
HAL Id: tel-01247115
https://hal.science/tel-01247115v2

Submitted on 6 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

View-based query determinacy and rewritings over
graph databases

Nadime Francis

To cite this version:
Nadime Francis. View-based query determinacy and rewritings over graph databases. Databases
[cs.DB]. Université Paris Saclay (COmUE), 2015. English. �NNT : 2015SACLN015�. �tel-01247115v2�

https://hal.science/tel-01247115v2
https://hal.archives-ouvertes.fr

NNT : 2015SACLN015

THÈSE DE DOCTORAT

DE L’UNIVERSITÉ PARIS-SACLAY,

préparée à l’École Normale Supérieure de Cachan

ÉCOLE DOCTORALE N◦580

Sciences et Technologies de l’Information et de la Communication

Spécialité de doctorat : Informatique

Par

Monsieur Nadime Francis

Vues et requêtes sur les graphes de données :

déterminabilité et réécritures

Thèse présentée et soutenue à Cachan, le 8 décembre 2015 :

Composition du Jury :

M. Maurizio Lenzerini Professeur, Sapienza Università di Roma Rapporteur
M. Luc Segoufin Directeur de Recherche, Inria Directeur de thèse
Mme Cristina Sirangelo Professeur, Université Paris 7 Co-directrice de thèse
Mme Sophie Tison Professeur, Université Lille 1 Examinatrice
M. Jan Van den Bussche Professeur, Universiteit Hasselt Rapporteur
M. Victor Vianu Professeur, UC San Diego Président

Laboratoire Spécification et Vérification
École Normale Supérieure de Cachan, UMR 8643 du CNRS
61 avenue du Président Wilson,
94235 Cachan Cedex, France

Résumé

Les graphes de données sont naturellement utilisés dans de nombreux contextes incluant
par exemple les réseaux sociaux ou le Web sémantique. Dans ce modèle, les données sont
structurées et représentées comme des graphes, dont les noeuds contiennent les données
individuelles et où les arêtes du graphe représentent les liens entre ces données. Ainsi,
dans un réseau social, chaque noeud du graphe représente un individu, et contient ses
données personnelles (nom, prénom, identifiant, adresse, etc.), tandis que les arêtes du
graphe spécifient la manière dont il est relié aux autres utilisateurs : ami, collègue, parent,
etc. L’information contenue dans la base de données se trouve alors aussi bien dans les
données mêmes que dans la topologie du graphe, c’est-à-dire dans la manière dont les
données sont connectées. Cela implique donc de considérer les questions traditionnelles
en théorie des bases de données pour des langages de requêtes capables de parler des
chemins connectant les noeuds du graphe.

Nous nous intéressons en particulier aux problèmes de la déterminabilité et de la
réécriture d’une requête à l’aide de vues. On suppose alors qu’au lieu de pouvoir accéder
directement à la base de données, seules les réponses à une série de requêtes initiales
(appelées vue de la base de données) sont connues. Il s’agit alors de décider si cette
vue contient suffisamment d’information pour répondre entièrement à une requête sans
consulter la base de données directement, et dans ce cas, de produire une réécriture, c’est-
à-dire un moyen d’exprimer explicitement la réponse à la requête à partir de la vue. Ce
cadre rencontre de nombreuses applications, notamment pour l’intégration de données,
l’optimisation de requêtes ou encore en sécurité.

Nous obtenons nos résultats préliminaires en comparant ces deux questions aux autres
problèmes de décision classiques dans ce contexte : calcul des réponses certaines, test
de cohérence et mise à jour d’une instance de vue. Ces premiers résultats mettent en
évidence les liens entre toutes ces questions et servent de base pour traiter nos deux
questions initiales. Nos deux contributiosn principales améliorent ces résultats dans deux
cas spécifiques.

Tout d’abord, nous considérons le cas de vues et requêtes définies par des requêtes
régulières de chemin. Ces requêtes sont définies à l’aide d’une expression régulière et ren-
voient les paires de noeuds de la base de données connectés par un chemin dont l’étiquette
satisfait l’expression régulière. Nous montrons que dans ce cas, l’existence d’une réécriture
monotone cöıncide avec l’existence d’une réécriture exprimable dans Datalog, et que cette
dernière peut effectivement être calculée. Cela implique en particulier que la réponse à
la requête peut alors être calculée en temps polynomial dans la taille de l’instance de

3

4

vue donnée.
Ensuite, nous revenons au problème de la déterminabilité dans le cadre plus simple

de requêtes s’intéressant uniquement aux longueurs des chemins du graphe. Ces requêtes
sont définies par un ensemble d’entiers et renvoient les paires de noeuds du graphe qui sont
connectés par un chemin dont la longueur est égale à l’un de ces entiers. La question alors
est de savoir, étant donnée une vue définie par de telles requêtes, quelles sont les longueurs
qui peuvent être déterminées. Nous montrons alors que ce problème est décidable pourvu
que les longueurs demandées soient suffisamment grandes (en fonction de la vue), ce qui
conduit à définir la notion plus faible de déterminabilité asymptotique. Nous montrons
également que les requêtes asymptotiquement déterminées admettent alors des réécritures
du premier ordre, ce qui permet encore une fois une évaluation en temps polynomial de
la requête donnée à partir de la vue.

Acknowledgements

First and foremost, I would like to thank my advisors Luc Segoufin and Cristina Sirangelo,
who accepted to embark on this journey with me. I have learned much from you during
this PhD, and I still feel like I would learn twice as much if I were to start again from the
beginning. You have never ceased to amaze me, with your knowledge, intelligence and
dedication. I am particularly thankful for the time you managed to find for me, especially
when you had your own duties to attend to. Thank you.

I am very grateful to Maurizio Lenzerini and Jan Van den Bussche who kindly accepted
to review this manuscript, and managed to send their reports on time despite the short
notice. I also thank Sophie Tison and Victor Vianu who accepted to be part of the jury.

I would like to thank Claire David and Filip Murlak with whom I coauthored a paper
during this PhD, even though it is not part of this manuscript. I also thank Leonid Libkin
who has given me many useful advice and taught me how to respond to a reviewer.

I also thank all the members of LSV for making my time there as enjoyable and
stimulating as possible. There are too many of you to name, but be assured that each of
you is amazing in his or her own way. Thank you for everything. In particular, I want to
thank the people with whom I have shared an office on the 4th floor: Wojciech Kazana,
Emilien Antoine and Marie Van den Bogaard. Thank you for many useful and enjoyable,
if not always professional, discussions. Thank you for making the 4th floor office more
than a work place.

I would like to thank my best friend, Victor Marsault, who has worked on his own
PhD at the same time as me. I thank you for listening to my struggles and telling me
about yours, for commiserating with me on our failures and celebrating on our successes.

I want to give special thanks to all my family, who has always supported me and
believed in me. Special thanks go to my parents, who have raised me to be who I am
today. You have taught me to ask why and how, almost to a fault. I also thank my
brother, Bachir. I could not have hoped for a better person to grow up with. You have
always pushed me to give my best and you have always been proud of my results. I
want to thank you for supporting me during this PhD, and somehow finding the mental
strength to listen to my explanations even when they did not make sense. I want to
thank you for all our conversations until the first hours in the morning, be they about
life, philosophy or mathematics.

Finally, my biggest thanks go to my wife Emilie. You have learned to know me, accept
me and love me as I am. You have supported me, even during your own PhD. I know I
will always have your trust and love, and for that I have no words. Thank you.

5

6

Contents

Résumé 3

Acknowledgements 5

1 Introduction 9
1.1 Databases and graphs . 10
1.2 View-based query processing . 10
1.3 Contribution . 12

1.4 Organization . 14

2 State of the art 15
2.1 Answering queries using views . 15
2.2 The many names of determinacy . 16

2.3 Determinacy and rewritings . 19
2.4 Conclusions . 23

3 Databases and queries 25
3.1 Databases . 25

3.2 Queries . 28
3.3 Algorithms . 32

3.3.1 Query evaluation . 32
3.3.2 Query containment . 35

4 Views and operations on views 37
4.1 Views . 37
4.2 Materialized view problems . 39

4.2.1 Certain answers . 39
4.2.2 Inverting view images . 42

4.2.3 Checking view images . 45
4.2.4 View update . 48

4.3 View-based query determinacy . 51
4.3.1 Definition . 51
4.3.2 Determinacy problem . 53

4.3.3 Rewriting problem . 56

7

8 CONTENTS

5 Monotone rewritings of regular path queries 59
5.1 Monotone determinacy . 59
5.2 Constraint satisfaction and certain answers 64

5.2.1 Constraint satisfaction problems 65
5.2.2 From certain answers to CSP . 65

5.3 Computing the rewriting . 67
5.3.1 Datalog and the local consistency game 67
5.3.2 The case of simple paths . 69
5.3.3 From simple paths to arbitrary graph databases 72

5.4 Extensions . 74
5.4.1 Two-way regular path queries . 74
5.4.2 On rewriting languages . 75

6 Asymptotic determinacy of single path queries 77
6.1 Preliminaries . 78

6.1.1 Key properties . 78
6.1.2 Asymptotic determinacy . 82

6.2 Behavior graphs . 83
6.2.1 Intuitions . 83
6.2.2 Definitions . 86

6.3 Deciding asymptotic determinacy . 90
6.3.1 Negative direction: building counter-examples 90
6.3.2 Positive direction: building a rewriting 97

6.4 Extensions . 101
6.4.1 The case of small queries . 101
6.4.2 Infinite unions . 103
6.4.3 Multiple labels . 106

7 Discussions 109
7.1 Determinacy and view-based query processing 109
7.2 Datalog and the bounded width hierarchy 110
7.3 Single path queries and first-order rewritings 111

Bibliography 113

Chapter 1

Introduction

Nowadays, information is everywhere. Each of us creates, shares, uses and receives huge
amounts of information everyday. Each of us is exposed to information processing systems
several times a day, and in many forms. This ranges from the traditional desktop or
laptop computers we may use daily, at home or at work, to the cell phones we carry in
our pockets and that grow smarter month after month, going through more innocuous-
looking systems like GPS or the machines in which we validate our public transport
cards. Each of these systems stores, transmits and queries data. The amount of data
that is accessed by the day is enough to make one’s head spin. A popular micro-blogging
service like Twitter conveys on average 6000 messages a second, which sum up to 500
million tweets a day. A more permanent social network like Facebook registers on average
55 million status updates each day. Google, as a search engine, processes 40 thousand
queries a second, summing up to 3.5 billion queries a day. This makes a traditional data
storing entity like the Bibliothèque François Mitterrand look frail in comparison, with its
measly 2000 new documents a day.

Of course, all this data is not only transmitted, read, and then forgotten. Every single
bit of data is stored, indexed, and ready to be processed and queried again. Thus, not
only are we daily exposed to information systems, but we are also daily leaving tracks in
a vast number of databases. This raises an obvious question: how do we process such a
huge amount of data in an efficient way? We mentioned libraries as a more traditional
form of databases. Let us extend the comparison for a little while. Designing a library is
not only a matter of stockpiling huge amounts of books in a huge amount of crates, so as
to protect them from the passing of time. A library should also provide several services
that extend its usefulness. Perhaps the books are stored by alphabetical order, or sorted
by genre. Perhaps the librarian knows the whole content of the library by heart and can
tell whether a book is available instantly. Perhaps the librarian runs very fast and can
fetch you the book you are looking for in a matter of seconds. Perhaps the librarian even
knows the topic of your research and can give you a book which contains the answers you
are looking for without you even asking or knowing such a book existed. While this might
look silly in a physical world, it is exactly what we are asking of our digital databases.

9

10 CHAPTER 1. INTRODUCTION

1.1 Databases and graphs

In this work, we will consider specifically graph databases: databases that are structured
and represented as graphs. In this model, individual data is stored as nodes in the graph
while the links between these data points are represented as edges of the graph. Social
networks are a typical example of graph databases: each node of the network corresponds
to a person, and contains individual information, such as name, phone number, date of
birth or professional activity. On the other hand, relationships between members of the
network will be materialized as edges linking their corresponding nodes. For instance, a
node attributed to John will be linked by a parent edge to Jack to indicate that John is the
father of Jack, while Jack could be linked to Lise by a two-way sibling edge, stating that
Jack and Lise are brother and sister. The Web offers another immediate example: web
pages are nodes of a graph whose edges are the hyperlinks relating pages to one another.
The very image of this network as a web or net comes from its mental representation
as a graph. Other scenarios where these graph databases naturally occur include crime
detection, the representation of biological data, or the Semantic Web through the RDF
format.

We are not however interested in graph databases simply because some data is nat-
urally presented to us in the form of a graph. Indeed, any conventional database could
be represented as a graph, and any graph database could be turned into any of the usual
representations for databases. The main reason for using graph databases is that, in these
typical scenarios where graph databases naturally occur, the information that we want
to extract lies as much in the content of the graph as in its shape. Indeed, it is much
more practical to look at a Paris metro map to determine how to go from Châtelet to
Nation rather than going through tables of each metro line. It is in the same sense that
query languages designed for conventional databases are not adapted to express the kind
of questions that we want to ask on data that is naturally presented as a graph. On the
contrary, graph databases provide the framework for queries to easily talk about links,
paths, loops and so on, in a much more efficient way than their more conventional coun-
terparts. Thus, the choice of a model for a database is not only a matter of representing
data, but more importantly it is a matter of how we intend to use it, which translates in
the kind of queries that we want to issue to it.

1.2 View-based query processing

The most natural way to use a database is to query it, that is to ask a question to the
database, and receive answers from it. Here, however, we will assume that the database
is not available to process our query. Instead, the only thing that we are allowed to
“see” of the database is the set of answers to a set of queries, called a view, that were
previously provided by the database. We are then wondering whether this view of the
database contains enough information to process our original query. This is the goal of
view-based query processing, which will be the main focus of our work.

At its core, the question asked here can be restated in a very natural way: can we

1.2. VIEW-BASED QUERY PROCESSING 11

decide if some given knowledge implicitly contains more information, and if so, how can
we make it explicit? Thus, it is perhaps not surprising that the setting considered here
encompasses a large number of applications, especially in the database context. Let us
discuss some of them.

Query optimization and caching. Caching is perhaps the most intuitive application
that comes to mind. Assume that the database already provided the answers to a set
of initial queries, and that these answers was kept in cache on our local machine. This
constitutes our view of the database. Imagine now that the database is not readily
available to answer a new query, for instance because our connection to the network is
slow, costly or unstable. Then we would like to compute the answers to our new query
without having to access the database.

Query optimization follows a similar setting. Assume again that we are keeping the
answers to a set of initial queries. When a new query arises, it might be more efficient to
compute it from already known answers rather than recompute it from scratch, especially
if some parts of the computational work of the query were already processed by the view.
In this setting, it is quite common to also include the whole database in the view, thus
we already know that the information we are looking for is present in the view, and we
can focus on how to express it. Among all the possible ways of evaluating the query, that
might or might not make use of the stored answered, which one is the most efficient?

Data integration. Data integration is the problem of unifying data coming from mul-
tiple heterogeneous source databases as a single global database. The ideal result here
is to allow the user to query the information available in these databases seamlessly, as
if it came from a single database, and thus without having to take into consideration
each source separately. A way to restate this problem as a view-based query processing
task is known as the Local-as-View setting. We consider the sources as a view of the
virtual global database. Then, when the user wants to query this global database, we
decide whether the information she seeks is implicitly contained in the view, and if so we
recompute it as an explicit query over the view. The answers to this rewritten query over
the data sources thus correspond to the answers to the original query over the virtual
database.

Data independence. In the data independence setting, we want to provide an inter-
face to the user that allows her to query the database without this interface necessarily
matching the physical implementation of the database. Similarly to the data integration
setting, we consider the physical implementation of the database as a view of the vir-
tual database provided to the user. When the user then queries the virtual database,
we rewrite the queries over the physical implementation, and answer them there. This
allows us in particular to modify the way data is stored physically, say for more efficient
computing or to accomodate to new hardware or data, without impacting the virtual
database, and thus the way the user interacts with the database.

12 CHAPTER 1. INTRODUCTION

Privacy. The last application we discuss here provides a nice example of a case where
we want our question answered by the negative. In the privacy setting, we assume that we
are managing a database that contains private, and thus sensitive, information. We allow
users to query the database for public information. However, we want to make sure that
by doing so, we are not disclosing more information than intended. In other words, we
need to ensure that the users cannot use the information given to them to deduce private
data. Consider the queries on public data as a view of the whole database, then we have
to make sure that this view does not implicitly contain any private data. Conversely, if
we were to attack such a system, finding an explicit way to deduce this data from the
view would reveal exactly the series of queries that need to be issued in order to breach
the security of the system.

We have seen through these applications that we are in particular interested in two
tasks: determinacy, which consists in deciding whether some information is implicitly
present in the view, and rewriting, which consists in finding a way to make it explicit.
More precisely, given a view and a query, the goal of determinacy is to decide whether
the information contained in the view can always be used to fully answer the query, and
this regardless of the specific database that provided the view. When this is true, we are
then interested in finding a rewriting: a way of actually computing the answers to the
original query by only looking at the content of the view.

These two tasks are challenging on multiple levels. Both have been studied extensively
over many years, but many questions still remain open. Regarding the determinacy
problem, the ideal would of course be to design an algorithm that, given the definition
of the view and the query, checks whether the view determines the query. However, this
has only been achieved in very specific cases. For many fundamental query and view
languages, it is still unknown whether such an algorithm exists.

On the topic of rewriting, the question has several different aspects. On the simplest
level, it only asks to provide an explicit way, an algorithm, for computing the answer to
the query from the view. However, it is often better to be able to express this algorithm
as a new query, in some query language, that can then be answered over the view. While
it would be ideal to express this rewriting in the same language as the query and the
view, it has been shown in many cases that the rewriting actually needs more expressive
power. In many of those cases, it is still unknown how much more expressive power is
needed. This also raises the question of finding rewritings that have as low expressive
power as possible in order to achieve good computational properties, but even deciding
whether these rewritings exist is already a challenging task.

1.3 Contribution

The work we present in this document revolves mostly around the determinacy and
rewriting problems. Our goal is to develop a better understanding of when a view deter-
mines a query, and the relationship this has with the expressive power needed to define
rewritings. We would like to highlight our two main contributions.

1.3. CONTRIBUTION 13

Monotone rewritings of regular path queries. For this contribution, we have
looked at regular path queries. These queries are defined by a regular expression, and
select pairs of nodes in the database that are linked by a path whose sequence of labels
conforms to the regular expression. We have considered the setting where a view defined
by regular path queries determines a regular path query in a monotone way, meaning
that we assume the existence of a monotone rewriting of the query using the view. This
setting is known to be decidable from [12]. We have shown that, in this case, we can
compute an explicit rewriting of the query using the view as a Datalog program. This is
formalized as the following theorem:

Theorem 5.23. Let V be a regular path view and Q be a regular path query such that V
determines Q in a monotone way. Then there exists a Datalog rewriting of Q using V.

This theorem has several important implications. First, it proves that the existence of
a Datalog rewriting of the query using the view coincides with the existence of a monotone
rewriting. Thus, the decision procedure given in [12] translates into an algorithm for
deciding the existence of a Datalog rewriting of the query using the view. Second, the
theorem proves the existence of a rewriting that enjoys polynomial time data complexity,
whereas the previously best known bound was NP ∩ coNP. Finally, since the rewriting
can effectively be computed, it also provides an algorithm for answering the query using
the view with polynomial time data complexity.

This result was published in [24], with a long version to appear at the Logical Methods
in Computer Science journal.

Asymptotic determinacy. For our second contribution, we have looked at the deter-
minacy problem for queries that select pairs of nodes linked by a path whose length falls
in a given set. We have defined a weaker version of the determinacy problem that only
asks to decide determinacy for queries that look for a path that is “long enough” when
compared to the paths selected by the view, in a precise sense. We call it the α-asymptotic
determinacy problem, where α is a function that provides the explicit definition of “long
enough”. We have proved that, in this case, there exists an implicit α that makes the
problem decidable, and for which all determined queries can be rewritten as first-order
formulas over the view.

Theorem 6.1. There is an explicit and computable function α for which the α-asymptotic
determinacy problem is decidable for single path queries and unions of single path views.
Moreover, when the view determines the query, the decision procedure effectively computes
a first-order rewriting of the query using the view.

This result is a significant step towards solving the determinacy problem in this set-
ting, a question that remains open for now. It also has two important corollaries. First,
it proves that almost all single path queries that are determined by unions of single path
views can be rewritten as first-order queries, meaning that first-order is almost complete
for rewritings, as defined in [3]. Second, it shows that almost all single path queries that
are determined can be answered with polynomial time data complexity using the view,
whereas the previously best known bound was once again NP ∩ coNP.

14 CHAPTER 1. INTRODUCTION

This result was published in [23], with a long version to appear in a special issue of
the Theory of Computer Systems journal.

1.4 Organization

This document follows the outline below:
In Chapter 2: State of the art, we briefly summarize the relevant results that were

used as a starting point for our work. We give an overview of the various settings in which
the determinacy problem has been considered, and the many names under which it has
been studied. We discuss the known results, and the main questions that are left open.
Note that this chapter is intended for the specialist, and thus assumes some familiarity
with database theory. This chapter works independently of the rest the document, and
can safely be skipped.

In Chapter 3: Databases and queries, we set the main definitions and notations
for the rest of our work. We formally define databases and queries, as well as the query
languages that we will consider throughout our work. This chapter also contains lots of
examples and should be a good beginning for most readers.

In Chapter 4: Views and operations on views, we formally define views, as
well as the most common computational tasks related to view-based query processing.
This chapter most importantly defines the determinacy and rewriting problems that will
occupy most of our attention. It also contains several side results and observations that
will serve as preliminaries for Chapter 5 and Chapter 6.

In Chapter 5: Monotone rewritings of regular path queries, we consider
the case where a regular path view determines a regular path query in a monotone
way. We define the notion of monotone determinacy and work on building the proof of
Theorem 5.23 mentioned previously. This will take us on a journey through Constraint
Satisfaction Problems and Local Consistency Games.

In Chapter 6: Asymptotic determinacy of single path queries, we define the
asymptotic determinacy problem. We make several key observations that help draw an in-
tuitive picture of what asymptotic determinacy really means. We explain how asymptotic
determinacy relates to general determinacy, and how it translates to necessary conditions
for the general setting. We finally move on to proving Theorem 6.1, and discuss several
possible extensions.

Finally, we conclude this work in Chapter 7: Discussions, where we sum up the
results that have been achieved in the previous chapters, and mention several possible
continuations and perspectives.

Chapter 2

State of the art

In this state of the art chapter, we give a brief overview of the different techniques and
results that are relevant to our work. This is by no means intended to be an exhaustive
description of the field. For more references, we direct the reader to the survey [30],
that also discusses algorithmic matters and practical implementations. We also mention
the survey [29] by the same author, which focuses on the theoretical aspects of query
determinacy.

This chapter is intended for the specialist who wants to see how our work fits in the
existing picture. Hence, we assume that the reader is familiar with database theory, and
we will not spend much space on the most common definitions. We direct the interested
reader to [2] for an excellent reference on the general background.

The reader who is either new to the field or takes this document as a stand-alone can
safely skip this chapter. The important notions discussed here will be defined formally
later and every external result will be cited again when we use it.

In Section 2.1, we discuss the problem of answering a query from a view instance,
which has strong ties with the rewriting problem that occupies a significant part of our
work. In Section 2.2, we give an overview of the several notions that are very close (and
sometimes equivalent) to what we call determinacy in this work. Finally, in Section 2.3,
we describe the various settings in which the determinacy and rewriting problems have
been considered and solved, and those where the question is still open.

2.1 Answering queries using views

In this section, we assume that we are given a query Q and a view V that is defined by
a set of queries. We are also given a view instance E which we assume to be the result
of computing the queries in V over some database D that we do not have access to. The
question here is: what is the best estimation that we can have of Q(D), the answers to
our query on the original database, by looking only at the information available in E?

Of course, the complexity of solving such a task will depend heavily on the query
languages that are used to define both Q and the queries in V. A less intuitive parameter
is the assumption on how E was computed from D. In [10], the view may be considered

15

16 CHAPTER 2. STATE OF THE ART

exact, which means that E is exactly the result of computing V on D, that is, E = V(D).
Otherwise, the view is only sound, meaning that E contains answers to V on D, but not
necessarily all of them, that is E ⊆ V(D). In [1], the same possibilities are considered,
and they are respectively called the closed world assumption, where E contains precisely
all the answers to V on D, and the open world assumption, where we only know that E
is contained in V(D). Note that [10] also considers the case where V is arbitrary, that
is, some queries in V might be sound and other exact, but we wont make any use of this
case in our work.

In [10], the authors also consider two other assumptions, which they call closed do-
main assumption and open domain assumption. In the closed domain assumption, it is
additionally assumed that each element of D appears in some tuple of E, whereas the
open domain assumption makes no such claim. In the literature, it is generally assumed
that E does not have to contain all elements of D, and therefore the open domain as-
sumption is the norm. To avoid confusion with the open and closed world assumption, we
will refrain from using these names. We always assume that E does not have the closed
domain restriction. In the table below, we explicitly say that dom(E) = dom(D) when it
is assumed that this is the case.

The approach in both [10] and [1] relates the problem of answering a queries using
views to techniques usually used for querying incomplete databases, as observed in [9].
[10, 1] define the best possible estimation of Q(D) as the certain answers to Q based on E:
the intersection of all Q(D′), for all D′ that are consistent with E.1 Here, D′ is consistent
with E if D′ is a candidate databasse on which V can produce E: that is, V(D′) = E
under the exact view assumption, and V(D′) ⊇ E under the sound view assumption.

The authors of [1] find the data complexity of computing certain answers under both
assumptions for a variety of query and view languages, including conjunctive queries
with or without inequalities, positive queries, first-order queries and Datalog. We have
reported the results that are relevant to our work in Figure 2.1 and Figure 2.2. In [10],
the problem is considered for regular path queries and regular path views, under various
assumptions and for data complexity, expression complexity and combined complexity.
The results can be seen on Figure 2.3.

As we will see in Section 2.2 and throughout all this work, the problem of answering
queries using views is very closely related to the determinacy and rewriting problems.

2.2 The many names of determinacy

Most of this work is dedicated to view-based query determinacy and rewriting. Given a
view V and a query Q, we want to know if, for all databases D, the information extracted
by the view, V(D), is enough to completely determine the answers to the query, Q(D).
However, if we take some time to think about determinacy outside of the database context,
we can restate it as a very natural and fundamental question: can we decide if some given
knowledge implicitly contains more information, and if so, how can we make it explicit?

1In the incomplete database setting, certain answers are usually defined as the intersection of all
Q(D′) for all databases that are a completion of D, the original incomplete database given as input.

2.2. THE MANY NAMES OF DETERMINACY 17

P
P
P
P
P
P
P
P
P

view
query

CQ Datalog FO

CQ PTime PTime Undecidable
Datalog coNP Undecidable Undecidable
FO Undecidable Undecidable Undecidable

Figure 2.1: Data complexity of computing certain answers for various query and view
languages under the sound view assumption, taken from [1].

P
P
P
P
P
P
P
P
P

view
query

CQ Datalog FO

CQ coNP coNP Undecidable
Datalog Undecidable Undecidable Undecidable
FO Undecidable Undecidable Undecidable

Figure 2.2: Data complexity of computing certain answers for various query and view
languages under the exact view assumption, taken from [1].

dom(D) = dom(E)?
Assumption Complexity
on views Data Expression Combined

Yes
Sound coNP coNP coNP
Exact coNP coNP coNP

No
Sound coNP PSpace PSpace
Exact coNP PSpace PSpace

Figure 2.3: Complexity of computing certain answers for regular path queries and views
under various assumptions, taken from [10].

18 CHAPTER 2. STATE OF THE ART

Thus, it is understandable that this question has been considered in many different lights,
even in the database context. In our work, we adopt the information theoretic perspective
of [41, 36, 37]. We say that a view V determines a query Q if, for all databases D and
D′, V(D) = V(D′) implies that Q(D) = Q(D′). Then, a rewriting R of Q using V is a
query that satisfies that for every database D, Q(D) = R(V(D)). [37] also introdues the
notion of completeness of a query language for view-to-query rewritings, stating that a
language L is complete for a query language LQ and a view language LV if, whenever
a query in LQ is determined by a view in LV , then there always exists a rewriting that
is expressible in L. In this section, we give an overview of some of the various related
notions that have been considered so far.

On the semantic level, the first formalization of determinacy can be traced back to
Tarski. In [43], he introduces implicit definability, which defines when a theory implicitly
defines a relation in terms of another set of relational symbols. He further introduces
the notion of completeness for definitions, stating that a logical system L is complete for
definition if, whenever a theory implicitly defines a relation Q in terms of a set of relations
V, then Q can be explicitly expressed as a formula of L using only the symbols in V. As
we can see, this is extremely close to saying that there exists a rewriting of a query Q using
the view V in the language L. Thus, completeness for definitions is extremely similar
to completeness of a query language for view-to-query rewritings. The main difference
between the logical setting of Tarski and the database setting we consider here is that
databases are usually considered to be finite structures, whereas there is usually no such
restriction in the logical setting.

In the database context, the problem of deciding whether a view V determines a query
Q is first mentioned in [34]. Here, the problem is referred to as computing queries from
derived relations. A relational algebra expression R is said to be algebraically derivable
from a set of expressions R1, . . . , Rn if there exists an expression F using the symbols
R1, . . . , Rn that is equivalent to R on every database. In this case, F is called a deriving
expression, which is exactly the analog of a rewriting in our setting. Remark that R being
algebraically derivable from R1, . . . , Rn does not say that R1, . . . , Rn determines R, but
that there exists a rewriting of R using R1, . . . , Rn, which might be stronger. However,
it was observed in [37, 20] that the two notions actually coincide.

Following the same idea, [20] defines the notion of invertibility, saying that a view V
is invertible relative to a query Q if there exists an inverse query Q−1 such that, for every
database, Q(D) = Q−1(V(D)). Remark that this is exactly the same as saying that Q−1

is a rewriting of Q using V. Thus, as said previously, V is invertible relative to Q if and
only if V determines Q.

In [28], determinacy is viewed in terms of distinguishing power. More precisely, it
is said that a set of queries Q1 subsumes a set of queries Q2 if all databases that are
distinguished by Q2 are also distinguished by Q1. By contraposition, if Q1(D) = Q1(D

′),
then Q2(D) = Q2(D

′), for all databases D and D′. Thus, saying that a view V subsumes
{Q} corresponds exactly to saying that V determines Q.

Finally, [12] defines the notion of losslessness. Given a query Q, a view V and a view
instance E, V is said to be lossless with respect to Q relative to E if it is the same to
evaluate Q on any database D such that V(D) = E, or to evaluate the certain answers

2.3. DETERMINACY AND REWRITINGS 19

of Q on E. Intuitively, this means that E contains enough information to make it so that
the certain answers of Q on E coincide with the possible answers of Q on E, and are thus
complete. The authors go further by defining the notion of losslessness abstracted from
a given view instance, by saying that V is lossless with respect to Q if V is lossless with
respect to Q relative to all view instances. In other words, V is lossless with respect to
Q if and only if the certain answers of Q are a rewriting of Q using V.

Note that the notion of losslessness is defined under both the sound or exact view
assumptions, meaning respectively that any query that computes certain answers under
the sound or exact view assumptions, as defined in Section 2.1, is a rewriting of Q using
V. However, it was observed (for instance in [37]), that when Q determines V, then
any query that computes the certain answers of Q under the exact view assumption is a
rewriting of Q using V. Thus, the notion of losslessness under the exact view assumption
coincides with the notion of determinacy.

