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Abstract

How to well model and manage the uncertainty in the classification problem remains an important
and interesting topic of research. In the classification of uncertain data, the available attribute
information can be insufficient for the specific classification of object (pattern, sample), since several
different classes may appear indistinguishable according to the used attribute data. In this case,
it is hard to correctly commit one object into a particular class. Evidence theory also called belief
function theory is appealing for dealing with such uncertain and imprecise information thanks to
the belief functions. Credal classification of uncertain data based on belief function theory has
been studied in this thesis, and it allows the object to belong not only to the single classes, but
also to any set of classes (called meta-class) with different masses of belief. The credal classification
is interesting to explore the imprecision of class, and it can also provide a deeper insight in the
data structure. The object that is difficult to correctly classify can be reasonably assigned with a
degree of belief to the proper meta-class defined by the disjunction of several single classes that
the object is very likely to belong to, and this can also reduce errors.

The classification methods can be mainly identified by supervised, unsupervised and semi-
supervised ones according to the availability of training information, and we focus on the supervised
and unsupervised classifications in this thesis. When there are a lot of training samples available
in the classification, two credal classifiers for uncertain data are proposed for dealing with different
cases. Moreover, the missing attribute data is often encountered in classification problem. The
different estimations of the missing values can lead to distinct classification results sometimes,
and this yields high imprecision and uncertainty of classification due to the lack of information
in the missing values. It is worth noting that the inherent nature of uncertainty in classification
of the incomplete data and the uncertain (complete) data is the same, since both of them are
caused by the insufficient knowledge (attribute information). So one credal classification method
for classification of the incomplete data with missing values has been developed based on belief
function theory to well characterize the uncertainty and imprecision. If the training information is
not available, the data clustering (unsupervised) analysis can be applied, and the belief-structure-
based fuzzy c-means clustering method has been proposed. The main content of this thesis are
briefly introduced as follows.

A belief c×K neighbors (BCKN) classifier has been proposed based on belief function theory.
In BCKN, the query object is classified according to its K nearest neighbors in each class, and
c × K neighbors are involved in BCKN approach (c being the number of classes). c × K basic
belief assignments (BBA’s) are determined according to the distances between the object and these
neighbors, and the global fusion of them is used for the credal classification of object. It allows
to commit, with different masses of belief, an object not only to a specific class, but also to a set
of classes (called meta-class), or eventually to the ignorant class characterizing the outlier. The
objects that lie in the overlapping zone of different classes cannot be reasonably committed to a
particular class, and that is why such objects will be assigned to the associated meta-class defined
by the union of these different classes. Such approach allows to reduce the misclassification errors
at the price of the detriment of the overall classification precision, which is usually preferable in
some applications. The objects too far from the others will be naturally considered as outliers.
The results of several experiments are given and analyzed to illustrate the potential of BCKN
approach.

BCKN is able to deal with the general and complicate cases but with the big computation
burden. When each class of data can be represented by the prototype vector, a simple credal
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classification rule (CCR) has been developed using belief functions. Each specific class is charac-
terized by a class center (i.e. prototype), and consists of all the objects that are sufficiently close
to the center. The belief of the assignment of a given object to classify with a specific class is
determined from the Mahalanobis distance between the object and the center of the corresponding
class. The meta-classes are used to capture the imprecision in the classification of the objects
when they are difficult to correctly classify because of the poor quality of available attributes.
The selection of meta-classes depends on the application and the context, and a measure of the
degree of indistinguishability between classes is introduced for the determination of mass of belief
on meta-class. In CCR, the objects assigned to a meta-class should be close to the center of this
meta-class having similar distances to all the involved specific classes’ centers, and the objects too
far from the others will be considered as outliers (noise). CCR provides robust credal classification
results with a relatively low computational burden. Several experiments using both artificial and
real data sets are presented to evaluate and compare the performances of this CCR method with
respect to other classification methods.

It often happens that partial attribute values are missing in some applications. The missing
values can bring high uncertainty in the classification, because the object (incomplete pattern)
with different possible estimations of missing values may yield distinct classification results. A new
prototype-based credal classification (PCC) method is proposed to deal with incomplete patterns
under belief function framework. The class prototypes obtained by training samples are respectively
used to estimate the missing values. Typically, in a c-class problem, one has to deal with c
prototypes, which yield c estimations of the missing values. The different edited patterns based
on each possible estimation are then classified by a standard classifier and we can get at most c
distinct classification results with different weighting factors depending on the distances between
the object and the corresponding prototypes. Because all these distinct classification results are
potentially admissible, we propose to combine them altogether to obtain the final classification of
the incomplete pattern. These classification results should be discounted using their weights before
the fusion process. A new credal combination method is introduced for solving the classification
problem, and it is able to characterize the inherent uncertainty due to the possible conflicting
results delivered by different estimations of the missing values. The incomplete patterns that are
very difficult to classify in a specific class will be reasonably and automatically committed to some
proper meta-classes by PCC method in order to reduce errors. The effectiveness of PCC method
has been tested through several experiments.

When the training samples are unavailable in the classification problem, a new credal c-means
(CCM) clustering method working with credal partition is proposed to effectively deal with the
uncertain data. In CCM, the object committed to one singleton cluster should be very close to
the center of this cluster. One object can be simultaneously close to several clusters, and it is
hard to be correctly classified into a particular cluster, since these several clusters seem not very
distinguishable for this object. In such case, it will be cautiously committed to meta-cluster by
CCM, which can well characterize the imprecision of the class of the object and can also reduce
the misclassification errors. If one object is too far from all the clusters with respect to the given
threshold, it will be naturally considered as outlier. So CCM is robust to the noisy data. The
objective function of CCM is designed based this basic principle, and the clustering centers and
the mass of belief for any object can be obtained by the linear optimization (minimization) of the
proposed objective function. One tuning threshold for selecting of meta-cluster is introduced in
the objective function to control the number of meta-class with big cardinality, and this is able to
efficiently reduce the computation complexity. The credal partition can be simply reduced to fuzzy
partition if necessary. The experimental evaluation over synthetic and real data demonstrates the
effectiveness of CCM.
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Résumé étendu

L’incertitude est une notion très importante mais difficile à intégrer proprement dans un processus
de classification en raison du caractère aléatoire des données, de la connaissance insuffisante portée
sur elles, voire de l’absence de certaines d’entre elles. . . Pour la classification des données incertaines,
différentes classes peuvent être partiellement superposées selon l’utilisation (disponible) d’attributs,
et les échantillons situés dans la zone de chevauchement sont assez difficiles à classer correctement,
puisque ces classes associées apparaissent indiscernables. Les méthodes de classification se fondent
la plupart du temps sur un cadre probabiliste, et les échantillons sont couramment affectés à la
classe ayant une probabilité maximale. Néanmoins, le cadre probabiliste capte seulement l’aspect
aléatoire des données. La théorie des fonctions de croyance également connue comme théorie de
l’évidence ou théorie de Dempster-Shafer (DST) considérée comme la généralisation de la théorie
des probabilités de Bayes permet de définir des fonctions de masse de croyance non seulement à
des éléments uniques (correspondant à des classes simples), mais aussi à un ensemble d’éléments
à l’aide d’une affectation des masses de croyances (BBA). La théorie des fonctions de croyance est
un outil efficace pour modéliser et gérer l’information incertaine et imprécise, et elle a déjà été
appliquée dans de nombreux domaines, tels que la classification des données, la segmentation et
l’aide à la décision. . .

Les méthodes de classification peuvent être soit supervisées ou non supervisées. Lorsque des
échantillons labellisés sont disponibles en nombre suffisant, une classification supervisée peut être
appliquée, et le modèle de règle de décision est déterminé sur la base des données d’entraînement.
Certains classifieurs ont été développés sur la base de la DST, et l’ignorance totale est caractérisée
en utilisant une pondération des fonctions de masse. Néanmoins, l’information imprécise partielle
n’est pas prise en compte dans ces méthodes. Dans les applications réelles, la classification est
souvent partiellement (plutôt que totalement) imprécise entre un très petit nombre (par exemple,
2) de classes. Ainsi, la caractérisation appropriée de l’imprécision partielle est très importante.
Dans cette thèse, nous avons étudié la classification crédibiliste de données incertaines sur la base
des fonctions de croyance, et deux classificateurs crédibilistes ont été proposés pour faire face à
différentes situations. La classification crédibiliste permet à un objet d’appartenir à des classes
simples mais aussi à des méta-classes définies par l’union de plusieurs classes simples. Ces méta-
classes sont introduites pour modéliser l’imprécision partielle de classification et pour réduire le taux
d’erreur. Une méthode de classification crédibiliste appelée c×K plus proches voisins crédibilistes
(Belief c×K nearest neighbors) a été introduite. Lorsque chaque classe peut être représentée par
son centre de classe, nous avons également proposé une règle simple de classification crédibiliste
(CCR), qui peut calculer directement la masse de croyance de l’échantillon appartenant à chaque
classe et une méta-classe avec une faible complexité calculatoire.

