. Treatment, (25) Nishiyama.Y; Sugiyama.J; Chanzy.H; Langan.P. Crystal Structure and Hydrogen Bonding System in Cellulose I? from Synchrotron X-Ray and Neutron Fiber Diffraction, Macromolecules J Am Chem Soc, vol.23, issue.125, pp.3196-3198, 1990.

. H. Chanzy, . K. Imada, . A. Mollard, . R. Vuong, and . F. Barnoud, Crystallographic aspects of sub-elementary cellulose fibrils occurring in the wall of rose cells culturedin vitro, Protoplasma, vol.13, issue.5, pp.303-316, 1979.
DOI : 10.1007/BF01279318

. Kroon-batenburg and . J. Lmj-;-bouma.-b-;-kroon, Tability of Cellulose Structures Studied by MD Simulations. Could Mercerized Cellulose II Be Parallel? Macromolecules, pp.5695-5699, 1996.

. Capanema, . Ea-;-balakshin, . My, . Kadla, and . Jf, Quantitative Characterization of a Hardwood Milled Wood Lignin by Nuclear Magnetic Resonance Spectroscopy, Journal of Agricultural and Food Chemistry, vol.53, issue.25, pp.9639-9649, 2005.
DOI : 10.1021/jf0515330

. S. Jia, . Cox, . X. Bj-;-guo, . C. Zhang, . Ekerdt et al., Cleaving the ?????O???4 Bonds of Lignin Model Compounds in an Acidic Ionic Liquid, 1-H-3-Methylimidazolium Chloride: An Optional Strategy for the Degradation of Lignin, ChemSusChem, vol.8, issue.9, pp.1078-1084, 2010.
DOI : 10.1002/cssc.201000112

. M. Himmel, Biomass Recalcitrance: Deconstructing the Plant Cell Wall for Bioenergy, Copyright, 2009.
DOI : 10.1002/9781444305418

. Dhepe and . R. Pl-;-sahu, A solid-acid-based process for the conversion of hemicellulose, Green Chemistry, vol.102, issue.12, pp.2153-2156, 2010.
DOI : 10.1039/c004128a

. D. Ballerin and . Biocarburants, (33) Staudinger.H; Dreher.E; Jurisch.I. Über Hochpolymere Verbindungen, 180. Mitteil.: Über Den Polymerisationsgrad Der Cellulose in Verschiedenen Holzsorten, Perspectives et Enjeux Du Développement; Edition Te. Berichte der Dtsch. Chem. Gesellschaft (A B Ser, vol.70, pp.2502-2507, 1937.

. T. Tassinari and . C. Macy, Differential speed two roll mill pretreatment of cellulosic materials for enzymatic hydrolysis, Biotechnology and Bioengineering, vol.33, issue.9, pp.1321-1330, 1977.
DOI : 10.1002/bit.260190906

. M. Schwanninger, . Rodrigues, . H. Pereira, and . B. Hinterstoisser, Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose, Vibrational Spectroscopy, vol.36, issue.1, pp.23-40, 2004.
DOI : 10.1016/j.vibspec.2004.02.003

. A. Onda, . T. Ochi, and . K. Yanagisawa, Selective hydrolysis of cellulose into glucose over solid acid catalysts, Green Chemistry, vol.232, issue.10, pp.1033-1037, 2008.
DOI : 10.1039/b808471h

. Vyver, . Sv, . L. Peng, . J. Geboers, . H. Schepers et al., Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose, Green Chemistry, vol.254, issue.9, pp.1560-1563, 2010.
DOI : 10.1002/cssc.201000124

. J. Geboers, . S. Vyver, . K. Carpentier, . K. Blochouse, . P. Jacobs et al., Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon, Chemical Communications, vol.48, issue.20, pp.3577-3579, 2010.
DOI : 10.1039/c001096k

. H. Kobayashi, . T. Komanoya, . Hara, and . A. Kk-;-fukuoka, Water-Tolerant Mesoporous-Carbon-Supported Ruthenium Catalysts for the Hydrolysis of Cellulose to Glucose, ChemSusChem, vol.48, issue.4, pp.440-443, 2010.
DOI : 10.1002/cssc.200900296

. T. Jeoh, . Agblevor, and . Fa, Characterization and fermentation of steam exploded cotton gin waste, Biomass and Bioenergy, vol.21, issue.2, pp.109-120, 2001.
DOI : 10.1016/S0961-9534(01)00028-9

. R. Klund, . M. Galbe, and . G. Zacchi, The influence of SO2 and H2SO4 impregnation of willow prior to steam pretreatment, Bioresource Technology, vol.52, issue.3, pp.225-229, 1995.
DOI : 10.1016/0960-8524(95)00042-D

. Holtzapple, . Mt-;-jun, . G. Jh-;-ashok, . Patibandla, . Sl et al., The ammonia freeze explosion (AFEX) process, Applied Biochemistry and Biotechnology, vol.25, issue.1, pp.28-29, 1991.
DOI : 10.1007/BF02922589

. Silverstein, . Y. Ra-;-chena, . Boyette, . Md-;-sharma-shivappa, and . J. Rr-;-osborne, A comparison of chemical pretreatment methods for improving saccharification of cotton stalks, Bioresource Technology, vol.98, issue.16, pp.3000-3011, 2007.
DOI : 10.1016/j.biortech.2006.10.022

. Rajesh, . Arr-;-rajesh, and . S. Em-;-rajendran.-r-;-jeyachandran, Production of Bio-Ethanol from Cellulosic Cotton Waste Throughmicrobial Extrecellular Enzymatic Hydrolysis and Fermentation, Electron. J. Environ. Agric. food Chem, vol.7, issue.44, pp.2984-2992, 2008.

. Kim, . Sb-;-um, . Bhu, . Park, and . Sc, Effect of Pretreatment Reagent and Hydrogen Peroxide on Enzymatic Hydrolysis of Oak in Percolation Process, TwentySecond Symposium on Biotechnology for Fuels and Chemicals, pp.81-94, 2001.

