a wire of length four is used. The connection to the layer below is ensured

by the TSV. Depending on the size and arrangement of the clusters the folding can be

done either in x or y direction.

Chapter 5. Hardware neural cliques in practical applications 81

4.3.5 Simulation model

To analyze the gains introduced by using 3D technology the lengths of all the possible

connections have to be calculated.

First, the elementary distance between two fanals has to be calculated. This distance

depends on the space occupied by the fanal and all its synapses. The area Af+s occupied

by one fanal and all its synapses is calculated as:

Af+s = Afanal + ψsAsynapse (4.1)

where Afanal is the area of the fanal, Asynapse is the area of the synapse, ψs is the number

of the synapses connected to one fanal and is calculated as:

ψs = (c− 1)`. (4.2)

In accordance with the aforementioned model each fanal can be connected to any fanal

in a different cluster.

Second, the Manhattan distance dist(i,j)(i′,j′) between two fanals with coordinates (i, j)

and (i′, j′) is (cf. Figure 4.5):

dist(i,j)(i′,j′) = |i− i′|
√
Af+s + |j − j′|

√
Af+s. (4.3)

The area Af+s is approximated as a square and thus one hop distance is
√
Af+s.

Knowing the distance, the unitary resistance and capacitance for the targeted technology,

one can obtain the RC delay τ as:

τ2D = Rper µm Cper µm dist2(i,j)(i′,j′) (4.4)

where Rper µm and Cper µm are the resistance and capacitance per unit length. In case

of a 3D circuit, the resistance and capacitance of the TSV are added to the RC delay:

τ3D = τ2D +RTSV CTSV . (4.5)

Chapter 5. Hardware neural cliques in practical applications 82

After the outline of methodology and simulation model, we proceed to exploring the

gains resulting from the approach we propose.

4.3.6 General study results

To evaluate the proposed 3D architecture, the gains in terms of total wire length disttotal

and maximal RC delay τmax obtained by using the 3D technology are explored for

different configurations of the network. This includes scaling the number of clusters c

and the cluster’s size `.

The results are based on physical implementation using 65nm technology and 3D tech-

nology with a TSV of resistance and capacitance equal to RTSV = 2mΩ and CTSV = 5fF.

Using our technology specifications, each TSV is equivalent to horizontal wire length of

0.06µm. The equivalent horizontal wire length of TSVs represents less than 1% of the

total wire length in the 3D worst simulated case. These values have been included in

the 3D results to take into account the impact of TSVs.

Figure 4.7: Total wire length gain compared to 2D in function of the number of
clusters in each direction. Square cluster of size two by two is used. The numbers of
clusters are given for 2D. For 3D the network is split in two equal parts in such a way

to cut its longest dimension.

In the beginning, to facilitate the study, the size of the cluster ` is fixed to four (the

cluster is square - two by two fanals) and the number of clusters c is scaled. Figure 4.7

shows the gain of the 3D technology in terms of total wire length disttotal compared

Chapter 5. Hardware neural cliques in practical applications 83

Figure 4.8: Maximal RC delay gain compared to 2D in function of the number of
clusters in each direction. Square cluster of size two by two is used. The numbers of
clusters are given for 2D. For 3D the network is split in two equal parts in such a way

to cut its longest dimension.

to the conventional 2D circuit. The gains reach 45% when the network is strongly

rectangular. For a given network size it is therefore better to organize the clusters in

a rectangle. For instance, for c=16, the gain is 41% when the network is organized in

eight by two clusters compared to 27% for four by four clusters. The square networks

are clearly distinguished on the surface by their lower gains. Note that it is possible

to use few rectangular networks to organize them in a square. Similar trends can be

observed in Figure 4.8 that shows the gains in terms of maximal RC delay τmax. In this

case the maximal gains reach 72%. It is important to note that the time response of the

neural cliques is determined by the longest path in the clique.

Figure 4.7 and Figure 4.8 show that by increasing the number of clusters equally in

both x and y directions (square network), the 3D gain is higher for smaller numbers of

clusters (e.g. for total wire length 33% for 2x2) than bigger ones (25% for 8x8, 24%

for 16x16). The reason is that 3D cut partitioning is done in only one direction and

consequently, the 3D gain is larger in that direction. Therefore, in case of increasing

number of clusters equally in both directions, the effect of long interconnects will not be

reduced in one of the two directions which will reduce the overall 3D gain.

Figure 4.9a shows the total wire length gain. The cluster size is kept the same as in

Figure 4.7 and Figure 4.8. The red curve shows the evolution of the total wire length gain

Chapter 5. Hardware neural cliques in practical applications 84

(a) (b)

Figure 4.9: (a) Total wire length gain (b) maximal RC delay gain in function of the
total number of fanals n for different network dimensions.

when the number of clusters in one direction is fixed to two and the network is scaled

in another direction. The gain increases quickly for smaller numbers of fanals, then it

saturates. It reaches 90% of the maximal value for n=112 fanals which corresponds to

c=28 clusters. Blue crosses show the gains when the number of clusters is scaled in

both directions, resulting in a network that is less rectangular. The obtained gains are

never bigger than when scaling in only one direction. Therefore, it is more beneficial to

scale the network in one direction. The black curve presents the gain when c is fixed to

four (two by two clusters) and the number of fanals in the cluster ` is scaled. Now the

gains are higher than in the former case for the same total number of fanals. Again, the

same trend is observed. The gain increases quickly for smaller numbers of fanals, then

it saturates. 90% of the maximal gain is reached for n=128 fanals which corresponds to

`=32. Comparing these two curves leads to the conclusion that for a given total number

of fanals n from the 3D point of view it is more beneficial to have bigger clusters. This

is consistent with Gripon and Berrou (2011a) where authors state that from the storage

capacity point of view for a given total number of fanals n it is better to have bigger

clusters since the density of the connections established in the network grows slower.

This means that optimizing the gains coming from the theoretical model and hardware

3D implementation is not contradictory.

Figure 4.9b shows the similar analysis for the gains in terms of maximal RC delay τmax.

The gains, reaching 74%, are bigger than for total wire length. There is no difference

Chapter 5. Hardware neural cliques in practical applications 85

Table 4.2: Total wire length gain in percentage compared to 2D for a given number
of clusters in x and y direction

H
HHH

HHy
x

2 4 6 8 10 12 14 16

2 33 37 40 41 43 44 44 45

4 37 27 31 34 36 38 39 40

6 40 31 26 29 32 34 35 37

8 41 34 29 25 28 30 32 34

10 43 36 32 28 25 27 29 31

12 44 38 34 30 27 25 27 29

14 44 39 35 32 29 27 25 27

16 45 40 37 34 31 29 27 25

Table 4.3: Maximal RC delay gain in percentage compared to 2D for a given number
of clusters in x and y direction

H
HHH

HHy
x

2 4 6 8 10 12 14 16

2 56 64 67 69 70 71 72 72

4 64 49 56 60 62 64 65 67

6 67 56 47 52 56 58 60 62

8 69 60 52 46 50 53 56 58

10 70 62 56 50 46 49 52 54

12 71 64 58 53 49 45 48 51

14 72 65 60 56 52 48 45 48

16 72 67 62 58 54 51 48 45

between the maximal RC delay when increasing the number of clusters c or the number

of fanals per cluster ` because in both cases the length of the longest connection is the

same. Similarly, it is beneficial to scale the network only in one direction.

To give more insight in the gains represented by the blue crosses (when the number of

clusters is increased in both x and y directions), Table 4.2 shows the gains obtained

for total wire length (cf. Figure 4.9a). The table gives the number of clusters in each

direction (x or y) and the corresponding gain compared to 2D. For instance, when x=2

and the clusters are added only in y direction, the gain compared to 2D increases from

33 to 45%. If a network of 16 clusters is considered, for two clusters in x direction and

eight clusters in y direction, one obtains 41% gain whereas for four clusters in x and

y direction one obtains only 27%. This shows once again, that it is more beneficial to

Chapter 5. Hardware neural cliques in practical applications 86

organize the clusters in a rectangle rather than in a square. Similar analysis is shown in

Table 4.3 for the maximum RC delay.

Additionally, the power of the interconnects is directly proportional to the total wire

length disttotal:

Pinterconnects ∝ disttotal. (4.6)

Consequently, in case of reducing the total wire length disttotal by 55%, as shown in

Figure 4.9a, the power of the interconnects is reduced by the same percentage.

4.3.7 Case study simulation results

In this section, a real-world test-case is used to obtain the dimensions of the neural

cliques and explore the gains of using 3D technology. In the considered application

the time response of neural cliques is of first importance. Therefore, high-performance

communication structure is essential.

L&mode

255

f1

256

f2

256

f6

256...{ {inputs outputs

E

255

{input/
output

Figure 4.10: Network of neural cliques structure for 3D case study. Latency L and
operating mode combinations are stored in one cluster and used to stimulate the net-
work. One cluster of 255 fanals is created to store all the corresponding energies. It can
be used either as input or output. The set of frequencies is retrieved from the network.

The considered test-case is a neural cliques-based power management decision unit for

MAGALI MPSoC already introduced in Subsection 3.5.1.1. We recall that six VFIs are

used in the application, each VFI can choose from 256 frequencies. The speed of each VFI

is determined by a global latency constraint and an operating mode offering different data

rates. The global latency constraint has 51 possible values, there are 5 different operating

modes. Additionally, in each message a global estimation of the energy consumed by

all the VFIs is included. Thanks to that, when the energy consumption is the main

constraint (e.g. low battery level), the maximum affordable energy is used as the input to

the network and the frequencies and the corresponding latency are retrieved. Otherwise,

the estimation of the consumed energy is retrieved from the network based on the latency

and operating mode. This kind of flexible controller is of high interest in low-power

Chapter 5. Hardware neural cliques in practical applications 87

Table 4.4: The gains obtained for 3D neural cliques used as power management
controller. The results are normalized to 2D circuit

2D
3D Gain

Case 1 Case 2 Case 1 Case 2

Total wire length 1 0.65 0.83 35% 17%

RC delay max 1 0.43 0.69 57% 31%

systems. Consequently, the network is made of six clusters of 256 fanals to store all the

possible frequency values, one cluster of 255 fanals to store all the possible latency and

operating mode values (51 latencies times 5 operating modes), and one cluster of 255

fanals to store all the corresponding energies. The structure of the network is illustrated

in Figure 4.10. For 2D, the network is organized in four clusters in x direction, two

clusters in y direction. In each cluster 16 fanals are placed in each direction. For 3D,

there are two possible cases: 1) network is cut in x direction (two clusters in each

direction on each die), 2) network is cut in y direction (four clusters in x direction and

one cluster in y direction on each die).

The gains in terms of total wire length and RC maximum delay compared to the con-

ventional 2D circuit are summarized in Table 4.4. Case 1 gives better results. In this

application, using 3D technology allows for 35% total wire length reduction and conse-

quently, the same reduction in terms of the power of the interconnects. Furthermore,

the maximum RC delay is reduced by 57%.

As TSV insertion adds additional area for creating the vertical connections, area over-

head analysis should be done. In the test-case, the number of used TSVs is 1048576.

The TSV pitch is 1.2µm Gutierrez et al. (2014), consequently TSVs occupy an area of

1.5mm2 which represents 5% of the total chip area. Advanced 3D technologies with

smaller pitch can be used to reduce the area overhead. For example, 3D sequential

integration Batude et al. (2014) can reduce TSVs area overhead to 1.4%.

Chapter 5. Hardware neural cliques in practical applications 88

W1L1
W2L1
W3L1

W3L3

W1L1
W2L1
W3L1

W3L3

W1L1
W2L1
W3L1

W3L3

W1L1

W1L3
W2L3
W3L3

W1L1

W1L3
W2L3
W3L3

...

... ...

VFI1 VFI2 VFI3

VFI4 VFI5 W1L1

W1L3
W2L3
W3L3

...

VFI6

Figure 4.11: Homogeneous MPSoC with six VFIs and two applications mapped.
Each VFI can process three different workloads W and there are three possible latency

constraints L.

4.4 MPSoC power management: comparison with game

theory decision unit

4.4.1 Generic neural cliques structure

The generic neural cliques structure has to support either homogeneous or heterogeneous

MPSoC architecture. Homogeneous architecture, where generic PEs are exploited, can

execute different types of tasks differing in workload W . Workload can be expressed

as current fullness of the PE’s FIFO or by a number of clock cycles N necessary to

compute a task. Different applications can be mapped on such a generic platform which

implies that VFIs can be organized in different configurations with different latency

constraints L and workloads W . Figure 4.11 shows an MPSoC with six VFIs. Each VFI

can process three different workloads and there are three possible latency constraints.

Any application can be mapped on the MPSoC. Here, two applications are mapped. The

first application (marked in blue) is processed by three VFIs. All the computations have

to be finished within an L1 global latency constraint. VFI1 has to process a workload

W1, VFI2 W3, VFI3 W2. The second application (marked in green) is processed by

other three VFIs. All the computations have to be finished within an L3 global latency

constraint. VFI4 has to process a workload W2, VFI5 W1, VFI6 W1.

Chapter 5. Hardware neural cliques in practical applications 89

Figure 4.12: (W − L) clusters for generic power management. There are 64 VFIs,
eight workloads W , eight latencies L possible for each VFI.

clusters

Figure 4.13: (f) clusters for generic power management. There are 64 VFIs, 16
frequencies f possible for each VFI.

The information about the possible workloads, latencies and power modes to be set

has to be stored in the network. In this generic study, we consider an MPSoC with 64

VFIs (Larras et al., 2013b) that is bigger than in the introductory example and is also

considered in (Puschini et al., 2008). The workload W and latency L are quantified

on three bits each and coupled together as one value written on six bits. As in Beigné

et al. (2009) the DVFS actuator is able to adjust the necessary voltage upon the given

frequency. The frequency f is stored on four bits giving 16 possible frequency settings.

A set of workloads and latencies represents different situations in the MPSoC. For a

given situation, a frequency for each VFI ensuring the latency constraint is obtained

form an offline optimization system and is stored in networks of neural cliques. Two

Chapter 5. Hardware neural cliques in practical applications 90

different sizes of clusters are used. Workloads W and latencies L are stored in (W −L)

clusters of `1 = 64 fanals. These can be externally stimulated to input the current W

and L of each VFI to the network. Frequencies f are stored in (f) clusters of `2 = 16

fanals. One cluster of each type is associated with each VFI, and therefore c1 = c2 = 64.

