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Chapter 1

Introduction

Logic and Proofs in Computer Science

Logic, the language and art of formal reasoning, is very useful in both Computer Science and
Mathematics. Both require correct, unambiguous argumentation to support claims; the cen-
tral concept of theorem precisely designates a claim backed by such an irrefutable argument,
called a proof. This focus on formal proofs is quite characteristic of Mathematics — a notable
exception is the project of Leibniz to design a “calculus ratiocinator” that would make formal,
unambiguous reasoning the norm. However, proofs have a major drawback: it is in general
very difficult to find a proof to support a given claim. Human experts (usually called “mathe-
maticians” or “logicians”) are undoubtedly the best at finding proofs; even more so when the
problem is about finding elegant proofs. On the other hand, many theorems are truly boring.
For instance, theorems generated to ensure that software abides by some specification are nei-
ther elegant nor fun to prove. Programs able to discharge automatically those proof obligations
are therefore quite useful in practice, even though they probably will not be able to prove hard
theorems (e.g., the Goldbach’s conjecture) in the foreseeable future. The study of programs that
(try to) prove theorems is automated theorem proving.

From Resolution to Superposition

Automated theorem proving has been an active field of research ever since the 1960s. Within
this discipline, first-order logic plays an important rôle, as it occupies a sweet spot in the trade-
off between having nice computational properties — as in the case of propositional logic —,
and featuring a high level of expressiveness — the climax being arguably reached by the higher-
order, dependently typed logics usually found in proof assistants such as Coq [CDT]. Focusing
on first-order logic, we can admire a quite diversified ecosystem of calculi; among them, Res-
olution [Rob65] and its offspring, Superposition [BG90, NR99] — which adds good reasoning
about equality over uninterpreted functions —, have benefited from decades of theoretical im-
provements and implementation efforts in various languages. Nowadays, Superposition-based
theorem provers [RV01b, Sch02, WSH+07] are very competitive in the first-order case.

Superposition is not enough

Even then, mere Superposition falls short for many applications: some may require some arith-
metic reasoning, some may be heavy with specific algebraic theories, some may need induc-
tive reasoning to reason on inductive structures — in practice, those abound in programming,
Mathematics, etc. Extending Superposition has been an active research domain, going back
to handling the theory of Associative Commutative symbols — we might say it culminated
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with the proof of the Robbins conjecture by the automated theorem prover EQP [McC97]. Re-
cently, an extension called AVATAR [Vor14] proposes to interface a SAT-solver within Superposi-
tion, so as to delegate propositional reasoning to it. Another extension, Hierarchic Superposi-
tion [BGW94, BW13], adds a background theory solver — for instance a linear arithmetic solver
— to Superposition, in order to reason modulo that particular theory.

In this thesis, we aimed at developing new extensions to Superposition. Our claim is that
Superposition lends itself very well to being grafted additional inference rules and reasoning
mechanisms, mostly remaining in a clausal saturation framework. Saturation, that Superpo-
sition shares with its ancestor, Resolution, possess many interesting properties for reasoning
at the first-order level (as opposed to boolean-level reasoning, found in Hierarchic Superposi-
tion): when a clause is deduced, it can be used several times, making proofs DAGs by sharing
sub-proofs; in addition, using free variables (implicitly quantified at the clause level) leverages
unification to efficiently find relevant instances of terms. Developing extensions as deductive
inferences on first-order clauses allow us to deduce new quantified truths even in the presence
of theories, or in a more powerful logic (inductive logic).

The importance of Implementation

Automated theorem proving is theoretically solved: the space of proofs is recursively enu-
merable, so a program that enumerates the possible proofs and checks whether they are a
proof of F is a valid procedure to try to prove F . This method is critically inefficient, for sev-
eral reasons: (i) it enumerates all the uninteresting theorems, for instance every instance of
(A∧ A∧ . . .∧ A)︸ ︷︷ ︸

m times

⇒ (A∨ A∨ . . .∨ A)︸ ︷︷ ︸
n times

for (m,n) ∈ N+×N; (ii) it does not use the goal to guide its

search. In practice, decades of research have been dedicated to studying algorithms that be-
have less stupidly on actual theorems. This makes automated theorem proving both an experi-
mental and a theoretical domain. Our work is oriented towards prototyping and experimenta-
tion; each extension we built has its own implementation in Zipperposition, a Superposition-
based theorem prover developed for this very purpose. A chapter of the thesis is dedicated
to presenting Zipperposition, its implementation, as well as a foundational logic library called
Logtk.

Organization of this Thesis

Our main contributions, in addition to the pure implementation work, are threefold; conse-
quently, they are detailed in three separate chapters (Chapters 4, 5, 6). The organization of this
thesis is:

• In Chapter 2, preliminary mathematical and logic notions are defined, and their nota-
tions, introduced. The Superposition and AVATAR calculi are also presented. After this
chapter, the reader should have a clear idea of the notions required to understand the
next chapters.

• Chapter 3 focuses on the implementation part of the three years we worked on this the-
sis. It starts by presenting Logtk, a general-purpose OCaml library for representing types,
terms, formulas, etc. — notions mathematically defined in Chapter 2 — in addition to a
collection of classic algorithms such as unification, CNF transformation, or term index-
ing. Then, Zipperposition, a theorem prover we built upon Logtk, is introduced. This
chapter is not a lecture in the implementation of automated theorem provers; it only
underlines some issues pertaining to writing programs that search for proofs.

• In Chapter 4, a Superposition-based calculus for integer linear arithmetic (also called
Presburger arithmetic), inspired by the work of Waldmann on combining Superposition
with rational arithmetic [Wal01]. Linear Integer Arithmetic is a widely studied and used
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theory in other areas of automated deduction, in particular SMT (Satisfiability Modulo
Theory).
Linear arithmetic problems are often encountered in automated proving, whether it be
directly for program verification, or asserting coherence of compiler optimizations. In-
deed, most programs use built-in arithmetic, and often can be formalized in linear arith-
metic. A compiler might, for instance, meet the following snippet of C code:

for (i=1; i≤10; i++) a[j+i]=a[j];

The compiler may be interested in loading the value of a[j] once before entering the
loop, rather than loading it repeatedly inside the loop, since memory access is usually
slow. However, to ensure this optimization is safe, the compiler must assert that the
value of a[j] does not change within the loop. One way to do so is to prove that there
is no index collision in the loop, which can be formalized by proving the arithmetic for-
mula ∀i ∈ Z. 1 ≤ i ≤ 10 ⇒ j 6= j + i . In addition to pure arithmetic reasoning or com-
putations (including program verification), other problems that have a discrete, totally
ordered structure, such as temporal logic, might be encoded into first-order logic with
arithmetic efficiently.

• In Chapter 5, we define an extension of Superposition+AVATAR that is able to reason by
structural induction on natural numbers, lists, binary trees, etc. Induction is attractive
because a local reasoning (prove that P (0) holds, and that if P is true on n, then P is
true on n + 1) allows to prove universal properties (∀n : N. P (n): the property P holds
on all natural numbers). Again, inductive reasoning is extremely prevalent in Computer
Science, logic, and programming; yet the two realms of first-order theorem provers and
inductive provers are still mostly separate. Whereas specialized inductive provers such
as Spike [BKR92, Str12] are very successful in the latter, they do not shine in the former.
We try here to bridge the gap from the opposite side.

• Chapter 6 is dedicated to a theory detection system that, given a signature-agnostic de-
scription of algebraic theories, detects their presence in sets of formulas. Its integration
in Zipperposition can also detect specific inductive theories (such as the Peano axioms
for natural numbers, when presented as an inductive type). An early version of this work
was published in [BC13].

Each chapter is relatively self-contained — common definitions and techniques from the state
of the art are first listed in Chapter 2. Readers interested only in one chapter might then read it
directly after Chapter 2.
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Chapter 2

Technical Preliminaries

We start with a gentle introduction to the mathematical concepts and basics of Logic that ev-
erything else in this thesis is built on top of. Everything takes place in a classical setting, mean-
ing the principle of excluded middle (for any proposition p, p ∨¬p holds) is available for the
theorem prover to use.

Remark 2.1 (Definitional Equality). In this thesis, a
def= b means that a is equal to b by definition

of a. We often define new variables this way.

2.1 Mathematical Concepts

We use some very classic mathematical notions; in particular, we assume the reader knows
about sets. a ∈ b means that a is a member of the set b. Set comprehension is noted {x ∈ a |
p(x)} — the set of all x that are members of a and satisfy property p —; the cardinal #s of a
finite set s is the number of elements it contains.

Definition 2.1 (Natural Numbers). The natural numbers are the positive integers {0,1,2, . . .}. The

set of all natural numbers is denoted N, and the set of strictly positive natural numbers is N+ def=
N\ {0}.

Definition 2.2 (Integers). The set of integers {. . . ,−1,0,1,2, . . .} is denoted Z.

Definition 2.3 (Multiset). A multiset is a collection of objects, like a set, but in which each item
can occur several times. More formally, a multiset is a function M from a set S (called the carrier
of M) to N; an element x ∈ S has multiplicity i iff M(x) = i . We say x belongs to M, or x ∈ M, iff

M(x) ≥ 1. The union operator ∪, defined by (M1 ∪M2) (x)
def= M1(x)+M2(x), is often useful. The

support of a multiset M is the subset of S that have a strictly positive multiplicity. We will only
consider finite multisets, that is, multisets whose support is a finite set. In the rest of this thesis,
we will generally use set-like notations for multisets.

Definition 2.4 (Order). An order is a binary relation ≤ such that the following axioms hold:
Reflexivity : ∀x. x ≤ x;
Transitivity : ∀x y z. x ≤ y ∧ y ≤ z ⇒ x ≤ z;
Antisymmetry : ∀x y. x ≤ y ∧ y ≤ x ⇒ x = y.

Definition 2.5 (Strict Order). A strict order is a binary relation < satisfying:
Irreflexivity : ∀x. x 6< x;
Transitivity : ∀x y z. x < y ∧ y < z ⇒ x < z.

Definition 2.6 (Well-founded Order). A well-founded order is a strict order < such that there is
no infinite sequence x1, x2, . . . such that ∀i . xi+1 < xi . We might speak of well-founded relations
when the relation admits no infinite sequence.

5



Definition 2.7 (Partial Order, Total Order). A strict order < is total (up to some equality relation
=) if, for any two objects x, y, either x = y, or x < y, or y < x; otherwise, the order is partial. A
non-strict order ≤ is total if, for any two objects x, y, either x ≤ y or y ≤ x; otherwise it is partial.

Remark 2.2 (Termination). Sometimes, if a transitive relation → (intuitively, a rewrite relation)
is well-founded, we might say it is terminating.

Definition 2.8 (Lexicographic Combination). The lexicographic combination of two strict order
<1,<2, also noted (<1,<2)lex, is a strict order defined on pairs by

(x1, x2)(<1,<2)lex(y1, y2) if

{
x1 <1 y1, or

x1 = y1 and x2 <2 y2

Definition 2.9 (Multiset Extension of an Order). The multiset extension of an order Â, noted ÂÂ,
is defined [DM79] by M ≺≺ N iff there exist multisets X ,Y such that:

• X ⊆ N ;
• X 6= ;;
• M = (N −X )∪Y ;
• X dominates Y , that is, ∀y ∈ Y . ∃x ∈ X . x Â y

where M −N is the multiset defined by (M −N )(x) = M(x)−N (x).

If Â is well-founded, so is ÂÂ; if Â is total, so is ÂÂ.

Definition 2.10 (Transitive Closure). The transitive closure of a binary relation →, noted →+, is
defined inductively by

• if u → v, then u →+ v;
• if u → v and v →+ w, then u →+ w.

Definition 2.11 (Transitive Reflexive Closure). The transitive reflexive closure of a binary rela-
tion →, noted →∗, is defined by

• for any u, u →∗ u;
• if u →+ v, then u →∗ v.

Definition 2.12 (Confluence). A relation → is confluent if, for any x, y, z such that x ←∗ y →∗ z,
there exists some w such that x →∗ w ←∗ z.

Definition 2.13 (Normal Form). An object x is a normal form for a relation → if there is no y
such that x → y. We say y is a normal form of x if x →∗ y and y is a normal form for →.

If → is confluent, there is at most one normal form for each object; if → is terminating, then
every object has a normal form.

Definition 2.14 (Directed Acyclic Graph (DAG)). A directed acyclic graph, or DAG, is a collection
of vertices V and edges E ⊆ V ×V (each edge connects two vertices), such that there is no cycle;
that is, there is no sequence of edges {(v1, v2), (v2, v3), . . . , (vn−1, vn)} such that vn = v1.

Definition 2.15 (Smaller Part of a Set). We denote N≺x the set of elements of N that are smaller
than x w.r.t. the well-founded order ≺.

We denote N¹x the set of elements of N that are smaller than x w.r.t. the order ¹ (including
x if x ∈ N ).

2.2 Boolean Logic

Boolean logic (or propositional logic) is the simplest form of logic widely used. It is simple
enough that even computers can easily deal with it1. It deals with statements, or formulas,
built on top of atomic propositions (atoms) that only carry a “true” or “false” value, without any
further structure.

1 Decision in propositional logic is NP-complete, but this is still much better than semi-decidability!
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Definition 2.16 (Boolean Atoms). A boolean atom (or boolean variable) a is a variable that can
take only two values (true or false). It represents a single atomic proposition that can be either
valid or invalid.

Definition 2.17 (Boolean Formula). A boolean formula is inductively defined as follows:

• 1 and 0 are boolean formulas (for truth and falseness respectively);
• Any boolean variable is a boolean formula
• if F is a boolean formula, then ¬F (its negation) is too;
• if F and G are boolean formulas, then F uG (conjunction), F _ G (implication), F tG

(disjunction), F ⊕G (exclusive disjunction) are boolean formulas.

Typically, u and t are associative, with u binding more strongly: aubtc is (aub)tc. The other
operators bind less strongly.

Definition 2.18 (Boolean Clause). A boolean clause is a finite disjunction of literals, where a
literal is either an atom b or its negation ¬b. All clauses are formulas, but not all formulas are
clauses.

Definition 2.19 (Boolean Valuation). A boolean valuation is a function v that maps every bool-
ean variable b in the current signature to v (b) ∈ {1,0}. It extends to boolean formulas and clauses
using the following truth table; given the valuation of F and G, in the two first columns, the other
columns define the valuation of ¬F and of F ◦G for the every operator ◦ ∈ {t,u,_,⊕}:

v (F ) v (G) v (¬F ) v (F tG) v (F uG) v (F _ G) v (F ⊕G)
0 0 1 0 0 1 0
0 1 1 1 0 1 1
1 0 0 1 0 0 1
1 1 0 1 1 1 0

Definition 2.20 (Comprehension-Style Formulas). We also use comprehension-style versions of
some of those operators that can be defined using t, u and ¬. Those operate on a finite set S of
boolean formulas, of cardinality n, and are themselves formulas.

•
⊔n

i=1 Fi is an n-ary disjunction, valued to 1 iff at least one Fi is.
⊔n

i=1 Fi expands to F1 t
F2 t . . .tFn ;

•
dn

i=1 Fi is an n-ary conjunction (valued to 1 iff all Fi are).
dn

i=1 Fi expands to F1uF2u. . .u
Fn ;

•
⊕n

i=1 Fi is an n-ary exclusive disjunction, valued to 1 iff exactly one Fi is.
⊕

i Fi expands to⊔
i

(
Fi u

d
j 6=i ¬F j

)
— note that

⊕n
i=1 Fi is not the same as F1 ⊕F2 ⊕ . . .⊕Fn .

Formulas defined by comprehension over a finite set, such as
⊔

F∈S F (disjunction of all formulas
in S), will also be used.

Definition 2.21 (SAT, SAT solver). The boolean satisfiability problem, usually called SAT, con-
sists in finding whether a given boolean formula F is satisfied by at least one valuation, and
returning such a valuation if it exists. SAT is well known to be NP-complete [Coo71]. A SAT-
solver is a program that inputs F (usually in the form of a set of boolean clauses) and outputs
one of {unsat,sat(v)} where F (v) = 1. It returns unsat only in case no valuation satisfies F .

Definition 2.22 (Quantified Boolean Formula (QBF)). A quantified boolean formula (or QBF)
is defined as Q1x1.Q2x2. . . . Qn xn . F where F is a boolean formula, {x1, . . . , xn} is the set of all
boolean variables that occur in F , and every quantifier Qi is either ∃ or ∀.
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Definition 2.23 (QBF Evaluation). A QBF can be evaluated into a boolean2 by the rewrite system
,→QBF defined as follows (terminating).

∃x. F ,→QBF 1[x ← F ]t0[x ← F ]

∀x. F ,→QBF 1[x ← F ]u0[x ← F ]

Evaluating QBFs is known to be PSPACE-complete. A QBF solver is a program that inputs a QBF
F and outputs 1 or 0.

It is clear that a QBF can be transformed into a regular boolean formula using the rewrite
system ,→QBF. Why bother with QBF then? The point of QBF is that it allows some boolean
formulas to be expressed in an exponentially smaller form, in the hope that QBF solvers will
work with such “compressed” formula more efficiently than by just unfolding them and calling
a SAT solver.

Example 2.1 (QBF). ∀a. ∃b. ∀c. ((a tb)u (c t¬b)) is a false QBF.

Boolean logic has been a popular research topic for decades, and many breakthroughs have
made modern SAT solvers very efficient on some kinds of “realistic” problems (excluding ran-
dom formulas and prime factorization — good news for cryptography). This motivates the use
of SAT solvers in other areas of logic; in particular, AVATAR (Section 2.5) successfully combines
a SAT solver with a first-order Superposition prover.

2.3 First-Order logic

The first-order logic is the target language for theorem provers we are interested in. It is already
expressive enough that provability is semi-decidable [Chu36], yet it remains somehow tractable
for automated tools. Compared to higher-order logic, a critical difference is the decidability of
unification. This alone makes resolution [Rob65] and Superposition possible and quite effi-
cient, whereas resolution for higher-order logic [BTPF08], for instance, needs inference steps
just to perform unification, since this operation is undecidable.

Every construct in first-order logic is built upon symbols and variables. They will be used in
types, terms, and formulas. We assume the existence of infinite countable sets of variables.

2.3.1 Types

As we chose, for several reasons, to use typed logic, it is only natural that we first define what
types are. The main purpose of types is, fundamentally, to restrict the set of terms a variable can
be replaced with: a boolean variable can only be instantiated with true, false, or other boolean
variables; a variable of type int will be instantiated only with integers or arithmetic expressions
of type int.

Definition 2.24 (Type Constructor). A type constructor is a symbol associated with a natural
number called its arity. The arity of a type constructor is the number of arguments it admits —
nullary means arity 0, unary means arity 1, binary means arity two, ternary means arity 3, and
n-ary means arity n.

Definition 2.25 (Type Signature). A type signature Στ is a set of type constructors such that no
symbol occurs in it twice.

2 In any other case, the formula is a regular non-quantified formula, that cannot contain any variable, since they
must be all quantified in a QBF. Consequently, the formula contains only connectives and {1,0}, which makes it easy
to evaluate.
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Definition 2.26 (Type and Atomic Type). Given a type signature Στ and an infinite countable
set of variables A , we define the set of atomic types ATypes(Στ) and the set of types Types(Στ)
inductively by:

• α ∈A implies α ∈ ATypes(Στ). α is called a type variable;
• c ∈Στ with arity n ∈N and τ1, . . . ,τn ∈ ATypes(Στ) imply c(τ1, . . . ,τn) ∈ ATypes(Στ). We say

we apply the type constructor c to the types τ1, . . . ,τn ;
• (τ1, . . . ,τn ,τ) ∈ ATypes(Στ) implies (τ1 × . . .×τn) → τ ∈ Types(Στ). We call (τ1 × . . .×τn) → τ

a function type, or arrow type;
• ATypes(Στ) ⊆ Types(Στ) (all atomic types are types);
• α ∈A and τ ∈ Types(Στ) imply Πα. τ ∈ Types(Στ). This is a polymorphic type.

Remark 2.3 (Currying). Some functional languages, and higher-order type theory, tend to use
only binary arrow types — all arrows have the form τ1 → τ2 — and binary applications. However,
in the first-order realm, there is no notion of partial application; that makes currying useless. In
chapter 6 we will introduce some curried higher-order terms.

Remark 2.4 (Notations, ι, o). In the rest of the thesis, we will typically denote type variables as
α,β,γ and types as τ, τ1, etc. We assume given the two nullary constructors ι (the default type of
terms) and o (the type of propositions). In first-order logic, o cannot appear as a type argument
of a function type; that is, (τ1 × . . .×τn) → τ where some τi = o is not a valid first-order type.

Definition 2.27 (Variables of a Type). The set of variables of a type τ, noted vars(τ), is defined
inductively as

vars(α) = {α} if α ∈A

vars(c(τ1, . . . ,τn)) = ⋃n
i=1 vars(τi )

vars((τ1 × . . .×τn) → τ) = vars(τ)∪⋃n
i=1 vars(τi )

vars(Πα. τ) = vars(τ)∪ {α}

Definition 2.28 (Free Variables of a Type). The set of free variables of a type τ, noted freevars(τ),
is defined by induction on the structure of τ:

freevars(α) = {α} if α ∈A

freevars(c(τ1, . . . ,τn)) = ⋃n
i=1 freevars(τi )

freevars((τ1 × . . .×τn) → τ) = freevars(τ)∪⋃n
i=1 freevars(τi )

freevars(Πα. τ) = freevars(τ) \ {α}

Definition 2.29 (Closed Type). A type τ is closed if freevars(τ) = ;; it can still contain bound
variables.

Definition 2.30 (Ground Type). A type τ is ground iff vars(τ) = ;; it contains no free variables
nor quantified type variables. Note that a ground type is always closed.

Example 2.2 (Atomic, Closed and Ground Types). Πα. α× list(α) → list(α) is closed, but not
ground nor atomic. list(list(nat)) is closed, ground and atomic. ι→ o is closed and ground, but
not atomic.

Definition 2.31 (Type Substitution). A type substitution is a finite injective mapping {α1 7→ τ1,
. . . ,αn 7→ τn} from type variables to types. The set of variables mapped by σ is the domain of

σ, denoted dom(σ)
def= {α1, . . . ,αn}. A substitution σ can be applied to a type τ (denoted τσ) as

follows:

αiσ = τi if σ= {α1 7→ τ1, . . . ,αn 7→ τn}
βσ = β otherwise, if β 6∈ dom(σ)

c(τ1, . . . ,τn)σ = c(τ1σ, . . . ,τnσ)
((τ1 × . . .×τn) → τ)σ = (τ1σ× . . .×τnσ) → τσ

(Πα. τ)σ = Πβ.
((
τ
{
α 7→β

})
σ

)
where β is a fresh variable
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Remark 2.5 (α-equivalence). We define syntactic equality on terms, τ1 = τ2, modulo alpha-
equivalence. In other words, τ1 = τ2 iff there is a renaming of bound variables in τ1 that yields a
term syntactically identical to τ2.

2.3.2 Terms

Now that we have defined types, we can define terms. Terms represent objects of discourse;
first-order logic is all about expressing and proving properties of terms. We will use the built-in
types from Remark 2.4.

Definition 2.32 (Signature). Given a type signature Στ, a signature Σ is a finite set of symbols
along with closed types, with the following restrictions:

• types in Σ must have the form Πα1 . . .αm . (τ1 × . . .× τn) → τ where τ1, . . . ,τn are atomic
types distinct from o, and τ is an atomic type (possibly o, see Remark 2.4) — otherwise,
we would enter higher order logics. If m = 0 the symbol is monomorphic or simply-typed,
otherwise it is polymorphic; if n = 0 the symbol is a constant, if τ= o it is a predicate, and
otherwise it is a function;

• if ( f ,τ) ∈Σ, meaning that the symbol f has type τ, no other pair ( f ,τ′) can appear in Σ; in
other words, as a relation, Σ is functional.

The rôle of a signature is to define which symbols can be used to build terms, and what their type
is. This will be useful to define well-typed terms.

Definition 2.33 (Term). Given a signatureΣ and a countably infinite set of variables Xτ for each
type τ ∈ Types(Στ), the set of terms Terms(Σ) is defined inductively by:

• x ∈ Xτ implies x ∈ Terms(Σ). We will sometimes write xτ to indicate that x has type τ,
sometimes x : τ, and sometimes we will omit type annotations altogether;

• ( f ,τ) ∈Σ, (τ1, . . . ,τm) ∈ Types(Στ) and (t1, . . . , tn) ∈ Terms(Σ) imply
f〈τ1,...,τm〉(t1, . . . , tn) ∈ Terms(Σ). We add restrictions on types just below.

Definition 2.34 (Well-Typed Term). A term is well typed if it has some type according to the
following set of type rules, where Σ` t : τ is the judgement that t has type τ in the signature Σ:

x ∈Xτ

Σ` x : τ

( f ,Πα1 . . .αm . (τ1 × . . .×τn) → τ) ∈Σ τ′i ∈ Types(Στ) Σ` ti : τiσ

Σ` f〈τ′1,...,τ′m〉(t1, . . . , tn) : τσ

where σ
def= {

α1 7→ τ′1, . . . ,αm 7→ τ′m
}

Remark 2.6 (Notations). From now on, when we speak of terms, we assume they are well-typed.
We will use s, t ,u, v to denote (well-typed) terms, x, y, z to denote term variables, and f , g ,h, p, q,r
to denote symbols of Σ (where f , g ,h are function symbols and p, q,r predicates, with return type
o). Predefined terms include > : o and ⊥ : o (true and false propositions) — other connectives
will be defined in Section 2.3.3.

Example 2.3 (Polymorphic Lists). The following signature defines the type of polymorphic lists;
list(τ) is the type of lists whose elements have type τ. (::) and (@) are infix operators that denote
respectively list construction and list concatenation.

[ ] : Πα. list(α)
(::) : Πα. (α× list(α)) → list(α)

(@) : Πα. (list(α)× list(α)) → list(α)
rev : Πα. list(α) → list(α)

mem : Πα. (α× list(α)) → o


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Assuming Σ also contains a : ι, b : ι, f : ι→ ι, and the Leibniz equality ':Πα. α×α→ o (defined
below), Terms(Σ) contains, among others, the following well-typed terms:

x ι ::〈ι〉 ( f (a) ::〈ι〉 (b ::〈ι〉 [ ]〈ι〉)) : list(ι)
f ( f (a)) : ι

f (b) '〈ι〉 f (b) : o
mem〈β〉(yβ,rev〈β〉(yβ ::〈β〉 [ ]〈β〉)) : o

The first term denotes the list [x, f (a),b]. The last one is a predicates that asserts y is a member
of the list rev([y]) (the reverse of [y]).

In some cases, the signature contains only simply-typed symbols (with ground types); in
this case all terms are simply-typed, otherwise they are polymorphic. Some chapters of this
thesis will be restricted to simply-typed terms.

Definition 2.35 (Size of a Term). The size of a term size(t ) is a natural number recursively defined
as

size(x) = 1

size( f〈τ1,...,τm〉(t1, . . . , tn)) = 1+
n∑

i=1
size(ti )

Definition 2.36 (Free Variables of a Term). The set of free variables of a term t, noted freevars(t ),
is defined recursively as

freevars(x) = {x}

freevars( f〈τ1,...,τm〉(t1, . . . , tn)) =
m⋃

i=1
freevars(τi )∪

n⋃
j=1

freevars(t j )

Note that in general, freevars(t ) contains type variables, and term variables of various type.

Definition 2.37 (Subterm relation). If s and t are two terms, we say s is a subterm of t , or sE t , if
either s = t , or t is f〈τ1,...,τn〉(t1, . . . , tn) and sE ti for some i ∈ {1, . . . ,n}. We say s is a strict subterm
of t — noted s / t — if sE t and s 6= t .

Lemma 2.1 (Subterm as a Well Founded Order). The relation / is a well-founded partial order.

Proof. s / t clearly implies 0 ≤ size(s) < size(t ) (trivial induction on t ).

Definition 2.38 (Position). A position is either ε, or n ·p if p is a position and n ∈N+.

Definition 2.39 (Subterm at Position). Let s, t be terms and p be a position. Then s is the subterm
of t at position p, written s = t |p , in the two following cases:

• if p = ε, then s = t = t |ε;
• if p = i ·p ′ and t = f〈τ1,...,τm〉(t1, . . . , tn) with 1 ≤ i ≤ n, then s = ti |p ′ .

In both cases, we say p is a valid position in t .

Definition 2.40 (Replacement at Position). Let s, t be terms and p be a valid position in t — that
is, t |p is well defined. Then, we can replace t |p with s to obtain a new term, t [s]p , defined by

t [s]ε =s

t [s]i ·p = f〈τ1,...,τm〉(t1, . . . , ti−1, ti [s]p , ti+1, . . . , tn)

if 1 ≤ i ≤ n and t = (
f〈τ1,...,τm〉(t1, . . . , tn)

)
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Example 2.4 (Positions). Let Σ= {
f : ι→ ι, g : ι× ι→ ι, a : ι,b : ι

}
. Then,

f (g (a,b))|ε = f (g (a,b))

f (g (a,b))|1·ε = g (a,b)

f (g (a,b))|1·1·ε = a

f (g (a,b))|1·2·ε = b
m+n︷ ︸︸ ︷

f (. . . f (a) . . .)|1·...·1·︸︷︷︸
n

ε =
m︷ ︸︸ ︷

f (. . . f (a) . . .)

Definition 2.41 (Monotonicity). A relation R on terms is monotonic if for any terms s, t ,u and
position p valid in u„ sRt implies s [u]p Rt [u]p .

Definition 2.42 (Term Substitution). A term substitution is a finite injective mapping {x1 7→ t1

, . . . , xn 7→ tn}∪ {α1 7→ τ1, . . . , αm 7→ τm} from term variables to terms and from type variables to
types (it includes a type substitution, see Definition 2.31). The set of term variables mapped by

σ is the domain of σ, denoted dom(σ)
def= {x1, . . . , xn}. A substitution σ can be applied to a term t

(denoted tσ) as follows:

xiσ = ti if σ= {x1 7→ t1, . . . , xn 7→ tn}
yσ = y otherwise, if y 6∈ dom(σ)

f〈τ1,...,τm〉(t1, . . . , tn)σ = f〈τ1σ,...,τmσ〉(t1σ, . . . , tnσ)

Definition 2.43 (More General Substitution). A substitution σ is more general than another
substitution ρ, denoted σ≤ ρ, if there exists θ such that ∀x. xρ = (xσ)θ.

Definition 2.44 (Unifier). A unifier of two terms s and t is a substitution σ such that sσ = tσ.
If s and t have a unifier, they are unifiable. In general, the substitution also binds some type
variables (see next example).

Definition 2.45 (Most General Unifier (mgu)). A most general unifier (or mgu) of two terms s
and t is a unifier σ of s and t such that for any unifier ρ of s and t, σ≤ ρ. If s and t are unifiable,
then they have a unique most general unifier, denoted mgu (s, t ), up to renaming [Rob71, Smo89].

Example 2.5 (Mgu). A few examples to illustrate the concept of mgu, in the same signature as
Example 2.3:

mgu
(

f ( f (x ι, a),b), f (y ι,b)
)= {

y ι 7→ f (x ι, a)
}

mgu
(
[ ]〈α〉, x list(ι)

)
=

{
x list(ι) 7→ [ ]〈α〉,α 7→ ι

}
mgu

(
rev〈ι〉(x ι ::〈ι〉 (b ::〈ι〉 [ ]〈ι〉)),rev〈β〉(yβ ::〈β〉 z list(β))

)
=

{
x ι 7→ yβ, z list(β) 7→ (b ::〈ι〉 [ ]〈ι〉),β 7→ ι

}
but the pairs of terms

(
[ ]〈ι〉, xα ::〈α〉 [ ]〈α〉

)
, (a, f (b)), or (x ι, f (x ι)) are not unifiable. The last case is

usually is ruled out under the occur-check rule: never unify a variable x with a term containing
x as a strict subterm.

Definition 2.46 (Simplification Ordering). A simplification ordering is an ordering Â on terms
that has the properties

Well-Founded there is no infinite chain t1 Â t2 Â . . .;
Subterm Property if s / t , then s ≺ t ;
Monotonicity if ti ≺ t ′i , then f (t1, . . . , ti , . . . , tn) ≺ f (t1, . . . , t ′i , . . . , tn) for any symbol f ;
Stability under Substitution if s ≺ t , then for any substitution σ, sσ≺ tσ.
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Definition 2.47 (Recursive Path Ordering (RPO)). The Recursive Path Ordering, also called RPO,
is a term ordering ≺rpo parametrized by a precedence — a total order s1 < s2 < . . . < sn on the
symbols of Σ —, a precedence <τ on type constructors of Στ — similarly, a total order —, and a
status, either lexicographic or multiset, for each term symbol. By =ms we denote equality mod-
ulo permutation of arguments of function symbols that have a multiset status. It is defined as
follows:

• x ≺rpo t if x ∈ freevars(t ) and x 6= t , or

• s
def= f〈τs,1,...,τs,m〉(s1, . . . , sm′) ≺rpo t

def= g〈τt ,1,...,τt ,n〉(t1, . . . , tn′), and either:
– s ≺rpo t j for some j , or
– s =ms t j for some j , or
– f < g and si ≺rpo t for some i , or
– f = g (and m = n and m′ = n′) and (τs,1, . . . ,τs,m) ≺rpo,lex,τ (τt ,1, . . . ,τt ,m)
– f = g , f has multiset status, (τs,1, . . . ,τs,m) = (τt ,1, . . . ,τt ,m),

and {s1, . . . , sm′} ≺≺rpo {t1, . . . , tm′}, or
– f = g , f has lexicographic status, (τs,1, . . . ,τs,m) = (τt ,1, . . . ,τt ,m),

and (s1, . . . , sm′) ≺rpo, lex (t1, . . . , tm′).
where ≺rpo,τ is the ordering on types defined by

• α≺rpo,τ τ if α ∈ freevars(τ) and α 6= τ, or

• τ1
def= c1(τ1,1, . . . ,τ1,m) ≺rpo,τ τ2

def= c2(τ2,1, . . . ,τ2,n), and either:
– τ1 ≺rpo τ2, j for some j , or
– τ1 = τ2, j for some j , or
– c1 <τ c2 and τ1,i ≺rpo τ2 for some i , or
– c1 = c2 (and m = n) and (τ1,1, . . . ,τ1,m) ≺rpo,lex,τ (τ2,1, . . . ,τ2,m).

If all symbols have lexicographic status, then we speak of a Lexicographic Path Ordering, or LPO.
The ordering on types is, basically, similar to LPO. This definition is inspired by the typed version
of KBO from [Wan14].

Lemma 2.2 (RPO is a Simplification Ordering [NR99]). Any RPO is a simplification ordering. In
addition, LPO is a total order on ground terms. Usually those are proved on untyped terms but
the generalization to typed terms is straightforward.

There is another popular ordering in the literature on first-order terms, the Knuth-Bendix
Ordering (or KBO), but we do not define it because RPO is sufficient for our needs. The imple-
mentation can use both, however.

2.3.3 Formulas, Literals, and Clauses

Definition 2.48 (Leibniz Equality). Leibniz equality, denoted ': Πα. (α×α) → o, is a polymor-
phic equivalence (transitive, symmetric and reflexive) relation on terms satisfying the following
family of axiom parametrized by function symbol f : (τ1 × . . .×τn) → τ:

∀x1, y1 : τ1 . . . xn , yn : τn .

(
n∧

i=1
xi ' yi

)
⇒ f (x1, . . . , xn) ' f (y1, . . . , yn)

Remark 2.7 (Notions of Equality). Leibniz equality ' — also called equality on uninterpreted
terms — is not to be confused with the syntactic equality =. The latter is a meta-level notion,
whereas the former belongs to the logic language itself; the theorem prover will reason on equa-
tions defined using '.

Definition 2.49 (First-order Formula). IfΣ is a signature, the set of first-order formulas Forms(Σ)
is defined inductively by

Predicate if t : o is a well-typed term of Terms(Σ), then t ∈ Forms(Σ);
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Negation if F ∈ Forms(Σ), then (¬F ) ∈ Forms(Σ);
Disjunction if F,G ∈ Forms(Σ), then (F ∨G) ∈ Forms(Σ);
Conjunction if F,G ∈ Forms(Σ), then (F ∧G) ∈ Forms(Σ);
Universal Quantification if F ∈ Forms(Σ) and x ∈Xτ, then (∀x : τ. F ) ∈ Forms(Σ);
Existential Quantification if F ∈ Forms(Σ) and x ∈Xτ, then ∃x : τ. F ∈ Forms(Σ).

In general, we will omit types in quantifiers and in some terms when they are easy to infer from
context. Equations u '〈τ〉 v belong to the predicate case; we will shorten ¬(u ' v) into u 6' v, and
u '̇ v will mean either u ' v or u 6' v.

Remark 2.8 (Other Formulas). Some additional connective are often useful and can be defined
from the primitive ones:

Implication if F,G ∈ Forms(Σ), then (F ⇒G)
def= ((¬F )∨G) ∈ Forms(Σ);

Equivalence if F,G ∈ Forms(Σ), then (F ⇐⇒G)
def= ((F ⇒G)∧ (G ⇒ F )) ∈ Forms(Σ);

Exclusive Disjunction if F,G ∈ Forms(Σ), then (F ⊕G)
def= ((F ∧¬G)∨ (G ∧¬F )) ∈ Forms(Σ).

Example 2.6 (Socrates). At this point, we are ready to rephrase a piece of secular wisdom: the
classic syllogism “if Socrates is a man, and all men are mortal, then Socrates is mortal”, as a
first-order formula:

[man(Socrates)∧ (∀x : ι. man(x) ⇒ mortal(x))] ⇒ mortal(Socrates)

using the signature Σ= {Socrates : ι,man : ι→ o,mortal : ι→ o}.

Definition 2.50 (Literal). A literal is either an atomic formula (a predicate) or the negation of an
atomic formula. In particular, equations a ' b and inequations a 6' b are literals. It is sometimes
simpler to consider that all literals are (in-)equations, predicates (of the form p(t1, . . . , tn)) being
encoded as o-typed equations with > : o (e.g., p(t1, . . . , tn) becomes p(t1, . . . , tn) '>).

Definition 2.51 (Clause). A clause is a disjunction of literals
∨n

i=1 li . The empty clause ⊥ is the
empty disjunction, and as such it is always false. A formula of the form

∧
i Ci where each Ci is a

clause is in conjunctive normal form, or CNF. If C is a clause with freevars(C ) = {x1, . . . , xn}, we
write ∀C for the closed formula ∀x1 . . . xn . C .

Definition 2.52 (Skolemization). A formula F
def= ∃x : τ. G[x] with freevars(F ) = {y1 : τ1, . . . , yn :

τn} can be skolemized into G
{

x 7→ f (y1, . . . , yn)
}
, where f : (τ1 × . . .×τn) → τ is a fresh Skolem

symbol that acts as a witness for the existence of a x : τ such that G holds. It requires the axiom
of choice.

Definition 2.53 (CNF Procedure). There exist some procedures that transform a formula F into
an equi-satisfiable set of clauses (see for instance [NW01]). We will denote cnf(F ) such a set of
clauses obtained from F . Skolemization is one of the steps required for computing cnf(F ), and
the reason why F ⇐⇒ cnf(F ) is false in general.

Definition 2.54 (Ordering on Literals). We assume Â is a simplification ordering on terms (Def-
inition 2.46) in which > is minimal, and define an ordering Âlit on literals as follows. Let Me (·)
be a function that maps a literal l to a multiset of terms, defined by

Me (l )
def=

{
{s, t } if l = (s ' t )

{s, s, t , t } if l = (s 6' t )

Then, we define the order: l1 Âlit l2 iff Me (l1) ÂÂMe (l2). The point of s 6' t being larger than s ' t
in the ordering is that Superposition will tend to eliminate negative literals (inequations) first,
keeping equations as rewrite rules.
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Definition 2.55 (Ordering on Clauses). In the same vein, we define Âc on clauses by C Âc D iff
C ÂÂlit D, reducing clauses to the multiset of their literals. This ordering is well founded, and total
on ground clauses if Â is total on ground terms.

Definition 2.56 (A-clause). An A-clause, or clause with assertions, is a pair C ← a1 u . . .u an

where C is a clause and a1 u . . .uan is a conjunction of boolean literals (the trail). Any clause C
can also be seen trivially as an A-clause C ← 1, and we will not emphasize the difference when
no ambiguity ensues.

Definition 2.57 (Grounding of a Set). Given a set of first-order clauses N , we call the grounding

of N the set Gnd(N )
def= {Cσ | C ∈ N , freevars(Cσ) =;}. Gnd(N ) contains all the ground instances

of the clauses of N .

In the rest of this thesis, F,G will be formulas, l will be a literal, C ,D,K will be clauses or
A-clauses, depending on the context.

2.3.4 Semantics: the Central Notion of Model

Logic is about building correct proofs of statements in a formal way, using precise syntactic
rules. Intuitively, correctness means that only “true” formulas are provable (in particular, the
falsity ⊥ should not be provable). A possible way to define what true means is the notion of
model: a model maps terms and formulas to other mathematical objects in which connectives
(negation, conjunction, etc.) have a precise meaning. First-order logic enjoys good properties
when it comes to models; in particular, a formula F is a theorem iff ¬F has no model. Each
model defines a specific way of interpreting what a formula means.

Definition 2.58 (Model). A model M is a tuple
(
(D)τ, ( f̂ ) f ∈Σ,>̂,⊥̂

)
where

• (D)τ is a type-indexed family of domains defined on ground atomic types. For each ground
atomic type τ ∈ Types(Στ), Dτ is a non-empty set of values;

• ( f̂ ) f ∈Σ is a symbol-indexed family of functions. For every f ∈ Σ with f : Πα1 . . .αm . (τ1 ×
. . .×τn) → τ, f̂ is a family of functions parametrized by m-tuples of types, such that for all

types τ′1, . . . ,τ′m , f̂〈τ′1,...,τ′m〉 is a function from Dτ1σ×. . .×Dτnσ into Dτσ whereσ
def= {

α1 7→ τ′1,

. . . ,αm 7→ τ′m
}
. Since the type of f is closed (by definition of a signature), σ is a grounding

type substitution, which guarantees that each Dτiσ and Dτσ are well-defined.
• Do = {>̂,⊥̂} such that >̂ and ⊥̂ are distinct.

Definition 2.59 (Interpretation of Terms). The interpretation of a ground term t : τ ∈ Terms(Σ)
in a model M and a valuation σ (that maps variables of type α to elements of Dα), noted �t�Mσ ,
is an element of Dτ, inductively defined by

�x�Mσ =σ(x)�
f〈τ1,...,τm〉(t1, . . . , tn)

�M
σ = f̂〈τ1,...,τm〉

(
�t1�Mσ , . . . ,�tn�M

)
Definition 2.60 (Interpretation of Formulas). The interpretation of a closed formula F in a
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model M and a valuation σ, noted �F �Mσ , is inductively defined by

�F �Mσ = �t�Mσ if F is t : o ∈ Terms(Σ)

�¬F �Mσ = >̂ if �F �Mσ = ⊥̂
= ⊥̂ if �F �Mσ = >̂

�F ∨G�Mσ = >̂ if �F �Mσ = >̂ or �G�Mσ = >̂
= ⊥̂ otherwise

�F ∧G�Mσ = >̂ if �F �Mσ = >̂ and �G�Mσ = >̂
= ⊥̂ otherwise

�∀x : τ. F �Mσ = >̂ if for every t ∈ Dτ,�F �M{x 7→t }∪σ = >̂
= ⊥̂ otherwise

�∃x : τ. F �Mσ = >̂ if there is some t ∈ Dτ such that �F �M{x 7→t }∪σ = >̂
= ⊥̂ otherwise

This definition maps trivially to literals and clauses; it suffices to remember that a literal is an

atomic formula or the negation thereof, and a clause C
def= ∨n

i=1 li is indeed the closed formula
∀x1 . . . xm .

∨n
i=1 li where {x1, . . . , xm} = freevars(C ).

We say the model M satisfies the formula F , noted M |= F , iff �F �M def= �F �M; = >̂. A clause is
satisfied iff at least one of its literals is — the empty clause can therefore never be satisfied.

A valid formula is one that is satisfied in every model.

Definition 2.61 (Equational Model). A model M for a signature containing Leibniz equality
' is an equational model iff M satisfies the Leibniz axioms. More precisely, M must satisfy
symmetry, reflexivity and transitivity for ' on every type; moreover, for every f ∈ Σ with f :
Πα1 . . .αm . (τ1 × . . .× τn) → τ, for every m−tuple of ground atomic types (τ′1, . . . ,τ′m) ∈ Σm

τ , let

σ
def= {

α1 7→ τ′1, . . . ,αm 7→ τ′m
}
; the following congruence axiom must be satisfied in M :

∀s1, t1 : τ1σ . . . sn , tn : τnσ.
[

(s1 ' t1 ∧ . . .∧ sn ' tn) ⇒ f〈τ′1,...,τ′m〉(s1, . . . , sn) ' f〈τ′1,...,τ′m〉(t1, . . . , tn)
]

Definition 2.62 (Herbrand Model). A Herbrand model is a model in which every domain Dτ is
{t ∈ Terms(Σ) | t : τ}, and such that f̂ (t1, . . . , tn) = f (t1, . . . , tn); that is, function symbols are inter-
preted by themselves.

