. Ainsi, dans un premier temps, les courants initiaux sont déterminés par

J. C. Maxwell, A Dynamical Theory of the Electromagnetic Field., Proceedings of the Royal Society of London, vol.13, issue.0, pp.531-536, 1864.
DOI : 10.1098/rspl.1863.0098

O. Heaviside, On Operators in Physical Mathematics. Part I, Proceedings of the Royal Society of London, vol.52, issue.315-320, pp.504-529
DOI : 10.1098/rspl.1892.0093

P. Pouliguen, Contribution aux études théoriques et expérimentales en analyse des signatures radar. Habilitation à Diriger des Recherches, 2000.

J. A. Stratton and L. Chu, Diffraction Theory of Electromagnetic Waves, Physical Review, vol.56, issue.1, pp.99-107, 1939.
DOI : 10.1103/PhysRev.56.99

J. A. Stratton, Electromagnetic theory, 1941.
DOI : 10.1002/9781119134640

P. Pouliguen, Description théorique du code de calcul SERMAIL, DGA, Rapport Technique, 2001.

G. Kubické, Contribution au calcul de la diffusion d'une onde électromagnétique par des réflecteurs polyédriques au-dessus d'une surface rugueuse, Thèse de Doctorat, 2008.

A. J. Poggio and E. K. Miller, Integral Equation Solutions of Three-dimensional Scattering Problems, 1970.
DOI : 10.1016/B978-0-08-016888-3.50008-8

C. Bourlier, Diffraction électromagnétique par des obstacles. Cours master, 2009.

R. P. Feynman, Space-Time Approach to Quantum Electrodynamics, Physical Review, vol.76, issue.6, pp.769-789, 1949.
DOI : 10.1103/PhysRev.76.769

J. Bowman, T. Senior, and P. Uslengghi, Electromagnetic and Acoustic Scattering by Simple Shape. Hemisphere publishing corporation, 2007.

J. Chauveau, Caractérisation des pôles de résonance d'objets éclairés par une onde électromagétique large bande, Thèse de Doctorat, 2007.

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, vol.14, issue.3, pp.302-307, 1966.

A. Taflove and M. E. Brodwin, Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations, IEEE Transactions on Microwave Theory and Techniques, vol.23, issue.8, pp.623-630, 1975.
DOI : 10.1109/TMTT.1975.1128640

A. Taflove and K. Umashankar, Radar Cross Section of General Three-Dimensional Scatterers, IEEE Transactions on Electromagnetic Compatibility, vol.25, issue.4, pp.433-440, 1983.
DOI : 10.1109/TEMC.1983.304133

R. F. Harrington, Field Computation by Moment Methods, 1968.
DOI : 10.1109/9780470544631

S. M. Rao, D. R. Wilton, and A. W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape, IEEE Transactions on Antennas and Propagation, vol.30, issue.3, pp.409-418, 1982.
DOI : 10.1109/TAP.1982.1142818

J. H. Richmond, A wire-grid model for scattering by conducting bodies, IEEE Transactions on Antennas and Propagation, vol.14, issue.6, pp.782-786, 1966.
DOI : 10.1109/TAP.1966.1138783

W. R. Hamilton, A. W. Conway, and E. H. Halberstam, The Mathematical Papers -Geometrical Optics, 1931.

M. Kline, An asymptotic solution of Maxwell's equations, Communications on Pure and Applied Mathematics, vol.4, issue.2-3, pp.2-3, 1951.
DOI : 10.1002/cpa.3160040203

R. K. Luneburg and M. Herzberger, Mathematical theory of optics, 1964.

J. B. Keller, Geometrical Theory of Diffraction*, Journal of the Optical Society of America, vol.52, issue.2, pp.116-130, 1962.
DOI : 10.1364/JOSA.52.000116

J. S. Asvestas, The physical optics method in electromagnetic scattering, Journal of Mathematical Physics, vol.21, issue.2, pp.290-299, 1980.
DOI : 10.1063/1.524413

G. Ruck, D. Barrick, W. Stuart, and C. Krichbaum, Radar Cross Section handbook, 1970.
DOI : 10.1007/978-1-4899-5324-7

R. Hémon, Calcul de la diffraction électromagnétique par une cavité de type manche à air, Thèse de Doctorat, 2009.

P. Ufimtsev, Blackbodies and shadow radiation Soviet journal of Communications, Technology and Electronics [translation from Russian by Scripta Technica, Inc.], vol.35, issue.5, pp.108-116, 1990.

