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Pr. Iyad DAYOUB Université de Valenciennes
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Résumé

La rareté du spectre radio et la demande croissante de bande passante
rendent l’optimisation de l’utilisation du spectre essentiel. Tandis qu’une ef-
ficacité maximale devrait être atteinte, un niveau minimal d’interférence de-
vrait être maintenu. L’OFDM (Orthogonal Frequency Division Multiplexing en
anglais) est un schéma de modulation bien connu pour combattre efficacement
l’évanouissement multi trajets. OFDM a été retenu comme un schéma de mod-
ulation dans plusieurs normes, comme le 3GPP LTE (Long Term Evolution
en anglais) et un dérivé d’OFDM, le GFDM (Generalized Frequency Division
Multiplexing en anglais), est un candidat pour le système 5G. L’estimation
de canal est une tâche fondamentale dans les systèmes OFDM et elle devient
plus difficile en présence d’interférence. Dans cette thèse, notre objectif est
de proposer des algorithmes d’estimation de canal pour les systèmes OFDM
en présence d’interférence, où les algorithmes classiques d’estimation de canal
échouent. En particulier, nous nous concentrons sur les interférences dues à
certaines approches utilisées pour optimiser le spectre. Cela nous amène à con-
sidérer les deux cas suivants.

1) Tout d’abord, nous considérons l’environnement radio intelligente CR
(Cognitive Radio en anglais) qui a été proposé pour faire face au problème de
rareté du spectre. Les technologies qui emploient l’OFDM comme schéma de
modulation (WIMAX, WRAN) peuvent exister dans un scenario de CR. Dans
de tels scenarios, un type particulier d’interférence se pose et il est connu comme
l’interférence à bande étroite ou NBI (Narrowband Interference en anglais).
NBI est caractérisée par une puissance élevée qui frappe un petit nombre de
sous porteuse dans un système OFDM. Pendant que tous les travaux dans
la littérature traitent le cas du canal à variations lentes, nous proposons un
nouveau cadre d’estimation de canal pour les canaux à variations rapides con-
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taminés par NBI. Cela est accompli avec l’algorithme EM (Expectation maxi-
mization en anglais) et une expression explicite pour l’estimation de la puis-
sance du bruit est obtenue.

2) Une autre source de consommation de bande passante en OFDM est
la présence de pilotes connus insérés dans la trame OFDM pour accomplir
l’estimation du canal. Pour tenter de remédier à ce problème, les pilotes super-
posés SP (Superimposed Pilots en anglais) ont été proposés comme substituts
aux pilotes classiques. Dans cette thèse, on est intéressé par une nouvelle classe
de SP pour OFDM connu comme DNSP (Data Nulling SP en anglais). DNSP
assure des pilotes sans interférence au détriment d’interférence des donnés. Due
à la modernité de DNSP, un récepteur adapté à son design doit être conçu.
Les récepteurs turbo sont connus pour être les plus efficaces en supprimant
l’interférence. Néanmoins, ils possèdent deux inconvénients majeurs; leur com-
plexité et leur besoin d’un canal précis. La contribution de ce travail est double
et elle est orientée vers le traitement des deux inconvénients mentionnés.

Nous proposons d’abord un annuleur d’interférences IC (Interference can-
celer en anglais) basé sur le critère MMSE (Minimum Mean Square Error
en anglais) à faible complexité pour DNSP. En fait, nous montrons qu’en ex-
ploitant la structure spécifique de l’interférence en DNSP, l’inversion de matrice
nécessaire dans le cas classique se réduit à l’inversion d’une matrice diagonale.
Cependant, la performance de l’IC proposé n’est fiable que quand l’erreur de
l’estimation du canal est faible. Donc, dans une autre contribution, nous pro-
posons un IC pour DNSP en tenant compte des erreurs d’estimation du canal.

Enfin l’estimation robuste du canal est abordée dans le dernier chapitre.



Abstract

The scarcity of the radio spectrum and the increasing demand on band-
width makes it vital to optimize the spectrum use. While a maximum effi-
ciency should be attained, a minimal interference level should be maintained.
Orthogonal frequency division multiplexing (OFDM) is a well-known modula-
tion scheme reputed to combat multipath fading efficiently. OFDM has been
selected as the modulation scheme in several standards such as the 3GPP long
term evolution (LTE) and a derivative of OFDM, the generalized frequency
division multiplexing (GFDM), is a candidate for 5G systems. In order to
guarantee a coherent detection at the receiver, in the absence of the channel
knowledge, channel estimation is regarded as a fundamental task in OFDM. It
becomes even more challenging in the presence of interference.

In this thesis, our aim is to propose channel estimation algorithms for
OFDM systems in the presence of interference, where conventional channel es-
timators designed for OFDM fail. In particular, we focus on interference that
arises as a result of schemes envisioned to optimize the spectrum use. This
leads us to consider two main themes; cognitive radio (CR) and superimposed
pilots (SP).

First, we consider the CR environment which has been proposed to tackle
the problem of spectrum scarcity. Technologies employing OFDM as their mod-
ulation scheme such as WIMAX and WRAN, might exist in a CR network. In
such scenarios, a particular type of interference arises and is known as the
narrowband interference (NBI). NBI is characterized by a high power which
strikes a small number of OFDM sub-carriers. While all existing literature
addresses slow time-varying channels, we propose a novel channel estimation
framework for fast time-varying channels in OFDM with NBI. This is accom-
plished through an expectation maximization (EM) based algorithm. This
formulation allows us to obtain a closed-form expression for the noise power
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estimation.
The known pilot sub-carriers inserted within the OFDM frame to accom-

plish the channel estimation task are another source of bandwidth consumption
in OFDM. In an attempt to overcome this drawback, SP have been proposed as
substitutes to conventional pilots. In this thesis, we are particularly interested
in a very recent class of SP for OFDM, known as the data-nulling SP (DNSP)
scheme. DNSP assures interference-free pilots at the expense of data interfer-
ence. Seen the modernity of DNSP, a suitable receiver has to be designed to
cope with its design. Turbo receivers are well known to be the most efficient
in canceling interference. However, two main drawbacks of turbo receivers are
their high complexity and their need of an accurate channel estimate. The con-
tribution of this work is twofold and is oriented to deal with the two mentioned
downsides of turbo receivers.

We first propose a low-complexity soft approximated minimum mean square
error (MMSE) interference canceler (IC) particularly for DNSP. In fact, we
show that by exploiting the specific interference structure that arises in DNSP,
the matrix inversion needed by the approximated MMSE-IC in the classical case
reduces to a diagonal matrix inversion. The performance of the proposed IC is
reliable when the channel estimation error is small. As another contribution, we
extend the design of the approximated IC for DNSP so as to take the channel
estimation errors into account. Those two contributions allow us to benefit
from the interference cancellation property of turbo receivers, while keeping a
low-complexity and dealing with channel estimation errors when present.

Finally, robust channel estimation is discussed in the last chapter. In par-
ticular, we provide some insights and propositions for its implementation to
problems of channel estimation in OFDM.
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(·)∗ Conjugate operator

(·)H Hermitian (conjugate transpose) operator

Tr(·) Trace

Ex,y[·] Expectation over x and y

δk,m Dirac function

arg max
(.)

Maximum argument

diag(X) Vector with diagonal entries of matrix X

diag(x) Diagonal matrix with the entries of vector x on its di-
agonal

FT Fourier transform operator

◦ Hadamard multiplication
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List of acronyms (in alphabetical order)

ADSL Asynchronous digital subscriber line

AR Auto-regressive

AWGN Additive white Gaussian noise

BCRB Bayesian Cramer–Rao Bound

BDU bounded data uncertainty

BEM Basis Expansion Model

BER Bit Error Rate

BICM Bit-Interleaved Coded Modulation

CA Complex Addition

C-CSP coded classical superimposed pilots

CE Channel Estimation

CFO Carrier frequency offset

CIR Channel impulse response

CM Complex Multiplication

CMMOE Constrained Minimum Mean Output Energy

CP Cyclic Prefix

CR Cognitive Radio

CS Compressive sensing

CSI Channel State Information
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CSP Classical Superimposed Pilots

D/A (A/D) Digital to analog (Analog to digital )

DA Data-Aided

DFT Discrete Fourier Transform

DNSP Data Nulling Superimposed Pilots

ECM Expectation-Conditional Maximization

EM Expectation Maximization

FCC Federal Communications Commission

FFT Fast Fourier Transform

FT Fast Transform

GFDM Generalized Frequency Division Multiplexing

IC Interference Canceler

ICI Inter-carrier interference

IDFT Inverse DFT

IFFT Inverse Fast Fourier Transform

ISI Inter-symbol interference

ISM industrial, scientific and medical

LLR Log likelihood ratio

LMMSE Linear Minimum Mean Square Error
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LOS Line-of-sight

LS Least Squares

LTE Long Term Evolution

MAP Maximum a posteriori

ML Maximum Likelihood

MLE Maximum Likelihood Estimator

MMSE Minimum Mean Square Error

MSE Mean Square Error

MUE Measurement Update Equations

NBI Narrowband Interference

NLOS No Line-of-sight

NRNSC Non-Recursive Non-Systematic Convolutional

OFDM Orthogonal Frequency Division Multiplexing

P/S (S/P) Parallel to serial (Serial to parallel)

P-BEM Polynomial BEM

pdf probability density function

PEF Prediction Error Filter

PSAM Pilot-Symbol Assisted Modulation

PSIC Parallel Soft Interference Canceler

RA Real Addition
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RLS Regularized LS

RM Real Addition

SIR Signal-to-interference-ratio

SNR Signal-to-noise-ratio

SOS Second Order Statistics

SP Superimposed Pilots

TUE Time Update Equations

UFMC Universal Filtered Multi-Carrier

US Uncorrelated scatters

WLAN Wireless Local Area Network

WRAN Wireless Regional Area Network

WSS Wide-Sense Stationary



Introduction

The management of the spectrum is attributed to regulation authorities
which have the responsibility of organizing the frequency bands usage, so that
users are guaranteed an acceptable quality of service. In particular, licensed
users are not supposed to encounter interference. However, measurements re-
vealed that less than 40 % of the attributed spectrum is being fully used.
This leaves an important portion of the spectrum reserved but underutilized.
It reveals at the same time the inefficiency of the current regulation policies
which offer licensed users the full access to the spectrum at all times. While
bandwidth is a naturally scarce resource, and demands on higher data rates is
in continuous increase, it becomes vital to make use of the wasted spectrum.
Thus, optimizing the spectral efficiency becomes a priority in order to confront
the scarcity of the spectrum on the one hand, and the demand of the constantly
emerging services on the other hand. We will hereafter discuss two approaches
which will form the road-map to this thesis.

Cognitive radio (CR), first proposed in [Mit93], is based on the idea of spec-
trum sharing. Its main idea is to allow secondary users to access the licensed
spectrum when vacant. This sharing should be well organized (regulated) so
that the interference from secondary users on primary users is kept at its min-
imal levels. This is usually assured by employing spectrum sensing capabilities
in the CR networks so as to detect the availability of the spectrum before
transmitting, thus avoiding interference.

While CR offers a solution to the spectrum underutilization caused by cur-
rent regulation policies, there exists another source of bandwidth underutiliza-
tion which is manifested by the use of known symbols (pilots) for the channel
estimation task. This means that a non-negligible portion of the bandwidth
is wasted rather than being assigned to useful symbols. Nevertheless, in order
to coherently acquire the channel at the receiver, some known symbols should

26
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be transmitted. To this end, superimposed pilots (SP) have been proposed to
replace classical pilots. In SP schemes, no bandwidth is exclusively dedicated
to pilots, but it is rather shared with unknown symbols (data) thus limiting
the loss in spectral efficiency.

Orthogonal frequency division multiplexing (OFDM) could be considered a
landmark with strong foundations in the physical layer. It has been proposed
to overcome the undesirable effect of inter-carrier interference and inter-symbol
interference and is perfectly adopted to mulipath channels; a typical scenario
in wireless transmission. Furthermore, OFDM is now standardized in several
technologies, ranging from wired to wireless communication and extending to
television broadcasting transmissions. Consequently, and with reference to the
above discussion, systems employing OFDM as their access scheme might pos-
sibly share the spectrum with other technologies. The channel estimation task
is no exception in OFDM systems, and is typically carried out via pilot-aided
algorithms as discussed above.

We now narrow the rest of our discussion to OFDM, which is the modulation
of interest in our thesis. In particular, our main concern in this thesis is to
provide solutions to channel estimation problems in OFDM in scenarios with
interference, where conventional channel estimation algorithms fail. We focus
on interference that arises either from spectrum sharing (CR) between users,
or from bandwidth sharing (SP) by the same user.

As it could be anticipated, optimizing the spectral efficiency, being it with
the employment of CR or with SP does not come without a cost. In fact, dif-
ferent sources of interference should be dealt with at the receiver.

We first consider the CR environment with a fast time-varying OFDM chan-
nel and conventional pilots. In CR, the spectrum sensing capabilities we al-
ready mentioned can not guarantee an interference-free transmission. In fact,
a particular kind of interference arises in OFDM when coexisting with other
technologies. It is characterized by a high power over a small number of sub-
carriers. This is known as the narrowband interference (NBI) and its presence
renders conventional channel estimators inefficient. This will be the focus of
our work in chapter 2.

Then, we consider a quasi-static OFDM channel with SP and an NBI-free
environment. The sharing of the bandwidth in SP schemes could be performed
using different approaches. In the classical SP (CSP) scheme, pilots are arith-
metically added to data with a different power contribution. This leads to
interference on channel estimation from data and on data decoding from pi-
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lots. A more recent SP scheme, known as the data-nulling SP (DNSP) scheme,
cancels the effect of data on pilots by first precoding the data and then nulling
it as some positions for the insertion of pilots. This assures that there is no in-
terference on pilots, yet, interference originates from data on themselves. This
will be the focus of our work in chapters 3 and 4.

Thesis Organization:

In chapter 1, we provide a brief overview of the multipath propagation
channel, the OFDM model in a fast time-varying scenario and a slow time-
varying scenario and then briefly discuss conventional channel estimation tech-
niques in OFDM.

In chapter 2, the fast time-varing OFDM channel model will be imple-
mented and then adapted to include the NBI model. Extensive work on chan-
nel estimation with NBI in OFDM systems exists in literature, but only in the
context of low mobility. Thus, we present a novel framework to address the
problem of channel estimation in OFDM with NBI in high mobility conditions.
In fact, the extension of this problem from low mobility scenarios to high mo-
bility scenarios is not a direct one. Another motivation is the recent proposal
dealing with the employment of CR in high speed railway in the CORRIDOR
project [Cor]. This project is the first to address this topic in Europe in collab-
oration with the Société Nationale des Chemins de fer Français (SNCF), which
is the French National Railway Company. To tackle this problem, we derive an
EM-based channel estimator, in which the Kalman smoother is embedded. We
then perform a comparison between the proposed algorithm and two algorithms
in the literature. In particular, the comparison is done with an algorithm that
takes into account NBI but neglects mobility and another which takes into ac-
count mobility but neglects NBI. This comparison demonstrates the need of a
channel estimator capable of dealing with NBI and mobility at the same time.
We also calculate the additional complexity of the proposed algorithm which
is shown to be rather small compared to that of existing algorithms.

In chapter 3, the quasi-static OFDM channel model is used and adapted
this time to include the DNSP model. DNSP is a recent proposal which emerged
in 2014. It was thus essential to design a suitable receiver with an accept-
able complexity. To this end, we propose a low-complexity turbo receiver for
DNSP in OFDM. We then perform a comprehensive comparison with the CSP
in OFDM within the turbo framework. This includes channel estimation, data
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decoding, and complexity comparisons. In fact, this study is of important prac-
tical interest since it enables the designer to choose the pilot scheme depending
on the application and according to the desired trade-off between complexity
and performance.

In chapter 4, we propose an improved low-complexity receiver for DNSP
which takes the channel estimation errors into account. In the proposed re-
ceiver of chapter 3, the channel estimate is used as if it were the true channel.
This assumption has a low impact when small channel estimation errors are
present, but it results in performance degradation otherwise.

Chapter 5 is devoted to the discussion of the possibility of implementing
robust estimators for the problem of channel estimation in OFDM. The robust-
ness here refers to taking into account uncertainties in the model for a class
of robust estimators known as the bounded data uncertainty (BDU) class. In
fact, interference in the OFDM system such as the NBI in chapter 2 or the SP
in chapter 3, could be viewed as uncertainties. In those two contexts, the con-
ventional channel estimators fail due to the presence of those uncertainties and
we consequently had to design more elaborate techniques to deal with them
at the receiver. Taking into account those certainties into the design of the
estimator presents a new approach to deal with those problems. The content
of this chapter is to be viewed as a preliminary study which needs further de-
velopments and is provided as a perspective for future research.

Publications:

The results of chapter 2 have been published in IEEE Wireless Commu-
nications letters. Chapter 3 resulted in two conference publications, DICTAP
2015 and BMSB 2015, and a paper under review in IET communications. The
approach in chapter 4 has been submitted to IEEE Transactions on Wireless
Communications for review. Those are listed below:

F. Zaarour and E. Simon, ”Fast Time-Varying Channel Estimation for
OFDM Systems with Narrowband Interference” IEEE Wireless Communica-
tions Letters, vol.4 no. 4, pp. 389-392, 2015.

F. Zaarour, E. Simon, M. Zwingelstein-Colin, and I. Dayoub, ”A low com-
plexity turbo receiver for data nulling superimposed pilots in OFDM,” Fifth
International Conference on Digital Information and Communication Technol-
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ogy and its Applications (DICTAP), pp.32,37, April 29 2015-May 1 2015.

F. Zaarour, E. Simon, M. Zwingelstein-Colin, and I. Dayoub, ”Compari-
son of Superimposed Pilot Schemes in Iterative Receivers for OFDM Systems”
IEEE International Symposium on Broadband Multimedia Systems and Broad-
casting (BMSB), June 2015.