An equational Herbrand model is a Herbrand model such that, for each type other than o,
'〈τ〉 is interpreted by a congruence — that is, a relation that is symmetric, transitive, reflexive and
monotonic. Herbrand models play an important rôle in proof of completeness for Superposition.

Definition 2.63 (Entailment). Given two formulas F and G, we say F entails G, or F `G, iff for
every model M , M |= F implies M |=G. The same notion extends to clauses.

Definition 2.64 (Provability). A proof, informally, is a syntactic object that justifies why some
formula F is a theorem. In this thesis, we do not care much about the proofs themselves — un-
like, say, in intuitionistic proof assistants in which the Curry-Howard correspondence turns every
proof into a function. Later, a proof of F will be a derivation of ⊥ from ¬F in some inference sys-
tem — Superposition, AVATAR, or our own extensions of Superposition in Chapter 4 (arithmetic)
and Chapter 5 (structural induction).

We only need a provability notion: a formula F is provable, or F is a theorem (noted thm(F ))
if there is such a proof of F .

Definition 2.65 (Proof System). A proof system is a procedure that inputs a formula F and either
diverges (never terminates) or returns one of {⊥,π} where π is a proof of F . A provability relation
can be naturally defined by thm(F ) holding for every F on which the procedure returns a proof.
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Definition 2.66 (Soundness). A provability relation thm(·) is sound if all provable formulas are
true in every model. In other words, given a formula F , if thm(F ) then M |= F must hold in every
model M . A proof system is sound iff every formula on which it successfully returns a proof is
true in every model.

Definition 2.67 (Completeness of a Proof System). A proof system is complete if every valid
formula F is provable in the system. In other words, it means that thm(F ) holds for every formula
F such that F is satisfied in every model.

Remark 2.9 (Semi-Completeness). What we call here completeness is sometimes called semi-
completeness; the proof system can fail to terminate in case the input formula is not a theo-
rem. There exists no truly complete proof systems for first-order logic, as implied by the Halting
problem. However, there are several sound and (semi-)complete proof system for first-order logic,
including Sequent Calculus, Natural Deduction, and Superposition — different techniques that
have different completeness proofs, going back to Gödel Completeness Theorem.

All the previous notions are standard ones that define models and how to interpret formulas
and clauses in them; now, we extend this usual notion of model into one that can interpret A-
clauses (Definition 2.56). A-clauses are a recent notion and their formal semantics is a small
contribution we make here.

Definition 2.68 (Combined Model). A combined model (shortened into model when there is no
ambiguity) is a pair (M ,v) where M is a model and v is a boolean valuation (See 2.19).

Definition 2.69 (Interpretation in a Combined Model). An A-clause C ← Γ has an interpretation
�C ← Γ�M ,v in the combined model (M ,v), defined by

�C ← Γ�M ,v = >̂ if v(b) = 0 for some b ∈ Γ
�C ← Γ�M ,v = �∀C

�M

; otherwise

We say C ← Γ is satisfied in (M ,v), noted (M ,v) |=C ← Γ, iff �C ← Γ�M ,v = >̂.

Definition 2.70 (Combined State). A combined state is a pair (N ,Fb) where N is a set of
clauses and Fb a boolean formula. A combined model (M ,v) satisfies a combined state (N ,Fb)
iff (M ,v) |=N and v(Fb) = 1.

As the next section explains, the inference process consists in successive transformations
from a combined state to another, where every step is satisfiability-preserving.

2.4 Superposition

Superposition is a refutationally complete deduction system for first-order equational logic —
if a set of clauses is unsatisfiable then Superposition will reach the empty clause after a finite,
but unbounded, amount of time. We briefly recap the standard inference system for Superpo-
sition, then expose a few simplification rules. See [Sch02] for a nice introduction to the em-
blematic open source prover E, its inference system and implementation; see [NR99] — from
which most definitions and theorems from this section come from — for more theoretical ex-
planations of Superposition, its principle, and completeness arguments.

Superposition only works on clauses, but any formula can be turned into an equi-satisfiable
CNF (see for instance [NW01] for an overview of algorithms that transform formulas into sets
of clauses). Equi-satisfiable means that the CNF is satisfiable (has a model) iff the formula is
satisfiable. All Superposition provers there start by reducing the negation of the conjecture into
CNF, then proceed to applying inference rules.
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2.4.1 Inference and Simplification Rules

In both this section and the following one, we present inference rule and simplification rule. Ba-
sically, an inference rule is a recipe for deducing, from clauses C1, . . . ,Cn , a new clause D such
that

∧n
i=1 Ci logically entails D . This way, starting from a set of axioms, a theorem prover can

deduce new clauses that follow from the axioms, in the hope that it eventually reaches ⊥ (or
stops because it deduced all possible conclusions without reaching a contradiction); incom-
pleteness of first-order logic implies that the prover might also loop forever in the case where
the axioms are not contradictory.

Definition 2.71 (Inference Rule). An inference rule is a relation between one or several clauses
C1, . . . ,Cn called the premises, and one or more clauses called the conclusion D. If n = 1 the rule
is unary, if n = 2 it is binary. Premises are assumed to share no variable (possibly by renaming
them). We will use the following notation throughout this thesis (possibly with an annotation
(A) to specify which inference rule is used):

C1 . . . Cn (A)
D

Example 2.7 (Resolution Rule). A very simple and central inference rule is resolution [Rob65].
We will not use it directly in this work, but Superposition is often considered a refinement of
Resolution, which played an important role in Automated Deduction.

Resolution (Res)

l ∨C ¬l ′∨C ′
(Res)

(C ∨C ′)σ

if σ= mgu
(
l , l ′

)

Remark 2.10 (Inference Rule with Multiple Conclusions). We slightly abuse the notation and
allow some inference rules to return several conclusions, as a compact way of writing several
rules that have the same set of premises.

Remark 2.11 (Boolean Inference Rule). By convention, we will use a dotted line for inference
rules that operate on propositional literals and clauses (as opposed to first-order clauses). For
instance, the propositional resolution rule, as used in some SAT solvers, is expressed as follows:

Boolean Resolution
a tC ¬a tD. . . . . . . . . . . . . . . . . .

C tD

Definition 2.72 (Simplification Rule). In some occasions, the conclusion D of an inference rule
with premises C1, . . . ,Cn is equivalent to C1 under assumption C2, . . . ,Cn , and D ≺c C1 for some
order ≺c on clauses. In such cases, it will sometimes be better (especially for performance reasons)
to replace C1 with D; we may then speak of a simplification rule, denoted:

C1 . . . Cn (A)
D

Example 2.8 (Deletion of Resolved Literals). The following rule is sound, but is also a simplifi-
cation:

18



Deletion of Resolved Literals
t 6' t ∨C

C

We are now ready to define the inference rules of the Superposition calculus.

2.4.2 The Calculus

The Superposition calculus, called Sup, is detailed in figure 2.1, in its first-order version (the
ground version basically replaces 6≺ with Â since the ordering is total on ground terms).

Superposition (Sup)

C ∨ s ' t D ∨u '̇ v
(C ∨D ∨u [t ]p '̇ v)σ

where sσ 6¹ tσ, (s ' t )σ 6¹Cσ, σ= mgu
(
u|p , s

)
, uσ 6≺ vσ,

(u '̇ v)σ 6≺ Dσ.

Equality Factoring (EqFact)

C ∨ s ' s′∨ t ' t ′
(C ∨ s′ 6' t ′∨ t ' t ′)σ

where σ= mgu(s, t ), tσ 6≺ t ′σ, sσ 6≺ s′σ, (s ' s′)σ 6≺Cσ.

Equality Resolution (EqRes)

C ∨ s 6' t
Cσ

where σ= mgu(s, t ), (s 6' t )σ 6≺Cσ

Figure 2.1: Inference rules of Superposition

Let us explain the inference rules and give some intuition.

Superposition uses a positive equation s ' t to rewrite, in an equation u '̇ v , the subterm of
u at position p, if s and u|p are unifiable. The reasoning is that, in any model of both
clauses, if the contexts C and D are false then necessarily s ' t and u '̇ v are both true;
u|pσ (syntactically equal to sσ) is equal to tσ and, by definition of ', u [tσ]p σ' uσ' vσ.
This rule can be seen as conditional rewriting: u|p is rewritten by s ' t assuming C and
D are both false.

Equality Resolution is simple: if C ∨ s 6' t is true, in any model either C is true or s 6' t is. If s
and t are unified by σ, then it is impossible that sσ 6' tσ be true in any model; therefore
Cσ must hold instead.

Equality Factoring starts from C ∨ s ' s′ ∨ t ' t ′. If σ = mgu(s, t ), then in any model of the
premise, there are three possibilities, reflected in the conclusion:

• Cσ holds;
• s′σ 6' t ′σ holds.
• s′σ ' t ′σ holds, in which case the literals sσ ' s′σ and tσ ' t ′σ are interpreted the

same, because tσ = sσ ' s′σ ' t ′σ by assumption. In this case, we can factor the
two literals: merge them into only one literal, for instance tσ' t ′σ;

The ordering conditions based on Â, the simplification term ordering, restrict the cases in
which rules can be applied. They matter both for the completeness proof — based on a well-
founded induction on Âc — and for the practical efficiency of the Superposition calculus —
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they significantly prune the search space by allowing inferences to operate only on maximal
literals and maximal terms.

Definition 2.73 (Saturation). Saturating a set of clauses N consists in repeating the following

operation until a fixpoint is reached: pick clauses C1, . . . ,Cn ∈ N such that
C1 . . . Cn (A)

D
for some rule (A) in Sup, and add D to N . If ⊥ is deduced, the unsatisfiability of N has been
proved and the procedure stops. This procedure can loop forever.

Theorem 2.1 (Superposition is Complete [NR99]). Superposition is complete for the first-order
logic with equality, that is, for every unsatisfiable formula F , there is a Superposition derivation
of ⊥ from cnf(F ) (see Definition 2.67). In addition, Superposition is sound.

Since Superposition is complete, proving a theorem F under assumption Γ (a set of axioms)
can be reduced to the following steps: (1) compute cnf((

∧
G∈ΓG)∧¬F ); (2) try to reach ⊥ by fair

saturation using Sup. Many theorem provers are based on this principle.

Remark 2.12 (Resolution). Although the inference rules presented in Figure 2.1 do not contain
Resolution, the rule is easy to simulate (assuming, again, that a predicate p is encoded as an
equation p '>)

C ∨p '> C ′∨p ′ 6' >
(Sup)(

C ∨C ′∨> 6'>)
σ

(EqRes)(
C ∨C ′)σ

Recall that > is the smallest term in Â, which makes p maximal in p '>. To keep proofs read-
able, we will keep the predicate notation and the resolution rule in derivation trees, even though
the actual proof uses Superposition and equality resolution rule in such cases.

To help the reader forge a bit of intuition of what a Superposition proof looks like, we
present a few examples.

Example 2.9 (Socrates Dies Again). First, a proof of our previous claim that Socrates is mortal
(Example 2.6), by mere Resolution. The reduction to CNF of the negation of the formula we had
yields the set of clauses

{man(Socrates),¬mortal(Socrates),¬man(x)∨mortal(x)}

From there we can derive false, proving that the syllogism’s negation is absurd, and therefore that
the syllogism is a theorem

¬man(x)∨mortal(x) man(Socrates)
(Sup)

mortal(Socrates) ¬mortal(Socrates)
(Sup)⊥

Example 2.10 (Teaching). Excerpt from the problem PUZ131_1.p from TPTP3:

Every student is enrolled in at least one course. Every professor teaches at least one
course. Every course has at least one student enrolled. Every course has at least one
professor teaching. The coordinator of a course teaches the course. If a student is en-
rolled in a course then the student is taught by every professor who teaches the course.
Michael is enrolled in CSC410. Victor is the coordinator of CSC410. Therefore, Michael
is taught by Victor.

3 A large archive of first-order problems.
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The problem formulation makes use of the types course, student and prof, with the signature
v : prof,m : student,c : course,
teaches : prof× course → o,coord. : course → prof,
tb. : student×prof → o,enr. : student× course → o


The predicate teaches(p,c) means that p teaches the course c; coord.(c) is the coordinator of c;
tb.(s, p) means the student s is taught by professor p; enr.(s,c) means that s is enrolled in course
c. We can deduce that Victor (v) teaches to Michael m. In general, we would add ¬teaches(v,m)
to the set of clauses, but here we can even deduce it as a fact:

coord.(c) ' v teaches(coord.(x), x)
teaches(v,c)

enr.(m,c) ¬enr.(y, x)∨¬teaches(z, x)∨ tb.(y, z)

¬teaches(z,c)∨ tb.(m, z)
tb.(m,v)

Example 2.11 (Group Theory). To illustrate equational reasoning a bit, we prove that the (un-
typed) axiomatization of groups

0+x ' x

(−x)+x ' 0

(x + y)+ z ' x + (y + z)

in the signature {+ : (ι× ι) → ι,− : ι→ ι,0 : ι} implies the theorem ∀x y. x + y ' 0 ⇒ y + x ' 0. The
proof (in which rule names are omitted for lack of space) starts by introducing a,b : ι after negat-
ing the goal, which becomes {a +b ' 0,b + a 6' 0}, then applying (Sup) many times, and finally
(EqRes) to conclude.

(−x)+x ' 0 (x + y)+ z ' x + (y + z)
0+ y '−(x)+ (x + y) 0+x ' x

y ' (−x)+ (x + y)

(x + y)+ z ' x + (y + z) a +b ' 0

0+x ' a + (b +x) 0+x ' x
x ' a + (b +x)

b +x ' (−a)+x (−x)+x ' 0
b +a ' 0 b +a 6' 0

⊥

2.4.3 Redundancy Criteria

The rules from Section 2.4.2 are sufficient in theory; in practice, for most problems the search
space is intractable. A lot of work (see again [NR99] for an overview) has been dedicated to
refining the Superposition calculus to make it more efficient. The notion of redundancy is the
workhorse of most of those refinements; intuitively, a clause is redundant if it brings no more
knowledge to the problem than smaller clauses — the larger clause can therefore be removed
without loss of information.

Definition 2.74 (Redundancy). Given a total order Âc on ground clauses, a ground clause C and
a set of ground clauses N , we say that C is redundant w.r.t. N iff N≺C `C . In other words, some
clauses in N , that are smaller than C , entail C . This general criterion is not computable, but
provides a common frame to several computable criteria (some examples are listed below).

A first-order clause C is redundant w.r.t. a set of clauses N iff for each substitution σ such
that Cσ is ground, Gnd(N )≺Cσ ` Cσ. In other words, C is redundant if all its ground instances
are.

An inference (A) that deduces D from premises C1, . . . ,Cn , where C1 is maximal, is redundant
w.r.t. a set of clauses N if D is redundant w.r.t. N≺C1 .
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If a clause C is redundant w.r.t. N , it is useless to add C to N , and it is of no use either
to perform any inference between C and N . If an inference is redundant w.r.t. N , it is not
necessary to perform it. In general, the problem of computing whether C is redundant w.r.t. N
is undecidable, but many sufficient criteria exist. A few useful simplification rules are presented
here, most of which are already detailed in [Sch02].

Remark 2.13 (Simplification Rule). The notion of simplification rule, as defined in Section 2.4.1,

becomes clear in the light of the notion of redundancy: if
C1 C2

D
with C2 ≺c C1, D ≺c C1 and

C2 ∧D `C1, there is no need to keep C1 once D is inferred, because C1 is redundant w.r.t. {C2,D}.
Therefore, we can remove C1 and add D in its place.

Definition 2.75 (Saturation up to Redundancy). A derivation is a possibly infinite sequence of
clause sets N1, N2, . . ., such that either

• Ni+1 = Ni ∪ {C } where C is deduced from N using a non-redundant inference;
• Ni+1 = Ni \ {C } where C ∈ Ni is redundant w.r.t. Ni \ {C }.

Given a clause C , if there is some k such that ∀i ≥ k. C ∈ Ni , we say C is persistent. The set of all

persistent clauses is N∞
def=⋃n

i=1

⋂
j>i N j .

Definition 2.76 (Fairness). A derivation N1, N2, . . . is fair w.r.t. some inference system I if, for
every inference with premises in N∞ and conclusion D, D is redundant in N∞. In other words,
it means that eventually, all non-redundant inferences have been performed — in practice, no
inference should be postponed forever.

Definition 2.77 (Completeness up to Redundancy). An inference system I is complete up to
redundancy iff, for any fair derivation N1, N2, . . ., either:

• N1 is satisfiable, and N∞ does not contain ⊥, or
• N1 is unsatisfiable, and there is some i ∈N such that ⊥∈ Ni .

Theorem 2.2 (Superposition is Complete up to Redundancy [NR99]). Superposition, as defined
in Figure 2.1, is complete up to redundancy.

Now, the notion of redundancy makes several interesting simplification rules usable. Some
of them4 are shown in Figure 2.2.

Subsumption and Non-Strict Redundancy

A classic rule of Resolution and Superposition, crucial in practice for saturation-based provers,
is subsumption. But first, we need to introduce a slightly more powerful notion of redundancy.

Definition 2.78 (Non-Strict Redundancy). A first-order clause C is non-strictly redundant w.r.t.
a set of clauses N iff, for each ground instance Cσ, Gnd(N )¹Cσ `Cσ. See again [NR99] for more
details.

The definitions of saturation and completeness up to non-strict redundancy are trivially
adaptable from Definitions 2.75 and 2.77 — note that a clause C can be removed from Ni if it is
non-strictly redundant w.r.t. Ni \ {C }, because if C ∈ Ni then C is always non-strictly redundant
w.r.t. Ni .

Theorem 2.3 (Superposition is Complete up to Non-Strict Redundancy [NR99]). Superposition,
as defined in Figure 2.1, is complete up to non-strict redundancy.

Definition 2.79 (Subsumption). Let C and D be first-order clauses. Then, C subsumes D iff
there is a substitution σ such that Cσ⊆ D (multiset inclusion); in this case we write C vσ D, or
C v D if the substitution is irrelevant. We might also write l1 vσ l2 for literals l1 and l2 if l1σ` l2

according to a given decidable criterion (syntactic equality modulo symmetry of ' here). If C
subsumes D, then D is non-strictly redundant w.r.t. any set that contains C .

4 (DER) is not exactly a simplification rule according to definition 2.72, but it plays the same role.
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Demodulation (Demod)

u '̇ v ∨C l ' r
u [rσ]p '̇ v ∨C

if lσ= u|p , lσÂ rσ, u 6Â v

Destructive Equality Resolution (DER)

x 6' t ∨C
(DER)

Cσ

x 6∈ freevars(t ), σ= {x 7→ t }

Deletion of Duplicate or Absurd Literals

s '̇ t ∨ s '̇ t ∨C
s '̇ t ∨C

and
s 6' s ∨C

C

Syntactic Tautology Deletion

s ' s ∨C
> and

s ' t ∨ s 6' t ∨C

>

Figure 2.2: Some Simplification Rules

The appeal of subsumption is that it is not directly linked to inference rules; wherever two
clauses come from, we can check whether one subsumes the other. When a Superposition
prover processes a clause C , it will first check whether C is subsumed by other known clauses
— in which case the clause is deleted immediately —; else, it will delete clauses subsumed by C
from its memory. Although the subsumption test is NP-complete, this single rule is very power-
ful and often reduces drastically the size of the search space; besides, there are some indexing
techniques that reduce the number of subsumption tests to perform. Figure 2.3 defines pow-
erful simplification rules that build upon the subsumption relation v; they are also used in the
E [Sch02] prover. In Section 4.3.2, we will extend the relation v on linear integer arithmetic
literals and clauses, but the inference rules of Figure 2.3 will still be valid — they only assume
that C vσ D implies Cσ` D .

Subsumption
C Cσ∨R

C >

Condensation
C ∨ l1 ∨ l2

(C ∨ l1)σ

where l2 vσ l1 and (C ∨ l1)σv (C ∨ l1 ∨ l2)

Contextual Literal Cutting

C D ∨ l
C D

where C v D ∨¬l

Figure 2.3: Simplification Rules using Subsumption
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Theorem 2.4 (Soudness of Subsumption-Based Simplifications). The rules presented in Fig-
ure 2.3 are sound.

Proof. Condensation Let D
def= C∨l1∨l2 be a first-order clause such that l2 vσ l1 and (C∨l1)σv

C ∨ l1 ∨ l2. Note that the latter hypothesis makes condensation a simplification rule. To
prove it sound, let σ ≤ ρ be a grounding substitution of D and M be a model of Dρ. By
case on which part of the disjunction (C ∨ l1 ∨ l2)ρ is true in M :

• M |=Cρ implies that M |= (C ∨ l1)σρ;
• M |= l1ρ implies M |= (C ∨ l1)σρ;
• M |= l2ρ means that M |= l1ρ, since l2 vσ l1 and σ ≤ ρ. Therefore M |= (C ∨ l1)ρ

and the rule is sound for every ground instance of the conclusion. The core idea of
this rule lies here: whether l1 or l2 is the chosen literal in D , l1 is true, so we can
merge both cases into one.

Contextual Literal Cutting Let C and D be first-order clauses with C v D∨¬l and freevars(C )∩
freevars(D) =;. Let M |=C ∧ (D ∨ l ) and ρ be a grounding substitution for C and D . Let
us prove M |= Dρ by case on which part of (D ∨ l )ρ is satisfied in M :

• if M |= Dρ, then we are done.
• if M |= lρ: since M |= Cρ by assumption on M , and C v D ∨¬l , it means M |=

(D ∨¬l )ρ, that is, either M |= Dρ or M |= ¬lρ. Since M is consistent, it cannot
satisfy both lρ and ¬lρ, so the second case is absurd, therefore M |= Dρ.

Also, C ∧D `C ∧ (D ∨ l ) is trivial, which makes (D ∨ l ) redundant w.r.t. {C ,D}.

As presented above, Superposition is already a very successful calculus, implemented in
many theorem provers. In the next section, we give a short presentation of AVATAR, a recent ex-
tension of Superposition [Vor14]; the purpose of AVATAR is to deal more efficiently with boolean
disjunctions, by delegating boolean reasoning to a (comparatively very efficient) SAT solver.

2.5 AVATAR

AVATAR [Vor14] extends the inference rules of classic Superposition to A-clauses and adds a few
specific rules. In this work, we build on AVATAR and A-clauses because trails allow us to keep
track of hypothesis and inferences that lead to a particular clause. In usual inference rules,
trails are inherited, in the conclusion, from all premises. The general scheme for adapting a
k−ary deductive inference rule (A) from Superposition to AVATAR is the following:

C1 ← Γ1 . . . Ck ← Γk (A)
D ← Γ1 u . . .uΓk

assuming
C1 . . . Ck (A)

D

Example 2.12 (Superposition Rule for AVATAR). For instance, the regular Superposition rule
(Sup) from Figure 2.1, applied to the A-clauses f (a) 6' c ← l1 u l3 and a ' b ← l2 u l3 with Â being
LPO( f > a > b > c), is:

f (a) 6' c ← l1 u l3 a ' b ← l2 u l3

f (b) 6' c ← l1 u l2 u l3

Two additional rules required by AVATAR are defined in Figure 2.4. AVATAR maintains a
global set of boolean constraints that we call Sconstraints; the goal of the boolean solver is to
find a solution to Sconstraints, otherwise the whole problem is unsatisfiable. Before presenting
the rules, we need a notion of boxing, that is used to embed clauses into boolean literals.
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Definition 2.80 (Boxing). The boxing operation is an injective mapping (modulo alpha-equiva-
lence, AC-properties, etc.) from some object x (a clause, an A-clause, some meta-level statement
about a clause, etc.) to a boolean literal TxU, such that T¬lU=¬TlU if l is a ground literal, and
T⊥U= 0. For AVATAR we only need to box clauses (modulo renaming of variables, AC-properties
of ∨, and symmetry of '), but later, in Chapter 5, we will make use of boxing for other objects.

Avatar Splitting splits an A-clause C1 ∨ . . .∨Cn ← Γ (with n ≥ 2) into components Ci where
each component share no variables with other components (∀i j . i 6= j ⇒ freevars(Ci )∩
freevars(C j ) =;). Indeed, in this case, ∀ (C1 ∨ . . .∨Cn) is the same as

(∀C1
)∨ . . .∨ (∀Cn

)
,

and we use the box TCi U to represent the validity of ∀Ci . Each Ci can be deduced un-
der the assumption that the boolean solver makes TCi U true; the boolean constraint
Γ _

⊔n
i=1TCi U is added to Sconstraints as a side effect, so that the boolean solver has to

make at least one TCi U true whenever Γ is true. Boolean atoms of the form TCi U where
Ci is a clause component are added to a set Satoms.

Avatar Absurd forbids the boolean solver to choose an assignment that makes Γ true, if ⊥← Γ

was deduced, by adding a boolean constraint ¬Γ def= ⊔
b∈Γ¬b to Sconstraints.

Remark 2.14 (Trail Inheritance). In the rule (ASplit), we can soundly deduce Ci ← TCi UuΓ in-
stead of Ci ← TCi U, or even Ci ← TCi Uu∆ for any ∆ ⊆ Γ. In the original AVATAR paper, this is
useless, but in Chapter 5 on structural induction, we will actually keep a subset of Γ in clauses
obtained by splitting. The subset ∆⊆ Γ that is kept is inherited in the conclusion.

Avatar Splitting (ASplit)

C1 ∨ . . .∨Cn ← Γ∧n
i=1

(
Ci ← TCi U

)
Γ_

⊔n
i=1TCi U

if each Ci is a component.

Avatar Absurd (A⊥)

⊥←dn
i=1 bi⊔n

i=1¬bi

Figure 2.4: AVATAR Rules

Example 2.13. The A-clause p(x)∨q(y)∨ r (y, f (z))∨¬s ← l1 u l2 can be split as follows, with
the boolean constraint l1 u l2 _ Tp(x)UtTq(y)∨ r (y, f (z))Ut¬TsU.

p(x)∨q(y)∨ r (y, f (z))∨¬s ← l1 u l2 (ASplit)
p(x) ← Tp(x)U q(y)∨ r (y, f (z)) ← Tq(y)∨ r (y, f (z))U ¬s ←¬TsU

l1 u l2 _ Tp(x)Ut¬TsUtTq(y)∨ r (y, f (z))U

The prover explores only one branch at a time because only clauses whose trail is true in
the current valuation of the SAT-solver can participate in inferences. We skip over the details of
simplification rules that can be found in [Vor14], but the takeaway is that cross-branch simpli-
fications are possible (depending on whether the simplifying clause’s trail subsumes the sim-
plified clause’s trail). Because of this, AVATAR competes well with other splitting techniques that
were proposed for Superposition [RV01a, FW09].

Remark 2.15 (Incrementality). Most SAT solvers are able to solve efficiently a sequence of boolean
formulas (Fi )i∈N such that Fi+1 = Fi ∧Gi (the i−th iteration adds Gi to the previous one). AVATAR

naturally leverages this ability, because Sconstraints is only modified by adding new clauses to it.
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Chapter 3

Implementing Superposition in a
Modular Way and Extending It

Many successful provers are based on Superposition [Sch02, McC10] [RV01b, WSH+07]. How-
ever, most of them are implemented in C, and heavily optimized, which makes for large code
bases that are difficult to modify. During the course of this thesis, we favored a hands-on ap-
proach, by implementing new ideas to get a feeling of how they would actually behave on prob-
lems, discovering flaws in them, coming up with new ideas and loop. This requires that each it-
eration is short and does not introduce too many bugs that must be fixed immediately. Because
of that, we preferred to use a high-level functional language, OCaml, for its decent performance
and much better expressiveness and safety (in particular w.r.t. memory management), and use
it to rewrite a new prover designed for flexibility rather than performance1. We felt there was a
need for a chapter about the issues we faced in implementing the prover (and then extending
it in various ways; in every following chapters there was a lot of implementation work) and the
solutions we came up with. We started from a unit Superposition prover used in Matita [AT10]
and gradually replaced and extended the code to handle full Superposition. Later, a part of
the code was detached and made into a logic library (called Logtk; more details in Section 3.1).
We also added support for typed logic (including polymorphism à la ML), a feature that to our
knowledge was found in no other Superposition prover at the time we implemented it. The last
versions of Zipperposition possess many features, a sizable fraction of which are extensions; its
architecture is relatively modular.

We try to adopt a well-founded presentation of our implementation work: first, the basics
of any theorem prover — terms, formulas, unification, etc. —; then, the Zipperposition prover
itself that builds upon those basics. The rest of the thesis will be concerned with extensions to
Superposition and their respective implementation.

3.1 Logtk: A Modular Library for First-Order Logic

Writing automated reasoning tools, in particular theorem provers, is a difficult engineering
task that requires solving many difficult problems in addition to the actual deduction rules.
As mentioned before, efficient provers for first-order logic, such as E [Sch02], SPASS [WSH+07]
or Vampire [RV01b] are usually developed in a low-level language, over many years with great
effort, making them a bad fit for rapid prototyping. Our goal with Logtk is to make prototyping
easier by providing solid foundations that most systems need, including typing (and type infer-
ence), term representations, formulas, indexing, substitutions, unification algorithms, parsers
for standard formats (e.g., TPTP) and various transformations (in particular, reduction to CNF

1 There is also a Superposition prover in Prolog, Saturate [GNN98], but it has been unmaintained for years and
only compiles on deprecated architectures. Besides, OCaml’s strong typing helps prevent many errors.
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of a set of formulas).
The OCaml language is a representative of the ML family, and as such is well-suited to sym-

bolic manipulations and theorem proving. It was therefore a natural choice for such a library,
as a trade-off between safety, expressiveness and performance. Logtk is free software, available
at https://www.rocq.inria.fr/deducteam/Logtk/index.html.

We first present the fundamental building blocks for processing symbolic first-order logic:
how to represent terms, formulas, substitutions, and how to manipulate them. We target poly-
morphic first-order logic, as described in the TFF-1 format [BP13] and Section 2.3, because
it encompasses the usual untyped logic but brings more safety and expressiveness for many
problems involving data structures, arithmetic, set theory, etc. Our library can also be used,
in a lesser extent, for higher-order logic, and other term representations are relatively easy to
implement from the existing ones.

3.1.1 Terms, Types and Formulas in OCaml

Interactions between terms, types and formulas are non-trivial. For instance, unifying terms
also requires unifying their types, and substituting a type variable deep inside a formula should
deal with all formula, term and type binders in between. In general, we make a distinction be-
tween bound variables, represented as De Bruijn indices [DB72], and free variables — allowed
to participate in unification, and therefore useful for resolution procedures, type inference, etc.
— that have meaningless numbers as names.

Example 3.1 (Term, Type and Formula Interleaving). Given the type constructor list : Type →
Type, the list signature from Example 2.3, and p :Πα. α→ o, the formula

∀α : Type. ∀xα :α. p〈list(α)〉(xα ::〈α〉 (xα ::〈α〉 [ ]〈α〉))

mixes terms, types, and formulas in a non-trivial way. In particular, instantiating {α 7→ nat}
requires substituting α in formulas, terms and types.

We could represent types, terms, and formulas with different OCaml types, but that leads
to some repetitions and duplicated code for dealing with substitutions, unification and bound
variables (especially type variables). Instead, we take a different path and define a single un-
derlying type, named scoped term, roughly as shown in Figure 3.1. More variants, including
extensible records2, are not shown here for the sake of brevity.

The type scoped_term can be used to represent many term-like structures, which will then
define more specific views and constructors that use scoped_term underneath. The sum type
term_kind is a dynamic tag3 that is used to efficiently discriminate between terms, types, for-
mulas, etc. when downcasting a value of type scoped_term to a more specific type such as
Type.t. For instance, a fragment of the Type module, in Figure 3.2, displays a type-centric view
and dedicated constructors. Other types (such as higher-order terms) can be built on top of
scoped_term4 by providing similar constructors and views, and adding a variant to term_kind5.
Also note the field ty, which points to another term representing the type, (or maybe another
term for dependently-typed calculi). It is wrapped in an option so that the inductive type is
actually well-founded6.

2 Extensible records are an interesting case, because they can appear both in terms and in their types. Since they
are useful, e.g. in the meta-prover of Chapter 6, and make unification relatively subtle, we included them.

3 Similar tags are very common in dynamic programming languages such as Python.
4because the term is responsible for manipulating properly scoped De Bruijn indices.
5OCaml features open types from version 4.02 upwards. They are similar to exceptions in that an open type can

be declared somewhere and extended in many other places. That would be a good fit for our tags.
6In TPTP, the pseudo-type $tType is used as the top of the type hierarchy, as the “type of types”; its own ty field

is therefore left empty.
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type scoped_term = {
ty : scoped_term option;
term : term_cell
kind : term_kind

}
and term_cell =

| At of scoped_term * scoped_term
| App of scoped_term * scoped_term list
| Var of int
| BoundVar of int
| Bind of symbol * scoped_term * scoped_term

and term_kind =
| FOTerm
| HOTerm
| Type
| Formula

Figure 3.1: Declaration of scoped_term

Let us detail more precisely the code in Figure 3.2. First, the type Type.t (OCaml values
that represent the logic types) is defined as a private alias of scoped_term, which means every
Type.t can be safely coerced into the generic representation (e.g. for substitutions, unifica-
tions, etc.) but not conversely; down-casting must be done by calling Type.of_term t that
checks the dynamic tag t.kind. The type Type.view is used for pattern-matching against
types, using the eponymous function. Finally, some constructors that always return valid types
(without down-casting) are defined.

Unification, substitutions, equality, hashconsing7, handling of De Bruijn indices are all de-
fined only once to operate on scoped_terms. It is also easier to mix term and type arguments,
to quantify over types in formula-level binders, etc. because the underlying common structure
will ensure that substitutions and unification remain correct.

FOTerm is the module of (typed) first-order terms. All constructors for leaf terms require a
type argument (variables and constants are typed); other constructors just check the types of
their arguments and deduce the type of their result. Every term is annotated with its type; the
reason is that unifying terms also requires unifying their types, which must be easy to obtain.
As is done for the Type module, FOTerm provides a view of terms into the following variant:

• Var: free variable, whose name is an integer;
• BVar: bound variable (De Bruijn index);
• TyApp: apply a term to a type (for instance nil(int));
• Const: constant term, parametrized by a symbol (and its type);
• App apply a term to a list of other terms. The first term should be composed only of TyApp

and Const so that the term remains in the first-order fragment.

Remark 3.1 (Modularity). In retrospect, it should be possible to make Logtk even more modular
by functorizing every module over its dependencies. For instance, Unif (responsible for unifica-
tion, see below) could be functorized over the concrete term representation, rather than working
over scoped_term. A mathematical notion of “first-order term” would be represented by any type
abiding by the following signature:

type α view =
| Var of int
| App of symbol * α list

7 hashconsing is used both to reduce the memory footprint of terms, formulas and clauses, and to make some
operations much faster — in particular, comparison of terms by their unique ID. The curious reader might refer
to [FC06] for another example of hashconsing in OCaml.
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module Type : sig
type t = private scoped_term

type view = private
| Var of int (* Type variable *)
| BVar of int (* Bound variable (De Bruijn index) *)
| App of symbol * t list (* parametrized type *)
| Fun of t list * t (* Function type (arg list → ret) *)
| Forall of t (* explicit quantification *)

val view : t → view (* open the type’s root *)
val of_term : scoped_term → t option (* dynamic cast *)

val var : int → t
val app : symbol → t list → t
val const : symbol → t
val arrow : t → t → t
val forall : t list → t → t

end

module FOTerm : sig
type t = private scoped_term

type view = private
| Var of int (* Term variable *)
| BVar of int (* Bound variable (De Bruijn index) *)
| Const of Symbol.t (* Typed constant *)
| TyApp of t * Type.t (* Type parameter *)
| App of t * t list (* List of parameters *)

val view : t → view
val of_term : scoped_term → t option

val var : ty:Type.t → int → t
val bvar : ty:Type.t → int → t
val const : ty:Type.t → symbol → t
val tyapp : t → Type.t → t
val app : t → t list → t

end

Figure 3.2: View and Constructor for Type and FOTerm
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module type FOTERM = sig
type t
val view : t → t view
val build : t view → t
val fold : (α view → α) → t → α

end

Then we could define several implementations of this signature (e.g., hashconsed terms, and non-
hashconsed terms); algorithms on terms would be functorized over FOTERM.

3.1.2 Substitutions

We distinguish here substitutions, that is, say mapping from free variables to terms (or types),
from environments that are used in conjunction with bound variables and the De Bruijn index-
ing system. Let us examine substitutions more closely. In many cases (rewriting, resolution. . . ),
unification works on free variables, but often requires renaming:

• for term rewriting, a subterm t |p is matched against the left-hand side of a rule l → r so
is it necessary for t and l not to share any variable;

• for resolution (or Superposition), binary inferences such as

C ∨ l1 C ′∨¬l2 if l1σ= l2σ
(C ∨C ′)σ

will require the two clauses to share no variable prior to unification.
To avoid renaming, which can be costly, some techniques have been used by provers such as
SPASS [WSH+07] or Otter [McC95], involving so-called variable banks. Assuming variables are
indexed by natural numbers, a variable bank is an array that maps each index 0 ≤ i < MAXVAR

(where MAXVAR is a higher bound on the total number of distinct variables) to either:
• nothing (variable not bound), or
• a tuple (term, varbank)where varbank is a variable bank (possibly the same) that pro-

vides bindings to free variables of term; if term is a variable, lookup recurses with it and
the new bank. Variable banks can therefore point to one another in a cyclic way, for in-
stance after unifying the terms f (x, g (z)) and f (g (y), y) where x and z live in one bank
and y in another one.

This technique works fine and is efficient but suffers from two limitations:
• it requires substitutions to be mutable arrays (rather than functional-friendly immutable

structure that can safely be kept for generating proofs, or stored in data structures);
• it requires allocating big arrays (as big as the maximal authorized variable index), which

limits the number of substitutions that are allowed to live simultaneously.
To overcome those limitations we use a persistent representation and a notion of scope, in-
spired by the code8 of iProver [Kor08].

A scope is a value that represents one interpretation for free variables, which means that
the same variable can have distinct bindings in distinct scopes. In our implementation a scope
is simply an integer. Substitutions and unification therefore map pairs (variable, scope) to
pairs (term, scope), rather than directly variable to term. A substitution is a finite mapping
from pairs to pairs (currently a persistent hash table, but balanced trees or mere linked lists
could do too). Figure 3.3 shows the type signatures of some operations on substitutions9. Note
that if one does not wish to rename variables (e.g. for type inference), one can use only one
scope and essentially fall back to the usual representation of substitutions. We write LtMi for
the term t interpreted in the scope i , and trivially extend the notation to literals and clauses.

8 it is, to our knowledge, the first occurrence of this technique.
9 The type renaming is abstracted into a function for clarity.
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When a substitution σ has been computed by unification or matching (see Section 3.1.3),
for instance after a resolution step between two clauses LCM0 and LC ′∨¬l2M1, we need to apply
it to build a new clause

(
C ∨C ′)σ. Here we need be careful because, in C ∨C ′, some variables

are bound in scope 0, some other in scope 1; we need to evaluate
(
LCM0 ∨ LC ′M1

)
σ instead. Now

the question is: how shall we deal with free variables that are not bound in the substitution?
For instance, say we have a substitution σ

def= {
LxM0 7→ L f (x)M1,LxM1 7→ LyM1

}
(remember that

LxM0 and LxM1 are distinct variables because they live in different scopes). To evaluate the clause
Lp(x, y)M0σ∨ Lp(x, y)M1σ we must rename one of LyM0 and LyM1 because they are distinct vari-
ables. To do so, applying a substitution requires an object called renaming, that builds an in-
jection from (variable, scope) to variable; the result, as expected, will be alpha-equivalent
to p( f (x), y)∨p(x, x) (renaming LyM1 to x, and LyM0 to y).

type scope = int
type subst = (scoped_term * scope * scoped_term * scope) list
type renaming = (variable * scope) → variable

val unify : scoped_term → scope → scoped_term → scope → subst option
val rename : renaming → variable → scope → variable
val apply : renaming → subst → scoped_term → scope → scoped_term

Figure 3.3: Operations on Substitutions

3.1.3 Algorithms

Many algorithms are very often useful for processing logic formulas. Some particularly useful
ones — for our purposes — are implemented in Logtk.

Unification and Matching

The usual first-order unification and matching algorithms are implemented only once, on the
scoped_term shared structure. Their type signature is shown in Figure 3.3. The algorithm can
be used with any view of scoped_term, including FOTerm.t and Type.t. We need to recursively
unify subterms pairwise, but also types. Indeed, term-level variables can have polymorphic
types, as is shown in the few clauses of Example 2.3 and Figure 3.4 that declare polymorphic
lists and some of their axioms. Note the presence of Skolem symbols head and tail in the inver-
sion axiom, that encode the fact that any non-nil list is necessarily an application of (::). Which
such axioms, we may need to unify both terms and types (the type variable α) when working
with concrete lists such as 1 ::〈int〉 [ ]〈int〉; if some variables are unshielded (i.e., they appear under
some equation, but under no function symbol) then unifying types becomes crucial for sound-
ness (see Remark 3.2). We will see other examples of theories with similar axioms in Chapter 5,
about induction.

[ ] : Πα. list(α)
(::) : Πα. (α× list(α)) → list(α)

head : Πα. list(α) →α

tail : Πα. list(α) → list(α)
∀x :α. ∀l : list(α). x ::〈α〉 l 6' [ ]〈α〉 (non-overlap)

∀l : list(α). l ' [ ]〈α〉∨ l ' head〈α〉(l ) ::〈α〉 tail〈α〉(l ) (inversion)

Figure 3.4: A Polymorphic Theory containing Unshielded Variables

31



Remark 3.2 (Typing and Unsoundness). If unification were to ignore types of variables during
unification, the prover becomes unsound,as the following example demonstrates. We use the two
classic types bool (the two boolean values true and false) and unit (unit type, containing exactly
one value 1). The following theory is satisfiable:

true 6' false
∀xbool : bool. xbool ' true∨xbool ' false

∀yunit : unit. yunit ' 1

but, if we ignore types, the following derivation of ⊥ is possible (successively unifying yunit with
true, then false):

true 6' false yunit ' 1
(Sup)

1 6' false yunit ' 1
(Sup)

1 6' 1
(EqRes)⊥

Reduction to Clausal Normal Form

It is often practical to transform a given problem into CNF(clausal form, see Definition 2.53).
Resolution provers, for instance, require it. However, in many cases they prefer to rely on an
external prover (for instance SPASS [WSH+07]). Here, we can’t do that, first because Logtk is
intended to be self-contained, and because our terms may be more general, for they are typed
and may contain additional constructs such as records or curried application. Naive CNF is
quite easy to implement; however, many real problems cause naive CNF to blow up because the
number of clauses is exponential in the size of the input formula; many others do suboptimal
Skolemization (Definition 2.52). Therefore, we implemented CNF reduction with miniscoping
and formula renaming10, following [NW01]. This is enough to avoid all exponential blowup.

Indexing

Saturation provers rely heavily on unification. When the clause set grows, term indices become
necessarily to keep a good inference rate. In Logtk we define several such indices for first-order
(typed) terms, parametrized by the data stored at the leaves of the index. Conceptually, a term
index maps each term to a set of values of some type (for instance, a pair (clause * position)

can be used for Superposition provers), and allows to retrieve values by unification or match-
ing with a query term. We provide several indexing schemes for theorem provers, rewriting
systems, etc.

• fingerprint indexing [Sch12] as a general purpose index;
• feature vector indexing [Sch04] for subsumption checking;
• perfect discrimination trees [RSV01] for rewriting, and non-perfect discrimination trees as

a general purpose index.
The index implementations are all purely functional, which is facilitated by their tree-like

structure (most often a prefix tree). This can be useful in contexts where duplicating an index
might be necessary, for instance in Tableaux provers or for other splitting-like inference rules.

Let us focus on the implementation of the discrimination trees. The classic way to imple-
ment them is based on the use of flatterms, i.e., terms represented as a flat array of symbols
(including a special symbol ∗ that represents variables in imperfect discrimination trees; per-
fect discrimination trees also allow variables in flatterms). However this representation is not
convenient for many other operations, and it is incompatible with any kind of subterm sharing.

10 although the criterion for triggering the renaming of a formula is simpler than the optimal one presented in
[NW01].
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Conversion between tree-like terms and flatterms can be very costly. A pathologic example
would be, in the context of term rewriting, the application of the rule s(x)+ y 7→ s(x + y) that
describes the addition in Peano arithmetic to the term 500,000+ 500,000 (where n is the en-
coding of n ∈N into the Peano term sn(0)). We would build a flatterm of size 1,000,000, match
it against a shallow rule, only to obtain the term s(499,999+500,000) which would then be con-
verted to a flatterm of the same size, matched, and so on. This series of conversions would be
very expensive.