The (W − L) clusters are depicted in Figure 4.12. The (f) clusters are stimulated by

the (W − L) clusters, as illustrated in Figure 4.13. There is no need for connections

between fanals in (f) clusters since 64 stimuli they receive are enough to discriminate

the right fanal.

Figure 4.14: Fanal’s response with respect to input current at node Ak.

Deep submicron technologies are prone to leakage currents. This implies that even if

switch MS
3 in synapse, Figure 4.1, is off, a tiny current still adds up at node Ak. This

infers a limitation in the number of synapses a fanal can have in order to avoid self-

activation of the fanal. From simulations, the leakage current in MS
3 is 0.07nA. As

shown in Figure 4.14, activating a fanal requires an input current at node Ak equal to

49nA. Thus, the number of synapses per fanal is limited to 700 to avoid self-activation

when the fanal is not stimulated. This allows to store ten cliques that involve each fanal

and consequently, assuming uniform distribution in (W−L) clusters, 640 configurations.

The time response to obtain a result in the (f) clusters is divided in three steps. First,

the stimulation time lasts from the moment the (W − L) clusters are stimulated until

the first (W −L) fanals are activated. Then, signals are exchanged within the (W −L)

clusters and they stimulate fanals in the (f) clusters. The fanals activated in the (f)

clusters are used by DVFS actuators to select a new VFI frequency.

Chapter 5. Hardware neural cliques in practical applications 91

4.4.2 General comparison with game theory decision unit

The generic neural cliques implementation is compared to game theory decision unit

based on the results given in (Puschini et al., 2008) and implementation presented in

(Mansouri et al., 2010b). The implementation results are referred to the same VFI

(Jalier et al., 2010) as in (Mansouri et al., 2010b). Both game theory implementation

and VFI are designed for the same 1V supply ST 65nm technology as the neural cliques

implementation.

(W-L) clusters

Signals exchanges
in the (W-L) clusters

(f) clusters

Figure 4.15: Three time steps composing the overall time response of the network
to obtain a result in the (f) clusters. (a) (W − L) clusters stimulation, (b) Signals

exchanges in the (W − L) clusters, (c) Convergence of (f) clusters.

Since clusters work in parallel and are identical, the time response of the whole network is

equal to the time response of one cluster. This time response is a function of the number

of synapses, i.e. the number of loads connected to node Ak. More capacitance at node

Ak implies a slower voltage-to-current conversion and thus an increased time response.

Adding synapses also means that more clusters are added. As explained in the end of

the last section, the time response to obtain a result in the (f) clusters is divided in

three steps. These three phases are represented in Figure 4.15, the stimulation occurs at

10ns of simulation time. The stimulation time is the longest of the three, because a fanal

Chapter 5. Hardware neural cliques in practical applications 92

Table 4.5: Comparison between neural cliques and game theory decision unit.

Mansouri et al. (2010b) This work

Number of VFIs 64 64

Energy per search [nJ] 68.6 0.01

Surface area [µm2] 14000 92000

Time response [µs] 120 0.027

is stimulated only by the external stimuli. The two other periods are shorter due to the

fact that other fanals also contribute to the stimulation. Consequently, the capacitances

in the corresponding parts of the network are charged by a higher current causing the

voltage at node Bk to reach faster the threshold of the logic buffer in Figure 4.2.

Stimulation of the (W-L) clusters
Signals exchanges in the (W-L) clusters
Convergence of the (f) clusters
Overall time response

Figure 4.16: Time response of a cluster with regard to the number of synapses per
fanal during different steps of retrieval process.

The influence of the number of synapses per fanal on each step of the retrieval process

is shown in Figure 4.16. We observe that the time response of a cluster, and therefore

the whole network with 630 synapses per fanal is 27ns. The unitary current IUNIT is

chosen according to the number of signals that can arrive at fanal’s synapses Larras

et al. (2014). To adapt a frequency f to new working conditions, the circuit consumes

10.25pJ per VFI, Table 4.5. This represents 0.4% of the VFI’s energy consumption. A

(W − L) cluster occupies 73475µm2 and an (f) cluster 18369µm2. The per VFI area is

the sum of a (W − L) cluster and an (f) cluster and represents 3% of the VFI’s area.

Chapter 5. Hardware neural cliques in practical applications 93

Table 4.6: MC-CDMA TX application parameters (Lattard et al., 2007). Character-
ized at fnom,i = 200MHz.

Encod Bit inter Mapp FHT OFDM

Ni [clk cycles] 576 560 560 24496 115248

Enom,i [pJ/clk cycle] 77.6 183.3 183.2 251.5 1516.5

The game theory occupies smaller area. However, this is acceptable considering the huge

gains in terms of time response (4500 faster) and energy consumption (6800 smaller).

4.4.3 MPSoC power management for MC-CDMA transmitter

After the generic neural cliques implementation study, a test-case is exploited to compare

the gains resulting from power management by neural cliques decision unit to energy

gains from power management relying on game theory.

4.4.3.1 MC-CDMA transmitter implemented on FAUST platform

To compare energy gains the same applicative test-case as in (Puschini et al., 2009) is

used. The considered MPSoC is a system for 4G telecom applications called FAUST

(Lattard et al., 2007). It is a heterogeneous MPSoC integrating with an asynchronous

NoC providing high-throughput communication. An advanced telecommunication ap-

plication MC-CDMA Matrice, configured to work in QPSK-LQ specification, is mapped

on the MPSoC. It consists of five tasks shown in Figure 4.17: encoder, bit interleaving,

mapping, FHT, and OFDM modulator. Each task is assigned to a PE. As in (Puschini

et al., 2009), the DVFS circuit is able to set 32 frequencies between 50 and 300MHz. The

parameters of the application, necessary to calculate the energy (1.10), are summarized

in Table 4.6. The values regarding energy Enom,i are measured at fnom,i = 200MHz.

When using clock gating, a power reduction of 80% is observed. Under the assumption

made in (Puschini et al., 2009), the static power in the FAUST chip is considered to be

the tenth of the dynamic power.

Encod Bit
inter

Mapp FHT OFDM
Input Output

Figure 4.17: MC-CDMA TX application graph (Lattard et al., 2007).

Chapter 5. Hardware neural cliques in practical applications 94

4.4.3.2 Network of neural cliques used as power management unit

The network used in the test-case is a particular case of the generic neural cliques

structure presented in Section 4.4.1. Further optimized structure of neural cliques is

used in the subsequent section.

As a consequence of using dedicated hardware blocks, the workload expressed by a

number of clock cycles N necessary to compute a task is no longer a relevant type of

parameter input to the network. The workload is fixed for all the VFIs and equal to

Ni given in Table 4.6. Therefore, only the latency is considered as a variable input.

Moreover, in (Puschini et al., 2009) all the VFIs are organized in a chain that has

to output data in a certain time implying that all the VFIs have the same latency

constraint. Therefore, to each PE corresponds a VFI associated with an L and an f

cluster. Consequently, the cliques in the L clusters group the same fanal in each cluster.

This corresponds to having four synapses per fanal. To keep the same cluster size as

in generic structure, L is quantized on six bits and f is quantized on four bits. L

ranges from 475µs to 1ms. There are therefore 64 stored configurations in the network.

Behavioral simulations show that all the frequencies f are correctly retrieved based on

the initial stimulation.

As shown in Figure 4.16, the network implemented in 65nm technology has a time

response of 9ns. The FAUST MPSoC is implemented in 130nm technology, and therefore

we estimate the time response of neural cliques implemented in the same technology.

Parasitic capacitors in 130nm are 3.5 times larger than in 65nm (Larras et al., 2014).

Consequently, the time response of the network implemented in 130nm is estimated to

be 32ns. This is still much less than game theory decision unit in 65nm which takes

105µs to converge (Puschini et al., 2008, Mansouri et al., 2010b)

4.4.3.3 Energy gains

First, from a chosen budget the energy savings brought in by neural cliques can be

compared to the method consisting in setting a global frequency to all the VFIs. Knowing

the total number of clock cycles needed to finish all the tasks, and the latency constraint,

Chapter 5. Hardware neural cliques in practical applications 95

the global frequency is computed as follows:

fglob =

∑ν
i=1Ni

L
. (4.7)

Considering that the 64 possible latency values between 475µs and 1ms are uniformly

distributed, the average consumed energy per application run is 281µJ. Using neural

cliques with the 64 L values stored instead of the globally adjusted frequency allows

saving on average 40µJ. This value accounts for 14% energy savings.

L values
L values
L values
L values

possible L values

Figure 4.18: Energy gain compared to global frequency with regard to total number
of possible latency L values. Different curves represent gains for different numbers of

stored latency values.

The number of stored L values may be lower than the total number of possible values.

The gap between the number of stored and possible L values results in suboptimal

frequency settings. This reduces the energy gain. There is thus a compromise between

energy gain and neural cliques complexity. Therefore, it is interesting to estimate the

energy savings with respect to the number of L values stored in the network. Figure 4.18

depicts the energy gain with regard to the global frequency setting method with regard to

the number of latency values L requested by the system for different cluster sizes. Based

on the number of requested L values and the desired energy gain, one can dimension

the network properly.

Second, the energy savings brought in by neural cliques compared to game theory are

assessed. As reported in (Puschini et al., 2008), the controller based on game theory

offers an average of 89% optimization quality, i.e. the distance between the computed

Chapter 5. Hardware neural cliques in practical applications 96

solution and the optimal frequency, with a maximum at 93%. An advantage of neural

cliques compared to game theory is that they can store solutions closer to optimal since

they can be obtained by solving 1.12 using mathematical software tools. The comparison

is done with the example presented in (Puschini et al., 2009) which considers a latency

L = 850µs and an energy budget of 280µJ. Both game theory and the neural cliques

decision units provide one frequency per task. These frequencies are chosen among the

32 possible values the DVFS actuator can provide for game theory, while 16 in case of

neural cliques. Only taking the energy saved into account once either game theory or

neural cliques have converged to a solution, simulations show that both decision units

yield similar energy savings, 38% and 40%, respectively. This result can be improved if

neural cliques decision unit allows choosing among the 32 frequencies the DVFS actuator

can provide instead of only half. In this case, the energy savings go up to 46%. This

is achieved at the expense of a surface area per VFI which increases by 33% while the

time response goes up by 1ns.

105µs 955µs0

decision time computation

955µs0

computation

ga
m

e
th

eo
ry

ne
ur

al
 c

liq
ue

s

Figure 4.19: Breakdown of decision time and computation time in case of game
theory and neural cliques decision units. The global latency constraint given by the

higher level is 955µs.

However, these results do not account for the energy consumed by the VFIs while the

power management systems are converging. The game theory takes 105µs to converge

(Puschini et al., 2008, Mansouri et al., 2010b). This duration should be taken into

account by the higher system layers when sending the requests relating to the task

Chapter 5. Hardware neural cliques in practical applications 97

completion time. It implies that the latency is 955µs with 850µs devoted to actually

performing the task. Since the convergence time of neural cliques circuit is negligible

compared to that of game theory, 955µs is also the time assigned for computing the tasks

if the neural network is used. This described situation is depicted in Figure 4.19. Thanks

to the longer time assigned to computing the tasks, VFIs use less energy. This yields

a 58% energy savings, resulting both from the faster convergence and more optimal

solutions stored in the network. This is achieved with only 16 frequencies considered

available in the DVFS actuator. When 32 frequencies are available, neural cliques save

60% of the energy budget. The slight improvement is due to the fact that neural cliques

decision unit outputs a frequency vector not far from optimal. Furthermore, faster

convergence also implies more efficient design. Since the amount of data waiting for the

computation is smaller, memory buffers in the system can be reduced. These design

improvements are not taken into account in the presented gains.

The decision unit that we propose in this section consumes 6800 less energy and has 4500

smaller time response than the decision unit that relies on game theory. The practical

test-case shows that it allows to obtain energy savings of 60% compared to 38% when

game theory decision unit is applied. The following section presents a comparison with

a decision unit relying on CAM-SRAM associative memory.

4.5 MPSoC power management: comparison with CAM-

SRAM associative memory

In this section, neural cliques are compared to a CAM-SRAM associative memory (Bo-

guslawski et al., 2015c,d). Here, we consider the neural network used as a classical CAM

associative memory for applications in which the subsets of input and output segments

are known beforehand. Consequently, there is no need for the connections between all

the clusters. Only the connections leading from input clusters (the clusters associated

to input segments - the known segments) to output clusters (the clusters associated to

output segments - the unknown segments) are kept. This allows reducing the number

of connections and simplifies the implementation.

Chapter 5. Hardware neural cliques in practical applications 98

Firstly, the complexity of neural cliques and CAM is compared in terms of transistor

count. The introduced complexity metric accounts for the complexity of the cells with-

out taking into account the interconnections. Since in CAM all the memory cells are

interconnected and in neural cliques only certain nodes, the interconnection in CAM

is more complex. The introduced complexity metric should not be confused with the

surface of the circuit. One can have a very complex circuit occupying a small area. It is

also a question of whether the circuit is analog or digital. Contrary to analog circuits,

digital ones often use minimum-sized transitors and occupy less area. However, analog

circuits usually consume less energy.

4.5.1 Neural cliques-based associative memory - implementation com-

plexity

The hardware complexity of the networks of neural cliques depends on their dimensions

and functionality. The dimensions are defined by the number of fanals and the way

they are divided into clusters. The functionality is determined by programmable or

non-programmable connections and the type of nodes (buffer or fanal). The network

is divided into input clusters corresponding to known segments of messages and output

clusters corresponding to unknown segments of messages. The nodes in input clusters

are made from simple buffers, whereas the nodes in the output clusters are the fanals

with WTA functionality. Assume that the network consists of cin input clusters of

different sizes, cout output clusters of different sizes, c1 being the number of clusters of

size `1, c2 being the number of clusters of size `2, and so on. Then, the total number of

connections ψ that can be established in the network is calculated as follows:

ψ =
∑
k∈cin

ck`k
∑
j∈cout

cj`j (4.8)

where k denotes the clusters of the same size only among the input clusters and j

denotes the clusters of the same size only among the output clusters. The total number

of connections ψ grows linearly with the number of fanals n.