. V. Jollet, . F. Chambon, . F. Rataboul, . A. Cabiac, . C. Pinel et al., Non-catalyzed and Pt/??-Al2O3-catalyzed hydrothermal cellulose dissolution???conversion: influence of the reaction parameters and analysis of the unreacted cellulose, Green Chemistry, vol.51, issue.12, pp.2052-2060, 2009.
DOI : 10.1039/b915758a

. H. Zhao, . Kwak, . Jh, . Zhang, and B. Zc-;-hbj, Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis, Carbohydrate Polymers, vol.68, issue.2, pp.235-241, 2007.
DOI : 10.1016/j.carbpol.2006.12.013

. N. Shimada, . H. Kawamoto, and . S. Saka, Solid-state hydrolysis of cellulose and methyl ??- and ??-d-glucopyranosides in presence of magnesium chloride, Carbohydrate Research, vol.342, issue.10, pp.1373-1377, 2007.
DOI : 10.1016/j.carres.2007.04.009

. A. Isogai and . M. Usuda, Preparation of Low-Molecular Weight Celluloses Using Phosphoric Acid, Mokuzai Gakkaishi, vol.37, pp.339-344, 1991.

. O. Bobleter, Hydrothermal degradation of polymers derived from plants, Progress in Polymer Science, vol.19, issue.5, pp.797-841, 1994.
DOI : 10.1016/0079-6700(94)90033-7

Y. Lou and . H. Wu, Some Recent Advances in Hydrolysis of Biomass in Hot- Compressed Water and Its Comparisons with Other Hydrolysis Methods, Energy & Fuels, vol.22, pp.46-60, 2007.

. Revol, . Bradford, . J. Giasson, . Marchessault, . Rh et al., Helicoidal self-ordering of cellulose microfibrils in aqueous suspension, International Journal of Biological Macromolecules, vol.14, issue.3, pp.170-172, 1992.
DOI : 10.1016/S0141-8130(05)80008-X

. D. Bondeson, . A. Mathew, and . K. Oksman, Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis, Cellulose, vol.32, issue.2, pp.171-180, 2006.
DOI : 10.1007/s10570-006-9061-4

. Hamad, . Wy, . Hu, and . Tq, Structure-process-yield interrelations in nanocrystalline cellulose extraction, The Canadian Journal of Chemical Engineering, vol.43, issue.5, pp.392-402, 2010.
DOI : 10.1002/cjce.20298

J. Fan and Y. Li, Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber, Carbohydrate Polymers, vol.88, issue.4, pp.1184-1188, 2012.
DOI : 10.1016/j.carbpol.2012.01.081

D. Xm-;-revol, . Jf, . Gray, and . Dg, Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose, Cellulose, vol.5, pp.19-32, 1998.

X. M. Dong, T. Kimura, J. Revol, and D. G. Gray, Effects of Ionic Strength on the Isotropic???Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites, Langmuir, vol.12, issue.8, pp.2076-2082, 1996.
DOI : 10.1021/la950133b

S. Elazzouzi-hafraoui, Y. Nishiyama, J. L. Putaux, L. Heux, F. Dubreuil et al., The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose, Biomacromolecules, vol.9, issue.1, pp.57-65, 2008.
DOI : 10.1021/bm700769p

URL : https://hal.archives-ouvertes.fr/hal-00303876

M. Roman and W. Winter, Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose, Biomacromolecules, vol.5, issue.5, pp.1671-1677, 2004.
DOI : 10.1021/bm034519+

. J. Araki, . M. Wada, . S. Kuga, and . T. Okano, Influence of surface charge on viscosity behavior of cellulose microcrystal suspension, Journal of Wood Science, vol.65, issue.3, pp.258-261, 1999.
DOI : 10.1007/BF01177736

J. Araki, M. Wada, S. Kuga, and T. Okano, Birefringent Glassy Phase of a Cellulose Microcrystal Suspension, Langmuir, vol.16, issue.6, pp.2413-2415, 2000.
DOI : 10.1021/la9911180

H. Sadeghifar, I. Filpponen, S. P. Clarke, D. F. Brougham, and D. S. Argyropoulos, Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface, Journal of Materials Science, vol.24, issue.22, pp.7344-7355, 2011.
DOI : 10.1007/s10853-011-5696-0

). Morehead, M. R. Ff, . Walter, and . Nm, Liquid Crystal Systems from Fibrillar Polysaccharides, Nature, vol.184, issue.63, pp.632-633, 1959.

V. Favier, H. Chanzy, and J. Cavaille, Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules, vol.28, issue.18, pp.6365-6367, 1995.
DOI : 10.1021/ma00122a053

URL : https://hal.archives-ouvertes.fr/hal-00310722

A. Turbak, F. Snyder, and S. K. , Microfibrillated Cellulose, a New Cellulose Product: Properties, Uses, and Commercial Potential, J Appl Polym Sci Symp, vol.37, pp.815-827

M. Andresen, L. Johansson, B. S. Tanem, and P. Stenius, Properties and characterization of hydrophobized microfibrillated cellulose, Cellulose, vol.4, issue.145, pp.665-677, 2006.
DOI : 10.1007/s10570-006-9072-1

F. Herrick, R. Casebier, J. Hamilton, and S. K. , Microfibrillated Cellulose: Morphology and Accessibility, J Appl Polym Sci Symp, vol.37, pp.797-813, 1983.

. Boldizar, C. Klason, J. Kubát, P. Näslund, and P. Sáha, Prehydrolyzed Cellulose as Reinforcing Filler for Thermoplastics, International Journal of Polymeric Materials, vol.32, issue.4, pp.229-262, 1987.
DOI : 10.1002/pen.760261207

N. Lavoine, I. Desloges, A. Dufresne, and J. Bras, Microfibrillated cellulose ??? Its barrier properties and applications in cellulosic materials: A review, Carbohydrate Polymers, vol.90, issue.2, pp.735-764, 2012.
DOI : 10.1016/j.carbpol.2012.05.026

A. N. Nakagaito and H. Yano, Nanocomposites Based on Cellulose Microfibril, ACS Symposium Series, vol.938, pp.151-168, 2006.
DOI : 10.1021/bk-2006-0938.ch011

S. Janardhnan and M. M. Sain, Isolation of Cellulose Microfibrils ? an Enzymatic Approach, Cellulose, vol.1, pp.176-188, 2006.