In this work, we also consider a stronger form of determinacy, called monotone de-
terminacy, defined in [37]. In addition to determinacy, it also requires the existence of
a monotone rewriting of the query using the views. It turns out that losslessness under
the sound view assumption, while intuitively a different notion (it refers to assumptions
on the way views are materialized, and not on the form of the rewritings), coincides
with monotone determinacy. Indeed, it states that any query computing certain answers
under the sound view assumption is a rewriting. However, it can be checked that such
a query is a monotone mapping. Moreover, it can also be checked (we do it formally in
Chapter 5) that when V determines Q in a monotone way, then any query that computes
certain answers under the sound view assumption is a rewriting, which establishes the
equivalence. Note that monotone determinacy has also been considered in [39] under the
name strong determinacy.

We conclude this section by mentioning that the reader should be careful with the
notion of rewriting. In this work, we say that a rewriting is a query R over the schema
defined by the view V such that, for all databases D, Q(D) = R(V(D)). However, this
name can take different meanings in the literature. For instance, in [12, 13, 11], a rewriting
only has to verify that R(V(D)) ⊆ Q(D), and a rewriting such that R(V(D)) = Q(D)
is called an exact rewriting, whereas a rewriting that coincides with certain answers is
called a perfect rewriting. In [35], rewritings follow a different definition in that they
can use relational symbols from both the original schema of the database and from the
schema defined by the view. They are called complete rewritings when they only use
symbols from the view schema.

2.3 Determinacy and rewritings

In this section, we discuss some of the most important results related to the determinacy
and rewriting problems, as well as some of the most important open problems. Following
the comparisons described in Section 2.2, we will restate all these results and problems
in our framework, with our definitions.

Our starting point is the work presented in [37]. First, the authors carefully make

20 CHAPTER 2. STATE OF THE ART

the distinction between determinacy, which is the semantic notion stating that a view
V provides enough information to answer a query Q, and the existence of a rewriting
in a specific language. This distinction will be an important guideline in all our work.
As mentioned in Section 2.2, they also observe that when a view V determines a query
Q, then any query computing the certain answers of Q using V under the exact view
assumption is a rewriting of Q using V. This implies that the results from Section 2.1
immediately translate into upper bounds for the complexity of evaluating rewritings of
a query Q using a view V. Note that we carefully say upper bounds even though the
bounds of Section 2.1 are tight. Indeed, the existence of a hard rewriting for given query
and view languages does not imply that all rewritings of said query should be hard. There
may exists other rewritings that have a lower evaluation complexity.

Following these remarks, [37] provides a series of positive and negative results, for
various query languages LQ and view languages LV . First they show that if either satis-
fiability in LQ or validity in LV is undecidable, then it is undecidable whether a view in
LV determines a query in LQ. As an important corollary, this shows that determinacy is
undecidable when either LV or LQ contains the set of all first-order queries. However, it
is also proved that determinacy is also undecidable for much weaker view and query lan-
guages: indeed, the problem is already undecidable when LV and LQ are the set of unions
of conjunctive queries. The authors then move on to discussing the expressive power that
is required to express rewritings in various cases. They show that, as a consequence of
Craig’s Interpolation theorem, whenever a first-order view determines a first-order query,
then a rewriting can be expressed as a first-order query. However, this only works in
the unrestricted case, where databases are allowed to be infinite. Indeed, in the finite
case, they prove that any language powerful enough to express the rewritings of first-
order queries using first-order views must be Turing complete. However, for queries in
first-order and views in existential first-order, both universal and existential second-order
queries are complete rewriting languages. This is optimal in a sense: [37] proves that
any complete language for rewritings in this case must be able to express all queries in
∃SO∩∀SO, and that this still holds for unions of conjunctive views.

A significant part of [37] discusses the case of monotone determinacy. It is shown that
when a conjunctive view determines a conjunctive query in a monotone way, then there
exists a conjunctive rewriting of the query using the view. Similarly, when both the view
and the query are defined using unions of conjunctive queries, and the view determines
the query in a monotone way, then a rewriting can be expressed as a union of conjunctive
queries. This makes both problems decidable, as it is shown in [35] that the existence of
a CQ (resp. UCQ) rewriting of a CQ (resp. UCQ) query using a CQ (resp. UCQ) view
is decidable, actually NP-complete. Remark that this does not solve the non-monotone
case, as [37] provides an example where a CQ view V determines a CQ query Q and
where no monotone query can be a rewriting of Q using V, which means in particular
that no CQ query can be a rewriting. At this point, [37] leaves two major open problems:
is determinacy decidable for conjunctive views and queries ? What is a good rewriting
language when a conjunctive view determines a conjunctive query ?

These two questions have received quite a bit of attention in both old and recent work.
In [17], the authors identify a case where the NP-complete problem of deciding whether

2.3. DETERMINACY AND REWRITINGS 21

there exists a CQ rewriting of a CQ query using CQ views become polynomial. They
define the notion of query width, which is a generalization of acyclicity: a conjunctive
query has query width 1 if and only if it is acyclic. From that, they prove that testing
whether a CQ query has a CQ rewriting using CQ views is polynomial, provided that
the query has bounded query width and does not use repeated predicates. Their proof
is strongly related to the containment problem for conjunctive queries, for which it is
known that acyclicity implies tractability.

In [3], the author identifies a fragment of conjunctive queries, called CQchain, for which
determinacy is decidable. CQchain is the class of conjunctive queries over a binary schema
whose underlying graphs is a directed simple path and whose endpoints are the only two
free variables. Note that CQchain corresponds to the language that we call single path
queries in Chapter 3. It is shown there that for queries and views defined in CQchain,
determinacy is decidable and rewritings can always be expressed as first-order queries.
Note also that CQchain queries and views retain the property of CQ queries and views
that rewritings are not always monotone, so that there is no hope that CQchain can be a
complete rewriting language in this case. However, if we further restrict the schema to a
single binary symbol, then CQchain becomes almost complete for rewriting, meaning that
for each CQchain view V, there exists only a finite number of CQchain queries that are
determined by V but do not have a CQchain rewriting. It is worth mentioning that the
test for whether a CQchain view V determines a CQchain query Q is also very elegant: it
reduces to checking whether there is an undirect path from x to y in V(πQ), where πQ is
the simple directed path deduced from Q, whose endpoints are x and y.

In [38], the author builds upon the results from [3] by showing that it is decidable
whether a CQchain view determines a CQgraph query, where CQgraph is the class of con-
junctive queries on a binary schema whose underlying graph is connected and that contain
exactly two free variables. In other words, [38] lifts the restriction from [3] on the shape of
the query, by moving from single paths to arbitrary connected graphs. [38] further shows
that when a CQchain view determines a CQgraph query, a rewriting can still be expressed
as a first-order query. Finally, [38] provides several decidable necessary conditions for
a CQgraph view to determine a CQgraph query, but also prove that these conditions are
unfortunately not sufficient.

The determinacy problem for conjunctive queries and views finally finds a partial
answer in the very recent work [27], where it is shown that determinacy is undecidable
in the unrestricted case. In this setting, it is said that a view V determines a query Q if,
for all finite and infinite structures D and D′, V(D) = V(D′) implies that Q(D) = Q(D′).
Of course, if a view determines a query in the unrestricted case, then the view also
determines the query in the finite case. However, the converse does not hold. Indeed, it
was observed in [37] that determinacy in the unrestricted case is recursively enumerable,
whereas determinacy in the finite is co-recursively enumerable. Should both notions
coincide, then both would be decidable, which [27] proved not to be the case. For now,
the question remains open in the finite case.

Aside from the conjunctive case, determinacy has been studied for plenty of other
view and query languages. In [5], the authors identify a fragment of first-order queries
that is well-behaved for determinacy: the guarded-negation first-order queries (GNFO).

22 CHAPTER 2. STATE OF THE ART

They show that GNFO is complete for rewriting of a GNFO query Q using a GNFO
view V, provided that both V and Q are answer-guarded, which means that the free
variables of V and Q occur together in some relation of the schema. The proof technique
goes through showing that GNFO has Craig’s interpolation property. Remark also that
determinacy in this case is decidable: this is a consequence of the fact that determinacy
of a GNFO query using GNFO views can be expressed in GNFO, which is a decidable
logic [6].

The case where either the view or the query is expressed in Datalog has also received
some attention. In [20], it has been proved that determinacy is undecidable for a Datalog
view and a conjuctique query, and similary for a conjunctive view and a Datalog query.
In both cases, the proof relies on the fact that the containment problem is undecidable
for two Datalog queries [42]. In [19], it is further shown that it is undecidable, given a
conjunctive view and a Datalog query, whether there exists a Datalog rewriting of the
query using the view. Furthermore, [1] proves that certain answers of a Datalog query
using a conjunctive view under the sound view assumption is expressible in Datalog.
This implies that in this case, monotone determinacy coincides with the existence of a
Datalog rewriting (as explained in Section 2.2), thus together with [19], it proves that
the monotone determinacy problem of a Datalog query using a conjunctive view is also
undecidable. However, [19] provides an algorithm for computing, given a conjunctive
view and a Datalog query, a Datalog program R over the schema defined by the view
that is maximally contained in Q among all other Datalog program over the same schema.
Thus, if the view determines the query in a monotone way, then this Datalog query R is
a rewriting.

We spend the remaining part of this chapter discussing the case of regular path queries.
It has been extensively studied [10, 11, 12, 13], however the problem of deciding whether
a regular path view determines a regular path query remains open. This question is the
starting point of a large part of this thesis, and of most of Chapter 4 and all of Chapter 5.
We review now what is already known.

The main results of [10] are summarized in Figure 2.3. As already explained at the
beginning of this section, these results immediately translate to upper bounds for the
complexity of evaluating the rewriting of a regular path query determined by a regular
path view. In particular, we can deduce from this results that when a regular path view
determines a regular path query, then there exists a rewriting of the query using the view
that has coNP data complexity, both for general and monotone determinacy.

In [11], the authors specifically consider the problem of answering regular path queries
using regular path views under the sound view assumption. It is already known from
[10] that this task is coNP-complete in data complexity. In [11], the authors provide
another proof of this complexity bound, by showing that regular path query answering
using views has strong connections with the constraint satisfaction problem (CSP). In
particular, they show that computing the certain answers of a regular path query with
respect to a regular path view reduces to the satisfiability of (the negation of) a uniform
CSP. Building on this connection and on the known links between CSP and Datalog [21],
they show how to compute approximations of this CSP in Datalog. More precisely, they
show that, for each given integer n, regular path query Q, and regular path view V, one

2.4. CONCLUSIONS 23

can compute a Datalog program Rn that uses only n+ 2 variables in each rule and such
that for all databases D, Rn(V(D)) is maximally contained in Q(D) among all Datalog
programs that use only n variables in each rule. Of course, none of these programs is in
general equivalent to certain answers, since Datalog has polynomial time data complexity,
whereas computing certain answers is in general coNP-hard (unless PTime = coNP).
However, the main result of Chapter 5 will build on this by showing that, when a regular
path view determines a regular path query in a monotone way, then one of these Datalog
programs is indeed a rewriting.

The determinacy problem is considered again in [12]. It is shown there that it is de-
cidable, actually ExpSpace-complete, whether a regular path view determines a regular
path query in a monotone way. However, [12] also provides an example where a regular
path view determines a regular path query in such a way that there cannot exist any
monotone rewriting. This shows that in this setting, determinacy does not coincide with
monotone determinacy. The determinacy problem for regular path views and queries
remains open for now.

Finally, in [13], the author consider the problem of rewriting a regular expression in
terms of other regular expressions. Although most of their results have a more language
theoretic flavor, some of them apply directly to the determinacy setting. In particular,
they show that the problem of deciding, given a regular path query Q and a regular path
view V, whether there exists a rewriting of Q using V that can be expressed as a regu-
lar path query is 2ExpSpace-complete. [13] also provides a 2ExpSpace algorithm for
computing this rewriting when it exists. Remark that, together with the result from [12]
stating that monotone determinacy is decidable in ExpSpace, this proves that monotone
determinacy does not coincide with the existence of a regular path rewriting. In Chap-
ter 5, Example 5.9, we give an explicit example witnessing this fact. This is to be put in
perspective with the result from [37] which proved that for conjunctive views and queries,
monotone determinacy does coincide with the existence of a conjunctive rewriting.

2.4 Conclusions

We have seen in this chapter that the determinacy world is full of interesting and difficult
problems, many of which are still open today. We want to highlight two of them:

1. The problem of deciding whether a regular path view determines a regular path
query;

2. The problem of finding a low complexity rewriting of a regular path query using a
regular path view, provided that the view determines the query.

In this work, we provide partial answers to both problems. In Chapter 5, we show that
when a regular path view determines a regular path query in a monotone way, then there
exists a Datalog rewriting of the query using the view, which can thus be evaluated with
polynomial time data complexity. In Chapter 6, we extend the result of [3] by showing

24 CHAPTER 2. STATE OF THE ART

how to add disjunctions to the language CQpath used there to defined the views, which is
a first step towards solving the first problem.

We conclude this chapter by highlighting again, as a take-away message, the fact that
the problem of deciding whether a conjunctive view determines a conjunctive query is
still open in the finite case. This is perhaps the most fundamental question of this setting,
for which we unfortunately do not have any new insight.

Chapter 3

Databases and queries

This chapter sets the main definitions that will be used throughout this work. In Sec-
tion 3.1, we formally define databases. We first recall the traditional relational model,
and then move on to graph databases, which are the focus of our work. This also de-
fines all the useful vocabulary related to databases and paths. In Section 3.2, we give a
semantic definition of queries as mappings from databases to sets of answers. We also
give unified definitions and notations for the query languages that will be relevant to our
work. Finally, in Section 3.3, we discuss the query evaluation and query containment
problems, two very common computational tasks related to databases and queries.

3.1 Databases

Databases. A relational schema σ is a finite set of relational symbols of finite arity.
A database D is a finite structure over such a relational schema σ, and is also called
a σ-structure. It consists of a finite set of elements dom(D) = {x1, . . . , xn}, called the
domain of D, and of a set Ia(D) of k-tuples of dom(D) for each symbol a in σ of arity
k, called the interpretation of a in D. The active domain of D, denoted by adom(D), is
the set of elements of dom(D) that additionally appear in some tuple in Ia(D), for some
a. When (x1, . . . , xk) belongs to Ia(D), we simply say that a(x1, . . . , xk) holds in D. The
size of D, denoted by |D|, refers to the number of elements in dom(D). Here, |D| = n.
Finally, if A is a subset of dom(D), we use D[A] to refer to the substructure of D induced
by A, that is, the database whose domain is A, and such that a(x1, . . . , xk) holds in D[A]
if and only if (x1, . . . , xk) is a tuple of elements in A and a(x1, . . . , xk) holds in D.

Example 3.1.

Book
Twelfth Night Shakespeare Play

Nineteen Eighty-Four Orwell Novel
Leaves of Grass Whitman Poetry

A Treatise of Human Nature Hume Essay
The Tempest Shakespeare Play

Author
Shakespeare British

Orwell British
Whitman American
Hume British
Locke British

25

26 CHAPTER 3. DATABASES AND QUERIES

The two tables above represent the content of a database for a fictional library. Its
schema is {Book, Author}, where Book is a symbol of arity 3, and Author is a symbol of
arity 2. The active domain of the database is the set that contains Twelft Night, Nineteen
Eighty-Four, Leaves of Grass, A Treatise of Human Nature, The Tempest, Shakespear,
Orwell, Whitman, Hume, Play, Novel, Poetry, Essay, British and American. Thus, its
size is 15.

The interpretation of Book in the database is the set of triples represented by the first
table, and the interpretation of Author is the set of pairs represented by the second table.
For instance, Book(The Tempest, Shakespeare, Play) holds in the database.

The substructure of this database induced by {The Tempest, Shakespeare, Play, British,
American} is the one below. Notice that Twelfth Night does not appear in it, although it
is related to both Play and Shakespeare, since it is not in the subset. Similarly, the tuple
(Whitman, American) does not appear in the interpretation of Author in the substructure.

Book
The Tempest Shakespeare Play

Author
Shakespeare British

Graph databases. In this work, we focus our attention on graph databases. A graph
database D is simply a database over a binary schema σ, that is a schema in which all
relational symbols are of arity 2. This means that, for each symbol a in σ, Ia(D) is a set
of pairs of elements of D. Hence, D can be interpreted as a directed graph with edges
carrying labels from the finite alphabet σ: the set of nodes of the graph is dom(D), and
for each symbol a in σ, the set of edges of label a of the graph is Ia(D). We adopt here the
graph perspective that gives their name to graph databases. Thus, for two elements x and
y of D, also called nodes, and a symbol a of σ, also called a label, we will interchangeably
say that a(x, y) holds in D, that there is an edge of label a from x to y, denoted x

a
→ y.

Example 3.2. The tables below represent a database for a fictional social network. Re-
mark that all relations are of arity 2, thus it is a graph database.

Father
Cronus Zeus
Cronus Hades
Cronus Hera
Zeus Ares
Zeus Athena

Wife
Rhea Cronus
Hera Zeus

Beats
Zeus Cronus

Athena Ares

We can give a more natural representation of this database as the following graph:

3.1. DATABASES 27

Cronus Rhea

Hades Zeus Hera

Ares Athena

father father father

wife

wife

father father

beats

beats

Paths. In graph databases, we are typically interested in how the nodes of the graph
are linked together, that is, we want to know what the paths of the graph are. A path π
in a graph database D is a finite sequence π = x0a0x1 . . . xm−1am−1xm, in which each xi

is a node of D, each ai is a label in σ, and for all i, a(xi, xi+1) holds in D. x0 and xm are
called the endpoints of π, and we say that π is a path from x0 to xm, which will often
be denoted x0

π
→ xm. The size of π, denoted by |π|, refers to the number of (possibly

repeating) edges in the sequence. Here, |π| = m. The label of π, denoted by λ(π), is the
sequence a0 . . . am−1, seen as a word over the alphabet σ, or equivalently as an element
from the free monoid σ∗. If no node occurs twice in the sequence defining π, we say that
π is a simple path. If x0 = xm, then π is called a cycle, and π is a simple cycle if x0 = xm

is the only repetition. Finally, we will sometimes view π as a graph database itself, whose
nodes and edges are exactly the nodes and edges that occur in the sequence. Remark
that this does not coincide with the substructure of D induced by the nodes of π. In
other words, we do not necessarily have π = D[{x0, . . . , xm}].

Example 3.3. Let D be the graph database from Example 3.2. We explicit some infor-
mation about its paths:

• Cronus
father
−→ Hades is a simple path from Cronus to Hades.

• Rhea
wife
−→ Cronus

father
−→ Zeus

beats
−→ Cronus is a path from Hera to Cronus. It is not

simple because the node Cronus appears twice in it. The length of this path is 3 and
its label is wife · father · beats.

• Cronus
father
−→ Hera

wife
−→ Zeus

beats
−→ Cronus is a simple cycle.

• Consider the path π = Cronus
father
−→ Zeus

father
−→ Athena

beats
−→ Ares. Then π can

be seen as a graph database whose domain is {Cronos,Zeus,Athena,Ares} and
in which the following relations (and only these) hold: father(Cronus,Zeus), fa-
ther(Zeus,Athena), beats(Athena,Ares).

Remark that π 6= D[Cronus,Zeus,Athena,Ares]. Specifically, beats(Zeus,Cronus)
and father(Zeus,Ares) hold in D[Cronus,Zeus,Athena,Ares] but not in π.

• There is no path from Hades to Zeus.

28 CHAPTER 3. DATABASES AND QUERIES

3.2 Queries

Queries. A query Q over a schema σ is a function that maps each database D over σ
to a set of tuples of elements of D, that we simply note Q(D). Note that this is a purely
semantic definition, which is not tied to any specific way of expressing or representing
the query, as there can be many different representations of the same query. Moreover,
a query Q defines, for each database D, what Q(D) should be, but does not state how
to compute it. The question of computing Q(D) from D and the definition of Q is an
algorithmic problem in itself, that will be discussed in Section 3.3.

In this work, we are mostly interested in binary queries, that is queries such that
Q(D) is a set of pairs of elements of D. In this case, Q(D) can also be seen as a binary
relation over the domain of D, which will be useful later on. In general, the size of the
tuples returned by Q is called the arity of Q. We spend the rest of this section defining
the relevant classes of queries that we use.

Queries defined by a formal language. Let L be a formal language over a binary
schema σ, that is a (possibly infinite) set of words of σ∗. We denote by 〈L〉 the query
induced by L. For any graph database D over σ, 〈L〉(D) is the set of pairs (x, y) such
that there exists in D a path π from x to y with λ(π) ∈ L. Conversely, given a query Q
defined by a formal language, we use L(Q) to refer to the set of words defining Q. This
generic definition covers several classical query classes, depending on the properties of L:

• Atomic queries : L contains a single letter a ∈ σ.

• Single path queries - SPQ: L contains a single word w ∈ σ∗.

• Union of single path queries - UPQ: L is a finite set of words in σ∗.

• Regular path queries - RPQ: L is any regular langage over σ. By abuse of notation,
we will not make the distinction between L or a regular expression e describing L.
In this case, we will also use 〈e〉 to refer to 〈L〉.

• Context-free path queries - cfPQ: L is any context-free language over σ.

• (Any language) Path queries : L is any formal language, that is, any subset L ⊆ σ∗.

Example 3.4. Once again, let D be the graph database from Example 3.2. Here are some
example queries and their answers on D:

• 〈beats〉 is an atomic query. On D, it returns (Zeus,Cronus) and (Athena,Ares).

• 〈wife · father · father〉 is a single path query. On D, it returns the pairs (Rhea,Ares)
and (Rhea,Athena), telling us that Rhea is the grandmother of both Ares and Athena.

• 〈father+〉 is a regular path query. It realizes the transitive closure of the father rela-
tion, linking each (arbitrary grand) father with his (arbitrary grand) children. On D,
it returns the pairs (Cronus,Hades), (Cronus,Zeus), (Cronus,Hera), (Cronus,Ares),
(Cronus,Athena), (Zeus,Ares) and (Zeus,Athena).

3.2. QUERIES 29

A significant part of this work deals with the case where σ only contains a single
symbol a, that is σ = {a}. In this case, we can remark that any language L over σ is a
(possibly infinite) set of the form {ak1, . . . , akn, . . .}, where the only relevant information
about L is the length of the words it contains. By abuse of notation and when this is clear
from the context, we will simply write L = {k1, . . . , kn, . . .}. Similarly, we will simply
write 〈k1, . . . , kn, . . .〉 for the query Q = 〈{ak1, . . . , akn, . . .}〉.

Remark 3.5. In an attempt to give a unified presentation for multiple query languages
that occur frequently in related work, we have slightly deviated from the usual vocabulary.
Our terminology relies on the idea that a path query is any query that selects pairs of
nodes based on the existence of a path linking the two nodes and whose label satisfies
some condition. The adjectives then attached to the name of the query languages are
used to restrict the kind of conditions that queries of the languages are allowed to express.
Thus, a regular path query is a query whose associated language has to be regular, instead
of any language. This has the following consequences:

• We call single path queries the class known as chain queries in [3];

• We call unions of single path queries the class known as unions of path queries
in [23];

• The class known as path queries in [3] should not be confused with what our defini-
tion of path queries. In our work, path queries correspond to the most general form
of queries induced by a formal language, whereas in [3], path queries are single path
queries on a single letter schema, that is, queries that select pairs of nodes if they
are linked by a path of a given length.

Queries defined by a logic formula. Let ϕ(x1, . . . , xm) be a logic formula in some
logic class, with free variables x1, . . . , xm. We use 〈ϕ〉 to denote the query induced by ϕ.
Given a database D, 〈ϕ〉(D) is the set of tuples (x1, . . . , xm) of elements of the database
such that ϕ(x1, . . . , xm) holds in D. This covers several query languages, depending on
the logic class to which ϕ belongs, namely depending on which connectives and atoms
are allowed to occur in ϕ. When a query is used as an atom, it should be understood as
a relational symbol whose interpretation is the set of answers to the query over the given
database.

• Conjunctive queries - CQ: ϕ is an existential positive conjunctive formula using
atomic queries as atoms. Allowed connectives are existential quantification (∃) and
conjunction (∧).

• Union of conjunctive queries - UCQ: ϕ is an existential positive formula using
atomic queries as atoms. Allowed connectives are existential quantification (∃),
conjunction (∧) and disjunction (∨).

• First-order queries - FO: ϕ is a first order formula using atomic queries as atoms.
Allowed connectives are all first-order connectives.

30 CHAPTER 3. DATABASES AND QUERIES

• Conjunctive regular path queries - CRPQ: ϕ is an existential positive conjunctive
formula using RPQ queries as atoms.

Example 3.6. Once again, let D be the graph database in Example 3.2. Here are some
examples of the newly introduced query languages:

• Let ϕ1(x, y) = ∃z, father(z, x) ∧ father(z, y) ∧ wife(y, z). Then Q1 = 〈ϕ1〉 is a
conjunctive query. It returns the pairs that correspond to married couples that are
also siblings. On D, it returns the pair (Zeus,Hera).

• Let ϕ2(x) = ∀y,¬(father(x, y) ∧ beats(y, x)) ∧ ∃y, father(x, y). Then Q2 = 〈ϕ2〉 is a
first-order query. It returns all nodes that correspond to fathers that have not been
beaten by one of their children. On D, it returns only Zeus.

• Finally, let ϕ3(x) = ∃y, 〈father+〉(x, y) ∧ 〈beats〉(y, z). Then Q3 = 〈ϕ3〉 is a con-
junctive regular path query. It returns all nodes that correspond to people that have
been beaten by one of their descendants. On D, it returns Cronus.

Datalog. A Datalog query is a set of rules of the form p(x̄) :− p1(x̄1) ∧ . . . ∧ pn(x̄n),
where x̄ and the x̄i’s are tuple of variables, p is a predicate symbol that is internal to the
query, sometimes called an intensional predicate, and the pi’s can either be symbols from
σ, sometimes called extensional predicates in this context, or other intensional predicates
of the query. p(x̄) is called the head of the rule, and p1(x̄1) ∧ . . . ∧ pn(x̄n) is called the
body of the rule. All variables that appear in the head of the rule must also occur in
the body of the rules, and the other variables of the body should be understood as being
existentially quantified. One designated intensional symbol is called the goal of the query.
The arity of the query is defined as the arity of its goal.

Intuitively, a Datalog query can be seen as a set of mutually defined conjunctive
queries. On a given database D, a Datalog query incrementally populates the relations
associated with each of these queries by applying the rules. The answer of the query on D
is the relation associated with its goal, when no more tuple can be added to any relation.
Note that this is well defined, as each rule is monotone, which makes it so that a fixpoint
is always reached in a finite number of steps.

In this work, we will also consider a restricted class of Datalog queries. For two
integers ℓ and k, Datalogℓ,k is the set of Datalog queries of arity r whose rules contain at
most k + r variables, and whose intensional predicates are of arity at most ℓ+ r.

Example 3.7. The typical example of a Datalog query is the “friends of friends” that
implements the transitive closure of a binary predicate, in this example the transitive
closure of the friend relation in an hypothetical social network.

However, we have seen previously that this can easily be expressed as a regular path
query. Here, we give an interesting twist to this example, making it so that it cannot
be expressed in any of the other query languages presented here. The following Datalog
query links all nodes x to potential friends y that are connected through a chain of friends
and additionally ensures that, at each step, each of the potential friends share a common
interest with x:

3.2. QUERIES 31

• pf(x, y) :− friend(x, y)

• pf(x, y) :− pf(x, z) ∧ friend(z, y) ∧ likes(x, t) ∧ likes(y, t)

Consider the following fictional social network:

John

Jack

friend piano

likes

likes

Tom

friend

Lise
friend

likes

climbing
likes

likes

Anna
friend

likes

poetry
likes

likes

On this database, the Datalog query deduces the following facts at the following steps:

1. pf(John,Jack), pf(Jack,Tom), pf(Tom,Anna) and pf(Tom,Lise) by using the first
rule.

2. pf(John,Tom) by using the second rule with z = Jack and t = poetry.

pf(Jack,Lise) by using the second rule with z = Tom and t = piano.

pf(Jack,Anna) by using the second rule with z = Tom and t = climbing.

3. pf(John,Lise) by using the second rule with z = Tom and t = piano.

After step 3, no new fact can be deduced, so the answer to the query is fully defined. In
particular, we do not have pf(John,Anna) since they are not friends and do not share a
common interest. Remark also that we do have pf(Tom,Lise) even though they do not
have a common interest, since they are already friends.

Monotonicity. A query Q is said to be monotone if it defines a monotone mapping
from databases to query answers. In other words, Q is monotone if and only if, for all
databases D and D′, if D ⊆ D′, then Q(D) ⊆ Q(D′). By extension, a query language is
said to be monotone if all queries that belong to the language are monotone.

Remark that, except for first-order queries, all query languages presented here select
tuples based on the existence of some object in the database: a path, a specific tuple or
relation, a combination of such conditions, and so on. Therefore, all these query languages
are monotone. We can also see that first-order queries are not always monotone. Indeed,
remember the first-order query Q2 given in Example 3.6. On the considered database D,
it returns the answer Zeus. Consider a new database D′ that is a copy of D with the
exception that beats(Athena,Zeus) holds in D′. Then D ⊆ D′ but Q2(D

′) = ∅, which
proves that Q2 is not monotone.

This property of query languages will play a key role in Chapter 5.

32 CHAPTER 3. DATABASES AND QUERIES

Notations. For two binary relations R and S, we write R ·S for the following relation:

R · S = {(x, y) | ∃z, R(x, z) and S(z, y)}

Let n be a positive integer, we also use R1 = R, and Rn = Rn−1 · R if n ≥ 2. For two
binary queries Q and P, we define Q ·P as the query that maps a database D to the set of
pairs (x, y) such that there exists z with (x, z) ∈ Q(D) and (z, y) ∈ P(D). This notation
is consistent with the fact that Q · P(D) = Q(D) · P(D), that is, it is the same to look at
the answer of the composed query, or two take each set of answers separately and then
compose them. We similarly define Qn.

Remark that, for all query languages L defined here, with the exception of atomic
queries, it is the case that if Q and P are in L, then Q · P can also be expressed as a
query in L. When this is the case, we say that the query language L is closed under
concatenation.

For instance, if Q and P are unions of single path queries, defined by Q = 〈{u1, . . . , un}〉
and P = 〈{v1, . . . , vm}〉, then Q ·P is equivalent to the union of single path queries defined
as 〈{ui · vj | i ≤ n, j ≤ m}〉.

3.3 Algorithms

3.3.1 Query evaluation

Query evaluation is perhaps the most natural computational task to consider when dealing
with databases and queries. Given a database D and a query Q, it consists in computing
the set of answers to Q in D, that is Q(D). Its decision counterpart is expressed as follows:
given a database D, a query Q and a tuple of elements (x1, . . . , xm) of D, decide whether
(x1, . . . , xm) ∈ Q(D).

Problem : Query evaluation for query language L
Input : A database D, a tuple (x1, . . . , xm) of elements of D

A query Q in language L
Question : Does (x1, . . . , xm) belong to Q(D)?

This problem shows a natural trade-off: for practical purposes, we want to chose a
query language L that has both high expressive power and low evaluation complexity. Of
course, one comes at the cost of the other, so that simple query languages, like atomic
queries, will have linear time query evaluation but very low expressive power, whereas
a powerful language such as conjunctive queries has NP-complete query evaluation. In
this work, we are only interested in the so-called data complexity for query evaluation:
we assume that the query to be evaluated is fixed, and only the database D and the tuple
of elements of D are part of the input. This is in line with the idea that, in practical
applications, the queries are most likely small (for instance because they are manually
typed) whereas databases can be huge (for instance, the whole Web).

3.3. ALGORITHMS 33

All query languages considered in Section 3.2 have PTime data complexity. We prove
it here by showing that Datalog contains all the query languages considered here, except
for First-order queries, and then giving a PTime algorithm for evaluating a Datalog query.
For a finer complexity picture, refer to Figure 3.1 and to the literature [40, 7, 32, 2].