F. Zaarour, E. Simon, M. Zwingelstein-Colin, and I. Dayoub, ”On a Re-
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OFDM”, under review in IET communications.
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1.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is reputed for its abil-
ity to mitigate multipath fading and enhance the spectral efficiency due to
its orthogonal sub-carriers. This paved the way towards its presence in several
standards today, ranging from wireless technologies such as the long term evolu-
tion (LTE) in its downlink, to wired technologies such as the asynchronous dig-
ital subscriber line (ADSL). However, the route towards standardization took
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around 40 years. This dates back to the year 1966 when Cheng [Cha66] first
presented the idea of transmitting parallel messages via a linear band-limited
channel while maintaining an inter-carrier interference (ICI) free and inter-
symbol interference (ISI) free transmission. Nevertheless, the major break-
through which permitted the practical implementation of OFDM did not occur
before the early 70’s when Weinstein and Ebert [WE71] introduced the use of
the discrete Fourier transform (DFT) as an alternative to oscillators. However,
their proposition did not address the orthogonality problem which was solved
10 years later when Peled and Ruiz introduced the idea of the cyclic prefix
(CP) [PR80]. Our goal in this chapter is to introduce the notions that will
help clearly understand the channel models addressed in later chapters. We
first introduce the classical channel propagation model. Then, we present the
OFDM system model and distinguish between the fast time-varying and the
quasi-static channels. The former will provide a base for the system model
for our discussion in chapter 2 while the latter will form the backbone for the
system model in chapter 3. This will be followed by a discussion and a brief
state of the art of channel estimation techniques in OFDM. This discussion will
help us establish the links and understand the motivations for the works pre-
sented in later chapters since our ultimate goal is to estimate the channel at the
receiver with highest precision and efficiency (spectral) and lowest complexity.

1.2 Propagation Model

1.2.1 Typical propagation model

The basic structure of any communication system is composed of a transmit-
ter, a propagation medium (channel) and a receiver. The propagation medium
could be wired or wireless. We will be dealing with the latter in this thesis.
In case of a fixed line of sight (LOS) transmission where the receiver has only
a single attenuated version of the transmitted signal, then directional anten-
nas can be employed. However, a typical propagation scenario in a wireless
medium leads to the reception of multiple copies of the transmitted signal at
the receiver with or without a LOS. A propagation scenario with a LOS com-
ponent follows a Rice distribution while a propagation without a LOS follows
a Rayleigh distribution.
The propagation of an electromagnetic wave in a radio channel undergoes di-
verse physical phenomenon. The three major mechanisms that impact this
propagation are the reflection, diffraction and scattering. Reflection occurs
when a propagating wave impinges upon a smooth surface with very large
dimensions relative to its wavelength. Diffraction is produced when the propa-
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gation path between the transmitter and the receiver is obstructed by a dense
body with dimensions that are large relative to the signal’s wavelength, causing
secondary waves to be formed behind the obstructing body. It is often referred
to as shadowing because the diffracted field can reach the receiver even when
shadowed by an impenetrable obstacle. Finally, scattering is produced when
the radio wave falls on a surface whose dimensions are less than of the signal’s
wavelength, causing the energy to scatter in all directions. Those mechanism

Figure 1.1: Typical Propagation Scenario

lead to the reception of multiple copies of the transmitted signal at the receiver.
Thus, the received is made up of the superposition of attenuated and delayed
versions of the transmitted signal. A typical propagation scenario is illustrated
in Figure 1.1. Those multiple paths characterize what is known as a multipath
propagation, and cause fluctuations in the received signal’s amplitude, phase
and angle of arrival, producing multipath fading. Thus the combination of the
primary signal with the delayed copies, leads to a constructive or destructive
(fading) interference.

1.2.2 Multipath Fading

There exists two types of fading [B.S00]: large-scale fading and small-scale
fading. Large-scale fading represents the average signal power attenuation or
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pathloss due to motion over large areas. Hills, forests, and buildings situated
between the transmitter and the receiver might initiate this phenomenon. Prac-
tically, this fading is characterized by statistics which provides a way of com-
puting an estimate of the path-loss as a function of the distance. Precisely, the
pathloss is proportional to 1

dv , where d is the distance between the transmitter
and the receiver, and v is the pathloss exponent varying from 2 (free-space) to
6 (urban environment). It is normally described in terms of mean path-loss and
a log-normally distributed variation about the mean. Small-scale fading refers

Small Scale Fading

Time variation of channelTime spreading of signal

Time domain

Doppler-Shift

Frequency
domain

Time-Delay

Fast: Tc < τs

Slow: Tc > τs

Fast: fd > B

Slow: fd < B

F.Sel.: Bc < B

Flat: Bc > B

F.Sel.: τm > τs

Flat: τm < τs

FTFT

Figure 1.2: Fading channel classification

to the dramatic change in signal amplitude and phase that can be experienced
as a result of small changes in the spatial positioning between a receiver and a
transmitter. In order to better understand this phenomenon, we introduce the
parameters which characterize it. In particular, those are related to the time
spreading of the signal and the time variation of the channel. The delay spread
τm is the difference between the arrival of the first and the last signal. The co-
herence bandwidth Bc ≈ 1

τm
is the range of frequencies over which the channel

is considered flat. Now, the Doppler spread is the spectral broadening caused
by the relative motion of the receiver and transmitter, it is equal to the max-
imum Doppler frequency (fd). The coherence time (Tc ≈ 1

fd
) is the time over

which the channel is considered constant. The variations of those parameters
determine the channel classification. In the frequency domain, when Bc > B
where B is the signal bandwidth, the channel undergoes flat or frequency non
selective fading. Its equivalent in the time-delay domain is observed when the
delay spread is much smaller than the signal symbol period τs i.e. τs > τm. A
frequency selective channel is produced when the inverse scenario occurs, either
B > Bc in the frequency domain representation or τm > τs in the time-delay
representation. Fading can also be slow or fast 1. A fast fading scenario oc-
curs when the coherence time of the channel is less than the symbol duration

1Fast fading is also referred to as time-selective fading.
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Tc < τs as seen in the time domain or equivalently when the Doppler spread
is greater than the signal bandwidth fd > B in the frequency domain. Slow
fading is produced when Tc > τs or fd < B. Those mechanisms are summarized
in Figure 1.2.

1.2.3 Channel Model

The received signal r(t) is composed of the different attenuated and delayed
versions of the transmitted signal s(t). It is given in base band as:

r(t) =

L−1∑

l=0

αl(t)s(t− τl(t)) (1.1)

where L is the number of channel paths, τl(t) is the delay of each path with
l = 0, ..., L− 1 and αl(t) is the amplitude or complex gain associated with the
lth path. Thus, the impulse response of the channel as a function of time t and
delay τ is given as:

h(t, τ) =
L−1∑

l=0

αl(t)δ(τ − τl(t)) (1.2)

where δ(τ) is the Dirac delta function. This formulation allows us to distinguish
three kinds of channel relative to the symbol duration τs:

• Static: The channel does not vary with time and is referred to as time-
invariant

• Quasi-static: The channel is constant within a symbol but varies from
one symbol to another

• Time-varying: The channel varies within a symbol as well as from one
symbol to another.

Note that in this thesis, we consider that the number of channel paths L and
the delays τl(t), l = 0, ..., L− 1, are constant and known throughout the trans-
mission of a frame of just a few symbols. In fact, the knowledge of those
parameters is justified by the possibility to perform an initial estimation at
the beginning of the transmission [SRHG12]. In addition, the number of paths
could be considered constant due to the fact that the appearance and disap-
pearance of paths are rare since those phenomena depend on the shadowing
effect which evolves slowly with respect to the symbol duration. Taking the
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previous discussion into account, equation (1.2) could be re-written as:

h(t, τ) =
L−1∑

l=0

αl(t)δ(τ − τl · Ts). (1.3)

Here, τl are the delays normalized by the sampling time Ts. It is obvious that
in order to resolve the transmitted signal at the receiver, the knowledge of
h(t, τ) is essential. This can be achieved assuming a deterministic or a random
channel model.

1.2.3.1 Deterministic Modeling

There exists several ways to this approach. Measurement campaigns aim
at measuring the channel impulse response at different points within the mea-
surement perimeter. This, however, does not necessarily provide the channel
characteristics such as the delays and paths. Nevertheless, it might be useful
for network planning. With the development of the ray tracing technique which
is based on the idea of geometric optics, it became feasible to determine the
trajectory of the signals. This method can provide the propagation conditions
of a user for a given environment. However, it is sensitive to variations in the
channel.

1.2.3.2 Random Modeling

The random model of the channel depends directly on the classification
presented in figure 1.2. The channel frequency response H(t, f) is directly
linked to the impulse response through the Fourier transform (FT) as:

H(t, f) =

∫ +∞

−∞
h(t, τ)e−2jπfτdτ

=

L−1∑

l=0

αl(t)e
−2jπfτlTs (1.4)

Classically, the impulse response is assumed to be wide-sense stationary (WSS)
which indicates that each path αl(t) is a zero-mean complex Gaussian process;
i.e. E{αl(t)} = 0, with uncorrelated scatters (US) to indicate that the paths are
uncorrelated i.e. E{αl1(t)αl

∗
2(t)} = 0. The WSSUS model was first introduced

by Bello in [Bel63]. Define ∆t = t1 − t2 as the time difference between two
realizations of the channel, then the complex amplitudes αl(t) could be modeled
with an autocorrelation function Rαl(∆t). Several models could be used to



CHAPTER 1. INTRODUCTION TO OFDM 37

model the channel, however, we focus here on the Rayleigh distribution since
it is the one we will be using throughout this thesis. Thus, in a non-line-of-
sight (NLOS) transmission, the signal is supposed to arrive from all different
directions at the reception antenna. The channel is seen as the sum of n
independent random realizations. This could be expressed as:

αl(t) = νl(t)e
jψl(t) =

∑

n

νl,ne
jψl,n(t). (1.5)

Applying the central limit theorem, αl(t) is Gaussian complex with gain |αl(t)|=
νl that follows a Rayleigh distribution given as:

p(νl) =
ν2
l

σ2
αl

e
− ν2

l
2σ2
αl , (1.6)

and a uniformly distributed phase ψl(t) between 0 and 2π. Its variance, σ2
αl

=
E{|αl(t)|2}. Finally, the Doppler spectrum is obtained from Rαl(∆t) by the
Fourier Transform, i.e. Sαl(f) = FT(Rαl(∆t)) [Cla68].

1.3 OFDM System Model

1.3.1 Introduction

The basic idea behind OFDM is to transform a frequency selective channel
into N parallel sub-channels2 that undergo flat fading. In fact, one can directly
anticipate that the favorable scenario for transmission is to have slow flat fading
channel conditions. This is guaranteed when fd < B < Bc. However, this is
only possible when fd · τm � 1. Then, the symbol duration is chosen such that
τm < τs < Tc. Thus, in order to achieve high data rates, one would send a
large number of narrowband signals over relatively close frequencies. This is the
exact rational behind multi-carrier transmission, which consequently facilitates
channel equalization at the receiver.

1.3.2 Transmission Chain and mathematical representation

In a classical OFDM system implemented with the DFT, we give the trans-
mission chain in figure 1.3. We will consider frames composed of K OFDM
symbols. An OFDM symbol is the ensemble of the N narrowband signals. We
consider the N × 1 vector of transmitted symbols on the kth OFDM symbol

2The terms sub-channel and sub-carrier are used interchangeably.
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Modulator S/P IFFT P/S add CP D/A

Channel

A/D

+

remove CPS/PFFTP/SDecoder

0, 1, ..., 1

0, 1, ..., 1

nk

Figure 1.3: OFDM transmission chain

xk =
[
xk,0, ..., xk,N−1

]T
with {xk,n} being the power-normalized transmitted

symbol on the sub-carrier n− N
2 . Note that xk is obtained after the processing

of the binary data which are modulated an then passed through a serial to
parallel (S/P) converter. xk is then fed to an N-point inverse DFT (IDFT)
that transforms the data to the time domain which is again converted from
parallel to serial (P/S) . This allows us to insert the CP with length Ng which
is typically chosen to be larger than τm to avoid ISI. The CP is a repetition of
the last part of the symbol at the beginning as depicted in figure 1.4.

Now, the total number of sub-carriers Nt = N +Ng and the total duration
of each OFDM symbol is Tt = NtTs where Ts is the sampling time. The signal
is then passed through a digital to analog (D/A) converter which contains
low-pass filters with bandwidth 1

Ts
. Then it is transmitted through the fading

channel where an additive white Gaussian noise (AWGN) nk of length N × 1
with a covariance matrix defined as E{nknHk } = σ2

nI is added. At the receiver,
the inverse of the operations performed at the transmitter are done. After the
(A/D) converter, the cyclic prefix is removed, the stream is converted (S/P)
and an N-DFT operation is performed to obtain the frequency domain received
signal yk which is given as:

yk = Hk xk + nk. (1.7)

The binary data is then recovered after channel decoding. The model in
(1.7) is valid for any channel variation. However, the N ×N channel matrix is
modeled differently. We distinguish between time-varying channels, static and
quasi-static channels. The time-varying channel destroys the orthogonality
between the sub-carriers and leads to inter-carrier interference (ICI). This is
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time

CP

Figure 1.4: Cyclic Prefix insertion in OFDM

manifested in a full channel matrix as in figure 1.5, where the off-diagonal
components represent the ICI. This phenomenon becomes harsher for very fast
time-varying channels as in figure 1.6. This is usually diagonal in case of a
static channel as in 1.7.
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Figure 1.5: Typical fast time-varying channel with fdTt = 0.1, where the power
of channel is concentrated around its diagonal forming a banded diagonal struc-
ture

Now, Hk is given as:

[Hk]n,m =
1

N

L−1∑

l=0

[
e−j2π(m

N
− 1

2
)τl

N−1∑

q=0

αl,k,qe
j2πm−n

N
q
]
, (1.8)
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Figure 1.6: Very fast time varying channel for fdTt = 0.5, where the power of
the channel is dispersed all over the sub-carrier indexes

where αl,k,q = α(kTt + (q + Ng)Ts) is the lth channel tap sampled at time
kTt + (q +Ng)Ts. In the case of static and quasi-static channels, Hk simplifies
to:

[Hk]n,n =

L−1∑

l=0

[
αl,ke

−j2π( n
N
− 1

2
)τl
]
, (1.9)

where αl,k = α(kTt + (Ng + N
2 )Ts). This formulation is based on the fact that

in static and quasi-static channels, the complex amplitudes are constant from
one realization of the channel to the other (αl,k). This allows us to re-write
(1.7) as:

yk = diag{xk}Fαk + nk, (1.10)

where αk = [α0,k, ..., αL−1,k] and F is the N×L Fourier matrix with its (n, l)th

entry given as [F]n,l = e−j2π( n
N
− 1

2
)τl .

We finally note that the OFDM channel model presented in this section is
in terms of the physical parameters [RHS14a][SK13][SHR+10] (complex gains
and delays). This is in order to maintain a continuity with the previous section,
so as to clearly link the model to the physical phenomenon. In the rest of this
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Figure 1.7: Static channel, i.e. fdTt = 0, where the power of channel is concen-
trated on its diagonal entries

thesis, however, we use a discrete model for the channel. This is simply done
by replacing the delays τl by l with l = 0, ..., L− 1.

1.4 Channel Estimation in OFDM

From the above discussion, it became clear that in order to have reliable
data detection at the OFDM receiver, the channel should be known, or more re-
alistically, estimated. It is well-known, that for a transmission over a Gaussian
channel, at the expense of a 3 dB in the signal-to-noise ratio (SNR), channel
estimation can be avoided at the receiver by employing the differential modula-
tion [Pro00]. In this thesis, however, we are interested in coherent modulations
and channel estimation algorithms that would resolve the channel at the re-
ceiver. Since both the transmitted symbols and the channel are unknown at the
receiver, some symbols are usually sacrificed for the insertion of known data.
Those are known as pilots. Pilots are then used at the receiver to estimate
the channel and then recover the data. The insertion of pilots in OFDM could
be either done by adding a preamble at the beginning of the OFDM frame
containing only pilots or by the periodic insertion of pilots within the frame.
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The first is known as the block type channel estimation and the second as the
comb type channel estimation.
Channel estimation is then carried out using the maximum likelihood estima-
tor (MLE), the least squares (LS), the minimum mean square error (MMSE)
estimator or the maximum a posteriori (MAP) estimator. Those estimators
are based on two different views of the channel impulse response (CIR). While
the MLE and LS view the CIR as a deterministic but unknown variable, the
MMSE and MAP deal with it as a random variable. A detailed explanation
of those estimators is found in [Kay93]. Also, several works in literature dealt
with the problem of channel estimation in OFDM for slow time-varying chan-
nels [SSR13][SSR15][RHS14b][SRS14] [GHRB12] and fast time-varying channel
[HR10][SRHG12][SRH+11].

Classical approaches to channel estimation have two major drawbacks.
First, the insertion of pilots decreases the spectral efficiency of the OFDM sys-
tem by allocating bandwidth to known symbols. Second, they rely on systems
with known parameters such as the channel noise variance or system matrices.
In case those are not completely known or deviate from their nominal value,
those estimators might suffer.

1.5 Conclusion

In this chapter, we have presented the basic OFDM system model for a
static, quasi-static and time-varying channels. This system considers multipath
fading, which is a typical scenario in an urban medium. The fast time-varying
system will be considered in chapter 2 where we address channel estimation in
OFDM with narrowband interference (NBI) in a high mobility scenario. The
quasi-static channel will be considered in chapter 3 where we address the prob-
lem of channel estimation and data detection for data-nulling superimposed
pilots (SP). We then briefly discussed conventional channel estimation algo-
rithms in OFDM systems. We will see in chapter 2 and 3 that those algorithms
fail in the presence of interference, NBI in chapter 2 and SP in chapter 3.
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2.1 Introduction and Motivation

In the previous chapter, we presented the basic OFDM scheme and the
conventional estimation algorithms that allows us to obtain the channel state
information (CSI) at the receiver. A main premise for those algorithms is that
pilot sub-carriers are interference free so that the channel estimate is reliable.
When this is not the case, their performance is expected to suffer.

A report published by the Federal Communications Commission (FCC)
[FCC] showed a significant amount of unused radio resources in frequency,
time and space. This is due to the current regulatory regime which dedicates
frequency bands to licensed users and restricts its use by other users even if it
is vacant.

The idea behind cognitive radio (CR) first introduced by Mitola [Mit93]
is to use those resources, originally reserved to licensed users, by secondary
users while keeping the impact of interference on licensed users at its minimal
level. To attain this goal, spectrum sensing capabilities are implemented in CR
networks [ALLP12] to assure that radio is free to use. However, interference
may still arise. Thus technologies using OFDM as their access scheme and
which are likely to be present in a cognitive network, risk interference with
other technologies accessing the same band. This interference is known as NBI.
The particularity of NBI is that it strikes a small number of sub-carriers in the
OFDM symbol with a high power, rendering conventional channel estimation
schemes inefficient.

