Sampling and Variance Analysis for Monte Carlo Integration in Spherical Domain

Résumé : Cette thèse introduit un cadre théorique pour l'étude de différents schémas d'échantillonnage dans un domaine sphérique, et de leurs effets sur le calcul d'intégrales pour l'illumination globale. Le calcul de l'illumination (du transport lumineux) est un composant majeur de la synthèse d'images réalistes, qui se traduit par l'évaluation d'intégrales multidimensionnelles. Les schémas d'intégration numériques de type Monte-Carlo sont utilisés intensivement pour le calcul de telles intégrales. L'un des aspects majeurs de tout schéma d'intégration numérique est l'échantillonnage. En effet, la façon dont les échantillons sont distribués dans le domaine d'intégration peut fortement affecter le résultat final. Par exemple, pour la synthèse d'images, les effets liés aux différents schémas d'échantillonnage apparaissent sous la forme d'artéfacts structurés ou, au contrire, de bruit non structuré. Dans de nombreuses situations, des résultats complètement faux (biaisés) peuvent être obtenus à cause du schéma d'échantillonnage utilisé pour réaliser l'intégration. La distribution d'un échantillonnage peut être caractérisée à l'aide de son spectre de Fourier. Des schémas d'échantillonnage peuvent être générés à partir d'un spectre de puissance dans le domaine de Fourier. Cette technique peut être utilisée pour améliorer l'erreur d'intégration, car un tel contrôle spectral permet d'adapter le schéma d'échantillonnage au spectre de Fourier de l'intégrande. Il n'existe cependant pas de relation directe entre l'erreur dans l'intégration par méthode de Monte-Carlo et le spectre de puissance de la distribution des échantillons. Dans ces travaux, nous proposons une formulation de la variance qui établit un lien direct entre la variance d'une méthode de Monte-Carlo, les spectres de puissance du schéma d'échantillonnage ainsi que de l'intégrande. Pour obtenir notre formulation de la variance, nous utilisons la notion d'homogénéité de la distribution des échantillons qui permet d'exprimer l'erreur de l'intégration par une méthode de Monte-Carlo uniquement sous forme de variance. À partir de cette formulation de la variance, nous développons un outil d'analyse pouvant être utilisé pour déterminer le taux de convergence théorique de la variance de différents schémas d'échantillonnage proposés dans la littérature. Notre analyse fournit un éclairage sur les bonnes pratiques à mettre en œuvre dans la définition de nouveaux schémas d'échantillonnage basés sur l'intégrande
Type de document :
Thèse
Signal and Image Processing. Université Claude Bernard - Lyon I, 2015. English. < NNT : 2015LYO10121 >
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/tel-01217082
Contributeur : Abes Star <>
Soumis le : vendredi 17 juin 2016 - 11:59:08
Dernière modification le : mercredi 5 juillet 2017 - 09:45:50

Fichier

TH2015SinghGurprit.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01217082, version 2

Collections

Citation

Gurprit Singh. Sampling and Variance Analysis for Monte Carlo Integration in Spherical Domain. Signal and Image Processing. Université Claude Bernard - Lyon I, 2015. English. < NNT : 2015LYO10121 >. <tel-01217082v2>

Partager

Métriques

Consultations de
la notice

612

Téléchargements du document

274