E. Knott, J. Schaeffer, and E. M. Tuley, Radar Cross Section, 1985.
DOI : 10.1049/SBRA026E

P. Clemmow, Edge currents in diffraction theory, IRE Transactions on Antennas and Propagation, vol.4, issue.3, pp.282-287, 1956.
DOI : 10.1109/TAP.1956.1144439

A. Michaeli, Equivalent edge currents for arbitrary aspects of observation, IEEE Transactions on Antennas and Propagation, vol.32, issue.3, pp.252-258, 1984.
DOI : 10.1109/TAP.1984.1143303

K. Mitzner, Incremental Length Diffraction Coefficients Aircraft Division Northrop Corp, 1974.

E. F. Knott, The relationship between Mitzner's ILDC and Michaeli's equivalent currents, IEEE Transactions on Antennas and Propagation, vol.33, issue.1, pp.112-114, 1985.
DOI : 10.1109/TAP.1985.1143482

M. J. Prickett and C. C. Chen, Principles of inverse synthetic aperture radar, " dans EASCON'80 ; Electronics and Aerospace Systems Conference, pp.340-345, 1980.

I. Cumming and F. Wong, Digital Processing of Synthetic Aperture Radar Data, Algorithms and Implementation, vol.1, 2005.

A. Thomet, Étude et développement d'un simulateur SAR en mode FMCW, 2011.

C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar images, 2004.

C. Bourlier, H. He, J. Chauveau, R. Hémon, and E. P. Pouliguen, RCS OF LARGE BENT WAVEGUIDE DUCTS FROM A MODAL ANALYSIS COMBINED WITH THE KIRCHHOFF APPROXIMATION, Thèse de Doctorat, pp.1-38, 2008.
DOI : 10.2528/PIER08101708

B. , L. Lepvrier, R. Loison, R. Gillard, L. Patier et al., Rigorous analysis of a satellite antenna including its surrounding environment with the dual-grid FDTD method, dans International Symposium on ANtenna Technology and applied ElectroMagnetics (ANTEM), pp.1-4, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00740864

B. , L. Lepvrier, R. Loison, R. Gillard, P. Pouliguen et al., A new hybrid method for the analysis of surrounded antennas mounted on large platforms, IEEE Transactions on Antennas and Propagation, vol.62, issue.5, pp.2388-2397, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00986979

C. Bourlier, N. Pinel, and E. G. Kubické, Method of moments for 2D scattering problems : basic concepts and applications, 2013.
DOI : 10.1002/9781118648674

A. Thomet, Evaluation de la complémentarité des codes rigoureux de DOLMEN, INSA Rennes, DGA-MI (Direction Générale de l'Armement -Maîtrise de l'Information), 2012.

F. Obelleiro, J. L. Rodriguez, and R. J. Burkholder, An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities, IEEE Transactions on Antennas and Propagation, vol.43, issue.4, pp.356-361, 1995.
DOI : 10.1109/8.376032

F. Obelleiro, J. Campos-nino, J. L. Rodriguez, and E. A. Pino, A Segmented Approach for Computing the Electromagnetic Scattering of Large and Deep Cavities, Progress In Electromagnetics Research, vol.19, pp.129-145, 1998.
DOI : 10.2528/PIER97100700

M. Tadokoro and K. Hongo, Measurement of RCS from a dielectric coated cylindrical cavity and calculation using IPO-EIBC, IEICE transactions on electronics, vol.85, issue.9, pp.1692-1696, 2002.

R. J. Burkholder, A fast and rapidly convergent Iterative Physical Optics algorithm for computing the RCS of open-ended cavities, Applied Computational Electromagnetics Society Journal, vol.16, issue.1, pp.53-60, 2001.

R. J. Burkholder and T. Lundin, Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities, IEEE Transactions on Antennas and Propagation, vol.53, issue.2, pp.793-799, 2005.
DOI : 10.1109/TAP.2004.841317

R. J. Burkholder, C. Tokgoz, C. J. Reddy, and P. H. Pathak, Iterative Physical Optics, it's not just for cavities anymore, dans IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting (APS-URSI), pp.18-21, 2005.

R. J. Burkholder, C. Tokgoz, C. Reddy, and W. O. Coburn, Iterative Physical Optics for radar scattering predictions, Applied Computational Electromagnetics Society Journal, vol.24, issue.2, pp.241-258, 2009.

R. Hémon, P. Pouliguen, H. He, J. Saillard, and J. Damiens, COMPUTATION OF EM FIELD SCATTERED BY AN OPEN-ENDED CAVITY AND BY A CAVITY UNDER RADOME USING THE ITERATIVE PHYSICAL OPTICS, Progress In Electromagnetics Research, vol.80, pp.77-105, 2008.
DOI : 10.2528/PIER07110803

F. Obelleiro, J. L. Rodriguez, and E. A. Pino, A progressive physical optics (PPO) method for computing the electromagnetic scattering of large open-ended cavities, Microwave and Optical Technology Letters, vol.14, issue.3, pp.166-169, 1997.
DOI : 10.1002/(SICI)1098-2760(19970220)14:3<166::AID-MOP9>3.0.CO;2-I

V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions, Journal of Computational Physics, vol.86, issue.2, pp.414-439, 1990.
DOI : 10.1016/0021-9991(90)90107-C