The network is a regular structure that consists of fanals and connections, each of

them representing a constant complexity in its hardware equivalent. Therefore, the

total complexity of a given network is a function of its dimensions, complexity of each

Chapter 5. Hardware neural cliques in practical applications 99

element and its functionality. The complexity is expressed by means of the total number

of transistors necessary to implement the network using the circuits proposed in Larras

et al. (2013a). A programmable connection is composed of four transistors, whereas a

non-programmable connection uses two transistors so in the following equation, p = 4

or 2. The complexity κ of the network is given by:

κ = b
∑
k∈Cin

ck`k + t
∑

j∈Cout

cj`j + pψ. (4.9)

b represents the number of transistors necessary to construct a simple buffer and equals

four. These buffers are used to replace the fanals in the input clusters. The first

sum represents the number of fanals in the input clusters. t represents the number of

transistors necessary to construct the fanal and equals eight. The second sum represents

the fanals in the output clusters so it is multiplied by t.

4.5.2 CAM-based associative memory - implementation complexity

For the CAM, as in (4.9), the unit of κ is the number of transistors necessary to im-

plement the circuit. The standard 10-T NOR-type CAM cell is used which serves both

search word storage and comparison functions Pagiamtzis and Sheikholeslami (2006).

Since 10 transistors are used to store one bit and assuming that w and z represent the

dimensions of the CAM (Figure 1.6), the complexity of the CAM is calculated as:

κCAM = 10wz. (4.10)

To construct the memory in Figure 1.6, the RAM is needed. Since low-power integrated

circuits are targeted here, the SRAM is chosen as the memory. The conventional 6-T

SRAM cell is used Do et al. (2011a). Knowing that six transistors are used to store one

bit and assuming that y and x represent the dimensions of the SRAM (Figure 1.6), the

complexity of the CAM and SRAM-based memory is calculated as follows:

κCAM+SRAM = 10wz + 6yx. (4.11)

To keep the analysis sufficiently general, only the number of transistors used to construct

the memory matrix storing a given number of information bits is taken into account. In

Chapter 5. Hardware neural cliques in practical applications 100

case of the CAM or SRAM, the peripherals needed to control the memory matrix depend

strongly on the memory organization and design objectives. The overhead related to

search data registers, drivers, matchline precharge circuitry, sense amplifiers, control

circuitry for CAM and row decoder, input/output registers, controller for SRAM are

not considered. Thus, only the storage complexity, not control complexity, is taken into

account. For the network, the storage and processing are combined in one structure and

are not separable.

The sizes of the transistors used in the network and in the CAM/SRAM are not the

same, their working principle is also different. As it will be shown later, in case of the

neural cliques the complexity has a stronger impact on the area, whereas in case of the

CAM and SRAM it impacts more the energy consumption.

4.5.3 Implementation complexity comparison

Network of neural cliques

SRAM

C
om

pl
ex

ity
 κ

k k k
Number of stored information bits

CAM

Figure 4.20: Implementation complexity in function of information bits stored (xy,
cf. Figure 1.6) normalized to the minimal value for the network of neural cliques.

Programmable connections are used for neural cliques.

Figure 4.20 presents the comparison of CAM-based memory (Figure 1.6) and neural

cliques for variable number of stored information bits (e.g. associations between 256

different values of 8 bit long words give 2k bits - xy, cf. Figure 1.6). Programmable

Chapter 5. Hardware neural cliques in practical applications 101

connections are used in neural cliques. The results are normalized to the minimal κ of

the network. The figure shows the contribution of each part of the associative memory

on the overall complexity. First, one can see that the complexity κCAM is always greater

and increases faster than the complexity of the network of neural cliques. It also has a

major contribution to the complexity of the CAM-based associative memory (for equal

CAM and SRAM sizes). As the memory size increases, the gap between CAM-based

associative memory and neural cliques increases.

4.5.4 LTE receiver implemented on MAGALI platform

For the presented comparisons two cases are considered:

a) neural cliques are used to replace the CAM in Figure 1.6 and provide the associations

between the search word and the address for the SRAM,

b) neural cliques are used to replace the entire CAM and SRAM couple and provide the

associations between the search word and the output word.

The MPSoC platform under consideration is the MAGALI MPSoC Clermidy et al.

(2010) already introduced in Subsection 3.5.1.1. Six types of processors are used in

the test-case, each processor can choose from 256 clock frequencies. The speed of each

processor is determined by a global latency constraint and an operating mode offering

different data rates Clermidy et al. (2009). The global latency constraint has 51 possible

values, there are five different operating modes. Therefore, the associative memory has

to perform the associations between a search word that has 255 possible values (all the

possible combinations between the global latency constraint and the operating mode)

and six output words each having 256 possible values.

4.5.4.1 Dimensions of CAM and SRAM

To ensure the associations necessary in the test-case, the sizes of CAM and SRAM

are w = 8, z = 256 (one additional replica line for timing control Pagiamtzis and

Sheikholeslami (2006)), and y = z = 256, x = 48 (Figure 1.6).

Chapter 5. Hardware neural cliques in practical applications 102

4.5.4.2 Dimensions of neural cliques

Two comparisons are considered:

a) neural cliques are used to replace the CAM: in this case the network consists of one

input cluster of 255 fanals and four output clusters of four fanals,

b) neural cliques are used to replace the entire CAM and SRAM couple: the network

consists of one input cluster of 255 fanals and 24 output clusters of four fanals.

Indeed, the 256 output values are represented with an eight-bit encoded word. Each

cluster represents two bits showed by the state of its four fanals.

4.5.4.3 Simulation results

Firstly, the comparison between neural cliques and CAM is made. Thus, neural cliques

are used to associate the search word with the address used by the SRAM. The obtained

results are compared with several CAM references, Table 4.7. The energy consumption

of the CAM of the size necessary in the test-case is estimated based on the appropriate

references. One can see that networks of neural cliques are more efficient than CAMs

in terms of energy consumption per search which is related to the different operation

principle described in Section II. Additionally, in Table 4.7, the conventional figure of

merit (FOM) is presented. The network occupies an area in between the two CAMs

for which the area is given. However, in case of CAMs only the cell matrix is taken

into account. Since there is no CAM of the specific size used in the presented test-

case available in literature, the control overhead is hard to estimate. The search delay

of CAMs is shorter than for the network. Nevertheless, in the considered test-case of

power management in MPSoCs, there is no need to provide the search as fast as CAMs,

especially that it comes at the additional cost of power consumption.

C
h

a
p

ter
5
.

H
a
rd

w
a
re

n
eu

ra
l

cliqu
es

in
p
ra

ctica
l

a
p
p
lica

tio
n

s
103

Table 4.7: Comparison between neural cliques and CAM. Supply voltage 1V, Technology 65nm, w = 8, z = 256, cf. Figure 1.6

A
ga

rw
al

et
al

. (
20

06
)

D
ua

l-s
up

pl
y

D
o

et
al

. (
20

13
)

C
on

ve
nt

io
na

l

D
o

et
al

. (
20

13
)

Par
ity

bi
t
po

w
er

ga
te

d

A
rs

ov
sk

i a
nd

W
is
to

rt
(2

00
6)

Se
lf-

re
fe

re
nc

ed
se

ns
in

g

D
o

et
al

. (
20

14
)

A
ut

om
at

ed
ba

ck
gr

ou
nd

ch
ec

ki
ng

sc
he

m
e

T
hi

s
w
or

k

Energy per search [pJ] 18.4 3.8 1.6 2.0 1.6 1.2

FOM [fJ/bit/search] 9 1.85 0.76 0.99 0.77 0.59

Surface area [µm2] N/A N/A N/A 4710 (matrix only) 7782 (matrix only) 5511

Search delay [ns] 0.4 1.3 0.8 0.6 1.2 15.6

Simulated(S)/ S S S M M S

Measured(M)

Chapter 5. Hardware neural cliques in practical applications 104

Table 4.8: Comparison between neural cliques and CAM and SRAM couple. Tech-
nology 65nm, w = 8, z = 256, y = 256, x = 48, cf. Figure 1.6

Do et al. (2014) (CAM) This work

+ ST SRAM

Energy per search [pJ] 13.6 7.0

Surface area [µm2] 22791 26948

(matrices only)

Search delay [ns] 2.3 15.6

Supply (SRAM) 1.1V 1V

Sim.(S)/Meas.(M)/ M (CAM) S

Estim.(E) E (SRAM)

Complexity 94208 (eq. (4.11)) 17468 (eq. (4.9))

Secondly, neural cliques are compared to the entire CAM and SRAM couple. Thus now,

neural cliques provide the associations between the search word and the output word.

The results are shown in Table 4.8. For this comparison the most energy-efficient CAM

from Table 4.7 for which all the data is available is coupled with an SRAM. Based on the

SRAM from STMicroelectronics with y that corresponds to the test-case parameters and

x = 18 and 32, the parameters of the SRAM with x = 48 are estimated. One can see that

the energy consumption of the network in the considered test-case is 48% smaller than

that of the CAM and SRAM. The energy consumption of the network is smaller even

compared to the ST SRAM with x = 18 (7.51pJ). This comes at the cost of slightly

larger area of the network, acceptable taking into account the energy reduction, and

longer search time. The complexity κ (4.9) of the network is smaller than κCAM+SRAM

(4.11). Due to its dominating size compared to the CAM, the SRAM accounts for the

major part (73728 transistors, 78%) of the complexity (4.11).

Both types of associative memory are evaluated in a practical scenario and the obtained

results show that for a group of applications where the energy consumption is the main

constraint, neural cliques can be an interesting alternative to typically used CAM de-

signs. Furthermore, the general analysis shows that when the memory size increases, the

gap between the implementation complexity of CAM and neural cliques becomes larger

as well. The comparison between neural cliques and the entire CAM-based memory

(with SRAM) reveals even greater energy savings (48%) which is consistent with the

bigger gap in their implementation complexity.

Chapter 5. Hardware neural cliques in practical applications 105

4.6 Conclusion

We propose a hardware neural cliques structure to design a power management deci-

sion unit. Comparing to game theory decision unit, the decision unit that we propose

consumes 6800 less energy and has 4500 smaller time response than the decision unit

that relies on game theory. The practical test-case shows that it allows to obtain energy

savings of 60% compared to 38% when game theory decision unit is applied. Comparing

to CAM-SRAM decision unit, the decision unit we propose offers 48% energy savings

and is less complex. Moreover, as the associative memory size increases, the gap in com-

plexity of both types of memory increases. We discuss the impact of variability on the

analog implementation of neural cliques and we envision three methods to improve the

reliability of these circuits. Further, we estimate the cost of programming the synapses

and we propose a novel 3D interconnect approach for high-performance neural cliques’

implementation. A general study shows up to 55% reduction in terms of total intercon-

nect length and interconnect power consumption, and 74% reduction of the maximal

interconnect delay. The proposed approach is validated with a power management ap-

plicative test-case. We demonstrate that, in this scenario, the 3D architecture reduces

interconnect length and power by 35% and the maximal delay by 57%, compared to 2D.

We also propose to use clusters either as input or output depending on current require-

ments. For instance, we propose to use a cluster storing energy that can be used either

as input when a maximal affordable energy is input to the decision unit or as output to

obtain an estimation of the energy consumed by the VFIs.

Conclusion and perspectives

Contribution and conclusion

The challenge of combining high-performance and energy efficiency is clearly present in

today’s applications. This objective can be reached with MPSoC platforms that provide

high-level of adaptability, performance, reliability and energy efficiency. Nevertheless,

they have to be accompanied with a decision unit that continuously adapts their op-

eration. This leads us to neural networks that benefit from biological findings on the

human brain and allow for an energy efficient associative memory. Associative memory

replaces energy-costly optimization with energy-efficient memorization. Since no address

is used to retrieve stored data, it allows to retrieve information based on different types

of inputs (such as latency or energy constraint) depending on dynamic conditions.

We used an associative memory that relies on neural cliques to store information and

sparse activity to retrieve it. This opens opportunities for low-power implementations.

Networks of neural cliques are shown to surpass state-of-the-art associative memories

yet it is indispensable to adapt them to real-world applications.

We therefore analyzed these networks in practical applications using real-world data

obtained from measurements and simulations. We showed that in order to be applied

to real-world applications, the initially proposed model of networks of neural cliques

has to be improved. We proposed several methods to do so within which the most

efficient relies on a concept of twin neurons. We analyzed twin neurons both formally

and by simulations and we applied them to power and variability management, showing

gains from the application point of view. We then proposed a specific neural cliques’

architecture for hardware MPSoC power management decision unit. We compared our

proposal to other decision units as game theory-based one or CAM-SRAM associative

106

Conclusion and perspectives 107

memory. Compared to game theory, we showed that our decision unit consumes 6800 less

energy and reacts 4500 times faster. It also offers higher energy savings (60% compared

to 38%) due to usage of advanced, offline optimization methods and better reactivity.

Compared to CAM-SRAM associative memory, we showed that our decision unit is less

complex and consumes 48% less energy. We further proposed techniques to improve the

reliability of the used neural cliques’ circuits and we estimated the cost of programming

the synapses of the network. Finally, we proposed a novel 3D interconnect approach for

high-performance neural cliques’ implementation. We showed that we obtain up to 55%

reduction of total interconnect length and interconnect power consumption, and 74%

reduction of the maximal interconnect delay.

The goal of providing a power management decision unit that combines the following:

• decision speed matching fast switching capabilities of DVFS actuators,

• decision close to optimal,

• energy efficiency

was met.

However, the contribution of this work is more general. The methods proposed for

adapting neural cliques to real-world applications are appropriate for other applications

than power management. Moreover, several strategies were proposed in Chapter 3, each

having its advantages, which allows choosing the one suiting best a particular applica-

tion. We also proposed an energy efficient associative memory that is an interesting

alternative to typically used CAM designs.

Figure 4.21 depicts the full structure of the document together with the contribution

positioned within its structure.

Perspectives

The work presented herein opens a great number of perspectives both on implementation

and application levels. The latter includes research applications but also applications

that are commonly present in industry and could benefit from neural cliques and the

findings of this work.

Conclusion and perspectives 108

Introduction

How to obtain high-performance and energy efficiency?

Chapter 1 MPSoC power management

Low-power systems require power management

New kind of associative memory for power management

Chapter 2 Introduction to neural networks and networks of neural

cliques

The human brain combines high-performance and energy efficiency.

