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Solving dense linear systems on accelerated multicore architectures

Abstract:
In this PhD thesis, we study algorithms and implementations to accelerate the

solution of dense linear systems by using hybrid architectures with multicore pro-
cessors and accelerators. We focus on methods based on the LU factorization and
our code development takes place in the context of the MAGMA library.

We study different hybrid CPU/GPU solvers based on the LU factorization
which aim at reducing the communication overhead due to pivoting. The first one
is based on a communication avoiding strategy of pivoting (CALU) while the second
uses a random preconditioning of the original system to avoid pivoting (RBT). We
show that both of these methods outperform the solver using LU factorization with
partial pivoting when implemented on hybrid multicore/GPUs architectures.

We also present new solvers based on randomization for hybrid architectures for
Nvidia GPU or Intel Xeon Phi coprocessor. With this method, we can avoid the
high cost of pivoting while remaining numerically stable in most cases. The highly
parallel architecture of these accelerators allow us to perform the randomization of
our linear system at a very low computational cost compared to the time of the
factorization.

Finally we investigate the impact of non-uniform memory accesses (NUMA) on
the solution of dense general linear systems using an LU factorization algorithm. In
particular we illustrate how an appropriate placement of the threads and data on
a NUMA architecture can improve the performance of the panel factorization and
consequently accelerate the global LU factorization. We show how these placements
can improve the performance when applied to hybrid multicore/GPU solvers.

Keywords: Dense linear systems, LU factorization, dense linear algebra li-
braries, MAGMA library, hybrid multicore/GPU computing, graphics process units,
Intel Xeon Phi, ccNUMA, communication-avoiding algorithms, randomization, thread
placement.



Résoudre des systèmes linéaires denses sur des architectures
composées de processeurs multicœurs et d’accélerateurs.

Résumé :
Dans cette thèse de doctorat, nous étudions des algorithmes et des implémen-

tations pour accélérer la résolution de systèmes linéaires denses en utilisant des
architectures composées de processeurs multicœurs et d’accélérateurs. Nous nous
concentrons sur des méthodes basées sur la factorisation LU. Le développement de
notre code s’est fait dans le contexte de la bibliothèque MAGMA.

Tout d’abord nous étudions différents solveurs CPU/GPU hybrides basés sur
la factorisation LU. Ceux-ci visent à réduire le surcoût de communication dû au
pivotage. Le premier est basé sur une stratégie de pivotage dite "communication
avoiding" (CALU) alors que le deuxième utilise un préconditionnement aléatoire
du système original pour éviter de pivoter (RBT). Nous montrons que ces deux
méthodes surpassent le solveur utilisant la factorisation LU avec pivotage partiel
quand elles sont utilisées sur des architectures hybrides multicœurs/GPUs.

Ensuite nous développons des solveurs utilisant des techniques de randomisa-
tion appliquées sur des architectures hybrides utilisant des GPU Nvidia ou des co-
processeurs Intel Xeon Phi. Avec cette méthode, nous pouvons éviter l’important
surcoût dû pivotage tout en restant stable numériquement dans la plupart des cas.
L’architecture hautement parallèle de ces accélérateurs nous permet d’effectuer la
randomisation de notre système linéaire à un coût de calcul très faible par rapport
à la durée de la factorisation.

Finalement, nous étudions l’impact d‘accès mémoire non uniformes (NUMA) sur
la résolution de systèmes linéaires denses en utilisant un algorithme de factorisation
LU. En particulier, nous illustrons comment un placement approprié des processus
légers et des données sur une architecture NUMA peut améliorer les performances
pour la factorisation du panel et accélérer de manière conséquente la factorisation
LU globale. Nous montrons comment ces placements peuvent améliorer les perfor-
mances quand ils sont appliqués à des solveurs hybrides multicœurs/GPU.

Mots clés : Systèmes linéaires denses, factorisation LU, bibliothèques logi-
cielles pour l’algèbre linéaire dense, bibliothèque MAGMA, calcul hybride mul-
ticœur/GPU, processeurs graphiques, Intel Xeon Phi, ccNUMA, communication-
avoiding, randomisation, placement des processus légers.
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Introduction

In many computational applications, the most time and resource consuming task
consists in solving a linear system of equations of the form Ax = b. Then the
major challenge is to compute a solution x as fast as possible while maintaining a
satisfactory accuracy. The main purpose of this PhD thesis is to study solutions
to accelerate dense linear solvers using state-of-the-art parallel architectures, which
often include accelerators.

In this work we focus on the LU decomposition of dense matrices. We pro-
pose different algorithms and implementations to accelerate this factorization.These
dense solvers can be used to directly solve systems of equations or as kernels in
sparse direct or iterative solvers.

To solve these problems as fast as possible, the algorithms should be adapted to
be efficient and scalable on current parallel machines. Moreover the solver imple-
mentations should be adapted to the architectural features of these parallel systems.
In our work we take into account several characteristics of parallel computers: the
use of accelerators such as GPGPUs and Intel Xeon Phi coprocessors, the SIMD par-
allelism required to program efficiently these accelerators, and Non Uniform Memory
Access (NUMA) architectures used in multi-socket shared memory computers.

These parallel architectures provide an increasing computational power and need
some special requirements to be exploited efficiently. For example to take advantage
of accelerators, we need to consider relatively large problems with a high arithmetic
intensity. Also we need to take into account the cost of data transfers between
the host and the accelerator through the PCI Express bus which has a limited
bandwidth capacity. The use of the SIMD programming requires memory alignment
and a very low level programming paradigm. The NUMA architectures require a
good management of data locality and thread placement to avoid congestion on the
memory links.

Our code developments are made in the context of the MAGMA library which is
a dense numerical linear algebra library, designed for hybrid architectures with ac-
celerator (including GPU and Intel Xeon Phi). MAGMA implements the algorithms
of the widely used LAPACK library.

We propose different algorithms and implementations to solve large dense linear
systems of equations via the LU factorization and some of the resulting code have
been integrated into the MAGMA library. We compare the performance of these
new optimized implementations to the state-of-the-art methods and discuss their
numerical stability.

In Chapter 1, we present an overview of the scientific background of this thesis.
We first discuss requirements for solving linear systems of equations and the histori-
cal connection with the evolution of computers. We mention the numerical stability
issues and explain what are the state-of-the-art solutions used for maintaining sta-
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bility thanks to pivoting. We present details on the methods used to solve dense
linear systems and emphasize on the LU decomposition, describing the methods of
pivoting and parallel algorithms. We then describe the parallel architectures used
for High Performance Computing (HPC), discussing their pros and cons and how
they can be used in this work. This thesis being closely related with the develop-
ment of dense linear algebra libraries, we describe the evolution of these libraries
and their applications.

In Chapter 2, we discuss different methods of pivoting in the LU factorization
algorithm, when performed on hybrid architecture combining multicore processors
and GPUs. We describe how the LU factorization is implemented in the MAGMA
library and we explain how it can be adapted for different pivoting strategies. We
present our implementation of the Communication-Avoiding LU (CALU) factoriza-
tion for hybrid architecture with GPU and we give details on factorization using
multiple GPUs. We then compare the numerical stability and provide performance
results.

In Chapter 3, we focus on the use of Random Butterfly Transformation (RBT),
in linear system solvers using accelerators. We describe our implementations of the
RBT solver for the MAGMA library. We describe the methods we used and how in
particular we take advantage of the GPU and Intel Xeon Phi accelerators. We also
give some details on the randomization cost and provide performance results.

In Chapter 4, we study and compare different methods to use efficiently Non
Uniform Memory Access (NUMA) platforms in the context of dense linear algebra
libraries. We propose different methods of thread and data placement to ensure data
locality. We apply these methods to the LU factorization comparing their impact
on the performance for the panel factorization of the solver and on a global hybrid
solver using a GPU as an accelerator.

We finally give some concluding remarks and discuss some ongoing or possible
research tracks.
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1.1 Introduction

Solving linear systems of equations has always been a valued approach to solve
real life problems in numerous domains such as physics, biology, geometry... Four
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thousand years ago, Babylonians had already found out how to solve a 2× 2 linear
system. Around 200 BC, a Chinese book called the "Nine chapters of mathematical
art" explained how to solve a 3 × 3 linear system using a method similar to the
Gaussian elimination [2].

However the study of linear algebra began in the late 17th century with the
study of determinants by Gottfried Leibniz. In the early 19th century, Carl Gauss
developed a method called “Gaussian elimination” in order to solve linear systems of
equations. Then in 1848, James Joseph Sylvester introduced the word “matrix” and
in 1855 Arthur Cayley defined the matrix multiplication. Matrix computations took
a turning point around World War II with the emergence of the first computers. This
allowed linear algebra methods to solve faster and more accurately large systems of
equations. Note that Gaussian elimination is still the best known method to solve
a linear system of equations [3].

Then it was possible to solve bigger systems thanks to the development of com-
puters. In 1941, Konrad Zuse designed the Z3 machine, an electromechanic com-
puter, the first electrically driven to use the binary system. Two years later in 1943
was built Colossus which was used during World War II to decipher communica-
tions between German officers using the Lorenz cipher. During the same period
IBM developed the Harvard Mark I which was the first to be fully automatic. It
was used in the Manhattan project to run simulations in the development of the
first atomic bomb [4]. In 1948, ENIAC was the first computer designed to be Tur-
ing complete, it used vacuum tubes. The same year, the Small-Scale Experimental
Machine (SSEM) was the first to be based on the von Neumann architecture which
uses a single memory to store the instructions and the data [5].

During the 1950s, transistors, which are much more smaller and more reliable,
replaced vacuum tubes in the architectures. During this period, technological break-
through such as the creation of the microcode and the implementation of the first
high level language: Fortran, helped to spread the use of computers in scientific and
commercial applications.

The integrated circuit, first produced by Texas Instruments in 1958, would soon
be used in computers, for example in the Apollo guidance computer in 1963. One
year later IBM announced the IBM 360, that was the first system to be based on
integrated circuits. The smaller size and cheaper cost of the integrated circuits-based
computer placed them as the new standard of computers.

In 1971, Intel released the 4004, the first commercial microprocessor, uniting all
the elements of a processor into a single chip. This processor was slow and contained
a relatively small number of transistors, but the evolution of the microprocessors
would then follow the prediction of Gordon Moore: their complexity will double
every year [6].

In 1976 was introduced the Cray 1, one of the first supercomputers to use vector
processors in order to accelerate computations.

Since then, architectural evolution helped to build more efficient processors: In-
struction pipelines allow instructions to be streamed and reordered, cache memories
speed up memory access, branch predictors improve the pipeline, processor with
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multiple cores allow local parallelism.
In supercomputers, the number of processors used in parallel increased to thou-

sands and new solutions like accelerators (GPGPU or Intel Xeon Phi) are developed
to enhance performance.

To take advantage of these architectural developments, software libraries were
released to give the user the possibility to perform efficient linear algebra compu-
tations on these architectures. Already with the IBM 360, IBM proposed in 1968
the Scientific Subroutine Package. In 1979, the Basic Linear Algebra Subprograms
(BLAS) set of subroutines allowed to perform common linear algebra operations.
The same year, LINPACK used BLAS to provide a software library able to perform
numerical linear algebra operations on vector-computers. LAPACK appeared as
an alternative in 1992, providing optimized routines for cache based architectures.
LAPACK had different evolutions during the years, among them ScaLAPACK for
distributed architectures, PLASMA for multicores, and MAGMA for hybrid archi-
tectures using accelerators like GPGPUs or Intel Xeon Phi.

In this thesis we propose solutions to use or improve some of the current pub-
lic domain linear algebra libraries so that they exploit the possibilities of modern
parallel architectures at their best. We implement different algorithms that are
more adapted to some of these architectures to achieve better performance. We also
propose methods to optimize memory access in the case of NUMA architectures.

This chapter presents the background of our work. We first review the main
issues in solving dense linear systems and we introduce the main methods for solving
these systems. We then present the LU factorization and its characteristics, showing
the importance of numerical stability and presenting different methods of pivoting.
We also present different existing block algorithms and parallel strategies for pivoting
in the context of the LU decomposition, focusing on the Communication Avoiding
LU factorization (CALU). Next we present the evolutions in parallel architectures
and the recent trends in this domain.

In the last part of this chapter we present the development progress in dense
numerical algebra libraries.
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1.2 Solving dense linear systems

Large dense linear systems are encountered in various scientific fields such as:

Electromagnetics: when problems are solved using Boundary Integral Equations
using the "Moment Methods" in the context of the Helmholtz equation. This
arises for example in the military domain for stealth airplane technology.

Fluid mechanics: also to solve Boundary Integral Equations but using the "Panel
Methods" in the context of the Laplace equation. This is used to understand
and model the flow of a fluid passing an object, with applications in aeronau-
tics, construction, etc.

Quantum mechanics: As expressed in [7]: "In quantum mechanical scattering,
the goal is to predict the probability that a projectile will scatter off a target
with some specific momentum and energy." In [8] they had to solve dense
linear systems with 6500 unknowns and they foresee the need to solve systems
with 100000 unknowns.

Dense linear systems are also encountered for example in tomography, for noise
reduction or for supercomputer benchmarking [9]. Moreover, routines for dense
linear systems are commonly used as kernels in more general methods for solving
sparse linear systems using direct or iterative methods [10, 11, 12].

Solving these problems generally consists of solving a linear system of equations:
Ax = b. Thus our goal is to solve such systems as efficiently and accurately as
possible.

To solve such systems, there are two classes of methods: direct and iterative
methods. The direct methods use a finite sequence of operations to solve the prob-
lem while the iterative methods use an initial guess of the result, and generate
approximate solutions and tries to make the iterations converge. Iterative methods
can be interesting if the system is large and sparse. In our work we are concerned
with dense matrices and we focus on direct methods.

Direct methods generally involve the decomposition of matrices followed by the
successive resolution of triangular systems. Different methods of decomposition exist
such as QR factorization, Cholesky, LDLT or LU [13].

LU: is used to solve general systems and decompose a matrix A in a product of a
unit lower triangular matrix, L and an upper triangular matrix, U . It requires
about 2/3× n3 floating point operations (flops).

LDLT: is used for symmetric matrices. A symmetric matrix A is decomposed as
follows, A = LDLT where L is a unit lower triangular matrix andD a diagonal
(or block-diagonal) matrix. It requires about n3/3 flops.