This implies that new channel estimation algorithms should be designed
and which are able to cope with NBI. Major difficulties associated with channel
estimation in the presence of NBI are the position and the need of the prior
knowledge of NBI statistics. Those are practically difficult to obtain.

NBI mitigation methods can be separated into two categories [ZFC04]: dig-
ital filtering techniques and interference cancellation techniques. In [Red02], a
receiver window which belongs to the first category was adopted in order to
reduce noise spreading in multi-carrier systems by lowering the side lobes of
the frequency thus requiring that the interference-free CP part of the OFDM
symbol is large enough which reduces the spectral efficiency. In [BZ08], a
prediction error filter (PEF) which operates by exploiting the flatness of the
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OFDM spectrum, was introduced in an attempt to limit spectral leakage of the
interference power. However, due to the under utilization of the OFDM sub-
carriers (zero frequency, guard bands, flexible sub-carrier allocations schemes),
the PEF might suffer from performance degradation.

The interference cancellation techniques, on the other hand, can be also
separated into two main approaches. The first is based on Taylor expanded
transfer function which maps the disturbance from the interference frequency
signal onto OFDM sub-carriers and subtract them from the corresponding re-
ceived OFDM symbol as in [SNB+04]. The other approach is that which adopts
the linear minimum mean square error (LMMSE) criteria. It is important to
point out that those methods require the knowledge of the position of NBI
within the signal spectrum.

In another approach, the frequency excision method has been proposed in
an attempt to avoid the usage of affected frequency bins of OFDM symbols.
This approach requires high SNR values and will fail otherwise [VPN11].

In [BZ09], the authors of [BZ08] have proposed the PEF as an erasure
insertion mechanism that localizes the erasure to the tones surrounding the
interference without affecting other tones. In their two articles, the authors
assume a single contaminated tone. In [DV08], a method to predict the error
term between the sub-carriers is proposed by assuming that the first sub-carrier
is NBI-free. In [HYK+08], a method for detecting and removing jammed pilot
tones is exposed yet it is limited to the elimination of only one sub-carrier.
The constrained minimum mean output energy (CMMOE) which also requires
prior knowledge about the NBI statistics was proposed in [DGPV07]. Second
Order Statistics (SOS) of the received data are assumed known at the receiver or
estimated from a finite number of data symbols. In [WN05] and [GS02], authors
considered spreading the OFDM symbols over sub-carriers using orthogonal
codes. However, these methods require modifications to the transmitted OFDM
signal which are not supported by current OFDM standards [Cou07].

Channel estimation algorithms have also been proposed in this context. In
[GAD11], the authors exploit the inherent sparsity of the NBI signals in the fre-
quency domain and use the compressive sensing (CS) theory to estimate them.
In [PL12], the author propose an iterative receiver and use the Expectation-
Conditional Maximization (ECM) algorithm to jointly estimate the channel
information and detect the data. Recently, in [ZZY13], a robust least square
estimation algorithm was presented which requires that the number of pilots
be greater than twice the channel order. In [MM09], EM-based joint channel
taps and noise power estimation was performed for static channels.

Note that all the aforementioned proposals deal with slow time-varying



46 2.2. COEXISTENCE IN THE FREQUENCY SPECTRUM

channels and no work exists in literature that addresses channel estimation in
fast time-varying channels.

In a previous work [SRHG12], an EM approach was developed to estimate
fast time-varying OFDM channels in the presence of carrier frequency offset
(CFO). The channel was the unwanted parameter and the CFO the parame-
ter to be estimated. This allowed the formulation of the channel estimation
with the Kalman smoothing whereas the CFO was obtained through numerical
optimization.

In this chapter we propose for the first time a novel estimation framework
for fast time-varying OFDM systems contaminated by NBI. This is motivated
by the recent proposal [B+14] dealing with CR in high speed railway for which
the problem has yet to be addressed. To this end, the approach reported in
[SRHG12] is applied to the discussed topic. The original EM formulation is
modified such that the noise variances are now the parameters to be estimated
and the channel the unwanted parameter. Moreover, in contrast to [SRHG12],
this enables the derivation of an analytical formulation for the noise variances
estimation We also perform comparisons with existing algorithms that either
neglect mobility or NBI. The results confirm that the proposed estimator is well
suited for high mobility scenarios. We also demonstrate that this robustness to
NBI comes at the cost of a relatively small additional complexity. Furthermore,
the robustness to model mismatches is addressed.

Finally, we note that the novel estimation framework proposed for fast
time-varying channels with NBI in OFDM, presented in this chapter, has been
published in IEEE Wireless Communications Letters [ZS15].

The chapter is organized as follows. In section 2.2, we provide examples of
coexisting scenarios in the frequency spectrum. Then, in section 2.3, we review
the EM algorithm and its extension to the EM-MAP algorithm. In section
2.4, we detail the system model of our approach and devote section 2.5 for the
proposed estimator. We then provide the simulation results and a complexity
comparison in sections 2.6 and 2.7 respectively. Section 2.8 concludes this
chapter.

2.2 Coexistence in the Frequency Spectrum

As already stated, the spectrum is a scarce resource, despite that, its use is
not optimized. Thus, some coexistence scenarios are present in the spectrum.
We will briefly expose two coexistence scenarios.
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2.2.1 The IEEE 802.11g WLAN and Bluetooth

The unlicensed 2.4 GHz industrial, scientific and medical (ISM) band is
attractive for wireless applications. It is both free to use and has good propa-
gation characteristics. It is thus easy to speculate that different wireless tech-
nologies will coexist in this band. The IEEE 802.11g standard which is an
OFDM-based wireless local area network (WLAN) operates in the 2.4 GHz
band along with the Bluetooth standard. Bluetooth (1 MHz) is based on a
frequency hoping technology and is viewed by the WLAN (22MHz) as NBI
[MM08].

2.2.2 The IEEE 802.11g WRAN in TV White Space

33-100 Km

Figure 2.1: WRAN deployment scenario

The IEEE 802.22 wireless regional area network (WRAN) depicted in figure
2.1 is the first wireless standard with cognitive radios. WRAN is a standard for
fixed access services in the TV white space. It aims to provide broadband access
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to rural areas where the population density does not exceed 60 person/Km2.
The typical coverage area of a WRAN network is 33 Km, while its maximum
coverage area could reach up to 100 Km. The goal is thus to develop a standard
for a cognitive radio-based PHY/MAC/air interface for use by license-exempt
devices on a non-interfering basis in spectrum that is allocated to the TV
Broadcast Service. In this band, a CR may use up to 3 consecutive TV channels
(18 MHz), whereas police dispatch devices and wireless microphones require
approximately 200 KHz of bandwidth and are subsequently considered as NBI
primary users in these bands [ASM12].

2.3 Expectation Maximization Algorithm

2.3.1 Introduction

In this section, we give a brief description of the expectation maximization
algorithm (EM) and its extension to the EM-MAP algorithm.

The maximum-likelihood (ML) estimate of a parameter Θ is the value
that maximizes the likelihood function of Θ for a set of n observed data
X = [x1, ..., xn]. The likelihood function of Θ given the data X is given as:

p(X ,Θ) =
N∏

i=1

p(xi,Θ) (2.1)

Then the ML estimate is obtained as:

ΘML = arg max
Θ

p(X ; Θ) (2.2)

Practically, the maximization is done for log p(X ; Θ) since it is easier to deal
with [Kay93]. However, when the observed data X has missing elements or
is incomplete, it is no more feasible to obtain the ML estimate and one has
to resort to more elaborate techniques. One such technique is the expectation
maximization (EM) algorithm. The EM algorithm was first synthesized in the
seminal paper [APD77]. Its name corresponds to two iterative steps that make
up the algorithm. The expectation (E-step) and the maximization (M-step).
It is a broadly applicable approach to the iterative computation ML estimates
[MK97]. EM is well-suited for problems with missing data (the data is actually
missing) or when the likelihood function is analytically intractable but can
be simplified by some assumptions on the missing data. Intuitively, the EM
algorithms fills in initial values for the missing data which are the updated by
their predicted values using their initial parameter estimation [Bil98].
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2.3.2 Mathematical Formulation of EM

The EM algorithm defines two sets of data, the complete and the incomplete
data. The incomplete data is the missing observed data X and the complete
data is defined as Z = (X ,Y) where Y is the unobserved data. Now, the
likelihood function of the complete data p(Z,Θ) is a random variable due to the
missing information Y. Thus, we calculate the expectation of the log likelihood
of the complete data with respect to Y given the observations X and the current
parameter estimate. This could be formulated as:

Q(Θ,Θi−1) = E[log p(Z; Θ)|X ,Θi−1] (2.3)

Here, Q is known as the auxiliary function and its formulation makes up
the E-step. It thus manufactures data for the complete data problem using the
incomplete observed data and the current estimate. It is important to note
that the second argument in the Q function is fixed and known at each E-step,
while the first argument is the one that conditions the likelihood function.

The M-step simply maximizes the function (Q) calculated in the E-step and
is formulated as:

Θi = arg max
Θ

Q(Θ,Θi−1) (2.4)

Then the E-step and M-step are repeated iteratively until the value of Θi is
very close to the value of Θi+1 which is typically measured by their difference
compared to a threshold. When the difference is less that this threshold, the
algorithm converges. A schematic representation of this process is given in
figure 2.2.

2.3.3 Extension to the EM-MAP Algorithm

In certain problems where the likelihood function might have singularities,
the EM algorithm might fail. In this case, a simple solution would be to
integrate (or impose) some prior information on Θ. This is known as the
EM MAP algorithm. The rational behind the EM-MAP is the same as the
EM algorithms with slight modifications. First, one has to specify a prior
probability density function (pdf) as p(Θ). In order to follow the same logic as
in the previous section, we define the MAP estimate as:

ΘMAP = arg max
Θ
{ log p(X ; Θ) + log p(Θ)} (2.5)
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Set iter i=0
Initialize Θ0

Initialize threshold µ

E-step: Com-
pute Q(Θ,Θi−1)

M-step: Compute Θ∗

by maximizing the
function of E-step

Set Θi+1 = Θ∗

Q(Θi+1,Θi)−
Q(Θi,Θi−1) ≤

µ

ΘEM = Θi+1

i = i + 1

Iterate

Specify the complete and incomplete data sets

Find excepted value of the complete data log likelihood
with respect to the unknown data and the observed one

Maximize the expectation computed in the E-step

Obtain the parameter to be used in the next E-step

Check for convergence against a termination threshold

Upon convergence, obtain the ML estimate of the parameter

Figure 2.2: EM Algorithm [KML04]

The E-step is similarly performed as in (2.3) with the following modification:

QMAP(Θ,Θi−1) = QMAP(Θ,Θi−1) + log p(Θ) (2.6)

Now, the M-step is performed as (2.4) but over the modified auxiliary function
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as:

Θi = arg max
Θ

QMAP(Θ,Θi−1) (2.7)

2.4 OFDM System Model with NBI

We first introduce in this section the system design to model time-varying
OFDM systems [SRHG12, SRH+11, TCLB07, HR10, HSLR10]. This is identi-
cal to the one presented in the previous chapter, except for the additional effect
of NBI which has to be taken into account in the system.

For a time-varying OFDM system with N sub-carriers and a cyclic prefix
length Ng, each OFDM symbol has a total duration Tt = NtTs, with Ts being
the sampling time and Nt = N + Ng. Frames are composed of K OFDM

symbols. The transmitted symbols xk =
[
xk,0, ..., xk,N−1

]T
on the kth OFDM

symbol is modulated by an N -point inverse fast FT (IFFT). Upon reception,
the cyclic prefix is removed and FFT is applied to obtain the frequency domain
OFDM received symbol yk which is given as:

yk = Hk xk + wk, (2.8)

where wk is a white complex Gaussian noise with zero mean and unknown

covariance matrix defined as E[wkw
H
k ] = diag(σ2) with σ2 =

[
σ2

0, ..., σ
2
N−1

]T
where σ2

n = σ2
TN + σ2

I,n. This representation is interpreted as the contribution

of the thermal noise (σ2
TN ) and an unknown interference (σ2

I,n). In fact, with
NBI, the noise is not white. However, since the number of affected sub-carriers
is relatively small with respect to the total number of sub-carriers, then for the
channel estimation task, it is still acceptable to consider a diagonal covariance
matrix which is nearly diagonal [GG03]. In addition, taking this correlation
into account might benefit the system by increasing its robustness towards
NBI. Thus, as in [MM09], neglecting it could be considered as the worst-case
scenario. We show later that although the model itself neglects the correlation
between NBI samples, however, the proposed algorithm is able to cope with
the actual NBI scenario. Finally, Hk is the N ×N full channel matrix due to
Doppler’s shift. The elements of Hk are given as in (1.8).

Channel taps are assumed to be wide-sense stationary (WSS), narrow-band
zero-mean complex Gaussian processes with a variance σ2

αl
. The conventional

Jakes’ power spectrum of maximum Doppler frequency fd is assumed. The
average energy of the channel is normalized to one, i.e.,

∑L−1
l=0 σ

2
αl

= 1.
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2.4.1 BEM Channel Model

In high mobility scenarios, the number of parameters to be estimated be-
comes large due to the rapid variation of the channel. The basis expansion
model (BEM) is well known to be an attractive method which allows the ap-
proximation of the channel taps as the weighted sum of only a few basis function
[TCLB07] [SRH+11] as follows:

αl,k = B · cl,k + ξl,k, (2.9)

where B = [b0, ...,bNc−1] is a N × Nc matrix that collects the Nc basis func-

tions bd. Vector cl,k =
[
cl,k,0, ..., cl,k,Nc−1

]T
represents the Nc BEM coefficients

for the lth channel tap of the kth OFDM symbol, and ξl,k represents the cor-
responding BEM modeling error, which can be neglected in case a sufficient
number of BEM coefficients is chosen. The optimal BEM coefficients are given
by:

cl,k =
(
BHB

)−1
BHαl,k. (2.10)

Several BEM designs are present in literature, we use the Polynomial BEM
(P-BEM). From now on, we can depict the OFDM system model in terms of
the BEM and estimate the BEM coefficients rather than the channel matrix
entries. Substituting (2.9) in (2.8) yields:

yk = X k · ck + wk, (2.11)

where the LNc × 1 vector ck and the N × LNc matrix X k are given by:

ck =
[
cT0,k, ..., c

T
L−1,k

]T

X k = [Z0,k, ...,ZL−1,k] (2.12)

Zl,k = [M0 diag{xk} fl, ..., MNc−1 diag{xk} fl] , (2.13)

where vector fl is the lth column of the N ×L Fourier matrix F and Md is
a N ×N matrix given by:

[F]n,l = e−j2π( n
N
− 1

2
)l, (2.14)

[Md]n,m =
1

N

N−1∑

q=0

[B]q,d e
j2πm−n

N
q. (2.15)

The BEM model can be used to model the low mobility scenario by simply
reducing the number of BEM coefficients to one.
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2.4.2 The AR Model for ck

From (2.10), we get that the optimal BEM coefficients cl,k are correlated
complex Gaussian variables with zero-means and correlation matrix given by:

R
(p)
cl =

(
BHB

)−1
BHR

(p)
αl B

(
BHB

)−1
. (2.16)

This allows us to represent their dynamics by an auto-regressive (AR) process
of order one denoted as c̃l,k and represented as follows:

c̃l,k = A · c̃l,k−1 + ul,k, (2.17)

where A is an Nc×Nc matrix and ul,k is a Nc×1 complex Gaussian vector
with covariance matrix Ul. The parameters of the AR (A and Ul) can be
computed by the set of the Yule-Walker equations defined as:

A = R
(1)
cl

(
R

(0)
cl

)−1
, Ul = R

(0)
cl −AR

(−1)
cl , (2.18)

yielding the following AR model for c̃

c̃k = A · c̃k−1 + uk,

where A = blkdiag {A, ...,A} is a LNc×LNc matrix and uk =
[
uT0,k, ...,u

T
L−1,k

]T

is a LNc × 1 zero-mean complex Gaussian vector with covariance matrix U =
blkdiag {U0, ...,UL−1}.

2.5 Proposed Channel Estimator

Noise var.
est. of

[WHD+07]

TUE-
MUE

BR
σ2 Est.
Eq.(2.24)

X

y

σ̂2
n

(0)

ĉ
(i)
k|K

P
(i)
k|K

ĉ
(i)
k|k

P
(i)
k|k

σ̂2
n

(i+1)

Init. σ2

Channel Estimation
Noise Var. Est.

Figure 2.3: Proposed Estimator
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2.5.1 EM algorithm

First, we consider a frame of K OFDM received symbols. The objective is

to jointly estimate the noise variance vector σ2 =
[
σ2

0, ..., σ
2
N−1

]T
and the BEM

coefficient vector c of the channel taps. For this, we exploit the functionality of
the MAP EM algorithm detailed in section 2.2. First, let y = [y0

T , ...,yK−1
T ]T

and c = [c0
T , ..., cK−1

T ]T . We suppose that the transmitted symbols xk are
known. This configuration is called data aided (DA) and corresponds to the
acquisition task. We consider the received data y as incomplete data, and

define the complete data as z
def
=
[
yT , cT

]T
. Since the state is described by first

order Markov model, the likelihood function of the complete data is given by:

p(z;σ2) = p(c0)
K−1∏

k=1

p(ck|ck−1)
K−1∏

k=0

p(yk|ck;σ2).

with C = diag(σ2), the log-likelihood of the complete data could be expressed
as:

ln
(
p(z;σ2)

)
= −K ln

N−1∑

n=0

σ2
n −

K−1∑

k=0

(yk −X kck)
H C−1 (yk −X kck) (2.19)

E-step : given the measurements y and the latest estimate σ̂2
(i)

from the
previous iteration, we calculate:

Q(σ2, σ̂2
(i)

)
def
= E

c|y,σ̂2
(i)

[
ln p(z;σ2)

]
(2.20)

In order to apply the MAP EM algorithm, we need to utilize an a-priori pdf for
the estimated value, σ2, (p(σ2)). We assume that the entries of σ2 are statis-
tically independent distributed according to an inverse-gamma pdf as assumed
in [MM09]. It is given by:

p(σ2) =

N−1∏

n=0

λ

σ4
n

exp
{
− λ

σ2
n

}
(2.21)

where λ is a design parameter which is to be set by simulation in section 2.6.