En outre, la classification avec données manquantes est une problématique récurrente dans de
nombreuses applications, et elle reste un sujet d’intérêt. Les méthodes classiques caractérisent gé-
néralement les données manquantes par une classe particulière de valeurs de probabilité maximale.
Cependant, les différentes estimations des valeurs manquantes peuvent conduire à des résultats de
classification distincts, et parfois avec une forte imprécision, et incertitude dans la prise de déci-
sion. Il est à noter que nous considérons que la classification des données incomplètes et celle des
données incertaines (mais complètes) représentent deux problèmes de même nature, puisque les
deux sont causées par une connaissance insuffisante sur les données. Une méthode de classification
crédibiliste de données incomplètes a été également développée, et elle est capable de modéliser de
telles informations incertaines et imprécises provenant de valeurs manquantes.
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F-1.1. CLASSIFICATION PAR K PLUS PROCHES VOISINS CRÉDIBILISTE (BCKN)

S’il n’y a pas de phase d’entraînement, l’analyse de la concentration de données aussi appelée
classification non supervisée peut être utilisé, et les motifs seront automatiquement groupés en
plusieurs groupes selon certaines mesures de (dis-)similarité. Les K-moyennes floues (Fuzzy C-
means, FCM) est une méthode de classification très répandue, et une version crédibiliste de la FCM,
K-Moyennes évidentielles (Evidential C-Means, ECM) a été introduite permettant de prendre en
compte des fonctions de croyance. Néanmoins, lorsque les différents centres de classes (dans ce cas,
les classes simples et les méta-classes) sont proches, ECM va produire des résultats très surprenants.
Ainsi, nous proposons une nouvelle méthode de classification crédibiliste appelé K-moyennes floues
et crédibiliste (Credal C means, CCM) comme une extension crédibiliste de la FCM permettant
de contourner les limites de l’ECM.

Ces quatre méthodes, proposées dans cette thèse, ont été testées par de nombreuses expériences
avec des données simulées et réelles. Nous proposons de donner dans ce résumé quelques exemples
caractéristiques permettant d’illustrer l’utilisation de ces nouvelles méthodes.

F-1.1 CLASSIFICATION PAR K PLUS PROCHES VOISINS CRÉDIBI-
LISTE (BCKN)

Dans le BCKN, chaque échantillon est classé selon son voisinage dans la topologie de l’espace de
représentation, et les K voisins les plus proches (de KNN) dans chaque classe sont considérés. Un
total de c × K voisins (c étant le nombre de classes) voisins est utilisé pour classer l’échantillon
courant. c × K assignations des masses (BBA) sont réalisées en fonction de la distance entre
l’échantillon courant et ses voisins. Une fusion globale de ces BBA est réalisée pour évaluer les
fonctions de croyance de l’échantillon à chaque classe. Cela peut conduire à une prise de décision
portant sur une classe simple, une méta-classe ou une classe aberrante.

Un échantillon qui est très proche d’une classe particulière sera associé à cette classe spécifique.
Un échantillon trop loin de tous les autres échantillons sera naturellement considéré comme une
valeur aberrante. Si l’échantillon est proche de plusieurs classes spécifiques, alors cet échantillon
sera associé à une méta-classe définie par l’union de ces classes spécifiques. La méta-classe révèle
l’imprécision dans la classification de cet échantillon, et permet également de réduire les erreurs de
classification. Cette classification crédibiliste est très intéressante dans de nombreuses applications,
en particulier celles liées à la défense et à la sécurité (comme dans la classification des cibles
et la poursuite), car il est généralement préférable d’obtenir un résultat de classification plus
robuste (et éventuellement partiellement imprécis) qui pourrait être raffiné plus tard avec d’autres
techniques ou de ressources, plutôt que d’obtenir un résultat définitif avec un risque élevé de
mauvaise classification.

Si certains échantillons se sont associés à des méta-classes, cela implique que l’information uti-
lisée pour la classification des attributs est insuffisante pour obtenir la classification spécifique de
ces échantillons. Ainsi, la sortie de BCKN peut être considérée comme une source d’information
intéressante à fusionner avec d’autres sources d’information complémentaires disponibles (le cas
échéant) pour obtenir des résultats de classification plus précis dans les systèmes d’informations
multi-sources. D’autres techniques sophistiquées et coûteuses peuvent également être utilisées pour
classer plus précisément les échantillons dans les méta-classes. L’utilisation de ces techniques so-
phistiquées supplémentaires dépend fortement de l’importance des conséquences de la décision à
prendre. Les échantillons dans une méta-classe représentent généralement un petit sous-ensemble
de l’ensemble des données. Donc le prix pour la classification spécifique de ces échantillons qui in-
voquent des techniques sophistiquées coûteuses ne peut être acceptable que pour un nombre limité
d’échantillons, mais pas pour l’ensemble des échantillons, dès le début du processus de classifica-
tion. Ainsi, la méthode de BCKN fournit un moyen de sélectionner les échantillons (en méta-classe)
qui ont besoin d’une attention particulière qui doivent être traités avec prudence, dans la mesure
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où des décisions importantes à prendre sont nécessaires.

F-1.1.1 Affectation du jeu de masse (BBA)

Considérons des échantillons ys ∈ Y = {y1, . . . ,yh}, s = 1, . . . , h à classifier parmi un cadre de
c classes Ω = {w1, . . . , wc} avec un ensemble d’échantillons d’entraînement X = {x1, . . . ,xn}. w0
représente une classe inconnue dans Ω pour respecter l’hypothèse d’exhaustivité (ou monde dit
fermé). Les KNNs de ys pour chaque classe doivent d’abord être trouvés, soit les c × K voisins
sélectionnés. L’assignation des masses associées à ys peut être effectuée à partir de la distance
entre les ys et les c×K voisins par l’équation suivante :{

msi(wg) = e−γdsi

msi(Ω) = 1− e−γdsi
(F-1.1)

où dsi est la distance entre ys et xi. γ > 0 de l’éq. (F-1.1) est un paramètre d’ajustement dans
l’assignation des masses. c×K assignations de masses, correspondant aux c×K voisins sélectionnés
de ys dans chaque classe peuvent être effectuées en suivant cette procédure.

F-1.1.2 Fusion des assignements de masse

Les résultats de la fusion des c×K assignations de masses (BBA) sont utilisés pour le classement
crédibiliste de l’échantillon courant. Les c ×K BBA peuvent être classées en c groupes selon les
étiquettes des voisins à partir desquelles les BBA ont été obtenues. Les BBA d’un même groupe
sont toutes associées à la même classe, alors que les BBA des différents groupes correspondant aux
différentes classes peuvent être en conflit. Donc dans ce cas, ces BBA sont fusionnées en suivant
les deux étapes suivantes :

Etape 1 (sous-combinaison) : Nous combinons toutes les BBA appartenant aux mêmes classes,
et ce sous-ensemble est appliqué à toutes les classes disponibles.

Etape 2 (fusion globale) : nous combinons les c BBA résultant de la sous-combinaison précédente.

Dans la première étape, il n’est pas approprié d’utiliser la règle de Dempster-Shafer (DS) ici pour
la fusion des BBAs appartenant aux mêmes classes en raison de leur structure particulière. En
effet, cela donnerait une convergence très rapide vers un singleton. Nous proposons d’utiliser une
règle simple de fusion par la moyenne. Elle est définie pour g = 1, . . . , c par

mg
s(wg) = 1

K

K∑
i=1

msi(wg)

mg
s(Ω) = 1

K

K∑
i=1

msi(Ω).
(F-1.2)

Les BBAs issues de l’étape 1 en fonction des différents groupes sont combinées lors de l’étape 2
pour la classification crédibiliste finale de l’échatillon ys. Dans ce processus de fusion globale, la
croyance en conflit partiel produite par la conjonction de croyances des différentes classes spéci-
fiques exhaustives reflète le degré d’ambiguïté (difficulté) de la classification des échantillons dans
les classes spécifiques concernées. Par conséquent, les croyances contradictoires seront associées
préférentiellement à la méta-classe correspondante. Si toutes les croyances contradictoires sont
conservées et associées aux méta-classes correspondantes, alors trop d’échantillons seront affectés
à ces méta-classes. Ce n’est pas une solution de classification des données très efficace, et nous
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F-1.1. CLASSIFICATION PAR K PLUS PROCHES VOISINS CRÉDIBILISTE (BCKN)

proposons de sélectionner les méta-classes disponibles en fonction de la masse de croyance des
classes spécifiques dans le contexte actuel.

Les résultats de la sous-combinaison liés à ys pour les différentes classes peuvent être fusionnés
séquentiellement par

m1,g
s (A) =


∑

B1,B2∈2Ω|B1∩B2=A
m1,g−1
s (B1)mg

s(B2), pour A 6∈ Ψ∑
B1,B2∈2Ω|B1∪B2=A

m1,g−1
s (B1)mg

s(B2), pour A ∈ Ψ
(F-1.3)

où Ψ représente la méta-classe considérée. Le résultat de la fusion de l’éq. (F-1.3) n’est pas normalisé
et il convient de le normaliser à la fin par

ms(A) = m1,c
s (A)∑

j

m1,c
s (Bj)

. (F-1.4)

F-1.1.3 Applications

Avec le BCKN, les échantillons sont directement associés à la classe qui reçoit la masse de croyance
maximale. Nous utilisons à la fois le taux d’erreur de classification, et un nouveau concept de taux
d’imprécision pour évaluer la performance du BCKN. Pour un échantillon issu de wi, s’il est classé
dans A avec wi∩A = ∅, il sera considéré comme une erreur. Si wi∩A 6= ∅ et A 6= wi, il sera considéré
comme une prise de décision imprécise. Le taux d’erreur noté Re est calculé par Re = Ne/T , où
Ne est le nombre d’échantillons mal classés, et T est le nombre total d’échantillons testés. Le taux
d’imprécision noté Rij est calculé par Rij = NIj/T , où NIj est le nombre d’échantillons associés
aux méta-classes ayant un cardinal j. Par commodité, nous avons noté wi ∪ · · · ∪ wj , wi,...,j .

F-1.1.3.1 Application 1 (Données simulées)

Cette expérience montre comment fonctionne le BCKN et sa différence par rapport aux méthodes
EK-NN (evidential K-nearest neighbor) et K-NN (K-nearest neighbor). Nous avons utilisé un jeu
de données bi-dimensionnelles avec 3 classes, composé de trois anneaux comme représenté sur la
figure.F-1.1-(a). Les résultats de la classification des données de test par K-NN, EK-NN et BCKN
sont respectivement présentés sur la figure F-1.1-(b), (c), (d).