Networks of neural cliques provide efficient storage-retrieval

functionality

Chapter 3 Non-uniformly distributed data in networks

of neural cliques

Networks of neural cliques have to be adapted to real-world

applications

Real-world data exhibits non-uniformity

Analysis of networks of neural cliques using non-uniformly

distributed data

Strategies to store real-world data

Power and variability management test-cases with real-

world data

Twin neurons applied to practical applications

Chapter 4 Hardware neural cliques in practical

applications

How to obtain a power management decision unit that

combines high decision speed, high decision quality and

high energy efficiency?

Variability, programmability and 3D technology

considerations

Generic structure of networks of neural cliques for power

management

Comparison with game theory decision unit

Comparison with CAM-SRAM associative memory

Conclusion and perspectives

Figure 4.21: The structure of the document with contribution. The green boxes
represent the contribution of this work and position it within the structure of the

document.

Implementation

Several perspectives are open in terms of networks of neural cliques’ implementation.

Analog circuits could be implemented in FDSOI technology to overcome their limita-

tions. FDSOI allows for leakage reduction thanks to the buried oxide addition. This

could increase the maximal number of synapses that can be connected to one fanal to

avoid self-activation and consequently, improve the scalability of the hardware imple-

mentation. Further, with FDSOI technology, lower supply voltage is used which further

Conclusion and perspectives 109

reduces the energy consumption. Additionally, by using body biasing one can envision

dynamically adapting the circuit to trade speed for energy consumption according to

the current requirements. In FDSOI, dopant usage is greatly reduced thus limiting the

process variability. The characteristic of each transistor is closer to the average avoiding

mismatch issues.

A mixed analog-digital implementation should be explored. Analog circuits for neural

cliques have a number of advantages such as facilitated summation of signals through

current summation or parallel WTA execution. However, mixed design would allow for

better system integration and scalability which is limited in analog circuits by leakage

currents.

Non-volatile (NV) feature is of great interest in low-power applications, for instance,

energy-autonomous sensing nodes. Programming the synapses by using non-volatile

memory, or even replacing synapses with such a memory, is one of the possibilities to be

explored. We already have low-power neural cliques, adding NV, allowing to store their

state without supply, would open a way to exploiting them in new IoT applications.

Miniaturization leads to lower voltages in circuits designed for modern technologies. This

decreases the power consumption but also decreases the resolution in voltage domain.

At the same time, this miniaturization allows for higher frequencies which increases

the resolution in time domain. Consequently, it is interesting to search for time-based

circuits instead of voltage-based ones. In terms of neural cliques’ implementation, there

is a link to be done with time-based circuits for SNNs.

Additionally, the asynchronous nature of activity in networks of neural cliques and their

tolerance to unreliability of the used technology (Leduc-Primeau et al., 2014) encourages

us to implement them with an asynchronous circuit exploiting approximate computing

techniques (Han and Orshansky, 2013). The characteristics of neural cliques and these

two design techniques seem to be extremely correlated and could result in a completely

new level of performance.

Finally, the study of 3D neural cliques presented in Subsection 4.3 shows large gains

and motivates us to expand it on more than two stacked dies (Solomon, 2012, Pavlidis

et al., 2008).

Conclusion and perspectives 110

Applications

Similarly, many perspectives are open in terms of applications of networks of neural

cliques.

Physical Unclonable Functions (PUFs) emerge as a dominant security method for iden-

tification and anti-counterfeiting measures (Suh and Devadas, 2007). A classical PUF

relies on exploiting differences in delays of paths with the same layout lengths. Several

approaches are proposed but the principle idea is that a set of challenge-response pairs

creates a unique signature of each circuit due to variability. We could take advantage of

large storage capacity of networks of neural cliques and take advantage of variability to

obtain a strong PUF. Moreover, there is no need to divide the messages into challenge-

response pairs since any segment can be used as input or output to neural cliques. This

creates even stronger circuit signature. Neural cliques-based PUF seems to be a very

interesting area to explore.

Several companies, Analog Computing Solutions among others, propose a signal pro-

cessing close to sensor for low-power sensor nodes. Such a processing allows to identify

type of data that requires special treatment that implies waking up additional blocks.

It is important to wake up these blocks only if it is really necessary, to save as much

battery power as possible. Some of the solutions use neural networks to do this pre-

processing. Neural cliques, apart their energy efficiency resulting from activating only

the fanals implied in the retrieval procedure, can bring tolerance to noise. This is very

important in close-to-sensor processing where data is inherently noisy. Additionally, a

small part of data can be sufficient to do the necessary processing.

A whole group of applications where storage and error correction are necessary is open to

neural cliques. This is because the clique is a codeword of a good error-correcting code.

We envision here such applications as Field-Programmable Gate Array (FPGA) configu-

ration memory protection for radiation immunity and, more generally, radiation immune

processing/storage, reliable memory made of unreliable materials, error-correcting ca-

pabilities for embedded memories.

In the implementation perspectives we mention designing circuits for neural cliques with

approximate computing principles. We can turn it the other way round: do approximate

computing with neural cliques. When assessing neural cliques’ performance we often talk

Conclusion and perspectives 111

about error rates. This is the principle of approximate computing: tolerate loss of quality

or optimality, accept approximations where it does not degrade results severely - live with

errors. Recently, a new concept known as speculative computing emerges. The core idea

is to anticipate and perform some tasks that may not be actually needed. This allows

for faster result when it is needed, otherwise the obtained result is discarded. Neural

cliques could be used for such tasks. Thanks to their fast time response, the decision on

doing speculative computing can be postponed in time, increasing the probability that

the obtained result is relevant for the application.

Neural cliques can be also seen as a multi-purpose accelerator that replaces time- and

energy-consuming computations. Moreover, it can be used in many ways. Any segment

can be used as input or output. We can therefore, obtain results based on some argu-

ments but also obtain the input arguments when the result is known which may be of

interest in some applications.

Very interesting recent works combine learning and remembering. Companies such as

Facebook or Google work on architectures where there is a neural network on one side

and a separate module on the other side that is used as memory. As discussed in Sub-

section 2.3.4, currently the most powerful technique for learning is deep learning. This

type of neural network is augmented with an associative memory, just as neural cliques.

Deep learning augmented with associative memories is used for Natural Language Pro-

cessing (NLP) and works very well for question answering and language translation.

Facebook AI Research already published Memory Networks (Weston et al., 2015). A

similar concept called Neural Turing Machines is proposed by Google DeepMind (Graves

et al., 2014). Since neural cliques outperform state-of-the-art associative memories, their

application in deep learning augmented with associative memories should definitely be

explored.

Appendix A

Process variability in neural

cliques analog circuits

Electronic circuits are subject to PVT variations that cause variance in they perfor-

mance. This is particularly true for analog circuits due to, for instance, mismatch which

is the differential performance of two or more devices on a single integrated circuit Dren-

nan and McAndrew (2003). This is also the case for the implementation used in this

work. It is shown in Larras et al. (2013a) that for the network presented in Subsection

4.2.3, the time response of the analog circuit changes due to PVT variations. The results

given in Table 4.1 are obtained for typical conditions, i.e. Vdd = 1V and Temp = 27◦C.

The same simulations are carried out with voltage and temperature variations. For

Vdd = 0.9V and Temp = 80◦C (slow corner), the time response is 53ns, whereas for

Vdd = 1.1V and Temp = 0◦C (fast corner), the time response is 64ns. Still, both results

are in favor of the analog circuit (the time response equals 208ns for the digital circuit).

Nevertheless, PVT variations in analog circuits can lead to incorrect results of the mes-

sage retrieval procedure. According to our simulations, the most sensible part of analog

circuit implementing neural cliques is the current mirror MS
1 , MS

2 in the synapse circuit

(Figure 4.1). The mismatch between these two transistors impacts the current that is

output by the synapse and the signal is not propagated correctly in the network. To

harden these circuits few methods can be applied. Firstly, the unitary current IUNIT can

be increased to reduce the impact of the value added or substracted due to the variation.

Secondly, the sizes of the transistors MS
1 , MS

2 can be increased to reduce the impact of

112

Appendix A. Process variability in neural cliques analog circuits 113

differences between their sizes. These methods increase the reliability yet they have a

certain impact on power consumption and area respectively. Monte Carlo simulations

show also that in some cases, due to variation, fanal fails to activate through an initial

stimulation. This means that from the very beginning of the retrieval process, a known

segment of message is not input to the network. Consequently, it is less likely to correctly

retrieve the missing segments. To avoid such a case, the external stimulation should be

done at the fanal’s output instead of its input. Instead of applying high voltage state to

an external synapse, high voltage state is directly applied to fanal’s output.

Appendix B

Programming the synapses

s s

s s

s

Figure B.1: Schematic of the programmable synapse circuit.

To allow programming the synapse two transistors are added to the initial synapse

circuit shown in Figure 4.1. A programmable synapse circuit is presented in Figure B.1.

If the activation bit is high, MS
4 conducts and MS

5 does not conduct. This results in

transmission of the signal from another fanal (either low or high signal). If the activation

bit is low, MS
5 conducts and no signal is transmitted through the synapse.

The activation bits for the fanals have to be stored in a memory. One bit in memory

is sufficient to store an activation bit for a connection between two fanals. The cost of

114

Appendix B. Programming the synapses 115

Table B.1: SRAM memory for connection activation bits. Results estimated based
on Do et al. (2011b). The area is estimated based on memory cell area with no control

circuitry.

Conventional Proposed in

Do et al. (2011b) Do et al. (2011b)

Energy/bit/read [fJ] 0.39 0.12

Surface area/bit [µm2] 0.776 0.834

Read delay [ns] 2 1.43

Supply (SRAM) 1V 1V

storing connections activation bits can be estimated based on references on SRAM mem-

ories for the same technology. Two memory designs for 65nm technology are presented

in Do et al. (2011b). Table B.1 presents the result obtained based on that reference.

Two designs are included, a conventional and an improved one. Depending on design

objectives, area can be traded for energy consumption and delay.

List of Publications

• Benoit Larras, Bartosz Boguslawski, Cyril Lahuec, Matthieu Arzel, Fabrice Seguin,

and Frédéric Heitzmann. Analog encoded neural network for power management

in MPSoC. In Proceedings of the 11th International IEEE New Circuits and Sys-

tems Conference (NEWCAS), pages 1–4, Paris, France, 2013. Second Best Stu-

dent Paper Award. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=6573589.

• Bartosz Boguslawski, Vincent Gripon, Fabrice Seguin, and Frédéric Heitzmann.

Huffman coding for storing non-uniformly distributed messages in networks of

neural cliques. In Proceedings of the Twenty-Eighth Conference on Artificial Intel-

ligence, pages 262–268, Quebec City, Canada, July 2014. http://www.aaai.org/

ocs/index.php/AAAI/AAAI14/paper/download/8160/8429.

• Benoit Larras, Bartosz Boguslawski, Cyril Lahuec, Matthieu Arzel, Fabrice Seguin,

and Frédéric Heitzmann. Analog encoded neural network for power management

in MPSoC. Analog Integrated Circuits and Signal Processing Journal, Springer, 81

(3):595–605, 2014.

http://link.springer.com/article/10.1007%2Fs10470-014-0420-z#page-1.

• Bartosz Boguslawski, Frédéric Heitzmann, Benoit Larras and Fabrice Seguin. En-

ergy efficient associative memory based on neural cliques. In Design Automation

Conference (DAC) Work-in-Progress Session, San Francisco, USA, 2015.

• Bartosz Boguslawski, Hossam Sarhan, Frédéric Heitzmann, Fabrice Seguin, Se-

bastien Thuries, Olivier Billoint, and Fabien Clermidy. Compact interconnect

approach for networks of neural cliques using 3D technology. In Proceedings of

116

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6573589
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6573589
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8160/8429
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8160/8429
http://link.springer.com/article/10.1007%2Fs10470-014-0420-z#page-1

List of Publications 117

the IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-

SoC), pages 116–121, Daejeon, South Korea, 2015. http://ieeexplore.ieee.

org/xpl/articleDetails.jsp?arnumber=7314402.

• Bartosz Boguslawski, Vincent Gripon, Fabrice Seguin, and Frédéric Heitzmann.

Twin neurons for efficient real-world data distribution in networks of neural cliques.

Applications in power management in electronic circuits. IEEE Transactions on

Neural Networks and Learning Systems, Special Issue on Neurodynamic Systems

for Optimization and Applications, PP(99):1–13 2015. http://ieeexplore.ieee.

org/xpl/articleDetails.jsp?arnumber=7302579.

• Bartosz Boguslawski, Frédéric Heitzmann, Benoit Larras and Fabrice Seguin. En-

ergy efficient associative memory based on neural cliques. IEEE Transactions on

Circuits and Systems II Journal, PP(99):1–5 2015. http://ieeexplore.ieee.

org/xpl/articleDetails.jsp?arnumber=7347365.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7314402
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7314402
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7302579
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7302579
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7347365
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7347365

Bibliography

Vincent Gripon and Claude Berrou. Sparse neural networks with large learning diversity.

IEEE Transactions on Neural Networks, 22(7):1087–1096, July 2011a. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5784337&tag=1.

Benôıt Larras, Cyril Lahuec, Matthieu Arzel, and Fabrice Seguin. Analog implementa-

tion of encoded neural networks. In ISCAS 2013 : IEEE International Symposium

on Circuits and Systems, pages 1612 – 1615, 2013a. URL http://ieeexplore.ieee.

org/xpl/articleDetails.jsp?arnumber=6572170.

David Bol, Julien De Vos, Cédric Hocquet, François Botman, François Durvaux, Sarah

Boyd, Denis Flandre, and Jean-Didier Legat. Sleepwalker: A 25-MHz 0.4-V sub-

mm2 7-µW/MHz microcontroller in 65-nm LP/GP CMOS for low-carbon wireless

sensor nodes. J. Solid-State Circuits, 48(1):20–32, 2013. URL http://dx.doi.org/

10.1109/JSSC.2012.2218067.

Shubo Qi, Minxuan Zhang, Jinwen Li, Tianlei Zhao, Chengyi Zhang, and Shaoqing Li.

A high performance router with dynamic buffer allocation for on-chip interconnect

networks. In 28th International Conference on Computer Design, ICCD 2010, 3-6

October 2010, Amsterdam, The Netherlands, Proceedings, pages 462–467, 2010. URL

http://dx.doi.org/10.1109/ICCD.2010.5647657.

