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THÈSE DE DOCTORAT
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concurrents. J’ai apprécié la confiance qu’il m’a accordée pour mener ce travail vers
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de leur équipe dans la suite.

Je voudrais remercier les personnes et institutions qui nous ont donné accès aux
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mı́ y desde siempre ha sido un modelo y una gúıa esencial. Gracias a mis hermanitos,
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y el apoyo que me brindan. Estoy muy feliz de poder compartir este logro con ustedes.

Enfin, je voudrais remercier Pierre-Antoine pour son écoute attentive et ses conseils
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Abstract

Missing data are a common occurrence in medical studies. In regression modeling,

missing outcomes limit our capability to draw inferences about the covariate effects of

medical interest, which are those describing the distribution of the entire set of planned

outcomes. In addition to losing precision, the validity of any method used to draw infer-

ences from the observed data will require that some assumption about the mechanism

leading to missing outcomes holds. Rubin (1976) called the missingness mechanism

MAR (for missing at random) if the probability of an outcome being missing does not

depend on missing outcomes when conditioning on the observed data, and MNAR (for

missing not at random) otherwise. This distinction has important implications regard-

ing the modeling requirements to draw valid inferences from the available data, but

generally it is not possible to assess from these data whether the missingness mecha-

nism is MAR or MNAR. Hence, sensitivity analyses should be routinely performed to

assess the robustness of inferences to assumptions about the missingness mechanism.

In the field of incomplete multivariate data, in which the outcomes are gathered

in a vector (Y1, . . . , YJ) for which some components may be missing, MAR methods

are widely available and increasingly used, and several MNAR modeling strategies have

also been proposed. On the other hand, although some sensitivity analysis methodology

has been developed, this is still an active area of research. The first aim of this disser-

tation was to develop a sensitivity analysis approach for continuous longitudinal data

with drop-outs, that is, continuous outcomes that are ordered in time and completely

observed for each individual up to a certain time-point, at which the individual drops-
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out so that all the subsequent outcomes are missing. The proposed approach consists

in assessing the inferences obtained across a family of MNAR pattern-mixture models

indexed by a so-called sensitivity parameter that quantifies the departure from MAR.

The approach was prompted by a randomized clinical trial investigating the benefits

of a treatment for sleep-maintenance insomnia, from which 22% of the individuals had

dropped-out before the study end.

The second aim was to build on the existing theory for incomplete multivariate

data to develop methods for competing risks data with missing causes of failure. The

competing risks model is an extension of the standard survival analysis model in which

failures from different causes are distinguished. Strategies for modeling competing risks

functionals, such as the cause-specific hazards (CSH) and the cumulative incidence

function (CIF), generally assume that the cause of failure is known for all patients, but

this is not always the case. Some methods for regression with missing causes under the

MAR assumption have already been proposed, especially for semi-parametric modeling

of the CSH. But other useful models have received little attention, and MNAR model-

ing and sensitivity analysis approaches have never been considered in this setting. We

propose a general framework for semi-parametric regression modeling of the CIF under

MAR using inverse probability weighting and multiple imputation ideas. Also under

MAR, we propose a direct likelihood approach for parametric regression modeling of

the CSH and the CIF. Furthermore, we consider MNAR pattern-mixture models in the

context of sensitivity analyses. In the competing risks literature, a starting point for

methodological developments for handling missing causes was a stage II breast can-

cer randomized clinical trial in which 23% of the deceased women had missing cause

of death. We use these data to illustrate the practical value of the proposed approaches.

Keywords: Missing data; longitudinal data; competing risks; regression; missing

outcomes; drop-out; missing cause of failure; multiple imputation; inverse probability

weighting; direct likelihood; pattern-mixture model; sensitivity analysis; linear mixed

model; cumulative incidence function; cause-specific hazard; pseudo-values.



Résumé

Les données manquantes sont fréquentes dans les études médicales. Dans les modèles

de régression, les réponses manquantes limitent notre capacité à faire des inférences sur

les effets des covariables décrivant la distribution de la totalité des réponses prévues sur

laquelle porte l’intérêt médical. Outre la perte de précision, toute inférence statistique

requière qu’une hypothèse sur le mécanisme de manquement soit vérifiée. Rubin (1976)

a appelé le mécanisme de manquement MAR (pour les sigles en anglais de manquant

au hasard) si la probabilité qu’une réponse soit manquante ne dépend pas des réponses

manquantes conditionnellement aux données observées, et MNAR (pour les sigles en

anglais de manquant non au hasard) autrement. Cette distinction a des implications

importantes pour la modélisation, mais en général il n’est pas possible de déterminer

si le mécanisme de manquement est MAR ou MNAR à partir des données disponibles.

Par conséquent, il est indispensable d’effectuer des analyses de sensibilité pour évaluer

la robustesse des inférences aux hypothèses de manquement.

Pour les données multivariées incomplètes, c’est-à-dire, lorsque l’intérêt porte sur un

vecteur de réponses (Y1, . . . , YJ) dont certaines composantes peuvent être manquantes,

plusieurs méthodes de modélisation sous l’hypothèse MAR et, dans une moindre mesure,

sous l’hypothèse MNAR ont été proposées. En revanche, le développement de méthodes

pour effectuer des analyses de sensibilité est un domaine actif de recherche. Le premier

objectif de cette thèse était de développer une méthode d’analyse de sensibilité pour les

données longitudinales continues avec des sorties d’étude, c’est-à-dire, pour les réponses

continues, ordonnées dans le temps, qui sont complètement observées pour chaque in-
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dividu jusqu’à la fin de l’étude ou jusqu’à ce qu’il sorte définitivement de l’étude. Dans

l’approche proposée, on évalue les inférences obtenues à partir d’une famille de mod-

èles MNAR dits « de mélange de profils », indexés par un paramètre qui quantifie le

départ par rapport à l’hypothèse MAR. La méthode a été motivée par un essai clinique

étudiant un traitement pour le trouble du maintien du sommeil, durant lequel 22% des

individus sont sortis de l’étude avant la fin.

Le second objectif était de développer des méthodes pour la modélisation de risques

concurrents avec des causes d’évènement manquantes en s’appuyant sur la théorie exis-

tante pour les données multivariées incomplètes. Les risques concurrents apparaissent

comme une extension du modèle standard de l’analyse de survie où l’on distingue le

type d’évènement ou la cause l’ayant entrainé. Les méthodes pour modéliser le risque

cause-spécifique et la fonction d’incidence cumulée supposent en général que la cause

d’évènement est connue pour tous les individus, ce qui n’est pas toujours le cas. Cer-

tains auteurs ont proposé des méthodes de régression gérant les causes manquantes sous

l’hypothèse MAR, notamment pour la modélisation semi-paramétrique du risque. Mais

d’autres modèles n’ont pas été considérés, de même que la modélisation sous MNAR et

les analyses de sensibilité. Nous proposons des estimateurs pondérés et une approche

par imputation multiple pour la modélisation semi-paramétrique de l’incidence cumulée

sous l’hypothèse MAR. En outre, nous étudions une approche par maximum de vraisem-

blance pour la modélisation paramétrique du risque et de l’incidence sous MAR. Enfin,

nous considérons des modèles de mélange de profils dans le contexte des analyses de

sensibilité. Un essai clinique étudiant un traitement pour le cancer du sein de stade II

avec 23% des causes de décès manquantes sert à illustrer les méthodes proposées.

Mots clés: Données manquantes; données longitudinales; risques concurrents ; ré-

gression ; réponses manquantes ; sorties d’étude ; cause d’évènement manquante ;

imputation multiple ; estimateurs pondérés ; maximum de vraisemblance ; modèle de

mélange de profils ; analyse de sensibilité ; modèle linéaire mixte ; fonction d’incidence

cumulée ; risque cause-spécifique ; pseudo-valeurs.
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Some notational conventions

• Boldface will be used for vectors and matrices.

• For a matrix or vector X, X′ denotes the transpose of X.

• I(·) is the indicator function, i.e. for a logical proposition q, I(q) = 1 if q is true

and I(q) = 0 otherwise.

• p→ denotes convergence in probability.

• op(1) denotes a sequence of random variables that converges to zero in probability.

For X and Y random vectors:

• Xi denotes the realization of X by individual i.

• f(x|·) denotes the (conditional) joint density of X evaluated at x. Where neces-

sary to avoid ambiguity, the notation f(x = ·|·) will be used instead.

• f(x|y) is short for f(x|Y = y).
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Synthèse

(extended summary in French)

Introduction

La modélisation par régression avec des réponses manquantes

Les données manquantes sont fréquentes dans les études médicales, notamment dans

celles impliquant des êtres humains. Par exemple, lorsqu’on demande aux participants

d’une étude de remplir un questionnaire, certains d’entre eux laisseront souvent quelques

items sans réponse. Dans les études médicales, il est commun de suivre un groupe

d’individus au cours du temps, par exemple pour étudier l’évolution d’un marqueur

biologique mesuré à plusieurs reprises ou le temps jusqu’à la survenue d’un évènement

tel que le décès. L’observation prolongée des individus accentue l’occurrence de données

manquantes. En effet, le recueil d’information se détériore avec le temps, entre autres

parce que quelques individus n’assistent pas aux rendez-vous planifiés et d’autres sortent

des études complètement par des raisons migratoires, médicales ou autres. Il est difficile

d’éviter ces problèmes entièrement quelque soit le type d’étude, même lorsqu’il s’agit

d’un essai clinique soigneusement planifié et suivant un protocole strict.

Dans la recherche médicale, la modélisation par régression est souvent utilisée pour

étudier l’effet des covariables (ex. facteurs pronostiques, expositions) sur des réponses

d’intérêt médical (ex. le niveau d’un marqueur biologique, le délai de survie). Dans

ces études, les individus sont recrutés suivant des critères prédéfinis, et les réponses

xxxiii



xxxiv SYNTHÈSE

qui seront mesurées pour chacun d’entre eux, ainsi que les dates et horaires de ces

mesures, sont déterminés à l’avance. L’intérêt médical porte sur les effets des covari-

ables décrivant la distribution de la totalité des réponses prévues. Or, lorsque quelques

réponses manquent pour certains individus, les réponses observées et les covariables

représentent toute l’information disponible pour faire des inférences (c.-à-d. des estima-

tions ponctuelles, des intervalles de confiance, des tests d’hypothèse) sur ces paramètres.

Outre l’évidente perte de précision entrainée par l’information manquante, toute méth-

ode pour faire des inférences à partir des données disponibles requière qu’une hypothèse

sur le mécanisme de manquement soit vérifiée.

Rubin (1976) a proposé une taxonomie des mécanismes de manquement qui est

clé pour comprendre la problématique de l’analyse statistique de données incomplètes.

Dans le contexte des réponses manquantes, le mécanisme de manquement est appelé

MCAR (pour les sigles en anglais de manquant complètement au hasard) si la proba-

bilité qu’une réponse soit manquante est constante. Le mécanisme de manquement est

appelé MAR (pour les sigles en anglais de manquant au hasard) si la probabilité qu’une

réponse soit manquante ne dépende pas des réponses manquantes conditionnellement

aux données observées (ex. des covariables, des réponses mesurées à d’autres moments).

Enfin, le mécanisme de manquement est appelé MNAR (pour les sigles en anglais de

manquant non au hasard) si la probabilité qu’une réponse soit manquante dépend des

réponses manquantes même lorsqu’on conditionne par les données observées.

La taxonomie de Rubin a des implications importantes concernant les besoins de

modélisation pour obtenir des inférences valides à partir des données disponibles. Sous

l’hypothèse d’un mécanisme MCAR, les réponses observées sont un échantillon aléa-

toire des réponses prévues. Par conséquent, dans plusieurs contextes, un mécanisme

MCAR garantit que l’on puisse obtenir des inférences, certes imprécises, mais tout de

même valides en effectuant une analyse dite des « cas complets » (CC), c’est à dire, une

analyse excluant les individus avec des réponses manquantes. Sous MAR, les réponses

observées et manquantes ont la même distribution conditionnellement au reste des don-

nées observées. Ceci implique que des inférences valides peuvent être obtenues à partir
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des données disponibles sans avoir à faire des hypothèses supplémentaires sur la dis-

tribution des réponses manquantes. Sous MNAR, les distributions conditionnelles des

réponses observées et manquantes sont différentes, et il est alors nécessaire de faire des

hypothèses sur cette dernière, que ce soit de façon explicite ou implicite, pour résoudre

les problèmes d’identifiabilité.

La taxonomie de Rubin relève des différences importantes entre les diverses méth-

odes existantes pour gérer les réponses manquantes. Or, comme Molenberghs et al.

(2008) l’a démontré dans un contexte assez général, il n’est pas possible d’évaluer à

partir des données observées si le mécanisme de manquement est MAR ou MNAR. En

effet, sauf dans certaines situations où le schéma de l’étude prévoit le manquement de

certaines données, les hypothèses de manquement requises par quelconque stratégie de

modélisation avec des données manquantes ne sont pas vérifiables. C’est pourquoi il

est indispensable d’effectuer des analyses de sensibilité, pour évaluer la robustesse des

inférences obtenues dans une analyse principale aux écarts par rapport aux hypothèses

de manquement sous-jacentes.

Objectifs de la thèse

L’analyse CC et d’autres méthodes ad-hoc étaient souvent utilisées auparavant, et elles

sont toujours utilisées mais dans une moindre mesure. En effet, une meilleure com-

préhension des fortes hypothèses requises par ces méthodes, irréalistes dans la plupart

des cas, a stimulé le développement, l’implémentation et l’utilisation de méthodes re-

posant sur des hypothèses moins fortes. Ceci est en particulier vrai dans le contexte

des données multivariées incomplètes, c’est-à-dire, lorsque l’intérêt porte sur un vecteur

de réponses (Y1, . . . , YJ) dont certaines composantes peuvent être manquantes. Pour

ce type de données, plusieurs méthodes de modélisation reposant sur l’hypothèse MAR

sont utilisées couramment et diverses méthodes sous MNAR ont été proposées aussi.

En revanche, même si quelques méthodes pour effectuer des analyses de sensibilité ont

été proposées, celui-ci est encore un domaine actif de recherche.
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Le premier objectif de cette thèse était de développer une méthode d’analyse de

sensibilité pour les données longitudinales continues avec des sorties d’étude. Ces don-

nées sont un type particulier de données multivariées incomplètes, où les réponses sont

continues et ordonnées dans le temps. De plus, pour chaque individu, on observe soit

toutes les réponses, soit toutes les réponses jusqu’à un certain moment, auquel l’individu

sort de l’étude et ne revient jamais, de façon à ce que le reste de ses réponses sont man-

quantes.

Le second objectif de la thèse était de développer des méthodes pour la modélisa-

tion de risques concurrents avec des causes d’évènement manquantes en s’appuyant sur

la théorie existante pour les données multivariées incomplètes. Le modèle de risques

concurrents est une extension du modèle standard de l’analyse de survie où l’on dis-

tingue le type d’évènement ou la cause l’ayant entrainé. Certains auteurs ont proposé

des méthodes de régression pour risques concurrents avec des causes d’évènement man-

quantes sous l’hypothèse MAR, notamment pour la modélisation semi-paramétrique du

risque cause-spécifique. Mais d’autres modèles n’ont pas été considérés, de même que la

modélisation sous MNAR et les analyses de sensibilité. Notre but était donc de combler

certains de ces vides dans la littérature.

Modélisation de données longitudinales avec des

sorties d’étude

Contexte et état de la question

On parle de données longitudinales lorsqu’une variable réponse d’intérêt est mesurée

pour chaque individu à plusieurs reprises au cours du temps, donnant lieu à une séquence

de mesures répétées ordonnées dans le temps. Ici, nous nous intéressons aux variables

réponse continues et, pour faciliter la notation, nous nous concentrons sur le cas où tous

les individus ont le même nombre J de mesures prévues, ayant lieu aux mêmes dates.

On dénote par Yi = (Yi1, . . . , YiJ) le vecteur de réponses de l’individu i (i = 1, . . . , n).
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L’objectif d’une étude longitudinale est d’étudier l’évolution intra-individu de la variable

réponse au cours du temps et de déterminer les facteurs qui influencent cette évolution.

Un exemple d’étude longitudinale est l’essai clinique randomisé qui a motivé les

développements de cette partie de la thèse. Dans cet essai, on étudiait un traitement

pour le trouble du maintien du sommeil. Les 962 patients recrutés dans cet essai ont eu

à remplir quotidiennement un questionnaire pendant la durée de l’étude qui contenait

des scores quantifiant la qualité du sommeil. Les scores étaient : la durée de réveil après

l’induction du sommeil (WASO); le nombre de réveils (NAW); la qualité rafraichissante

du sommeil (SLREF), prenant des valeurs de un (excellent) à quatre (pauvre); la sensa-

tion de somnolence (FEELC), prenant des valeurs de zéro (très somnolent) à neuf (pas

du tout somnolent); le temps total de sommeil (TST); et la latence à l’endormissement

(SOL), qui est la durée entre la fermeture des yeux et l’entrée effective en sommeil. Une

décroissance dans les scores WASO, NAW, SLREF ou SOL, ou une croissance dans les

scores FEELC ou TST indiquerait une amélioration dans la qualité du sommeil du

patient. Les scores quotidiens n’étaient pas disponibles, seuls leurs moyennes sur six

périodes communes à tous les individus. Donc, toutes les variables réponse considérées

étaient continues.

Pour étudier l’effet des covariables sur l’évolution de la variable réponse, des méth-

odes de régression prenant compte de la corrélation entre les réponses d’un même in-

dividu au cours du temps sont nécessaires. Si toutes les réponses de tous les individus

sont observées, on peut utiliser par exemple le modèle linéaire mixte (Laird and Ware,

1982).

Lorsqu’il y a des sorties d’étude, le vecteur de réponses s’écrit Yi = (YOi ,Y
M
i ),

où YOi = (Yi1, . . . , Yi(Ui−1)) et YMi = (YiUi
, . . . , YiJ) sont les parties observées et man-

quantes de Yi, respectivement, et Ui dénote le moment de la première réponse man-

quante, avec Ui ≤ J pour les individus qui sont sortis de l’étude et Ui = J+1 pour ceux

qui complètent l’étude. On appelle Ui l’indicateur de sortie d’étude. Plusieurs méthodes

sont disponibles pour l’analyse de données longitudinales avec des sorties d’étude sous

l’hypothèse MAR. Par exemple, Rubin (1976) a montré qu’une analyse par maximum de
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vraisemblance utilisant toutes les données disponibles permet d’obtenir des estimations

non-biaisées et d’efficacité maximale à condition que (i) le mécanisme de manquement

soit MAR et (ii) les paramètres des mécanismes de réponse et manquement soient dis-

tincts. Si ces deux conditions sont vérifiées on dit que le mécanisme de manquement est

ignorable. En effet, on peut obtenir des inférences valides tout simplement en ajustant

le modèle linéaire mixte aux réponses disponibles. Deux autres approches utiles sous

MAR sont l’imputation multiple (Rubin, 1987) et les équations d’estimation pondérées

par l’inverse de la probabilité d’observation (Robins et al., 1995).

Sous MNAR, il faut modéliser la distribution jointe du vecteur de réponses Y et

de l’indicateur de sortie d’étude U , dénotée par f(y, u). Deux approches distinguées

par Little and Rubin (1987, Chapitre 11) sont les modèles de sélection et les modèles

de mélange de profils. Ces derniers, d’importance pour la suite, sont fondés sur la

factorisation suivante:

f(y, u) = f(y|u)× f(u).

Une troisième approche est celle des modèles à paramètres partagés (Wu and Carroll,

1988; Wu and Bailey, 1988, 1989; Little, 1995).

Une approche pour effectuer des analyses de sensibilité consiste à évaluer la dis-

cordance entre les inférences obtenues dans l’analyse principale et celles obtenues à

partir d’une famille de modèles MNAR reposant sur des hypothèses de manquement,

distributionnelles ou structurelles différentes (ex. Little and Yau, 1996; Kenward, 1998;

Kenward and Molenberghs, 1999; Michiels et al., 2002). Si l’analyse principale repose

sur l’hypothèse MAR, une version plus structurée de cette approche consiste à consid-

érer une famille de modèles MNAR indexés par un paramètre qui quantifie le départ par

rapport à l’hypothèse MAR (Little, 1994; Rotnitzky et al., 1998; Scharfstein et al., 1999;

Daniels and Hogan, 2000; Molenberghs et al., 2001a). D’autres méthodes d’analyse de

sensibilité reposant sur les idées d’influence de Cook (1977, 1986) ont été proposées

(Thijs et al., 2000; Verbeke et al., 2001; Molenberghs et al., 2001b; Jansen et al., 2006).
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Contributions

L’approche développée pour répondre au premier objectif de la thèse est fondée sur

le principe d’une famille de modèles MNAR indexés par un paramètre quantifiant le

départ par rapport à MAR. On utilise des modèles de mélange de profils, considérés

par certains auteurs comme les plus appropriés pour les analyses de sensibilité (Daniels

and Hogan, 2000; Daniels and Wang, 2009; Hogan, 2009). Plus précisément, soit ϕ

le paramètre de f(y, u). Le paramètre d’intérêt θ est en général une fonction h de

ϕ, c’est-à-dire θ = h(ϕ). Les modèles de mélange de profils sont particulièrement

utiles pour les analyses de sensibilité car ils peuvent être paramétrés de façon à ce que

ϕ = (φ,κ) où κ n’apparait pas dans le modèle pour les données observées, qui est

donc indexé uniquement par φ. D’autre part, le modèle pour les réponses manquantes

conditionnellement aux données observées, appelé le modèle d’extrapolation, est indexé

par (φ,κ):

f(yO,yM, u|φ,κ) = f(yO, u|φ)× f(yM|yO, u,φ,κ). (1)

L’intérêt de cette paramétrisation découle des observations suivantes. Premièrement,

pour une valeur fixe de φ, toute valeur de κ donne le même ajustement aux données

observées. C’est-à-dire, la vraisemblance des données observées L(φ,κ|yO, u), consid-

érée comme une fonction de κ, est constante, impliquant que κ n’est pas identifiable.

Deuxièmement, la vraisemblance L(φ,κ|yO, u), vue comme une fonction de φ, n’est pas

constante, donc ce paramètre est identifiable. Enfin, le paramètre d’intérêt θ = h(φ,κ)

dépend en général de κ. En conclusion, différentes valeurs de κ impliquent le même

ajustement aux données observées, mais aussi des modèles d’extrapolation et des valeurs

pour le paramètre d’intérêt différents. Un paramètre comme κ est appelé un paramètre

de sensibilité car il représente la source des différences dans les inférences obtenues

sous diverses hypothèses (non-vérifiables) sur le modèle d’extrapolation. Une analyse

de sensibilité peut s’effectuer en faisant varier κ sur un ensemble de valeurs possibles,

déterminé éventuellement avec l’aide d’experts, et en comparant les inférences obtenues

sur cet ensemble et celles de l’analyse principale.
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Nous considérons une famille de modèles de mélange de profils où l’on distingue

uniquement entre les réponses observées et manquantes. Plus précisément, dénotant

l’indicateur de manquement de Yij par Rij := I(Ui ≤ j), on considère des modèles

linéaires mixtes de la forme:

Yij = X′ijβ + Z′ijbi + κRij + εij, εij ∼ N(0, σ2), bi ∼ N(0,G), (2)

pour j = 1, . . . , J et i = 1, . . . , n, où : Xij est un p-vecteur contenant des covariables

fixes mesurées au début de l’étude et des polynômes de tj, le temps de la mesure j ; β

est le p-vecteur des effets fixes communs à la population ; le q-vecteur Zij contient les

covariables dans Xij à effet aléatoire ; les erreurs résiduelles εij sont indépendantes et

identiquement distribuées (i.i.d), suivant une distribution normale de moyenne zéro et

variance σ2 ; et les effets aléatoires, représentés par les q-vecteurs bi, sont i.i.d. suivant

une distribution normale de moyenne zéro et variance G = G(α), où α est un vecteur

de paramètres inconnu. Les effets aléatoires sont supposés être indépendants des erreurs

résiduelles et des covariables.

La première partie du prédicteur linéaire, X′ijβ + Z′ijbi, et les paramètres de la

variance, σ2 et G, déterminent complètement la distribution des réponses observées,

pour lesquelles Rij = 0. Les paramètres correspondants peuvent être estimés à partir

des données observées par maximum vraisemblance. D’autre part, la distribution des

réponses manquantes est identifiée au paramètre κ près, qui est un paramètre de sensi-

bilité. Donc, le modèle (2) correspond à une paramétrisation comme celle représentée

dans (1). Cette famille de modèles de mélange suppose que les réponses manquantes et

observées ont la même distribution, sauf pour un décalage dans la valeur espérée quan-

tifié par κ. L’hypothèse MAR est équivalente à l’hypothèse que ces deux distributions

sont égales, ce qui se traduit par κ = 0. Donc, cette famille de modèles est ‘centrée’

en MAR, et κ quantifie le départ par rapport à cette hypothèse. En permettant que κ

dépend des covariables, c’est-à-dire κ = κ(Xij), l’analyste peut intégrer des hypothèses

plus détaillées concernant les différences entre les trajectoires des réponses observées et
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manquantes.

La performance de cette approche pour étudier la sensibilité des inférences a été

évaluée dans une étude de simulations. Pour implémenter la méthode, une approche

par imputation multiple a été développée. Dans cette approche, les réponses man-

quantes sont imputées en tirant des valeurs tirées directement du modèle (2), à l’aide

des estimations des paramètres obtenus sous MAR et le paramètre κ(Xij) choisi. En

prenant κ = 0, la procédure d’imputation développée offre une alternative d’analyse

sous MAR par imputation multiple et a été validée dans ce contexte dans une autre

étude de simulations.

L’approche proposée a été appliquée l’essai du trouble du maintien du sommeil.

L’objectif de cet essai était de faire des inférences sur l’effet du traitement sur chaque

score, définit comme la différence espérée entre les groupes de contrôle et de traitement

dans le changement du score entre le début et la fin de l’étude. Or, 22% des individus

étaient sortis de l’étude avant sa fin. Dans les essais cliniques, les sorties d’étude peu-

vent s’expliquer par des effets indésirables, un manque d’efficacité et des violations du

protocole entre autres raisons (Molenberghs and Kenward, 2007). Nous avons utilisé

la méthode proposée pour étudier la sensibilité des inférences obtenues sous MAR aux

écarts par rapport à cette hypothèse. Les analyses ont confirmé un effet significatif

du traitement sur les scores WASO et NAW, cette conclusion restant stable sous un

large éventail de modèles d’une famille comme (2) et même lorsqu’on a considéré une

autre définition de l’effet du traitement. Pour les autres scores, les résultats étaient très

fragiles et sensibles aux hypothèses de manquement.

Par rapport à d’autres méthodes proposées dans la littérature (ex. Daniels and

Hogan, 2000; Ratitch et al., 2013), l’approche proposée a comme avantage qu’elle peut

être facilement appliquée à des données avec un grand nombre de mesures répétées,

ayant lieu possiblement à des occasions différentes pour chaque individu. Celles-ci sont

des avantages héritées du modèle linéaire mixte. De plus, les paramètres de sensibilité

dans notre approche ont une interprétation intuitive car ils caractérisent les trajec-

toires des individus, ce qui facilite la formulation des hypothèses sur la distribution des
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réponses manquantes. Les résultats de cette partie de la thèse ont fait l’objet d’une

publication (Moreno-Betancur and Chavance, 2013).

Modélisation de risques concurrents avec des causes

d’évènement manquantes

Contexte et état de la question

Le modèle de risques concurrents est une extension du modèle standard de l’analyse de

survie. Dans ce dernier, on étudie le délai de survenue d’un évènement, noté par T . Dans

le modèle de risques concurrents, on distingue le type d’évènement ou la cause l’ayant

entrainé, les différents types d’évènement étant mutuellement exclusifs. Les réponses

d’intérêt dans ce contexte sont donc T et D, où D dénote la cause d’évènement. Sans

perte de généralité, on peut supposer que D a deux catégories, une représentant la cause

d’intérêt (D = 1) et l’autre regroupant toutes les autres causes (D = 2). En recherche

médicale, le modèle de risques concurrents est typiquement employé lorsqu’on s’intéresse

aux délais de survenue d’évènements tels que le décès par une cause spécifique, la rechute

ou la réponse à un traitement. La modélisation par régression permet d’analyser l’effet

des facteurs de risque ou des interventions sur la survenue d’évènements concurrents.

En général, T peut être censuré à droite, c’est-à-dire, pour certains individus on

sait qu’ils n’ont pas subi d’évènement jusqu’à un certain moment, après lequel aucune

information concernant la survenue d’un évènement n’est disponible. C’est cette par-

ticularité des délais de survenue des évènements qui a fait que l’analyse de survie se

développe comme un domaine séparé de la statistique. Notamment, il existe de nom-

breuses méthodes pour la modélisation des risques concurrents en présence de censure

à droite.

Soit X un p-vecteur de covariables mesurées au début de l’étude. Pour étudier

l’impact de X sur la survenue des évènements entrainés par la cause j (j = 1, 2),

on peut postuler des modèles de régression pour deux fonctions cause-spécifiques. La
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première fonction est le risque cause-spécifique (CSH), définit au temps t comme le taux

auquel se produisent des évènements de type j parmi les individus à risque juste avant

t: λj(t) := limh→0
1

h
P (t ≤ T < t+ h,D = j|T ≥ t). Pour cette fonction, il est commun

de considérer des modèles à risques proportionnels pour chaque cause, tel que le modèle

de Cox (Cox, 1972), ou des modèles additifs tel que le modèle de Aalen (Aalen, 1980).

La deuxième fonction est appelée la fonction d’incidence cumulée (CIF), définie

comme la probabilité d’observer un évènement de type j avant le temps t: Fj(t) :=

P (T ≤ t,D = j). Pour cette fonction, il est commun de postuler des modèles linéaires

généralisés semi-paramétriques, comme le modèle de Fine et Gray (Fine and Gray, 1999)

ou le modèle additif (Klein, 2006). Une modèle paramétrique a aussi été proposé (Jeong

and Fine, 2007). L’incidence cumulée d’une cause donnée dépend des deux fonctions

de risque, λ1 et λ2. Donc, une augmentation du risque d’une cause ne reflètera pas

forcement une augmentation de l’incidence cumulée de cette cause (Beyersmann et al.,

2007). C’est pourquoi, les deux fonctions doivent être étudiées pour comprendre le

mécanisme de risques concurrents entièrement (Andersen et al., 2012; Latouche et al.,

2013).

Les méthodes pour modéliser le CSH ou la CIF supposent en général que la cause

d’évènement D est connue pour tous les individus ayant subi un évènement, ce qui n’est

pas toujours le cas. Par exemple, si l’évènement étudié est le décès, quelques causes de

décès peuvent manquer lorsque les certificats de décès ne sont pas bien remplis ou les pa-

tients meurent sans autopsie (Andersen et al., 1996; Manola and Gray, 2011). Certains

auteurs ont proposé des méthodes de régression gérant les causes d’évènement man-

quantes sous l’hypothèse MAR, notamment pour la modélisation semi-paramétrique du

CSH (Goetghebeur and Ryan, 1995; Andersen et al., 1996; Nicolaie et al., 2011; Lu

and Tsiatis, 2001; Gao and Tsiatis, 2005; Gao, 2006; Lu and Liang, 2008). Cependant,

d’autres modèles fréquemment employés n’ont été que peu ou pas du tout considérés.

Par exemple, la modélisation semi-paramétrique de la CIF n’a été considéré que par

Bakoyannis et al. (2010) qui a étudié le modèle de Fine et Gray avec une approche par

imputation multiple. D’autre part, les modèles paramétriques pour le CSH et la CIF
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n’ont jamais été considérés dans ce contexte, et il est de même pour la modélisation

sous MNAR et les analyses de sensibilité.

Dans la littérature, un point de départ pour le développement de méthodes de

régression gérant les causes d’évènement manquantes a été un essai clinique randomisé

de l’Eastern Cooperative Oncology Group (ECOG). Dans cet essai, 169 femmes âgées

avaient été recrutées pour étudier un traitement du cancer du sein de stade II. Après un

suivi médiane de 6.7 années, 79 femmes étaient décédées, dont 44 décès par cancer et 17

décès par autres causes. Pour les autres 18 femmes décédées (23%), la cause de décès

était manquante, notamment parce que le schéma de l’étude n’était pas adapté à un suivi

à long terme (Cummings et al., 1993). Les premières analyses de cet essai, effectuées par

Cummings et al. (1985) et Cummings et al. (1986), n’ont pas montré d’effet significatif

du traitement sur la survie, mais ont révélé des associations significatives entre la survie

et deux facteurs pronostiques: le statut des récepteurs d’estrogène (positive ou négative)

et le nombre de ganglions lymphatiques atteints par le cancer (inférieur à 4, ou supérieur

ou égale à 4). Étant donné l’importance des causes de décès concurrentes dans cette

étude et du haut pourcentage de causes manquantes, ces données on été de grande

valeur dans la littérature pour illustrer de nouvelles méthodes pour gérer les causes

manquantes (Goetghebeur and Ryan, 1995; Lu and Tsiatis, 2001; Gao, 2006; Nicolaie

et al., 2011). Ces auteurs ont notamment étudié les effets des deux facteurs pronostiques

mentionnés sur le décès par cancer. Dans cette thèse, nous avons utilisé ces données

pour illustrer les méthodes proposées.

Contributions

Une première contribution, répondant au second objectif de la thèse, a été de proposer

un cadre général pour la modélisation semi-paramétrique de la CIF sous l’hypothèse

MAR. On considère le modèle linéaire généralisé semi-paramétrique suivant:

g{Fj(t|X)} = βj0(t) + β′jX, j = 1, 2, (3)
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où g est une fonction de lien monotone et différentiable et βj0(t) est un intercepte dépen-

dant du temps non-spécifié. Le modèle (3) comprend des modèles tels que le modèle

de Fine et Gray lorsque g est la fonction cloglog (complementary log-log) et le modèle

additif lorsque g est la fonction identité. Lorsque toutes les causes d’évènement sont

observées, ce modèle peut être ajusté avec la méthode Andersen-Klein (Andersen et al.,

2003; Klein and Andersen, 2005). Cette méthode consiste à utiliser des pseudo-valeurs

de jackknife de la CIF comme les réponses dans des équations d’estimation généralisées

(Liang and Zeger, 1986). Nous avons proposé deux extensions de cette méthode pour

gérer les causes d’évènement manquantes. La première extension consiste à utiliser des

pseudo-valeurs pondérés par l’inverse de la probabilité que la cause d’évènement soit

observée. Nous avons démontré que cette approche amène à des estimateurs consistants

et asymptotiquement normaux sous l’hypothèse MAR. De plus, cette approche permet

de prendre en compte toute l’information partielle disponible sur les individus avec

cause manquante dans les équations d’estimation, impliquant des estimateurs efficaces.

La deuxième extension s’agit de l’application de la procédure d’imputation multiple de

Bakoyannis et al. (2010) pour imputer les causes manquantes, suivi de l’analyse par la

méthode Andersen-Klein des jeux de données complétés. Ces deux méthodes ont été

validées et comparées à l’analyse CC dans une étude de simulations, et ensuite appliqués

à l’essai ECOG. Nous avons ainsi pu formuler des recommandations sur leur application

dans la pratique. Ces travaux ont fait l’objet d’une publication (Moreno-Betancur and

Latouche, 2013).

Une deuxième contribution pour la modélisation des risques concurrents avec causes

d’évènement manquantes a été d’étudier formellement le concept de l’ignorabilité du

mécanisme de manquement dans ce contexte. Notamment, nous avons déterminé des

conditions suffisantes sur les mécanismes de manquement, de censure et des risques con-

currents pour que le mécanisme manquement puisse être ignoré dans une analyse par

maximum de vraisemblance. Nous avons ainsi déduit des expressions pour la vraisem-

blance en fonction du CSH et de la CIF permettant d’ajuster des modèles paramétriques

sous ces conditions. Les modèles paramétriques n’avaient pas été considérés dans la
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littérature de causes manquantes auparavant. Pour le CSH, les expressions proposées

permettent d’ajuster des modèles à risques proportionnels complètement paramétriques:

λj(t|X) = λj0(αj, t) exp(β′jX), j = 1, 2

où le risque de base λj0 est connu au vecteur de paramètres αj près. Pour la CIF, le

modèle de Jeong and Fine (2007) peut être ajusté:

Fj(t|X) = 1−
[
1 + αj exp(β′jX)τj{exp(ρjt)− 1}/ρj

]−1/αj , j = 1, 2.

La troisième contribution pour cette partie de la thèse a été le développement d’une

méthodologie pour effectuer des analyses de sensibilité dans le contexte de causes man-

quantes. Nous avons repris les idées développées dans le cadre de données longitudinales

avec des sorties d’étude. Plus précisément, nous avons considéré une famille de modèles

de mélange de profils indexés par un paramètre de sensibilité. Pour modéliser sous

MNAR dans ce contexte, on doit considérer la distribution jointe de (T,D,M) pour les

individus non-censurés, où M est l’indicateur de manquement, c’est-à-dire, M = 1 si

la cause est manquante et M = 0 sinon. Dénotant par U l’indicateur de censure, avec

U = 1 si l’individu est censuré et U = 0 sinon, la factorisation par mélange de profils

s’écrit

f(t, d,m | U = 0) = f(t, d |M = m,U = 0)× f(m | U = 0)

= f(t,m | U = 0)× f(d | T = t,M = m,U = 0). (4)

Ici, le modèle d’extrapolation est représenté par le dernier facteur dans (4), f(d | T =

t,M = m,U = 0). Nous avons considéré des modèles de mélange de profils où le modèle

d’extrapolation a la forme suivant:

logit{Π(X, T,M)} = h(X, T )′γ + κM, (5)
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où Π(X, T,M) := P (D = 1|X, T,M,U = 0) et h(X, T ) est un vecteur incluant X, T , et

possiblement des interactions et des polynômes de T de plus grand ordre. La première

partie du prédicteur linéaire, h(X, T )′γ, détermine complètement la distribution des

causes d’évènement pour les individus avec cause observée, pour qui Mi = 0. Le

paramètre γ peut être estimé en ajustant le modèle logistique aux données de ces

individus. D’autre part, la distribution des causes d’évènement pour les individus avec

cause manquante est identifiée au paramètre κ près, qui est un paramètre de sensibilité.

En effet, ce paramètre n’est pas identifiable à partir des données observées.