Our solution here is to perform a lazy conversion to flatterms, by using a specialized iterator
type that provides the required next and skip operations. The type of the iterator is shown in
Figure 3.5 and is discussed further. At any point in the traversal of a term (we traverse the
term and the corresponding branches of the discrimination tree) we remember its siblings and
the siblings of its superterms. When the term has been fully traversed, calling next or skip
will return None. This iterator type is persistent, which makes backtracking (exploring several
branches of a discrimination tree) trivial.

Listing 3.1: Interface of Lazy Flatterm
type iterator

val skip : iterator → iterator option
val next : iterator → iterator option
val flatten : FOTerm.t → iterator

Listing 3.2: Implementation of Lazy Flatterm
module T = FOTerm

type iterator = {
cur_term : FOTerm.t; (* current sub−term *)
stack : FOTerm.t list list;

}

let open_term stack t = match T.view t with
| T.Var _

| T.BVar _

| T.TyApp _

| T.Const _ →
Some {cur_term=t; stack=[]::stack;}

| T.App (_, l) →
Some {cur_term=t; stack=l::stack;}

let rec next_rec stack = match stack with
| [] → None
| []::stack’ → next_rec stack’
| (t::next’)::stack’ →

open_term (next’::stack’) t

let skip iter = match iter.stack with
| [] → None
| _::stack’ → next_rec stack’

let next iter = next_rec iter.stack
let flatten t = open_term [] t

Figure 3.5: Lazy Conversion to Flatterms

In Figure 3.5, the function open_term is used to flatten its term argument’s root (given a
stack of parent terms and their siblings) into a new iterator; flatten starts the flattening of a
whole term (meaning the surrounding stack is empty). The function next and skip both use
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the stack; the only difference is that the latter ignores the current term’s siblings (if any).

3.1.4 Architecture

Figure 3.6 contains the dependency graph of the most important modules of Logtk. We include
it to give the reader an overall view of how Logtk is organized.

• Symbol defines the type of symbols and many operations on it;
• Position describes positions in types, terms, etc.;
• ParseLocation represents location in input files;
• ScopedTerm, as explained above, is the generic tree representation responsible for scop-

ing, traversal, hashconsing, and comparisons;
• PrologTerm is used as a flexible AST for parsers to output; it uses strings as variable

names and does not enforce hashconsing nor proper scoping;
• Type builds on ScopedTerm to represent polymorphic types;
• FOTerm and HOTerm build on ScopedTerm and Type to represent respectively first-order

and higher-order typed terms;
• Formula represents classical formulas over an arbitrary term type (for instance FOTerm)

using a functor;
• Precedence and Ordering are used for term orderings (RPO, KBO);
• Signature uses Symbol and Type to represent a signature as a finite map from symbols

to types;
• TypeInference features Hindley-Milner style type inference for first-order and higher-

order terms — it is used to convert untyped PrologTerm.t into FOTerm.t or HOTerm.t;
• Skolem deals with Skolem symbols;
• Cnf transforms Formula.FO.t (a formula whose leaves are of type FOTerm.t) into clauses;
• Substs contains the representation of substitutions, and operations to build them and

apply them to types, terms and formulas;
• Unif contains unification algorithms;
• Index defines abstract types and signatures for term and clause indices;
• FeatureVector, Fingerprint, NPDtree and Dtree are implementation of term and clause

indices;
• Rewriting implements some basic term rewriting techniques.

3.1.5 Simple Tools

The interface provided by Logtk makes it well-suited for writing tools that process (first-order)
logic objects. Several such tools are provided in the library, both for their usefulness and as
examples of how to use it. A quick description of those tools:

proof_check_tstp calls external provers to check traces a theorem prover can print upon suc-
cess. For instance if E [Sch02] proves a theorem, it can print the DAG of the inferences it
had to perform. proof_check_tstp can then parse this DAG (in the TSTP [Sut09] for-
mat), and check the validity of every deductive inference by calling one or more trusted
provers. Steps that only preserve satisfiability, such as skolemization, are not checked;

cnf_of_tptp parses TPTP files, infers types, and prints the clausal normal form (CNF) of the
parsed formulas;

type_check_tptp is a simple type-checker for TFF0 and TFF1 problems, including some type
inference for wildcards $_ (type arguments omitted in terms because they can be inferred
from the context);
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Figure 3.6: Dependency Graph of Logtk

detect_theories can use the implementation of a meta prover [BC13] — see also Chapter 6
— to detect instances of axiomatic theories in a problem. For instance it will detect the
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presence of an abelian group in RNG008-4.p11;
orient reads a term rewriting system from a file, and looks for a LPO precedence that orients all

rules left-to-right (thus proving the termination of the system in this case. Our tool can
then print the witness precedence if required). The part that attempts to orient rewrite
rules using a LPO is one of the modules provided in Logtk;

hysteresis is a more sophisticated tool that currently serves as a pre-processor for E. It detects
theories using the aforementioned meta-prover, collects associated rewrite systems (if
any), attempts to orient them (see previous tool) using a LPO and sends the modified
problem to E. We also add to modify E so that it could handle simply-typed logic.

3.1.6 Discussion

Many provers ship with some internal library that is designed to cope with the same problems
as Logtk, for instance E [Sch02] comes with CLIB, Prover9 [McC10] with LADR, some other
with the Dedam [NRV97] system, etc. However, there are several significant differences with
most of those libraries, and ours.

First, Logtk is written in OCaml. While the choice of a programming language is important
for such a performance-sensitive area as Automated Theorem Proving, we made this trade-off
to make prototyping much faster than in all the aforementioned C libraries. OCaml, as a dialect
of ML, has a long record track of usage for symbolic reasoning, including the implementation
of Coq [HKPM97]. We clearly cannot hope to beat optimized C in terms of performance, but
our goal with Logtk is to make prototyping and writing decent theorem provers much easier.
Similarly, abstractions like iterators (on subterms, subformulas, the types in a term, etc.) are
pervasively used and exposed to make the code simpler and avoid repeating the same recursive
functions everywhere. This kind of abstraction again brings more expressiveness to the user
(and implementer of the library)12. Stronger typing (absence of NULL, polymorphism, modules)
and the presence of recursive algebraic types and pattern-matching also improve readability
and safety. For instance the formula representation is an algebraic type with 14 cases; checking
the exhaustiveness of pattern-matching helps ensuring every case is dealt with.

Providing functional structures for types such as substitutions, term indices, and signatures
is also a significant difference. More allocations are needed (although OCaml’s GC is very good
at allocating short-lived structures) but reasoning about the program behavior becomes easier;
again, less time spent debugging improves the programmer’s productivity.

The library comes with small tools that illustrate the use of some of its core features –
type-checking, reduction to CNF, etc. – but is separated from Zipperposition. We deliberately
kept the superposition-specific structures outside of Logtk (in particular, the representation of
clauses which is very specific) so as not to constrain users to follow the same design choices.
It is possible, however, that some structures we use in Zipperposition for linear arithmetic mi-
grate back to Logtk (e.g., linear expressions)13.

Since Logtk is still very young, we can’t evaluate yet how easy (or difficult) it is for someone
to use it without any assistance for the authors. Good documentation and openness to contri-
butions will be necessary to make it as easy as possible. The choice of the very permissive BSD2
license should make Logtk easy to use and contribute to.

11 RNG008-4.p is a ring theory problem available in TPTP. After installing Logtk, the command
$ detect_theories $TPTP/Problems/RNG/RNG008−4.p
should print some detected axioms and theories, including the additive abelian group.

12 The performance impact is hard to evaluate but shouldn’t be high, especially outside of critical paths.
13 Some changes needed for Zipperposition have been made, when useful in general. For instance, multisets in

which elements can have very large multiplicities are often useful for linear arithmetic (Chapter 4): n · t is a shortcut
for

∑n
i=1 t , a sum of n elements, that will then be compared using ÂÂ.
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3.2 Zipperposition: a Modular Theorem Prover

Logtk has been used to implement our experimental theorem prover, Zipperposition. Zipper-
position is based on the Superposition calculus and has been modified, during our thesis, to
include a simple implementation of AVATAR and to experiment on arithmetic, polymorphism,
and other extensions. Many components of Logtk are used, including the typing system, type
inference, the TPTP parser, term indexes, unification algorithms, subterm positions, reduction
to CNF, etc. One benefit is that, would first-order terms in Logtk be extended with new variants
(records, sum types, curried application, etc.), few changes would be required at all in Zipper-
position to support the extension.

3.2.1 Architecture

Figure 3.7 shows the dependency graphs of some of the most important modules of Zipperpo-
sition. In topological order, let us explain their respective rôle in a few words.

• Monome helps represent integer linear expressions, as defined in Chapter 4;
• ArithLit defines arithmetic literals, from the same chapter (equations, comparisons,

and divisibility statements on linear expressions);
• Literal contains the representation of literals, including arithmetic ones, and many op-

erations on literals;
• CompactClause is a small modules used to represent clauses in a compact way — mainly

used in proof traces;
• Proof represents proof traces (the inference DAG);
• PFormula pairs a formula (from Logtk) together with a Proof.t;
• ClauseContext is used in induction, see Chapter 5;
• BoolSolver is a generic interface to boolean solvers (SAT and QBF solvers) so that differ-

ent solvers can be used the same way;
• BBox helps with boxing clauses (and other statements) into boolean literals, a require-

ment for AVATAR;
• Selection defines selection functions (a heuristic for Superposition);
• Ctx contains some global parameters (selection function, ordering, sets of inductive types,

etc.) encapsulated into a functor;
• Clause defines first-order clauses and a number of combinators and tools to process

clauses. It is clearly a central component of Zipperposition;
• ClauseQueue contains heuristics to choose the clause to process in the saturation loop

(see below);
• ProofState holds the sets of clauses required by the saturation loop, sets of rewrite rules,

etc.;
• PEnv defines some pre-processing operations that occur before the main saturation loop

starts;
• Env is a crucial component, as the dependency arrows show. It stores the set of inference

rules, simplification rules, an instance of Ctx, an instance of ProofState; in general it
contains everything that is required for Superposition — and other calculi — to perform
their inferences. More details will be given below;

• Saturate defines the main saturation loop, parametrized by an instance of Env that de-
fines which rules and clause sets shall be used;

• Extensions defines a mechanism to plug extensions into Zipperposition— that is, mod-
ules defining new axioms, inference rules, simplification rules, and so on. The gold-
colored boxes are extensions that can be disabled or enabled easily;

• Avatar, ArithLit (arithmetic), Chaining (a calculus that deals with total orders), Superposition
(standard Superposition), MetaProverState (interface to the meta-prover, see Chapter 6),

37

https://www.rocq.inria.fr/deducteam/Zipperposition/index.html


Avatar, and Induction_sat and Induction_qbf (inductive reasoning, Chapter 5) are ex-
tensions defining various calculi.

BoolSolver

Clause

Proof

Literal

CompactClause

Ctx

ArithLit

Monome

Superposition

Extensions

Env

PEnv

PFormula

ProofState

Avatar

ChainingInduction_qbf

ArithInt

Induction_sat

Selection

ClauseContext

BBox

MetaProverState

ClauseQueue

Saturate

Figure 3.7: Dependency Graph in Zipperposition

The Central Rôle of Env

As mentioned before, Env plays a very important rôle in the modular architecture of Zipperpo-
sition. It stores most state required by the saturation algorithm, and also keeps track of which
inference rules, simplification rules, concrete redundancy criteria, etc. have been defined so
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far by extensions. Similar to what Ctx does, Env defines a functor (parametrized by Ctx.S here)
that returns a module rich with global state. To process a new problem, those functors are in-
stantiated, so they do not share the “global” state with previous instantiations; yet, from the
point of view of functions defined within the functor, most parameters are global, which sim-
plifies a lot the code — no need for explicitly carrying parameters around in each function call.

To further illustrate our point, we present snippets of the interface of Env.S (obtained by
applying the functor Env.Make) and comment them. First, some types are defined:

module type S = sig
module Ctx : Ctx.S
module C : Clause.S with module Ctx = Ctx
module ProofState : ProofState.S with module C = C and module Ctx = Ctx

type binary_inf_rule = C.t → C.t list
type unary_inf_rule = C.t → C.t list

type simplify_rule = C.t → C.t (* Simplify clause *)
type redundant_rule = C.t → bool (* Clause is redundant? *)
type is_trivial_rule = C.t → bool (* Cheap test for redundancy *)

type multi_simpl_rule = C.t → C.t list option

Basic operations follow, to modify the state by adding clauses to sets of clauses, or defining new
rules:

val add_passive : C.t list → unit (* Add passive clause *)
val add_active : C.t list → unit (* Add active clause *)
val add_simpl : C.t list → unit (* Add simplification clause *)

val remove_passive : C.t list → unit (* Remove passive clauses *)
val remove_active : C.t list → unit (* Remove active clauses *)

val add_binary_inf : string → binary_inf_rule → unit
val add_unary_inf : string → unary_inf_rule → unit

Then, higher-level operations are directly used by Saturate — the main saturation loop — to
perform inferences, simplify clauses, etc. using the global state. The function next_passive

picks a clause from the passive set (according to heuristics defined in ClauseQueue, see Fig-
ure 3.7); some functions simplify the given clause w.r.t. the active set, or simplify clauses from
the active set using the given clause, or apply all the inference rules to obtain new clauses.

val cnf : PFormula.Set.t → C.t list (* Reduce formulas to CNF *)

val next_passive : unit → C.t option (* Next Given Clause *)

val do_binary_inferences : C.t → C.t list
val do_unary_inferences : C.t → C.t list

val is_trivial : C.t → bool
val is_active : C.t → bool
val is_passive : C.t → bool

val simplify : C.t → C.t (* Basic, Cheap Simplifications *)

val backward_simplify : C.t → C.t list * C.t list
(* Perform backward simplification with the given clause. It returns the

list of clauses that become redundant, and the list of those
very same clauses after simplification. *)

val forward_simplify : C.t → C.t
(* Simplify given clause wrt active set *)

val remove_orphans : C.t list → unit

39



(* remove orphans of the (now redundant) clauses *)

val generate : C.t → C.t list (* Perform all generating inferences *)

val is_redundant : C.t → bool (* Is the clause redundant wrt active set? *)

val subsumed_by : C.t → C.t list
(* List of active clauses subsumed by the given clause *)

val all_simplify : C.t → C.t list
(* Use all simplification rules to convert a clause into a set

of maximally simplified clause (or [] if they are all trivial). *)
end

The Saturation Loop

The Saturate module uses a Env.S instance and provides two functions implementing the
saturation algorithm:

type result = Sat | Unknown | Timeout | Unsat of Proof.t

module Make(E : Env.S) : sig
val given_clause_step : unit → result
(** Perform one step of the given clause algorithm *)

val given_clause: ?steps:int → ?timeout:float → unit → result * int
(** Run the given clause algorithm until a timeout occurs or a result

is found. It returns a tuple (result, number of steps done) *)
end

3.2.2 Extensibility

Zipperposition is designed so that additional features (typically, new inference systems that are
compatible with Superposition) can be added through extensions. In a nutshell, an extension
(the type t in the following listing) is a list of actions that can be performed on a Env.S instance
— mainly, calls to Env.add_binary_inf , Env.add_unary_inf, and other functions that add
simplification rules and redundancy rules. Note the use of a first-class module as a parameter
to actions.

type action = Action of ((module Env.S) → unit)

type t = {
name : string;
actions : action list;

}

val register : t → unit (* register new extension *)
val all : unit → t list (* all registered extensions *)
val apply_env : env:(module Env.S) → t → unit (* activate extension by side−effect *)

In Zipperposition-0.5, as we can see in Figure 3.7, there are several extensions that implement
deductive inference systems, including Superposition and AVATAR as described in Sections 2.4
and 2.5. In practice, some extensions depend on other extensions (e.g., AVATAR depends on
some of the Superposition rules).

3.2.3 Lessons Learnt from Implementing Zipperposition

Implementing a theorem prover (almost) from scratch, even using a well-known calculus, is
challenging. A large collections of algorithms has to be coded efficiently; some of them can be
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quite sophisticated (for instance, a first-order CNF procedure that avoids exponential blowup).
We also wrote new extensions to Superposition (polymorphic terms, arithmetic, induction,
etc.). Implementing calculi whose exact rules are in flux can be challenging too. OCaml, be-
ing expressive and quite safe, was indeed a good language for prototyping, but it still cannot
prevent all errors; finding and fixing errors in our prototype was one of the biggest difficulty
in the whole implementation effort. To debug Logtk and Zipperposition, we combined several
approaches:

• in Logtk, unit tests and random tests are used to check that some functions work at least
on some inputs. Random testing (that checks a universal invariant of type α → bool

against a set of randomly-generated instances of the type α) proved particularly useful to
test implementations of term indexing with properties such as “all terms retrieved from
an index unify with the query term”, or “an index returns every term that unifies with the
query term”.

• Zipperposition is mostly tested as a whole, against problems from TPTP or the Pelletier
problems [Pel86]. Bugs can be categorized in three different classes:

soundness bugs cause the prover to output “unsat” on a satisfiable problem, because it
found an incorrect derivation. Those are usually relatively easy to find, by asking
the prover to output a derivation and staring at it for long enough. Derivations can
be printed either in text form, or using a graphical output based on graphviz14, an
example of which will be presented later, in Section 4.6.5.

completeness bugs cause the prover to stop and output “sat” on unsatisfiable problems,
failing to find a derivation even though, in theory, they should find one or diverge.
Such bugs are extremely hard to find because they require to make the prover print
every small step it takes and stare at it, hoping to find a point where it should have
deduced a clause and failed to do so. We did not find a satisfying solution to this
kind of problems.

other bugs cause the prover to crash, or have no direct incidence on the correctness of
its results. They can be debugged with assertions, print statements, etc.

Conclusion

As explained before, implementation is a crucial part of Automated Theorem Proving. A tech-
nique that works in theory but is terribly slow and redundant in practice will not be very useful.

That is why a significant portion of our PhD was dedicated to implementation. This chap-
ter presented the most important softwares we developed, their architecture, and their speci-
ficities; Logtk is a general-purpose library for typed first-order logic, and Zipperposition is a
modular Superposition prover built on top of Logtk.

Now that we presented Logtk and Zipperposition, we can present the three main contribu-
tions of this thesis, and their implementation on top of our theorem prover. Our calculus for
linear integer arithmetic (Chapter 4) was quite challenging to implement (its cousin [Wal01]
that deals with Superposition on rationals was never implemented, as far as we know). In in-
duction as well (Chapter 5), search space problems and the use of AVATAR (a technique that was
published at two thirds of this thesis) required some experimentation. In both cases we modi-
fied and extended Zipperposition to study the feasibility of our new techniques. Theory detec-
tion (Chapter 6) was implemented too, but as a sub-library in Logtk; it was later interfaced with
the induction plugin of Zipperposition so it could suggest inductive lemmas. Consequently,
each chapter will feature a section on implementation or experimental evaluation.

14 see http://graphviz.org.
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Chapter 4

Linear Integer Arithmetic

Introduction

Superposition, as presented in Section 2.4, is an efficient calculus for automated reasoning with
equality on uninterpreted function symbols. However, some important theories such as Pres-
burger Arithmetic are very difficult to deal with in a purely axiomatic framework. Many efforts
have been put into developing calculi for superposition modulo T , for theories T ranging
from AC [BG95] (associativity-commutativity) to linear arithmetic over rationals using several
distinct approaches [Wal01, AKW09, KV07]. In this chapter, we present a calculus for linear
integer arithmetic that extends superposition in a framework of saturation up to redundancy,
unlike SPASS+T [PW06] or hierarchic superposition [BGW94, BW13] that both rely on an ex-
ternal black-box solver to perform theory reasoning. Such solvers do not deal with first-order
logic, and will only deal with the satisfiability of formulas over a finite number of ground terms.
Our technique, on the contrary, can deduce non-ground formulas containing arithmetic terms
(a simple example is deducing f (x) ' 1 from g (x) ' 2 and f (x)+1 ' g (x)).

The extension of superposition we develop here deals with equations, comparisons and
divisibility in structures that include Z. Such structures are of great interest in fields as im-
portant as cryptography, where divisibility and modular arithmetic are pervasive, or program
verification where many proof obligations include some integer arithmetic — most often using
bounded representations for integers — for looping or accessing arrays elements. Our calcu-
lus, intuitively, deals with divisibility statements the same way usual superposition deals with
equations, by rewriting terms that are “big” in some ordering into terms that are smaller, but
with subtleties that come from interactions between equality, inequality and divisibility (a ' b
implies n | a −b for all n; a ≤ b ∧b ≤ a implies a ' b) and even between divisibility statements
in distinct rings (4 | 2 · a + b implies 2 | b). We also try to counteract some particularly glar-
ing sources of inefficiencies; in particular, the obligation to reason by case for literals of the
form n - a (see Example 4.1) is mitigated by reducing the problem into the more specific case
where n = d k with d prime, and then reasoning over dk cases instead of d k −1. Inequations
are dealt with using ordered chaining [BG94], which drastically reduces the search space com-
pared to naive resolution with the transitivity axioms. In particular, chaining can saturate for
some problems.

Example 4.1 (Reasoning by Case). Unlike rational arithmetic, integer arithmetic sometimes re-
quires reasoning by case distinction. The following two simple problems should demonstrate
it:

• p(0)∧ p(1) ⇒ ∀x : int. (0 ≤ x ≤ 1 ⇒ p(x)). Clearly, p(0) and p(1) cover all the cases that
∀x. (0 ≤ x ≤ 1 ⇒ . . .) ranges over.

• p(a)∧p(a +1)∧p(a +2) ⇒∃x. (3 | x ∧p(x)). Among {a, a +1, a +2}, 3 divides exactly one
term — the question is, which one? A refutational proof will have a goal 3 - x ∨¬p(x),
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which leads to 3 - a, 3 - a+1 and 3 - a+2 by resolution with the hypothesis. From there, the
only way forward is to reason by case on whether the remainder of a divided by 3 is 0, 1 or
2. We will see how our calculus deals with this problem in Examples 4.6 and 4.7.

In addition to the inference system (Section 4.2), we describe several useful redundancy cri-
teria, including a subsumption relation over pairs of literals, a generalization of subsumption
for (sets of) inequations, and a semantic tautology rule (Section 4.3). Those criteria have been
developed to fix some inefficiencies in our experiments. They can be re-used in any clausal
calculus that deals with integer linear arithmetic. In general, this work can be seen as a toolbox
to reason modulo integer arithmetic in the context of clausal saturation, so that provers that
use other approaches (e.g., hierarchic superposition) can still pick some parts of it. We then
expose a variable elimination algorithm based on Cooper’s algorithm [Coo72] — a decision
procedure for Presburger arithmetic (Section 4.4). This greatly simplifies inference rules, be-
cause arithmetic variables that occur directly in arithmetic expressions can be safely ignored.
A full AC1-unification algorithm is not required. Finally, the exposition heads for a prototype
implementation of the full calculus, including simplification rules and redundancy criteria, in
our theorem prover Zipperposition (Section 4.6), and some experimental results (Section 4.7).

4.1 Preliminaries

We start with definitions and some basic rules that reduce arithmetic literals and clauses to
canonical forms. Working on canonical forms makes it possible to restrict the number of cases
where rules apply. The additional assumptions also enable more succinct formulations of rules.
The calculus deals with integers, living in Z, but the canonical terms and literals will all be
natural numbers — a negative number −n +u ' v is simply put on the other side to obtain
u ' v +n. A family of divisibility predicates n | u (where n is a strictly positive natural number
and u a linear expression) is part of the language; we will focus on cases n | u where n is prime
(reducing divisibility by a non-prime number to divisibility by its prime factors). The following
lemma will be useful to deal with prime numbers.

Lemma 4.1 (Prime Decomposition). Let {di }k
i=1 denote a set of distinct prime numbers and

{ei }k
i=1 be strictly positive integers. For any integer m, if

∧k
i=1 d ei

i | m then
(∏k

i=1 d ei

i

) | m.

Proof. By induction on the number of distinct prime factors k. For k = 1 the result is immedi-
ate. Otherwise, let us assume the result holds for k−1. Let S = {d ei

i |i = 1. . .k} and m ∈Z divisible
by every d ei

i in S. Since, by hypothesis, d ek

k | m, there is some m′ such that m = m′×d ek

k . Euclid’s
lemma implies that for all i < k, since d ei

i | m, d ei

i must divide m′ because it’s coprime with d ek

k

(di 6= d k ). By induction hypothesis,
∏k−1

i=1 d ei

i | m′ and therefore
∏k

i=1 d ei

i | m.

Lemma 4.2 (Bézout Identity). The classic Bézout identity [Bé79]: given x and y non-zero inte-
gers, there exists u, v :Z such that x ×u + y × v = gcd(x, y).

4.1.1 Definitions

In a nutshell, the language used throughout this chapter is typed first-order logic with a type
int and a signature containing {0,1 : int,+ : (int× int) → int,≤: (int× int) → o} and a family of
predicates (n | ) : int → o indexed by positive numbers n ∈ N+. We introduce more specific
definitions for two reasons: (i) restricting the shape of arithmetic literals (in particular, limit
the presence of negation), and (ii) adding notational convenience such as the scalar product
n · t (short for

∑n
i=1 t ).

Definition 4.1 (Arithmetic Term). An arithmetic term is a term of the special type int, including
the special constants 0 : int, 1 : int and + : (int× int) → int. Intuitively, the type int represents Z,
the set of integers.
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Definition 4.2 (AC1). AC1 is a theory composed of the following axioms on the signature {+,0}
(0 is called the neutral element):

Associativity ∀x y z. (x + y)+ z ' x + (y + z)
Commutativity ∀x y. x + y ' y +x
Identity ∀x. 0+x ' x

In the rest of this chapter, we assume the signature contains function symbols + and 0 that,
together, satisfy the properties of AC1. Note that we use a theory AC1 but not a group theory;
as mentioned before, negative numbers will never occur in our canonical literals.

Definition 4.3 (Product by a Constant). If n ∈ N and t is a term, then n · t is a notation for the
n-ary sum

∑n
i=1 t . In particular, 0 · t = 0 and 1 · t = t . To avoid confusion with the meta-level

product, the latter will be denoted ×.

Remark 4.1. Note that in n · t , n is a natural number and not a term — 0 · t and 1 · t are not valid
expressions. To erase any trace of doubt, the following are valid terms: 1 ·1

def= 1, 0 ·1
def= 0, 0 ·0

def= 0,
but 0 ·1 is not a term.

Definition 4.4 (Linear Expression). We say an arithmetic term is atomic if it does not contain the
symbol +. A linear expression is an integer-sorted sum of atomic terms, of the form

∑n
k=1 ak · tk

where for each k, ak ∈N∗ and tk is an atomic term. Note that 0 is a valid linear expression.

Remark 4.2. Multiplication by a constant n ∈N trivially extends to linear expressions as follows:
n ·∑i ai · ti =∑

i (n ×ai ) · ti .

Definition 4.5 (Arithmetic Literal). An arithmetic literal is a signed atomic formula of the form

• u ' v or u 6' v when u, v : int are linear expressions;
• u ≤ v when u and v are linear expressions (no other form of comparison is needed, because

u < v can be translated into u +1 ≤ v, ¬(u ≤ v) into v +1 ≤ u, and ¬(u < v) into v ≤ u);
• n | u or n - u where n ∈N, n ≥ 2 and a is a linear expression (the case n = 1 is always trivial

and can be eliminated during preprocessing). This relation is to be interpreted, in models,

as the statement that n divides u, for instance by �(n | u)�M = �∃k ∈ �int�M . u ' (k ×n) ·1
�M

.
If u =∑

i ai ·ti and v =∑
j b j ·t j , we write u−v [n] (“u−v modulo n”) for the linear expres-

sion
∑

i a′
i · ti +∑

j (−b j )′ · t j where a′
i (resp. (−b j )′) is the euclidian rest of ai (resp. −b j ) by

n, and we note n | u − v the proposition n | (u − v [n]).

Remark 4.3 (Sign of Literals). Arithmetic literals exist in positive and negative flavour (except
for the predicate ≤), but negative ones are always eliminated by simplification rules. This is why
most inference and simplification rules deal only with positive literals. We still need to have
negative literals because some inference rules introduce them in their conclusions, and so does
variable elimination (Section 4.4).

Remark 4.4 (Translation from Integer Formulas). An input problem might contain atomic for-
mulas that are not arithmetic literals; e.g., a ' b −2 or 2 ·a −b < a. They can easily be translated
to canonical literals by moving negated terms to the other side of the relation (and simplifying);
here, a +2 ' b and a +1 ≤ b.

From now on, we will write u ∼ v for either u ' v , u ≤ v or n | u (in which case v is simply 0),

u ∼̇ v for u ∼ v , u 6' v or n - u (v = 0). If l
def= u ' v or l

def= m | u−v , then n | l means n | u−v . n |? u
means either n | u or n - u. We will write uQ v for either u ≤ v or v ≤ u. Literals u '̇ v and v '̇ u
are considered the same (i.e., we work modulo commutativity of '). Given an AC1-compatible1

(for instance, [Wal98]) simplification term ordering Â with the multiset property (∀i ∈ I . s Â ti

implies s Â ∑
i∈I ti for any multiset I ), in which 0 and 1 are the smallest integer-sorted terms

and 1 Â 0, let ÂÂ be its multiset extension.

1 AC1-compatibility is only needed at the root of a literal, not under function symbols other than +, because
clauses will be purified, see Section 4.1.3.

44



Definition 4.6 (Maximal Atomic Term). Let mt(l ) be the maximal atomic term of a ground literal

l w.r.t. Â. A positive arithmetic literal l can be denoted as l
def= a · t +u ∼ v, where t = mt(l ) if t Â u

and t Â v.

To define inference rules, we will need an ordering Âlit on literals (and, by multiset exten-
sion, on clauses; this is similar to Superposition which also has a literal ordering). The reader
might skip the precise definition of Âlit at first, and just think of it as a convenient way to com-
pare literals and clauses. First, we introduce Bézout normalization:

Lemma 4.3 (Bézout Normalization). Any ground literal d e | a · t +u where t Â u and d e does not
divide a can be changed into an equivalent literal where the coefficient of t is minimal and has
the form d k with k < e. We call B(l ) (standing for Bézout normalization of l ) the literal obtained
this way from the literal l .

Proof. Using the Bézout identity (Lemma 4.2) on gcd(a,d e ) = d k with k < e we can obtain (min-
imal) m,n ∈ N×Z with m × a +n ×d e = d k , hence by summing d e | a · t +u with itself m − 1
times we get d e | (m × a) · t +m ·u, then d e | (d k −n ×d e ) · t +m ·u, and cancellation yields
d e | d k · t +m ·u.

Definition 4.7 (Arithmetic Literal Ordering). To fullfill those requirements, we define the arith-
metic orderingÂlit on ground literals (regular literals and arithmetic literals) as the lexicographic
combination of the following comparisons:

1. compare their maximal term mt(·)
2. compare their polarity (negative Â positive)
3. compare their kind kind (division Â inequality Â equality)
4. compare the number of sides of the relation the maximal term occurs in
5. depending on the kind of literal:

• compare n1 |? u1 and n2 |? u2 by (>N,Â)lex on (n1,B(u1)) and (n2,B(u2));
• compare s1 '̇ t1 and s2 '̇ t2 by ÂÂ on multisets {s1, t1} and {s2, t2};
• compare s1 ≤ t1 and s2 ≤ t2 by ÂÂ on multisets {s1, s1, t1} and {s2, s2, t2}.

Âlit can be extended to non-ground literals by asserting that l1 Âlit l2 iff l1σ Âlit l2σ for every
grounding substitution σ. We extend Âlit to clauses by its multiset extension ÂÂlit (or Âc).

Lemma 4.4 (Compatibility of Âlit). The ordering Âlit is an extension of (is compatible with) the
ordering on literals used in superposition (Definition 2.54).

Proof. The ordering on equational literals from Superposition is defined by ÂÂ on their multiset
encoding Me (·) defined by: (i) Me (s 6' t ) = {s, s, t , t }; (ii) Me (s ' t ) = {s, t }. Given two equational
literals e1 and e2 such that e1 Âlit e2, there are three possible cases:

1. if mt(e1) Â mt(e2), then Me (e1) ÂÂMe (e2);
2. otherwise, if e1 = s 6' t1 and e2 = s ' t2 with t1 6Â s and t2 6Â s (i.e., mt(e1) = mt(e2) = s),

then Me (e1) = {s, s, t1, t1} ÂÂ {s, t2} =Me (e2);
3. if both have the same sign and s

def= mt(e1) occurs on both side of the equation, whereas s
occurs only on one side of e2, then Me (e1) ÂÂMe (e2);

4. otherwise, both have the same sign, and comparing Me (ei ) with ÂÂ amounts to compar-
ing {s, ti } (where ei = s '̇ ti ) with ÂÂ.

Example 4.2 (Comparisons of Literals). Let a Â b Â c Â d.

• a ' 0 Âlit b + c ' d by maximal terms: a Â b.
• 3 - a +2 · c Âlit 5 | 2 ·a +b by polarity (same maximal term).
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• a+b+c ' d Âlit a+b ' c +d, using the last case because {a,b,c} dominates both {a,b} and
{c,d}.

• 5 - b +d Âlit 3 - b +d since 5 > 3.

Lemma 4.5 (Âlit is a Simplification Ordering). Âlit is a partial ordering on literals, total on ground
literals modulo AC1, well-founded, and stable by substitution.

Definition 4.8 (Arithmetic Model). An arithmetic model M is an interpretation (see Defini-
tion 2.58) that maps terms of type int into the set of integers Z with the standard interpretation
of 0,1,+, | and ·. We write M |=arith C if the arithmetic model M satisfies the clause C (idem for
set of clauses).

Definition 4.9 (Arithmetic Entailment). A clause set S is said to entail a clause C w.r.t. integers
arithmetic, denoted S `arith C , iff for every arithmetic model M , M |=arith S implies M |=arith C .

4.1.2 Normalization of Literals and Clauses

In general, it is preferable not to have to perform explicit inference steps to reckon that two
literals are equivalent. That explains why we defined canonical forms for literals in the previous
section. Some additional normalizations on literals and clauses are needed, but are not easy
or convenient to express as syntactic restrictions: trivially decidable literals (with only 0 and
1 as terms); literals n |? u where n is not prime, which are normalized into a conjunction or
disjunction of several literals; literals of the form u 6' v , transformed into u < v ∨u > v . The
rules are shown in Figure 4.1; only a subset is named because the other rules are so simple that
their application should be obvious.
Some words of explanation for each rule are in order. We also justify briefly their soundness in
arithmetic models.

Prime Case Switch is used to eliminate literals of the form d k - u, where d is prime and k ≥ 1.
A naive rule would directly reason by case on the remainder of u when divided by d k

(yielding the d k − 1 cases
∨k−1

i=1 d k | u + i ·1). However, we might want to reason in, for
instance, Z/232Z (unsigned machine integers). A case switch over 232 − 1 cases is not
reasonable. We can use the following fact: u not being divisible by d k means that some
of the k first digits of u in base d is not 0. If the least significant digit of u in base d that
is not 0 is the e-th one (e < k), it means u = i ·d e +d e+1 ·u′ for some i ∈ {1, . . . ,d − 1}.
Therefore u + (d − i ) ·d e = d e+1 ·u′+ (d − i + i ) ·d e = d e+1 ·u′+d e+1 is divisible by d e+1.

That is,
∨d−1

j=1 d e+1 | u+( j ×d e )·1 after the substitution j
def= d−i . Since d k - u, there is such

a digit; the outer disjunction follows. We only have (d −1)×k cases, which is much better
than d k −1 when d or k grows — in the case of machine integer, only 32 cases instead of
232 −1.

Division Simplification simplifies d k | u +d k+k ′ · t (since d k+k ′ · t is obviously always divisible
by d k ) and simplifies d k+k ′ | d k ′ ·u into d k | u.

Inequality Simplification exploits the properties of integers to round up or down inequali-
ties2. For instance, 2·a ≤ 4·b+3 becomes a ≤ 2·b+1, because 2·a ≤ 4·b+3 ⇐⇒ 2·(a−2·b) ≤
3 ⇐⇒ 2 · (a −2 ·b) ≤ 2 ⇐⇒ 2 · a ≤ 2 · (2 ·b +1) ⇐⇒ a ≤ 2 ·b +1. Conversely, 2 · a +3 ≤ 4 ·b
becomes a +2 ≤ 2 ·b by rounding 3/2 up.

Prime Decomposition uses respectively (the contrapositive of) Lemma 4.1 and regular de-
composition into prime factors.

Cancellative Equality Resolution is trivial.
Cancellative Inequality Resolution idem.
Division Elimination idem.
Total Order replaces a literal u 6' v with an alternative between u < v and u > v .

2 This criterion amounts to checking whether the gcd g of all coefficients, excluding the constant if there is one,
is ≥ 2, and then dividing them all by g .
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Prime Case Switch (PrimeCS)

C ∨d k - u

C ∨∨k−1
e=0

∨d−1
i=1 d e+1 | u + (i ×d e ) ·1

where d is prime, k ≥ 1

Division Simplification

C ∨d k |? d k+k ′ · t +u

C ∨d k |? u
and

C ∨d k+k ′ | d k ′ ·u

C ∨d k | u

where d prime, k ≥ 1, k ′ ≥ 1

Inequality Simplification

C ∨k ·u ≤ k · v + (k × c +d) ·1

C ∨u ≤ v + c ·1
and

C ∨k ·u + (k × c +d) ·1 ≤ k · v

C ∨u + (c +δ) ·1 ≤ v

for k ≥ 2 and 0 ≤ d < k, with δ=
{

0 if d = 0

1 otherwise

Prime Decomposition (PrimeDecomp)

C ∨n - u

C ∨∨k
i=1 d ei

i - u
and

C ∨n | u

{C ∨d ei

i | u}k
i=1

where n =∏k
i=1 d ei

i , k ≥ 2

Cancellative Equality Resolution
C ∨0 6' 0

C
and

C ∨ i ·1 ' 0
C

where i ≥ 1

Cancellative Inequality Resolution

C ∨ i ·1 ≤ 0
C

and
C ∨0 ≤ j ·1

>
where i ≥ 1, j ≥ 0

Division Elimination
C ∨d | i ·1

C
and

C ∨d - i ·1

>
where d > 1, 1 ≤ i ≤ d −1

Total Order (TO)

C ∨u 6' v

C ∨u +1 ≤ v ∨ v +1 ≤ u

Figure 4.1: The Normalization Rules of Iarith

47



4.1.3 Purification of Clauses

The calculus we develop in this chapter cannot handle arithmetic terms that occur under func-
tion symbols. The reason is that most inference rules will require multiplication of linear ex-
pressions by a scalar constant, so as to obtain the same coefficient for the term to rewrite; under
a function symbol we have no idea whether this is allowed. For instance, given a rule 2 · t ' u,
rewriting t in P (t ) is impossible because P (t ) does not necessarily imply P (2 · t ). On the other
hand, given P (x)∨x 6' t , the following inference is acceptable:

P (x)∨x 6' t

P (x)∨2 · x 6' 2 · t 2 · t ' u
(Sup)

P (x)∨2 · x 6' u

Definition 4.10 (Shielded Term). A term t is shielded in a clause C if it occurs in C under a
function or predicate symbol. For instance, in p(a +1)∨ f (b) ' b + c +1, both a +1 and b are
shielded, but c is not. A term that is not shielded is unshielded. Unshielded variables will be
dealt with in Section 4.4.

Definition 4.11 (Purified Clause). A purified clause3 is a clause in which all shielded terms of
type int are either variables or integer constants (of the form k ·1).

Example 4.3 (Purified Clauses). Let x : ι and y : int be variables, and a : int, f : ι→ int, g : int→
int, p : o be function or predicate symbols.

• g (a)+ y ' 3∨p is not purified, because a : int occurs under the function symbol g ;
• g ( f (x)) ≤ a is not purified, for the same reason;
• g (y) ' 2 · y ∨ g (10) is purified.

Intuitively, if all clauses are purified, any two shielded terms of type int are either distinct or easily
unifiable. There is no need for unification modulo AC1 under terms.

Definition 4.12 (Purification Ritual). To purify a clause C , it suffices to take its normal form w.r.t.
the rewrite system −→pur

∗. If a clause C contains the linear expression m (neither a variable nor
an arithmetic constant) under uninterpreted functions at positions ρ1, . . . ,ρk (k ≥ 1) — in other
words, those occurrences of m make C impure —, let x : int be a fresh variable, and

C −→pur C [x]ρ1 · · · [x]ρk ∨x 6' m

Each rewrite step of −→pur eliminates one linear expression occurring under a function symbol by
replacing it with x. In a sense, −→pur is the opposite of the (DER) rule in Superposition (Figure 2.2).
This relation terminates because the number of linear expressions occurring under a function
symbol in the clause decreases strictly at each step.

Example 4.4 (Purification). The clause p( f (a +1))∨q(2 ·b)∨ r is purified as follows:

p( f (a +1))∨q(2 ·b, a +1)∨ r

−→pur p( f (x))∨q(2 ·b, x)∨ r ∨x 6' a +1

−→pur p( f (x))∨q(y, x)∨ r ∨x 6' a +1∨ y 6' 2 ·b

4.2 Inference Rules

We now present the core innovation of this chapter: the inference system that a saturation
prover uses in its quest for ⊥. This set of rules, similarly to the superposition calculus (Sec-
tion 2.4), although it can be complemented by some simplification rules and other redundancy
criteria to improve its efficiency (see Section 4.3), is the foundation a theorem prover can lie on.
We will also demonstrate that the inference system is usable in practice with our proof of con-
cept implementation in Zipperposition.

3 also referred to as abstracted clauses in the literature, in particular in [BGW94, BW13].
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4.2.1 Ground Version of the Rules

One of the main contributions in this chapter is a set of inference rules that complement the
(typed) superposition calculus (Section 2.4). Those rules are listed in Figures 4.2 and 4.3 in their
ground version: as explained in Section 4.2.2, lifting is straightforward but makes each rule
harder to read and understand. There are 10 rules, organized along two axes: (1) the predicate
symbols of the literals involved in the inference (', ≤ and n |) — ≤ and n | do not interact —,
and (2) the number of premises (one or two). In a given rule, multiple occurrences of notations
such as Q and ∼ denote the same concrete relation. In Section 4.6 we will give more details
about a possible way to implement those rules. Let us develop the intuition beneath a few of
those rules — hopefully the reader will see how the explanations carry over the other rules.

Cancellative Superposition uses an equational literal of the form a · t +u ' v , where t is the
maximal atomic term, to “eliminate” t within another literal a′ · t +u′ ∼ v ′ (from some
other clause) — that is, deduce a new literal in which t doesn’t occur, so that the inference
is decreasing. Contrary to classic superposition, we can sum a literal with itself as many
times as needed; here, we sum the literals respectivelyϕ times andϕ′ times where a ·ϕ=
a′ ·ϕ′ = lcm(a, a′), obtaining lcm(a, a′)·t+ϕ·u 'ϕ·v and lcm(a, a′)·t+ϕ′ ·u′ ∼ϕ′ ·v ′. Now
we can swap sides in the first literal, and sum both literals to obtain lcm(a, a′)·t+ϕ·v+ϕ′ ·
u′ ∼ lcm(a, a′)·t+ϕ·u+ϕ′ ·v ′, which simplifies to the conclusionϕ·v+ϕ′ ·u′ ∼ϕ·u+ϕ′ ·v ′

by cancelling lcm(a, a′) · t out.
Cancellative Equality Factoring merges two equations a · t +u ' v and a′ · t +u′ ' v ′ (with

maximal term t ) into one single equation, under the condition that they are actually the
same (that is, v−u

a = v ′−u′
a′ ). This is similar to the (EqFact)rule (Equality Factoring) in Su-

perposition, as explained in Section 2.4.2.
Cancellation comes from the reflexivity of ' and ≤ (and the tautology ∀t . d k | d k · t ). The

ground version looks trivial, but once lifted this rule allows us to unify maximal terms
on both sides of an (in-)equation so they cancel out into a smaller literal, for instance
inferring u ≤ v from f (x)+u ≤ f (a)+ v (with {x 7→ a}).

Cancellative Chaining expresses the transitivity of ≤, in a very similar way to Waldmann’s
work [Wal01]. Intuitively, chaining v ≤ a · t + u and a′ · t + u′ ≤ v ′ starts with multi-
plying by ϕ and ϕ′ respectively to obtain the same coefficient for t , then isolating t :
ϕ · v −ϕ ·u ≤ lcm(a, a′) · t ≤ϕ′ · v ′−ϕ′ ·u′, which entails ϕ · v −ϕ ·u ≤ϕ′ · v ′−ϕ′ ·u′. Then
we normalize into ϕ · v +ϕ′ ·u′ ≤ϕ′ · v ′+ϕ ·u.