K. Syverud and P. Stenius, Strength and barrier properties of MFC films, Cellulose, vol.37, issue.1, pp.75-85, 2009.
DOI : 10.1007/s10570-008-9244-2

A. N. Nakagaito and H. Yano, The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites, Applied Physics A: Materials Science & Processing, vol.78, issue.4, pp.547-552, 2004.
DOI : 10.1007/s00339-003-2453-5

A. Chakraborty, M. Sain, and M. Kortschot, Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing, Holzforschung, vol.59, issue.1, pp.102-107, 2005.
DOI : 10.1515/HF.2005.016

M. Henriksson, G. Henriksson, L. Berglund, and T. Lindström, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers, European Polymer Journal, vol.43, issue.8, pp.3434-3441, 2007.
DOI : 10.1016/j.eurpolymj.2007.05.038

T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose, Biomacromolecules, vol.8, issue.8, pp.2485-2491, 2007.
DOI : 10.1021/bm0703970

URL : https://hal.archives-ouvertes.fr/hal-00305562

M. Pääkko, M. Ankerfors, H. Kosonen, S. Ahola, M. Österberg et al., Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, pp.1934-1941, 2007.
DOI : 10.1021/bm061215p

T. P. Nevell, S. H. Zeronian, . 7?the, . Of, . Oxidation et al., 7???THE EFFECT OF PERIODATE OXIDATION AND OF SUBSEQUENT BOROHYDRIDE REDUCTION ON THE TENSILE STRENGTH OF COTTON, Journal of the Textile Institute Transactions, vol.5, issue.2, pp.90-93, 1962.
DOI : 10.1039/jr9600003147

T. J. Painter, Preparation and periodate oxidation of C-6-oxycellulose: conformational interpretation of hemiacetal stability, Carbohydrate Research, vol.55, issue.1, pp.95-103, 1977.
DOI : 10.1016/S0008-6215(00)84446-8

J. Defaye and A. Gadelle, Oxydation s??lective de diols vicinaux secondaires par le r??actif dim??thylsulfoxyde???anhydride ac??tique, Carbohydrate Research, vol.35, issue.1, pp.264-269, 1974.
DOI : 10.1016/S0008-6215(00)84855-7

P. S. Bailey, The Reactions Of Ozone With Organic Compounds, Chemical Reviews, vol.58, issue.5, pp.925-1010, 1958.
DOI : 10.1021/cr50023a005

J. Leffler, Cleavages and Rearrangements Involving Oxygen Radicals and Cations., Chemical Reviews, vol.45, issue.3, pp.385-417, 1949.
DOI : 10.1021/cr60142a001

C. C. Price and A. L. Tumolo, The Course of Ozonation of Ethers, Journal of the American Chemical Society, vol.86, issue.21, pp.4691-4694, 1964.
DOI : 10.1021/ja01075a033

P. S. Bailey and D. A. Lerdal, Ozonation of nucleophiles. 10. Ethers, Journal of the American Chemical Society, vol.100, issue.18, pp.5820-5825, 1978.
DOI : 10.1021/ja00486a038

W. L. Waters, A. J. Rollin, C. M. Bardwell, J. A. Schneider, and T. W. Aanerud, Oxidation of secondary alcohols with ozone, The Journal of Organic Chemistry, vol.41, issue.5, pp.889-891, 1976.
DOI : 10.1021/jo00867a033

A. A. Katai and C. Schuerch, Mechanism of ozone attack on ??-methyl glucoside and cellulosic materials, Journal of Polymer Science Part A-1: Polymer Chemistry, vol.4, issue.10, pp.2683-2703, 1966.
DOI : 10.1002/pol.1966.150041030

M. P. Godsay and M. Lewin, In Oxidative modification of cellulose by ozone, 10th Cellulose Conferences Cellulose and wood chemistry and technology, pp.1059-1083, 1988.

J. A. Cella, J. A. Kelley, and E. Kenehan, Nitroxide-catalyzed oxidation of alcohols using m-chloroperbenzoic acid. New method, The Journal of Organic Chemistry, vol.40, issue.12, pp.1860-1862, 1975.
DOI : 10.1021/jo00900a049

M. F. Semmelhack, C. R. Schmid, D. A. Cortes, and C. S. Chou, Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion, Journal of the American Chemical Society, vol.106, issue.11, pp.3374-3376, 1984.
DOI : 10.1021/ja00323a064

T. Inokuchi, S. Matsumoto, T. Nishiyama, and S. Torii, A selective and efficient method for alcohol oxidations mediated by N-oxoammonium salts in combination with sodium bromite, The Journal of Organic Chemistry, vol.55, issue.2, pp.462-466, 1990.
DOI : 10.1021/jo00289a016

L. Anelli, P. Biffi, C. Montanari, F. Quici, and S. , ChemInform Abstract: Fast and Selective Oxidation of Primary Alcohols to Aldehydes or to Carboxylic Acids and of Secondary Alcohols to Ketones Mediated by Oxoammonium Salts Under Two-Phase Conditions., ChemInform, vol.52, issue.49, pp.2559-2562, 1987.
DOI : 10.1002/chin.198749121

A. Cecchetto, F. Fontana, F. Minisci, and F. Recupero, Efficient Mn???Cu and Mn???Co???TEMPO-catalysed oxidation of alcohols into aldehydes and ketones by oxygen under mild conditions, Tetrahedron Letters, vol.42, issue.38, pp.6651-6653, 2001.
DOI : 10.1016/S0040-4039(01)01245-X

M. Fabbrini, C. Galli, P. Gentili, and D. Macchitella, An oxidation of alcohols by oxygen with the enzyme laccase and mediation by TEMPO, Tetrahedron Letters, vol.42, issue.43, pp.7551-7553, 2001.
DOI : 10.1016/S0040-4039(01)01463-0

N. Merbouh, J. Francois-thaburet, M. Ibert, F. Marsais, and J. M. Bobbitt, Facile nitroxide-mediated oxidations of d-glucose to d-glucaric acid, Carbohydrate Research, vol.336, issue.1, pp.75-78, 2001.
DOI : 10.1016/S0008-6215(01)00231-2

T. Saito, Y. Nishiyama, J. Putaux, M. Vignon, and A. Isogai, Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose, Biomacromolecules, vol.7, issue.6, pp.1687-1691, 2006.
DOI : 10.1021/bm060154s

URL : https://hal.archives-ouvertes.fr/hal-00305809

T. Kitaoka, A. Isogai, and F. Onabe, Chemical modification of pulp fibers by TEMPO-mediated oxidation, Nordic Pulp and Paper Research Journal, vol.14, issue.04, pp.279-284, 1999.
DOI : 10.3183/NPPRJ-1999-14-04-p279-284