M-step : this step finds σ̂2
(i+1)

, the value of σ2 which maximizesQ(σ2, σ̂2
(i)

)+
ln p(σ2) over all possible values of σ2:

σ̂2
(i+1)

= argmaxσ2

(
Q(σ2, σ̂2

(i)
) + lnp(σ2)

)
(2.22)
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The iterations of the EM algorithm is terminated when the estimated value
of σ2 converges towards a stable value. The Q function can be expressed as
follows [SRHG12]:

Q(σ2, σ̂2
(i)

)
def
= −K ln

N−1∑

n=0

σ2
n

−
K−1∑

k=0

Tr
{
C−1(X kP

(i)
k|KXH

k + (yk −X kĉ
(i)
k|K)(yk −X kĉ

(i)
k|K)H

}
, (2.23)

This makes it possible to obtain ĉ
(i)
k|K and P

(i)
k|K for all k = 0, . . . ,K − 1 from

the fixed interval Kalman smoother which we detail later. Thus, at each EM
iteration, those terms are estimated by using the estimate of σ2 at the previous
iteration as given below and detailed in Appendix A.2.

σ̂2
n

(i+1)
=

1

K + 2

K−1∑

k=0

[Mk]n,n +
λ

K + 2
, (2.24)

with
Mk = X kP

(i)
k/KXH

k + (yk −X kĉ
(i)
k|K)(yk −X kĉ

(i)
k|K)H . (2.25)

2.5.2 Kalman Smoother

The Kalman filter provides the LMMSE for the system state and the MMSE
in the case the signal and the noise are jointly Gaussian [Kay93]. From sections
2.4.1 and 2.4.2, we have the set of state space equations as follows:

c̃k = A · c̃k−1 + uk,

yk = X k · ck + wk.

The Kalman filter will utilize prior observations to provide the optimal esti-
mate via the set of time update equations (TUE) and measurement update
equations (MUE). The TUE project forward in time the current state and er-
ror covariance estimate to obtain priori estimates which are input to the MUE,
responsible for the feedback and to provide an improved a posteriori estimate.
The iterative equations responsible for this process are given by:
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Forward recursion:

TUE:

ĉ
(i)
k|k−1 = Aĉ

(i)
k−1|k−1, (2.26)

P
(i)
k|k−1 = AP

(i)
k−1|k−1AH + U.

MUE:

Kk = P
(i)
k|k−1XH

k

(
X kP

(i)
k|k−1XH

k + diag(σ̂2)
)−1

,

ĉ
(i)
k|k = ĉ

(i)
k|k−1 + Kk

(
yk −X kĉ

(i)
k|k−1

)
, (2.27)

P
(i)
k|k = P

(i)
k|k−1 −KkX kP

(i)
k|k−1.

The integration of backward recursions to enhance the Kalman filter estimate
by using all received OFDM symbols and imposing a smoothing effect, results
in the Kalman smoother with its equations given below. The schema of the
proposed estimator is given in 2.3.

Backward recursion:

Jk = P
(i)
k−1|k−1AHP

(i)−1

k|k−1,

ĉ
(i)
k−1|K = ĉ

(i)
k−1|k−1 + Jk

(
ĉ

(i)
k|K − ĉ

(i)
k|k−1

)
, (2.28)

P
(i)
k−1|K = P

(i)
k−1|k−1 + Jk

(
P

(i)
k|K −P

(i)
k|k−1

)
JHk .

2.6 Simulation results

The WRAN has been standardized to operate in the TV bands from 54 to
862 MHz. We use system parameters complying with the WRAN standard and
simulate the WRAN channel (Profile A) [H+08]. We set N = 2084, Ng = 368
and the number of OFDM sub-carriers struck by NBI Ni = 70. The discrete-
time channel is modeled with a Rayleigh channel with an exponentially decaying
power such that: σ2

αl
= η · exp(−(l + 1)) where η is set so that the power is

normalized to unity. In this band, licensed wireless microphones act as NBI to
WRAN which are modeled as a Gaussian narrowband process by generating
a Gaussian white noise signal followed by a raised cosine filter as in [EF10].
The channel autocorrelation function is assumed to be given by the widely
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accepted Jakes’ model. Channel estimation is performed by exploiting K = 2
training symbols located in the frame preamble carrying pilot symbols on all

sub-carrier indexes. The SNR is defined as 10 log σ2
s

σ2
TN

where σ2
s is the power

of the received signal, and the signal-to-interference ratio (SIR) is defined as

10 log σ2
s

σ2
I,n

. We perform simulations for values of fdTt equal 0.001, 0.01, and

0.05 corresponding to a speed of 7, 70, and 300 Km/h respectively. The number
of BEM coefficients Nc used is 1, 2, and 3 corresponding to fdTt of 0.001, 0.01,
and 0.05 respectively. As indicated in [HR09], the value of Nc sufficient to
model the channel taps in the case of high mobility (fdTt = 0.05) is equal to
three and a value of one models the low mobility case. The average mean square
error (MSE) defined in (2.29) of the estimate of α denoted as α̂ is plotted and
the expectation is estimated via 500 Monte Carlo simulations. The precision
of the proposed channel estimation algorithm is measured against the Bayesian
Cramer–Rao bound (BCRB) with perfect knowledge of σ2 as given in [HR09].
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MSE− α def
=

1

KNL
E
[
(α̂−α)H (α̂−α)

]
. (2.29)
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2.6.1 Algorithm Initialization

To initialize our algorithm, we estimate the scalar σ2
TN by neglecting NBI

as in [WHD+07]. We then fix an appropriate value for the variable λ. Figure
2.4 shows the values of λ versus the MSE for the three fdTt values for SIR = 0
dB. It could be seen that the appropriate value of λ which is a good trade-off
for the ranges of SNR and fdTt values is 0.1. Note that this is the same value
as in [MM09] for the static case.
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Figure 2.5: MSE performance for K = 2, SIR = 0 dB, fdTt = 0.05, Nc = 3

2.6.2 Comparison of Proposed Algorithm with Literature

Since there does not exist an algorithm in literature dealing with channel
estimation in high mobility with NBI, we will compare our results to two ex-
iting channel estimators. The first one is a modified version of [HR10] which
addresses mobility but ignores NBI. Here, a noise variance estimator which es-
timates a scalar σ2

n has been added [WHD+07] and the filtering was substituted
with smoothing. The second one is the algorithm proposed in [MM09] which
deals with NBI in static channels. We then plot in figure 2.5, the MSE of the
proposed channel estimator (CE) and the modified CE of [HR10]. As a lower
bound, we plot the BCRB and the Kalman smoother with perfect knowledge of
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σ2, in a high mobility scenario with fdTt = 0.05, Nc = 3 and SIR = 0 dB. The
plot shows that the Kalman smoother with perfect σ2 attains the BCRB for all
SNR values and that our algorithm converges towards the BCRB at interme-
diate SNR values. However, the performance of the modified version of [HR10]
degrades with SNR. The algorithm converges after 6 EM iterations. The per-
formance of the proposed CE at low SNR values could be explained by the fact
that the estimation of the noise variance at those values could be inaccurate
so that neglecting NBI, which is done in [HR10], might be preferable. Note
that an identical behavior could be replicated for slow time-varying channels in
[MM09]. We then plot in figure 2.6 the MSE performance of the proposed CE
and the modified CE of [HR10] versus the SIR. It could be seen that in highly
interfered scenarios, the proposed estimator clearly outperforms the estimator
of [HR10]. However, as the interference decreases, the MSE of the two estima-
tors converges. To illustrate the need for an algorithm capable of coping with
the high mobility scenario, we plot in figure 2.7 the MSE performance of our
CE and the CE of [MM09] as a function of fdTt for SNR = 20 dB and SIR = 0
dB. The plot shows that as the speed increases, the CE of [MM09] diverges
while our proposed CE maintains a relatively stable performance. Finally, we
carry out a bit error rate (BER) study where our proposed CE and the CE of
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the modified version of [HR10] are tested with the data detector of [FRL08],
which is designed to handle mobility. In the first iteration, only pilots are used
for channel estimation. For subsequent iterations, the soft data estimates from
the turbo equalizer and decoder are used as auxiliary pilots. We define Lf , the
number of sub-carriers separating two consecutive pilot symbols. Figure 2.10
shows that after only two iterations, for a BER target of 10−4, our algorithm
is less than 1 dB away from the CSI. However, the modified version of [HR10]
diverges away from the CSI with a loss of more than 3 dB.

2.6.3 Robustness of Proposed Algorithm to Model Mismatch

In an attempt to verify the robustness of the algorithm against model mis-
matches, we study its performance for a deviation in fdTt or in the channel
model when the assumed Jakes model is not valid. We plot in figure 2.8 the
MSE performance of the algorithm as a function of fdTt for a perfect knowledge
of fdTt, for an overestimation and an underestimation of 50% with SNR = 20
dB and SIR = 0 dB. The plot shows that the algorithm is robust to an over-
estimation whereas a harsh underestimation (50%) will lead to performance
degradation. In figure 2.9, we plot the MSE of the proposed CE when the
channel has a flat Doppler spectrum, the CE of [HR10], and the BCRB. The
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plot shows that even with a deviation from the assumed model, the performance
of the algorithm is not affected.

2.7 Complexity Comparison with Literature

In order to highlight at what cost the proposed algorithm outperforms the
algorithm of [HR10], we calculate the additional complexity required for the
proposed algorithm. First, we note that a complex multiplication (CM) is
equivalent to 2 real additions (RA) and 4 real multiplications (RM), whereas
a complex addition (CA) corresponds to 2 RA. Figure 2.3 in the manuscript
shows the three building blocks of the algorithm; the initialization of σ2, channel
estimation and the noise variance estimation. The first two steps (initialization
of σ2 and channel estimation) do not add any complexity to the algorithm
since they are equivalently done in [HR10]. The additional complexity is thus
due to the noise variance estimation step. For the noise variance estimation,
the proposed algorithm needs NLN2

c + NLNc − N complex additions (CA),
2NLNc + NLN2

c complex multiplications (CM), 2N + 2 real multiplications
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(RM) and NK + N + 1 real additions (RA). Since a CM amounts to 4 RM
and 2 RA and a CA amounts to 2 RA, then the total additional complexity
is 4NLN2

c + 6NLNc + NK − N + 1 RA and 4NLN2
c + 8NLNc + 2N + 2

RM. It is noteworthy that the order of magnitude for the calculation of the
noise variance is N , which remains small compared to that for calculating the
Kalman smoother which is N3. Thus, this additional complexity has a small
effect on the global complexity of the proposed algorithm compared to [HR10].
This is detailed in Appendix A.3.

2.8 Conclusion

In this chapter, a channel estimator for fast time-varying OFDM systems
contaminated by NBI has been proposed and analyzed. The proposed estima-
tor is based on the MAP-EM algorithm where we considered the channel as the
unwanted parameter and the noise variances as the parameters to be estimated.
This formulation allowed us to elegantly integrate the Kalman smoother within
the EM algorithm. In addition, a closed-form expression for the noise variance
has been obtained. For performance evaluation, we simulated a realistic sce-
nario based on the IEEE 802.22 WRAN standard, which is the first to be
standardized with cognitive capabilities. We first showed that for a relatively
small additional complexity, the proposed estimator outperforms algorithms
designed for fast time-varying OFDM systems and which neglect NBI. In fact,
this limited complexity addition is due to the fact that the complexity of the
Kalman smoother masks the overall complexity of the algorithm. We then
demonstrated that, in contrary to algorithms which have not been designed to
handle mobility with NBI, the proposed algorithm is robust to mobility and
attains a relatively stable performance up to a speed of 300 Km/h. We also
observed that the performance of the algorithm becomes even more interesting,
compared to algorithms neglecting NBI, as the interference level in the system
increases. Finally, in order to entirely analyze the efficiency of the algorithm,
we studied its performance under model mismatches. The results revealed that
deviation from the assumed Jake’s model does not effect the performance of
the algorithm. As for a mismatch in the Doppler frequency, the algorithm is
shown to be robust to an overestimation of 50% whereas an equivalent under-
estimation leads to a performance degradation.
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3.1 Introduction

In the previous chapters, we saw that the acquisition of the CIR requires the
insertion of pilot sub-carriers within the OFDM symbol. The ever increasing
demand on high data rates implies that the spectrum should be optimized.
This led to the birth of superimposed SP.

The classical SP (CSP) scheme [CT05, ANS10, LRF06, OLLM04, NRK11]
trades power for bandwidth. In other words, pilots are arithmetically added
to data symbols at a fraction of the total transmit power in the time or fre-
quency domain. However, CSP suffers from a degraded channel estimation
performance.

To resolve this problem, a new data-nulling SP (DNSP) scheme [DHLG14],
inspired by [GMAHS05], has been recently proposed for OFDM systems. In
DNSP, the main idea is to precode the data vector before nulling it for pilot
insertion. This assures that pilots are interference free and thus a good chan-
nel estimation quality is guaranteed. However, the nulling operation leads to
interference on data detection. This will eventually necessitate an interference
cancellation operation at the receiver. It is interesting to note that the inter-
ference that arises in DNSP has a particular structure which we will discuss
later.

To deal with this interference, the authors in [DHLG14] proposed a simple
iterative reconstruction scheme to improve data detection at the receiver. How-
ever, this scheme has limited interference cancellation abilities since it does not
profit from the information provided by the decoder to the equalizer even if it
exists. This could be understood since it has not been designed in the turbo
framework.

Classically, the most efficient interference cancelers are associated with
turbo reception. However, their complexity is high and thus their implementa-
tion is prohibitive.

Therefore, the question that arises now is how to take advantage of the
aforementioned interference structure to design a less complex turbo interfer-
ence canceler (IC) (also called soft IC). In other words, is it possible to exploit
the unitary property of the precoding matrix, present in the interference, to
reduce the complexity of the soft IC.

Our aim is thus to propose a suitable receiver for DNSP with an enhanced
performance and an acceptable complexity. To do this, we start from the well
known highly complex MMSE soft IC. Then, we show that by combining a
given approximated version of this MMSE soft IC with the specific structure of
the interference, and by using the unitary property of the precoding matrix, the
matrix inversion initially needed reduces to the inversion of a diagonal matrix
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which is computationally inexpensive. Then, we perform a comparative study
for the proposed receiver for DNSP with the CSP with an iterative receiver
of the literature [LRF06]. The comparison is done in terms of MSE and BER
performance. Finally, for the sake of completeness, a complexity study is per-
formed.

This work has been published in part in [ZSZCD15a] [ZSZCD15b] and the
complete analysis has been submitted for review to IET communications.

The chapter is organized as follows. In section 3.2, the system design is
given. This is followed by the DNSP transmission model in section 3.3. Then
section 3.4 details the proposed iterative receiver for DNSP. We then give the
simulation results and discussions in section 3.5. Before concluding the chapter
in section 3.7, a detailed complexity calculation is provided.

3.2 System Design

3.2.1 Transmitter

The bit-interleaved coded modulation (BICM) scheme, which is a suitable
coding scheme for fading channels, is used at the transmitter. It is based on
a convolutional code of rate R which is supplied by independent equiprobable
binary data. The coded bits are interleaved and mapped onto complex symbols.
The transmission chain for the DNSP and CSP scheme is shown in figure 3.1a
and 3.1b respectively. A schematic representation of an OFDM symbol which
illustrates the pilot and data allocation for the two superimposed pilots schemes
(DNSP and CSP) is shown in figure 3.2.
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Figure 3.2: Schematic representation of the DNSP and CSP schemes

3.2.2 OFDM System Model

An OFDM system with N sub-carriers and a CP of length Ng is considered.
Frames of K OFDM symbols are formed. The total duration of each OFDM
symbol is Tt = NtTs, with Ts being the sampling time and Nt = N + Ng.

Let xk =
[
xk,0, ..., xk,N−1

]T
be the vector of transmitted symbols on the kth

OFDM symbol, k = 0, ...,K − 1 and {xk,n} is the transmitted symbol on the
sub-carrier n− N

2 , n = 0, ..., N − 1. The kth received OFDM symbol yk after
removing the CP and applying the fast Fourier transform (FFT) is defined as:

yk = diag{Hk} xk + nk, (3.1)

where nk is a white complex Gaussian noise with zero mean and variance
σ2
n. Note that we use here Hk = diag{Hk} to highlight the fact that the

channel matrix is diagonal with the entries of Hk on its main diagonal. Hk =
[Hk,0, ...,Hk,N−1]T is the N × 1 vector with Hk,n being the frequency-domain
channel response at sub-carrier n−N

2 . Furthermore, Hk is defined as Hk = Fhk
where F is the N × L Fourier matrix with its (n, l)th entry given as [F]n,l =

e−j2π( n
N
− 1

2
)l, n = 0, ..., N − 1, l = 0, ..., L − 1, and hk is the L × 1 vector of

the channel impulse response at the kth OFDM symbol where L is the number
of channel taps and l indicates the tap number. Note that in this chapter we
consider a discrete channel model and use hk instead of the physical model
with αk. We consider the channel taps are wide-sense stationary (WSS), zero-
mean complex Gaussian processes with a variance defined as σ2

hl
. The average

energy of the channel is normalized to one, i.e.,
∑L−1

l=0 σ
2
hl

= 1. We consider a
quasi-static channel where the channel may vary from one OFDM symbol to
the other, yet constant within one OFDM symbol. This corresponds to a low
mobility scenario. In the next section, we will show how to build xk for DNSP.
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3.3 DNSP transmission model

The DNSP scheme, defined in [DHLG14], combines the advantage of the
pilot-symbol assisted modulation (PSAM) and the CSP schemes. In other
words, it is able to overcome the drawback of the deteriorated channel estima-
tion performance in the CSP scheme while keeping its advantage of offering a
higher data rate compared to the PSAM scheme. In order to explain how this
is done, the data information present on N sub-carriers is precoded so as to
have information about all data symbols on each sub-carrier and then certain
sub-carriers are nulled for pilot insertion. The spreading operation has the ad-
vantage of increasing the transmission diversity and averaging the impairments
produced by the nulling operation at the transmitter. This configuration has
mainly two consequences, the first is that pilot sub-carriers are interference-
free in contrary to pilot sub-carriers in the CSP scheme, and the second is that
each data symbol undergoes distortion generated from the other data symbols
present on the same sub-carrier. Now define P and D as the number of pilot
and data sub-carriers in an OFDM symbol respectively, i.e., N = D + P . P
pilots are inserted within the OFDM symbol and the pilot indexes are given
by {pLf , p = 0 . . . P − 1} where Lf is the distance between two adjacent pilots.
Define the N ×N unitary precoding matrix W and the N ×N diagonal matrix
M with ones on data sub-carriers and zeros on pilot sub-carriers. Then xk for
DNSP is defined as:

xk = MWsk + ck, (3.2)

where sk =
[
sk,0, ..., sk,N−1

]T
is the N×1 data symbols vector on the transmit-

ted kth OFDM symbol where E{|sk,n|2} = σ2
s and ck is the N × 1 pilot vector

with pilots on the pilot indexes and zeros elsewhere. Also, cp,k is the P×1 pilot
sub-vector of ck which includes all non-zero pilots {cp,k} in ck, p = 0, ..., P − 1.
Now, yk is given as:

yk = Gksk + diag{Hk}ck + nk. (3.3)

where Gk is defined as:

Gk = diag{Hk}MW. (3.4)

The formulation of the DNSP scheme in (3.3) renders it clear that the main
challenge at the receiver is the data detection process. This is due to the
fact that for the detection of each data symbol, the subsequent data symbols
found on the same sub-carrier will act as a source of interference on the current
symbol. In fact, the interference structure is due to the presence of W, which
we exploit later. Thus an IC will be needed at the receiver. This will be
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implemented based on the MMSE criterion which will be dealt with in section
3.4. However, the design of the IC assumes the channel knowledge. This
is obtained by channel estimation using the interference-free pilot sub-carriers
which allows us to use the conventional channel estimators designed for OFDM.
This is detailed in the following section.