Lemma 3.8. Let Q be a cfPQ or a CRPQ. Then Q can be expressed as a Datalog query.

Proof. Let Q be a cfPQ. Let G = 〈V, P, S〉 be a context-free grammar that recognizes
L(Q). Assume without loss of generality that G is in Chomsky Normal Form. That is,
every rule in G is either of the form A → a, with A ∈ V and a ∈ σ or of the form
A → BC with A,B,C ∈ V . For a variable A ∈ V , we denote by LG(A) the language
produced by G when A is taken as the initial symbol. Thus, L(G) = LG(S).

We define a Datalog program Q′ which contains the following rules:

• A(x, y) :− a(x, y) for all rule X → a of G;

• A(x, y) :− B(x, z) ∧ C(z, y) for all rule A → BC of G;

• S is the goal of Q′.

Let us prove that Q is equivalent to Q′. This is an immediate consequence of the
following claim:

Claim 3.9. Let D be a database. Let A ∈ V . Let x, y be two nodes of D. Then, there
exists a path π from x to y in D such that λ(π) ∈ LG(A) if and only if Q′ produces A(x, y)
on D.

We prove the direct direction by induction over the depth of the derivation in G that
produces λ(π) from A.

• Assume that the derivation is of depth 1. Then λ(π) = a, for some a ∈ σ, and
A → a is a rule of G. Thus A(x, y) :− a(x, y) is a rule of Q′. Since a(x, y) holds in
D, then Q′ produces A(x, y) on D by applying this rule.

• Assume that the derivation is of depth more than 1. Then the first rule used by G
is necessarily of the form A → BC. Thus, there exist two words wb and wc such
that wb ∈ LG(B), wc ∈ LG(C) and λ(π) = wb · wc.

Let z be a node such that x
wb→ z

wc→ y is a path in D. By the induction hypothesis,
Q′ produces B(x, z) and C(z, y) on D. Additionally, since A → BC is a rule of G,
then A(x, y) :− B(x, z) ∧ C(z, y) is a rule of Q′. Thus Q′ produces A(x, y) on D.

We prove the converse direction in a very similar way, by reasoning by induction on
the length of the deduction sequence in Q′ that produces A(x, y). This concludes the
proof of the claim.

Now, let D be a database, and let (x, y) ∈ Q(D). Then, there exists a path π from x
to y in D such that λ(π) ∈ LG(S). Then the claim gives us that Q′ produces S(x, y) on
D. Since S is the goal of Q′, then (x, y) ∈ Q′(D).

34 CHAPTER 3. DATABASES AND QUERIES

Conversely, assume that (x, y) ∈ Q′(D). Then, Q′ produces S(x, y) on D. It follows
from the claim that there exists a path π from x to y such that λ(π) ∈ LG(S). Since S
is the axiom of G, this proves that λ(π) ∈ L(Q), and then that (x, y) ∈ Q(D).

This concludes the proof that Q is equivalent to Q′.
Let now Q be a CRPQ. Then there exists an existential conjunctive positive formula

ϕ(x, y) such that Q = Q(ϕ). Then ϕ is of the form ϕ(x, y) = ∃z1, . . . , zn, L1(s1, t1)∧ . . .∧
Lm(sm, tm), where the si’s and ti’s are variables among x, y, z1, . . . , zn, and the Li’s are
atoms of the formula that represent RPQs Q1, . . . ,Qn.

Let Q′
1, . . . ,Q

′
n be Datalog queries that are respectively equivalent to Q1, . . . ,Qn,

whose existence follows from the first part of the proof. Assume without loss of generality
that the intensional predicates of the Q′

i’s are pairwise distinct. Then it is straightforward
to see that Q is equivalent to the Datalog query Q′ defined as follows:

• Q′ contains all the rules of the Q′
i’s;

• Q′ contains the rule S(x, y) :− S1(s1, t1) ∧ . . . ∧ Sm(sm, tm), where S is a fresh
intensional predicate that does not appear in the Q′

i’s, and the Si’s are the respective
goals of the Q′

i’s;

• the goal of Q′ is S.

This concludes the proof of the lemma.

We now prove that Datalog has PTime data complexity. The proof we give here is
quite naive and elementary. More efficient techniques can be found in the literature, but
they are not the focus of this work. See [2] for reference.

Lemma 3.10. The query evaluation problem for Datalog queries has PTime data com-
plexity.

Proof. Let Q be a fixed Datalog query, and D be a database. We evaluate Q over D in a
bottom-up way as follows:

1. For each intensional predicate A of Q of arity k, we define a set IA(D) of k-tuples
of elements of D. We initialize IA(D) as the empty set. Remark that the size of
IA(D) is at most |D|k, and is thus polynomial in |D|.

2. For each rule of the form A(x̄) :−
∧

i Ai(ȳi)
∧

j aj(z̄j), where A and the Ai’s are
intensional predicates of Q and the aj’s are extensional predicates, for all ȳi ∈ IAi

(D)
and all z̄j ∈ Iaj (D), we add the corresponding x̄ to IA(D). This step takes at most
|D|dk where d is the maximum size of a rule in Q and k is the maximum arity of an
intensional or extensional predicate in Q. Thus this step takes a polynomial time
in |D|.

3. Repeat step 2 until no more new tuple can be added to one of the IA(D). This step
is used at most O(|D|k), where k is the maximum arity of an intensional predicate
in Q.

3.3. ALGORITHMS 35

Data complexity Combined complexity
Atomic queries Linear time Linear time

Single Path queries Linear time PTime
Regular path queries NLogSpace PTime

Context-free path queries PTime PTime
Conjunctive queries LogSpace NP
First-order queries LogSpace PSpace

Conjunctive regular path queries NLogSpace NP
Datalog PTime ExpTime

Figure 3.1: Complexity of the query evaluation problem for some query languages.

4. Return IG(D), where G is the goal of Q.

Altogether, this gives a correct algorithm for evaluating a Datalog query in time polyno-
mial in |D|.

In view of Lemma 3.8 and Lemma 3.10, we can immediately conclude that all query
languages presented in this chapter have PTime data complexity.

3.3.2 Query containment

Query containment is a common static analysis problem that asks the following question:
given two queries Q1 and Q2 in some query language L, is it true that the answers to
Q1 are always contained in the answers to Q2. In other words, can we deduce, for any
database D, that if a tuple (x1, . . . , xm) is in Q1(D), then it necessarily also belong to
Q2(D)?

Problem : Query containment for query language L
Input : Two queries Q1 and Q2 in language L

Question : Is it true that Q1(D) ⊆ Q2(D) for any database D?

The query containment problem is described as a static analysis problem because
it only depends on the definition of Q1 and Q2, the two queries given as input. In
particular, it does not depend on any given database D, and thus can be solved offline.
Remark that, for two path queries Q1 and Q2, the query containment problem coincides
with the containment problem of the two languages L(Q1) and L(Q2).

Lemma 3.11. Let Q1 and Q2 be two path queries. Then, L(Q1) ⊆ L(Q2) if and only if
for all database D, Q1(D) ⊆ Q2(D).

Proof. Assume that L(Q1) ⊆ L(Q2). Let D be a database, and (x, y) ∈ Q1(D). Then
there exists a path π from x to y in D such that λ(π) ∈ L(Q1). Hence, λ(π) ∈ L(Q2),
which implies that (x, y) ∈ Q2(D).

36 CHAPTER 3. DATABASES AND QUERIES

Complexity
Atomic queries Constant time

Single Path queries Linear time
Regular path queries (DFA) PTime
Regular path queries (NFA) PSpace
Context-free path queries Undecidable

Conjunctive queries NP
Conjunctive regular path queries ExpSpace

First-order queries Undecidable
Datalog Undecidable

Figure 3.2: Complexity of the query containment problem for some query languages.

Conversely, assume that for all databases D, Q1(D) ⊆ Q2(D). Let w ∈ L(Q1). Con-
sider the database D that consists of the simple path x0w0x1 . . . xn−1wn−1xn, where n is
the length of w. Then (x0, xn) ∈ Q1(D), which implies that (x0, xn) ∈ Q2(D). Since π
is the only path from x0 to xn, we can deduce that λ(π) ∈ L(Q2), and conclude that
w ∈ L(Q2).

Corollary 3.12. Let C be a class of formal languages over σ and L be the correspond-
ing class of path queries. Then the query containment problem for query language L is
equivalent to the containment problem for C.

This corollary allows us to easily fill a big part of Figure 3.2, by translating known
results from formal language theory. Note that this depends on how the specific language
is represented. This makes a difference in the case of RPQs, The complexity results for
query languages that are not path queries require specific proofs from the literature, see
[16] for conjunctive queries, [22] for conjunctive regular path queries and [40] for first-
order queries. Note that the result for Datalog comes easily from the fact that Datalog
is more expressive that Context-free Path Queries.

Chapter 4

Views and operations on views

This chapter introduces the notion of views and discusses several computational problems
related to views. In Section 4.1, we give a formal definition of views, view instances and
view images. Section 4.2 discusses the computational tasks related to the processing of a
given view instance along with the view definition. We show how these problems relate
to each other, which results in most of them being intractable for the query and view
languages that are relevant to us. More importantly, in Section 4.3, we introduce view-
based query determinacy, seen as a static analysis variant of the problems of Section 4.2.
This last section is of crucial importance for the rest of our work, and should be considered
as preliminaries for Chapter 5 and Chapter 6.

4.1 Views

Let σ and τ be two relational schemas. Then a view V from σ to τ is a set of queries
over σ, one for each symbol of τ . Additionally, for each b ∈ τ , the associated query Qb in
V has the same arity as b.

Given a database D over σ, the view image of D, V(D), is defined as the database
over τ such that:

• its domain is {x | x ∈ x̄ and x̄ ∈ Qb(D), for some b ∈ τ};

• For each b ∈ τ , Ib(V(D)) = Qb(D).

By abuse of notation, we will use the same symbol (typically V) to denote both a symbol
b ∈ τ and its associated query Qb ∈ V. Thus, it is the same to say that V (x, y) holds
in V(D), or that (x, y) ∈ V (D). In other words, the interpretation of (the symbol) V in
V(D), and the answers to (the query) V on D represent the same relation.

Remark that τ is a relational schema, so we can define databases over τ . In this
context, a database over τ will be called a view instance and will be typically denoted by
E. It is important to note that not all view instances are view images. In other words, for
a given database E over τ , there might exist a database D over σ such that E = V(D),
or there might not. It turns out that, depending on the query language used to define

37

38 CHAPTER 4. VIEWS AND OPERATIONS ON VIEWS

V, deciding whether a view instance is a view image can be a hard task, as we will see
in Section 4.2.

When all the queries used to define the a view belong to a certain query language,
we will informally extend the name of the query language to the view. For instance, a
view defined as a set of conjunctive queries will be called a conjunctive view, and a view
defined as a set of first-order queries will be called a first-order view.

Example 4.1. Let D be the database of Example 3.2 that we recall here:

Cronus Rhea

Hades Zeus Hera

Ares Athena

father father father

wife

wife

father father

beats

beats

And consider the first-order view V which consists of the two following queries:

• sibling(x, y) = ∃z, father(z, x) ∧
(

∀z, father(z, x) ⇔ father(z, y)
)

∧ x 6= y

• grandmother(x, y) = ∃z,wife(x, z) ∧ ∃z′, father(z, z′) ∧ father(z′, y)

Then the view image of D is the following database V(D):

Zeus Hades

Hera

sibling

sibling sibling

Ares Athena

Rhea

sibling

grandmother grandmother

Notice that the node Cronus is missing from the view image, despite being used to satisfy
the queries. This kind of missing information will be one of the main challenges when
trying to reason about the view images, as will be seen throughout this work.

Consider now the following view instance E:

Aphrodite Cronus

Rhea

sibling

grandmother

4.2. MATERIALIZED VIEW PROBLEMS 39

Then one can see that E is not actually a view image. Indeed, assume that there exists
a database D′ such that E = V(D′). Then we have (Rhea,Aphrodite) ∈ grandmother(D′).
Thus, there exists z and z′ in D′, such that the following path is in D′:

Rhea
wife
−→ z

father
−→ z′

father
−→ Aphrodite

Since (Aphrodite,Cronus) ∈ sibling(D′), then we also know that father(z′, Cronus) holds
in D′. Thus, the following path is also in D′:

Rhea
wife
−→ z

father
−→ z′

father
−→ Cronus

Hence, (Rhea,Cronus) ∈ grandmother(D′), but grandmother(Rhea,Cronus) does not hold
in E, which is a contradiction. Thus, E cannot be a view image.

While this might look like a toy example, it is actually telling of a phenomemon that
can happen while trying to integrate data as though it was the view of a virtual global
database. This correponds to the local-as-view paradigm, as briefly explained in Chapter 1.
In this case, we can imagine that E was obtained as the composition of two databases,
and it so happens that the first one follows the myth in which Aphrodite is the daughter of
Ouranos, whereas the second one places Aphrodite as the daughter of Zeus. E not being
a view image specifically tells us that these two databases are incompatible.

4.2 Materialized view problems

Assume that we have a view instance E, for a given view V from σ to τ . One natural
question is: can we use E to deduce more information than what is already available in
E? This section discusses some of the most common tasks that are related to reasoning
about view instances. These tasks are called materialized view problems, because they all
work around a given view instance.

4.2.1 Certain answers

The first task we consider is perhaps the most natural: can we get a query Q over σ
answered as if it was asked on a database D from which our view instance E is taken?
There are several ways through which this question has been formalized in the literature.
Here we consider the certain answers perspective, which relates the question to answering
the following queries over τ :

certexactQ,V (E) =
⋂

D | E=V(D)

Q(D)

certsoundQ,V (E) =
⋂

D | E⊆V(D)

Q(D)

The first query is usually referred to as certain answers under the exact view assump-
tion or closed world assumption in the literature [1, 10, 12]. Similarly, the second query is
referred to as certain answers under the sound view assumption or open world assumption.

40 CHAPTER 4. VIEWS AND OPERATIONS ON VIEWS

Let x̄ be a tuple of elements of E such that x̄ ∈ certexactQ,V (E). Then, for all database D
such that V(D) = E, we have x̄ ∈ Q(D). This means that if we want to answer a query Q
on a database D while we only have access to E = V(D), the only guaranteed tuples are
those that appear in certexactQ,V (E). Indeed, if x̄ /∈ certexactQ,V (E), then there exists a database
D′, such that x̄ /∈ Q(D′) and V(D′) = E. This D′ might as well be our initial D, so that
we cannot ensure that x̄ ∈ Q(D).

The situation is the same for certsoundQ,V , except that we only assume that we have access
to a view instance E such that E ⊆ V(D). Thus, a tuple x̄ is certain if and only if it
belongs to Q(D′) for all D′ such that E ⊆ V(D′).

Remark that if there exists no database D such that E = V(D) (respectively, E ⊆
V(D)), then this means that the view instance E is inconsistent for certexactQ,V (respectively,

certsoundQ,V). This corresponds to a degenerate case in which all tuples are certain.

Example 4.2. Let V be the view consisting of the queries father, sibling and grandmother
as defined in Example 4.1. Consider the following view instance E:

Ares

Athena

RheaCronus Zeus sibling

grandmother

grandmother

father

father

father

Let Q be the query 〈wife〉. Then, we can see that (Rhea,Cronus) ∈ certexactQ,V (E). However,

(Rhea,Cronus) /∈ certsoundQ,V (E). Indeed, Rhea is a grandmother, so by definition, she has
to be the wife of a grandfather. In the exact view setting, we know that the only available
grandfather is Cronus, so Rhea must be the wife of Cronus. In the sound view setting,
it could however be the case that Rhea is the wife of some other grandfather of Ares and
Athena, whose node is currently missing from the view instance.

We give a decision version of the problem of answering certain answers as follows:

Problem : Certain answers for query and view languages L and L′

under the exact (resp. sound) view assumption
Input : A query Q in L, a view V in L′, a view instance E,

A tuple (x1, . . . , xm) of elements of E
Question : Does (x1, . . . , xm) belong to certexactQ,V (E)? (resp. certsoundQ,V (E)?)

The complexity of answering this problem naturally depends on languages L and L′

used for defining views and queries. In this work, we will use the following result:

Theorem 4.3 ([10]). Answering certain answers under both sound and exact view as-
sumptions has coNP-complete data complexity for regular path views and queries.

4.2. MATERIALIZED VIEW PROBLEMS 41

Remark 4.4. It actually comes from the proof of Theorem 4.3 that computing certain
answers under both assumptions has coNP-complete data complexity for regular path
views and queries even when the view instances given as input are assumed to be view
images.

As a side result, we also show that computing certain answers under the sound view
assumption has coNP data complexity for regular path queries and any class of path
views L. In order to be constructive, the proof of Proposition 4.5 below only requires the
emptiness problem of the intersection of a language in L with a regular language to be
decidable.

Proposition 4.5. Let V be any path view and Q be a regular path query. Then certsoundQ,V

can be evaluated with coNP data complexity.

Proof. Let V be a any path view, and Q be a regular path query over some alphabet
σ. We prove that certsoundQ,V can be evaluated with coNP data complexity by reducing
it to the case of regular path views. Let A = 〈S, δ, q0, F 〉 be a deterministic minimal
automaton for L(Q). For all V ∈ V, we define Ṽ with

L(Ṽ) = {w ∈ σ∗ | ∃w′ ∈ L(V), δ(·, w) = δ(·, w′)}

and we simply define Ṽ as
Ṽ = {Ṽ | V ∈ V}

Remark now that Ṽ is a regular path view. Let E be a view instance for V. We define
Ẽ as a copy of E where each V relation is replaced by Ṽ . Hence, Ẽ is a view instance for
Ṽ. We now show that:

certsoundQ,V (E) = certsound
Q,Ṽ

(Ẽ)

and thus that it can be evaluated in coNP in the size of Ẽ, which is also the size of E.

• Assume that (u, v) ∈ certsound
Q,Ṽ

(Ẽ). Hence, for all D such that Ṽ(D) ⊇ Ẽ, there

exists a path π from u to v such that λ(π) ∈ L(Q). Let D be a database such that
V(D) ⊇ E. Remark that, for all V ∈ V, L(V) ⊆ L(Ṽ). Hence, Ṽ(D) ⊇ Ẽ. Hence,
there exists a path π in D from u to v such that λ(π) ∈ L(Q), which means that
(u, v) ∈ certsoundQ,V (E).

• Conversely, assume that (u, v) /∈ certsound
Q,Ṽ

(Ẽ). Hence, there exists a database D

such that Ṽ(D) ⊇ Ẽ, but no path from u to v in D satisfies Q. From D, we build a
database D′ as follows:

– Start with D′ as a copy of D.

– For all V ∈ V, for all (x, y) ∈ E, if (x, y) ∈ V , then (x, y) ∈ Ṽ in Ẽ. We pick a
path π in D′ from x to y of label w′ such that w′ ∈ L(Ṽ). Hence, there exists
w ∈ L(V) such that δ(·, w′) = δ(·, w). Then, we add in D′ a simple path from
x to y using only fresh nodes of label w. Hence (x, y) ∈ V (D′).

42 CHAPTER 4. VIEWS AND OPERATIONS ON VIEWS

Remark then that V(D′) ⊇ E. Let π′ be a path from u to v in D′. Then π′ is of
the form π′ = π1µ1π2 . . . πn−1µn−1πn, where each πi is a path that was originally in
D and each µi is a new path using only fresh nodes. Then, for each µi, there exists
a path ρi in D with the same starting and ending nodes and such that δ(·, λ(µi)) =
δ(·, λ(ρi)). Hence, we can define a path π of D as π = π1ρ1π2 . . . πn−1ρn−1πn. Hence,
δ(·, λ(π′)) = δ(·, λ(π)).

Since (u, v) /∈ certsound
Q,Ṽ

(Ẽ), then δ(q0, λ(π)) /∈ F . Hence, δ(q0, λ(π
′)) /∈ F , which

proves that (u, v) /∈ certsoundQ,V (E).

4.2.2 Inverting view images

In this section, we assume furthermore that the view instance E that we are given is
a view image. This means that there exists a database D such that V(D) = E. The
question here is: can we find such a database D?

The following lemma proves that, when V is a regular path view, then for any view
image E, there exists an antecedent database D whose size is polynomial in |E|.

Lemma 4.6. Let V be an RPQ view from σ to τ . Let E be a view instance. If E = V(D)
for some D then E = V(D′), for some D′ of size quadratic in |E|.

Proof. Let V and E be as in the statement of the lemma. We show that if there exists
D such that E = V(D) then there exists a new database D′ of size O(|E|2) such that
V(D′) = V(D). D′ is obtained from D in several steps. First D is “normalized”, without
altering its view, so that nodes not occurring in E appear in only one path linking two
nodes of E. The normalized D turns out to consist of a constant number of disjoint paths
between each pair of nodes of E (where the constant only depends on the size of the view
automaton). Then a Ramsey argument is used to show that these paths can be “cut”
without changing the view. The resulting database D′ thus consists of a constant number
of paths of constant length between each pair of nodes of E. The size of D′ is therefore
O(|E|2). We now formalize this argument.

Assume that there exists a database D such that E = V(D). We prove the lemma by
constructing a new database D′ such that V(D′) = V(D), with |D′| = O(|E|2).

Let A = 〈SV, δV, q
0
V
, FV〉 be the product automaton of all the deterministic minimal

automata of all the regular expressions of the RPQs in V. Let N(V) be the number of
states of A, i.e |SV|.

In what follows, for w ∈ σ∗, δV(·, w) denotes the function from SV to SV sending q
to p such that there is a run of A on w starting in state q and arriving in state p.

We say that a path π from u to v in a database D′ is V-minimal if u, v are elements
of V(D′) and no other nodes of π are in the domain of V(D′).

We first build a database D1 such that :

• V(D1) = V(D);

4.2. MATERIALIZED VIEW PROBLEMS 43

• each node of D1 is in aV-minimal path and no two V-minimal paths in D1 intersect;

• the number of V-minimal paths in D1 is bounded by |V(D)|2 ·N(V)N(V).

D1 is constructed as follows: All elements of V(D) are elements of D1. Moreover, for
each function f : SV → SV and each pair (x, y) of elements of V(D), if there exists a
V-minimal path π from x to y in D and such that f = δV(·, λ(π)), then we add to D1

a copy of π that uses only fresh, non-repeating nodes, except for x and y. Figure 4.1
illustrates the main idea of this construction.

It is now easy to check that D1 has the desired properties. The second bullet holds
by construction. Clearly the number of f : SV → SV is bounded by N(V)N(V) hence
the third bullet holds. It remains to check that V(D1) = V(D). There is an obvious
canonical homomorphism sending D1 to D. Hence V(D1) ⊆ V(D). For the converse
direction, consider a path π witnessing the fact that (u, v) ∈ V(D). Decompose π into
V-minimal paths. By construction, each of these V-minimal paths can be simulated in
D1. Hence (u, v) ∈ V(D1).

From D1 we construct the desired D′ by replacing each V-minimal path of D1 by
another one whose length is bounded by a constant r and without affecting the view
image. Altogether D′ will have a size bounded by r ·|V(D)|2 ·N(V)N(V), hence polynomial
in |V(D)| as desired.

Let r be the Ramsey’s number that guarantees the existence of a monochromatic
3-clique in an r-clique using N(V)N(V) · 2N(V)N(V)

colors.
Consider a V-minimal path π = xa0x1a1 . . . xmamy in D1 such that m > r. For

1 ≤ s < t ≤ m we denote by πs→t the subpath of π that starts at position s and ends at
position t, that is πs→t = xsasxs+1as+1 . . . at−1xt.

To each pair of nodes (xi, xj) in π with i < j, we attribute the color (fij,∆ij) where:

fij = δV(·, λ(πi→j))

∆ij = {f : SV → SV | ∃α, i < α < j and

f = δV(·, λ(πi→α))}

Then, by our choice of r, we know that there exist i < j < k such that fij = fjk = fik
and ∆ij = ∆jk = ∆ik. Let π′ be the path constructed from π by replacing the subpath
πi→k by πj→k.

Let D2 be the database constructed from D1 by replacing π by π′. We now prove that
V(D2) = V(D1). As D2 still has all the properties of D1 listed above, by repeating this
operation until all V-minimal paths have length less than r we eventually get the desired
database D′.

Let (u, v) ∈ V(D1) as witnessed by a path µ in D1. Then µ neither starts nor ends in
an internal node of π as internal nodes do not appear in V(D1). Hence either µ does not
use π or it uses all of it. In the former case, µ witnesses the fact that (u, v) ∈ V(D2). In
the latter, notice that fik = fjk implies that λV(·, λ(π)) = λV(·, λ(π

′)), hence replacing
π by π′ in µ witnesses the fact that (u, v) ∈ V(D2). Altogether we have shown that
V(D1) ⊆ V(D2).

44 CHAPTER 4. VIEWS AND OPERATIONS ON VIEWS

Suppose now that (u, v) ∈ V(D2) as witnessed by a path µ in D2. If µ does not go
through xj (i.e. xj is not an internal node of µ), it is also a path in D1 and (u, v) ∈ V(D1).
If µ goes through xj but does not end between xj and xk we can also conclude that
(u, v) ∈ V(D1) using the fact that fik = fjk. It remains to consider the case when µ ends
with xjaj . . . aβ−1xβ for some β with j < β < k (in particular v = xβ). As ∆ij = ∆jk

there exists α with i < α < j such that δV(·, λ(πi→α)) = δV(·, λ(πj→β)). From this we can
construct a path µ′ in D1 replacing in µ the segment xjaj . . . aβ−1xβ by xiai . . . aα−1xα,
witnessing the fact that (u, xα) ∈ V(D1), a contradiction as xα is not an element ofV(D1).
Altogether we have proved that V(D2) ⊆ V(D1). Hence, V(D2) = V(D1) = V(D).

π1

π2

π3 π4

π5
π6

x1

x2

x3

x4

D :

π1

π2

π3

π3 π4

π4

π5

π5 π6

π6

x1

x2

x3

x4

D1 :

Figure 4.1: Illustration of the transformation from D to D1 in Lemma 4.6. Nodes are
colored white or black depending on whether they appear in V(D) or not.

This reduces the problem of searching for a view inverse to a polynomial search,
and thus provides an NP algorithm. We will see in the next section that it is unlikely
that we can do better, as Lemma 4.7 proves that deciding if a view instance is a view
image is NP hard. Assuming that we can find a view inverse in polynomial time would
however provide the following polynomial time decision procedure for this problem: for
a given view instance E, we look for a view inverse with a timeout corresponding to the
polynomial bound. If the algorithm produces a candidate view inverse D, then it remains
to check that V(D) = E, which successfully proves that E is a view image and can be
done in polynomial time in the size of D, and thus in the size of E. Otherwise, if the
algorithm fails or times out, we can conclude that E is not a view image.

With a more intricate pumping argument, Lemma 4.6 actually extends to conjunctive
regular path views. Thus, for any conjunctive regular path view V and view image E,
there exists a database D such thatV(D) = E and D is of polynomial size in |E|. However,
we will see again in the next section that deciding if a view instance of a context-free view
is a view image is undecidable. Thus, by applying the same reasoning, we can conclude
that there exists no computable bound on the size of a view inverse for a context-free
view image.

4.2. MATERIALIZED VIEW PROBLEMS 45

4.2.3 Checking view images

As we have discussed previously, not all view instances are view images. In this section,
we consider the problem of checking whether a view instance is indeed a view image. In
other words, given a view V and a view instance E, can we decide whether there exists a
database D such that V(D) = E? This question is closely related to that of Section 4.2.2.
The main difference is that the input is not a view image but a view instance, and thus
can be inconsistent, and that we do not need to produce a view inverse, but only checks
that it exists.

Problem : View checking for view language L
Input : A view V in L, a view instance E

Question : Does there exist D such that V(D) = E?

In this section, we will mainly consider data complexity, by assuming that V is fixed.
We start by showing that the problem has NP-complete data complexity for regular path
views.

Lemma 4.7. The complement of certain answers for regular path queries and views under
the exact view assumption reduces to view checking for regular path views.

Proof. Let V be a regular path view and Q be a regular path query over a schema σ.
From V and Q, we build a view V′ over σ′ = σ ∪ {s} ∪ {e} as follows:

V′ = V ∪ {〈s〉 ·Q · 〈e〉} ∪ {〈s〉} ∪ {〈e〉}

Let E be a view instance for V and (x, y) be a pair of elements of E. We now build a
view instance E′ for V′ as follows:

• E′ contains all the nodes and edges of E;

• E′ contains two fresh nodes start and end;

• 〈s〉(start, x) holds in E′;

• 〈e〉(y, end) holds in E′;

• the interpretation of 〈s〉 ·Q · 〈e〉 is empty in E′.

We now prove that (x, y) /∈ certexactQ,V (E) if and only if E′ is a view image for V′, which
will conclude the proof.

Assume that (x, y) /∈ certexactQ,V (E). Then there exists a database D such thatV(D) = E
and (x, y) /∈ Q(D). Consider the database D′ that is a copy of D except that it contains
two additional nodes start and end such that s(start, x) and e(y, end) hold in D′. Then
it is immediate that V′(D′) = E′, which implies that E′ is a view image for V′.

Assume that E′ is a view image for V′. Then there exists a database D′ such that
V′(D′) = E′. Remark that (x, y) /∈ Q(D′), otherwise 〈s〉 · Q · 〈e〉(start, end) would hold
in E′. We define D as the projection of D′ over schema σ (that is, we remove the s and
e edges from D). Then, it is immediate to check that V(D) = E, which proves that
(x, y) /∈ certexactQ,V (E).

46 CHAPTER 4. VIEWS AND OPERATIONS ON VIEWS

We know from Theorem 4.3 that the certain answers have coNP-complete data com-
plexity. From this, Lemma 4.6 and Lemma 4.7, we easily deduce that view checking for
regular path views is NP-complete.

Corollary 4.8. View checking for regular path views has NP-complete data complexity.

Remark 4.9. The proof of Lemma 4.7 is actually quite modular. It does not use specific
properties of regular path views. For the proof to apply, we only need the considered view
language L to have the following properties:

• L contains atomic queries;

• L is closed under concatenation;

• Queries in L are preserved by extension of the schema, and addition of edges using
the new symbols.

While the first two properties are usually given for any interesting class of path queries,
the last property is not that natural. It is true of all classes considered in Chapter 3.
However a query that cares about distances between nodes, while disregarding their labels
would not, for instance, have this property.

We deduce from this remark that the bound for regular path views also holds for
conjunctive regular path views:

Corollary 4.10. View checking for conjunctive regular path views has NP-complete data
complexity.

We conclude this section by showing that the problem becomes undecidable for
context-free path queries. A simple argument shows that it has undecidable combined
complexity:

Lemma 4.11. View checking for context-free path views has undecidable combined com-
plexity.

Proof. We prove this by reduction from the universality problem for context-free lan-
guages. Let L be a context-free language over a schema σ. Let $ be a fresh symbol that
does not appear in σ. Let V = {V1, V2}, where V1 = 〈$〉 · 〈L〉 · 〈$〉 and V2 = 〈$〉 · 〈σ∗〉 · 〈$〉.
Finally, let E be the view instance that contains a single pair (x, y) in V2 and no pair in
V1. Then there exists D such that V(D) = E if and only if L is not universal over σ.

• Assume that there exists a database D such that V(D) = E. Then there exists a
path π from x to y such that λ(π) ∈ L(V2). Hence there exists w ∈ σ∗ such that
λ(π) = $ · w · $. However, λ(π) /∈ L(V1). Hence w /∈ L and L is not universal.

• Conversely, assume that L is not universal. Then there exists w ∈ σ∗ such that
w /∈ L. Then it is easy to check that the database D consisting of a simple path
labeled by $ · w · $ satisfies V(D) = E.

4.2. MATERIALIZED VIEW PROBLEMS 47

A more intricate argument shows that undecidability already holds for a fixed view
definition V.