Le paramètre κ quantifie une différence entre les distributions des causes d’évènements

des individus avec cause observée et manquante, ainsi que le départ par rapport à

l’hypothèse MAR, celle-ci étant équivalent à la condition κ = 0. Plus précisément, κ

est le logarithme du odds ratio ajusté, comparant les chances d’un évènement par la

cause d’intérêt (D = 1) entre les individus non-censurés avec cause manquante et ceux

avec cause observée. En permettant que κ varie sur un ensemble de valeurs plausibles,

on peut évaluer la sensibilité des inférences aux écarts par rapport à MAR. Pour des

hypothèses plus détaillées on peut permettre que κ dépend des covariables et du délai

de survie, c’est-à-dire κ = κ(X, T ). De même que pour le données longitudinales, nous

proposons une implémentation de cette procédure par imputation multiple. D’abord,

les cause manquantes sont imputées en tirant des valeurs du modèle (5) en utilisant

l’estimation de γ obtenue sous MAR et le κ(X, T ) choisi. Ensuite, la méthode de ré-

gression souhaitée est utilisée pour analyser chaque jeu de données complété. Ainsi,

cette méthode d’analyse de sensibilité est applicable à divers modèles pour risques con-

currents, y compris des méthodes paramétriques ou semi-paramétriques pour le CSH

et la CIF.

Les premiers résultats d’application de cette méthode à l’essai ECOG ont été en-

courageants. A la base, cette méthode avait été développée pour une étude épidémi-

ologique sur les différentiels socioéconomiques dans la mortalité par suicide en France.

On soupçonnait que la base de causes de décès de cette étude contenait de nombreux

suicides codés comme décès à cause manquante suite à un problème de transmission
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des informations sur les suicides dans la région de l’étude. Ceci remettait en cause

l’hypothèse MAR. Or, avec notre méthode nous avons trouvé que les résultats étaient

peu sensibles aux hypothèses de manquement, sans doute grâce au faible pourcentage

de causes manquantes dans cette étude (environ 10%).

Le projet sur les différentiels socioéconomiques dans la mortalité par suicide en

France nous a amené à étudier en détail les indices utilisés dans la littérature pour

mesurer ces différentiels à partir de données de survie et de risques concurrents. Un

manuscrit sur cette problématique, externe à celle des données manquantes, est en

préparation.



Introduction

Missing data are a common occurrence in medical studies, especially in those involving

human beings. For example, when questionnaires are involved, often some individuals

will leave some items of the questionnaire unanswered. In medical studies, individuals

are often followed over the course of time, e.g. to study the evolution of some variable

measured at several points in time or the time to specific events. The prolonged ob-

servation of individuals exacerbates the occurrence of missing data because collection

of information tends to deteriorate with time. For instance, some people tend to miss

scheduled appointments and some drop-out of studies altogether, e.g. for migratory

or medical reasons. Such problems are common in both clinical and epidemiological

studies, and cannot be entirely prevented even in carefully planned clinical trials with

strict protocols.

In medical research, regression modeling is often used to study the effects of co-

variates (e.g. prognostic factors, exposures) on medical outcomes of interest (e.g. the

level of some biological marker, time to death). For such purposes, each medical study

recruits individuals according to a predefined set of criteria, and determines in advance

the outcomes that will be measured during the study for each individual and the timing

of these measurements. The covariate effects of medical interest are those describing

the distribution of the entire set of planned outcomes. However, when some outcomes

are missing for some of the individuals, the observed outcomes together with the co-

variates constitute the only available information from which to draw inferences (i.e.

point estimates, confidence intervals, hypothesis tests) about these parameters. Apart

1
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from the obvious loss in precision due to the missing information, the validity of any

method used to draw inferences about these parameters from the observed data will

require that some assumption about the nature of the mechanism leading to missing

outcomes, called the missingness mechanism, holds.

Rubin (1976) proposed a taxonomy of missingness mechanisms that is key to under-

standing the statistical issues that arise with missing data. In the context of missing

outcomes, the missingness mechanism is said to be MCAR (for missing completely at

random) if the probability that an outcome is missing is constant. The missingness

mechanism is said to be MAR (for missing at random) if the probability that an out-

come is missing depends on observed data (e.g. covariates, outcomes observed at other

time-points) but not on missing outcomes when conditioning on the former. Finally,

the missingness mechanism is said to be MNAR (for missing not at random) if the

probability of missingness depends on missing outcomes even when conditioning on the

observed data.

Rubin’s taxonomy has crucial implications regarding the modeling requirements

to draw valid inferences from the available data. Under an MCAR mechanism, the

observed outcomes can be considered to be a random sample of the entire set of planned

outcomes. Thus, in many situations, an MCAR mechanism guarantees that valid, albeit

inefficient inferences can be obtained with the so-called complete case (CC) analysis,

which consists in excluding individuals with missing outcomes from the study. Under

MAR, missing and observed outcomes have the same conditional distribution given the

remaining observed data. This implies that valid inferences can be drawn from the

available data without the need to make further assumptions about the distribution

of the missing outcomes. Under MNAR, the conditional distributions of the observed

and missing outcomes differ, which requires making assumptions about the latter either

explicitly or implicitly to address the evident identifiability issues. Thus, regression

modeling under MNAR is less straightforward.

Rubin’s taxonomy marks an important distinction between different types of meth-

ods for handling missing outcomes. However, as Molenberghs et al. (2008) showed in
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a quite general setting, it is not possible to assess from the observed data whether

the missingness mechanism is MAR or MNAR. In fact, except in special cases of data

missing by design, the missingness assumptions underlying any modeling strategy with

missing data are unverifiable. Thus, there has been an increasing awareness of the

need to perform sensitivity analyses to assess the robustness of inferences obtained in

a primary analysis to departures from the underlying missingness assumptions. Often,

the primary analysis assumes MAR, in which case one possible approach to sensitivity

analyses is to assess the discrepancies between the inferences obtained under MAR and

those yielded by a family of MNAR models.

The CC analysis and other ad-hoc methods used to be common practice, but a

growing understanding of the strong and unrealistic assumptions underlying these ap-

proaches has stimulated the development, software implementation and use of methods

that rely on more relaxed assumptions. This is particularly true in the field of incom-

plete multivariate data, in which the outcomes are gathered in a vector (Y1, . . . , YJ) for

which some components may be missing. Indeed, in this setting, MAR methods are

widely available and increasingly used, and several MNAR modeling strategies have also

been proposed. On the other hand, although some sensitivity analysis methodology has

been developed, this is still an active area of research. Actually, the first aim of this

dissertation was to develop a sensitivity analysis approach for continuous longitudinal

data with drop-outs. The latter are a special case of incomplete multivariate data in

which the outcomes are continuous and ordered in time. Moreover, for each individual,

either all the outcomes are observed or all the outcomes are observed up to a certain

time-point, at which the individual drops-out and never returns to the study so that all

the subsequent outcomes are missing.

The second aim of this thesis was to build on the existing theory for incomplete

multivariate data to develop methods for competing risks data with missing causes of

failure. The competing risks model is an extension of the standard survival analysis

model. In the latter, the time T to the occurrence of one event, often termed a failure,

is studied. In the competing risks model, there is a distinction between different types
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of events or causes of failure, such that failure from one cause precludes failure from

other causes. Letting D denote the cause of failure, the outcomes of interest in this

context are T and D. Usually, T is subject to right-censoring, which means that some

individuals in the study are observed to be event-free up to a certain time, after which

no other information on failure occurrence is available. This particularity of time-to-

event data has prompted survival and, in general, event-history analysis to develop as

a separate field of statistics, and several specialized methods for regression modeling of

competing risks data with right-censoring exist.

Competing risks regression methods generally require that the cause of failure D is

observed for all individuals known to have failed, a prerequisite that is not always met

in practice. We focused on the setting where some causes of failure are missing. In

this case, the outcome vector (T,D) consists of one continuous component subject to

right-censoring and a categorical component subject to missingness. A general concept

that encompasses both right-censoring and missingness is that of coarsening (see Tsi-

atis, 2006). However, a unified approach to these two problems in this context is not

pertinent because, as stated before, there is an entire discipline dedicated to modeling

right-censored data, in particular in the competing risks context. Rather, we aimed at

accommodating existing regression methods for right-censored competing risks data in

order to deal with the missingness part of the problem. Some methods for regression

with missing causes of failure under MAR have already been proposed for some of the

most common models in competing risks, but other useful models have received little or

no attention. Furthermore, to our knowledge, MNAR modeling and sensitivity analysis

approaches have never been considered in this setting. Thus, our aim was to address

some of these voids in the current missing cause of failure literature.

The manuscript is organized as follows. In Part I, we provide some preliminary back-

ground concerning regression modeling of longitudinal data with drop-outs (Chapter 1)

and competing risks data with missing causes of failure (Chapter 2). In these chapters,

we present the two randomized clinical trials that motivated the methodological devel-

opments of this dissertation and that will be used for illustration purposes. Further, we
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introduce the notation that will be used throughout the manuscript, discuss regression

modeling strategies when there are no missing data and provide an overview of the ex-

isting methods to deal with the missing data in each context. In Part II, we present the

methodology developed for regression modeling under MAR of longitudinal data with

drop-outs (Chapter 3) and competing risks with missing causes of failure (Chapters 4

and 5). In Part III, we present sensitivity analysis methods for longitudinal data with

drop-outs (Chapter 6) and competing risks with missing causes (Chapter 7), both of

which involve the assessment of the inferences yielded by a family of MNAR models.

Hence, in this dissertation, MNAR modeling is considered only in the context of sensi-

tivity analyses. Finally, we present a general discussion of the methods developed and

some perspectives on ongoing and future research. In Appendices A and B we provide

some supplementary details for the simulation studies of Chapters 3 and 4, respectively.

In Appendix C, we provide the current version of a manuscript in preparation that is

part of an ongoing project outside the missing data topic.





Part I

Preliminaries

7





Chapter 1

Background on longitudinal data

with drop-outs

1.1 Motivation: The SMI study

Longitudinal data arise when a response or, equivalently, outcome variable of interest is

measured for each individual in a study at several time-points, resulting in a sequence

of repeated measurements that are ordered in time. The main goal of a longitudinal

study is to enable precise assessment of within-individual changes in the outcome vari-

able over time and of the factors that influence those changes. Such within-individual

temporal changes cannot in general be studied from cross-sectional data, in which the

response variable has been measured at a single time-point for each individual. Hence,

longitudinal studies are the key for addressing many questions that arise in medical

research.

One example is the case study that motivated this part of the dissertation. It was a

randomized clinical trial investigating the benefits of a treatment for sleep-maintenance

insomnia (SMI). Patients suffering from this disorder do not have trouble falling asleep

when they go to bed, but then wake up during the night and experience difficulties

falling back asleep. The trial enrolled 962 patients, randomized to either treatment or

9
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placebo at the beginning of the study, who were asked to complete the Sleep Morn-

ing Questionnaire daily during the duration of the trial. This questionnaire includes

both quantitative and qualitative interrogations about the quality of sleep during the

night. The six main scores of interest in this trial were: the wake-time after sleep on-

set (WASO); the number of nocturnal awakenings (NAW); the sleep refreshing quality

(SLREF), with values ranging from one (excellent) to four (poor); the feeling of sleepi-

ness (FEELC), with values ranging from zero (very sleepy) to nine (not sleepy at all);

the total sleep time (TST); and the sleep onset latency (SOL), which is the time it

takes to transit from the state of full wakefulness to sleep. Note that a decrease in the

WASO, NAW, SLREF or SOL scores or an increase in the FEELC or TST scores would

indicate an improvement in the patient’s quality of sleep. Thus, from this longitudinal

design it is possible to study and compare the temporal evolution of sleep quality in

treated and untreated patients.

In the data available from this study, the six scores were recorded as means of

the daily measurements for up to six periods, a so-called baseline period before the

beginning of the study, plus five periods of different lengths after randomization (visits

1 to 5). The length of the baseline period could vary but never exceeded two weeks.

Each of the first three periods lasted two weeks while the fourth and fifth periods

each lasted three weeks. The actual response variables analyzed were these means, so

we were only concerned with continuous outcomes in this study. The actual number of

daily measurements contributing to each period mean varied among subjects, visits and

scores (see Table 1.1). These counts served as precision weights in all of the analyses of

these data to account for the differences in precision among these means.

The main goal of this study was to perform inference about the treatment effect on

each score, which was defined as the difference in the expected change from baseline

at visit 5 of the scores in the treatment and control groups. The weighted mean and

standard deviation of each score at baseline and visit 5 calculated for each group from

the available data are given in Table 1.2. In principle, estimation of the treatment

effect in the SMI study could be based on a regression model. A defining feature of
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Table 1.1: Mean number of daily measurements available for each individual per visit
per score for each group (standard deviation in brackets).

Baseline Visit 1 Visit 2 Visit 3 Visit 4 Visit 5
Control group
WASO 6.8 (1.2) 12.4 (2.4) 12.0 (2.7) 11.9 (2.9) 17.2 (4.8) 16.7 (4.8)
NAW 6.8 (1.2) 12.5 (2.3) 12.1 (2.7) 12.0 (2.8) 17.3 (4.7) 16.8 (4.7)
SLREF 6.8 (1.2) 12.6 (2.3) 12.3 (2.5) 12.2 (2.7) 17.6 (4.5) 17.1 (4.6)
FEELC 6.8 (1.2) 12.6 (2.3) 12.3 (2.5) 12.2 (2.7) 17.6 (4.5) 17.1 (4.6)
TST 6.8 (1.2) 12.5 (2.3) 12.1 (2.6) 12.0 (2.9) 17.3 (4.9) 16.9 (4.9)
SOL 6.8 (1.1) 12.5 (2.3) 12.1 (2.7) 12.0 (2.9) 17.4 (4.8) 16.9 (4.7)

Treatment group
WASO 6.8 (1.3) 12.2 (2.7) 11.9 (3.0) 11.8 (2.9) 16.9 (5.0) 16.7 (4.7)
NAW 6.8 (1.3) 12.2 (2.6) 11.9 (2.8) 11.8 (2.9) 17.0 (4.8) 16.7 (4.7)
SLREF 6.8 (1.3) 12.4 (2.6) 12.2 (2.7) 12.0 (2.7) 17.5 (4.5) 17.1 (4.3)
FEELC 6.8 (1.3) 12.4 (2.6) 12.2 (2.7) 12.0 (2.7) 17.5 (4.5) 17.1 (4.3)
TST 6.8 (1.3) 12.3 (2.6) 12.0 (2.9) 11.8 (2.9) 17.1 (4.9) 16.7 (4.7)
SOL 6.8 (1.3) 12.3 (2.6) 12.1 (2.9) 11.9 (2.7) 17.2 (4.8) 16.9 (4.6)

longitudinal data is that the responses collected from one individual are usually not

independent from each other. In fact, longitudinal data are a special case of clustered

data, in which the measurements within each cluster (i.e. each individual) have a

temporal ordering. Thus, the assumption of independence that underlies standard

regression methods is violated, a fact that has led to the development of methods that

account for the dependence structure. Two important examples are mixed effects models

(Laird and Ware, 1982) and marginal models (Liang and Zeger, 1986). In Section 1.2,

we provide a brief overview of these approaches in the context of continuous response

variables which are the main focus in this manuscript.

When all the planned outcomes are available for each individual in the study, these

methods for longitudinal data provide valid inferences about regression coefficients, i.e.

point estimates, confidence intervals (CIs) and hypothesis tests. However, a very com-

mon occurrence in longitudinal studies in medical research, especially when the subjects

under study are human beings, is that some outcomes are missing for some individu-

als. Some sources of missing outcomes are individuals leaving items in a questionnaire
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Table 1.2: Weighted mean (weighted standard deviation) of each score at baseline and
visit 5 calculated from the available data.

Baseline Visit 5
Control group
WASO 108.3 (44.9) 61.7 (46.5)
NAW 2.8 (1.3) 1.9 (1.2)
SLREF 3.2 (0.5) 2.5 (0.6)
FEELC 4.5 (1.7) 5.7 (1.8)
TST 346.6 (48.5) 386.4 (56.3)
SOL 18.7 (8.9) 18.6 (11.7)

Treatment group
WASO 101.9 (38.0) 47.4 (40.0)
NAW 2.8 (1.5) 1.6 (1.3)
SLREF 3.2 (0.5) 2.5 (0.6)
FEELC 4.4 (1.7) 5.9 (1.7)
TST 343.1 (45.7) 396.5 (57.1)
SOL 19.0 (8.2) 17.6 (11.2)

unanswered, not showing-up for a scheduled measurement, or dropping-out of the study

altogether. Actually, the problem of drop-out was prominent in the SMI study and will

be the main focus of this part of the dissertation. More precisely, we will focus on the

setting where, for each individual, the outcomes are either completely observed, or com-

pletely observed up to a certain time-point, at which the individual drops-out and never

returns to the study so that all the subsequent outcomes are missing. In clinical trials,

common reasons for drop-out are side-effects, lack of efficacy and protocol violation

(Molenberghs and Kenward, 2007). In the SMI study, around 22% of the individuals

had dropped-out before the study end. The percentages of missing outcomes for each

period, group and score are shown in Table 1.3. They were consistently smaller for the

treatment group than the control group, but the difference was always small and not

significant.

With drop-outs, the validity of inferences obtained with the aforementioned re-

gression methods for longitudinal data will depend on additional assumptions about

the drop-out mechanism holding. Alternative approaches, relying on different assump-
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Table 1.3: Percentage of missing outcomes per visit per score for each group.

Baseline Visit 1 Visit 2 Visit 3 Visit 4 Visit 5
Control group
WASO 0 0.6 7.2 14.5 19.4 24.1
NAW 0 0.6 7.2 14.5 19.1 24.1
SLREF 0 0.6 7.2 14.5 19.1 23.8
FEELC 0 0.6 7.2 14.5 19.1 23.8
TST 0 0.6 8.1 15.4 19.7 24.6
SOL 0 0.6 7.5 14.8 19.7 24.6

Treatment group
WASO 0 0.3 6.2 13.0 16.7 21.4
NAW 0 0.3 6.2 12.5 16.5 20.7
SLREF 0 0.3 6.0 12.0 16.5 20.4
FEELC 0 0.3 6.0 12.0 16.5 20.4
TST 0 0.3 6.2 12.2 17.0 21.2
SOL 0 0.3 6.0 12.6 16.7 20.9

tions or providing advantages in terms of ease of implementation, have been developed

specifically for modeling longitudinal data with drop-outs. A key to understanding the

assumptions underlying different approaches is the classification of missingness mech-

anisms proposed by Rubin (1976) (cf. Introduction). In Section 1.3, we provide the

formal definitions of missing at random (MAR) and missing not at random (MNAR)

drop-out mechanisms. A very thorough review of the methods available for modeling

longitudinal data with drop-outs is given by Molenberghs and Kenward (2007), and

summarized in Section 1.3 in the context of continuous responses.

Fortunately, principled MAR-based regression methods for longitudinal data with

drop-outs have become readily available in common statistical software, and are increas-

ingly being used by practitioners instead of other more questionable ad-hoc approaches

that were frequently used before. Several MNAR approaches have also been proposed.

However, it is never possible to assess from the observed data whether the missingness

mechanism is MAR or MNAR (Molenberghs et al., 2008). Thus, it is essential to assess

the potential impact on inferences of departures from the assumptions underlying any

analysis by means of a sensitivity analysis. Although some sensitivity analysis method-
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ology has been developed, no standard method exists nor should be prescribed as this

is still an active area of research (Carroll et al., 2004).

The aim of the “longitudinal data” part of this dissertation was thus to propose

a flexible approach for performing sensitivity analyses when dealing with continuous

longitudinal data with drop-outs. The family of MNAR models on which the proposed

approach relies contains an MAR model as a special case. Hence, the implementation

procedure developed provides in particular an alternative method to analyze longitudi-

nal data with drop-outs under the MAR assumption. In the SMI study, our approach

to perform sensitivity analyses provided insight about the robustness of the inferences

drawn under MAR for the WASO score, which was the primary endpoint, and for the

other five scores which defined secondary endpoints. The conclusions regarding the ef-

fect of treatment on some of the scores were shown to be reliable, even when considering

an alternative definition of the treatment effect based on the expected rate of change

of the score. Meanwhile, for other scores the conclusions were found to be fragile and

strongly dependent on missingness assumptions.

1.2 Regression for continuous longitudinal outcomes

1.2.1 Notation and general considerations

Although it is not necessary for the methods proposed in Parts II and III of this disser-

tation, for simplicity of notation and exposition, and because the data studied in this

manuscript fulfill these conditions, we consider a longitudinal study in which a fixed

number of measurements, say J , of a continuous response variable are intended to be

collected from each of the n individuals in the study at a set of J common time-points,

t1, . . . , tJ . However, the measurement occasions, or visits, are not assumed to be evenly

distributed throughout the duration of the study. The first visit is often referred to as

baseline.

Let Yi = (Yi1, . . . , YiJ) denote the vector of patient i’s planned responses, for i =
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1, . . . , n. We let µi = E(Yi) := (µi1, . . . , µiJ)′ and Vi = var(Yi) := {cov(Yij′ , Yij′′)}j′,j′′

denote the marginal expectation and variance-covariance matrix of Yi, respectively,

where µij = E(Yij).

We focus on the setting where the main interest is in performing inferences about

the effects of covariates on the marginal expectations µij of the responses. Here, we

allow for fully-observed time-fixed covariates measured at baseline, and we will often

want to include time-trends in our models. Thus, for each individual i and visit j, we let

Xij denote a p-vector of baseline covariates and polynomial functions of tj. We denote

by Xi the J × p matrix whose rows are X′ij (j = 1, . . . , J).

The response vectors of different individuals are assumed to be independent, and

identically distributed (i.i.d) given the covariates. On the other hand, as mentioned

earlier, an important characteristic of longitudinal data is that the set of responses of

one individual are usually not independent. With continuous responses, a positive cor-

relation may be expected: individuals with high past responses are more likely to have

high future responses, and individuals with low past responses are more likely to have

low future responses. An in-depth discussion of the possible sources of such correla-

tions is given by Fitzmaurice et al. (2004, Section 2.5). Thus, the usual independence

assumption of standard regression techniques is violated. This aspect of longitudinal

data should not be seen as a weakness but as a strength because this correlation is what

enables precise estimation of parameters describing within-individual temporal changes

from longitudinal studies. Actually, if the correlation structure of longitudinal data is

ignored when performing regression, inefficient regression coefficient estimates and bi-

ased precision estimates are obtained, the latter resulting in misleading inferences (see

example in Section 1.5 of Diggle et al., 2002). Thus, the correlation structure needs

to be accounted for when performing regression. This is achieved by allowing non-null

values for the off-diagonal elements of Vi, that is, for cov(Yij′ , Yij′′) with j′ 6= j′′.

In the following sections, we present brief overviews of two of the major approaches

for regression modeling with continuous responses that account for the inherent correla-

tion of longitudinal data: linear mixed models and marginal models. Detailed accounts
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of these methods are provided by Diggle et al. (2002), Fitzmaurice et al. (2004) and

Verbeke and Molenberghs (2000). A third approach that is not discussed here is that

of transition models, in which the conditional expectation of each response given past

responses is modeled (see for example Chapter 10 of Diggle et al., 2002).

1.2.2 Linear mixed models

The linear mixed model (LMM) (Laird and Ware, 1982) is an extension of the normal

linear model in which a vector of subject-specific random effects, bi, is introduced to

represent the heterogeneity in the regression coefficients across individuals due to unob-

served factors. Here, we consider the LMM in which the responses of each individual are

assumed to be independent given the fixed and random effects, called the conditional

independence model by Verbeke and Molenberghs (2000). More precisely, the model

makes the following distributional assumptions:

Yij = X′ijβ + Z′ijbi + εij, εij ∼ N(0, σ2), bi ∼ N(0,G), (1.1)

for j = 1, . . . , J and i = 1, . . . , n, where β is the fixed effects p-vector common to the

population; the q-vectors Z′ij (j = 1, . . . , J) are the rows of the J × q random effects

design matrix Zi, whose columns are a subset of the columns of Xi (hence q ≤ p); the

zero-mean Gaussian residual errors εij are i.i.d. with variance σ2; and the zero-mean

Gaussian subject-specific random effects q-vectors bi are i.i.d. with variance G = G(α),

where α is a vector of unknown parameters. Furthermore, the random effects vectors

are assumed to be independent of the residual errors and of the covariates.

The introduction of random effects in the normal linear model induces a correlation

structure among the responses of an individual, which arises from them sharing these

subject-specific effects. Actually, the LMM implies the following marginal distribution

for the response vectors:

Yi ∼ N(Xiβ,ZiGZ′i + σ2I), (1.2)
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where I is the J × J identity matrix. The implied form for Vi is thus not diagonal in

general, reflecting a correlation among the responses of each individual.

Expression (1.2) also shows that coefficients in the LMM have a marginal, or popula-

tion-average, interpretation because the marginal expectations of the responses satisfy:

µij = X′ijβ. (1.3)

This is a consequence of the linear structure of (1.1), which implies that averaging

covariate effects across individuals results in the effect of the covariate on the population

average. The latter is no longer true when the linear structure does not hold.

LMMs may be fitted by maximum likelihood or the so-called restricted maximum

likelihood. The likelihood function is obtained by integrating the conditional density

of the vector of responses given the random effects over the distribution of the random

effects. Hypothesis tests and CI building for the fixed effects β are commonly based on

t or F distributions whose degrees of freedom generally have to be estimated from the

data. Several estimation methods exist, but Verbeke and Molenberghs (2000, Chapter

6), who give an overview of this and other aspects of inference with LMMs, argue that

in the longitudinal data setting with large samples all of these methods will lead to very

similar p-values.

1.2.3 Marginal models

Marginal models are direct regression models for the marginal expectations µij of the

responses. Thus, in these models the covariate effects automatically have a population-

average interpretation. When dealing with continuous longitudinal outcomes, it is stan-

dard to assume a linear relation between these expectations and the covariates, like in

(1.3). Here, we consider a more general structure that will be useful when we use

marginal models in Chapter 4 in the context of competing risks regression. More pre-
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cisely, we assume the following mean structure:

g(µij) = X′ijβ, (1.4)

where g is a differentiable monotone link function.

In contrast with LMMs, in marginal models the variance-covariance matrix of Yi,

Vi, is modeled separately. The marginal variances of the responses (i.e. the diagonal

terms) are assumed to have the form var(Yij) = φυ(µij), where υ is a known function

and φ is a scale parameter that could further be allowed to depend on the measurement

occasion, i.e. φ = φj (Fitzmaurice et al., 2004, Chapter 11). The off-diagonal terms,

which embody the dependence between the different responses of an individual, are

determined by the choice of the so-called working correlation matrix, denoted by Ri(α),

where α is a vector of unknown parameters. Some possibilities for choosing Ri(α) are:

to assume independence (i.e. the identity matrix); to assume that all correlations

are equal (the so called exchangeable matrix); or to assume that the magnitude of the

correlation between two measurements is smaller the further they are apart in time (e.g.

the first order autoregressive matrix). The covariance matrix of Yi can be recovered

as Vi = A
1/2
i Ri(α)A

1/2
i where A

1/2
i is the diagonal matrix with elements

√
var(Yij),

j = 1, . . . , J , on the diagonal. Thus, Vi depends on β, φ and α.

Under the assumption that Yi is multivariate normal, and when g is the identity

function and υ(µij) = 1, this model corresponds to a common extension of the normal

linear model to the longitudinal setting, for which maximum likelihood and restricted

maximum likelihood approaches are available (Diggle et al., 2002). But since we are

interested in the broader class of models described above, and particularly in the use of a

non-standard link function, we require another fitting strategy. A very useful approach

that is widely available in current software, and that is also applicable with other types

of outcomes (e.g. binary), is that of generalized estimating equations (GEE) (Liang

and Zeger, 1986).

GEE is particularly useful for situations where the main interest is in estimation
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of the regression parameters in (1.4), as is our case. The principle of GEE is that

estimation of β may be performed by treating Vi as a nuisance. Estimation is based

on the following estimating equation:

U(β) =
n∑
i=1

{
∂

∂β
g−1(Xiβ)

}′
V−1i {Yi − g−1(Xiβ)} =

n∑
i=1

Ui(β) = 0, (1.5)

where g−1(Xiβ) is short for the J-vector with elements g−1(X′ijβ) (j = 1, . . . , J). To

bypass the fact that this equation depends on the nuisance parameters φ and α through

Vi, consistent estimates φ̂ and α̂, possibly depending on β, are plugged in the equation.

For example, Liang and Zeger (1986) use product-moment estimates of the nuisance

parameters. An iterative algorithm is then performed to obtain final estimates of β, φ

and α.

Liang and Zeger (1986) showed that, under the assumption that the mean model

(1.4) is correctly specified, the estimator β̂ obtained from the procedure described is

consistent even if the covariance structure of Yi is misspecified, and asymptotically as

efficient as if the true values of the nuisance parameters were known. Furthermore, in

many cases it achieves an efficiency close to that of a maximum likelihood estimator

based on further distributional assumptions. Finally, β̂ is asymptotically normal with

mean β and a variance that can be consistently estimated using the following sandwich

estimator :

v̂ar(β̂) = I(β̂)−1v̂ar{U(β)}I(β̂)−1, (1.6)

where I(β) =
∑n

i=1{
∂

∂β
g−1(Xiβ)}′V−1i { ∂

∂β
g−1(Xiβ)}, v̂ar{U(β)} =

∑n
i=1 Ui(β̂)Ui(β̂)′,

and Vi is estimated by plugging in the final estimates of β, φ and α. The sandwich

estimator is robust to misspecification of Vi.
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1.3 Modeling longitudinal data with drop-outs

Suppose that some individuals drop-out from the study. Then the response vector

of individual i (i = 1, . . . , n) is partitioned such that Yi = (YOi ,Y
M
i ), where YOi =

(Yi1, . . . , Yi(Ui−1)) and YMi = (YiUi
, . . . , YiJ) are the observed and missing parts of Yi,

respectively, and Ui denotes the occasion of the first missing outcome, with Ui ≤ J

for individuals who dropped-out and the convention that Ui = J + 1 for those who

completed the study. Henceforth Ui will be referred to as the drop-out indicator. Denote

by Wi the fully-observed design matrix of all the covariates that influence the drop-out

mechanism, some of which may already be in Xi. Covariates that are in Wi but not in

Xi are sometimes referred to as auxiliary covariates.

Consider the conditional probability mass function of the drop-out indicator given

the outcomes and the covariates influencing drop-out, which we denote by

f(u|yO,yM,w). (1.7)

The missing data taxonomy of Rubin (1976) and Little and Rubin (1987) in the setting

of longitudinal data with drop-outs can be expressed as follows (Little, 1995):

(i) The drop-out mechanism is said to be MCAR (for missing completely at random)

if (1.7) does not depend on observed or unobserved responses nor on covariates,

that is, f(u|yO,yM,w) = f(u).

(ii) The drop-out mechanism is said to be covariate-dependent if (1.7) does not depend

on observed or unobserved responses, that is, f(u|yO,yM,w) = f(u|w).

(iii) The drop-out mechanism is said to be MAR (for missing at random) if (1.7) does

not depend on yM, that is, f(u|yO,yM,W ) = f(u|yO,w).

(iv) The drop-out mechanism is said to be MNAR (for missing not at random) other-

wise.
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With drop-outs, additional assumptions about the type of drop-out mechanism at

play are necessary to identify the distribution of the response vector Y conditional on

covariates. In the following sections, we discuss some existing approaches for regression

modeling of longitudinal data with drop-outs and the assumptions underlying these

methods.

1.3.1 Ad-hoc approaches

A complete case (CC) analysis consists in excluding all the individuals who dropped-out,

i.e. with Ui ≤ J , from statistical inference. This approach can guarantee unbiased effect

estimates only under the covariate-dependent drop-out assumption, provided that all

the covariates that influence both the outcome and drop-out mechanisms are included in

Xi. Furthermore, the exclusion of drop-outs results in the loss of the partial information

available from these individuals, i.e. their observed responses and covariates. Thus, a

CC analysis is inefficient.

Another common ad-hoc method is the so-called last observation carried forward

approach. This method consists in replacing all the missing outcomes of each individ-

ual who dropped out by his last measured outcome, i.e. by Yi(Ui−1) in our notation. This

approach requires a very strong assumption to warrant unbiased coefficient estimates:

that outcomes remain constant after drop-out. Molenberghs and Kenward (2007, Sec-

tion 4.3) show with a simple example that, when this assumption is violated, the size

and direction of the resulting bias is not foreseeable as it depends on the true unknown

regression coefficients. In addition, this approach underestimates the variability of re-

gression coefficient estimates because the uncertainty concerning the missing outcomes

is ignored, and may thus result in misleading inferences.

1.3.2 MAR approaches

Following Rubin (1976), define two parameter vectors θ1 and θ2 to be distinct if the

parameter space of the full vector (θ1
′,θ2

′)′ factorizes into the product of the individual
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parameter spaces. Rubin (1976) showed that direct likelihood inference based on all

the available data yields unbiased and fully-efficient regression coefficient estimates if

(i) the drop-out mechanism is MAR and (ii) the parameter vectors of the outcome and

drop-out mechanisms are distinct (often called a separability condition), provided that

all the covariates that simultaneously influence the outcome and drop-out processes are

included in the model for the outcomes. When conditions (i) and (ii) hold, the drop-

out mechanism is said to be ignorable. Thus, under this ignorability assumption, the

LMM presented in Section 1.2.2 fitted to the available data provides valid estimates

because it is a likelihood-based approach. As mentioned in Section 1.2.3, likelihood-

based approaches also exist for fitting marginal models for continuous responses under

the assumption that Y has a multivariate normal distribution. Thus, if all the available

data is used, those approaches will also provide unbiased and fully efficient estimates

under the ignorability assumption. An important remark concerning the direct likeli-

hood approach is that, in some situations, the maximization of the likelihood function

may challenging computationally. Dempster et al. (1977) proposed the expectation-

maximization algorithm which is valid under the ignorability assumption and may be

used in such situations. Also, when using direct likelihood, some caution is needed to

obtain precision estimates that are consistent under MAR (Kenward and Molenberghs,

1998).

The GEE approach to fitting marginal models is a non-likelihood frequentist method

and guarantees unbiased estimates only under the assumption of a covariate-dependent

drop-out mechanism (Liang and Zeger, 1986). Thus, an extension of GEE based on

inverse probability weighting (IPW) ideas, and that provides unbiased estimates un-

der an MAR drop-out mechanism, was proposed by Robins et al. (1995). Known as

weighted generalized estimating equations (WGEE), the method consists in weighting

the contribution of each observed outcome to the estimating equations by the inverse

of the probability of that outcome being observed.

An alternative approach for fitting both LMMs and marginal models under MAR

is the multiple imputation (MI) approach of Rubin (1987). Details of this simulation-
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based approach are given in a later chapter (see Section 3.1), but briefly it consists in

multiply imputing the missing data several times by drawing values from the Bayesian

posterior predictive distribution of the missing data given the observed data. This

requires building a so-called imputation model. The desired analysis model is then

fitted to each of the completed datasets yielded by this procedure using a method

for complete data, and the resulting inferences are then combined into a single final

inference using some arithmetically simple formulas.

Several strategies are available for imputing missing outcomes in the longitudinal

data setting under MAR. With continuous response variables and missing outcomes

due to drop-outs, a simple and commonly used approach is sequential regression-based

imputation (Rubin, 1987, Section 5.4). This method consists in imputing the missing

outcomes at each time-point in chronological order, each time using a univariate impu-

tation model that includes the outcomes at previous visits as predictors. Another widely

available approach, applicable in more general settings, assumes that the data follow a

multivariate normal distribution and uses Markov chain Monte Carlo methods (Schafer,

1997). In Chapter 3, an alternative approach is proposed, in which missing values are

drawn directly from a LMM. For the marginal model, if GEE is the estimation strategy

of choice, MI provides a valuable alternative to the WGEE approach under MAR (see

for example Chapter 11 of Molenberghs and Kenward, 2007). In contrast, if direct like-

lihood is considered for either model, MI with a correctly specified imputation model

will yield estimates that approximate maximum likelihood estimates, but the latter will

be more efficient (Schafer, 1999). Consequently, MI provides no advantage with respect

to direct likelihood in the present setting. However, MI is a valuable tool for performing

sensitivity analyses such as those presented in Chapter 6. The implementation of this

methodology was actually the main motivation for the MI procedure of Chapter 3.
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1.3.3 MNAR approaches

Several authors have proposed MNAR models for longitudinal data with drop-outs.

Outside of MAR, the joint density of the vector of responses and the drop-out indicator,

f(y, u), must be considered. Little and Rubin (1987, Chapter 11) introduced two classes

of MNAR models corresponding to two possible factorizations of the joint density.

The first class of models are termed selection models, and, omitting covariates and

parameters, correspond to the following factorization:

f(y, u) = f(yO,yM)× f(u|yO,yM). (1.8)

Thus, in selection models, a model is posited for the marginal distribution of the re-

sponse vector and another model is posited for the conditional distribution of the drop-

out indicator given the observed and missing responses. Fully-parametric selection

models may be fitted by maximum likelihood, where the likelihood is obtained by in-

tegrating the joint density over the vector of missing outcomes yM. One of the first

examples of such models for continuous responses was the Diggle-Kenward model (Dig-

gle and Kenward, 1994), in which a multivariate normal linear model for the response

vector was combined with a logistic model for the drop-out probability at each time-

point, which included the current and last measured outcomes as regressors.

The second class of models are known as pattern-mixture models (PMMs), and

correspond to the following factorization:

f(y, u) = f(yO,yM|u)× f(u). (1.9)

Thus, in PMMs, a model is posited for the conditional distribution of the response vector

given the drop-out indicator and another model is posited for the marginal distribution

of the drop-out indicator. Note that the first factor of (1.9) further factorizes as

f(yO,yM|u) = f(yM|yO, u)× f(yO|u).



1.3. MODELING LONGITUDINAL DATA WITH DROP-OUTS 25

The first factor in the right-hand side of this equality, f(yM|yO, u), is under-identified.

Hence, when fitting a PMM, additional assumptions must be made to identify this

factor. Little (1993) and Little (1994) proposed using so-called identifying restrictions,

an approach in which unidentified parameters are set equal to functions of the identified

parameters. This approach was further explored by other authors (Little, 1995; Little

and Wang, 1996; Molenberghs et al., 1998; Thijs et al., 2002; Kenward et al., 2003).