Hiroki Noguchi, Kazutaka Ikegami, Keiichi Kushida, Keiko Abe, Shogo Itai, Satoshi

Takaya, Naoharu Shimomura, Junichi Ito, Atsushi Kawasumi, Hiroyuki Hara, and

Shinobu Fujita. 7.5 A 3.3ns-access-time 71.2µW/MHz 1Mb embedded STT-MRAM

using physically eliminated read-disturb scheme and normally-off memory architec-

ture. In 2015 IEEE International Solid-State Circuits Conference, ISSCC 2015, Di-

gest of Technical Papers, San Francisco, CA, USA, February 22-26, 2015, pages 1–3,

2015. URL http://dx.doi.org/10.1109/ISSCC.2015.7062963.

118

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5784337&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5784337&tag=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6572170
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6572170
http://dx.doi.org/10.1109/JSSC.2012.2218067
http://dx.doi.org/10.1109/JSSC.2012.2218067
http://dx.doi.org/10.1109/ICCD.2010.5647657
http://dx.doi.org/10.1109/ISSCC.2015.7062963

Bibliography 119

Huang-Chih Kuo, Jian-Wen Chen, and Youn-Long Lin. A high-performance low-power

H.264/AVC video decoder accelerator for embedded systems. In Andy D. Pimentel and

Naehyuck Chang, editors, ESTImedia, pages 1–8. IEEE, 2009. ISBN 978-1-4244-5170-

8. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5336823.

Xiyu Lu, Xinlei Chen, Yong Li, Depeng Jin, Lieguang Zeng, and Habib F. Rash-

vand. Zebraban: a heterogeneous high-performance energy efficient wireless body

sensor network. IET Wireless Sensor Systems, 3(4):247–254, 2013. URL http:

//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6655805.

A. Boukhayma, Jean-Pierre Rostaing, A. Mollard, Fabrice Guellec, Michele Benetti,

G. Ducournau, J.-F. Lampin, Antoine Dupret, C. Enz, Michaël Tchagaspanian,

and J.-A. Nicolas. A 533pW NEP 31x31 pixel THz image sensor based on in-

pixel demodulation. In ESSCIRC 2014 - 40th European Solid State Circuits Con-

ference, Venice Lido, Italy, September 22-26, 2014, pages 303–306, 2014. URL

http://dx.doi.org/10.1109/ESSCIRC.2014.6942082.

Daniel Drubach. The Brain Explained. Prentice Hall, 1999.

Biswa Sengupta and Martin B. Stemmler. Power consumption during neuronal compu-

tation. Proceedings of the IEEE, 102(5):738–750, 2014. URL http://dx.doi.org/

10.1109/JPROC.2014.2307755.

Brian Whitworth. Some implications of comparing brain and computer processing. In

HICSS, page 38. IEEE Computer Society, 2008. URL http://ieeexplore.ieee.

org/xpls/abs_all.jsp?arnumber=4438742&tag=1.

Raúl Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag New York,

Inc., New York, NY, USA, 1996. ISBN 3-540-60505-3. URL http://page.mi.

fu-berlin.de/rojas/neural/neuron.pdf.

Shekhar Borkar. Designing reliable systems from unreliable components: The challenges

of transistor variability and degradation. IEEE Micro, 25(6):10–16, November 2005.

ISSN 0272-1732. URL http://dx.doi.org/10.1109/MM.2005.110.

W. Wolf, A. A. Jerraya, and G. Martin. Multiprocessor system-on-chip (mpsoc) tech-

nology. Trans. Comp.-Aided Des. Integ. Cir. Sys., 27(10):1701–1713, October 2008.

ISSN 0278-0070. URL http://dx.doi.org/10.1109/TCAD.2008.923415.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5336823
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6655805
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6655805
http://dx.doi.org/10.1109/ESSCIRC.2014.6942082
http://dx.doi.org/10.1109/JPROC.2014.2307755
http://dx.doi.org/10.1109/JPROC.2014.2307755
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4438742&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4438742&tag=1
http://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/TCAD.2008.923415

Bibliography 120

Camille Jalier, Didier Lattard, Ahmed Amine Jerraya, Gilles Sassatelli, Pascal Benoit,

and Lionel Torres. Heterogeneous vs homogeneous MPSoC approaches for a mo-

bile LTE modem. In Proceedings of the Conference on Design, Automation and

Test in Europe, DATE ’10, pages 184–189, 3001 Leuven, Belgium, Belgium, 2010.

European Design and Automation Association. ISBN 978-3-9810801-6-2. URL

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5457213.

Sergio Saponara and Luca Fanucci. Homogeneous and heterogeneous mpsoc architec-

tures with network-on-chip connectivity for low-power and real-time multimedia sig-

nal processing. VLSI Design, 2012, 2012. URL http://www.hindawi.com/journals/

vlsi/2012/450302/.

Wen-Chung Tsai, Ying-Cherng Lan, Yu Hen Hu, and Sao-Jie Chen. Networks on chips:

Structure and design methodologies. J. Electrical and Computer Engineering, 2012,

2012. URL http://www.hindawi.com/journals/jece/2012/509465/.

Shasi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell, Mikael Millberg, Johny

Öberg, Kari Tiensyrjä, and Ahmed Hemani. A network on chip architecture and

design methodology. In Proceedings of the IEEE Computer Society Annual Sym-

posium on VLSI, ISVLSI ’02, pages 105–112, Washington, DC, USA, 2002. IEEE

Computer Society. ISBN 0-7695-1486-3. URL http://ieeexplore.ieee.org/xpl/

abstractAuthors.jsp?arnumber=1016885&tag=1.

Edith Beigné, Fabien Clermidy, Pascal Vivet, Alain Clouard, and Marc Renaudin. An

asynchronous noc architecture providing low latency service and its multi-level de-

sign framework. In ASYNC, pages 54–63. IEEE Computer Society, 2005. ISBN

0-7695-2305-6. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=

1402046.

Wonyoung Kim, Meeta Sharma Gupta, Gu-Yeon Wei, and David Brooks. System level

analysis of fast, per-core DVFS using on-chip switching regulators. In HPCA, pages

123–134. IEEE Computer Society, 2008. URL http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber=4658633&tag=1.

D.N. Truong, W.H. Cheng, T. Mohsenin, Zhiyi Yu, A.T. Jacobson, G. Landge, M.J.

Meeuwsen, C. Watnik, A.T. Tran, Zhibin Xiao, E.W. Work, J.W. Webb, P.V. Mejia,

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5457213
http://www.hindawi.com/journals/vlsi/2012/450302/
http://www.hindawi.com/journals/vlsi/2012/450302/
http://www.hindawi.com/journals/jece/2012/509465/
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=1016885&tag=1
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=1016885&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1402046
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1402046
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658633&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658633&tag=1

Bibliography 121

and B.M. Baas. A 167-processor computational platform in 65 nm CMOS. Solid-

State Circuits, IEEE Journal of, 44(4):1130–1144, April 2009. ISSN 0018-9200. URL

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4804961.

E. Beigné, F. Clermidy, H. Lhermet, S. Miermont, Y. Thonnart, X. Tran, A. Valentian,

D. Varreau, P. Vivet, X. Popon, and H. Lebreton. An asynchronous power aware and

adaptive NoC based circuit. Solid-State Circuits, IEEE Journal of, 44(4):1167–1177,

2009. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4804962.

Eitan N. Shauly. CMOS leakage and power reduction in transistors and circuits: Process

and layout considerations. Journal of Low Power Electronics and Applications, 2(1):

1–29, 2012. ISSN 2079-9268. URL http://www.mdpi.com/2079-9268/2/1/1.

Eiji Morifuji, Takeshi Yoshida, Masahiko Kanda, Satoshi Matsuda, Seiji Yamada, and

Fumitomo Matsuoka. Supply and threshold-Voltage trends for scaled logic and SRAM

MOSFETs. Electron Devices, IEEE Transactions on, 53(6):1427–1432, June 2006.

ISSN 0018-9383. URL http://dx.doi.org/10.1109/ted.2006.874752.

Sasmita Deo. Power consumption calculation of AP-DCD algorithm using FPGA plat-

form. In ReConFig, pages 388–393. IEEE Computer Society, 2010. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5695337.

Steven A. Vitale, Peter W. Wyatt, Nisha Checka, Jakub Kedzierski, and Craig L. Keast.

FDSOI process technology for subthreshold-operation ultralow-power electronics. Pro-

ceedings of the IEEE, 98(2):333–342, 2010. URL http://ieeexplore.ieee.org/xpl/

abstractAuthors.jsp?arnumber=5395759.

Gabriel Marchesan Almeida, Rémi Busseuil, Luciano Ost, Florent Bruguier, Gilles Sas-

satelli, Pascal Benoit, Lionel Torres, and Michel Robert. PI and PID regulation

approaches for performance-constrained adaptive multiprocessor system-on-chip. Em-

bedded Systems Letters, 3(3):77–80, 2011. URL http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber=6008624&tag=1.

Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexandra Fedorova, and

Manuel Prieto. Survey of energy-cognizant scheduling techniques. IEEE Trans. Paral-

lel Distrib. Syst., 24(7):1447–1464, 2013. URL http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber=6127864&tag=1.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4804961
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4804962
http://www.mdpi.com/2079-9268/2/1/1
http://dx.doi.org/10.1109/ted.2006.874752
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5695337
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5695337
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=5395759
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=5395759
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6008624&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6008624&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6127864&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6127864&tag=1

Bibliography 122

Zeynep Toprak-Deniz, Yusuf Leblebici, and Eric Vittoz. On-line global energy opti-

mization in multi-core systems using principles of analog computation. IEEE Jour-

nal of Solid-State Circuits, 42(7):1593–1606, July 2007. ISSN 0018-9200. URL

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4261002.

Imen Mansouri, Fabien Clermidy, Pascal Benoit, and Lionel Torres. A run-time dis-

tributed cooperative approach to optimize power consumption in mpsocs. In SoCC,

pages 25–30. IEEE, 2010a. ISBN 978-1-4244-6682-5. URL http://ieeexplore.ieee.

org/xpl/abstractCitations.jsp?arnumber=5784664&tag=1.

Diego Puschini, Fabien Clermidy, Pascal Benoit, Gilles Sassatelli, and Lionel Torres.

Dynamic and distributed frequency assignment for energy and latency constrained

MP-SoC. In Proceedings of the Conference on Design, Automation and Test in Eu-

rope, DATE ’09, pages 1564–1567, Leuven, Belgium, 2009. European Design and

Automation Association. ISBN 978-3-9810801-5-5. URL http://ieeexplore.ieee.

org/xpl/abstractCitations.jsp?arnumber=5090912.

Diego Puschini, Fabien Clermidy, Pascal Benoit, Gilles Sassatelli, and Lionel Torres. A

game-theoretic approach for run-time distributed optimization on MP-SoC. Int. J.

Reconfig. Comp., 2008, 2008. doi: 10.1155/2008/403086. URL http://dx.doi.org/

10.1155/2008/403086.

Imen Mansouri, Camille Jalier, Fabien Clermidy, Pascal Benoit, and Lionel Torres.

Implementation analysis of a dynamic energy management approach inspired by game-

theory. In IEEE Computer Society Annual Symposium on VLSI, ISVLSI, pages 422–

427, 2010b. URL http://dx.doi.org/10.1109/ISVLSI.2010.61.

Jitesh Shinde and S.S. Salankar. Clock gating - a power optimizing technique for VLSI

circuits. In Annual IEEE India Conference (INDICON), pages 1–4, 2011. URL

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6139440.

John Von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.

Princeton University Press, 1944. ISBN 0691119937.

J.F. Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951. URL

http://www.cs.upc.edu/~ia/nash51.pdf.

Chyuan Shiun Lin, Diane C. P. Smith, and John Miles Smith. The design of a rotating

associative memory for relational database applications. ACM Trans. Database Syst.,

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4261002
http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?arnumber=5784664&tag=1
http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?arnumber=5784664&tag=1
http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?arnumber=5090912
http://ieeexplore.ieee.org/xpl/abstractCitations.jsp?arnumber=5090912
http://dx.doi.org/10.1155/2008/403086
http://dx.doi.org/10.1155/2008/403086
http://dx.doi.org/10.1109/ISVLSI.2010.61
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6139440
http://www.cs.upc.edu/~ia/nash51.pdf

Bibliography 123

1(1):53–65, March 1976. ISSN 0362-5915. URL http://dl.acm.org/citation.cfm?

id=320447.

Antonis Papadogiannakis, Michalis Polychronakis, and Evangelos P. Markatos. Improv-

ing the accuracy of network intrusion detection systems under load using selective

packet discarding. In Proceedings of the Third European Workshop on System Secu-

rity, EUROSEC ’10, pages 15–21, New York, NY, USA, 2010. ISBN 978-1-4503-

0059-9. URL https://www.ics.forth.gr/dcs/Activities/papers/discarding.

eurosec10.pdf.

Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a

small fully-associative cache and prefetch buffers. In Proceedings of the 17th annual

international symposium on Computer Architecture, ISCA ’90, pages 364–373, New

York, NY, USA, 1990. ISBN 0-89791-366-3. URL http://ieeexplore.ieee.org/

xpl/articleDetails.jsp?arnumber=134547.

N.F. Huang, W.E. Chen, C.Y. Lou, and J.M. Chen. Design of multi-field IPv6 packet

classifiers using ternary CAMs. In Proc. IEEE GLOBECOM, volume 3, pages

1877–1881, 2001. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=965900.

Kostas Pagiamtzis and Ali Sheikholeslami. Content-addressable memory (CAM) circuits

and architectures: A tutorial and survey. IEEE Journal of Solid-State Circuits, 41(3):

712–727, March 2006. URL http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=1599540.

Banit Agrawal and Timothy Sherwood. Modeling TCAM power for next generation

network devices. In Proc. of IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS), pages 120–129, Austin, TX, March 2006. URL

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1620796&tag=1.

A.G. Brown. Nerve Cells and Nervous Systems. An Introduction to Neuro-

science. Springer-Verlag London, 2001. URL http://www.springer.com/us/book/

9783540760900.

Bente Pakkenberg, Dorte Pelvig, Lisbeth Marner, Mads J. Bundgaard, Hans Jørgen G.