Lemma 4.12. View checking for context-free path views has undecidable data complexity.

Proof. Let σ = {(, ; ,), a, b, $, 1}. Let σ be a copy of σ with fresh symbols. For α ∈ σ,
we denote by α the corresponding symbol in σ. For w a word, w̃ denote the word
corresponding to w read from right to left. V consists of queries that reveal each symbol
in σ, that is, for all α ∈ σ, V contains a query Vα = 〈α〉. Additionally, V contains the
queries Vu, Vv, V

′
u, V

′
v , Vg and Vc defined by the following equations:

L(Vu) =

{

$ · w · $ · (i1;v1;u1) . . . (in;vn;un) · $ |
w, uk, vk ∈ {a, b}∗, ik ∈ 1∗, u1 · . . . · un = w̃

}

L(Vv) =

{

$ · w · $ · (i1;v1;u1) . . . (in;vn;un) · $ |
w, uk, vk ∈ {a, b}∗, ik ∈ 1∗, v1 · . . . · vn = w̃

}

L(V ′
u) =

{

$ · w · $ · (i1;v1;u1) . . . (in;vn;un) · $ |
w, uk, vk ∈ {a, b}∗, ik ∈ 1∗, u1 · . . . · un 6= w̃

}

L(V ′
u) =

{

$ · w · $ · (i1;v1;u1) . . . (in;vn;un) · $ |
w, uk, vk ∈ {a, b}∗, ik ∈ 1∗, v1 · . . . · vn 6= w̃

}

L(Vg) =

{

$ · (u1; v1; i1) · . . . · (un; vn; in) · $ · σ∗ · $ · σ∗ · (i′;v′;u′) |
uk, vk ∈ {a, b}∗, ik ∈ 1∗, u′, v′ ∈ {a, b}∗, i′ ∈ 1∗, i′ > in

}

L(Vc) =







$ · (u1; v1; i1) · . . . · (un; vn; in) · $ · σ∗ · $ · σ∗ · (i′;v′;u′) |
uk, vk ∈ {a, b}∗, ik ∈ 1∗, u′, v′ ∈ {a, b}∗, i′ ∈ 1∗,

∃k, ik = ϕ(i′), uk 6= ϕ(ũ′) or vk 6= ϕ(ṽ′)







where ϕ is the function that maps each symbol in σ to the corresponding symbol in σ.
One can check that all these languages are actually context-free languages.
We now prove that, given a view instance E for this specific view V, it is undecidable

whether there exists a database D such that V(D) = E. We prove this by reduction from
the Post Correspondence Problem (PCP). Let (ui, vi, i)0<i≤n be an instance of PCP over
{a, b}, where the third argument explicitly gives the index of each pair. We build the
following view instance E:

x0 x1

V$ V(“Vu1” V; “Vv1” V; V1

x2

V)

xn

V(“Vun” V; “Vvn” V; V n
1

xn+1

V)

xend

Vu, Vv

PCP encoding

solution encoding

48 CHAPTER 4. VIEWS AND OPERATIONS ON VIEWS

We now show that there exists D such that V(D) = E if and only if the PCP instance
is satisfiable. Intuitively, E consists of two parts. The first part, from x0 to xn+1 is the
encoding of the PCP instance. It uses letters from σ that are all revealed by the view.
All tuples are simply enumerated in the natural order, where the ith tuple is encoded
between xi and xi+1. The dashed arrows Vui

and Vvi represent the correct succession of
Va and Vb that naturally encode ui and vi, whereas the V

i
1 part is the unary encoding of i,

the index of the tuple. The second part of the instance states the existence of a solution
for this instance, and uses “hidden” letters from σ. Vu and Vv states that there exists a
solution, and the fact that all other views are empty checks that this solution is correct.

• Assume that there exists a database D such that V(D) = E. Then there exists a
path π from xn+1 to xend such that λ(π) ∈ L(Vu). Hence, this path is of the form
$ · w · $ · (i1;v

′
1;u

′
1) . . . (im;v

′
m;u

′
m) · $, where w is a word in σ

∗ and u′
1 . . . u

′
m = w̃.

Remark that is also holds that v′1 . . . v
′
m = w̃, otherwise λ(π) ∈ V ′

v , which would
imply that (xn+1, xend) ∈ V ′

v(D), and lead to a contradiction.

Hence, u′
1 . . . u

′
m = v′1 . . . v

′
m. It remains to show that each (ii;v

′
i;u

′
i) is an encoding

of the mirror of some tuple in the PCP instance, which would imply a solution as
ũ′
m . . . ũ′

1 = ṽ′m . . . ṽ′1. In other words, u|im| . . . u|i1| = v|im| . . . v|i1|.

Assume that one of the (ii;v
′
i;u

′
i) is not the mirror of some tuple encoded in the

first half of the instance. Remark that |ii| ≤ n. Otherwise, there exists a path
whose label is in L(Vg), which leads to a contradiction. Hence, either u′

i 6= ũ|ii| or
v′i 6= ṽ|ii|. Both cases lead to the existence of a path whose label is in L(Vc), and
thus to a contradiction.

• Assume that there exists a solution i1 . . . im to the PCP instance. Then the database
D that consists of the following simple path is such that V(D) = E:

$(u1; v1; 1) . . . (un; vn; 1
n)$ui1

. . .uim$(1
im;ṽim;ũim) . . . (1

i1;ṽi1
;ũi1

)$

where ui and vi simply represent the corresponding ui and vi written using a and
b instead of a and b.

4.2.4 View update

We have seen in Section 4.2.3 that checking whether a view instance is actually a view
image is a hard problem. In this section, we consider a related question, formalized as
the view update problem, which has been for instance considered in [26, 4, 18, 25]. In
the view update setting, we start with a view image E. We are then asked if E is still a
view image after some update, namely after the addition or deletion of an edge in E. It
is clear that this problem is at most as hard as the view checking problem, as one could
just ignore the additional information provided by the update process and just try and
check the view instance E that results from it. Unfortunately, we prove in this section
that it is actually just as hard for the relevant query languages.

4.2. MATERIALIZED VIEW PROBLEMS 49

For a view V and V ∈ V we define addV as the function that maps a view instance E
and a tuple of elements x̄ of E of same arity as V to a copy of E in which the interpretation
of V also contains the tuple x̄. Similarly, we define delV (E, x̄) as the copy of E in which
the tuple x̄ is not in the interpretation of V .

Lemma 4.13. There exists a regular path view V such that, given a view image E,
V ∈ V and two nodes x, y in E, it is NP-complete to decide whether addV (E, x, y) is a
view image. It is also NP-complete to decide whether delV (E, x, y) is a view image.

Proof. Both upper bounds come directly from the results for the view checking problem.
We prove the lower bounds by reduction from the complement of certain answers for
regular path queries and views under the exact view assumption. This proof is very
similar to the proof of Lemma 4.7, but additionally uses Remark 4.4.

Let V be a regular path view and Q be a regular path query over some schema σ, for
which certexactQ,V has coNP-hard data complexity, even when restricted to view images.

Case 1: addV . We define σ′ = σ ∪ {s} ∪ {e} ∪ {i}, and a view V′ over σ′ as follows:

V′ = V ∪ {〈s〉 ·Q · 〈e〉} ∪ {〈s〉} ∪ {〈e〉} ∪ {〈i〉}

Let E be a view image for V and (x, y) be a pair of elements of E. We build a view
instance E′ as follows:

• E′ contains all the nodes and edges of E;

• E′ contains two fresh nodes start and end;

• 〈s〉(start, x) holds in E′;

• 〈i〉(end, end) holds in E′;

• the interpretation of 〈e〉 is empty in E′;

• the interpretation of 〈s〉 ·Q · 〈e〉 is empty in E′.

It is straightforward to check that E′ is actually a view image. Indeed, let D be a database
such that V(D) = E. Then, by adding two nodes start and end to D as well as the edges

start
s
→ x and end

i
→ end, we easily get a database D′ such that V′(D′) = E′.

We now claim that (x, y) /∈ certexactQ,V (E) if and only if add〈e〉(E, y, end) is a view image
for V′. The proof of this claim goes exactly as the proof for Lemma 4.7.

Case 2: delV .
We define σ′ = σ ∪ {s} ∪ {e} ∪ {q}, and a view V′ over σ′ as follows:

V′ = V ∪ {〈s〉 · (Q ∪ 〈q〉) · 〈e〉} ∪ {〈s〉} ∪ {〈e〉}

Let E be a view image for V and (x, y) be a pair of elements of E. Once again, we
build a view instance E′ as follows:

• E′ contains all the nodes and edges of E;

50 CHAPTER 4. VIEWS AND OPERATIONS ON VIEWS

• E′ contains two fresh nodes start and end;

• 〈s〉(start, x) holds in E′;

• 〈e〉(y, end) holds in E′;

• (〈s〉 · (Q ∪ 〈q〉) · 〈e〉)(start, end) holds in E′.

Once again, we can check that E′ is a view image for V′. Indeed, let D be a database
such that V(D) = E. Then, by adding two nodes start and end to D as well as the edges

start
s
→ x, y

e
→ end and x

q
→ y, we easily get a database D′ such that V′(D′) = E′.

We now claim that (x, y) /∈ certexactQ,V (E) if and only if del(〈s〉·(Q∪〈q〉)·〈e〉)(start, end) is a
view image forV′, with the proof of this claim being once again the same as in Lemma 4.7.

Corollary 4.14. There exists a conjunctive regular path view V such that, given a
view image E, V ∈ V and two nodes x, y in E, it is NP-complete to decide whether
addV (E, x, y) is a view image. It is also NP-complete to decide whether delV (E, x, y) is a
view image.

Remark 4.15. The proof of Lemma 4.12 can be adapted to show that both view update
questions are undecidable for context-free views. Indeed, by keeping all the notations from
that proof, recall that the hard instance had the following form:

x0 x1

V$ V(“Vu1” V; “Vv1” V; V1

x2

V)

xn

V(“Vun” V; “Vvn” V; V n
1

xn+1

V)

xend

Vu, Vv

PCP encoding

solution encoding

Consider a copy E′ of this view instance without the Vv edge in the end. It is imme-
diate to check that E′ is a view image as it now only requires the solution encoding to
conform to the left part of the problem. Hence, the hard instance can be expressed as
addVv(E

′, xn+1, xend), where E′ is a view image, which proves that view update under ad-
dition is undecidable.

Similarly, consider a copy E′′ which contains a Vg edge. This edge allows the solution
encoding to contain arbitrary subwords that were not given in the problem description,
and thus E′′ is a view image. Once again, removing this edge yields the hard instance,
which proves that view update under deletion is undecidable.

4.3. VIEW-BASED QUERY DETERMINACY 51

4.3 View-based query determinacy

4.3.1 Definition

In Section 4.2, we have worked with materialized view problems, that is, problems where
a view instance or a view image was given as input, along with its view definition. On
the contrary, the problem that we discuss in this section and which is at the heart of our
work is a static analysis problem. This means that we are not given a specific database
D or a specific view instance E to work with. Instead, we are only given a view V and
a query Q and we are asked to deduce facts and properties about their behavior offline,
that is, independently of a specific database.

Determinacy. Query determinacy is a notion that specifies when a view V always
provide enough information to answer a query Q. When that is the case, we say that
V determines Q, and write V ։ Q. This means that, for any database D, Q(D) can
always be computed by looking only at E = V(D). This naturally implies that Q(D)
only depends on V(D) and not on the particular D that yields V(D). In other words, for
any database D′ such that V(D′) = V(D), we also have Q(D) = Q(D′). Thus, we can
formally define determinacy as follows:

Definition 4.16 (Determinacy). We say that a view V determines a query Q if :

∀D,D′, V(D) = V(D′) ⇒ Q(D) = Q(D′)

Remark that determinacy implies a functional dependency from view images to query
answers: there exists a function f from view images to sets of answers such that, for any
database D, f(V(D)) = Q(D). We call f the function induced by Q using V. Provided
that Q and V are computable functions, then f is also computable. Indeed, for a given
view image E, a very naive algorithm for computing f consists in enumerating all possible
databases until we find a database D such that V(D) = E, and then evaluating Q on D.
This process is guaranteed to terminate, as E is assumed to be a view image, and thus
has a view inverse.

Rewritings. Let V be a view from a schema σ to a schema τ , and Q be a query over σ
such that V determines Q. Let f be the function induced by Q using V. A rewriting of
Q using V is a query R over τ that coincides with f on view images: for all view images
E, R(E) = f(E), or alternatively, for all databases D, R(V(D)) = f(V(D)) = Q(D).
The intuition behind this definition is that, in order to evaluate Q on a database D, it
is enough to evaluate R on V(D). Thus we have rewritten Q, a query over σ, as a new
query R over τ .

Remark that the only requirement on R is its evaluation on view images. As we have
seen previously, not all databases over τ (that is, not all view instances) are view images.
This means that two queries R1 and R2 might take different values on view instances
that are not view images, and still be rewritings of Q using V, provided that they agree
with f on view images. Thus, there are possibly many rewritings of Q using V. This is

52 CHAPTER 4. VIEWS AND OPERATIONS ON VIEWS

to put in perspective with the fact that f is unique. This is illustrated on the following
example.

Example 4.17. Consider V = {V1, V2} with V1 = 〈σ3〉 and V2 = 〈σ4〉 testing for the
existence of a path of length 3 and 4, respectively. Let Q = 〈σ5〉 be the query testing for
the existence of a path of length 5.

It turns out that V determines Q [3]. This is not immediate to see but the first-order
query R = 〈ϕ〉 is a rewriting of Q using V, with ϕ defined as follows:

ϕ(x, y) = ∃z (V2(x, z) ∧ ∀z′ (V1(z
′, z) ⇒ V2(z

′, y)))

Let us prove that, for all database D, Q(D) = R(V(D)):

• Assume that (x, y) ∈ Q(D). Then there exists a path π from x to y in D such that
|π| = 5. Let z be the fourth successor of x along this path. Then (x, z) ∈ V2(D),
and there is an edge from z to y. Let z′ be any node such that (z′, z) ∈ V1(D). Then
there is a path of length 3 from z′ to z, which implies that there is a path of length
4 from z′ to y. Thus (z′, y) ∈ V2(D), which proves that ϕ(x, y) holds in V(D).

• Conversely, assume that (x, y) ∈ R(V(D)). There exists z in V(D) such that
V2(x, z) holds in V(D) and for all z′ in V(D), V1(z

′, z) implies V2(z
′, y). Since

V2(x, z) holds in V(D), then there exists a path of length 4 from x to z in D. Let
z′ be the successor of x along this path. Thus (z′, z) ∈ V1(D), which implies that z′

is a node of V(D) and that V1(z
′, z) holds in V(D). Thus, V2(z

′, y) holds in V(D).
Finally, there is a path of length 1 from x to z′ and a path of length 4 from z′ to
y in D. Altogether, this implies that there is a path of length 5 from x to y in D,
which proves that (x, y) ∈ Q(D).

Now, consider the first-order query R′ = 〈ϕ′〉, with ϕ′ defined as follows:

ϕ′(x, y) = ϕ(x, y) ∧ ∃t V1(x, t)

It’s easy to adapt the previous proof to show that R′ is also a rewriting of Q using V.
Indeed, if E is a view image, as soon as V2(x, z) holds for two nodes x and z of E, then
there exists a node t such that V1(x, t) also holds, which satisfies the additional condition
in ϕ′. This proves that R and R′ agree on view images, which should be expected, as they
are both rewritings of Q using V. However, R and R′ can disagree on view instances that
are not view images, and they actually do. Consider the instance E that consists of a
single edge V2(x, y). Then (x, y) ∈ R(E) but R′(E) = ∅.

These definitions give rise to the determinacy and rewriting problems. The determi-
nacy problem is the problem of deciding, given a view V and a query Q, whether V
determines Q. Its complexity depends of course on the class of query languages from
which V and Q are taken:

Problem : Determinacy for query and view languages L and L′

Input : A query Q in L, a view V in L′

Question : Does V determine Q?

4.3. VIEW-BASED QUERY DETERMINACY 53

The rewriting problem is the problem of finding a rewriting of Q using V, for a query
Q and a view V such that V determines Q. This problem has several different aspects.
At its core, it is just asking to design an algorithm that maps view instances E to sets of
tuples of E and implements the function f induced by Q using V on view images: if E is
a view image, then the algorithm should return f(E). Then, provided that we know how
to construct such an algorithm, we are looking for one that has the lowest possible (data)
complexity. Finally, we ask the question of whether this algorithm can be expressed in a
good query languages, namely one that enjoys low evaluation complexity.

All these questions, about both the determinacy and rewriting problems, will occupy
the rest of this work. In the remainder of this chapter, we give some side results about
both problems before moving on, in Chapter 5 and Chapter 6, to our main contributions.

4.3.2 Determinacy problem

As we have seen in Chapter 2, the determinacy problem is only solved in very specific
cases. More importantly, its decidability status is still open for regular path queries and
views. In this section, we show that it is undecidable for conjunctive regular path views
and for context-free path views, and that this is already the case even when the query
is assumed to be a regular path query. These two undecidability results emphasize that
regular path queries and views are likely to be the crucial question for determining the
decidability frontier.

Proposition 4.18. Given a context-free path view V and a regular path query Q, it is
undecidable whether V determines Q.

Proof. We prove this by reduction from the universality problem for context-free lan-
guages. Let L be a context-free language over some alphabet σ. Let $ be a fresh symbol
that does not appear in σ. Let V = {V } where V is defined by L(V) = $ · L · $. Let Q
be defined by L(Q) = $ · σ∗ · $. Then V determines Q if and only if L is universal over σ.

• Assume that L is universal. Then Q = V and it is easy to check that R = V is a
rewriting of Q using V.

• Conversely, assume that L is not universal. Then there exists w ∈ σ∗ such that
w /∈ L. Consider the database D consisting of a simple path labeled by $ ·w ·$, and
the empty database D′. Then V(D) = ∅ = V(D′), but Q(D) contains the first and
last node of the path, whereas Q(D′) is empty. Hence, V does not determine Q.

Proposition 4.19. Given a conjunctive regular path view V and a regular path query Q,
it is undecidable whether V determines Q.

Proof. We prove this by reduction from the word problem for graph databases.

54 CHAPTER 4. VIEWS AND OPERATIONS ON VIEWS

Problem : Word problem for graph databases
Input : A list of pairs (ui, vi)0<i≤n, a pair (u, v),

where u, v and ui, vi, for every i, are words over σ, viewed as RPQs
Question : Is the following statement true?

For every graph database D, if ∀i, ui(D) = vi(D), then u(D) = v(D)

A straightforward reduction from the word problem for finite semigroups shows:

Lemma 4.20. The word problem for graph databases is undecidable.

Proof. We prove this by reduction from the word problem for finite semigroups. This
problem has the same input as the word problem for graph databases but asks whether
for all semigroup S and all homomorphism h from σ∗ to S such that h(ui) = h(vi) for all
i, it is the case that h(u) = h(v).

We now prove that any input is accepting for the word problem for finite semigroups
if and only if it is accepting for the word problem for graph databases.

1. Assume that the input is accepting for the word problem for finite semigroups. Let
D be a graph database such that for all i, ui(D) = vi(D). From D, we compute the
semigroup SD and the homomorphism h : σ∗ → SD as follows:

• The elements of SD are the set of pairs w(D) for all w ∈ σ∗. As D is finite SD

is finite.

• Let x and y be two elements of SD. Let u, v ∈ σ∗ such that x = u(D) and
y = v(D). Then x · y is defined as u · v(D). It is easy to check that this
operation is associative and well defined (i.e. does not depend on the specific
choice of u and v).

• For all α ∈ σ we set h(α) = α(D). Hence for all u ∈ σ∗ we have h(u) = u(D).

By construction we therefore have for all i, h(ui) = h(vi). Hence, h(u) = h(v),
which implies that u(D) = v(D).

2. Assume that the input is accepting for the word problem for graph databases. Let
S be a finite semigroup, and h an homomorphism from σ∗ to S, such that, for all
i, h(ui) = h(vi). From S and h, we define the graph database Dh as follows:

• The sets of nodes of Dh is h(σ+)∪{ε}. This set is finite since h(σ+) is a subset
of S.

• Let x and y be two nodes of Dh. Then there is an edge α from x to y if either
x = ε and y = h(α) or x 6= ε and x · h(α) = y.

Assume that (x, y) ∈ ui(Dh). Then either x = ε, hence y = h(ui) = h(vi) and
(x, y) ∈ vi(Dh), or x · h(ui) = y, which implies that x · h(vi) = y and (x, y) ∈
vi(Dh). Hence, ui(Dh) = vi(Dh) for all i and therefore u(Dh) = v(Dh). Hence,
(ε, h(u)) ∈ v(Dh), which implies that there is a path v from ε to h(u) and thus that
h(u) = h(v).

4.3. VIEW-BASED QUERY DETERMINACY 55

Let (ui, vi)0<i≤n and (u, v) be an input for the word problem. Let σ′ be a copy of σ
using only fresh symbols. For each α ∈ σ, we use α′ to denote the corresponding symbol
in σ′. We define the following query and view:

• Q is the RPQ defined by L(Q) = {u, v′} where v′ is a copy of v using symbols of
σ′.

• For all α ∈ σ, Vα is a query of the view defined by the RPQ Lα = {α, α′}.

• For all i, Vi is also a query of the view defined by the RPQ Li = {ui, v
′
i}, where v′i

is a copy of vi using symbols of σ′.

• For all α, β ∈ σ, Tα,β is a query of the view defined by the CRPQ: α(x, y) ∧
∃z, t β ′(z, t).

• For all α, β ∈ σ, T ′
α,β is a query of the view defined by the CRPQ: α′(x, y) ∧

∃z, t β(z, t).

We now prove that V = {Vα, Vi, Tα,β, T
′
α,β | α, β ∈ σ, 0 < i ≤ n} determines Q if and

only if the input is accepting for the word problem for graph databases.

1. Assume that the input is accepting for the word problem for graph databases. Let
D and D′ be two graph databases such that V(D) = V(D′). Consider first the case
where D uses symbols from both σ and σ′, then Tα,β and T ′

α,β reveal D entirely,
which implies that D = D′, and thus Q(D) = Q(D′). Similarly, if both D and D′ use
only symbols from σ, then Vα reveals D entirely ensuring that D = D′. It remains
to consider the case where D only uses symbols from σ and D′ only uses symbols
from σ′. Notice that, since Vα(D) = Vα(D

′), then D and D′ are isomorphic (by
renaming each α to α′).

Let (x, y) ∈ ui(D). Hence, (x, y) ∈ Vi(D), which implies that (x, y) ∈ Vi(D
′),

and finally that (x, y) ∈ v′i(D
′). By isomorphism (x, y) ∈ vi(D). Similarly, we

can show that (x, y) ∈ vi(D) implies (x, y) ∈ ui(D). Hence, u(D) = v(D). Let
(x, y) ∈ Q(D). Then, (x, y) ∈ u(D), which implies that (x, y) ∈ v′(D′), and thus that
(x, y) ∈ Q(D′). A similar reasoning also gives the converse, and we can conclude
that V determines Q.

2. Assume that V determines Q. Let D be a graph database over σ that satisfies
the condition for the word problem. Let D′ be the copy of D given by renaming
the symbols in σ by the corresponding symbols in σ′. Remark now that V(D) =
V(D′). Indeed, Vα(D) = Vα(D

′) is given by the fact that D′ is a copy of D over
σ′. Vi(D) = Vi(D

′) is given by the fact that D satisfies the condition for the word
problem. Finally, Tα,β(D) = Tα,β(D

′) = T ′
α,β(D) = T ′

α,β(D
′) = ∅ comes from the

fact that D (resp. D′) uses only symbols from σ (resp. σ′).

Since V determines Q, this implies that Q(D) = Q(D′). Let (x, y) ∈ u(D). Then
(x, y) ∈ Q(D), which implies that (x, y) ∈ Q(D′). Hence, (x, y) ∈ v′(D′), and since

56 CHAPTER 4. VIEWS AND OPERATIONS ON VIEWS

D′ is a copy of D, this yields (x, y) ∈ v(D). A similar reasoning also gives the
converse, and we can conclude that the input is accepting for the word problem for
graph databases.

4.3.3 Rewriting problem

In this section, we consider the rewriting problem in the following way: we assume given
a view V and a query Q such that V determines Q, and we are interested in the data
complexity of computing Q(D) from a view image V(D). A first, immediate, result is
that computing Q(D) from V(D) reduces to computing the certain answers to Q on
V(D) under the exact view assumption. Therefore, any algorithm for computing certain
answers actually defines a rewriting of Q using V.

Lemma 4.21. Let Q be a query and V be a view such that V determines Q. Then, for
all database D, Q(D) = certexactQ,V (V(D)).

Proof. Let D be any database. Recall that:

certexactQ,V (V(D)) =
⋂

D′ | V(D′)=V(D)

Q(D′)

Since V ։ Q, then for all D′ such that V(D′) = V(D), Q(D′) = Q(D). Thus, we have:

certexactQ,V (V(D)) =
⋂

D′ | V(D′)=V(D)

Q(D′)

=
⋂

D′ | V(D′)=V(D)

Q(D)

= Q(D)

This has two important corollaries for any query language L and view language L′:
first, any query language capable of expressing certain answers of queries in L for views
in L′ is a suitable language for expressing rewritings of queries in L using views in L′.
Second, the evaluating such a rewriting reduces to the problem of evaluating certain
answers for L and L′, which yields our first complexity upper bounds.

In the case of regular path queries and views, Theorem 4.3 thus proves that there exist
rewritings that have coNP data complexity. However, thanks to Lemma 4.6, we know
that for a given view V and view image E, we can find a database D of size polynomial
in E such that V(D) = E. This yiels another algorithm for evaluating rewritings which
has NP data complexity: for a given view image E, we guess a database D of polynomial
size and check that V(D) = E, which can be done in polynomial time since regular path
queries have polynomial time evaluation. Finally, we evaluate the query Q on D. This
returns the desired answers, since we assumed that V ։ Q.

4.3. VIEW-BASED QUERY DETERMINACY 57

Corollary 4.22. Let Q be a regular path query and V be a regular path view such that
V determines Q. Then there exists a rewriting of Q using V that can be evaluated with
NP data complexity, and a rewriting of Q using V that can be evaluated with coNP data
complexity.

Preliminary conclusions. At this point, these are the best known bounds. However,
they come from reductions from view manipulation problems. As we have seen in Sec-
tion 4.2, operations on view instances all seem to have high complexity. The task we
are trying to tackle here is likely to be much simpler: we do not need specific semantic
properties when our rewriting is evaluated on view instances that are not view images
(unlike the certain answers algorithm which provides the coNP bound) nor do we need to
actually provide a view inverse along with the answers to the query (as does the algorithm
that provides the NP bound).

These remarks are the starting point of our work. Our goal now is to find more
suitable algorithms both for the determinacy and rewriting problems, from which to
derive better complexity bounds at least in restricted cases. In Chapter 5, we come back
to the rewriting problem for regular path queries and views, with the added assumption
that the rewriting is monotone. We show that, in this case, the rewriting can always be
expressed as a Datalog query, and thus enjoys polynomial time evaluation. In Chapter 6,
we restrict our attention to single path queries and union of single path views. We
show that, for a given union of single path view, we can decide determinacy for almost
all single path queries, and provide first-order rewritings for those determined queries.
These rewriting, once again, enjoy polynomial time evaluation.

58 CHAPTER 4. VIEWS AND OPERATIONS ON VIEWS

Chapter 5

Monotone rewritings of regular path
queries

In this chapter, we will mainly work with regular path queries and views. The goal here
is to push the known complexity bounds for rewritings from Section 4.3.3, albeit in a
more restricted case. Indeed, we will work here with monotone determinacy, a stronger
and decidable form of determinacy that we define in Section 5.1. In Section 5.2, we
recall the link between the well-known constraint satisfaction problem and the monotone
rewritings for regular path queries and views. In the final section of this chapter, we show
how this link can be used to compute monotone rewritings that have polynomial time
data complexity.

5.1 Monotone determinacy

We have seen in Chapter 3 that many crucial query languages were monotone. Since
regular path queries are also monotone, it is natural to wonder whether these languages
can be used to express the rewritings of a regular path query using a regular path view,
assuming the view determines the query. However, Example 4.17 from Chapter 4 can
be used to show that this is not possible in general. Indeed, the function induced by
the query using the views in this example is not monotone, therefore no monotone query
language can express it. This is illustrated on the example below:

Example 5.1. Consider again the view V = {V1, V2} with V1 = 〈σ3〉 and V2 = 〈σ4〉,
and the query Q = 〈σ5〉. We already know from Example 4.17 that V ։ Q. However,
Figure 5.1 shows that the function induced by Q using V is not monotone. Indeed, it is a
simple matter to verify that D and D′ are such that V(D) ⊆ V(D′), but (x0, x5) ∈ Q(D),
whereas (x0, x5) /∈ Q(D′).

Following Example 5.1, we are thus interested in defining a stronger notion of deter-
minacy which additionally ensures that there always exist a monotone rewriting of the
query using the view:

Definition 5.2 (Monotone determinacy). We say that a view V determines a query Q in
a monotone way if V determines Q and the function induced by Q using V is monotone.

59

60 CHAPTER 5. MONOTONE REWRITINGS OF REGULAR PATH QUERIES

x0 x1 x2 x3 x4 x5
D :

x0

x1

x2

x3 x4

x5

D′ :

Figure 5.1: Illustration for Example 5.1

This definition can actually be rewritten in a way that closely resembles Defini-
tion 4.16.

Lemma 5.3 (Monotone determinacy). Let V be a view and Q be a query. Then V

determines Q in a monotone way if and only if:

∀D,D′, V(D) ⊆ V(D′) ⇒ Q(D) ⊆ Q(D′)

Proof. Assume that V determines Q and that f , the function induced by Q using V is
monotone. Let D and D′ be two databases such that V(D) ⊆ V(D′). Then f(V(D)) ⊆
f(V(D′)), thus Q(D) ⊆ Q(D′).

Conversely, assume that for all databases D and D′ such that V(D) ⊆ V(D′), we have
Q(D) ⊆ Q(D′). In particular, if D = D′, we have Q(D) ⊆ Q(D′) and Q(D′) ⊆ Q(D).
Hence, Q(D) = Q(D′), and V determines Q. Let f be the function induced by Q using
V. Then f(V(D) = Q(D) ⊆ Q(D′) = f(V(D′)), from which we conclude that f is
monotone.

It appears that monotone determinacy coincides with the notion of losslessness under
the sound view assumption defined in [12].

Definition 5.4 ([12]). A view V is said to be lossless with respect to a query Q under
the sound view assumption if, for all databases D, Q(D) = certsoundQ,V (V(D)).

Transposed in our setting, this definition exactly says that a view is lossless with
respect to a query under the sound view assumption if and only if the certain answers
query under the sound view assumption is a rewriting of the query using the view. Since
this rewriting is also monotone, it remains to prove that, whenever a view determines a
query in a monotone way, then certain answers under the sound view assumption are a
rewriting. This is to be put in perspective with Lemma 4.21 in the non-monotone case.

Lemma 5.5. Let V be a view and Q be a query such that V determines Q in a monotone
way. Then, for all database D, Q(D) = certsoundQ,V (V(D)).

5.1. MONOTONE DETERMINACY 61

Proof. Since V determines Q, we already know from Lemma 4.21 that certexactQ,V (V(D)) is
a rewriting of Q using V. Now, remark that, for all database D:

certsoundQ,V (V(D)) =
⋂

D′ | V(D′)⊆V(D)

Q(D′)

=
⋂

D′ | V(D′)=V(D)

Q(D′)
⋂ ⋂

D′ | V(D′) V(D)

Q(D′)

Since V determines Q in a monotone way, we deduce that the right term contains the
left term, thus:

certsoundQ,V (V(D)) =
⋂

D′ | V(D′)⊆V(D)

Q(D′)

= certexactQ,V (V(D))

from which we deduce that certsoundQ,V is a rewriting of Q using V.