3.4 Least Squares channel estimation

3.4.1 Obtaining ĥk

The estimate of hk, denoted as ĥk, is obtained in this section with the LS
criterion. For this, we introduce yp,k, the P ×1 pilot received vector on the kth
OFDM symbol, by selecting the pilot sub-carrier indexes of yk and is given as:

yp,k = diag{cp,k}Fphk + np,k, (3.5)

where Fp is the P ×L Fourier matrix of the pilots with its (p, l)th entry given

as [Fp]p,l = e−j2π(
pLf
N
− 1

2
)l, p = 0, ..., P −1, l = 0, ..., L−1, and np,k is the P ×1

channel noise vector formed by similarly selecting the pilot sub-carrier indexes
of nk. Then ĥk is given as [Kay93]:

ĥk = (FH
p Fp)−1FHdiag{cp,k}Hyp,k (3.6)

=
1

P
FH
p diag{cp,k}Hyp,k

Note that the pilots are chosen such that |cp,k|2= 1.

3.4.2 Using ĥk

As already mentioned and as we will see in the following sections, the IC
needs the knowledge of hk. Thus, in order to be able to calculate the IC equa-
tions, we proceed in two steps. First, we assume perfect channel knowledge
to obtain the IC equations, which depend on the unknown channel hk. We
then simply replace hk by its estimate ĥk obtained in (3.6). This approach
implies ignoring the channel estimation error and is known as the mismatched
approach.

Finally, after the data symbols are detected, they could be used to enhance
the channel estimation performance in the next iterations.
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3.5 Proposed Iterative Receiver for DNSP

After channel estimation is performed, pilot sub-carriers are discarded since
they do not provide any information about the data. For this, we introduce
yd,k, the D × 1 data received vector on the kth OFDM symbol, by selecting
the data sub-carrier indexes of yk as:

yd,k = Gd,ksk + nd,k (3.7)

where Gd,k is a D×N full sub-matrix of Gk after removing the zero rows.
It is defined as:

Gd,k = diag{Hd,k}Wd, (3.8)

where Hd,k is the D×1 vector of the data sub-carrier indexes of Hk, Wd is the
D×N sub-matrix of W formed by selecting the rows of data sub-carrier indexes.
We first review in section 3.5.1 the MMSE soft IC of the literature. Then, we
detail our proposed receiver in section 3.5.2. It is well-known that the use of
the MMSE soft IC of the literature has a high complexity. We then propose to
decrease this complexity by exploiting the structure of the interference which
arises in DNSP and implement an approximated MMSE soft IC.

3.5.1 MMSE soft IC of the Literature

The derivation of the MMSE soft IC necessitates the knowledge of the
channel. We first provide the formulation of the MMSE soft IC of the literature
assuming perfect channel knowledge in (3.11). Then, we formulate it again with
the estimated channel in (3.12).

The linear parallel soft interference canceler (PSIC) based on the MMSE
criterion is employed in order to avoid the prohibitive complexity of joint equal-
ization and decoding and that of the optimal MAP-based turbo equalizers. The
MMSE soft IC structure, introduced in the framework of MMSE equalization
in the turbo scheme [LGL01], [GLL97], eliminates the interference that arises
during transmission and results in a full channel matrix. The iterative receiver
consists of two stages, equalization and channel decoding, see figure 3.1(a).
Note that the selection operation (Sel.) in figure 3.1(a) selects either the pi-
lot or the data sub-carriers. The exchange of soft information between the
two stages allows us to enhance the decoding process at each iteration. This
is assured via the calculation of the log-likelihood ratio (LLR). The equaliza-
tion stage consists of three main blocks: interference cancellation, mapping
and demapping. Upon receiving the transmitted symbol, the IC calculates the
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equalized symbol as in figure 3.3:

s̃k,n = wH
k,nyd,k − qHk,ns

′
k,n, (3.9)

qk,n = GH
d,kwk,n, (3.10)

where s′k,n =
[
sk,0, ..., sk,n−1, 0, sk,n+1, ..., sk,N−1

]T
is the N×1 vector of the

estimated data symbols and sk,n = E|LLR{sk,n}, where E|LLR{·} is the expected
value given the LLRs. Note that in s′k, the nth entry is nulled in order to avoid
using a priori information for the current symbol. The equalized symbols are
then supplied to the demapper to calculate the confidence information for each
bit. After decoding, the mapper reconstructs the soft symbols and supplies
the IC with s′k,n and the variance of the symbol. In order to assure that the
equalization and the decoding stages are decorrelated, they are separated by
an interleaver or deinteleaver. Now, after defining the N × 1 vector en =
[0, ..., 1, ..., 0]T , with 1 on the nth entry and zeros elsewhere, the equalization
vector wk,n is given as:

wk,n = σ2
s [Gd,kVk,nG

H
d,k + σ2

nI]−1Gd,ken, (3.11)

with Vk,n = diag[vk,0, ..., vk,n−1, σ
2
s , vk,n+1, ..., vk,N−1] being the N ×N di-

agonal matrix where vk,n is defined as vk,n = E|LLR{|(sk,n)|2} − |sk,n|2. vk,n
represents the variance of the soft estimate sk,n and provides confidence in-
formation in those estimates. Also, I is the identity matrix. When perfect a
priori information is present, vk,n tends towards 0, whereas it tends towards σ2

s

when sk,n is random and thus no confidence information about sk,n is present.
Now, the MMSE soft IC with the estimated channel for DNSP is obtained by
replacing the channel with its estimate calculated in section 3.4 and Gd,k by
its value in (3.8) as:

wk,n = σ2
s [diag{Ĥd,k}WdVk,nW

H
d diag{Ĥd,k}H + σ2

nI]−1diag{Ĥd,k}Wden.
(3.12)

The formulation in (3.12) reveals the high complexity of the IC of the
literature in terms of latency for the calculation of Vk,n and the number of
matrix inversions carried out, which is equivalent to the number of sub-carriers
in the OFDM system. This motivates us to seek an alternative with a lower
complexity while limiting the performance degradation accompanied by the
reduced complexity.

We will refer to this formulation as the mismatched exact IC. The mis-
matched refers to the use of the estimated channel instead of the true channel
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and the exact refers to the use of the variance of each data symbol in matrix
Vk,n in the formulation of (3.12).

3.5.2 Proposed Structure

From equation (3.12), we notice that the term WdVk,nW
H
d embedded

within the matrix inversion does not allow us to exploit the property of matrix
Wd (WdWH

d = I) due to the presence of matrix Vk,n. We first point out
that Vk,n is a diagonal matrix so in order to profit from this property, we can
approximate the entries of Vk,n with a unique representative value on all its
diagonal entries. One solution to achieve this is to calculate the variance based
on the expected value of vk,n calculated over all LLRs at the output of the
channel decoder. In fact, the authors in [TKS02, BID03, TSK02] already re-
sorted to this approximation in order to reduce the complexity at the receiver.
This could be formulated as:

E{vk,n} = E{|sk,n|2} − E{|sk,n|2} = σ2
s − σ2

s . (3.13)

Assuming the ergodicity of s̄k,n, σ2
s̄ can be calculated as:

σ2
s̄ ≈

1

KN

K−1∑

k=0

N−1∑

n=0

|s̄k,n|2. (3.14)

Now, (3.12) can be reformulated as:

wk,n = σ2
s [diag{Ĥd,k}(σ2

s − σ2
s)diag{Ĥd,k}H + σ2

nI+

σ2
sdiag{Ĥd,k}Wdene

T
nWH

d diag{Ĥd,k}H ]−1diag{Ĥd,k}Wden. (3.15)

By using Woodbury identity defined as:

(A + uvH)−1 = A−1 − A−1uvHA−1

1 + vHA−1u
(3.16)

where A = diag{Ĥd,k}(σ2
s − σ2

s)diag{Ĥd,k}H + σ2
nI, u = σ2

sdiag{Ĥd,k}Wden
and vH = eTnWH

d diag{Ĥd,k}H , then (3.15) can be written as:

wk,n = λk,nw̃k,n, (3.17)

where w̃k,n and λk,n are defined as:
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-
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Figure 3.3: Equalizer Block

w̃k,n = σ2
sdiag

{[ Ĥk,0

|Ĥk,0|2(σ2
s − σ2

s) + σ2
n

, . . . ,
Ĥk,D−1

|Ĥk,D−1|2(σ2
s − σ2

s) + σ2
n

]}
Wden.

(3.18)

λk,n =
σ2
s

σ2
s + σ2

se
T
nWH

d diag{Ĥd,k}Hw̃k,n

. (3.19)

In fact, the implementation of the approximation in (3.13) allowed the au-
thors of [TKS02, BID03, TSK02] to reduce the number of matrix inversions to a
single inversion compared to N inversions originally needed for the mismatched
exact IC. From equation (3.18), we can see that implementing this approxi-
mation for DNSP further reduces this inversion to a diagonal matrix inversion
which is computationally inexpensive. We will refer to this formulation as the
mismatched proposed IC.

3.6 Simulation Results and Discussions

3.6.1 mismatched exact IC vs mismatched proposed IC

For the simulations, a discrete-time channel with 6 channel taps is consid-
ered and modeled as a Rayleigh channel with an exponentially decaying power
given by η · exp(−(l + 1)) where η is set so that the power is normalized to
unity. We consider a quasi-static channel and set N = 128 sub-carriers, Ng = 8
and compose frames of K = 5 OFDM symbols. For the DNSP scheme, pilots
are inserted at evenly spaced intervals with Lf = 8, and data is precoded with
the N ×N Walsh Hadamard matrix. Gray mapped QAM modulation is used
together with the non-recursive non-systematic convolutional (NRNSC) code
[5, 7]8. As a lower bound for the BER plots, we plot the performance of the
algorithm with perfect knowledge of the channel CSI. The received SNR for
the DNSP scheme is given as 10 log D

Nσ2
n

.

We will first compare the performance of the DNSP with the mismatched
exact IC and the mismatched proposed IC. For that, we plot in figure 3.4,
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Figure 3.4: BER Performance for 4QAM & coding rate=1
2 . Solid line: mis-

matched proposed IC, line with asterisks: mismatched exact IC, #:number of
iteration

the BER performance of DNSP with both ICs for a 4QAM modulation with
a coding rate of 1

2 . We can see that for early iterations there is a negligible
loss in performance of around 0.3 dB at a target BER of 10−4, however, this
also fades away at convergence and both ICs perform identically. In figure
3.5, equivalent plots are shown for a 16QAM modulation. We can replicate
a close performance as in the case of 4QAM. However, the performance loss
due to the approximation in the mismatched proposed IC is more important for
16QAM. Nevertheless, at convergence, the loss due to the mismatched proposed
IC is around 0.8 dB with respect to the mismatched exact IC and the CSI.
This difference will prove to be negligible compared to the complexity saved
by the mismatched proposed IC with respect to the mismatched exact IC. We
thus calculate the complexity of the mismatched exact IC and the mismatched
proposed IC in terms of the required number of real RA and RM. Those are
given in table 3.1 and their detailed calculation in Appendix B.2. We can see
from table 3.1 that the complexity of the mismatched exact IC which is in the
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Table 3.1: Complexity for different IC

Operation mismatched exact IC mismatched proposed IC

RA 4D3 + 4ND + 2D2 + 5D − 3 4ND + 5D
RM 4D3 + 6ND + 8D2 + 3D 6ND + 13D + 5

order of D3 is much higher than that of the mismatched proposed IC which has
an order of ND.
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3.6.2 DNSP with mismatched proposed IC vs CSP in turbo
reception framework

For the sake of completeness, we found it interesting to compare the two
SP schemes in the turbo framework. As already stated, in CSP, pilots are
superimposed on data sub-carriers at a fraction of the transmitted power. To
construct the model of the transmitted signal (xk) in CSP, let us define the
N ×1 pilot sequence for CSP with pilots on all sub-carriers. Now, xk is defined
as: (see figure 3.1b)

xk =
√
ρpk +

√
(1− ρ)sk, (3.20)

where ρ is the power allocation ratio. Then, the received OFDM symbol yk is
given as:

yk = Hk(
√
ρpk +

√
(1− ρ)sk) + nk, (3.21)

For this pilot scheme, the interference originates from pilots on data and
vice versa. This is due to their presence on the same sub-carrier. Here, for data
detection, the interference originates from pilot symbols which are known and
thus the interference cancellation is much simpler than in the DNSP scheme
since only the effect of pilot should be removed. However, for channel estima-
tion, the interference of pilots with data symbols degrades the performance. In
the turbo framework, the latter is expected to enhance due to the integration
of the soft estimated symbols in the channel estimation process. We will use
the framework proposed in [LRF06] for CSP, and will detail it briefly hereafter.

For the first iteration, channel estimation is similarly carried out as in (3.6),
where only pilots are used for channel estimation as follows:

ĥk = (FHdiag{√ρpk}Hdiag{√ρpk}F)−1FHdiag{√ρpk}Hyk. (3.22)

For later iterations, diag{√ρpk} is replaced by diag{√ρpk +
√

(1− ρ)sk} to
enhance the channel estimation performance as already stated. The estimated
symbols are also evaluated by soft decisions via the LLR calculation.

Now, we are interested in the relative performance of the two superimposed
pilot schemes. The received SNR for the CSP scheme is defined as 10 log (1−ρ)

σ2
n

.

We thus set (1 − ρ) = D
N in order to guarantee equal data and pilot power

allocation for both schemes to perform a fair comparison. We set ρ = 0.125 for
the CSP scheme which corresponds to a value of Lf = 8 for the DNSP scheme.
We will first study the channel estimation performance and plot the MSE in
figure 3.6 and then the decoding performance and plot the BER performance
in figure 3.7. In figure 3.6, we see that the MSE for the DNSP outperforms
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Figure 3.6: MSE Performance for CSP and DNSP , ρ = 0.125, Lf = 8
#:number of iteration

that of the CSP for the first iteration since there is no interference on channel
estimation in this scheme. However, at convergence, both schemes attain the
BCRB. We recall here, that this gap between the first iteration for DNSP and
the last iteration is due to the use of pilots only in the first and all sub-carriers
in the subsequent iterations. In figure 3.7, we see that the BER of the CSP is
better than that of the DNSP for the first iteration which could be explained
by the fact that for the first iteration, the interference on data for the CSP is
removed by excluding the pilots. Whereas for the DNSP scheme, the iterations
are needed for interference removal. We set the number of iterations to 6 and we
later study the convergence of the different algorithms. Finally, we note from
figure 3.7 that at convergence, both schemes attain their CSI curves. However,
the CSI curve for the DNSP is lower than that of the CSP. At a target BER
of 10−4, there is an SNR loss of more than 3 dB.

In order to explain this difference, we look closely at the inherent structure
of the two SP schemes. Although both schemes are guaranteed to have equal
pilot and data power, yet the precoding matrix (W), which is a basic element
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for the construction of the DNSP, increases the transmission diversity, which
explains this difference. In order to verify this, we propose to construct a coded
CSP (C-CSP) scheme. The idea here is to conserve the same CSP structure but
rather than adding the pilots over the data directly, we first precode the data
with W and then add the pilots. Now, we have two sources of interference on
data, the pilots and the data themselves due to the precoding operation. Thus,
for data detection, two interference cancellation steps should be done, remove
the pilots from the received signal and then perform interference cancellation
using the mismatched proposed IC for the DNSP scheme. Now, the transmitted
signal (xk) is given as:

xk =
√
ρpk +

√
(1− ρ)Wsk. (3.23)

We now plot the BER of the three SP schemes in figure 3.8. We can see that
the performance of the C-CSP becomes identical to that of the DNSP. This
proves that the difference in performance loss observed in figure 3.7 is due to
the precoding operation in the DNSP scheme.
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3.6.2.1 Complexity Comparison

We still have to compute the complexity of each SP scheme so that we can
have all needed elements to assess their relative performance. We will calcu-
late the global computational complexity (channel estimation and IC) of each
scheme. In fact, the channel estimation complexity is equivalent for the three
schemes since starting from the second iteration, both pilots and estimated
symbols are used for channel estimation for the three schemes. Except for a
complexity saving for the first iteration in DNSP which only needs 8LP + P
RM and 2(P − 1) + 4LP RA, it is reasonable and fair to consider equivalent
complexities since this will be dominated by the complexity of the subsequent
iterations.

For the interference cancellation operation, the IC complexity for DNSP is
given in table 3.1. For CSP, a classical MMSE equalizer is used and needs 9N
RM and 6N −2 RA. Now, for C-CSP, although the mismatched proposed IC is
used, however, the interference cancellation is performed over all sub-carriers
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compared to only data sub-carriers in DNSP. In addition, we have the pilot re-
moval, an operation which is not needed in the DNSP scheme and which adds
4N RM and 3N RA to the IC of C-CSP. We detail this comparison in table
3.2. We can observe that the CSP scheme is the least complex at the cost of
performance lost. Also, the DNSP is less complex than the C-CSP scheme for
the same BER performance.