Cholesky: for symmetric positive definite matrices (i.e. all the eigenvalues of the
matrix are positive). A is factored as A = GGT with G a lower triangular
matrix with positive diagonal entries. It requires about n3/3 flops.
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QR: to solve full rank least square problems in the case of overdetermined systems
(the system has more equations than unknowns). A m by n matrix A is
factored as A = QR with Q being an m by m orthogonal matrix and R an m
by n upper triangular matrix. It requires about 2n2(m− n/3) flops.

In the remainder, we focus on the LU decomposition.

1.3 LU factorization

1.3.1 Gaussian elimination

If A is square, dense and unstructured, the method usually chosen to solve Ax =

b is Gaussian elimination. Gaussian elimination consists of a sequence of basic
operations on the rows of the matrix to fill the coefficients under the diagonal with
zeros making the matrix upper triangular, and thus allowing the system to be solved
easily. The LU factorization is a modified form of Gaussian elimination where the
matrix A is expressed as a product LU , with L a unit lower triangular matrix and
U an upper triangular matrix.

Then the system is easy to solve by forward substitution for L and backward
substitution for U :

Ly = b, Ux = y ⇒ Ax = LUx = Ly = b. This requires O(n2) flops.
We compute L and U such as A = L× U as in the following example:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

, L =

 1 0 0

l21 1 0

l31 l32 1

 and U =

u11 u12 u13
0 u22 u23
0 0 u33

.

Algorithm 1 shows how the LU factorization can be performed in place which
means that the input matrix A is overwritten by the output factors L and U .

Algorithm 1 In place LU factorization without pivoting
Input: A is a n× n matrix
1: for k ← 1 to n− 1 do
2: for i← k + 1 to n do
3: A(i, k)← A(i, k)/A(k, k)

4: end for
5: for i← k + 1 to n do
6: for j ← k + 1 to n do
7: A(i, j)← A(i, j)−A(i, k) ∗A(k, j)
8: end for
9: end for

10: end for
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1.3.2 The issue of pivoting

With the method described previously, if a 0 is found on the diagonal of the matrix,
a division by zero will occur and the factorization will fail. Also if elements of
small magnitude are on the diagonal, entries on the triangular factors will grow
significantly. Moreover the numerical precision is limited on a computer, when finite
precision arithmetic is used. Consequently rounding errors are unavoidable. These
errors due to limited precision will be propagated and amplified by the division by
very small values. The larger systems are more prone to rounding errors.

The stability of the Gaussian elimination can be measured by the growth factor
which measures how large the entries of the matrix become during the elimination
steps comparing to the largest entries of the input matrix. The growth factor of a
n× n matrix A under Gaussian elimination is defined as:

gn(A) =
maxi,j,k |a

(k)
ij |

maxi,j |ai,j |
,

where a(k)ij is the element of index (i, j) after the step number k of the elimina-
tion [14].

For this reason we move the largest element of the column on the diagonal by
swapping rows. This method is called partial pivoting. It is also possible to swap
rows and columns, using the largest element of the matrix (complete pivoting), or
of the current line and column (rook pivoting), as the pivot. Other parallel pivoting
strategies will be addressed later.

An alternative method is the threshold pivoting which consists in choosing any
pivot among the column if this pivot’s absolute value is larger than a predetermined
threshold value chosen in ]0, 1]. First introduced in the context of sparse matrix
computations [15, Chapter 5.4], it can be used for dense matrices as shown in [16].

Even though pivoting increases the stability and requires no additional float-
ing point operations, it involves irregular data movements due to the comparisons
performed in the process of finding the pivot. If n is the size of the matrix, com-
plete pivoting requires O(n3) comparisons, partial pivoting O(n2) comparisons and
rook pivoting between O(n2) and O(n3). Therefore, even if complete pivoting has
the best stability with a growth factor bound of cn1/2n1/4 logn [17] comparing to
rook pivoting (1.5n3/4 logn ) [18] and partial pivoting (2n−1) [17], it will be time-
consuming, due to the comparisons and data movements. The choice of the pivoting
strategy is then the result of a compromise between the numerical stability and the
performance.

1.3.3 Partial pivoting

In the following, we consider partial pivoting, described in algorithm 2.
The growth factor upper bound is 2n−1 can be reached for certain problems [19].

However, partial pivoting is stable in practice.
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Algorithm 2 In place LU factorization with partial pivoting
Input: A is a n× n matrix
1: for k ← 1 to n do
2: index← k

3: for i← k + 1 to n do
4: if |A(i, k)| > |A(index, k)| then
5: index← i

6: end if
7: end for
8: swap rows k and index
9: for i← k + 1 to n do

10: A(i, k)← A(i, k)/A(k, k)

11: end for
12: for i← k + 1 to n do
13: for j ← k + 1 to n do
14: A(i, j)← A(i, j)−A(i, k) ∗A(k, j)
15: end for
16: end for
17: end for

The decomposition is of the form PA = LU , where P is the permutation matrix
corresponding to the row swaps performed during the factorization.

1.3.4 Block LU factorization

To allow parallelism and a more optimal use of hierarchical memory, we can or-
ganize the LU factorization so that matrix multiplications become the dominant
operations. For that we perform the factorization by block.

The three common algorithms for the block LU factorization are left-looking LU,
right-looking LU and Crout LU.

• The left-looking variant in Figure (1.1a) consists, for each step, in computing
a block column using the previously computed ones.

• The right-looking variant in Figure (1.1b) computes for each step a block of
rows and columns and then updates the trailing submatrix.

• Crout in Figure (1.1c) is a hybrid version in between left and right looking, a
block row and a block column are computed on each step using the previously
computed rows and columns.

These variants, due to the arrangements of the loops are also called i, j, k vari-
ants. More details can be found in [20].
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Legend in the figure 1.1: previously computed parts, on going parts,

left to compute.

(a) Left-looking LU (b) Right-looking LU (c) Crout LU

Figure 1.1: Memory access patterns for variants of LU decomposition from [1]

1.3.5 Right-looking block LU

We describe here the right-looking block LU factorization.

We compute the factorization of a matrix A of size m × n. The matrix A is
partitioned as follows ,

A =

(
A11 A12

A21 A22

)
,

where A11 is of size b × b, A21 is of size (m − b) × b, A12 is of size b × (n − b) and
A22 is of size (m− b)× (n− b).

The right looking LU factorization involves 4 steps:

Legend: original matrix, L matrix, U matrix, updated
matrix,

1. The LU factorization of the panel
(
A11

A21

)
is computed by applying a Gaussian

elimination with partial pivoting (GEPP) to
(
A11

A21

)
(the pivot selection is

done on the whole panel)
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b

2. We apply the permutation to the rest of the matrix:
(
A12

A22

)

b

3. We compute U12 by solving the triangular linear system U12 = L−111 A12

b

b

4. We update A22: A22 = A22 − L21U12
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b

b

5. We apply the same method to A22 (yellow part)

1.3.6 Parallel pivoting strategies

The design of efficient parallel algorithms for the LU factorization requires other
strategies of pivoting than the ones described in section 1.3.2.

A pivoting strategy called pairwise pivoting is studied in [21]. This method
consists in selecting the largest element in the column pairwise to annihilate the
smaller in magnitude values to triangularize the matrix. This method requires
2n−3 steps, in which a maximum of n/2 independent transformations are performed,
allowing parallelism. The parallelism pattern can be represented by a reduction tree.
The growth factor upper bound of this method is 4n−1 but this pivoting strategy is
shown to be stable in practice.

Derived from pairwise pivoting, incremental pivoting was introduced in [22].
This method divides the panel into tiles, factors the diagonal tile using partial
pivoting and then eliminates the subdiagonal tiles pairwisely. Contrary to partial
pivoting it does not factor a complete block column at a time. The matrix is divided
into tiles and first the diagonal tile is factored using GEPP. Then this tile is combined
with the tile below and factored again. A new factored diagonal tile is obtained and
combined with the next tile below and the operation is repeated until the bottom of
the matrix is reached. At each step the tiles on the right of the tile being factored
with the diagonal tile are updated according to the operations performed on the
panel tile. In this way the updates of the submatrix can be performed in parallel
and in the same time as the panel factorization.

1.3.6.1 Communication avoiding technique

On parallel architectures, searching the pivot in the block LU decomposition gener-
ates a large volume of data movements for which the communication time may be
longer than the effective computing time, if the computation does not overlap the
communication.

By reducing communication to its minimum, it is possible to achieve better
performance despite a larger number of floating point operations.
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In [23], the authors proposed the so-called communication avoiding algorithms
for some matrix factorizations such as LU and QR. We will focus more specifically on
the CALU algorithm (Communication Avoiding LU) as described in [23, 24, 25, 26].
This algorithm proposes a new strategy for selecting the pivot. This algorithm mini-
mizes communication while keeping the numerical stability of GEPP in practice [26].

The particularity of this algorithm is mainly the factorization of the panel, the
other steps of the block decomposition are identical to the right looking LU (see
1.3.5). The factorization of the panel is performed using the TSLU (Tall Skinny
LU) algorithm also described in [23, 24, 25, 26].

The TSLU algorithm

TSLU is a parallel algorithm that computes the LU factorization of a m× b matrix
with m � b. The matrix is distributed over P processors following a row-wise
block cyclic distribution. The preprocessing step is performed as an all-reduction
operation: a tree of GEPP factorizations.

Below are the steps of the algorithm:

1. Each thread performs a local LU factorization of the m/P × b block-rows (
b is the size of the block) that it owns. This is not performed in place so it
requires an extra storage of size m× b for the resulting matrix and a vector of
size m for the permutation vector.

2. The threads copy the b pivot rows of their decomposition in the work matrix.

3. Half of the threads perform the same operation on the matrix composed by
the two matrices built with the pivots lines found at the previous step, stacked
one upon the other.

4. Whenever we reach the root of the reduction tree, we have the b pivot rows.

5. The permutation is applied to the original matrix to have the previously found
pivot rows in first positions.

6. The Gaussian elimination without pivoting is performed on them×b columns.

The binary tree representing the work done by the threads (here four) can be
seen in Figure 1.2 and an example of the execution in Figure 1.3.

In this example with 4 threads, the matrix is distributed over, P0, P1, P2 and P3.
Each of them computes the GEPP on their m/4×b working matrix so that they can
find the b pivot rows from this part of the matrix. They copy the pivot rows from the
original matrix to the working matrix, then P0 computes GEPP (using LAPACK
function) on a matrix composed of the pivot rows from P0 stacked on the pivot rows
from P1, this is done identically by P2. At the final step of the preprocessing, P0

does the same computing on the 2b pivot rows resulting from the previous steps.

A more detailed version of the algorithm can be found in [25, 26].
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Figure 1.2: Threads work

0
1
2
3
0
1
2
3

0
0

1
1

2
2

3
3

2 4
0 1
2 0
0 0
0 1
1 4
2 1
0 2
2 0
1 2
4 1
1 0
0 0
0 2
1 0
4 2

2 4
0 1
2 0
1 2

2 0
0 0
4 1
1 0

0 1
1 4
0 0
0 2

2 1
0 2
1 0
4 2

2 4
2 0

4 1
2 0

1 4
0 2

4 2
0 2

4 1
2 4

4 2
1 4

4 1
1 4

Figure 1.3: Example of execution with 4 threads
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1.3.7 Random Butterfly Transformation (RBT)

To avoid pivoting or extra computation that comes along as for example in CALU, it
is possible to randomize the matrix and then factorize it using Gaussian Elimination
without pivoting. By making the matrix “random enough” the probability that
pivoting is not needed will be close to 1. The statistical properties for the stability
of Gaussian elimination without pivoting have been studied in [27]. The method for
randomizing has been described in [28, 29]. It consists in multiplying a matrix A as
Ar = UTAV , where U and V are recursive butterfly matrices. A butterfly matrix
is a matrix of the form ,

B<n> =
1√
2

(
R0 R1

R0 −R1

)
,

where n is the size of the matrix (n ≥ 2) and R0 and R1 are two random diagonal
and non singular n/2 × n/2 matrices. A recursive butterfly matrix of size n and
depth d is defined recursively as,

W<n,d> =


B

<n/2d−1>
1

. . .

B
<n/2d−1>

2d−1

×W<n,d−1>,

where W<n,1> = B<n> and the B<n/2d−1>
i are random butterflies matrices, and

B<n> is a butterfly matrix of size n. Then we can perform the LU factorization of
Ar using Gaussian Elimination without pivoting. Explanations of how the random
butterfly transformations change the growth factor can be found in [28]. Solving
the general linear system follows these steps:

1. A randomized matrix Ar is computed: Ar = UTAV where U and V are
recursive random butterfly matrices.

2. Ar is decomposed into LU using Gaussian elimination without pivoting.

3. The system is solved using:Ary = UT b.

4. The solution is x = V y.

In [28] Parker uses recursive random butterfly of depth d = log2 n but in [30]
Baboulin et al. showed that in practice a depth of 1 or 2 is enough if iterative
refinement is added. Iterative refinement is a method that allows to improve a
computed solution of a linear system. If we try to solve a system Ax = b, we
obtain a computed solution x̂. Then the process consists of the 3 following steps
(see e.g. [31]):

1. Compute r = b−Ax̂.

2. Solve Ad = r.
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3. Update y = x̂+ d.

The process is repeated with x̂ replaced by y until the accuracy of the computed
solution is satisfactory.

Due to their particular sparse structure, the butterfly matrices B<n> can be
stored in a vector of size 2n and the recursive butterfly matrices W<n,d> can be
stored in a matrix of size n × d. With this structure the computational cost to
apply the multiplicative transformation (UTAV ) is 4dn2 flops when U and V are
recursive random butterfly matrices of depth d. In the case of PRBT of depth 1 or
2 the computational cost will be respectively 4n2 and 8n2 [30]. When n is not a
multiple of 2d, we “augment” the matrix A with additional 1s on the diagonal.

Some preliminary results in [30] using CPU to perform the randomization and
an hybrid CPU/GPU code to perform the LU factorization without pivoting showed
promising result with a 20% gain of performance for matrices of size varying from
4000 to 8000.
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1.4 Parallel architectures

In the domain of modern high performance computing (HPC), parallelism is a criti-
cal issue. In this section we present an overview of the current architectural solutions
developed for HPC.