Other strategies to fit PMMs include extrapolation of time-trends by fitting a model

within each group determined by the drop-out indicator, and treating the drop-out

indicator as a covariate (Hedeker and Gibbons, 1997; Verbeke and Molenberghs, 2000;

Michiels et al., 2002; Demirtas and Schafer, 2003). The under-identified nature of

PMMs is exploited in the sensitivity analysis approach proposed in Chapter 6. Another

important aspect of these models is that averaging over the drop-out distribution is

necessary to obtain estimates of parameters describing the marginal distribution of

the responses. A convenient method is to average implicitly using MI and this is the

approach that we use in Chapter 6 (Demirtas and Schafer, 2003).

A third class of MNAR models are the so-called shared-parameter models (Wu and

Carroll, 1988; Wu and Bailey, 1988, 1989; Little, 1995). A common example is the

model that assumes that the measurement and drop-out processes are independent

given a vector of subject-specific random effects b, so that the joint density is written

as:

f(y, u,b) = f(yO,yM|b)× f(u|b)× f(b). (1.10)

1.3.4 Sensitivity analyses

In the general context of incomplete multivariate data, Molenberghs et al. (2008) showed

that for every MNAR model fitted to the observed data, an MAR model producing

exactly the same fit to the observed data can be constructed. Consequently, it is not

possible to verify from the data itself whether the drop-out mechanism is MAR or

MNAR. This means that every model for longitudinal data with drop-outs is subject to
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unverifiable assumptions. In MAR models, the main unverifiable assumption is that the

drop-out mechanism does not depend on the missing responses when conditioning on

the covariates and observed responses. In MNAR models, the underlying unverifiable

assumptions are stronger because explicit distributional and structural assumptions are

made about either (i) the conditional distribution of drop-out given the observed and

missing responses or (ii) the conditional distribution of the missing responses given the

observed responses and the drop-out indicator. Hence, these models are more sensitive

to model misspecification (Little and Rubin, 1987). In particular, formal tests of MAR

versus MNAR such as those constructed by Diggle and Kenward (1994) should be

interpreted with caution as they rely on the unverifiable correct specification of the

model. Such problems were raised by several authors in the selection model framework

in the discussion to Diggle and Kenward (1994).

As a result of these issues, there is increasing awareness of the need to perform

sensitivity analyses (e.g. Carroll et al., 2004; Carpenter and Kenward, 2007; National

Research Council, 2010; Burzykowski et al., 2010; Little et al., 2012). Such analyses

aim at assessing the sensitivity of inferences obtained in a primary analysis to depar-

tures from the underlying unverifiable assumptions. Molenberghs and Kenward (2007)

recommend that MNAR models be considered only as part of a sensitivity analysis due

to their added dependance on unverifiable assumptions, and that the primary analysis

be MAR-based.

Several approaches have been proposed for performing sensitivity analyses. How-

ever, each specific scientific context may require different considerations when setting up

such an analysis, and no standard method exists nor should be prescribed as this is still

an active area of research (Carroll et al., 2004). One possibility to assess the sensitivity

of a primary analysis to modeling assumptions is to consider a family of MNAR models,

each with different structural and/or distributional assumptions. Thus, some authors

consider a set of different types of models, e.g. one or several selection, pattern-mixture

and shared-parameter models, and assess the discrepancies among the inferences ob-

tained (e.g. Little and Yau, 1996; Kenward, 1998; Kenward and Molenberghs, 1999;
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Michiels et al., 2002).

The basis of the methodology developed in Chapter 6, and more generally in Part

III of this dissertation, is a more structured version of the latter principle that has been

advocated by several authors (Little, 1994; Rotnitzky et al., 1998; Scharfstein et al.,

1999; Daniels and Hogan, 2000; Molenberghs et al., 2001a). It consists in positing a

family of MNAR models indexed by a scalar or vector parameter that is varied across

a set of plausible values determined by subject-matter specialists. Fitting each of these

models yields a range of estimates for the parameter of interest and corresponding

CIs and significance tests. Comparing the results obtained across the different values

of the indexing parameter provides insight about the sensitivity of inferences. Other

examples of such analyses are given by Minini and Chavance (2004a,b) and Carpenter

et al. (2007) in the selection model framework and by Ratitch et al. (2013) in the PMM

framework. The methods presented in Part III rely on the PMM framework, which

is viewed by some authors as the most suitable for assessment of sensitivity (Daniels

and Hogan, 2000; Daniels and Wang, 2009; Hogan, 2009). Recently, some authors

have proposed a formal framework to summarize the results yielded by such sensitivity

analysis approaches into a single inference that does not rely on unverifiable missingness

assumptions (Molenberghs et al., 2001a; Vansteelandt et al., 2006). Related ideas have

been explored by other authors in the Bayesian framework (e.g. Scharfstein et al., 2003).

Another view of sensitivity analyses in the literature is based on the global and

local influence ideas of Cook (1977, 1986). Briefly, these approaches consider influence

diagnostics from a single model to detect subjects that have a large impact on the

conclusions of the analysis (Thijs et al., 2000; Verbeke et al., 2001; Molenberghs et al.,

2001b; Jansen et al., 2006).





Chapter 2

Background on competing risks

with missing causes of failure

2.1 Motivation: The ECOG clinical trial

Survival analysis concerns the study of time-to-event data, that is, the time to the

occurrence of one event, which is often termed a failure. The competing risks model

arises when there is a distinction between different types of events, or causes of failure,

such that failure from one cause precludes failure from other causes. In this manuscript,

the multi-state model formulation of the competing risks problem is adopted, as depicted

in Figure 2.1. At the beginning of the study all individuals are at the “event-free” state

0, which is transient, and when they fail from cause j, j = 1, . . . , J , they move to

the absorbing state j. An alternative formulation is based on latent failure times, but

this approach has often been criticized because it leads to several interpretation and

identifiability issues (Prentice et al., 1978; Andersen et al., 2002).

The competing risks model is suitable for studying phenomena observed in many

fields, in particular in clinical research and epidemiology. In these areas, it is often of

interest to study the time to competing events such as death from a given cause, relapse

29
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Figure 2.1: Multi-state model representation of the competing risks model.

or response to treatment. A competing risks regression analysis allows disentangling the

effect of a risk factor or an intervention on the occurrence of these different events. For

example, in a breast cancer clinical trial enrolling elderly women, it may be desirable

to distinguish between cancer-related, treatment-related and other-cause mortality, to

separately analyze the ability of the treatment to eliminate the cancer and its toxicity

when patients are also at risk of dying from other causes.

An extensive literature exists on methods for regression modeling with competing

risks data, some of which are now routinely used in clinical and epidemiological studies.

A brief overview of the main existing methods is provided in Section 2.2. These methods

generally require that the cause of failure is known for all subjects who have failed, a

prerequisite that is not always met in practice. For instance, some causes of failure

might be missing in studies with a long follow-up because collection of information

tends to deteriorate with time due to several factors (e.g. patients move away). Other

reasons for missing cause of failure data include forms not being completed by busy

practitioners, patients dying without an autopsy, difficulty in assigning a cause of death
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to persons with concurrent comorbid illnesses or confusion with definitions when coding

causes of death (e.g. underlying cause of death vs. mechanisms of death) (Andersen

et al., 1996; Manola and Gray, 2011).

A starting point for methodological developments in the literature for regression

modeling of competing risks data with missing causes of failure was the E1178 clinical

trial from the Eastern Cooperative Oncology Group (ECOG) (Goetghebeur and Ryan,

1995). The study enrolled 169 women with stage II breast cancer, aged between 65

and 84 years (median age was 71 years), who were randomized to receive tamoxifen or

placebo during 24 months. At the cut-off date of the data available, the median follow-

up time was of 6.7 years and 79 women had died (53% censored). Because of their

advanced age, these women were at high risk of death from causes unrelated to their

cancer. Indeed, among the deceased patients, 44 had died from cancer whereas 17 had

died from other causes. For the remaining 18 women the cause of death was unknown

(23% of deaths with missing cause). Cummings et al. (1993), who performed a later

analysis of this trial with a median follow-up of 10 years, attribute these missing data to

the trial design which did not foresee the possible obstacles to long-term data collection

(e.g. patients moving away without a forwarding address, change in physicians, etc.),

in addition to the usual compliance issues that arise in all trials.

Cummings et al. (1985) and Cummings et al. (1986) reported the first results of

this trial (median follow-up of 3.4 and 4.6 years, respectively) and found no significant

effect of tamoxifen on survival. On the other hand, two prognostic factors, the estrogen-

receptor (ER) status of the primary tumor (positive vs. negative) and the degree of

positive axillary lymph node involvement (<4 nodes vs. ≥ 4 nodes), were found to be

significantly associated with survival. Table 2.1 shows the total number of women and

of deceased women in each combined category of ER status and nodal involvement, and

the observed causes of death in the data available.

Given the importance of competing causes of death in this study and the high

percentage of missing causes, these data have been very valuable for exemplifying the

practical value of novel methods for competing risks regression with missing causes of
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Table 2.1: Total number of women and deceased women in each combined category of
ER-status and nodal involvement, and observed causes of death.

ER status Nodes Total Dead
Causes of death

Cancer Other Missing
Negative < 4 1 0 0 0 0

≥ 4 5 5 5 0 0
Positive < 4 89 33 18 6 9

≥ 4 74 41 21 11 9

failure in the literature (Goetghebeur and Ryan, 1995; Lu and Tsiatis, 2001; Gao, 2006;

Nicolaie et al., 2011). Particular focus has been given to analyzing the effects of the two

mentioned prognostic factors on cancer-related death. In Section 2.3, we provide the

formal definitions of missing at random (MAR) and missing not at random (MNAR)

missingness mechanisms in this context and an overview of the existing methods for

handling missing causes of failure.

The aim of the “competing risks” part of the dissertation was to address some voids

in the current missing cause of failure literature. First, we wished to propose a general

framework for fitting regression models for the probability or risk of observing a specific

event by a given time in the missing cause setting under the MAR assumption. Most

of the existing methods focus on models for the rate of occurrence of events, but the

risk is another essential quantity in understanding the competing risks model. Second,

we wished to study the construction of the likelihood under the MAR assumption.

In addition to making the fitting of parametric models for several useful functionals

straightforward, this construction is interesting in its own right as it provides us with

a better understanding of each individual’s contribution to estimation with missing

causes. Finally, we aimed at proposing an approach for assessing the robustness of

inferences to departures from the MAR assumption. To our knowledge, neither MNAR

modeling nor sensitivity analysis methodology have ever been in this setting. The

work presented here is a first step in that direction. The ECOG trial data are used to

illustrate the proposed methods throughout the manuscript.
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2.2 Competing risks regression: An overview

2.2.1 Notation and basic functionals

We consider the competing risks setting where an individual may fail from two causes.

We can focus on this simplified setting without loss of generality because, with more

than two possible causes, failure from each cause can be analyzed separately by lumping

all other causes together in an “other cause” category. In this dissertation we focus on

regression modeling, thus we assume that there is interest in studying the influence on

the competing risks mechanism of a p-vector X of fully-observed time-fixed covariates

measured at baseline (i.e. at time 0). When stated explicitly, we may also consider

time-dependent covariates of the external type, that is, such that the occurrence of a

failure in the present may depend on the history of the covariate but not on its future

path (see the formal definition in Kalbfleisch and Prentice, 2002, Chapter 6).

The response variables that are the target of inference when studying the competing

risks model with two causes of failure are the failure time T and the cause of failure

D, with D = 1 for failures from the cause of interest and D = 2 for failures from

other causes. The failure time is often subject to censoring or truncation, which are

the two particularities of time-to-event data that have prompted survival and event-

history analysis to develop as a separate field of statistics. In this document only the

phenomenon of right-censored data is considered, which means that some individuals

in the study are observed to be event-free up to a certain time C, called the censoring

time, after which no other information on failure occurrence is available. Thus, for

these censored individuals the failure time and the cause of failure are not observed.

Defining the observed time to failure or censoring as T̃ = min{T,C} and the censoring

indicator U = I(C < T ), the observed data are (T̃i, Ui,Xi) for censored individuals

and (T̃i, Ui, Di,Xi) for uncensored individuals. We assume that the data from different

individuals are i.i.d. given the covariates.

It is important to emphasize that censoring is considered to be a nuisance phe-

nomenon that prevents observation of the otherwise observable response vector of in-
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terest, (T,D). Common examples are censoring due to the ending of a clinical study

or patients moving away. Thus, the event of being censored is not a clinically relevant

competing event, while all the clinically relevant competing events in the study are

represented by either of the two states of the posited model. This condition ensures

that it is clinically interesting and realistic to consider the situation without censoring,

i.e. to make inferences about the joint distribution of (T,D) (Andersen and Keiding,

2012).

In these circumstances, it is often convenient to make the so-called independent cen-

soring assumption. This assumption basically implies that the pairs (Ti, Di) observed

for uncensored patients are in some sense representative of the pairs that would have

been observed for all individuals if there had been no censoring, the main consequence

being that targeted distribution, i.e. the joint distribution of (T,D) given X, is identifi-

able from the observed data. The random censoring assumption, i.e. the assumption of

statistical independence between (T,D) and C given X, would ensure this identifiability.

However, the independent censoring assumption is weaker and suffices for application

of the martingale and counting processes theory underlying most of the main results

in survival analysis and competing risks (Andersen et al., 1993). This assumption can

be interpreted as the condition that P (t ≤ T < t + h,D = j|T ≥ t, C ≥ t,X) =

P (t ≤ T < t + h,D = j|T ≥ t,X) for an infinitesimal h and j = 1, 2 (Fleming and

Harrington, 2005). Thus, an individual’s instantaneous probability of experiencing a

failure from cause j, for j = 1, 2, given that the individual is still event-free at time t

and covariates, is not disturbed by the additional information that the individual is also

still uncensored. The formal definition of independent censoring in terms of counting

processes can be found in Andersen et al. (1993, Chapter 3).

Given the stated assumptions, it is possible to study how X influences the competing

risks mechanism by positing regression models for two identifiable functionals for each

cause. The first functional is the cause-specific hazard rate (CSH), defined at each

time-point t as the rate at which the specific event occurs among patients still alive just
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before time t:

λj(t) := lim
h→0

1

h
P (t ≤ T < t+ h,D = j|T ≥ t), j = 1, 2.

The CSHs are the transition rates in the multi-state model depicted in Figure 2.1, and

can be interpreted as quantifying the instantaneous forces that drive individuals out

of the “event-free” state (Beyersmann et al., 2009). Thus, regression modeling of the

CSHs is suitable for addressing etiologic questions (Koller et al., 2012).

The second functional is the cumulative incidence function (CIF), defined as the

probability of observing the specific event before time t:

Fj(t) := P (T ≤ t,D = j), j = 1, 2.

In the model of Figure 2.1, the CIF for cause j represents the probability of having

transitioned to state j by time t given that the individual was in state 0 at time 0,

and is interpreted as the actual risk of failure from cause j in the time-frame [0, t].

Regression models for the CIFs are useful when the focus is on prognosis. Note that,

when viewed as a function of t, the CIF is not a true probability distribution function

because Fj(∞) = P (D = j) < 1. Thus the CIF is said to be a subdistribution function.

One key feature of the competing risks model is that both the CSH and the CIF,

which represent measures of the rate and the risk of an event respectively, need to be

studied in order to fully understand the competing risks mechanism (Andersen et al.,

2012; Latouche et al., 2013). This contrasts with the standard survival model, that is,

when studying all-cause failure. To see this, note that in the latter setting the prob-

ability distribution function of the failure times F (t) := P (T ≤ t) = F1(t) + F2(t), or

equivalently the survival function S(t) := P (T > t) = 1 − F (t), is the corresponding

measure of the risk, and the overall hazard rate λ(t) := limh→0 h
−1P (t ≤ T < t+h|T ≥

t) = λ1(t) + λ2(t) is the measure of the rate. The identity S(t) = exp{−
∫ t
0
λ(u)du}

shows that there is a one-to-one relation between these two quantities. Thus, regression
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analysis of either the overall hazard rate or the survival function will lead to the same

qualitative conclusions. In contrast, in the competing risks model, the one-to-one cor-

respondence between the rate and the risk breaks down, with the CIF being a complex

non-linear function of the CSHs of all the competing causes, and vice-versa:

Fj(t) =

∫ t

0

λj(u)S(u−)du, λj(t) =
fj(t)

1− F1(t)− F2(t)
, j = 1, 2.

Here, fj(t) := d
dt
Fj(t), j = 1, 2, are improper density functions because they do not

integrate to 1. Therefore, an increase in the CSH of one cause will not necessarily

reflect an increase in the corresponding CIF; this will depend on how the other causes’

CSHs behave (Beyersmann et al., 2007). As a result, methods for direct regression

modeling of each of these functionals have been developed.

2.2.2 Regression models for the CSH

Among the existing methods for regression modeling of the CSH, two classes of models

stand out because of their practical value in terms of the interpretability of regression

coefficients, availability of software and acceptance by the scientific community. The

first is the class of proportional hazards models, which are widely used in clinical and

epidemiological studies in the standard survival analysis setting, and also for modeling

the CSHs in the competing risks setting. A very popular proportional hazards model

is the semi-parametric Cox model (Cox, 1972) which for cause j has the form

λj(t|X) = λj0(t) exp(β′jX), (2.1)

where βj is a p-vector of regression coefficients and the baseline CSH λj0(t) is left

unspecified. Thus, covariates are assumed to have a multiplicative effect on the hazard.

The “proportional hazards” property refers to the fact that in these models the ratio of

the CSHs of any two individuals (called the hazard ratio) is constant in time. In fact,

the popularity of proportional hazards models may be in part explained by the fact
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that regression coefficients represent (log) hazard ratios and thus have a direct “relative

rate” interpretation. For instance, if X represents a single continuous covariate, say X,

then the exponential of its effect, say exp(βj), represents the relative increase in the

CSH for cause j for an increase in one unit of the covariate:

exp(βj) =
λj(t|X = x+ 1)

λj(t|X = x)
.

The regression coefficients of the Cox model may be estimated by maximizing a par-

tial likelihood. The large sample properties of the resulting estimators were established

by Andersen and Gill (1982) and Andersen et al. (1985). The partial likelihood actually

factorizes into two components, one for each cause. Actually, if β1 and β2 are assumed

to be distinct (cf. Section 1.3.2), the model for each cause may be fitted using standard

software for Cox regression by censoring the individuals who failed from a competing

cause (Prentice et al., 1978). Similar remarks apply when considering the full likelihood

function in the presence of competing risks (cf. Chapter 5).

Fully-parametric versions of the Cox model may also be considered, which have the

form

λj(t|X) = λj0(αj, t) exp(β′jX), (2.2)

where the baseline CSHs λj0 are known up to the parameter vectors αj. Maximum

likelihood estimation for this type of models has been studied by Kalbfleisch and Pren-

tice (2002, Chapters 3 and 5), Borgan (1984) and Andersen et al. (1985). Some

possible parametrizations for the baseline CSHs are: the piecewise constant model

λj0(αj, t) =
∑K

1 αjkI(t ∈ [tk−1, tk]); the Cox-exponential model λj0(αj, t) = αj1; the

Cox-Weibull model λj0(αj, t) = αj1αj2t
αj2−1; and the Cox-Gompertz model λj0(αj, t) =

αj1 exp(αj2t) (Bender et al., 2005).

Additive hazards models constitute a second important class of models that provide

valuable insight into the competing risks mechanism. A general form of additive hazards

model is given by the nonparametric Aalen model : λj(t|X) = λj0(t) + βj(t)
′X, where

both λj0(t) and βj(t) are unspecified functions of time (Aalen, 1980). This model
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enables the study of time-varying covariate effects. A semi-parametric version of the

Aalen model, that can be seen as the additive counterpart of the Cox model, is the

model with constant covariate effects i.e. βj(t) = βj (McKeague and Sasieni, 1994; Lin

and Ying, 1994):

λj(t|X) = λj0(t) + β′jX. (2.3)

Model (2.3) is interesting because its regression coefficients have an “excess rate” inter-

pretation, thus giving an absolute rather than a relative measure of covariate effects,

which may be of particular interest in certain contexts. A thorough review of estimation

with additive hazards models is given by Martinussen and Scheike (2006).

Klein (2006) advocates the use of such models with competing risks because, unlike

the multiplicative structure of proportional hazards models, the additive structure can

hold simultaneously for each CSH and for the all-cause hazard. Furthermore, in this

case the vector of covariate effects on the all-cause hazard, say β, is properly partitioned

into the sum of the effects on the CSHs, i.e. β = β1 + β2.

2.2.3 Regression models for the CIF

The most common regression models for the CIF are semi-parametric generalized linear

models of the form

g{Fj(t|X)} = βj0(t) + β′jX, (2.4)

where g is a monotone differentiable link function and βj0(t) is an unspecified time-

dependent intercept. Model (2.4) encompasses models such as the Fine and Gray model

if g is the complementary log-log (cloglog) function (Fine and Gray, 1999), the additive

model if g is the identity function (Klein, 2006) and the absolute risk model if g is the

log function (Gerds et al., 2012). In the latter two models, interpretation of the regres-

sion coefficients is straightforward: in the additive model, they have an “excess risk”

interpretation and in the absolute risk model they have a “relative risk” interpretation.

In the Fine and Gray model, interpretation of the regression coefficients is more subtle.
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In fact, the coefficients in this model are (log) ratios of subdistribution hazard rates,

which are defined as:

λ∗j(t) := lim
h→0

1

h
P (t ≤ T < t+ h,D = j|T ≥ t ∪ {T < t,D 6= j}), j = 1, 2.

The subdistribution hazard for cause j represents the rate at which failures from cause

j are occurring among individuals who have not yet failed or who have failed from

another cause. Thus, these quantities have no clinically relevant interpretation in the

competing risks model (Andersen and Keiding, 2012). However, their importance arises

from the fact that, unlike the CSHs, they do have a one-to-one relation with the CIF

since

Fj(t) = 1− exp

(
−
∫ t

0

λ∗j(u)du

)
.

Hence, an increase (decrease) in the subdistribution hazard reflects an increase (de-

crease) in the corresponding CIF.

To estimate the regression coefficients of model (2.4), so-called inverse probability

of censoring weighting (IPCW) techniques have been proposed (Fine and Gray, 1999;

Fine, 2001; Scheike et al., 2008). An alternative approach was proposed by Klein and

Andersen (2005) which is henceforth referred to as the Andersen-Klein pseudo-value

approach. A detailed account of this approach is given in Chapter 4 as it was the basis

for the developments presented there.

A fully-parametric model for the CIF has also been proposed, which is a general-

ized odds rate model with a Gompertz distribution for the logarithm of the baseline

cumulative subdistribution hazard (Jeong and Fine, 2007):

Fj(t|X) = 1−
[
1 + αj exp(β′jX)τj{exp(ρjt)− 1}/ρj

]−1/αj . (2.5)

Interesting submodels include the proportional odds model (αj = 1) and the propor-

tional subdistribution hazards model (αj → 0). This model is fitted using maximum

likelihood.
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2.3 Regression with missing causes of failure

Consider the setting where the cause of failure is missing for some of the uncensored

individuals. Thus, for uncensored individuals a missingness indicator M is observed,

with M = 1 if the cause of failure is missing and M = 0 otherwise. Denote by W the

r-vector of fully-observed covariates that influence the missingness mechanism, some

of which may already be in X. Then the observed data are now (T̃i, Ui,Xi,Wi) for

censored individuals, (T̃i, Ui,Mi, Di,Xi,Wi) for uncensored individuals with observed

cause and (T̃i, Ui,Mi,Xi,Wi) for uncensored individuals with missing cause.

Let π := P (M = 1|T,D,W, U = 0) be the conditional probability that the cause of

failure is missing among uncensored individuals (U = 0), upon whom the missingness

mechanism acts. With this notation, the missing data taxonomy of Rubin (1976) and

Little and Rubin (1987) in the missing cause setting can be expressed as follows:

(i) The mechanism driving missingness is said to be MCAR (for missing completely

at random) if π is constant.

(ii) The mechanism driving missingness is said to be MAR (for missing at random) if

π does not depend on the cause of failure, that is π = P (M = 1|T,W, U = 0).

(iii) The mechanism driving missingness is said to be MNAR (for missing not at ran-

dom) otherwise.

With missing causes of failure, the CSHs and CIFs are no longer identifiable without

further assumptions about which type of mechanism is driving missingness. Thus,

the validity of any strategy for regression modeling in this setting will require that

some assumption about the missingness mechanism holds. In the following sections, we

discuss the currently available methods for regression modeling with missing causes of

failure and their underlying assumptions.
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2.3.1 Ad-hoc approaches

A complete case (CC) analysis in the present context consists in excluding the uncen-

sored individuals with missing cause of failure from statistical inference. Note that the

term “complete cases” is less appropriate in this context because we do not observe a

cause of failure for censored individuals, yet they are not excluded in a CC analysis. The

inefficiency of a CC analysis in this setting is due to the discarding of the partial infor-

mation available from the individuals with missing cause of failure, i.e. about T and X.

Furthermore, unlike with longitudinal data, the CC analysis in the missing cause setting

is not necessarily unbiased when missingness depends only on covariates, which is why

we did not consider the additional distinction between MAR and covariate-dependent

missingness in the classification above. Actually, the CC analysis does not guarantee

unbiased estimates even under an MCAR missingness mechanism.

To explain this, consider the case where the effect of a binary covariate on the CSH

or the CIF is to be estimated. Broadly, such estimation requires comparing, not means,

but event frequencies between the two groups determined by the covariate. A CC

analysis implies a reduction in the numerators and denominators of these frequencies,

which are the numbers of events and the risk sets in the two groups, respectively.

Under MCAR, the expected percentage reduction in the numerator is the same for each

group, equal to 100π%. However, the percentage reduction in the denominator is not

necessarily the same in both groups, particularly due to censoring. Hence, the ratio of

these probabilities is generally modified even under MCAR, as is the difference between

these probabilities. These modifications will imply biased covariate effect estimates.

When missingness depends on the covariate larger biases may be expected. A possibly

more intuitive explanation of the bias in the CC analysis is given by Andersen et al.

(1996), who note that the CC analysis leads to excluding higher risk individuals because

only failed individuals, and no censored individuals, are removed. Hence, the estimated

covariate effects actually measure the association of covariates with failure among lower-

risk individuals, which is not the main target of interest.
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Another approach is to consider “failure with missing cause” as an additional com-

peting event, i.e. to augment the state space of the underlying multi-state model to

include ‘missing cause’ as a type of failure. This approach will be henceforth referred

to as an extra state (ES) analysis. As mentioned in the beginning of Section 2.2.1,

when modeling the CSH or CIF for the cause of interest (D = 1) it is only necessary

to know whether failures were due to the cause of interest or not. Thus, to guarantee

unbiased estimates, the ES analysis requires the strong assumption that π = 0 if D = 1.

When this assumption is violated, the ES approach leads to potentially misclassifying

failures from the cause of interest as failures from other causes, resulting in an un-

derestimation of the marginal CSH and CIF of the cause of interest. Moreover, the

misclassification rate may depend on the covariates under study because missingness

probabilities may depend on covariates, as noted by Bakoyannis et al. (2010). This

so-called differential misclassification may result in either upward or downward biases

in regression coefficient estimates. The ES approach is also inefficient because treating

all missing causes as cause 2 failures, means that potential cause 1 failures that would

help increase precision are oversighted. Finally, the uncertainty concerning the missing

causes is completely disregarded, so the precision estimates yielded by this approach

are misleading.

A related approach, that we do not explore further but that leads to similar problems

as the ES analysis, is to consider “failure with missing cause” as a failure from the cause

of interest. In this case, π = 0 if D 6= 1 is the required assumption to guarantee unbiased

estimates. Andersen et al. (1996) discuss the pitfalls of this approach in detail.

2.3.2 MAR regression methods for the CSH

Several authors have addressed the problem of fitting semi-parametric CSH models in

the missing cause of failure setting under the MAR assumption. Goetghebeur and Ryan

(1995) and Andersen et al. (1996) studied a partial likelihood approach for fitting a Cox

model for each cause by assuming that the ratio between the baseline CSHs for causes
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1 and 2 is constant. Nicolaie et al. (2011) studied a modification of this approach that

relaxes the constant baseline hazard ratio assumption. Lu and Tsiatis (2001) explored

a multiple imputation (MI) approach for fitting a Cox model for one or both causes.

Gao and Tsiatis (2005) and Gao (2006) proposed so-called augmented inverse probability

weighted estimators for fitting linear transformation models, a large class of models that

includes the Cox model as a particular case. Lu and Liang (2008) proposed augmented

inverse probability weighted estimators for the semi-parametric additive hazards model

(2.3).

On the other hand, parameter estimation for the fully-parametric model (2.2) in the

missing cause setting has received no attention despite the potential usefulness of this

model in many applications. The direct likelihood approach is explored in Chapter 5.

2.3.3 MAR regression methods for the CIF

Recently, some authors have considered estimation of the CIF based on estimates of

other related quantities obtained through regression modeling under MAR. For instance,

Lee et al. (2011) use estimates of each of the CSHs obtained via the MI approach of Lu

and Tsiatis (2001), and Nicolaie et al. (2011) consider the so-called vertical modeling

approach to competing risks, the details of which are given in Chapter 5. However, to

our knowledge, direct regression modeling of the CIF in the missing cause setting has

been addressed only by Bakoyannis et al. (2010) using MI, with the analysis model being

the Fine and Gray model fitted with the IPCW approach as in Fine and Gray (1999).

No other missing data approaches, such as inverse probability weighting (IPW), have

yet been proposed. Moreover, the performance of the MI procedure of Bakoyannis et al.

(2010) when applied to flexible modeling strategies for the CIF such as the Andersen-

Klein pseudo-value approach or when dealing with continuous covariates has not yet

been explored.

One of the main contributions of this dissertation is the proposal of a general frame-

work for semi-parametric regression modeling of the CIF under MAR, encompassing
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key models such as the Fine and Gray and additive models (Klein, 2006). Two exten-

sions of the Andersen-Klein pseudo-value approach are considered. The first extension

is a novel approach grounded on the inverse probability weighting paradigm for deal-

ing with missing data. The second extension is the MI procedure of Bakoyannis et al.

(2010) coupled with the Andersen-Klein approach. These developments are presented

in Chapter 4.

As an additional contribution, we derive the expression of the likelihood that would

enable the fitting of fully-parametric models for the CIF such as (2.5) under the as-

sumption of an ignorable missingness mechanism (Chapter 5).

2.3.4 MNAR and sensitivity analyses

Under MNAR mechanisms, it is necessary to model the joint distribution of (T,D,M)

for uncensored individuals, upon whom the missingness mechanism acts. For this pur-

pose, the different classes of models discussed in Section 1.3.3 for longitudinal data with

drop-outs could be transposed to the missing cause of failure setting. However, as with

longitudinal data, in the missing cause setting it is not possible to assess from the ob-

served data whether the missingness mechanism is MAR or MNAR. Thus, any modeling

strategy relies on unverifiable assumptions and sensitivity analyses should be routinely

performed to assess the robustness of inferences to departures from these assumptions.

To our knowledge, neither MNAR modeling nor sensitivity analysis methodology have

ever been considered in the missing cause of failure setting. The pattern-mixture model-

ing framework in this context is considered in Chapter 7, and an approach for performing

sensitivity analyses is proposed.
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Chapter 3

An MI procedure for continuous

longitudinal data with drop-outs

Several multiple imputation (MI) procedures have been proposed in the literature for

dealing with continuous longitudinal data with drop-outs (cf. Section 1.3.2). In this

chapter we present an alternative procedure in which missing outcomes are drawn di-

rectly from a linear mixed model (LMM) like (1.1). The main purpose of developing

this tool was to enable the implementation the sensitivity analysis approach of Chapter

6. In Section 3.1 we provide a general overview of MI since this approach plays a major

role in all of the subsequent chapters of this dissertation. In Section 3.2 we describe

the MI procedure proposed. In Section 3.3 we present a simulation study performed to

validate this approach. Section 3.4 contains some concluding remarks. The application

of the proposed method to the analysis of the SMI study is deferred until Chapter 6,

where we conduct a sensitivity analysis of the inferences obtained.

3.1 Background on MI

MI is a general approach to deal with missing data proposed by Rubin (1987). An

MAR missingness mechanism is assumed in many applications of MI, and we will focus

on that setting in this chapter. Essentially, MI consists in the production of several,

47
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say m > 1, plausibly completed datasets accounting for all the levels of uncertainty

concerning the missing values. The procedure can be summarized in four main steps:

Step 1 A prediction model, called the imputation model, is built for the conditional

distribution of the missing data given the observed data;

Step 2 The missing data are imputed m times by drawing values from the imputation

model to obtain m completed datasets;

Step 3 The analysis model (i.e. the main model of interest) is then fitted to each

completed dataset using the method that would have been chosen had the data

been complete;

Step 4 The results obtained from each completed dataset are combined into a single

inference by means of some arithmetically simple formulas, henceforth referred to

as Rubin’s formulas.

Step 1 requires positing an appropriate model for the type of missing data, e.g. a

normal linear model for independent continuous data, a logistic model for independent

binary data, etc. Furthermore, it is recommended that the imputation model includes

as predictors all the variables known to influence missingness and all the variables and

associations present in the analysis model (Schafer, 1999). Under the MAR assumption,

the parameters of the imputation model may be estimated by fitting the model to the

available data. To illustrate this, consider the case of longitudinal data with drop-outs.

Following the notation introduced in Chapter 1, an imputation model must be built for

f(yM|yO,x,w, u). The MAR assumption, formally defined in this context in Section

1.3, is equivalent to the condition that f(yM|yO,x,w, u) does not depend on u. Indeed,

MAR implies:

f(yM|yO,x,w, u) =
f(u|yO,yM,x,w)f(yM|yO,x,w)

f(u|yO,x,w)
= f(yM|yO,x,w).

The proof of the other implication of the equivalence is analogous. It can further be

shown that this expression is equivalent to the condition that, given s ∈ {2, . . . , J} and
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s′ ≤ s,

f(y·s|y·1, . . . , y·(s−1),x,w, u = s′) = f(y·s|y·1, . . . , y·(s−1),x,w, u > s)

(see formal proof in Molenberghs et al., 1998). That is, at a given time-point s, the

conditional distribution of the missing outcomes given the past outcomes and covariates

is the same as the conditional distribution of the outcomes available at that time-point.

Hence, the former can be estimated from the latter under MAR.

Step 2 requires performing m independent random draws from the posterior pre-

dictive distribution of the missing data under the assumed imputation model and the

specified prior distributions for its parameters. To see how this may be done in practice,

the concept of a proper imputation procedure is essential. Barnard et al. (1998) briefly

define an imputation procedure to be proper if appropriate variability is incorporated

across the m imputations, regarding the uncertainty both in the imputation model pa-

rameters and in the missing outcomes given the assumed imputation model (see full

formal definition in Rubin, 1987, 1996). Thus, as described by Barnard et al. (1998),

the following two-stage procedure is often useful: first, a vector of imputation model

parameters is drawn from its posterior distribution; second, the missing value is drawn

from the model implied by the drawn parameters. With large samples, it is possible to

approximate the posterior distribution of the imputation model’s parameters by their

maximum-likelihood-estimated asymptotic distribution (Rubin, 1987). Of course, the

specific imputation procedure used in practice will depend on the nature of the impu-

tation model. In this dissertation we study procedures for drawing imputations from

an LMM (this chapter) and from a logistic model (Chapter 4).

Step 3 is performed using standard software for complete data according to the

analysis model, and yields m estimates θ̂
(1)
, . . . , θ̂

(m)
of the parameter of interest θ, as

well as m variance estimates v̂ar(θ̂
(1)

), . . . , v̂ar(θ̂
(m)

).
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Step 4 consists in combining these estimates according to Rubin’s formulas (Rubin,

1987). The MI estimator of θ is given by:

θ̂
∗

=
1

m

m∑
l=1

θ̂
(l)
. (3.1)

The variance of this estimator is the sum of a within-imputation component (W) and

a between-imputation component (B). It is estimated by

v̂ar(θ̂
∗
) = Ŵ +

(
1 +m−1

)
B̂

=
1

m

m∑
l=1

v̂ar(θ̂
(l)

) +
(
1 +m−1

) ∑m
l=1(θ̂

(l) − θ̂∗)(θ̂(l) − θ̂∗)′

m− 1
. (3.2)

To test the hypothesis H0(θ = θ0) for scalar θ, a t distribution can be used as

reference since (θ̂
∗ − θ0)/

√
v̂ar(θ̂

∗
) ∼ tv under H0, where v = (m − 1)[1 + Ŵ/{(1 +

m−1)B̂}]2 (Rubin and Schenker, 1991). Alternatively, Li et al. (1991) proposed using

a scaled statistic with an F reference distribution for performing hypothesis tests for

multivariate θ (see also Meng and Rubin, 1992). This procedure is implemented in the

R mice package (function pool.compare with the default method) and it is what we use

to perform hypothesis tests in this chapter and in Chapter 6, but for scalar θ, like in

our case, this procedure and the above t-test should lead to very similar results.

A 100(1−α)% confidence interval (CI) for scalar θ has endpoints θ̂
∗±tα/2v

√
v̂ar(θ̂

∗
),

where t
α/2
v is the upper (α/2)th percentile of a t distribution with v degrees of freedom.

Rubin’s formulas require some conditions to be met to yield valid inferences. First,

the imputation procedure must be proper as defined above. Second, the imputation

model must be correctly specified. Finally, the imputation and analysis models should

be compatible, or congenial, which means that the imputation model and the analysis

model can be derived from the same overarching model (Meng, 1994). If these conditions

are met, the MI estimator (3.1) is consistent, asymptotically normal and its asymptotic
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variance is correctly estimated by (3.2) (Tsiatis, 2006, Chapter 14). A remarkable

feature of MI is that often a small number imputations, say m = 5 or m = 10, are

enough to achieve a very good efficiency compared to the estimator based on an infinite

number of imputations.

Under MAR and when the aforementioned conditions are fulfilled, MI provides little

gain in the context of longitudinal data with drop-outs compared to the direct likelihood

approach, with MI being generally less efficient (cf. Section 1.3.2). The real value of

MI in this setting is its applicability even outside these conditions (see Section 9.7

of Molenberghs and Kenward, 2007). In particular, allowing for uncongenial MNAR

imputations makes MI a valuable tool for performing sensitivity analyses. The MAR-

based MI procedure studied in the following sections is an important ingredient of the

developments presented in Chapter 6, where we explore the use of MI in the context of

sensitivity analyses.

3.2 Imputation procedure

In the following sections we omit the auxiliary covariate matrix W, and assume that the

matrix X already includes all the covariates influencing the drop-out probability. With

longitudinal data, an appropriate imputation model for missing values due to drop-out

is an LMM of the form (1.1). As shown in Section 3.1, under the MAR assumption the

parameters of such an imputation model can be estimated by fitting the model to the

available data. Let β̂ and v̂ar(β̂) be the estimates obtained for the fixed effects vector

and the estimator’s variance–covariance matrix, respectively, and let b̂i and v̂ar(b̂i)

be the predictor of the ith random effects vector and its estimated variance–covariance

matrix, respectively, for i = 1, . . . , n. Also, let σ̂2 be the estimated residual variance.