Nous pouvons voir que les trois anneaux se croisent, et les échantillons se trouvant dans la zone
de recouvrement (intersection) sont impossibles à classer correctement. Dans les résultats de la
classification de K-NN et EK-NN, tous ces échantillons sont associés à une classe particulière. K-
NN et EK-NN génèrent tous deux 109 erreurs de classification. Dans BCKN, les échantillons dans
les zones de recouvrement sont directement associés à des méta-classes, comme indiqué sur la figure.
F-1.1-(d). Le BCKN ne produit que 4 erreurs de classification, mais il associe 141 échantillons dans
les méta-classes. Cet exemple montre l’efficacité de BCKN pour traiter les données ambiguës dans
une situation complexe.

F-1.1.3.2 Application 2 (Données réelles)

Quatre jeux de données bien connues et disponibles à partir de la base de l’UCI (vin, Iris, cancer
du sein et données de levure) sont utilisés pour évaluer la performance du BCKN par rapport au
ANN (artificial neural network), au CART (classification and regression tree) et au SVM (support
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(a) Données d’entraînement et de test. (b) Classification par K-NN.
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(c) Classification par EK-NN. (d) Classification par BCKN (t = 0.002).

Figure F-1.1 : Comparaison des résultats de classification à 3 classes par K-NN, EK-NN et BCKN
.

vector machine). Le taux moyen d’erreur Rea, le taux d’imprécision Ria (pour le BCKN) et le
temps d’exécution (en secondes) avec un nombre de classes K variant de 5 à 15 pour les différentes
méthodes sont donnés dans le tableau F-1.1.

On peut voir que le taux d’erreur de classification du BCKN est généralement plus faible que
celui des autres méthodes puisque les échantillons difficiles à classer sont automatiquement associés
aux méta-classes par le BCKN. Celui-ci requiert un peu plus de temps que K-NN et EK-NN comme
le montre le tableau F-1.1. Les résultats du BCKN indiquent clairement que les attributs utilisés
sont en fait insuffisants pour une bonne classification en dehors des méta-classes. Nous devrions
traiter ces échantillons avec plus de prudence et/ou avec d’autres sources d’information pour obtenir
des résultats plus spécifiques (si nécessaire). Nos tests et analyses illustrent l’intérêt et le potentiel
de la méthode BCKN dans ce genre de problèmes de classification.

F-1.2 RÈGLE DE CLASSIFICATION CRÉDIBILISTE (CCR)

La classification BCKN peut ainsi être utilisée pour la classification crédibiliste de données incer-
taines en général, mais elle requiert une charge de calcul élevée, car les distances entre l’échantillon
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F-1.2. RÈGLE DE CLASSIFICATION CRÉDIBILISTE (CCR)

Table F-1.1 : Résultats (en %) de classification pour différents jeux de données réelles.
Levure Cancer Vin Iris

K-NN Rea 35.97 3.16 30.45 2.79
time 0.0143 0.0098 0.0030 0.0024

EK-NN Rea 35.24 2.99 30.25 3.15
time 0.2261 0.1326 0.0228 0.0186

CART Re 37.71 5.59 11.67 5.33
time 0.8034 0.1934 0.1045 0.0811

ANN Re 58.76 3.97 63.33 4.67
time 6.7049 6.4584 3.3072 2.9905

SVM Re 34.29 3.95 5.00 2.67
time 2.1528 1.8861 0.2792 0.2308
Rea 27.05 2.54 23.84 2.55

BCKN Ria2 17.59 1.34 16.01 0
time 0.7484 0.2714 0.0211 0.0156

courant et tous les échantillons du voisinage étendu doivent être calculées. Donc, nous proposons ici
une nouvelle solution simple, appelée règle de classification crédibiliste (Credal Classification rule,
CCR), permettant de simplifier le calcul des masses dans les cas simples, c’est-à-dire où chaque
classe peut être caractérisée par son centre calculé à partir de données d’entraînement.

Dans l’approche CCR, le centre de chaque classe peut être obtenu simplement par calcul de
barycentre des échantillons d’entraînement d’une même classe. Le centre d’une méta-classe est
calculé à partir des centres des classes simples incluses dans la méta-classe. Dans le problème de
classification multi-classe, il y a habituellement quelques classes (pas toutes) qui se chevauchent
en partie, et la plupart des classes qui sont en fait loin les unes des autres peuvent être séparées
facilement. Les méta-classes, définies par l’union des classes qui sont éloignées les unes des autres, ne
sont pas utiles dans des applications réelles. Afin de réduire la complexité de calcul, nous avons juste
besoin de sélectionner les méta-classes utiles en fonction du contexte applicatif. L’attribution des
masses de croyance de l’échantillon courant est déterminé en fonction de la distance de Mahalanobis
qui le sépare des centres de classe simple. Le rapport de la distance maximale de l’échantillon dans
les centres des classes simples sur la distance minimale, est introduit pour mesurer le degré de
séparation de ces classes. Ainsi, la masse d’une méta-classe est déterminée à partir de la distance
entre l’échantillon et le centre de la méta-classe et de la valeur du ratio correspondant. L’approche
CCR fournit des résultats de classification crédibliliste avec une faible complexité calculatoire. Le
CCR se décompose en deux étapes principales : 1) la détermination des centres des classes simples
et méta-classes, et 2) la phase de calcul des BBA est basée sur les distances entre l’échantillon et
chaque centre de classe.

F-1.2.1 Détermination des centres de classe

Considérons des données Y = {y1,y2, . . . ,yn} qui doivent être classées dans un ensemble de
classes Ω = {w1, . . . , wh} en utilisant les échantillons d’entraînement X = {x1,x2, . . . ,xg}. Le
centre de chaque classe est simplement défini par la valeur moyenne des données d’apprentissage
X = {x1,x2, . . . ,xg} appartenant à la classe correspondante. On suppose que les centres de classes
C = {c1, . . . , ch} sont donnés, et correspondent aux centres des classes simples {w1, . . . , wh}.

Nous considérons que les centres des classes simples impliquées dans une méta-classe sont
indiscernables pour le centre de la méta-classe selon la mesure de distance. Dans ce travail, nous
proposons que le centre d’une méta-classe doit être situé à la même distance de Mahalanobis de
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tous les centres des classes spécifiques incluses dans la méta-classe. Donc, pour le centre cU de la
méta-classe U , les conditions suivantes doivent être respectées

d(cU , ci) = d(cU , cj),∀wi, wj ∈ U, i 6= j. (F-1.5)

Comme on peut obtenir un ensemble de |U | − 1 contraintes indépendantes à partir de l’équation
(F-1.5), il y aura une seule solution de cU lorsque le nombre des attributs de données disponibles
est égal à |U | − 1. Si le nombre d’attributs est plus grand que |U | − 1, il existe de nombreuses
solutions pour cU , et nous choisirons la solution qui est la plus proche de tous les centres des
classes simples incluses dans U . Cette solution est donnée par cU = arg[minc

∑
wj∈U

(d(c, cj))]. Si la

dimension de cU est inférieure à |U |−1, on doit résoudre un problème d’optimisation pour chercher
la solution cU qui satisfasse toutes les contraintes, autant que possible, c’est-à-dire

∀wi, wj ∈ U, i 6= j, arg[min
cU

∑
wi,wj∈U

(d(cU , ci)− d(cU , cj))2].

Ceci peut être réalisé en utilisant n’importe quel procédé d’optimisation non linéaire classique. En
outre, le centre de méta-classe doit être plus près des centres de ces classes spécifiques impliqués
que d’autres centres de classes incompatibles telles que maxwi∈U dUi < minwk /∈U dUj . Sinon, cette
méta-classe ne peut pas être incluse dans les résultats de la classification crédibiliste.

F-1.2.2 Assignation des masses

La masse de croyance de la classe simple (par exemple wi) est basée sur la distance de Mahalanobis
entre l’échantillon et le centre de la classe correspondante, et il peut être défini par

m̃(wi) = e−d(ys,ci). (F-1.6)

Dans la détermination de la masse sur la méta-classe, le rapport γ = dmax/dmin de la distance
maximale dmax de l’échantillon aux centres des classes simples incluses dans U sur la distance
minimale dmin est introduite afin de mesurer le degré de distinction entre les classes de U . Un ratio
de faible valeur indique un degré de distinction faible parmi les classes de U de l’échantillon. Ainsi,
la valeur du rapport γ servira à mettre plus ou moins de masse de croyance à la méta-classe U . La
masse de l’échantillon ys avec la méta-classe U est mathématiquement définie par

m̃(U) = e−λUγUd(ys,cU ), for |U | ≥ 2 (F-1.7)

où

d(ys, cU ) = 1
|U |

∑
wi∈U

√√√√ N∑
k=1

(ys(k)− cU (k))2

δi(k)2 (F-1.8)

γU = maxwi∈U d(ys, ci)
minwi∈U d(ys, ci)

(F-1.9)

avec λU = η|U |α. La quantité |U |α est une pondération de pénalité pour les méta-classes ayant
une grande cardinalité. η est un paramètre de réglage utilisé pour gérer le nombre d’échantillons
déterminés pour les méta-classes. L’échantillon sera considéré comme aberrant s’il apparaît loin de
toutes les autres classes selon un seuil d’aberration t. La masse de l’échantillon dans la classe des
valeurs aberrantes w0 est définie par :

m̃(w0) = e−t (F-1.10)

∀A ⊆ Ω, la masse non normalisée précédente de croyance m̃(·) peut être simplement normalisée
pour la classification crédibiliste de l’échantillon ys.
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F-1.3. CLASSIFICATION CÉDIBILISTE PAR PROTOTYPE (PCC) POUR LES
DONNÉES INCOMPLÈTES

F-1.2.3 Evaluation du CCR sur des données simulées de grande dimen-
sion

La performance du CCR a été évaluée sur plusieurs ensembles de données simulées et réelles.
Nous donnons ici un exemple simple pour illustrer l’utilisation du CCR dans le traitement à
grande échelle. Les simulations sont générées avec quatre classes w1, w2, w3 et w4 à l’aide de 4
gaussiennes en dimension 30 ayant des moyennes et matrices de covariance comme suit (selon des
instruction matlab R©) : µ1 = zeros(1,30),Σ1 = 10 · I;µ2 = 5 · ones(1,30),Σ2 = 10 · I;µ3 =
20 · ones(1,30),Σ3 = 15 · I;µ4 = 30 · ones(1,30),Σ4 = 15 · I.