Since 1945 the Von Neumann architecture is used as a model for building com-
puters. This model subdivides a processing unit into four parts: an arithmetic
logic unit, a control unit, a memory which contains data and instructions, and in-
put/output devices [5]. The separation of these elements allows to exploit different
types of parallelism. The pipeline was one of the first step toward parallel ma-
chines. An early example of pipelined computer is the UNIVAC I (1951) which
was able to overlap program execution with some I/O activities. Heavily pipelined
processors started with the IBM system/360 Model 91, which was one of the first
to use a hierarchy of pipelines [32]. Supercomputers from the 70’s to the 90’s were
mostly designed with vector processors (e.g., the Cray platforms). Different types
of parallel architectures exist. The Flynn taxonomy proposes four categories of
architectures [33]:

SISD: (Single Instruction, Single Data) where a datum is processed by a single
process unit.

MISD: (Multiple Instruction, Single Data) where a single datum is processed by
multiple process units at the same time.

SIMD: (Single Instruction, Multiple Data) where multiple data are processed by
a single process unit.

MIMD: (Multiple instruction, Multiple Data) where multiple data are processed
by multiple process units.

The MIMD model is also completed by Johnson [34] to differentiate the shared mem-
ory and distributed memory systems. In the following, we present the architectural
components that we used during this PhD thesis.

1.4.1 Distributed memory systems

Many of the current supercomputers are based on distributed memory systems. A
distributed memory system consists of multiple independent nodes connected by
a given network. Each node has its own private memory and autonomous com-
putational capabilities. The nodes connected together form a cluster. The nodes
exchange data by passing messages between processors using the network. Each
node can be composed of multiple CPUs and contains accelerators.

1.4.2 SIMD extensions

Single instruction multiple data (SIMD) extensions also called multimedia exten-
sions were introduced in the processors in the late 90’s. They provide special regis-
ters that can store multiple data. Then instructions can be applied to these registers,
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SIMDSISD

Instructions
Data
Results

Figure 1.4: Principle of the SIMD extensions.

processing each element of data inside a register simultaneously, which creates par-
allelism. Figure 1.4 shows the principle of the SIMD extensions, when compared to
the SISD model.

SIMD instructions were first used in vector supercomputers, which could apply
a single instruction to a vector of data but one word at a time. In 1994, Hewlett-
Packard introduced the Multimedia Acceleration eXtensions (MAX) for the PA-
RISC instruction set [35] and Sun Microsystems the Visual Instruction Set (VIS) as
an extention for the SPARC V9 instruction set [36]. They paved the way for other
companies to design their own extensions like Intel with the MMX extension [37]
and Motorola with Altivec [38]. MMX can only process integers and uses the float
registers to store the values, not allowing to use the SIMD extensions in parallel
with scalar computation. Intel released the Streaming SIMD Extensions (SSE) in
1999 for the Pentium III to overcome these limitations. Since then, manufacturers
proposed bigger and bigger registers and a larger set of instructions for their SIMD
extensions. For example, today’s Intel Xeon Phi coprocessor uses AVX-512 that can
process 8 double-precision or 16 single-precision floating-point numbers at the same
time.

In the domain of dense linear algebra, exploiting the parallelism offered by the
SIMD extensions is critical to obtain optimal performance. Most basic operations
on matrices or vectors exist in vectorized versions in different implementations of
the BLAS libraries such as Intel MKL [39] (more details on these libraries will be
given in Section 1.5).

In our work, we used SIMD low level instructions to implement some random-
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ization techniques as it will be detailed in Chapter 3.

1.4.3 Multicore processors

On single core processors, manufacturers have developed architectural optimizations
such as providing more cache memory, instruction set pipelines and SIMD exten-
sions. The other way to improve the performance of a processor is to increase its
frequency. Increasing the frequency is very advantageous for the user because it
improves the performance of the programs executed proportionally to the frequency
raise. On the other side, for the manufacturer, increasing the frequency rapidly be-
comes a problem because of the heat generation and the power consumption. The
power consumed by a CPU is P = CV 2f , with C being the capacitance, V the volt-
age and f the frequency [40]. The power consumed is proportional to the frequency
and the more power is consumed the more thermal power will be produced because
of power leakage. The solution favored by manufacturers to continue to improve
processor performance without increasing the processor frequency was to introduce
multicore processors [41].

IBM developed the POWER4 processor in 2001, the first “on chip” multicore
processor. It contains two cores at 1GHz and a shared L2 cache memory [42]. It
was followed by SUN and HP releasing respectively the UltraSPARC IV and the PA-
8800, both using two cores. AMD and Intel produced the first x86 multiprocessors in
2006 with the AMD Opteron and the Intel Core architectures. Since then, “multicore
processor” has become a standard for desktops, servers or mobile platforms. On the
desktop market AMD provided 8 core processors working at a frequency up to 4.7
GHz (AMD FX 9590), Intel with the I7-4960X (similar to the architecture depicted
in Figure 1.5) provides a 6 core (12 threads with hyper-threading) processor working
at up to 4 GHz. On the server side, the AMD Opteron 6386SE provides 16 cores
at 2.8 GHz and the Intel Xeon E7-8890v2 15 cores (30 threads) at 2.8 GHz also.
Even current smartphones contain processors like the Snapdragon 800 by Qualcomm
containing 4 cores based on the ARM V7 architecture up to 2.5 GHz.

Apart from the architecture of the cores used, a multicore processor can be
described by [43]:

• The number of processor cores on the chip,

• The number of levels of cache memory,

• The amount of cache memory shared.

1.4.4 Non Uniform Memory Access (NUMA) architecture

Since 1968, computers have been build with multiple processors to perform parallel
processing [44]. These machines called symmetric multiprocessor systems (SMP) are
composed of multiple identical processors and a single shared main memory. These

1Picture from www.anandtech.com

www.anandtech.com
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Figure 1.5: A Sandy bridge E die1

architectures are also referred to as Uniform Memory Access (UMA) architectures.
The number of processors in a SMP system is limited, and the memory access is
serialized, creating concurrency over the memory bus. The cache coherency mech-
anisms also send signals on the bus, which increases the traffic. At some point, the
memory bus congestion becomes an issue for the performance [45]. A solution to
this problem is the use of distributed memory clusters. However distributed memory
programming creates constraints for the developer who has to manage data trans-
fers explicitly. Also the granularity of the memory distributed between the different
nodes degrades the performance.

Another solution was developed during the 90s to overcome the scalability lim-
its of SMPs: Non Uniform Memory Access (NUMA) or cache coherent NUMA
(ccNUMA) architectures as most of today’s systems maintain cache coherency. Cc-
NUMA systems are generally composed of several multicore processors and their
memory banks (considered as multiple SMPs used as NUMA nodes). Each proces-
sor core is able to access any memory part. The cost of the memory access will be
different, depending on the location of the data requested, but the whole memory is
shared seamlessly for the developer, like for SMP architectures. This is supported
by the Operating System (OS) which provides a virtual address space to the pro-
gram. Figure 1.6 shows the topology of a NUMA system composed of two 6 core
multiprocessors and their dedicated memory, forming two NUMA nodes.

CcNUMA architectures offer a better scalability than SMP systems and do not
require the user to use message passing tools to explicitly distribute the data as
it would be the case when using clusters. However, to achieve good scalability,
parallel programs on ccNUMA systems should make good use of the cache memory
to minimize memory access and ensure a good data locality (the data computed by
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a thread on a core are in a local bank of memory inside the same NUMA node) in
order to avoid remote access [43].

Performing efficiently dense linear algebra computations on ccNUMA systems
requires to take into account the locality of the data and the memory access pattern
of the algorithms. In Chapter 4, we will introduce some methods to efficiently use
NUMA architectures on top of the dense linear algebra library MAGMA.

Machine (47GB)

NUMANode P#0 (24GB)

Socket P#0

L3 (12MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#5

PCI 10de:1096

card0

PCI 8086:10d3

eth0

PCI 8086:10d3

eth1

PCI 102b:0532

PCI 8086:3a22

sda

NUMANode P#1 (24GB)

Socket P#1

L3 (12MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#7

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#8

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#9

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#10

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#11

PCI 10de:1096

card1

Host: mini-titan

Indexes: physical

Date: Tue 04 Mar 2014 16:20:55 CET

Figure 1.6: Topology of a computer with 2 NUMA nodes.

1.4.5 General Purpose Computation on Graphics Processing Units
(GPGPU)

The graphics processing units (GPU) are specialized electronic circuits designed to
create or accelerate the generation of images to be displayed. Before the 2000’s,
GPUs were only used to compute or accelerate the computation of 2D and 3D pic-
tures. In 2001, Larsen developed one of the first example of non-graphical compu-
tation on a GPU with a matrix-matrix product [46] using the 8-bits integer texture
maps. In 2003, the introduction of 32-bits floating-point values allowed not only a
real progress in graphical processing but also in matrix computations on GPUs [47].
In 2005, Galoppo and al. developed an efficient LU factorization on GPU outper-
forming the optimized CPU implementations at that time. This was performed
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using the languages and methods initially designed for graphics processing. In 2007,
Nvidia released the Compute Unified Device Architecture (CUDA) programming
platform [48] providing a virtual instruction set, allowing the development of gen-
eral purpose applications without using the tools and languages designed for graphics
processing only.

There are other GPGPU solutions such as DirectCompute [49], specific to Mi-
crosoft Windows, released in 2008 by Microsoft as a part of DirectX 11, and
OpenCL [50] a framework maintained by the Khronos Group2 consortium. OpenCL
is designed to program parallel heterogeneous systems mostly CPUs and GPUs. It
has also the advantage to work on GPUs other than Nvidia’s ones (e.g., ATI).

Figure 1.7: Nvidia Tesla K40 GPU 3

GPGPU has become a common occurrence in HPC and is often used in super-
computer architectures. GPGPUs offer a big computational capacity at a low cost
and a good energetic efficiency. Out of the ten most powerful supercomputers in
the latest TOP500 [51] ranking (November 2014), three use GPGPU accelerators.
Today’s Nvidia Tesla GPGPU Kepler K40 (showed in Figure 1.7) offers a theoretical
performance of 4290 Gflop/s in single precision and 1430 Gflop/s in double precision.

The drawback of GPGPUs comes from their hybrid programming model that
does not allow as much efficiency as CPU-only architectures due to its SIMD-only na-
ture and the PCI-Express bandwidth limitations. As an example, in the LINPACK
benchmark [52], the Titan supercomputer4 using hybrid CPUs/GPUs architecture
achieves 17590 Tflop/s out of 27112.5 Tflop/s, the theoretical peak performance
corresponding to an efficiency close to 65%. While the Sequoia supercomputer5

2www.khronos.org
3Picture from www.nvidia.com
4www.olcf.ornl.gov/titan/
5http://computation.llnl.gov/computers/sequoia

www.khronos.org
www.nvidia.com
www.olcf.ornl.gov/titan/
http://computation.llnl.gov/computers/sequoia
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(using only CPUs) achieves 17173.2 Tflop/s out of 20132.7 Tflop/s (around 85%
efficiency).

Their highly parallel architecture model makes GPGPUs a suitable solution for
matrix computations and dense linear algebra programs. However, programming
efficiently on GPU-based architectures is a critical challenge for high performance
computing. In this thesis we showed some solutions to efficiently solve dense linear
systems, using GPGPUs as accelerators.

1.4.6 Intel Xeon Phi accelerators

In 2010 Intel announced their Many Integrated Core Architecture (Intel MIC) a
highly parallel coprocessor architecture consisting of several x86 processor-cores and
it’s own GDDR5 integrated memory. The first prototype board called Knights Ferry
consisted of 32 cores with 2GB of GDDR5 memory. In 2012 Intel released the
Knights Corner product line branded as "Xeon Phi" [53].

The current Xeon Phi 7120 (like the ones in Figure 1.8) posses 61 cores with
four threads per core, running at 1.238 GHz. It has 16 GB of GDDR5 memory on
16 channels for a maximum bandwidth of 352 GB/s. Each core has 512 KB of Level
2 cache memory for a total of 30.5 MB of cache memory. The cornerstone of the
Xeon Phi performance is the Vector Processing Units (VPU) of each core, using 512
bits wide SIMD registers allowing to perform 16 single-precision (SP) or 8 double-
precision (DP) operations per cycle. The SIMD instruction set also includes Fused
Multiply-Add (FMA) allowing to perform 32 SP or 16 DP operations per cycle [54].

Using the FMA instructions, the peak performance of the Xeon Phi 7120 can be
computed as:

Clock Frequency × Number of cores × size of the lanes × 2(FMA) Flops

We have then 1064.8 Gflop/s in DP and 2129.6 Gflop/s in SP [55].
In November 2014, two out of the ten most powerful supercomputers were us-

ing Intel Xeon Phi accelerators, including the number 1 of the TOP500 ranking,
Tianhe-2 that uses 48000 Xeon Phi coprocessors and achieves a performance of
33862.7 Tflop/s out of a theoretical peak performance of 54902.4 Tflop/s (around
62% efficiency).

Multiple tools can be used to program the Intel Xeon Phi with efficiency: OpenMP
can be used to lever the parallelism between threads, the Intel compiler can perform
some simple auto vectorizations, and preprocessor directives can be used to handle
the hybrid computing issues such as the memory transfers etc. Nevertheless, for ad-
vanced programs with non trivial parallelism, achieving high performance with the
Xeon Phi can be challenging. In practical cases, advanced low level optimizations
such as hand-written SIMD code are required [56].

The combination of wide SIMD registers and a high level of shared memory
core-based parallelism allows the Intel Xeon Phi to perform dense linear algebra
computation with a high level of performance. To achieve such a level of performance
the implementation must take advantage of these architectural features. Like for
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the GPGPU, in this thesis we provide an efficient dense linear solver using the Intel
Xeon Phi as an accelerator.

Figure 1.8: Intel Xeon Phi Coprocessors6

6Picture from www.intel.com

www.intel.com
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1.5 Numerical linear algebra libraries for dense matrices

The evolution of computer architectures has been followed by the software libraries.
A different architecture requires a different implementation to be able to perform
at the best of the capabilities of the machine. In dense linear algebra, the compu-
tational efficiency is a major challenge. Therefore an optimized implementation of
the programs is essential.

Before the 70s, the optimized computational routines were directly coded in
machine code. In 1964, Sweeney [57] collected statistics about the floating-point
operations in various programs, in order to determine what kind of operations were
mostly used [31].

The most usual operations were then included in black box libraries, offering
the programmer optimized functions for different tasks such as matrix and vector
operations (copies, swaps, rotations, etc).