The proposed procedure for the lth imputation of the missing outcomes, where l ∈

{1, . . . ,m}, is as follows:

(a) Draw β(l) ∼ N(β̂, v̂ar(β̂)) and b
(l)
i ∼ N(b̂i, v̂ar(b̂i)) for i = 1, . . . , n.
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(b) For each missing outcome Yij, calculate the linear predictor:

η
(l)
ij = X′ijβ

(l) + Z′ijb
(l)
i .

(c) Draw σ2(l) ∼ dσ̂2/χ2
d where d, the residual degrees of freedom, is estimated as

described below. Draw an error ε
(l)
ij ∼ N(0, σ2(l)).

(d) Impute each missing outcome Yij as η
(l)
ij + ε

(l)
ij .

In LMMs, the residual degrees of freedom d must be estimated, and for this purpose

we follow the approach suggested by Bates (2006) (see also Spiegelhalter et al., 2002). It

consists in estimating the effective number of parameters as the trace of the hat matrix

(see formula 22 of Bates, 2010). The residual degrees of freedom d is then estimated by

subtracting this quantity from the number of observations used to fit the model.

We implemented this procedure as an imputation method to be passed on to the

function mice of the R mice package, which is a generic software for MI (van Buuren

and Groothuis-Oudshoorn, 2011). The R functions required for this can be found in the

Supplementary Material of the corresponding published manuscript (Moreno-Betancur

and Chavance, 2013).

3.3 Simulation study

We performed a simulation study to validate the proposed imputation procedure. The

main aim of the study was to examine the statistical properties of the MI inferences

yielded by the procedure. A secondary aim was to compare the performance of MI to

that of the complete case (CC) analysis, which consists in excluding drop-outs from the

analysis (cf. Section 1.3.1).
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3.3.1 Study design

We mimicked the design of the SMI study (cf. Section 1.1). More precisely, we consid-

ered the scenario of a clinical trial performed on n patients, with n/2 in the treatment

group and n/2 in the control group, for whom outcomes had to be measured at six

equally spaced visits including baseline.

We generated Gaussian outcomes using an LMM with the expected population tra-

jectory intercepting the origin. The time-slopes were assumed to have a null expectation

for individuals in the control group and a non-negative expectation β for those in the

treatment group. The random part of the model included subject-specific random in-

tercepts and time-slopes inducing correlations among the outcomes of each individual.

Outcomes were thus generated as

Yij = jβXi + b0i + jb1i + εij, (3.3)

for individual i ∈ {1, . . . , n} and visit j ∈ {0, . . . , 5}, where Xi was the group indi-

cator, with Xi = 1 if subject i was in the treatment group and Xi = 0 otherwise,

bi = (b0i, b1i)
′ ∼ N(0, I2), i ∈ {1, . . . , n}, were the i.i.d. vectors of subject-specific

random effects, assumed to be independent of Xi and of the i.i.d. errors εij, which

were assumed to follow a standard normal distribution. The values considered in the

simulation scenarios for β, the mean time-slope for the treatment group (which was also

the difference between the expected time-slopes for the two groups), were 0 and 0.2.

The primary endpoint had to be measured at the last scheduled visit and the param-

eter of interest was the treatment effect, which was defined as the difference between the

expected outcomes for the treated and control populations at this visit. The analysis

model we considered was thus given by

Yi5 = θ0 + θXi + εi, (3.4)

where the ε′is were i.i.d. zero-mean Gaussian errors, and the parameter of interest was
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θ = 5β, which took as value either 0 or 1.

3.3.2 Simulation of drop-outs

Drop-outs were simulated according to different MAR and MNAR mechanisms, as-

suming that the baseline outcome was observed for all individuals. The first type of

MAR drop-out mechanism considered was in particular a covariate-dependent drop-out

mechanism, in which drop-out probability depended on the individual’s group, either

assigning the treatment group a 0.1 drop-out probability and the control group a 0.4

drop-out probability or vice-versa. As briefly mentioned in Section 1.3.1, in these sce-

narios the CC analysis does not lead to biased estimates. The latter is due to the fact

that the drop-out probability does not depend on the outcomes, so for each group the in-

dividuals remaining in the study at the last visit are a simple representative sub-sample

of the entire group. However, we can expect a loss of precision.

For the second type of MAR drop-out mechanism, we considered scenarios in which

drop-out probability depended on the last observed outcome, with subjects with higher

values having a greater probability of dropping out than those with lower values or

vice-versa. For MAR data, we also considered a third mechanism, including scenarios

in which the drop-out probability depended on the last observed outcome and the

individual’s group. More precisely, two scenarios were considered: first, subjects in the

treatment group had a 0.1 marginal probability of dropping out whereas those in the

control group had a 0.4 probability, and within each group, the probability of dropping

out was lower for individuals with higher values than for those with lower values; second,

subjects in the treatment group had a 0.4 marginal drop-out probability whereas those

in the control group had a 0.1 probability, and within each group, the probability of

dropping out was higher for individuals with higher values than for those with lower

values. For an MNAR drop-out mechanism, we considered scenarios in which subjects

with higher values for the first missing outcome had either a higher or a lower probability

of dropping out at each visit.
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In the second and third types of MAR scenarios and in the MNAR scenario a

selection bias can be expected when performing a CC analysis under H1(θ 6= 0). Note

that there is no bias in the CC analysis under H0 (θ = 0) if the drop-out mechanism

is the same for both groups. The latter holds true for all mechanisms considered,

except for the third MAR-type mechanism, for which a bias might be observed when

performing a CC analysis under H0.

For each mechanism, the probability of dropping out was the same at each visit,

excluding baseline. For the scenarios in which drop-out probability depended only on

outcome values, we assigned to each individual i and each time j, a probability pij of

dropping out that depended on the considered outcome Yij′ (where j′ = j or j′ = j − 1

depending on the scenario) through a logistic model:

logit(pij) = λ0 + λ1Yij′ .

Here, λ0 and λ1 were chosen so that they yielded a marginal probability of dropping out

p=0.1 or 0.4. For the scenarios in which the drop-out probability depended on outcome

values and group, a separate logistic model like the one above was used to simulate

drop-outs within each group, both with equal λ1 but with different λ0 so as to yield

different marginal drop-out probabilities within each group.

3.3.3 Analysis of the generated data sets

For each drop-out mechanism, 1000 datasets of size n = 1000 were generated. Four

analyses were performed on each dataset to estimate θ and its variance, obtain CIs and

test H0. First, the complete data analysis was conducted before simulating drop-outs to

serve as a reference. Second, after simulating drop-outs, a CC analysis was performed.

The third and fourth analyses were MI analyses using the proposed imputation proce-

dure, with m = 5 and m = 20 imputations, respectively. The imputation model in both

cases was an LMM including fixed effects for the treatment group Xi, the measurement

time tj (= j) and their interaction Xitj, and random intercepts and slopes.
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The quantities computed to summarize the results of each analysis across the 1000

simulated datasets in each scenario were: the mean of the 1000 estimates θ̂(s) noted as

θ̂; the mean of the 1000 estimated standard deviations σ̂
(s)
θ noted as σ̂θ; the observed

standard deviation of the estimates θ̂(s) noted as SD (θ̂(s)); the empirical coverage prob-

ability (CP) of the true value θ by the 95% confidence interval (CI) for θ; the percentage

of simulations in which H0 was rejected (i.e. the type I error rate in the case of a null

treatment effect and the power otherwise); and the mean squared error (MSE) of the

estimates across the simulations.

3.3.4 Results

Results for the scenarios in which MAR data were generated with drop-out probability

depending solely on the individual’s group are shown in Table 3.1 for the case in which

subjects from the control group had a higher drop-out probability. Results for the

opposite case were similar (see Table A.1 in Appendix A). As expected, no bias was

introduced by the CC analysis. The MI analyses also led to unbiased estimates. In all

analyses, the standard deviation of the estimator was correctly estimated and the CP

was satisfactory. However, for both values of θ, the CC analysis led to a loss in precision

in comparison to the complete data analysis. The MI analyses partially recovered this

loss. This implied a gain in power under H1 and an MSE about 20% smaller with MI

compared to the CC analysis.

The results for the MAR scenario in which drop-out probability was inversely related

to the last observed outcome are shown in Table 3.2. Under H1 a small bias was

introduced by the CC analysis which, as expected, increased with the marginal drop-

out probability p. In contrast, the MI estimates were unbiased. The CC analyses yielded

correct standard deviation estimates and, in the MI analyses, the standard deviation

estimates were satisfactory when the marginal drop-out probability was 0.1 and slightly

overestimated when this probability was 0.4. Globally, both analyses provided correct

CPs, even though they were sometimes slightly higher than expected under H1, when
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Table 3.1: Estimates of treatment effect: MAR scenario in which drop-out probability
depended on the individual’s group, with drop-out probabilities of 0.1 and 0.4 for the
treatment and control groups, respectively. Results of 1000 simulations.

θ Analysis θ̂ σ̂θ SD (θ̂(s)) CP % reject H0 MSE
0 Complete data −0.018 0.328 0.326 95.4 4.5 0.107

Complete cases −0.014 0.387 0.374 96.2 3.8 0.140
5 imputations −0.015 0.365 0.348 95.6 4.2 0.121
20 imputations −0.018 0.362 0.343 95.4 4.6 0.118

1 Complete data 1.012 0.329 0.337 94.6 86.2 0.114
Complete cases 1.021 0.387 0.397 93.4 73.5 0.158
5 imputations 1.014 0.368 0.363 95.7 76.4 0.132
20 imputations 1.013 0.362 0.358 95.5 80.2 0.128

the marginal drop-out probability was 0.4. MI displayed a higher precision with respect

to the CC analyses, resulting in improved power under H1 and a slightly smaller MSE.

Results for the case in which drop-out probability was positively associated with the

last observed outcome were similar (see Table A.2 in Appendix A).

Results for the MAR scenario in which drop-out probability was inversely related to

the last observed outcome and the control group had the highest percentage of drop-

outs are shown in Table 3.3. In this context, the CC analysis introduced considerable

bias under H0 and H1, whereas MI estimates were again unbiased. The CC analyses

gave correct standard deviation estimates and the MI standard deviation estimates

were satisfactory under H0 and slightly overestimated under H1. The CC analyses

yielded very poor CPs under H0 and H1. On the other hand, MI generated correct

CPs. MI improved precision with respect to the CC analyses, thereby resulting in

significantly improved power under H1 and much smaller MSE. Results for the scenario

in which drop-out probability was positively related to the last observed outcome and

the treatment group had the highest percentage of drop-outs were similar (see Table

A.3 in Appendix A).

Table 3.4 shows results for the MNAR scenario according to which the probability
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Table 3.2: Estimates of treatment effect: MAR scenario in which drop-out probability
was inversely related to the last observed outcome. Results of 1000 simulations.

θ p Analysis θ̂ σ̂θ SD (θ̂(s)) CP % reject H0 MSE
0 0.1 Complete data 0.000 0.329 0.339 94.1 5.9 0.115

Complete cases −0.001 0.334 0.353 93.6 6.4 0.124
5 imputations −0.003 0.337 0.346 94.5 5.5 0.120
20 imputations −0.002 0.336 0.345 94.6 5.4 0.119

0.4 Complete data −0.008 0.329 0.323 96.1 3.9 0.104
Complete cases −0.015 0.381 0.363 96.2 3.8 0.132
5 imputations −0.006 0.390 0.361 95.7 3.7 0.131
20 imputations −0.007 0.384 0.347 96.2 3.8 0.120

1 0.1 Complete data 0.989 0.329 0.313 95.4 87.8 0.098
Complete cases 0.915 0.334 0.311 95.0 80.0 0.104
5 imputations 0.991 0.338 0.319 95.4 85.9 0.102
20 imputations 0.991 0.336 0.318 95.5 86.4 0.101

0.4 Complete data 1.010 0.329 0.317 95.7 88.1 0.101
Complete cases 0.804 0.381 0.363 93.4 56.4 0.170
5 imputations 1.005 0.391 0.350 96.9 73.1 0.122
20 imputations 1.004 0.385 0.338 97.2 76.9 0.114

Table 3.3: Estimates of treatment effect: MAR scenario in which drop-out probability
depended on the individual’s group and his last observed outcome, with marginal drop-
out probabilities of 0.1 and 0.4 for the treatment and control groups, respectively, and
drop-out probability inversely related to the last observed outcome within each group.
Results of 1000 simulations.

θ Analysis θ̂ σ̂θ SD (θ̂(s)) CP % reject H0 MSE
0 Complete data −0.022 0.329 0.341 93.7 6.2 0.116

Complete cases −1.182 0.363 0.359 9.2 90.8 1.527
5 imputations −0.022 0.364 0.365 94.4 5.0 0.133
20 imputations −0.021 0.361 0.360 94.6 5.4 0.130

1 Complete data 1.005 0.328 0.324 96.3 86.4 0.105
Complete cases −0.170 0.363 0.353 9.3 7.2 1.494
5 imputations 1.012 0.366 0.343 96.2 79.2 0.117
20 imputations 1.007 0.361 0.341 96.7 80.3 0.116
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Table 3.4: Estimates of treatment effect: MNAR scenario in which drop-out probability
was inversely related to the first missing outcome. Results of 1000 simulations.

θ p Analysis θ̂ σ̂θ SD (θ̂(s)) CP % reject H0 MSE
0 0.1 Complete data −0.012 0.329 0.326 94.5 5.4 0.106

Complete cases −0.013 0.326 0.323 95.3 4.7 0.105
5 imputations −0.013 0.332 0.331 94.4 5.6 0.109
20 imputations −0.012 0.331 0.329 94.5 5.5 0.109

0.4 Complete data −0.006 0.329 0.336 94.5 5.4 0.113
Complete cases −0.011 0.360 0.365 94.9 5.0 0.133
5 imputations −0.002 0.374 0.366 95.2 4.4 0.133
20 imputations −0.006 0.368 0.356 95.6 4.4 0.126

1 0.1 Complete data 1.016 0.329 0.330 94.8 86.9 0.109
Complete cases 0.898 0.327 0.327 93.7 78.6 0.117
5 imputations 0.999 0.333 0.328 95.1 85.6 0.108
20 imputations 0.999 0.332 0.326 94.8 86.1 0.106

0.4 Complete data 1.006 0.329 0.350 94.0 84.9 0.122
Complete cases 0.728 0.361 0.368 87.2 52.4 0.209
5 imputations 0.946 0.374 0.365 95.6 69.1 0.136
20 imputations 0.950 0.369 0.357 95.5 73.7 0.130

of dropping out was inversely related to the first missing outcome. Results for the

opposite scenario were similar (see Table A.4 in Appendix A). Under H1, a bias was

introduced by the CC analysis that, as expected, increased with the marginal drop-out

probability p. MI analyses partially corrected this bias.

3.4 Discussion

The results of the simulation study showed that the proposed imputation procedure

yields unbiased coefficient estimates for MAR drop-out mechanisms and approximately

unbiased variance estimates. Furthermore, the procedure displayed satisfactory CPs

and controlled type I error rates under H0. In addition to correcting the bias introduced

by the CC estimator, the MI estimator led to a gain in precision resulting in lower MSEs
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and improved power under H1.

In the design of the simulation study, we underline that, in the considered scenarios,

a strong variability of the random effects was assumed with respect to the variability

of the residual errors. Indeed, we had σb0i = σb1i = σεij = 1. This assumption led to

biases of varying degrees in the CC analyses, depending on the drop-out mechanism. In

some situations with real data we may expect the variability of subject-specific random

effects to be weaker. Additional simulations were run considering a lower variability for

the random effects (σb0i = σb1i = 0.25). As expected, the biases induced in this setting

by the CC analyses were smaller (data not shown).

Concerning our imputation procedure, a sensitive issue was how to deal with the

residual degrees of freedom d in step (c). This number was a parameter estimated

from the data. However, it was not drawn in each imputation from an estimated

asymptotic distribution and thus did not vary from imputation to imputation. Overall,

no underestimation of the variance nor decrease in the empirical CP were observed

in the results. However, this could be an issue with small sample studies. Another

potential problem with small samples concerns the computational issues that may arise

from the maximum-likelihood-based approximation of the posterior distribution of the

parameters (Demirtas and Schafer, 2003).

When the MNAR scenario results were described, we indicated that the MI anal-

ysis achieved partial bias correction. That correction can be attributed to the drop-

out probability in those simulations, which, although conditionally independent of the

observed outcomes given the first missing outcome, was marginally correlated to the

observed outcomes because of the within-subject correlations. Thus, the available out-

comes taken into account in the MI analyses provided partial information about the

missing outcomes, which in turn yielded the partial bias correction observed. This bias

correction was enabled by our simulation study design and might not be observed in

other situations.



Chapter 4

MAR regression modeling of the

CIF using pseudo-values

In Chapter 2 we indicated that direct regression modeling of the cumulative incidence

function (CIF) in the missing cause setting has been addressed only by Bakoyannis et al.

(2010) using multiple imputation (MI), with the analysis model being the Fine and Gray

model fitted by an inverse probability of censoring weighting (IPCW) approach as in

Fine and Gray (1999). No other missing data approaches, such as inverse probability

weighting (IPW), have yet been proposed. Moreover, there has been no assessment of

the performance of the MI procedure of Bakoyannis et al. (2010) when applied to flexible

modeling strategies for the CIF such as the Andersen-Klein pseudo-value approach,

nor when dealing with continuous covariates. In this chapter, we propose a general

framework for semi-parametric regression modeling of the CIF with missing causes of

failure under the MAR assumption. More precisely, we consider two extensions of the

Andersen-Klein pseudo-value approach, the details of which are given in Section 4.1.1.

The first extension, presented in Section 4.1.2, is a novel approach grounded on the IPW

paradigm for dealing with missing data. The second extension, described in Section

4.1.3, is the MI procedure of Bakoyannis et al. (2010) coupled with the Andersen-

Klein approach. We evaluated the small-sample performances of these approaches and

61
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compared them to the naive complete case (CC) analysis by means of an extensive

simulation study, which is presented in Section 4.2. In our simulations, we considered

both binary and continuous covariates. In Section 4.3, we illustrate the practical value

and ease of implementation of the proposed approaches by analyzing the data from the

ECOG clinical trial (cf. Section 2.1). Some elements for discussion and concluding

remarks are presented in Section 4.4.

4.1 Methodology

In this chapter we omit the auxiliary covariate vector W, assuming that all the covari-

ates influencing the missingness process are already included in X. Thus, the observed

data are (T̃i, Ui,Xi) for censored individuals, (T̃i, Ui,Mi, Di,Xi) for uncensored individ-

uals with observed cause of failure and (T̃i, Ui,Mi,Xi) for uncensored individuals with

missing cause, where Xi = (Xi1, . . . , Xip). The data of different individuals are assumed

to be i.i.d given the covariates.

Suppose that we are interested in determining the effect of X on the CIF of the

cause of interest (D = 1). We model the CIF conditional on X, given by F1(t|X) =

P (T ≤ t,D = 1|X), by means of a generalized linear model of the type described in

Section 2.2.3. More precisely, we assume that

g{F1(t|Xi)} = β0(t) +

p∑
h=1

βhXih, t > 0, i = 1, . . . , n, (4.1)

where g is a monotone differentiable link function, βh is the effect of Xih, the hth

component of Xi, and β0(t) is a time-dependent intercept. Model (4.1) encompasses

models such as the Fine and Gray model if g is the complementary log-log (cloglog)

function and the additive model if g is the identity function (cf. Section 2.2.3). Note

that the additive model is not defined near 0, because the CIF is 0 at t = 0. Thus,

relationship (4.1) can be expected to hold only for t ≥ t0 > 0, where t0 is some chosen

time-point (Klein, 2006).
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4.1.1 The Andersen-Klein approach

When the cause of failure is known for all patients who have failed, Klein and Andersen

(2005) proposed using the pseudo-value approach to fit model (4.1) (Andersen et al.,

2003). Let t1 < · · · < tK be the observed failure times irrespective of the cause. In the

absence of censoring and with fully observed causes of failure, the indicator variables

I(Ti ≤ tk, Di = 1), for k = 1, . . . , K, constitute a set of fully-observed longitudinal

binary outcomes for each patient i = 1, . . . , n. Since F1(t|X) = E{I(T ≤ t,D = 1)|X},

model (4.1) can be fitted using readily available regression techniques for repeated bi-

nary data such as the GEE approach of Liang and Zeger (1986) (cf. Section 1.2.3).

In contrast, when there is censoring, some of these indicators will be missing and the

aforementioned methods are not suitable. The Andersen-Klein approach consists in us-

ing pseudo-values from a jackknife statistic constructed from the CIF instead of these

incomplete outcomes. These pseudo-values are set as the response variable when per-

forming regression for both censored and uncensored individuals, and actually lead to

consistent estimates of the coefficients of model (4.1) as is explained further on.

To explain the construction of the pseudo-values, let Yk denote the number of sub-

jects at risk at time tk, d1k the number of type 1 events at time tk and dk the total

number of events at time tk. The Aalen-Johansen estimator of the CIF of cause 1 at

time t, is given by

θ̂(t) =
∑
tk≤t

d1k
Yk

∏
tl<tk

Yl − dl
Yl

. (4.2)

This estimator is approximately unbiased under the usual independent censoring as-

sumption (Andersen et al., 1993, § IV.4), and particularly when the censoring time is

stochastically independent of the failure time and the cause of failure. The pseudo-

value, or pseudo-observation, of individual i at time t is is denoted by θ̂i(t) and defined

as the weighted difference between the whole sample estimator of the CIF, θ̂(t), and

the leave-one out estimator, θ̂−i(t), obtained by excluding individual i from the sample:

θ̂i(t) = nθ̂(t)− (n− 1)θ̂−i(t), t > 0, i = 1, . . . , n.
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The pseudo-observation of an individual represents his contribution to the estimate

of the CIF at time t on the sample of size n. In the absence of censoring, θ̂i(t) reduces

to the indicator variable I(Ti ≤ t,Di = 1); with right-censoring, θ̂i(t) is a good ap-

proximation of this indicator (see Andersen and Perme, 2010, Figures 6 and 7). Note

that in the latter case, pseudo-observations are continuous variables. Moreover, the

pseudo-observations at a fixed time-point t exhibit the following two properties:

(P1) the θ̂i(t)’s are approximately i.i.d., and

(P2) the θ̂i(t)’s are conditionally unbiased given the covariates, that is,

E{θ̂i(t)|Xi}=F1(t|Xi) + op(1).

These two properties were established by Graw et al. (2009, Lemma 2), and hold under

the following conditions:

(i) the censoring time C is independent of T , D and X, and

(ii) t < t∗ where t∗ is such that the survival function of the censoring time, G(c) :=

P (C > c), satisfies G(t∗) > υ for a fixed υ > 0.

Properties (P1) and (P2) make pseudo-observations suitable to use as alternative out-

comes for regression purposes when there is censoring. Indeed, suppose that pseudo-

observations are set as the outcome variables for both censored and uncensored indi-

viduals. Then the GEE approach of Liang and Zeger (1986), described in Section 1.2.3,

can be used to fit model (4.1), with properties (P1) and (P2) guaranteeing the con-

sistency and asymptotic normality of the estimates obtained in this way (Graw et al.,

2009, Theorem 2).

To fit the model using GEE, pseudo-observations must be calculated at a grid of

time-points τ1 < · · · < τS so that the outcome of each individual is multivariate,

given by θ̂i = {θ̂i(τ1), . . . , θ̂i(τS)}. Although a single time-point would be enough to

identify the coefficients of model (4.1), it is recommended to use several time-points
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because more efficient estimates are obtained and the function β0(t) is identified as well

(Graw et al., 2009). The ideal choice for the grid would be the set of observed failure

times t1, . . . , tK because pseudo-observations only change at these times. However,

Andersen and Klein suggest using between 5 to 10 time-points, which are taken to be

equidistant on the event-time scale (Klein and Andersen, 2005; Andersen and Klein,

2007). Since they showed empirically that this choice suffices to obtain good estimates

of regression coefficients and that little is gained by using more time-points, we follow

their recommendation.

Additionally, the use of a grid with few time-points makes it reasonable to directly

estimate the time-specific intercepts β0(τs) parametrically, as was suggested originally

(Klein and Andersen, 2005; Klein et al., 2008; Andersen and Perme, 2010). Indeed, if

the grid includes a large number of time-points, too many parameters would have to be

estimated and alternative approaches to model the function β0(t), such as smoothing

techniques, would be more suitable (Andersen and Perme, 2010; Andersen and Klein,

2007). To estimate the time-specific intercepts parametrically it suffices to include

indicator variables in Xi, resulting in augmented covariate vectors X
(s)
i = {I(τq = τs) :

q = 1, . . . , S; Xi} for s ∈ {1, . . . , S}. External time-dependent covariates, as defined in

Section 2.2.1, can also be included by incorporating their values at each time-point of

the grid in the vectors X
(s)
i .

The representation of model (4.1) using pseudo-observations and the augmented

covariate vectors is

g[E{θ̂i(τs)|X(s)
i }] = β′X

(s)
i , s = 1, . . . , S i = 1, . . . , n,

where β = {β0(τ1), . . . , β0(τS), β1, . . . , βp} is the parameter vector. Following the theory

of GEE outlined in Section 1.2.3, this marginal model may be fitted by solving the

following generalized estimating equation:

U(β) =
n∑
i=1

{
∂

∂β
g−1(β′X

(•)
i )

}′
V−1i {θ̂i − g−1(β

′X
(•)
i )} =

n∑
i=1

Ui(β) = 0, (4.3)
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where g−1(β′X
(•)
i ) is short for the S-vector with elements g−1(β′X

(s)
i ) and Vi is the

variance-covariance matrix of θ̂i, which must be modeled and/or estimated separately

as explained in Section 1.2.3.

A first possibility for modeling Vi is to assume independence between the elements

of θ̂i, i.e. take the identity matrix to be the working correlation matrix. Another

possibility arises from the fact that the θ̂i(τs)’s are binary in the absence of censoring.

The covariance between two elements of θ̂i in that context suggests modeling Vi as the

‘exact’ matrix, in which

cov{θ̂i(τs1), θ̂i(τs2)} = F1(τs1|Xi){1− F1(τs2|Xi)}, for τs1 ≤ τs2 .

In this case Vi depends on β. A third possibility is to use the usual product-moment

correlation matrix of the θ̂i(τs)’s as a plug-in estimate for Vi. Klein and Andersen

(2005) performed a simulation study comparing each of these possibilities and their

results showed that their method is robust to the path chosen. Thus, they suggest using

the identity matrix as the working correlation matrix. We follow this recommendation

in our simulation study and in the application of our methods to the ECOG clinical

trial.

The consistency and asymptotic normality of the solution β̂ of equation (4.3) have

been established (Graw et al., 2009, Theorem 2) and, as mentioned above, follow from

properties (P1) and (P2) of the pseudo-observations. In particular, the asymptotic

unbiasedness of equation (4.3) follows from the conditional unbiasedness of the pseudo-

values given the covariates, property (P2), under the assumption that model (4.1)

is correct. In the case of the additive model, if the model is assumed to hold for

t ≥ t0 > 0, then the asymptotic unbiasedness of (4.3) will hold only if τs ≥ t0 for all s.

Thus, estimates will still be consistent if the pseudo-values are calculated at a grid of

time-points starting after t0, i.e. if τ1 ≥ t0.
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The variance of β̂ can be consistently estimated by using the sandwich estimator

v̂ar(β̂) = I(β̂)−1v̂ar{U(β)}I(β̂)−1, (4.4)

where

I(β) =
n∑
i=1

{ ∂
∂β

g−1(β′X
(•)
i )}′V−1i {

∂

∂β
g−1(β′X

(•)
i )} and v̂ar{U(β)} =

n∑
i=1

Ui(β̂)Ui(β̂)′.

Alternatively, a jackknife variance estimator can be used (Yan and Fine, 2004). The

approximate jackknife (AJ) variance estimator is the most recommended in this setting

and is also the least burdensome computationally (Klein et al., 2008). Otherwise,

a non-parametric bootstrap procedure has been suggested, where the approximately

independent pseudo-observations θ̂i would be resampled (Andersen et al., 2003).

4.1.2 Inverse probability weighted pseudo-values

When the cause of failure is missing for some individuals, assumptions about the miss-

ingness mechanism are necessary to identify F1(t|X). We consider the following MAR-

type assumption about the mechanism driving missingness:

P (M = 0|X, T ≤ t, U = 0, D) = P (M = 0|X, T ≤ t, U = 0) =: πt(X), t ≥ 0. (4.5)

That is, at each time t, the probability that the cause of failure is observed among indi-

viduals who have already failed is independent of the cause of failure when conditioning

on covariates. Under this assumption, the following relation holds for all t ≥ 0:

F1(t|X) =
F̃1(t|X)

πt(X)
, (4.6)

where F̃1(t|X) = P (T ≤ t,D = 1,M = 0|X). Therefore, under assumption (4.5),

F1(t|X) becomes identifiable as the quotient of two identifiable quantities, F̃1(t|X) and
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πt(X). Indeed, F̃1 is the CIF of the cause of interest when all failures with missing

cause are regarded as due to a cause other than the cause of interest, i.e. F̃1(t|X) =

P (T ≤ t, D̃ = 1|X) where D̃ is defined for uncensored individuals as D̃ = 2 if M = 1,

and D̃ = D if M = 0. Hence, F̃1 is identifiable. In fact, this function could be modeled

from a dataset where the latter recoding procedure has been performed, i.e. where D̃

has been computed for uncensored individuals. Such an approach would correspond

to the extra state (ES) analysis, one of the aforementioned ad-hoc techniques to deal

with missing causes (cf. Section 2.3.1). Furthermore, the quantities πt(X) are also

identifiable and can be estimated from the original data because M is fully observed

among individuals who have failed.

Motivated by relation (4.6), we propose the following estimation procedure to fit

model (4.1) under assumption (4.5):

1. Determine a grid of time-points τ1 < . . . < τS equidistant on the event-time scale.

2. For each time-point τs, obtain a plug-in estimate of πτs(X) as follows:

(i) If X contains only a few discrete finite-ranged covariates, then for each value

x of X, πτs(x) can be estimated by the proportion of failures with known

cause among failures occurring before τs for individuals with Xi = x:

π̂τs(x) =

∑n
i=1(1−Mi)× I(Ui = 0 ∧ T̃i ≤ τs ∧Xi = x)∑n

i=1 I(Ui = 0 ∧ T̃i ≤ τs ∧Xi = x)
. (4.7)

The grid of time-points can be modified if required, to ensure that π̂τ1(x) <

∞ (denominator of (4.7) different from 0) and π̂τ1(x) > 0 for every value x

of X.

(ii) If X contains continuous or many covariates, πτs(X) can be modeled using

the data of uncensored patients who failed before τs by means of a parametric

model including the components of X as predictors. For example, a logistic

model can be used:

logit{πτs(X)} = δ′srs(X), (4.8)



4.1. METHODOLOGY 69

where rs(X) is a vector including the components of X and possibly inter-

action terms.

3. Code the failures with a missing cause as due to a cause other than the cause of

interest (i.e. set Di = 2 if Ui = 0 and Mi = 1) to obtain a new dataset without

missing causes of failure among uncensored patients.

4. Compute the pseudo-observations θ̃i = {θ̃i(τ1), . . . , θ̃i(τS)}, i ∈ {1, . . . , n}, based

on the Aalen-Johansen estimator of F̃1, the CIF of cause 1 in the new dataset, as

in Section 4.1.1.

5. Compute the inverse probability weighted pseudo-values (IPWpv) as follows:

θ̂i(τs) =
θ̃i(τs)

π̂τs(Xi)
, s = 1, . . . , S, i = 1, . . . , n.

6. Solve estimating equation (4.3), where the θ̂i’s are now the IPWpv’s from Step

5, to obtain an estimate β̂ of the regression coefficients.

The theoretical validity of this procedure follows from the following lemma.

Lemma 4.1.1 Fix t > 0. Define the IPWpv’s at time t as θ̂i(t) = θ̃i(t)/π̂t(Xi), for

i = 1, . . . , n, where the θ̃i(t)’s are the pseudo-observations obtained from the Aalen-

Johansen estimator of F̃1, and π̂t(X)
p→ πt(X) > 0. Assume that (4.5) and conditions

(i) and (ii) of Section 4.1.1 hold. Then properties (P1) and (P2), where the θ̂i(t)’s are

now IPWpv’s, still hold.

Proof To prove (P1) it suffices to note that the ordinary (unweighted) pseudo-observations

θ̃i(t), i ∈ {1, . . . , n}, are approximately i.i.d. variables and the Xi’s are i.i.d. The IP-

Wpv’s, being functions of these quantities, are approximately i.i.d. as well.

The proof of (P2) follows from the conditional unbiasedness given the covariates of

the ordinary (unweighted) pseudo-observations θ̃i(t), i{1, . . . , n}, relation (4.6), Slut-

sky’s Theorem and the properties of convergence in probability (see van der Vaart,

2000), noting that the weights 1/πt(Xi) are bounded:
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E{θ̂i(t)|Xi} = E{θ̃i(t)/π̂t(Xi)|Xi}

= 1/π̂t(Xi)× E{θ̃i(t)|Xi}

= {1/πt(Xi) + op(1)} × {F̃1(t|Xi) + op(1)}

= {1/πt(Xi)} × F̃1(t|Xi) + op(1)

= F1(t|Xi) + op(1).

The key consequence of Lemma llllllll is that the estimates obtained from the

The key consequence of Lemma 4.1.1 is that the estimates obtained from the pro-

cedure above are consistent and asymptotically normal. In fact, once (P1) and (P2)

have been established for IPWpv, the proof of these asymptotic properties is the same

as that of Graw et al. (2009, Theorem 2) (see also Graw et al., 2008, Theorem 3 and

Appendix B).

The variance estimators available for the Andersen-Klein approach are not suitable

to estimate the variance of β̂ obtained via IPWpv. Indeed, the sandwich estimator

(4.4), where the θ̂i’s are now IPWpv, would regard the weights 1/πt(X) as known

even though they are estimated, thus neglecting their variability. This is also the

case for the bootstrap procedure suggested by Andersen et al. (2003) because, when

resampling the IPWpv, the weights 1/πt(X) remain fixed. Alternatively, a bootstrap

procedure in which individuals are resampled from the original data seems appropriate

because it results in updated weights at each resample. Hence, the variability in the

estimated weights is reflected in the resampling scheme and the variance can be correctly

estimated.

More precisely, this bootstrap procedure consists in sampling individuals from the

original data with replacement to obtain a new sample of size n. This is repeated

R times to obtain R datasets to which model (4.1) is then fitted by following the

IPWpv procedure described above. Hence, R estimates of the regression coefficients,

β̂
(1)
, . . . , β̂

(R)
, are obtained. The bootstrap variance estimator is obtained by the sample

variance of the R estimates produced, i.e. v̂ar(β̂) = 1
R−1

∑R
r=1(β̂

(r)
−β̄)(β̂

(r)
−β̄)′ where
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β̄ is their mean. R should be at least 100, but preferably larger; modern computers can

easily perform several hundred or thousand replications. In our simulation study, we

assess the impact of accounting for the variability in the estimated weights at different

levels of missingness by comparing the bootstrap estimator to the (readily available)

sandwich and AJ estimators based on IPWpv.

4.1.3 Multiple imputation

Bakoyannis et al. (2010) proposed an MI approach to fit the Fine and Gray model by

IPCW when there are missing causes of failure. In principle, the same MI method

can be used to extend the Andersen-Klein approach to the missing cause setting. We

explore this approach in the simulation study in the next section and compare it to the

IPWpv approach. In this section we briefly describe the MI approach of Bakoyannis

et al. (2010).

Recall from Section 3.1 that the first step in MI consists in building the imputation

model. In the missing cause setting, a model for Π(X, T ) := P (D = 1|M = 1, U =

0,X, T ) must be built. MAR is equivalent to the assumption that this probability does

not depend on the missingness indicator M . Indeed, assuming MAR, we have:

Π(X, T ) =
P (M = 1|D = 1, U = 0,X, T )× P (D = 1|U = 0,X, T )

P (M = 1|U = 0,X, T )

= P (D = 1|U = 0,X, T ).

The proof of the other implication of the equivalence is analogous. Hence, under MAR,

the probability of failure from the cause of interest is the same for individuals with

an observed and a missing cause, i.e. Π(X, T ) = P (D = 1|M = 0, U = 0,X, T ).

This means that a model for Π(X, T ) can be constructed from the individuals with an

observed cause. To this end, one can use a logistic regression model of the form

logit{Π(X, T )} = h(X, T )′γ, (4.9)
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where h(X, T ) is a vector including X, T , and possibly interaction terms and higher

order polynomials (Lu and Tsiatis, 2001; Bakoyannis et al., 2010). Let γ̂ and v̂ar(γ̂)

be the estimates of the parameter vector of the imputation model and its variance-

covariance matrix, respectively, obtained by fitting this model to the individuals with

an observed cause.

The second step consists in imputing the missing causes m > 1 times by drawing

values from the imputation model to obtain m completed datasets. The procedure for

the lth imputation of the missing causes, l ∈ {1, . . . ,m}, consists of the following steps:

(a) Draw a vector γ(l) from the normal distribution with mean γ̂ and variance v̂ar(γ̂).

(b) For each patient i who has failed (Ui = 0) and with missing cause of failure (Mi =

1), calculate the linear predictor:

η
(l)
i = h(Xi, Ti)

′γ(l).

(c) Calculate the probability of failure from the cause of interest by applying the inverse

logit transformation, Π(l)(Xi, Ti) = eη
(l)
i /(1 + eη

(l)
i ), and impute the missing cause

by drawing from a Bernoulli distribution with probability of success Π(l)(Xi, Ti),

i.e. set D
(l)
i = 1 in the event of success and D

(l)
i = 2 otherwise.

This procedure is proper as defined in Section 3.1 (Rubin, 1987).

The third step requires fitting the analysis model (i.e. the model of initial inter-

est) to each of the m completed datasets by applying an appropriate complete data

method. In our case, we fit model (4.1) to each dataset by applying the Andersen-Klein

approach and obtain m estimates of β, β̂
(1)
, . . . , β̂

(m)
, and m sandwich variance esti-

mates, v̂ar(β̂)(1), . . . , v̂ar(β̂)(m). In the fourth and last step these estimates are combined

using the formulas of Rubin (1987) presented in Section 3.1, yielding the MI coefficient

and variance estimates: β̂ = 1
m

∑m
l=1 β̂

(l)
and v̂ar(β̂) = Ŵ + (1 +m−1) B̂, respectively.