Thus, a view V determines a query Q in a monotone way if and only if certsoundQ,V is
a rewriting of Q using V, that is, if and only if V is lossless with respect to Q under
the sound view assumption. Moreover, it was shown in [12] that losslessness is decidable
for regular path queries and views, from which we immediately deduce that monotone
determinacy is decidable for regular path queries and views.

Theorem 5.6 ([12]). Checking whether a regular path view V is lossless with respect to
a regular path query Q under the sound view assumption is ExpSpace-complete.

Corollary 5.7. The monotone determinacy problem for regular path queries and views
is ExpSpace-complete.

Remark also that in the proof of Proposition 4.18, when the view determines the
query, it is also the case that the rewriting is monotone. From this, we deduce that
monotone determinacy is also undecidable for context-free path views and regular path
queries.

Corollary 5.8. The monotone determinacy problem for regular path queries and context-
free path views is undecidable.

Example 5.1 shows that, given a regular path query and a regular path view such
that the view determines the query, it is not always the case that a monotone rewriting
can be found. A similar phenomenon happens with conjunctive views and queries, as
shown in [37], where it can happen that a conjunctive view determines a conjunctive
query with no rewriting being monotone. However, it was also shown there that when
the view determines the query in a monotone way, a rewriting can always be expressed
as a conjunctive query. Thus, it is natural to wonder if the same holds true for regular
path queries and views. In other words, is the non-monotonicity of the function induced

62 CHAPTER 5. MONOTONE REWRITINGS OF REGULAR PATH QUERIES

by the query using the views the only property preventing the existence of a rewriting
expressible as a regular path query?

It turns out that this is not the case. Actually, it was shown in [13] that, given a
regular path query and a regular path view, it is 2ExpSpace-complete to decide whether
there exists a rewriting of the query using the view that can be expressed as a regular
path query. Hence, a simple complexity argument shows that the existence of an RPQ
rewriting cannot coincide with the monotone determinacy of the query using the view,
which can be decided in ExpSpace. We give here a concrete example witnessing this
fact:

Example 5.9. Let σ = {a, b, c}. Let Q and V be defined as follows:

• Q = 〈ab∗a | ac∗a〉

• V = {V1, V2, V3} with

– V1 = 〈ab∗〉

– V2 = 〈ac∗〉

– V3 = 〈b∗a | c∗a〉

One can verify that V determines Q as witnessed by the following rewriting R = 〈ϕ〉:

ϕ(x, y) = ∃z V1(x, z) ∧ V2(x, z) ∧ V3(z, y)

That R is a rewriting is illustrated in Figure 5.2. Consider the database D of Figure 5.2
which is a typical database such that (x, y) ∈ Q(D). The choice of z witnessing (x, y) ∈
R(V(D)) is then immediate. Conversely, consider the database D′ of Figure 5.2. It is a
typical database such that (x, y) ∈ R(V(D)). The top path shows that (x, y) ∈ Q(D).

a ab b b b
x z yD :

a

a

b b

c

b

c

b a
x z y

D′ :

Figure 5.2: Databases D and D′ for Example 5.9.

Since R is monotone, V determines Q in a monotone way. It can also be shown that
no RPQ rewriting exists.

In the previous example we have exhibited a rewriting expressible as a conjunctive
regular path query. However the following example suggests that conjunctive regular
path queries are not expressive enough to cover all monotone rewritings of regular path
queries using regular path views.

5.1. MONOTONE DETERMINACY 63

Example 5.10. Let σ = {a}. Let V and Q be defined as follows:

• Q = 〈a(a6)∗ | aa(a6)∗〉 (words of length 1 or 2 modulo 6)

• V = {V1, V2} with

– V1 = 〈a | aa〉 (words of length 1 or 2)

– V2 = 〈aa | aaa〉 (words of length 2 or 3)

It can be verified that V determines Q in a monotone way as witnessed by the rewriting
R = 〈ϕ〉, with:

ϕ(x, y) = ∃z V1(x, z) ∧ T ∗(z, y)

where T (x, y) is defined as:

∃z1, z2 V1(x, z1) ∧ V2(x, z1) ∧ V1(z1, z2)∧

V2(z1, z2) ∧ V1(z2, y) ∧ V2(z2, y)

The query T is such that if T (x, y) holds in V(D), then in D the nodes x and y are
either linked by a path of length 6 or by both a path of length 5 and a path of length 7. This
fact can be checked by a simple case analysis. One such case is illustrated in Figure 5.3.
In this case there is no path of length 6 in D, but the top path has length 5, and the path
starting with the bottom segment and then the last two top segments has length 7.

From this, a simple induction shows that if T ∗(x, y) holds in V(D), then in D the
nodes x and y are either linked by a path of length 0 modulo 6, or by both a path of length
1 modulo 6 and a path of length 5 modulo 6.

Assume now that R(x, y) holds in V(D). Then in D there exists a z such that x is at
distance 1 or 2 from z, and such that T ∗(z, y) holds in V(D). Assume first that z and y
are at distance 0 modulo 6 in D. In this case, regardless of the distance between x and
z, Q(x, y) holds in D. Otherwise, in D there exist both a path of length 1 modulo 6 and
a path of length 5 modulo 6 from z to y. Therefore, if x and z are at distance 1, the first
path from z to y yields a path of length 2 modulo 6 and, if x and z are at distance 2, the
second path from z to y yields a path of length 1 modulo 6, see Figure 5.4.

Conversely, it is easy to check that R(x, y) holds in V(D) whenever Q(x, y) holds in
D. This follows from the fact that T (x, y) holds in V(D) for all x and y that are at
distance 6 in D.

Notice that R is monotone. A tedious combinatorial argument can show that R cannot
be expressed as a conjunctive regular path query.

As a side result before moving on to the core of this chapter, we remark that Propo-
sition 4.5 together with Lemma 5.5 prove that, whenever a path view V determines a
regular path query Q in a monotone way, then there exists a rewriting of Q using V that
can be evaluated with coNP data complexity.

Corollary 5.11. Let Q be a regular path query and V be any path view such that V

determines Q in a monotone way. Then there exists a rewriting of Q using V that can
be evaluated with coNP data complexity.

64 CHAPTER 5. MONOTONE REWRITINGS OF REGULAR PATH QUERIES

x y
z1 z2

V1 : a V1 : aa V1 : aa

V2 : aaa V2 : aa V2 : aa

Figure 5.3: Example 5.10: An arbitrary database D whose view satisfies T (x, y). Each
arrow of the form Vi : w from a node u to a node v should be understood as a path from
u to v whose label is w which witnesses (u, v) ∈ Vi(D).

x yz
V1 : a or a2 T ∗ : (a6)∗

x yz
V1 : a

T ∗ : a(a6)∗

T ∗ : a5(a6)∗

x yz
V1 : aa

T ∗ : a(a6)∗

T ∗ : a5(a6)∗

Figure 5.4: The three cases of Example 5.10. The parts that are not used for Q are
shaded out.

5.2 Constraint satisfaction and certain answers

We already know from Lemma 5.5 that when a view V determines a query Q, then certain
answers under the sound view assumption are a rewriting of the query using the view. It
turns out that, when both V and Q are defined by regular path queries, then certsoundQ,V

can be expressed as the complement of a constraint satisfaction problem, which gives us
another way of expressing rewritings. We start this section by recalling the definition of
constraint satisfaction problems, and showing how to adapt it to fit our setting.

5.2. CONSTRAINT SATISFACTION AND CERTAIN ANSWERS 65

5.2.1 Constraint satisfaction problems

There are several ways to define constraint satisfaction problems (CSP). In this work, we
adopt the homomorphism point of view, and refer the reader to [44, 31] for more details
about how to build links between the different presentations. A constraint satisfaction
problem CSP(A,B) is defined by two classes of structures A and B, and asks, for a given
A ∈ A and B ∈ B whether there exists a homomorphism from A to B. Here, we will
work mostly with so-called non-uniform CSPs: CSPs for which B is reduced to a single
structure T . Additionally, we will consider the case where A covers all the structures on
the schema of T , and thus we will simply write CSP(T) for CSP(A, {T}). T is called the
template of the CSP.

Problem : Constraint satisfaction problem on template T
Input : A structure A

Question : Is there a homomorphism that maps A to T ?

As was done in [11], we slightly tweak the definition of CSPs in a way that turns them
into a binary query language. First, we extend the signature of the template T with two
additional unary predicates called source and target. Then, we define 〈CSP(T)〉 as the
query that maps a database D to the set of pairs (x, y) of nodes of D such that there
exists a homomorphism from D to T that sends x to a source node of T and y to a target
node of T :

Problem : Query evaluation for CSPs
Input : A database D, a pair (x, y) of elements of D,

A template T with source and target relations
Question : Is there a homomorphism h that maps D to T

such that source(h(x)) and target(h(y)) hold in T ?

As mentioned in the introduction of this section, we will actually work with the com-
plement of the constraint satisfaction problem. For a given template T , we denote by
¬CSP(T) the complement problem of CSP(T). Thus, a structure A is accepting for
¬CSP(T) if it is not accepting for CSP(T), in other words, if there exists no homomor-
phism that maps A to T . Likewise, 〈¬CSP(T)〉 is the query that selects all pairs of nodes
(x, y) of a given database D that are not selected by 〈CSP(T)〉: (x, y) ∈ 〈¬CSP(T)〉 if
and only if (x, y) /∈ 〈CSP(T)〉.

5.2.2 From certain answers to CSP

It was shown in [11] that, for a regular path view V and a regular path query Q, certsoundQ,V

can actually be expressed as the complement of a constraint satisfaction problem. This
is formalized in the proposition below:

Proposition 5.12 ([11]). Let V be a regular path view from σ to τ and Q be a regular
path query over σ. Then there exists a template TQ,V over τ ∪ {source,target} such that,
for all view instance E and all pairs (x, y) of elements of E, (x, y) ∈ certsoundQ,V (E) if and
only if (x, y) ∈ 〈¬CSP(TQ,V)〉(E).

66 CHAPTER 5. MONOTONE REWRITINGS OF REGULAR PATH QUERIES

Together with Lemma 5.5, Proposition 5.12 gives us the following corollary:

Corollary 5.13. Let V be a regular path view and Q be a regular path query such
that V determines Q in a monotone way. Then there exists a template TQ,V such that
〈¬CSP(TQ,V)〉 is a rewriting of Q using V.

It actually comes from the proof of Proposition 5.12 that the template TQ,V can
be effectively computed from Q and V. It is well known that CSP(TQ,V) reduces to the
evaluation of a formula of the existental monadic second-order logic. Thus, Corollary 5.13
implies that if a regular path view determines a regular path query in a monotone way,
then there always exists a rewriting that can be expressed in the universal monadic
second-order logic. Moreover, this rewriting can effectively be computed from the query
and the view.

However, we know from Theorem 4.3 that certain answers under the sound view
assumption, and therefore 〈¬CSP(TQ,V)〉, have coNP-complete data complexity. We
now remark that this remains true even when we assume that the view V determines the
query Q in a monotone way:

Proposition 5.14. There exist a regular path view V and a regular path query Q such
that V determines Q in a monotone way and it is coNP-complete to decide, given a
view instance E and nodes (u, v) in E, whether (u, v) ∈ certsoundQ,V (E).

Proof. The upper bound immediately comes from Theorem 4.3.
We now prove the lower bound with a simple reduction from the case where we do

not assume that V determines Q in a monotone way.
Let Q be a regular path query and V be a regular path view. We define

V′ = V ∪ {Q}

Remark now that V′ is a regular path view and that V′ determines Q in a monotone
way, as witnessed by the rewriting R = Q.

Let E be a view instance for V. Then the structure E′, defined as E extended with
the empty relation for Q, is a view instance for V′. It just remains to remark that
certsoundQ,V (E) = certsoundQ,V′ (E

′). Indeed, for all databases D, V(D) ⊇ E if and only if V′(D) ⊇

E′, which concludes the proof.

Besides its technical simplicity, the proof of Proposition 5.14 highlights the idea that
knowing that a view determines a query actually conveys no information if we are working
with view instances and not view images. Indeed, the view can go as far as plainly
containing the query, it does not make computing certain answers easier if the view
instances given as input omit this information. Note however that Remark 4.4 no longer
applies in this case, as the view instance E cannot be assumed to be a view image for the
view V′ built in the proof.

From the result of Proposition 5.14, we know that the rewriting that we considered
in this section has coNP-complete data complexity. Thus, none of them are suitable
for our purpose of finding a rewriting with polynomial data complexity. However, this is

5.3. COMPUTING THE REWRITING 67

most likely due to their behavior on view instances that are not view images, as we know
from Corollary 4.22 that rewritings are likely not to be coNP-hard in general (unless
coNP is included in NP), and by definition have to agree on view images.

In the next section, we show how to approximate the CSP rewriting in a way that
allows for polynomial time evaluation, while still retaining its behavior on view images.

5.3 Computing the rewriting

We know from Corollary 5.13 that, when a regular path view V determines a regular path
query Q, then we can compute a template TQ,V such that 〈¬CSP(TQ,V)〉 is a rewriting of
Q using V. However, as explained in Section 5.2, there exist some queries and views for
which this particular rewriting has coNP-complete data complexity. In this section, we
show how to move from this rewriting to another rewriting which enjoys polynomial time
data complexity. This is done in three steps: first, we present the local consistency game,
which provides a tool to approximate 〈¬CSP(TQ,V)〉 and express these approximations
as Datalog queries. Then, we compute one such approximation that turns out to coincide
with 〈¬CSP(TQ,V)〉 when evaluated on the view image of simple path databases. Finally,
we show that it is enough for this approximation to be exact on the view of simple paths
to actually cover all view images. Thus, we get a rewriting of Q using V with polynomial
time data complexity that is moreover expressible as a Datalog query.

5.3.1 Datalog and the local consistency game

The local consistency game is based on the homomorphism problem. Given two structures
A and B, two players dispute with limited tools the existence (or lack thereof) of a
homomorphism from A to B. More precisely, Player 1 tries to prove that there is no
homomorphism from A to B. To this end, she selects on each turn a set of nodes of A,
and asks Player 2 to provide a homomorphism from the substructure of A induced by
this set to B, with the added constraint that this homomorphism must agree with the
homomorphism from previous turn on common nodes. If Player 2 cannot provide such a
homomorphism, she loses the game. Otherwise, the game continues, and Player 2 wins
if she can play forever. The game takes its local name from the two parameters l and
k that rule Player 1 moves: on any turn, she should not select more than k nodes, and
should not keep more than ℓ node from last turn.

In this work, we use the local consistency game to approximate 〈¬CSP(TQ,V)〉. The
source structure A will be the view instance E on which we are evaluating 〈¬CSP(TQ,V)〉,
and the target structure B will be fixed as TQ,V. We also distinguish two nodes x and
y in E, which represent the nodes for which we want to evaluate whether they belong to
〈¬CSP(TQ,V)〉(E). We now give a formal definition of the game adaptated to our setting:

Definition 5.15 ((ℓ, k) local consistency game). Let ℓ, k be two integers, with ℓ ≤ k, let
E be a view instance and x, y be two nodes of E. The (ℓ, k)-game on (E, TQ,V, x, y) is
played by two players as follows:

68 CHAPTER 5. MONOTONE REWRITINGS OF REGULAR PATH QUERIES

• The game begins with A0 = ∅ and h0 being the empty function over A0.

For i ≥ 0, round i+ 1 is defined as follows:

• Player 1 selects a set Ai+1 of nodes of E, with |Ai+1| ≤ k and |Ai ∩Ai+1| ≤ ℓ.

• Player 2 responds by giving a homomorphism hi+1 : E[Ai+1] → TQ,V that coincides
with hi on Ai ∩Ai+1 and such that hi+1(x) is a source node and hi+1(y) is a target
node whenever x or y are in Ai+1.

Player 1 wins if at any point Player 2 has no possible move. Player 2 wins if she can
play forever.

Observe that if there is a homomorphism from a view instance E to TQ,V sending
x to a source node and y to a target node, then Player 2 has a winning strategy for
the (ℓ, k)-two-player game on (E, TQ,V, x, y). This strategy consists in always playing
the restriction of the homomorphism on the set selected by Player 1. In this sense,
the set of pairs of nodes of E for which Player 1 has a winning strategy is an under-
approximation of 〈¬CSP(TQ,V)〉(E): if Player 1 has a winning strategy for (E, TQ,V, x, y)
then (x, y) ∈ 〈¬CSP(TQ,V)〉(E).

The converse inclusion does not necessarily hold. If Player 2 has a winning strategy
for (E, TQ,V, x, y), this only means that she can always exhibit partial homomorphisms
from E to TQ,V; this is in general not sufficient to guarantee the existence of a suitable
global homomorphism. In that sense, the set of pairs for which Player 2 has a winning
strategy is an over-approximation of 〈CSP(TQ,V)〉(E).

In order to approximate 〈¬CSP(TQ,V)〉(E), we are now interested in computing the
set of pairs of nodes of E for which Player 1 has a winning strategy. It turns out that
this is expressible in Datalog, as formalized by the following lemma:

Lemma 5.16 ([21, 11]). Let ℓ, k be two integers, with ℓ ≤ k. Let Q be a regular path
query and V be a regular path view. Then there exists a program Qℓ,k(x, y) in Datalogℓ,k
such that for every view instance E, Qℓ,k(E) is the set of pairs (x, y) such that Player 1
has a winning strategy for the (ℓ, k)-game on (E, TQ,V, x, y).

Moreover the program in the above lemma can be effectively constructed from TQ,V,
and therefore from Q and V. It will be simply denoted by Qℓ,k when Q and V are clear
from the context.

At this point, we know that for each pair (ℓ, k), Qℓ,k is an under-approximation of
〈¬CSP(TQ,V)〉. The contribution of the two following sections is to show that we can
actually compute from Q andV a specific pair (ℓ, k) for which Qℓ,k is exact on view images:
for a given view image E, Qℓ,k(E) is precisely 〈¬CSP(TQ,V)〉(E). Of course, Qℓ,k and
〈¬CSP(TQ,V)〉 still differ in general on view instances that are not view images, otherwise
Qℓ,k would inherit CSP’s coNP-hardness which is a contradiction, unless PTime =
coNP.

5.3. COMPUTING THE REWRITING 69

5.3.2 The case of simple paths

Our first step is to prove that there exists suitable values of ℓ and k such that Qℓ,k

coincides with a rewriting of Q using V on the view of simple path databases. This is
formalized in the proposition below, whose proof is the focus of this section.

Proposition 5.17. Let V be a regular path view and Q be a regular path query. There
exists ℓ such that for every simple path database D from x to y,

(x, y) ∈ Qℓ,ℓ+1(V(D)) iff (x, y) ∈ 〈¬CSP(TQ,V)〉(V(D)).

In particular if V determines Q in a monotone way,

(x, y) ∈ Qℓ,ℓ+1(V(D)) iff (x, y) ∈ Q(D).

Let V and Q be an RPQ view and an RPQ query, and let D be a graph database con-
sisting of a simple path from node x to node y, that is, D is the path π = x0a0x1 . . . xm−1am−1xm,
with x0 = x and xm = y. Assume x, y ∈ V(D).

We will show, in Lemma 5.20 below, that for large enough ℓ, if Player 2 has a winning
strategy on the game on (V(D), TQ,V, x, y) then we can exhibit a homomorphism witness-
ing the fact that (x, y) ∈ 〈CSP(TQ,V)〉(V(D)). Before that we prove crucial properties
of V(D) which will be exploited in the sequel. For that we need the following simple
definitions and claims.

Let E = V(D) and let A = 〈SV, δV, q
0
V
, FV〉 be the product automaton of all the

deterministic minimal automata of all the regular expressions of the RPQs in V. Let
N(V) be the number of states of A, i.e. |SV|.

In what follows, for q ∈ SV and w ∈ σ∗, δV(q, w) denotes the state p ∈ SV such that
there is a run of A on w starting in state q and arriving in state p.

For every k ≤ m + 1, and every i, j ≤ k, we say that xi ∼k xj in V(D) if, for all
V ∈ V, for all r ≥ k,

(xi, xr) ∈ V (D) ⇔ (xj , xr) ∈ V (D)

For all k, the relation ∼k is an equivalence relation over {xi | i ≤ k}. We now prove
the main property of V(D), namely that the index of all ∼k is bounded by the size of V.

Claim 5.18. For all k ≤ m+ 1:

∣

∣

∣
{xi | i ≤ k}/ ∼k

∣

∣

∣
≤ N(V)

Proof. To each node xi in π with i ≤ k, we associate a state ϕ(xi) ∈ SV defined as :

ϕ(xi) = δV(q
0
V
, λ(πi→k))

where πs→t is defined as the subpath of π that starts at position s and ends at position
t, that is πs→t = xsasxs+1 . . . xt−1at−1xt.

70 CHAPTER 5. MONOTONE REWRITINGS OF REGULAR PATH QUERIES

Assume that there exist two nodes xi and xj , with i, j ≤ k, that have the same image
in ϕ. It follows that:

δV(q
0
V
, λ(πi→k)) = δV(q

0
V
, λ(πj→k))

Let us prove that xi ∼k xj . Assume that there exist r ≥ k and V ∈ V such that (xi, xr) ∈
V (D). Then δV(q

0
V
, λ(πi→r)) is final for V . Remark that λ(πi→r) = λ(πi→k)λ(πk→r), from

which we can deduce that :

δV(q
0
V
, λ(πi→r)) = δV(ϕ(xi), λ(πk→r))

Hence,
δV(q

0
V
, λ(πi→r)) = δV(ϕ(xj), λ(πk→r))

We can now conclude that δV(q
0
V
, λ(πj→r)) is final for V , which means that (xj , xr) ∈

V (D). A symmetric argument easily proves the other direction of the equivalence. Hence,
xi ∼k xj , and we can finally conclude that there cannot be more that N(V) distinct
equivalence classes of ∼k over the nodes {xi | i ≤ k} of π.

The following easily verified property of the equivalence relations ∼k will also be
useful:

Claim 5.19. Let k1, k2 ≤ m + 1, with k1 ≤ k2. Let x and y be two elements of π that
occur before xk1. Then x ∼k1 y implies x ∼k2 y.

We are now ready to prove the statement of Proposition 5.17.
Let ℓ = |TQ,V| ·N(V). We prove that (x, y) ∈ Qℓ,ℓ+1(E) iff (x, y) ∈ 〈¬CSP(TQ,V)〉(E).

In view of the fact that Qℓ,ℓ+1 encodes the (ℓ, ℓ+ 1)-game in the sense of Lemma 5.16, it
is enough to prove the following:

Lemma 5.20. Player 2 has a winning strategy for the (ℓ, ℓ + 1)-two-player game on
(E, TQ,V, x, y) iff there is a homomorphism from E to TQ,V sending x to a source node
and y to a target node.

Proof. The right-left direction is obvious. If there is a suitable homomorphism h from E
to TQ,V, then Player 2 has a winning strategy which consists in playing according to h.

Conversely, assume that Player 2 has a winning strategy for the (ℓ, ℓ + 1)-game on
(E, TQ,V, x, y). Let {s1, s2, . . . , sr} be an ordering of the elements of E, according to the
order on π, that is, in such a way that ∀j ≤ k, sj occurs before sk in π. Clearly s1 = x
and sr = y. If r ≤ ℓ+1, Player 1 can select all elements of E in a single round, and then
Player 2 has to provide a full homomorphism from E to TQ,V, which concludes the proof.

Assume r > ℓ + 1. For ease of notations, we will number rounds starting from ℓ+ 1.
This can be seen just as a technicality, or equivalently as Player 1 selecting the empty
set for the first ℓ rounds. Since Player 2 has a winning strategy, she has, in particular, a
winning response against the following play of Player 1:

• On round ℓ+1, Player 1 plays Aℓ+1 = {s1, . . . , sℓ+1}. Player 2 has to respond with
a partial homomorphism hℓ+1, which she can do, since she has a winning strategy.

5.3. COMPUTING THE REWRITING 71

• Assume that, on round i, Ai is of size ℓ + 1 and its element of biggest index is si
(as it is the case on round ℓ + 1). Given the choice of ℓ, the set Ai is sufficiently
“big”, that is by Claim 5.18, there exist two elements sj, sk ∈ Ai such that sj ∼i sk,
and hi(sj) = hi(sk). On round i + 1, Player 1 picks Ai+1 = (Ai − {sj}) ∪ {si+1}.
This choice maintains that Ai+1 is of size ℓ+1 and that its element of biggest index
is si+1. Once again, Player 2 has to respond with a partial homomorphism hi+1,
which she can do.

• Following this play, on round r, Ar contains sr, the element of biggest index in E.
From now on, we no longer care about Player 1’s move, that is, we arbitrarily set
Ai = ∅ for all i > r.

We can now define h as follows:

h(si) =

{

hℓ+1(si) if i ≤ ℓ + 1
hi(si) if ℓ+ 1 < i ≤ r

Observe that, by definition, the mapping h sends x to a source node and y to a target node
(since so do all the hi’s used in the game). It remains to prove that h is a homomorphism
from E to TQ,V. We prove by induction on i ≥ ℓ+ 1 that :

(H1) h is a homomorphism from E[{s1, . . . , si}] to TQ,V.

(H2) h coincides with hi on Ai.

(H3) for all j ≤ i, there exists s ∈ Ai such that sj ∼i s and h(sj) = h(s).

Base case : For i = ℓ + 1, the mapping h coincides by definition with hℓ+1 on
{s1, . . . , sℓ+1}. Hence, (H1) and (H3) follow easily.

Inductive case : Assume that there exists i with ℓ+ 1 ≤ i < r such that (H1),(H2)
and (H3) holds for i; we prove them for i+ 1.

(H2) Let s ∈ Ai+1. If s = si+1, then, by definition, h(si+1) = hi+1(si+1). Otherwise,
s ∈ Ai ∩ Ai+1. (H2) for i implies that h(s) = hi(s), and the definition of hi+1 thus
yields hi+1(s) = hi(s) = h(s). Hence, (H2) holds for i+ 1.

(H3) Let j ≤ i + 1. If j = i + 1, then sj ∈ Ai+1, and the result is obvious. Otherwise,
(H3) for i implies that there exists s ∈ Ai such that sj ∼i s and h(sj) = h(s). From
Claim 5.19, we deduce that sj ∼i+1 s. If s ∈ Ai+1, there is nothing more to prove.
Otherwise, it means that s is exactly the element that was removed from Ai on
round i+1, which means that there exists another element s′ ∈ Ai∩Ai+1 such that
s ∼i s

′ and hi(s) = hi(s
′). Then Claim 5.19 and (H2) imply that sj ∼i+1 s′ and

h(sj) = h(s′). Hence (H3) holds for i+ 1.

(H1) By definition, h already preserves any self-loop. Moreover, (H1) for i implies that
h is a homomorphism from E[{s1, . . . , si}] to TQ,V. Hence, any edge between two
elements of {s1, . . . , si} in § is already preserved by h. Let sj ∈ {s1, . . . , si}. Remark

72 CHAPTER 5. MONOTONE REWRITINGS OF REGULAR PATH QUERIES

that, since π is a simple path, there are no edges from si+1 to sj in E. Thus, we
just have to prove that all edges from sj to si+1 are preserved by h.

(H3) for i + 1 implies that there exists an element s ∈ Ai+1 such that sj ∼i+1 s
and h(sj) = h(s). Since hi+1 is a homomorphism on E[Ai+1], it preserves all edges
from s to si+1. Moreover, (H2) for i+ 1 implies that h and hi+1 coincide on Ai+1,
which means that h preserves all edges from s to si+1. Finally, the definition of
∼i+1 implies that sj and s have the same edges to si+1. Hence, h preserves all edges
from sj to si+1.

Finally, (H1) applied for r proves that h is indeed a homomorphism from E to TQ,V. This
completes the proof of Lemma 5.20.

From Lemma 5.20, we deduce that Qℓ,ℓ+1 coincides with 〈¬CSP(TQ,V)〉 on the view
images of simple path databases. Finally, in the case that V determines Q in a monotone
way, Corollary 5.13 tells us that (x, y) ∈ Qℓ,ℓ+1(V(D)) if and only if (x, y) ∈ Q(D). This
completes the proof of Proposition 5.17.

5.3.3 From simple paths to arbitrary graph databases

In Proposition 5.17, we proved that if a regular path view V determines a regular path
query Q, then there exists ℓ such that Qℓ,ℓ+1 coincides with rewritings of Q using V on
the view images of simple path databases. In this section, we prove that this property
actually implies that Qℓ,ℓ+1 is a rewriting of Q using V.

This result is not actually specific to Qℓ,ℓ+1 but holds true in a more general sense,
which comes from the following remark. Assume that a regular path view V determines a
query Q in a monotone way. Then the databases for which a pair of nodes (x, y) belong to
the query result are exactly those databases whose view contains the image of a path from
x to y which satisfies the query. Indeed, when a pair satisfies the query, there must exist
in the database a path whose label satisfies the query, and its image thus belongs to the
image of the database. The converse is immediately given by the monotone determinacy
property: if the view of a path is included in the view of the database, then the query
result on the path must be contained in the query result of the database. This makes it
so that it is enough for an under-approximation of a rewriting to be correct on the view
images of simple paths and to be closed under homomorphism to actually be a rewriting.
This intuition is formalized in Proposition 5.21 below.

Proposition 5.21. Let V be a regular path view and Q be a regular path query such that
V determines Q in a monotone way. Assume P is a query of schema τ such that:

1. P is closed under homomorphisms: for all databases E,E′, and all pair of elements
(x, y) of E, if (x, y) ∈ P (E) and there exists a homomorphism h : E → E′ then
(h(x), h(y)) ∈ P (E′).

2. P is a rewriting on view images of simple path databases: for all simple path
databases D from x to y such that x and y are in the domain of V(D), we have
(x, y) ∈ P (V(D)) iff (x, y) ∈ Q(D).

5.3. COMPUTING THE REWRITING 73

3. P is an under-approximation of a rewriting: for all graph databases D and elements
x and y of V(D), if (x, y) ∈ P (V(D)) then (x, y) ∈ Q(D).

Then P is a rewriting of Q using V.

Proof. Let D be a database, and (x, y) be a pair of elements of V(D), such that (x, y) ∈
Q(D). Then there exists in D a path π0 from x to y, such that λ(π0) ∈ L(Q).

Consider the simple path π = x0a0x1 . . . xm−1am−1xm defined such that λ(π) = λ(π0).
Since V determines Q in a monotone way and λ(π) ∈ L(Q), then x0 and xm are in the
domain of V(π), and (x0, xm) ∈ Q(π). Hence, (2) implies that (x0, xm) ∈ P (V(π)).

Additionally, it is clear that there exists a homomorphism h from π to D with h(x0) =
x and h(xm) = y. Observe that h extends to the views of π and D, that is h is a
homomorphism from V(π) to V(D), and (1) thus implies that (x, y) ∈ P (V(D)).

The other direction is immediately given by (3).

We now have all the elements to prove the following proposition:

Proposition 5.22. Let V be a regular path view and Q be a regular path query such that
V determines Q in a monotone way. There exists ℓ such that Qℓ,ℓ+1 is a rewriting of Q
using V.

Indeed, let V be a regular path view and Q be a regular path query such that V
determines Q in a monotone way. Then, we already know from Proposition 5.17 that there
exists ℓ such that Qℓ,ℓ+1 is a rewriting of Q using V when restricted to the view images of
simple path databases. Additionally, we know that Datalog queries are preserved under
homomorphism. Finally, we have already observed in Section 5.3.2 that Qℓ,ℓ+1 is an
under-approximation of a rewriting1. Thus we can apply Proposition 5.21, which proves
that Qℓ,ℓ+1 is a rewriting of Q using V and concludes the proof of Proposition 5.22. This
immediately leads to the main result of this chapter:

Theorem 5.23. Let V be a regular path view and Q be a regular path query such that V
determines Q in a monotone way. Then there exists a Datalog rewriting of Q using V.