1.5.1 The historical libraries

In the mid 60s, IBM distributed the Scientific Subroutine Package [58], a collec-
tion of FORTRAN Subroutines optimized for the IBM System/360 machine. In
1974, Garbow published EISPACK [59], a package of FORTRAN subroutines to
compute eigenvalues and eigenvectors of matrices. The Basic Linear Algebra Sub-
programs (BLAS) package was first the result of a collaborative project of the ACM-
SIGNUM committee carried between 1973 and 1977 [60]. Based on a proposal made
in 1973 [61].

The LINPACK library proposed, in 1979 a set of subroutines designed for the
supercomputers of the 70s and 80s, mostly based on vector processors, to solve linear
equations and linear least-square problems [62]. LINPACK used BLAS for the basic
matrix manipulations. The LINPACK user’s manual included a benchmark. It used
a LU factorization with partial pivoting to solve a problem of size 100, allowing users
to estimate the performance of their memory and processors. This size of the test
and its implementation has evolved but is still in use today. It is known as High
Performance LINPACK (HPL) [52, 63] and allows to establish the ranking of the
most powerfull supercompters referred to as the TOP500 [51].

The first version of BLAS (Level 1 BLAS) implemented scalar-vector and vector-
vector operations. BLAS2 (Level 2 BLAS) was developed in 1988 as an extension
to BLAS1 to take advantage of the capabilities of vector processors [64, 65]. BLAS2
allows to perform matrix-vector operations.

In 1990 BLAS3 [66, 67] added another extension to be "cache friendly". This
extention takes into account the memory hierarchy of the new computers (global
memory, cache memories, vector registers etc). It implemented matrix-matrix oper-
ations such as matrix products or solving triangular systems of equations.

Released in February 1992, LAPACK [68] supersedes LINPACK and EISPACK
and achieves better performance. LAPACK focuses on solving: systems of linear
equations, linear least squares problems, eigenvalue problems and singular value
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problems. To perform these operations it also implements the associated computa-
tion such as matrix factorizations (LU, QR, LDLT, Cholesky etc) or the estimation
of condition numbers. LAPACK uses BLAS routines as much as possible to per-
form all the matrix, vector, scalar computation. Therefore the performance of the
LAPACK libraries depends on the implementation of the BLAS used.

Most of the numerical linear algebra libraries developed afterwards are based on
BLAS and LAPACK, offering different implementations of the same routines and
operations.

1.5.2 Parallel implementations

Some vendor libraries such as ACML [69] for AMD processors, MKL [39] for Intel
processors and ESSL [70] for IBM provide optimized implementations of BLAS and
LAPACK for their processors. These optimizations include multithreaded (for the
multicore processors) and vectorized (for the SIMD extensions) functions.

Open source projects also exist such as ATLAS [71], Goto BLAS [72] or Open-
Blas [73]. ATLAS uses a tuning step during its installation to determine the best
parameters for the kernels, with respect to the target architecture. GotoBLAS
possesses a collection of hand written assembly kernels optimized for different ar-
chitectures and uses vectorization and multithreading. OpenBLAS is based on Go-
toBLAS2 and proposes optimizations for more recent architectures since the devel-
opment of GotoBLAS stopped.

For GPUs, NVIDIA proposes CuBLAS [74], an implementation of BLAS on top
of the NVIDIA CUDA runtime, and EM Photonics, their CULA [75] solution as a
CUDA implementation of LAPACK.

ScaLAPACK [76] (Scalable LAPACK) is an implementation of LAPACK for
distributed architectures. It is based on different libraries. BLAS and LAPACK
for the computation on each node, Basic Linear Algebra Communication Subpro-
grams (BLACS) for the communication tasks. BLACS uses MPI for communication
between the nodes. ScaLAPACK uses block-partitioned algorithms for the compu-
tation and two-dimensional block-cyclic distribution for the storage of the matrices.

Solutions using different programming approaches exist, such as the Formal Lin-
ear Algebra Methods Environment (FLAME) [77] offering a more user-friendly Ap-
plication Program Interface (API) to represent the algorithms using algorithmic
skeletons. The contributors also developed the BLAS counterpart BLIS [78] using
the same approach.

The Parallel Linear Algebra Software for Multicore Architectures (PLASMA)
is a software library designed to be efficient on homogeneous multicore processors
and multi-socket systems of multicore processors. PLASMA [79] achieves a much
greater efficiency than LAPACK but does not support band matrices and does not
solve eigenvalue and singular value problems. It does not replace ScaLAPACK since
it does not support distributed architectures.

PLASMA uses BLAS kernels for its internal computation, so an optimized BLAS
implementation is required to achieve good performance. PLASMA implementation
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is based on tiled algorithms. The idea is to divide the matrices into small enough
square tiles so that a tile fits into the cache memory of one core. This method mini-
mizes the number of cache misses, improving the performance. To make a tile to be
stored in the cache memory efficiently, each tile has to occupy a contiguous memory
region. We note that the storage used in PLASMA is different from LAPACK in
which the matrices are stored column wise. Here a tile layout is used where each
tile is continuously laid out in memory.

Another principle of PLASMA is related to the dynamic task scheduling. The
scheduler called QUARK [80] (QUeueing And Runtime for Kernels) uses task graphs
or Direct Acyclic Graphs (DAG), which are generated and explored at runtime.

1.5.3 The MAGMA Library

Similarly to LAPACK, MAGMA7 [81, 82, 83], is being build as a community ef-
fort, incorporating the newest developments in hybrid algorithms and scheduling,
and aiming at minimizing synchronizations and communication in these algorithms.
The goal of these efforts is to redesign the dense linear algebra algorithms in LA-
PACK to fully exploit the power of current heterogeneous systems of multi/manycore
CPUs and accelerators, and deliver the shortest possible time to an accurate solution
within given energy constraints. Indeed, the algorithms included so far in MAGMA
1.6 manage to overcome bottlenecks associated with just multicore or GPUs, to
significantly outperform corresponding packages for any of these components taken
separately. MAGMA’s one-sided factorizations for example on a single Fermi GPU
(and a basic CPU host) can outperform state-of-the-art CPU libraries on high-end
multi-socket, multicore nodes (e.g., using up to 48 modern cores). The MAGMA li-
brary exists in three versions: one for Nvidia GPUs using CUDA, one using OpenCL
and one dedicated to Intel Xeon Phi accelerators.

More details about the MAGMA library will be given in Chapters 2 and 3. In
this thesis, we used MAGMA as a framework to develop new solvers. Some of these
solvers have been included in the latest release of the GPU and Intel Xeon Phi
versions of MAGMA.

1.6 Conclusion of Chapter 1

In this chapter, we discussed the different methods for solving dense linear systems
of equations, and focused on the dense solvers based on the LU factorization. We ad-
dressed the issue of pivoting in Gaussian elimination and described existing pivoting
strategies to improve the stability of the LU algorithm.

We also discussed the architectures used in high performance computing and
their challenging exploitation for the programmer, due to the different types of
parallelism and programming paradigms.

7Matrix Algebra on GPU and Multicore Architectures, http://icl.cs.utk.edu/magma/
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We described the evolution of the numerical libraries used to solve dense linear
systems, and showed the adaptations performed to offer the best performance as
possible, depending on the targeted architectures.

In the next chapter we present our contributions in designing and implementing
different algorithms to perform LU factorization on hybrid architectures using CPUs
and GPUs. We also describe the behavior of the resulting routines in terms of
performance and accuracy.
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2.1 Dense linear algebra on accelerated multicore ma-
chines

There has been several main changes in the development of dense linear algebra li-
braries over the years. These changes have always been triggered by major hardware
developments. For example, LINPACK [62] in the 70’s targeted the vector machines
at the time for which cache reuse was not essential, and as a result LINPACK had
relied on just Level 1 BLAS. In the 80’s LINPACK had to be rewritten, leading
to LAPACK [68], that would rely on Level 3 BLAS for cache based machines. In
the 90’s it was extended to ScaLAPACK [76] for parallel platforms, relying on the
PBLAS [84] message passing. Now, in the 00’s, with the explosion in parallelism
and heterogeneity as well as the ever increasing data-communication costs, the old
libraries had to be redesigned once again. An example of these new generation li-
braries is the MAGMA library [85, 86, 82] (see Section 1.5.3) that has been designed
from 2008 to address heterogeneous parallel architectures based on accelerators.

In parallel to the development of hybrid algorithms, there has been a number of
new developments related to minimizing communication in one-sided factorizations
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(e.g. [87]). Such improvements have become essential due to the increasing gap
between communication and computation costs.

For the linear system solvers on current multicore or GPU architectures, a bot-
tleneck in terms of communication cost and parallelism comes from the pivoting,
a technique used to prevent divisions by too-small numbers in the Gaussian Elimi-
nation (GE) process (see Sections 1.3.2 and 1.3.3). The commonly used method of
Gaussian Elimination with partial pivoting (GEPP) is implemented in current linear
algebra libraries for solving square linear systems Ax = b resulting in very stable
algorithms (see 2). These systems are in general solved using the well-known LU
factorization that decomposes the input matrix A into the product L×U , where L
is a lower triangular matrix and U is an upper triangular matrix. Current libraries
like LAPACK implement GE using a block algorithm, which factors the input ma-
trix by iterating over its blocks of columns (panels), as described in Section 1.3.5.
Pivoting not only requires communication (or synchronization in a shared memory
environment), but it also limits the exploitation of asynchronicity between block op-
erations. This is because the update of the trailing submatrix can be performed only
when the panel factorization is completed. We can find in [30] an evaluation of com-
munication overhead due to partial pivoting using MAGMA on a given CPU/GPU
architecture. This cost can represent on some hybrid architectures up to 40% of
the global factorization time, depending on the matrix size. Communication cost
of GEPP is asymptotically larger than the lower bounds on communication [24].
Other classical pivoting strategies can be used (see Section 1.3.2), but they always
require between O(n2) and O(n3) comparisons to search for the pivot. In this chap-
ter, we consider two alternative strategies to these pivoting techniques, that have
the property of reducing communication in the LU factorization while providing a
satisfactory accuracy.

The first alternative, already described in Section 1.3.6.1, is tournament piv-
oting. It was introduced in the context of CALU, a communication-avoiding LU
factorization algorithm [26]. It has been shown in [24] that tournament pivoting is
as stable as partial pivoting in practice and that CALU minimizes communications.
With this strategy, the panel factorization, referred to as TSLU (Tall and Skinny
LU), can be efficiently parallelized.

The second alternative is proposed in [30] where the communication overhead
due to pivoting is completely removed by considering a randomization technique
referred to as Random Butterfly Transformation (RBT) (see Section 1.3.7). More
details on this method will be given in Chapter 3.

Note that, since in this approach we know in advance that we are not going
to pivot, GENP that follows randomization is implemented as a very efficient fully
BLAS 3 algorithm. Note also that when the initial matrix is randomized, we sys-
tematically add iterative refinement in the working precision for better stability, as
indicated in [31, p. 232]. We show in this chapter that the usage of these techniques
in the context of hybrid CPU/GPU architectures lets us to take advantage of each
computational unit.

The chapter is organized as follows. First, we describe in Section 2.2 how the



2.2. MAGMA implementations of LU factorization 33

MAGMA library implements the LU algorithm with partial pivoting on hybrid ar-
chitectures with one or multiple GPUs. We also adapted this method to implement
the LU factorization with no pivoting used for the RBT solver.

Then, in Section 2.3 we introduce tournament pivoting, a strategy based on
CALU that we adapted specifically for CPU/GPU architectures. In this new imple-
mentation, the panel is factored on the CPU using a modified CALU factorization
while the update of the trailing submatrix is performed on the GPU. The resulting
solver is called H-CALU solver. Finally we propose in Section 2.4.1 some perfor-
mance results for the panel and the whole matrix factorizations where we compare
H-CALU with LU solvers using partial pivoting (MAGMA) and RBT. Concluding
remarks are given in Section 2.5.

2.2 MAGMA implementations of LU factorization

2.2.1 Mono GPU implementation

Let us illustrate how the hybrid multicore + GPU approach can be applied to the
LU factorization by describing the algorithm as it is implemented in the MAGMA
library. The method is based on splitting the computation as shown in Figure 2.1
that represents a current matrix factored via a right looking block LU factoriza-
tion [1, p. 85], where the dark part has been already factored. The initial matrix
has been downloaded to the GPU and we describe in algorithm 3 a current iteration:

Algorithm 3 Iteration for LU factorization using MAGMA
1: The current panel (1) is downloaded to the CPU.
2: (1) is factored by the CPU using GEPP and the result is sent back to the GPU.
3: The GPU updates (2) (next panel).
4: The updated panel (2) is sent back to the CPU to be factored while the GPU

updates the rest of the matrix (3).

The technique consisting of factoring (2) while still updating (3) is often re-
ferred to as look-ahead [88]. In the current implementation of MAGMA, the panel
factorization is performed using GEPP but this algorithm is general enough to be
applicable to many forms of LU factorizations, where the distinction can be made
based on the form of pivoting that they employ. In Section 2.3 we use a different
pivoting strategy that turns out to be very efficient for factoring the panel due to
its particular “tall and skinny” structure. Depending on the problem size n and on
the hardware used, MAGMA proposes a default value for the parameter b (width of
the panel).

Note that the design of the hybrid LU in MAGMA avoids communicating by
having only panels transferred between CPU and GPU (O(n ∗ b) data vs O(n ∗
n ∗ b) computation in the updates), enabling also the total overlap of the panel
computation by the updates for n large enough.
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1 2 3

b

Figure 2.1: Block splitting in hybrid LU factorization
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2.2.2 Multi GPUs implementation

Algorithm 4 Magma LU multi GPU without pivoting
Input: id is the identifier of the GPU.
Input: num_gpus is the number of gpu used.
Input: The matrix is distributed on the GPUs using a 1-D cyclic block column

layout.
Input: M is the size of the matrix and nb the panel size.
1: steps←M/nb

2: for i← 0 to steps− 1 do
3: panel_owner ← i mod num_gpu
4: if panel_owner = id then
5: asynchroniously send the panel to the CPU.
6: Synchronize to ensure that the task queue is empty.
7: end if
8: if i > 0 AND panel_owner = id then
9: Update of its trailing submatrix.