Here, Ŵ is the arithmetic mean of the variance estimates across imputations and B̂ is
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the sample variance of the m coefficient estimates. Hypothesis tests and CIs may be

constructed as described in Section 3.1.

In practice it is very likely that the imputation model is misspecified, leading to

biased estimates. However, as shown empirically by Bakoyannis et al. (2010), inclusion

of interactions and higher order terms in the imputation model will reduce the bias

in coefficient estimates. To correct the bias in variance estimates, Bakoyannis et al.

(2010) suggest using a bootstrap estimator for the variances of the imputation model’s

parameters. However, if the imputation and analysis models are uncongenial, some bias

in the variance estimates may persist.

4.2 Simulation study

To evaluate the small-sample performance of the estimators under consideration, we

first focused on estimating the effect of a binary covariate on the CIF of the cause of

interest, F1. The purpose of this study (Sections 4.2.1-4.2.3) was twofold: (i) to study

and compare the properties of regression coefficient estimates obtained via a CC analysis

(cf. Section 2.3.1) and the IPWpv and MI approaches in terms of bias and relative

efficiency, and (ii) to evaluate the variance estimators available for each approach in

terms of bias with respect to the observed (Monte Carlo) variance of the estimates, and

particularly to compare three possible variance estimators for the IPWpv approach.

In a second part, presented in Section 4.2.4, we considered a continuous covariate and

studied the performance of each approach in terms of bias when estimating its effect on

F1.

4.2.1 Data generation

Let X be a binary covariate. To generate data, we fixed the baseline prevalence of the

cause of interest, p = F1(∞|X = 0) = P (D = 1|X = 0), at p = 0.5 and considered

two submodels of model (4.1) for the cause of interest. First, we considered the Fine
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and Gray model, which corresponds to the cloglog link function, by generating data

according to the following specification (Bajorunaite, 2003):

F1(t|X) = 1−{1−p(1−e−t)}exp(βFGX), F2(t|X) = (1−p)exp(βFGX)(1−e−t exp(βFGX)),

with the effect of X on F1, fixed at βFG = 0.5. With this model, the prevalence of the

cause of interest in the group defined by X = 1 is F1(∞|X = 1) = 1− (1−p)exp(βFG) ≈

0.68. Second, we considered the additive model, which corresponds to the identity link,

by generating data according to the following specification:

F1(t|X) = p(1− e−t) + βADX, F2(t|X) = (1− p− βADX)(1− e−t),

with the effect of X on F1 fixed at βAD = 0.15. Here, the prevalence of the cause of

interest among those with X = 1 is F1(∞|X = 1) = p+ βAD = 0.65.

We generated datasets of size n = 200 and 400 and performed 10000 replications.

In each dataset, the binary covariate X was balanced. Failure time and cause of failure

for each patient were generated from each of the models above by first drawing the

cause of failure from a Bernoulli distribution with success probability P (D = 1|X)

as given by the model, and then drawing a failure time according to the conditional

probabilities P (T ≤ t|X,D = k) = Fk(t|X)/P (D = k|X), k ∈ {1, 2}, using the

inverse transformation method. For the additive model, the latter is not straightforward

because the additive relationship can hold only for t ≥ t0 > 0 where t0 is some chosen

time-point. Details of the procedure used are given in Section B.1.1 of Appendix B.

Censoring was superimposed to reach either 25% or 50% censoring. Two types of

censoring were considered: uniform censoring on the interval [a, b], where a was given

by the first quartile of the event times and b was determined empirically to obtain

the targeted percentage of censoring; and administrative censoring, where the time of

censoring was given by the third quartile or the median of the event times so that all

events occurring after that time were censored.
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We assigned uncensored individuals a missing cause of failure with a probability

determined by a logistic model of the form

logit
{
P (M = 1|T = t,X = x, U = 0)

}
= α0 + α1t+ α2x. (4.10)

Different triplets (α0, α1, α2) led to different types of MAR missingness mechanisms.

The mechanisms we considered and the labels that will be used to refer to them hence-

forth are shown in Table 4.1. Parameter α0 was determined empirically for each scenario

to obtain the targeted global percentage of missing causes of failure among uncensored

individuals (10%, 20%, 30% or 40%).

Table 4.1: Mechanisms for generating missing causes of failure using logistic model
(4.10), which includes the follow-up time T and the covariate X as predictors.

Label Type α1 α2 Description
MCAR MCAR 0 0 Constant missingness probability

MARX+ MAR 0 2 Greater missingness probability if X = 1

MARX- MAR 0 -2 Smaller missingness probability if X = 1

MART+ MAR 2 0 Greater missingness probability if longer follow-up

MART- MAR -2 0 Smaller missingness probability if longer follow-up

MARXT+ MAR 1 -3 Greater missingness probability if longer follow-up or X = 0

MARXT- MAR -1 3 Smaller missingness probability if longer follow-up or X = 0

α1 and α2 are the effects of T and X, respectively.

4.2.2 Analysis of the generated datasets

For each generated dataset, we performed an analysis of the complete censored data

(CCD), that is, before simulating missing causes of failure, for reference. Regression

estimates were thus obtained via the Andersen-Klein approach (Section 4.1.1). After

simulating missing causes, regression coefficient estimates were obtained (i) from a CC

analysis via the Andersen-Klein approach, (ii) from an analysis based on the entire

incomplete dataset via IPWpv using the inverse of estimator (4.7) to estimate the
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weights (Section 4.1.2), and (iii) from an analysis based on the entire incomplete dataset

via MI with m = 10 (Section 4.1.3) using a logistic imputation model including X, T

and their interaction. Note that this implied a misspecified imputation model (see

Bakoyannis et al., 2010). However, for the sake of computing time, we did not use a

bootstrap procedure as suggested by Bakoyannis et al. (2010) to correct the potential

bias in the variance estimates due to model misspecification. In fact, our results showed

that the use of bootstrap was not necessary in our simulation setting (see below).

Following the recommendations of Klein and Andersen (2005), in all cases the work-

ing correlation matrix was the identity matrix and the grid of time-points at which

pseudo-values were calculated was the set of deciles of the event times of uncensored

individuals, excluding the first two (i.e. quantiles 0.3 to 0.9 in steps of 0.1) for a total

of 7 time-points. The latter followed from results of a preliminary simulation study

where we examined the bias of the estimated CIF at each time-point and of regression

coefficients in a CCD analysis.

Variance estimates in the CCD and CC analyses were obtained from the sandwich

estimator (4.4). For each completed dataset in the MI analyses, the variance was also

estimated using (4.4) and the variance of the MI estimator was obtained from the usual

multiple imputation variance estimator, combining between- and within-imputation

variances. For the IPWpv approach, several variance estimators were considered for

comparison: the bootstrap estimator described in Section 4.1.2 with R = 100 and the

sandwich and AJ estimators based on IPWpv.

The simulation study was performed in R. (Unweighted) pseudo-value calculation

was carried out using the function jackknife.competing.risks of the R prodlim package

(Gerds, 2011) and estimating equations were solved using the function geese of the R

geepack package (Yan, 2002; Halekoh et al., 2006; Yan and Fine, 2004). The sand-

wich variance estimator was directly implemented for the Fine and Gray and additive

models, using the bdsmatrix function from R bdsmatrix package to reduce memory use

(Therneau, 2011). The AJ variance estimator was obtained directly from the function

geese. The bootstrapping scheme was implemented by using the R boot package (Canty
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and Ripley, 2011; Davison and Hinkley, 1997), with the ‘multicore’ option to accel-

erate calculations. The R code for data generation and analysis was provided in the

Supplementary Material of the corresponding published manuscript (Moreno-Betancur

and Latouche, 2013). We encountered some problems when analyzing data with high

percentages of censoring or missing causes of failure. Details are given in Section B.1.2

of Appendix B.

4.2.3 Simulation results

Figures 4.1 and 4.2 show simulation results for the Fine and Gray and additive models,

respectively, for the scenario with n = 200, 50% uniform censoring and selected missing-

ness mechanisms. Similar figures showing the results for other missingness mechanisms,

n = 400, 25% censoring and administrative censoring are provided in Section B.2 of

Appendix B.

Each figure presents the evolution of three measures for each estimator as the per-

centage of missing causes increased. Target values are represented by dotted lines. The

first column shows the mean relative bias (MRB) of coefficient estimates with respect

to the real value of the parameter across simulations (target value was 0). The relative

bias for each replication was calculated as (βFG− β̂FG)/βFG and (βAD − β̂AD)/βAD

for the Fine and Gray and additive models, respectively. The second column shows

the square root of the mean squared error (MSE) of estimates across simulations. The

CCD analysis sets a lower bound in terms of MSE because estimates are less precise

with missing data. Hence, the target was set at that level for this measure. The third

column shows the estimated coverage probability (CP) of the 95% confidence interval

(CI) with end-points β̂FG ± 1.96×
√

v̂ar(β̂FG) and β̂AD ± 1.96×
√

v̂ar(β̂AD) for the

Fine and Gray and additive models, respectively. This probability is estimated as the

percentage of times the CI contains the real value of the parameter (βFG or βAD)

across simulations (the target was the nominal level of the CI, 95%). For the IPWpv

analysis, only the CI built using the bootstrap variance estimator was analyzed, as the
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Figure 4.1: Simulation results for coefficient estimation in the Fine and Gray model with a
binary covariate, n = 200 and 50% uniform censoring for selected missingness mechanisms.
Estimates obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv)
and multiple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias, the square root of the mean squared error
(MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI) are
plotted against the percentage of missing causes. With no missing causes, all analyses coincide
with the complete censored data analysis (CCD) plotted at 0%. Results are based on 10000
replications.
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Figure 4.2: Simulation results for coefficient estimation in the additive model with a binary
covariate, n = 200 and 50% uniform censoring for selected missingness mechanisms. Esti-
mates obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv)
and multiple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias, the square root of the mean squared error
(MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI) are
plotted against the percentage of missing causes. With no missing causes, all analyses coincide
with the complete censored data analysis (CCD) plotted at 0%. Results are based on 10000
replications.
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other two possible variance estimators were biased (see below).

In the following sections we describe and analyze the results of the simulation study,

taking into account all scenarios and considering each criterion of interest according to

the main objectives of the study.

4.2.3.1 Bias correction

To examine this aspect we considered the magnitude of the MRB of the estimates. For

the additive model (Figure 4.2 and Figures B.8-B.14), the CCD analyses always led

to unbiased estimates (|MRB|≤0.8%, all scenarios considered). For the Fine and Gray

model (Figure 4.1 and Figures B.1-B.7), CCD estimates were approximately unbiased

(|MRB|≤3.2%). The small upward bias in the latter case is explained by the fact that

equation (4.3) is only asymptotically unbiased. Actually, at n = 400 the MRBs of the

Fine and Gray model estimates decreased by around 1% (Figures B.2-B.3). Hence,

estimates obtained via the Andersen-Klein approach are more sensitive to sample size

for this model.

With missing data, the CC estimator was biased in most cases, either upward or

downward, as expected (|MRB|≥5%). It was approximately unbiased (|MRB|≤5%)

only in a few scenarios with a low percentage of missing causes (10 to 20%), particularly

in MCAR and MART+ scenarios for both models and in the MART- scenario for the

Fine and Gray model. The approximate unbiasedness of the CC estimator in the

latter scenarios was enabled by our simulation set-up and may not be observed in

other situations. As expected, increased percentage of missingness (30-40%), smaller

sample size (n = 200; compare Figures B.2-B.3 and B.9-B.10 with all other figures) or

increased censoring percentage (50%; compare Figures B.6-B.7 and B.13-B.14 with all

other figures) generally led to a larger bias in the CC estimator, with the magnitude of

its MRB reaching 179% in some cases. The CC analysis was biased even in the MCAR

scenario, as expected, with an MRB of magnitude between 10% and 20% with 30-40%

missing causes (cf. Section 2.3.1).
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In contrast, the IPWpv estimates were always approximately unbiased for both mod-

els (|MRB|≤5%, except in a few rare cases where MRB remained under 7%). The same

was true for MI estimates (|MRB|≤5%, except in a few cases where the MRB remained

under 11%). For the Fine and Gray model, the performance of both approaches was

similar, but for the additive model the MRBs of the MI estimates were generally slightly

larger. The latter is probably due to the misspecification of the imputation model.

4.2.3.2 Relative efficiency

The root MSE of the CC estimator was generally dominated by its bias and was the

largest of the three estimators. For the Fine and Gray model (Figure 4.1 and Figures

B.1-B.7), it was only in the MART- scenario with 25% censoring and n = 200 that the

root MSE of the CC estimator was slightly smaller than that of the MI estimator, but it

still remained higher than that of the IPWpv estimator (Figure B.6). For the additive

model (Figure 4.2 and Figures B.8-B.14), it was in a very few scenarios in which the

CC estimator was approximately unbiased or only moderately biased that its root MSE

was slightly smaller than for the other two estimators (see Figures B.8, B.10 and B.12).

Conversely, since the IPWpv and MI estimators were always unbiased or approx-

imately unbiased, their root MSEs were dominated by their variances. Thus, when

studying their root relative efficiency (RRE), defined as

RRE={(MSE of IPWpv)/(MSE of MI)}
1
2 ,

we gained insight into their relative precision. In the case of the Fine and Gray model

(Figure 4.3), the IPWpv estimator was in general more precise, and thus had a smaller

root MSE than the MI estimator (RRE between 0.96 and 1). Only in the MART+ and

MARXT+ scenarios, especially with higher percentages of missing causes, did the MI

estimator perform better (RRE between 1 and 1.02). On the other hand, for the additive

model (Figure 4.4), the differences in precision between both estimators were smaller,

with the MI estimator being generally slightly more precise (RRE between 0.98 and
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1.02, except for the MARXT+ scenario with RRE up to 1.04). In general, the observed

differences in standard deviations were quite small, of around 4% maximum. Thus, the

two estimators exhibited comparable precision. However, the results do indicate that

the relative performance of these two estimators depends on the missingness mechanism

and the model, particularly with increasing percentages of missing causes. For each

model, the biggest differences in precision between the two estimators were observed

for the missingness mechanisms in which missingness probability depended on failure

time, with symmetrically opposite results depending on whether missingness was more

common among earlier failures (mechanisms MART- and MARXT-) or later failures

(mechanisms MART+ and MARXT+).

To understand the latter pattern, we explored the factors known to affect the perfor-

mance of these approaches, mainly the specification of the missingness and imputation

models. In the IPWpv approach, the weights were obtained via the non-parametric es-

timator, i.e. the inverse of the observed frequencies, which are the maximum likelihood

estimators of the observation probabilities. Thus, there could not be any issues related

to misspecification of this model such as unstable weights. The latter was confirmed in

an analysis of the distribution of the weights estimated in these scenarios.

On the other hand, the imputation model used was parametric and misspecified

for both models. Thus the simulation set-up was unfavorable for MI compared to

IPWpv. In the case of the Fine and Gray model, the linear predictor of the ‘true’

imputation model includes much more complex effects and interaction terms for the

covariate and failure time compared to our simple logistic imputation model (see formula

(8) of Bakoyannis et al. (2010), whose simulation model was the same as ours, except

for the auxiliary covariate and the effect parameter value). On the other hand, following

Beyersmann et al. (2009), for the additive model the ‘true’ imputation model can be

deduced to be

P (D = 1|T = t,X = x, U = 0) =
λ1(t|X = x)

λ1(t|X = x) + λ1(t|X = x)
=

p

1− βADx
.
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Figure 4.3: Simulation results for the root relative efficiency (RRE) of the IPWpv
and MI (m=10) estimators in the Fine and Gray model with a binary covariate, for
the four different combinations of censoring percentage, censoring type and sample size
considered. For each of these scenarios, the RRE obtained with each of the missingness
mechanisms studied is plotted against the percentage of missing causes. An RRE above
1 indicates that MI was more precise; an RRE below 1 means IPWpv was more precise.
To facilitate comparison, a solid black line was drawn at RRE=1. Results are based on
10000 replications.
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Figure 4.4: Simulation results for the root relative efficiency (RRE) of the IPWpv and
MI (m=10) estimators in the additive model with a binary covariate, for the four dif-
ferent combinations of censoring percentage, censoring type and sample size considered.
For each of these scenarios, the RRE obtained with each of the missingness mechanisms
studied is plotted against the percentage of missing causes. An RRE above 1 indicates
that MI was more precise; an RRE below 1 means IPWpv was more precise. To facil-
itate comparison, a solid black line was drawn at RRE=1. Results are based on 10000
replications.
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Thus, the ‘true’ model was not a logistic model and did not include failure time as a pre-

dictor, but still this variable was included in the model used for imputation. Therefore,

the impact of the misspecification of the imputation model on efficiency can be expected

to differ for both models, as was observed in the results, because the underlying ‘true’

model was different. Moreover, the impact of misspecification on efficiency can also

be expected to depend on the distribution of the failure times among the failures with

missing cause, because the effect of failure time was largely misspecified in both cases.

This distribution is affected by the missingness mechanism, especially when missing-

ness probabilities depend on failure time, as was the case in the MART-, MARXT-,

MART+ and MARXT+ scenarios. In conclusion, the small fluctuations in the relative

efficiency of the two approaches across the different scenarios can be attributed to a

variation in the performance of MI; the use of a misspecified imputation model had a

varying impact on the efficiency of this estimator, depending on both the missingness

mechanism and the model.

Of course, a misspecified imputation model has a higher impact with an increased

percentage of missing data, but also higher amounts of missing data may require more

imputations to achieve the best possible efficiency with MI (see Table 4.1 of Rubin,

1987). We thus performed some additional simulations for some scenarios with increased

numbers of imputations (results not shown). As expected, this led to an improvement

of the RREs in favor of MI, but in some cases IPWpv remained more precise, even with

100 imputations.

4.2.3.3 Variance estimation

We evaluated the variance estimators used in each analysis by calculating the MRB of

the standard deviation estimate with respect to the observed (Monte Carlo) standard

deviation. Next we summarize our findings and omit the detailed results, except for

IPWpw for which partial results are shown.

In the CCD analyses, the sandwich variance estimator was used and it was always

unbiased for both models (|MRB|≤3%). In the CC analyses, the sandwich estimator
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was approximately unbiased for both models (|MRB|≤5% except in a few rare cases

where it remained under 10%). In the MI approach, the variance estimator was based

on the sandwich estimates from the completed datasets and was obtained from the usual

MI variance estimator by combining between- and within-imputation variances. This

estimator was always approximately unbiased (|MRB|≤4% for both models, except in

one rare case where it remained under 6%). Its overall performance seemed comparable

to that displayed by a bootstrap estimator for MI in the simulation results presented by

Bakoyannis et al. (2010). The advantage of the usual MI variance estimator is that it

is straightforward to compute and does not have the limitations of the bootstrap with

small sample sizes.

In the IPWpv analyses, the mean relative biases of three variance estimators were

compared: the sandwich, AJ and bootstrap estimators. Some results of this comparison

for each model and selected mechanisms with n = 200 and 50% uniform censoring

are shown in Figure 4.5. Results were similar for other scenarios (not shown). With

10% missing causes, all three estimators were approximately unbiased for both models

(|MRB|≤10%). The AJ and sandwich estimators were always very close, and as the

percentage of missing causes increased, they became biased, as expected. The bias was

upward, resulting in negative mean relative biases down to −28% and −50% for the Fine

and Gray and additive models, respectively. This overestimation of the variance is likely

due to a phenomenon already documented by Robins et al. (1995), who showed that

the true asymptotic variance of an estimator obtained by inverse probability weighting

when the weights are known is at least as large as when the weights are estimated. This

implies that the variance will tend to be overestimated if the uncertainty in the weights

is ignored.

Conversely, the bootstrap variance estimator was approximately unbiased for the

Fine and Gray model (|MRB|≤10% for n = 200 and ≤4% for n = 400) and unbiased

for the additive model (|MRB|≤2%), all levels of missingness considered. For the Fine

and Gray model, however, the bootstrap variance estimator was difficult to obtain in

small samples with high percentages of censoring and missing causes, with some of
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Figure 4.5: Simulation results for variance estimation in the IPWpv analysis for the Fine
and Gray and additive models with a binary covariate, n = 200 and 50% uniform censoring for
selected missingness mechanisms. We considered the sandwich estimator, approximate jack-
knife (AJ) estimator and the bootstrap estimator with R = 100. For each model, mechanism
and estimator, the mean relative bias of the standard deviation estimate is plotted against the
percentage of missing causes. The bootstrap estimator was not implemented for 0% missing
causes, as the sandwich and AJ estimators are already known to be approximately unbiased
in that case. For MARXT+ at 30% and 40% missing causes, the mean relative biases of the
bootstrap estimates are not plotted as there were several replications where these estimates
could not be obtained owing to the small number of observed events. Results are based on
10000 replications.
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the missingness mechanisms leading to erroneously divergent variance estimates in a

few or several replications. It seems that some bootstrap samples, possibly with very

few type 1 events and leading to divergent coefficient estimates, were not identified as

such and consequently discarded by our simulation algorithm. When there were two

or fewer divergent estimates, they were excluded from the mean relative bias calcula-

tion in Figure 4.5. For MART+, MARX- (both not shown) and MARXT+ with 30

and/or 40% missing causes, there were several divergent estimates so the mean relative

biases were very large (not plotted in Figure 4.5). The latter shows a limitation of the

bootstrap estimator for small samples and high percentages of censoring and missing

causes, indicating that care must be taken when implementing the bootstrap in such

cases. Nevertheless, in scenarios with 25% uniform censoring, n = 400 or a low percent-

age of missing causes, this problem was very rarely encountered. Therefore, regardless

of this drawback, bootstrap estimates could be obtained easily in almost all scenarios

and were approximately unbiased, unlike the other two estimators.

4.2.3.4 Coverage probability of the 95% confidence interval

The CPs in the CCD analyses were near the nominal value for both models (for the

Fine and Gray model see Figure 4.1 and Figures B.1-B.7; for the additive model see

Figure 4.2 and Figures B.8-B.14). As expected, the CC analysis led to very poor CPs

in the scenarios where the estimator was biased (the CP curves went down to 2% in

some cases - not visible in the graphs). The CP was acceptable only in some scenarios

where the CC estimator was approximately unbiased.

As shown in the graphs, a high or low CP in the CCD analysis generally led to high

or low CPs for IPWpv and MI analyses, implying that the CP performance for these

approaches is highly dependent on the performance of the Andersen-Klein approach

with complete data. In the case of the Fine and Gray model, the MI analysis led

to CPs very close to those of the CCD analysis and thus to the nominal value. The

CPs of the IPWpv analyses were also acceptable with large samples (Figures B.2-B.3

and B.9-B.10), but conservative with small samples (all other figures), reflecting the
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moderate overestimation of the variance with the bootstrap method in this case and

for this model (Figure 4.5). Furthermore, these coverage probabilities deteriorated as

the percentage of missing causes increased, reflecting the limitation of the bootstrap

estimator with high percentages of missing data. In the case of the additive model, the

IPWpv and MI analyses displayed similar CPs, close to those of the CCD analysis and

thus to nominal level, with the IPWpv CPs being generally slightly lower than for MI

analyses.

Finally, the type of censoring (uniform or administrative) did not seem to have a

notable effect on the performance of any of the approaches considered (compare Figures

B.4-B.5 and B.11-B.12 with all other figures).

4.2.4 Continuous covariate

Following a similar set-up as described above, we performed another set of simulations

with a continuous covariate X ∼ N(0, 1). Again, we focused on estimating the effect of

X on the CIF of the cause of interest, F1. The purpose of this second part was to assess

the performance of the different estimators in terms of bias in this setting, particularly

for the IPWpv approach with the weights estimated via (4.8). Figure 4.6 shows the

MRB of each estimator for each model and for selected missingness mechanisms and

several sample sizes (n=200, 400 and 1000), in a scenario with 50% uniform censoring

and 40% missing causes. The results for other missingness mechanisms are provided

in Appendix B (Figure B.15). The results show that the CC analysis leads to biased

estimates in most scenarios, while the IPWpv and MI estimators are both approximately

unbiased in all scenarios.

4.3 Application to the ECOG clinical trial

In this section, we revisit the analysis of the ECOG clinical trial (cf. Section 2.1) to

illustrate the practical value of the proposed methodology. Assuming MAR, several
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Figure 4.6: Simulation results for coefficient estimation in the Fine and Gray and additive
models with a continuous covariate, for selected missingness mechanisms in a scenario with
50% uniform censoring and 40% missing causes. Estimates obtained via a complete case
analysis (CC), the proposed IPWpv approach (IPWpv) and multiple imputation with m = 10
imputations (MI m=10) are compared. For each mechanism and each analysis, the mean
relative bias is plotted against the sample size (n = 200, 400, 1000). With no missing causes,
all analyses coincide with the complete censored data analysis (CCD), also included in the
plots. Results are based on 1000 replications.
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authors have studied the effects of the estrogen-receptor (ER) status of the primary

tumor (positive vs. negative) and the degree of positive axillary lymph node involvement

(<4 nodes vs. ≥ 4 nodes) on the cause-specific hazard rate of death from cancer

(Goetghebeur and Ryan, 1995; Lu and Tsiatis, 2001; Gao, 2006). Furthermore, Nicolaie

et al. (2011) performed a vertical modeling analysis of the data. Here we focus on

analyzing the effect of these prognostic factors on the CIF of death from cancer.

Figure 4.7 shows non-parametric CIF estimates, obtained via the Aalen-Johansen

estimator (4.2), by cause of death, ER status and number of positive nodes, when

treating “missing cause” as an additional competing event (i.e. like in an ES analysis).

For the combination ‘ER-negative and 1-3 nodes’ all curves are zero because there

were no deaths in this group. From this figure it seems that being ER-negative has a

considerable impact on the incidence of cancer death. On the other hand, the impact

of the number of positive nodes is not so clear, especially because the deaths with

missing cause (right panel) actually belong in either of the other two sets of curves (left

and center panels). Thus, in these plots the actual effects of the prognostic factors on

cancer death are obscured by the missing data, much like it would be expected in an

ES regression analysis (cf. Section 2.3.1). We therefore conducted a regression analysis

of the CIF of death from cancer using the proposed methods to estimate these effects

under the MAR assumption. We also considered regression models for the CIF of death

from other non-cancer causes, but no covariate had a significant effect on it so this

analysis is not presented.

We modeled the CIF of death from cancer according to model (4.1) by considering

the additive model (identity link) and the Fine and Gray model (cloglog link). In both

cases, the model was multivariable, including the indicator variables “≥ 4 nodes” and

“ER status”, the latter being 1 for patients with an ER-negative primary and 0 for those

with an ER-positive primary. Estimates of the regression coefficients were obtained by

using the proposed IPWpv and MI (with m = 10) approaches, and were compared to

those obtained with a CC analysis and an ES analysis (i.e. regarding deaths with a

missing cause as due to other non-cancer causes). In all cases, the working correlation
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Figure 4.7: Non-parametric CIF estimates by cause of death, ER status and number of
positive nodes, for the ECOG clinical trial. For the combination ‘ER-negative and 1-3 nodes’
all curves are zero because there were no deaths in this group.

matrix was the identity matrix and the grid of time-points used to calculate the pseudo-

values in each case was determined by the deciles of the event times excluding the first

two, as in the simulation study. The additive model was assumed to be valid for

t ≥ t0 = τ1 = 3.0 years (maximum follow-up time: 9.5 years).

In applying the IPWpv approach, we used the inverse of (4.7) to estimate the weights

because only two binary covariates were involved. We came across a difficulty when

estimating the weights corresponding to the pseudo-values of the only individual pre-

senting an ER-negative primary and less than four nodes. There were no deaths in

this category so these quantities were unidentifiable from the data, whatever the grid

chosen. We thus evaluated the sensitivity of the results to the values of these weights by

performing two analyses where we assigned, to all the pseudo-values of this individual,

either the smallest or the largest of the weights estimated among the pseudo-values of
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all the other individuals. These weights were 1 and 1.35, respectively, in the original

data, and were recalculated for each bootstrap resample when estimating the variance.

Both analyses gave virtually the same results so we present only those for the first

analysis.

When applying the MI approach, the difficulty was to build an imputation model

including the “ER status” indicator because there were no “other cause” deaths among

ER-negative patients. Therefore, the imputation model parameter estimates diverged.

This problem had already been documented by Lu and Tsiatis (2001) who also analyzed

these data. Since the cause of death was known for all ER-negative patients, they

tackled this inconvenience by fitting an imputation model without the “ER status”

variable to the individuals with an observed cause and an ER-positive primary. We

used the same strategy. Thus, the imputation model included as predictors the number

of positive nodes, the time of death and their interaction.

In the IPWpv analysis, the estimator’s variance was obtained via the bootstrap

variance estimator described in Section 4.1.2 with R = 1000 for the additive model

and R = 10000 for the Fine and Gray model, respectively. In each case, R was chosen

to achieve an accuracy to two significant figures in variance estimates. Around 10% of

bootstrap samples were discarded and not replaced in each analysis, as in the simulation

study (i.e. samples with no deaths or no observed deaths before τ1 for a category of the

covariate vector, or with less than two cancer deaths). In the MI analysis, the variance

was estimated by combining sandwich variance estimates obtained from each imputed

dataset. In the CC and ES analyses, the estimators’ variances were obtained from the

sandwich estimator.

The results of these analyses are shown in Table 4.2. In this table, z gives the

ratio between the parameter estimate and its standard error (SE). Since the CC, ES

and IPWpv estimators are asymptotically normal, we report the p-values of standard

two-tailed significance z-tests for these analyses. For MI, two-tailed significance t-tests

were performed, with the degrees of freedom of the reference distribution calculated as

described in Section 3.1. With the Fine and Gray model, all analyses estimated a highly
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significant effect of having an ER-negative primary on the CIF of death from cancer

at a 5% level. For the additive model, this effect translated in all analyses to a highly

significant increase of around 0.5 in the probability of death from cancer for patients

with an ER-negative primary. The latter exemplifies the straightforward ‘excess risk’

interpretation of covariate effects in the additive model. Conversely, the IPWpv and

MI approaches disagreed with the CC analysis on the significance of the effect of having

four or more positive nodes at a 5% significance level when using the Fine and Gray

model. The CC estimate was borderline significant while the IPWpv and MI estimates

were non-significant. Assuming MAR, this difference was due to an overestimation of

the impact of having four or more positive nodes in the CC analysis (β̂ = 0.79 for CC

against β̂ = 0.52 and β̂ = 0.53 for IPWpv and MI, respectively). The ES analysis also

resulted in a moderate overestimation of this effect (β̂ = 0.72), significant at least at a

10% level. The IPWpv and MI approaches corrected these biases. In the additive case,

all analyses led to non-significant estimates at a 5% level.

4.4 Discussion

In the present chapter, we provided a general framework for modeling the CIF with

missing causes of failure. We proposed an alternative to the methodology of Bakoyan-

nis et al. (2010) and also examined the application of their work to a generic approach

for modeling the CIF. Since a large class of models for the CIF can be fit with the

Andersen-Klein approach due to the choice of link function, the two extensions con-

sidered provide a flexible way to improve goodness of fit in this setting. Simulation

results showed that these approaches correct the bias of CC analysis estimates under

relaxed assumptions about the missingness mechanism, both for binary and continuous

covariates. Asymptotic properties for the novel IPWpv estimator followed readily from

results found in the literature. Variance estimators were suggested and evaluated. The

ECOG clinical trial highlighted the practical issues that may arise when implementing

each approach if there is a low frequency for one category of a covariate. In the ECOG
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Table 4.2: Multivariable Fine and Gray and additive models for the CIF of death from
cancer including the ER status and the indicator of the presence of four or more positive
nodes as covariates

Model Covariate Analysis β̂ SE z p-value
Fine and Gray ER status CC 1.85 0.4328 4.286 <0.0001

ES 1.96 0.4456 4.390 <0.0001
IPWpv 1.77 0.4859 3.651 0.0003
MI m=10 1.79 0.4776 3.756 0.0002

>=4 nodes CC 0.79 0.3964 1.990 0.0466
ES 0.72 0.3897 1.842 0.0654
IPWpv 0.52 0.3905 1.339 0.1807
MI m=10 0.53 0.3419 1.543 0.1230

Additive ER status CC 0.51 0.1377 3.690 0.0002
ES 0.54 0.1407 3.853 0.0001
IPWpv 0.51 0.1411 3.621 0.0003
MI m=10 0.51 0.1410 3.616 0.0003

>=4 nodes CC 0.09 0.0539 1.699 0.0893
ES 0.08 0.0508 1.552 0.1207
IPWpv 0.07 0.0561 1.291 0.1968
MI m=10 0.08 0.0546 1.484 0.1378

β̂ is the estimate of the model-specific covariate effect, obtained via a complete
case analysis (CC), an extra state analysis (ES) and the proposed IPWpv and
multiple imputation (MI m=10) approaches.

data, there was a small number of patients with an ER-negative primary. Thus, when

applying IPWpv, it was impossible to estimate some of the weights, and when applying

MI, it was impossible to fit an imputation model including at least all covariates in the

analysis model, as is recommended. We found ways to circumvent these problems while

still being confident about the results obtained.

The two approaches considered are related to two paradigms of dealing with missing

data, IPW and MI, of which there are several comparisons in the literature (see for

example Carpenter et al., 2006; Seaman and White, 2013). When choosing between

the two approaches, there is a trade-off between modeling missingness probability and

the incomplete outcome. In our context, both require modeling a binary variable (M

or D), so the complexity of the task is comparable. Also, both approaches can handle

auxiliary covariates suspected to influence the missingness mechanism that must thus
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be incorporated in the analyses to make MAR-like assumptions plausible. In the IPWpv

approach, such covariates can be included as predictors in the weight estimation process,

either by including them in the covariate vector of estimator (4.7) or, most likely, in a

parametric model like (4.8). In the MI approach, such variables can be included in the

imputation model. Actually, in the ECOG data, two additional binary covariates were

available, the tumor size (≤ 3 cm vs. > 3 cm) and the treatment group (placebo vs.

tamoxifen). However, these variables were not significant predictors of missingness nor

of the cause of death, and when they were included in the IPWpv and MI analyses as

described, the results were not affected. We thus decided to exclude these covariates

from the final analyses: in the implementation of IPWpv, this strategy enabled the

use of the preferred non-parametric estimator (4.7) because the number of covariates

was low (see below); for MI, it avoided the loss of efficiency that could arise from the

inclusion of non-significant predictors in the imputation model (Schafer, 2003).

In the literature, the principal argument against IPW estimators is their lack of

efficiency, at least compared to MI (Carpenter et al., 2006; Seaman and White, 2013).

Standard IPW approaches are inefficient partly because only the data of the individ-

uals with complete data are included in the estimating equations. In our approach,

the IPWpv’s of individuals with missing cause, which rely on the pseudo-values of the

modified CIF F̃1, are included in the regression equations, and their data are also ac-

counted for when calculating the IPWpv’s of all other individuals. Thus, contrasting

with standard IPW methods, our approach incorporates the partial information avail-

able from the incomplete cases about the competing risks process (vital status, failure

time and covariates) in the estimating equations through the pseudo-values of F̃1. This

may explain why, in our simulation study, the efficiency of IPWpv was comparable to

that of MI. Also, it has been noted that the performance of IPW estimators when using

a parametric model depends on this model being correctly specified. Otherwise, esti-

mates may be biased and the problem of unstable weights may arise. This is a major

reason why the non-parametric estimator (4.7) is preferable when dealing with a few

discrete finite-ranged covariates, like in our simulations and in the ECOG example, as
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it avoids the problems of misspecification. Actually, this estimator, equal to the (con-

ditional) relative frequency of observed causes, corresponds to the maximum likelihood

estimator of the corresponding probability, and therefore it is optimal in terms of ef-

ficiency, at least asymptotically. To deal with continuous covariates while keeping the

benefits of the non-parametric approach, non-parametric smoothing techniques could

be considered (Song et al., 2010). Otherwise, when choosing a parametric approach, it

would be desirable to apply weight stabilization techniques or to consider a so-called

doubly-robust extension.

The main drawback of MI is that both a correctly specified imputation model and

congeniality are required to warrant unbiased estimates, particularly for the variance.

The latter conditions can be easily violated in practice: misspecified models are the

rule rather than the exception, and uncongeniality arises easily in this context because

specifying the cause of failure distribution already partially determines the CIF (cf.

Chapter 7 for more discussion about this point). Another situation where uncongenial-

ity may easily arise is when the person imputing the data is different from the person

who analyzes the imputed datasets, as is sometimes the case (Meng, 1994). Thus,

building an appropriate imputation model is generally not a straightforward task. Nev-

ertheless, the missing cause of failure literature seems to suggest that MI is quite robust

to misspecification of the imputation model, if the latter includes all important predic-

tors and interaction terms (Lu and Tsiatis, 2001; Bakoyannis et al., 2010). This was

confirmed by our simulation study, in which a misspecified but rich imputation model

led to approximately unbiased coefficient estimates. However, the use of a misspecified

model also led to a varying efficiency of MI relative to IPWpv, with small fluctuations

depending on the scenario being investigated. Of course, this empirical finding should

be interpreted carefully because our simulation set-up was unfavorable for MI compared

to IPWpv: for the former a misspecified parametric model was used to impute while

for the latter a non-parametric model was used for the weights. Surprisingly, variance

estimates obtained from Rubin’s formula were also approximately unbiased in our sim-

ulations even though we did not use the bootstrap to correct for bias as advocated by
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Bakoyannis et al. (2010).

The ES analysis was not considered for comparison in the simulation study, but the

ECOG application exemplified the pitfalls of this ad-hoc approach which were already

mentioned in Section 2.3.1. As seen in Table 4.2, for both models the effect of having

an ER-negative primary was overestimated by the ES analysis. Since all patients with a

missing cause were ER-positive, coding their deaths as due to other non-cancer causes

led to an underestimation of the CIF of cancer death in this group while the CIF

of cancer in the other group was not affected, leading to the observed biases. On

the other hand, the effect of having four or more positive nodes was only moderately

overestimated in the Fine and Gray model, and correctly estimated in the additive

model. In this case, there was an equal number of failures with missing cause in each

category of the covariate. Therefore, when coding these failures as due to non-cancer

causes, the cancer CIFs in both groups were underestimated to approximately the same

extent, resulting only in small or no biases. Finally, the high precision of the estimates

obtained with the ES approach is misleading because the uncertainty concerning the

missing causes is completely disregarded. These results confirm that, although at first

this approach may seem more sound than a CC analysis, it can lead to similarly spurious

results and is highly inadvisable.