Cancellative Case Switch allows reasoning by case on a term if it belongs to a finite range.
Since, here, v ≤ a ·t+u and a′ ·t+u′ ≤ v ′, it meansϕ·v−ϕ·u ≤ lcm(a, a′)·t ≤ϕ′ ·v ′−ϕ′ ·u′

where a ×ϕ = lcm(a, a′) = a′ ×ϕ′. If we assume there is a constant k ∈ N such that
ϕ′ ·v ′+ϕ ·u =ϕ ·v +ϕ′ ·u′+k ·1, then the range of possible values for lcm(a,b) · t is finite
and contains k+1 values that areϕ·v−ϕ·v+i ·1 for i ∈ {0, . . . ,k}. We can therefore deduce∨k

i=0ϕ · v −ϕ ·u + i ·1 ' lcm(a, a′)t , normalized into
∨k

i=0 lcm(a, ′a) · t +ϕ ·u 'ϕ · v + i ·1.
This inference rule is crucial to solve the first case of Example 4.1. We don’t allow k to be
negative, for Cancellative Chaining already deals with this case.

Cancellative Inequality Factoring merges two literals l and l ′ into l ′, if l ′ is an inequality, both

share the same maximal term t , and l `arith l ′. If l
def= a · t +u ' v , then l `arith a · t +uQ v ,

so we only explain this latter case; by symmetry we even assume l
def= a·t+u ≤ v and l ′ def= a′·

t +u′ ≤ v ′. In this case, a sufficient condition for l `arith l ′ is if v−u
a ≤ v ′−u′

a′ , in other words
C ′∨(

ϕ · v +ϕ′ ·u′ ≤ϕ ·u +ϕ′ · v ′)⇒ (
a′ · t +u′ ≤ v ′). Normalizing the first literal yields the

expected conclusion, C ′∨ (
ϕ ·u +ϕ′ · v ′+1 ≤ϕ · v +ϕ′ ·u′)∨ (

a′ · t +u′ ≤ v ′).
Modular Chaining implements the fact that divisibility commutes with addition and subtrac-

tion. We assume d e | a · t +u and d e+k | a′ · t +u′. From the former we deduce d e+k |
(a×d k )·t+d k ·u; then, we multiply byϕ, respectivelyϕ′, such thatϕ×(a×d k ) =ϕ′×a′ =
lcm(a ×d k , a′) — by assumption lcm(a ×d k , a′) < d e+k so t is not simplified away from
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the literals — and subtract the two resulting literals into d e+k | lcm(a ×d k , a′) · (t − t )+
(ϕ×d k ) ·u −ϕ′ ·u′, which simplifies into d e+k | (ϕ×d k ) ·u −ϕ′ ·u′.

Modular Factoring is similar to Equality and Inequality Factoring. It merges together l
def= d e |

a · t +u and l ′ def= d e+k | a′ · t +u′ if a side-condition, l `arith l ′, is solved. From l we deduce
d e+k | (d k ×a) · t +d k ·u. The inference requires gcd(d k ×a,d e+k ) | gcd(a′,d e+k ) because

otherwise l could not imply l ′: for instance if l
def= 2 | t , l ′ def= 4 | t , from l we cannot deduce

any information on the divisibility of t by 4, only by 2. We could say that in l , t lives
in Z/2Z, whereas in l ′ it lives in Z/4Z. If the condition is fulfilled, it’s again a matter of
expressing whether d e+k | (ϕ×d k ) ·u −ϕ′ ·u′ holds.

Modular Equality Factoring reduces to Modular Factoring by noticing a · t +u ' v entails d e |
a · t +u − v .

Divisibility as some other rules (e.g., Modular Equality Factoring), it witnesses the fact that u '
v implies n | u−v for all n. Divisibility is explicitly needed because, although a · t +u ' v
already implies a | u − v , the latter’s maximal term (some atomic subterm of u or v) is
strictly smaller in Â than the former’s maximal term (t ), and therefore some inferences
apply to a | u − v that wouldn’t otherwise.

Example 4.5 (Simple Example). Let us show that {16 | 2 · a +b,4 | c +1,b ' c} is unsatisfiable,
with a Â b Â c.

16 | 2 ·a +b
(CDiv)

2 | b b ' c
(CSup)

2 | c 4 | c +1
(Chain|)

4 | 2 ·1

⊥
Example 4.6 (Modular Case Splits). Let us show that among a, a+1, a+2, one term is a multiple
of 3. The refutation, as follows, starts with {3 - a,3 - a+1,3 - a+2} and uses Modular Chaining to
combine clauses and AVATAR splits (Section 2.5), as well as trivial normalizations from Figure 4.1.

3 - a
3 | a +1∨3 | a +2 ·1

3 | a +1 ← T3 | a +1U 3 | a +2 ·1 ← T3 | a +2 ·1U T3 | a +1UtT3 | a +2 ·1U

π0

3 - a +1
3 | a ∨3 | a +2 ·1

3 | a ← T3 | aU 3 | a +2 ·1 ← T3 | a +2 ·1U T3 | aUtT3 | a +2 ·1U

π1

3 - a +2 ·1
3 | a ∨3 | a +1

3 | a ← T3 | aU 3 | a +1 ← T3 | a +1U T3 | aUtT3 | a +1U

π2
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Cancellative Superposition (CSup)

C ∨a · t +u ' v C ′∨a′ · t +u′ ∼ v ′
C ∨C ′∨ϕ′ ·u +ϕ · v ′ ∼ϕ ·u′+ϕ′ · v

where t Â u, t Â v , t Â u′, t Â v ′, ϕ×a =ϕ′×a′ = lcm(a, a′),
a · t +u ' v Âc C , a′ · t +u′ ∼ v ′ Âc C ′

Cancellative Equality Factoring (CFact'')

C ∨a · t +u ' v ∨a′ · t +u′ ' v ′
C ∨ϕ ·u +ϕ′ · v ′ 6'ϕ′ ·u′+ϕ · v ∨a′ · t +u′ ' v ′

where t Â u, t Â v , t Â u′, t Â v ′, ϕ×a =ϕ′×a′ = lcm(a, a′),
the last literal is maximal

Cancellation (Canc)

C ∨a · t +u ∼̇ a′ · t + v
C ∨ (a −a′) · t +u ∼̇ v

and
C ∨d k | d k · t +u

C ∨d k | u

where t Â u, t Â v , a ≥ a′, the literal is maximal

Cancellative Chaining (Chain≤)

C ∨ v ≤ a · t +u C ′∨a′ · t +u′ ≤ v ′
C ∨C ′∨ϕ · v +ϕ′ ·u′ ≤ϕ′ · v ′+ϕ ·u

where t Â u, t Â v , t Â u′, t Â v ′, a ×ϕ= a′×ϕ′ = lcm(a, a′),
the literals are maximal in their respective clause

Cancellative Case Switch (CSwitch)

C ∨ v ≤ a · t +u C ′∨a′ · t +u′ ≤ v ′

C ∨C ′∨∨k
i=0(ϕ×a) · t +ϕ ·u 'ϕ · v + i ·1

where t Â u, t Â v , t Â u′, t Â v ′, a ×ϕ= a′×ϕ′ = lcm(a, a′),
there is a k ∈N such that ϕ · v +ϕ′ ·u′+k ·1 =ϕ′ · v ′+ϕ ·u,

the literals are maximal.

Cancellative Ineq. Factoring (CFact≤)

C ∨
{

a · t +uQ v
or a · t +u ' v

}
∨a′ · t +u′Q v ′

C ∨ϕ ·u +ϕ′ · v ′+1Qϕ · v +ϕ′ ·u′∨a′ · t +u′Q v ′

where t Â u, t Â v , t Â u′, t Â v ′, a ×ϕ= a′×ϕ′ = lcm(a, a′),
the last literal is maximal.

Figure 4.2: The Inference Rules on ' and ≤ of Iarith (ground version)

π0

3 | a +1 ← T3 | a +1U

π1

3 | a ← T3 | aU
(Chain|)

3 | a +1+2 ·a ← T3 | a +1UuT3 | aU

3 | 1 ← T3 | a +1UuT3 | aU

⊥← T3 | a +1UuT3 | aU
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Modular Chaining (Chain|)
C ∨d e | a · t +u C ′∨d e+k | a′ · t +u′

C ∨C ′∨d e+k | (ϕ×d k ) ·u −ϕ′ ·u′

where t Â u, t Â u′, d prime, k ≥ 0,
ϕ× (a ×d k ) =ϕ′×a′ = lcm(a ×d k , a′) < d e+k ,

literals are maximal in their clause

Modular Factoring (CFact||)
C ∨d e | a′ · t +u′∨d e+k | a · t +u

C ∨d e+k -ϕ ·u − (d k ×ϕ′) ·u′∨d e+k | a · t +u

where t Â u, t Â v , t Â u′, t Â v ′, ϕ×a =ϕ′×a′ = lcm(a, a′),
gcd(a′,d e ) ·d k | gcd(a,d e+k ), d prime, k ≥ 0,

the last literal is maximal

Modular Equality Factoring (CFact|')

C ∨a · t +u ' v ∨d e | a′ · t +u′

C ∨d e -ϕ · v +ϕ′ ·u′−ϕ ·u ∨d e | a′ · t +u′

where t Â u, t Â v , t Â u′, t Â v ′, gcd(a,d e ) | gcd(a′,d e ),
ϕ ·a =ϕ′ ·a′, a · t +u ' v Âc C , d prime

Divisibility (CDiv)

C ∨a · t +u ' v
C ∨a | u − v

and
C ∨d k+k ′ | (b ×d k ) · t +u

C ∨d k | u

where t Â u, t Â v , d prime, k ≥ 1,k ′ ≥ 1, a ≥ 2, b ≥ 1,
the literal is maximal

Figure 4.3: The Inference Rules on divisibility of Iarith (ground version)

Similarly, we can obtain ⊥← T3 | a +1UuT3 | a +2 ·1U and ⊥← T3 | aUuT3 | a +2 ·1U. At least
two among {T3 | aU,T3 | a +1U,T3 | a +2 ·1U} must be true by the splitting constraints, but since
we just found they are mutually exclusive the constraints are unsatisfiable.

Example 4.7 (Case Splits on Inequalities). Going back to Example 4.1, we prove p(a)∧p(a+1)∧
p(a +2) ⇒∃x. (3 | x ∧p(x)). The negation of the goal, after Skolemization (Definition 2.52) and
purification (Definition 4.12), is the set of clauses {p(x)∨ x 6' a, p(x)∨ x 6' a +1, p(x)∨ x 6' a +
2,3 - p(x)∨¬p(x)}. We obtain the following derivations (using a very simple case of the variable
elimination algorithm presented in Section 4.4):

p(x)∨x 6' a 3 - x ∨¬p(x)
(CSup)

x 6' a ∨3 - x
(VarElim)

3 - a

p(x)∨x 6' a +1 3 - x ∨¬p(x)
(CSup)

x 6' a +1∨3 - x
(VarElim)

3 - a +1

p(x)∨x 6' a +2 3 - x ∨¬p(x)
(CSup)

x 6' a +2∨3 - x
(VarElim)

3 - a +2
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from there, we use the derivation from Example 4.6 to conclude.

Example 4.8 (Even-Odd term). We prove that 2 ·a1 ' b ∧2 ·a2 ' b +1 is unsatisfiable. There are
several proofs, depending on the ordering of {a1, a2,b}.

• if a1 Â a2 Â b or a2 Â a1 Â b, a1 and a2 are eliminated by Divisibility; then, by Modular
Chaining, we obtain an absurd literal.

2 ·a1 ' b
(CDiv)

2 | b
2 ·a2 ' b +1

(CDiv)
2 | b +1

(Chain|)
2 | 1

⊥
• if b Â a1 Â a2 (b Â a2 Â a1 is symmetric), we eliminate b by superposition, then a1 by

Divisibility.

2 ·a1 ' b 2 ·a2 ' b +1
(CSup)

2 ·a1 +1 ' 2 ·a2 (CDiv)
2 | 1

⊥
• if a1 Â b Â a2 (and the symmetric case), we start with Divisibility on a1, then Superposition

on b (which also eliminates a2 since it occurs in Z/2Z).

2 ·a1 ' b
(CDiv)

2 | b 2 ·a2 ' b +1
(CSup)

2 | 2 ·a2 +1

⊥
Example 4.9 (Divisibility and Equalities). In this example, we show how a divisibility constraint
can filter the possible values for a term. From

∨4
i=1 a ' i and 3 | a, we prove that a ' 3 must hold.

First, we show the version without AVATAR:

a ' 1∨a ' 2∨a ' 3∨a ' 4 3 | a
(CSup)

3 | 1∨a ' 1∨a ' 2∨a ' 3

a ' 1∨a ' 2∨a ' 3

π2

a 6' 3
(TO)

a ≤ 2∨4 ≤ a

π2

(CSup)
a ' 1∨a ' 2∨1 ≤ 0∨4 ≤ a

a ' 1∨a ' 2∨4 ≤ a

π2

(CSup)
a ' 1∨a ' 2∨4 ≤ 3 3 | a

(CSup)
a ' 1∨3 | 2

a ' 1 3 | a
(CSup)

3 | 1

⊥
Now, we can also leverage AVATAR to reason by case:

a ' 1∨a ' 2∨a ' 3∨a ' 4 (ASplit)
a ' 1 ← Ta ' 1U a ' 2 ← Ta ' 2U a ' 3 ← Ta ' 3U a ' 4 ← Ta ' 4U

Ta ' 1UtTa ' 2UtTa ' 3UtTa ' 4U

π
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π

a ' 1 ← Ta ' 1U 3 | a
(CSup)

3 | 1 ← Ta ' 1U

⊥← Ta ' 1U

and the same for a ' 2 and a ' 4. For a ' 3, we will use the negation of our goal, that is, a 6' 3:

a 6' 3
(TO)

a ≤ 2∨4 ≤ a (ASplit)
a ≤ 2 ← Ta ≤ 2U 4 ≤ a ← T4 ≤ aU Ta ≤ 2UtT4 ≤ aU

π2

π2

a ≤ 2 ← Ta ≤ 2U

π

a ' 3 ← Ta ' 3U
(CSup)

3 ≤ 2 ← Ta ' 3UuTa ≤ 2U

⊥← Ta ' 3UuTa ≤ 2U

π2

4 ≤ a ← T4 ≤ aU

π

a ' 3 ← Ta ' 3U
(CSup)

4 ≤ 3 ← Ta ' 3UuT4 ≤ aU

⊥← Ta ' 3UuT4 ≤ aU

so we obtain the clauses
(¬Ta ' 1U

)
,
(¬Ta ' 2U

)
,
(¬Ta ' 4U

)
,
(¬Ta ' 3Ut¬Ta ≤ 2U

)
,
(¬Ta ' 3Ut

¬T4 ≤ aU
)
,
(
Ta ≤ 2UtT4 ≤ aU

)
and

(
Ta ' 1UtTa ' 2UtTa ' 3UtTa ' 4U

)
, that is, an unsatis-

fiable boolean constraint.

Lemma 4.6 (Rules are Decreasing). The conclusion of an inference is strictly smaller (w.r.t. the
≺c ordering) than the maximal premise of the inference.

Proof. By definition of ≺c for each case.

Remark 4.5. It is possible that Modular Equality Factoring (CFact|') and the second case of Can-
cellative Inequality Factoring (CFact≤) do not make the system more complete [Wal15]. We kept
them in this presentation because their presence in the implementation might have an influence
on the experimental results shown later.

4.2.2 Lifting to First-Order

To reason over first-order clauses, including axioms on uninterpreted axioms (typically, mono-
tonicity of a function, transitivity of a predicate, etc.), we lift this calculus to non-ground terms.
Inferences will then require applying a substitution to their conclusion, and assume their pre-
mises share no variables. The first-order version of Modular Chaining is shown in Figure 4.4 as
an illustration, the other first-order rules being similar. A restricted version of AC1-unification
is used, that doesn’t unify variables appearing directly under sums; the unification procedures
will be explained in Section 4.6.3. We assume the clauses satisfy the following properties:
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Modular Chaining

C ∨d e+k |∑i ai · ti +u C ′∨d e |∑ j a′
j · t ′j +u′

(C ∨C ′∨d e+k |ϕ ·u − (d k ·ϕ′) ·u′)σ

where a =∑
i ai ≥ 1, a′ =∑

j a′
j ≥ 1, σ is a most general

AC1-unifier of all the ti and t ′j , a ·ϕ= a′ ·d k ·ϕ′, literals are

maximal in their clause after applying σ, t1σ 6≺ uσ, t ′1σ 6≺ u′σ,
k ≥ 0

Figure 4.4: Inference Rule lifted to First-Order

• no unshielded variable (or naked variable) occurs in an arithmetic literal. We will present
an algorithm to get rid of such variables in Section 4.4;

• clauses must be purified, as explained in Definition 4.12.

Every instance of such lifted rules correspond to some rule in Figure 4.2 or Figure 4.3 —
except the ordering constraints that need be respected by at least one instance, not all of them.
This makes the lifted versions sound iff the ground rules are. Of course, the actual implemen-
tation shall use the lifted rules, with all the subtleties entailed by the need of unifying multiple
terms in each resolvent literal.

Remark 4.6. Some rules, such as Cancellation of a divisibility literal, are only useful in the pres-
ence of variables, for otherwise they are subsumed by normalization rules.

Example 4.10 (Inequality Factoring). Let us prove that the conjunction of ∀x y. 10 ≤ f (x)∨11 ≤
f (y) and f (a) ≤ 5 is unsatisfiable. The unary inference used here is Inequality factoring 4 using{
x 7→ y

}
, and the binary one is chaining, with

{
y 7→ a

}
.

10 ≤ f (x)∨11 ≤ f (y)
(CFact≤)

11+1 ≤ 10∨10 ≤ f (y)

10 ≤ f (y) f (a) ≤ 5
(Chain≤)

10 ≤ 5
⊥

4.3 Redundancy

It is well known that automated theorem provers generally need refinements that help them
prune large parts of the search space and avoid wasting resources on useless clauses or for-
mulas. After writing a simple theorem prover, one can easily see why redundancy criteria are
required, in practice, for the prover not to drown in too large a search space. Happily, we can
rely on the usual abstract notion of redundancy presented earlier (Section 2.4.3). The classic
rules of superposition — subsumption and demodulation (rewriting with unit equations) —
still apply to our arithmetic calculus, but other, more specific, rules are useful too.

Definition 4.13 (Arithmetic Redundancy). A ground clause C is Iarith-redundant w.r.t. a set of
ground clauses N iff ∃D1 . . . Dn ∈ N . D1 ∧·· ·∧Dn `arith C and C Âc Di for all Di . A clause C is
Iarith-redundant with respect to N if for each of its ground instances Cσ, N≺Cσ `arith Cσ

4 In the next section we will present the Condensation simplification rule, which also applies here.

55



4.3.1 Simplification Rules

Let us first focus on inferences that make one of their premises redundant, commonly named
simplifications (because the conclusion “replaces” the now obsolete premise). The usual de-
modulation (rewriting with unit positive equations) is easily extended to unit positive arith-
metic equations and divisibility literals. A set of useful simplifications dedicated to arithmetic
that are implemented in Zipperposition is listed in Figure 4.5. We see that Cancellative Demod-
ulation is actually a specialized version of Cancellative Superposition, for cases where the active
clause is unit and the rewriting strictly decreases (which is not always the case in the first-order
rule; the inference is only non-increasing); similarly, Cancellative Divisibility Demodulation is
a specialized version of Modular Chaining.

Cancellative Demodulation∑
i ai · ti +u ' v C ′∨a′ · t ′+u′ ∼ v ′

C ′∨ϕ ·uσ+ϕ′ · v ′ ∼ϕ′ ·u′+ϕ · vσ

where ∼∈ {', 6'}, ∀i . t ′ = tiσ, ϕ×∑
i ai =ϕ′×a′, t ′ Â uσ,

t ′ Â vσ, t 6≺ u′, t ′ 6≺ v ′, all vars of the first premise are bound in
σ, (a′ · t +u′ ∼ v ′) Âc C ′

Cancellative Divisibility Demodulation

d k |∑i ai · ti +u C ′∨d k | a′ · t ′+u′

C ′∨d k |ϕ ·uσ−ϕ′ ·u′

where ∀i . t ′ = tiσ, ϕ×∑
i ai =ϕ′×a′, t ′ Â uσ, t 6≺ u′, all vars of

the first premise are bound in σ, (d k | a′ · t +u′) Âc C ′

Figure 4.5: The Simplification Rules of Iarith

4.3.2 Subsumption

A clause C can also be made redundant by other clauses that aren’t directly deduced from C . In
particular, the notion of subsumption is used in almost every saturation-based theorem prover.
Roughly, given clauses C and D , we say C subsumes D with a substitution σ if Cσ⊆ D (where ⊆
is the multiset inclusion). It means that every instance of D is implied by a smaller instance of C ,
and therefore D is redundant. Even though subsumption is a decidable subset of implication,
it only uses syntactic equality to check whether a literal (in Cσ) implies another literal (in D).
We could use the same notion of implication for arithmetic clauses, but in this section we will
see a much stronger notion of decidable entailment between arithmetic literal (and therefore
between clauses).

The subsumption relation we use is noted l1 varith,σ l2 (l1 subsumes l2 with substitution σ,
that is, l1σ`arith l2). We write l1 varith l2 if there is a σ such that l1 varith,σ l2. This subsumption
relation extends to clauses by

∨n
i=1 ui varith,σ

∨m
j=1 v j (m ≥ n) if there is an injection ρ with

∀i ∈ {1, . . . ,n}. ui varith,σ vρ(i ).
To define varith,σ, we first define matching substitutions on linear expressions (sums of

atomic terms) u and u′ as tuples (σ,ϕ,ϕ′) where σ is a substitution, ϕ,ϕ′ ∈ N+2, and ϕ ·uσ =
ϕ′ ·u′. The notation u Â(σ,ϕ,ϕ′) u′ means that the tuple (σ,ϕ,ϕ′) matches u with u′. This relation
also extends to multisets of linear expressions by {u1,u2, . . . ,un} Â(σ,ϕ,ϕ′) {u′

1,u′
2, . . . ,u′

n} if there
is a permutation ρ with ∀i ∈ {1, . . . ,n}. ui Â(σ,ϕ,ϕ′) u′

ρ(i ), and it extends to tuples of linear expres-
sions of equal arity by pairwise matching of the tuples’ components: (u1,u2, . . . ,un) Â(σ,ϕ,ϕ′)
(u′

1,u′
2, . . . ,u′

n) if ∀i ∈ {1, . . . ,n}. ui Â(σ,ϕ,ϕ′) u′
i . Using this notion of matching, subsumption is
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defined in Figure 4.6.

u ' v varith,σ u′ ' v ′ if {u, v} Â(σ,ϕ,1) {u′, v ′}
u ' v varith,σ u′ ≤ v ′+k ·1 if (u, v) Â(σ,ϕ,ϕ′) (u′, v ′),k ≥ 0
u ≤ v varith,σ u′ 6' v ′+k ·1 if (u, v) Â(σ,ϕ,ϕ′) (u′, v ′),k > 0

or (u, v) Â(σ,ϕ,ϕ′) (v ′,u′),k < 0
u ≤ v varith,σ u′ ≤ v ′+k ·1 if (u, v) Â(σ,ϕ,ϕ′) (u′, v ′),k ≥ 0
u ' v varith,σ d k | u′ if u − v [d k ] Â(σ,ϕ,1) u′ and mt(u ' v) = mt(u − v [d k ])
d k+k ′ | u varith,σ d k | u′ if u Â(σ,ϕ,1) u′

Figure 4.6: Subsumption Relation on Arithmetic Literals

Remark 4.7. Care must be taken that the conclusion of an inference rule is not subsumed by a
premise, as in Superposition. In particular, 2 · t ' v cannot subsume 2 | v (the conclusion of a
Divisibility inference) because if t Â v, then some necessary inferences with 2 | v cannot be done
with 2 · t ' v — hence the restrictions on the corresponding subsumption rule. The attentive
reader might notice that (2 · t ' v) Âlit (2 | v) anyway in this case, which prevents the former from
subsuming the latter according to Definition 4.13.

Example 4.11 (Subsumption). To better grasp the meaning of those subsumption rules, let use
consider a few examples:

•
(

f (x)+ f (y) ≤ b
)varith,σ

(
2 · f (a) 6' b +10

)
, with σ= {

x 7→ y, y 7→ a
}
.

• (0 ≤ len(l )) varith,σ
(
0 ≤ 2 · len(l ′)+1

)
with σ= {

l 7→ l ′
}

•
(

f (x) ' x +a
)varith,σ

(
f (a) ' 2 ·a

)
with σ= {x 7→ a}

• (a ' 2 ·b +4 · c) varith,; (4 | 2 ·b +3 ·a)

Theorem 4.1. The subsumption relation varith is sound w.r.t. integer linear arithmetic, that is,
l1 varith,σ l2 implies l1σ`arith l2.

Using this subsumption relation, we can both remove clauses that are subsumed by other
clauses, and powerful simplification rules built upon subsumption such as condensation and
contextual literal cutting (see Figure 2.3).

Remark 4.8 (Decidable Entailment). In some contexts, a decidable entailment relation such as
varith can prove very useful. For instance, the particular type of induction proposed by Kersani &
Peltier [KP13] uses such a relation (typically alpha-equivalence or subsumption) to detect loops
in the search space and thus reason by infinite descent. In such cases, our subsumption relation
can prove useful.

4.3.3 Inequality Demodulation

A big issue with ordering literals is that they do not have an equivalent of demodulation, be-
cause no inference we can perform on them preserves equivalence (in contrast to equality,
where a ' b makes C [a]p and C [b]p equivalent, thus allowing us to replace the former with
the latter). On the other hand, experience shows that literals such as l =∀x : list(int). len(x) ≥ 0
combined with other axioms tend to generate a lot of useless variants such as ∀x1 x2 : list(int).
len(x1)+2 · len(x2) ≥ 0 which are not properly subsumed by the original axiom l (because the
latter only has one variable and cannot match both l1 and l2). We need to show those con-
clusions are redundant, using several instances of l . If a set of unit ≤-clauses can be used to
rewrite a literal l to >, then we know >⇒ l (meaning l is redundant) — similarly, a literal l can
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be shown to imply ⊥, making it absurd. We define below such a rewrite system and the exact
rules by which a trivial or absurd literal is eliminated.

We know that if we have a unit clause C
def= t +u ≤ v , and some clause D

def= D ′∨ tσ+u′ ≤ v ′,
then (v −u)σ ≤ (v ′−u′) (that is, vσ+u′ ≤ uσ+ v ′) means that tσ ≤ v ′−u′ is true. In this case
the clause D is redundant (if it’s bigger than C in the ordering). We therefore define the relation
⇐,≤,N
,−−−→ parametrized over a set of clauses N by the rewrite system in Figure 4.7. Intuitively, l

⇐,≤,N
,−−−→

l ′ means l ′∧N `arith l ; in other words, l ′ is a sufficient condition for l given some already proved

background assumptions N , and if we can prove that l
⇐,≤,N
,−−−→> it means that l is trivially true

when N is. A literal L is tautological if L
⇐,≤,N
,−−−→∗ >. Note that

⇐,≤,N
,−−−→ does not rewrite literals in

place — that would not preserve equivalence —, but instead, we compute a normal form of l

using
⇐,≤,N
,−−−→ and compare it to >.

Inequality Demodulation Left

a · t +u ≤ v
⇐,≤,N
,−−−→ϕ ·u +ϕ′ · v ′σ≤ϕ · v +ϕ′ ·u′σ

if (
∑n

i=1 a′
i · t ′i +u′ ≤ v ′) ∈ N , a′ def= ∑n

i=1 a′
i ,

ϕ×a =ϕ′×a′ = lcm(a, a′)
t Â u, t Â v , ∀i ∈ {1, . . . ,n}. t ′iσ= t , t ′iσÂ u′σ, t ′iσÂ v ′σ

Inequality Demodulation Right

u ≤ a · t + v
⇐,≤,N
,−−−→ϕ ·u +ϕ′ · v ′σ≤ϕ · v +ϕ′ ·u′σ

if (u′ ≤∑n
i=1 a′

i · t ′i + v ′) ∈ N , a′ def= ∑n
i=1 a′

i ,
ϕ×a =ϕ′×a′ = lcm(a, a′)

t Â u, t Â v , ∀i ∈ {1, . . . ,n}. t ′iσ= t , t ′iσÂ u′σ, t ′iσÂ v ′σ

Figure 4.7: Inequality Rewrite System

Similarly, we can specialize the regular chaining relation from Figure 4.2 into a simplifica-

tion version
⇒,≤,N
,−−−→. tσ+u ≤ v

⇒,≤,N
,−−−→ u+v ′σ≤ v +u′σ if v ′ ≤ u′+ t ∈ N (and symmetrically). If, for

some literal l , l
⇒,≤,N
,−−−→∗ ⊥, we know that l is absurd and can be removed from the clause, because

l
⇒,≤,N
,−−−→ l ′ implies l ∧N `arith l ′, i.e., N `arith l ⇒ l ′. Otherwise, l is kept intact.

Lemma 4.7 (Termination). The rewrite relations
⇐,≤,N
,−−−→ and

⇒,≤,N
,−−−→ are terminating.

Proof. At each step the maximal term is replaced with finitely many strictly smaller terms,
which makes the literal smaller w.r.t. Âlit.

We’ve seen how to tackle a problem that often occurs with inequality literals and chaining.
Both those rules and the subsumption relation from Section 4.3.2 can also be used regardless of
the inference system. In particular, they provide a decidable implication relation (i.e., a relation
included in `arith) that might be leveraged in other calculi operating on arithmetic literals, such
as hierarchic superposition [BGW94, BW13].

4.3.4 Semantic Tautologies

Tautologies are harmful to Superposition theorem provers if not eliminated, because they can-
not contribute to any unsatisfiability proof but still increase the size of the search space because
they can participate in inferences. Some tautologies are very easy to detect — for instance,
l ∨¬l ∨C is obviously a trivial clause — but some stronger criteria exist. As a comparison point,
E [Sch02] has a notion of equational tautologies:

∨
i ui 6' vi ∨∨

j u′
j ' v ′

j is redundant if there is a
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j such that
[

(
∧

i ui ' vi ) ⇒ u′
j ' v ′

j

]
σwithσ a substitution mapping each variable to a different

opaque constant (in practice, one can use a congruence closure algorithm [NO80] to check it
efficiently). In the same vein, we use the Simplex method [KS08] as follows: for a clause

C
def= ∨

i
(ui ≤ vi )∨∨

j

(
u′

j 6' v ′
j

)
∨D

we define the set of linear equations

SC
def= {ui − vi ≥ 1}i ∪

{
u′

j − v ′
j ≥ 0,u′

j − v ′
j ≤ 0

}
j
∪

SC is a linear integer problem whose conjunction represents the negation of C \ D (i.e.,
∧

i

(ui > vi )∧∧
j (u′

j ' v ′
j ) ). We can use the Simplex method to determine whether it is satisfi-

able inQ. If SC is not satisfiable inQ, it doesn’t admit rational solutions and therefore it doesn’t
admit integer solutions either. In that case, its negation C \ D is a tautology and so is C .

Lemma 4.8 (Tautology Detection via Simplex). If SC is unsatisfiable in Q, then C is a tautology
and can be safely removed from the set of clauses.

Example 4.12 (Tautological Clause). For instance, the clause C
def= p∨4 | t+1∨2·t ≤ 5∨t ' 3∨2 ≤ t

is a tautology. By definition

SC
def= {2 · t −5 ≥ 1,2− t ≥ 1} = {t ≥ 3, t ≤ 1}

which makes SC trivially unsatisfiable inQ and C trivial.

4.4 Variable Elimination

The lifted version of Iarith (Section 4.2.2) only works with clauses whose variables are all
shielded (Definition 4.10). The reason is that shielded variables are always smaller than their
shielding term and therefore cannot be involved in inferences, sparing us from having to use
AC1-unification. However, some inferences may un-shield variables (by eliminating the last
shielding term); therefore, we need to combine Iarith with a procedure to eliminate those un-
shielded variables so we get usable clauses again. If we accept to interpret terms in int with the
standard integers Z (and operators, including divisibility, defined the obvious way), we can use
Cooper’s quantifier elimination algorithm [Coo72] for Presburger arithmetic.

Let us consider a clause C in which the variable x : int is unshielded. Our goal is to find a set
of clauses elimx (C ) such that x 6∈ freevars(C ), C `arith

∧
D∈elimx (C ) D and elimx (C ) `arith C . For

a start, if C
def= C ′∨x +u 6' v with x unshielded and x 6∈ freevars(u) 5, we can eliminate x directly

and simplify C into C ′ {x 7→ v −u} (for any other instance of x will trivially satisfy the clause).

Let C
def= C ′ ∨∨k

i=1 li [x] with x 6∈ freevars(C ′) and k ≥ 1. C is classically equivalent to C ′ ∨
¬(∃x.

∧k
i=1¬li [x]

)
; the sub-formula F [x] = ∧k

i=1¬li [x] is quantifier-free, in disjunctive nor-
mal form, and all its literals are by hypothesis arithmetic literals directly involving x. We can
therefore apply Cooper’s algorithm to ∃x. F [x] to eliminate x. First, let δ be the least common
multiple of all δi such that δi · x +ui ∼̇ vi is a ¬li [x] in F [x]. Then, multiply sides of every
¬li [x] by δ/δi (an integer), replace δ · x by x ′, thus obtaining a formula F ′[x ′] (in which all oc-
currences of x ′ appear with coefficient 1). Let G[x ′] = F ′[x ′]∧δ | x ′, so that by construction
∃x ′. G[x ′] ⇔∃x. F [x]. We partition G[x ′] into several “kinds” of literals (remember that literals

5 x 6∈ freevars(v) is always true if the clause is normalized, which is assumed here.
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in G[x ′] are the negation of literals of C ; that explains the use of < rather than ≤):

ai [x ′] def= x ′+uai ' vai

b j [x ′] def= x ′+ub j 6' vb j

ck [x ′] def= nck | x ′+uck

dl [x ′] def= ndl - x ′+udl

em[x ′] def= x ′+uem < vem

fn[x ′] def= u fn < x ′+ v fn

Remark 4.9. We treat negative literals in the input, of shapes u 6' v and n - u — even though they
do not appear in normalized forms —, in order to be as comprehensive as possible. If a prover
was built with slightly different assumptions (for instance, if Prime Case Switch and Total Order
were inference rules rather than normalization ones), it could still benefit from the algorithm
presented here.

Now, let A
def= {vem −uem }m∪{vai −uai +1}i ∪{vb j −ua j } j and B

def= {vai −uai −1}i ∪{vb j −ub j } j ∪
{u fn − v fn }n be sets of signed linear expressions and δ′ def= lcm

(⋃
k {nck }∪⋃

l {ndl }
)
. Intuitively, A

is a set of potential strict upper bounds, and B a set of potential strict lower bounds for x ′. We
can choose between the following versions of Cooper’s algorithm, depending on whether A has
more elements than B 6:

∃x ′. G[x ′] ⇐⇒
δ′∨

n=1
G−∞[n]∨

δ′∨
n=1

∨
j∈B

G[ j +n]

or (if A is smaller)

∃x ′. G[x ′] ⇐⇒
δ′∨

n=1
G∞[−n]∨

δ′∨
n=1

∨
j∈A

G[ j −n]

where

G−∞[x] =
{
⊥ if {ai [x ′]}i ∪ { fn[x ′]}n 6= ;∧

k,l
(
nck | uck +x ∧ndl - udl +x

)
otherwise

G∞[x] =
{
⊥ if {ai [x ′]}i ∪ {em[x ′]}m 6= ;∧

k,l
(
nck | uck +x ∧ndl - udl +x

)
otherwise

Now we use the distributivity of ∧ and ∨ to obtain the conjunctive normal form of our result.
C ′∨¬(∃x ′. G[x ′]) becomes, writing ϕT [x] =∨

i ¬li [x] when ϕ[x] =∧
i li [x], the following set:

elimx (C ) =
δ⋃

n=1

{
C ′∨GT

−∞[n]
}∪ δ⋃

n=1

⋃
j∈B

{
C ′∨GT [ j +n]

}
or

elimx (C ) =
δ⋃

n=1

{
C ′∨GT

∞[−n]
}∪ δ⋃

n=1

⋃
j∈A

{
C ′∨GT [ j −n]

}
Note that if G−∞[n] is ⊥, then GT−∞[n] is > and the corresponding clause is trivial, so we can
ignore it.

6Both choices are always valid, the only difference is efficiency w.r.t. the number of clauses generated.

60



Theorem 4.2 (Variable Elimination). Let C is a clause with unshielded variables x1, . . . , xn and
elimx1,...,xn (C )

def= elimx1 (. . . (elimxn (C ) . . .)). Then no clause in elimx1,...,xn (C ) contains any un-
shielded variables, C `arith elimx1,...,xn (C ), and elimx1,...,xn (C ) `arith C .

Example 4.13 (Variable Elimination). Let C
def= p(x) ∨ x 6' 3 · y (typically obtained by purify-

ing ∀x. p(3 · x)). To eliminate y, we typically perform the renaming
{

y ′ 7→ 3 · y
}

and obtain

A = B
def= {x}, C ′ def= p(x), G[y ′] def= y ′ ' x ∧3 | y ′, and δ′ = 3. Both forms will yield the same result, let

us show what happens with the G−∞ one: ∃y ′. G[y ′] ⇐⇒ ∨3
n=1 G−∞[n]+∨3

n=1

{
C ′∨GT [x +n]

}
.

Clearly, G−∞[−n] is ⊥ for every n ∈ {1, . . . ,3}, and GT [x +n] = x +n 6' x ∨ 3 - x +n, so we ob-
tain

∨3
n=1

(
p(x)∨x +n 6' x ∨3 - x +n

)
. The only non-trivial case is n = 0; the final result after

simplification is p(x)∨3 - x.

4.5 Completeness

Although we strived to tackle as many cases as possible with the inference system Iarith, it is
not refutationally complete in the general case. The following counter-example is due to Uwe
Waldmann [Wal15]:

Example 4.14 (Counter-Example to Completeness). Assuming a Â b Â c Â d Â e, the clauses

7 | a 7 | b a ≤ b b ≤ a + c
2 · c +d ' e ∨2 · c +d ' e +4∨e ≤ d

d +2 ' e ∨d +4 ' e

are unsatisfiable, because the two last clauses imply
∨4

i=1 c ' i (by case on the last clause). Yet no
equality from {c ' i }4

i=1 is generated, because of the term ordering Â. Without those equalities,
the crucial case switch between a ≤ b and b ≤ a +c is not performed, and the contradiction with
7 dividing both a and b is not exposed.

It is not clear, as of now, how the inference system should be extended to tackle this prob-
lem. However, as we will see in the next section, the calculus can be implemented and performs
well in practice.

4.6 Implementation

So far, we have defined several inference rules, simplification rules and other techniques to
deal with redundancy or unshielded variables. Many of them were crafted to solve or miti-
gate actual problems in the implementation (in particular, the concept of Inequality Demod-
ulation, Section 4.3.3). Implementing the inference and simplification rules is a challenge by
itself: to our knowledge, the calculus from Waldmann [Wal01] was never implemented despite
its completeness for arithmetic on an axiomatization of rational numbers7. We emphasize the
importance of implementation for as complex an inference system as Iarith. It may look good
on paper, but until a prototype that behaves reasonably well is built, the practical usefulness of
the calculus is doubtful at best. In this section, we will address some issues we met while im-
plementing our calculus in the experimental theorem prover Zipperposition. The total amount
of code required for the arithmetic extension is around 4,000 lines of OCaml, including a mod-
ule to deal with generic linear sums. We used the Zarith8 wrapper around the GMP9 library, to

7 Unlike the present work and [KV07], the calculus from [Wal01] uses a set of axioms that have Q as a model,
and decides (un)satisfiability w.r.t. any model of this set of axioms rather than the standard model Q (which is
undecidable in general).

8https://forge.ocamlcore.org/projects/zarith
9https://gmplib.org/
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represent arbitrary-precision integers and rational numbers. Guillaume Bury’s simplex imple-
mentation10 was also used for detecting semantic tautologies.

The lifted rules (Figure 4.4) require unifying several terms in linear expressions within lit-
erals of one or two clauses. We will see that full AC1-unification is not needed; the implemen-
tation relies on the same term index structures as standard superposition. The type Literal.t

is enriched with new variants to represent arithmetic literals, and some simplification and in-
ference rules to the saturation loop. The most subtle part of the implementation is related to
unification and matching of linear expressions and literals (see in particular the matching rela-
tion used for subsumption, Section 4.3.2). We first present a brief version of the code used to
represent linear expressions; then, we present unification and matching algorithms related to
linear expressions and literals, but only after we explain how iterators can help deal with the
inherent complexity of this kind of backtracking algorithms.

4.6.1 Representation of Linear Expressions

Linear Expressions (sums of atomic terms) are the workhorse of arithmetic literals and clauses.
An integer linear expression is represented in OCaml as follows (Z.t is the type of arbitrary
precision integers in Zarith, although we always deal only with non-negative numbers).

type linexp = {
const : Z.t; (* ≥ 0 *)
terms : (Z.t * term) list; (* each coeff > 0 *)

}

val singleton : Z.t → term → linexp
val add : Z.t → term → linexp → linexp

val sum : linexp → linexp → linexp
val difference : linexp → linexp → linexp
(* ... *)

type focused_linexp = {
term : term;
coeff : Z.t; (* > 0 *)
rest : linexp;

}
val focus : term → linexp → focused_linexp option
val unfocus : focused_linexp → linexp

A value m : linexp describes a linear expression
∑

(a,t )∈m.terms a · t + m.const · 1, such
that a > 0 for every (a, t ) ∈ m.terms . A focused_linexp can be obtained from a non-constant
linear expression by simply extracting a term and its coefficient with focus (which can fail if
the term is not present in the linear expression), and conversely get a linear expression back
using unfocus. We will underline the focused term in algorithms when necessary. For instance,
2 · t +3 ·u+5 ·v is the focused linear expression m with m.term = t , m.coeff = 2, and m.rest =
3 ·u +5 ·v . We extend this notion of focusing to arithmetic literals by focusing on a term in one
side of the literal (e.g., 3 · t +u 6' 2 · v in which 3 · t is focused on).

4.6.2 Monadic Iterators for Backtracking

The unification algorithms might return several values, and in general are backtracking in na-
ture. Since we chose OCaml and not Prolog for implementation, we sought a way to write back-
tracking functions without tearing our hair out11. Our quest lead us to the type12 α sequence

10https://github.com/Gbury/Ocaml-simplex
11The number of opportunities to lose hair during a technical career is already high enough. . .
12and then to writing a library around it: https://github.com/c-cube/sequence. The curious reader can read

sequence.ml to get a grasp of how other combinators are implemented.
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(shown below) which is a very simple and fast iterator over values of type α. In particular, back-
tracking is easy to achieve using the monadic interface (return and >>=) or with an explicit
continuation of type α → unit.

type α sequence = (α → unit) → unit

val of_list : α list → α sequence
val empty : α sequence
val return : α → α sequence
val map : (α → β) → α sequence → β sequence
val (>>=) : α sequence → (α → β sequence) → β sequence
val (@) : α sequence → α sequence → α sequence
val head : α sequence → α option
val cons : α → α sequence → α sequence
(* ... *)

and the implementation

let empty _ κ = ()
let return x κ = κ x
let map f s κ = s (fun x → κ (f x))
let (>>=) s f κ = s (fun x → f x κ)
let (@) a b κ = a κ; b κ

let cons hd tl κ = κ hd; tl κ

let head s =
let r = ref None in
( try s (fun x → r := Some x; raise Exit)

with Exit → ()
);
!r

let rec of_list l κ = match l with
| [] → ()
| x :: tl → κ x; of_list tl κ

A simple example of backtracking using sequence is sorting a list by enumerating all its permu-
tations13, filtering to keep only the sorted ones, and keep only the first one. To enumerate all
the permutations, we first define a way to insert an element e in a list l (iterating over all possi-
ble ways to do so), then we define permute (e::l) = permute l >>= insert e — permute the
tail, then put the head anywhere in each resulting permutation.

open Sequence

(* insert [e] at every position in [l] *)
let rec insert e l = match l with
| [] → return [e]
| x::tail →
cons (e::l) (insert e tail >>= fun tail2 → return (x::tail2))

let rec permute l = match l with
| [] → return []
| x::l → permute l >>= fun l2 → insert x l2

let rec sorted l = match l with
| [] | [_] → true
| x::((y::l’) as l) → x ≤ y ∧ sorted l

let perm_sort l = head (filter sorted (permute l))

13we know it is not the most efficient way to do it.
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4.6.3 Unification Algorithms

A few unification and matching algorithms are necessary to implement the inference and sim-
plification rules if we want to avoid implementing AC1-unification (and, more critically, AC1-
indexing). We present a few important functions, implemented in the continuation-passing
style introduced above. The techniques presented here go a long way in making the imple-
mentation of Iarith tractable.