10: end if
11: if panel_owner = id then
12: Barrier on the previous panel sending.
13: end if
14: CPU factorize the panel.
15: CPU asynchroniously send the factorize panel to all the GPUs.
16: if panel_owner = id then
17: Storing the factorized panel in the place from where it was taken.
18: else
19: Storing the factorized panel in temporary matrix.
20: end if
21: Barrier on the panel reception.
22: if id = (panel_owner + 1 mod num_gpus) then
23: Update the trailing submatrix corresponding to the next panel. {Look-

ahead}
24: else
25: Update its trailing submatrix.
26: end if
27: end for

Algorithm 4 presents a no pivoting version of the factorization that can be used
in the RBT solver and uses multiple GPUs. The matrix to factorize is distributed
on the GPUs as shown in Figure 2.2 using a 1-D block-cyclic column layout [76,
p. 58]). At each step the current panel is downloaded from the GPU that owns
it to the CPU to be factored. When the CPU finishes the panel factorization, it
sends it to all GPUs. This panel is stored in a temporary space allocated on each
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GPU (except for the GPU that owns this panel from the data distribution) and
the GPUs update their trailing submatrix. The GPU that owns the next panel
updates in priority the part of the trailing submatrix that corresponds to the next
panel and sends it to the CPU. Using this algorithm, we can compare in Figure 2.10
the performance of the LU with partial pivoting and no pivoting. It shows that
using multiple GPUs is interesting only when we consider large systems since for
smaller sizes, communication cost between CPU and GPUs is significant. Note also
that the no-pivoting factorization is much more scalable than the partial pivoting
factorization. Indeed, the latter does not take full advantage of the multiple GPUs
since the pivoting is performed on the CPU. This justifies again the interest of using
techniques to avoid pivoting on these architectures. This aspect will be developed
in Chapter 3.
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Figure 2.2: Example of orders for the panels pactorizations in Magma with 3 GPUs
and a panel size being 1/12 of the matrix size.

2.3 Hybrid implementation of tournament pivoting LU

The poor evolution of latency and memory bandwidth that we observed over recent
years for parallel architectures is a major bottleneck for algorithms that require com-
munication like GEPP. New approaches have been recently proposed to minimize
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the amount of communication due to pivoting. Among them are communication-
avoiding algorithms introduced for distributed-memory machines [26] and for multi-
core architectures [25]. These algorithms are effective in the sense that they reduce
significantly communication while being stable in practice. CALU is an algorithm
that partitions the input matrix into block of columns (panels), iteratively factors
the panel and updates the trailing submatrix. The factorization of the panel is one
of the most important task in the LU fatorization since it is part of the critical path
in the diagram of tasks and its effective execution influences the performance of the
algorithm. In CALU, the panel factorization is performed by the TSLU algorithm
which factors a block column of size b (see 1.3.6.1).

Once the panel is factored using TSLU then we update the trailing submatrix.
Following the approach presented in [89, 90], the CALU algorithm can be represented
as a Directed Acyclic Graph (DAG) where nodes are elementary tasks that operate
on one or several b × b blocks and where edges represent the dependencies among
them. A dependency occurs when a task must access data that is the output of
another task, either to further update or just read that data. In Figure 2.3 we
represent an example of LU factorization with CALU as a sequence of DAGs using
2 threads. The panel is partioned into 3 column blocks. Black tasks represent the
factorization of the panel via TSLU and the gray tasks represent the update of the
trailing submatrix.

Figure 2.3: Example of asynchronous LU factorization using multithreaded CALU
(2 threads, 3 column blocks) on CPUs

As explained in Section 2.2, the LU algorithm implemented in MAGMA factors
each block of columns iteratively. Each step is essentially decomposed into two
distinct phases: the factorization of the panel by the CPU followed by the update
of the trailing submatrix by the GPU. The algorithm’s design minimizes CPU-
GPU communications. In the following we describe a method that further improves
the algorithm in MAGMA by minimizing communication associated with the panel
factorizations.

At each step, a panel of size B is factored on the CPU by applying CALU to
a rectangular matrix and the update of the trailing submatrix is performed by the
GPU. CALU factors the panel by splitting the initial block of columns into smaller
blocks containing b columns that are factored iteratively using TSLU. Thus, the
factorization of the panel is considered as a variant of the algorithm at the first level
where we factor a rectangular matrix using only the CPU. The use of this second
level of blocking is important for performance on hybrid CPU/GPU architectures
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because the CPU and GPU processors have different size of cache. The block size
B is chosen in order to optimize the performance of the matrix-matrix product on
the GPU and to ensure a good grain for increasing parallelism. Then the block
size b is tuned in order to optimize the utilization of the multicore cache. This
decomposition of the algorithm into small tasks allows us to operate on blocks of
data that fit into the cache. It results in an asynchronous and dynamic execution
of the panel factorization on the CPU, yielding good performance on multicore
machines [25]. This asynchronous execution keeps busy most of the CPU threads.
When b = B, CALU behaves simply as TSLU. If B is large enough (which will be
the case for our hybrid implementation), the panel is factored using CALU rather
than TSLU because CALU can be executed asynchronously [25]. Our approach also
uses the well known technique referred to as look-ahead [88] but adapted here so that
the CPU and the GPU can work together while minimizing the number of memory
transfers. In this approach, we start factoring the next panel as soon as possible.

Figure 2.4 depicts an example of the factorization of a matrix. We consider that
the matrix is initially stored on the GPU. Black tasks represent the factorization
of the panel using multithreaded CALU and the gray tasks represent the update
of the trailing submatrix in the GPU. At each step of the factorization, the block
corresponding to the panel is transfered to the CPU and factored using CALU.
Once the panel is factored, it is sent back to the GPU in order to update the
trailing submatrix. The GPU updates in priority the column block corresponding
to the next panel. Note that, similarly to [82], the data transfer between CPU and
GPU is overlapped by computation.
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Figure 2.4: Hybrid CALU factorization (4 panels).

2.4 Performance comparisons

2.4.1 Experimental framework

In this section we present performance results for the algorithms described in
Sections 2.2 and 2.3. These numerical experiments were carried out using a hybrid
CPU/GPU system where:
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• The GPU device is an NVIDIA Fermi Tesla S2050 with 448 CUDA cores
running at 1.15 GHz and 2687 MB memory.

• The multicore host is a 48 cores system (4 sockets × 12 cores) AMD Opteron
6172 (2.1 GHz).

For experiments involving only the multicore host (panel factorization), com-
parisons are made against the MKL [39] multithreaded library. For experiments
involving both CPU and GPU (factorization of the whole matrix), comparisons are
made against version 1.1 of the MAGMA library. All computations are performed
on random matrices and in double precision arithmetic.

2.4.2 Performance for the panel factorization

As described in Section 2.3, the panel factorization is performed by the CPU while
the update of the trailing submatrix is executed on the GPU. Let us evaluate specifi-
cally the performance for the panel factorization phase in an LU factorization. This
performance is measured by summing the total number of flops executed in fac-
toring successively each panel throughout the factorization and dividing it by the
time spent during these steps. This performance (expressed in Gflop/s) is plotted
in Figures 2.5, 2.6, 2.7 and 2.8 for the factorization of four square matrices, each
associated with a given panel size (parameter B defined in Section 2.3, correspond-
ing to the number of columns for the panel). For factoring the panel, we consider
different number of threads (one CPU core being used for each thread) varying from
1 to 26. Note that using more than 26 threads does not provide us with better
performance, due to the too-large amount of communication involved in the panel
factorization. The panel size B considered in Figures 2.5, 2.6, 2.7 and 2.8 for each
matrix size corresponds to a value empirically tuned in order to provide the best
global factorization time for each matrix when using a hybrid implementation.

In these experiments, we compare the performance of the panel factorization for
the following routines:

• CALU factorization routine modified for the H-CALU solver and linked with
the sequential version of MKL for the required BLAS and LAPACK routines.

• MKL implementation of the LAPACK routine dgetrf, used in the MAGMA
implementation of LU for factoring the panel.

• A recursive routine for GEPP rgetf2 (linked with MKL multithreaded BLAS)
described in [91] and known to give good performance on “tall and skinny”
matrices.

• GENP routine dgetrf_nopiv (no pivoting) as used in the RBT solver.

The routines compared in this section have been selected on the fact that they
can be used as kernels for our hybrid CPU/GPU implementation. If we use only
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multicore machines without GPU, then other solvers can be considered (see e.g.
recursive tile version in [92]).

For the MKL implementation (partial pivoting LU, dgetrf routine), the best
performance is achieved with 9 threads for sizes 5120 (10.77 Gflop/s) and 10240
(9.65 Gflop/s) and with 6 threads for size 15360 (12.82 Gflop/s) and 21504 (14.82
Gflop/s).

For the recursive LU factorization (partial pivoting LU, rgetf2 routine linked
with MKL multithreaded BLAS), the best performance is achieved with 15 threads
for size 5120 (9.37 with 17 threads for size 10240 (12.02 Gflop/s), with 22 threads
for size 15360 (18.02 Gflop/s), and with 24 threads for size 21504 (23.74 Gflop/s).

For CALU using sequential MKL kernels, the best performance is achieved with
12 threads for and with 16 threads for size 10240 (15.35 Gflop/s), for size 15360
(24.37 Gflop/s), and for size 21504 (30.66 Gflop/s).

The performance of the GENP routine can be considered here as a “peak” per-
formance for the panel factorization. In this respect, we observe that, in percentage
of this peak performance and depending on the matrix size n, CALU achieves be-
tween 36 % (n = 5120) and 48 % (n = 21504), dgetrf achieves between 35 %
(n = 5120) and 23 % (n = 21504), and rgetf2 achieves between 31 % (n = 5120)
and 38 % (n = 21504). We also observe that CALU is even faster for larger ratios
rows/columns. Moreover, CALU and GENP have better scalability properties. This
can be explained by the fact that CALU increases the data locality thanks to its
pivoting strategy and GENP does not pivot at all. The plateau observed for each
curve after a certain number of threads corresponds to cases where the volume of
communication becomes too large and cannot be overlapped by computation. For
n = 5120, CALU, dgetrf and rgetf2 give similar performance. However, when
the matrix size increases and then the panel becomes more “tall and skinny”, CALU
outperforms the two other solvers and achieves a reasonable fraction of the GENP
rate. This good behavior of CALU for factoring the panel was already mentioned
in [25]. In particular this better scalability of CALU enables us to use more CPU
threads in factoring the panel and then to improve the overall performance of a
hybrid LU solver.
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Figure 2.5: Comparison of CPU multi-threaded panel factorizations.
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Figure 2.6: Comparison of CPU multi-threaded panel factorizations.
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Figure 2.7: Comparison of CPU multi-threaded panel factorizations.
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2.4.3 Performance for the hybrid LU implementations

In this section we study the performance of LU factorization routines that utilize
resources from multicore (16 threads) and one GPU. We compare in Figure 2.9 the
following routines, applied to square matrices of various sizes:

• The MAGMA routine magma_dgetrf, where the panel is factored using the
MKL routine dgetrf,

• H-rgetf2, where the panel is factored with the recursive routine for GEPP
rgetf2,

• H-CALU, where the panel is factored using the CALU routine mentioned
in Section 2.4.2,

• The RBT solver (randomization + GENP).
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Figure 2.9: Performance on square matrices
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Figure 2.10: Performance on rectangular matrices

As expected, RBT outperforms the routines because it does not pivot and the
randomization time is negligible. We can also observe that in the range 1024-5120,
H-CALU gives similar performance as MAGMA but it is slightly faster for matrix
sizes larger than 5120. This trend can be explained by the fact that, for matrix sizes
smaller than 5120, the panels are not “tall and skinny” enough to take advantage of
the CALU algorithm. We notice that the difference of performance observed for the
panel in Section 2.4.2 has a moderate impact on the whole factorization since the
update phase performed on the GPU represents the bulk of the computation. In
these results the experiments performed with a MAGMA routine modified so that
the panel is factored by the routine rgetf2 mentioned in Section 2.4.2 obtained
performance results similar to that of magma_dgetrf. Note that asymptotically, the
performance of the three routines should be close because communication becomes
negligible compared to the O(n3) computations for large dimensions.

In Figure 2.10 we compare the performance of hybrid LU factorization routines
for rectangular matrices of size m × n with m > n, using 16 threads. Such an LU
factorization exists when A(1 : k; 1 : k) is nonsingular for k = 1 : n (see [13, p. 102]).
In our experiments n = 2048 and m varies from 3072 to 21504. Comparisons are
made against MAGMA routines magma_dgetrf and magma_dgetrf_nopiv (instead
of RBT since the latter has no implementation for rectangular matrices). We also
compare with H-rgetf2, the MAGMA routine modified by factoring the panel using
the recursive GEPP kernel.

On this type of matrices, H-CALU outperforms magma_dgetrf and H-rgetf2.
Indeed, for rectangular matrices, the proportion of computation performed during
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the panel factorization is bigger. Hybrid factorization on rectangular matrices could
be for instance useful in a future hybrid factorization with multiple GPUs where the
(rectangular) panel could be factored using CPU and a GPU.
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Figure 2.11: Comparison of componentwise backward error

In these experiments, we study the backward error obtained for the linear system
solution computed with the solvers LU MAGMA, RBT and H-CALU, using the
matrices considered in the previous experiments. The quantity plotted in Figure 2.11
corresponds to a componentwise backward error as defined in [68, p. 78]. Note
that the number of threads used in factoring the panel in H-CALU is 16. This is
mentioned here only because, as explained in [24], this might affect the accuracy. We
observe that the backward errors are very similar for the three hybrid solvers. Tests
on accuracy for specific matrix collections can be found in [30] and [24] respectively
for RBT and CALU. Note that we did not perform accuracy tests using the routine
H-rgetf2 since, as it is based on partial pivoting, it would give the same numerical
results as the magma_dgetrs routine.
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Table 2.1: Test matrices

1 Diagonal 7 Last n/2 columns zero
2 Upper triangular 8 Random, κ =

√
0.1/ε

3 Lower triangular 9 Random, κ = 0.1/ε

4 Random, κ = 2 10 Scaled near underflow
5 First column zero 11 Scaled near overflow
6 Last column zero

Table 2.2: Componentwise Backward Error

Matrix MAGMA GEPP h-CALU RBT
Type
1 0.0 0.0 2.10145e-16
2 1.31539e-16 1.31539e-16 2.18841e-16
3 184697e-16 184697e-16 2.06543e-16
4 2.16476-16 2.75832e-16 1.92510e-16
5 - - 2.66472e-16
6 - - 2.14281e-16
7 - - 1.97144e-16
8 2.10408e-16 3.76095e-16 1.55625e-16
9 2.70036e-16 6.36540e-16 1.08967e-13
10 7.59577e-14 7.40225e-14 7.54745e-14
11 2.27295e-16 2.11000e-16 2.42990e-16