Dans chaque classe, nous utilisons le même nombre (i.e. n) d’échantillons d’apprentissage et
d’échantillons de test. Donc, il y a en tout N = 4 × n échantillons d’apprentissage et N = 4 × n
échantillons de test, avec N = 8000, 40000, 200000, 1000000. Le taux d’erreur Re, le taux d’impré-
cision Rij , et le temps de calcul t (en secondes) sont moyennés sur 10 simulations de Monte Carlo,
et sont donnés dans le tableau F-1.2. "NA" (not available) signifie "Sans échantillon".

Table F-1.2 : Résultats (en %) de classification avec des données de grande dimension.
ANN CART EK-NN CCR

(Re, time) (Re, time) (Re, time) (Re,Ri2, time)
N=8000 (33.09, 15.6313) (29.59, 1.2168) (8.46, 47.5023) (5.26, 5.84, 0.2340)
N=40000 (35.04, 58.9684) (26.66, 6.4428) (8.25, 1669.1) (5.15, 6.41, 1.1544)
N=200000 (33.93, 241.7703) (24.34, 35.1470) NA (5.11, 6.24, 5.8032)
N=1000000 NA (22.25, 200.3053) NA (5.14, 6.16, 29.0162)

Nous pouvons voir que la classification CCR produit le taux d’erreur le plus bas avec quelques
imprécisions partielles, dues à la difficulté d’associer certains échantillons à la bonne méta-classe.
Cependant, le CCR est beaucoup plus rapide que les autres méthodes. EK-NN peut obtenir des
résultats de classification raisonnables, mais il requiert plus de temps d’execution. ANN et CART
induisent des taux d’erreur beaucoup plus élevés que le CCR et EK-NN, et ils sont aussi beaucoup
plus lents que CCR. ANN n’est pas applicable pour les grands ensembles de données (surtout
pour N = 1000000) en raison de sa haute charge de calcul. Ainsi, il apparaît que le CCR est
une alternative intéressante permettant de faire face aux grands ensembles de données à grande
dimension grâce à sa faible charge de calcul et sa faible complexité.

F-1.3 CLASSIFICATION CÉDIBILISTE PAR PROTOTYPE (PCC) POUR
LES DONNÉES INCOMPLÈTES

Dans de nombreuses applications, la qualité des données peut souffrir du fait que certains échan-
tillons soient incomplets avec des composantes manquantes ou inconnues. Les différentes estima-
tions de ces valeurs manquantes peuvent conduire à des résultats de classification différents, et il
est difficile de classer correctement l’échantillon dans la bonne classe parce que ses composantes
disponibles peuvent être insuffisantes pour une classification simple. Une nouvelle méthode de
classification crédibiliste basée sur des prototypes (PCC) pour les modèles incomplets a donc été
développée. Un échantillon ne pouvant être classé correctement en raison de l’imprécision causée
par des valeurs manquantes de ses composantes sera raisonnablement associé à une méta-classe
appropriée définie par l’union (disjonction) de plusieurs classes simples dans lesquelles cet échan-
tillon peut appartenir. Cette approche nous permet de réduire le taux d’erreur de classification
et de révéler l’imprécision de la classification. Dans PCC, les prototypes de toutes les classes ob-
tenues par les données d’entraînement (dans un modèle complet) sont utilisées pour estimer les
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valeurs manquantes du modèle incomplet. Ainsi, dans un problème avec c-classes, on a affaire à
c estimations des valeurs manquantes. L’échantillon, avec c valeurs estimées, est classé selon un
classificateur standard, et le PCC va produire c résultats de classifications partielles représentées
par des assignations de masse (BBA). Ces c résultats partiels ont différents facteurs de pondération
(déterminés par les distances entre l’échantillon et les prototypes) qui servent à l’affaiblissement
des masses. La fusion globale des c résultats actualisés fournit la classification finale crédibiliste
de l’échantillon. Dans ce processus de fusion, les méta-classes seront conditionnellement conservées
en fonction du degré d’incertitude des échantillons qui sont difficiles à classer correctement. Les
croyances contradictoires peuvent bien représenter l’imprécision (ambiguïté) du degré de classifi-
cation, et elles sont transférées aux méta-classes correspondantes en fonction du contexte.

F-1.3.1 Classification de données incomplètes avec c estimations

Considérons un jeu de données de test Y = {y1, . . . ,yN} et un jeu d’entraînementX = {x1, . . . ,xH}
avec un ensemble de classes Ω = {ω1, . . . , ωc}. On suppose que les échantillons de test (qui sont
des vecteurs) sont tous incomplets avec des composantes manquantes uniques ou multiples, alors
que les données d’apprentissage Y sont complètes.

Le prototype de chaque classe i.e. {o1, . . . ,oc} est calculé par simple barycentre des données
d’entraînement de chaque classe, et og correspond au centre de la classe ωg. Une fois les prototypes
de classe estimés, nous utilisons le barycentre du prototype pour combler les valeurs manquantes
de l’échantillon à la composante correspondante. Comme on a considéré c classes possibles, on
obtient c valeurs estimées différentes. Pour chacune d’entre-elles ygi , g = 1, 2 . . . , c, nous pouvons
obtenir une classification en utilisant n’importe quel classificateur standard noté Γ(·). Les résultats
des c classifications des yi sont donnés pour g = 1, . . . , c par

Pg
i = Γ(ygi |Y ). (F-1.11)

Dans le PCC, nous proposons de combiner ces c classifications partielles pour obtenir une classifi-
cation crédibiliste de l’échantillon incomplet. Le facteur de pondération (pour l’affaiblissement) de
chaque classification peut être déterminé par la distance entre l’échantillon et le centre de la classe
simple correspondante, c’est-à-dire par

wgi = e−dig (F-1.12)

où dig =
√

1
p

∑p
s=1

(
yis−ogs
δgs

)2
. p est le nombre de composantes connues de yi. δgs est la distance

moyenne de toutes les données d’entraînement appartenant à la classe ωg restreinte à la composante
s du centre og. Tg est le nombre d’échantillons d’apprentissage dans la classe ωg.

À partir de ces facteurs de pondération wgi pour g = 1, . . . , c, on définit les facteurs de fiabilité
αgi par αgi = wg

i

wmax
i

avec wmax
i = max(w1

i , . . . , w
c
i ). La méthode d’affaiblissement des sources est

appliquée ici, et les masses réduites sont obtenues pour g = 1, . . . , c par{
mg
i (A) = αsiP

g
i (A), A ⊂ Ω

mg
i (Ω) = 1− αgi + αgiP

g
i (Ω).

(F-1.13)

F-1.3.2 Fusion globale des c classificateurs affaiblis

Les c classifications peuvent être divisées en plusieurs groupes distincts G1, G2, . . . , Gr selon les
classes qui sont supportées. Les résultats de la classification dans un même groupe sont combinés
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F-1.3. CLASSIFICATION CÉDIBILISTE PAR PROTOTYPE (PCC) POUR LES
DONNÉES INCOMPLÈTES

entre eux, puis fusionnés dans la classification crédibiliste. Les résultats de la classification d’un
même groupe ne sont généralement pas en conflit sévère. Par conséquent, on propose d’appliquer
la règle DS. Pour Gs = {mj

i , . . . ,mk
i }, les résultats de la fusion des BBA du groupe Gs en utilisant

la règle DS sont notés par mωs
i (·).

Dans le processus de fusion globale, la combinaison des résultats des différents groupes de
résultats peuvent être en conflit sévère à cause des classes différentes qu’ils soutiennent fortement.
Nous proposons de sélectionner les croyances conflictuelles qui doivent être transférés aux méta-
classes correspondantes. L’ensemble des classes auxquelles l’échantillon appartient probablement
est donné par Λi = {ωs|mωmax

i (ωmax) −mωs
i (ωs) < ε}. ε ∈ [0, 1] est un seuil choisi, et ωmax est la

classe ayant la plus grande masse pour l’échantillon considéré. Nous proposons de garder tous les
sous-ensembles de Λi dans le processus de fusion et nous traitons les méta-classes associées.

La règle de fusion globale est alors définie par :

m̃i(A) =



∑
r⋂
g=1

Bg=A

mω1
i (B1) · · ·mωr

i (Br), pour A ∈ Ω avec |A| = 1, ou A = Ω

∑
|A|⋂
i=1

Bi=∅

|A|⋃
i=1

Bi=A

[
mω1
i (B1) · · ·mωs

i (Bs)
r∏

g=|A|+1
m
ωg
i (Ω)

]
pour A ⊆ Λi, avec |A| ≥ 2.

(F-1.14)
Dans l’équation (F-1.14), r est le nombre des groupes des c classifications. Comme toutes les masses
en conflit partiel ne sont pas transférées dans les méta-classes à travers la formule de fusion globale
(F-1.14), la fonction de masse finale est normalisée avant la prise de décision.