(* on focused linear expressions *)
val unify_self_f : subst → focused_linexp →

(focused_linexp * subst) sequence

val unify_ff : focused_linexp → focused_linexp →
(focused_linexp * focused_linexp * subst) sequence

val unify_mm : linexp → linexp →
(focused_linexp * focused_linexp * subst) sequence

val unify_self_m : subst → linexp → (focused_linexp * subst) sequence

val matching : subst → linexp → linexp → subst sequence

Let us detail the unification algorithms14, all of which are n-ary and therefore return iterators
over solutions. We use the α sequence combinators defined above to handle backtracking.

unify_self_f takesσ:subst and m:focused_linexp and iterates over distinct pairs (m′,ρ) such
thatσ≤ ρ and mρ = m′. In other words, it can unify together several terms inside mσ. Example:
it will yield (3 · f (x)+a,

{
y 7→ x

}
) and (2 · f (x)+ f (y)+a,;) for m = 2 · f (x)+ f (y)+a and σ=;.

It is used in the implementation of some of the following functions, and in the code for the
Divisibility rule.

let rec iter_self σ c t l m = match l with
| [] →

return ({coeff=c; term=t; rest=m}, σ)
| (c2, t2) :: l2 →

(* must merge, t = t2 † *)
if tσ = t2σ then iter_self σ (c + c2) t l2 m
else (
(* we can choose not to unify t and t2. *)
iter_self σ c t l2 (add c2 t2 m) @
(try (* try to unify t and t2 *)
let ρ = unify σ t t2 in
let m2 = {m with terms=[]} in (* might have to merge † *)
iter_self ρ (c + c2) t (l2 @ m.terms) m2

with Fail → empty)
)

let unify_self_f σ mf =
let m = mf.rest in (* unfocused part *)
iter_self σ mf.coeff mf.term m.terms {m with terms=[]}

This code might be difficult for readers not accustomed to sequence. The function that does
the work, iter_self, is given σ and c · t + l + m (where l is a (Z.t * term) list). It iter-
ates on l and, for each pair (c2, t2) ∈ l , makes a choice between unifying tσ and t2σ (obtain-
ing σ ≤ ρ) or keeping them distinct — putting (c2, t2) in the unfocused part of the result. The
lines annotated † exist because unifying tσ with t2σ with σ≤ ρ might make some terms of mρ

equal to tρ and thus extend the focus area to them. The function terminates because the pair

14 in names, “f” is short for “focused” and “m” for “monome”, the old designation of linear expressions in the code.
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(length l + length m.terms, length l) decreases strictly at each recursive call. Note that
iter_self will be re-used in the implementation of several other functions below.

unify_self_m is similar to unify_self_f, but with an unfocused linear expression m as ar-

gument. If it can unify (at least) two terms t1 and t2 in m
def= a1 · t1 +a2 · t2 +m′ with σ, it yields

((a1 +a2) · t1+m′,σ) (or it can extend the substitution to other terms in m′). On 2· f (x)+ f (y)+a,
for instance, it will only yield (3 · f (x)+a,

{
y 7→ x

}
). It is used, for instance, to implement Can-

cellation in literals n |? u.
The implementation has to unify at least two terms in the linear expression (respectively

chosen by choose_first and choose_second) to succeed; for any choice of (t, t2) unified by
ρ, iter_self is called to enumerate the ways of extending the substitutions to other terms (and
eventually call the continuation κ upon success).

let unify_self_m σ m =
(* find a term to focus on *)
let rec choose_first σ l m = match l with
| [] → empty
| (c,t)::l2 →

choose_second σ c t l2 m @ (* focus on t *)
choose_first σ l2 (add c t m) (* do not focus on t *)

(* find a second term in l to unify with focused term t *)
and choose_second σ c t l m = match l with
| [] → empty
| (c2,t2)::l2 →

(* ignore t2 and search another partner *)
choose_second σ c t l2 (add c2 t2 m) @
(try (* see whether we can unify t and t2 *)

let ρ = unify σ t t2 in
(* extend the unifier to other terms *)
iter_self ρ (c + c2) t l2 m

with Fail → empty)
in
choose_first σ m.terms {m with terms=[]}

unify_ff takes focused linear expressions m1σ and m2σ, unifies their focused terms together
(if possible) with some σ ≤ ρ and then yields a set of unifiers that extend ρ. Those unifiers
are triples (u1,u2,θ), where u1 and u2 are focused linear expressions and ρ ≤ θ. The relation

between mi and ui (i ∈ {1,2}) is: let m1
def= a1 · t1 +∑

j b1, j · t ′1, j +
∑

k c1,k · t ′′1,k and m2
def= a2 · t2 +∑

j b2, j · t ′2, j +
∑

k c2,k · t ′′2,k , with ∀ j . t ′i , jθ = tiθ (first the terms made equal to ti by θ, and second

the remaining terms); then ui = (ai +∑
j bi , j ) · tiθ+∑

k ci ,k · t ′′i ,kθ. The function unify_self is

used to split the linear expressions’ rests into two parts. This function is mostly used together
with term indices (see Section 3.1.3, paragraph Indexing): indexing structures are used to unify
two atomic terms from two linear expressions in two distinct clauses, then unify_self is used
on both linear expressions to extend the unifier to sums of terms.

To find unifiers of the two focused linear expressions, we must first unify their focused
terms (or fail), and then extend the unifier to other terms of both mf1.rest and mf2.rest using
iter_self.

let unify_ff σ mf1 mf2 =
try
let ρ1 = unify σ mf1.term mf2.term in
iter_self ρ1 mf1.coeff mf1.term mf1.rest.terms {mf1.rest with terms=[]}
>>= fun (new_mf1, ρ2) →
iter_self ρ2 mf2.coeff mf2.term mf2.rest.terms {mf2.rest with terms=[]}
>>= fun (new_mf2, θ) →
return (new_mf1, new_mf2, θ)
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with Fail → empty

unify_mm takes linear expressions m1 and m2 and tries to find all the (a1 · t1) ∈ m1, (a2 · t2) ∈
m2 and σ such that t1σ = t2σ. For any such triple, it then put the focus respectively on t1 and
t2 and yields the control to unify_ff. This is useful for implementing Cancellation or factoring
on (in)equations.

To unify two unfocused linear expressions, well, find all the ways to unify one term of each
(obtaining focused linear expressions); for each such pair of focused linear expression and par-
tial unifier σ1 try to extend the unifier to other terms. This is close to what unify_ff does, but
also enumerating all possible focusings for the linear expressions. Termination is easily proved
by the strict decrease of the multiset {l1, l2}.

let unify_mm σ m1 m2 =
(* unify a term of l1 with a term of l2. m1 and m2 will be

the unfocused part *)
let rec choose_first σ l1 m1 l2 m2 = match l1, l2 with
| [], _

| _, [] → ()
| (c1,t1)::tail1, (c2,t2)::tail2 →

(* don’t choose t1 *)
choose_first σ tail1 (add c1 t1 m1) l2 m2 @
(* don’t choose t2 *)
choose_first σ l1 m1 tail2 (add c2 t2 m2) @
(* choose t1 and t2 if they are unifiable, and extend the unifier *)
(try
let ρ = unify σ t1 t2 in
iter_self ρ c1 t1 tail1 {m1 with terms=[]}
>>= fun (mf1, ρ2) →
iter_self ρ2 c2 t2 tail2 {m2 with terms=[]}
>>= fun (mf2, θ) →
return (mf1, mf2, θ)

with Fail → empty)
in
let m1’ = {m1 with terms=[]} in
let m2’ = {m2 with terms=[]} in
choose_first σ m1.terms m1’ m2.terms m2’

matching matches two linear expressions m1σ and m2σ by returning substitutions ρ such
that σ≤ ρ and m1ρ = m2σ. An important distinction here is that we match linear expressions
entirely, whereas the previous functions would only unify part of a linear expression (the fo-
cused part) with a part of the other linear expression. The functions terminate respectively
because length l1 and length l2 decrease at each call.

let matching σ m1 m2 =
let rec start σ l1 l2 = match l1, l2 with
| [], [] → return σ (* success *)
| [], _ | _, [] → empty (* failure *)
| (c1,t1)::tail1, _ → traverse_lists σ (c1,t1) tail1 [] l2

(* must match all c1 occurrences of t1 with some (c2,t2) ∈ m2 *)
and traverse_lists σ (c1,t1) tail1 m2 l2 = match l2 with

| [] → empty (* failure, cannot match t1 *)
| (c2,t2)::tail2 →
(if c1 ≤ c2

then try
let ρ = match_terms σ t1 t2 in
if c1 = c2 (* t2 disappears from matchee *)

then start ρ tail1 (List.append m2 tail2)
else (* some instances of t2 remain to be matched *)
start σ tail1 ((c2 − c1, t2) :: List.append tail2 m2)
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with Fail → empty
else empty) @

traverse_lists σ (c1,t1) tail1 ((c2,t2)::m2) tail2 (* skip t2 *)
in
if m1.const = m2.const
then start σ m1.terms m2.terms
else empty

4.6.4 Other Implementation Notes

We do not explain every detail of the implementation. The sources for Zipperposition-0.5 can
be found at https://github.com/c-cube/zipperposition/archive/0.5.tar.gz, and the
part relevant to arithmetic is in the modules ArithLit, Monome (the former name of linear ex-
pression), and ArithInt (in the folders src and src/calculi).

Literal Ordering The ordering on literals (Definition 4.7) is quite complicated to decide on
first-order terms, especially since some pairs of terms are not comparable. Any superset of the
ordering relation preserves soundness. For instance, currently, Zipperposition does not order
division literals that live in the same Z/nZ (see the module Literal.Comp). We think some
kind of constraint solving is necessary to compare more accurately division literals, since the
number of cases to consider in the non-ground case is high — in particular, first-order literals
may have several maximal terms (Â not being total).

Inference and Simplification Rules are all implemented in calculi/ArithInt. The binary
rules use term indices from Logtk to reduce the number of unification problems to solve.

Normalization Rules are mostly dealt with directly in the Literal.t (and ArithLit.t) con-
structor functions, which are so-called smart constructors — functions that build a private
datatype and enforce some invariant that will hold by construction. A few of the rules (e.g.,
Prime Elimination) are full-fledged simplification rules.

The subsumption relation from Section 4.3.2 is quite subtle to implement and we needed
additional n-ary unification functions similar to those in Section 4.6.3. In particular, we need
take care of scaling literals (multiplying a literal with a constant to adjust the coefficient of
some of its terms), depending on their shape. The brave reader can take a look at the module
ArithLit.Subsumption in Zipperposition15.

4.6.5 Graphical Output for Debugging

Figure 4.8 shows the graphical output of the theorem prover on a small geography problem
(GEG022=1.p) that axiomatizes an Euclidian distance d (with d(x, y) ' d(y, x), d(x, x) ' 0, and
the triangular inequality d(x, z) ≤ d(x, y)+d(y, z)), lists the distances16 between a few German
cities, and requires to prove the goal d(hamburg,munich) ≤ 700 by effectively computing a short
path between the two cities. The proof was edited to make it more readable, by abstracting
the (large) negated goal into the bottom yellow box (the red box on top is the empty clause).
The edges connecting clauses are labelled with the inference rule used (where, for instance,
canc_demod stands for Cancellative Demodulation, etc.) Such a graphical display of proofs as
DAGs was truly invaluable in our work, facilitating the understanding of proof traces — very
important when debugging soundness issues or bugs in the implementation of rules.

15 The module ArithLit is in src/arithLit.ml and src/arithLit.mli.
16 The unit is not specified in the original problem, but let us assume distances are expressed in kilometers rather

than parsecs, for the sake of tourism in Germany.
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[]

11 ≤ 0

simplify

311 ≤ d frankfurt munich

canc_demod

d munich frankfurt = 300

canc_demod

d X0:city X1:city = d X1:city X0:city

canc_demod

d hamburg frankfurt = 390

canc_sup

701 ≤ d hamburg X0:city + d X0:city munich

canc_sup

<axioms>

cnf cnf

cnf d X0:city X2:city ≤ d X0:city X1:city + d X1:city X2:city

canc_ineq_chaining

701 ≤ d hamburg munich

canc_ineq_chaining

cnf cnf

Figure 4.8: Solution for GEG022=1.p

4.7 Experimental Evaluation

Zipperposition 0.4 entered the TFA (arithmetic) division at CASC-J7 [SS06]17 and came close
second after Princess [Rüm08] on integer problems In Figure 4.9, we show the results in the TFA
division on integer arithmetic problems18. The columns respectively gather the total number
of problems solved (all of them are theorems), the average time needed to solve a problem, the
efficiency measure (balances the number of problems solved with the time taken19), the state
of the art contribution (“SOTAC”, sum of inverse of number of provers solving each problem,
quantifying how much a prover can solve problems that are hard for other provers), and last
the number of problems solved among the 50 new problems introduced in CASC-J7.

prover solved/100 avg time (s) µ-efficiency SOTAC new/50
Princess 81 20.3 291 0.22 35

Zip 80 6.5 626 0.27 44
CVC4 80 10 605 0.24 33

SPASS+T 75 6.8 314 0.18 30
Beagle 73 12.7 325 0.18 28

Figure 4.9: Results of CASC-J7

17http://www.cs.miami.edu/~tptp/CASC/J7/
18Solver versions: (i) Princess 140704 (ii) Zipperposition 0.4-TFF (iii) CVC4 1.4-TFA (iv) SPASS+T 2.2.20 (v) Beagle

0.9
19 See http://cs.miami.edu/~tptp/CASC/J7/Design.html.
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We also ran benchmarks on two subsets of integer arithmetic problems from TPTP-6.1 (fil-
tering out problems containing some rational or real arithmetic). We compare Zipperposition
to Princess (release 2013-09-06) and Beagle 0.9, with 300s of timeout and 1GB of memory on a
2.20GHz Intel Xeon. The whole set of problems is listed in the file bench_arith/int_problems
in the archive downloadable at https://who.rocq.inria.fr/Simon.Cruanes/files/bench_
arith.tar.gz. We split the results into several bags of TPTP-categories, that we describe be-
low, and comment on:

• ARI,NUM,GEG,PUZ,SEV,SYN,SYO: basic arithmetic problems, and various arithmetic prob-
lems appearing in small quantities in other categories, of relatively low difficulty. All three
provers perform very well on this category.

• DAT: data structures, on which the Superposition-based provers (here, Beagle and Zip-
perposition) perform better than the tableaux-based Princess.

• HWV: hardware verification, a set of large ground problems which are probably better
suited to SMT solvers.

• SWV,SWW: software verification, quite large proof obligations on which Princess shines.
We conjecture that this is partly linked to the fact tableaux provers do not have to reduce
their input to CNF, and can ignore irrelevant axioms better.

Benchmarks from ARI,NUM,GEG,PUZ,SEV,SYN,SYO
prover unsat (/263) %solved unique time (s) avg time (s)
beagle 254 97 6 321 1.27

princess 251 95 0 229 0.91
zip 247 94 0 53 0.22

Benchmarks from DAT
prover unsat (/87) %solved unique time (s) avg time (s)
beagle 75 86 5 223 2.98

princess 60 69 1 326 5.44
zip 74 85 5 85 2.03

Benchmarks from HWV
prover unsat (/68) %solved unique time (s) avg time (s)
beagle 0 0 0 - -

princess 0 0 0 - -
zip 0 0 0 - -

Benchmarks from SWV,SWW
prover unsat (/179) %solved unique time (s) avg time (s)
beagle 81 45 0 1432 17.6

princess 178 99 56 917 05.1
zip 52 29 0 1599 30.7

Figure 4.10: Benchmarks on TPTP problems

We see that both in the CASC competition, and in the benchmarks on TPTP-6.1, the proto-
type performs quite well. It solves a reasonable amount of problems and answers more quickly
— we must note, however, that both Princess and Beagle run on the JVM which starts slowly,
around 0.5s on the benchmark machine. Overall, our proof-of-concept implementation per-
forms quite well, and solves some problems that the two other provers do not solve. Among
those, for instance, we find DAT/DAT086=1.p: a problem on lists (DAT is about data struc-
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tures) mixing symbols from the theory of lists (inRange, length, count, append) and arithmetic
in a non-trivial way, since lists contain integers. Many interesting problems can be formu-
lated in a way that mixes arithmetic and uninterpreted symbols; we saw earlier the example
of GEG022=1.p, with triangular inequality on distances between cities. In formal methods —
especially in the lack of verifiable certificates —, it is better to use several solvers on one single
problem, for two reasons: (i) if the problem is difficult, there is more chance at least one solver
will be good enough to solve it (especially when the solvers are based on distinct techniques);
(ii) the probability of all solvers that answer to have a bug that triggers on a given problem is
low. The benchmarks on TPTP above show indeed the value of having three solvers based on
complementary techniques.
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Conclusion

We presented our purely deductive system of inference that extends superposition to deal with
integer linear arithmetic, along with an implementation and some experimental results that
show it already behaves quite well in practice. The calculus uses the usual notion of redun-
dancy to un-clutter its search space. We believe it is especially suitable for problems that tightly
mix first-order reasoning and arithmetic, for instance when axioms involving arithmetic are in-
volved — such as the triangular inequality on Euclidian distances or monotonicity properties.

Compared to the state of the art, our approach builds on Superposition’s saturation pro-
cess by adding deduction rules and powerful redundancy criteria. We extend ordered chaining
and provide a variable elimination technique, so the prover actually reasons on arithmetic at
the first-order level (rather than on a set of ground constraints as in, say, Hierarchic Superpo-
sition [BGW94, BW13]). On the other hand, since we propose several sets of sound, mostly
independent rules, it is possible to cherry-pick some of them and include them in blackbox ap-
proaches to prune redundant clauses or deal with additional arithmetic axioms (monotonicity
of a function, Euclidian distance, etc.) at the first-order level. It also builds upon AVATAR (sec-
tion 2.5) to deal with ground case splits, in particular those introduced to eliminate divisibility
constraints.

We tried hard to tightly interleave superposition with arithmetic reasoning, at least for
the linear integer arithmetic fragment. A proof of concept implementation in Zipperposition
shows that the approach is viable. This specific treatment of arithmetic was motivated by the
inherent difficulty of this theory — in particular, the variable elimination procedure embeds
non-trivial knowledge about integer arithmetic. It is no question that arithmetic is very useful
in a large number of problems (from the industry, or other domains of formal verification such
as refinement types, proof of programs, and so on). Still, many other theories are useful and
deserve special treatment. In the next chapter we propose a calculus for adding structural in-
duction to superposition; many theories fall within the range of induction, especially when one
is concerned with data structures such as lists or trees. Induction can also be used to reason on
natural numbers (and from then, on some encoding of integer numbers), but we will see that
the current chapter is still relevant as proving inductively as simple a lemma as addition being
commutative is not trivial.

71



Chapter 5

Structural Induction

To prove universal properties, a very common reasoning method in Mathematics is proof by
induction. Its programming counterpart, recursion, is so important that it is the only way of it-
erating and looping in some languages such as Scheme. Induction’s strength is its ability to use
local reasoning — proving one step entails the next one — to prove global properties, that range
over an infinite number of elements. Of course, the first and foremost form of inductive reason-
ing is proof by recurrence, that is, induction on natural numbers; structural induction is widely
used in Computer Science (for instance in Coq [HKPM97]); and the more general Noetherian
induction is a strong tool. Supporting some form of inductive reasoning in automated theorem
provers has been a longstanding effort (see for instance [KB95] for a series of inductive provers
dating back to the seventies), yet the gap between first-order theorem provers and provers spe-
cialized to handle induction1 is still wide. Superposition is a very successful paradigm for auto-
mated reasoning in first-order logic, yet many problems require inductive reasoning (e.g., veri-
fying programs that deal with lists, natural numbers; proof obligations from interactive provers
such as Coq [HKPM97], etc.). Without the insight of a human, explicitly instantiating inductive
schemata is doomed to fail; many techniques (e.g., [Com94]) and provers (e.g., [BKR92, Str12])
have been dedicated to mitigating this issue. On the other hand, Superposition provers such
as E [Sch02] can reason over arbitrary formulas, with large equational theories, and it seems
desirable to carry their capabilities into an inductive prover. First steps in this direction have
been made in [KP13], but with the restriction that only induction on natural numbers is pos-
sible. We will show here how the recent technique of AVATAR (see Section 2.5) helps narrowing
this gap by making our Superposition prover deal with structural induction on inductive types
such as lists, natural numbers, binary trees, etc. The limitations of our approach are its inability
to perform nested induction without introducing a cut (a lemma), the inability to perform in-
duction on mutually recursive types (e.g., a tree with a list of sub-trees), and, as in many other
techniques, the heuristic nature of the mechanism that introduces lemmas (Section 5.3.1).

As often within automated theorem proving, we will not focus on the direct form of induc-
tion, but rather on another formulation of the same deep concept, the existence of a minimal
(Herbrand) model. If a property P : τ→ o satisfies ¬P (t ) for some term t of an inductive type,
then there must be some term u of the same type such that ¬P (u) and ∀v. v / t ⇒ P (v) where
/ is the subterm ordering — that is, u is a minimal counter-example to P .

Therefore, the existence of a minimal counter-example for every property P such that F `
∃t . ¬P (t ) is a necessary condition for a formula F to have an inductive model. We will express
the existence of a minimal counter-example for non-universal properties expressed as sets of
clause contexts, and encode the criterion for the existence of the counter-example into a bool-
ean formula within the AVATAR framework to make it decidable. A first version of the criterion
uses a SAT formula, then a stronger version using QBF (Quantified Boolean Formula, see Def-

1 Induction can be thought of as a schema of axioms for first-order logic, but as far as automated theorem proving
is concerned using such an axiomatization makes managing the search space intractable.
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inition 2.22) is detailed. Obviously there is no hope for a model nor a refutation to be found
in general when induction is involved2, but our decidable criterion can, in some cases, detect
unsatisfiability of the initial formula F .

This chapter starts with some notations and definition, including a proper definition of
what we mean by structural induction. Then, a semantics of inductive types is developed,
we define what an inductive model and a minimal inductive model are. Some inference rules
that deal with inductive constructors are presented, before we present the main contributions.
Section 5.2 and Section 5.4 present two techniques for encoding the existence of a minimal
counter-example to properties that are known not to hold on at least one term of an inductive
type. The second technique is an extension of the first one, and it can deal with a wider range
of properties. After that come some considerations about proof traces and proof certificates,
followed by a presentation of our proof-of-concept implementation in Zipperposition.

5.1 Inductive Types and Models

5.1.1 Notations and Definitions

Definition 5.1 (Inductive Type). An inductive type τ is a type for which a fixed set of symbols
cstors(τ) ⊆ Σ exists, with cstors(τ) 6= ;, and the following axioms hold (in any inductive model,
as will be defined in Definition 5.9):

Well-Typedness ∀c ∈ cstors(τ). c :Πα1, . . . ,αm . (τ1 × . . .×τn) → τ

Non-Overlap ∀t1 . . . tn . ∀t ′1 . . . t ′m . c1(t1, . . . , tn) 6' c2(t ′1, . . . , t ′m) where c1 and c2 are distinct con-
structors of the same inductive type with respective arity n and m;

Injectivity ∀t1 . . . tn . ∀t ′1 . . . t ′n . c(t1, . . . , tn) ' c(t ′1, . . . , t ′n) ⇒∧n
i=1 ti ' t ′i ;

Surjectivity ∀x : τ.
∨

c∈cstors(τ)∃t1 . . . tn ∈ Terms(cstors(τ)). x ' c(t1, . . . , tn) where each ti is built
from constructors only;

In the following, Σind will denote the signature composed of all inductive constructors for all
inductive types. We call inductive values the terms that are built exclusively from inductive con-
structors and symbols that do not have an inductive return type. We speak of structural induction
because the induction principle is based on /, sometimes called structural ordering.

Because / is well-founded, the following family of axioms parametrized by formulas P : τ→ o,
called Induction Scheme, always holds:(∀t : τ.

(∀t ′ : τ. t ′ / t ⇒ P (t ′)
)⇒ P (t )

)⇒∀t : τ. P (t )

Definition 5.2 (Inductive Constant). An inductive constant is a symbol of arity 0 that has an
inductive type but is not a constructor (for instance, a Skolem symbol).

In the following, we will denote inductive constants by i, or n, l, t, etc. depending on their
type — any type for the former, nat or list for the latter. I will be a set of inductive constants. We
will use the A-clauses, or clauses with assertions of Definition 2.56. A possible alternative would
be to use labelled clauses [LAWRS07].

Definition 5.3 (Clause context). We consider a family of constants (¦τ)τ:Type indexed by their
type τ (exactly one constant per type). A clause context C [¦τ] is a clause that contains one or more
occurrences of ¦τ, and C [t ] is the clause obtained by replacing simultaneously all occurrences of
¦τ in C [¦] with the term t : τ.

Definition 5.4 (Type of a Clause context). The type of a clause context C [¦τ] is the type τ. Apply-
ing the context C [¦τ] to some term t requires that t : τ.

2 unlike with regular first-order logic, where a refutation will be found for any non-theorem.
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In this chapter, clause contexts will have the same naming conventions as clauses, but they
will always have an explicit argument. For instance, C is a clause (or more generally an A-
clause), and C [¦τ] is a clause context. We will generally omit the type of the context hole and
write ¦ instead of ¦τ where the type can be easily inferred by the reader.

Definition 5.5 (Coverset). A coverset S for an inductive type τ is a set of terms composed of
inductive constructors and variables x1, . . . , xn such that each variable xi occurs in one position
exactly, and such that ∀t : τ.

⊕
u∈S ∃x1 . . . xn . t ' u holds in any model satisfying the axioms of

the inductive type. It follows that the terms of a coverset are distinct in any such model. Coversets
were first defined in [ZKK88].

Definition 5.6 (Ground Coverset). A ground coverset κ(i) is a set of ground terms obtained by
replacing all variables in a coverset with fresh Skolem constants (not present in the signature),
such that

⊕
t∈κ(i) i ' t holds in any model of the new, extended signature. The elements of κ(i)

represent all the possible “shapes” of i in any model. If t , i : τ and there is some t ′ ∈ κ(i) such
that t / t ′, we write sub(t , i). We define κ↓(i) = {t ∈ κ(i) | ∃t ′ / t . sub(t ′, i)} (recursive cases),
and κ⊥(i) = κ(i) \κ↓(i) (base cases). Note that introducing the Skolem symbols only preserves
satisfiability.

Example 5.1 (Natural Numbers). The type of natural numbers, nat, is a classic inductive type
whose constructors are cstors(nat) = {0, s}. Its inductive values are all the natural numbers {0,
s(0), . . . , sk (0), . . .}, and ground coversets are of the form {0, s(0), . . . , sk (0), sk+1(n)} for some k ≥ 0
and Skolem constant n.

We use clause contexts to isolate the inductive term from the clauses that contain it. For
instance at the beginning we might have a Skolem symbol n that occurs in two clauses, noted
C [n] and D[n] (with n not occurring in neither C [¦] nor D[¦]). If we assert n' 0∨n' s(n′) (with
n′ a new constant) then the contexts C [0], C [s(n′)], D[0] and D[s(n′)] will become relevant for
refuting C [n] and D[n]. Here, κ(n) = {0, s(n′)}, sub(n′,n) holds, κ⊥(n) = {0}, and κ↓(n) = {s(n′)}.

Remark 5.1 (Peano Axioms). Many examples will use natural numbers (type nat) to illustrate
the ideas in a simple way, even though they apply to other inductive types. The following Peano
axioms for addition will be used without mention: (a)∀n. 0+n ' n (b)∀m n. s(m)+n ' s(m+n).

5.1.2 Restrictions on the Term Ordering

We will also need some restrictions on the term ordering Â in the following sections.

Definition 5.7 (Admissible Ordering). A simplification ordering on terms Â is admissible for
induction over a given signature Σ if it satisfies the following properties:

• iÂ t for any t ∈ κ(i);
• t Â t ′ if t ′ is a ground pure inductive term of Σind ⊆Σ and t is a ground impure term of the

same type (i.e., t : τ, t ′ : τ, t ′ ∈ Terms(Σind) and t ∈ Terms(Σ) \ Terms(Σind)).
The purpose of those restrictions is to make literals of the form i' t with t ∈ κ(i) into left-to-right
rewrite rules, and to ensure that pure inductive terms are normal forms. Note that / is always
included in ≺ for simplification orderings.

Definition 5.8 (Admissible RPO). A RPO on terms Â is admissible for induction over a given
signature Σ if the precedence the ordering is built on satisfies:

• constructor symbols are smaller than other function symbols;
• any inductive constant i is higher in the precedence than any Skolem constant t such that

t / t ′ for some t ′ ∈ κ(i).

Lemma 5.1 (Admissible RPO are Admissible). Any admissible RPO is an admissible ordering.
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Proof. The first condition ensures that impure terms, which contain at least one function sym-
bol, are bigger than pure terms built exclusively from symbols inΣind. Together with the second
condition, any t ∈ κ(i) — built from inductive constructors and Skolem constants — is smaller
than i because t is ground and all its symbols are smaller in the precedence than i.

Example 5.2 (Admissible RPOs on Natural numbers). Given the usual signature Σ = {n,n′, s,0,
+,×} with the ground coverset κ(n) = {0, s(n′)}, the RPO over the precedence ×>+> n> n′ > s > 0
is admissible, and so is the RPO over n>+> n′ >×> 0 > s. Those orderings make n' s(n′) into a
rewrite rule for n, and ensure (together with the appropriate axioms) that s(s(0))+s(s(0)) rewrites
into s(s(s(s(0)))) rather than the opposite.

In the rest of this chapter, we will assume that Â is an admissible ordering on terms. Our im-
plementation uses an admissible LPO (all symbols have lexicographic status).

5.1.3 Dealing with Constructors

Inductive constructors have some properties that are best handled with dedicated inference
rules that will be useful throughout the rest of this chapter. In those rules, presented in Fig-
ure 5.1, c and c ′ are distinct inductive constructors (the empty list [ ], the successor symbol,
etc.)

Injectivity (Inj)

c(t1, . . . , tn) ' c(t ′1, . . . , t ′n)∨D∧n
i=1

(
ti ' t ′i ∨D

)
Non-Overlap (NOv)

c(t1, . . . , tn) ' c ′(t ′1, . . . , t ′m)∨D

D
and

c(t1, . . . , tn) 6' c ′(t ′1, . . . , t ′m)∨D

>
if c and c ′ are distinct inductive constructors

Figure 5.1: Inference Rules to deal with Inductive Constructors

Lemma 5.2 (Soundness). The rules from Figure 5.1 are sound w.r.t. the definition of inductive
types (Definition 5.1), and they are compatible with any simplification ordering.

5.1.4 Semantics and Minimal Models

Usually, saturation-based theorem proving is concerned with finding a model — or a sufficient
criterion for the existence of a model, because we are primarily interested in the satisfiability (or
unsatisfiability) of a formula — for the set of input clauses. However, in presence of inductive
types, it is impossible in general to find any sufficient criterion for the existence of a standard
inductive model3. We will instead strive to express necessary conditions for such a model to
exist. Perhaps those conditions will be satisfied even for formulas that have no model; however,
we have no choice but make a parallel to the famous quote4 from E. Dijkstra:

program testing can be a very effective way to show the presence of bugs, but is hopelessly
inadequate for showing their absence. — E. Dijkstra

3 We focus on the existence or non-existence of standard models, that is, models in which all elements of the
domain of an inductive type are built from the corresponding inductive constructors (e.g., the standard model of
Peano axioms isN)

4See https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html.
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In a similar vein, our criteria will be able to sometimes show the absence of inductive models,
but never to show their presence. More precisely, building upon a regular saturation process,
we manipulate a model candidate; necessary conditions for the existence of inductive models
will come in the form of additional side-conditions that express the possibility for the model
candidate to be minimal (w.r.t. an extension of the structural ordering on terms to models,
see Definition 5.10). In a further refinement, we will assert the stronger condition that every
subset of the set of inductive clauses can have a minimal model — corresponding to choosing
the (negation of the) subset as the induction hypothesis. This approach is connected to the
work of A. Kersani and N. Peltier [KP13].

Definition 5.9 (Inductive Model). An inductive model of a combined state (N ,Fb) w.r.t. a set
of inductive constants I is a combined Herbrand model (M ,v) (see Section 2.3.4) that satisfies all
the axioms of inductive types (Definition 5.1) and such that all inductive constants are mapped
to inductive values (built exclusively from inductive constructors and symbols of non-inductive
type).

Example 5.3 (Inductive Model for nat). In the case of the natural numbers nat equipped with
the constructors 0 : nat and s : nat → nat, an inductive model is one that maps any term of type
nat to some term sk (0) with k ∈N— in other words, the standard model of arithmetic.

We will only consider inductive models from now on.

Definition 5.10 (Minimal Inductive Model). An inductive model (M ,v) of a set N of A-clauses
is minimal w.r.t. an inductive constant i iff no other model (M ′,v) of N verifies �i�M ′

/ �i�M .

Lemma 5.3 (Existence of a Minimal Model). Any satisfiable set N admits a minimal model
w.r.t. i.

Proof. N has a model S0
def= (M ,v). For any n ∈N, if Sn isn’t minimal, then by definition there

exists Sn+1
def= (M ′,v) with �i�Sn+1 / �i�Sn . Since / is well-founded, this sequence must be finite,

and its last element is a minimal model of N .

Lemma 5.4. Let (M ,v) a combined model and (N ,Fb) a state it satisfies. Then, for any set of
clauses N ′ ⊆ N and inductive constant i ∈ Σind, there exists a model (M ′,v) minimal w.r.t. i
such that (M ′,v) |= (N ′,Fb).

Proof. Directly from Lemma 5.3 since (M ,v) is also a model of N ′.

Remark 5.2. Those definitions could be generalized to any well-founded ordering, as in Noethe-
rian induction, but we kept / for the sake of simplicity.

Now that we have defined what inductive models and minimal inductive models are, we
can start wondering about their existence in a given theory. We leave to the platonic reader any
reflection about the pre-existence of the notion of inductive models themselves.

5.2 Inductive Strengthening

We now have all the tools required to extend AVATAR to (structural) inductive reasoning. The
first approach only considers performing induction on formulas that are already present in the
problem. This is similar to techniques used in many provers, for instance in CVC4 [RK15]5.
Putting our Superposition lens on, the induction is performed on one clause context C [¦] such
that C [t ] is already present in the problem for some t ; C [¦] will be the proposition for which the
existence of a minimal model will be questioned. We will see in the next section that there are
cases where this is not enough (for instance, Example 5.13).

5The CVC4 SMT solver, http://cvc4.cs.nyu.edu/web/
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To prove a conjecture ∀x. F [x] in the theory G (a set of formulas), we usually reduce G ∧
¬∀x. F [x] to CNF, introducing a Skolem constant i standing for the counter-example to∀x. F [x],
and proceed to deduce ⊥ from cnf(G ∧¬F [i]). When x has an inductive type τ, this is not
enough, as Example 5.4 shows.

Example 5.4 (0 neutral on right of +). Given the usual Peano axioms (without induction since
it is an infinite schemata of axioms), definition of +, and the inference rules of Figure 5.1, let us
try to prove ∀x. x +0 ' x. Superposition starts from the negation of the goal, n+0 6' n and the
coverset κ(n) = {0, s(n′)} — where n and n′ are fresh Skolem constants. By case split (ASplit) on
n' 0∨n' s(n′), we add the A-clauses n' 0 ← Tn' 0U and n' s(n′) ← Tn' s(n′)U. We show the
derivation for the recursive case:

n+0 6' n n' s(n′) ← Tn' s(n′)U
(Sup)

s(n′)+0 6' s(n′) ← Tn' s(n′)U s(x)+ y ' s(x + y)
(Sup)

s(n′+0) 6' s(n′) ← Tn' s(n′)U

The last step of the derivation is at least as hard to solve as the first step (namely n+0 6' n). We
could repeat the very same derivation any number of times without making any progress towards
⊥. Unsurprisingly, induction is needed here.

We clearly need a way to avoid this infinite derivation tree. We know that if there is a
counter-example, then there must be a minimal counter-example (Lemma 5.3), and we can
reason on a smallest counter-example while preserving equi-satisfiability. The whole idea of
inductive strengthening, as used in other provers such as CVC4 [RK15]6, is to assert that i is a
minimal counter-example.

Let, again, ∀x : τ. F [x] be an inductive formula we want to prove by induction on x, i be the
related Skolem constant for which the model of ¬F [i] will be minimal, and κ(i) a coverset. We
assert the following sets of A-clauses described in Definition 5.11 as a necessary condition for
the existence of a minimal model of ¬F [i] w.r.t. i.

Definition 5.11 (Minimal Strenghtening Set). The minimal strengthening set of a formula F [¦]
is the union of the following sets of A-clauses:

• cnf(¬F [i])
• {D ← Ti' tU | D ∈ cnf(F [t ′])} for each t ∈ κ(i) with t ′ : τ/ t and sub(t ′, i).
• {i' t ← Ti' tU | t ∈ κ(i)}

Example 5.5 (0 neutral on right of + (continued)). In the case of Example 5.4, with F [x]
def= x+0 '

x, we again introduce the Skolem constant n and coverset κ(n) = {0, s(n′)}, but this time, we add
the A-clause n′+0 ' n′ ← Tn' s(n′)U to the goal n+ 0 6' n and the split n' 0 ← Tn' 0U and
n' s(n′) ← Tn' s(n′)U. The base case is easy:

n+0 6' n n' 0 ← Tn' 0U
(Sup)

0+0 6' 0 ← Tn' 0U 0+x ' x
(Sup)

0 6' 0 ← Tn' 0U
(EqRes)⊥← Tn' 0U

(A⊥)¬Tn' 0U

and now the recursive case succeeds:

6The CVC4 SMT solver, http://cvc4.cs.nyu.edu/web/
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n+0 6' n n' s(n′) ← Tn' s(n′)U
(Sup)

s(n′)+0 6' s(n′) ← Tn' s(n′)U s(x)+ y ' s(x + y)
(Sup)

s(n′+0) 6' s(n′) ← Tn' s(n′)U n′+0 ' n′ ← Tn' s(n′)U
(Sup)

s(n′) 6' s(n′) ← Tn' s(n′)U
(EqRes)⊥← Tn' s(n′)U

(A⊥)¬Tn' s(n′)U

Both cases are closed in a finite number of steps, adding constraints ¬Tn' s(n′)U and ¬Tn' 0U
to the split constraint Tn' s(n′)U⊕Tn' 0U. The result is clear: no minimal model can exist, so
the goal’s negation is not satisfiable. The proof attempt succeeds.

Remark 5.3. To prove a formula ∀x1 : τ1 . . . xn : τn . F [x1, . . . , xn] we use the same technique,
but with a different CNF for each counter-example; in other words, sharing Skolem symbols
or Skolem predicates (standing for intermediate formulas, as described in [NW01]) between the
strengthening sets of distinct inductive constants is forbidden. Indeed, using the same Skolem-
ized formula ¬F [i1, . . . , in] for each induction attempt is wrong because it asserts the existence of
a model that is minimal for every xi simultaneously — something not necessary true.

A stronger version of splitting rule from Figure 2.4 is used, to reason by case on κ(i), by
choosing a coverset and adding clauses i' t ← Ti' tU for each t ∈ κ(i), and adding the boolean
constraint

⊕
t∈κ(i)Ti' tU to Sconstraints. A useful optimization this

⊕
affords is deleting clauses

of the form C ← Ti= t1UuTi= t2UuΓ where t1 6= t2 are distinct cases of κ(i); such clauses are
trivial, consuming memory for nothing, as their trail will never be satisfied.

Example 5.6 (+ right-commutes with s(·)). To prove ∀m n. m + s(n) ' s(m +n) from Peano
axioms, we have two choices: induction on m or induction on n. Let’s describe the induction
on m (the successful one; the case for n starts the same way, with different constants, but fails,
which we believe makes it less interesting). We introduce new Skolem constants n1 and n2, a

coversetκ(n1) = {0, s(n′1)} (where n′1 is another fresh constant), the clause context C [¦]
def= ¦+s(n2) 6'

s(¦+n2), and assert that n1 is the minimal witness for C [¦] with the clauses {n1 + s(n2) 6' s(n1 +
n2),n′1 + s(n2) ' s(n′1 +n2) ← Tn1 ' s(n′1)U,n1 ' 0 ← Tn1 ' 0U,n1 ' s(n′1) ← Tn1 ' s(n′1)U} and the
boolean constraint Tn1 ' 0U⊕Tn1 ' s(n′1)U.

n1 + s(n2) 6' s(n1 +n2) n1 ' 0 ← Tn1 ' 0U
(Sup)

0+ s(n2) 6' s(0+n2) ← Tn1 ' 0U 0+x ' x
(Sup)

s(n2) 6' s(n2) ← Tn1 ' 0U
(EqRes)⊥← Tn1 ' 0U

(A⊥)¬Tn1 ' 0U

n1 + s(n2) 6' s(n1 +n2) n1 ' s(n′1) ← Tn1 ' s(n′1)U
(Sup)

s(n′1)+ s(n2) 6' s(s(n′1)+n2) ← Tn1 ' s(n′1)U s(x)+ y ' s(x + y)
(Sup)

s(n′1 + s(n2)) 6' s(s(n′1 +n2)) ← Tn1 ' s(n′1)U

π

π

s(n′1 + s(n2)) 6' s(s(n′1 +n2)) ← Tn1 ' s(n′1)U n′1 + s(n2) ' s(n′1 +n2) ← Tn1 ' s(n′1)U
(Sup)

s(s(n′1 +n2)) 6' s(s(n′1 +n2)) ← Tn1 ' s(n′1)U
(EqRes)⊥← Tn1 ' s(n′1)U

(A⊥)¬Tn1 ' s(n′1)U
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We can also deal with more complicated structures, such as binary trees, as the following
examples shows:

Example 5.7 (Simple Induction on Trees). Let tree def= E |N(tree, ι,tree) be the type of binary trees,
p : ι → o and q : tree → o. We assume ∀t : ι. p(t ), q(E) and ∀t : ι. ∀l : tree. ∀r : tree. p(t )∧
q(l )∧q(r ) ⇒ q(N(l , t ,r )). Our goal is to prove ∀t : tree. q(t ). As we saw before, the proof is quite
straightforward and proceeds as follows, using the Skolem constants t,tl ,tr : tree and a : ι with

κ(t) = {E,N(tl , a,tr )}. We introduce the clause context C [¦]
def= ¬q(¦) and prove the theorem as

follows:

¬q(t) t'E← Tt'EU
(Sup)¬q(E) ← Tt'EU q(E)

(Sup)⊥← Tt'EU
(A⊥)¬Tt'EU

and, for the recursive case

¬q(t) t'N(tl , a,tr ) ← Tt'N(tl , a,tr )U
(Sup)¬q(N(tl , a,tr )) ← Tt'N(tl , a,tr )U ¬p(x)∨¬q(l )∨¬q(r )∨q(N(l , x,r ))

(Sup)¬p(a)∨¬q(tl )∨¬q(tr ) ← Tt'N(tl , a,tr )U
(ASplit)

¬p(a) ←¬Tp(a)U ¬q(tl ) ←¬Tq(tl )U ¬q(tr ) ←¬Tq(tr )U
Tt'N(tl , a,tr )U _¬Tp(a)Ut¬Tq(tl )Ut¬Tq(tr )U

leading to the three sub-cases (adding, by inductive strengthening, the clauses q(tl ) ← Tt'N(tl , a,tr )U
and q(tr ) ← Tt'N(tl , a,tr )U):

¬p(q) ←¬Tp(a)U p(x)
(Sup)⊥←¬Tp(a)U

(A⊥)
Tp(a)U

¬q(tl ) ←¬Tq(tl )U q(tl ) ← Tt'N(tl , a,tr )U
(Sup)⊥←¬Tq(tl )UuTt'N(tl , a,tr )U

(A⊥)¬Tt'N(tl , a,tr )U∨Tq(tl )U

¬q(tr ) ←¬Tq(tr )U q(tr ) ← Tt'N(tl , a,tr )U
(Sup)⊥←¬Tq(tr )UuTt'N(tl , a,tr )U

(A⊥)¬Tt'N(tl , a,tr )UtTq(tr )U

The resulting constraint is unsatisfiable, allowing us to conclude:

l



Tt'EU⊕Tt'N(tl , a,tr )U
¬Tt'EU
Tt'N(tl , a,tr )U _¬Tp(a)Ut¬Tq(tl )Ut¬Tq(tr )U
Tp(a)U
¬Tt'N(tl , a,tr )UtTq(tl )U
¬Tt'N(tl , a,tr )UtTq(tr )U

Theorem 5.1 (Soundness of the Minimal Strenghtening Set). If a set of clauses S is a superset of
cnf(¬F [i]), then adding the minimal strengthening set of F [¦] to S is sound, that is, it preserves
satisfiability for inductive models.
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Proof. The existence of a model M for S implies the existence of a minimal model for cnf(¬F [i])
by Lemma 5.4. In this case terms smaller than the chosen inductive constant �i�M must ver-
ify F [·], which implies in particular that the conjunction

∧
t ′/t ,sub(t ′,i),D∈cnf(F [t ′]) D ← Ti' tU is

satisfied in M . Conversely, a model of the strengthened set can be trivially restricted to S by
ignoring new Skolem symbols.