Regardless of the limitations of IPWpv and MI, both approaches provide a con-

siderable gain compared to ad-hoc methods in terms of bias correction and precision

under relaxed assumptions about the missingness mechanism, and should therefore be

considered in a primary analysis. When dealing with a few discrete covariates, we rec-

ommend using the IPWpv approach. In these settings, IPWpv is easily implemented,

without the need to build a complicated model for the weights nor the need to perform

imputations. Indeed, the non-parametric estimator (4.7) for the probabilities can be

used and thus the issues arising from misspecification such as bias, unstable weights

and loss of efficiency are avoided. With more complex covariate structures, the use of

estimator (4.7) becomes unfeasible. Therefore, MI should be used instead; although we

did not explore the issue here, in the literature IPW approaches have been found to
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be more sensitive to misspecification of the missingness probability model, particularly

due to the problem of unstable weights (Seaman and White, 2013), while MI seems

to be robust to imputation model misspecification provided the latter is rich enough.

A further explanation for this difference was mentioned by Molenberghs and Kenward

(2007, Chapter 11), who noted that in IPW approaches all subjects are assigned weights

so misspecification of the weight model will affect all of them. In MI, misspecification of

the imputation model will affect subjects with missing data but not those with complete

data.

Approaches for handling missing data are meant to allow data analysts to achieve

the results that they would have obtained with the method that they would have chosen

if there were no missing data. Although there are other approaches to model the CIF

when all causes of failure are observed (cf. Section 2.2.3), here we focused on extending

the Andersen-Klein pseudo-value approach to the missing cause setting. Thus, before

using the missing data methods proposed in this work, the analyst has to determine

whether he or she would use the pseudo-value approach if there were no missing causes.

In the following, we attempt to clarify the advantages and limitations associated with

this approach.

The Andersen-Klein pseudo-value approach presents simultaneously several valuable

advantages compared to other available regression approaches for the CIF. First, the

approach can be easily implemented using readily available software (see Andersen and

Perme, 2010; Gerds, 2011). Second, it allows to fit a large class of models for the

CIF due to the possibility to choose a link function. Concerning this choice, here

we closely examined two possibilities, the Fine and Gray (cloglog link) and additive

(identity link) models. An alternative is the recently proposed ‘absolute risk model’

which corresponds to a logarithmic link function (Gerds et al., 2012). To evaluate the

choice of link, goodness of fit tests or diagnostic plots could be performed (Klein, 2006;

Fine and Gray, 1999; Klein and Andersen, 2005). In fact, in addition to allowing flexible

modeling through the choice of a link function, a third advantage of the Andersen-Klein

approach is that it provides the user with an outcome variable which may be used
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for graphical goodness of fit assessment (see for example Andersen and Perme, 2010).

However, all of these goodness-of-fit assessment techniques require fully-observed causes

of failure, so an adaptation to the missing cause setting should be further explored. In

any case, inclusion of time-by-covariate interactions is likely to improve fit.

The Andersen-Klein pseudo-value approach has some limitations, particularly re-

garding the underlying assumptions about the censoring mechanism. Indeed, as men-

tioned in Section 4.1.1, a condition required to obtain consistent estimates with this

approach is that the censoring times be stochastically independent of the failure time,

the cause of failure and the covariates. This is a stronger assumption than the usual

assumption of ‘independent censoring’ (cf. Section 2.2.1). The independence of the

censoring times from the failure times and causes of failure can of course be unfeasi-

ble in some situations. However, the rigorous study of whether this condition may be

relaxed has not yet been addressed in the pseudo-value literature and would probably

need further consideration. In any case, the extent of the dependence between these

variables cannot be assessed from the observed data so such assumptions are unveri-

fiable (Tsiatis, 1975). Thus, as when dealing with missing data, sensitivity analyses

should be performed to assess the robustness of inferences to these assumptions. More

work is needed on how such an analysis might be performed in our setting, but this is

outside the scope of this manuscript.

On the other hand, Binder et al. (2012) explored the performance of the Andersen-

Klein pseudo-value approach when the assumption of independence between the censor-

ing times and the covariates is violated, a situation which may be common in practice.

Briefly, they found that the estimates obtained using pseudo-values are no longer un-

biased under covariate-dependent censoring, but the induced bias was very small in

all of the scenarios they studied (|MRB| ≤9% in their simulation study; |MRB| ≤24%

in a sensitivity analysis for their real data analysis). The authors propose to correct

this bias by calculating the pseudo-values using a modified Aalen-Johansen estimator,

which is weighted by the inverse of the probability of censoring. To assess the need for

this extended method, the assumption of covariate-independent censoring can be eval-
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uated by fitting a Cox model for the censoring times to determine which variables are

significant predictors of censoring. A Cox model can also be used to obtain estimates of

the censoring probabilities if the extended approach is to be used. If these alternative

pseudo-values satisfy properties (P1) and (P2) - something that remains to be shown

formally - then the IPWpv and MI approaches would still be valid and could be applied

in the same way as described here.





Chapter 5

Direct likelihood for competing risks

Several authors have addressed the problem of fitting semi-parametric regression models

for the cause-specific hazard (CSH) in the missing cause of failure setting under the

MAR assumption (cf. Section 2.3.2). On the other hand, parameter estimation for

fully-parametric models of the form (2.2) with missing causes has received no attention

despite the potential usefulness of these models in many applications. In this chapter,

we propose a direct likelihood approach for fitting these and other parametric competing

risks regression models when the missingness mechanism is assumed to be MAR. More

precisely, we show how the concept of ignorability mentioned in Section 1.3.2 applies in

this setting, when, in addition to MAR, random censoring and a parameter separability

condition are assumed (Section 5.1). Using this result, we derived expressions for the

likelihood in terms of several interesting functionals in competing risks, making the

fitting of parametric models for these quantities straightforward (Section 5.2). The

chapter ends with some concluding remarks (Section 5.3).

5.1 Ignorability

In this section, we use arguments similar to those of Little and Rubin (1987, Section

5.3) to demonstrate the ignorability of the missingness and censoring mechanisms in

the competing risks setting with missing causes under the set of assumptions presented

103
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next. We emphasize that all of the arguments in this chapter rely on the assumption

that X and W include all the covariates that act on the competing risks/censoring and

missingness mechanisms, respectively. In particular, all the covariates that influence

all three mechanisms simultaneously must be included in X. Consider the following

assumptions:

(A1) The missing cause mechanism is MAR.

(A2) The censoring mechanism is random, i.e. (T,D) is independent of C given X.

(A3) The parameter vectors of the competing risks, censoring and missingness mech-

anisms, denoted by θ, δ and ψ respectively, are distinct (cf. Section 1.3.2).

The target of inference is the parameter indexing f(t, d|X), i.e. θ. Next we will

show that, under assumptions (A1)-(A3), valid direct likelihood inferences about θ can

be performed by ignoring the missingness and censoring mechanisms, provided that all

the available data are used in the likelihood construction as detailed below.

Inferences about any component of ϕ = (θ, δ,ψ) can be made only from the ob-

served data, which consist of (T̃i, Ui,Xi,Wi) for censored individuals, (T̃i, Di, Ui,Mi,Xi,

Wi) for uncensored individuals with observed cause and (T̃i, Ui,Mi,Xi,Wi) for uncen-

sored individuals with missing cause. The data of different individuals are assumed to

be i.i.d. given the covariates. Thus, the observed data likelihood is L(ϕ) =
∏n

i=1 Li(ϕ),

where the contribution to the likelihood of individual i, Li(ϕ), is proportional to condi-

tional joint density of his observed data given the covariates. For censored individuals,

for whom T̃i = Ci and Ui = 1, we have:

Li(ϕ) ∝ f(t̃i, ui = 1|xi,θ, δ)

= f(ci, ui = 1|xi,θ, δ)

= P (Ti > ci|xi,θ)f(ci|xi, δ). (5.1)
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For uncensored individuals with observed cause of failure, for whom T̃i = Ti and

Ui = 0, we have:

Li(ϕ) ∝ f(t̃i, di, ui = 0,mi|xi,wi,θ, δ,ψ)

= f(ti, di, ui = 0|xi,θ, δ)f(mi|ti, di, ui = 0,wi,ψ)

= f(ti, di, ui = 0|xi,θ, δ)f(mi|ti, ui = 0,wi,ψ) (5.2)

= f(ti, di|xi,θ)P (Ci > ti|xi, δ)f(mi|ti, ui = 0,wi,ψ). (5.3)

Finally, for uncensored individuals with missing cause of failure, for whom T̃i = Ti

and Ui = 0, the density is obtained by integrating over the missing data, i.e. summing

over the set of all possible values of the unobserved Di:

Li(ϕ) ∝ f(t̃i, ui = 0,mi|xi,wi,θ, δ,ψ)

=
∑
j=1,2

f(ti, di = j, ui = 0,mi|xi,wi,θ, δ,ψ)

=
∑
j=1,2

{f(ti, di = j, ui = 0|xi,θ, δ)f(mi|ti, di = j, ui = 0,wi,ψ)}

=
∑
j=1,2

{f(ti, di = j, ui = 0|xi,θ, δ)} f(mi|ti, ui = 0,wi,ψ) (5.4)

=
∑
j=1,2

{f(ti, di = j|xi,θ)}P (Ci > ti|xi, δ)f(mi|ti, ui = 0,wi,ψ) (5.5)

= f(ti|xi,θ)P (Ci > ti|xi, δ)f(mi|ti, ui = 0,wi,ψ). (5.6)

Equalities (5.2) and (5.4) follow from (A1). Equalities (5.1), (5.3) and (5.5) fol-

low from (A2). The main consequence of these deductions is that the observed data

likelihood factorizes as

L(ϕ) = L1(θ)L2(δ)L3(ψ).

This fact coupled with the distinctness of the parameters - assumption (A3) - implies

that inferences about θ may be based solely on L1(θ). That is, inferences about θ may
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be performed by ignoring the second factor of (5.1) and the second and third factors of

(5.3) and (5.6), i.e. by ignoring the censoring and missingness mechanisms.

5.2 Expressions for the likelihood

As a consequence of the arguments in the previous section and the relations between the

basic competing risks quantities (cf. Section 2.2), particularly that fj(t) = λj(t)S(t)

and f(t) = λ(t)S(t), L1(θ) may be written in terms of the CSHs as follows:

L1(θ) =
n∏
i=1

{∑
j∈Ji

λj(t̃i|xi)

}1−ui

× exp

{
−
∫ t̃i

0

λ1(u|xi) + λ2(u|xi).du

}
, (5.7)

where Ji := {di} if mi = 0 and Ji := {1, 2} if mi = 1 .

Note that the contribution of individuals with a missing cause is based on f(t|X) =

λ(t|X)S(t|X), so they provide information only about the occurrence of failures, all-

causes combined, and thus about the distribution of T . With fully-observed causes of

failure, the latter expression reduces to the known likelihood with random censoring:

the contribution of censored individuals is based on S(t|X), providing information only

about survival, and thus about the distribution of T ; and the contribution of individuals

with an event of type j is based on fj(t|X) = λj(t|X)S(t|X), providing information

about the occurrence of cause j failures, and thus about the joint distribution of T and

D (Prentice et al., 1978).

The likelihood function L1(θ) can be rewritten in terms of the cumulative incidence

functions (CIFs) by considering that λj(t) = d
dt
Fj(t)/S(t), λ(t) = d

dt
{F1(t)+F2(t)}/S(t)

and S(t) = 1− F1(t)− F2(t). Then we have

L1(θ) =
n∏
i=1

{∑
j∈Ji

d

dt
Fj(t̃i|xi)

}1−ui

×
{

1− F1(t̃i|xi)− F2(t̃i|xi)
}ui . (5.8)

With fully-observed causes of failure, this expression reduces to the likelihood function

presented by Jeong and Fine (2007).
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A third way of rewriting this likelihood is to consider the so-called vertical modeling

factorization fj(t) = f(t)rj(t), where rj(t) = P (D = j|T = t) is called the relative

hazard (Nicolaie et al., 2010, 2011). This yields λj(t) = λ(t)rj(t) and thus

L1(θ) =
n∏
i=1

λ(t̃i|xi)1−ui×exp

{
−
∫ t̃i

0

λ(u|xi).du

}
×

{∏
j∈Ji

rj(t̃i|xi)

}(1−ui)(1−mi)

. (5.9)

The ingredients of this expression, the all-cause and relative hazards, are the main focus

of the vertical modeling approach to the study of competing risks. Actually, expression

(5.9) reduces to the usual vertical modeling likelihood when there are no missing causes

of failure (Nicolaie et al., 2010).

Expressions (5.7) and (5.8) may be used directly for fitting parametric regression

models for the CSHs and the CIFs, respectively, yielding unbiased and fully-efficient

estimates of covariate effects under assumptions (A1)-(A3). These expressions could

also potentially be used as a basis for constructing partial likelihoods for fitting semi-

parametric models for these quantities. On the other hand, expression (5.9) is the basis

for vertical modeling of competing risks with missing causes of failure as proposed by

Nicolaie et al. (2011).

5.3 Discussion

In this chapter, we presented the construction of the likelihood for competing risks with

missing causes of failure under MAR, random censoring and a parameter separability

condition, concluding that the missingness and censoring mechanisms can be ignored

under these assumptions. In addition to making the fitting of parametric models for

several interesting functionals straightforward, the rationale underlying this construc-

tion is interesting in is own right as it enhances our understanding of each individual’s

contribution to inferences according to their status (Klein and Moeschberger, 2003,

Section 3.5). Although this construction has been briefly outlined elsewhere (Nicolaie

et al., 2011), we are not aware of any work presenting the expressions of the likelihood
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in terms of the CSHs and the CIFs that we provided in Section 5.2. Since the latter

are useful mainly for fitting parametric models, a possible explanation for this void in

the literature is the preference for semi-parametric models in the biomedical context.

The contents of this chapter are mainly theoretical. The practical implementation

and evaluation of the proposed approach through simulation experiments are the ob-

ject of ongoing research. Since we are dealing with parametric models, one key aspect

to explore will be the impact of model misspecification on inferences. The future ap-

plication of this approach to the ECOG clinical trial will enable a comparison with

the approaches of Goetghebeur and Ryan (1995) and Lu and Tsiatis (2001) in a real

dataset.

An important difference between (5.7) and the CSH-based likelihood function with

fully-observed causes of failure is that (5.7) does not factorize into two factors, one

depending solely on the the CSH of cause 1 and the other solely on the CSH of cause

2. In the setting without missing causes, this factorization is what, in part, justifies

that a CSH analysis for one cause be performed by censoring failures from other causes

(cf. Section 2.2.2). With missing causes, the individuals with unknown cause of failure

provide information about the all-cause hazard, which contains information about both

CSHs, and this is what prevents such a factorization. On the other hand, the CIF-based

likelihood (5.8) does not factorize into two factors, each expressed in terms of the CIF

of one cause, even in the setting with fully-observed causes of failure.

Vertical modeling consists in modeling the all-cause and relative hazards instead

of the CSHs or CIFs, providing an alternative angle from which the competing risks

mechanism can be understood. Note that the likelihood (5.9) factorizes into two fac-

tors, each expressed in terms of solely one of the vertical modeling functionals. Hence,

Nicolaie et al. (2010, 2011) argue that the vertical modeling approach is easy to im-

plement because a model for each quantity can be fitted separately by maximizing

the corresponding factor using available software. However, even in the scenario with

fully-observed causes of failure, the latter approach requires a further separability con-

dition between the parameters of the all-cause hazard λ(t|X) and the relative hazards
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rj(t|X) = λj(t|X)/λ(t|X), j = 1, 2, which may be an odd requirement considering the

intimate relation between these functionals. In the relative hazard of a given cause,

say cause 1, the parameters of λ1(t|X) appear in both the numerator and denomina-

tor, so one may consider that they ‘cancel’ out. On the other hand, the parameters of

λ2(t|X) appear only in the denominator of r1(t|X) and will thus generally be shared

with λ(t|X) = λ1(t|X)+λ2(t|X). For an explicit example, see the data generation mod-

els in the simulation study of Lu and Tsiatis (2001), which are easily seen to violate

this separability condition. When the separability condition is violated, the estimates

obtained using the approach of Nicolaie et al. (2011) are no longer fully-efficient. The

loss of efficiency stems from an increase in the number of parameters to estimate (see

Shih’s discussion to Diggle and Kenward, 1994; Rubin, 1976; Altham, 1984; Shih, 1992).

Hence, if the separability condition does not hold, the entire likelihood (5.9) must be

considered simultaneously to obtain fully-efficient estimates. Note that this remark

applies even with fully-observed causes of failure.

Another approach that could be used to fit parametric competing risks models under

MAR is multiple imputation (MI) (cf. Section 3.1). Actually, the same procedure of

Bakoyannis et al. (2010) described in Section 4.1.3 could be used, the difference being

that the analysis model would be the parametric model of interest. The latter would

be fitted to each completed dataset by maximizing the likelihood derived with fully-

observed causes of failure. With correctly-specified imputation and analysis models, the

MI estimator will approximate the direct likelihood estimator while being less efficient

(Schafer, 1999). However, MI may be valuable when there is no desire to include some

covariates that influence both the competing risks and missingness mechanism in the

competing risks model. Indeed, such covariates may be included in the imputation

model and then excluded from the models fitted to each completed dataset. The main

interest of MI is, however, that once the data are imputed, any model for any quantity

may be fitted, including semi-parametric models as shown for the CIF in Chapter 4. MI

is also a valuable tool for performing sensitivity analyses as will be shown in Chapter

7.
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Chapter 6

Sensitivity analyses for continuous

longitudinal data with drop-outs

When modeling longitudinal data with drop-outs, unbiased and fully-efficient regres-

sion coefficient estimates can be obtained by a direct likelihood approach under the

assumption of an ignorable drop-out mechanism (cf. Section 1.3.2). However, the plau-

sibility of the underlying MAR assumption cannot be assessed from the observed data

(cf. Section 1.3.4). Thus, sensitivity analyses should be routinely performed to assess

the robustness of inferences to departures from this assumption. However, no standard

method exists nor should be prescribed as this is still an active area of research (Carroll

et al., 2004). In this chapter, we propose an approach to perform such analyses in the

setting where the available data are described by means of a linear mixed model (LMM)

in a primary analysis assuming MAR. We consider a family of MNAR pattern-mixture

models (PMMs) indexed by a so-called sensitivity parameter as the basis to explore the

sensitivity of inferences made about a parameter of interest. To specify these models,

the analyst must make explicit assumptions about the aspects of the missing data dis-

tribution that may diverge from the observed data distribution and affect the parameter

under investigation. Thus, our approach targets a fundamental question in a sensitivity

analysis: How are MAR-based inferences on the parameter of interest affected if the

113
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missing and the observed data come from different distributions?

In Section 6.1 we provide some background regarding sensitivity analyses based on

sensitivity parameters. The proposed methodology is described in Section 6.2. The

performance of the approach was explored in a simulation study, the findings of which

are presented in Section 6.3. In Section 6.4 we present the analysis of the SMI study

(cf. Section 1.1), which actually motivated the proposed methodology. This case study

illustrated the practical value of our approach and underlined the need for sensitivity

analyses when modeling longitudinal data with drop-outs. Some elements for discussion

and concluding remarks are given in Section 6.5.

6.1 Background on sensitivity parameters

As mentioned in Section 1.3.4, one possible road to sensitivity analyses is to consider a

family of MNAR models indexed by a scalar or vector parameter that is varied across a

set of plausible values. To further explain this idea in the context of PMMs, we consider

the setting of longitudinal data with drop-outs and closely follow the ideas of Daniels

and Wang (2009) and Hogan (2009). Following the notation introduced in Chapter 1,

let ϕ denote the parameter vector of the joint density of the outcomes and the drop-out

indicator, f(yO,yM, u). Usually, the target parameter of inference θ is a function h of

this parameter: θ = h(ϕ). Omitting covariates, this joint density can be written as

follows:

f(yO,yM, u|ϕ) = f(yO, u|ϕ)× f(yM|yO, u,ϕ).

The first factor, f(yO, u|ϕ), represents the model for the observed data; the second fac-

tor, f(yM|yO, u,ϕ), represents the model for the conditional distribution of the missing

data given the observed data, henceforth called the extrapolation model. While the for-

mer is identifiable from the observed data, the latter is not because yM is not observed.

Hence, additional assumptions are required to identify the extrapolation model, and

such assumptions are not verifiable from the observed data because they relate strictly



6.1. BACKGROUND ON SENSITIVITY PARAMETERS 115

to the missing data. Furthermore, inferences about ϕ depend on these unverifiable as-

sumptions concerning the extrapolation model. The goal of a sensitivity analysis in the

present context is to assess the sensitivity of inferences about the parameter of interest

θ to these particular assumptions.

PMMs lend themselves well to such analyses because, as mentioned in Section

1.3.3, the fitting of PMMs requires making explicit assumptions about the extrapo-

lation model. Moreover, it is possible to parametrize these models in such a way that

ϕ = (φ,κ) where κ does not appear in the observed data model, so that this model is

indexed solely by φ and the extrapolation model is indexed by (φ,κ):

f(yO,yM, u|φ,κ) = f(yO, u|φ)× f(yM|yO, u,φ,κ). (6.1)

The implications of this parametrization are the following. First, given a fixed value

of φ, any value of κ yields the same fit to the observed data, i.e. the observed data

likelihood, L(φ,κ|yO, u), regarded as a function of κ, is constant. Hence, κ is not

identifiable. Second, L(φ,κ|yO, u) regarded as a function of φ is non-constant, so this

parameter is identifiable. Finally, the parameter of interest, θ = h(φ,κ), (generally)

depends on the unidentifiable parameter κ. To summarize, different values of κ yield

the same fit to the observed data, but also imply different extrapolation models and

(generally) different values for the parameter of interest. A parameter with such prop-

erties is called a sensitivity parameter because it “embodies” the source of differences in

inferences observed under different (unverifiable) assumptions about the extrapolation

model.

Sensitivity analyses can therefore be performed by varying κ over a range of values

and assessing the differences between the resulting inferences and those obtained in

a primary analysis. Often, it is possible to find sensitivity parameters that have an

intuitive interpretation, so that subject-matter experts can be consulted about plau-

sible ranges of values for these parameters. In this chapter and in Chapter 7, where

sensitivity analysis approaches are proposed for longitudinal data with drop-outs and
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competing risks with missing causes of failure, respectively, we consider primary anal-

yses that assume MAR. When studying MAR multiple imputation (MI) approaches in

these two settings (Chapters 3 and 4), it was shown that MAR is equivalent to the

assumption that the observed and missing data have the same distribution. We chose

parametrizations such that κ = 0 was equivalent to the MAR assumption, and actually

corresponded to the primary analysis model. Thus, κ 6= 0 implied a departure from

the MAR assumption, and the value of κ actually quantified an interpretable difference

between the distributions of the observed and missing data. In such settings, sensitivity

parameters are often termed informativity parameters as they quantify the extent to

which the drop-out mechanism is informative, which is another name for MNAR.

While PMMs can be easily parametrized in terms of sensitivity parameters, selec-

tion and shared-parameter models, at least fully-parametric ones, generally cannot be

formulated in terms of such parameters (Daniels and Wang, 2009; Hogan, 2009). The

latter is why some authors view the PMM framework as the most suitable for assessment

of sensitivity (Daniels and Hogan, 2000; Daniels and Wang, 2009; Hogan, 2009).

6.2 Methodology

6.2.1 A family of PMMs for longitudinal data

In this chapter we omit the auxiliary covariate matrix W, and assume that the matrix

X already includes all the covariates influencing the drop-out mechanism. The family

of PMMs considered relies on the assumption that the outcomes arise from a mixture

of two distributions: the observed data distribution and the missing data distribution.

Thus, we distinguish only between missing and observed outcomes by considering the

missingness indicators Rij := I(Ui ≤ j). More precisely, we consider LMMs of the form

Yij = X′ijβ + Z′ijbi + κRij + εij, εij ∼ N(0, σ2), bi ∼ N(0,G), (6.2)
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where, apart from the term κRij, the notation and assumptions are the same as in

Section 1.2.2. The first part of the linear predictor, X′ijβ + Z′ijbi, and the variance

parameters, σ2 and G, completely determine the distribution of the observed outcomes,

for which Rij = 0. The parameters involved are identifiable from the observed data,

and may be estimated by fitting the LMM implied by (6.2) for the observed data to

these data by maximum likelihood. On the other hand, the distribution of the missing

outcomes is identified up to parameter κ, which is a sensitivity parameter. Indeed,

this parameter does not appear in the observed data model, and only appears in the

extrapolation model. Hence, this parameter is not identifiable from the observed data.

Thus, the model in (6.2) corresponds to a parametrization of the type represented in

(6.1).

In the family of PMMs represented by (6.2), it is assumed that the distributions of

the missing and observed outcomes are the same up to a shift in the expected value,

which is quantified by parameter κ. The MAR assumption is equivalent to the assump-

tion that the missing and observed outcomes have the same distribution, and hence is

equivalent to assuming that κ = 0. Therefore, this family of PMMs can be thought

of as being ‘centered’ at MAR, with κ quantifying the degree of departure from this

assumption. Thus, κ may also be called an informativity parameter. Finally, if the

primary analysis assumes MAR and that the data are described by an LMM like (6.2)

without the term κRij, then κ also quantifies the departure from the primary analysis

model.

The interest of this family of models is that κ has an intuitive interpretation as a shift

in an expected value and can be allowed to depend on the covariates, i.e. κ = κ(Xij).

The function κ(Xij) can be specified in order to closely reflect the key characteristics

of the missing data distribution that may differ from the observed data distribution

and affect the parameter of interest. For instance, suppose that the parameter of

interest is the effect of a fixed binary (0/1)-coded covariate measured at baseline on the

expected change from baseline of the outcomes at visit J . Suppose that this covariate

is represented in the lth component of Xi1, Xi1l (= Xi2l = · · · = XiJl). Then an
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appropriate choice would be κ(Xij) = kXi1l
where kXi1l

is a group-specific positive or

negative constant. With this choice, the distribution of the missing data is obtained by

shifting the covariate effect of the observed data distribution (or the intercept, if k0 =

k1), while holding the other parameters fixed. Another possibility is to take κ(Xij) =

kXi1l
tj, with tj the time of the jth measurement, in particular if the main parameter of

interest is the effect of the covariate on the expected rate of change of the outcome (i.e.

the coefficient of the time-by-covariate interaction). With this choice, the distribution of

the missing outcomes has a higher or lower time-by-covariate interaction (or time-slope,

if k0 = k1) than the distribution of the observed data. Whatever the choice, varying k0

and k1 over a range of plausible values will define a family of MNAR models specifically

designed to provide insight into the sensitivity of inferences made about the parameter

of interest to departures from MAR. Of note, k0 and k1 are themselves informativity

parameters.

Multidimensional parametrization of κ(Xij) could also be envisioned. For instance,

in the example above one could consider a combination of the two possibilities described,

defining κ(Xij) = k(1)

Xi1l
+ k(2)

Xi1l
tj. Thus, the space of informativity parameters is now

two-dimensional, meaning that two informativity parameters, k(1)

Xi1l
and k(2)

Xi1l
, must now

be varied for each group across a range of plausible values. With this choice, the

group-specific intercepts and slopes of the missing data distribution are simultaneously

controlled, differing from those of the observed data distribution for non-null values of

the informativity parameters.

Similar ideas have been explored in the univariate data setting (White et al., 2007;

Resseguier et al., 2011) and evoked in the longitudinal data setting (Carpenter and

Kenward, 2007; National Research Council, 2010), with some closely related approaches

having been proposed (Daniels and Hogan, 2000; Ratitch et al., 2013).
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6.2.2 Practical implementation

PMMs assume that the data arise from a mixture of several distributions, generally one

for each drop-out occasion. Thus, as briefly mentioned in Section 1.3.3, averaging over

the distribution of the drop-out indicator is necessary to obtain estimates of parameters

describing the marginal distribution of the responses, that is, the distribution of Y not

conditioned on the drop-out indicator, which are usually the parameters of interest.

A practical, unified approach to achieve this whatever the choice of κ(Xij) is to use

MI: the imputation model is given by the assumed PMM and the analysis model de-

scribes the marginal distribution of the responses. Using MI as a means for averaging,

the procedure proposed to perform sensitivity analyses based on the family of PMMs

described, consists in repeating the following steps for several choices of κ(Xij):

Step 1 Fit the LMM (6.2) without the term κRij to the available data using maximum

likelihood.

Step 2 Impute the missing outcomes m times by drawing values from the LMM (6.2),

using the parameter estimates obtained in Step 1 and the chosen κ = κ(Xij).

This yields m completed datasets.

Step 3 Estimate the marginal scalar or vector parameter of interest θ and its variance

from each completed dataset by using a complete data method.

Step 4 Using Rubin’s formulas, combine the m parameter and variance estimates

yielded by Step 3 to obtain a final estimate of θ and its variance, construct CIs

and perform hypothesis tests.

Note that Step 1 corresponds to the primary analysis and does not have to be

repeated for each choice of κ(Xij). By repeating Steps 2-4 for several choices of κ(Xij)

and comparing the results obtained, the robustness of inferences about θ to departures

from the MAR assumption can be assessed. Graphical inspection of the results obtained

by using so-called sensitivity plots can be useful, as will be illustrated in the analysis

of the SMI study.
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In principle, Steps 1 and 3 are straightforward using available software, e.g. use

package lme4 in R (Bates et al., 2012) or PROC MIXED in SAS (SAS Institute Inc.,

2003) for Step 1. Step 4 is performed by applying the formulas presented in Section

3.1. Finally, Step 2 can be performed by using a modified version of the MI procedure

described Section 3.2. The modification consists in replacing step (b) by:

(b’) For each missing outcome Yij, calculate the linear predictor implied by (6.2) and

the chosen κ(Xij):

η
(l)
ij = X′ijβ

(l) + Z′ijb
(l)
i + κ(Xij)Rij.

Note that the estimates β̂, v̂ar(β̂), σ̂2, b̂i and v̂ar(b̂i) (i = 1, . . . , n) required by the

imputation procedure are those obtained in Step 1.

Of course, the modified imputation procedure coincides with the original imputation

procedure of Section 3.2 when κ(Xij) = 0. Recall that the latter was implemented as a

method to be passed on to the function mice of the R mice package (van Buuren and

Groothuis-Oudshoorn, 2011). Thus, to implement the modified procedure it suffices to

modify the imputations yielded by mice with the original procedure by adding κ(Xij).

Example R code, showing how to obtain the desired imputations following (6.2) with

the functions for the original procedure, can be found in the Supplementary Material

of the corresponding published manuscript (Moreno-Betancur and Chavance, 2013).

Recall from Section 3.1 that, in principle, the imputation and analysis models must

be congenial to obtain valid inferences with MI. When imputing with a PMM like (6.2)

and analyzing with a model for the marginal distribution of the outcomes, congeniality

is violated because the former includes R as a predictor while the latter does not.

Nevertheless, as pointed out by Meng (1994) and Molenberghs and Kenward (2007),

this is not catastrophic; allowing for this violation makes MI a valuable tool in several

situations, particularly when performing sensitivity analyses. Some previous examples

of MI in the latter setting can be found in the literature (Little and Yau, 1996; Minini

and Chavance, 2004a). Furthermore, uncongenial procedures in which the imputation
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model is more general than the analysis model yield valid parameter estimates (Schafer,

1999). On the other hand, several authors have shown that when the imputation model

is misspecified or when the imputation and analysis models are uncongenial, Rubin’s

variance estimator (3.2) may be biased (Meng, 1994; Robins and Wang, 2000). The

behavior of the MI inferences yielded by the proposed procedure will be assessed in the

simulation study presented next.

6.3 Simulation study

We performed a simulation study to explore the performance of the proposed approach.

The study design was exactly the same as in the simulation study of Chapter 3. We

considered the realistic situation where the family of models defined by (6.2) does not

include the true model for the outcomes given the covariates and R that is induced

by the data generation process. For this purpose, we simulated MNAR data under

a selection model, that is, by generating data according to the design described in

Section 3.3.1 and then assigning each individual a drop-out probability at each visit

that depended on the current outcome. Then, we obtained inferences on θ under several

scenarios by following our procedure, that is, by assuming a PMM from family (6.2)

for several choices of κ = κ(Xij). In performing this analysis, we first identified a

scenario in which the assumed PMM was a good approximation of the true selection

model used to generate the data in the sense that it led to an unbiased estimate of θ.

This allowed us to assess the inferences obtained with our procedure when the assumed

model was close to the true model regarding the parameter of interest θ. Then, taking

the latter scenario as reference, we assessed the behavior of the inferences obtained with

increasing departures from the true model. Particular emphasis was given to evaluating

the performance of the MI variance estimator in this setting in which the imputation

model was misspecified and the congeniality condition was violated.
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6.3.1 Simulation of drop-outs

We considered two types of MNAR drop-out mechanisms, assuming that the baseline

outcome was observed for all individuals. In the first type of mechanism, drop-out

probability depended on the first missing outcome, with subjects with higher values

having a smaller probability of dropping out than those with lower values (henceforth

called the MNAR1 mechanism) or vice-versa (MNAR2 mechanism). In the second

type of mechanism, the drop-out probability depended on the first missing outcome

and the individual’s group. More precisely, two scenarios were considered: first, sub-

jects in the treatment group had a 0.1 marginal probability of dropping out whereas

those in the control group had a 0.4 probability, and within each group, the probabil-

ity of dropping out was lower for individuals with higher values than for those with

lower values (MNARG1 mechanism); second, subjects in the treatment group had a 0.4

marginal drop-out probability whereas those in the control group had a 0.1 probability,

and within each group, the probability of dropping out was higher for individuals with

higher values than for those with lower values (MNARG2 mechanism).

For each mechanism, the probability of dropping out was the same at each visit,

except baseline. For the MNAR1 and MNAR2 scenarios, in which drop-out probability

depended only on outcome values, we assigned each individual i and time j, a probability

pij of dropping out which depended on the current outcome Yij through a logistic model:

logit(pij) = λ0 + λ1Yij.

Here λ0 and λ1 were chosen so that they yielded a marginal probability of dropping out

of p=0.4. For the MNARG1 and MNARG2 scenarios, in which the drop-out probability

depended on outcome values and group, a separate logistic model, like the one above,

was used to simulate drop-outs for each group, generating different marginal drop-out

probabilities (0.1 or 0.4) within each group.
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6.3.2 Analysis of the generated data sets

For each drop-out mechanism and value of θ, 1000 data sets of size n = 200 were

generated. To analyze each data set we followed the procedure outlined in Section

6.2.2. The model fitted to the available data in Step 1 was an LMM including fixed

effects for the group indicator Xi, the measurement time tj (= j) and their interaction

Xitj, and random intercepts and slopes. For Step 2, we defined κ(Xi, tj) = kXi
. Thus,

the distribution of the missing data at visit 5 had a shift of magnitude kXi
with respect

to the observed data distribution. Several analyses were performed, each corresponding

to different values of the informativity parameters k0 and k1 which were chosen as

described in the next paragraphs. For each pair of parameters (k0, k1) considered,

m = 10 imputations of the missing data were performed. In Step 3, parameter θ was

estimated by fitting model (3.4) to each completed data set. In Step 4, final parameter

and variance estimates, CIs and significance tests were obtained.

In each scenario, the measures computed to summarize the results of each analy-

sis across the 1000 datasets were the same as those computed in the simulation study

of Chapter 3 (see Section 3.3.3). Additional measures included in the tables to fa-

cilitate comparisons were: the mean bias (MB) of the parameter estimates, denoted

by MB(θ̂); and the mean relative bias (MRB) of the standard deviation estimator

relative to the observed standard deviation, denoted by MRB(σ̂θ), and calculated as

100×{σ̂θ−SD (θ̂(s))}/SD (θ̂(s)).

For each drop-out mechanism, when choosing the values of the informativity param-

eters to be considered, we first identified some values k̂0 and k̂1 for which the implied

PMM was a good approximation of the true underlying MNAR selection model, at least

for the purpose of obtaining an approximately unbiased estimate of θ. This scenario

allowed us to assess the inferences obtained with our procedure when the imputation

model was close to the true model with regards to the parameter of interest. To de-

termine k̂0 and k̂1, we inspected the biases in the estimates of θ obtained with the

procedure described across several values for k0 and k1. The values retained for k̂0 and
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k̂1 by inspection were one of many other possibilities that also led to approximately un-

biased estimates of θ, and for which the associated PMMs may thus also be considered

to be good approximations of the true MNAR model with regards to θ. However, in an

abuse of language, we will henceforth refer to the PMM associated with the retained

values for k̂0 and k̂1 as the ‘Best MNAR’ model. We emphasize that the latter desig-

nation refers only to MNAR PMMs of the form (6.2) and is meant in an approximate

sense. In particular, note that the ‘Best MNAR’ model is a good approximation of the

true model at visit 5 but not necessarily at other visits because estimation of θ requires

only the outcomes at visit 5.

In practice, the analyst cannot reproduce the approach used to find k̂0 and k̂1 because

the real value of θ, necessary for bias assessment, is what he is trying to estimate in

the first place. In fact, the main aim of the sensitivity analysis set-up is to try to

encompass the ‘Best MNAR’ model in the scenarios considered in order to obtain a set

of correct inferences among the several sets of results yielded by the procedure. The

analyst may achieve this by (i) making reasonable and well-thought assumptions about

the missing data distribution, which he expresses through the choice of κ(Xij) and (ii)

performing several analyses corresponding to different scenarios, e.g. by varying the

values of the informativity parameters. We tried to mimic this aspect of the approach

in the simulation study by choosing values of k0 and k1 that covered several scenarios

relative to the ‘best’ values, k̂0 and k̂1. This enabled us to assess the behavior of the

inferences obtained with increasing departures from the true model. In particular, we

considered the MAR scenario, which corresponded to k0 = k1 = 0.

6.3.3 Results

Results for the each of the drop-out mechanisms are shown in Tables 6.1-6.4. The

upper and lower panels of each table show the results under H0(θ = 0) and H1(θ 6= 0),

respectively. In describing and analyzing the results, we will first focus on lines 1–4 of

each panel, which show results for analyses with increasing departures from the MAR
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scenario, expressed as multiples of k̂0 and k̂1, with line 3 corresponding to the ‘Best

MNAR’ model. Analyses for other choices of k0 and k1 and the CC analysis are shown

in the next lines, and commented on in the last paragraph of this section.