F-1.3.3 Application de la PCC

Dans cette expérience, on utilise quatre jeux de données réelles pour évaluer la performance du
PCC par rapport à d’autres méthodes, telles que l’EK-NN (SC :A) et l’ENN (SC :B) qui ont
été choisies ici comme classificateurs standard. Une simple validation croisée deux-par-deux a été
réalisée sur les quatre jeux de données avec les différentes méthodes de classification. Chaque
échantillon de test a n valeurs manquantes (ou inconnues), et cela est fait par tirage aléatoire selon
les différentes composantes. Le taux d’erreur moyen Rea des différentes méthodes classiques et le
taux d’imprécision Ria (pour le PCC) sont donnés dans le tableau F-1.3.

Les résultats du tableau F-1.3 montrent clairement que la méthode PCC produit généralement
un taux d’erreur inférieur à celui des méthodes de classification MI, KNNI et FCMI, mais parallè-
lement, il donne une certaine imprécision dans le résultat de la classification due à l’introduction
des méta-classes, dont la présence indique que certains échantillons incomplets reste très difficiles
à classer. L’augmentation du nombre (n) de valeurs manquantes dans chaque échantillon de test
provoque généralement l’augmentation du taux d’erreur dans les classificateurs. Le taux de l’im-
précision devient plus important dans le PCC, étant donné que les valeurs manquantes conduisent
à une plus grande imprécision (incertitude). Ainsi, la classification crédibiliste est très utile et
efficace pour représenter le degré de l’imprécision et il peut aussi aider à diminuer le taux d’erreur.
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Table F-1.3 : Résultat (en %) de classification des différents jeux de données.
data set (n, SC) MI KNNI FCMI PCC

Re Re Re {Re,Ri2}
(3, A) 4.71 6.10 3.95 {4.10, 3.38}
(3, B) 4.25 3.95 3.81 {3.81, 2.34}
(5, A) 8.20 8.15 5.07 {4.38, 4.69}

Cancer du Sein (5, B) 6.44 5.76 5.27 {3.81, 6.00}
(7, A) 38.33 14.35 13.00 {7.91, 8.05}
(7, B) 14.64 11.54 11.42 {6.88, 12.44}
(1, A) 37.59 38.13 38.54 {34.36, 6.95}
(1, B) 37.71 36.70 36.19 {32.67, 6.19}
(3, A) 45.08 44.29 45.95 {34.71, 18.00}

Levure (3, B) 42.10 40.90 41.33 {34.19, 14.95}
(5, A) 51.16 50.95 51.11 {33.46, 31.01}
(5, B) 49.33 49.22 46.00 {32.29, 27.62}
(3, A) 21.03 9.68 12.46 {7.14, 3.72}
(3, B) 21.43 11.19 13.33 {9.05, 2.86}

Graines (5, A) 33.49 12.54 20.08 {9.67, 6.70}
(5, B) 31.43 12.14 20.00 {9.52, 9.05}
(6, A) 40.71 25.87 21.75 {16.79, 12.77}
(6, B) 39.52 25.71 20.95 {16.19, 14.76}
(3, A) 30.71 26.59 30.15 {26.05, 1.05}
(3, B) 29.78 26.97 26.97 {26.97, 1.69}

Vin (6, A) 34.93 25.84 32.12 {26.62, 0.84}
(6, B) 33.71 28.09 32.02 {27.53, 1.12}
(10, A) 39.23 30.90 32.30 {25.84, 3.86}
(10, B) 37.64 31.18 31.46 {27.53, 3.93}

F-1.4 K-MOYENNES FLOUES ET ÉVIDENTIELLES (CCM)

Le partitionnement crédibiliste a été proposé récemment pour le regroupement (clustering) de don-
nées en utilisant des fonctions de croyance. Il permet aux échantillons d’appartenir non seulement
aux hypothèses simples, mais aussi à un ensemble de classes (c’est-à-dire des méta-classes). Nous
proposons une nouvelle version crédibiliste de la FCM appelée K-moyennes floues et évidentielles
(CCM) qui travaille à partir d’un partitionnement crédibiliste. Dans la CCM, la notion de méta-
classe est considérée comme une sorte de groupe de transition entre les différentes classes simples.
Si un échantillon est considéré dans une méta-classe, il doit être à la fois proche des classes simples
incluses dans la méta-classe, et son appartenance dépend principalement des distances relatives
entre l’échantillon et les centres des classes simples. Cependant, ces classes simples doivent être
indiscernables pour l’échantillon courant, ce qui indique qu’il est difficile à associer correctement
à une des classes simples. Cela dépend principalement de la distance au centre de la méta-classe.
Ainsi, dans la détermination de la croyance sur la méta-classe, nous devons prendre en compte non
seulement la distance au centre de la méta-classe, mais aussi les distances aux centres des classes
simples concernées.

Une fonction de coût intervient dans la méthode CCM. Elle est définie par le principe suivant.
Les centres de classe et la croyance de chaque classe pour les échantillons peuvent être obtenus
par la minimisation de cette fonction de coût. Pour des données avec c-classes, le partitionnement
crédibiliste produit 2c classes, et sa complexité de calcul est très élevée lorsque c est grand. Dans
les applications réelles, la classification des données imprécises est généralement distribuée parmi
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F-1.4. K-MOYENNES FLOUES ET ÉVIDENTIELLES (CCM)

plusieurs (un très petit nombre, par exemple, deux ou trois) classes simples, et il y a très peu
de données appartenant à des méta-classes ayant une grande cardinalité. Donc, un seuil Tc est
introduit dans le CCM pour éliminer les méta-classes de grande cardinalité, ce qui réduit de façon
significative le coût calculatoire.

F-1.4.1 Fonction de coût du CCM

Considérons un ensemble de n > 1 échantillons à classifier dans Ω = {w1, w2, . . . , wc} avec les
centroïdes correspondants {v1,v2, . . . ,vc}. La partition crédibiliste est définie dans le cadre de
discernement 2Ω. En fait, nous n’avons pas à tenir compte de toutes les méta-classes de 2Ω, et nous
pouvons éliminer certaines d’entre elles qui ont une cardinalité importante en fonction d’un seuil
Tc ∈ [2, 2|Ω|]. Dans le CCM, l’ensemble des clusters disponibles est donné par SΩ = {Ai/|Ai| ≤
Tc} ⊆ 2Ω. Tc est généralement petit (limité à deux, ou trois). Cela peut réduire significativement
la complexité de calcul de la segmentation.

La fonction de coût du CCM est donnée par :

JCCM (M,V ) =
n∑
i=1

∑
j/Aj∈SΩ

mβ
ijD

2
ij (F-1.15)

avec

D2
ij =


δ2; pour Aj = ∅
d2
ij ; lorsque |Aj | = 1,∑
Ak∈Aj

d2
ik+γd2

ij

|Aj |+γ ; si |Aj | > 1,

(F-1.16)

où M = (m1, · · · ,mn) ∈ Rn×2|Ω| est la matrice regroupant les masses de tous les échantillons et
Vc×p est la matrice de centres de classe. JCCM doit satisfaire la contrainte suivante :∑

j|Aj∈SΩ

mij = 1, (F-1.17)

dij étant la distance entre les échantillons xi et les centroïdes Aj . Si Aj est le centroïde d’une classe
simple, alors il coïncide avec vj. Sinon, c’est le barycentre des centres des classes simples incluses
dans Aj .

La justification de la fonction de coût de la CCM est la suivante. La croyance d’un échantillon
sur la classe aberrante, représentée par ∅, est principalement déterminée par la valeur du seuil δ. La
croyance d’un échantillon sur une classe simple est proportionnelle à la distance entre l’échantillon
et le centre de la classe simple. La croyance d’un échantillon sur une méta-classe est proportionnelle
à la distance moyenne des centres de classes simples impliquées, et aussi à la distance au centre de
la méta-classe avec un facteur de pondération γ.

Dans le CCM, la matrice des masses de croyance M = (m1, . . . ,mn) et la matrice des centres
de regroupement Vc×p peuvent être obtenues par la minimisation de la fonction de coût JCCM . La
masse de croyance associée à différents éléments focaux est donnée par

∑
(D) =

∑
Aj=∅

δ
−2
β−1 +

∑
|Aj |=1

d
−2
β−1
ij +

∑
|Aj |>1


∑

Ak∈Aj
d2
ik + γd2

ij

|Aj |+ γ


−1
β−1

(F-1.18)
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mij =



δ
−2
β−1∑
(D)

; lorsque Aj = ∅

d

−2
β−1
ij∑

(D)
; lorsque |Aj | = 1

(

∑
Ak∈Aj

d2
ik

+γd2
ij

|Aj |+γ
)
−1
β−1∑

(D)
; lorsque |Aj | > 1.

(F-1.19)

Les centres de classe V sont définis par

Bc×nXn×p = Hc×cVc×p (F-1.20)

où

Bli , m
β
il +

∑
Al∈Aj

mβ
ij

1 + γ
|Aj |

|Aj |+ γ
(F-1.21)

Hll ,
n∑
i=1

mβ
il +

n∑
i=1

∑
Al∈Aj

mβ
ij

1 + γ
|Aj |2

|Aj |+ γ
(F-1.22)

Hlq ,
n∑
i=1

∑
Al∈Ak,Aq∈Ak

mβ
ik

γ

|Ak|2(|Ak|+ γ) , l 6= q (F-1.23)

V est donc solution du système linéaire de l’équation (F-1.20) à travers :

Vc×p = H−1
c×cBc×nXn×p. (F-1.24)

Le pseudo-code de l’algorithme CCM est donné à la table F-1.4.