Examples 5.6 and 5.7 demonstrate it’s already possible to perform some inductive reasoning
with strengthening only. However, inductive theorem proving does not have the sub-formula
property — that is, a proof might require to introduce formulas that were not present in the
initial problem — and it shows very quickly, as the next section will emphasize.

5.3 Proving and Using Lemmas

Inductive strengthening, as explained in Section 5.2, isn’t enough to prove many interesting
goals. For instance, proving the commutativity of addition on natural numbers, ∀m n : nat. m+
n ' n+m, requires the lemmas∀m n : nat. m+s(n) ' s(m+n) (Example 5.6) and∀n : nat. n+0 '
n (Example 5.5). We also need lemmas to perform nested induction (see Remark 5.10 later).
The full proof can be found in Example 5.11. More generally, we might want to introduce arbi-
trary lemmas in a proof (using a kind of “cut” rule that requires to first prove the lemma, then
use it). For instance, the user could provide “hints” as intermediate lemmas she believes will
be helpful; the system could then try to prove them and use them in the course of solving the
main goal.

Fortunately, AVATAR makes it very easy to introduce several lemmas and interleave their
proof with the main saturation process. Given a (candidate) lemma F (a first-order formula),
the clauses {C ← TFU | C ∈ cnf(F )}∪ {D ← ¬TFU | D ∈ cnf(¬F )} are added to N . This corre-
sponds to a boolean split over F ∨¬F , where the choice between F and ¬F is represented by
the boolean valuation of TFU.

Definition 5.12 (Lemma Introduction). The introduction rule of a lemma F , where F is a first-
order formula, is the following inference rule:

Lemma Introduction (Lemma)

>∧
C∈cnf(F ) C ← TFU

∧ ∧
D∈cnf(¬F ) D ←¬TFU

Theorem 5.2. The inference rule (Lemma) is sound.

Proof. (Lemma) is similar to an AVATAR boolean split on F ∨¬F using the boolean TFU (F , being

closed, is either valid or it is not). Since T¬FU def= ¬TFU, we obtain the trivial constraint TFUt
¬TFU and the “A-formulas” F ← TFU and ¬F ← ¬TFU that can then be reduced to CNF. In
essence, (Lemma) is using an adaptation of (ASplit) to formulas.

In part of the search space, inference with A-clauses of the form C ← TFU will correspond
to using the lemma F , assuming it has been proved; in another part, inferences with A-clauses
of the form D ←¬TFU will possibly lead to (conditional) proofs of F by reaching clauses of the
form ⊥ ← ¬TFUuΓ (proof of F under assumptions ¬Γ). Those proofs may also make use of
inductive reasoning, as seen in Section 5.2, possibly requiring several instantiations of cnf(¬F )
depending on which variable is chosen for induction.
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Remark 5.4 (Fairness and Lemmas). Using (Lemma) on a non-theorem formula F does not pre-
vent an unsatisfiable combined state from being reached. Any derivation that could reach an in-
consistent combined state (Sconstraints is absurd or empty clause was found) is still a valid deriva-
tion and can safely ignore the candidate lemma. The proof of each lemma is interleaved with
the rest of the saturation process. Thanks to this, it is possible to introduce several (candidate)
lemmas even if they are not all true or provable. However, it might take a longer time to find a
solution, because of the larger search space.

5.3.1 Guessing Lemmas

We now know how to introduce candidate lemmas, try to prove them and use them, but we
don’t know yet which lemmas to introduce. Of course, the real issue with cuts resides in finding
the right one. The simple approach developed above is agnostic in this respect, so we can plug
any black-box we like in. A lot of literature was dedicated to heuristics for finding relevant
lemmas and generalizing the induction hypothesis [BSvH+93, BM14]. We present here a few
(not exclusive) possible heuristics, but more research is needed in this direction.

Exhaustive Generation

Use an exhaustive generator of candidate lemmas up to a given depth, similar to what other
tools such as CVC4 [RK15], Isaplanner [JDB10], and HipSpec [CJRS12] do. The basic principle
is very simple: given a signature on one or more inductive types (i.e., the set of constructors for
each type) and a set of function symbols working on those types, one can generate all formulas
up to a given size, and try to prove all of them, in the spirit of the time-honored generate-and-
test techniques. A good start, for provers that handle well equality reasoning, is to generate
only equations, rather than arbitrary formulas.

Example 5.8 (Lists and Natural numbers). The classic types of natural numbers nat def= 0 | s(nat)

and lists thereof list def= [ ] | nat :: list are pervasively used in Computer Science and Logic. There is
a plethora of additional functions defined on those types, but let us focus on the following ones:
+ : nat×nat→ nat, rev : list→ list, @: list× list→ list (concatenation), and sum : list→ nat defined
by the following axioms:

0+x ' x
s(x)+ y ' s(x + y)
sum([ ]) ' 0
sum(x :: y) ' x + sum(y)
[ ] @ x ' x
(x :: y) @ z ' x :: (y @ z)
rev([ ]) ' [ ]
rev(x :: y) ' rev(y) @ (x :: [ ])

Then, generating all possible equalities (universally quantified) up to size 10 (or depth 3) will
yield, among others, the interesting following lemmas:

x + s(y) ' s(x + y)
x +0 ' x
x + y ' y +x
x @ [] ' x
rev(rev(x)) ' x
sum(rev(x)) ' sum(x)

but also, among others, the falsities s(x) ' x +x, rev(x) ' x.
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Since naively enumerating all the possible lemmas, even just positive equations, makes for
too large a search space, we need additional filtering on candidate lemmas. Other tools use
refinements of the generation technique; CVC4 uses its current model and other tricks and
HipSpec relies on randomized testing. With Superposition we have different weapons to filter
obviously wrong candidates out, for instance the techniques presented in the two following
paragraphs.

Generate and Filter by Narrowing to ⊥
To refine the exhaustive generation of candidate lemmas, Figure 5.2 shows an inference rule
that narrows a candidate lemma F (a positive equation, in practice) using a set of equations
(deduced from the initial set of clauses). If this derivation yields to ⊥ somehow, then the can-
didate clause cannot be a valid lemma. The rule is a mix of demodulation (it requires lσÂ rσ)
and regular Superposition (it uses unification rather than rewriting). It is not terminating, but
in practice one can restrict the depth of derivations. It can for instance rule out the false lemma
∀n. n +0 ' s(n) (narrowing with ∀m. 0+m ' m and σ= {m 7→ 0}).

Decreasing Narrowing (DN)

l ' r F
F [r ]p σ

if lσ= F |pσ, and F [l ]p σÂ F [r ]p σ

Figure 5.2: Filtering Inference Rule

Example 5.9. The exhaustive generation of formulas might stumble upon the false lemma ∀x.
s(x) ' x +x. The following derivation finds a counter-example to the candidate lemma:

s(x) ' x +x 0+ y ' y
(DN)with

{
x 7→ 0, y 7→ x

}
s(0) ' 0

(NOv)⊥

Generate and Filter by Demodulating to a previous Candidate Lemma

Using regular demodulation (See Figure 2.2), a candidate lemma F can be rewritten into a set of
normal forms (the set of equations used for demodulation is not necessarily confluent before
saturation is reached). If any of those normal forms is an already generated (smaller) candidate

lemma, then F is redundant. That is, given the set of rules R, if C
R−→ D means that C is rewritten

into D by one step of demodulation using a rule in R, then F is redundant if F
R−→

+
F ′ where F ′

is an already generated lemma.

Example 5.10. Let us assume the lemma F1
def= x + s(y) ' s(x + y) has already been generated,

and the exhaustive generation mechanism just came up with F2
def= 0+ (x + s(y)) ' s(x)+ y. The

following derivation, using only demodulation, reduces F2 to F1. Therefore, F2 can be dropped
safely.

0+ (x + s(y)) ' s(x)+ y 0+x ' x
(Demod)

x + s(y) ' s(x)+ y s(u)+ v ' s(u + v)
(Demod)

x + s(y) ' s(x + y)
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Remark 5.5. It is also possible to use previous lemmas as rewrite rules for demodulation — in
the example above, F2 would reduce to > — but it raises the new issue that a lemma F could be
made redundant by a conjunction of several previous lemmas; if only a subset of those is false, F
might still be relevant. On the contrary, demodulation keeps both candidate lemmas equivalent
so we can keep only the smaller one.

Detecting already known Theories

We will see, in Chapter 6, a technique to recognize already known (axiomatic) theories. Some
of those theories can be inductive theories (e.g., the theory of lists). In this case, once a useful
lemma is discovered — by any mean, including it being a goal provided by the user — and
proved correct, then it can be saved in persistent storage and recalled later when the theory
is recognized. For instance, once the (difficult) lemma rev(rev(x)) ' x is proved, it is certainly
worthwhile to save it and re-use it later when the prover acknowledges the presence of lists in
the problem it tries to solve.

Generalizing Subgoals

For every ground A-clause C ← Γ such that C contains constants k1 : τ1, . . . ,kn : τn where all τi

are inductive types, we introduce a candidate lemma

∀x1 : τ1. . . .∀xn : τn . ¬C [k1 ← x1, . . . ,kn ← xn]

This amounts to using current inductive “sub-goals” to guess lemmas that could be used to im-
mediately solve the sub-goal if they ever get proved. For instance, from n′+0 6' n′ that occurs in
the following example (5.11), we can try and prove the lemma ∀x. x +0 ' x (as in Example 5.5).
Let us see in more details how this single lemma generation mechanism enables a fully auto-
matic proof of the commutativity of addition.

Example 5.11 (Commutativity of +). Let us prove the commutativity of + on natural numbers.
We start with n1+n2 6' n2+n1, where n1 and n2 are inductive Skolem constants, and try induction
on n1 (the branch on n2 exists, but isn’t shown here. Both can be explored in parallel). The first
case split adds Tn1 ' 0U⊕Tn1 ' s(n′1)U to boolean constraints, and deduces the clauses n1 ' 0 ←
Tn1 ' 0U and n1 ' s(n′1) ← Tn1 ' s(n′1)U.

n1 +n2 6' n2 +n1 n1 ' 0 ← Tn1 ' 0U
(Sup)(†)

n2 6' n2 +0 ← Tn1 ' 0U x ' x +0 ← Ta1U
(Sup)

n2 6' n2 ← Tn1 ' 0UuTa1U
(EqRes)⊥← Tn1 ' 0UuTa1U

(A⊥)¬Tn1 ' 0Ut¬Ta1U

After the inference labelled (†) we “guess” the lemma a1
def= ∀n. n ' n + 0 (note that Ta1U is a

boolean literal, it is either true or false in the SAT solver’s model) and use it to conclude. The
lemma is proved as follows7 (introducing n3, n′3 by splitting on n3, and n′3 ' n′3 +0 ← Tn3 ' s(n′3)U
by strengthening):

n3 6' n3 +0 ←¬Ta1U n3 ' 0 ← Tn3 ' 0U
(Sup)

n3 6' n3 ←¬Ta1UuTn3 ' 0U
(EqRes)⊥←¬Ta1UuTn3 ' 0U

(A⊥)
Ta1Ut¬Tn3 ' 0U

7 The lemma is already proved in Example 5.5, but here we show how it is proved as a sub-lemma of a more
complicated proof.
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n3 6' n3 +0 ←¬Ta1U n3 ' s(n′3) ← Tn3 ' s(n′3)U
(Sup)

s(n′3) 6' s(n′3)+0 ←¬Ta1UuTn3 ' s(n′3)U s(x)+ y ' s(x + y)
(Sup)

s(n′3) 6' s(n′3 +0) ←¬Ta1UuTn3 ' s(n′3)U n′3 ' n′3 +0 ← Tn3 ' s(n′3)U
(Sup)

s(n′3) 6' s(n′3) ←¬Ta1UuTn3 ' s(n′3)U
(EqRes)⊥←¬Ta1UuTn3 ' s(n′3)U

(A⊥)
Ta1Ut¬Tn3 ' s(n′3)U

The SAT solver will be forced to conclude Ta1U , making the first proof valid. Similarly, the re-

cursive case Tn1 ' s(n′1)U, after inference (‡), suggests the lemma a2
def=∀m n. m + s(n) ' s(m +n)

(easily proved, see Example 5.6):

n1 +n2 6' n2 +n1 n1 ' s(n′1) ← Tn1 ' s(n′1)U
(Sup)

s(n′1)+n2 6' n2 + s(n′1) ← Tn1 ' s(n′1)U s(x)+ y ' s(x + y)
(Sup)

s(n′1 +n2) 6' n2 + s(n′1) ← Tn1 ' s(n′1)U

π

π

n′1 +n2 ' n2 +n′1 ← Tn1 ' s(n′1)U
(Sup)(‡)

s(n2 +n′1) 6' n2 + s(n′1) ← Tn1 ' s(n′1)U x + s(y) ' s(x + y) ← Ta2U
(Sup)

s(n2 +n′1) 6' s(n2 +n′1) ← Tn1 ' s(n′1)UuTa2U
(EqRes)⊥← Tn1 ' s(n′1)UuTa2U

(A⊥)¬Tn1 ' s(n′1)Ut¬Ta2U

We have had to introduce two cuts, two lemmas, in this proof. There is no hope to always find
appropriate lemmas in an automated fashion, but this examples shows that it is still possible in
some cases.

Of course, this mechanism of generalization has its own limits — it could be combined
with the (quasi-)exhaustive generation techniques presented above — as the following example
illustrates.

Example 5.12 (Difficult Generalization). Let us introduce the function dup : nat→ nat, axiom-
atized by dup(0) ' 0 and dup(s(x)) ' s(s(dup(x))). We want to prove the theorem ∀x. dup(x) '
x +x, and to this end we start with the goal dup(n) 6' n+n. The base case works fine:

dup(n) 6' n+n n' 0 ← Tn' 0U
(Sup)

dup(0) 6' 0+0 ← Tn' 0U 0+x ' x
(Sup)

dup(0) 6' 0 ← Tn' 0U dup(0) ' 0
(Sup)

0 6' 0 ← Tn' 0U
(EqRes)⊥← Tn' 0U

(A⊥)¬Tn' 0U

Now, for the recursive case, with the strengthening dup(n′) ' n′+n′ ← Tn' s(n′)U:

dup(n) 6' n+n n' s(n′) ← Tn' s(n′)U
(Sup)

dup(s(n′)) 6' s(n′)+ s(n′) ← Tn' s(n′)U s(x)+ y ' s(x + y)
(Sup)

s(s(dup(n′))) 6' s(n′+ s(n′)) ← Tn' s(n′)U dup(n′) ' n′+n′ ← Tn' s(n′)U
(Sup)

s(s(n′+n′)) 6' s(n′+ s(n′)) ← Tn' s(n′)U
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and we get stuck there. The problem here is that the missing lemma, ∀x y. s(x+s(y)) ' s(s(x+y))
(simplified, by (Inj), into ∀x y. x + s(y) ' s(x + y) which is easy to prove, as Example 5.6 shows),
requires generalizing the last goal s(s(n′+n′)) 6' s(n′+ s(n′)) in such a way that some occurrences
of n′ are abstracted by x and some are abstracted by y, where x and y are distinct variables.
Finding a heuristic to properly infer the right lemma in this case seems very difficult.

Remark 5.6 (Injectivity Rule and Lemmas). The rule (Inj) has not been used in the chapter yet,
but this last example suggests that some lemmas might need it. When a negative goal c(t1, . . . , tn)
6' c(t ′1, . . . , t ′n) is met, in general, Superposition will try and eliminate it by making each pair
ti ' t ′i valid; however if a lemma is proposed from this goal it will have the form c(. . .) ' c(. . .)
which can be simplified by injectivity.

5.4 Inductive Strengthening using Several Clauses

The technique of inductive strengthening developed in the previous section works well when
induction is performed on a property that is explicitly present in the set of clauses. Ignoring
the heuristics that introduce lemmas, because they are mostly orthogonal to the point, this
technique is still too weak in cases where the formula to perform induction on is stronger than
the final goal. The following very simple example 5.13 illustrates where it fails.

We take some inspiration from the extension of Superposition to induction on natural num-
bers [KP13] that can use several clauses (more precisely, some equivalent of our notion of clause
context) at once, and present a novel way to tackle the issue of dealing with conjunctive induc-
tive formulas.

Example 5.13 (Non-clausal Induction Formula). Let us assume ∀n. (p(n)∨q(n)) ⇒ (p(s(n))∨
q(s(n))) and p(0)∨ q(0). Assume we already have the clauses ¬p(n) and ¬q(n) (to prove the
theorem ∀n. p(n)∨ q(n)); it is impossible to guess the relevant clause context. Proving the base
case works well:

p(0)∨q(0)
(ASplit)

p(0) ← Tp(0)U q(0) ← Tq(0)U Tp(0)UtTq(0)U

π

and the two cases

¬p(n) n' 0 ← Tn' 0U
(Sup)¬p(0) ← Tn' 0U

π

p(0) ← Tp(0)U
(Sup)⊥← Tn' 0UuTp(0)U

(A⊥)¬Tn' 0Ut¬Tp(0)U

and symmetrically to obtain ¬Tn' 0Ut¬Tq(0)U. So far everything is fine. For the recursive
case, we have to choose to strengthen one clause context among {¬p(¦),¬q(¦)}. What happens
in both case is very exactly the same; to make our point, we pick ¬p(¦), which adds the clause
p(n′) ← Tn' s(n′)U:

¬p(n) n' s(n′) ← Tn' s(n′)U
(Sup)¬p(s(n′)) ← Tn' s(n′)U ¬p(x)∨p(s(x))∨q(s(x))

(Sup)¬p(n′)∨q(s(n′)) ← Tn' s(n′)U
(ASplit)(†)

¬p(n′) ←¬Tp(n′)U q(s(n′)) ← Tq(s(n′))U
Tn' s(n′)U _¬Tp(n′)UtTq(s(n′))U
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¬p(n′) ←¬Tp(n′)U p(n′) ← Tn' s(n′)U
(Sup)⊥← Tn' s(n′)Uu¬Tp(n′)U

(A⊥)¬Tn' s(n′)UtTp(n′)U

So the case ¬p(n′) is solved under the assumption T¬p(n′)U, after the AVATAR split at the in-
ference annotated (†). However, the other case, q(s(n′)), cannot benefit from any strengthening
hypothesis, and its branch fails to close:

¬q(n) n' s(n′) ← Tn' s(n′)U
(Sup)¬q(s(n′)) ← Tn' s(n′)U

We need to assume that n is actually minimal for both ¬p[¦] and ¬q[¦]. Note that in general we
might need an arbitrary number of contexts, not just two, for instance k clauses if the inductive
property to prove was ∀n.

∨k
i=1 pi (n) ⇒∨k

i=1 pi (s(n)).

In the next few sections, we address this problem using a more sophisticated flavor of
strengthening, in which several clause contexts — among a finite pool — represent the property
for which a minimal model must exist.

5.4.1 Existence of an Inductive Model for a Subset of Clauses

Given a state (N ,Fb) and an inductive constant i, we’ve seen that the existence of an induc-
tive model implies the existence of a minimal model for every subset of N . It suffices to find
a subset of N that provably doesn’t admit a minimal inductive model w.r.t. some inductive
constant, to prove that the whole state doesn’t admit a model either (and neither does the ini-
tial problem). In the following, Scand(i) (read: “set of candidate contexts for i”) will be a finite
set of clause contexts where {C [i] | C [¦] ∈ Scand(i)} ⊆ N . We will shorten {C [i] | C [¦] ∈ Scand(i)}
as Scand(i)[i]. The proof search keeps the following sets of A-clauses separate (using boolean
trails):

Sinput : initially the input problem (with minor modifications), it is used to discover new salient
clause contexts and to prove C [i] for new contexts C [¦] — useful because we need to
ensure that the clause contexts form a subset of the initial problem when applied to i.
All clauses in Sinput are deductively provable from the initial state, using the inference
rules of Superposition and AVATAR (see Section 2.4 and 2.5). The clauses are not used for
induction proper, although they contain inductive constants.

Smin(i) : this set, initially empty, contains induction hypothesis for i (clauses of the form C [i] ←
Γ for some Γ); it is chosen dynamically as a subset of Scand(i) (the set of all clause contexts
for i). The proof procedure attempts to refute the minimality of some Smin(i) ⊆ Scand(i).
Clauses in Smin(i) do not interact at all with clauses from Sinput.

T : The theory is composed of all clauses that are deducible from the input problem and do
not contain any inductive constants (they might contain inductive variables). In other
words, those clauses are not concerned with minimality of a model w.r.t. i. They can be
used in inferences both with clauses from Sinput and Smin(i) without restrictions.

Remark 5.7 (Interactions Sinput to Smin(i)). Although Sinput and Smin(i) are kept separate by the
prover, they still interact in some way. In particular, clause contexts can be extracted from clauses
in Sinput, and a context C [¦] can really be used for induction only after C [i] has been proved in
Sinput (see Section 5.4.3). Apart from that, the system behaves as if two distinct Superposition
provers were working on Sinput and Smin(i) separately.

The proof process performs inferences as usual on those two sets of clauses (separately),
and gathers constraints in Sconstraints as usual. It succeeds when a subset of Scand(i)[i] is found
to have no minimal model, which amounts to Sconstraints being unsatisfiable.
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Definition 5.13 (Minimality Witness). Given a constant i, a coverset κ(i), a set of clause contexts
U and t ∈ κ(i), we call minimality witness for U if i ' t the formula

∧
j/t ,sub(j,i)

∨
C [¦]∈U ¬C [j], or

alternatively, ¬∨
j/t ,sub(j,i)

∧
C [¦]∈U C [j].

Assuming U [i] and i' t are true, the minimality witness formula means that for every term
j structurally smaller than t , some clause context C [¦] ∈U is provably false on j. Therefore, if we
can derive ⊥ from the minimality witness and U [i], there cannot be a minimal model for U [i]
that also satisfies i' t . In the case t ∈ κ⊥(i), the minimality witness is trivially true (degenerate
case), so we only have to prove U [i]∧ i' t `⊥.

Definition 5.14 (Criterion for the Absence of a Minimal Model). Let U ⊆ Scand(i) be a set of
clause contexts. To check that the set of clauses U [i] has no minimal model w.r.t. i in the theory
T , we must find a proof of ⊥ from

U [i]∧ i' t ∧T ∧
( ∧
j/t ,sub(j,i)

∨
C [¦]∈U

¬C [j]

)
for each t ∈ κ(i).

In practice, the task of finding the proofs of ⊥ will be divided up betwen the Superposition
prover and a QBF solver, as explained in Section 5.4.2 and 5.4.5. If the criterion is met, any
possible choice of an inductive value for i leads to ⊥ or to the non-minimality of the model. By
Lemma 5.4 that means that N ⊇U [i] has no model. Any procedure that checks the two proper-
ties above is therefore a sound unsatisfiability condition for inductive problems. Now, we need
some computable way to check whether the criterion applies; where Kersani and Peltier [KP13]
propose two ad-hoc fixpoint algorithms (respectively, greater and smaller fixpoint computa-
tions), we build on the AVATAR architecture and let a boolean solver do the job — with a twist,
because we need more than a SAT solver.

Theorem 5.3 (Soundness of the Criterion). Given U ⊆ Scand(i), if the criterion of Definition 5.14
is met — that is, if for each t ∈ κ(i) the formula

T ∧ i' t ∧U [i]∧ ∧
j/t ,sub( j ,i)

∨
C [¦]∈U

¬C [ j ]

leads to a proof of ⊥ — then T ∧U [i] has no minimal inductive model.

Proof. Starting from T ∧ i' t ∧U [i]∧∧
j/t ,sub( j ,i)

∨
C [¦]∈U ¬C [ j ] `⊥, we obtain T ∧ i' t ∧U [i] `∨

j/t ,sub( j ,i)
∧

C [¦]∈U C [ j ]. Let us assume there is a minimal inductive model M of T ∧U [i]∧i' t .
Then M |= ∨

j/t ,sub( j ,i)
∧

C [¦]∈U C [ j ]. Let j be a member of { j / t , sub( j , i)} such that M |= T ∧
U [i]∧∧

C [¦]∈U C [j], i.e., M |= T ∧U [i]∧U [j], with �j�M / �i�M . Then, the model M ′ obtained
from M by mapping i to �j�M is a model of T ∧U [i], because i and j are both Skolem constants
without any axiom on them (apart from the splitting rule). Because �i�M ′ = �j�M / �i�M , M is
not minimal for i, contradicting our hypothesis.

5.4.2 Encoding to QBF

We now present an encoding of the formula from Definition 5.14 in QBF (for a reminder of
what QBF is, see Section 2.22). Why QBF? First, we favored a boolean solver because the in-
terface between Superposition and the propositional solver used the clause trails extensively,
and it fit well within the AVATAR framework [Vor14]. With QBF we can express exponentially
many formulas in a linear-sized formula, a gain in expressiveness that we will need to quan-
tify over all (non-empty) subsets of the clause contexts. Besides, efficient solvers exist for QBF,
some of which are free software. Usual boolean formulas are QBF where all variables are (im-
plicitly) existentially quantified. Therefore, a QBF solver is also a SAT solver8; given a true QBF

8It is proved that QBF-solving is PSPACE-complete.
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∃b1 . . . bn . F ′ it will be able to assign values (a boolean model) to {b1, . . . ,bn}. This allows us to
extend the AVATAR framework smoothly, quantifying split variables existentially before the rest
of the QBF. The notion of combined model also extends trivially to set of clauses paired with
quantified boolean formulas (the boolean valuation being defined only for the variables in the
prenex existential fragment of the formula).

5.4.3 Inference Rules and Dependency Tracking

We will need to track the set of clauses on which induction is performed and which ones are
used for each proof of false: proving heredity, in an inductive proof, requires using only the
theory T and induction hypothesis. As we are going to show, A-clauses and their trails are
perfect tools for this.

Keep Sinput and Smin(i) separate

As described in Section 5.4.1, we need to keep track of several sets of A-clauses. In the first set,
Sinput, every input clause C that contains at least one inductive constant is marked with the
special boolean constant input and becomes C ← input.

On the other hand, clauses in Smin(i) are deduced from induction hypothesis (and mini-
mality witnesses) for i, all of which contain a boolean literal TC [¦] ∈ Smin(i)U in their trail. Intu-
itively, if TC [¦] ∈ Smin(i)U is true, it means that C [¦] is a member of Scand(i). Redundancy rules
(exposed in Figure 5.3) can be added to remove clauses that have been deduced from both
Sinput and Smin(i), or from two incompatible Smin(·), effectively preventing those sets from in-
teracting. Note that the SAT-solver will never make any of those trails true, but it will not prove
that they are absurd; hence, without the simplification rules, clauses that should have been
simplified would just stay frozen and consume memory forever.

Redundancy Smin(i) / Sinput

C ← inputuTD[¦] ∈ Smin(i)UuΓ
>

Redundancy Smin(i1)/Smin(i2)

C ← TD1[¦] ∈ Smin(i1)UuTD2[¦] ∈ Smin(i2)UuΓ
>

Figure 5.3: Redundancy Rules keeping Smin(i) and Sinput separate

Initialization

A successful subset of Smin(i) needs to be initialized, that is, implied by the initial problem,
otherwise its satisfiability is irrelevant to the satisfiability of Sinput. Boolean guards of the form
Tinit(C [¦], i)U are used to keep track of which clause contexts are initialized. As long as the bool-
ean solver does not have to valuate Tinit(C [¦], i)U to 1, C [¦] cannot be reliably used for inductive
reasoning. Given a clause context C [¦], the set of clauses used in the Superposition prover is
watched for clauses D ← Γuinput such that D subsumes C [i]. In this case, we add the constraint
Γ_ Tinit(C [¦], i)U to Sconstraints. Note that a given context can be initialized in more than one
way, with distinct boolean trails9.

9 The boolean atom input is ignored specifically because this operation transfers constraints from Sinputinto
Smin(.)
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Finding new Clause Contexts

We did not define how the set Scand(i) was defined. In fact, this part is heuristic: any method is
admissible for proposing clause contexts as long as they are well-typed and belong to the sig-
nature — similar to the candidates lemmas in Section 5.3.1. However, we did use a reasonable
heuristic in the implementation. When a clause C occurs (possibly with a trail) in Smin(i)]Sinput

such that C is ground and contains some terms t1, . . . , tn of inductive types, with some restric-
tions on {ti }i=1...n , then every one of C [ti ←¦] for i ∈ {1, . . . ,n} is a new candidate context. The
restriction on the terms is the following: C should not contain both an inductive constant i and
some term t such that sub(t , i).

Example 5.14 (Clause Context Extraction). (i) From the clause n1 +n2 6' n2 +n1 ← Γ, we can
extract the two contexts ¦+n2 6' n2 +¦ and n1 +¦ 6' ¦+n1. (ii) No context can be extracted from
n+ s(n′) ' n′ if κ(n) = {0, s(n′)}.

Managing Induction Hypothesis

Our “induction hypothesis”10 on some i will be a conjunction of clause contexts
∧n

k=1 Ck [¦]
(where each Ck [¦] ∈ Scand(i)). We need to assess, for each such conjunction, the following:

• whether the conjunction is proved for i, that is, initialization: is
∧n

k=1 Ck [i] provable from
Sinput, possibly under some boolean trail?

• whether
∧n

k=1 Ck [t ] for every t ∈ κ↓(i) is inconsistent with the minimality witness
∨n

k=1
¬Ck [t ′] for some t ′ / t where sub(t ′, i). In other words, if those two formulas are incon-
sistent — if ⊥ can be deduced from their conjunction — no minimal model can exist for
t ' i, as explained in Section 5.2 and Theorem 5.3.

• whether
∧n

k=1 Ck [t ] can prove ⊥ for every t ∈ κ⊥(i).

The management of the induction hypothesis is done jointly between the Superposition
prover’s clause trails and the QBF solver’s constraints.

Definition 5.15 (Inductive Strengthening). For every known11 clause context C [¦] and inductive
constant i of a compatible type, the inductive strengthening of the context is the set of clauses

C [i] ← TC [¦] ∈ Smin(i)UuTinit(C [¦], i)U

and
¬Lkσ[t ′] ← TC [¦] ∈ Smin(i)UuTminimal(C [¦], i, t ′)UuTi' tU

for each t ∈ κ↓(i) and t ′ / t where C [¦] =∨n
k=1 Lk , sub(t ′, i) andσ is a grounding substitution that

maps freevars(C [¦]) to fresh Skolem symbols12.

Those clauses become candidate for inferences. The former clause, C [i] ← TC [¦] ∈ Smin(i)Uu
Tinit(C [¦], i)U, can play the role of an induction hypothesis (if the boolean TC [¦] ∈ Smin(i)U is
true, meaning C [¦] ∈ Scand(i), and Tinit(C [¦], i)U is also true, meaning C [i] is provable from N );
the latter ones express the potential minimality of C [¦] w.r.t. i (in particular, Tminimal(C [¦], i, t ′)U
expresses the falsity of C [¦] on t ′ / t ). Typically, from the completion of a successful non-

empty subset U
def= {C1[¦], . . . ,Cn[¦]} of Scand(i) — one that cannot have a minimal inductive

model — there would be derivations of clauses of the form ⊥← Tminimal(C j [¦], i, t ′)UuTi' tUudn
k=1

(
TCk [¦] ∈ Smin(i)UuTinit(Ck [¦], i)U

)
for each j ∈ {1, . . . ,n}, t ∈ κ↓(i), t ′ / t and sub(t ′, i).

Each empty clause prevents any inductive model M to be minimal for C j [¦] (the model must

10More accurately, the set of contexts that we show cannot have a minimal model.
11Clause contexts can be “extracted” from clauses from both Smin(i) and Sinput heuristically, by replacing an in-

ductive term with a hole. In any state of the theorem prover, only a finite number of contexts are known.
12Only one substitution σ per context is needed, even if the inductive strengthening contains several clauses.
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satisfy C j [t ′] for some t ′ / t ' i), meaning that if M is minimal for U [¦] it has to be another
context Ck [¦] ∈U ,k 6= j that isn’t satisfied on any t ′ / t ' i. In Sections 5.4.5 and 5.4.6 we will
see how those special trail literals are used in the QBF solver.

Remark 5.8. To reason over whether a model is minimal for C [¦] when i = t (t ∈ κ(i)), we use
the boolean literal Tminimal(C [¦], i, t ′)U. Note that this literal contains t ′ / t rather than just
t . For instance, in the case of binary trees (as defined in Example 5.7), if Ti'N(l ,_,r )U is true,
there is still a difference between Tminimal(C [¦], i, l )U (meaning C [l ] is false because the model is
minimal for C [¦]) and Tminimal(C [¦], i,r )U (same but for the right child). It is possible to refute
that the model is minimal for C [¦] by refuting any of those two cases.

This concludes the encoding of the criterion of Definition 5.14 into Superposition and the
management of inductive properties using AVATAR. The inductive property is built gradually
from several clause contexts, using the strengthening technique exposed in Definition 5.15. In
the next section, we develop a boolean constraint that complements strengthening, the same
way AVATAR uses a SAT solver to complement its Superposition inference rules.

5.4.4 Summary of Special Boolean Literals

In the previous sections, we have introduced several kinds of propositional literals to be added
to clause trails. We review them briefly before presenting the main propositional constraint
that enforces the existence of a minimal inductive model, in the next two sections.

• input is added to clauses that follow directly from the problem axiom, to distinguish them
from inductive properties.

• TC [¦] ∈ Smin(i)U is true iff the context C [¦] is part of the conjunction of inductive prop-
erties for which i should have a minimal model. The valuation of all TC [¦] ∈ Smin(i)U for
each C [¦] is what determines the current “induction hypothesis” for i.

• Tinit(C [¦], i)U must be true if there is some proof of C [i] under the problem axioms — that
is, it corresponds to the “initialization” step for proving C [¦] inductively.

• Tminimal(C [¦], i, t )U, if true in a model in which TC [¦] ∈ Smin(i)U holds too, forces ¬C [t ]
to hold. Such literals enforce that in a candidate combined model (M ,v), i is a min-
imum value for which

�∧
C [¦]∈Scand(i)

(
C [i] ← TC [¦] ∈ Smin(i)U

)�M ,v = >̂, implying that ei-
ther all TC [¦] ∈ Smin(i)U are false, or there is at least one C [¦] such that �C [t ]�M = ⊥̂ and
v
(
TC [¦] ∈ Smin(i)U

)= >̂.

Remark 5.9 (Trail Inheritance). All those special literals are inherited in AVATAR splitting (see
Remark 2.14). This makes it possible to track the history of an inductive clause (i.e., the series
of inferences that lead to that clause), and in particular which induction hypothesis have been
used to deduce it.

5.4.5 Induction on One Constant

For the sake of simplicity, let us start by assuming exactly one inductive constant i is present
in Sinput (e.g. after Skolemization). We need to encode constraints in QBF so that the criterion
from Section 5.4.1 can be checked by a QBF solver. This formula, Fi, is presented and decom-
posed in Figure 5.4. We briefly recap the various sets involved in the formula:

Satoms contains atoms of the form TCU, generated by the regular splitting inference in Fig-
ure 2.4, but excluding splits on the shape of inductive constants (i.e., no literal resembling
Ti' tU with t ∈ κ(i));

Sconstraints contains boolean constraints generated by inference rules: Splitting, introduction
of induction hypothesis and minimality witnesses — i.e., inductive strengthenings.
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Fi
def= ∃a∈Satoms a

∀C [¦]∈Scand(i)TC [¦] ∈ Smin(i)U
∃t∈κ(i)Ti' tU
∃C [¦]∈Scand(i)Tinit(C [¦], i)U
∃t ′,sub(t ′,i),C [¦]∈Scand(i)Tminimal(C [¦], i, t ′)U(d

x∈Sconstraints
x
)
u (

emptyt⊔
t∈κ(i)Ti' tUuminimal(t )

)
empty

def= d
C [¦]∈Scand(i)¬TC [¦] ∈ Smin(i)U

minimal(t )
def= d

t ′/t ,sub(t ′,i)
⊔

C [¦]∈Scand(i)

(
TC [¦] ∈ Smin(i)Uu
Tminimal(C [¦], i, t ′)U

)

Figure 5.4: QBF for Induction on One Constant

We see here that the QBF is stratified into 3 levels of quantification:

1. The outermost (existential) level contains AVATAR-like splitting atoms from Satoms (there-
fore excluding splitting on cover sets — they can change13 depending on the set Smin(i)).
Atoms at this level have a valuation (model) whenever the QBF is satisfiable, same as the
regular AVATAR calculus.

2. The middle level is universally quantified. It allows us to enumerate all subsets of Scand(i)
by quantifying on characteristic functions Smin(i). Smin(i) is the current subset of Scand(i)
for which the existence of a minimal model is challenged. This is where using QBF-
solving is justified: making it possible to check the criterion on 2n subsets of Scand(i)
easily, where n is the cardinal of Scand(i).

3. The innermost level contains literals i ' t and helper predicates that depend on the
value of Smin(i) — along with fresh predicates introduced by reduction to CNF, see Sec-
tion 5.6.2. In addition to the choice of the shape of i (literals Ti' tU), this last layer as-
sesses, for each C [¦] ∈ Scand(i) and term t ∈ κ(i), whether C [¦] is the witness for the exis-
tence of a minimal model of Smin(i) that also satisfies i' t (atoms Tminimal(C [¦], i, t ′)U for
each t ′ where sub(t ′, i)) and whether C [i] has been proved from the initial problem or not
(atoms Tinit(C [¦], i)U).

The body of the QBF enforces the constraints accumulated in Sconstraints so as to prune bool-
ean valuations that are inconsistent with AVATAR inferences and the choice of Smin(i). The dis-
junction

(
emptytminimal

)
forces all choices of Smin(i) to be either the empty set — irrelevant,

as it makes
∧

C [¦]∈Smin(i) C [t ] trivially true for any term t in any model — or a set that can have
a minimal model by choosing i ' t with t ∈ κ(i) and asserting that one of the contexts C [¦] ∈
Smin(i) is false for smaller values t ′ / t . In the latter case, assuming a model is minimal for some
C [¦] from Smin(i) can be refuted by deducing clauses resembling ⊥← Tminimal(C [¦], i, t ′)UuΓ
(as described in Section 5.4.3).

5.4.6 Induction on Several Constants

In general, there are several distinct inductive constants in a problem: goals could have sev-
eral universal variables, or lemmas could be introduced that require being inductively proved
separately (as already seen in Example 5.11). To handle several constants with the QBF-based
technique, we keep the same building blocks but state a stronger requirement: there should
be a minimal model for each inductive constant separately14. Inductive constants are in finite
number for a given problem, so we name the set of inductive constants I (note that this set
can grow during the saturation process, due to the introduction of new Skolem constants). We

13 We are not trying to find a model of the input, but to assess the satisfiability of Smin(i).
14We lack a notion of a model that would be minimal for several constants at one.
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don’t consider constants occurring in coversets (i.e., terms t such that sub(t , i) for some i ∈ I) of
other constants as proper inductive constants; no induction is therefore performed on them.

Remark 5.10. Nested induction is not dealt with directly with our approach, only by introducing
cuts with the lemma mechanism (Section 5.3). We found tracking the dependencies on the outer
induction from within the inner induction was far too complicated even with our approach;
we would need a QBF with quantifier alternation of depth 2n to perform nested induction of
depth n, because each nested inductive proof would depend on choices made in outer inductions,
including the choice of coverset members.

Example 5.15 (Nested Induction through Lemmas). let list def= nat :: list | [ ] be the type of lists of
natural numbers, l : list, and p : nat→ o, q : list→ o. Assume p(0), ∀n : nat. p(n) ⇒ p(s(n)), q([ ])
and ∀n nat : l . listp(n)∧q(l ) ⇒ q(n :: l ). To prove ∀l . q(l ), we introduce l : list, with κ(l) = {[ ],n ::
l′}, and perform the following derivation for the recursive case.

¬q(l) l' n :: l′ ← Tl' n :: l′U
(Sup)¬q(n :: l′) ← Tl' n :: l′U ¬p(x)∨¬q(y)∨q(x :: y)

(Sup)¬p(n)∨¬q(l′) ← Tl' n :: l′U
(ASplit)

¬p(n) ←¬Tp(n)U ¬q(l) ←¬Tq(l)U
Tl' n :: l′U _¬Tp(n)Ut¬Tq(l)U

As already explained, n : nat is not candidate for induction — the problem is that induction on n
should only be performed in models where Tl' n :: l′U is valued to 1 — so we seem to be unable
to solve the case ¬p(n) ← Tp(nU. However, we can “guess” the lemma ∀n. p(n) and prove it by
introducing a fresh constant m and the clauses p(x) ← T∀n. p(n)U (trivially closes the branch)
and ¬p(m) ←¬T∀n. p(n)U.

The formula for induction on multiple constants i1, . . . , in is basically a conjunction of the
individual formulas for ik , k = 1. . .n. The formula F is detailed in Figure 5.5. We will discuss its
transformation to quantified CNF in Section 5.6.2, and the possibility of using incremental solv-
ing many QBF solvers provide to avoid re-checking the whole formula every time it changes. At
this point, we have seen new mechanisms to deal with inductive reasoning, first with one clause
context only, then with any finite subset of Scand(i) with potentially several inductive constants.

F
def= ∃a∈Satoms a

d
i∈IFi

Fi
def= ∀C [¦]∈Scand(i)TC [¦] ∈ Smin(i)U

∃t∈κ(i)Ti' tU
∃C [¦]∈Scand(i)Tinit(C [¦], i)U
∃t ′,sub(t ′,i),C [¦]∈Scand(i)Tminimal(C [¦], i, t ′)U(d

x∈Sconstraints
x
)
u (

empty(i)t⊔
t∈κ(i)Ti' tUuminimal(i, t )

)
empty(i)

def= d
C [¦]∈Scand(i)¬TC [¦] ∈ Smin(i)U

minimal(i, t )
def= d

t ′/t ,sub(t ′,i)
⊔

C [¦]∈Scand(i)

(
TC [¦] ∈ Smin(i)Uu
Tminimal(C [¦], i, t ′)U

)

Figure 5.5: QBF for Induction on Multiple Constants

5.4.7 Examples and Further Discussion

To help the reader acquire more intuition about how the different mechanisms described above
combine into one procedure, we present an example on natural numbers that requires a con-
junctive induction hypothesis.
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Example 5.16. We define p, q : nat → o and assume p(0)∨ q(0) and ∀n : nat. (p(n)∨ q(n)) ⇒
(p(s(n)) ∨ q(s(n))). To prove ∀n : nat. (p(n) ∨ q(n)), Superposition starts with the clauses15

¬p(n) ← input and ¬q(n) ← input. A natural cover set for n is {0, s(n′)}. The clause contexts

Cp [¦]
def= ¬p(¦) and Cq [¦]

def= ¬q(¦) are extracted from the initial clauses, then boolean literals
Tinit(Cp [¦],n)U and Tinit(Cq [¦],n)U are added to Sconstraints. We then define the boolean atoms

hyp(Cp )
def= Tinit(Cp [¦],n)UuTCp [¦] ∈ Smin(n)U

min(Cp )
def= Tminimal(Cp [¦],n,n′)UuTCp [¦] ∈ Smin(n)UuTn' s(n′)U

to keep the proof readable (same for Cq ). Of course, ¬hyp(Cp ) is short for ¬Tinit(Cp [¦],n)Ut
¬TCp [¦] ∈ Smin(n)U, etc.

p(0)∨q(0)
(ASplit)

p(0) ← Tp(0)U q(0) ← Tq(0)U Tp(0)UtTq(0)U

¬p(n) ← hyp(Cp ) n' 0 ← Tn' 0U
(Sup)¬p(0) ← Tn' 0Uuhyp(Cp ) p(0) ← Tp(0)U

(Sup)⊥← Tn' 0UuTp(0)Uuhyp(Cp )
(A⊥)¬Tn' 0Ut¬Tp(0)Ut¬hyp(Cp )

¬q(n) ← hyp(Cq ) n' 0 ← Tn' 0U
(Sup)¬q(0) ← Tn' 0Uuhyp(Cq ) q(0) ← Tq(0)U

(Sup)⊥← Tn' 0UuTq(0)Uuhyp(Cq )
(A⊥)¬Tn' 0Ut¬Tq(0)Ut¬hyp(Cq )

Now, proceeding on to the recursive case, assuming that Cp [¦] is within Smin(n) and that it’s the
minimality witness:

¬p(n) ← hyp(Cp ) n' s(n′) ← Tn' s(n′)U
(Sup)¬p(s(n′)) ← Tn' s(n′)Uuhyp(Cp ) ¬p(n)∨p(s(n))∨q(s(n))

(Sup)¬p(n′)∨q(s(n′)) ← Tn' s(n′)Uuhyp(Cp )
(ASplit)

¬p(n′) ←¬Tp(n′)U q(s(n′)) ← Tq(s(n′))U
Tn' s(n′)Uuhyp(Cp ) _¬Tp(n′)UtTq(s(n′))U

The first case is easy:

¬p(n′) ←¬Tp(n′)U p(n′) ← min(Cp )
(Sup)⊥←¬Tp(n′)Uumin(Cp )

(A⊥)
Tp(n′)Ut¬min(Cp )

The second case, q(s(n′)), works assuming that Cq [¦] is also part of Smin(n):

¬q(n) ← hyp(Cq ) n' s(n′) ← Tn' s(n′)U
(Sup)¬q(s(n′)) ← Tn' s(n′)Uuhyp(Cq ) q(s(n′)) ← Tq(s(n′))U

(Sup)⊥← hyp(Cq )uTn' s(n′)UuTq(s(n′))U
(A⊥)¬hyp(Cq )t¬Tn' s(n′)Ut¬Tq(s(n′))U

15With hindsight, a non-clausal prover could see that the subformula p(¦)∨q(¦) is the right induction hypothesis.
But that’s counting on luck a bit too much.
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The proof when min(Cq ) is assumed is exactly the same, albeit symmetrical. The QBF after adding
all constraints attached to ⊥ follows. It is unsatisfiable in the case where Tminimal(Cp [¦],n,n′)U
and Tminimal(Cq [¦],n,n′)U are both valued to 1 (thus making hyp(Cp ), hyp(Cq ), min(Cp ) and min(Cq )
true).