R. K. Johnson, A. Zink-sharp, S. H. Renneckar, and W. G. Glasser, A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix, Cellulose, vol.6, issue.2, pp.227-238, 2009.
DOI : 10.1007/s10570-008-9269-6

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.23, issue.10, pp.71-85, 2011.
DOI : 10.1039/C0NR00583E

H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.10, issue.1, pp.162-165, 2009.
DOI : 10.1021/bm801065u

T. Isogai, T. Saito, and A. Isogai, Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation, Cellulose, vol.5, issue.2, pp.421-431, 2011.
DOI : 10.1007/s10570-010-9484-9

A. Sbiai, H. Kaddami, H. Sautereau, A. Maazouz, and E. Fleury, TEMPO-mediated oxidation of lignocellulosic fibers from date palm leaves, Carbohydrate Polymers, vol.86, issue.4, pp.1445-1450, 2011.
DOI : 10.1016/j.carbpol.2011.06.005

URL : https://hal.archives-ouvertes.fr/hal-00638953

I. Besbes, M. R. Vilar, and S. Boufi, Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: Preparation, characteristics and reinforcing potential, Carbohydrate Polymers, vol.86, issue.3, pp.1198-1206, 2011.
DOI : 10.1016/j.carbpol.2011.06.015

S. Alila, I. Besbes, M. R. Vilar, P. Mutjé, and S. Boufi, Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study, Industrial Crops and Products, vol.41, pp.250-259, 2013.
DOI : 10.1016/j.indcrop.2012.04.028

A. Dufresne, J. Y. Cavaillé, and M. R. Vignon, Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils, Journal of Applied Polymer Science, vol.64, issue.6, pp.1185-1194, 1998.
DOI : 10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-V

URL : https://hal.archives-ouvertes.fr/hal-00309886

A. N. Nakagaito, S. Iwamoto, and H. Yano, Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites, Applied Physics A, vol.7, issue.1, pp.93-97, 2005.
DOI : 10.1023/A:1009208022957

M. Henriksson, L. A. Berglund, and P. Isaksson, Cellulose Nanopaper Structures of High Toughness, Cellulose Nanopaper Structures of High Toughness, pp.1579-1585, 2008.
DOI : 10.1021/bm800038n

T. Kurihara and A. Isogai, Properties of poly(acrylamide)/TEMPO-oxidized cellulose nanofibril composite films, Cellulose, vol.13, issue.5, pp.291-299, 2014.
DOI : 10.1007/s10570-013-0124-z

Y. Qing, R. Sabo, Y. Wu, and . Cai, High-Performance Cellulose Nanofibril Composite Films, Bioresources, vol.7, pp.3064-3075, 2012.

N. M. Hansen, T. O. Blomfeldt, M. S. Hedenqvist, and D. V. Plackett, Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan, Cellulose, vol.93, issue.6, pp.2015-2031
DOI : 10.1007/s10570-012-9764-7

K. Lee, T. Tammelin, K. Schulfter, H. Kiiskinen, J. Samela et al., High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose, ACS Applied Materials & Interfaces, vol.4, issue.8, pp.4078-4086, 2012.
DOI : 10.1021/am300852a

C. Aulin, G. Salazar-alvarez, and T. Lindström, High strength, flexible and transparent nanofibrillated cellulose???nanoclay biohybrid films with tunable oxygen and water vapor permeability, Nanoscale, vol.50, issue.20, p.6622, 2012.
DOI : 10.1039/c2nr31726e

T. Taniguchi and K. Okamura, New films produced from microfibrillated natural fibres, Polymer International, vol.47, issue.3, pp.291-294, 1998.
DOI : 10.1002/(SICI)1097-0126(199811)47:3<291::AID-PI11>3.0.CO;2-1

H. Fukuzumi, T. Saito, T. Iwata, and Y. Kumamoto, Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.10, issue.1, pp.162-165, 2009.
DOI : 10.1021/bm801065u

W. Stelte and A. Sanadi, Preparation and Characterization of Cellulose Nanofibers from Two Commercial Hardwood and Softwood Pulps, Industrial & Engineering Chemistry Research, vol.48, issue.24, pp.11211-11219, 2009.
DOI : 10.1021/ie9011672

K. Syverud, G. Chinga-carrasco, J. Toledo, and P. G. Toledo, A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils, Carbohydrate Polymers, vol.84, issue.3, pp.1033-1038, 2011.
DOI : 10.1016/j.carbpol.2010.12.066

S. Iwamoto, K. Abe, and H. Yano, The Effect of Hemicelluloses on Wood Pulp Nanofibrillation and Nanofiber Network Characteristics, Biomacromolecules, vol.9, issue.3, pp.1022-1026, 2008.
DOI : 10.1021/bm701157n

D. Plackett, H. Anturi, M. Hedenqvist, M. Ankerfors, M. Gällstedt et al., Siró, I. Physical Properties and Morphology of Films Prepared from Microfibrillated Cellulose and Microfibrillated Cellulose in Combination with Amylopectin, J. Appl. Polym. Sci, 2010.

K. L. Spence, R. A. Venditti, Y. Habibi, O. J. Rojas, and J. J. Pawlak, The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties, Bioresource Technology, vol.101, issue.15, pp.5961-5968, 2010.
DOI : 10.1016/j.biortech.2010.02.104

C. Baez, J. Considine, and R. Rowlands, Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films, Cellulose, vol.17, issue.1, pp.347-356, 2014.
DOI : 10.1007/s10570-013-0159-1

H. Sehaqui, A. Liu, Q. Zhou, and L. A. Berglund, Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures, Biomacromolecules, vol.11, issue.9, pp.2195-2198, 2010.
DOI : 10.1021/bm100490s

I. Siró, D. Plackett, M. Hedenqvist, M. Ankerfors, and T. Lindström, Highly transparent films from carboxymethylated microfibrillated cellulose: The effect of multiple homogenization steps on key properties, Journal of Applied Polymer Science, vol.16, issue.5, pp.2652-2660, 2011.
DOI : 10.1002/app.32831