Table 3.2: Complexity Comparison for different SP schemes

Operation CSP DNSP C-CSP

RA 6N − 2 4ND + 5D 4N2 + 8N
RM 9N 6ND + 13D + 5 6N2 + 17N + 5
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Figure 3.9: BER Performance for CSP, DNSP and C-CSP, ρ = 0.125, Lf = 8,
SNR = 12
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3.6.2.2 Convergence

Another important performance to study is the convergence of the three
algorithms. We plot in figure 3.9 the BER of the CSP, C-CSP and the DNSP
with respect to the number of iterations for SNR = 12 dB. The figure shows
that the CSP converges after two iterations while both the DNSP and the
C-CSP need 4 iterations to converge. This is because the DNSP and C-CSP
schemes utilize the IC which converges with iterations while the CSP simply
removes the known pilots and thus converges faster.

3.7 Conclusion

In this chapter, a well-suited receiver for the recently introduced DNSP
scheme in OFDM has been proposed. In the framework of soft interference
cancellation, an approximated formulation of an IC with a reduced complexity
has been analyzed by exploiting the special interference structure that arises
in this scheme, thus avoiding the matrix inversion needed in the classical case.
We then perform a comparison between classical superimposed pilots scheme
and DNSP in terms of channel estimation and decoding performance. It turns
out that for a higher complexity, the DNSP outperforms the CSP scheme a
gain of more than 3 dB gain at a BER target of 10−4. In order to explain
this difference, we propose to construct a C-CSP scheme which includes the
inherent transmission diversity of DNSP through the precoding matrix W. We
observe that for a higher complexity, the C-CSP has an equivalent performance
to DNSP. Thus, it is more profitable to introduce diversity to superimposed
pilots using the DNSP scheme. In other words, we have shown that it is less
complex to introduce transmission diversity in SP schemes, by using a precod-
ing matrix, with the DNSP scheme than with the C-CSP scheme.

The answer to which scheme is better could not be easily answered. This
is because each application might be concerned with a different performance
indicator such as the complexity, the convergence rate, the channel estimation
performance and the target BER. Thus, the preference of a scheme to another
will highly depend on the application. In an application where a higher BER is
tolerated, the CSP scheme might be preferred in return of a faster convergence
and reduced complexity. In an application, where a lower BER is required, the
DNSP with the mismatched proposed IC would be a more suitable choice at
the expense of a higher complexity compared to CSP. The C-CSP, however, is
the least interesting since its performance could be attained by the DNSP with
less complexity.
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4.1 Introduction and Motivation

In chapter three, we proposed a low complexity IC for DNSP assuming
perfect channel estimation at the receiver. We have seen that this assumption
does not have an important effect on the performance of the IC. However, this
is only true when the channel estimation error is negligible. To this end, we
consider the case of a non-negligible channel estimation error and extend the
IC of chapter 3 to take into account this error. An interesting framework to
include the channel estimation error in the formulation of the IC has been pro-
posed in [SKD09]. This approach makes use of the statistics of the channel
as well as those of the channel estimation errors to integrate their effect into
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the IC. This approach is referred to as the improved approach since it tends to
improves the performance of the IC by integrating the channel estimation er-
rors. Inspired by this work, we design an improved low complexity interference
canceler for DNSP. In fact, in DNSP, the increase in the number of pilots does
not necessarily enhance the BER performance as it does in the case of PSAM
since the increase in the number of pilots in DNSP leads to the increase of
interference on data. This is particularly true for high order modulations. We
first derive the improved exact IC and the improved proposed IC for DNSP in
sections 4.2 and 4.3 respectively. In section 4.5, we give the simulation results
and discussions and then conclude this chapter in section 4.6.

4.2 Improved exact IC for DNSP

Let us first re-write the system model we used in chapter 3:

yd,k = diag{Hd,k}Wdsk + nd,k (4.1)

= Gd,ksk + nd,k (4.2)

From (3.6), we have the LS channel estimate ĥk:

ĥk =
1

P
FH
p diag{cp,k}Hyp,k.

Now, define the LS channel estimation error as ∆hk = hk − ĥk, then the
covariance matrix of the LS channel estimation error R∆h, which will be used
for the formulation of the IC in the next section is given below. We have:

ĥk =
1

P
FH
p diag{cp,k}Hdiag{cp,k}Fph + np,k (4.3)

=
1

P
FH
p diag{cp,k}Hdiag{cp,k}Fph

︸ ︷︷ ︸
hk

+
1

P
FH
p diag{cp,k}Hnp,k

= hk +
1

P
FH
p diag{cp,k}Hnp,k.

Thus, ∆hk = − 1
P FH

p diag{cp,k}Hnp,k and R∆his given as:

R∆h = E{∆hk∆hHk }

=
1

P 2
E{FH

p diag{cp}Hnp,kn
H
p,kdiag{cp}Fp}
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=
σ2
n

P
I (4.4)

Clearly, the estimate of the frequency channel response Hk is calculated as:
Ĥk = Fĥk.

0

50

100

150

0

50

100

150

0

0.5

1

1.5

2

2.5

(a) L = 2

0

50

100

150

0

50

100

150

0

2

4

6

8

(b) L = 6

0

50

100

150

0

50

100

150

0

5

10

15

20

(c) L = 15

0

50

100

150

0

50

100

150

0

50

100

150

(d) L = 128

Figure 4.1: Matrix FFH with different values of L, N=128.

In order to derive the improved IC for DNSP from (3.11), we proceed as
in [SKD09]. For this, we need to obtain the posterior distribution of the true
channel frequency response (Hk) conditioned on its estimate (Ĥk), p(Hk|Ĥk).

For this, we need to find p(hk|ĥk). First, it is easy to see that p(ĥk|hk) =
CN (hk,R∆h) and hk = CN (0,Rh). However, to find p(hk|ĥk), we have to use
the following theorem [SKD09]:

Theorem: Let h1 and h2 be circularly symmetric complex Gaussian ran-
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dom vectors with zero means and known covariance matrices. Then p(h1/h2) =
CN (µ,Σ) with µ = Σ12Σ

−1
22 h2 and Σ = Σ12Σ

−1
22 Σ21 where Σij = E[hih

H
j ].

Now, p(hk|ĥk) is given as:

p(hk|ĥk) = CN (Rδĥk,RδR∆h), (4.5)

where Rδ = Rh(R∆h + Rh)−1 and Rh is L×L diagonal matrix with σ2
hl

on its
(l, l) th entry.

Then, p(Hk|Ĥk) could be expressed as ([BD99], page 56, proposition 5.2):

p(Hk|Ĥk) = CN (FRδĥk,FRδR∆hFH)

= CN (Mk,Σk). (4.6)

Then, exact improved IC for DNSP is thus given as follows and its detailed
calculation in Appendix C:

wk,n = σ2
s [diag{Md,k}WdVk,nW

H
d diag{Md,k}H+Ωk]

−1diag{Md,k}Wden,
(4.7)

where Ωk = σ2
nI + Σk ◦

(
N−1∑
n=0

vk,n.WnW
H
n

)
with Wn being the nth column

of W and ◦ is the Hadamard multiplication operation. Also, Md,k is formed
by selecting the data sub-carrier entries from Mk. Note that when R∆h tends
to zero, Rδ tends to I and the equation of the exact improved IC in (4.7) boils
down to the classical mismatched approach in (3.11).

4.3 Improved proposed IC for DNSP

For the same motivation as in chapter 3, we seek a low-complexity improved
IC for DNSP. Here, however, replacing Vk,n by the approximation in (3.13)
and applying the Woodbury identity does not render a single diagonal matrix
inversion as in the case of the mismatched IC. This is due to the presence of
the term Ωk which, is unlike in [SKD09], is a full matrix and depends on the
sub-carrier index n. Matrix Σk, however, has an interesting structure which we
can exploit in order to overcome this problem. Now, since Σk = FRδR∆hFH ,
let us start with the term FFH . F is a the N × L Fourier matrix, i.e., it
is formed by choosing the first L columns of the full N × N Fourier matrix.
This selection of the first L columns leads to the loss of the orthogonality of
F and thus FFH 6= I. However, FFH admits a banded diagonal structure
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Figure 4.2: BER performance of the sixth iteration for 4QAM, K = 2, L = 15
dB, Lf = 8 for mismatched exact IC, mismatched proposed IC, improved exact
IC, improved proposed IC and CSI

which decreases with L and tends towards I. We show in figure 4.1 a typical
behavior of FFH for different values of L. Now, the lth entry of the L × L
diagonal matrix RδR∆h is

σ2
hl

σ2
n
P

+σ2
hl

σ2
n
P . The value of σ2

n decreases with SNR

and the entries of RδR∆h tends to a unique value proportional to σ2
n and thus

the behavior of Σk becomes equivalent to that of FFH . Thus, we can see that
it is safe to ignore the off-diagonal entries of Σk as L increases and the SNR
decreases. We will later show by simulations that this assumption does not
incur any performance degradation on the proposed IC while allowing us to
design a low-complexity IC.

Now, we can proceed as in chapter 3 to derive the approximated improved
IC by replacing Vk,n by the approximation in (3.13). Then, the improved
approximated IC is given equivalently as in (3.17) as:

wk,n = λk,nw̃k,n, (4.8)

with:
w̃k,n = σ2

s [Md,k(σ
2
s − σ2

s)M
H
d,k + (σ2

n + σ2
a)I]−1Md,kWden, (4.9)
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Figure 4.3: BER performance of the sixth iteration for 16QAM, K = 3, L = 15
dB, Lf = 8 for mismatched exact IC, improved exact IC and CSI

where σ2
a = Tr(RδR∆h) · (σ2

s−σ2
s)N+σ2

s
N and

λk,n =
σ2
s

σ2
s + σ2

se
T
nWH

d MH
d,kwk,n

. (4.10)

4.4 Improved Approximated IC of [SKD09]

We review in this section an approximated version of the improved IC pro-
posed in [SKD09]. The idea behind this approximation is to assume perfect
symbol estimation after the second iteration, i.e., vk,q = 0 for all q 6= n and
vk,n = σ2

s . Let us first define A = diag{Md,k}Wd and An being the nth
column of A, then the approximated IC of [SKD09] for DNSP is formulated
as:

w̃k,n = σ2
s [Anσ

2
sA

H
n + (σ2

n + σ2
a)I]−1An,

=
σ2
sA

H
n

σ2
sA

H
n An + (σ2

n + σ2
a)

(4.11)
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Figure 4.4: BER performance of the sixth iteration for 16QAM, K = 3, L = 15
dB, Lf = 8 for mismatched proposed IC, improved proposed IC and CSI

and σ2
a = σ2

sTr(RδR∆h)
N . We will refer to this IC as the improved IC of [SKD09].

4.5 Simulation results and discussions

For the simulations in this chapter, we use the same parameters as in chapter
3 with a quasi-static channel. We first plot in figure 4.2, the BER performance
of the sixth iteration, i.e., at convergence, for a 4QAM modulation with L =
15, Lf = 8 for the mismatched exact IC, the mismatched proposed IC, the
improved exact IC and the improved proposed IC. Note that the increase in
the number of channel paths renders the channel estimation harder. We can
see that the loss due to the approximation in both, the improved and the
mismatched case, is negligible. This is in accordance with the results in chapter
3 for a 4QAM modulation. The gain from using the improved ICs at a target
BER of 10−5 is around 1 dB. We then plot in figure 4.3, the BER performance of
the mismatched exact IC and the improved exact IC for a 16QAM modulation.
Here, at a target BER of 10−5, the loss from themismatched exact IC with
respect to the improved optimal IC is negligible. This could be explained that
with the increase of SNR, the effect of the channel estimation error decreases
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and thus incurs less performance degradation by the mismatched exact IC.
We then plot in figure 4.4, the BER performance of the mismatched proposed
IC and the improved proposed IC. Here a gain of around 2.3 dB is obtained by
using the improved version of the proposed IC. In fact, the proposed IC is more
sensitive to the effect of channel estimation error. Then, we compare in figure
4.5, the BER performance of the improved proposed IC and that of the improved
IC of [SKD09]. The results show that the gain from the improved proposed IC
decreases at lower target BERs. This indicates that for applications with a
target BER of 10−4, a 1.55 dB gain is obtained by using the improved proposed
IC compared to the improved IC of [SKD09]. This becomes less interesting
for a lower target BER. Finally, we show in figure 4.6 that ignoring the non-
diagonal elements of matrix Σk does not lead to any performance degradation
in both the 4QAM and the 16QAM modulations.
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Figure 4.6: BER performance of the sixth iteration for the improved proposed
IC using Σk denoted full and by using only the diagonal elements of Σk denoted
diag (a) 4QAM (b) 16QAM

4.6 Conclusion

In this chapter, we extended the proposed IC of chapter 3 to include the
channel estimation errors. We showed that the gain from using the improved
proposed IC is more than 2 dB in a 16QAM modulation compared to 1 dB in
a 4QAM modulation for a target BER of 10−5. This is since the proposed IC
is more sensitive to channel estimation errors in a 16QAM modulation. Those
results lead us to the conclusion that the improved proposed IC is a good
compromise between the complexity of the optimal ICs on the one hand and
the performance loss due to neglecting the channel estimation errors on the
other hand.
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5.1 Introduction and Motivation

In the previous chapters we have seen that the presence of uncertain in-
formation at the OFDM receiver leads to the failure of conventional channel
estimation algorithms. In particular, in the presence of NBI in chapter 2, the
performance of the Kalman filter deteriorates since the noise variance is un-
known. The interference in classical superimposed pilots led to the failure of the
LS estimator in chapter 2 since a portion of the power had been attributed to
the unknown data. This necessitated the design of more elaborate techniques
to overcome those problems. In fact, this behavior of the conventional channel
estimators is explained by the fact that, by design, they require the knowledge
of certain underlying parameters. This knowledge varies from one estimator to
another and it depends on its nature. The LS estimator for example requires
the knowledge of the observation matrix. The Kalman filter necessitates, in
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addition to the observation matrix, the formulation of a state equation with a
known state matrix and the presence of the state and observation noise char-
acteristics.

In this chapter, we investigate a different approach than those presented
in the previous chapters, which aims at dealing with the interference as model
uncertainties in the estimator’s design. Our aim is to shed the light on the
potentials and the underlying challenges of a bounded data uncertainty (BDU)
class of robust estimators [SN99][Say01][SC02]. We also give insights about
their applications to problems in OFDM with interference. We will refer to
the BDU class as the robust approach. We note that the robust approach is
a min-max approach where one aims at minimizing the cost function for the
worst possible case.

This chapter is divided as follows. In sections 5.2 and 5.3, we briefly review
the work by Sayed on the robust approach for the regularized LS in 5.2 and
the Kalman filter in 5.3. In section 5.4, we provide our understanding on this
approach and raise some questions and cast doubts on some assumptions related
to the robust approach. Our goal is to try to get answers and give perspectives
for future research directions. Finally, we conclude this chapter in section 5.5.

5.2 The regularized LS and its robust counterpart

The problem of ill-conditioned matrices which may arise in LS could be
overcome by using the regularized LS (RLS). To understand the motivation
behind this approach, let us consider the following linear model:

b = Ax + v (5.1)

where b is the m× 1 observation vector, A, the m× n observation matrix,
x, the n × 1 vector and v, the m × 1 noise vector. Note that in this chapter,
we use the notations in [SN99]. The cost function of the RLS is formulated as:

J(x) = xHQx + (Ax− b)HR(Ax− b), (5.2)

where Q and R are symmetric known matrices chosen by the user for regular-
ization purposes. They might represent, for example, the covariance matrices
of x and v respectively. The solution to this problem is obtained by minimizing
the cost function in (5.2) and is given as:

x̂ = [Q + AHRA]−1AHRb. (5.3)
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Note that for Q = 0 and R = I, the formulation in (5.3) boils down to
the conventional LS solution. This equation clearly reveals that the solution
necessitates the knowledge of A, b.

Now, as per our discussion in section 5.1, only a partial knowledge of A
and b is guaranteed. In this case, it is clear to see that if the deviation of A
and b from their actual values is large, the solution x̂ will lead to a high error
variance since it will be far from x. This motivated the introduction of a new
cost function to include the possible uncertainties [Say01][SN99] as:

J(x,u) = xHQx + (Ax− b + Tu)HR(Ax− b + Tu). (5.4)

Now, the formulation of the cost function in (5.4) depends on two unknowns;
x which is to be estimated and a new variable u which is the unknown per-
turbation vector. Comparing (5.2) and (5.4), we can see that the possible
uncertainties in A and b are modeled in the term Tu. The known matrix
T allows the designer to choose a certain range space for the perturbation u.
While u is unknown, yet a bound on its norm is assumed to be known, i.e.
u ≤ φ(x). Then the min-max robust solution of x̂ is given as:

x̂ = arg min
x

max
‖u‖≤φ(x)

J(x,u). (5.5)

The formulation in (5.5) could be viewed as a two-player game where the
designer tries to obtain the minimum x for the worst possible case of u.

In order to be able to concretely understand the formulation in (5.5), we
will consider a special case of uncertainties referred to as the structured uncer-
tainties. If we define δA and δb as the unknown portions of A and b, then
in the structured uncertainties case, it is assumed that δA and δb satisfy the
following model:

[δA δb] = T∆[Ea Eb], (5.6)

where Ea and Eb are known values which depend on the given problem, and ∆
is any contraction matrix, i.e.‖∆‖≤ 1, in which the uncertainties are modeled.
In other words, for a given problem, if a designer is able to model the uncer-
tainties in A and b as the model in (5.6), then he should be able to formulate
a robust solution to the problem.

Now, due to the unknown portions of A and b, we can replace A and b in
(5.2) by A + δA and b + δb respectively. Then, (5.4) could be re-written as:

J(x,u) = xHQx + (Ax− b + (δAx− δb))HR(Ax− b + (δAx− δb)), (5.7)
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and with Tu = (δAx − δb) = T(∆Eax − Eb), then u is defined as u =
∆(Eax−Eb).