2.4.4 Performance on multiple GPUs

In this section we study the scalability using multiple GPUs for the partial pivoting
routine from MAGMA (routine magma_dgetrf_mgpu) and a no pivoting factoriza-
tion adapted from the MAGMA routine. In Figure 2.12, we observe that the no
pivoting routine has a much better scalability. This difference in performance be-
tween both factorizations can be explained by the fact that the panel factorization
and the swapping of rows due to partial pivoting are performance bottlenecks. By
accelerating the panel factorization and removing the pivoting, we obtain a better
scalability. However, it is important to note that the LU factorization with no piv-
oting is not stable when used alone in a linear system solver (unless the matrix is
diagonally dominant) but it could be used in an RBT solver using multiple GPUs
since the RBT preprocessing enables us to avoid pivoting.
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2.5 Conclusion of Chapter 2

In this chapter, we presented different LU factorization routines using a multicore
machine accelerated with one GPU and proposed a no pivoting version for multiple
GPUs that can be used in the RBT solver. The difference between these approaches
comes from the pivoting strategy chosen for factoring the panel. We proposed a new
hybrid communication-avoiding solver H-CALU where the panel is factored on the
CPU while the update is performed by the GPU. In our experiments, this solver
turns out to be faster than the classical GEPP implementation in MAGMA for
square matrices larger than 5120, and when using a sufficient number of threads.
The good performance of H-CALU compared to partial pivoting allows us to con-
sider larger panels in the block column factorization and thus to limit the amount
of transfers between the CPU and the GPU memory. We point out that further
optimizations are possible with e.g. additional tuning and scheduling, but our ex-
periments give a general trend for the performance of algorithms as dictated by the
amount of communication that they perform. However, the solver based on RBT
always outperforms the other solvers since we do not pivot at all and the randomiza-
tion cost is small. The methods and implementations of RBT-based solvers will be
detailed in Chapter 3. The good performance of H-CALU on rectangular matrices
is promising in the perspective of extending this approach to multiple GPUs. Part
of the work described in this chapter has been published in [93].
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3.1 Introduction

In order to solve general dense linear systems, the LU factorization with partial
pivoting is the most commonly used method. However, even if pivoting ensures some
numerical stability and does not require extra floating-point operations, searching for
the pivot involves O(n2) comparisons and swapping the rows of the matrix involves
irregular data movements. These aspects can badly impact the performance due to
cache invalidation it induces.

To avoid the cost of pivoting, and therefore improve the performance of the fac-
torization, Random Butterfly Transformation (RBT) was proposed. This method,
first described in [28, 29] was recently developed for general systems in [30] and for
symmetric indefinite systems in [94, 95, 96]. Tests performed in [30] for a collection
of test matrices showed that in practice two recursions are sufficient to obtain a
satisfactory accuracy.

The RBT solvers are particularly suitable for accelerators. On the one hand,
avoiding pivoting on accelerators has an important impact on performance, given
that the rows do not need to be swapped. On the other hand, the structure of
the butterfly matrices can be exploited to perform the randomization at a very
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low cost. To use accelerators in dense linear algebra computations, we base our
work on the MAGMA library, which provides LAPACK interface functions, using
GPUs [81, 82, 83] or Intel Xeon Phi [97, 98].

This chapter is organized as follows. In Section 3.2, we describe the structure of
the recursive butterfly matrices and how they can be stored in a compact format. We
also describe the RBT algorithm and our implementation of the iterative refinement
using MAGMA. In Section 3.3, we explain how the RBT solver can be performed
efficiently on hybrid architectures using accelerators. In particular we detail how
the randomization is applied. In Section 3.4, we present the implementation of
the RBT solver included in the MAGMA library for GPUs using CUDA. We give
details about the implementation of the corresponding GPU routines and we provide
performance results in Section 3.4.2. In Section 3.5, we present our implementation
of the RBT solver using Intel Xeon Phi coprocessors and give performance results
in Section 3.5.2. Finally, we give some concluding remarks and ongoing work in
Section 3.6.

3.2 RBT solver

As mentioned in Section 1.3.7, a butterfly matrix is an N -by-N matrix defined as
follows:

B =
1√
2

(
R S

R −S

)
,

Where R and S are two random non singular N/2-by-N/2 diagonal matrices.
The data pattern of a butterfly matrix can be represented as follows:

B =

(rr
rr

)
,

We observe that the N -by-N butterfly matrices are only composed of two diago-
nals of size N/2 . An N -by-N butterfly matrix can then be stored in an N elements
vector with the N/2 first elements being the values of R and the N/2 last elements
being the coefficients of S.

If we consider a recursive butterfly matrix of depth d as defined in [30], then it
has the following recursive form:

W<n,d> =


B

<n/2d−1>
1 0

. . .

0 B
<n/2d−1>

2d−1

× · · · ×
(
B

<n/2>
1 0

0 B
<n/2>
2

)
×B<n>,

(3.1)
where all B<n>

i blocks are size N butterfly matrices. We notice that all the matrices
involved in the products can have their coefficients stored in N elements vectors.
Thus the depth d recursive butterfly matrix can be stored in a d-by-N matrix as
illustrated in Figure 3.1.
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Figure 3.1: Packed storage for a recursive butterfly matrix

To solve the general linear system Ax = b using RBT, we perform the following
steps:

1. Compute the randomized matrix Ar = UTAV , where U and V are recursive
butterflies.

2. Factorize Ar using Gaussian Elimination with No Pivoting (GENP).

3. Solve Ary = UT b (two triangular systems).

4. Use iterative refinement to improve the computed solution.

5. Solution is x = V y.

As mentioned in Section 1.3.2, the GENP algorithm can be unstable due to a
potentially large growth factor. This is why we systematically perform iterative
refinement on the computed solution of the randomized system. Algorithm 5 de-
scribes how the iterative refinement is performed in our implementations. We have
included this implementation in the MAGMA library. We improve the computed so-
lution until we reach the required accuracy or we reach a defined maximum number
of iterations (here 30).
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Algorithm 5 Iterative refinement
Input: A the original matrix.
Input: b the right hand side.
Input: x the computed solution.
Input: L and U the factorized form of A
Input: N size of the matrix A
Result: An improved solution x
1: ε←Machine precision
2: IterMax← 30

3: Iter ← 0

4: Anrm← ‖A‖∞
5: Xnrm← max |x|
6: Cte← Arnm× ε×

√
N

7: r ← b−Ax
8: Rnrm← max |r|
9: while Rnrm > Xnrm× Cte and Iter < IterMax do

10: Solve: Ly = r

11: Solve: Uz = y

12: x← x+ r

13: r ← b−Ax
14: Xnrm← max |x|
15: Rnrm← max |r|
16: Iter ← Iter + 1

17: end while

3.3 Hybrid RBT algorithm

In this section, we present an implementation of an RBT solver for hybrid CPU/accelerator
architectures. We use two recursion levels for the randomization. The resulting com-
putational cost of randomization step is 8n2 flops due to the block diagonal structure
of the butterflies, as demonstrated in [30]. The RBT solver for hybrid architectures
performs the following tasks:

1. Random generation and packed storage of the butterflies U and V on the CPU
(host), while sending A to the device (accelerator) memory (if the size of the
matrix A is not a multiple of 4, padding is added).

2. The packed U and V are sent from the host memory to the device memory.

3. The randomization is performed on the accelerator. The update of A is done
in-place (no additional memory needed) on the device memory.

4. The randomized matrix is factorized with GENP, the panel factorization being
performed on the CPU host and the update of the trailing submatrix on the
accelerator.
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5. We compute UT b on the device, then Ary = UT b is also solved on the accel-
erator.

6. If necessary, iterative refinement is performed on the solution y using the
accelerator.

7. We compute the solution x = V y on the device and the solution x is sent to
the host memory.

Note that the step 4 is performed using routines of LU factorization with no
pivoting adapted from the MAGMA routines of LU factorization with pivoting.
These routines use the same method as described in Section 2.2.

The randomization step is performed as follows:

1. U and V are two N -by-N recursive butterfly matrices of depth two.

We consider that A can be split into 4 blocks of same size as follows: A =(
A11 A12

A21 A22

)
2. U = U2 × U1 and V = V2 × V1 with U1, V1 being two butterfly matrices and

U2, V2 two matrices of the form
(
B1 0

0 B2

)
, where B1 and B2 are two N/2-

by-N/2 butterfly matrices as illustrated in Equation 3.1.

3. We note A1
r = UT

2 ×A× V2.

Since Ar = UTAV = UT
1 ×A1

r × V1, we first apply UT
2 and V2.

4. We compute UT
2 ×A× V2 =

(
B1 0

0 B2

)
×
(
A11 A12

A21 A22

)
×
(
B′1 0

0 B′2

)
=(

B1A11B
′
1 B1A12B

′
2

B2A21B
′
1 B2A22B

′
2

)
This step consists of four independent products of the form UTAV with depth-
1 butterfly matrices of size N/2-by-N/2. We call the kernel used for this
product Elementary multiplication.

5. We then apply UT
1 and V1 to A1

r to obtain Ar, consisting in using Elementary
multiplication on N -by-N matrices.

When using the RBT solver, the bulk of the computation is done by the GENP
factorization (experiments show that the randomization represents less than 4% of
the global computational time). Up to now, the no pivoting version of the LU factor-
ization has been the most efficient. Thus, we expect that the Gflop/s performance
of the RBT solver will provide us with an upper bound for other LU solvers on
hybrid architectures.
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3.4 RBT solver using Graphic Process Units

In this section we present details on the optimized implementation of the random-
ization part of the RBT solver using GPU. Then we give performance results of this
implementation that has been developed for the MAGMA library.

As mentioned in Section 1.3.2, even if pivoting improves the numerical stability
of the LU factorization, the data movement and search for the pivots are time
consuming. In Figure 3.2, we show the overhead of the pivoting phase in an LU
factorization (partial pivoting) using the MAGMA library with an NVIDIA Tesla
K20 GPU as accelerator. We observe that pivoting (selection of pivots and swap
of rows) takes more than 20% of the total computational time for matrices of size
smaller than 10000. For large enough matrices, most of the computational time is
spent in matrix-matrix products (DGEMM) on the GPU, reducing the overhead of
the pivoting.
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Figure 3.2: Pivoting cost of the LU factorization on GPU.

This result confirms that a solver based on a factorization with no pivoting would
outperform the classically used LU factorization with partial pivoting.

Our RBT solver exists for all precisions used in LAPACK (simple, double, sim-
ple complex and double complex) and we integrated it in a recent release1 of the
MAGMA library. It includes GPU-based randomization routines, a no pivoting
factorization routine, and iterative refinement on GPU.

1see http://icl.cs.utk.edu/magma/news/news.html?id=351

http://icl.cs.utk.edu/magma/news/news.html?id=351
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3.4.1 Implementation

On hybrid CPU/GPU architectures, the RBT solver is performed as described in
Section 3.3. In Algorithm 6, we give details on the routines that perform the ran-
domization of the matrix A.

Algorithm 6 RBT with two recursions
Input: A a pointer to the matrix A on the GPU.
Input: U a pointer to the matrix U stored as a vector on the GPU.
Input: V a pointer to the matrix V stored as a vector on the GPU.
Input: N the size of the matrix A
Result: A← UTAV

1: block_height← 32

2: block_width← 4

3: Define a grid of threads per block, size: (block_height, block_width)
4: Define a grid of blocks, size: ( N

4×block_height ,
N

4×block_width)
{Assuming N is divisible by 4× block_height and 4× block_width}
{ All GPU kernels are called with the threads and grid dimensions defined before
the call}

5: Call: Elementary Multiplication(A, &U(N), &V (N), N/2)
6: Call: Elementary Multiplication(&A(0, N/2), &U(N), &V (N +N/2), N/2)
7: Call: Elementary Multiplication(&A(N/2, 0), &U(N +N/2), &V (N), N/2)
8: Call: Elementary Multiplication(&A(N/2, N/2), &U(N+N/2), &V (N+N/2),
N/2)

9: Redefine a grid of blocks, size: ( N
2×block_height ,

N
2×block_width)

{Assuming N is divisible by 2× block_height and 2× block_width}
10: Call: Elementary Multiplication(A, U , V , N) {Applying level 1 recursion}

This function applies the depth-two RBT to the matrix A by processing first each
N/2-by-N/2 quarter block of the matrix and then applying the level one recursion
to all the N -by-N matrix as described in Section 3.3. The application of the level
two of RBT consists in calling the Elementary Multiplication kernel on each
quarter part of the matrix. This is due to the block diagonal structure of the
butterfly matrix. Each Elementary Multiplication kernel is performed with one
GPU thread per element.

The Elementary Multiplication kernel performs A← UTAV , where U and V
are size N vectors containing the coefficients of depth one random butterfly matrices
as described in Section 3.2.

Algorithm 7 shows the details of the GPU implementation of the Elementary
Multiplication kernel.
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Algorithm 7 GPU Kernel: Elementary Multiplication(A, U , V , N)
1: for each thread block of size bsize.x× bsize.y of coordinates b.x and b.y do
2: for each Thread of coordinates t.x and t.y in the block do
3: idx← b.x× bsize.x+ t.x

4: idy ← b.y × bsize.y + t.y

5: if idx < N/2 and idy < N/2 then
6: Declare 4 shared memory arrays: U1[bsize.x], U2[bsize.x], V1[bsize.y],

V2[bsize.y]

7: U1(t.x)← U(idx)

8: U2(t.x)← U(idx+N/2)

9: V1(t.y)← V (idy)

10: V2(t.y)← V (idy +N/2)

11: Synchronize the threads in the block
12: a00 ← A(idx, idy)

13: a01 ← A(idx, idy +N/2)

14: a10 ← A(idx+N/2, idy)

15: a11 ← A(idx+N/2, idy +N/2)

16: b1 ← a00 + a01
17: b2 ← a10 + a11
18: b3 ← a00 − a01
19: b4 ← a10 − a11
20: A(idx, idy)← U1(t.x)× V1(t.y)× (b1 + b2)

21: A(idx, idy +N/2)← U1(t.x)× V2(t.y)× (b3 + b4)

22: A(idx+N/2, idy)← U2(t.x)× V1(t.y)× (b1 − b2)
23: A(idx+N/2, idy +N/2)← U2(t.x)× V2(t.y)× (b3 − b4)
24: end if
25: end for
26: end for

We use shared memory arrays for each block of threads to store the coefficients
of U and V relative to this block and thereby improve the efficiency of the access
to these elements.