Y. Qing, R. Sabo, J. Y. Zhu, U. Agarwal, Z. Cai et al., A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches, Carbohydrate Polymers, vol.97, issue.1, pp.226-234, 2013.
DOI : 10.1016/j.carbpol.2013.04.086

T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi et al., Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions, Biomacromolecules, vol.10, issue.7, 1992.
DOI : 10.1021/bm900414t

URL : https://hal.archives-ouvertes.fr/hal-00439999

G. Rodionova, T. Saito, M. Lenes, Ø. Eriksen, Ø. Gregersen et al., Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps, Cellulose, vol.84, issue.3, pp.705-711
DOI : 10.1007/s10570-012-9664-x

Y. Okahisa, A. Yoshida, S. Miyaguchi, and H. Yano, Optically transparent wood???cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays, Composites Science and Technology, vol.69, issue.11-12, pp.1958-1961, 2009.
DOI : 10.1016/j.compscitech.2009.04.017

M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, Optically Transparent Nanofiber Paper, Advanced Materials, vol.122, issue.16, pp.1595-1598, 2009.
DOI : 10.1002/adma.200803174

H. Zhu, Z. Xiao, D. Liu, Y. Li, N. J. Weadock et al., Biodegradable transparent substrates for flexible organic-light-emitting diodes, Energy & Environmental Science, vol.16, issue.3, pp.765-773, 2013.
DOI : 10.1002/pip.2226

P. Stenstad, M. Andresen, B. S. Tanem, and P. Stenius, Chemical surface modifications of microfibrillated cellulose, Cellulose, vol.30, issue.145, pp.35-45, 2008.
DOI : 10.1007/s10570-007-9143-y

T. H. Mchugh and J. M. Krochta, Sorbitol- vs Glycerol-Plasticized Whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation, Journal of Agricultural and Food Chemistry, vol.42, issue.4, pp.841-845, 1994.
DOI : 10.1021/jf00040a001

K. Syverud and P. Stenius, Strength and barrier properties of MFC films, Cellulose, vol.37, issue.1, pp.75-85, 2009.
DOI : 10.1007/s10570-008-9244-2

K. L. Spence, R. A. Venditti, O. J. Rojas, Y. Habibi, and J. J. Pawlak, The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications, Cellulose, vol.30, issue.4, pp.835-848, 2010.
DOI : 10.1007/s10570-010-9424-8

S. Sinharay and M. Bousmina, Biodegradable Polymers and Their Layered Silicate Nanocomposites, Greening the 21st Century Materials World. Prog. Mater. Sci, pp.962-1079, 2005.

M. Gröndahl, L. Eriksson, and P. Gatenholm, Material Properties of Plasticized Hardwood Xylans for Potential Application as Oxygen Barrier Films, Biomacromolecules, vol.5, issue.4, pp.1528-1535, 2004.
DOI : 10.1021/bm049925n

B. L. Butler, P. J. Vergano, R. F. Testin, J. M. Bunn, and J. L. Wiles, Mechanical and Barrier Properties of Edible Chitosan Films as affected by Composition and Storage, Journal of Food Science, vol.40, issue.10, pp.61-953, 1996.
DOI : 10.1016/0022-2836(78)90063-3

A. Rindlav-westling, M. Stading, A. Hermansson, P. Gatenholm, and . Structure, Structure, mechanical and barrier properties of amylose and amylopectin films, Carbohydrate Polymers, vol.36, issue.2-3, pp.217-224, 1998.
DOI : 10.1016/S0144-8617(98)00025-3

C. Aulin, M. Gällstedt, and T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings, Cellulose, vol.17, issue.3, pp.559-574, 2010.
DOI : 10.1007/s10570-009-9393-y

E. A. Baldwin, R. Hagenmaier, J. B. Ed, M. Paakko, H. Ankerfors et al., Second Edition, Edible Coatings and Films to Improve Food Quality Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, pp.1934-1941, 2007.

D. T. Atsumi, S. I. Shioka, and T. M. Oto, Effect of Fiber Concentration and Axial Ratio on the Rheological Properties of Cellulose Fiber Suspensions, pp.27-32, 2002.

D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors et al., Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chemie Int, pp.5438-5466, 2011.

D. Gennes, P. G. Southwick, J. G. Jamieson, A. M. Blackwell, and J. , Scaling Concepts in Polymer Physics Quasi-Elastic Light Scattering Studies of Semidilute Xanthan Solutions, Macromolecules, vol.14, issue.24, pp.1728-1732, 1979.

P. Choi, Y. Maken, S. Lee, S. Chung, E. Park et al., Characteristics of water-soluble fiber manufactured from carboxymethylcellulose synthesis, Korean Journal of Chemical Engineering, vol.24, issue.2, pp.288-293, 1979.
DOI : 10.1007/s11814-007-5050-z

A. B. Rodd, D. E. Dunstan, and D. Boger, Characterisation of xanthan gum solutions using dynamic light scattering and rheology, Carbohydrate Polymers, vol.42, issue.2, pp.159-174, 2000.
DOI : 10.1016/S0144-8617(99)00156-3

W. Graessley, Polymer Chain Dimensions and the Dependence of Viscoelastic Properties on Concentration, Molecular Weight and Solvent Power. Polymer (Guildf), pp.258-262, 1980.

M. Bouldin, W. Kulicke, and H. Kehler, Prediction of the non-Newtonian viscosity and shear stability of polymer solutions, Colloid & Polymer Science, vol.17, issue.9, pp.793-805, 1988.
DOI : 10.1007/BF01417863

C. Lin and S. Ko, Effects of temperature and concentration on the steady shear properties of aqueous solutions of carbopol and CMC, International Communications in Heat and Mass Transfer, vol.22, issue.2, pp.157-166, 1995.
DOI : 10.1016/0735-1933(95)00001-1

. Bonifas, J. Jl-doublier, and G. Cuvelier, Gums and Hydrocolloids: Functional Aspects, In FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER, issue.32, pp.159-233, 1998.

S. L. Young and C. Shoemaker, Measurement of shear-dependent intrinsic viscosities of carboxymethyl cellulose and xanthan gum suspensions, Journal of Applied Polymer Science, vol.42, issue.9, pp.2405-2408, 1991.
DOI : 10.1002/app.1991.070420905

T. Eremeeva, Size-exclusion chromatography of enzymatically treated cellulose and related polysaccharides: a review, Journal of Biochemical and Biophysical Methods, vol.56, issue.1-3, pp.253-264, 2003.
DOI : 10.1016/S0165-022X(03)00063-0

A. Apicella, L. Nicolais, G. Astarita, and E. Drioli, Hygrothermal History Dependence of Equilibrium Moisture Sorption in Epoxy Resins Polymer (Guildf), pp.1064-1067, 1981.