When performing a sensitivity analysis, we seek to observe the variation in parameter

estimates across different scenarios. The latter allows us to determine a range of values

in which the true value may lie. Thus, in our simulations, we do not expect all estimates

of θ to be unbiased. In fact, only the ‘Best MNAR’ model is expected to result in an

approximately unbiased estimate of θ because it was defined by this criterion, but in

practice there is no way of identifying this model so this is irrelevant. In the other

analyses, there may or may not be biases depending on several factors, including the

type of drop-out mechanism, and this is what we actually seek to observe and assess.

Under H0, there were no biases in the MNAR1 and MNAR2 scenarios as expected

because the drop-out mechanism was the same in both groups, and the small differences

observed between the estimates obtained in the two extreme analyses (‘MAR’ and

‘Other 2’) are non-significant. On the other hand, under H0 in the MNARG1 and

MNARG2 scenarios and under H1 in all scenarios (except two analyses in the MNAR1

scenario) there were biases when departing from the ‘Best MNAR’ analysis, which itself

led to unbiased estimates as expected. However, in the MNAR1 and MNAR2 scenarios

the observed biases were much smaller than in the MNARG1 and MNARG2 scenarios:

in the extreme analyses the magnitude of the mean bias was about 0.1 for the former

versus 0.4 for the latter. Thus, as expected, the range of variation of the expected value

of the estimator was wider when considering data that were MNARG1 and MNARG2

compared with MNAR1 and MNAR2 data.

The MRB of the mean standard deviation estimates was always positive (except in

one case where it was very close to zero) which implies that the MI variance estimator

tended to yield conservative estimates, that is, to overestimate the variance. This is

probably due to misspecification of the imputation model and uncongeniality of the im-

putation and analysis models. The bias in the standard deviation estimates was always

moderate, with |MRB| ≤ 10% all scenarios considered. However, this overestimation
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did result in higher coverage probabilities than expected.

For the ‘Best MNAR’ analysis, and for all other analyses where the coefficient es-

timator was unbiased, the overestimation in the variance estimates led to conservative

but acceptable CPs. Furthermore, in these analyses we observed controlled type I error

rates under H0(θ = 0), with the tests having a size equal to or less than the chosen

target (5%).

Line 5 of each panel in each table (the ‘Other 3’ analysis), shows the results obtained

when setting the informativity parameters in both groups to be equal to the mean of

the ‘best’ parameters. Since in every scenario it resulted that k̂0 and k̂1 were very close,

if not equal, this scenario gave results that were similar to those of the ‘Best MNAR’

analysis. When k̂0 = k̂1, there were still some differences in the results between this

analysis and the ‘Best MNAR’ analysis because of the random nature of the imputation

procedure. Lines 6–7 of each panel (the ‘Other 4’ and ‘Other 5’ analyses) correspond

to other analyses with more extreme departures from the ‘Best MNAR’ analysis than

those considered above. They led to biased coefficient estimates in all cases, with biases

generally of larger magnitude than those observed in the previous analyses. The CC

analysis (line 8 in each panel) led to biased coefficient estimates in all scenarios except,

as expected, in the MNAR1 and MNAR2 scenarios under H0 in which the drop-out

mechanisms of both groups were equal. It is important to note that the biases of the

CC analysis in the MNARG1 and MNARG2 scenarios were of much larger magnitude

than the biases observed for any of the other analyses.

To summarize, in the scenarios where the assumed PMM was close to the true model

with regards to the parameter of interest, the coefficient estimator displayed satisfactory

statistical properties in terms of CPs and type I error rates. Furthermore, we were able

to observe the variation in the expected value of the coefficient estimator across several

scenarios, including MAR and other departures from the true model, with the width of

the range of variation depending on the missingness mechanism and other factors. Our

approach is therefore suitable for assessing the sensitivity of inferences to assumptions

about the missing data.
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6.4 Application to the SMI study

Recall from Section 1.1 that six scores indicative of the quality of sleep were recorded

for each of the patients in the SMI study. The primary endpoint was the WASO score

and the other five scores were secondary endpoints. For a given score, let Yij denote

the outcome of patient i at the jth visit for i ∈ {1, . . . , 962} and j ∈ {0, . . . , 5}, and

Xi denote the group indicator, with Xi = 1 for the treatment group and Xi = 0 for

the control group. The parameter of interest was the treatment effect θ, defined as the

difference between the expected change from baseline of the scores in the treatment

and control groups at visit 5, i.e. θ = E(Yi5 − Yi0|Xi = 1) − E(Yi5 − Yi0|Xi = 0) =

E(Yi5|Xi = 1) − E(Yi5|Xi = 0), the latter equality arising from the randomization at

baseline. Thus, with complete data, the treatment effect could be estimated by fitting

the linear model

Yi5 = θ0 + θXi + εi, (6.3)

where the εi’s are i.i.d. zero-mean Gaussian errors. In addition to obtaining a point

estimate, a CI for θ may be built and a hypothesis test may be conducted to test whether

θ is significantly different from zero. In the following sections we focus on this last task,

i.e. on testing whether there is a significant effect of treatment, and on assessing the

sensitivity of the outcome of this test to assumptions about the drop-out mechanism.

This test is often of high relevance in clinical trials because drugs are marketed only if

their observed effect is found to be statistically significant. Thus, in the clinical trial

setting, positive findings, i.e. results leading to the conclusion that there is a significant

treatment effect, should be the main focus of sensitivity analyses.

6.4.1 Primary analysis

In a primary analysis of these data, the drop-out mechanism may be assumed to be

ignorable so that valid inferences about θ may be obtained through a direct likelihood
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analysis based on an LMM with random slope and intercept:

Yij = β0 + β1Xi + β2tj + β3Xitj + b0i + b1itj + εij, (6.4)

where tj is the time of visit j and bi = (b0i , b1i)
′, i = 1, . . . , n, are the i.i.d. zero-

mean Gaussian vectors of subject-specific random effects, which are assumed to be

independent of Xi and of the zero-mean i.i.d. Gaussian errors εij. In this model,

θ = β1 + β3t5.

An alternative to the direct likelihood approach is to use the MI approach presented

in Chapter 3, with (6.4) as the imputation model and (6.3) as the analysis model. Even

though MI may be slightly less efficient than direct likelihood (cf. Section 1.3.2), we

preferred to use MI because its two-stage nature provided us with additional flexibility

in two aspects. First, after careful residual analyses, some scores had to be transformed

to improve the fit of model (6.4) regarding the normality assumption of the errors.

The transformed scores were: WASOt =
√

WASO, NAWt =
√

NAW and SOLt =

Log(SOL+1). Following Rubin (1987), we first performed imputations from model

(6.4) built on the transformed scores, then applied the inverse transformation to the

imputed scores and finally fitted model (6.3). This enabled us to directly estimate

the effect of treatment on the untransformed scores, which was our main interest. The

estimate of θ obtained in this way was normal because the asymptotic conditions implied

the normality of the means in each group at visit 5. Hence, the MI approach allowed

us to correct for the non-normality of the scores but still obtain an estimate of the

actual parameter of interest with nice properties. Second, even though the distribution

of the residuals obtained when fitting model (6.4) on the transformed scores better

approximated normality, for most of the scores it had heavier tails than expected for

a normal distribution. The MI approach allowed us to investigate the sensitivity of

the results to this phenomenon. We did so by modifying part (c) of the imputation

procedure, drawing errors from a logistic distribution instead of a normal distribution,

the former resembling the latter but with heavier tails. All analyses were performed
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with the original and modified imputation procedures. The results were similar in both

cases, so only the results pertaining to the Gaussian case are presented.

The results obtained with the MI approach with m = 20 imputations are presented

in Table 6.5. For comparison, we also provide the results obtained when performing

a CC analysis, i.e. when fitting model (6.3) to the available outcomes at visit 5, thus

excluding any data from patients who dropped-out from the analysis. With the MI

approach, the treatment effect was highly significant for the WASO and NAW scores,

significant for the SLREF and FEELC scores and non-significant for the TST and SOL

scores at a 5% level. The CC analysis led to similar conclusions for all scores except

for the TST score, with all the estimates being less precise as expected. For the TST

score, the treatment effect was larger and significant at a 5% level according to the

CC analysis. The discrepancy between the two analyses is not surprising since the CC

analysis requires the stronger assumption of covariate-dependent drop-out to guarantee

unbiased estimates. In fact, since the covariate-dependent drop-out assumption implies

the MAR assumption, if the former held then both analyses should yield very similar

results. Since this is not the case, we can suspect that the CC estimate is biased and

that its corresponding significance test is unreliable.

6.4.2 Sensitivity analysis for θ

A sensitivity analysis was performed following the procedure outlined in Section 6.2.2

to evaluate the robustness of the results obtained with the MI approach in the primary

analysis regarding the significance of the effect of treatment at a 5% level. In this

clinical trial it was particularly interesting to determine whether positive findings still

held under MNAR scenarios. Thus, the analysis was performed for all scores except

TST and SOL, for which the treatment effect was deemed non-significant by the primary

MAR-based analysis.

In Step 1, model (6.4) was fitted to the available data after applying the transfor-

mations described in Section 6.4.1. For Step 2, since θ measured the effect of treatment
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Table 6.5: Inferences on the treatment effect θ for each score, obtained from the MAR-
based MI approach (MAR) and the CC analysis (CC).

Analysis θ̂ SE 95% CI p-value
WASO MAR −14.31 3.10 (−20.39, −8.22) <0.001

CC −14.25 3.25 (−20.63, −7.86) <0.001
NAW MAR −0.34 0.08 (−0.51, −0.18) <0.001

CC −0.38 0.10 (−0.57, −0.19) <0.001
SLREF MAR −0.09 0.04 (−0.16, −0.01) 0.03

CC −0.09 0.04 (−0.18, 0.00) 0.04
FEELC MAR 0.24 0.12 (0.01, 0.47) 0.04

CC 0.26 0.13 (0.01, 0.52) 0.05
TST MAR 7.39 4.14 (−0.73, 15.51) 0.07

CC 10.06 4.37 (1.49, 18.63) 0.02
SOL MAR −0.90 0.82 (−2.52, 0.71) 0.27

CC −1.00 0.88 (−2.72, 0.72) 0.25

on the expected change from baseline at visit 5, we defined κ(Xi, tj) = kXi
ς̂5, where the

informativity parameter kXi
of each group was allowed to vary between −0.5 and 0.5

in 0.05 increments, and ς̂5 was the sample standard deviation of the transformed scores

at visit 5. The latter was chosen because only the distribution of missing outcomes

at visit 5 matters in the estimation of θ. Thus, the distribution of the missing data

at visit 5 was shifted by kXi
standard deviations with respect to the observed data

distribution. For each pair of parameters (k0, k1), m = 20 imputations of the missing

data were performed. In Step 3, parameter θ was estimated from the untransformed

scores by fitting model (6.3), as in the primary analysis.

Results for scores with a highly significant (respectively, borderline significant) treat-

ment effect, WASO and NAW (respectively, SLREF and FEELC), were very similar so

we show only the results for the WASO and SLREF scores. Figure 6.1 shows contour

plots identifying the regions where a given pair of parameters (k0, k1) yielded significant

treatment effects (p < 0.05) for each score. For the WASO score, we can see that it was

only in the small gray region, in which the control group is strongly advantaged and

the treatment group strongly disadvantaged (as clinical improvement is associated with
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Figure 6.1: Contour plots for the WASO and SLREF scores showing the regions in
which the treatment effect θ was significant (white) or non-significant (gray), accord-
ing to a given pair of informativity parameters (k0, k1), corresponding to the control
and treatment groups, respectively. The point plotted at (0,0) corresponds to the MAR
analysis result.

a lower WASO score), that the treatment effect became non-significant. The contour

plot for the SLREF score shows that, even though the treatment effect on this score

was significant under MAR, this conclusion is very sensitive to departures from this

assumption.

Several interesting scenarios can be visualized on the contour plots in Figure 6.1.

A first example is the scenario in which both groups have the same shift, which is rep-

resented by the identity line (k0 = k1) on the contour plot. In this case, the missing

data are implicitly advantaged or disadvantaged (depending on the sign of the infor-

mativity parameters), so the group with the highest drop-out rate, the control group,

is also advantaged or disadvantaged. To further illustrate this situation, the treatment

effect estimates for each score are plotted in Figure 6.2 against the common parameter

k = k0 = k1 of both groups. This parameter was allowed to vary from −3 to 3 in

increments of 0.5, so that the expectation of the missing data was up to three standard
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Figure 6.2: Sensitivity analysis of the estimate of the treatment effect θ for the WASO
and SLREF scores when k0 = k1 = k. Dashed lines show the corresponding 95%
confidence intervals.

deviations below or above that of the observed data. Note that the value of the curve

at k = 0 corresponds to the MAR estimate given in Table 6.5. For the WASO score,

we can see that even when the missing outcomes are advantaged (k < 0) and assumed

to have a mean that is three standard deviations away from the mean of the observed

outcomes, the treatment effect is still large and significant. Obviously, in the opposite

case (k > 0), the treatment effect is still significant and even larger. On the other

hand, for the SLREF score, we can see that when the missing outcomes are advantaged

(k < 0), the treatment effect vanishes, reflecting the fact that the drop-out rate was

higher in the control group than in the treatment group. Symmetrically, of course, the

treatment effect was stronger and more significant when the missing outcomes were

disadvantaged (k > 0).

Another notable case is when the groups have shifts of equal magnitude and opposite

signs (i.e. the line k0 = −k1 in Figure 1), so that when one group is advantaged,

the other is disadvantaged to an equal extent. An interesting scenario in this case is

when the control group is advantaged and the treatment group disadvantaged (which
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corresponds to k1 > 0 for both scores). For the WASO score, we can see that it is in

this extreme case and when k1 > 0.25 approximately that the treatment effect becomes

non-significant. For the SLREF score, the treatment effect is null and non-significant

for almost every value of k1 in this scenario.

6.4.3 Sensitivity analysis for β3

We considered a second definition of the treatment effect, given by the difference in the

time-slopes of the two groups when considering the transformed scores, i.e. parameter β3

of model (6.4). We performed this analysis only for the (transformed) WASO and NAW

scores, for which positive findings were found to be robust to missingness assumptions

in the previous analyses. For the WASOt score, the first line of Table 6.6 shows the

inferences on β3 obtained by direct likelihood under the assumption of an ignorable

drop-out mechanism, i.e. by fitting model (6.4) to the available data using maximum

likelihood. The treatment effect defined in this way was significant for this score at a

5% level, with β̂3 = −0.031± 0.005, as for the NAWt score (results not shown).

On the basis of the procedure outlined in Section 6.2.2, a sensitivity analysis was

performed to evaluate how this conclusion could change under an MNAR drop-out

mechanism. As before, in Step 1 model (6.4) was fitted to the available (transformed)

scores. For Step 2, we considered a multidimensional parametrization of the term

κ(Xij), defining κ(Xi, tj, Si) = k(1)

Xi
ς̂ + k(2)

Xi
β̂2(tj − Si), where ς̂ was the sample standard

deviation of the observed transformed scores, β̂2 was the time-slope estimated in the

direct likelihood analysis assuming ignorability, Si was the time of the last observed

outcome for individual i, and parameters k(1)

Xi
and k(2)

Xi
were positive or negative, and

possibly depended on group. Thus, the group-specific intercepts and time-slopes of

the missing data distribution were simultaneously controlled; while the group-specific

intercepts were shifted by k(1)

Xi
standard deviations with respect to the observed data

distribution, the group-specific time-slopes were expressed as fractions of the time-slope

of the observed data distribution. The purpose of the correction term −Si will become
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Table 6.6: Sensitivity analysis of inferences on the time-slope difference between the
two groups, β3, for the WASOt score. Several values of the informativity parameters
k(1)

Xi
and k(2)

Xi
are considered. The results obtained under MAR using maximum likelihood

are also provided.

Scenario k(1)

Xi
k(2)

Xi
β̂3 SE p-value

MAR − − −0.031 0.005 <0.001

Modified slopes 0 0.25 −0.030 0.006 <0.001
0 0.5 −0.028 0.006 <0.001
0 1 −0.026 0.007 <0.001
0 (−1)Xi ∗ 0.25 −0.015 0.006 0.008
0 (−1)Xi ∗ 0.5 0.005 0.006 0.397

Modified intercepts −0.25 0 −0.029 0.006 <0.001
−0.5 0 −0.027 0.007 <0.001
−1 0 −0.021 0.006 0.001
(−1)1−Xi ∗ 0.1 0 −0.018 0.006 0.001
(−1)1−Xi ∗ 0.25 0 0.003 0.006 0.584

Modified slopes and intercepts −0.25 0.25 −0.029 0.007 <0.001
−0.5 0.5 −0.025 0.006 <0.001
−1 1 −0.017 0.007 0.019
(−1)1−Xi ∗ 0.1 0.5 −0.016 0.006 0.004
(−1)1−Xi ∗ 0.1 1 −0.012 0.006 0.040
−0.1 (−1)Xi ∗ 0.25 −0.014 0.006 0.027
−0.25 (−1)Xi ∗ 0.25 −0.010 0.007 0.151
(−1)1−Xi ∗ 0.05 (−1)Xi ∗ 0.05 −0.019 0.006 0.001
(−1)1−Xi ∗ 0.1 (−1)Xi ∗ 0.1 −0.011 0.006 0.066
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clear below, when we analyze in closer detail the scenarios implied by different choices

of k(1)

Xi
and k(2)

Xi
. As before, we performed m = 20 imputations. In Step 3, the estimate

of β3 was obtained by fitting model (6.4) on the transformed scores in each completed

dataset using maximum likelihood.

In terms of the underlying clinical assumptions, three general scenarios can be distin-

guished regarding the choice of the informativity parameters k(1)

Xi
and k(2)

Xi
. To illustrate,

these scenarios are depicted for the WAOSt score in Figure 6.3 for a patient in the

treatment group. From left to right, the first plot illustrates the scenario with k(1)

1 = 0

and k(2)

1 6= 0. In this case, the patient is assumed to have experienced an increase in the

absolute rate of change in time of the score after his last observed measurement. Here,

the correction term −Si shifted the imputation model so that the expected trajectory of

the missing data under MNAR intersected the expected trajectory under MAR at the

patient’s last visit. This means that the modification in the rate of change of the score

in time is assumed to have occurred immediately after the patient’s last visit. This

assumption can be modified by taking a different correction factor, somewhere between

Si and Si+1, or even after Si+1 for more intricate assumptions which may however be

justifiable in certain settings. The second plot illustrates the scenario with k(1)

1 6= 0 and

k(2)

1 = 0. Here, the patient is assumed to have experienced a sudden drop in his score

at some point between his last visit and the next visit, with no modification of the rate

of change of the score in time after that decrease. The correction term −Si does not

intervene in this case. In the third plot, k(1)

1 6= 0 and k(2)

1 6= 0, showing the resulting

trajectory of a patient experiencing both a sudden drop in the score and a modification

in the rate of change of the score in time. Here, the correction term −Si ensures that,

up to the shift k(1)

1 ς̂, the MNAR and MAR trajectories cross at the patient’s last visit.

Thus, as before, the modification in the rate of change of the score in time is assumed

to have occurred immediately after the patient’s last visit. Meanwhile, the sudden drop

in the score could have happened at any moment between the patient’s last visit and

the next visit.

Table 6.6 shows the results of the sensitivity analysis for the WASOt score, in each of
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Figure 6.3: Expected trajectories of the WASOt score (measured in minutes
1
2 ) for a

patient in the treatment group who dropped-out after visit 2. The plot shows the expected
trajectory of his observed outcomes under MAR, of his missing outcomes under MAR
and of his missing outcomes under the assumed MNAR PMM. In the latter, the slope,
intercept or both are modified with respect to the expected trajectory under MAR. The
vectors (k(1)

1 , k
(2)

1 ) of informativity parameters used in the plots were, from left to right,
(0, 1), (−0.5, 0) and (−0.5, 1). BL=Baseline.

the three general scenarios described above and for several values of k(1)

Xi
and k(2)

Xi
. Lines

2–6 show results for the scenario in which only the slopes were modified, i.e. k(1)

Xi
= 0 and

k(2)

Xi
6= 0. Within this scenario, a first remarkable case was when k(2)

0 = k(2)

1 > 0 (lines 2–

4). In this case, the magnitude of the mean time-slope of the missing data distribution

was larger than that of the observed data, hence advantaging missing outcomes. We

can see that the time-slope difference between the groups, β3, remained significant even

when the time-slope of the missing data distribution was twice that of the observed

data distribution (k(2)

0 = k(2)

1 = 1). This finding also held true in the opposite case

(k(2)

0 = k(2)

1 < 0), in which the time-slope of the missing data distribution was assumed

to be smaller in magnitude than that of the observed data (results not shown). In

lines 5–6, we present results for the interesting case in which k(2)

Xi
depended on group,

such that the treatment group was disadvantaged (k(2)

1 < 0) and the control group

was advantaged (k(2)

0 > 0). When k(2)

Xi
= (−1)Xi ∗ 0.25, the treatment effect remained
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significant, while it was no longer significant when k(2)

Xi
= (−1)Xi ∗ 0.5.

Concerning the scenario in which only the intercepts were modified, i.e. k(1)

Xi
6= 0

and k(2)

Xi
= 0, lines 7–9 show results for the case k(1)

0 = k(1)

1 < 0, in which the missing

outcomes were advantaged. The time-slope difference between the groups, β3, remained

significant in this case, even when the intercept of the missing data distribution was

shifted by one standard deviation. The same result was found in the opposite case, when

k(1)

0 = k(1)

1 > 0 (results not shown). Another interesting case was when k(1)

Xi
depended on

group (lines 10–11), such that the treatment group was disadvantaged (k(1)

1 > 0) and

the control group was advantaged (k(1)

0 < 0). When |k(1)

Xi
| = 0.1 the treatment effect

was still significant, but not when |k(1)

Xi
| = 0.25.

In the scenario in which both the intercepts and the slopes were modified, four

distinct cases were considered. In the first case, neither of the informativity param-

eters depended on group (lines 12–14), with k(1)

0 = k(1)

1 < 0 and k(2)

0 = k(2)

1 > 0 so

that the missing outcomes were doubly advantaged. The time-slope difference between

the groups, β3, remained significant in this case for all the values of the parameters

considered. The same result was observed when the missing outcomes were doubly

disadvantaged, taking k(1)

0 = k(1)

1 > 0 and k(2)

0 = k(2)

1 < 0 (results not shown). In the

second case (lines 15–16), the intercept parameter depended on group such that the

treatment group was disadvantaged (k(1)

1 > 0) and the control group was advantaged

(k(1)

0 < 0). On the other hand, the slope parameter k(2)

Xi
did not depend on group.

When |k(1)

Xi
| = 0.1, the treatment effect remained significant for k(2)

0 = k(2)

1 = 0.5 and

k(2)

0 = k(2)

1 = 1. In the third case (lines 17–18), k(1)

Xi
did not depend on group while k(2)

Xi

did, such that the treatment group was disadvantaged (k(2)

1 < 0) and the control group

was advantaged (k(2)

0 > 0). When |k(2)

Xi
| = 0.25, the treatment effect remained significant

for k(1)

0 = k(1)

1 = −0.1 but not for k(1)

0 = k(1)

1 = −0.25. In the last case, both parameters

depended on group, such that both disadvantaged the treatment group and advantaged

the control group (lines 19–20). When |k(1)

Xi
| = |k(2)

Xi
| = 0.05, the treatment effect was

still significant, but it was no longer significant at a 5% level when |k(1)

Xi
| = |k(2)

Xi
| = 0.1.

When some similar analyses were conducted for the NAWt score, the results were
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qualitatively similar to those obtained for the WASOt score. Thus, the treatment effect

defined in this alternative way was also significant for the WASO and NAW scores under

MAR, and remained so under a large range of departures from the MAR assumption.

6.5 Discussion

In this chapter, we proposed a method for performing sensitivity analyses when dealing

with longitudinal data with drop-outs. The family of PMMs on which the approach

is based is ‘centered’ at a model that would be a natural choice in a primary analy-

sis assuming ignorable drop-out. Hence, the sensitivity parameter κ has a three-fold

interpretation as quantifying the distance between the missing and observed data distri-

butions, the degree of departure from the MAR assumption and the degree of departure

from this primary analysis. The major strength of the approach lies in the fact that

the data analyst needs to consider, and make explicit assumptions about, the main

characteristics of the missing data distribution that may differ from the observed data

distribution and affect inferences on the parameter of interest. Moreover, these assump-

tions can be easily expressed in the analysis through the choice of κ = κ(Xij). The

proposed MI-based implementation procedure makes it easy to perform and compare

several analyses over a range of possible choices for κ(Xij), determining a range of pos-

sible distributions for the missing outcomes. This is crucial in any sensitivity analysis.

The simulation study results confirmed that this approach is suitable for assessing the

sensitivity of inferences to assumptions about the missing data. In the SMI study, our

approach provided insight about the robustness of the conclusions regarding treatment

effect drawn from the WASO score, as well as from the other five scores which defined

secondary endpoints: Some of the conclusions drawn under the MAR assumption were

shown to be reliable, while others were found to be fragile and strongly dependent on

missingness assumptions.

The estimates obtained with the proposed approach require careful interpretation

because the model in Step 3 is likely to be misspecified. For example, in the SMI study,
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the treatment effects in the observed and missing data were assumed to differ in some

scenarios when generating imputations, with the result that the model fitted to the

completed datasets was misspecified. However, the maximum likelihood estimator in

a misspecified model can be interpreted as a natural estimator for the parameter that

minimizes the Kullback–Leibler information criterion between the true and the assumed

distributions (White, 1982; Kullback and Leibler, 1951). The latter should not be seen

as a drawback since the goal of a sensitivity analysis is to investigate the stability of

inferences obtained in a primary analysis across several MNAR scenarios, rather than

to provide definitive estimates of the parameter of interest (Carroll et al., 2004).

Several authors have shown that when the imputation model is misspecified or when

the imputation and analysis models are uncongenial, Rubin’s variance estimator (3.2)

may be biased (Meng, 1994; Robins and Wang, 2000). This was confirmed by the results

of our simulation study, in which an upward bias was observed. Although the magnitude

of the MRB of the estimator was always moderate, estimated at less than 10%, it did

result in higher CPs than expected. Thus, an alternative variance estimator would

be desirable. For instance, as suggested by Bakoyannis et al. (2010) in the competing

risks setting, a bootstrap estimator could possibly be used to correct this bias, at least

partially.

In the simulation study, the chosen values for the informativity parameters in terms

of magnitude and sign enabled the relatively good behavior observed for the estimator

when departing from the true model. The largest k0 and k1 considered had magnitude

|2k̂0| ≈ |2k̂1| ≈ 3, that is, a small magnitude relative to the expected standard devi-

ation of the outcomes at visit 5, which was
√

var(Yi5) =
√

27 ≈ 5.2 according to the

simulation model. Larger deviations would lead of course to a poorer behavior of the

estimator because such scenarios would represent larger departures from the true model.

Also, for each mechanism, we only considered values of the informativity parameters

which had the same sign as those corresponding to the ‘Best MNAR’ model. If values

of the opposite sign were studied, we could expect the estimator to behave more poorly.

In practice, the knowledge or intuition of the analyst regarding the plausibility of the
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scenarios studied is of great importance to ensure the pertinence of the results obtained

from a sensitivity analysis. For example, the missing data distribution would not be

expected to deviate from that of the observed data by up to three standard deviations.

Thus, the analyst can feel confident about inferences that are stable when considering

reasonable departures from MAR, as was the case for the WASO and NAW scores in

the SMI study.

When MNAR data were generated in the simulation study of Chapter 3, we indicated

that the MI MAR-based analysis achieved partial bias correction because the available

outcomes used to build the MI model provided partial information about the missing

outcomes. Similar remarks apply to the MI procedure considered in this chapter, and

explain the small magnitude of the ‘best’ values, k̂0 and k̂1, yielded by the MNAR

mechanisms considered, as well as the moderate biases observed for our approach when

imputing under MAR and other ‘wrong’ models, especially in the MNAR1 and MNAR2

mechanisms. Considering a stronger effect for the first missing outcome in the logistic

model used to simulate drop-out would probably diminish this effect.

In the SMI study, there were two levels of missing data: missing daily scores and

missing scores for a whole period (visit). Table 1.1 shows that the mean number of

daily measurements available for each score and period was about the same for control

and treatment group patients. If the daily selection mechanism was the same for both

groups, then no bias would be introduced by this level of missingness. We did not

find any reason why the groups’ daily selection mechanisms should differ, so missing

daily scores were not explicitly modeled in the analyses. Regardless of this additional

complexity due to the data collection method, the data of this study were of high

quality and thus suitable for performing sensitivity analyses. Indeed, for this purpose

it is crucial that the drop-out rate is moderate; with a high rate of missing data,

inferences rely more heavily on missingness assumptions and a small departure from

the MAR assumption can invalidate the conclusion of an MAR-based primary analysis.

Hence, it is essential to minimize the percentage of missing data in any clinical trial, as

insisted upon by the PSI missing data expert group (Burzykowski et al., 2010).
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From a clinical perspective, the results obtained for the SMI study suggest the

efficacy of the treatment under analysis. To see this, we recall the meaning of each score.

The NAW and WASO scores are the two quantitative measures that can be considered as

the most indicative of the severity of the disorder, because they represent respectively

the number of sleep interruptions during the night and the sum of their durations.

Results for these two scores were very robust and reflected a marked treatment effect.

On the other hand, SLREF and FEELC scores are qualitative scores indicating the

quality of sleep and are therefore only indirectly indicative of the disorder’s severity.

In line with this appreciation, the results for these two scores yielded more uncertain

conclusions about the effect of treatment. This was also true for the quantitative TST

score, representing the total sleep time, which by itself is not directly indicative of

the disorder severity, either. In fact, it is the TST relative to the total wake time

(WASO) that would give a direct indication of severity. Finally, treatment effect was

non-significant for the SOL score, which measures the sleep onset latency. The latter is

not a pertinent score to determine the severity of SMI because affected people do not

have trouble falling asleep.

Even though we focused on missing data due to drop-out, the approach can also be

used to analyze data with intermittent missingness because LMMs can be fitted to this

type of data. In fact, in the SMI study there were also a few intermittently-missing

outcomes. Here, these missing outcomes were handled in the same way as missing values

after drop-out, i.e. the same imputation model was used to impute them, but other

strategies could be considered (Carpenter and Kenward, 2007). Furthermore, although

the approach was described for continuous Gaussian outcomes, in principle it could be

extended to any type of outcome variable that can be modeled by means of a generalized

linear mixed model (e.g. binary and count data). Of course, the implementation and

performance of the approach in these cases needs further investigation.





Chapter 7

Sensitivity analyses for competing

risks with missing causes of failure

As with longitudinal data with drop-outs, in the competing risks setting with missing

causes of failure it is not possible to assess from the observed data whether the missing-

ness mechanism is MAR or MNAR. Thus, sensitivity analyses play an important role

in this setting too, for assessment of the robustness of inferences to departures from un-

verifiable assumptions about the missingness mechanism. However, to our knowledge,

neither MNAR modeling nor sensitivity analysis methodology have ever been considered

in the missing cause of failure setting. In this chapter, we consider pattern-mixture mod-

els (PMMs) in this context, and propose an approach for performing sensitivity analyses

following the ideas behind the methodology of Chapter 6. The proposed methodology,

described in Section 7.1, is applicable to various competing risks regression models,

particularly when modeling the cause-specific hazard (CSH) and the cumulative inci-

dence function (CIF), either by parametric or semi-parametric regression techniques. In

Section 7.2, we illustrate the approach by revisiting the analysis of the ECOG clinical

trial. Some discussion points are given in Section 7.3.
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7.1 Methodology

7.1.1 A family of PMMs for competing risks

MNAR modeling in the missing cause of failure setting requires consideration of the joint

density of (T,D,M) for uncensored individuals (U = 0), upon whom the missingness

mechanism acts. Omitting covariates, the pattern-mixture modeling factorization of

this density is given by

f(t, d,m | U = 0) = f(t, d |M = m,U = 0)× f(m | U = 0) (7.1)

= f(t,m | U = 0)× f(d | T = t,M = m,U = 0). (7.2)

Equation (7.1) shows that PMMs in this context imply different competing risks

mechanisms for individuals with an observed cause of failure (M = 0) and those with

a missing cause (M = 1). Note that the first factor is not identifiable because there

is no data on D for individuals with missing cause. Equation (7.2) clarifies the source

of this non-identifiability: The first factor represents the model for the data that is

completely observed for all individuals, while the second factor represents the model

for the incompletely observed data, i.e. the extrapolation model (cf. Section 6.1). The

former model is identifiable from the observed data while the latter is not. Hence,

additional, yet unverifiable assumptions are required to identify the second factor of

(7.2). Furthermore, inferences about parameters indexing f(t, d), which are usually the

parameters of interest with competing risks, will generally depend on these assumptions.

Following the ideas of Section 6.1, a sensitivity analysis can be performed by means

of a sensitivity parameter, that is, a non-identified parameter indexing the extrapolation

model, conditional upon which the parameter of interest is identifiable. For this purpose,

we consider the family of PMMs for which the extrapolation model is of the form:

logit{Π(X, T,M)} = h(X, T )′γ + κM, (7.3)
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where Π(X, T,M) := P (D = 1|X, T,M,U = 0) and h(X, T ) is a vector including X,

T , and possibly interaction terms and higher order polynomials. The first part of the

linear predictor, h(X, T )′γ, completely determines the cause of failure distribution for

individuals with observed cause, for whom Mi = 0. Parameter γ may be estimated by

fitting the logistic model to the data of these individuals. On the other hand, the cause

of failure distribution for individuals with missing cause is identified up to parameter

κ, which is a sensitivity parameter. Indeed, this parameter is not identifiable from the

observed data.

In the family of PMMs implied by (7.3), it is assumed that the cause of failure

distributions of individuals with missing and observed cause are the same up to a shift

in the linear predictor, which is quantified by parameter κ. As shown in Section 4.1.3,

MAR is equivalent to the assumption that Π(X, T,M) = P (D = 1|X, T, U = 0), i.e.

under this assumption the cause of failure distributions of individuals with missing

and observed cause are identical. Hence, MAR is equivalent to κ = 0, and the family

of PMMs implied by (7.3) can be thought of as being ‘centered’ at MAR, with κ

quantifying the degree of departure from this assumption. Thus, κ may also be called

an informativity parameter. By varying κ across a range of values, the sensitivity of

inferences obtained under the MAR assumption can be assessed.

Under MAR, the extrapolation model is identifiable from the data of individuals

with observed cause, and this is what is done, at least implicitly, in all MAR approaches

such as the direct likelihood approach of Chapter 5. A model for the cause of failure

distribution that does not depend on M is usually considered explicitly in MAR-based

approaches such as the multiple imputation (MI) approach of Chapter 4 (cf. model

(4.9)) and the vertical modeling approach of Nicolaie et al. (2011) described in Chapter

5. Note that the extrapolation model concerns what Nicolaie et al. (2011) call the

relative hazard. If the primary analysis assumes MAR, and that the cause of failure

distribution follows a model like (7.3) without the term κM , then κ also quantifies

the departure from the primary analysis model. Thus, in that case κ has a threefold

interpretation as the sensitivity parameter in Chapter 6.
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Parameter κ represents the (adjusted) logarithm of the odds ratio (or in short, the

log odds ratio) comparing the odds of dying from the cause of interest (D = 1) between

deceased patients with missing and observed cause of failure. That is,

exp(κ) =
Πmis/(1− Πmis)

Πobs/(1− Πobs)
,

where Πmis and Πobs are shorthand notations for Π(X, T,M = 1) and Π(X, T,M = 0),

respectively. Thus, possible values for κ may be chosen by assessing the plausibility of

the implied odds ratio exp(κ) in the context of the study.

Moreover, parameter κ may be allowed to depend on follow-up time and covariates,

i.e. κ = κ(X, T ). In specifying κ(X, T ), the analyst should try to capture the differences

between the cause of failure distributions of individuals with missing and observed cause

that could have an impact on inferences about the parameter of interest. For instance, if

X is a binary exposure of interest taking values 0 and 1, then the choice κ(X, T ) = kX ,

where kX is a group-specific constant, could be used to reflect different (adjusted) odds

ratios, comparing cause 1 mortality between individuals with missing and observed

cause, within in each category of X. Indeed, in that case

exp(k0) =
Πmis

0 /(1− Πmis
0 )

Πobs
0 /(1− Πobs

0 )
, exp(k1) =

Πmis
1 /(1− Πmis

1 )

Πobs
1 /(1− Πobs

1 )
,

where the subscripts indicate the category of X. Of course, the plausibility of the range

of values assigned to k0 and k1 needs to be assessed. For this purpose, note that the

difference between these two informativity parameters is the (adjusted) log odds ratio

comparing the odds ratios of cause 1 mortality according to X between those with

missing and observed cause:

k1 − k0 = log

{
Πmis

1 /(1− Πmis
1 )

Πmis
0 /(1− Πmis

0 )

}
− log

{
Πobs

1 /(1− Πobs
1 )

Πobs
0 /(1− Πobs

0 )

}
.

The second term of this expression can always be estimated from individuals with

observed cause. Meanwhile, the first term is not identifiable and assumptions must be
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made about it. In some settings, it is possible to conduct an investigation to recover

the causes of failure for a small sample of the individuals with missing cause. If such

additional data are available, they can be used to obtain at least a rough estimate of

the first term, which can serve as a basis to choose a range of plausible values for k0

and k1.

In general, for X a p-vector of covariates, multidimensional parametrizations such

as

κ(X, T ) = k′XX + kTT,

where kX is a p-vector of informativity parameters and kT is a scalar informativity

parameter, may be considered. Varying kX and kT over ranges of plausible values

will define a family of MNAR models designed to provide insight into the sensitivity

of inferences made about the parameter of interest to departures from MAR. Similar

ideas have been evoked elsewhere (White et al., 2007; Resseguier et al., 2011).

7.1.2 Practical implementation

Models of the form (7.3) assume that the causes of failure arise from a mixture of

two distributions, one for individuals with observed cause and one for individuals with

missing cause. Usually, the parameter of interest is a parameter indexing the CSHs

or the CIFs, which are quantities describing the marginal distribution of T and D,

f(t, d|X). However, model (7.3) already partially determines this marginal distribution,

and thus the CSHs and the CIFs. Thus, in principle, imposing model (7.3) precludes

all of the common regression strategies that model the CSH and CIF directly, without

modeling f(d|X, T,M,U = 0) explicitly. Of course, a regression model for the first

factor of (7.2) could be posited, and then the resulting f(t, d|X), CSHs and CIFs could

be recovered by integrating over the distribution of M . However, the non-linearity of all

of the models involved implies that the effects of covariates on the quantities of interest

will be hard, if not impossible, to recover and will have complex interpretations.