We conclude this chapter by mentioning two important corollaries of Theorem 5.23.
First, we remark that the existence of a Datalog rewriting coincides with the existence
of a monotone rewriting, since all Datalog queries are monotone. Thus, the existence of
a Datalog rewriting is decidable, by Corollary 5.7.

Corollary 5.24. Let V be a regular path view and Q be a regular path query. It is
decidable, ExpSpace-complete, whether there exists a Datalog rewriting of Q using V.

Second, and most important, we now know that answering a query using views when
the view determines the query in a monotone way can be done with polynomial time data
complexity.

Corollary 5.25. Let V be a regular path view and Q be a regular path query such that V
determines Q in a monotone way. Then there exists a rewriting of Q using V that can
be evaluated with PTime data complexity.

1This is actually true of all Qℓ,k regardless of the specific values of ℓ and k.

74 CHAPTER 5. MONOTONE REWRITINGS OF REGULAR PATH QUERIES

5.4 Extensions

This final section discusses possible extensions of the work presented in this chapter in an
informal way. In Section 5.4.1, we consider two-way regular path queries, an extension
of path queries with the ability to navigate the edges of the database in both directions.
In Section 5.4.2, we discuss a possible continuation of our work, that aims at finding
rewritings in query languages that are simpler than Datalog.

5.4.1 Two-way regular path queries

Two-way regular path queries (2RPQ) are defined using regular expressions over an ex-
tended schema σ2 = σ ∪ σ̄, where σ̄ is a schema that contains a fresh copy ā of each
symbol a ∈ σ. The intuitive idea here is that a 2RPQ can navigate the a edges of the
database in the forward direction by using symbol a, or in the backward direction by
using symbol ā. This extends the expressive power of regular path queries by allowing
two-way navigation in the database. Since 2RPQ not covered by the framework described
in Chapter 3 nor are they the focus of our work, the discussion in this section will remain
on a very informal level.

We can summarize the main ingredients of the results presented in this chapter as
follows:

• Corollary 5.7, showing that the monotone determinacy problem for regular path
queries and views is ExpSpace-complete,

• Corollary 5.13, showing that when a regular path view determines a regular path
query in a monotone way, then a rewriting can be expressed as the negation of a
CSP,

• Lemma 5.16, showing that any CSP can be approximated as a Datalog program,

• Proposition 5.17, showing that one of the Datalog approximations is exact on the
view images of simple paths,

• Proposition 5.21, showing that the case of simple paths can be lifted to arbitrary
databases and thus that the Datalog approximation is a rewriting.

Remark now that Lemma 5.16 and Proposition 5.21 do not depend on the query or
view languages. Additionally, [15] provides a counterpart to Corollary 5.7 by showing that
monotone determinacy for 2RPQ queries and views is ExpSpace-complete. Moreover,
it was proved in [14] that Corollay 5.13 also extends to the case of 2RPQ queries and
views.

Finally, in order to extend Theorem 5.23, it remains only to prove that Proposi-
tion 5.17 extends to the case of 2RPQ queries and views. This turns out to be the case,
by following a very similar proof to Proposition 5.17, that revolves around turning a
winning strategy for Player 2 in the local consistency game into a global homomorphism
for the CSP on view images of simple paths.

5.4. EXTENSIONS 75

5.4.2 On rewriting languages

In this chapter, we have shown that whenever a regular path view V determines a regular
path query Q in a monotone way, then there exists a Datalog rewriting of Q using V. The
main consequence of this result is the existence of a rewriting that enjoys polynomial time
data complexity. However, Datalog is not a very simple or user-friendly query language.
Thus, Theorem 5.23 leaves an interesting question open: does there exist a rewriting of
Q using V that can be expressed in a simpler query language?

We have seen in Example 5.9 that there exist a regular path view V and a regular
path query Q such that V determines Q in a monotone way and such that no regular
path query can be a rewriting of Q using V. Similarly, Example 5.10 provides a concrete
case where no conjunctive regular path query can be a rewriting.

In Example 5.10, we expressed a rewriting in an extension of binary conjunctive
regular path queries that is closed under transitive closure. It turns out that this is the
most difficult concrete example that we are aware of: in all examples that we know of,
whenever a regular path view determines a regular path query in a monotone way, a
rewriting can be expressed in this query language. Thus it is natural to wonder whether
this holds in general. Failing that, another good candidate would be the linear fragment
of binary Datalog, in which all internal predicates are of arity 2 and at most one of them
may occur in the body of each rule. Indeed, this language contains the transitive closures
of binary conjunctive regular path queries, and is closer to the general Datalog programs
that we used in this chapter.

76 CHAPTER 5. MONOTONE REWRITINGS OF REGULAR PATH QUERIES

Chapter 6

Asymptotic determinacy of single
path queries

In this chapter, we move away from the monotone determinacy problem of Chapter 5
and come back to general determinacy. The goal here is to push the known decidability
for the determinacy problem. We know from [3] that determinacy is decidable for single
path queries and single path views. In this chapter, we show that we can decide a
more restricted form of determinacy, that we call asymptotic determinacy, for single path
queries and union of single path views, provided that the schema σ with which we are
working contains a single relational symbol.

In all this chapter, we will work with single path queries (SPQ) and union of single
paths (UPQ) views over a schema σ = {a} which contain a single relational symbol.
There are two ways to apply the results of this chapter to a database D defined over a
schema σ with |σ| ≥ 2. First and most immediate, it directly applies to views and queries
that only make use of one symbol a ∈ σ, in which case they would be evaluated over
a projection Da of the database that removes all other symbols. Another more natural
perspective is to consider that the work presented here applies to distance queries, that
is queries that select pairs of nodes that are linked by a path of a given length, while
disregarding the labels along the path. Thus, these queries correspond to single path
queries that are not directly evaluated on D but on the underlying structure of D, which
is an unlabeled graph.

Finally, as explained in Section 3.2, since the queries we consider are defined over a
schema with only one label σ = {a}, we will simply write Q = 〈k1, . . . , kn, . . .〉 instead of
Q = 〈{ak1, . . . , akn, . . .}〉.

In Section 6.1, we give a first formal definition of asymptotic determinacy. Then, after
a serie of small results, we restate this first definition in a more intuitive and workable
way. In Section 6.2, we introduce behavior graphs, which will be the main tool for de-
ciding asymptotic determinacy in Section 6.3. Finally, in Section 6.4, we discuss several
extensions of this work, as well as some related questions that are left open.

77

78 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

6.1 Preliminaries

Formally, the asymptotic determinacy problem is defined as a variant of the determinacy
problem, that asks whether a view V determines a query Q, but with the added infor-
mation that Q is “big” compared to V: for each view V, there are a finite number of
“small” queries Q for which the question is not asked. The problem is characterized by
a parameter α: a function that maps each view V to a natural number, such that the
queries Q for which the problem is defined are those that ask for paths longer than α(V).

Problem : α-asymptotic determinacy
Input : A union of single paths view V,

A single path query Q = {n} with n > α(V)
Question : Does V determine Q?

While this definition might seem very formal and unintuitive, we will see several key
properties in Section 6.1.1 that allow us in Section 6.1.2 to restate the problem in a more
practical and intuitive way. Note however that providing an answer to the determinacy
problem or a rewriting in “almost all” cases is something that has already been considered
in the same context. For instance, in [3], it is shown that for a given single path view V,
almost all single path queries Q that are determined by V have a conjunctive rewriting.
However, for a finite number of such queries, no conjunctive rewritings can be found, as
in Example 4.17 and Example 5.1.

The main purpose of this chapter is to prove the following theorem:

Theorem 6.1. There is an explicit and computable function α for which the α-asymptotic
determinacy problem is decidable. Moreover, when the view determines the query, the
decision procedure effectively computes a first-order rewriting of the query using the view.

Arithmetic Notations. Some of the proofs in this chapter involve a lot of arithmetic
reasonings. We present here the notations that we use. Given two integers n and d, n[d]
represents the remainder in the division of n by d. We say that two integers n1 and n2 are
equivalent modulo d, and we write n1 ≡ n2[d] if they have the same remainder modulo
d. We denote by gcd(A) the greatest common divisor of a set of integers A, and we use
n1 ∧ n2 for gcd({n1, n2}).

6.1.1 Key properties

In this section, we consider a UPQ view V and an SPQ query Q, such that V determines
Q. It turns out that this implies several simple properties for both V and Q: neces-
sary conditions without which a UPQ view cannot possibly determine an SPQ query.
These are our key results, as taking these conditions into account will allow us to gain a
better understanding of the determinacy problem, and lead to a new perspective on the
asymptotic determinacy in Section 6.1.2.

6.1. PRELIMINARIES 79

Our first key result states that V cannot possibly determine Q if V does not at least
contain a single path query. In other words, even though V is a UPQ view, at least one
of the queries that appear in V must be an SPQ and thus cannot make use of the union.

Lemma 6.2. Assume that a UPQ view V and an SPQ query Q are such that V ։ Q.
Then there exists C ∈ V such that C = 〈k〉, for some k.

Proof. Assume by contraposition that, for all V ∈ V, |L(V)| > 1. Let Q = 〈n〉. We build
a database D as follows:

• D contains n+ 1 distinct nodes x0, . . . , xn.

• For all i < n, a(xi, xi+1) holds in D.

• For all i ≤ n, for all V ∈ V such that i ∈ V , we add to D a simple path πi,V from
x0 to xi, such that |πi,V | ∈ L(V)− {i}. Such a path exists because |L(V)| > 1.

We then construct another database D′ which is a copy of D except that a(x0, x1) does
not hold in D′. It is then easy to check that V(D) = V(D′) and that Q(D) 6= Q(D′). In
particular, (x0, xn) ∈ Q(D) and (x0, xn) /∈ Q(D′). Hence V 6։ Q, which concludes the
proof. This construction is illustrated on Figure 6.1.

x0 x1 x2 x3 x4

Figure 6.1: Illustration for the proof of Lemma 6.2, showing here that V = 〈2, 4〉 6։ 〈4〉.
Following the notations in the proof, the top path is π2,V and the bottom path is π4,V .
Remark then that adding or removing the dashed edge does not change the view, but
changes the query result.

Our next necessary condition is similar to the condition found in [3]. Let Q = 〈n〉 be
an SPQ and V be an SPQ view, without unions. Consider a database D which consists
of a simple path of length n: x0 . . . xn. Let E = V(D), and let G be the underlying
undirected graph of E, that is a graph whose set of nodes is exactly the set of nodes of
E, and such that there is an undirected and unlabeled edge between two nodes x and y
in G if and only if there is any edge going from x to y or from y to x in E. Then it was
shown in [3] that, if V ։ Q, then x0 and xn belong to the same connected component in
G. We remark that this condition still holds in our case, where V is a UPQ view.

Lemma 6.3. Let V be a UPQ view and Q be an SPQ with Q = {n}. Let π = x0 . . . xn.
If V ։ Q then there is an undirected path from x0 to xn in V(π).

80 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

Proof. Let V, Q and π be as in the statement of the lemma. Assume by contraposition
that x0 and xn are in different connected components of V(π).

Let D be a database that consists of two disjoints copies of π, that we denote by
µ = y0, . . . , yn and ν = z0, . . . , zn. Then V(D) has at least four distinct connected
components, that respectively contain y0, z0, yn and zn. This comes from the fact that
there are no paths from yi to zj , for any i and j. Since V is a path view, it cannot link two
nodes that are not connected with each other. Remark that these connected components
are pairwise identical, up to renaming yi to zi and zi to yi.

Consider now the database D′ that is a copy of D except that for all i, yi is renamed
to zi and zi is renamed to yi if yi is in the connected component of yn in V(D).

Remark now that V(D) = V(D′). Indeed, the connected components of V(D) that
do not contain yn or zn are left untouched in V(D′), whereas the connected compo-
nents that contain yn or zn are simply renamed one to the other. However, Q(D) =
{(y0, yn), (z0, zn)}, whereas Q(D′) = {(y0, zn), (z0, yn)}, which concludes the proof.

In view of Lemma 6.2, we know that we can restrict our attention to views that
contain a single path query C, otherwise we immediately conclude that the view does not
determine any SPQ. This allows us to state the following definition for such views:

Definition 6.4 (Complete). Let V be a UPQ view and C ∈ V such that C = 〈c〉. We
say that V is C-complete if, for all i ∈ {0, . . . , c− 1}, there exists V ∈ V and k ∈ L(V)
such that k ≡ i[c].

It turns out that Lemma 6.2 together with Lemma 6.3 allows us to restrict our atten-
tion further to cases where V is C-complete for some single path query C ∈ V. This is
formalized in the lemma below:

Lemma 6.5. Let V be a UPQ view and C ∈ V such that C = 〈c〉. Let Q = 〈n〉, and
π = x0 . . . xn. Assume that there is an undirected path from x0 to xn in V(π). Then we
can effectively compute a view V

′ with C ′ ∈ V
′ such that C ′ = 〈c′〉 and a query Q′ such

that V′ is C ′-complete and V ։ Q if and only if V′
։ Q′.

Proof. Let V and Q be defined as in the statement of the lemma. Let U be the set of all
numbers that appear in V, that is:

U =
⋃

V ∈V
m∈L(V)

{u}

and d = gcd(U).

Assume d = 1. Then there exists m1, . . . , mk ∈ U such that m1 + . . . + mk ≡ 1[c].
This means that there exist V1, . . . , Vk ∈ V and m ∈ L(V) = L(V1) · . . . ·L(Vk) such that
m ≡ 1[c]. We define V′ as

V′ = V ∪
c
⋃

i=1

{V i}

6.1. PRELIMINARIES 81

and Q′ = Q. It follows that V′ is C-complete. Indeed, for all k ∈ {0, . . . , c− 1}, L(V k)
contains kv ≡ k[c]. Additionally, V′

։ Q′ if and only if V ։ Q, as all queries in V are
also in V′, and all queries in V′ can be written as compositions of queries in V.

Assume now that d 6= 1. Then d divides all the numbers in V. Additionally, since
there exists a path from x0 to xn in V(x0 . . . xn), it implies that d divides n as well. For
each V ∈ V, we define V ′ = 〈m

d
| m ∈ V 〉. We then define V′ = {V ′ | V ∈ V} and

Q′ = {n
d
}.

Claim 6.6. V ։ Q if and only if V′
։ Q′.

• Assume that V 6։ Q. Then there exists two databases D1 and D2 such that D1

and D2 agree on V but not on Q. We build two new databases D′
1 and D′

2 that are
copies of D1 and D2 except that there is an edge between x and y in D′

i if and only
if there is a path of length d from x to y in Di.

Let x and y be two nodes of D′
1 such that (x, y) ∈ V ′(D′

1) for some V ′ ∈ V′. Then
there exists m ∈ V ′ such that x and y are at distance m in D′

1. By construction,
this means that x and y are at distance dm in D1. Hence, (x, y) ∈ V (D1). Then
(x, y) ∈ V (D2). Thus, there exists r ∈ L(V) such that x and y are at distance r in
D2. It follows that x and y are at distance r

d
in D′

2, and finally that (x, y) ∈ V ′(D′
2).

Hence D′
1 and D′

2 agree on V′. A similar reasoning shows that D′
1 and D′

2 don’t
agree on Q′, so that we can conclude that V′ 6։ Q′.

• Assume that V′ 6։ Q′. Then there exists two dabatases D′
1 and D′

2 such that D′
1

and D′
2 agree on V′ but not on Q′. We build two new databases D1 and D2 as

follows:

– For each node x of D′
i and each α ∈ {0, . . . , d− 1}, (x, α) is a node of Di.

– For each x and each α < d− 1, there is an edge from (x, α) to (x, α + 1).

– For each x, y such that there is an edge from x to y in D′
i, there is an edge

from (x, d− 1) to (y, 0) in Di.

Let (x, α) and (y, β) be two nodes of D1 such that
(

(x, α), (y, β)
)

∈ V (D1) for some
V ∈ V. Then there exists m ∈ L(V) such that (x, α) and (y, β) are at distance m in
D1. Since m ∈ L(V), we have m ≡ 0[d], which implies that α = β. By construction,
this implies that x and y are at distance m

d
in D′

1. Hence, (x, y) ∈ V ′(D′
1). Then

(x, y) ∈ V ′(D′
2). Thus there exists r ∈ V ′ such that x and y are at distance r in D′

2.
By construction, this implies that (x, α) and (y, α) are at distance dr in D2, and
thus

(

(x, α), (y, α)
)

∈ V (D2). Hence D1 and D2 agree on V. A similar reasoning
shows that D1 and D2 don’t agree on Q, so that we can conclude that V 6։ Q.

Finally, we get a new set of views V′ for which we can apply the first case of the proof
and compute a new V′ that is C ′-complete.

82 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

The last lemma of this section shows that the set of queries determined by a UPQ
view V which contains a path query C = 〈c〉 is closed under adding c. While perhaps
obvious, this result is key to defining asymptotic determinacy, as will be explained in
Section 6.1.2.

Lemma 6.7. Let V be a UPQ view and C ∈ V such that C = 〈c〉. Let Q = 〈n〉, and
assume that V ։ Q. Then, for all positive integers k, V ։ 〈n+ kc〉.

Proof. Let R be a rewriting of Q using V. Let k be a positive integer. Then it is easy to
check that R · Ck is a rewriting of Q′ = 〈n+ kc〉 using V.

6.1.2 Asymptotic determinacy

In this section, we show how to use the results of Section 6.1.1 to assess the situation
from a slighty different perspective. Let V be a view defined by unions of single path
queries. Assume that, instead of being given a specific single path query Q for which we
want to decide whether V ։ Q, we want to compute the complete determinacy picture
of V. In other words, we want to know all single path queries Q such that V ։ Q.

We start by using Lemma 6.2. This allows us to say that, if V does not contain
a single path query C = 〈c〉, then there is no single path query Q such that V ։ Q,
which answers our question, as well as the asymptotic determinacy problem. Let us now
assume that V does indeed contain a path query C = 〈c〉. Consider a natural number
o ∈ {0, . . . , c− 1}. Then, there are two cases for a query Q = 〈m〉 such that m ≡ o[c]:

• Case 1: V does not determine any query Q′ = 〈n〉 with n ≡ o[c]. In particular, this
means that V 6։ Q, which answers our question for such queries.

• Case 2: There exists some query Q′ = 〈n〉 with n ≡ o[c] such that V ։ Q. Let
us assume, without loss of generality, that Q′ is actually the smallest such query.
Then either m < n, in which case we can easily conclude that V 6։ Q, or m ≥ n,
in which case Lemma 6.7 immediately proves that V ։ Q. Thus the determinacy
status for such queries is entirely determined by this specific n.

What this means is that, if we restrict our attention to big enough queries Q = 〈m〉
with m ≡ o[c], there are only two possibilities. Either none of them are determined by Q
(case 1), or all of them are (case 2). Thus, deciding the determinacy status of big enough
queries becomes much easier: it simply amounts to deciding, for each o ∈ {0, . . . , c− 1},
if it behaves as in case 1 or case 2. This is what we call the asymptotic determinacy
picture of V.

This gives a new perspective on the asymptotic determinacy problem: given a view
V, we can first compute the asymptotic determinacy picture of V, and then compute
a safety threshold α(V) that ensures that all queries Q that ask for paths longer than
α(V) comply to this asymptotic determinacy picture. Then, given a query Q = 〈n〉 with
n > α(V), it simply remains to check if n[c] is in case 1 or 2, which determines whether
V ։ Q. Finally, by using Lemma 6.5, we can restrict our attention to C-complete views.
Altogether, this discussion shows that Theorem 6.1 is a consequence of the following
proposition:

6.2. BEHAVIOR GRAPHS 83

Proposition 6.8. Given a C-complete view V defined by unions of single path queries,
such that C ∈ V with C = 〈c〉 for some c ∈ N and a natural number o ∈ {0, . . . , c− 1},
it is decidable whether there exists a query Q = 〈n〉 such that n ≡ o[c] and V ։ Q. If
this is the case, such a query Q and a first-order rewriting of Q with regards to V can be
effectively computed.

Indeed, if V is C-complete, the specific α required by Theorem 6.1 can be defined
as the function that maps V to the maximal n given by Proposition 6.8, and is thus
computable. Moreover, the first-order rewritings of queries Q′ that ask for paths that are
longer that n are easily deduced from the rewriting provided by Proposition 6.8 through
the use of Lemma 6.7. If V is not C-complete, then Lemma 6.5 allows us to compute
a C-complete view V′ for which the previous argument provides a suitable α′. It then
remains to define α(V) = kα′(V′), where k is the gcd of all numbers that appear in V,
as in the proof of Lemma 6.5. Then, given a query Q = 〈n〉, with n ≥ α(V), we define
Q′ = 〈n

k
〉 if k divides n, and apply Proposition 6.8 with V′ and Q′, or conclude that

V 6։ Q otherwise.
Remark that, in order to produce the complete determinacy picture of V, and thus

to solve the general determinacy problem, we would need to compute the smallest query
that is determined by V for each o. We do not know how to solve this challenging task
yet, and discuss it further in Section 6.4. Our main tool for proving Proposition 6.8 is
introduced in Section 6.2, while the proof itself is the goal of Section 6.3.

6.2 Behavior graphs

This section introduces the main tool of this chapter: behavior graphs. To each UPQ
view V, we will attach a finite set of behavior graphs GV. This set GV only depends on
V, and thus is not attached to any query. We will show in Section 6.3 that it contains
enough information to determine both the asymptotic determinacy picture of V and the
safety threshold after which the asymptotic determinacy picture can be used to solve the
determinacy problem, as explained in Section 6.1.2. We start in Section 6.2.1 by giving
some intuitions as to how GV is built, before providing a formal definition in Section 6.2.2.

6.2.1 Intuitions

Assume that we are given a UPQ view V and an SPQ query Q = 〈n〉, and we are asked
whether V determines Q. One very naive way to solve the problem is as follows:

• Enumerate all databases D;

• For each database D, compute E = V(D);

• Enumerate all view inverses D′ such that V(D′) = E;

• Test whether Q(D′) = Q(D) and:

– If so: start from the top with the next database D.

84 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

– If not: stop here and conclude that V does not determine Q.

This gives a coRE algorithm for deciding whether V determines Q. Indeed, if V
does not determine Q, then there exist a pair of databases that gives a counter-example,
and the algorithm is guaranteed to find it eventually. Otherwise, the algorithm will of
course run forever, as there are infinitely many databases.

However, in the setting of this chapter, we have two major assets to help us refine
this very naive algorithm into a workable decision procedure. Namely, we know that σ is
reduced to a single symbol and that Lemma 6.2 implies that V has to contain an SPQ
C = 〈c〉. Together, these two properties make it so that databases and their views have
some kind of uniformity and periodicity. Informally, this means that we wont have to
enumerate all databases, but only small fragments of them. Moreover, we wont have
to care about where those fragments occur in the database, as long as we know that
they do occur. This will allow us to reduce our problem of enumerating all databases
to only enumerating those small fragments that occur in them. This will lead to a
finite representation of the infinite set of databases that will still contain all required
information to draw the asymptotic determinacy picture.

For now, let us forget about the problem of having a finite representation, and let
us focus on the properties that we want to extract from the databases. More precisely,
assume that we are given a view image E = V(D), and we want to prove that D contains
a path π of length n by looking only at E. If D does indeed contain such a path, then
the following properties must necessarily hold in E:

C1. E contains the n + 1 (not necessarily distinct) nodes of π, x0, . . . , xn.

C2. For each V ∈ V and u ∈ L(V), V (xi, xi+u) holds in E for all i. In particular,
C(xi, xi+c) holds for all i.

C3. For each x in E such that V (x, xi) holds in E, there exists an appropriate value of k
and j such that Ck(x, xj) holds in E. The values of k and j depend on the witness
path that proves V (x, xi), as shown in Figure 6.2.

If E = V(D) does not satisfy these properties, then we can safely conclude that D
does not contain a path of length n going from x0 to xn. Let us fix x0, . . . , xn and assume
that E satisfies (C2) and (C3) for these fixed nodes. One possibility is that these nodes
are the consecutive nodes of a path of length n going from x0 to xn. Unfortunately, there
are many other ways for E to satisfy (C2) and (C3) without D actually having a path of
length n from x0 to xn, let alone one that goes through all the xi’s in the right order.

We want to quantify how much D differs from the case where the nodes x0, . . . , xn

are the consecutive nodes of a simple path. For instance, if there exists some V ∈ V
such that u ∈ L(V), our intention is for xi and xi+u to be linked by a path of length u.
However, by looking at E, we only see that V (xi, xi+u) holds, which could mean that xi

and xi+u are linked by a path of length v, for some other v ∈ L(V). In this case, we say
that this path incurs a (v − u) delay.

More precisely, let µ be a path in D from some xi to some xj . We define the delay
of this path as δ(µ) = |µ| − (j − i). δ(µ) caracterizes the difference between µ and the

6.2. BEHAVIOR GRAPHS 85

x0 x1 x2 x3 x4

x V

implies

x0 x1 x2 x3 x4

x V
C

or

x0 x1 x2 x3 x4

x V
C

Figure 6.2: Example of possible behaviors for a database (full) and its view (dashed), with
C = 〈3〉 and V = 〈1, 2〉. Assume we know the information represented in the top figure.
Then, one of the two bottom pictures must hold. More generally, if C = 〈c〉 and V (x, xi)
holds in E, then Ck(x, xj) must also hold, with j = i+ (c− v[c]) and kc = v + (c− v[c])
for some v ∈ V .

section of the path of length n going through the xi’s, that we expected to find in D. If
µ is of the intended (j − i) length, then its delay will be zero. Otherwise δ(µ) can be
positive, if µ is longer than intended, or negative, if µ is shorter than intended.

These delays are exactly the information that we want to extract from D. Of course,
the number of paths can vary wildly from one database to another, so we will only focus
on paths that are implied by the conditions (C2) and (C3). We represent this in a
graph HD as explained below. Note that HD is not unique: it depends on the choice of
x0, . . . , xn, as there can be many multiple quantifications that satisfy conditions (C1),
(C2) and (C3).

• HD has n + 1 nodes that represent x0, . . . , xn, as in (C1). We simply note them
0, . . . , n.

• For all V ∈ V and u ∈ L(V), (C2) implies that V (xi, xi+u) holds in E. Hence, there
exists a path µ in D going from xi to xi+u of length v, for some v ∈ L(V). For each
such µ:

– We represent it as an edge in HD going from i to i+ u of label δ(µ) = (v− u).

– For all u′ < v such that u′ ∈ L(V ′) for some V ′ ∈ V, we know that V ′(x, xi+u)
holds in E, where x is the u′th predecessor of xi+u along µ. We apply (C3) as
shown in Figure 6.3. This leads to a path µ′ in D from xi to xi+u+(c−v′[c]) such
that δ(µ′) = (v − u) + (v′ − u′), for some v′ ∈ L(V ′). We similarly represent
each such µ′ in HD.

Assume that there is a path from node 0 to node n in HD whose sum of labels is 0.
By composing all the paths in D that led to this path in HD, we prove that there exists

86 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

xi xi+u xi+u+q

x
v − u′

u′

V ′

kc = v′ + q

Figure 6.3: Illustration for the existence of the path µ′ of delay (v − u) + (v′ − u′) in the
construction of HD. Full arrows represent paths in D and are labeled by their length.
Dashed arrows represent edges in E. µ′ is the thick path, and q = c− v′[c].

in D a path π from x0 to xn such that δ(π) = 0. Hence, π is of length n, and we have
actually found a path of length n from x0 to xn in D.

Consider the case where this is true for all databases D, that is, for all databases
D such that V(D) satisfies the necessary conditions, HD contains such a path. Then
all these databases contain a path of length n from x0 to xn. This means that the
necessary conditions for the existence of a path of length n in D are also sufficient. Since
these conditions can be checked by looking only at the view instance, it implies that V
determines 〈n〉.

At this point, we know that the information for which we are looking lies in the set
of all HD for all dabatases D that satisfy the necessary conditions (C1), (C2) and (C3).
It remains now to find a finite representation of this set. To do so, we identify in HD

all nodes i and j such that i ≡ j[c]. Note that this is consistent with the fact that such
nodes were already linked by paths of delay 0 thanks to C ∈ V. These merged graphs
are the fragments of databases that were hinted at, at the beginning of this section. In
a sense, they describe how a small set of nodes of D are linked with each other. When
the query Q = 〈n〉 asks for a big enough1 n, in each database that satisfy the necessary
conditions, one of these small sets this will be repeated many times over. This is what
will allow us to recompute the global behavior of the database. Thus, when all the small
sets have a path whose sum of labels from 0 to n[c] is 0, we will be able to conclude that
all databases that satisfy the necessary conditions have a path of length n from x0 to xn,
which will prove as before that V determines Q = 〈n〉.

In the next section, we make the intuitions given here more precise as we provide a
formal definition of these small sets, that we call behavior graphs.

6.2.2 Definitions

We start by defining the set HV of all choice graphs for a given view V, with C = 〈c〉 ∈ V.
Each of these graphs represent the delay of paths that connect a small set of nodes
of a database D whose view image satisfy the conditions (C1), (C2) and (C3) from

1Those “big enough” queries are precisely the queries that will lie past the safety threshold of asymp-
totic determinacy.

6.2. BEHAVIOR GRAPHS 87

Section 6.2.1. Note that we only consider the delays for paths that were implied by
the conditions. The reader should refer to the construction of HD from Section 6.2.1 to
understand how the labels along the edges of these choice graphs are chosen. Note also
that the definition of HV is made independent from any given database D, as we consider
all possibilites.

Definition 6.9 (Choice graph). Given a C-complete view V such that C ∈ V with
C = 〈c〉, we define HV as the set of all directed, edge-labeled graphs H such that:

1. H has c nodes, which we will simply note 0, 1, . . . , c− 1.

2. The edges of H carry labels in {−2(m − 1), . . . , 2(m− 1)}, where m is the biggest
element that appears in the views, that is m = maxV ∈V maxu∈L(V) u.

3. For each i, j ∈ {0, . . . , c − 1}, for each V ∈ V, for each u ∈ L(V) such that
u ≡ (j − i)[c], there exists v ∈ L(V) such that:

• there is an edge in H from i to j labeled by v − u.

• for each V ′ ∈ V, for each u′ ∈ L(V ′), there exist v′ ∈ V ′ and an edge in H
from i to (j − v′)[c] labeled by (v − u) + (v′ − u′).

Remark 6.10. For a given V, the number of nodes and edges of a graph H ∈ HV is
bounded, thus HV is finite. Moreover all H ∈ HV are complete graphs, because V is
C-complete.

As in Section 6.2.1, the relevant information contained in a choice graph consists of
the sums of the labels along the paths of the graph. We call these sums the weights of
the paths.

Definition 6.11 (Weight). The weight of a path in a graph H is the sum of all labels
along edges of the path. A path with no edge is of weight 0.

Behavior graphs are similar to choice graphs, with yet another necessary condition
added. Assume that a database D is such that V(D) satisfies the conditions (C1), (C2)
and (C3) from Section 6.2.1. Assume then that there exists in D a path µ from xi to xj

such that δ(µ) ≡ (i− j)[c]. Then, we deduce that |µ| ≡ 0[c]. This implies that µ appears
as a sequence of C edges in V(D). It turns out that this allows to deduce the existence
of more paths of D with the same delay. This is illustrated on Figure 6.4 and is the last
requirement for defining behavior graphs.

Definition 6.12 (Behavior graph). Given a C-complete view V such that C ∈ V with
C = 〈c〉, we define GV as the set of all directed, edge-labeled graphs G constructed as
follows:

1. Pick H ∈ HV, and start with G = H.

2. Pick i, j ∈ {0, . . . , c− 1} such that:

88 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

• There exists in G a path from i to j of weight (i− j)[c]. Let a be the weight of
a path of minimal length satisfying this property.