V. Sugiyama, J. Vuong, R. Chanzy, and H. , Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall, Macromolecules, vol.24, issue.14, pp.4168-4175, 1991.
DOI : 10.1021/ma00014a033

URL : https://hal.archives-ouvertes.fr/hal-00310306

V. Tserki, N. E. Zafeiropoulos, F. Simon, and C. Panayiotou, A study of the effect of acetylation and propionylation surface treatments on natural fibres, Composites Part A: Applied Science and Manufacturing, vol.36, issue.8, pp.1110-1118, 2005.
DOI : 10.1016/j.compositesa.2005.01.004

L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer, Textile Research Journal, vol.20, issue.10, pp.786-794, 1959.
DOI : 10.1177/004051755902901003

W. Ruland, X-ray determination of crystallinity and diffuse disorder scattering, Acta Crystallographica, vol.14, issue.11
DOI : 10.1107/S0365110X61003429

C. G. Vonk, Computerization of Ruland's X-ray method for determination of the crystallinity in polymers, Journal of Applied Crystallography, vol.6, issue.2, pp.148-152, 1973.
DOI : 10.1107/S0021889873008332

S. Ouajai and R. A. Shanks, Composition, structure and thermal degradation of hemp cellulose after chemical treatments, Polymer Degradation and Stability, vol.89, issue.2, pp.327-335, 2005.
DOI : 10.1016/j.polymdegradstab.2005.01.016

A. Thygesen, J. Oddershede, H. Lilholt, A. B. Thomsen, and K. Ståhl, On the determination of crystallinity and cellulose content in plant fibres, Cellulose, vol.13, issue.5, pp.563-576, 2005.
DOI : 10.1007/s10570-005-9001-8

Y. Maréchal and H. Chanzy, The hydrogen bond network in I?? cellulose as observed by infrared spectrometry, Journal of Molecular Structure, vol.523, issue.1-3, pp.183-196, 2000.
DOI : 10.1016/S0022-2860(99)00389-0

A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, vol.23, issue.10, pp.71-85, 2011.
DOI : 10.1039/C0NR00583E

I. Besbes, M. R. Vilar, and S. Boufi, Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: Preparation, characteristics and reinforcing potential, Carbohydrate Polymers, vol.86, issue.3, pp.1198-1206, 2011.
DOI : 10.1016/j.carbpol.2011.06.015

. H. Fukuzumi, Studies on Structures and Properties of TEMPO-Oxidized Cellulose Nanofibril Films.Thesis, 2012.

S. Katz and R. P. Beatson, The Determination of Strong and Weak Acidic Groups in Sulfite Pulps, pp.48-53, 1984.

T. Saito and A. Isogai, Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.289, issue.1-3, pp.219-225, 2006.
DOI : 10.1016/j.colsurfa.2006.04.038

T. Saito and A. Isogai, Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.289, issue.1-3, pp.219-225, 2006.
DOI : 10.1016/j.colsurfa.2006.04.038

T. Kitaoka, A. Isogai, and F. Onabe, Chemical modification of pulp fibers by TEMPO-mediated oxidation, Nordic Pulp and Paper Research Journal, vol.14, issue.04, pp.279-284, 1999.
DOI : 10.3183/NPPRJ-1999-14-04-p279-284

T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi et al., Individualization of Nano-Sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions, Biomacromolecules, vol.10, issue.7, 1992.
DOI : 10.1021/bm900414t

URL : https://hal.archives-ouvertes.fr/hal-00439999

Y. Fan, T. Saito, and A. Isogai, Individual chitin nano-whiskers prepared from partially deacetylated ??-chitin by fibril surface cationization, Carbohydrate Polymers, vol.79, issue.4, pp.1046-1051, 2010.
DOI : 10.1016/j.carbpol.2009.10.044

S. Montanari, M. Roumani, L. Heux, and M. R. Vignon, Topochemistry of Carboxylated Cellulose Nanocrystals Resulting from TEMPO-Mediated Oxidation, Macromolecules, vol.38, issue.5, pp.1665-1671, 2005.
DOI : 10.1021/ma048396c

URL : https://hal.archives-ouvertes.fr/hal-00305974

P. Wormald, K. Wickholm, P. T. Larsson, and T. Iversen, Conversions between ordered and disordered cellulose. Effects of mechanical treatment followed by cyclic wetting and drying, Cellulose, vol.1, issue.1, pp.141-152, 1996.
DOI : 10.1007/BF02228797

V. Références-kosonen, H. Ahola, S. Österberg, M. Ruokolainen, J. Laine et al., Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, Nykänen, a Biomacromolecules, vol.8, issue.1, pp.1934-1941, 2007.

E. Lasseuguette, A. D. Roux, and A. Nishiyama, Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp, Cellulose, vol.6, issue.9, pp.425-433, 2008.
DOI : 10.1007/s10570-007-9184-2

URL : https://hal.archives-ouvertes.fr/hal-00303849

D. T. Atsumi, S. I. Shioka, and T. M. Oto, Effect of Fiber Concentration and Axial Ratio on the Rheological Properties of Cellulose Fiber Suspensions, pp.27-32, 2002.

J. Doublier, Rheological Characterization of Microfibrillated Cellulose Suspensions after Freezing, Carbohydr. Polym, vol.80, pp.677-686, 2010.

P. Kavanagh, G. M. Ross-murphy, and S. B. , Academic Press.; 2000. (6) D, S. Handbook 1 In Gels Scaling Concepts in Polymer Physics Rheological Characterisation of Polymer Gels, Prog. Polym. Sci, vol.1, issue.23, pp.533-562, 1976.

F. Herrick, R. Casebier, J. Hamilton, and S. K. , Microfibrillated Cellulose: Morphology and Accessibility, J Appl Polym Sci Symp, vol.37, issue.9, pp.797-813, 1983.