Table F-1.4 : Algorithme CCM.
Entrée : Données : X = {x1, · · · ,xn} dans Rp
Paramètres : c : nombre de classes, 2 ≤ c < n

tc : seuil des meta-classes (par défaut tc = 3)
δ > 0 : seuil des données aberrantes
γ > 0 pondération de la distance (par défault γ = 1)
ε > 0 : seuil de fin (par défault ε = 0.001)

Initialisation : Sélection aléatoire des masses initiales M0
t ← 0
Répéter
t← t+ 1
Calcul de Bt et Ht avec (F-1.21)-(F-1.23) ;
Calcul de Vt par résolution de (F-1.24) ;
Calcul de Mt avec (F-1.19) ;

jusqu’à ||Vt − Vt−1|| < ε
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F-1.4. K-MOYENNES FLOUES ET ÉVIDENTIELLES (CCM)

F-1.4.2 Evaluation des performances de l’algorithme CCM

F-1.4.2.1 Classification de données simulées à 3 classes

Considérons un ensemble de données avec 3 classes ayant des formes rondes comme indiqué sur la
figure F-1.2-(a). Cet ensemble de données est constitué de 1245 points, dont 3 sont aberrantes. Les
méthodes FCM, l’ECM et le CCM sont appliquées pour classifier ce jeu de données. Les résultats
de classification obtenus avec le FCM, l’ECM et le CCM sont présentés sur la figure F-1.2-(b)-(d).
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(c) Classification par l’ECM avec α = 1. (d) Classification par le CCM avec γ = 1.

Figure F-1.2 : Comparaison de 3 méthodes de classification évidentielles sur ce jeu de données à
3 classes.

Avec le FCM, les points de la zone de chevauchement sont tous associés à une classe simple,
ce qui est susceptible de provoquer des erreurs. w1 et w3 ne sont pas proches l’un de l’autre et
même totalement séparés, mais il y a beaucoup de points de w2 qui sont abusivement associés à la
méta-classe w1 ∪ w3 par l’ECM. D’ailleurs, de nombreux points de w2 sont même considérés dans
la classe de totale ignorance w1 ∪ w2 ∪ w3. Avec le CCM, aucun point n’est affecté à w1 ∪ w3 ni à
w1∪w2∪w3. Certains points à l’intersection de w1 et w2 ou w2 et w3 sont respectivement associés
à w1∪w2 et w2∪w3 comme le montre la figure F-1.2-(d), puisque ces points sont vraiment difficiles
à classer correctement dans une classe simple. La méta-classe w1∪w2 peut être interprétée comme
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la classe de transition entre w1 et w2 (de même pour w2 ∪ w3). Cela peut effectivement réduire
les erreurs de classification en utilisant ces méta-classes. Il apparaît finalement que cette approche
CCM a de bien meilleures performances que l’ECM et le FCM pour traiter les méta-classes.

F-1.4.2.2 Classification avec des données réelles

Nous donnons ici un résultat de classification sur des données réelles en utilisant les données de la
base Iris. Ce résultat illustre la performance du CCM par rapport à l’ECM et au FCM.

Table F-1.5 : Résultats (en %) de classification de la base Iris à l’aide des différentes méthodes.
Re Ri2 Ri3

FCM 10.67 NA NA
α=2.0 8.00 4.67 0

ECM α=1.5 10.00 8.67 0.67
α=1.0 10.00 15.33 6.00
γ=1.0 5.33 8.00 0

CCM γ=1.5 4.67 10.67 0
(tc = 3) γ=2.0 4.00 12.00 0

γ=1.0 5.33 8.00 NA
CCM γ=1.5 4.67 10.00 NA

(tc = 2) γ=2.0 3.33 12.00 NA

Dans cette application, le CCM fournit le plus petit nombre d’erreurs par rapport aux autres
méthodes, et le nombre d’échantillons dans les méta-classes est plus faible que celui obtenu avec
l’ECM. L’augmentation du paramètre γ provoque la diminution de l’erreur mais l’augmentation du
degré d’imprécision. Il nous faut donc trouver un compromis entre l’erreur et d’imprécision, et cela
dépend aussi du taux d’imprécision que l’utilisateur est prêt à accepter. Avec le CCM, si le seuil
Tc de la cardinalité de la méta-classe passe de Tc = 3 à Tc = 2, cela signifie que la méta-classe dont
la cardinalité est trois sera éliminé, et la complexité de calcul se verra diminuée. Cependant, nous
constatons que les résultats de cette classification sont presque identiques malgré ces différentes
valeurs de Tc. Ainsi, cela montre que l’on peut choisir une petite valeur de Tc dans les applications
réelles. Par ailleurs, le CCM peut fournir de bons résultats de classification tout en préservant une
charge de calcul acceptable.
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1
Introduction

In the classification problem, the uncertainty is a big challenge we often encounter in many ap-
plications. The uncertainty can be caused by various reasons, such the randomness, insufficient
knowledge, missing values, etc. The traditional classification methods usually work with proba-
bilistic framework, and the probability measures are used to characterize the uncertainty. The
object is commonly assigned to the class with the maximum probability. Nevertheless, the prob-
abilistic framework captures only the randomness aspect of the data, but not the fuzziness, nor
imprecision which is another inherent aspect of information content [1, 2]. Belief function the-
ory [3–7] also known as evidence theory and Dempster-Shafer theory is often considered as the
general extension of Bayes probability theory, and it allows to commit the masses of belief not
only to singleton elements (as done in probability framework) but also to any set of elements using
basic belief assignments (BBA’s). Meanwhile, there have been many methods [4,8–11] emerged for
the fusion of multiple BBA’s. Belief function theory is an efficient tool to well model and manage
the uncertain and imprecise information, and the classification of uncertain data based on belief
function theory will de deeply studied in this work. In fact, belief functions has already been more
or less successfully applied in many fields, such as the data classification [12–22], clustering [23–28],
decision making support [29–31], and image processing [32–37], etc.

The classification methods can be either supervised or unsupervised according to the training
information one has or not. When many training samples with known class labels are available,
the supervised classification can be applied, and the class of patterns is determined based on the
training information. Some classifiers [12, 13, 38] have been developed based on belief functions,
which allow to model the total ignorance. Nevertheless, the partial imprecise information has barely
been taken into account in the literature so far. In the real applications, the classification is often
partially (rather than totally) imprecise among a very small number (e.g. two or three) of classes.
The efficient characterization of the partial imprecision is an important topic in the classification
problem. In this thesis, we have studied the credal classification of uncertain and imprecise data
based on belief functions, and two credal classifiers have been proposed to deal with the different
cases. The proposed credal classification allows the object to belong to not only single classes but
also meta-class defined by the union of several (any number) single classes with different masses
of belief, and the meta-class is introduced to model the partial imprecision of classification and to
reduce the error rate. A credal classification method called belief c×K nearest neighbors has been
introduced using the nearest neighbors in each class to deal with the general and more complicate
cases. When each class can be represented by one prototype, we have proposed a simple credal
classification rule (CCR) which can directly compute the mass of belief of object belonging to each
specific class and meta-class with low computation burden. Moreover, the missing attribute data
is often encountered in many applications, and the classification of incomplete patterns remains
an interesting and important topic. The classical classification methods generally commit the
incomplete pattern to a particular class with the maximum probability measure. However, the
different estimations of the missing values can produce distinct classification results sometimes,
and this causes high imprecision and uncertainty of classification. One credal classification method
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for classification of the incomplete data with missing values has been developed based on belief
function theory, and it is able to well characterize such uncertain and imprecise information thanks
to the meta-class. If there is no training information available, the data clustering analysis (also
called unsupervised classification) will be used, and the patterns will be automatically grouped
into several clusters according to some (dis-)similarity measures. Fuzzy c-means is (FCM) [39]
a very well known clustering method, and an evidential version of FCM (ECM) [23] has been
developed for working with belief functions. Nevertheless, when the different clustering centers
(i.e. singleton clusters and meta-clusters) are close, ECM usually produces very unreasonable
results. Thus, we propose a new credal clustering method called Credal c means (CCM) as an
alternative evidential extension of FCM to overcome the limitations of ECM. The main contents
of this thesis are organized as follows.

The overview of related literatures is given in Chapter 2. We briefly recall the belief function
theory, which proposes a rigorous way to model the uncertainty and imprecision of classification.
The well known supervised classifiers, incomplete pattern classification methods and data clustering
analysis methods have been simply introduced. Particularly, the evidential K-nearest neighbor
(EK-NN) classifier [12] and evidential c-means (ECM) clustering method [23] have been discussed
in detail and their limitations are clearly pointed, since we get important inspiration from the two
methods.

In Chapter 3, a new belief c×K neighbors (BCKN) classifier working with credal classification
is proposed to deal with the uncertain data. The K nearest neighbors in each class are used for
the credal classification, and there are total c × K neighbors involved (c being the number of
classes). The corresponding c×K BBA’s are constructed according to the distances between the
object and each neighbor, and the classification result of the object depends on the global fusion
of the c×K bba’s. In the fusion process, the bba’s obtained from the neighbors in the same class
are combined by the simple average method, and these sub-combination results are globally fused
by a new proposed combination rule. The conflicting beliefs are conditionally kept according to
the context for the selected meta-classes to reveal the imprecision degree of the classification. In
BCKN, the object can belong to either the specific classes, or the meta-classes (i.e. the set of
several specific classes) for the object hard to correctly classify, or eventually the ignorant class
for noisy data. If the object is committed to the meta-classes, it indicates that the specific classes
included in the meta-class cannot be clearly distinguished using the available information, and hard
classification of the object in a particular class will very likely lead to misclassification. The BCKN
credal classification is able to efficiently reduce the error rate thanks to the use of meta-class, which
also characterizes the partial imprecision of the classification. BCKN can also warn the user that
some other techniques or complementary information sources are necessary to obtain the specific
classification of the samples of the meta-class. The performance of BCKN method with respect to
other classical methods has been analyzed through several experiments.