• For all a′ ≡ a[c], there exists i′, j′ such that (j′ − i′) ≡ (j − i)[c], and there is
no edge from i′ to j′ of label a′.

Then, for all i′, j′ such that (j′ − i′) ≡ (j − i)[c], add an edge a from i′ to j′.

3. Repeat step 2 until no more edges can be added.

Remark 6.13.

• Step 2 of the construction of GV can only be applied a finite number of times for
each G, since it can be done at most once for each (i, j). Moreover, there is a finite
amount of choice at each step. Hence, GV is finite.

• As soon as there is a path from some i to some j of weight (i− j)[c], then there is a
weight a ≡ (i− j)[c] such that all i′, j′ that are at the same distance than i is from
j are linked by an edge of this particular weight.

xi xj

C C C C

implies, for all u:

xi xjxi−u xj+c−u

C C C C C

u c− u

Figure 6.4: Illustration of the intuition for the construction of a behavior graph. Assume
that the nodes from x0 to xn form a path of length n. If xi and xj are connected via a
sequence of C’s, represented by the dashed edges, then for all u < c, there exists some
intermediate nodes such that xi−u and xj+c−u are connected as shown in the picture.

Example 6.14. Consider the view V = {C, V }, with C = 〈3〉 and V = 〈1, 5〉. We repre-
sent here one of the graphs in GV. Remark that it satisfies the properties of Definition 6.9.
Here are some of its features:

• It has 3 nodes: 0, 1 and 2;

• The edges from 0 to 1 are of weight 4 and -8;

• Remark that (1 − 0) = 1 ∈ L(V), thus there should exist an edge from 0 to 1 of
weight (1− v) for some v ∈ L(V). This is the case with v = 5. In this example, we
have a similar situation for the other pairs: (1,2) and (2,0).

6.2. BEHAVIOR GRAPHS 89

• Similarly, (0−1) ≡ 5[3], thus there should exist an edge from 1 to 0 of weight (5−v)
for some v ∈ L(V). Here, it is the edge of weight 4. It is the same for pairs (2,1)
and (0,2).

• The last condition from Definition 6.9 is harder to see. We just give an example
here, using the notations of the definition. For i = 0, j = 1, u = 1, v = 5, u′ = 1
and v′ = 5, we indeed find an edge from i to (j− v′)[3] of weight (v−u)+ (v′ −u′).
That is, there is an edge from 0 to 2 of weight 8.

• Finally, the additional condition from Definition 6.12 is trivial here. The only paths
that satisfy the condition are the cycles, which are all of weight 0 modulo c, so no
additional edge needs to be added.

0

12

+4,−8

−4,+8

−4,+8

+4,−8

−4,+8

+4,−8

+0

+0+0

We now have all the tools to give an overview of the rest of the proof. In Section 6.3,
we will show how the intuitions given in Section 6.2.1 formally apply: we will show how
the information contained in GV for a given UPQ view V fully determine the asymptotic
determinacy picture of V.

More precisely, in Section 6.3.1, we prove that, if there exists a behavior graph G ∈ GV

that contains no path of weight 0 from 0 to o, then we can build two databases that have
the same view image but disagree on paths of length n, for all n ≡ 0[c]. In other words,
we can build a database whose view satisfies all the necessary conditions for the existence
of a path of length n, while still maintaining a non-zero delay between the relevant nodes.
For instance, in the case of Example 6.14, we will use the behavior graph provided to
show that V cannot determine any query Q = 〈n〉 where n ≡ 1[3]. This is seen on the
behavior graph from the fact that it contains no path of weight 0 from 0 to 1.

Conversely, in Section 6.3.2, we show that if all behavior graphs in GV contain a path
of weight 0 from 0 to o, then there exists some natural number n ≡ o[c] such that V
determines Q = 〈n〉. In other words, we will prove that all databases that satisfy the
necessary conditions for some nodes x0, . . . , xn have to behave like one of the behavior
graphs in GV. Since all these graphs have a path of weight 0 from 0 to o, we will show

90 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

that this implies a path of delay 0 from x0 to some xo′ for some o′ ≡ o[c]. This in turn
will immediately imply a path of delay 0 from x0 to xn, which satisfies the query.

Our decision algorithm uses these properties of behavior graphs as follows. For a
given C-complete view V and a given natural number o ∈ {0, . . . , c− 1}, we are simply
looking for the occurrence of a specific graph G ∈ GV, namely one that does not contain
a path of weight 0 from node 0 to node o. If we do find one such G, then, for all n ≡ o[c],
V 6։ 〈n〉. Otherwise, V ։ 〈n〉 for some n ≡ o[c]. We do not actually need to compute
GV: we simply guess the appropriate graph G and check that it does contain the critical
path. Since G is of size polynomial in V and the considered path, if it exists, can be
assumed to be polynomial in the size of G (thanks to Bezout’s Identity), our decision
procedure is in PSpace, more precisely in ΠP

2 .

6.3 Deciding asymptotic determinacy

The goal of this section is to prove Proposition 6.8. Indeed, Proposition 6.8 is an immedi-
ate consequence of the two propositions below, that formalize the intuitions of Section 6.2:

Proposition 6.15. Let V be a C-complete UPQ view such that C ∈ V with C = 〈c〉.
Let o ∈ {0, . . . , c−1} be a natural number. Assume that there exists a graph G ∈ GV that
contains no path of weight 0 from 0 to o. Then, for all n ≡ o[c], V 6։ 〈n〉.

Proposition 6.16. Let V be a C-complete UPQ view such that C ∈ V with C = 〈c〉.
Let o ∈ {0, . . . , c − 1} be a natural number. Assume that all G ∈ GV contain a path of
weight 0 from 0 to o. Then there exists n ≡ o[c] such that V ։ 〈n〉 and we can effectively
compute a first-order rewriting that witnesses it.

The proofs of these two propositions are the respective goals of Section 6.3.1 and
Section 6.3.2.

6.3.1 Negative direction: building counter-examples

In this section, we prove Proposition 6.15 by showing how to turn a behavior graph with
no path of weight 0 from 0 to o into a pair of databases that proves that V does not
determine any query Q = 〈n〉 with n ≡ o[c].

For all this section, we fix a C-complete UPQ V such that C ∈ V with C = 〈c〉,
and we assume that there exists a behavior graph in G ∈ GV that contains no path of
weight 0 from 0 to o. It turns out that the canonical counter-examples that we build in
order to prove that V 6։ 〈n〉, for any n ≡ o[c], depend dramatically on whether G only
contains cycles of positive or negative weights, or if it actually has both. We start by
giving examples of both situations.

Example 6.17. Consider the case where V = {C, V }, C = 〈2〉 and V = 〈1, 2〉. Then
the behavior graph below is one of the graphs in GV. Note that it has no path of weight 0
from 0 to 1, and that all its cycles are of non-negative weights.

6.3. DECIDING ASYMPTOTIC DETERMINACY 91

0 1

+1

+1

+0,+1 +0,+1

Example 6.18. Consider again Example 6.14, with V = {C, V }, C = {3} and V = {1, 5}.
The behavior graph from that example also contains no path of weight 0 from 0 to 1, and
contains cycles of both positive and negative weights.

0

12

+4,−8

−4,+8

−4,+8

+4,−8

−4,+8

+4,−8

+0

+0+0

The two cases are split across Lemma 6.19 and Lemma 6.25. We start with Lemma 6.19
which solves the case where all cycles of G are of the same sign.

Lemma 6.19. Assume that there exists G ∈ GV such that 0 does not have both a cycle of
positive weight and a cycle of negative weight and that there is no path of weight 0 from
0 to o. Then, for all n ≡ o[c], V 6։ 〈n〉.

Proof. Assume that all cycles of 0 in G have positive or zero weight. An example of such
a case is given in Example 6.17.

Let M be the set of all maximum element of each query in V, that is:

M = {max(L(V)) | V ∈ V}

Let d = gcd(M). Remark that d divides c, as c is the maximum (and only) element of
L(C).

Claim 6.20. d does not divide o.

Assume d divides o. Then, Bezout’s Identity provides u1, . . . , uk ∈ M such that
u1 + . . . + uk ≡ o[c]. Then, by construction of G, there exists a path from 0 to o whose
weight is of the form (v1−u1)+ (v2−u2)+ . . .+(vk −uk) where each ui is the maximum
element of some Vi ∈ V, and vi is an element of the same Vi. Hence, all terms of the
sum are negative or zero. If all are zero, then there is a path of weight zero from 0 to

92 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

o. Otherwise, there is a path of negative weight from 0 to o, and by applying the same
reasoning from o to 0, we get a cycle of negative weight from 0 to 0. Both these cases are
false by assumption, which proves the claim.

For each Vi ∈ V , let ui be the maximum element of L(Vi). By construction of d, we
know that d divides ui. Let n be any natural number such that n ≡ o[c]. We can now
construct a database D as follows:

• D contains two simple paths of length n, whose respective nodes are x0, . . . , xn and
x′
0, . . . , x

′
n.

• For each s, t ≤ n such that t− s ∈ L(Vi) for some i, and d does not divide t− s, we
add to D a new path πi

s,t of length ui − 2, and we connect xs and x′
s to its initial

node, and we connect its final node to xt and x′
t.

We then construct D′, a copy of D, in which xj and x′
j switch roles for each j ≡ o[d].

Note that, since d does not divide o, this means that x0 and x′
0 are not switched, but xn

and x′
n are. See Figure 6.5 for an example of the construction.

Claim 6.21. D and D′ agree on V, but each path from x0 to xn in D′ is strictly longer
than n. Hence D and D′ disagree on Q.

Let (x, y) ∈ Vi(D) for some Vi ∈ V. If either x or y belongs to one of the new paths
of the form πj

s,t, then the symmetry of the construction between the two original simple
paths shows that (x, y) ∈ Vi(D

′). Otherwise x = xs or x = x′
s and y = xt or y = x′

t, for
some s and t. Then either t − s ≡ 0[d], in which case either both x and y are switched
with their copy in D′, or none are. Then, once again the symmetry of the construction
concludes that (x, y) ∈ Vi(D

′). Otherwise, d does not divide t − s, which implies that
(x, y) are linked by πi

s,t, and thus that (x, y) ∈ Vi(D
′). Hence, V(D) = V(D′). Remark

now that each path from x0 to xn has to cross one of the πj
s,t, which is longer than t− s.

It follows that each path from x0 to xn is longer than n, which proves the claim.
It easily follows from this claim that V 6։ 〈n〉. The case where 0 only has cycles of

negative or zero weight is dealt with in a very similar way, which concludes the proof of
the lemma.

x0 x1 x2 x3 x4 x5

x′

0
x′

1
x′

2
x′

3
x′

4
x′

5

x0 x′

1 x2 x′

3 x4 x′

5

x′

0
x1 x′

2
x3 x′

4
x5

Figure 6.5: Example of the construction in Lemma 6.19 for the view defined in Exam-
ple 6.17, that is V = {C, V } with C = {2} and V = {1, 2}.

We now move on to the case where G has both positive and negative cycles. It turns
out that this proof is a little more involved than the proof of Lemma 6.19, and relies

6.3. DECIDING ASYMPTOTIC DETERMINACY 93

mainly on the arithmetic properties of behavior graphs. We explore these properties in
Lemma 6.22 below.

Lemma 6.22. Let G ∈ GV such that 0 has both cycles of positive and negative weight.
Let W be the set of all weights of cycles of 0 in G, and let d = gcd(W). Then G has the
following properties:

1. For all i, j ∈ {0, . . . , c − 1} all paths from i to j have the same weight modulo d.
We denote this value by w(i, j). Moreover, w(i, j) is compatible with composition.
Namely :

• w(i, i) ≡ 0[d]

• For all k, w(i, k) + w(k, j) ≡ w(i, j)[d]

• w(i, j) ≡ −w(j, i)[d]

2. For all 0 ≤ i < j < c ∧ d, w(i, j) 6≡ i− j[c ∧ d].

3. For all i ∈ {0, . . . , c− 1}, w(i, i+ c ∧ d) ≡ 0[d].

Proof.

1. By construction of d, we already know that all cycles of 0 have weight 0[d]. Let
i, j ∈ {0, . . . , c− 1}. Let π1 and π′

1 be two paths from i to j of respective weights
w1 and w′

1. Let π0 be a path from 0 to i of weight w0 and π2 be a path from j to 0
of weight w2. Then both π0 · π1 · π2 and π0 · π

′
1 · π2 are cycles of 0. Hence, we have

w0 + w1 + w2 ≡ 0[d] and w0 + w′
1 + w2 ≡ 0[d], which implies w1 ≡ w′

1[d], so that
w(i, j) is correctly defined, as in the statement of the lemma.

The other properties are easy consequences of this fact.

2. To prove this property, we make use of the following claim:

Claim 6.23. For all i ∈ {0, . . . , c − 1}, for all natural numbers k, there exists
j ∈ {0, . . . , c− 1} such that w(i, j) ≡ −j + k[c ∧ d].

Proof of claim. Let i ∈ {0, . . . , c − 1}, let k be any natural number. Since V is
complete, there exists V, V ′ ∈ V such that there exist u ∈ L(V) and u′ ∈ L(V ′)
with u ≡ 1[c] and u′ ≡ i− k[c]. Then, Property 3 of Definition 6.9 with i− 1, i, u
and u′ gives v ∈ V and v′ ∈ V ′ such that:

• w(i− 1, i) ≡ (v − u)[d]

• w(i− 1, i− v′) ≡ (v − u) + (v′ − u′)[d]

Then it follows that:

w(i− 1, i− v′) ≡ (v − u) + (v′ − u′)[c ∧ d]

w(i− 1, i− v′) ≡ (v − u) + (v′ − i+ k)[c ∧ d]

w(i− 1, i) + w(i, i− v′) ≡ (v − u) + (v′ − i+ k)[c ∧ d]

(v − u) + w(i, i− v′) ≡ (v − u) + (v′ − i+ k)[c ∧ d]

w(i, i− v′) ≡ (v′ − i) + k[c ∧ d]

94 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

and we conclude the proof of the claim by renaming v′ − i to j.

We can now move on to the proof of the property. Assume by contradiction that
there exists i, j such that w(i, j) ≡ i − j[c ∧ d]. Then w(i, j) ≡ i − j + kd[c] for
some k. Since gcd(W) = d and W contains both positive and negative elements,
by using Bezout’s Identity with positive coefficients, we show that there exists a
cycle of i of weight −kd. Hence, there exists a path from i to j of weight i − j[c].
Since this path satisfies the requirement in Definition 6.12, we can show that for all
r ∈ {0, . . . , c− 1}, w(r, r + (j − i)) ≡ i− j[c ∧ d].

This is a contradiction with the claim. Indeed, the claim implies that for all k,
there exists l such that w(0, l) ≡ −l + k[c ∧ d]. Since, k can take c ∧ d different
values, but j − i < c ∧ d, this means that we can find two values k 6= k′ for which
the claim produces l and l′ that are in the same class modulo j− i. More precisely,
we have w(0, l) ≡ −l + k[c ∧ d], w(0, l′) ≡ −l′ + k′[c ∧ d], and l ≡ l′[j − i]. Hence,
there exists some α such that l′ = l+α(j− i). By using what we just proved above
α times, we get w(l, l′) ≡ α(i − j)[c ∧ d]. Hence, w(l, l′) ≡ l − l′[c ∧ d]. Thus, we
have:

w(0, l) ≡ −l + k[c ∧ d]

w(0, l) + w(l, l′) ≡ w(l, l′)− l + k[c ∧ d]

w(0, l′) ≡ l − l′ − l + k[c ∧ d]

w(0, l′) ≡ −l′ + k[c ∧ d]

This final equality implies that k = k′, which is a contradiction.

3. We first prove that w(0, 0+c∧d) ≡ 0[c∧d]. This is a purely arithmetic consequence
of Property 2, that is detailed in Lemma 6.24.

We rewrite this equality as w(0, 0+ c∧ d) ≡ −c∧ d+ kd[c]. Then, by following the
same reasoning as in the proof for Property 2, we prove that there exists a path
from 0 to c ∧ d of weight −c ∧ d[c]. Since this path satisfies the requirement in
Definition 6.12, then there must exist some weight w ≡ −c ∧ d[c] such that, for all
i ∈ {0, . . . , c− 1}, there is an edge from i to i+ c∧ d of weight w, which we denote
by πi,i+c∧d.

Let c′ = c
c∧d

. Then π0,c∧d · πc∧d,2(c∧d) · . . . · π(c′−1)(c∧d),c′(c∧d) is a cycle of 0 of weight
c′w. Thus, d divides c′w. By construction, c′ ∧ d = 1, hence d divides w, that is,
w ≡ 0[d]. This implies that for all i ∈ {0, . . . , c− 1}, w(i, i+ c ∧ d) ≡ 0[d].

The proof of Lemma 6.22 uses the following arithmetical result:

Lemma 6.24. Let d ∈ N, and a1, . . . , ak ∈ {0, . . . , d − 1}. Assume that for all i, j,
ai+ai+1+ . . .+aj 6≡ i− j−1[d]. Then there are at most d−k−1 possible values for ak+1

such that the sequence a1, . . . , ak+1 also satisfies this property. In particular, if k = d−1,
then there are no possible continuation.

6.3. DECIDING ASYMPTOTIC DETERMINACY 95

Proof. Assume everything defined as in the statement of the lemma.
Let i ∈ {1, . . . , k}. Then ai + . . . + ak forbids a value for ak+1, that is, ak+1 must be
chosen so that ai + . . .+ ak + ak+1 6≡ i− k − 2[d].

Assume that ai + . . .+ ak forbids −1[d]. Then ai + . . .+ ak − 1 ≡ i− k− 2[d]. Hence,
ai + . . .+ ak ≡ i− k − 1[d], which is a contradiction.

Assume that there exists j > i such that aj + . . .+ ak forbids the same value a. Then

aj + . . .+ ak + a ≡ j − k − 2[d]

Then

a ≡ j − k − 2− aj − . . .− ak[d]

But we also have

ai + . . .+ ak + a ≡ i− k − 2[d]

Hence

ai + . . .+ aj−1 + j − k − 2 ≡ i− k − 2[d]

Finally

ai + . . .+ aj−1 ≡ i− j[d]

which is a contradiction.
This proves that each i ∈ {1, . . . , k} forbids a distinct value, which is not −1. Hence,

there are k+1 forbidden values, and d− k− 1 remaining possibilites. This concludes the
proof.

We are now ready to give the full proof of Lemma 6.25:

Lemma 6.25. Assume that there exists G ∈ GV such that 0 has both cycles of positive
and negative weight, and that there is no path of weight 0 from 0 to o. Then, for all
n ≡ o[c], V 6։ 〈n〉.

Proof. Let G ∈ GV be defined as in the statement of the lemma. An example of such a
case is given in Example 6.18. We also define d as in Lemma 6.22.

Let f be the function defined as follows:

∀i ∈ {0, . . . , c ∧ d− 1}, f(i) = i+ w(0, i)[d]

Remark that f is one-to-one. Indeed, assume that i, j are such that f(i) = f(j). Then :

i+ w(0, i) ≡ j + w(0, j)[d]

w(0, i)− w(0, j) ≡ j − i[d]

And by using Property 1 of Lemma 6.22 we get:

w(j, i) ≡ j − i[d]

96 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

This final equation implies that i = j. Otherwise, this would be a contradiction with
Property 2 of Lemma 6.22. We can then define g as:

∀i ∈ {0, . . . , d− 1}, g(i) = i+ w(0, i)[d]

Property 3 of Lemma 6.22 then gives us:

∀i ∈ {0, . . . , d− 1}, g(i) = i+ w(0, i[c ∧ d])[d]

Remark now that g can also be written:

∀i ∈ {0, . . . , d− 1}, g(i) = f(i[c ∧ d]) + (i− (i[c ∧ d]))[d]

from which we deduce that g is one-to-one, because f is. Thus g is a permutation of
{0, . . . , d− 1}.

We can now define two databases D and D′ such that D is a cycle of length d whose
nodes are x0, . . . , xd−1, and D′ is a copy of D in which xi is replaced by xg(i) for all i. This
is well defined and also a cycle of length d because g is a permutation. See Figure 6.6 for
an example of this construction.

Claim 6.26. D and D′ agree on V.

Let xi and xj be two nodes of D such that (xi, xj) ∈ V (D) for some V ∈ V. Then
there exists u such that u ∈ L(V) and j− i ≡ u[d]. Let γ be the length of any path from
xi to xj in D′. Then we have:

γ ≡ g−1(j)− g−1(i)[d]

γ ≡ (j − w(0, j))− (i− w(0, i))[d]

γ ≡ (j − i)− (w(0, j)− w(0, i))[d]

γ ≡ u− w(i, j)[d]

By definition of G, there exists v ∈ L(V) such that v − u ≡ w(i, j)[d]. Hence, we have
γ ≡ v[d]. This means that there is a path from xi to xj in D′ of length v, and thus
(xi, xj) ∈ V (D′). A similar reasoning proves the other direction, and concludes the proof
of the claim.

Claim 6.27. For all n ≡ o[c], g(n) 6≡ n[d].

Assume that g(n) ≡ n[d]. Then w(0, n) ≡ 0[d]. Hence, Property 3 of Lemma 6.22
implies that w(0, o) ≡ 0[d]. Hence there exists a path in G from 0 to o of weight kd for
some k. Since d is the gcd of all cycles of 0, Bezout’s Identity implies that there exists a
path from 0 to 0 of weight −kd. Hence there exists a path from 0 to o of weight 0, which
is a contradiction.

It easily follows from the claim that, for all n ≡ 0[c], V 6։ 〈n〉. Indeed, the only
path of length n starting from x0 ends in xn in D, whereas it ends in xg(n) in D′. This
concludes the proof of the lemma.

6.3. DECIDING ASYMPTOTIC DETERMINACY 97

x0

x1

x2
x3

x4

x5

x6

x7

x8
x9

x10

x11

x0

x5

x10
x3

x8

x1

x6

x11

x4
x9

x2

x7

Figure 6.6: Example of the construction in Lemma 6.25 for the view defined in Exam-
ple 6.18, that is V = {C, V } with C = {3} and V = {1, 5}.

6.3.2 Positive direction: building a rewriting

In this section, we solve the positive case of Proposition 6.8. We start by giving a simple
example that shows some of the features of the rewritings that will be used to prove
Proposition 6.16.

Example 6.28. In this example, we work with:

• V = {C, V1, V2}

• C = {2}

• V1 = {1, 2}

• V2 = {2, 3}
• Q = {5}

We show that V ։ Q. Indeed, R = 〈ϕ〉 is a rewriting of Q using V, with:

ϕ(x, y) = ∃x0, . . . , x5, x0 = x ∧ x5 = y ∧ CQπ5 ∧
(

∀z, V1(z, x3) ⇒ (C(z, x3) ∨ C(z, x4))
)

where π5 is a simple path whose nodes are x0, . . . , x5 and CQπ5 is the conjunctive query
that states all the atoms that hold in V(π5). First, remark that R only states necessary
conditions for the existence of a path of length 5 from x to y, as explained in Section 6.2,
hence, for all D, Q(D) ⊆ R(V(D)).

Assume now that (x, y) ∈ R(V(D)). Let x0, . . . , x5 be a quantification for which
ϕ(x, y) is satisfied. We can prove the following:

• C(x0, x2), C(x1, x3) and C(x2, x4) hold in V(D). Hence, these pairs of nodes are
at distance 2 in D.

• V1(x4, x5) holds in V(D). Hence, x4 and x5 are either at distance 1 or 2. If this
distance is 1, then we immediately get a path of length 5 from x0 to x5 by using the

previous point, as x0
2
→ x2

2
→ x4

1
→ x5.

• Similarly, V2(x0, x3) holds in V(D). If the distance from x0 to x3 is 3, we imme-

diately get x0
3
→ x3

2
→ x5. Otherwise, there exists z such that x0 → z → x3. This

implies V1(z, x3).

98 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

• The remaining case is represented in Figure 6.7, with the two possible implications
of V1(z, x3) given by ϕ. Both possibilities also imply a path of length 5 from x0 to
x5.

x0 x1 x2 x3 x4 x5

z

2

2

2

2

Figure 6.7: Illustration for the last case of Example 6.28. The full edges represent paths in
the database, along with their length when it is more than 1. The dotted edges represent
the two possible implications of V1(z, x3) given by R.

We are now ready to give the proof of Proposition 6.16, that we recall here:

Proposition 6.16. Let V be a C-complete UPQ view such that C ∈ V with C = 〈c〉.
Let o ∈ {0, . . . , c − 1} be a natural number. Assume that all G ∈ GV contain a path of
weight 0 from 0 to o. Then there exists n ≡ o[c] such that V ։ 〈n〉 and we can effectively
compute a first-order rewriting that witnesses it.

Proof. For each G ∈ GV, let πG be the shortest path in G of weight 0 from 0 to o. Let ρG
be the longest path that is used to build G from some H ∈ HV and kG be the number of
iterations of step 2 of the definition used to build G from H . Let k = maxG∈GV

kG. Let
ρ = maxG∈GV

|ρG|. Let K = ρk. Let L = maxG∈GV
|πG|. Let M = 2ck + 3cm where m is

the biggest number that occurs in one of the views. Let N = |HV|. Let n
′ = K ·L ·M ·N .

Let n be the smallest number such that n ≡ o[c] and n ≥ n′.

Claim 6.29. V determines Q = {n}.

Let ϕ1 be the n+1-ary conjunctive formula deduced fromV(x0 . . . xn), with x0, . . . , xn

as free variables, that is, the formula that states all the atoms that hold in V(x0 . . . xn).
We also define:

ϕ2(x0, . . . , xn) = ∀z,
n
∧

i=0

∧

V ∈V

V (z, xi) ⇒
c
∨

j=0

∨

u∈V
u≡j[c]

C
u−j
c

+1(z, xi+c−j)

and:

ϕ3(x0, . . . , xn) =

n
∧

i,j=0

n+A
c
∧

k=1

Ck(xi, xj) ⇒
c−1
∧

l=0

Ck+1(xi−l, xj+c−l)

where A is the biggest weight that occurs in a graph in GV.

6.3. DECIDING ASYMPTOTIC DETERMINACY 99

Finally, we define R = 〈ϕ〉 with:

ϕ(x, y) = ∃x0, . . . , xn, x0 = x ∧ xn = y ∧
3
∧

i=1

ϕi(x0, . . . , xn)

Then we can rephrase the previous claim as:

Claim 6.30. R is a rewriting of Q = {n} with regards to V.

Let D be a database, and x and y be two distinguished nodes of D. Assume that
(x, y) ∈ Q(D). Then there exists a path of length n from x to y. Let x0, . . . , xn be the
n + 1, possibly repeating, nodes of this path. Then it is easy to check that x0, . . . , xn

satisfy ϕ1, ϕ2 and ϕ3 in V(D). Hence, (x, y) ∈ R(V(D)).
Conversely, assume that (x, y) ∈ R(V(D)). There exists x0, . . . , xn such that x = x0,

y = xn, and ϕ1(x0, . . . , xn), ϕ2(x0, . . . , xn) and ϕ3(x0, . . . , xn) all hold inV(D). We define,
for all r < K · L ·N :

pr = {xr·M+ck, xr·M+ck+1, . . . , xr·M+ck+3cm = x(r+1)·M−ck}

Each pr is a set of 3cm + 1 consecutive nodes among the xi’s, and all pr’s are disjoint.
Additionally, for all path π in D from some xi to some xj, we define δ(π) = |π| − (j − i).
To each pr we associate2 a directed edge-labeled graph Hr defined as follows:

• Hr has c nodes which we will simply note 0, 1, . . . , c− 1.

• For all i ∈ {0, . . . , c − 1}, let αi = r · M + ck + i + 2cm. Remark that αi ≡ i[c].
Then, for all V ∈ V, for all u ∈ V :

- We pick a path π in D from xαi
to xαi+u that satisfies V . There exists one,

because ϕ1(x0, . . . , xn) holds. Let v = |π|. We add to Hr an edge from i to
i+ u[c] labeled δ(π) = v − u.

- For all V ′ ∈ V, for all u′ ∈ V ′, let l be the smallest number such that l+v ≥ u′

and l ≡ 0[c]. Let πl be a path of D of length l from xαi−l to xαi
. There

exists one because ϕ1(x0, . . . , xn) holds. Let π0 = πl · π. Let z be the u′th
predecessor of xαi+u along this path. Then V ′(z, xαi+u) holds. Then ϕ2 implies
that there exists v′ ∈ V ′ and a path π1 in D from z to xαi+u+c−(v′[c]) of length
v′ − (v′[c]) + c. Hence, there is a path π′ from xαi−l to xαi+u+c−(v′[c]) of length
((l+v)−u′+(v′−(v′[c])+c)). We then add to Hr an edge from i to i+u−v′[c]
labeled δ(π′) = (v − u) + (v′ − u′).

See Figure 6.8 for a visual representation of the various notations.

Claim 6.31.

• For all r, Hr ∈ HV.

2arbitrarily, when there are more than one possibility.

100 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

xαi
xαi−l xαi+u

xαi+u+c−(v′[c])

π, |π| = v ∈ V
πl, |πl| = l ≡ 0[c]

z

π1, |π1| = v′ − (v′[c]) + c

Figure 6.8: Illustration for the various notations in the definition of Hr. An additional,
undrawn, information is that the path from z to xαi+u along the drawn edges is of length
u′.

• For all r, for all edge of label a from i to j in Hr, there exists xi′ and xj′ in pr such
that there exists a path π in D from xi′ and xj′ with δ(π) = a, i′ ≡ i[c] and j′ ≡ j[c].

Since there are K · L · N different pr’s, then there are at least K · L of them that
are attributed the same graph H ∈ HV. This means that there exists an increasing
function f such that, for all r < K · L, pf(r) is attributed H . For ease of notations, we
rename pf(r) to q0r and H to G0. Let G0, . . . , Gk be k successive iterations as described in
Definition 6.12 on G0. Then Gk ∈ GV and for each s, Gs+1 is deduced from Gs by doing
one iteration of step 2 in Definition 6.12.

Claim 6.32. For all s ∈ {0, . . . , k}, there exist K·L
ρs

disjoint sets qsr that consist of con-
secutive nodes among the xi’s such that:

1. The distance between qsr ’s last index and qsr+1’s first index is at least 2c(k − s).
Additionally, the first index of qs0 is at least c(k− s) and the last index of qsK·L

ρs
is at

most n′ − c(k − s).

2. For all r, for all edge of label a from i to j in Gs, there exists xi′ and xj′ in qsr such
that there exists a path π in D from xi′ and xj′ with δ(π) = a, i′ ≡ i[c] and j′ ≡ j[c].

We prove this claim by induction on s. For s = 0, the correctly named q0r ’s already
satisfy the required properties.

Assume that, at step s, the properties are true for some qsr ’s. For each l < K·L
ρs+1 , let

αl be the first index of qslρ and βl be the last index of qs(l+1)ρ−1. Then we define qs+1
l as

qs+1
l = {xαl−c, . . . , xβl+c}.

It is easy to see that the qs+1
l ’s defined as such satisfy Property 1 and also Property

2 for the edges of Gs+1 that are already in Gs. Let µ be the path in Gs that is used to
build Gs+1 by applying step 2. Then µ is a path of label a and of length η ≤ ρ and we
have µ = i0a1i1 . . . iη−1aηiη, where, for all t, there is an edge of label at from it to it+1

in Gs. Then Property 2 applied at step s implies that for all t there exists a two nodes
xi′t

and xi′′t+1
in qslρ+t such that there exists a path πt from xi′t

to xi′′t+1
with δ(πt) = at,

i′t ≡ it[c] and i′′t+1 ≡ it+1[c].
Since ϕ1(x0, . . . , xn) holds, and for all t i′′t ≡ i′t[c], then there exists a path π′

t from i′′t
to i′t with δ(π′

t) = 0. Hence, we can define π as π = π0 · π
′
0 · π1 . . . πη−2 · π

′
η−2πη−1. π is a

6.4. EXTENSIONS 101

path from xi′0
to xi′′η

with δ(π) =
∑

at = a, i′0 ≡ i0[c] and i′′η ≡ iη[c]. Then Property 2 is
true for all edges of Gs+1 from i0 to iη.