J. Araki, M. Wada, S. Kuga, and T. Okano, Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.142, issue.1, pp.75-82, 1998.
DOI : 10.1016/S0927-7757(98)00404-X

A. Turbak, F. Snyder, and S. K. , Microfibrillated Cellulose, a New Cellulose Product: Properties, Uses , and Commercial Potential, J. Appl. Polym. Sci. Appl. Polym, vol.37, issue.11, pp.815-827, 1983.

Y. Okita, S. Fujisawa, T. Saito, and A. Isogai, TEMPO-Oxidized Cellulose Nanofibrils Dispersed in Organic Solvents, Biomacromolecules, vol.12, issue.2, pp.518-522, 2011.
DOI : 10.1021/bm101255x

D. Ishii, T. Saito, and A. Isogai, Viscoelastic Evaluation of Average Length of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation, Biomacromolecules, vol.12, issue.3, pp.548-550, 2011.
DOI : 10.1021/bm1013876

R. M. Soszynski and R. J. Kerekes, Elastic interlocking of nylon fibers suspended in liquid??Part 1. Nature of cohesion among fibers, Nordic Pulp and Paper Research Journal, vol.03, issue.04, pp.172-184, 1988.
DOI : 10.3183/NPPRJ-1988-03-04-p172-179

J. D. Ferry, Viscoelastic Properties of Polymers, 1980.

A. Walter, Elastic properties of polvinyl chloride gels, Chapitre IV : Étude structurale et rhéologique du Système NFC-oxydées TEMPO, pp.207-228, 1954.
DOI : 10.1002/pol.1954.120136902

J. L. Jones, C. M. Marques, and C. M. Rigid, Rigid Polymer Network Models To Cite This Version : Rigid Polymer, pp.1113-1127, 1990.
DOI : 10.1051/jphys:0199000510110111300

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.581.3502

A. Dufresne, Comparing the Mechanical Properties of High Performances Polymer Nanocomposites from Biological Sources, Journal of Nanoscience and Nanotechnology, vol.6, issue.2, pp.322-330
DOI : 10.1166/jnn.2006.906

URL : https://hal.archives-ouvertes.fr/hal-00163071

A. Naderi, T. Lindström, and J. Sundström, Carboxymethylated nanofibrillated cellulose: rheological studies, Cellulose, vol.31, issue.8, pp.1561-1571, 2014.
DOI : 10.1007/s10570-014-0192-8

A. Naderi, T. Lindström, and T. Pettersson, The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective, Cellulose, vol.16, issue.16, pp.2357-2368, 2014.
DOI : 10.1007/s10570-014-0329-9

L. Jowkarderis, T. G. De-ven, and . Van, Rheology of semi-dilute suspensions of carboxylated cellulose nanofibrils, Carbohydrate Polymers, vol.123, pp.416-423, 2015.
DOI : 10.1016/j.carbpol.2015.01.067

G. M. Channell and C. Zukoski, Shear and compressive rheology of aggregated alumina suspensions, AIChE Journal, vol.43, issue.7, pp.1700-1708, 1997.
DOI : 10.1002/aic.690430707

W. Shih, W. Shih, S. Kim, and J. Liu, Scaling behavior of the elastic properties of colloidal gels, Physical Review A, vol.42, issue.8, pp.4772-4779, 1990.
DOI : 10.1103/PhysRevA.42.4772

M. Hammersley, Percolation Processes II Connective Constants, Proc. Camb, 1957.

L. Li and Y. Aoki, Rheological Images of Poly(vinyl chloride) Gels. 1. The Dependence of Sol???Gel Transition on Concentation, Macromolecules, vol.30, issue.25, pp.7835-7841, 1997.
DOI : 10.1021/ma971045w

L. Li, H. Uchida, Y. Aoki, and M. L. Yao, Rheological Images of Poly(vinyl chloride) Gels. 2. Divergence of Viscosity and the Scaling Law before the Sol???Gel Transition, Macromolecules, vol.30, issue.25, pp.7842-7848, 1997.
DOI : 10.1021/ma971189a

M. A. Axelos and M. Kolb, Crosslinked biopolymers: Experimental evidence for scalar percolation theory, Physical Review Letters, vol.64, issue.12, pp.1457-1460, 1990.
DOI : 10.1103/PhysRevLett.64.1457

W. Y. Hsu, W. G. Holtje, and J. Barkley, Percolation phenomena in polymer/carbon composites, Journal of Materials Science Letters, vol.51, issue.5, pp.459-462, 1988.
DOI : 10.1007/BF01730688

I. Balberg and N. Binenbaum, Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks, Physical Review B, vol.28, issue.7, pp.3799-3812, 1983.
DOI : 10.1103/PhysRevB.28.3799

I. Chapitre, Étude structurale et rhéologique du Système NFC-oxydées TEMPO Dimensional Sticks System, Phys. Rev. Lett, vol.52, pp.1465-1468, 1984.

H. Dong, J. F. Snyder, D. T. Tran, J. L. Leadore, and . Hydrogel, Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles, Carbohydrate Polymers, vol.95, issue.2, pp.760-767, 2013.
DOI : 10.1016/j.carbpol.2013.03.041

I. Donati, K. I. Draget, M. Borgogna, and S. Paoletti, Tailor-Made Alginate Bearing Galactose Moieties on Mannuronic Residues:?? Selective Modification Achieved by a Chemoenzymatic Strategy, Biomacromolecules, vol.6, issue.1, pp.88-98, 2005.
DOI : 10.1021/bm040053z

K. I. Draget, O. Smidsrød, and G. Skjåk-braek, Alginates from Algae, In Biopolymers, 2005.
DOI : 10.1002/3527600035.bpol6008

M. Lowys, J. Desbrières, and M. Rinaudo, Rheological Characterization of Cellulosic Microfibril Suspensions. Role of Polymeric Additives. Food Hydrocoll, pp.25-32, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00307705

F. Herrick, R. Casebier, J. Hamilton, and S. K. , rachis de palmier dattier Chapitre V : Étude du pouvoir renforçant des NFC oxydées TEMPO extraites du rachis de palmier dattier Chapitre V : Étude du pouvoir renforçant des NFC oxydées TEMPO extraites du rachis de palmier dattier IV Microfibrillated Cellulose: Morphology and Accessibility, Chapitre V : Étude du pouvoir renforçant des NFC oxydées TEMPO extraites du Cellulose Fibrils for Polymer Reinforcement, pp.1086-1093, 1983.