Fn
def= ∀TCp [¦] ∈ Smin(n)U TCq [¦] ∈ Smin(n)U

∃Tn' 0U Tn' s(n′)U
∃Tinit(Cp [¦],n)U Tinit(Cq [¦],n)U
∃Tminimal(Cp [¦],n,n′)U Tminimal(Cq [¦],n,n′)U
∃hyp(Cp ) min(Cp ) hyp(Cq ) min(Cq )
constraints u (

empty tTn' 0Ut (
Tn' s(n′)Uuminimal (s(n′))

))

constraints
def=



Tn' 0U⊕Tn' s(n′)U
Tinit(Cp [¦],n)U
Tinit(Cq [¦],n)U
Tp(0)UtTq(0)U
¬Tn' 0Ut¬Tp(0)Ut¬hyp(Cp )
¬Tn' 0Ut¬Tq(0)Ut¬hyp(Cq )
Tn' s(n′)Uuhyp(Cp ) _¬Tp(n′)UtTq(s(n′))U
Tn' s(n′)Uuhyp(Cq ) _¬Tq(n′)UtTp(s(n′))U
¬hyp(Cp )t¬Tn' s(n′)Ut¬Tp(s(n′))U
¬hyp(Cq )t¬Tn' s(n′)Ut¬Tq(s(n′))U
Tp(n′)Ut¬min(Cp )
Tq(n′)Ut¬min(Cq )

empty
def= ¬TCp [¦] ∈ Smin(n)Uu¬TCq [¦] ∈ Smin(n)U

minimal (s(n′))
def=

(
TCp [¦] ∈ Smin(n)Uu
Tminimal(Cp [¦],n,n′)U

)
t

(
TCq [¦] ∈ Smin(n)Uu
Tminimal(Cq [¦],n,n′)U

)

Now, we come back to the counter-example 5.13. We will see that what makes this case
solvable is not the ability of our second encoding to use a conjunction of clause contexts as the
inductive formula, but its ability to try several clause contexts without committing to a specific
one.

Example 5.17 (Parallel Induction). We define p, q : nat → o and assume p(0), q(0) and ∀n :
nat. (p(n)∧ q(n)) ⇒ (p(s(n))∧ q(s(n))). To prove ∀n : nat. p(n), Superposition starts with the
clause ¬p(n) ← input. We use the same classic cover set for n, that is, {0, s(n′)}. The clause con-

text Cp [¦]
def=¬p(¦) is extracted from the initial clauses, then the boolean literal Tinit(Cp [¦],n)U is

added to Sconstraints. We define

hyp(Cp )
def= Tinit(Cp [¦],n)UuTCp [¦] ∈ Smin(n)U

and
min(Cp )

def= Tminimal(Cp [¦],n,n′)UuTCp [¦] ∈ Smin(n)UuTn' s(n′)U

to keep the proof readable. First, the base case is easy:

¬p(n) ← hyp(Cp ) n' 0 ← Tn' 0U
(Sup)¬p(0) ← Tn' 0Uuhyp(Cp ) p(0)

(Sup)⊥← Tn' 0Uuhyp(Cp )
(A⊥)¬Tn' 0Ut¬hyp(Cp )

Now, proceeding on to the recursive case, assuming that Cp [¦] is within Smin(n) and that it’s the
minimality witness:
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¬p(n) ← hyp(Cp ) n' s(n′) ← Tn' s(n′)U
(Sup)¬p(s(n′)) ← Tn' s(n′)Uuhyp(Cp ) ¬p(n)∨¬q(n)∨p(s(n))

(Sup)¬p(n′)∨¬q(n′) ← Tn' s(n′)Uuhyp(Cp )
(ASplit)

¬p(n′) ←¬Tp(n′)U ¬q(n′) ←¬Tq(n′)U
Tn' s(n′)Uuhyp(Cp ) _¬Tp(n′)Ut¬Tq(n′)U

The occurrence of the clause ¬p(n′)∨¬q(n′), before it is simplified by an AVATAR split, suggests to

add the context Cpq [¦]
def=¬p(¦)∨¬q(¦). This context is initialized (subsumed) by ¬p(n), and we

will proceed with it from now on, forgetting about Cp (which is not strong enough an induction
hypothesis to prove itself).

¬p(n)∨¬q(n) ← hyp(Cpq )
(ASplit)¬p(n) ←¬Tp(n)U ¬q(n) ←¬Tq(n)U hyp(Cpq ) _¬Tp(n)Ut¬Tq(n)U

Base case Let us go back to initialization, for Cpq [¦] this time:

p(0)

¬p(n) ←¬Tp(n)U n' 0 ← Tn' 0U
(Sup)¬p(0) ← Tn' 0Uu¬Tp(n)U

(Sup)⊥← Tn' 0Uu¬Tp(n)U
(A⊥)¬Tn' 0UtTp(n)U

and

q(0)

¬q(n) ←¬Tq(n)U n' 0 ← Tn' 0U
(Sup)¬q(0) ← Tn' 0Uu¬Tq(n)U

(Sup)⊥← Tn' 0Uu¬Tq(n)U
(ASplit)¬Tn' 0UtTq(n)U

Recursive Case Very similar, but we can use the strengthening of Cpq [¦]; namely, p(n′) ←
min(Cpq ) and q(n′) ← min(Cpq ).

¬p(n) ←¬Tp(n)U n' s(n′) ← Tn' s(n′)U
(Sup)¬p(s(n′)) ← Tn' s(n′)Uu¬Tp(n)U ¬p(n)∨¬q(n)∨p(s(n))

(Sup)¬p(n′)∨¬q(n′) ← Tn' s(n′)Uu¬Tp(n)U
(ASplit)

¬p(n′) ←¬Tp(n′)U ¬q(n′) ←¬Tq(n′)U
Tn' s(n′)Uu¬Tp(n)U _¬Tp(n′)Ut¬Tq(n′)U

and its symmetric starting with ¬q(n) ←¬Tq(n)U. From then, we perform the two split cases

¬p(n′) ←¬Tp(n′)U p(n′) ← min(Cpq )
(Sup)⊥←¬Tp(n′)Uumin(Cpq )

(A⊥)
Tp(n′)Uu¬min(Cpq )

and

¬q(n′) ←¬Tq(n′)U q(n′) ← min(Cpq )
(Sup)⊥←¬Tq(n′)Uumin(Cpq )

(A⊥)
Tq(n′)Uu¬min(Cpq )
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The QBF follows. It is quite rich because of the numerous case splits performed in the proof.
The formula is unsatisfiable in the case where Smin(n) = {Cpq [¦]} because of the subset of the
constraints named unsat-core (also see Section 5.5.2).

Fn
def= ∃Tp(n)U Tq(n)U Tp(n′)U Tq(n′)U

∀TCp [¦] ∈ Smin(n)U TQpq [¦] ∈ Smin(n)U
∃Tn' 0U Tn' s(n′)U
∃Tinit(Cp [¦],n)U Tinit(Cpq [¦],n)U
∃Tminimal(Cp [¦],n,n′)U Tminimal(Cpq [¦],n,n′)U
∃hyp(Cp ) min(Cpp ) hyp(Cq ) min(Cpq )
constraints u (

empty tTn' 0UtTn' s(n′)Uuminimal (s(n′))
)

constraints
def=



Tinit(Cp [¦],n)U
¬Tn' 0Ut¬hyp(Cp )
Tn' s(n′)Uuhyp(Cp ) _¬Tp(n′)Ut¬Tq(n′)U
Tn' 0U⊕Tn' s(n′)U
Tinit(Cpq [¦],n)U
hyp(Cpq ) _¬Tp(n)Ut¬Tq(n)U
¬Tn' 0UtTp(n)U
¬Tn' 0UtTq(n)U
Tn' s(n′)Uu¬Tp(n)U _¬Tp(n′)Ut¬Tq(n′)U
Tn' s(n′)Uu¬Tq(n)U _¬Tp(n′)Ut¬Tq(n′)U
Tp(n′)Ut¬min(Cpq )
Tq(n′)Ut¬min(Cpq )



unsat core

empty
def= ¬TCp [¦] ∈ Smin(n)Uu¬TCpq [¦] ∈ Smin(n)U

minimal (s(n′))
def=

(
TCp [¦] ∈ Smin(n)Uu
Tminimal(Cp [¦],n,n′)U

)
t

(
TCpq [¦] ∈ Smin(n)Uu
Tminimal(Cpq [¦],n,n′)U

)

Search Space

The boolean solver, as discussed in the Section 2.5 on AVATAR, acts as an explorer of the global
search space. Whenever a toplevel choice has to be made — be it a regular boolean split on a
clause, or whether a lemma introduced as in Section 5.3 is valid — the solver takes an arbitrary
decision, to be corrected only in the case it leads to a contradiction. For instance, deciding
that the lemma T∀n. n +0 ' nU should be valued to 0 will yield a conflict once the lemma is
inductively proved; from then on, the solver will have to value it to 1 and the lemma will be
usable.

We see here that several sub-parts of the search space can communicate through bool-
ean constraints: in Example 5.11, the following proofs are carried separately: (i) the clause
n +0 ' n ← T∀n. n +0 ' nU is used to disprove the casen' 0, eventually constraining¬Tn' 0Ut
¬T∀n. n +0 ' nU; (ii) the proof of T∀n. n +0 ' nU eventually succeeds and adds T∀n. n +0 ' nU
to the set of boolean constraints. Although those two subproofs don’t interact directly, together
they prune the branch of the search space in which Tn' 0U is valued to 1.

Limitations

Although the QBF encoding is strictly more powerful than the direct encoding in AVATAR from
Section 5.2, it also has some limitations. First, lemmas are still necessary, which makes Exam-
ple 5.12 still relevant. Then, inductive properties that are not a conjunction of clause contexts
that can be extracted from N cannot be solved. Last, our framework only deals with structural
induction, not well-founded induction in general.
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5.5 Reconstructing Proofs

We have seen two extensions of Superposition that can handle some inductive reasoning. How-
ever, those extensions are somewhat subtle and their implementation, as Section 5.6 can show,
is not trivial. An interesting way to increase the trust humans can have in such proofs is to have
the prover output, not a single “yes/no” answer, but a detailed trace of its reasoning; what we
called earlier a trace of the proof. Such traces, depending on their level of detail, can be read by
a human, or checked by a dedicated tool (possibly after some encoding).

5.5.1 SAT resolutions proofs for Inductive Strengthening

Let us first focus on the inductive strengthening technique described in Section 5.2; the one
that deals with one clause context at a time. Since it uses a regular SAT solver, like AVATAR,
and succeeds when the solver proves the unsatisfiability of the set of constraints, a boolean
resolution proof can be obtained16. This proof is a DAG of boolean clauses whose leaves can
have the following forms:

• ¬l1 t . . .t¬ln where the constraint comes from a clause ⊥ ← l1 u . . .u ln and each li is
either TCi U (a clause component) or Ti' tU for some t ∈ κ(i);

• Γ_ TC1Ut. . .tTCnU where the constraint comes from the splitting of the clause C1 ∨ . . .∨Cn ←
Γ;

•
⊕

t∈κ(i)Ti' tU for some inductive constant i.

In any case, we can rebuild a regular Superposition proof (along with some additional axioms
that are specific to inductive reasoning).

Example 5.18 (Simple Boolean Resolution Proof). Let us build the resolution/Superposition
proof for the simple problem in Example 5.7. We glue together the Superposition proof to a reso-
lution proof of 0 obtain from the (unsatisfiable) boolean constrains:

Tt'EU⊕Tt'N(tl , a,tr )U
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tt'EUtTt'N(tl , a,tr )U

¬q(t) t'E← Tt'EU
(Sup)¬q(E) ← Tt'EU q(E)

(Sup)⊥← Tt'EU
(A⊥)¬Tt'EU

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tt'N(tl , a,tr )U

π

¬q(t) t'N(tl , a,tr ) ← Tt'N(tl , a,tr )U
(Sup)¬q(N(tl , a,tr )) ← Tt'N(tl , a,tr )U ¬p(x)∨¬q(l )∨¬q(r )∨q(N(l , x,r ))

(Sup)¬p(a)∨¬q(tl )∨¬q(tr ) ← Tt'N(tl , a,tr )U
(ASplit)

¬p(a) ←¬Tp(a)U ¬q(tl ) ←¬Tq(tl )U ¬q(tr ) ←¬Tq(tr )U
Tt'N(tl , a,tr )U _¬Tp(a)Ut¬Tq(tl )Ut¬Tq(tr )U

πm

16 Not all SAT solvers actually give access to a resolution proof, but at least it is theoretically possible.
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πm

¬q(tl ) ←¬Tq(tl )U q(tl ) ← Tt'N(tl , a,tr )U
(Sup)⊥←¬Tq(tl )UuTt'N(tl , a,tr )U

(A⊥)¬Tt'N(tl , a,tr )UtTq(tl )U

π

Tt'N(tl , a,tr )U
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tq(tl )U

πl

πm

¬q(tr ) ←¬Tq(tr )U q(tr ) ← Tt'N(tl , a,tr )U
(Sup)⊥←¬Tq(tr )UuTt'N(tl , a,tr )U

(A⊥)¬Tt'N(tl , a,tr )UtTq(tr )U

π

Tt'N(tl , a,tr )U
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tq(tr )U

πr

π πm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
¬Tp(a)Ut¬Tq(tl )Ut¬Tq(tr )U

πm

¬p(a) ←¬Tp(a)U p(x)
(Sup)⊥←¬Tp(a)U

(A⊥)
Tp(a)U

πl πr

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0

Remark 5.11 (Q-Resolution). Where SAT problems can always be solved using boolean resolu-
tion, QBF problems can be solved using Q-resolution[KKF95]. The technique developed above
could be adapted to Q-resolution to glue together proofs operating on portions of the search
space.

5.5.2 QBF resolution proofs using UNSAT-cores

Some QBF solvers, such as Depqbf [LB10], provide mechanisms that allow to extract, from a
formula known to be unsatisfiable, a subset of the clauses known as UNSAT-core. This subset is
unsatisfiable by itself, and none of its own strict subsets is unsatisfiable. Such an UNSAT-core
filters out clause contexts that played no role in the proof. Since the creation of clause contexts
is heuristic, in practice, many useless or irrelevant contexts are created and do not participate
in the proof.

Given an UNSAT-core, i.e. a set of boolean clauses, we compute the set L of boolean literals
of the form TC [¦] ∈ Smin(i)U involved in the set. Then, we can do a regular inductive proof

(or a SAT-solver based proof) by instantiating the induction principle on the formula F [x]
def=∧

TC [¦]∈Smin(i)U∈L C [x]. The QBF-based induction would act as a (semi-)procedure that finds the
appropriate inductive formula before the real proof proceeds.
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5.6 Implementation in Zipperposition

We developed a basic implementation in Zipperposition. It can solve some problems (in-
cluding the commutativity of +, see Example 5.11) using the SAT solver MSat17, or the QBF
solvers Depqbf [LB10] or Quantor [Bie04]18. Implementing the successive versions of inductive
reasoning in Zipperposition played a central role in designing the calculus as presented here
through numerous design steps19.

5.6.1 Interfacing to Boolean Solvers

Zipperposition communicates with boolean solvers through an abstract interface detailed in
Figure 5.6. This interface contains two module type, SAT and QBF, that respectively wrap a SAT-
solver and a QBF-solver. By virtues of subtyping, a QBF-solver can also be used as a SAT-solver.

Both kinds of solver provide a function add_clause to add clauses with an optional integer
tag that is used for reporting the UNSAT-core, and a helper function add_form that converts
its argument to CNF before calling add_clause on every resulting clause. Once every clause of
Sconstraints has been added to the solver, a call to check returns either Sat or Unsat. Depending
on this value, valuation can be called to obtain the valuation of a literal in the model (in the
case of QBF, only variables that belong to the outer, existentially quantified, scope have a val-
uation), or unsat_core can be called — if the solver provides it. We did not exploit resolution
proofs from solvers that could provide it. Incremental checking, an important technique we
will discuss in Section 5.6.2, is made possible through save and restore. The function save

pushes the current state of the solver (i.e., the set of clauses, roughly) onto a stack, and returns
the stack height; restore pops states from the stack down to the given height and copies the
corresponding saved state back into the solver20. QBF solvers expose additional functions to
quantify literals and create new scopes (from outermost to innermost, starting with level0

which is the prenex existential scope, for which valuation is defined).
First-class modules are used to choose among several candidate solvers at runtime. Each

solver is annotated with its “strength” (see the type α solver) — a heuristic value indicated
how powerful the solver is — so that the stronger available solver is selected. This way, if a
particularly strong solver is added using the plugin system, it will be used over weaker ones.

5.6.2 Reducing the QBF to CNF

We do not expand on the subject of implementing strengthening any further, as every con-
straint is already a boolean clause. However, the QBF in Figure 5.5 is a different story.

Definition 5.16 (Incremental Solving). A boolean solver is incremental if it can solve a series
of (conjunctive) formula sets F1,F2, . . . ,Fn where Fi ⊆ Fi+1 for 1 ≤ i < n more efficiently than by
solving each Fi independently.

The interface in Figure 5.6 exposes a type save_level and two functions, save and restore.

Given this interface to an incremental solver, the series of formulas F
def= (F1,F2, . . .Fn) can be

solved by the following piece of pseudo-code. The function solve is given a list [F1,F2 \ F1, . . . ,
Fn \ Fn−1] and outputs, for each Fi , Sat or Unsat depending on whether Fi is satisfiable or not.

17 A small SAT-solver in OCaml that can output resolution proofs, see https://github.com/Gbury/mSAT.
18 See http://fmv.jku.at/quantor/.
19 Starting by trying to adapt directly the work from Kersani and Peltier [KP13], then trying to use cyclic terms to

represent fixpoints, then several versions based on the QBF solver where each iteration would delegate more work
to the solver than the previous one. . .

20Of course, for solvers that natively handle incrementality, this is much more efficient than a naive copy of the
state. The solver itself provides a stack API.
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type result = Sat | Unsat

(** One instance of boolean solver. *)
module type SAT = sig
val add_clause : ?tag:int → lit list → unit
val add_form : ?tag:int → formula → unit (* will be reduced to CNF *)
val check : unit → result (* current state satisfiable? *)
val valuation : lit → bool (* if satisfiable, access model *)
val unsat_core : (unit → int list) option
type save_level (* for incrementality *)
val root_save_level : save_level
val save : unit → save_level (* save current state *)
val restore : save_level → unit (* restore to given state *)

end

type quantifier = Forall | Exists

module type QBF = sig
include SAT (* Can use check, save, valuation, etc. *)
type quant_level = private int (* Quantification depth *)
val level0 : quant_level (* outermost ∃ level *)
val push : quantifier → lit list → quant_level (* new innermost scope *)
val quantify_lit : quant_level → lit → unit

end

type α solver = {
create: unit → α; (** build a new instance *)
strength : int; (** used to favor better solvers *)

}

type sat_solver = (module SAT) solver
type qbf_solver = (module QBF) solver

val sat_of_qbf : qbf_solver → sat_solver

Figure 5.6: Abstract Interface for Boolean Solvers
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module Solver : SAT (* a solver instance *)

let rec solve = function
| [] → []
| diff :: tail →

List.iter Solver.add_clause diff; (* add Fi \ Fi−1 *)
let res = Solver.check () in
res :: solve tail

In practice, as we will see soon, the real list of formulas has the more general shape F1 ]
G1,F2 ]G2, . . . ,Fn ]Gn where Fi ⊆ Fi+1 for 1 ≤ i < n. Pure incremental solving does not work,
because the sets Gi are arbitrary; however, the restore function is designed expressly for this
case, as the following function solve’ shows. This time the function is given a list [(F1,G1), (F2 \
F1,G2) . . . , (Fn \Fn−1),Gn] and maps each tuple (Fi \Fi−1,Gi ) into a value of type result depend-
ing on the satisfiability of Fi ]Gi .

let rec solve’ = function
| [] → []
| (diff_f, g) :: tail →

List.iter Solver.add_clause diff_f; (* add Fi \ Fi−1 *)
let level = Solver.save () in (* add Gi *)
List.iter Solver.add_clause g;
let res = Solver.check () in
Solver.restore level; (* forget about Gi *)
res :: solve’ tail

Incremental Reduction to CNF The proof procedure revolves around the saturation loop (the
“given clause algorithm” described in Section 2.4) and generates a series of QBF Q1,Q2, . . .Qn .
Once reduced to CNF, each Qk can be decomposed into Fk ]Gk as explained above. For the
sake of efficiency, we should strive to make Gk as small as possible. The formula Qk after k
steps of saturation has the form21:

Qk
def= ∃a∈Satoms(k)

a
∀i∈I,C [¦]∈Scand(i)(k)

TC [¦] ∈ Smin(i)U
∃i∈I,t∈κ(i)Ti' tU
∃i∈I,C [¦]∈Scand(i)(k)

Tinit(C [¦], i)U
∃i∈I,t ′,sub(t ′,i),C [¦]∈Scand(i)(k)

Tminimal(C [¦], i, t ′)U(d
x∈Sconstraints(k)

x
)
ud

i∈I
(
empty(i)t⊔

t∈κ(i)Ti' tUuminimal(i, t )
)

empty(i)
def= d

C [¦]∈Scand(i)(k)
¬TC [¦] ∈ Smin(i)U

minimal(i, t )
def= d

t ′/t ,sub(t ′,i)
⊔

C [¦]∈Scand(i)(k)

(
TC [¦] ∈ Smin(i)Uu
Tminimal(C [¦], i, t ′)U

)
where Satoms(k),Scand(i)(k) and Sconstraints(k) depend on k.

Local Constraints First, boolean formulas in Sconstraints are already in clausal form: they are
either boolean splits (including splits on κ(i) for some constant i) or come from ⊥← dn

k=1 ak ,
which yields a clause

⊔n
k=1¬ak .

Global Constraints For the rest of the formula inside the quantifiers, we use the well known
Tseitin transformation [Tse83] and the polarity of sub-formula to avoid getting a set of clauses
of exponential size — an area in which growth is usually frowned upon. Every boolean atom

21 We obtained this formula from Figure 5.5 by merging the quantified formulas without renaming, because they
share no variable, and thus quantification commutes with connectives.
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that is introduced to stand for a sub-formula F is named AF . We obtain the following conjunc-
tion of clauses:

u



d
i∈IAempty(i) t⊔

t∈κ(i) Aminimal’(i,t )
d

i∈I,C [¦]∈Scand(i)¬Aempty(i) t¬TC [¦] ∈ Smin(i)U
d

i∈I,t∈κ(i)

(¬Aminimal’(i,t ) tTi' tU
)u (¬Aminimal’(i,t ) tAminimal(i,t )

)
d

i∈I,t∈κ(i),t ′/t ,sub(t ′,i)¬Aminimal(i,t ) t⊔
C [¦]∈Scand(i) Aminimal_by(i,t ,t ′,C [¦])

d
i∈I,t∈κ(i),t ′/t ,sub(t ′,i)C [¦]∈Scand(i)u

{ (¬Aminimal_by(i,t ,t ′,C [¦]) tTC [¦] ∈ Smin(i)U
)(¬Aminimal_by(i,t ,t ′,C [¦]) tTminimal(C [¦], i, t ′)U

)
in which the following Tseitin atoms have been introduced to prevent large disjunctions of con-
junctions to exert their harmful multiplication of the number of clauses:

Aempty(i) stands for the definition of empty(i), which is a conjunction.
Aminimal’(i,t ) stands for minimal(i, t )uTi' tU.
Aminimal(i,t ) stands for the definition of minimal(i, t ), likely to yield a large CNF.
Aminimal_by(i,t ,t ′,C [¦]) stands for the sub-formula TC [¦] ∈ Smin(i)UuTminimal(C [¦], i, t ′)U.

The clause conjunctions in gray are added at the beginning of the saturation process (or
whenever a new inductive constant and its coverset are added). Conversely, the formulas that
are not colored should be added, then removed, every time the boolean solver is called (since
they are part of Gk ).

Summary As we see, only a small part of the formula does not lend itself to incremental solv-
ing, mandating the usage of push and pop. It makes it possible to run a boolean satisfiability
check at every iteration of the saturation loop efficiently — a crucial requirement for a prover
that has to deal with real problems.

5.6.3 Experimental Evaluation of Zipperposition+Induction

Zipperposition-0.522 includes the SAT-based encoding of induction as described in Section 5.2,
with a simplified implementation of AVATAR that does not prune inactive clauses (clauses whose
trail is false in the current boolean interpretation). Still, it manages to solve some inductive
problems, as Figure 5.7 shows. The problems listed there are all successfully solved using only
the simple strengthening technique. The file name column refers to the name of the problem
in the directory examples/ind/ in the repository of Zipperposition. We make the meaning of
some symbols precise:

• x @ y concatenates the lists x and y ;
• count(x, l ) is the number of times x occurs in the list l ;
• mem(x, l ) is true if x occurs in the list l ;
• t_rev(t ) reverses the tree t (so that prefix traversal becomes postfix traversal).
In some problems, in particular related to trees, a huge number of lemmas are generated.

That explains why the prover takes more time on those problems. Some problems also have an
“easy” version in which only the relevant axioms are kept — for instance, tree2_easy.p (same
as tree2.p but with fewer axioms) is solved in 105 steps after 0.266s. Keep in mind that the
implementation of inductive reasoning in Zipperposition is only a proof of concept and has
not been optimized in any way; we did not compare to other systems for this reason.

22 See https://github.com/c-cube/zipperposition/archive/0.5.tar.gz.
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problem file steps time (s)
+ is associative nat1.p 28 0.027
+ is commutative nat2.p 66 0.064
x +0 ' x nat3.p 15 0.012
x + s(y) ' s(x + y) nat5.p 20 0.032
(x + y)−x ' y nat9.p 16 0.014
x −x ' 0 nat10.p 13 0.013
x ≤ y ⇒ z +x ≤ z + y nat18.p 94 0.066
count(x, l1 @ l2) ' count(x, l1)+count(x, l2) list4.p 86 0.131
x @ [] ' x list8.p 31 0.037
@ is associative list9.p 49 0.059
mem(x, l @ (x :: [ ])) list12.p 148 0.188
mem(x, l ) ⇒ mem(x, l ′ @ l ) list14.p 157 0.218
t_rev(t_rev(t )) ' t tree2.p 427 14.350

Figure 5.7: Time Needed by Zipperposition on Some Problems

Conclusion

We have shown another extension of Superposition (with AVATAR) that lends itself well to struc-
tural induction. We also demonstrated its feasability in a proof of concept implementation that
can already solve non-trivial problems without a mechanism to generate lemmas from the sig-
nature — and is still compatible with such a mechanism in a very simple way. Our work extends
the previous extension of Superposition to induction by Kersani and Peltier [KP13] to structural
types in general. It leverages the natural ability of the AVATAR calculus to reason by case, and,
using QBF constraints instead of SAT ones, it deals with exponentially many cases at the same
time. It naturally composes with other parts from this thesis, including arithmetic, thanks to
the uniform treatment of arithmetic clauses with deduction rules that carry boolean trails over
into the conclusion. However, the calculus using QBF (Section 5.4) is mostly theoretical at this
point: our prototype implements it but sorely lacks optimizations that would prune the search
space.

To be integrated into a competitive prover such as E [Sch02] or Vampire [RV01b], the prover
needs to deal with typed logic and to perform AVATAR splitting. The prover would also have
to guess lemmas from the signature (in some more-or-less heuristic fashion) in order to solve
more complex problems without human guidance. Better lemmas generalization techniques
should be adapted to our framework. Since lemmas play such an important role in inductive
theorem proving, we believe it would also be very useful to remember useful lemmas in a proof
so that, later, when a similar inductive theory is recognized, they can be recalled immediately
in the hope they will prove useful again. The next chapter presents a technique to recognize
axiomatic theories — a finite set of axioms — in a signature-agnostic fashion, and take actions
when a known theory is recognized in a problem (e.g., add lemmas that are valid in the theory).

103



Chapter 6

Theory Detection

6.1 Introduction

As already mentioned before, Superposition [NR99] appeared to handle the difficult issue of
equality reasoning, that would otherwise drown most provers in a huge search space (in par-
ticular, resolution-based provers). Still, many other theories tend to generate a large number
of clauses when present in the axioms, even when they are not used to prove the goal. A clas-
sic illustration of that phenomenon is the theory of Associative Commutative symbols (usually
called AC); it has been known for a long time to slow down provers. It is so critical in some
domains that a large body of research has been dedicated to its integration in proof procedures
(see for instance [BG95]). Many theorem provers for first-order logic with equality contain an
ad-hoc engine to recognize instances of AC symbols, composed of the two following axioms
(here, for the symbol +):

Associativity: ∀x y z. x + (y + z) ' (x + y)+ z;
Commutativity: ∀x y. x + y ' y +x.

Once the automated prover has recognized that some symbol has the AC property, it can use
some specialized technique to deal with it efficiently, because this theory is very common but
is known to generate a large amount of redundant clauses that bloat the search space. How-
ever, if similar techniques can be applied to other axiomatic theories — theories that can be
defined in terms of a finite set of axioms — code would need to be written for those provers to
handle each new theory. We propose here a system that can recognize the presence of theories
in a generic and incremental way. The system is based on the use of a second theorem prover,
based on Horn clauses, that reasons about the meta-level properties that the problem exhibits,
rather than trying to solve the problem itself. In some limited sense, this is similar to what a
human mathematician does: she would try to use equations and hypotheses on the problem
itself, but at the same time she would recognize already known patterns and specific structures
(for instance, a group structure, a linear field, or an isomorphism to some other part of Mathe-
matics) and use this higher-level knowledge to apply theorems and lemmas she knows. Many
useful theories can be finitely axiomatized, even outside of algebra; many set operators (e.g.,
the powerset) are defined by a set of axioms, the theory of functional arrays is widely used in
program verification, etc.

We implemented this technique in the logic library Logtk and in the experimental theo-
rem prover Zipperposition (described respectively in Section 3.1 and Section 3.2). A small de-
duction engine for higher-order Horn clauses is used to reason on properties of the problems,
including the set of theories and axioms that we know are present. The prover and the meta-
level reasoner interact by exchanging clauses on the one hand, deduced properties on the other
hand. The Superposition prover can use the additional information to infer new clauses thanks
to lemmas (using AVATAR as explained in Section 5.3) or to activate theory-specific redundancy
criteria [BC13] or decision procedures.
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We also expose several applications for the detection of axioms and theories. The first one
is a powerful lemma that allows theorem provers that deal well with equality to discover that
some relations represent the graph of a function, and to replace instances of the relation by
equations. For instance, in the TPTP archive [Sut09], many algebraic problems on groups (or
extensions thereof) are encoded using sum(x, y, z) instead of z ' add(x, y). This complicates
the axiomatization (many more axioms, that are big Horn clauses, etc.) compared to an equa-
tional view of the problem. Our lemma, fed to the prover in a simple declarative language
(using the same conventions as TPTP: ! is universal quantification, ~ is negation, capital X, Y
are variables, <- is the Horn clause implication) as:

axiom (functional2 P) <-
holds (![X,Y,Z]: [~ (P X Y Z), ~ (P X Y Z2), Z = Z2]).

axiom (total2 {pred=P, fun=F}) <-
holds (![X,Y]: [P X Y (F X Y)]).

lemma (![X,Y,Z]: [P X Y Z --> (Z = F X Y)]) <-
axiom (functional2 P),
axiom (total2 {pred=P, fun=F}).

allows to recover an equational (boolean) definition from this encoding, which can then be
unfolded to simplify clauses.

Another application is the per-theory activation of an equational redundancy criterion. If
we know a saturated, ground convergent system of equations for some theory [AHL03], literals
that are tautological or absurd in this theory can be removed while retaining completeness.
Our framework allows us to know when such a theory occurs in a problem, so we can use the
corresponding redundancy criterion.

Similar work comprises a mechanism in Waldmeister that helps the prover select a term
ordering (an important heuristic in any flavor of Superposition) based on a pre-computed table
of algebraic theories that are detected in the prover’s input. Some other provers, such as E,
feature some basic built-in detection for some theories. A previous version of our work, using
a different technique, was also published [BC13].

We first expose some basic definitions and notations, then successively expose techniques
for recognizing individual axioms and whole theories. Then, after some examples of how to use
knowledge gained about what axiomatic theories are present, we present some experimental
results and conclude.

6.2 Higher-Order Reasoner

The meta-prover works on properties of functions and predicates. Therefore, functions and
predicates must be first-class objects in the language of the meta-prover, which makes it in-
trinsically higher-order. For that reason, we made the obvious choice of using higher-order
terms (and formulas). As we will directly use higher-order terms and formulas (more precisely,
Horn clauses) to describe axioms, theories and other relevant properties, the term language
should be expressive and designed for human readability. The language incorporates some
additional constructs such as records and multisets to make it easier to use and more read-
able; records are convenient (and extensible) representations of tuples where elements are ac-
cessed through their label (a name) rather than an arbitrary position, and multisets are bags of
unordered elements that can be used to represent arguments of associative-commutative (or
merely commutative) symbols such as ∨.

6.2.1 Definitions

Definition 6.1 (Label). A label is a string that can be used to name the fields of a record. Labels
are not first-class, they can only occur in records and will never be bound in substitutions.
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Definition 6.2 (Types for Higher-Order Terms). Types are inductively defined from the following
grammar:

τ
def=α | c | τ→ τ |Πα. τ | [τ] | {|l1 : τ1, . . . , ln : τn |} | {|l1 : τ1, . . . , ln : τn | α|}

in which α denotes a type variable, c a type constant, Πα. τ a polymorphic type, [τ] the type of
multisets of elements of type τ, and records denote the type of term records.

Definition 6.3 (Higher-Order Term). A higher-order term over a signature Σ is defined by the
rule t in the following grammar, where x and ρ denote variables, c denotes a constant from
Σ, τ denotes a type (see Definition 6.2), l1, . . . , ln are pairwise distinct labels, m describes term
multisets, and r denotes (extensible) records with a row variable ρ [Wan87].

t
def= x | c | t〈τ〉 | ∀x. t | ∃x. t | t t | m | r

m
def= [t , . . . , t ]

r
def= {|l1 = t , . . . , ln = t |} | {|l1 = t , . . . , ln = t | ρ|}

The empty record is {||}, it has no labels. A variable occurring in the row part of a record is usually
named ρ rather than x, y, or z, as in {|l1 = t1, . . . , ln = tn | ρ|}. It is called a row variable and
can only be substituted with a (possibly empty) record. Rows are subject to flattening: a record
{|l1 = t1, . . . , ln = tn | {|ln+1 = tn+1, . . . , lm = tm | ρ|}|} is only valid if all the (l j )1≤ j≤m are distinct; in
this case the record is equal to {|l1 = t1, . . . , lm = tm | ρ|}.

t〈τ〉 denotes the application of a term t to a type parameter τ, and will sometimes be noted tτ
for brevity (on infix operators, in particular).

Term application is left-associative, that is, f t1 . . . tn means (. . . (( f t1) t2) . . .) tn . We will
work modulo alpha-equivalence of variables bound by quantifiers ∃ and ∀, in order to prevent
variable captures. We may sometimes represent {|l1 = t1, . . . , ln = tn |} as the equivalent {|l1 =
t1, . . . , ln = tn | {||}|} for uniformity reasons. Conversely, sometimes we will index terms and labels
with generic sets I , as in [(ti )i∈I ] {|(l = tl )l∈I | ρ|}.

Remark 6.1 (Lambda Abstractions). We did not introduce lambda-abstractions in the higher-
order terms, because we will need a decidable notion of unification in the rest of the chapter,
which is incompatible with beta-reduction. Instead, we represent quantifiers ∀ and ∃ explicitly.

Definition 6.4 (Variables of a Term). The set of variables of a term t, vars(t ), is defined by

vars(x) = {x} if x ∈ X

vars(c) =; if c ∈Σ
vars(s t ) = vars(s)∪vars(t )

vars(s〈τ〉) = vars(s)

vars(∀x. t ) = {x}∪vars(t )

vars(∃x. t ) = {x}∪vars(t )

vars([t1, . . . , tn]) =
n⋃

i=1
vars(ti )

vars({|l1 = t1, . . . , ln = tn | ρ|}) =
n⋃

i=1
vars(ti )

Definition 6.5 (Substitutions in Higher-Order Terms). Substitutions are mappings from term
variables to terms (as in first-order substitutions, Definition 2.42) but additional care has to be
taken in two cases:

• Substitution under a quantifier ∀x. t or ∃x. t is done modulo alpha-equivalence, so that
no capture happens;
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• row variables in records must flatten, that is, if ρσ = {|l ′1 = t ′1, . . . , l ′m = t ′m | ρ′|}, assuming
∀i j . li 6= l ′j , then

{|l1 = t1, . . . , ln = tn | ρ|}σ= {|l1 = t1, . . . , ln = tn , l ′1 = t ′1, . . . , l ′m = t ′m | ρ′|}

Substituting a row variable ρ with a record containing duplicate labels is undefined. Uni-
fication between terms will never introduce such substitutions.

Remark 6.2 (Records and Readability). Records are, strictly speaking, redundant. A record with
n fields can be replaced with a fresh function with n arguments. However, we believe describing
theories with named labels — rather than arbitrary positions in a function application — makes
for more readable a formula.

Example 6.1 (Group Theory). A very simple algebraic theory is the group structure. In addition
to the carrier type τ, defining a group means producing the neutral element E : τ, the group op-
eration M : τ→ τ→ τ and the group inverse I : τ→ τ. A record {|neutral = E , inverse = I ,op = M |}
makes clear which variable plays which role. For instance, integer addition as used, pervasively,
in Chapter 4, forms a group that can be described as {|neutral = 0, inverse = −,op = +|} where
{0,+,−} are regular symbols.

Definition 6.6 (Typing Rules of Higher-Order Terms). Higher-order terms, as defined in 6.3, are
typed as follows. A higher-order formula is simply a term of type o. Checking that a term t has
the type τ starts a derivation with a sequent Σ` t : τ where Σ is the global signature.

Γ, t : τ` t : τ

Γ` f : τ→ τ′ Γ` t : τ

Γ` f t : τ′

Γ` t :Πα. τ
Γ` t〈τ′〉 : τ

{
α 7→ τ′

}
Γ, x : τ` F [x] : o
Γ`∀x : τ. F [x] : o

Γ, x : τ` F [x] : o
Γ`∃x : τ. F [x] : o

∀i . Γ` ti : τ
Γ` [t1, . . . , tn] : [τ]

∀i . Γ` ti : τi

Γ` {|l1 = t1, . . . , ln = tn |} : {|l1 : τ1, . . . , ln : τn |}
∀i . Γ` ti : τi ρ : τρ

Γ` {|l1 = t1, . . . , ln = tn | ρ|} : {|l1 : τ1, . . . , ln : τn | τρ|}
where τρ is a type variable or a record type.

Definition 6.7 (Type, Term, Formula and Clause Encoding). First-order clauses and formulas
will be encoded into higher-order terms using the encoding enc(·), roughly equivalent to currying
for terms; types are encoded using encty(·). The encoding uses predefined symbols

.':Πα. [α] → o,
.¬ : o → o, and

.∨,
.∧ : [o] → o.
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encty(α)
def= α if α ∈A

encty(c)
def= c if c ∈Στ

encty((τ1 × . . .×τn) → τ)
def= encty(τ1) → . . . → encty(τn) → encty(τ)

enc(x)
def= x if x ∈ X

enc( f (t1, . . . , tn))
def= f enc(t1) . . . enc(tn)

enc(∀x : τ. F [x])
def= ∀x : encty(τ). enc(F [x])

enc(∃x : τ. F [x])
def= ∃x : encty(τ). enc(F [x])

enc(¬F )
def= .¬enc(F )

enc(F1 ∨ . . .∨Fn)
def= .∨ [enc(F1), . . . ,enc(Fn)] if n ≥ 2

enc(F1 ∧ . . .∧Fn)
def= .∧ [enc(F1), . . . ,enc(Fn)] if n ≥ 2

enc(s ' t )
def= .'〈encty(τ)〉 [enc(s),enc(t )] if s, t : τ

A clause C
def=∨n

i=1 li with free variables freevars(C ) = {x1, . . . , xk } is encoded as the closed formula

∀x1 . . . xk .
∨n

i=1 li . Note that the disjunction is encoded as a
.∨-prefixed multiset.

Example 6.2 (Polymorphic Lists). The theory of polymorphic lists already presented in Exam-
ple 2.3 can be represented with higher-order terms using the following curried signature:

Σ= {
(::) :Πα. α→ list(α) → list(α), [ ] :Πα. list(α)

}
We can define a few functions that will look familiar to functional programmers using an encod-
ing to higher-order terms:

informal definition encoding

[ ] @ l ' l ∀α. ∀l : list(α).
.'α

[
[ ]〈α〉 @〈α〉 l , [ ]〈α〉

]
(x :: l1) @ l2 ' x :: (l1 @ l2) ∀α. ∀x :α. ∀l1 l2 : list(α).

.'α
[
(x ::〈α〉 l1) @〈α〉 l2, x ::〈α〉 (l1 @〈α〉 l2)

]
rev([ ]) ' [ ] ∀α.

.'α
[
rev〈α〉([ ]〈α〉), [ ]〈α〉

]
rev(x :: l ) ' rev(l ) @ (x :: [ ]) ∀α. ∀x :α. ∀l : list(α).

.'α[
rev〈α〉 (x ::〈α〉 l ), (rev〈α〉 l ) @〈α〉 (x ::〈α〉 [ ]〈α〉)

]
Lemma 6.1 (Encoding Preserves Well-typedness). If F is a well-typed formula in the signature
Σ, then enc(F ) is a well-typed higher-order term in the signature

encty(Σ)]{ .':Πα. [α] → o,
.¬ : o → o,

.∨ : [o] → o,
.∧ : [o] → o

}
Proof. First, the same property holds for first-order terms, by trivial induction on the structure
of the term; then, by induction on the structure of F .

Definition 6.8 (Type, Term, Formula and Clause Decoding). A reverse decoding operation dec(·)
can be defined in the straightforward way. It is defined only for terms in which

.' is applied
to a multiset of cardinality 2, and every term application starts with a constant (rather than a
variable).
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decty(α)
def= α if α ∈A

decty(c)
def= c if c ∈Στ

decty(τ1 → . . . → τn → τ)
def= (decty(τ1)× . . .×decty(τn)) → decty(τ)

dec(x)
def= x if x ∈ X

dec( f t1 . . . tn)
def= f (dec(t1), . . . ,dec(tn)) if f ∈Σ

dec(∀x : τ. F [x])
def= ∀x : decty(τ). dec(F [x])

dec(∃x : τ. F [x])
def= ∃x : decty(τ). dec(F [x])

dec(
.¬ F )

def= ¬dec(F )

dec(
.∨ [F1, . . . ,Fn])

def= dec(F1)∨ . . .∨dec(Fn) if n ≥ 2

dec(
.∧ [F1, . . . ,Fn])

def= dec(F1)∧ . . .∧dec(Fn) if n ≥ 2

dec(
.'〈τ〉 [s, t ])

def= dec(s) ' dec(t ) if s, t : τ
dec(t ) undefined otherwise

It is easy to see that for any formula F , dec(enc(F )) and F are equivalent.