Gundersen, Jens R. Nyengaard, and Lisbeth Regeur. Aging and the human neocortex.

Experimental Gerontology, 38(1-2):95 – 99, 2003. ISSN 0531-5565. URL http://

http://dl.acm.org/citation.cfm?id=320447
http://dl.acm.org/citation.cfm?id=320447
https://www.ics.forth.gr/dcs/Activities/papers/discarding.eurosec10.pdf
https://www.ics.forth.gr/dcs/Activities/papers/discarding.eurosec10.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=134547
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=134547
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=965900
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=965900
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1599540
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1599540
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1620796&tag=1
http://www.springer.com/us/book/9783540760900
http://www.springer.com/us/book/9783540760900
http://www.sciencedirect.com/science/article/pii/S0531556502001511
http://www.sciencedirect.com/science/article/pii/S0531556502001511
http://www.sciencedirect.com/science/article/pii/S0531556502001511

Bibliography 124

www.sciencedirect.com/science/article/pii/S0531556502001511. Proceedings

of the 6th International Symposium on the Neurobiology and Neuroendocrinology of

Aging.

Christopher Johansson and Anders Lansner. Towards cortex sized artificial neu-

ral systems. Neural Netw., 20(1):48–61, January 2007. ISSN 0893-6080. URL

http://dx.doi.org/10.1016/j.neunet.2006.05.029.

Günther Palm. Neural Assemblies, an Alternative Approach to Artificial Intelligence.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1982. ISBN 0387113665. URL

http://www.springer.com/us/book/9783642817946.

Edmund T. Rolls and Alessandro Treves. Neural Networks and Brain Func-

tion. Oxford University Press, New York, USA, 1997. ISBN 9780198524328.

URL http://www.oxfordscholarship.com/view/10.1093/acprof:oso/

9780198524328.001.0001/acprof-9780198524328.

Edward. G. Jones. Microcolumns in the cerebral cortex. Proc. National Academy of

Sciences (PNAS), 10(97):5019–5021, 2010. URL http://www.pnas.org/content/

97/10/5019.full.

Alex M. Thomson and A. Peter Bannister. Interlaminar connections in the neocortex.

Cerebral Cortex, 13(1):5–14, January 2003. URL http://cercor.oxfordjournals.

org/content/13/1/5.long.

Walter H. Pitts and Warren S. McCulloch. How we know universals: The perception

of auditory and visual forms. Bulletin of Mathematical Biophysics, 9:127–147, 1947.

URL http://link.springer.com/article/10.1007%2FBF02478291.

J. J. Hopfield. Neural networks and physical systems with emergent collective com-

putational abilities. Proc. Nat. Acad. Sci, 79(8):2554–2558, April 1982. URL

http://cns.upf.edu/jclub/hopfield82.pdf.

Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press, 2002. URL http://icwww.

epfl.ch/~gerstner/BUCH.html.

http://www.sciencedirect.com/science/article/pii/S0531556502001511
http://www.sciencedirect.com/science/article/pii/S0531556502001511
http://www.sciencedirect.com/science/article/pii/S0531556502001511
http://dx.doi.org/10.1016/j.neunet.2006.05.029
http://www.springer.com/us/book/9783642817946
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198524328.001.0001/acprof-9780198524328
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780198524328.001.0001/acprof-9780198524328
http://www.pnas.org/content/97/10/5019.full
http://www.pnas.org/content/97/10/5019.full
http://cercor.oxfordjournals.org/content/13/1/5.long
http://cercor.oxfordjournals.org/content/13/1/5.long
http://link.springer.com/article/10.1007%2FBF02478291
http://cns.upf.edu/jclub/hopfield82.pdf
http://icwww.epfl.ch/~gerstner/BUCH.html
http://icwww.epfl.ch/~gerstner/BUCH.html

Bibliography 125

William Bialek, Fred Rieke, Rob R. de Ruytervan Steveninck, and David Warland.

Reading a neural code. Science, 252(5014):1854–1857, 1991. URL http://www.ncbi.

nlm.nih.gov/pubmed/2063199.

W. Heiligenberg. Neural Nets in Electric Fish. MIT Press, 1991. URL https://

mitpress.mit.edu/index.php?q=books/neural-nets-electric-fish.

N. Kuwabara and N. Suga. Delay lines and amplitude selectivity are created in subtha-

lamic auditory nuclei: the brachium of the inferior colliculus of the mustached bat.

Journal of Neurophysiology, 69(5):1713–1724, 1993. URL http://jn.physiology.

org/content/69/5/1713.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and

its application to conduction and excitation in nerve. The Journal of physiology, 117

(4):500–544, August 1952. ISSN 0022-3751. URL http://jp.physoc.org/content/

117/4/500.abstract.

L. Lapicque. Recherches quantitatives sur l’excitation electrique des nerfs traitée comme

une polarisation. Journal de Physiologie et Pathologie General, 9:620–635, 1907. URL

http://homepages.inf.ed.ac.uk/mvanross/reprints/lapicque_trans.pdf.

R. B. Stein. A Theoretical analysis of Neuronal Variability. Biophysical Journal, 5:173–

194, March 1965. ISSN 0006-3495. URL http://view.ncbi.nlm.nih.gov/pubmed/

14268952.

Eugene M. Izhikevich. Simple model of spiking neurons. IEEE Trans. Neural Networks,

pages 1569–1572, 2003. URL http://www.izhikevich.org/publications/spikes.

pdf.

Sen Song, Kenneth D. Miller, and L. F. Abbott. Competitive hebbian learning through

spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9), 2000. URL

http://www.nature.com/neuro/journal/v3/n9/pdf/nn0900_919.pdf.

Hélène Paugam-Moisy and Sander M. Bohte. Handbook of Natural Computing, chapter

Computing with Spiking Neuron Networks, pages 1–47. Springer-Verlag, Septem-

ber 2009. URL http://homepages.cwi.nl/~sbohte/publication/paugam_moisy_

bohte_SNNChapter.pdf.

http://www.ncbi.nlm.nih.gov/pubmed/2063199
http://www.ncbi.nlm.nih.gov/pubmed/2063199
https://mitpress.mit.edu/index.php?q=books/neural-nets-electric-fish
https://mitpress.mit.edu/index.php?q=books/neural-nets-electric-fish
http://jn.physiology.org/content/69/5/1713
http://jn.physiology.org/content/69/5/1713
http://jp.physoc.org/content/117/4/500.abstract
http://jp.physoc.org/content/117/4/500.abstract
http://homepages.inf.ed.ac.uk/mvanross/reprints/lapicque_trans.pdf
http://view.ncbi.nlm.nih.gov/pubmed/14268952
http://view.ncbi.nlm.nih.gov/pubmed/14268952
http://www.izhikevich.org/publications/spikes.pdf
http://www.izhikevich.org/publications/spikes.pdf
http://www.nature.com/neuro/journal/v3/n9/pdf/nn0900_919.pdf
http://homepages.cwi.nl/~sbohte/publication/paugam_moisy_bohte_SNNChapter.pdf
http://homepages.cwi.nl/~sbohte/publication/paugam_moisy_bohte_SNNChapter.pdf

Bibliography 126

Jilles Vreeken. Spiking neural networks, an introduction, 2003. URL

https://people.mmci.uni-saarland.de/~jilles/pubs/2002/spiking_neural_

networks_an_introduction-vreeken.pdf.

Filip Ponulak and Andrzej Kasinski. Introduction to spiking neural networks: Informa-

tion processing, learning and applications. Acta Neurobiologiae Experimentalis, 71(4),

2011. URL http://www.ane.pl/pdf/7146.pdf.

André Gröning and Sander M. Bohte. Spiking neural networks: Principles and

challenges. In Proceedings of European Symposium on Artificial Neural Networks,

Computational Intelligence and Machine Learning, pages 1–10, 2014. URL http:

//homepages.cwi.nl/~sbohte/publication/es2014-13Gruning.pdf.

Bilel Belhadj, Alexandre Valentian, Pascal Vivet, Marc Duranton, Liqiang He, and

Olivier Temam. The improbable but highly appropriate marriage of 3d stacking and

neuromorphic accelerators. In 2014 International Conference on Compilers, Architec-

ture and Synthesis for Embedded Systems, CASES 2014, Uttar Pradesh, India, Oc-

tober 12-17, 2014, pages 1:1–1:9, 2014a. URL http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=6972454.

Yoshua Bengio. Learning deep architectures for ai. Found. Trends Mach. Learn.,

2(1):1–127, January 2009. ISSN 1935-8237. URL http://dx.doi.org/10.1561/

2200000006.

Thomas Serre, Gabriel Kreiman, Minjoon Kouh, Charles Cadieu, Ulf Knoblich, and

Tomaso Poggio. A quantitative theory of immediate visual recognition. Progress in

Brain Research, pages 33–56, 2007. URL http://www.sciencedirect.com/science/

article/pii/S0079612306650048.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for

deep belief nets. Neural Comput., 18(7):1527–1554, July 2006. ISSN 0899-7667. URL

http://dx.doi.org/10.1162/neco.2006.18.7.1527.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, Université De

Montréal, and Montréal Québec. Greedy layer-wise training of deep net-

works. In In NIPS. MIT Press, 2007. URL http://papers.nips.cc/paper/

3048-greedy-layer-wise-training-of-deep-networks.pdf.

https://people.mmci.uni-saarland.de/~jilles/pubs/2002/spiking_neural_networks_an_introduction-vreeken.pdf
https://people.mmci.uni-saarland.de/~jilles/pubs/2002/spiking_neural_networks_an_introduction-vreeken.pdf
http://www.ane.pl/pdf/7146.pdf
http://homepages.cwi.nl/~sbohte/publication/es2014-13Gruning.pdf
http://homepages.cwi.nl/~sbohte/publication/es2014-13Gruning.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6972454
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6972454
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1561/2200000006
http://www.sciencedirect.com/science/article/pii/S0079612306650048
http://www.sciencedirect.com/science/article/pii/S0079612306650048
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf

Bibliography 127

Marc’Aurelio Ranzato, Y-Lan Boureau, Sumit Chopra, and Yann LeCun. A unified

energy-based framework for unsupervised learning. In Marina Meila and Xiaotong

Shen, editors, AISTATS, volume 2 of JMLR Proceedings, pages 371–379. JMLR.org,

2007. URL http://yann.lecun.com/exdb/publis/pdf/ranzato-unsup-07.pdf.

Jason Weston and Frédéric Ratle. Deep learning via semi-supervised embedding. In

International Conference on Machine Learning, 2008. URL http://link.springer.

com/chapter/10.1007%2F978-3-642-35289-8_34#page-1.

Hossein Mobahi, Ronan Collobert, and Jason Weston. Deep learning from temporal

coherence in video. In Proceedings of the 26th Annual International Conference on

Machine Learning, ICML ’09, pages 737–744, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-516-1. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.148.5771.

Vincent Gripon and Michael Rabbat. Maximum likelihood associative memories. In

Proceedings of Information Theory Workshop, pages 1–5, September 2013. URL http:

//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6691310.

C. Berrou and V. Gripon. Coded hopfield networks. In Turbo Codes and Iterative Infor-

mation Processing (ISTC), 2010 6th International Symposium on, pages 1–5, Sept

2010. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=

5613860.

D. J. Willshaw, O. P. Buneman, and Longuet H. C. Higgins. Non-holographic asso-

ciative memory. Nature, 222:960–962, 1969. URL http://www.nature.com/nature/

journal/v222/n5197/abs/222960a0.html.

Günther Palm. Neural associative memories and sparse coding. Neural Netw., 37:

165–171, January 2013. ISSN 0893-6080. URL http://www.sciencedirect.com/

science/article/pii/S0893608012002298.

Amir Hesam Salavati and Amin Karbasi. Multi-level error-resilient neural networks.

In ISIT, pages 1064–1068. IEEE, 2012. ISBN 978-1-4673-2580-6. URL http:

//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6283014.

Vincent Gripon and Claude Berrou. A simple and efficient way to store many messages

using neural cliques. In Proceedings of IEEE Symposium on Computational Intel-

ligence, Cognitive Algorithms, Mind, and Brain, pages 54–58, Paris, France, April

http://yann.lecun.com/exdb/publis/pdf/ranzato-unsup-07.pdf
http://link.springer.com/chapter/10.1007%2F978-3-642-35289-8_34#page-1
http://link.springer.com/chapter/10.1007%2F978-3-642-35289-8_34#page-1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.148.5771
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.148.5771
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6691310
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6691310
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613860
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613860
http://www.nature.com/nature/journal/v222/n5197/abs/222960a0.html
http://www.nature.com/nature/journal/v222/n5197/abs/222960a0.html
http://www.sciencedirect.com/science/article/pii/S0893608012002298
http://www.sciencedirect.com/science/article/pii/S0893608012002298
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6283014
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6283014

Bibliography 128

2011b. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=

5952106.

Behrooz Kamary Aliabadi, Claude Berrou, Vincent Gripon, and Xiaoran Jiang. Storing

sparse messages in networks of neural cliques. IEEE Transactions on Neural Networks

and Learning Systems, 25(5):980 – 989, 2013. URL http://ieeexplore.ieee.org/

xpl/articleDetails.jsp?arnumber=6658945.

Longnian Lin, Remus Osan, and Joe Z. Tsien. Organizing principles of real-time memory

encoding: Neural clique assemblies and universal neural codes. Trends Neurosci., 29

(1):48–57, January 2006. URL http://www.sciencedirect.com/science/article/

pii/S0166223605003012.

Vincent Gripon and Claude Berrou. Nearly-optimal associative memories based on

distributed constant weight codes. In Proceedings of Information Theory and Ap-

plications Workshop, pages 269–273, San Diego, CA, USA, February 2012. URL

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6181790.

D. K. Lee, L. Itti, C. Koch, and J. Braun. Attention activates winner-take-all com-

petition among visual filters. Nature Neuroscience, 2(4):375–81, Apr 1999. URL

http://www.nature.com/neuro/journal/v2/n4/full/nn0499_375.html.

Robert Coultrip, Richard Granger, and Gary Lynch. Original contribution: A cortical

model of winner-take-all competition via lateral inhibition. Neural Netw., 5(1):47–54,

January 1992. ISSN 0893-6080. URL http://www.sciencedirect.com/science/

article/pii/S0893608005800061.