S. J. Rowan, C. Weder, W. Thielemans, M. Roman, and S. Renneckar, Review, ) Lange.NA. Speight.JG. Lange's Handbook of Chemistry) Cangialosi, D.; Boucher, V. M.; Alegria, A.; Colmenero, J.; Alegría, A. Physical Aging in Polymers and Polymer Nanocomposites: Recent Results and Open Questions10) Struik, L. C. E. Physical Aging in Plastics and Other Glassy Materials, pp.1-33, 1977.
DOI : 10.1558/jss.v1i1.148

M. Salajková, Wood Nanocellulose Materials and Effects from Surface Modification of Nanoparticles, 2013.

T. Agag, T. Koga, and T. Takeichi, Studies on Thermal and Mechanical Properties of Polyimide?clay Nanocomposites. Polymer (Guildf), pp.3399-3408, 2001.

A. A. Baker, M. J. Miles, and W. Helbert, Internal structure of the starch granule revealed by AFM, Carbohydrate Research, vol.330, issue.2, pp.249-256, 2001.
DOI : 10.1016/S0008-6215(00)00275-5

B. Ash, L. Schadler, and R. Siegel, Glass transition behavior of alumina/polymethylmethacrylate nanocomposites, Materials Letters, vol.55, issue.1-2, pp.83-87, 2002.
DOI : 10.1016/S0167-577X(01)00626-7

H. Fukuzumi, T. Saito, Y. Okita, and A. Isogai, Thermal stabilization of TEMPO-oxidized cellulose, Polymer Degradation and Stability, vol.95, issue.9, pp.1502-1508, 2010.
DOI : 10.1016/j.polymdegradstab.2010.06.015

A. Raemy and T. Schweizer, Thermal behaviour of carbohydrates studied by heat flow calorimetry, Journal of Thermal Analysis, vol.108, issue.5, pp.95-108, 1983.
DOI : 10.1007/BF02105282

B. E. Waymack, J. L. Belote, V. L. Baliga, and M. R. Hajaligol, Effects of metal salts on char oxidation in pectins/uronic acids and other acid derivative carbohydrates, Fuel, vol.83, issue.11-12, pp.1505-1518, 2004.
DOI : 10.1016/j.fuel.2003.11.019

D. Britto and O. B. Assis, Thermal degradation of carboxymethylcellulose in different salty forms, Thermochimica Acta, vol.494, issue.1-2, pp.115-122, 2009.
DOI : 10.1016/j.tca.2009.04.028

E. Jakab, E. Mészáros, and J. Borsa, Effect of slight chemical modification on the pyrolysis behavior of cellulose fibers, Journal of Analytical and Applied Pyrolysis, vol.87, issue.1, pp.117-123, 2010.
DOI : 10.1016/j.jaap.2009.10.012

N. Grassie, The Thermal Degradation of Polyvinyl Acetate. I. Products and Reaction Mechanism at Low Temperatures. Trans. Faraday Soc. 1952, 48, 379. (23) Holland, B. The Thermal Degradation of Poly(vinyl Acetate) Measured by Thermal analysis?Fourier Transform Infrared Spectroscopy Polymer (Guildf), pp.2207-2211, 2002.

F. López-suevos and C. Frazier, The role of resol fortifiers in latex wood adhesives, Holzforschung, vol.60, issue.5, p.60, 2006.
DOI : 10.1515/HF.2006.093

F. López-suevos, C. Eyholzer, N. Bordeanu, and K. Richter, DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils, Cellulose, vol.7, issue.12, pp.387-398, 2010.
DOI : 10.1007/s10570-010-9396-8

A. Chakraborty, M. Sain, M. Kortschot, and K. Axnäs, Reinforcing Potential of Wood Pulp-Derived Microfibres in a PVA Matrix (27) Walecka.JA. An Investigation of Low Degree of substitutionCarboxymethylcelluloses.Tappi The Build-up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes, 28) Wågberg, L.; Decher, pp.60-784, 1956.

R. F. Landel, L. E. Nielsen, . Kausch, . Hh, . N. Heymans et al., Mechanical Properties of Polymers and Composites, Matériaux Polymères : Propriétés Mécaniques et Physiques. Principes de Mise En Oeuvre, 1993.

J. Y. Ouali, J. P. Cavaille, and . Elastic, Viscoelastic and Plastic Behavior of Multiphase Polymer Blends, Plast. Rubber Compos. Process. Appl, pp.55-60, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00310274

L. T. Drzal, P. Herrera-franco, and H. Ho, Fiber???Matrix Interface Tests, Compr. Compos. Mater. Test Methods, Nondestruct. Eval. Smart Mater, vol.5, pp.71-111, 2000.
DOI : 10.1016/B0-08-042993-9/00036-X

A. Dufresne and J. Cavaille, Clustering and percolation effects in microcrystalline starch-reinforced thermoplastic, Journal of Polymer Science Part B: Polymer Physics, vol.36, issue.12, pp.2211-2224, 1998.
DOI : 10.1002/(SICI)1099-0488(19980915)36:12<2211::AID-POLB18>3.0.CO;2-2

A. Samir, M. A. Alloin, F. Dufresne, and A. , Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field, Biomacromolecules, vol.6, issue.2, pp.612-626, 2005.
DOI : 10.1021/bm0493685

URL : https://hal.archives-ouvertes.fr/hal-00014354

K. Yuwawech, J. Wootthikanokkhan, and S. Tanpichai, Effects of Two Different Cellulose Nanofiber Types on Properties of Poly(vinyl alcohol) Composite Films, Journal of Nanomaterials, vol.6, issue.1, pp.1-10, 2015.
DOI : 10.1007/s10570-009-9393-y

K. Lee, T. Tammelin, K. Schulfter, H. Kiiskinen, J. Samela et al., High Performance Cellulose Nanocomposites: Comparing the Reinforcing Ability of Bacterial Cellulose and Nanofibrillated Cellulose, ACS Applied Materials & Interfaces, vol.4, issue.8, pp.4078-4086, 2012.
DOI : 10.1021/am300852a

K. Benhamou, A. Dufresne, A. Magnin, G. Mortha, and H. Kaddami, Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time, Carbohydrate Polymers, vol.99, pp.74-83, 2014.
DOI : 10.1016/j.carbpol.2013.08.032