Since δ(π) = a, then δ(π) ≤ A. Hence |π| ≤ n+A. Hence, we can apply ϕ3(x0, . . . , xn)
and get the other required paths. This ends the proof of the claim.

Finally, the claim applied for s = k proves that there exists L sets qkr of consecutive
xi’s that satisfy property 1 and 2 for some Gk ∈ GV. By hypothesis, there exists a path in
Gk from 0 to o of length at most L and of weight 0. We conclude by applying once more
the reasoning in the proof of the claim. We deduce that there exists two nodes xi and xj

such that there exists a path π in D with δ(π) = 0, i ≡ 0[c] and j ≡ o[c]. We complete
π with a path π1 from x0 to xi and a path π2 from xj to xn with δ(π1) = δ(π2) = 0
that are provided by ϕ1(x0, . . . , xn). Hence π1 · π · π2 is a path from x0 to xn with
δ(π1 · π · π2) = 0. Thus, the length of π1 · π · π2 is n, and (x, y) ∈ Q(D). This ends the
proof of the proposition.

6.4 Extensions

In the final section of this chapter, we discuss several possible extensions of the work
presented here. More precisely, Section 6.4.1 shows the issue that remains to be solved
in order to go from asymptotic determinacy to general determinacy. Section 6.4.2 and
Section 6.4.3 consider extensions to stronger view and query languages.

6.4.1 The case of small queries

This section is devoted to producing the full determinacy picture for the view below. As
the asymptotic determinacy picture of this view is already known thanks to Theorem 6.1,
this should highlight what remains to be done in order to decide general determinacy. In
all this section, we consider the following view:

• V = {C, V1, V2}

• C = 〈2〉

• V1 = 〈1, 2〉

• V2 = 〈2, 5〉

Claim 6.33. For all even n, V ։ Q = 〈n〉. This easily comes from C = 〈2〉.

By applying Theorem 6.8 we can show that there exists some odd n such that V ։

Q = 〈n〉, hence V also determines all bigger queries. In order to get the full picture, we
need to find the smallest odd n that is determined by V. Our work so far actually gives
us:

Claim 6.34. For all odd n ≤ 7, V 6։ Q = 〈n〉.

To prove this claim, we use a technique that is very similar to Lemma 6.19. More
precisely, the two databases in Figure 6.9 agree on V, but disagree on all Q = 〈n〉 when
n is odd and not greater than 7.

102 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

x0 x1 x2 x3 x4 x5 x6 x7

x′
0 x′

1 x′
2 x′

3 x′
4 x′

5 x′
6 x′

7

x0 x′
1 x2 x′

3 x4 x′
5 x6 x′

7

x′
0 x1 x′

2 x3 x′
4 x5 x′

6 x7

Figure 6.9: The two databases above are a proof that V 6։ Q = 〈n〉 for any odd n that
is not greater than 7. Indeed, we can check that both databases agree on V. However,
there is no path of length 1 (respectively 3, 5 and 7) from x0 to x1 (respectively x3, x5

and x7) in the bottom database.

Note that this technique does not work for n greater than 7. Indeed, in the case
shown above, any path that goes from x0 to x7 in the bottom database has to cross from
the top section to the bottom section. By doing so, it suffers a delay of either +1 or −3
compared to the expected value. It works here because 7 is “too small” and does not
provide enough space to catch-up on this delay. Assume now that n = 9, then a delay
of −3 can be mitigated by following a +1 path three times, and thus does not provide a
counter-example.

Claim 6.35. For all n ≥ 11, V ։ Q = 〈n〉.

We show this by arguing that V ։ Q = 〈11〉. This is done by actually proving
that the canonical rewriting R given in Section 6.3.2 works in this case. Although the
proof given in Section 6.3.2 does not apply (because 11 is not “big enough” for all the
combinatorial arguments to go through), a careful enumeration of all the possibilities for
a database satisfying R actually shows that R(x, y) implies a path of length 11 from x to
y, as was done in Example 6.28.

It is then straightforward to prove that V determines every odd query bigger than
11. Let n = 11 + 2k be such a query. Then a rewriting for n is simply R11 · C

k, as in
Lemma 6.7. As we already know that V determines every even query, this end the proof
of the claim.

The case of n = 9. There remains only a single unsolved case, which is n = 9. This
qualifies as a “small query” for the view V: a query for which we are unable to either
build a generic counter-example, as in Section 6.3.1, or provide a generic rewriting, as in
Section 6.3.2. We actually proved that V 6։ Q = 〈9〉. However, the smallest counter-
example that we know is a pair of databases of 154 nodes each, that were built by hand

6.4. EXTENSIONS 103

through a very tedious trial and error process and checked by a computer program. At this
time, we are unfortunately unable to provide any technique to generate such a counter-
example for other views and queries. We conjecture that the combinatorial complexity
of these “small queries” might be way higher than what we have dealt with so far.

A graphical representation of this counter-example can be seen on Figure 6.10 and
Figure 6.11. It was checked by a computer program that these two databases agree on
V but not on 〈9〉.

6.4.2 Infinite unions

In this section, we consider arbitrary path queries, that is path queries that are defined as
arbitrary unions of single path queries. Remark that arbitrary path queries are strictly
more expressive than regular path queries on a single letter alphabet. For instance,
Q = {p | p is prime} is an arbitrary path queries that is not regular. While considering
infinite unions may seem rather strange, this should be understood on a conceptual level,
as a way to ease comparisons and extensions to existing work.

Remark also that we do not have any theoretical requirement on the way in which the
infinite sets associated with these queries should be represented. Indeed, we will shortly
see that when an arbitrary path view determines a single path query, then its finite
component already determines the same query. However, for the following construction
to be effective, we do require:

• the ability to decide, given a query, whether its associated set is infinite.

• the ability to effectively list all the elements in the associated set, when it is finite.

The main result of this section gives a formal statement to the intuition that infinite
unions cannot be used to determine a single path query. This result immediately extends
our work to a lot of other view languages on a single-letter alphabet, such as RPQ views,
context-free views, and so on, by making their additional expressive power, in comparison
to finite unions of path queries, actually be irrelevant.

Lemma 6.36. Let Q be a single path query and V be a arbitrary path view. Let V =
Vf ⊎V∞, such that Vf only contains queries defined by finite sets, and V∞ only contains
queries defined by infinite sets. Then V ։ Q if and only if Vf ։ Q.

Proof. It is easy to see that if Vf ։ Q, then V ։ Q. Conversely, assume that Vf does
not determine Q. Then there exists two databases D1 and D2 such that D1 and D2 agree
on Vf but not on Q. Let k be the biggest number that appears in L(Q) ∪ L(Vf). We
transform D1 into a new database D′

1 as follows:

• We add to D′
1 k + 1 new nodes x0,. . . ,xk , as well as the following edges:

– For all i, a(xi, xi+1) holds in D′
1.

– a(x0, x0) and a(xk, xk) hold in D′
1.

• For each original node x of D1, we add a(x, x0) and a(xk, x) to D′
1.

104 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

11

12 13

14

15

16

17

18

21

22

23

24

25

31

32

33

34

41

42

43

44

50

52

53

5455

56 57

59

61

62

6364

65
66

67

71

72

73

74
75

76

77

81

82

83

84

85

86

101

102

103

105

106

111

113

115

121

122

123

124

131

132133

134

141

143

151
152

155

161

163

171

172

173

174

181

183

200

202

207

209

211

218

224

225

227

232

237

241

248

251

253

256

258

260

261

266

269

271

273

281

290

291

293

297

301

303

307

311

321

331

341

351

361

363

401

402

501

502

511

512

513

521

522523

531

532

541

548

550

559

1081

1082
1083

1084

1085

1086

1121

1122

1123

1124

2121

2122

0

1

2

3

4

5

6

7

8
9

Figure 6.10: One of the two databases that are a proof of V 6։ Q = 〈9〉. It agrees with
the database from Figure 6.11 on V but not on 〈9〉. This database contains a path of
length 9 from node 0 to node 9.

6.4. EXTENSIONS 105

11

12

13
14

15

16

17
18

21

22

23

24

25

31

32

33

34

41

42

43

44

50

52

53

54

55

56

57

59

61

62

63

64

65

66

67

71

72

73
74

75

76

77

81

82

83

84

85

86

101

102

103

105

106

111

113

115121

122

123

124

131

132

133

134

141

143

151

152

155

161

163

171

172

173

174

181

183

200

202

207

209

211

218

224

225

227

232

237

241

248

251
253

256

258

260

261

266

269

271

273

281

290

291

293

297

301

303307

311

321

331

341

351

361

363

401

402

501

502

511

512

513

521

522

523

531

532

541

548

550

559

1081

1082

1083

1084

1085
1086

1121

1122

1123

1124

2121

2122

0

1

23

4
5

6

7

8

9

Figure 6.11: One of the two databases that are a proof of V 6։ Q = 〈9〉. It agrees with
the database from Figure 6.10 on V but not on 〈9〉. This database does not contain a
path of length 9 from node 0 to node 9.

106 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

We then apply the same steps to D2 and get a new database D′
2. This construction

has no effect on Q or Vf for the original nodes of D1 and D2. However, it makes it so
that for each (x, y) ∈ D1 (respectively D2), for each V ∈ V∞, V (x, y) holds in V∞(D′

1)
(respectively V∞(D′

2)). Thus, we can check that D′
1 and D′

2 agree on V but not on Q.
Hence V 6։ Q, which concludes the proof.

6.4.3 Multiple labels

In this section, we discuss how some of our results can be extended to cover queries
that work over a schema σ with multiples labels. We show how to translate the necessary
conditions from Section 6.1.1 when |σ| ≥ 2. We start by giving an analogue to Lemma 6.2,
by showing that if V ։ Q, then V contains a single path query. We can say even more:
each edge in the graph representation of Q must actually belong to a path that satisfies
some single path query in V. While this was the case in the previous setting, it was also
trivial then.

Lemma 6.37. Let Q = 〈w〉 be a single path query, and V be a view defined by unions of
single path queries. Let D consist of the simple path π = x0a0x1 . . . xn−1an−1xn such that
λ(π) = w. Assume that V ։ Q. Then for each 0 ≤ i < n, there exists j ≤ i ≤ k such
that C = 〈aj · . . . · ak〉 ∈ V.

Proof. This proof is an extension of the proof of Lemma 6.2. Assume by contradiction
that there exists 0 ≤ i < n such that the edge xi

ai−→ xi+1 of D is not used to satisfy any
single path query of V. In other words, there is no single path query C ∈ V such that
(xj , xk) ∈ C(D) for any j ≤ i and k > i.

We now build a database D1 as follows:

• D1 contains the simple path π.

• For each j ≤ i and k > i such that there exists V ∈ V with aj . . . ak ∈ L(V), we add
to D1 a simple path πj,k,V from xj to xk such that λ(πj,k,V) ∈ L(V) − {aj . . . ak}.
Such a path exists because V is not a single path query, by our hypothesis.

We then build a database D2 that is a copy of D1 except that ai(xi, xi+1) does not
hold in D2. Then, it remains to check that V(D1) = V(D2) as was the case in the proof
of Lemma 6.2, and that Q(D1) 6= Q(D2). Thus V 6։ Q, which concludes the proof.

This lemma greatly restricts the form of single path queries Q that can possibly
be determined by a given view V. Indeed, a single path query Q = 〈w〉 can only be
determined by a view V if w consists of (possibly overlapping) words taken from the
single path queries in V and stitched together. Remark that what makes the problem
non-trivial is precisely this overlapping, in the same way that in the single letter case,
a view V defined by unions of single path queries can determine a single path query Q
that is not a multiple of the necessary single path query in V.

Next, we remark that Lemma 6.7 immediately translates this setting. Indeed, if
V ։ Q, then V necessarily contains a single path query C. Then, we can deduce that
V ։ Q · Ck, for any k.

6.4. EXTENSIONS 107

There are two main challenges left here. First, it is not clear how asymptotic deter-
minacy should be defined. While the main definition of Section 6.1 is generic enough
and does not depend on the size of the alphabet, we do not have the same picture as in
Section 6.1.2. Although Lemma 6.7 still states that once a query Q is determined by a
view V, then Q ·C is also determined by V for some single path query C ∈ V, there also
exist arbitrarily big queries Q′ that are not of the form Q · C for any smaller Q and any
C, and are thus not covered by this argument.

Second, an implicit argument that is crucial for the arithmetic work done in Section 6.3
is that, when the alphabet is reduced to a single letter, then the resulting monoid is
commutative. This makes it so that the order and the exact position of the delays that
appear in the behavior graphs of the view are not needed in order to exhibit a path that
satisfies the query, as the gaps can always be filled with the path query C, regardless
of their position. The setting we consider here behaves differently, and will most likely
require building a more complex machinery. We leave this question open for now.

We conclude this section by remarking that this setting is compatible with the result
from Section 6.4.2, and thus extends seamlessly to arbitrary unions. Thus, the setting
presented here actually covers all classes of path queries, such as regular path queries,
context-free path queries, and so on.

108 CHAPTER 6. ASYMPTOTIC DETERMINACY OF SINGLE PATH QUERIES

Chapter 7

Discussions

In this final chapter, we conclude by discussing the results that were presented throughout
this document, how they fit in the general picture and the questions that are left open.
In Section 7.1, we come back to the determinacy problem, and sum up its links to other
tasks related to view-based query processing. In Section 7.2, we mention interesting
results around the CSP problem, and explain their relevance to our work. Finally, in
Section 7.3, we take some time to discuss the consequences of the asymptotic determinacy
results from Chapter 6 and the questions they open.

7.1 Determinacy and view-based query processing

In Chapter 4, we have presented various view-based computational tasks and we have
explained how they relate to each other and to the determinacy problem. In particular, we
have shown how the hardness results for computing certain answers translate to hardness
results for the view checking and view update problems. In the case of regular path queries
and views, which has been of particular importance for our work, this unfortunately
implies intractability, as all these problems have either coNP-complete or NP-complete
data complexity. The bottom line of this overview is that reasoning about view instances
seems to be a particularly difficult task, even for simple view and query languages.

Nonetheless, these complexity results only translate to upper bound for the problem
of evaluating the rewriting of a query determined by views. Indeed, for the rewriting
problem, we work with the added hypotheses that (1) our inputs are view images instead
of general view instances and (2) that the view determines the query. Computing certain
answers remains hard even if we assume (1) or if we assume (2). However, when both
hypotheses are present, the problem changes from computing certain answers to eval-
uating the rewriting of a query determined by views, and its data complexity changes
significantly: from coNP-complete to NP∩coNP. In Chapter 4, we have explained how
the two hypotheses combined together to achieve this new upper bound. This discussion
has been the starting point of Chapter 5, which finally led to the PTime data complexity
of answering a query using a view image, assuming that the view determines the query
in a monotone way, as proved in Theorem 5.23 and the subsequent corollary. We can

109

110 CHAPTER 7. DISCUSSIONS

also consider an alternative interpretation of hypotheses (1) and (2), by pointing out that
they actually mean that we are only interested in computing the set of certain answers
when it coincides with the set of possible answers, which gives another perspective on the
NP ∩ coNP upper bound.

Before closing this section, we want to highlight two central determinacy questions
that are still open:

Q1: Can we decide determinacy for conjunctive views and queries?

Q2: Can we decide determinacy for regular path views and queries?

7.2 Datalog and the bounded width hierarchy

In Chapter 5, we have made use of the connections between certain answers, local consis-
tency games, Datalog and the constraint satisfaction problem. These connections have
been crucial in proving the existence of a Datalog rewriting of a regular path query using
a regular path view, assuming monotone determinacy of the query using the view. That
being said, these connections also play a crucial role in the study of constraint satisfaction
problems themselves.

Indeed, [21] identifies a special class of non-uniform CSPs that enjoy polynomial time
evaluation: the problems of bounded width. A CSP is said to be of width (ℓ, k) if it can
be solved by the (ℓ, k) local consistency game (as defined in Chapter 5) in the following
sense: the accepting instances for the CSP are exactly the instances on which Player 2
has a winning strategy. In other words, for these problems, it is enough to check local
consistency in order to ensure global consistency: if there exist partial homomorphisms
on sets of k nodes that are consistent on sets of ℓ nodes, then there exists a global
homomorphism from the input to the template.

There are several equivalent characterizations of the CSPs of bounded width, see [33]
for reference. The characterization that is most relevant to us is in terms of Datalog
programs: the CSPs of width (ℓ, k) are exactly the CSPs whose complement can be
solved by a Datalog-(ℓ, k) program. When a query is defined using CSPs, as was done
in Chapter 5, it is of particular interest to us to know whether the CSP is of bounded
width, thus allowing us to express it in Datalog.

Remark that when a CSP is of width (ℓ, k), we can immediately conclude that it is
of width (ℓ′, k′), for all ℓ′ ≥ ℓ and k′ ≥ k. This is what is known as the bounded width
hierarchy, a classification of the CSPs according to the computational power required to
solve them, expressed in terms of the size of the local consistency checks. This hierarchy
culminates with the problems of unbounded width, for which we know no general polyno-
mial time algorithm. The question whether this hierarchy is strict has received a lot of
attention until [8] recently showed that it actually collaspes:

7.3. SINGLE PATH QUERIES AND FIRST-ORDER REWRITINGS 111

Theorem 7.1 ([8]). For every relational structure T , precisely one of the following state-
ments is true:

1. CSP(T) has width (1, 1);

2. CSP(T) has width (2, 3);

3. CSP(T) does not have bounded width.

In other words, this theorem implies that all CSPs of bounded width actually have
width (2, 3). In particular, this means that all CSPs that can be solved by a Datalog
program can also be solved by a Datalog-(2, 3) program.

Let us consider again the proof technique of Theorem 5.23. We have proved that
when a regular path view determines a regular path query in a monotone way, then a
rewriting can be expressed as the negation of a CSP. Then we have shown that there
exists a number ℓ for which the approximation of this CSP in Datalog-(ℓ, ℓ+1) is actually
exact over the set of view images. In light of Theorem 7.1, we might wonder whether
there exists a simpler rewriting, in Datalog-(2, 3).

Q3: Does the monotone determinacy of a regular path query using a regular path view
coincide with the existence of a Datalog-(2, 3) rewriting of the query using the view?
With the existence of a Datalog-(2, k) rewriting, for some k?

Note that Theorem 7.1 does not immediately apply here. Indeed, the CSP that was
built in Chapter 5 has NP-complete data complexity in general, and this remains true
even when the view determines the query in a monotone way. However, we are not trying
to solve this CSP for all input structures (that is, all view instances), but only for view
images. This asks the question whether the results from [8] can be adapted for CSPs of
unbounded width that can still be solved by local consistency methods on specific subsets
of their inputs. It is worth noting that in all concrete examples that we are aware of,
the rewritings can always be expressed as a binary conjunctive regular path query with
transitive closure, as in Example 5.10. These rewritings can then easily be expressed as
Datalog-(2, 3) programs.

7.3 Single path queries and first-order rewritings

Finally, in Chapter 6, we have considered the determinacy problem for path queries and
unions of single path views on a single letter alphabet. We have shown that it is decidable
whether a UPQ view determines a SPQ query, provided that the query is long enough
compared to the view. When this is the case, we have also shown how to compute first-
order rewritings of the query using the view. In Section 6.4, we have discussed some
natural extensions of our work, as well as the issues that remain to be solved in order for
our work to cover the general determinacy problem.

In this section, we want to discuss the case of SPQ queries and UPQ views from the
perspective of the rewriting problem. In [3], the author defines the notion of languages

112 CHAPTER 7. DISCUSSIONS

that are almost complete for rewritings. A language L is said to be almost complete for
rewritings for query language LQ using view language LV if, given a view V in LV , all
but a finite number of queries in LQ that are determined by V can be rewritten in L.
It is then shown that, on a one letter alphabet, SPQ is almost complete for rewritings
of SPQ queries using SPQ views: for each SPQ view V, only a finite number of SPQ
queries that are determined by V require a non-monotone rewriting, while all the other
determined queries can be rewritten as SPQ queries over the view. We remark that this
no longer holds in the case of UPQ views considered in Chapter 6, where we can easily
extend Example 6.28 to show that there exists a UPQ view V for which arbitrarily long
queries that are determined by V require a non-monotone rewriting.

Let us consider again the statement of Theorem 6.1, from the perspective of the
rewriting problem. Remark that it immediately implies that first-order queries are almost
complete for rewritings of SPQ queries using UPQ views. This is a new result in the
following sense: for now, the best known bound (from [37]) to express rewritings of
conjunctive queries using unions of conjunctive views is ∃SO∩∀SO. As of yet, this is the
smallest known complete rewriting language that covers UPQ views and SPQ queries.
This result makes us wonder whether first-order queries might actually be a complete
language for rewritings of SPQ queries using UPQ views.

Q4: Does the determinacy of an SPQ query using a UPQ view coincide with the existence
of a first-order rewriting of the query using the view?

A lead towards solving this question is the canonical query used in the positive case of
Theorem 6.1. Although in Chapter 6 we were only able to show that this first-order query
is a rewriting in the asymptotic cases, it actually turns out that in all concrete examples
that we are aware of (even the small ones), when the view determines the query, then
this canonical query is a rewriting. Such examples are provided in Example 6.28 and in
Section 6.4.1. Remark however that even if this canonical query fails to be a rewriting
in all cases, the question whether first-order is a complete rewriting language in this
setting remains relevant. Finally, we conclude this section and the whole document by
highlighting again the question that has kept us wondering during our work and that
remains unsolved as of yet.

Q5: Can we decide determinacy for SPQ queries using UPQ views?

Bibliography

[1] Serge Abiteboul and Oliver M Duschka. Complexity of answering queries using mate-
rialized views. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 254–263. ACM, 1998.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases, vol-
ume 8. Addison-Wesley Reading, 1995.

[3] Foto N Afrati. Determinacy and query rewriting for conjunctive queries and views.
Theoretical Computer Science, 412(11):1005–1021, 2011.

[4] François Bancilhon and Nicolas Spyratos. Update semantics of relational views.
ACM Transactions on Database Systems (TODS), 6(4):557–575, 1981.

[5] Vince Bárány, Michael Benedikt, and Balder Ten Cate. Rewriting guarded negation
queries. In Mathematical Foundations of Computer Science 2013, pages 98–110.
Springer, 2013.

[6] Vince Bárány, Balder Ten Cate, and Luc Segoufin. Guarded negation. In Automata,
Languages and Programming, pages 356–367. Springer, 2011.

[7] Pablo Barcelo, Leonid Libkin, Anthony W Lin, and Peter T Wood. Expressive lan-
guages for path queries over graph-structured data. ACM Transactions on Database
Systems (TODS), 37(4):31, 2012.

[8] Libor Barto. The collapse of the bounded width hierarchy. Journal of Logic and
Computation, 2014.

[9] Catriel Beeri, Alon Y Levy, and Marie-Christine Rousset. Rewriting queries using
views in description logics. In Proceedings of the sixteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 99–108. ACM, 1997.

[10] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y Vardi.
Answering regular path queries using views. In Data Engineering, 2000. Proceedings.
16th International Conference on, pages 389–398. IEEE, 2000.

[11] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y Vardi.
View-based query processing and constraint satisfaction. In Logic in Computer Sci-
ence, 2000. Proceedings. 15th Annual IEEE Symposium on, pages 361–371. IEEE,
2000.

113

114 BIBLIOGRAPHY

[12] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y Vardi.
Lossless regular views. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 247–258. ACM, 2002.

[13] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y Vardi.
Rewriting of regular expressions and regular path queries. Journal of Computer and
System Sciences, 64:443–465, 2002.

[14] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y Vardi.
View-based query containment. In PODS, volume 2003, pages 56–67, 2003.

[15] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y Vardi.
View-based query processing: On the relationship between rewriting, answering and
losslessness. Theoretical Computer Science, 371(3):169–182, 2007.

[16] Ashok K Chandra and Philip M Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Proceedings of the ninth annual ACM symposium
on Theory of computing, pages 77–90. ACM, 1977.

[17] Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited.
In Database Theory ICDT’97, pages 56–70. Springer, 1997.

[18] Stavros S Cosmadakis and Christos H Papadimitriou. Updates of relational views.
Journal of the ACM (JACM), 31(4):742–760, 1984.

[19] Oliver M Duschka and Michael R Genesereth. Answering recursive queries using
views. In Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems, pages 109–116. ACM, 1997.

[20] Wenfei Fan, Floris Geerts, and Lixiao Zheng. View determinacy for preserving
selected information in data transformations. Information Systems, 37(1):1–12, 2012.

[21] Tomás Feder and Moshe Y Vardi. The computational structure of monotone monadic
snp and constraint satisfaction: A study through datalog and group theory. SIAM
Journal on Computing, 28(1):57–104, 1998.

[22] Daniela Florescu, Alon Levy, and Dan Suciu. Query containment for conjunctive
queries with regular expressions. In Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages 139–148.
ACM, 1998.

[23] Nadime Francis. Asymptotic determinacy of path queries using union-of-paths views.
In ICDT, 2015.

[24] Nadime Francis, Luc Segoufin, and Cristina Sirangelo. Datalog rewritings of regular
path queries using views. In ICDT, pages 107–118, 2014.

[25] Enrico Franconi and Paolo Guagliardo. On the translatability of view updates. In
AMW, pages 154–167, 2012.

BIBLIOGRAPHY 115

[26] Enrico Franconi and Paolo Guagliardo. The view update problem revisited. arXiv
preprint arXiv:1211.3016, 2012.

[27] Tomasz Gogacz and Jerzy Marcinkowski. The hunt for a red spider: Conjunctive
query determinacy is undecidable. In Logic in Computer Science (LICS), 2015 30th
Annual ACM/IEEE Symposium on, pages 281–292, July 2015.

[28] Stéphane Grumbach and Leonardo Tininini. On the content of materialized aggre-
gate views. Journal of Computer and System Sciences, 66(1):133–168, 2003.

[29] Alon Y Halevy. Theory of answering queries using views. ACM SIGMOD Record,
29(4):40–47, 2000.

[30] Alon Y Halevy. Answering queries using views: A survey. The VLDB Journal,
10(4):270–294, 2001.

[31] Phokion G Kolaitis and Moshe Y Vardi. A logical approach to constraint satisfaction.
In Complexity of Constraints, pages 125–155. Springer, 2008.

[32] Martin Lange. Model checking propositional dynamic logic with all extras. Journal
of Applied Logic, 4(1):39–49, 2006.

[33] Benoit Larose and László Zádori. Bounded width problems and algebras. Algebra
universalis, 56(3-4):439–466, 2007.

[34] Per-Ake Larson and H. Z. Yang. Computing queries from derived relations. In
Proceedings of the 11th International Conference on Very Large Data Bases - Volume
11, VLDB ’85, pages 259–269. VLDB Endowment, 1985.

[35] Alon Y Levy, Alberto O Mendelzon, and Yehoshua Sagiv. Answering queries using
views. In Proceedings of the fourteenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems, pages 95–104. ACM, 1995.

[36] Alan Nash, Luc Segoufin, and Victor Vianu. Determinacy and rewriting of conjunc-
tive queries using views: A progress report. In Database Theory–ICDT 2007, pages
59–73. Springer, 2006.

[37] Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries: Determinacy and
rewriting. ACM Transactions on Database Systems (TODS), 35(3):21, 2010.

[38] Daniel Pasaila. Conjunctive queries determinacy and rewriting. In Proceedings of
the 14th International Conference on Database Theory, pages 220–231. ACM, 2011.

[39] Jorge Pérez. Schema Mapping Management in Data Exchange Systems. PhD thesis,
Pontifica Universidad Católica de Chile, 2011.

[40] Nicole Schweikardt, Thomas Schwentick, and Luc Segoufin. Database theory: Query
languages. In Algorithms and theory of computation handbook, pages 19–19. Chap-
man & Hall/CRC, 2010.

116 BIBLIOGRAPHY

[41] Luc Segoufin and Victor Vianu. Views and queries: determinacy and rewriting. In
Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 49–60. ACM, 2005.

[42] Oded Shmueli. Equivalence of datalog queries is undecidable. The Journal of Logic
Programming, 15(3):231–241, 1993.

[43] Alfred Tarski. Einige methodologifche unterfuchungen über die definierbarkeit der
begriffe. Erkenntnis, 5(1):80–100, 1935.

[44] Moshe Y Vardi. Constraint satisfaction and database theory: a tutorial. In Proceed-
ings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 76–85. ACM, 2000.

Titre : Vues et requêtes sur les graphes de données: déterminabilité et réécritures

Mots-clefs : graphes de données, vues, déterminabilité, réécritures, requêtes de chemin

Résumé : Les graphes de données sont na-
turellement utilisés dans de nombreux con-
textes incluant par exemple les réseaux soci-
aux ou le Web sémantique. L’information con-
tenue dans la base de données se trouve alors
aussi bien dans les données mêmes que dans
la topologie du graphe, c’est-à-dire dans la
manière dont les données sont connectées. Cela
implique donc de considérer les questions tradi-
tionnelles en théorie des bases de données pour
des langages de requêtes capables de parler des
chemins connectant les noeuds du graphe.

Nous nous intéressons en particulier aux
problèmes de la déterminabilité et de la
réécriture d’une requête à l’aide de vues. Il
s’agit alors de décider si une vue de la base de
données contient suffisamment d’informations
pour répondre entièrement à une requête sans
consulter la base de données directement,
et dans ce cas, d’exprimer explicitement la

réponse à la requête à partir de la vue. Ce
cadre rencontre de nombreuses applications,
notamment pour l’intégration de données et
l’optimisation de requêtes.

Nous commençons par comparer ces deux
questions aux autres problèmes de décision
classiques dans ce contexte : calcul des
réponses certaines, test de cohérence et
mise à jour d’une instance de vue. Nous
améliorons ensuite ces résultats dans deux cas
spécifiques. Tout d’abord, nous montrons
que pour les requêtes régulières de chemin,
l’existence d’une réécriture monotone cöıncide
avec l’existence d’une réécriture dans Data-
log. Puis, nous montrons que pour des vues
s’intéressant uniquement aux longueurs des
chemins du graphe, une notion plus faible
de déterminabilité, appelée déterminabilité
asymptotique, est décidable et résulte en des
réécritures du premier ordre.

Title : View-based query determinacy and rewritings over graph databases

Keywords : graph databases, views, determinacy, rewritings, path queries

Abstract : Graph databases appear naturally
in various scenarios, such as social networks
and the semantic Web. In these cases, the
information contained in the database lies as
much in the data itself as in the topology of the
graph, that is, in how the data points are linked
together. This leads to considering traditional
database theory questions for query languages
that return data nodes based on the paths of
the graph connecting them.

We focus our attention on the view-based
query determinacy and rewriting problems.
They ask the question whether a view of the
database contains enough information to fully
answer a query without accessing the database
directly. If so, we then want to express the an-
swer to the query directly with regards to the

view. This setting occurs in many applications,
such as data integration and query optimiza-
tion.

We start by comparing these two tasks to
other common tasks in this setting: comput-
ing certain answers, checking consistency of a
view instance and updating it. We then build
on these results in two specific cases. First, we
show that for regular path queries, the exis-
tence of a monotone rewriting coincides with
the existence of a rewriting expressible in Dat-
alog. Then, we show that for views that only
consider the lengths of the path in the graph,
we can decide a weaker form of determinacy,
called asymptotic determinacy, and produce
first-order rewritings for the queries that are
asymptotically determined.