Fortunately, the two-stage nature of MI provides us with a way to work around
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these seeming problems, enabling the application of the proposed approach to assess

the sensitivity of inferences obtained with various regression models for competing risks

data. The idea is to multiply impute the missing causes according to (7.3) for the

chosen κ(X, T ), and then the desired model (e.g. a direct regression model for the CSH

or the CIF) can be fitted to each completed dataset. The procedure can be summarized

in the following steps:

Step 1 Fit the logistic model (7.3) without the term κM to the individuals with ob-

served cause.

Step 2 Multiply impute the missing causes m times by drawing from model (7.3),

using the parameter estimates obtained in Step 1 and the chosen κ(X, T ). This

yields m completed datasets.

Step 3 Fit the competing risks model of choice to each completed dataset to obtain m

estimates of the parameter of interest θ and its variance.

Step 4 Using Rubin’s formulas, combine the m parameter and variance estimates

yielded by Step 3 to obtain a final estimate of θ and its variance, construct CIs

and perform hypothesis tests.

Note that Step 1 does not have to be repeated for each choice of κ(X, T ). By repeating

Steps 2-4 for several choices of κ(X, T ) and comparing the results obtained, the robust-

ness of inferences about θ to departures from the MAR assumption can be assessed.

Sensitivity plots like those provided for the SMI study in Chapter 6 can be useful.

In principle, Steps 1 and 3 are straightforward using available software, e.g. use the

glm function in R (R Core Team, 2013) or PROC LOGISTIC in SAS (SAS Institute

Inc., 2003) for Step 1. Step 4 is performed by applying the formulas presented in Section

3.1. Finally, Step 2 can be performed by using a modified version of the MI procedure

of Bakoyannis et al. (2010), described in Section 4.1.3. The modification consists in

replacing step (b) by:
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(b’) For each patient i who has failed (Ui = 0) and with missing cause of failure

(Mi = 1), calculate the linear predictor implied by (7.3) and the chosen κ(X, T ):

η
(l)
i = h(Xi, Ti)

′γ(l) + κ(Xi, Ti)Mi.

Note that the estimates γ̂ and v̂ar(γ̂) required by the imputation procedure are those

obtained in Step 1. Also, note that the modified imputation procedure coincides with

the procedure of Bakoyannis et al. (2010) when κ(X, T ) = 0.

7.2 Application to the ECOG clinical trial

In this section, we apply the proposed procedure to the analysis of the ECOG clinical

trial (cf. Section 2.1). As mentioned in Section 4.3, several authors have studied the

effects of the estrogen-receptor (ER) status (positive vs. negative) and the number of

positive nodes (<4 nodes vs. ≥ 4 nodes) on the CSH of death from cancer under the

MAR assumption. For instance, Goetghebeur and Ryan (1995) and Lu and Tsiatis

(2001) considered the Cox model (2.1) for the CSH of cancer including as predictors

the indicator variables “≥ 4 nodes” and “ER status”, the latter being 1 for patients with

an ER-negative primary and 0 for those with an ER-positive primary.

The results of Goetghebeur and Ryan (1995) (GR) and Lu and Tsiatis (2001) (LT)

are shown in Table 7.1. The table also shows the results obtained when fitting this

model by means of a complete case (CC) analysis, an extra state (ES) analysis (cf.

Section 2.3.1) and the proposed procedure with κ = 0. In the latter, the imputation

model was a logistic model including the follow-up time, the number of nodes and their

interaction as predictors, and was built from the complete cases with ER-positive status

just like in Section 4.3. For this procedure, m = 100 imputations were performed. In

Table 7.1, the p-value column is blank for the GR and LT approaches because these

were not provided in the corresponding manuscripts. Note that both our procedure

with κ = 0 and the approach of Lu and Tsiatis (2001) are MAR-based MI approaches.
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However, while the former corresponds to the original Bayesian MI of Rubin (1987),

with parameters being drawn from their posterior distribution or an approximation

of it (cf. Section 3.1), the latter is what Tsiatis (2006) calls frequentist imputation;

With this approach, the parameters are not drawn from their posterior distribution,

so the imputation procedure is not proper and requires deriving a variance estimator

that accounts explicitly for the uncertainty in the estimation of the imputation model’s

parameters.

Table 7.1: Multivariable Cox model for the CSH of death from cancer including the ER
status and the indicator of the presence of four or more positive nodes as covariates.
Estimates obtained via a complete case analysis (CC), an extra state analysis (ES), the
approaches of Goetghebeur and Ryan (1995) (GR) and Lu and Tsiatis (2001) (LT),
and the proposed procedure with κ = 0 (κ = 0) are shown.

Analysis β̂ SE p-value
ER status CC 1.71 0.4866 <0.001

ES 1.83 0.4857 <0.001
GR 1.59 0.4822 –
LT 1.61 0.4794 –
κ = 0 1.62 0.4801 <0.001

≥4 nodes CC 0.66 0.3090 0.032
ES 0.62 0.3090 0.045
GR 0.57 0.2803 –
LT 0.60 0.2618 –
κ = 0 0.55 0.2812 0.051

β̂ is the estimate of the covariate-specific effect

From Table 7.1 we can see that the estimated effect of having an ER-negative pri-

mary on the CSH of cancer is strong in all analyses, and deemed significantly different

from zero at a 5% level by the tests performed. The effect of having 4 or more four

positive nodes displays stronger fluctuations across the different approaches relative to

the effect size, and is deemed borderline significant at a 5% level by the tests performed.

Following the proposed procedure, we analyzed the sensitivity of the outcome of the

significance test for the effect of having four or more positive nodes, to departures from
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the MAR assumption. In Step 1, the same logistic model used under MAR was fitted to

the data of deceased patients with observed cause of failure and an ER-positive status.

For Step 2, we considered an informativity parameter that depended on the indicator

“≥ 4 nodes”, that we denote by X, i.e. κ(X) = kX , where k0 and k1 were allowed to

vary between -3 and 3, so that 0.05 ≤ exp(kX) ≤ 20. For each choice of k0 and k1,

m = 100 imputations of the missing causes were performed. In Step 3, we refitted the

Cox model for the CSH of cancer including the indicator variables “≥ 4 nodes” and

“ER status” as predictors. The parameter of interest was the effect βN of the indicator

“≥ 4 nodes”.

Figure 7.1 shows a contour plot identifying the regions where a given pair of param-

eters (k0, k1) yielded a significant effect of “≥ 4 nodes” (p ≤ 0.05). This contour plot

suggests that the outcome of the significance test is quite sensitive to departures from

the MAR assumption.

To further explore the source of this sensitivity, we first considered the interesting

scenario in which both groups have the same value of the informativity parameter,

i.e. k0 = k1 = k. The common parameter k represents the adjusted log odds ratio

comparing the odds of dying from cancer between deceased women with missing and

observed cause. Thus, when k > 0 (respectively, k < 0), a higher (respectively, lower)

proportion of cancer deaths is expected among women with missing cause of death

compared to women with observed cause with the same characteristics. The estimates

and corresponding confidence intervals (CIs) obtained in this scenario are plotted in

Figure 7.2.

As we can see in Figure 7.2, the outcome of the significance test changes when

the adjusted odds ratio comparing cancer mortality between women with missing and

observed cause is above exp(0.2) ≈ 1.2. However, the effect estimate does not change

substantially across the scenarios considered even though quite large, and probably

unrealistic, values for the informativity parameters were considered. The hazard ratio

was always comprised between 1.67 and 1.75, with the small fluctuations observed

probably due to the random nature of the imputation procedure. These results seem



156 CHAPTER 7. SENSITIVITY ANALYSES FOR COMPETING RISKS

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

k0

k1

p ≤ 0.05

p > 0.05

MAR
●

Figure 7.1: Contour plot showing the regions in which βN , the effect of having 4
or more positive nodes on the (log) CSH of cancer death, was significant (white) or
non-significant (gray), according to a given pair of informativity parameters (k0, k1),
corresponding to the groups with less than 4 nodes and the group with 4 or more nodes,
respectively. The point plotted at (0,0) in blue corresponds to the MAR analysis result.

thus to indicate that the effect estimate is not very sensitive to departures from the

MAR assumption of the type depicted in Figure 7.2, i.e. with k0 = k1. To explain this,

recall that both groups exhibit the same number of missing causes and approximately

the same proportion of cancer deaths (cf. Table 2.1). Thus, the number of cancer

deaths among those with missing causes is increased (if k > 0) or decreased (if k < 0)

to approximately the same extent in both groups with respect to the MAR scenario.

This means that the CSHs of cancer are also increased or decreased to approximately

the same extent in both groups, implying a hazard ratio of approximately the same

magnitude as under MAR.

The CI does not change drastically either, with the change from non-significance

to significance clearly not being a consequence of a substantial change in the effect
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Figure 7.2: Sensitivity analysis of the estimate of βN , the effect of having 4 or more
positive nodes, on the (log) CSH of cancer death when k0 = k1 = k. Dashed lines show
the corresponding 95% confidence intervals, and the white region indicates the values of
k for which the effect was significantly different from zero. The MAR analysis result,
corresponding to k = 0, is indicated in blue. The dotted line at β̂N = 0 is included for
reference.

estimate, as was observed for the SMI study in Figure 6.2. Rather, this change seems

to be a consequence of an improvement in the precision of the estimate resulting from

the increased amount of cancer death events in both groups as k increases. Actually,

βN remained borderline significant across all values of k considered, with a p-value

fluctuating between 0.04 and 0.08. Thus, the conclusion of this analysis is that the

outcome of the test is not substantially sensitive to departures from MAR of the type

implied by the condition k0 = k1.

Next we considered the scenario where k0 = −k1, so that the adjusted odds ratios

comparing cancer mortality between individuals with missing and observed cause in

the two groups were inversely proportional. The estimates obtained in this scenario are
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plotted in Figure 7.3. In this scenario, the effect estimate does change substantially,

with the implied hazard ratio fluctuating between 1.3 and 2.3. Of course, this is due to

the induced large differences in the proportions of cancer deaths among the patients with

missing cause in the two groups. Thus, the jump from significance to non-significance

as k0 increases in this scenario does arise from a change in the effect and not solely

from an increased precision. Actually, the p-value across all values of k0 considered

fluctuated between 0.005 and 0.33. The conclusion here is that the outcome of the test

is substantially sensitive to departures from MAR of the type implied by the condition

k0 = −k1.

7.3 Discussion

In this ongoing work, we propose a procedure to assess the sensitivity of inferences to

missing data assumptions in the competing risks setting with missing causes of failure.

In the family of PMMs proposed, the sensitivity parameter κ quantifies the degree of

departure from the MAR assumption and has a useful interpretation as the (adjusted)

log odds ratio comparing the odds of dying from the cause of interest between failed

patients with missing and observed cause of failure. In the specification of κ = κ(X, T ),

the data analyst needs to make explicit assumptions about the main differences between

the cause of failure distributions of individuals with missing and observed cause. The

proposed MI-based implementation procedure makes it possible to apply this approach

to various competing risks regression models (e.g. parametric or semi-parametric models

for the CSH or the CIF). MI also facilitates the performance of several analyses over a

range of possible choices for κ(X, T ). The first results of application of the procedure

with the ECOG clinical trial are encouraging.

Recall from Section 3.1 that, in principle, the imputation and analysis models must

be congenial to obtain valid inferences with MI. As mentioned at the beginning of

Section 7.1.2, imposing a model like (7.3) will partially determine the CSHs and the

CIFs, which are the usual quantities of focus in the analysis model. Moreover, model



7.3. DISCUSSION 159

●●●●●●●●●●
●●

●●
●●●●

●●
●●

●●●●●●
●●●●

●●●●
●●●

●●●●●
●●●

●●●●●
●●●●●●●●●

−3 −2 −1 0 1 2 3

0.0

0.5

1.0

k0

β̂N
●

p > 0.05p ≤ 0.05

MAR

Figure 7.3: Sensitivity analysis of the estimate of βN , the effect of having 4 or more
positive nodes, on the (log) CSH of cancer death when k0 = −k1. Dashed lines show
the corresponding 95% confidence intervals, and the white region indicates the values of
k0 for which the effect was significantly different from zero. The MAR analysis result,
corresponding to k0 = 0, is indicated in blue. The dotted line at β̂N = 0 is included for
reference.

(7.3) assumes a dependence on M that will not likely be included in the analysis model.

These two observations imply that the imputation and analysis models will usually be

uncongenial in this context. Thus, the next necessary step in this work is to perform

a simulation study similar to the one presented in Chapter 6, to assess the statistical

properties of the MI inferences yielded by the proposed procedure and evaluate its

overall performance. For instance, we can expect Rubin’s variance estimator (3.2) to

be biased (Meng, 1994; Robins and Wang, 2000), so it would be desirable to propose

and evaluate alternative variance estimators.

The developments in this chapter were motivated by an epidemiological study of

socioeconomic inequalities in suicide mortality in France. The data in this study corre-
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sponded to a permanent, cross-sectionally representative 1% sample of the population

called the permanent demographic sample (PDS), which was started in 1968 by the

French National Institute of Statistics and Economic Studies (Insee) (Couet, 2007).

This study will thus be henceforth referred to as the PDS study. For the individuals in

the sample, survival data were available from civil registration records, socioeconomic

information was available from exhaustive population censuses and cause of death data

were retrieved from the national cause of death registry (Menvielle et al., 2007). The

cause of death was missing for around 10% of the individuals in the sample. The French

national cause of death registry was suspected to contain many suicides coded as deaths

with unknown cause because of an area-specific reporting issue. The MAR assumption

was therefore implausible and it was desirable to perform sensitivity analyses. Further-

more, another study had been previously performed to retrieve the cause of death for a

sub-sample of the individuals with missing cause in the national cause of death registry,

which provided us with additional information to choose the range of values for the

sensitivity parameters. The analyses performed following the proposed approach evi-

denced that inferences were broadly insensitive to missingness assumptions, doubtlessly

due to the small percentage of missing data, which is why we chose the ECOG data to

illustrate the approach instead.

The two scenarios depicted for the ECOG trial in Figures 7.2 and 7.3, emphasize

the need for assessing the plausibility of, not only the magnitude, but also the sign of

the values considered for the informativity parameters. Here we considered a range of

values for the sensitivity parameters such that 0.05 ≤ exp(kX) ≤ 20, representing very

extreme values for an odds ratio. However, in some scenarios such large differences may

be plausible, e.g. in the PDS study according to data available from a previous study.

The ECOG example also emphasizes the need to direct sensitivity analyses toward the

inferential procedure of interest according to the context, as pointed out by Carroll

et al. (2004). Very different conclusions about sensitivity may result from focusing on

effect estimates and from focusing on hypothesis tests or CIs, which depend on both

the effect estimates and their (estimated) precision.
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We conclude this chapter by noting that MI is not required to apply the proposed

approach to inferences obtained in vertical modeling of competing risks. Indeed, in

this approach f(d|X, T, U = 0), called by Nicolaie et al. (2010) the relative hazard,

is modeled explicitly (cf. Chapter 5). Under the MAR assumption, vertical modeling

can be applied in almost the same way as when all the causes of failure are observed,

the only difference being that the model for the relative hazard is fitted exclusively to

the individuals with observed cause (Nicolaie et al., 2011). Our approach can thus be

considered to extend the vertical modeling approach with missing causes of failure to

the MNAR setting by allowing a dependance of the model for the relative hazard on

M .





General discussion and future

research

In this dissertation, we have presented and discussed a variety of methods to perform

regression with missing outcomes for two outcome data structures typically encountered

in medical research: continuous longitudinal data and competing risks data. While in

the former context parametric models are often the choice with no missing data, in the

latter there is a preference for semi-parametric models. Furthermore, special methodol-

ogy to deal with right-censoring is required for regression modeling of competing risks.

Nevertheless, we were able to apply many of the ideas developed for longitudinal data

with drop-outs, and more generally for incomplete multivariate data, to the compet-

ing risks setting with missing causes: direct likelihood, MI and IPW under MAR, and

pattern-mixture modeling under MNAR and for sensitivity analyses. Hence, a first con-

clusion of this work is that missing data concepts and modeling ideas are transposable

across different settings, transcending contextual particularities.

In some cases, this process results in pleasant surprises. When modeling the CIF

under MAR (Chapter 4), the application of IPW ideas coupled with the use of pseudo-

values to deal with right-censoring led to a pleasant surprise in that we were able to

construct an IPW estimator that uses information more efficiently than usual IPW

estimators. Indeed, the use of pseudo-values as alternative outcomes enabled us to

include the partial information available from the individuals with missing cause in

the estimating equations, while standard IPW estimators use only the complete cases
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in these equations. This resulted in an IPW estimator that displayed an efficiency

comparable to that of MI in our simulation study, contrary to what is usually expected

(Seaman and White, 2013).

While MAR approaches for handling missing data are now widely available in current

software and are often used by practitioners, sensitivity analysis methodology is still

an active area of research. In the longitudinal data setting, Daniels and Hogan (2000)

and Ratitch et al. (2013) proposed sensitivity analysis approaches that are similar in

spirit to that proposed in Chapter 6. A remarkable aspect of our method is that

it is easily applicable to studies where there is a large number of measurements or

where the timing and number of measurements differ across individuals. This flexibility

is inherited from linear mixed models, which allow for the inclusion of time-trends

and random effects covariance structures. Furthermore, the sensitivity parameters in

our approach are easily interpreted as they quantify specific aspects of the expected

trajectories of individuals (e.g. intercepts, time-slopes), thus facilitating the formulation

of assumptions about the distribution of the missing outcomes.

The sensitivity analysis methods proposed in this manuscript are, in their present

state, exploratory tools, albeit conducted rigorously. Indeed, the information resulting

from these methods, and from similar approaches found in the literature, is extremely

detailed. Hence, an important matter is to determine how this information could be

summarized to facilitate its reporting and use. This issue is particularly relevant in the

clinical trial setting, in which regulations demand that protocols specify in advance the

statistical analyses and decision rules that will be adopted. Although this is still a some-

what open question, a big step towards an answer is given by the work of Molenberghs

et al. (2001a) and Vansteelandt et al. (2006). As briefly mentioned earlier, these au-

thors propose a formal framework to summarize the results of such sensitivity analyses

into a single inference that does not rely on unverifiable missingness assumptions. They

define the concept of a region of ignorance, which they relate to the parameter regions

yielded by these sensitivity analysis approaches, and use this to extend the notion of

a confidence region to what they call a region of uncertainty. These regions account
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for the uncertainty due to missing data as well as finite sampling. Other authors have

explored related ideas in the Bayesian framework (e.g. Scharfstein et al., 2003).

It is important to emphasize that the gain in using the methods discussed will

generally depend on the percentage of individuals who drop-out before the study end in

longitudinal studies, and on the percentage of missing causes of failure among those who

failed in competing risks studies. In the modest experience accumulated throughout

these last few years, we noticed that the impact of using these methods on inferences

starts to become evident when these percentages are above around 10%. At levels of

10% or less, inferences are relatively insensitive to missingness assumptions and ad-

hoc approaches will often yield approximately valid inferences. This observation was

supported by our findings in the PDS study mentioned in the discussion of Chapter 7.

On the other hand, when these percentages are above around 40%, inferences will often

be extremely sensitive to missingness assumptions and small departures from a primary

analysis may easily invalidate the conclusions drawn from it. Although missing outcome

methods will help shed light on this sensitivity, they cannot remedy the considerable lack

of information. Thus, one will rarely be able to draw a final definitive conclusion with

great confidence in such studies. In conclusion, it is in studies where these percentages

are between around 10 and 40% that missing outcome methods are most valuable and

can help avoid incorrect inferences and conclusions. Nevertheless, in every study there

should be an effort to minimize the amount of missing data as much as possible, for

example by anticipating possible sources of missingness and strategies to avoid these in

the planning phase.

An essential condition for the widespread use of any statistical method, in particular

missing data approaches, is the availability of software. For the methods of Chapters 3,

4 and 6, published R code is available to implement the proposed procedures. The ap-

proach of Chapter 7 is relatively easy to implement using any available MI software that

includes an imputation procedure for binary data. For the direct likelihood approach of

Chapter 5, software implementation is less straightforward and is part of ongoing work.

Once finished, we will be able to evaluate the approach through simulation experiments



166 GENERAL DISCUSSION AND FUTURE RESEARCH

and apply it to the ECOG clinical trial for comparison with other approaches. The

assessment of the approach of Chapter 7 through simulations is also intended future

work.

Another ongoing project, which was prompted by the PDS study, concerns the

indexes used in the epidemiological and economic literature to measure socioeconomic

inequalities with survival and competing risks data. The subject of this project being

outside the missing data theme of this dissertation, we decided not to included it as a

separate chapter. The manuscript in preparation is targeted at an epidemiology journal

and its current version is provided in Appendix C.

A future perspective of the work performed on competing risks with missing causes

of failure was prompted by a question of one the reviewers of Moreno-Betancur and

Latouche (2013). It concerns the statistical problem that arises when all causes of

failure are observed but are subject to misclassification, with known misclassification

probabilities (see for example van Rompaye et al., 2012). We found that an extension

of the Andersen-Klein pseudo-value approach to that setting may be possible owing

to a result similar to that of Lemma 4.1.1 for some other form of modified pseudo-

values. Since there is currently no approach for regression modeling of the CIF in the

misclassified cause of failure setting, we plan to investigate this extension in the future.
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Appendix A

Supplementary results for the

simulation study of Chapter 3

Table A.1: Estimates of treatment effect: MAR scenario in which drop-out probability
depended on the individual’s group, with drop-out probabilities of 0.4 and 0.1 for the
treatment and control groups, respectively. Results of 1000 simulations.

θ Analysis θ̂ σ̂θ SD (θ̂(s)) CP % reject H0 MSE
0 Complete data −0.003 0.328 0.331 94.3 5.6 0.110

Complete cases −0.003 0.387 0.385 94.8 4.9 0.148
5 imputations −0.007 0.365 0.350 95.3 4.4 0.123
20 imputations −0.007 0.361 0.345 95.4 4.6 0.119

1 Complete data 0.990 0.328 0.331 94.8 84.5 0.109
Complete cases 0.989 0.387 0.387 94.6 72.5 0.150
5 imputations 0.997 0.366 0.356 95.4 78.1 0.127
20 imputations 0.993 0.362 0.353 95.2 78.5 0.124
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Table A.2: Estimates of treatment effect: MAR scenario in which drop-out probability
was positively associated with the last observed outcome. Results of 1000 simulations.

θ p Analysis θ̂ σ̂θ SD (θ̂(s)) CP % reject H0 MSE
0 0.1 Complete data −0.006 0.329 0.329 95.5 4.5 0.108

Complete cases −0.010 0.334 0.332 95.6 4.4 0.110
5 imputations −0.007 0.337 0.338 95.6 4.4 0.114
20 imputations −0.008 0.336 0.336 95.5 4.5 0.113

0.4 Complete data 0.017 0.328 0.336 93.6 6.4 0.113
Complete cases 0.016 0.380 0.378 95.4 4.5 0.143
5 imputations 0.016 0.389 0.372 95.4 4.0 0.139
20 imputations 0.015 0.383 0.365 95.7 4.3 0.133

1 0.1 Complete data 1.018 0.329 0.321 96.5 87.8 0.103
Complete cases 0.941 0.333 0.328 94.4 81.6 0.111
5 imputations 1.018 0.337 0.325 96.2 85.9 0.106
20 imputations 1.018 0.336 0.324 96.2 86.9 0.105

0.4 Complete data 1.005 0.329 0.337 93.8 86.1 0.114
Complete cases 0.796 0.380 0.382 91.8 53.6 0.187
5 imputations 0.999 0.389 0.376 94.8 71.5 0.141
20 imputations 1.002 0.383 0.370 95.0 75.9 0.137
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Table A.3: Estimates of treatment effect: MAR scenario in which drop-out probability
depended on the individual’s group and his last observed outcome, with marginal drop-
out probabilities of 0.4 and 0.1 for the treatment and control groups, respectively, and
drop-out probability positively associated with the last observed outcome within each
group. Results of 1000 simulations.

θ Analysis θ̂ σ̂θ SD (θ̂(s)) CP % reject H0 MSE
0 Complete data 0.006 0.328 0.335 94.0 6.0 0.112

Complete cases −1.158 0.363 0.362 10.9 89.0 1.472
5 imputations 0.005 0.364 0.359 94.9 5.0 0.129
20 imputations 0.006 0.360 0.352 95.3 4.7 0.124

1 Complete data 0.986 0.328 0.331 94.6 84.9 0.110
Complete cases −0.230 0.362 0.357 7.1 9.2 1.641
5 imputations 0.984 0.362 0.350 94.3 77.1 0.122
20 imputations 0.985 0.360 0.348 94.4 78.7 0.121
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Table A.4: Estimates of treatment effect: MNAR scenario in which drop-out probability
was positively related to the first missing outcome. Results of 1000 simulations.

θ p Analysis θ̂ σ̂θ SD (θ̂(s)) CP % reject H0 MSE
0 0.1 Complete data −0.021 0.328 0.329 94.8 5.2 0.109

Complete cases −0.021 0.326 0.325 94.6 5.4 0.106
5 imputations −0.019 0.332 0.330 94.9 5.1 0.109
20 imputations −0.020 0.331 0.329 95.4 4.6 0.109

0.4 Complete data 0.013 0.329 0.334 95.0 5.0 0.112
Complete cases 0.013 0.360 0.362 94.5 5.5 0.131
5 imputations 0.014 0.374 0.368 95.0 4.4 0.136
20 imputations 0.013 0.369 0.356 94.9 5.1 0.127

1 0.1 Complete data 1.013 0.329 0.356 92.6 84.5 0.127
Complete cases 0.892 0.326 0.341 91.9 75.8 0.128
5 imputations 0.997 0.332 0.358 93.1 82.2 0.128
20 imputations 0.999 0.331 0.356 93.0 83.3 0.126

0.4 Complete data 0.996 0.328 0.327 95.1 87.3 0.107
Complete cases 0.707 0.360 0.373 86.2 51.4 0.225
5 imputations 0.948 0.369 0.346 95.3 72.9 0.122
20 imputations 0.948 0.366 0.339 95.9 76.4 0.118



Appendix B

Supplementary information for the

simulation study of Chapter 4

In this appendix we provide further technical details (Section B.1) and additional results

(Section B.2) for the simulation study presented in Chapter 4, Section 4.2.

B.1 Simulation study details

B.1.1 Generating data from the additive model

The additive model is not defined near 0 because the CIF is 0 at t = 0. The model is

thus expected to hold only for t ≥ t0 > 0 where t0 is some chosen time. However, to

generate data via the inverse transformation method, the entire distribution has to be

specified. To understand this, consider the case with a binary covariate and let u :=

P (T ≤ t|X,D = 1), the probability used to generate failure times for individuals failing

from the cause of interest. For the chosen additive simulation model, this probability is

u =
F1(t|X)

P (D = 1|X)
=
p(1− e−t) + βADX

p+ βADX
,
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leading to t = log(p) − log{p(1 − u) − βADX(u − 1)} when applying the inverse

transformation. Thus, valid (positive) times are generated only if X = 0 or u >

βAD/(p + βAD) = 0.15/(0.5 + 0.15) ≈ 0.23. Therefore, our additive simulation model

implies that approximately the first quartile of patients with X = 1 and failing from

cause 1 must have already failed at t = 0. Nevertheless, as the model is expected to hold

only from some chosen point t0, it suffices that all of these patients fail at a positive time

before t0 to guarantee an additive structure after t0 and a proper CIF (i.e. which is 0 at

t = 0). For our purposes, these patients may be assigned any positive failure time before

t0 because pseudo-values are calculated at a grid starting at τ1 ≥ t0 and thus will be the

same regardless of how these failure times are chosen. In our simulations, we assigned

these patients the smallest failure time generated among all other patients. Therefore,

these patients, who represented about P (X = 1) × P (D = 1|X = 1) × 0.25 ≈ 8% of

all patients given the parameters, all failed before the first decile of all failure times

(irrespective of X and cause of failure). After superimposing censoring, they all failed

before the second decile of the failure times because of the way censoring times were

generated. Thus, choosing t0 = τ1, the third decile of the distribution in the final

dataset, guaranteed that these patients failed before t0.

B.1.2 Analyzing data with high percentages of censoring and

missing causes

When generating data with high percentages of censoring and/or missing causes of

failure, some of the missingness configurations or entire datasets obtained had to be

discarded and replaced because one of the analyses could not be performed, usually

because there were very few events. Briefly, in the binary covariate case, datasets or

missing causes were redrawn in the following cases: (a) violation of the condition τ1 ≥ t0,

where τ1 is the first point of the grid chosen in the CC analysis of the additive model,

which occurred at least once for at most 0.3% of the replications in each scenario; (b)

impossibility of estimating the weights 1/πτs(X) in the IPWpv analysis because for a
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category of the covariate there were no events or no observed events before τ1, which

occurred, respectively, for at most 0.1% and 2% of the replications in each scenario (ex-

cept for MARX- and MARXT+ with n = 200, 40% missing causes and 50% censoring

where the latter occurred for up to 8% of the replications); (c) impossibility to obtain

GEE estimates in CC or IPWpv analyses or to fit the imputation model in datasets with

less than two observed type 1 or type 2 events for X = 0 or X = 1, which occurred at

least once for at most 1% of the replications in each scenario (except for the MARXT+

mechanism with 40% missing causes and 50% censoring where it occurred at least once

for up to 7% of the replications). Similar comments apply to the continuous covariate

case.

When analyzing bootstrap samples with high percentages of censoring and missing

causes, there were datasets or patterns of missingness where (b) or (c) above also

occurred, so the IPWpv analysis could not be performed. In these cases, the bootstrap

sample was discarded and not replaced so the bootstrap estimate was based on fewer

than 100 bootstrap samples. The mean percentage of bootstrap samples discarded in

each scenario exceeded 5% only in a few rare cases.

In practice, if either (a) or (b) occur, the grid can possibly be modified to ensure that

τ1 ≥ t0 or that there is at least one event/one observed event before τ1 for each value

of the covariate, hopefully while keeping the time-points approximately evenly spaced.

However, in the simulation study we decided to discard/redraw missing causes so that

the grid could be chosen in the same way for each generated dataset, hence avoiding

further variability due to differences in grid choice. If an appropriate grid cannot be

found in practice or if (c) occurs, a workaround might be found depending on the data

structure, as illustrated in our analysis of the ECOG data.

B.2 Additional simulation study results

Figures B.1 and B.8 show simulation results for the Fine and Gray and additive mod-

els, respectively, with a binary covariate for the scenario with n = 200, 50% uniform
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censoring and the missingness mechanisms omitted from the main text of Chapter 4

(Section 4.2.3). Also for the binary covariate case, results for the scenarios with n = 400

and 50% uniform censoring are provided in Figures B.2-B.3 and B.9-B.10, results for

n = 200 and 50% administrative censoring are found in Figures B.4-B.5 and B.11-B.12

and results corresponding to n = 200 and 25% uniform censoring are given in Figures

B.6-B.7 and B.13-B.14. Finally, Figure B.15 shows the results for coefficient estimation

in the Fine and Gray and additive models with a continuous covariate in a scenario

with 50% uniform censoring and 40% missing causes for the missingness mechanisms

omitted from the main text of of Chapter 4.
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Figure B.1: Simulation results for coefficient estimation in the Fine and Gray model with
a binary covariate, n = 200 and 50% uniform censoring for other missingness mechanisms.
Estimates obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv)
and multiple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias, the square root of the mean squared error
(MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI) are
plotted against the percentage of missing causes. With no missing causes, all analyses coincide
with the complete censored data analysis (CCD) plotted at 0%. Results are based on 10000
replications.
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Figure B.2: Simulation results for coefficient estimation in the Fine and Gray model with a
binary covariate, n = 400 and 50% uniform censoring for selected missingness mechanisms.
Estimates obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv)
and multiple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias, the square root of the mean squared error
(MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI) are
plotted against the percentage of missing causes. With no missing causes, all analyses coincide
with the complete censored data analysis (CCD) plotted at 0%. Results are based on 10000
replications.
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Figure B.3: Simulation results for coefficient estimation in the Fine and Gray model with
a binary covariate, n = 400 and 50% uniform censoring for other missingness mechanisms.
Estimates obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv)
and multiple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias, the square root of the mean squared error
(MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI) are
plotted against the percentage of missing causes. With no missing causes, all analyses coincide
with the complete censored data analysis (CCD) plotted at 0%. Results are based on 10000
replications.
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Figure B.4: Simulation results for coefficient estimation in the Fine and Gray model with a
binary covariate, n = 200 and 50% administrative censoring for selected missingness mecha-
nisms. Estimates obtained via a complete case analysis (CC), the proposed IPWpv approach
(IPWpv) and multiple imputation with m = 10 imputations (MI m=10) are compared. For
each mechanism and each analysis, the mean relative bias, the square root of the mean squared
error (MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI)
are plotted against the percentage of missing causes. With no missing causes, all analyses
coincide with the complete censored data analysis (CCD) plotted at 0%. Results are based on
10000 replications.
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Figure B.5: Simulation results for coefficient estimation in the Fine and Gray model with
a binary covariate, n = 200 and 50% administrative censoring for other missingness mecha-
nisms. Estimates obtained via a complete case analysis (CC), the proposed IPWpv approach
(IPWpv) and multiple imputation with m = 10 imputations (MI m=10) are compared. For
each mechanism and each analysis, the mean relative bias, the square root of the mean squared
error (MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI)
are plotted against the percentage of missing causes. With no missing causes, all analyses
coincide with the complete censored data analysis (CCD) plotted at 0%. Results are based on
10000 replications.
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Figure B.6: Simulation results for coefficient estimation in the Fine and Gray model with a
binary covariate, n = 200 and 25% uniform censoring for selected missingness mechanisms.
Estimates obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv)
and multiple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias, the square root of the mean squared error
(MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI) are
plotted against the percentage of missing causes. With no missing causes, all analyses coincide
with the complete censored data analysis (CCD) plotted at 0%. Results are based on 10000
replications.
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Figure B.7: Simulation results for coefficient estimation in the Fine and Gray model with
a binary covariate, n = 200 and 25% uniform censoring for other missingness mechanisms.
Estimates obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv)
and multiple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias, the square root of the mean squared error
(MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI) are
plotted against the percentage of missing causes. With no missing causes, all analyses coincide
with the complete censored data analysis (CCD) plotted at 0%. Results are based on 10000
replications.
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Figure B.8: Simulation results for coefficient estimation in the additive model with a binary
covariate, n = 200 and 50% uniform censoring for other missingness mechanisms. Estimates
obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv) and mul-
tiple imputation with m = 10 imputations (MI m=10) are compared. For each mechanism and
each analysis, the mean relative bias, the square root of the mean squared error (MSE) and the
estimated coverage probability (CP) of the 95% confidence interval (CI) are plotted against the
percentage of missing causes. With no missing causes, all analyses coincide with the complete
censored data analysis (CCD) plotted at 0%. Results are based on 10000 replications.
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Figure B.9: Simulation results for coefficient estimation in the additive model with a binary
covariate, n = 400 and 50% uniform censoring for selected missingness mechanisms. Esti-
mates obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv)
and multiple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias, the square root of the mean squared error
(MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI) are
plotted against the percentage of missing causes. With no missing causes, all analyses coincide
with the complete censored data analysis (CCD) plotted at 0%. Results are based on 10000
replications.
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Figure B.10: Simulation results for coefficient estimation in the additive model with a binary
covariate, n = 400 and 50% uniform censoring for other missingness mechanisms. Estimates
obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv) and mul-
tiple imputation with m = 10 imputations (MI m=10) are compared. For each mechanism and
each analysis, the mean relative bias, the square root of the mean squared error (MSE) and the
estimated coverage probability (CP) of the 95% confidence interval (CI) are plotted against the
percentage of missing causes. With no missing causes, all analyses coincide with the complete
censored data analysis (CCD) plotted at 0%. Results are based on 10000 replications.
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Figure B.11: Simulation results for coefficient estimation in the additive model with a binary
covariate, n = 200 and 50% administrative censoring for selected missingness mechanisms.
Estimates obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv)
and multiple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias, the square root of the mean squared error
(MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI) are
plotted against the percentage of missing causes. With no missing causes, all analyses coincide
with the complete censored data analysis (CCD) plotted at 0%. Results are based on 10000
replications.
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Figure B.12: Simulation results for coefficient estimation in the additive model with a binary
covariate, n = 200 and 50% administrative censoring for other missingness mechanisms. Es-
timates obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv)
and multiple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias, the square root of the mean squared error
(MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI) are
plotted against the percentage of missing causes. With no missing causes, all analyses coincide
with the complete censored data analysis (CCD) plotted at 0%. Results are based on 10000
replications.
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Figure B.13: Simulation results for coefficient estimation in the additive model with a binary
covariate, n = 200 and 25% uniform censoring for selected missingness mechanisms. Esti-
mates obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv)
and multiple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias, the square root of the mean squared error
(MSE) and the estimated coverage probability (CP) of the 95% confidence interval (CI) are
plotted against the percentage of missing causes. With no missing causes, all analyses coincide
with the complete censored data analysis (CCD) plotted at 0%. Results are based on 10000
replications.
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Figure B.14: Simulation results for coefficient estimation in the additive model with a binary
covariate, n = 200 and 25% uniform censoring for other missingness mechanisms. Estimates
obtained via a complete case analysis (CC), the proposed IPWpv approach (IPWpv) and mul-
tiple imputation with m = 10 imputations (MI m=10) are compared. For each mechanism and
each analysis, the mean relative bias, the square root of the mean squared error (MSE) and the
estimated coverage probability (CP) of the 95% confidence interval (CI) are plotted against the
percentage of missing causes. With no missing causes, all analyses coincide with the complete
censored data analysis (CCD) plotted at 0%. Results are based on 10000 replications.
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Figure B.15: Simulation results for coefficient estimation in the Fine and Gray and
additive models with a continuous covariate, for other missingness mechanisms in a
scenario with 50% uniform censoring and 40% missing causes. Estimates obtained
via a complete case analysis (CC), the proposed IPWpv approach (IPWpv) and multi-
ple imputation with m = 10 imputations (MI m=10) are compared. For each mech-
anism and each analysis, the mean relative bias is plotted against the sample size
(n = 200, 400, 1000). With no missing causes, all analyses coincide with the com-
plete censored data analysis (CCD), also included in the plots. Results are based on
1000 replications.
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