BCKN can well deal with the general and complicate situation in the classification problem, but
unfortunately it has big computation burden. So in Chapter 4, a new simple and effective credal
classification rule (CCR) based on the belief functions has been presented, and it is to manage the
case where each class can be well characterized by the prototype vector. In CCR, each specific class
corresponds to a center (i.e. prototype) obtained by the mean value of the training data in the same
class, and the center of meta-class is considered with the equal Mahalanobis distances to all the
centers of the involved specific classes. The acceptable meta-classes are selected according to the
current context and distance ratios, and all the unacceptable meta-classes are removed to reduce
the number of focal elements and the computational complexity. CCR provides a direct way to
compute the mass of belief of the object belonging to different classes (i.e. specific classes and meta-
classes) based on the distances between the object and the class centers, and the computational
complexity of CCR is quite low. A tuning parameter has been introduced in CCR to control the
imprecision rate of classification due to the meta-classes. The experiments using both the artificial
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CHAPTER 1. INTRODUCTION

and real data sets will be presented in chapter 4 to evaluate the performance of CCR with respect
to other methods.

There exist many industrial and research data sets with missing attribute values caused by
various reasons, such as failure of observation, equipment errors and incorrect measurements. The
classification of incomplete pattern with missing values is still an important topic, and it is also
a very challenging problem, because the different estimations of the missing values can lead to
different classification results. Such uncertainty is mainly due to the lack of information of the
missing data. In Chapter 5, a prototype-based credal classification (PCC) method is developed
for the incomplete patterns based on belief function theory. In PCC, each class prototype vector
obtained from training data are respectively used to estimate the missing values in the pattern.
For a c-class problem, the object with each of the c estimations can be classified by the normal
classifier (for complete pattern), and it produces c pieces of classification results with different
weighting factors determined by the distances between the object and the prototypes. These
results are discounted according to their relative weights. The global fusion of these discounted
results is adopted for making credal classification of the object. In the fusion process, if a high
conflict occurs, it means that the class of the object is quite uncertain and imprecise only based
on the known attributes information, and conflicting beliefs will be committed conditionally to
the selected meta-class. So PCC method also allows the incomplete pattern to belong not only to
specific classes, but also to meta-classes with different masses of belief. The meta-class is introduced
to characterize the imprecision of classification due to the missing values, and it can also reduce
errors. Once an object is committed to a meta-class, it means that the specific classes included in
the meta-class seem undistinguishable for this object based on the known attributes. If one wants
to get more precise result, some other (possibly costly) techniques or information sources must be
developed and used. Some results of experiments with artificial and real data sets are also given
in Chapter 5 to illustrate the effectiveness of PCC.

When the training information is not available in the classification, a clustering technique must
be applied. Fuzzy C-means (FCM) remains the most popular clustering method. In Chapter
6, FCM is extended under belief functions framework to well characterize the uncertainty and
imprecision of information, and the new clustering method is called credal c-means (CCM). CCM
working with credal partition can produce three kinds of clusters: singleton clusters, meta-clusters
and outlier cluster. The belief of specific class is proportional to the distance of the object to
the center of this center, and the smaller distance leads to the bigger belief degree. The belief of
meta-class depends on both the distance of object to the meta-class center defined by the simple
mean value of the centers of the involved specific classes, and the distances to centers of all the
involved specific classes, since the object in the meta-class should be also simultaneously close
to these classes included in the meta-class. The object too far from the others according to the
given outlier threshold will be naturally considered as outliers. The objective function is defined
according to this basic principle. Moreover, a meta-cluster threshold is introduced in CCM to
eliminate the meta-clusters with big cardinality, and to reduce the computational burden. The
clustering centers and bba’s matrix can be derived by the optimization (minimization) of the
objective function. If one object is considered in the meta-cluster, it means that the singleton
clusters included in the meta-cluster appear indistinguishable for the object. This indicates the
used information is not sufficient for making the specific classification of these objects in meta-
clusters, and these objects should be treated more cautiously. CCM can effectively reduce the
misclassification errors thanks to the meta-clusters, and it is also robust to the outliers. The credal
partition can be easily approximated to a fuzzy partition if necessary, and the transformation
rule is also given in Chapter 6. The use and potential of CCM is demonstrated through different
experiments with real data sets.

A summary of the four new methods developed in this thesis is given in Table1.1 to show their
purposes and working conditions for convenience.
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Table 1.1 : The summary of the four proposed methods
method purpose conditions

BCKN (chap. 3)
Credal classification of uncertain data Different classes are overlapped

using the K-nearest neighbors in complicate cases, and the
in each class data set cannot be too big.

CCR (chap. 4)
Direct computation of BBA’s of the Each class can be represented by
object belonging to different classes one prototype, and CCR can deal
with low computational burden with the large scale data set.

PCC (chap. 5)
Credal classification of incomplete The pattern to classify contains
data with estimation of missing missing values that cannot
values using prototypes of classes be exactly determined.

CCM (chap. 6)
Credal clustering of uncertain data No training data is available,

with admissible computational burden and different clusters can
controlled by a given parameter be partly overlapped.
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2
Literature overview

2.1 INTRODUCTION

The credal classification of uncertain data based on belief function theory is studied in this the-
sis. In this chapter, we propose an overview of the main related research works available in the
literature. At first, the belief function theory, which is an important and efficient tool we used for
classification, is briefly introduced, with the basic definitions, the combination rules, and so on.
Then, the traditional data classification methods for dealing with different cases (i.e. supervised
classification, incomplete pattern classification, clustering analysis) are recalled. When the training
information is available for classification, the supervised classifier can be applied, and a brief survey
of supervised methods is presented. Particularly, an evidential K-nearest neighbor (EK-NN) [12]
classifier is reviewed with some comments on its limitations. Our new BCKN method, inspired by
EK-NN, to overcome its limitations will be presented in next chapter. The missing attribute data
is often encountered in classification problem, and the normal methods for classifying the incom-
plete patterns are also summarized here. If the training samples are unavailable for making the
classification, the data clustering analysis must be done. That is why the well known clustering
methods like Fuzzy c-means [39] and the evidential c-means (ECM) clustering method [23] are
also recalled in this chapter. The latter is closely related to our proposed method CCM (Credal
c-means) that will be presented in details in Chapter 6.

2.2 BRIEF INTRODUCTION OF BELIEF FUNCTION THEORY

2.2.1 Basics of belief function theory

The belief functions have been introduced in 1976 by Shafer in his mathematical theory of evidence,
known also as belief function theory or Dempster-Shafer theory (DST) [3–7] because Shafer uses
Dempster’s fusion rule for combining belief basic assignments. We consider a finite discrete set
Ω = {w1, w2, . . . , wc}. Ω of c > 1 mutually exclusive and exhaustive hypotheses, which is called
the frame of discernment (FoD) of the problem under consideration. The power-set of Ω denoted
by 2Ω contains all the subsets of Ω. The singleton elements in 2Ω represent the specific classes, and
the set of elements (i.e. disjunction of elements) can be considered as meta-class. For example, if
Ω = {w1, w2, w3}, then 2Ω = {∅, w1, w2, w3, w1 ∪ w2, w1 ∪ w3, w2 ∪ w3,Ω}. The union wi ∪ wj =
{wi, wj} is interpreted as the proposition "the truth value of unknown solution of the problem
under concern is either in wi or in wj". So that Ω represents the full ignorance (uncertainty).

Glenn Shafer [3] considers the subsets as propositions in the case we are concerned with the true
value of some quantity ω taking its possible values in Ω. Then the propositions Pw(A) of interest are
those of the form1: Pw(A) , The true value of w is in a subset A of Ω. Any proposition Pw(A)

1We use the symbol , to mean equals by definition; the right-hand side of the equation is the definition of the
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is thus in one-to-one correspondence with the subset A of Ω. Such correspondence is very useful
since it translates the logical notions of conjunction ∧, disjunction ∨, implication ⇒ and negation
¬ into the set-theoretic notions of intersection ∩, union ∪, inclusion ⊂ and complementation c(.).
Indeed, if Pw(A) and Pw(B) are two propositions corresponding to subsets A and B of Ω, then the
conjunction Pw(A) ∧ Pw(B) corresponds to the intersection A ∩ B and the disjunction Pw(A) ∨
Pw(B) corresponds to the union A∪B. A is a subset of B if and only if Pw(A)⇒ Pw(B) and A is
the set-theoretic complement of B with respect to Ω (written A = cw(B)) if and only if Pw(A) =
¬Pw(B). In other words, the following equivalences are then used between the operations on the
subsets and on the propositions: (intersection≡conjunction), (union≡ disjunction), (inclusion≡
implication) and (complementation≡ negation).

A basic belief assignment (BBA) is a function m(.) from 2Ω to [0, 1] satisfying∑
A∈2Ω

m(A) = 1 (2.1)

The subsets A of Ω such that m(A) > 0 are called the focal elements of m(.), and the set of all its
focal elements is called the core of m(.). If A is a singleton element corresponding to specific class,
the quantity m(A) can be interpreted as the exact belief committed to the class A. m(A ∪ B)
reflects the imprecision (non-specificity or ambiguity) degree between the class A and B for the
classification of the object.