Then, after solving (5.5) which as we will see, conserves the structure of
its conventional counterpart, where only the weighing matrices (W and R) are
replaced by their corrected versions (Ŵ and R̂), the robust solution to (5.7) is
given as [SN99][Say01]:

x̂ = [Q̂ + AHR̂A]−1AHQ̂b. (5.8)

where Q̂ and R̂ are given as:

Q̂ = Q + λ̂EH
a Ea; R̂ = R + RT(λ̂I−THRT)†THR. (5.9)

We can see from (5.9) that in order to obtain the corrected weighing matrices
(Q̂ and R̂), a scalar λ̂ is to be determined. This is obtained through a numerical
optimization problem as the minimum of a certain non-linear function G(λ) as:

λ̂ = arg min
λ≥‖THRT‖

G(λ), (5.10)

with G(λ) defined as:

G(λ) = ‖x(λ)‖2Q(λ)+λ‖Eax(λ)−Eb‖2+‖Ax(λ)− b‖2R(λ) (5.11)

with:

R(λ) = R + RT(λI−THRT)†THR (5.12)

Q(λ) = Q + λEH
a Ea (5.13)

x(λ) = [Q(λ) + AHR(λ)A]−1[AHR(λ)b + λEH
a Eb]. (5.14)

5.3 The Kalman filter and its robust counterpart

When the parameter to be estimated evolves with time according to a dy-
namical model, it becomes more reasonable to resort to the Kalman filter rather
than to the RLS to perform estimation. The implementation of the Kalman
filter requires, in addition to the observation equation, a state equation. The
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Figure 5.1: Error variance of three filters with ∆i selected uniformly within the
interval [-1,1], T(1)=0.0198, F(1,2)=0.0196

set of those two equations is known as the state space equations and is given
as:

xi+1 = Fxi + wi (5.15)

bi = Axi + vi (5.16)

where (5.15) is the state equation and (5.16) is the observation equation
with F being the state matrix, G, the covariance matrix of the state noise wi,
A, the observation matrix, R, the variance of the observation noise vi and Q
the covariance matrix of xi.

The Kalman filter estimates a process by using a form of feedback control.
The filter estimates the process state at some time and then obtains feedback
in the form of noisy measurements. This is done via the measurement and time
update equations. In fact, those equations admit a deterministic interpretation
as a solution to a RLS problem [Say01]. In other words, the measurement up-
date and the time update equations of the Kalman filter could be derived by



CHAPTER 5. PERSPECTIVES: ON ROBUST ESTIMATION WITH
BOUNDED DATA UNCERTAINTIES 99

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

35

40

i

E
rr

o
r 

V
a

ri
a

n
ce

 (
d

B
)

 

 

Optimal

Kalman

Robust

Figure 5.2: Error variance of three filters with ∆i selected uniformly within the
interval [-1,1], T(1)=0.198, F(1,2)=0.0196

posing a regularized least-squares problem and imposing some identifications.
We give the details of this derivation in Appendix D. In fact, this allowed the
author in [Say01] to extend the robust solution presented in section 5.2 for RLS
to the robust Kalamn filter. The detailed formulations of the different forms of
the robust Kalman filter could be found in [Say01].

In this section, our goal is to show the relative performance of the robust
Kalman filter and its classical counterpart. We do that with a numerical exam-
ple used in [Say01] to motivate the interest of the robust Kalman filter. This
numerical example is also widely use in robust problems [PS99]. We will first
recall the results provided by Sayed where he showed that by considering a
structured uncertainty in the state matrix constructed as in (5.6), the steady-
state performance of the robust Kalman filter in terms of the error variance is
better than that of the Kalman filter.

Consider now the following state-space model with uncertainties:
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Figure 5.3: Error variance of three filters with ∆i selected uniformly within the
interval [-1,1], T(1)=0.0198, F(1,2)=0.3912

xi+1 = (F + T∆iEf )xi + wi (5.17)

bi = Axi + vi (5.18)

Here, Ef and T represent the known parameters of the uncertainty given
in (5.6). Notice also the dependence of ∆i on the time index i. Let us now
consider the numerical example of [Say01]:

F =

[
0.9802 0.0196

0 0.9802

]
; G =

[
1 0
0 1

]
;

A =
[
1 −1

]
; T =

[
0.0198

0

]
; R = 1

Ef =
[
0 5

]
; Q =

[
1.9608 0.0195
0.0195 1.9605

]
;
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With this model, we have F at our disposal, whereas the actual state matrix
(Fa = (F + T∆iEf )) is:

Fa =

[
0.9802 0.0196 + 0.099∆i

0 0.9802

]
;

We plot the error variance of three filters; the Kalman filter with the knowl-
edge of F which is referred to as Kalman in the figures, the robust Kalman filter
referred to as Robust, and the optimal Kalman filter referred to as Optimal.
More precisely, the Kalman filter uses the underlying model as if it were the
actual one, the robust Kalman filter takes the uncertainties into account while
designing the cost function of the estimator and the Optimal Kalman filter has
the knowledge of the true matrix Fa. First, we plot in figure 5.1, the error
variance performance of the three filters with ∆i selected uniformly within the
interval [-1,1] and with the given parameters. We can see that the error vari-
ance of the robust filter is lower than that of the Kalman filter and closer to
the performance of the optimal filter. The performance loss is around 2.5 dB
at steady-state. The degradation in the performance of the Kalman filter is ex-
plained by the fact that it has been formulated with an erroneous model. Next,
we keep the same parameters as for figure 5.1 and only change T(1) = 0.198.
T here represents the uncertainty in the model and increasing its value might
be viewed as increasing the uncertainty in the system. We regenerate the same
plots of figure 5.1 in figure 5.2. The results show that the performance degrada-
tion of the Kalman filter is more important than in the previous configuration
and reaches around 17 dB at steady-state. This indicates that as the uncer-
tainty in the model increases, the performance degradation of the Kalman filter
with respect to both the optimal and the robust filter increases. Those two fig-
ures have been exposed in [Say01] to show the interest of the robust approach.
While those results might be very promising, more recent work on this topic
[XM09], showed that through this same numerical example, changing a param-
eter in the system matrix, renders the performance of the robust filter worse
than the Kalman filter. We regenerate this example in figure 5.3 where the
initial parameters are kept the same while replacing the (1,2)th entry of F by
0.3912. F represents the certainty in the system and increasing its value means
increasing the certainty in the system. The figure shows that the performance
of the robust Kalman filter deteriorates considerably and that of the Kalman
filter approaches the performance of the optimal filter.

Those results are explained by the authors in [XM09] as the results of the
conservative nature of the robust approach. In other words, they explain that
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this change in the state matrix decreased the uncertainty and under such con-
ditions, the robust approach becomes pessimistic and performs worse than the
conventional filter. However, the authors do not precise how the robust ap-
proach is conservative.

We finally note that for obtaining parameter λ̂, the authors in [Say01] as-
sume that the function G(λ) tends to reach amplitudes close to its minimum
value at arguments of λ close to its lower bound (λl = ‖THRT‖). They con-
sequently propose a practical approximation for λ̂ as λ̂ = (1 + α)λl.

5.4 Ambiguities associated with the robust approach

We reserve this section for some ambiguous points associated with the ro-
bust approach. First, the results in section 5.3 suggests that this approach is
efficient only under certain uncertainty conditions. In particular, the authors in
[XM09] argue that the robust approach outperforms the conventional approach
only when a high uncertainty is present in the system. They further relate this
fact to the conservative nature of the robust approach.
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It would be interesting to investigate a theoretical framework that enables
the designer to determine the uncertainty for a given problem.

The second point which is not thoroughly justified for the implementation
of the robust approach is the choice of the parameter λ. We will first consider
a numerical example provided by the authors in [SC02] and plot the function
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G(λ).

Given the following parameters:

A =




1 −1
0 1
−2 0
0 2


 ; b =




−1
0
1
−2


 ; Q =

[
1 0
0 2

]
;

Ea =




1 0
0 −2
1 1
0 0


 ; R = 1; Eb =




1
0
0
1


 ; T =




−1 0
1 2
0 0
1 −1


 ;

we have λl = ‖THRT‖= 5.4142. We plot the G function for this prob-
lem for the interval [λl, 12] in figure 5.4a and for the interval [0, 12] in figure
5.4b. We notice that the minimum of G(λ) within the interval [λl,∞[ is λl
itself. We notice that an important point (the lower bound of the interval) has
been neglected by the authors. Although, the authors show in [Say01] that
the approximation of this parameter has no effect on the performance of the
algorithm, nevertheless, if we closely look into (5.8), we can see that in case
the true λ lies on the lower bound, then the robust solution boils down to the
conventional RLS solution with a new regularization parameter Q̂.

It would be also interesting to investigate this point in more details to
understand its effect on the solution to the robust problem.

5.5 Conclusion

In this chapter, we reviewed a min-max robust approach which takes into
account the model uncertainties in the design of the estimator. The attractive
aspect of this approach is that it conserves the structure of its conventional
counterparts. We have then recalled the state of the art and presented a nu-
merical example which has been used by the authors in literature to motivate
for this approach. This example shows the interesting potential of the robust
approach, but also its conservative nature. We have raised some concerns re-
garding this approach which are open questions that provide an interesting
perspective in this field. One very interesting framework to apply the robust
approach to is the turbo reception framework. In fact, the uncertainties present
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in turbo estimation due to the symbol estimation error is unknown but could
be bounded. This can be done by making use of the variance of the symbol
estimation error provided at each turbo iteration.



General conclusion and perspectives

A high quality channel estimation at the OFDM receiver should be main-
tained throughout the communication interval, so as to guarantee an acceptable
system performance with the ultimate goal of coherent data detection. While
designing channel estimation algorithms, a reasonable balance should be estab-
lished between the system performance and the receiver’s complexity on the
one hand, as well as a trade-off is to be considered between the quality of the
channel estimate and the spectral efficiency of the system on the other hand.
In other words, a compromise should be done so as to maximize the spectral
efficiency and reduce the complexity while maintaining an acceptable channel
estimation performance. Those three criteria form the road map of our thesis.

Channel estimation in OFDM is often accomplished by inserting known
pilot symbols within the OFDM frame. This is known as the pilot-symbol as-
sisted modulation (PSAM). In order to be able to apply conventional channel
estimation algorithms (LS, MMSE, ...) to those systems, a minimum number of
pilots should be inserted with a minimal interference level. The first constraint
which is the number of pilots, means that valuable bandwidth which could
have been attributed to data is to be sacrificed. Consequently, this decreases
the data rate which is in an ever-increasing demand. The second constraint of
interference-free pilots can not be always met and interference could originate
from different sources. A solution to the first problem has been envisioned. It
aims at replacing conventional pilots (PSAM scheme) by superimposed pilots
(SP). SP do not require a dedicated bandwidth, however, their presence leads
to the rise in interference. In particular, we distinguish between two variants
of SP; the classical SP (CSP) and the data-nulling SP (DNSP). In CSP, the
interference arises from data on pilots in channel estimation and from pilots on
data in data detection. In DNSP, interference on data originates from nulling
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data sub-carriers after precoding for the insertion of pilot sub-carriers. Thus,
we can see that by addressing the first problem, the second problem is worsened.

In a different context, where the initial goal was to optimize the spectral
efficiency, the cognitive radio (CR) environment imposes the co-existence of
technologies in the same frequency band. This may generate interference and
even with PSAM, conventional channel estimation algorithms fail.

Thus, we dedicate this thesis to the design of channel estimation algorithms
for OFDM systems in the presence of interference.

We organize this work in five chapters. Chapter one is dedicated to a brief
introduction of the radio channel and the basic OFDM system. We distinguish
between two types of channels in OFDM; the quasi-static channel and the fast
time-varying channel. It is well known that in the case of high mobility, i.e. fast
time-varying channel, the orthogonality between the sub-carriers of the OFDM
system and thus the channel estimation approaches designed for quasi-static
systems differ from those designed for fast time-varying systems. Further, we
differentiate between two kinds of interference; narrowband interference (NBI)
which exists in cognitive radio (CR) networks and interference from SP as dis-
cussed above.

In chapter two, we consider the problem of channel estimation in fast time-
varying channels for OFDM systems contaminated by NBI. NBI strikes a small
number of sub-carriers with a high power and renders conventional channel
estimation algorithms inefficient. For the first time, we propose a channel es-
timation framework in this context. This has been done via the MAP EM
algorithm. The problem is formulated so as to elegantly integrate the Kalman
smoother for the estimation of the channel taps. We then simulate the pro-
posed algorithm in a real world scenario and show its robustness to mobility in
terms of MSE and BER performance, in contrast to existing algorithms which
have not been designed to handle mobility. In addition, this is obtained at the
cost of a reasonable additional complexity.

In chapters three and four, we consider the problem of channel estimation
and data detection in DNSP. DNSP is a recently proposed scheme for OFDM
and the design of a dedicated receiver is yet to be addressed. Thus we pro-
pose a receiver design for DNSP based on turbo reception. Turbo reception is
well-known to be the most efficient in interference cancellation. However, this
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efficiency comes at the cost of high complexity and the necessity of a precise
channel estimate.

In chapter three, we deal with the complexity issue and propose a low-
complexity receiver for DNSP by exploiting the special interference structure
in this scheme. The receiver is based on the MMSE soft interference canceler
(IC). Then, we initiate a performance comparison between DNSP with the pro-
posed receiver and the CSP scheme in an iterative receiver. We first show that
an important gain in terms of BER is achieved by DNSP compared to classical
superimposed pilots (CSP) at the cost of a higher complexity. This is explained
by the increased transmission diversity due to the precoding, which is part of
the DNSP design. We then show that a coded-CSP scheme is able to achieve
the same BER performance as DNSP but this time at the cost of a higher com-
plexity. From this study we conclude that increasing the transmission diversity
in SP schemes is more profitable in terms of complexity via the DNSP scheme.

The performance of the proposed IC for DNSP in chapter three is only
reliable when the channel estimation error is small. Although DNSP offers
by design interference-free pilots, yet in some scenarios the channel estimate
might not be reliable. We thus design in chapter four an enhanced IC for DNSP
which takes the channel estimation errors into account. The results show that
the enhanced IC is particularly interesting in scenarios with a high channel
estimation error. In addition, the gain in BER is more interesting in 16QAM
which could reach up to 2.3 dB compared to 1 dB in 4QAM at a target BER
of 10−5 since the IC is more sensitive to channel estimation errors for higher
order modulations. However, we should point out that in DNSP and unlike in
PSAM, the increase in the number of pilots does not necessarily improve the
BER since a higher number of pilots leads to more interference.

In the last chapter, we shed the light on a min-max robust approach. We
first expose the robust counterparts of the regularized least-squares and the
Kalman filter. We then present some interrogations about this approach and
present a perspective for its possible application.

Finally, the work presented in this thesis has an interesting potential for
future research:

• Perspectives on chapter two:

In chapter two, we used a Gaussian model for NBI. It would be
interesting to obtain more accurate models for NBI through measurement
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campaigns. This will help give a clearer idea about the effect of this model
on the performance of the algorithm. In fact, a new channel sounder has
been designed at TELICE and which is planned to be used in future
measurement campaigns.

Despite the advantages of the OFDM system, which led to its stan-
dardization in 4G systems, its documented drawbacks should be ad-
dressed while choosing an appropriate modulation for 5G systems. The
universal filtered multi-carrier (UFMC) and the generalized frequency
division multiplexing (GFDM) are the two serious candidates for 5G sys-
tems. UFMC is very close in nature to OFDM and is referred to as the
universal filtered OFDM (UF-OFDM) as well. Unlike filtered OFDM
which applies a filter to each sub-carrier and filter bank based multi-
carrier (FBMC) which applies a filter to the entire band, the UFMC ap-
plies filters on a per band basis thus preserving the advantages of OFDM
while reducing the effect of high spectral lobes in OFDM. This property
could be very interesting in rendering the system more robust to inter-
ference. GFDM is also a generalized form of OFDM. However, unlike
OFDM which uses one cyclic prefix (CP) per symbol, it uses only one
CP for a group of symbols. Recent studies point out that GFDM is well
suited to cognitive radio (CR), since the rectangular pulse used in OFDM
is replaced by a choice of pulse shaping. This lowers the side lobes in the
frequency domain. As a perspective, the study of the impact of NBI in
UFMC and GFDM systems which are, by design, robust to interference,
could further give insights about the advantage of one system to the other
from an interference point of view.

• Perspectives on chapters three and four:

In chapters 2 and three of this thesis, we saw the different variants
of superimposed pilot (SP) schemes proposed for OFDM so as to replace
the bandwidth-consuming conventional pilots. The channel estimation
task and pilot placement schemes are also important aspects to be stud-
ied in UFMC and GFDM systems. UFMC, as already stated, preserves
the OFDM structure and thus the extension of the channel estimation
and the pilot schemes to UFMC should be direct forward. However, in
GFDM, since the data now is transmitted in the time domain and then
frequency domain equalization (FDE) is performed at the receiver, the
transmitted data are mixed up, the insertion of conventional pilots as
in OFDM becomes inefficient. The study of particular pilot schemes for
GFDM is an interesting challenge and an open perspective. The work
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presented in chapters 3 and 4 of this thesis could be the starting point of
this work.

• Perspectives on chapter five:

The further research on robust channel estimators to problems of
channel estimation with interference in OFDM is an open topic. An
interesting area of research could be to consider uncertainties in the co-
variance matrix of the channel noise rather than in the system matrices.
This could be an interesting application to the environments with NBI.
We note here that we have already considered the application of the H∞
filter to the NBI problem. However, the results were disappointing al-
though the H∞ filter is designed without restrictions on the distribution
or the knowledge of the system’s noise. Another challenging aspect is to
provide a theoretical framework which explains the underlying function-
ality of the robust approaches.



AppendixA
Calculations related to chapter two

A.1 Computation of the Q Function

In order to obtain the expression for Q(σ2, σ̂2
(i)

), we take the expectation

with respect to c conditioned on y, given the current parameter estimate σ̂2
(i)

.
We have from (2.19):

Q(σ2, σ̂2
(i)

) = −Kln
∏

n

σ2
n+

K−1∑

k=0

Tr

{
E
c|y,σ̂2

(i)

[
(yk −X kck)

H C−1 (yk −X kck)
]}

(A.1)

From (A.1), we obtain:

Q(σ2, σ̂2
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) = Tr
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C−1(yky
H
k + X kS

(i)
k|KXH

k −ykĉ
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k −X kĉ

(i)
k|KyHk )

}

(A.2)

where S
(i)
k|K

def
= E

c|y,σ̂2
(i)

[
ckc

H
k

]
and ĉ

(i)
k|K

def
= E

c|y,σ̂2
(i) [ck]. Let us define:

P
(i)
k|K

def
= E

c|y,σ̂2
(i)

[
(ck − ĉ

(i)
k|K)(ck − ĉ

(i)
k|K)H

]

= S
(i)
k|K − ĉ

(i)
k|K ĉ

(i)H

k|K (A.3)

Then by substituting (D.23) into A.2, we obtain (2.23).
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A.2 Calculation of σ̂2
n

(i+1)

We provide here the calculation of σ̂2
n

(i+1)
in equation (2.24).