C. Lu and W. C. Chew, A multilevel algorithm for solving a boundary integral equation of wave scattering, Microwave and Optical Technology Letters, vol.140, issue.10, pp.466-470, 1994.
DOI : 10.1002/mop.4650071013

J. Song and W. C. Chew, Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering, Microwave and Optical Technology Letters, vol.11, issue.1, pp.14-19, 1995.
DOI : 10.1002/mop.4650100107

M. Bebendorf and S. Rjasanow, Adaptive Low-Rank Approximation of Collocation Matrices, Computing, vol.70, issue.1, pp.1-24, 2003.
DOI : 10.1007/s00607-002-1469-6

M. Bebendorf, Adaptive Cross Approximation of Multivariate Functions, Constructive Approximation, vol.23, issue.2, pp.149-179, 2011.
DOI : 10.1007/s00365-010-9103-x

K. Zhao, M. N. Vouvakis, and J. Lee, The Adaptive Cross Approximation Algorithm for Accelerated Method of Moments Computations of EMC Problems, IEEE Transactions on Electromagnetic Compatibility, vol.47, issue.4, pp.763-773, 2005.
DOI : 10.1109/TEMC.2005.857898

J. M. Tamayo, Multilevel adaptive cross approximation and direct evaluation method for fast and accurate discretization of electromagnetic integral equations, Thèse de Doctorat, 2011.

P. H. Pathak and R. J. Burkholder, A reciprocity formulation for the EM scattering by an obstacle within a large open cavity, IEEE Transactions on Microwave Theory and Techniques, vol.41, issue.4, pp.702-707, 1993.
DOI : 10.1109/22.231668

C. Lu and W. C. Chew, Fast far-field approximation for calculating the RCS of large objects, Microwave and Optical Technology Letters, vol.65, issue.5, pp.238-241, 1995.
DOI : 10.1002/mop.4650080506

P. Y. Ufimtsev, Fundamentals of the Physical Theory of Diffraction, 2007.

K. Siegel, Bistatic radars and forward scattering, Proc. Nat. Conf. Aeronaut. Electron, pp.286-290, 1958.

J. Glaser, Bistatic RCS of Complex Objects near Forward Scatter, IEEE Transactions on Aerospace and Electronic Systems, vol.21, issue.1
DOI : 10.1109/TAES.1985.310540

G. Kubické, Y. A. Yahia, C. Bourlier, N. Pinel, and E. P. Pouliguen, Bridging the Gap Between the Babinet Principle and the Physical Optics Approximation: Scalar Problem, IEEE Transactions on Antennas and Propagation, vol.59, issue.12, pp.4725-4732, 2011.
DOI : 10.1109/TAP.2011.2165498

G. Kubické, C. Bourlier, M. Delahaye, C. Corbel, N. Pinel et al., Bridging the gap between the Babinet principle and the physical optics approximation: Vectorial problem, Radio Science, vol.50, issue.3, pp.573-581, 2013.
DOI : 10.1002/rds.20059

G. Kubické and Y. Béniguel, Cavities with internal blocking obstacles, dans Workshop EM ISAE, Radar Signatures, 2011.

A. Thomet, G. Kubické, C. Bourlier, and E. P. Pouliguen, Improvement of shadowing with Iterative Physical Optics for radiation pattern of mounted antennas, 2014 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), pp.1-2, 2014.
DOI : 10.1109/ANTEM.2014.6887701

URL : https://hal.archives-ouvertes.fr/hal-00967937

M. Bebendorf and S. Kunis, Recompression techniques for adaptive cross approximation, Journal of Integral Equations and Applications, vol.21, issue.3, 2007.
DOI : 10.1216/JIE-2009-21-3-331

S. Rjasanow, Adaptive cross approximation of dense matrices, Proc. Int. Association for Boundary Element Methods, pp.1-12, 2002.

J. M. Tamayo, A. Heldring, and J. M. Rius, Multilevel Adaptive Cross Approximation (MLACA), IEEE Transactions on Antennas and Propagation, vol.59, issue.12, pp.4600-4608, 2011.
DOI : 10.1109/TAP.2011.2165476

K. Delamotte, Solveurs directs rapides pour les équations intégrales, IMACS (Ingénierie MAthématique et Calcul Scientifique), 2010.

P. C. Hansen, Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank, SIAM Journal on Scientific and Statistical Computing, vol.11, issue.3, pp.503-518, 1990.
DOI : 10.1137/0911028

A. Thomet, G. Kubické, C. Bourlier, and E. P. Pouliguen, IMPROVEMENT OF ITERATIVE PHYSICAL OPTICS USING THE PHYSICAL OPTICS SHADOW RADIATION, Progress In Electromagnetics Research M, vol.38, pp.1-13, 2014.
DOI : 10.2528/PIERM14021202

A. Gdr-ondes, Amélioration de la méthode IPO par le rayonnement en zone d'ombre de l'optique physique, p.2012

D. Grenier, Antennes et Propagation, 2013.