3.4.2 Performance

The following section presents performance results for the RBT solver in MAGMA
with GPU. The experiments were carried out on a system composed of:

• a GPU, NVIDIA Kepler K20, with 2496 CUDA cores running at 706 MHz
and 4800 MB of memory

• a multicore host composed of two Intel Xeon X5680 processors, each with 6
physical cores running at 3.33 GHz, and a Level 3 memory cache of 12 MB.

The CPU parts of our code are performed using the multithreaded Intel MKL library.
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In Figure 3.3, we can see that, the CUDA implementation of our RBT solver
(either with or without iterative refinement) outperforms the classical LU factor-
ization with partial pivoting from MAGMA. For large enough matrices (from size
6000) the obtained performance is about 20-30% faster than the solver based on
Gaussian elimination with partial pivoting.

In our experiments, when we enable iterative refinement, only one iteration is
performed which is generally enough to improve the computed solution giving an
accuracy similar to the one obtained with partial pivoting. The iterative refinement
is performed on the GPU and requires O(n2) extra floating point operations, which
in our case has no significant impact on the performance.
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Figure 3.3: Performance of the RBT solver on GPU.

In Figure 3.4, we notice that the time required to perform the randomization is
less than 4% for small matrices and becomes less than 2% for bigger matrices. This
is due to the low computational cost of the randomization (4n2 flops) and to our
optimized implementation that use the capabilities of the GPU accelerator.
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Figure 3.4: Time breakdown of the RBT solver on GPU.

3.5 RBT solver using Intel Xeon Phi coprocessors

Similarly to the previous section, we present our implementation of the RBT solver
on Intel Xeon Phi coprocessor and some performance result. This solver and all
the required functions are part of the MAGMA MIC library since version 1.3. This
includes the following routines: no pivoting LU fatorization, no pivoting solver,
randomization routines, iterative refinement and the global solver based on RBT +
LU without pivoting + iterative refinement. These routines are all available in the
four standard precisions (single, double, single complex, double complex).

In the following, we give more details on the randomization routine used in the
RBT solver.

Figure 3.5, shows the time cost of the partial pivoting. The difference of perfor-
mance compared to the GPU implementation (see Figure 3.2), is understandable.
Experiments have shown that the Xeon Phi version of the factorization need a
greater amount of data than the GPU to be efficient. Indeed, for a matrix size of or-
der 6000, our solver gives performance around 200 Gflop/s for the Xeon Phi whereas
it is around 500 Gflop/s with the GPU. When we increase the size of the problem,
the performance of both versions tend towards 800 Gflop/s (for double precision).
For small matrices, the pivoting overhead is proportionally smaller than on GPU
but the global performance of the solvers for such matrices is worse regardless of
the pivoting strategy used. The "spikes" that can be observed for some matrix sizes
correspond to changes in the panel size used, creating a gap in the performance.
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Figure 3.5: Pivoting cost in the LU factorization on Xeon Phi.

3.5.1 Implementation

Algorithm 8 presents the implementation of the RBT randomization, using depth
two butterfly matrices. It is similar to its GPU counterpart, except that there are
no blocks or threads to deal with inside this function.

Algorithm 8 RBT with two recursions
Input: A a pointer to the matrix A on the Phi.
Input: U a pointer to the matrix U stored as a vector on the Phi.
Input: V a pointer to the matrix V stored as a vector on the Phi.
Input: N the size of the matrix A
Result: A← UTAV

1: Call: Elementary Multiplication Phi(A, &U(N), &V (N), N/2)
2: Call: Elementary Multiplication Phi(&A(0, N/2), &U(N), &V (N+N/2), N/2)
3: Call: Elementary Multiplication Phi(&A(N/2, 0), &U(N+N/2), &V (N), N/2)
4: Call: Elementary Multiplication Phi(&A(N/2, N/2), &U(N +N/2), &V (N +

N/2), N/2)
5: Call: Elementary Multiplication Phi(A, U , V , N) {Applying level one recur-

sion}

The Elementary multiplication Phi described in Algorithm 9 uses SIMD in-
structions to improve the performance of each core and OpenMP to handle thread
parallelism between cores. This algorithm is well adapted to the SIMD program-
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ming model as the dependencies between the data are separated by a large number
of values. In Algorithm 9, we consider that we are working with double precision
floating point numbers, each of them using 64 bits. This explains why 8 values are
stored in each 512-bits SIMD vector. When using 32 bits reals, 16 values are stored
per vector. For complex numbers, 8 numbers are store in single precision and 4 in
double.

We take advantage of the SIMD capabilities of the Intel Xeon Phi coprocessor
by using the low level Knight’s Corner intrinsics set of instructions. The use of the
intrinsics allows to use the assembly SIMD instructions with C style functions.

Algorithm 9 Phi Kernel: Elementary multiplication Phi(A, U , V , N)
1: OpenMP parallel for
2: for i = 0 to N/2 do
3: Declare V1 and V2 two 512-bit vector registers.
4: Set all values of V1 with V (i)

5: Set all values of V2 with V (i+N/2)

6: for j = 0 to N/2 step 8 do
7: Declare a00, a01, a10 and a11 four 512-bit vector registers.
8: LOAD 8 values from A(i, j) in a00
9: LOAD 8 values from A(i, j +N/2) in a01

10: LOAD 8 values from A(i+N/2, j) in a10
11: LOAD 8 values from A(i+N/2, j +N/2) in a11
12: Declare b1, b2, b3 and b4 four 512-bit vector registers.
13: b1 ← ADD(a00, a01)
14: b2 ← ADD(a10, a11)
15: b3 ← SUB(a00, a01)
16: b4 ← SUB(a10, a11)
17: Declare U1 and U2 two 512-bit vector registers.
18: LOAD 8 values from U(j) in U1

19: LOAD 8 values from U(j +N/2) in U2

20: a00 ← MUL(U1, MUL(V1, ADD(b1, b2)))
21: a01 ← MUL(U1, MUL(V2, ADD(b3, b4)))
22: a10 ← MUL(U2, MUL(V1, SUB(b1, b2)))
23: a11 ← MUL(U2, MUL(V2, SUB(b3, b4)))
24: STORE 8 values from a00 at A(i, j)
25: STORE 8 values from a01 at A(i, j +N/2)

26: STORE 8 values from a10 at A(i+N/2, j)

27: STORE 8 values from a11 at A(i+N/2, j +N/2)

28: end for
29: end for
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3.5.2 Performance

We present the performance results of the RBT solver in MAGMA when used with
the Intel Xeon Phi coprocessor as an accelerator. The experiments were carried out
using the same multicore host as in Section 3.4.2 (two Intel Xeon X5680) but with
an Intel Xeon Phi coprocessor 7120 with 61 cores running at 1.238 GHz, with 16 GB
of memory. The cores have 30.5 MB of combined L2 cache memory. We mention
that each core can manage 4 threads by hyper threading. For the experiments, a
total of 240 threads is used.

For these experiments, we were able to perform tests on bigger matrices com-
pared to the GPU version. This is due to the larger size of the Intel Xeon Phi
memory.

In Figure 3.6, we notice that the Intel Xeon Phi version performs up to 65%
faster than the solver using partial pivoting without iterative refinement, and only
26% faster with iterative refinement (which is not yet optimized for Intel Xeon Phi).
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Figure 3.6: Performance of the RBT solver on Xeon Phi coprocessor.

In Figure 3.7, we observe that the randomization requires less than 3% of the
total time and even less than 1% for big matrices. We recall that the randomization
performed on the Intel Xeon Phi has been optimized using MIC SIMD instructions
and OpenMP.
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3.6 Conclusion of Chapter 3

In this chapter, we have presented two implementations of the RBT solver using
accelerators. One is based on GPU and the other an Intel Xeon Phi. Both methods
have been implemented for the MAGMA library and we have shown that they
significantly outperform the reference solver based on the LU factorization with
partial pivoting. Due to the optimized implementation of the randomization, the
overhead for randomizing the system is negligible compared to the computational
cost of the whole solver.

Ongoing work includes optimizing the iterative refinement on Intel Xeon Phi.
Also, we plan to adapt RBT to hybrid architectures to solve symmetric indefi-
nite systems, and to solve multiple small systems at the same time using batched
solvers [99].

In the next chapter, we present thread and data placement methods in order
to improve the performance of dense linear solvers when implemented on NUMA
architectures.
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4.1 Using NUMA architectures for dense linear systems

On modern parallel systems, the main memory bandwidth plays a crucial role in
high-performance computing (HPC) applications. On shared memory parallel com-
puters, a large number of processors work on a common, shared physical address
space. There are two types of shared memory systems that propose similar function-
alities to the programmer but have different performance in terms of main memory
access.

Unified Memory Access (UMA) systems consist of a single memory bank for
which the latency and bandwidth are the same for all threads, regardless of the
memory location. The downside of UMA systems is that, when many application
threads are trying to access the main memory simultaneously, bandwidth bottle-
necks can occur. To overcome this problem of scalability, architectures referred to
as ccNUMA (cache coherent Non Uniform Memory Access) are commonly used in
clusters of nodes. Recently, the ccNUMA has been adapted inside multicore nodes
(see, e.g., [100] and the references therein). On ccNUMA systems, the memory is
physically distributed but logically shared. The mechanism is transparent from the
programmer point of view, the required protocols being handled by the hardware
(e.g. HyperTransport for AMD and QuickPath for Intel). Each bank of memory is
associated with a set of cores and this association forms a NUMA node. Due to this
physical distribution, the performance of memory accesses varies depending on the
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mutual location of a given thread and the memory bank that the thread accesses.
Accessing the remote memory banks may become slow and, if a lot of threads are
used, this will affect the application scalability [101]. When using HPC applications
on ccNUMA systems, we face two main difficulties. The first one is the locality
problem. It happens when a thread located on a node accesses data stored in the
memory bank of another node. This kind of nonlocal transfer can hurt performance.
The second problem is contention, which occurs when two threads located on differ-
ent nodes access memory in another node, and thus, fight for memory bandwidth.
For each thread, the access to data should be restricted to its own node to avoid
these two problems. If no particular data placement is proposed, the default mem-
ory affinity policy of the operating system is used. In most Linux-type operating
systems, the default policy (called first touch) places the data in the memory node
that is local to the thread that is writing the data first. This ensures fast access for
the thread inside the node regardless of the other threads accessing the data [102].
In a multithreaded application, the fact that the master thread usually initializes
multiple shared data structure can exacerbate the problem (all these shared data
structures will be allocated in the same node as the master thread). This prob-
lem can be approached by using software tools, such as the libnuma library [103]
or the likwid software [104], that provide user interfaces to allocate memory into
the desired nodes [103] or by initializing the data by multiple (possibly all) threads.
The Servet Benchmark Suite [105] also provides an API to handle threads mappings
based on communication or memory performance. Even if data locality is respected,
the thread scheduling is important. If the scheduler ignores the locality information,
the effect of caches is reduced. Switches into uncached process contexts will cause
cache and TLB misses and cache line invalidations for the other processes [106].
The cost of thread scheduling can be reduced by moving thread management and
synchronization to the user level [107].

In this chapter, we study the effect of NUMA on the solution of dense general
linear systems. To solve square linear systems Ax = b, the method commonly used
is Gaussian Elimination with partial pivoting (GEPP) (see 1.3.3). Libraries, such
as LAPACK [68], provide a block algorithm version of GEPP where the factor-
ization is performed by iterating over blocks of columns (panels) (see 1.3.5). LA-
PACK has been redesigned to use heterogeneous systems of multi/manycore CPUs
and accelerators, such as GPUs. Examples of the redesign are PLASMA [79] and
MAGMA [85], which take advantage of current multicore and hybrid multicore/GPU
architectures [86]. In a classical LU factorization, the panel is first factored and
then the trailing submatrix is updated using level 3 BLAS routines for high per-
formance [108]. The update consisting of matrix-matrix products performed by the
GPU is very efficient, making the panel factorization the bottleneck of the perfor-
mance [82]. Indeed, due to its data access pattern the panel factorization is widely
affected by memory access performance. By reducing the time of the panel factor-
ization, we can improve the performance of the overall computation.

In the following we show how a proper placement of the threads and memory
on a NUMA architecture can improve the performance of the panel factorization
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and consequently accelerate the global LU factorization as it is implemented in the
MAGMA library for multicore/GPU systems. The chapter is organized as follows.
In Section 4.2, we describe the application context in which this work takes place.
Then in Section 4.3, we describe different strategies for thread pinning and data
placement on NUMA architectures. Section 4.4 presents the experimental setup
and performance results of LU factorization on a given platform using the differ-
ent placement strategies given in Section 4.3. Concluding remarks are given in
Section 4.5.

4.2 Application context

We consider here the hybrid LU factorization (right looking factorization [1, p. 85])
as implemented in the MAGMA library and detailed in Section 2.2.

In the remainder, we will consider two MAGMA implementations for the LU
factorization. These two versions differ mainly in the way the panel is factored.
In the first version, the panel is factored using GEPP (partial pivoting) while the
second version does not pivot since it also uses randomization as a preprocessing to
avoid pivoting [30]. We point out that in both MAGMA implementations the panel
is factorized as a BLAS 3 algorithm where we consider an inner panel (factored
using BLAS 2) inside the global panel. The size of this inner panel is set to 128

for the no pivoting version, and cannot be tuned for the partial pivoting when we
use an MKL [39] implementation. Note that larger size of the panel results in more
BLAS 3 operations, and thus, increasing the computation-to-memory access ratio
in the panel factorization.

Due to the search for the pivot and to the subsequent row interchange, GEPP
performs a lot of memory accesses, whereas they are minimal for the version without
pivoting. In the following we focus on the panel factorization, because its memory-
bound characteristics make it particularly dependent on NUMA.

4.3 Placement strategies

In this section we describe how threads may be bound to cores and how data may
be placed in memory, which may be achieved using the following tools.

• Before each execution the data are placed in the node using the mbind()
function from the libnuma [103] library.

• The threads may be pinned to the cores using the sched_setaffinity() Unix
function, the likwid [104] or numactl [103] tools.

• Before each execution, using the same tools, the data may be placed in the
nodes to which the threads are bound.

For the thread pinning, we consider the following strategies, which are illustrated
in Figure 4.1 by considering three nodes of six cores. For all the different strategies
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the data are interleaved over the memory banks of the NUMA nodes used (i.e., the
data are spread in a round-robin fashion in the memory pages across all the nodes).

1 2
3 4
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7 8
9 10

(a) Sequential pinning 1

5 9
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1 4
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(b) Sequential pinning 2

1 4 2 5 3

(c) Cyclic pinning

Figure 4.1: Examples of pinning methods

No pinning: The threads and data are assigned automatically by the system,
without manual intervention. We refer to this strategy as noPin.