Ala Aboudib, Vincent Gripon, and Xiaoran Jiang. A study of retrieval algorithms

of sparse messages in networks of neural cliques. In COGNITIVE’14, pages

140 – 146, 2014. URL http://www.thinkmind.org/download.php?articleid=

cognitive_2014_6_30_40094.

D. Attwell and S. B. Laughlin. An energy budget for signaling in the grey matter of the

brain. J Cereb Blood Flow Metab, 21(10):1133–45, 2001. URL http://www.nature.

com/jcbfm/journal/v21/n10/full/9591146a.html.

Peter Lennie. The cost of cortical computation. Current Biology, 13(6):

493–497, 2003. URL http://www.sciencedirect.com/science/article/pii/

S0960982203001350.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5952106
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5952106
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6658945
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6658945
http://www.sciencedirect.com/science/article/pii/S0166223605003012
http://www.sciencedirect.com/science/article/pii/S0166223605003012
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6181790
http://www.nature.com/neuro/journal/v2/n4/full/nn0499_375.html
http://www.sciencedirect.com/science/article/pii/S0893608005800061
http://www.sciencedirect.com/science/article/pii/S0893608005800061
http://www.thinkmind.org/download.php?articleid=cognitive_2014_6_30_40094
http://www.thinkmind.org/download.php?articleid=cognitive_2014_6_30_40094
http://www.nature.com/jcbfm/journal/v21/n10/full/9591146a.html
http://www.nature.com/jcbfm/journal/v21/n10/full/9591146a.html
http://www.sciencedirect.com/science/article/pii/S0960982203001350
http://www.sciencedirect.com/science/article/pii/S0960982203001350

Bibliography 129

Andreas Knoblauch, Günther Palm, and Friedrich T. Sommer. Memory capacities

for synaptic and structural plasticity. Neural Comput., 22(2):289–341, February

2010. ISSN 0899-7667. URL http://www.mitpressjournals.org/doi/abs/10.

1162/neco.2009.08-07-588#.VXVLV7yUONM.

Bartosz Boguslawski, Vincent Gripon, Fabrice Seguin, and Frédéric Heitzmann. Huffman

coding for storing non-uniformly distributed messages in networks of neural cliques.

In Proceedings of the Twenty-Eighth Conference on Artificial Intelligence, pages 262–

268, Quebec City, Canada, July 2014. URL http://www.aaai.org/ocs/index.php/

AAAI/AAAI14/paper/download/8160/8429.

Bartosz Boguslawski, Vincent Gripon, Fabrice Seguin, and Frédéric Heitzmann. Twin

neurons for efficient real-world data distribution in networks of neural cliques. Ap-

plications in power management in electronic circuits. IEEE Transactions on Neural

Networks and Learning Systems, Special Issue on Neurodynamic Systems for Opti-

mization and Applications, PP(99):1–13, 2015a. URL http://ieeexplore.ieee.

org/xpl/articleDetails.jsp?arnumber=7302579.

David A. Huffman. A method for the construction of minimum-redundancy codes. Pro-

ceedings of the Institute of Radio Engineers, 40(9):1098–1101, September 1952. URL

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4051119.

A. Bookstein and S.T. Klein. Is Huffman coding dead? Computing, 50:279–296, 1993.

URL http://link.springer.com/article/10.1007%2FBF02243872.

Jeffrey Scott Vitter. Design and analysis of dynamic Huffman codes. J. ACM, 34(4):

825–845, October 1987. ISSN 0004-5411. doi: 10.1145/31846.42227. URL http:

//doi.acm.org/10.1145/31846.42227.

Fabien Clermidy, Romain Lemaire, Xavier Popon, Dimitri Ktenas, and Yvain Thon-

nart. An open and reconfigurable platform for 4G telecommunication: Concepts and

application. In DSD, pages 449–456. IEEE Computer Society, 2009. ISBN 978-0-7695-

3782-5. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=

5350210.

Fabien Clermidy, Christian Bernard, Romain Lemaire, Jérôme Martin, Ivan Miro

Panades, Yvain Thonnart, Pascal Vivet, and Norbert Wehn. A 477mW NoC-based

digital baseband for MIMO 4G SDR. In ISSCC, pages 278–279. IEEE, 2010. ISBN

http://www.mitpressjournals.org/doi/abs/10.1162/neco.2009.08-07-588#.VXVLV7yUONM
http://www.mitpressjournals.org/doi/abs/10.1162/neco.2009.08-07-588#.VXVLV7yUONM
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8160/8429
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8160/8429
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7302579
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7302579
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4051119
http://link.springer.com/article/10.1007%2FBF02243872
http://doi.acm.org/10.1145/31846.42227
http://doi.acm.org/10.1145/31846.42227
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5350210
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5350210

Bibliography 130

978-1-4244-6033-5. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=5433920.

L. Vincent, E. Beigné, L. Alacoque, S. Lesecq, C. Bour, and P. Maurine. A fully

integrated 32 nm multiprobe for dynamic PVT measurements within complex digital

SoC. In 2nd European Workshop on CMOS Variability, VARI’11, Grenoble, France,

2011. URL https://hal.archives-ouvertes.fr/hal-01067989.

Lionel Vincent, Edith Beigné, Suzanne Lesecq, Julien Mottin, David Coriat, and

Philippe Maurine. Dynamic variability monitoring using statistical tests for en-

ergy efficient adaptive architectures. IEEE Trans. on Circuits and Systems, 61-I(6):

1741–1754, 2014. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=6728703.

Benoit Larras, Bartosz Boguslawski, Cyril Lahuec, Matthieu Arzel, Fabrice Seguin,

and Frédéric Heitzmann. Analog encoded neural network for power manage-

ment in MPSoC. Analog Integrated Circuits and Signal Processing, 81(3):595–

605, 2014. ISSN 0925-1030. URL http://link.springer.com/article/10.1007%

2Fs10470-014-0420-z#page-1.

Bartosz Boguslawski, Hossam Sarhan, Frédéric Heitzmann, Fabrice Seguin, Sebastien

Thuries, Olivier Billoint, and Fabien Clermidy. Compact interconnect approach for

networks of neural cliques using 3D technology. In Proc. IFIP/IEEE International

Conference on Very Large Scale Integration (VLSI-SoC), pages 116–121, 2015b. URL

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7314402.

Bilel Belhadj, Alexandre Valentian, Pascal Vivet, Marc Duranton, Liqiang He, and

Olivier Temam. The improbable but highly appropriate marriage of 3D stacking

and neuromorphic accelerators. In Proc. CASES’14, pages 1–9, 2014b. URL http:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6972454.

Fabien Clermidy et al. Advanced technologies for brain-inspired computing. In Proc.

ASP-DAC’14, 2014. URL http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=6742951.

Antoine Joubert, Marc Duranton, Bilel Belhadj, Olivier Temam, and Rodolphe Heliot.

Capacitance of TSVs in 3D stacked chips a problem? Not for neuromorphic systems.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5433920
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5433920
https://hal.archives-ouvertes.fr/hal-01067989
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6728703
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6728703
http://link.springer.com/article/10.1007%2Fs10470-014-0420-z#page-1
http://link.springer.com/article/10.1007%2Fs10470-014-0420-z#page-1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7314402
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6972454
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6972454
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6742951
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6742951

Bibliography 131

In Proc. DAC’12, WACI session, pages 1260–1261, 2012. URL http://ieeexplore.

ieee.org/stamp/stamp.jsp?arnumber=6241670.

Anthony Gutierrez et al. Integrated 3D-stacked server designs for increasing phys-

ical density of key-value stores. In Proc. ASPLOS, pages 485–498. ACM, 2014.

URL https://homes.cs.washington.edu/~luisceze/publications/3D-asplos_

2014.pdf.

P. Batude et al. 3D sequential integration opportunities and technology optimization. In

IEEE IITC/AMC, pages 373–376, May 2014. URL http://ieeexplore.ieee.org/

xpl/articleDetails.jsp?arnumber=6831837.

Benoit Larras, Bartosz Boguslawski, Cyril Lahuec, Matthieu Arzel, Fabrice Seguin, and

Frédéric Heitzmann. Analog encoded neural network for power management in MP-

SoC. In Proceedings of the 11th International IEEE New Circuits and Systems Con-

ference, NEWCAS ’13, pages 1–4, 2013b. URL http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=6573589.

D. Lattard, E. Beigne, C. Bernard, C. Bour, F. Clermidy, Y. Durand, J. Durupt,

D. Varreau, P. Vivet, P. Penard, A. Bouttier, and F. Berens. A telecom base-

band circuit based on an asynchronous network-on-chip. In Solid-State Circuits Con-

ference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, pages

258–601, Feb 2007. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=4242363.

Bartosz Boguslawski, Frédéric Heitzmann, Benoit Larras, and Fabrice Seguin. Energy

efficient associative memory based on neural cliques. IEEE Transactions on Cir-

cuits and Systems II, PP(99):1–5, 2015c. URL http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=7347365.

Bartosz Boguslawski, Frédéric Heitzmann, Benoit Larras, and Fabrice Seguin. Energy ef-

ficient associative memory based on neural cliques. In Design Automation Conference

(DAC) Work-in-Progress Session, 2015d.

Anh-Tuan Do, Jeremy Yung Shern Low, Joshua Yung Lih Low, Zhi-Hui Kong, Xiaoliang

Tan, and Kiat Seng Yeo. An 8T differential SRAM with improved noise margin for

bit-interleaving in 65 nm CMOS. IEEE Transactions on Circuits and Systems I:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6241670
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6241670
https://homes.cs.washington.edu/~luisceze/publications/3D-asplos_2014.pdf
https://homes.cs.washington.edu/~luisceze/publications/3D-asplos_2014.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6831837
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6831837
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6573589
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6573589
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4242363
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4242363
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7347365
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7347365

Bibliography 132

Regular Papers, 58-I(6):1252–1263, 2011a. URL http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=5701786.

Amit Agarwal, Steven K. Hsu, Himanshu Kaul, Mark A. Anders, and Ram K. Krishna-

murthy. A dual-supply 4GHz 13fj/bit/search 64x128b CAM in 65nm CMOS. In Proc.

ESSCIRC’06, pages 303–306, September 2006. URL http://ieeexplore.ieee.org/

xpl/articleDetails.jsp?arnumber=4099764.

Anh-Tuan Do, Shoushun Chen, Zhi-Hui Kong, and Kiat Seng Yeo. A high speed low

power CAM with a parity bit and power-gated ML sensing. IEEE Trans. VLSI Syst.,

21(1):151–156, 2013. URL http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=6135529.

Igor Arsovski and Reid Wistort. Self-referenced sense amplifier for across-chip-

variation immune sensing in high-performance content-addressable memories. In Proc.

CICC’06, pages 453–456, September 2006. URL http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=4115000.

Anh-Tuan Do, Chun Yin, Kavitha Velayudhan, Zhao Chuan Lee, Kiat Seng Yeo,

and Tony Tae-Hyoung Kim. 0.77 fj/bit/search content addressable memory us-

ing small match line swing and automated background checking scheme for varia-

tion tolerance. IEEE Journal of Solid-State Circuits, 49(7):1487–1498, 2014. URL

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6805234.

F. Leduc-Primeau, V. Gripon, M.G. Rabbat, and W.J. Gross. Cluster-based associative

memories built from unreliable storage. In Acoustics, Speech and Signal Processing

(ICASSP), 2014 IEEE International Conference on, pages 8370–8374, May 2014. URL

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6855234.

Jie Han and M. Orshansky. Approximate computing: An emerging paradigm for

energy-efficient design. In Test Symposium (ETS), 2013 18th IEEE European, pages

1–6, May 2013. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=6569370.

N. Solomon. Three dimensional integrated circuits and methods of fabrication, March 13

2012. URL https://www.google.com/patents/US8136071. US Patent 8,136,071.

Vasilis F. Pavlidis, Ioannis Savidis, and Eby G. Friedman. Clock distribution net-

works for 3-D integrated circuits. In Custom Integrated Circuits Conference, CICC

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5701786
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5701786
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4099764
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4099764
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6135529
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6135529
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4115000
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4115000
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6805234
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6855234
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6569370
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6569370
https://www.google.com/patents/US8136071

Bibliography 133

2008. IEEE, pages 651–654. IEEE, 2008. URL http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=4672170.

G.E. Suh and S. Devadas. Physical unclonable functions for device authentication

and secret key generation. In Design Automation Conference, 2007. DAC ’07. 44th

ACM/IEEE, pages 9–14, June 2007. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=4261134.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In International

Conference on Learning Representations (ICLR), 2015. URL http://arxiv.org/

abs/1410.3916.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing machines. CoRR,

abs/1410.5401, 2014. URL http://arxiv.org/abs/1410.5401.

P.G. Drennan and C.C. McAndrew. Understanding MOSFET mismatch for analog de-

sign. Solid-State Circuits, IEEE Journal of, 38(3):450–456, Mar 2003. ISSN 0018-

9200. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=

1183852.

Anh-Tuan Do, Jeremy Yung Shern Low, Joshua Yung Lih Low, Zhi-Hui Kong, Xiaoliang

Tan, and Kiat Seng Yeo. An 8T differential SRAM with improved noise margin for

bit-interleaving in 65 nm CMOS. IEEE Trans. on Circuits and Systems, 58-I(6):

1252–1263, 2011b. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?

arnumber=5701786.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4672170
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4672170
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4261134
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4261134
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1410.5401
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1183852
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1183852
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5701786
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5701786

Résumé

La densité croissante de transistors fournit de plus en plus de puissance de calcul dans

une seule puce. Les systèmes informatiques deviennent de plus en plus intégrés et plus

attrayants pour de nouveaux domaines d’application, auparavant inaccessibles. Ils sont

devenus omniprésents et doivent également être mobiles avec des contraintes fortes sur

la consommation d’énergie.

Supporter une diversité d’applications tout en fournissant une autonomie suffisante

nécessite que ces systèmes doivent être efficaces à la fois en termes de vitesse et d’énergie.

Ceci est important pour tous les composants d’un système, par exemple les micro-

contrôleurs dans les nœuds de capteurs sans fil pour l’Internet des objets (IdO ou IoT

pour Internet of Things) (Bol et al., 2013), les routeurs pour des réseaux sur puce (Qi

et al., 2010), les mémoires (Noguchi et al., 2015), les accélérateurs matériels dédiés (Kuo

et al., 2009), pour ne nommer que quelques-uns. Aujourd’hui, tous ces composants

doivent être de haute performance et consommer le moins d’énergie possible.