E-step:

σ̂2
n

(i+1)
= arg max

σ2
n
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M-step:

Now, we derive with respect σ2
n and equate to zero.
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(A.4)
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A.3. ADDITIONAL COMPLEXITY CALCULATION FOR PROPOSED

ALGORITHM WITH RESPECT TO ALGORITHM IN [?]

A.3 Additional complexity calculation for proposed
algorithm with respect to algorithm in [HR10]

In order to calculate the additional complexity required by the proposed
algorithm, we have to calculate:

σ̂2
n

(i+1)
=

1

K + 2︸ ︷︷ ︸
O1

K−1∑

k=0︸︷︷︸
O2

[Mk]n,n︸ ︷︷ ︸
O3

+
λ

K + 2︸ ︷︷ ︸
O4

. (A.5)

and Mk = X kP
(i)
k/KXH

k︸ ︷︷ ︸
O3c

+ (yk −X kĉ
(i)
k|K)

︸ ︷︷ ︸
O3a

(yk −X kĉ
(i)
k|K)H

︸ ︷︷ ︸
O3b

.

︸ ︷︷ ︸
O3d

For calculating O1, 1 RM and 1 RA is required. O4 requires only 1 RM since
the addition has been already done in O1. Now, for the calculation of O3 which

we divide into sub-operations, calculating Xkĉ(i)
k|K in O3a needs NLNc CM and

N(LNc − 1) CA and then N CA for the subtraction from yk. Operation O3b
results in an N ×N Hermitian matrix. Thus the real diagonal entries will need
2 RM and 1 RA each, and the non-diagonal entries will require N2 − N CM.
However, we notice that for the calculation of (A.5), only the diagonal entries
of Mk are required and thus it is enough to compute only those entries. Thus
the complexity of this step is reduced to 2N RM and N RA. For operation

Table A.1: Additional Complexity of the proposed algorithm

Operation RA RM CA CM

O1 1 1 - -
O2 N(K − 1) - - -
O3a - - NLNc NLNc

O3b N 2N - -
O3c - - NLN2

c −N NLN2
c +NLNc

O3d N - - -
O4 − 1 - -

Total NK +N + 1 2N + 2 NLN2
c +NLNc −N NLN2

c + 2NLNc



APPENDIX A. CALCULATIONS RELATED TO CHAPTER TWO 113

O3c, NLN2
c + NLNc CM and NLNc(Nc − 1) + N(LNc − 1) CA are needed

to compute the diagonal entries of O3c. O3d will thus require N RA since the
addition of the diagonal entries of O3b and O3c needs a single RA per sub-
carrier. Then to finalize this calculation, operation O2 requires (K−1) RA for
each sub-carrier and thus a total of N(K− 1) RA. This is summarized in table
A.1.
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Calculations related to chapter three

B.1 Demonstration of equation (3.17) from (3.11)

wk,n = σ2
s [Gd,kVk,nG

H
d,k + σ2

nI]−1Gd,ken, (B.1)

Now using the approximation (3.13), Vk,n becomes:

Vk,n =




σ2
s − σ2

s 0 . . . . . . 0
...

. . .
... σ2

s
...

. . .

0 σ2
s − σ2

s




Then (B.1) can be re-written as:

wk,n = σ2
s(Gd,k[(σ

2
s − σ2

s) I + σ2
sene

T
n ]GH

d,k + σ2
nI)−1Gd,ken. (B.2)

By using Woodbury identity defined as:

(A + uvH)−1 = A−1 − A−1uvHA−1

1 + vHA−1u
(B.3)

where A = diag{Ĥd,k}(σ2
s − σ2

s)diag{Ĥd,k}H + σ2
nI, u = σ2

sdiag{Ĥd,k}Wden
and vH = eTnWH

d diag{Ĥd,k}H , we have:

wk,n = σ2
s

[
A−1 − A−1uvHA−1

1 + vHA−1u

]
Gd,ken. (B.4)
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Since A is hermitian and u = σ2
sv, then (B.4) can be written as:

wk,n = σ2
s

[
A−1Gd,ken

1 + σ2
se
T
nGH

d,kA
−1Gden

]
Gd,ken. (B.5)

Now, defining w̃k,n = σ2
sA
−1Gd,ken, then (B.5) becomes:

wk,n = σ2
sw̃k,n

σ2
s + σ2

se
T
nGH

d,kw̃k,n

, (B.6)

which could be written as:

wk,n = λk,nw̃k,n, (B.7)

where λk,n

λk,n =
σ2
s

σ2
s + σ2

se
T
nWH

d diag{Ĥd,k}Hw̃k,n

. (B.8)

The only matrix inversion required now is A−1 and which is a diagonal
matrix inversion due to the property of W (WdWH

d = I).

B.2 Complexity Computation of the mismatched ex-
act IC and the mismatched proposed IC

We detail here the given complexities of the three ICs given in Table 3.1.
We first note that a CM is equivalent to 4 RM and 2 RA and a CA is equivalent
to 2 RA.

B.2.1 Complexity of mismatched exact IC

Define O1 = diag{Ĥd,k}Wd, then the equalization vector for the optimal
IC is given as:

wk,n =

O5︷ ︸︸ ︷
σ2
s [O1Vk,nO1H︸ ︷︷ ︸

O2

+σ2
nI

︸ ︷︷ ︸
O3

]−1

︸ ︷︷ ︸
O4

O1en (B.9)

To accomplish operation O1, we need 2ND RM. Its Hermitian has no addi-
tional complexity. O2 results in a D×D matrix. The calculation of its diagonal
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B.2. COMPLEXITY COMPUTATION OF THE MISMATCHED EXACT

IC AND THE MISMATCHED PROPOSED IC

entries require 3 RM and 1 RA each, thus a total of 3D RM + (2D − 1) RA,
its D2 −D non diagonal entries need 1 CM, 2 RM and (D − 1) CA each, thus
a total of (D2 − D)(1 CM + 2 RM + (D − 1) CA). O3 and O4 need D RA
and D3 CM respectively. Operation O5 could be written as: σ2

sO4O1As where
O1As = O1AenO1As. O1As is a selection operation and does not add to the
complexity. O4 O1As results in a D × 1 vector which needs D CM and (D-
1) CA per entry and thus a total of D(D CM + (D − 1) CA), finally the
multiplication with σ2

s needs 2D RM.

Now the filtering operation is given as follows:

s̃k,n =

O6C︷ ︸︸ ︷
wk,n

H (yd,k −O1Bsk)︸ ︷︷ ︸
O6A︸ ︷︷ ︸

O6B

(B.10)

O6A results in a D × 1 vector and each entry needs N CM and (N − 1) CA,
thus a total of D(N CM + (N − 1) CA), D CA for O6B. O6C results in a
scalar with D CM + (D − 1) CA.

B.2.2 Complexity of mismatched proposed IC

The equalization vector for the proposed IC is given as:

w̃k,n = σ2
s

O4︷ ︸︸ ︷
[diag{Ĥd,k}(σ2

s − σ2
s)diag{Ĥd,k}H︸ ︷︷ ︸

O2

+σ2
nI

︸ ︷︷ ︸
O3

]−1O1en

︸ ︷︷ ︸
O6

(B.11)

First, O1 = diag{Ĥd,k}Wd needs 2ND RM. To accomplish operation O2
which results in a D × D real diagonal matrix, we need 3 RM and 1 RA for
each entry, for a total of D(3 RM+1 RA). O3 is the addition of 2 real diagonal
matrices and thus needs D RA. Finally, operation O6 could be written as: σ2

s

O4 O1 en, O1 en is a selection operation. O4 O1 en is the multiplication of
a real diagonal matrix and a complex vector which results in a D × 1 vector
and needs 2 RM per entry so 2D RM in total. The last operation which is the
multiplication by σ2

s also requires 2D RM.
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O7 = λk =

O7D︷ ︸︸ ︷
σ2
s

σ2
s + σ2

s eTnWH
d diag{Ĥkd,k}Hw̃k,n︸ ︷︷ ︸

O7A︸ ︷︷ ︸
O7B︸ ︷︷ ︸

O7C

(B.12)

O7A is the selection of the (n,n) entry of an N ×N matrix and needs 3 RM +
1 RA, O7B needs 1 RM, O7C 1 RA and O7D 1 RM.

Now the filtering operation is given as:

s̃k,n =

O8D︷ ︸︸ ︷

λkw̃k,n︸ ︷︷ ︸
O8C

O8B︷ ︸︸ ︷
(yd − diag{Ĥd,k}Wdsk)︸ ︷︷ ︸

O8A

O8A results in a D × 1 vector which needs D(N CM + (N − 1) CA), O8B
needs D CA, O8C needs 2D RM, and O8D results in a scalar that necessitates
D CM + (D − 1) CA.
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Calculations related to chapter four

We demonstrate here the derivation of the improved IC for DNSP.
The channel impulse response hk, the covariance matrix Rh of hk and the

covariance matrix of the LS channel estimation error R∆h ar given as:

hk =



h0
...

hL−1


 ; ĥk =



ĥ0
...

ĥL−1




Rh



σ2
h0

. . .

σ2
hL−1


 ; R∆h =




σ2
n
P

. . .
σ2
n
P




Then:
p(hk|ĥk) = CN (Rδĥk,RδR∆h), (C.1)

where Rδ = Rh(R∆h + Rh)−1 [SKD09].

Now, p(Hk|Ĥk) could be expressed as ([BD99], page 56, proposition 5.2):

p(Hk|Ĥk) = CN (FRδĥk,FRδR∆hFH)

= CN (Mk,Σk). (C.2)

. Let us recall the equation of the exact mismatched IC for DNSP as:

wk,n = σ2
s [Gd,kVk,nG

H
d,k + σ2

nI]
︸ ︷︷ ︸

Ry

−1
Gd,ken︸ ︷︷ ︸

Ry,s

. (C.3)
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Now, the improved approximated IC is calculated as:

wk,n = σ2
sR
−1
y Ry,s, (C.4)

where Ry = EHk|Ĥk
{Ry} and Ry,s = EHk|Ĥk

{Ry,s}.

Now, we need to calculate EHk|Ĥk
{Gd,kVk,nG

H
d,k} and EHk|Ĥk

{Gd,ken}.

EHk|Ĥk
{Gd,kVk,nG

H
d,k} = EHk|Ĥk

{
N−1∑

n=0

vngng
H
n

}
(C.5)

=
N−1∑

n=0

{
EHk|Ĥk

vngng
H
n

}
(C.6)

where gn is the nth column of matrix Gd,k where we drop the index k to
simplify notations.

EHk|Ĥk
{vngngHn } = vnEHk|Ĥk

{gngHn } (C.7)

and
EHk|Ĥk

{gngHn } = AnA
H
n + (Σk ◦Wn). (C.8)

where A = diag{Md,k}Wd, Wn is the nth column of Wd and ◦ is the
Hadamard multiplication operation.

Then,

EHk|Ĥk
{Gd,kVk,nG

H
d,k} = AVk,nA

H + Σk ◦
(
N−1∑

n=0

vnWnW
H
n

)
. (C.9)

And,
EHk|Ĥk

{Gd,ken} = Aen. (C.10)

Finally, replacing (C.9) and (C.10) into (C.4), we obtain the formulation of the
exact improved IC for DNSP.

We still have the approximated improved IC for DNSP which is derived
following the same procedure as in Appendix B.
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Calculations related to chapter 5

Consider the following state-space model at instant i:

xi+1 = Fixi + Giwi (D.1)

bi = Aixi + vi (D.2)

We also define the following matrix identities which will be useful in our deriva-
tion:

(A + BDC)−1 = A−1 −A−1B(D−1 + CA−1B)−1CA−1 (D.3)

DC(A + BDC)−1 = (D−1 + CA−1B)−1CA−1 (D.4)

(A + UCV)−1 = A−1U(C−1 + VA−1U)−1VA−1 (D.5)

Then after receiving a new measurement bi+1, xi is estimated by solving
the following equation by minimizing with respect to xi and xi+1:

J = min
xi,wi

[‖xi − x̂i/i‖2Pi/i−1+‖wi‖2Qi
−1+‖bi+1 −Ai+1xi+1‖2Ri+1

−1 ]. (D.6)

We have that the differential of a quadratic form is given by:

d(xTQ−1x) = d(xT )Q−1x + xTQ−1d(x) = 2d(xT )Q−1x (D.7)

Then, derivatives of J w.r.t xi and xi+1 are respectively given as:

dJ
xi

= −P−1
i/i (x̂i/i − xi)− FT

i Q−1
i (xi+1 − Fixi), (D.8)
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dJ
xi+1

= Q−1
i (xi+1 − Fixi)−AT

i+1R
−1
i+1(bi+1 −Ai+1xi+1) (D.9)

Now, by equating (D.8) and (D.9) to zero, we obtain the following system of
equations:

(P−1
i/i + FT

i Q−1
i Fi)xi = P−1

i/i x̂i/i + FT
i Q−1

i xi+1, (D.10)

(AT
i+1R

−1
i+1Ai+1 + Q−1

i )xi+1 = AT
i+1R

−1
i+1bi+1 + Q−1

i Fixi. (D.11)

Substituting the value of xi from equation (D.10) into (D.11), we obtain:

[
AT
i+1R

−1
i+1Ai+1 + Q−1

i −Q−1
i Fi(F

T
i Q−1

i Fi + P−1
i/i )
−1FT

i Q−1
i

]
xi+1 =

AT
i+1R

−1
i+1bi+1 + Q−1

i Fi(F
T
i Q−1

i Fi + P−1
i/i )
−1P−1

i/i x̂i/i (D.12)

Now, by using the (D.3) with identifications, A = Qi, B = Fi, C = FT
i and

D = Pi/i, we get Q−1
i −Q−1

i Fi(FiQ
−1
i Fi+P−1

i/i )
−1FT

i Q−1
i = (Qi+Fi+Pi/iF

T
i ).

After defining Pi+1 = Qi + FiPi/iF
T
i , (D.12) could be re-written as:

[AT
i+1R

−1
i+1Ai+1+Pi+1]xi+1 = AT

i+1R
−1
i+1bi+1+Q−1

i Fi(P
−1
i/i+FT

i Q−1
i Fi)

−1P−1
i/i x̂i/i.

(D.13)
Then, by using (D.4) with identifications, A = P−1

i/i , B = FT
i , C = Fi and

D = Q−1
i we get Q−1

i Fi(P
−1
i/i + FT

i Q−1
i Fi)

−1 = (Q−1
i + FiPi/iF

T
i )−1FiPi/i.

Then (D.13) is re-written as:

[AT
i+1R

−1
i+1Ai+1 + P−1

i+1]xi+1 = AT
i+1R

−1
i+1bi+1 + P−1

i+1Fix̂i/i. (D.14)

Now, x̂i+1/i+1 is written as:

x̂i+1/i+1 = [AT
i+1R

−1
i+1Ai+1+P−1

i+1]−1AT
i+1R

−1
i+1bi+1+[AT

i+1R
−1
i+1Ai+1+P−1

i+1]P−1
i+1Fix̂i/i.

(D.15)
Now using the matrix identity (D.4) with identifications, A = Ri+1, B =

Ai+1, C = AT
i+1 and D = Pi+1, we have [AT

i+1R
−1
i+1P

−1
i+1]−1AT

i+1R
−1
i+1 =

Ri+1Ri+1[Ri+1+Ai+1Pi+1A
T
i+1]. After defining Gi+1 = Pi+1A

T
i+1 [Ri+1 + Ai+1Pi+1A

T
i+1]−1

︸ ︷︷ ︸
Re,i+1

,

(D.15) becomes:

x̂i+1/i+1 = Gi+1bi+1 + [AT
i+1R

−1
i+1Ai+1]P−1

i+1Fix̂i/i. (D.16)

We use (D.3) again with identifications A = PT
i+1, B = AT

i+1, C = Ai+1 and
D = R−1

i+1, we have:
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[AT
i+1R

−1
i+1Ai+1 + P−1

i+1] = Pi+1 −Pi+1A
T
i+1[R−1

i+1 + Ai+1P
−1
i+1A

T
i+1]Ai+1Pi+1

= Pi+1 −Gi+1Ai+1Pi+1 = (I−Pi+1Ai+1)Pi+1.
(D.17)

Then (D.16) is re-written as:

x̂i+1/i+1 = Gi+1bi+1 + (I−Gi+1Ai+1)Fix̂i/i (D.18)

Now using (D.5), we have:

Pi/i = Pi −PiA
T
i (Ri + AiPiA

T
i )−1AiPi (D.19)

= (P−1
i + AT

i R−1
i Ai)

−1 (D.20)

Now:

Pi+1A
T
i+1R

−1
e,i+1 = Pi+1A

T
i+1(Ri+1 + Ai+1Pi+1A

T
i+1)−1 (D.21)

= Pi+1A
T
i+1[R−1

i+1 −R−1
i+1Ai+1(P−1

i+1 + AT
i+1R

−1
i+1Ai+1)−1AT

i+1R
−1
i+1]

= Pi+1[AT
i+1R

−1
i+1 −AT

i+1R
−1
i+1Ai+1(P−1

i+1 + AT
i+1R

−1
i+1Ai+1)−1AT

i+1R
−1
i+1]

= Pi+1[I−AT
i+1R

−1
i+1Ai+1(P−1

i+1 + AT
i+1R

−1
i+1Ai+1)−1]AT

i+1R
−1
i+1

= Pi+1[I−AT
i+1R

−1
i+1Ai+1(Pi+1 + (AT

i+1)−1Ri+1A
−1
i+1)]AT

i+1R
−1
i+1

= Pi+1[I−AT
i+1R

−1
i+1Ai+1Pi+1/i+1]AT

i+1R
−1
i+1

= Pi+1[I− (P−1
i+1/i+1 −P−1

i+1)Pi/i]A
T
i+1R

−1
i+1

= Pi+1/i+1A
T
i+1R

−1
i+1

(D.22)

So finally, we have

x̂i+1/i+1 = Fix̂i/i + Pi+1/i+1A
T
i+1R

−1
i+1ei+1. (D.23)

Equation (D.23) corresponds to the MUE of the Kalman filter.
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