Sequential pinning 1: The number of threads assigned to a node corresponds to
its number of cores. When a given node is full while more threads need to be
placed, the next thread will be “spilled” to the next node. In a sense, nodes
are provided one by one for the thread placement purposes. An example is
given in Figure 4.1a, where we use 10 threads. Note that the thread placement
within a node is not fixed explicitly and may be governed by the application.
For example, the MKL Intel mathematical library may assign threads to cores
dynamically. We refer to this strategy as seqPin1.

Sequential pinning 2: To avoid the problem of load balancing among the nodes
when the number of threads is not a multiple of the number of cores per
node, we allow the application to place threads evenly on several nodes at
once. Specifically, these “occupied” nodes are taken as the first nodes that can
accommodate all the threads. In Figure 4.1b, the application will place them
on the first two nodes, such that each node may have a free core. We refer to
this strategy as seqPin2.

Cyclic pinning: The threads are cyclically placed onto all the nodes allotted to
the application in a round-robin manner. For example in Figure 4.1c, we
use five threads in three nodes. Note that, although this approach is a rather
load-balanced (the number of threads in each node may differ by one at most),
it is not compact in terms of processing power. On the other hand, as will
be shown later, its memory availability may be attractive. We refer to this
strategy as cycPin.

Since the data are interleaved only among the nodes that are effectively used,
sequential pinnings result in mostly local memory accesses. The memory accesses
may incur extra latency for the cyclic pinning. However, for the cyclic pinning, there
will be less competition among threads inside a node to access L3 cache. Moreover,
the global amount of L3 cache available for all the threads will be larger for cycPin
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because this strategy uses more nodes. Note that if the number of threads used
is the same as the number of cores available, the sequential and the cyclic pinning
are equivalent in terms of data locality. In [109] and [110], we have investigated
more sophisticated strategies for memory binding to NUMA nodes, which improved
performance on sparse matrix computations with irregular matrix and vector access
patterns. For the dense matrices and dynamic thread placement within a node,
interleaving data in memory is sufficient mainly due to the dynamic nature of the
thread placement by MKL.

4.4 Application to LU factorization

4.4.1 Experimental framework

Our experiments have been carried out using a MagnyCours-48 system. This ma-
chine is composed of four AMD Opteron 6172 processors running at 2.1GHz with
twelve cores each (48 cores total) and 128GB of memory. Each processor contains
two NUMA nodes with 6MB of L3 cache per node. Thus, we have 8 NUMA nodes
of 6 CPU cores and 16 GB of main memory each. The GPU device is an NVIDIA
Fermi Tesla S2050 with 448 CUDA cores running at 1.15 GHz and 2687 MB memory.

For a thread accessing memory in the same NUMA node the relative distance
to the memory (latency) is taken as 10 in the ACPI specification [111]. The relative
distances between the nodes are reproduced in Table 4.1 as obtained by the numactl
tool [103]. For example, if node 0 accesses data stored in node 3, the cost of this
access is 2.2 times larger than if the data were stored in node 0. The 8 nodes are
linked by HyperTransport links. When a thread pinned on a core accesses data, if
the data is located inside the same NUMA node as the core, the relative cost to
access the memory will be 10. If the data is located in the memory from a node
directly connected by an HyperTransport link the cost will be 16. If the memory
is in a node that is not directly linked to the current then the cost will be 22 (the
data have to pass through 2 links).

Table 4.1: Node distances with respect to NUMA accesses.

node 0 1 2 3 4 5 6 7
0: 10 16 16 22 16 22 16 22
1: 16 10 22 16 22 16 22 16
2: 16 22 10 16 16 22 16 22
3: 22 16 16 10 22 16 22 16
4: 16 22 16 22 10 16 16 22
5: 22 16 22 16 16 10 22 16
6: 16 22 16 22 16 22 10 16
7: 22 16 22 16 22 16 16 10

Figure 4.2 gives a representation of the architecture used in our experiments. The
thick arrows represent the memory access inside a node (relative distance normalized
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as 10) and the thin arrows (e.g. between node 0 and node 1) represent memory access
to the node connected by this arrow (relative distance 16). When there is no arrow
between two nodes (e.g. between node 0 and node 3), the cost to access the memory
in this node will be 22.

4 5 6 7

0 1 2 3

Figure 4.2: Architecture representation (8 nodes, 6 cores each)

We suppose now that the threads are scattered on all the nodes and that data
are interleaved on the nodes. Then, assuming that each thread performs the same
number of memory accesses on each node, we can compute the average memory
access cost as (10 + 16 + 16 + 22 + 16 + 22 + 16 + 22)/8 = 17.5 in each of the eight
nodes since all the rows in Table 4.1 have the same entries but in a different order.
Therefore, the average memory access cost is 1.75 times larger than in the case of
only local accesses.

4.4.2 Performance for the panel factorization

We test the performance of an LU panel factorization. This performance is expressed
in Gflops/s. We measure it by summing the total number of flops executed in
factoring successively each panel throughout the factorization and dividing it by the
time spent in all the panel factorizations. The algorithms that we consider in our
experiments are LU with partial pivoting and LU with no pivoting. The former
uses the LAPACK implementation of GEPP (routine dgetrf) while the latter is
a panel factorization with no pivoting (used in e.g., [93]), both linked with the
multi-threaded BLAS from MKL.

In Figures 4.3 to 4.5, we compare the performance resulting from the differ-
ent strategies of thread placements. The sequential pinning shown in the legend
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corresponds to the seqPin2 strategy as described in Section 4.3, which provides a
better load balance than seqPin1. For each type of placement, we measure the
performance using a number of threads varying from 1 to 48.
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Figure 4.3: Performance of thread pinning strategies for LU panel factorization with
pivoting (top) and no pivoting (bottom). Panel sizes: 5120× 256.
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Figure 4.4: Performance of thread pinning strategies for LU panel factorization with
pivoting (top) and no pivoting (bottom). Panel sizes: 10240× 320.
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Figure 4.5: Performance of thread pinning strategies for LU panel factorization with
pivoting (top) and no pivoting (bottom). Panel sizes: 15360× 512.

When comparing the different types of pinning in Figures 4.3 to 4.5, we are
interested in the peak performance obtained by each strategy and by the number of
threads that enables us to obtain this rate. Indeed, since the scalability of the panel
factorization is limited to a certain number of threads, it is not always recommended
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to use all the CPU cores available. In particular, using the 48 cores available in
our experiments is never the most efficient solution. A first comment is that, as
expected, the pivoting LU algorithms outperforms the nonpivoting one with at least
a factor 4. This is consistent with the results obtained and analyzed in [93, 25] and
confirms that the communication overhead due to pivoting is critical for factorizing
the panel [30, 26]. We observe that the sequential and cyclic pinnings give better
results than noPin, and they are similar for larger numbers of threads (in the range
40-48).

For the partial pivoting case (dgetrf), the sequential pinning applied to a prob-
lem of size 10240 gives better performance than the cyclic pinnings for small thread
counts due to a better data locality (i.e., because fewer NUMA nodes are involved).
In our experiments, the best performance for size 10240 is obtained using 10 threads
and consequently two nodes. We use nodes 0 and 1 which gives, using Table 4.1,
an average memory access cost of 13 ((10 + 16)/2). The cyclic pinning gives better
performance for the problem of size 15360, since there are more BLAS 3 operations
that take better advantage of the cache and require fewer main memory accesses,
possibly in remote NUMA nodes. We observe that for the sequential pinning, we
have a performance drop for some number of threads, due to the addition of a new
NUMA domain, namely when the number of threads is a multiple of 6, reducing
then the data locality.

For the no pivoting case (dgetrf_nopiv), cycPin provides the best performance
for all problem sizes. As expected, dgetrf_nopiv is less affected by data locality
than dgetrf since there is no search for pivots, and thus, fewer memory access.
Thereby, cache is used more efficiently, which is favored by the cycPin strategy
that may make more cache available to threads due to the use of more nodes than
for seqPin2 in general. For example, if only one node is used, the amount of L3
cache available for the threads will be, on our architecture, 6MB and all the threads
on the node will have to share it. If all of the 8 nodes are used then the memory
accesses will be more expensive but the cache memory available will be 8× 6 = 48

MB. Moreover, on this system the latency of the L3 cache is 20 ns, whereas the
latency of the memory (inside a same node) is 60 ns. We also mention that these
behaviors (ratio of cache misses, number of memory accesses) have been confirmed
by measurements using the PAPI [112] library.

4.4.3 Performance for the hybrid code

Let us evaluate the impact of the thread/data placement on a hybrid CPU/GPU
LU factorization. In this case, as explained in Section 4.2, the panel is factored by
the CPU while the updates are performed by the GPU. In these experiments, the
CPU uses a fixed number of threads and the matrix size varies.
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Figure 4.6: Performance for hybrid LU factorization with partial pivoting and no
pivoting (12 threads).

Figure 4.6 compares the performance of the seqPin2 and cycPin strategies with
the noPin for the partial pivoting and no pivoting factorizations. The GPU was used
along with the 12 CPU threads. For sake of comparison, we included in Figure 4.6
the performance for a CPU-only LU factorization using 48 threads (MKL imple-
mentation), the data being interleaved on all the nodes using the numactl tool.
The NoPin curves represent the performance of the MAGMA codes without any
modification. The SeqPin curves represent the performance of the MAGMA codes
modified to have the threads pinned via the seqPin2 strategy and the data placed
only on the nodes that are actually used. The CycPin curves represent the perfor-
mance with the threads pinned with the cycPin strategy with the data interleaved
on the nodes.

We observe that the pinning methods outperform the noPin version and that
for partial and no pivoting, the seqPin2 strategy gives the best performance. Note
that the difference of performance between the pivoting and no pivoting routines is
smaller that for the panel factorization as depicted in Figure 4.3. Indeed, the update
phase represents most of the computation and is performed by the GPU and the cost
of the panel factorization has less impact on the global performance [93, 113]. Note
also that asymptotically, when the matrix size increases and as mentioned in [30], the
performance of the pivoting and no pivoting LU should be close because communi-
cation involved in pivoting becomes negligible compared to the O(n3) computations
for large dimensions.
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4.5 Conclusion of Chapter 4

In this chapter, we studied different methods (referred to as sequential and cyclic
pinning) to place threads and data for an LU factorization algorithm executed on
a NUMA architecture using GPU accelerator. The two methods of placement im-
prove the performance up to a factor 2 when compared with the default memory
and thread placement. The choice of the most efficient method depends on the data
pattern access of the algorithm and on the ability of the implementation to take
advantage of cache memory. This choice is also influenced by the size of the prob-
lem. Subsequently to this work, we will develop a heuristic to choose automatically
the best placement strategy. This technique has been implemented as an external
function that can be easily applied to other algorithms with panel blocking.

A future work would be to implement this method in existing schedulers like
QUARK [80] for the PLASMA [79] library, in order to allow an optimal placement
of the data tiles on the different NUMA nodes. Part of the work described in this
chapter has been published in [114].



Conclusion and future work

In the domain of high performance computing, parallel architectures provide more
and more computational power, but are also more complex to program efficiently.
Specifically, accelerators have become a predominant solution for current and future
supercomputers due to the high computational power provided for a low energy
cost. In this PhD thesis, we focused on designing efficient algorithms and software
to solve dense linear systems on hybrid architectures. To reach these goals, we
have proposed possible solutions to improve the performance of hybrid dense linear
solvers using the LU factorization by choosing different strategies of pivoting, or us-
ing a randomization approach, and improving data and thread locality for NUMA
architectures.

We proposed a comparison of the performance and numerical behavior of dif-
ferent algorithms for the LU factorization on hybrid architectures using GPUs as
accelerators. We implemented a hybrid LU factorization using a communication-
avoiding strategy of pivoting (H-CALU) with one GPU, and optimized the factor-
ization of the panel. We also proposed a hybrid LU factorization with no pivoting
using multiple GPUs, that could be used as part of a randomized solver and can be
considered as an upper bound for performance. The H-CALU factorization outper-
forms the LU factorization using the partial pivoting included in MAGMA.

We also studied solvers based on Random Butterfly Transformations (RBT) as
a preconditioning technique for solving dense linear systems, allowing to use an LU
factorization with no pivoting, while remaining numerically stable in practice. We
provide an RBT based solver for architectures using a GPU as accelerator and one
using an Intel Xeon Phi coprocessor. These solvers are integrated in the MAGMA
library for CUDA and Intel Xeon Phi. The optimized implementations of the ac-
celerator kernels allow us to minimize the computational cost generated of the ran-
domization and the resulting solvers significantly outperform the LU based solvers
on partial pivoting.

Finally we proposed different methods for data and threads placement when per-
forming an LU factorization on hybrid NUMA architectures using GPU. Due to the
“memory bound” nature of the panel factorization on the CPUs, memory accesses
on multiple NUMA nodes can greatly impact the performance. We then proposed
two methods, the first one, called sequential pinning, which consists in pinning the
threads on the minimum number of NUMA nodes possible while interleaving the
data only between these nodes. This minimize the number of memory accesses in
other NUMA nodes. The second one, called cyclic pinning, which consists in pinning
the threads in the maximum number of nodes, interleaving the data between all the
nodes used. With this method, we minimize the number of threads per multicore
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processor, thus maximizing the availability of the shared last level cache memory
for each thread. When used on the LU factorization, both of these methods outper-
form the standard first touch policy of data placement. The choice of the method
depends on different factors which includes: the algorithm, the data pattern access
and the size of the problem. These methods can be generalized and applied to other
algorithms.

Perspectives

Future work includes implementing the H-CALU factorization for multiple GPUs in
order to have scalable panel factorization and then to obtain good performance for
large systems.

For the solvers based on the RBT randomization, ongoing works include apply-
ing RBT for hybrid architectures with accelerators to dense symmetric indefinite
systems. Also we are developing an RBT solver for batched general dense linear
systems on GPU. This can enable us to solve multiple small linear systems simul-
taneously on GPU. Our RBT solver for Intel Xeon Phi coprocessor also still needs
an optimized version of the iterative refinement routine.

Concerning our work on data and thread placement for NUMA architectures, a
future work could include the development of a heuristic to determine what would
be the best pinning solution for a given task. Also we would like to implement our
pinning solutions in schedulers such as QUARK for the PLASMA library to improve
the NUMA awareness of the multicore solvers.
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