Definition 6.9 (Horn Clause). A higher-order Horn Clause is defined by a non-empty conclu-
sion A and a possibly empty set of premises B1, . . . ,Bn . Both A and all the Bi are higher-order
terms of type ometa such that freevars(A) ⊆ ⋃n

i=1 freevars(Bi ). Such a Horn Clause is denoted
A ← B1, . . . ,Bn ; if n = 0 it is shortened into A.

Example 6.3 (Group Theory (full encoding)). The full description of what a group is, including
the definition of individual axioms, can be summarized in a few Horn Clauses. As anticipated in
Example 6.1, the group structure itself is described using a record. The symbols axiom : axiom →
ometa, theory : theory → ometa and holds : o → ometa are already defined, as we will see later.
Capitalized identifiers are — possibly higher-order — variables.

axiom (associative F) <-
holds (![X,Y,Z]: [F X (F Y Z) = F (F X Y) Z]).

axiom (left_identity {op=Mult, elem=E}) <-
holds (![X]: [Mult E X = X]).

axiom (left_inverse {op=Mult, inverse=I, elem=E}) <-
holds (![X]: [Mult (I X) X = E]).

theory (group {op=Mult, neutral=E, inverse=I}) <-
axiom (associative Mult),
axiom (left_inverse {op=Mult, inverse=I, elem=E}),
axiom (left_identity {op=Mult, elem=E}).

This snippet1 reads:

• F is associative if it holds that ∀x y z. F (x,F (y, z)) ' F (F (x, y), z);
• E is the left-neutral element of M if it holds that ∀x. M(E , x) ' x;
• (similar definition for left-inverse)
• (M ,E , I ) forms a group if M is associative, E is the left-neutral element of M, and I is the

left-inverse of M. This defines what a group structure is. Note the use of a record to be able
to name the components of the group, rather than refer to them by their position in a tuple.

We will see later that theories and axioms, such as associative or group, are higher-order con-
stants whose type is inferred.

1 The file containing some definitions, including the group theory, can be found in Zipperposition’s repository
under the path src/builtin.theory.
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Remark 6.3 (Type Inference). Logtk contains some facilities for type inference, inspired by Hindley-
Milner algorithm [Mil78]. This explains the absence of type annotations in snippets from this
chapter. Variables are initially typed with a type variable that is generalized if no constraint spe-
cializes it. This way, some Horn clauses are also polymorphic. For instance, from the following
definitions

axiom (associative F) <-
holds (![X,Y,Z]: [F X (F Y Z) = F (F X Y) Z]).

axiom (left_inverse {op=Mult, inverse=I, elem=E}) <-
holds (![X]: [Mult (I X) X = E]).

the following types are inferred:
• associative :Πα. (α→α→α) → axiom;
• left_inverse :Πα. {|op :α→α→α, inverse :α→α,elem :α|} → axiom;
• F :Πα. α→α→α.

6.2.2 Unification

The previous section underlined the need for higher-order terms and gave basic definitions, in-
cluding an encoding from first-order formulas to higher-order terms. Now, if we want to recog-
nize the presence of some axiom, such as associativity, in a particular Superposition derivation,
we need to match the abstract definition of associativity with clauses that occur in the deriva-
tion. If some function symbol f has been defined as associative, then we want ∀x y z : α.

.'α[
F (F x y) z,F x (F y z)

]
and the (encoded) associativity axiom for f to unify with

{
F 7→ f

}
(note

that α is a free variable). Unification is also needed to reason at the meta-level using resolution
between Horn clauses, as we will see in Section 6.2.3.

Definition 6.10 (Equivalence). Some terms that are not structurally equivalent should still be
considered the same. We define the binary relation =HO as a more flexible notion of equality
between terms:

x =HO x if x ∈ X
c =HO c if c ∈Σ

s t =HO s′ t ′ if s =HO s′ and t =HO t ′

[s1, . . . , sn] =HO [t1, . . . , tn] if ∃θ. ∀i ∈ {1, . . . ,n}. si =HO tθ(i )

s〈τ〉 =HO t〈τ〉 if s =HO t
∀x1 . . . xn . s =HO ∀y1 . . . yn . t if ∃θ.

(
s =HO t

{
y1 7→ xθ(1), . . . , yn 7→ xθ(n)

})
∃x1 . . . xn . s =HO ∃y1 . . . yn . t (idem)

{|(li = si )n
i=1|} =HO {|(li = ti )n

i=1|} if ∀i ∈ {1, . . . ,n}. si =HO ti

{|(li = si )n
i=1 | ρ|} =HO {|(li = ti )n

i=1 | ρ′|} if ∀i ∈ {1, . . . ,n}. si =HO ti and ρ = ρ′

where θ is a permutation of {1, . . . ,n}.

Lemma 6.2 (Equivalence and Encoding). If F and G are first-order formulas such that enc(F ) =HO

enc(G), then F ⇐⇒G is a tautology.

Proof. By induction on the structure of the formulas, thanks to the associativity-commutativity
of ∨,∧ and the symmetry of '.

Definition 6.11 (Higher-Order Unifier). A higher-order unifier for two terms s and t is a substi-
tution σ such that sσ=HO tσ.

Remark 6.4 (n-ary unification). Two unifiable higher-order terms might have several most gen-
eral unifiers. For instance,

[
f x, f y

]
and

[
f a, f b

]
admit both

{
x 7→ a, y 7→ b

}
and

{
x 7→ b, y 7→ a

}
as most general unifiers.
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Definition 6.12 (Unification Algorithm). As usual in the literature [BS01], we present our uni-
fication algorithm for higher-order terms as set of reduction rules over sets of unification prob-
lems, where each unification problem has the form M ;σwhere M is a multiset of unordered pairs
s =?

HO t (meaning s has to be unified with t), andσ is a substitution. A solved system has the form
;;σ and contains a solution σ. Note that is not confluent and can lead to several solutions.

{x =?
HO t }∪M ;σ  M {x 7→ t } ;σ◦ {x 7→ t }

if canBind(x, t ){
s〈τ〉 =?

HO t〈τ′〉
}∪M ;σ  

{
sσ′ =?

HO tσ′}∪Mσ′;σ◦σ′

if σ′ = mgu
(
τ,τ′

)
{s t =?

HO s′ t ′}∪M ;σ  {s =?
HO s′, t =?

HO t ′}∪M ;σ
{c =?

HO c}∪M ;σ  M ;σ if c ∈Σ∪⋃
i {ci }{

[] =?
HO []

}∪M ;σ  M ;σ{
[(si )i∈I ] =?

HO [(ti )i∈I ]
}∪M ;σ  

{
s1 =?

HO t j ,[
(si )i∈I \{1}

]=?
HO

[
(ti )i∈I \{ j }

] }
∪M ;σ

for each j ∈ I{
{|(l = sl )l∈I |} =?

HO {|(l = tl )l∈I |}
}∪M ;σ{

{|(l = sl )l∈I | ρ|} =?
HO {|(l = tl )l∈I | ρ|}

}∪M ;σ  
⋃

l∈I {sl =?
HO tl }∪M ;σ{

{|(l = sl )l∈I | ρ|} =?
HO {|(l = tl )l∈I ′ |}

}∪M ;σ  
⋃

l∈I∩I ′{slσ
′ =?

HO tlσ
′}∪Mσ′;σ◦σ′

where σ′ = {
ρ 7→ {|(l = tl )l∈I ′\I |}

}
if canBind(ρ, {|(l = tl )l∈I ′\I |}) and I ⊆ I ′{

{|(l = sl )l∈I | ρ|} =?
HO {|(l = tl )l∈I ′ | ρ′|}}∪M ;σ  

⋃
l∈I∩I ′{slσ

′ =?
HO tlσ

′}∪Mσ′;σ◦σ′

where σ′ =
{
ρ 7→ {|(l = tl )l∈I ′\I | ρ′′|}
ρ′ 7→ {|(l = sl )l∈I \I ′ | ρ′′|}

}
if ρ 6= ρ′,canBind(ρ, {|(l = tl )l∈I ′\I | ρ′′|})
and canBind(ρ′, {|(l = sl )l∈I \I ′ | ρ′′|}){

(∃x1 . . . xn . s) =?
HO (∃y1 . . . yn . t )

}∪M ;σ{
(∀x1 . . . xn . s) =?

HO (∀y1 . . . yn . t )
}∪M ;σ  

{
sσs =?

HO tσt
}∪M ;σ

where σs = {x1 7→ c1, . . . , xn 7→ cn}
and σt =

{
y1 7→ cθ(1), . . . , yn 7→ cθ(n)

}
where c1, . . . ,cn are fresh constants (not inΣ); canBind(x, t ) is true iff x is a variable, x 6∈ freevars(t )
and t is closed (that is, it contains no ci ); ρ′′ is a fresh row variable; θ is a permutation of {1, . . . ,n}.

A few comments on the unification rules may help the reader forge some intuition.

• binding a variable x 7→ t requires a regular “occur-check” x 6∈ freevars(t ), but also that t
is closed — that is, t must not contain any constant ci introduced when quantifiers are
opened;

• the rule for multisets attempts to unify multisets that have the same number of elements,
by picking one element in each multiset, unifying them, and then trying to unify the
remaining elements. In this way, it enumerates lazily the permutations of one of the
multisets (here, the right-hand-side one);

• unification of extensible records first unifies pairwise the values under labels that are
shared by both records, and then it proceeds to unify the other labels (occurring in only
one of the terms) with the row of the other term. For instance, the unification problem
between records

{|l1 = 2, l2 = ( f x) | ρ|} =?
HO {|l1 = y, l2 = ( f a), l3 = b|}

admits the following derivation (where ρ′ is fresh):
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{
{|l1 = 2, l2 = ( f x) | ρ|} =?

HO {|l1 = y, l2 = ( f a), l3 = b|}} ;;
 

{
2 =?

HO y, ( f x) =?
HO ( f a),ρ =?

HO {|l3 = b | ρ′|}, {||} =?
HO ρ

′} ;;
 

{
( f x) =?

HO ( f a),ρ =?
HO {|l3 = b | ρ′|}, {||} =?

HO ρ
′} ;

{
y 7→ 2

}
 

{
f =?

HO f , x =?
HO a,ρ =?

HO {|l3 = b | ρ′|}, {||} =?
HO ρ

′} ;
{

y 7→ 2
}

 
{

x =?
HO a,ρ =?

HO {|l3 = b | ρ′|}, {||} =?
HO ρ

′} ;
{

y 7→ 2
}

 
{
ρ =?

HO {|l3 = b | ρ′|}, {||} =?
HO ρ

′} ;
{

y 7→ 2, x 7→ a
}

 
{
ρ =?

HO {|l3 = b|},
}

;
{

y 7→ 2, x 7→ a,ρ′ 7→ {||}}
 {} ;

{
y 7→ 2, x 7→ a,ρ′ 7→ {||},ρ 7→ {|l3 = b|}}

which yields the solution
{

y 7→ 2, x 7→ a,ρ 7→ {|l3 = b|}} to the original problem.
• quantifier rules have to deal with swapping consecutive quantifiers, since we defined
=HO so that ∀x y. F [x, y] =HO ∀y x. F [x, y]. The abstract algorithm presented here simply
enumerates all possible permutations of variables in one of the quantifier, we will see a
more efficient implementation in Section 6.2.4

Remark 6.5 (Iterators). In practice, our implementation uses iterators of type Sequence.t (see
Section 4.6.2) to backtrack over possible choices, as we will explain in Section 6.2.4.

Lemma 6.3 (Termination). The rewrite system is terminating, that is, it admits no infinite
derivations.

Proof. First, we need a few intermediate orderings:

• Let nvars(M)
def= #vars(M) be the number of distinct variables, bound or free, that occur in

M , and M ≺nvars M ′ iff nvars(M) < nvars(M ′). It decreases on the variable binding case and
on the record cases where there is at least one row variable ρ or ρ′, and remains constant
otherwise;

• Let nelem : Terms(Σ) →N be defined as follows:

nelem([t1, . . . , tn]) =
∑
i=1

nelem(ti )

nelem({|l1 = t1, . . . , ln = tn | ρ|}) = 1+
n∑

i=1
nelem(ti )+nelem(ρ)

nelem(s t ) = nelem(s)+nelem(t )

nelem(t〈τ〉) = 1+nelem(t )

nelem(c) = 1 if c ∈Σ
nelem(x) = 1

nelem(∀x. t ) = nelem(∃x. t ) = nelem(t )

Let then s ≺elem t iff nelem(s) < nelem(t ) and ≺≺elem be the multiset extension of ≺elem.
≺≺elem decreases on the multiset rule, on the record rule where there are no row variables,
and on the application and type application rules;

• Let ≺HO
def= (≺nvars,≺≺elem)lex. It is well-founded because all its components are.

Every rule M ;σ M ′;σ′ is such that M ′ ≺HO M , which makes well-founded.

Theorem 6.1 (Correctness). The unification function is correct; that is, if
{s =?

HO t };; ∗ ;;σ, then sσ=HO tσ.
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Proof. It suffices to notice that each reduction rule M ;σ M ′;σ′ satisfies the following prop-
erties: (i) σ ≤ σ′; (ii) for any σ′′ with σ′ ≤ σ′′, if σ′′ solves M ′ then σ′′ solves M . . Therefore,
any solution of M ′;σ′ is a specialization of σ and solves M . We conclude by induction on the
derivation.

Theorem 6.2 (Completeness). The rewrite system is complete. In other words, for any two
terms s and t and most general unifier σ of s and t, there is a derivation {s =?

HO t };; + ;;σ.

Proof. Assume σ is a mgu of s and t . By induction on why sσ=HO tσ:
• if sσ= x ∈ X , s and t must be variables and succeeds in unifying them.
• if sσ= c ∈Σ, s and t can be either variables or c and are easily unified;
• if sσ= t1 t2, then tσ= t1 t2. Either s = s1 s2 and t = t1 t2 with s1σ=HO t1σ and s2σ=HO t2σ

(in which case the induction hypothesis finds them a unifier), or one of them is a variable
which is easy to unify.

• if sσ=∀x1 . . . xn . u then either one of s, t is a variable, or s =∀x1. xn s′ and t =∀y1. yn t ′

(with the same number of quantified variables). In this case, there must be a permu-
tation θ such that s′σ =HO t ′

{
y1 7→ xθ(1), . . . , yn 7→ xθ(n)

}
σ; since enumerates all such

permutations it must find the correct θ, and then σ, by induction hypothesis.
• if sσ = [u1, . . . ,un], unless one of s, t is a variable, necessarily s = [s1, . . . , sn] and t =

[t1, . . . , tn] such that there is a permutation θ with ∀i . siσ =HO tθ(i )σ;  enumerates all
such θ (lazily) and must find the solution by induction.

• otherwise sσ is a record that, if s and t are both records, has three sets of labels:

1. labels common to s and t (unified pairwise in s and t );
2. labels present in s and not t (unified to the possibly empty row of t );
3. labels present in t and not s (unified to the row of s).

Terms whose labels belong to those three sets of labels are unified properly by induction
hypothesis. Note that row variables are unified too.

6.2.3 Calculus for the Reasoner

The purpose of having a meta-prover is to deduce high-level properties about types, functions
and predicates in a particular proof attempt. Since those properties might be useful to the
Superposition prover, they should be found as eagerly as possible. However, the meta-level
calculus must no be too complicated; it will not be responsible for success directly, and thus
should not be computationally expensive. We took inspiration from the bottom-up family of
algorithms for Datalog [AHV95] — roughly, unit resolution for Horn clauses.

In Figure 6.1 we present the set of rules that allow the meta-prover to deal with meta-level
properties. The rules for the meta-prover are applied until a fixpoint for M is reached. We
assume the first-order prover is saturating a set of first-order clauses N , and the meta-prover
has a set of higher-order Horn clauses M . Properties in the meta-prover all have type ometa.
The following types and constants are available in the meta-prover signature:

• holds : o → ometa, to state a first-order formula has been deduced in N ;
• axiom : axiom → ometa, to represent some axioms such as associativity;
• theory : theory → ometa, to represent theories such as AC;
• lemma : o → ometa, to deduce lemmas from the presence of theories;
• other predicates can be added, see Section 6.3.

Unit Resolution performs all meta-level reasoning, in a bottom-up fashion.
Clause Encoding informs the meta-prover of new facts deduced at the first-order level. In par-

ticular, it adds all the initial clauses, after encoding, to the meta-prover so that axioms
and theories can be detected from the beginning.
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Unit Resolution
(A ← B1, . . . ,Bn) ∈M (B) ∈M

(A ← B2, . . . ,Bn)σ ∈M

if {B1 =?
HO B};; + ;;σ

Clause Encoding

C ∈N
(holds D) ∈M

where D
def= enc(C )

Lemma Decoding

(lemma F ) ∈M{
C ← TGU | C ∈ cnf(G)

}∪{
C ←¬TGU | C ∈ cnf(¬G)

}⊆N

if G
def= dec(F ) is a well-formed first-order formula

Figure 6.1: Inference Rules for the Meta-level Reasoner

Lemma Decoding is triggered when a lemma is found to hold at the meta-level — most likely
because it was bound to some theory. For instance, if

theory
(
group {|op = m, inverse = i ,neutral = e|})

is deduced for some symbols (e, i ,m), the lemma ∀x. i (i (x)) ' x might prove useful. We
use the technique from Section 5.3 to introduce lemmas using Avatar, in order to enforce
the lemma be proved if it helps solving the problem.

Remark 6.6 (Proving Lemmas Again). An alternative to the Lemma Decoding rule above would
be to save a proof of every lemma, and reuse it, instead of simply introducing a cut.

Remark 6.7 (Matching). Since Horn Clauses are safe, unit resolution is always performed be-
tween a clause and a ground fact. Therefore, we could use matching rather than full unification.

6.2.4 Implementation

A meta-prover implementation is provided in Logtk, and interfaced with Zipperposition. It can
only recognizes clausal axioms, but otherwise is on par with the work from previous sections.
Still, we should clarify how unification is really implemented. Some points in the algorithm
from Definition 6.12 may lead to exponential branching — namely, permutations of quantifiers
and multiset elements.

To unify multisets [s1, . . . , sn] and [t1, . . . , tn], we do not really enumerate all permutations
of [t1, . . . , tn]; instead, we reduce both multisets’ size by picking s1 and, for every ti , if s1 and
ti unify, recursing on remaining terms. This allows to prune all the permutations that map
s1 to ti if s1 and ti do not unify. Obviously the order in which terms are chosen matters,
but only heuristics (ordering terms s1, . . . , sn by decreasing size, for instance) can help. Of
course, if the two multisets contain n distinct variables, we must enumerate all permutations
because they will all yield a distinct mgu. In addition, since we use the α sequence type (Sec-
tion 4.6.2), we can enumerate unifiers lazily and compute only a subset of them (for instance
using Sequence.head).

For quantifiers, the problem is more subtle. To solve ∀x1 . . . xn . s =?
HO ∀y1 . . . yn . t (the case

for existential quantifiers is similar), we could just enumerate all permutations of {y1, . . . , yn},
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but that would not be efficient — some efforts might be wasted in unifying similar instances of
s and t only to be discarded because the permutation is not correct. Instead, we build a lazy
permutation of {1, . . . ,n}, called θ, and map, in a sense, xi to yθ(i ). Such a lazy permutation θ

is a partial map from {1, . . . ,n} to {1, . . . ,n} that is injective; if n −1 integers are bound then the
last one is automatically mapped to the only choice that keeps the map injective. We also have
to remember, before unifying s and t , that (yi )n

i=1 are bound variables and cannot be unified
with anything but themselves. Inside of s =?

HO t , we use unification problem to constrain θ: if
{s =?

HO t }∪M ;σ + xi =?
HO y j ∪M ′;σ′ then θ(i ) = j must hold. If θ(i ) is already set to another

index, or there is some i ′ 6= i such that θ(i ′) = j , unification fails; else, unification proceeds with

M and θ′ def= {i 7→ j }∪θ.

Example 6.4 (Associativity). As an example of unification with binders, let s
def= ∀x1 x2 x3. x1 +

(x2+x3) ' (x1+x2)+x3 and t
def=∀y1 y2 y3. (y2+ y1)+ y3 ' y2+(y1+ y3) (we use an infix notation

for readability). s and t are unifiable as follows:

{s =?
HO t };σ=;;θ = {}

 
{ .' [x1 + (x2 +x3), (x1 +x2)+x3] =?

HO

.' [
(y2 + y1)+ y3, y2 + (y1 + y3)

]}
;σ=;;θ = {}

 {x1 + (x2 +x3) =?
HO y2 + (y1 + y3), (x1 +x2)+x3 =?

HO (y2 + y1)+ y3};σ=;;θ = {}
 {x1 =?

HO y2, (x2 +x3) =?
HO (y1 + y3), (x1 +x2)+x3 =?

HO (y2 + y1)+ y3};σ=;;θ = {}
 {(x2 +x3) =?

HO (y1 + y3), (x1 +x2)+x3 =?
HO (y2 + y1)+ y3};σ=;;θ = {1 7→ 2}

 {x2 =?
HO y1, x3 =?

HO y3, (x1 +x2)+x3 =?
HO (y2 + y1)+ y3};σ=;;θ = {1 7→ 2}

 {x3 =?
HO y3, (x1 +x2)+x3 =?

HO (y2 + y1)+ y3};σ=;;θ = {1 7→ 2,2 7→ 1,3 7→ 3}
 + ;;σ=;;θ = {1 7→ 2,2 7→ 1,3 7→ 3}

Once we know θ(1) = 2 and θ(2) = 1, θ(3) = 3 becomes necessary (because θ must be a permuta-
tion of {1, . . . ,3}), and unification becomes trivial by just destructuring sums. Note that θ is not
part of the solution: the formulas are actually equivalent and the mgu is σ=;.

Remark 6.8 (Term Indexing). An efficient implementation of the meta-level reasoner will need
some form of term indexing. We conjecture that the Fingerprint indexing technique [Sch12] could
be adapted to higher-order terms — considering multisets and quantifiers as special opaque con-
stants.

6.3 Applications

The meta-prover in itself is extensible: new meta-level predicates can be added as long as their
return type is ometa. We present a few possible applications; some are also presented in [BC13].
Zipperposition, as a proof-of-concept, implements some of them (Lemmas, Inductive Lem-
mas, and some support for AC).

Special Support for Theories Dealing with associativity-commutativity (AC) in equational
theorem provers has been an important topic of research (see for instance [BG95]) and the
resolution of Robbins Problem by Mccune [McC97]. However, unification modulo AC is very
complex to implement, and term indexing modulo AC even more so; we take inspiration from
the E prover [Sch02] again. E has some support for reasoning modulo AC using the two follow-
ing simplification rules (where AC is a small set of clauses containing the AC axioms for some
symbols):

AC tautology deletion
C ∨ s ' t

>
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if s 'AC t and C ∨ s ' t 6∈ AC

AC simplification
C ∨ s 6' t

C

if s 'AC t

This rule can be activated during the proof as soon as AC axioms are detected. More gener-
ally, provers implementing some flavour of deduction modulo [DHK03] could use an adequate
rewriting system when they detect some particular theory.

Lemmas The rule Lemma Decoding from Figure 6.1 allows the meta-prover to suggest new
lemmas to the Superposition prover. As it is possible to describe axioms and theories over any
signature, fundamental lemmas (e.g., group inverse is involutive) can be associated with such
theories and apply to any problem in which those theories appear.

Inductive Lemmas In Section 5.3 of our chapter about Structural Induction, we mentioned
that lemmas discovered in the course of an inductive proof should be saved and re-used in
other proofs. The meta-prover is an adequate mechanism to do so. In Zipperposition, we in-
troduce a new meta-level predicate, inductive, a new type, constructor, and a new function
symbol, cstor:

cstor : Πα. α→ constructor
inductive : Πα. {|ty :α,cstors : [constructor] |} → ometa

When an inductive type is defined, the corresponding meta-level property is asserted. For in-
stance, if nat is inductive and has constructors s and 0, the corresponding meta-level property
is:

inductive〈nat〉 {|ty = nat,cstors = [
(cstor〈nat→nat〉 s), (cstor〈nat〉 0)

] |}
This inductive specification can then be used, in combination with axioms and theories

(e.g., Peano axioms) to suggest lemmas to the inductive prover. For instance, the theory

theory (peano_add {succ=S, zero=Z, plus=P}) <-
inductive @N {ty=@N, cstors=[(cstor _ S), (cstor _ Z)]}.
holds (![X:N,Y:N]: [P (S X) Y = S (P X Y)]),
holds (![X:N]: [P Z X = X]).

lemma (![X:N,Y:N]: [P X (S Y) = S (P X Y)]) <-
theory (peano_add {succ=S, zero=_, plus=P}).

allows Zipperposition to prove the theorem ∀x. dup(x) ' x +x from Example 5.12.

Pre-processing In [BC13] we describe a lemma called un-mangling of function relations. We
define the theory of unary and binary functions encoded as relations:

axiom (functional1 P) <-
holds (![X,Y,Z]: [~ (P X Y), ~ (P X Z), Y = Z]).

axiom (total1 {pred=P, fun=F}) <-
holds (![X]: [P X (F X)]).

axiom (functional2 P) <-
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holds (![X,Y,Z]: [~ (P X Y Z), ~ (P X Y Z2), Z = Z2]).

axiom (total2 {pred=P, fun=F}) <-
holds (![X,Y]: [P X Y (F X Y)]).

A binary relation P is functional if there is a unary function F satisfying both∀x y z. P (x, y)∧
P (x, z) ⇒ y = z and ∀x. P (x,F (x)). Similarly, ternary relations can be functional w.r.t. a binary
function — the relation actually represents the graph of the function. Some TPTP problems, de-
signed for theorem provers with poor support for equational reasoning, use this representation
of functions. However, to leverage Superposition and its good support for equality reasoning
(including demodulation, that is, rewriting with unit equations), we can replace the relation
with functions, using pre_rewrite pre-processing rules. For instance, the rule

pre_rewrite [![X,Y,Z]: (P X Y Z --> (Z = F X Y))] <-
axiom (functional2 P),
axiom (total2 {pred=P, fun=F}).

was used, in a previous version of Zipperposition, to eliminate any occurrence of functional
relations. If the meta-prover deduced axiom (functional2 p) and
axiom (total2 {pred=p, fun=f}) for some symbols f and p, the commutativity axiom for
p can be simplified into a unit equation:

¬p(x, y, z)∨p(y, x, z) ∀x y z. (p x y z) −→ (z ' f x y)

z 6' f (x, y)∨ z = f (y, x)
(DER)

f (x, y) = f (y, x)

Choosing Heuristics The theorem prover Waldmeister uses a simplified form of theory de-
tection to choose its term ordering — a heuristic choice that has a huge impact on the behavior
of the prover — depending on the problem at hand [HJL99]. In fact, our initial design of the
meta-prover as described in [BC13] owes much to Waldmeister.

Rewrite Systems If a given equational theory is oriented by some instance of RPO (Defini-
tion 2.47), then choosing this instance of RPO enables Superposition to reason “modulo” the
theory — as in Deduction Modulo [DHK03]. Roughly, Superposition becomes narrowing, and
Demodulation (Figure 2.2) normalizes terms w.r.t. the theory rewrite system.

To study this restricted version of Deduction Modulo, we developed a small tool called Hys-
teresis, which is shipped with Logtk. The tool uses a meta-prover to detect the presence of some
theories such as groups, and chooses a LPO precedence based on rewriting systems known to
orient the theories present in the problem. Then, it calls a version of E [Sch02] that we mod-
ified so it could handle simple types and feeds it the problem and the LPO precedence com-
puted above. However, an important part of Deduction Modulo — rewriting on atomic for-
mulas — has no equivalent; it would require Superposition to be either polarized [Dow10] or
non-clausal [GS03]2.

The tool was fed a rewrite system for integer arithmetic. The rewrite rules below (in a TPTP-
like language) define arithmetic operations on a ternary representation of integers (borrowed
from [CMR97], Section 4.2) in which positive and negative numbers possess symmetric repre-
sentations. There are four constructors for integers. Let 〈t〉 be the natural number correspond-
ing to the term t built from the four constructors:

z_0 represents 0, that is, 〈z0〉 = 0;
z_3 multiplies by three its argument, meaning 〈z3(x)〉 = 3×〈x〉;
z_3p1 is defined by 〈z3p1(x)〉 = 3×〈x〉+1;

2 an old version of Zipperposition used this calculus.
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z_3m1 is defined by 〈z3m1(x)〉 = 3×〈x〉−1.

If we enforce that z3(z0) always reduces to z0, each integer has a unique representation using
those constructors, and −x is obtained from x by swapping the rôles of z3p1 and z3m1. The
representation of a number n is a term of size O(log3(n)), making this representation more
efficient than (unary) Peano numbers.

val z_0 : $int.
val z_3 : $int → $int.
val z_3p1 : $int → $int.
val z_3m1 : $int → $int.

z_3 z_0 −→ z_0.

z_plus z_0 X −→ X.
z_plus X z_0 −→ X.
z_plus (z_3 X) (z_3 Y) −→ z_3 (z_plus X Y).
z_plus (z_3 X) (z_3p1 Y) −→ z_3p1 (z_plus X Y).
z_plus (z_3 X) (z_3m1 Y) −→ z_3m1 (z_plus X Y).
z_plus (z_3p1 X) (z_3m1 Y) −→ z_3 (z_plus X Y).
z_plus (z_3m1 X) (z_3p1 Y) −→ z_3 (z_plus X Y).
z_plus (z_3p1 X) (z_3p1 Y) −→ z_3m1 (z_plus X (z_plus Y (z_3p1 z_0))).
z_plus (z_3m1 X) (z_3m1 Y) −→ z_3p1 (z_plus X (z_plus Y (z_3m1 z_0))).

z_opp z_0 −→ z_0.
z_opp (z_3 X) −→ z_3 (z_opp X).
z_opp (z_3p1 X) −→ z_3m1 (z_opp X).
z_opp (z_3m1 X) −→ z_3p1 (z_opp X).

z_minus X Y −→ z_plus X (z_opp Y).

z_mult X z_0 −→ z_0.
z_mult X (z_3 Y) −→ z_3 (z_mult X Y).
z_mult X (z_3p1 Y) −→ z_plus X (z_3 (z_mult X Y)).
z_mult X (z_3m1 Y) −→ z_plus (z_3 (z_mult X Y)) (z_opp X).

The rules are defined in the file data/rewriting/balanced_int.p in Logtk. To try it, type
(assuming $TPTP points to a TPTP archive):

$ ./hysteresis.native −balanced−arith $TPTP/Problems/ARI/ARI017=1.p

The tool could solve simple arithmetic problems in the category ARI of TPTP, but showed its
limitations quickly. Later, we developed the much more ambitious arithmetic calculus from
Chapter 4, which performed considerably better on arithmetic problems that required solving
(in)-equations, in addition to merely computing the normal form of expressions. We believe
that solving, not only computing, is an important issue in some theories (including arithmetic),
and Deduction Modulo falls short for such theories. Other techniques for proving modulo the-
ories have acknowledged the need for both: for instance, Shostak’s Decision Procedure [RS01],
as used in some SMT solvers [BCC+13], requires a theory-specific decision procedure to pro-
vide both a canonizer (to reduce a term to a normal form) and a solver (eliminate a variable to
solve an equation). Deduction Modulo can emulate solving through narrowing, but it might be
very inefficient — possibly as inefficient as simply using the theory axioms.

6.4 Experimental Results

We compared version 0.2 of Zipperposition3 with SPASS [WSH+07] and E [Sch02] on categories
RNG and GRP of the TPTP [Sut09] base of problems. In the benchmarks, Zipperposition-meta

3 We point out that our implementation of Superposition is not nearly as good as SPASS or E, which are the result
of years of work.
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features a meta-prover with theory detection, the relational un-mangling lemma, and redun-
dancy criteria (for AC, commutative monoids and abelian groups, as described in [BC13]) —
and Zipperposition, in which all theory handling is disabled. The results are exposed in Fig-
ure 6.2. Overall, on 1434 problems, Zipperposition-meta proves 7 problems that are not proven
by SPASS nor E within the 120s timeout. Zipperposition is able to detect at least one theory
in 594 problems out of 1434, and triggers the lemma in 68 problems. Among the 594 problems
with theories, 31 are solved by Zipperposition-meta but not by Zipperposition, and 7 are solved
by the latter but not by the former (because the prover was slower or it pruned the wrong part
of the search space). This ratio becomes 7 to 2 on the problems in which the lemma is applied.

Prover Proved % /594 % /68 %
E 1047 73.0 430 72.4 59 86
SPASS 863 60.1 376 63.3 50 73
zipperposition-meta 531 37.0 202 34.0 56 82
zipperposition 504 35.1 191 32.1 52 76

Figure 6.2: Benchmark Results for Zipperposition with Meta Prover

We can already see that the redundancy criterion from [BC13], with its quite naive imple-
mentation, already brings benefits. The un-mangling lemma also makes a significant differ-
ence on the set of problems in which it applies. On individual problems, the difference can
be striking: some problems that would not terminate within 2 minutes become trivial enough
to get solved in 0.5s when lemma detection is enabled. Those results are encouraging, and we
believe that using a meta-prover may find more uses in automated theorem proving. Profiling
shows that the meta-level reasoner represents a negligible fraction of the run-time (less than
1%). On the other hand, our implementation of Superposition is more naive and less efficient
than SPASS or E (which also benefit from having respectively a more powerful calculus and bet-
ter heuristics), which can explain why they still solve more problems. Our technique could be
integrated in other theorem provers to discover lemmas or usable redundancy criteria — espe-
cially for scheduling provers (like iProver [Kor08]) because meta-level facts that are discovered
during a time slice can be used for the next ones (using a suitable term ordering, etc.).

Three problems are solved only by Zipperposition-meta (a version of Zipperposition that
uses lemma detection): GRP392-1.p, GRP393-1.p and GRP394-1.p. Interestingly, all three are
satisfiable problems in relational form where the un-mangling lemma transforms into easily
saturated sets of equations4. This result means the un-mangling of functional relations might
be useful in other Superposition provers.

Conclusion and Possible Extensions

We have shown a generic and flexible way to detect instances of axioms and theories during
a first-order saturation process. The use of a bottom-up resolution system makes the meta-
level reasoning flexible, modular and extensible by declaring one’s own meta-level properties,
such as the presence of inductive types. This technique already shows promising results, and
can be improved further with more sophisticated uses of the detected theories. We believe that
this kind of combination, although still quite simple, bears some resemblance with the way
real mathematicians solve problems. Using several levels of description and proof may also
help making automated proofs more understandable, saturation proofs being often blamed
for being very unintuitive to human users. Further development may include:

4 Zipperposition 0.2 used the Superposition with lazy CNF calculus, from [GS03], which turns some equivalences
into rewrite rules, allowing the un-mangling technique to be expressed as a mere lemma, rather than a preprocess-
ing rule.
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• making the reasoner more proactive by having it spawning subprocesses to try to prove
missing axioms;

• automatically extract lemma from successful proofs in order to help solving similar prob-
lems, in particular for inductive proofs;

• implementing this technique in a state of the art prover.
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Chapter 7

Conclusion

Overview

As this thesis nears its end, we review its chapters and the contributions we made. Overall, all
our work gravitates around Superposition, how to implement it (Chapter 3), and various ways
of extending it, be it by adding “regular” deduction rules (e.g., to deal with linear arithmetic,
in Chapter 4), by having it support structural induction (Chapter 5), or by introducing lemmas
based on the presence of known theories (Chapter 6). Most techniques introduced in this docu-
ment were implemented in Zipperposition, our experimental theorem prover written in OCaml
(Chapter 3); this implementation provided empirical evidence that each such technique works
at least on simple examples in practice. More generally, as we explored the design space of each
feature, extending Zipperposition was extremely useful to find shortcomings in our approach
and help solve them.

We proposed, in Chapter 4, an extension of Superposition that reasons modulo linear in-
teger arithmetic, a fundamental theory for many use-cases, including program verification.
Our contribution is a purely deductive set of rules (along with a canonical representation of
arithmetic literals), which contrasts with blackbox-based techniques such as Hierarchic Super-
position [BGW94] [BW13] or more ad-hoc combinations [PW06]. A nice property of this system
is that it can be combined with other rule systems as long as both handle disjoint sets of liter-
als (i.e., no literal is both an arithmetic literal and a literal from the other theory). The system
should also combine well with the inductive reasoning from Chapter 5. Support for arithmetic
also justifies the need for typing in a theorem prover, as one often wishes to mix arithmetic
terms with uninterpreted ones (or terms of another theory, such as arrays or lists, very com-
mon in program verification). The implementation in Zipperposition was found to perform
competitively with other first-order arithmetic provers at CASC in 2014; it also demonstrates
how proper abstractions (iterators, mainly) help implementing such complicated and subtle
inference rules: the Superposition modulo rational arithmetic [Wal01] was, to our knowledge,
never implemented because of its complexity (roughly equivalent to the complexity of the rules
of Chapter 4).

Chapter 5 extends Superposition along a totally different axis, pointing toward higher-order
logics. First-order logic with induction is strictly more expressive than first-order logic alone;
yet, few general purpose theorem provers support it. Usually, automated inductive provers
such as Spike [BKR92] [Str12] build on (conditional) rewriting rather than the most successful
deduction paradigms for first-order logic such as Superposition. Considering that remark, our
approach is complementary to usual inductive proving as it tries to bridge the gap between
general-purpose theorem proving and inductive proving by starting from regular Superposi-
tion provers instead of making inductive provers better at first-order reasoning. In achieving
this goal, the recent technique AVATAR [Vor14] was very useful for encoding case-analysis prob-
lems (in particular, the various cases of coversets for the inductive step). AVATAR, too, can be
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extended with more powerful boolean solving techniques — here, QBF, so that it could handle
exponentially many cases in a compact way, to enumerate a powerset. Since AVATAR was pub-
lished at the beginning of the last year of the thesis, it might have a positive impact on other
parts of our work that might involve case analysis (in particular, arithmetic features case split in
several rules). Again, using a typed logic helps a lot, since a realistic use of structural induction
will have several inductive types in addition to o and ι; without them, guards must be intro-
duced to ensure induction only applies to some elements. For instance, ∀x : bool. x ' 1∨ x ' 0
would become∀x. is_bool(x) ⇒ x ' 1∨x ' 0 using a classic encoding; such guards are known to
make reasoning heavier (especially in the case of unit clauses such as ∀x :α. ¬mem〈α〉(x, [ ]〈α〉)).
Other encodings of types exist but tend to make terms heavier [BBPS13].

Finally, Chapter 6 contains a system for detecting axiomatic theories, and a modular inter-
face between it and the Superposition prover. It can be used to introduce lemmas depending
on which theories are present in a problem, for instance in inductive theories, or to preprocess
the problem into a variant more suited to Superposition (e.g., transforming functional relations
into functions).

Perspectives

Some systems make good use of Unit Superposition (for instance, iProver-Eq [KS10]) as a way
to graft equational reasoning into a calculus that is not Resolution. Adopting a unit version
of our arithmetic calculus, in the same context, could help implement arithmetic support in
other proof techniques. Combining the normalization, inference and simplification rules from
Chapter 4 to Hierarchic Superposition with Weak Abstraction [BW13] might also lead to a com-
bined system that would behave better than each technique alone — both have quite different
strengths. Similarly, combinations of Superposition in SMT [dMB08] could use (part of) our
arithmetic techniques to manage and instantiate their non-ground clauses.

Another perspective is extending Arithmetic Superposition so that it is complete on ground
formulas w.r.t. to an axiomatization of Z, and then trying to make it complete on wider frag-
ments than ground formulas.

Our work on induction opens a lot of perspectives and possible improvements. First, a
strong implementation of the multi-clause inductive strengthening (Section 5.4) would permit
to validate the effectiveness of the technique and compare it to [KP13]. Then, better lemmas
generation and pruning heuristics are needed.

In the long term, the idea of a meta-prover, developed in Chapter 6, might prove useful
in various areas of computer-assisted theorem proving. Not only might an automated the-
orem prover use such a system to detect theories it knows so it can enable theory-specific
mechanisms and rules, but we can imagine a proof assistant such as Coq [HKPM97] or Is-
abelle [NPW02] could detect that the user is defining a well-known structure, so as to propose
lemmas and theorems automatically.

As stated before, Superposition-based theorem provers such as E [Sch02], Vampire [RV01b]
or SPASS [WSH+07] are very successful in untyped first-order logic, but fall short when it comes
to theory support (although SPASS has had some extensions in that direction [PW06]). We be-
lieve the future of such automated theorem provers (or their successors) lies in dealing with
more powerful and expressive logics (typed logic, arithmetic, various theories, or induction),
so they can be used in the many application domains that require this increase in power. Inte-
gration of automated provers in interactive proof assistants is also a promising area of research
(for instance [BBN11]). Implementing some of the techniques from this thesis in strong the-
orem provers would therefore be very interesting, both to evaluate their usefulness in a more
practical setting, and to improve the application range of the tools.
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Abstract

The central concept of theorem designates a claim backed by an irrefutable argument that follows
formal rules, called a proof. Proving theorems is very useful in both Computer Science and Mathemat-
ics. However, many theorems are too boring and tedious for human experts (for instance, theorems
generated to ensure that software abides by some specification); hence the decades-long effort in au-
tomated theorem proving, the field dedicated to writing programs that find proofs. Superposition is a
very competitive technique for proving theorems in the language of first-order logic with equality over
uninterpreted functions (in a nutshell, being able to replace equals by equals in any expression). Even
then, Superposition falls short for many problems that require theory-specific reasoning or inductive
proofs. In this thesis, we aim at developing new extensions to Superposition. Our claim is that Superpo-
sition lends itself very well to being grafted additional inference rules and reasoning mechanisms. First,
we develop a Superposition-based calculus for integer linear arithmetic. Linear Integer Arithmetic is a
widely studied and used theory in other areas of automated deduction, in particular SMT (Satisfiability
Modulo Theory). This theory might also prove useful for problems that have a discrete, totally ordered
structure, such as temporal logic, and that might be encoded efficiently into first-order logic with arith-
metic. Then, we define an extension of Superposition that is able to reason by structural induction (nat-
ural numbers, lists, binary trees, etc.) Inductive reasoning is pervasive in Mathematics and Computer
Science but its integration into general purpose first-order provers has not been studied much. Last,
we present a theory detection system that, given a signature-agnostic description of algebraic theories,
detects their presence in sets of formulas. This system is akin to the way a mathematician who studies
a new object discovers that this object belong to some known structure, such as groups, allowing her
to leverage the large body of knowledge on this specific theory. A large implementation effort was also
carried out in this thesis; all the contributions presented above have been implemented in a library and
a theorem prover, Zipperposition, both written in OCaml and released under a free software license.

Résumé

Le concept central de théorème désigne une assertion justifiée par un argument irréfutable agencé
selon des règles formelles, qu’on appelle une preuve. Prouver des théorèmes est utile à la fois en In-
formatique et en Mathématiques. Cependant, beaucoup de théorèmes utiles, tels que ceux engendrés
par la vérification formelle qu’un programme respecte une spécification, sont trop pénibles et inin-
téressants pour mériter l’attention d’experts humains; plusieurs décennies de recherches ont donc été
consacrées au domaine de la démonstration automatique. La Superposition est une technique efficace
permettant de prouver les théorèmes exprimés en logique du premier ordre avec égalité (en bref, la
capacité de remplacer mutuellement deux objets égaux dans n’importe quelle expression). Pourtant, la
Superposition montre ses limites dans beaucoup de cas où des théories spécifiques ou du raisonnement
par récurrence sont nécessaires. Dans cette thèse, nous développons de nouvelles extensions à la Su-
perposition; nous soutenons que cette dernière se prête bien à l’ajout de règles d’inférence et de mé-
canismes de raisonnement supplémentaires. Tout d’abord, nous développons un système d’inférence
qui donne à la Superposition les moyens de raisonner dans l’arithmétique linéaire entière, une théorie
activement utilisée et étudiée dans d’autres domaines de la preuve automatique tels que SMT (Satis-
fiabilité Modulo Théories). L’arithmétique peut également permettre des encodages vers la logique
du premier ordre plus efficaces pour les structures discrètes totalement ordonnées — par exemple, la
logique temporelle. Nous définissons ensuite un mécanisme permettant aux prouveurs fondés sur la
Superposition de raisonner par récurrence sur des types algébriques (naturels, listes, arbres binaires,
etc.) Le raisonnement par récurrence est très courant en Mathématiques et en Informatique, mais son
intégration dans les systèmes de preuve dédiés à la logique du premier ordre a été peu étudiée. Enfin,
nous présentons un système de détections de théories axiomatiques capable de déceler la présence de
structures algébriques connues dans un ensemble de formules. Ce système rappelle la manière dont un
mathématicien qui étudie un nouvel objet peut découvrir que ce dernier relève d’une structure connue
— comme les groupes — ce qui lui permet de mobiliser ses connaissances sur cette théorie. Cette thèse
comprend également une part importante de travail d’implémentation : toutes les contributions listées
ci-dessus ont été incorporées dans une bibliothèque et un prouveur automatique, Zipperposition; tous
deux sont écrits en OCaml et publiés sous licence libre.
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