Pour permettre la mise en œuvre de cette grande variété d’applications, de multiples

composants dédiés sont intégrés sur une seule puce et interconnectés avec une infrastruc-

ture appropriée de communication. En fonction de l’application en cours d’exécution,

différents composants (Processing Elements - PEs) sont utilisés pour fournir les perfor-

mances nécessaires. Ce type d’architecture est appelé MultiProcessor System-on-Chip

(MPSoC).

Une certaine flexibilité est donnée à chaque PE, permettant de le ralentir ou de l’accélérer

en fonction des besoins courants (type d’application, conditions environnementales,

température, ...). Lorsque l’application ou ses contraintes sont modifiées ou une partie

des PEs monte trop en température, la vitesse est adaptée.

134

Résumé 135

Un MPSoC doit donc offrir la possibilité d’adapter les tâches aux contraintes de temps

réelles. Son architecture distribuée, procurant un haut degré de parallélisme, répond bien

au problème de la variabilité et des applications multitâches. Intégrer des accélérateurs

dédiés permet également un calcul à hautes performance et efficacité énergétique. De

plus, son architecture régulière réduit le temps de conception et simplifie le passage à

l’échelle.

Le contrôle de PEs n’est pas une tâche évidente. Étant donné que les PEs n’ont pas

les mêmes caractéristiques et qu’ils dépendent tous les uns des autres, une question

importante est de connâıtre la vitesse optimale de chaque PE pour consommer le moins

d’énergie à l’échelle globale sans altérer le fonctionnement de l’application. Plus crucial

encore, il s’agit de trouver assez rapidement la bonne solution pour chacun des PEs pour

pouvoir reconfigurer le système en temps réel.

Ce processus de décision est complexe, nécessite une puissance de calcul importante

et peut consommer une quantité non négligeable d’énergie. Le temps de la décision

et l’énergie nécessaire peuvent être alors trop importants par rapport aux gains poten-

tiels. Un principe de décision rapide et efficace est indispensable, ce qui est difficile à

implémenter avec la technologie disponible aujourd’hui.

Dans le contexte des MPSoCs, la nécessité d’une haute performance avec une faible

consommation d’énergie est clairement une affaire de première importance. Par com-

paraison, le cerveau humain est un bon exemple de système extrêmement performant

tout en restant économe en énergie. Bien que cet organe ne consomme que 20W au

plus fort de son travail (Drubach, 1999), il surpasse le supercalculateur actuellement le

plus rapide (Tianhe-2 qui consomme 17.8 MW (Sengupta and Stemmler, 2014)), dans

des tâches de haut niveau telles que la prise de décision, la classification, les associa-

tions, les croisements ou la production d’informations, fonctionnant même en présence

de bruit, d’incertitudes et d’erreurs (Whitworth, 2008, Rojas, 1996). L’écart entre le

rendement énergétique des MPSoCs et du cerveau humain montre qu’il n’est pas impos-

sible d’imaginer des solutions, lesquelles seraient donc neuro-inspirées, pour améliorer la

qualité des circuits électroniques.

Le défi de combiner haute performance et efficacité énergétique élevée est vraiment fon-

damental dans notre travail. L’objectif précis de cette thèse est d’appliquer le principe

Résumé 136

d’un type de réseaux de neurones récemment introduit qui repose sur des cliques neu-

rales (Gripon and Berrou, 2011a). Ce nouveau réseau de neurones offre un large gain

de capacité de mémorisation et de performance par rapport aux réseaux de neurones

conventionnels. Il s’appuie sur le principe de parcimonie pour stocker et retrouver ef-

ficacement des informations quantifiées et ouvre des perspectives nouvelles pour des

implémentations de faible puissance. L’architecture des MPSoCs se prête très bien à

l’idée d’utiliser des réseaux de neurones pour contrôler leur consommation. Notre objec-

tif est d’explorer la possibilité pour les réseaux de cliques neurales d’être utilisés à cette

fin.

Nous avons donc analysé ces réseaux dans des applications pratiques à l’aide de données

du monde réel obtenues à partir de mesures et de simulations. Nous avons montré

que, pour être utilisés dans des applications réalistes, le modèle initialement proposé de

réseaux de cliques neurales doit être amélioré. Le réseau tel qu’initialement introduit

avait été analysé et évalué uniquement pour des messages indépendants et identiquement

distribués (i.i.d.) (Gripon and Berrou, 2011a). En termes de connectivité, cela signi-

fie que le nombre de connexions sortant de chaque nœud est uniformément réparti sur

l’ensemble du réseau. Il est bien connu que la non-uniformité de messages à mémoriser

dans des structures connexionnistes peut conduire à une diminution importante des per-

formances (Knoblauch et al., 2010). Les applications réelles que nous ambitionnons de

traiter peuvent contenir des données hautement corrélées. Nous analysons donc des si-

tuations dans lesquelles des données non uniformes sont stockées et nous expliquons leur

influence sur la performance du réseau. Afin d’approcher les performances théoriques

dans des applications du monde réel et non plus seulement sur des données i.i.d., le

modèle doit être adapté. Nous exploitons donc les structures de ces réseaux pour in-

troduire plusieurs techniques afin de stocker efficacement des données non-uniformes

(Boguslawski et al., 2014). La méthode la plus efficace repose sur le concept de neu-

rones jumeaux que nous avons introduit et fait l’objet d’une analyse mathématique

validée par des simulations (Boguslawski et al., 2015a).

Ensuite, concrètement, les réseaux de cliques neurales sont utilisés à des fins de gestion

dynamique de l’alimentation des circuits électroniques. Les réseaux sont évalués dans ce

contexte pratique en utilisant des données du monde réel obtenues à partir de simulations

et de mesures. Avec ces données, il est montré que les réseaux standards deviennent

inefficaces et qu’il est absolument nécessaire d’adapter le modèle. Les résultats obtenus

Résumé 137

avec les neurones jumeaux montrent que cette solution offre des performances proches

de celles qui sont obtenues dans le cas de données uniformément distribuées. Le taux

d’erreur dans la récupération des messages est un indicateur important des réseaux de

neurones utilisés en tant que mémoires associatives. Dès que les cliques neurales sont

utilisées avec des données du monde réel, il est particulièrement intéressant d’évaluer

leur performance en utilisant des paramètres applicatifs qui estiment l’impact d’erreurs

sur l’application. En outre, mettre toutes les erreurs dans une catégorie n’est pas assez

précis. Lorsque les paramètres physiques sont stockés dans les réseaux, un grand écart

entre une valeur récupérée et la valeur correcte a plus d’impact sur l’application qu’un

petit écart. Ceci est pris en compte dans ce travail où la performance de réseaux est

évaluée en termes de paramètres physiques dans un contexte applicatif.

Nous avons ensuite proposé une architecture de cliques neurales spécifique pour un

organe de décision dans la gestion de l’alimentation de MPSoCs. Nous avons comparé

notre proposition à d’autres types d’organes de décision basés sur la théorie des jeux ou

sur une mémoire associative CAM-SRAM (Content-Addressable Memory). Par rapport

à une solution s’appuyant sur la théorie des jeux, nous avons montré que notre unité

de décision consomme 6800 moins d’énergie et réagit 4500 fois plus rapidement (Larras

et al., 2013b). Elle offre également des économies d’énergie plus élevées (60% par rapport

à 38%) grâce à l’utilisation de méthodes d’optimisation avancées, appliquées au moment

de la conception et à une meilleure réactivité (Larras et al., 2014). Par rapport à la

mémoire associative CAM-SRAM, nous avons montré que notre unité de décision est

moins complexe et consomme 48% moins d’énergie (Boguslawski et al., 2015c). Nous

avons en outre proposé des techniques pour améliorer la fiabilité des circuits de cliques

neurales et nous avons estimé le coût de la programmation des synapses du réseau.

La clique matérialisant un message particulier stocké dans le réseau contient bien plus

d’informations que nécessaire (Gripon and Berrou, 2011b). Grâce à cette redondance, la

récupération de ce message est possible à partir d’informations partielles et/ou bruitées.

Cette redondance étant portée par des connexions, la complexité de l’implémentation

matérielle est dominée par les fils. Les longs fils impactent la consommation d’énergie et

le temps de réponse puisque tous les neurones (sommets) de la clique doivent échanger

des signaux entre eux. Pour cette raison, il est intéressant d’organiser les neurones en

3D afin de pouvoir créer des cliques 3D avec des connexions plus courtes et d’obtenir un

temps de réponse et une consommation d’énergie plus faibles.

Résumé 138

Le circuit analogique décrit dans la section 4.2.1 est une implémentation de haute per-

formance avec des connexions physiques pour toutes les synapses. Un câblage important

est toutefois nécessaire pour l’interconnexion de toutes les parties du réseau. Cette in-

terconnexion a été optimisée grâce à une nouvelle approche d’interconnexion 3D pour

la mise en œuvre efficace des cliques neurales. Nous avons pu obtenir jusqu’à 55% de

réduction de la longueur totale de l’interconnexion et de la consommation d’énergie

liée à l’interconnexion, et 74% de réduction du temps maximal de propagation par

l’interconnexion (Boguslawski et al., 2015b).

Toutefois, les contributions de ce travail sont plus générales que la seule application aux

MPSoCs. Les méthodes proposées pour adapter les cliques neurales à des applications

du monde réel peuvent convenir à d’autres enjeux où le concept de mémoire associative

est utile. En outre, plusieurs stratégies de conception ont été proposées dans le chapitre

3, chacune ayant ses avantages, ce qui permet de choisir celle convenant le mieux à

une application particulière. Le type de mémoire associative que nous avons proposé est

efficace en termes d’énergie et est une alternative intéressante aux CAM conventionnelles.

Le travail présenté ici ouvre un grand nombre de perspectives au niveau des implémenta-

tions et des applications. Les cliques neurales, avec les améliorations que nous avons

proposées et validées dans notre travail de thèse, peuvent trouver des applications nom-

breuses en dehors du seul cas de figure de la gestion de l’alimentation dans les circuits

intégrés.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	Introduction
	Context and motivation
	Objective
	Contribution
	Report organization

	1 MPSoC power management
	1.1 Introduction
	1.2 MPSoC architecture
	1.2.1 Generalities and definitions
	1.2.2 Communication schemes for MPSoCs
	1.2.3 Dividing MPSoC on Voltage/Frequency Islands

	1.3 Power management on MPSoC
	1.4 State-of-the-art of power management decision units
	1.4.1 Low-level decision units
	1.4.2 High-level decision units

	1.5 MPSoC power model and optimization formulation
	1.6 Game theory for power management on MPSoC
	1.7 CAM-SRAM associative memory for power management on MPSoC
	1.7.1 Generalities and definitions
	1.7.2 CAM-SRAM as a decision unit

	1.8 Conclusion

	2 Introduction to neural networks and networks of neural cliques
	2.1 Introduction
	2.2 Biological neural networks
	2.3 Artificial neural networks
	2.3.1 McCulloch-Pitts model
	2.3.2 Hopfield Neural Networks - memorize information
	2.3.3 Spiking Neural Networks - model biological networks and compute
	2.3.4 Deep learning - learn information

	2.4 Networks of neural cliques
	2.4.1 Message definition
	2.4.2 Network structure
	2.4.3 Message storing procedure
	2.4.4 Message retrieval procedure
	2.4.5 Density and error probability definitions
	2.4.6 Neural cliques as associative memory
	2.4.7 Network dimensioning guidelines

	2.5 Conclusion

	3 Non-uniformly distributed data in networks of neural cliques
	3.1 Introduction
	3.2 Non-uniform distribution problem positioning
	3.3 Strategies to store non-uniform data
	3.3.1 Random clusters
	3.3.2 Random bits
	3.3.3 Using compression codes
	3.3.4 Performance comparison

	3.4 Twin neurons for efficient real-world data distribution in networks of neural cliques
	3.4.1 Introducing twin neurons
	3.4.2 Theoretical analysis
	3.4.3 Performance comparison
	3.4.3.1 Comments on Huffman coding technique
	3.4.3.2 Comparison

	3.4.4 Influence of distribution's standard deviation

	3.5 Real-world data in two practical applications
	3.5.1 MPSoC power management for LTE receiver
	3.5.1.1 LTE receiver implemented on MAGALI platform
	3.5.1.2 Network of neural cliques used as power management unit
	3.5.1.3 Simulation results

	3.5.2 Dynamic management of PVT variations
	3.5.2.1 Introduction
	3.5.2.2 Multiprobe sensor for PVT variations
	3.5.2.3 Network of neural cliques used as dynamic management unit
	3.5.2.4 Network of neural cliques dimensions
	3.5.2.5 Simulation results

	3.6 Conclusion

	4 Hardware neural cliques in practical applications
	4.1 Introduction
	4.2 Analog and digital ASIC implementation
	4.2.1 Analog circuit
	4.2.2 Digital circuit
	4.2.3 Comparison

	4.3 Hardware 3D considerations
	4.3.1 General introduction to 3D neural networks
	4.3.2 3D technology
	4.3.3 3D neural cliques
	4.3.4 Methodology
	4.3.5 Simulation model
	4.3.6 General study results
	4.3.7 Case study simulation results

	4.4 MPSoC power management: comparison with game theory decision unit
	4.4.1 Generic neural cliques structure
	4.4.2 General comparison with game theory decision unit
	4.4.3 MPSoC power management for MC-CDMA transmitter
	4.4.3.1 MC-CDMA transmitter implemented on FAUST platform
	4.4.3.2 Network of neural cliques used as power management unit
	4.4.3.3 Energy gains

	4.5 MPSoC power management: comparison with CAM-SRAM associative memory
	4.5.1 Neural cliques-based associative memory - implementation complexity
	4.5.2 CAM-based associative memory - implementation complexity
	4.5.3 Implementation complexity comparison
	4.5.4 LTE receiver implemented on MAGALI platform
	4.5.4.1 Dimensions of CAM and SRAM
	4.5.4.2 Dimensions of neural cliques
	4.5.4.3 Simulation results

	4.6 Conclusion

	Conclusion and perspectives
	Contribution and conclusion
	Perspectives
	Implementation
	Applications

	A Process variability in neural cliques analog circuits
	B Programming the synapses
	List of Publications
	Bibliography
	Résumé