A Credal partition [23, 24] for a data clustering over the frame Ω is defined as n-tuple M =
(m1, . . . ,mn), where mi is the basic belief assignment of the sample xi ∈ X, i = 1, . . . , n associated
with the different elements of the power-set 2Ω. So the

The belief function Bel(.) and the plausibility function Pl(.) [3], are usually interpreted as
lower and upper probabilities of the hypothesis. They are mathematically defined for any A ∈ 2Ω

from a given BBA m(.) by
Bel(A) =

∑
B∈2Ω|B⊆A

m(B) (2.2)

Pl(A) =
∑

B∈2Ω|A∩B 6=∅

m(B) (2.3)

Shafer [3] has proposed to use Dempster’s fusion rule to combine several distinct bodies of
evidence characterized by different BBA’s in the development of DST. This rule will be denoted
DS (Dempster-Shafer) rule for short in the sequel. Mathematically, the DS rule of combination of
two BBA’s m1(.) and m2(.) defined on 2Ω is defined by mDS(∅) = 0 and for A 6= ∅ ∈ 2Ω by

mDS(A) =

∑
B,C∈2Ω|B∩C=A

m1(B)m2(C)

1−
∑

B,C∈2Ω|B∩C=∅
m1(B)m2(C) =

∑
B,C∈2Ω|B∩C=A

m1(B)m2(C)∑
B,C∈2Ω|B∩C 6=∅

m1(B)m2(C) (2.4)

In DS rule, the total conflicting belief mass
∑

B,C∈2Ω|B∩C=∅
m1(B)m2(C) is redistributed back to

all the focal elements through the normalization. In the combination of high conflicting sources
of evidence, DS rule will produce very unreasonable results, and it is better to not use it in such
cases [40–44]. It has also been proved recently that DS rule suffers also of a very serious flaw even
in low conflicting cases for very specific belief structures [45,46].

In DS rule, each source of evidence is treated equally. When the reliability of each source of
evidence is different, then the corresponding BBA’s should be discounted before entering the fusion

left-hand side.
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process. The classical discounting method has been introduced by Shafer in [3], and it is given by

m
′(A) = α ·m(A), A 6= Ω

m′(Ω) = 1−
∑
A∈2Ω

A6=Ω
m′(A) (2.5)

where α ∈ [0, 1] is discounting factor of m(·). One can see that the discounted information
is all assigned to the ignorance element Ω. If the evidence is totally reliable, i.e. α = 1, then
the discounting factor has no influence on the BBA’s at all. Whereas, if the evidence is totally
unreliable, i.e. α = 0, the discounted BBA will become m(Ω) = 1, and it indicates this evidence
plays a neutral role in the fusion process.

One alternative discounting method called contextual discounting operation [47] has been also
developed by Mercier, et al., and it allows the user to quantify the confidence in the reliability of the
source, conditionally on different hypotheses regarding the variable on interest. The discounting
procedure is not controlled by a single discount rate as done in previous classical discounting
method, and the sources of evidence are discounted by a vector denoting the expected reliability
of the source in different contexts. This discounting approach is more precise but also much more
complicate, which is not convenient for the real applications.

2.2.2 Several alternative combination rules

Many experts and users of belief functions considers that the problem of DS rule mainly lies in the
redistribution of conflicting beliefs [4,8–10], which cannot be done according to the normalization
procedure used in this rule. So many alternative rules of combination [4,8–11,48–50] working with
Shafer’s model have been proposed by modifying the distribution ways in order to palliate the
drawbacks of DS rule. Several well known rules will be briefly recalled here.

• Yager’s rule [8]:

In Yager’s rule, the conflicting information is considered totally uncertain, and it should be com-
mitted to the ignorance element denoted by Ω.

∀A 6= ∅, B,C ∈ 2Ω 
mY (∅) = 0
mY (A) =

∑
B∩C=A

m1(B)m2(C)

mY (Ω) = m1(Ω)m2(Ω) +
∑

B∩C=∅
m1(B)m2(C)

(2.6)

Yager’s rule is a quite prudent and even pessimistic rule, since the mass of belief on ignorance
element will increase with the combination of more sources of evidence, which makes the fusion
results become more and more ignorant.

• Dubois &Prade (DP) rule [9]:

Dubois and Prade have proposed another rule, denoted DP rule in [9]. When there is no conflict
between two sources of evidence, both evidence are considered as reliable. If some conflict occurs,
one of the sources is considered as reliable whereas the other one is considered as unreliable. In
other words, if the hypothesis A is considered true in one source, whereas the other source states
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that B is true, then the intersected element A ∩ B 6= ∅ will be identified as truth. However, if it
holds that A∩B = ∅, the truth will be considered in the set A∪B. So DP rule transfers each partial
conflicting mass to the union of the elements involved in the partial conflict. Mathematically, DP
rule is defined by mDP (∅) = 0 and for A ∈ 2Ω \ {∅} by

mDP (∅) = 0
mDP (A) =

∑
B,C∈2Ω|B∩C=A

m1(B)m2(C) +
∑

B,C∈2Ω

B∩C=∅
B∪C=A

m1(B)m2(C) (2.7)

• Smets combination rule [5, 10]:

In TBM, Smets allows to assign the mass of belief to empty set ∅, and thus he extends the close
world in Shafer’s model to an open world. In fact, Smets rule is the un-normalized version of DS
rule, and it commits all the conflicting beliefs to the empty set ∅ contrariwise to what is done in
all other rules of combination. Smets rule is defined as: ∀A,B,C ∈ 2Ω,

mS(∅) = k12 =
∑

B∩C=∅
m1(B)m2(C)

mS(A) =
∑

B∩C=A
m1(B)m2(C), A 6= ∅

(2.8)

These combination rules work for the the fusion of the cognitively independent sources of
evidence,and they can be easily extended for the fusion of more than two sources if necessary.
A combination method for combining non-distinct sources of evidence has also been introduced
in [51].

2.2.3 A brief review of DSmT

The purpose of Dezert-Smarandache Theory (DSmT) [4, 52, 53] is to overcome the limitations of
DST [3] mainly by proposing new underlying models for the frames of discernment in order to fit
better with the nature of real problems, and proposing new efficient combination and conditioning
rules. In DSmT framework, the elements ωi, i = 1, 2, . . . , n of a given frame Ω are not necessarily
exclusive, and there is no restriction on ωi but their exclusivity. The hyper-power set DΩ in
DSmT [54] is defined as the set of all composite propositions built from elements of Ω with operators
∪ and ∩. For instance, if Ω = {ω1, ω2}, then DΩ = {∅, ω1, ω2, ω1 ∩ ω2, ω1 ∪ ω2}. A (generalized)
basic belief assignment (BBA for short) is defined as the mappingm : DΩ → [0, 1]. The generalized
belief and plausibility functions are defined in almost the same manner as in DST.

Two models2 (the free model and hybrid model) in DSmT can be used to define the BBA’s
to combine. In the free DSm model, the sources of evidence are combined without taking into
account integrity constraints, and its combination rule is given by

mf (A) =
∑

B,C∈DΩ

B∩C=A

m1(B)m2(C),∀A ∈ DΩ (2.9)

The intersected elements are kept since the elements are not necessarily exclusive here.

2Actually, Shafer’s model, considering all elements of the frame as truly exclusive, can be viewed as a special
case of DSmT hybrid model.
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When the free DSm model does not hold because the true nature of the fusion problem under
consideration, we can take into account some known integrity constraints and define BBA’s to
combine using the proper hybrid DSm model. Many combination rules have been developed in
hybrid DSm model, such as DSmH, PCR1-PCR6, and these rules are all fit for the Shafer’s model.
Particularly, PCR6 is considered with the most precise distribution way of conflicting beliefs, and
it is defined by:

mPCR6(A) =
∑

B,C∈DΘ

B∩C=A

m1(B)m2(C) +
∑

X,Y ∈DΘ

X∩Y=∅

[ m1(A)2m2(X)
m1(A) +m2(X) + m2(A)2m1(Y )

m2(A) +m1(Y ) ],∀A ∈ DΘ

(2.10)
The formula of the combination rule for multiple (more than two) sources of evidence by PCR6 is
also given in [55,56].

The complexity of DSmT is quite high especially when the number of elements in the frame
of discernment is big. For example, if one has |Ω| = n, then the number of the elements in DΩ

follows the Dedkind’s sequence. So the proper rule working with Shafer’s model is usually chosen
for convenience when the elements in FoD are exclusive in the applications.

2.2.4 Decision making support

Let us consider that m is a BBA obtained by the fusion of multi-source of evidence for one object
belonging to different focal elements (classes). The decision of class can be directly made according
to the criterion that the class of the object should receive the biggest mass of belief, and this is
called hard credal partition [23]. Then the object can be committed to either a specific (singleton)
class, or the imprecise meta-class (i.e. the union of several classes). Several alternative decision
rules that also allows the object to belong to imprecise class have been introduced in [57].

The probability transformation, which can approximate a BBA to the probabilistic (fuzzy)
measure, is often used for making the hard classification decision. If so, the masses of belief on the
meta-classes must be redistributed to the other specific classes by a chosen method. There exist
many methods to transform the BBA to the probabilistic measures, such as the pignistic trans-
formation method BetP (.) [5–7], the plausibility transformation method [58], or more sophisticate
method [53]. Particularly, the well known pignistic probability transformation BetP (.) introduced
by Smets in his transferable belief model will be briefly presented here, since it is often used in
many applications.

BetP (A) is defined for A ∈ 2Ω \ {∅} by

BetP (A) =
∑

B∈2Ω,A⊆B

|A ∩B|
|B|

m(B) (2.11)

where |X| is the cardinality of the element X (i.e. the number of the singleton elements in X,
for example |w1 ∪ w2| = 2 where w1 and w2 are singleton classes.). Other transformations exist
to approximate a BBA into a probability measure but they are more complex to implement and
so we suggest to use BetP (.) for decision-making support if the computational burden is a strong
constraint (like in real-time military classification applications).

2.3 SUPERVISED CLASSIFICATION OF DATA

For the supervised classification, the classifiers broadly belong to two families: model-based classi-
fiers and case-based classifiers [13]. Bayes theorem is usually applied in the model based classifiers
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to calculate the posterior probability estimates according to the class-conditional densities and
prior probabilities. However, the complete statistical knowledge of the conditional density func-
tions of each class is hard to obtain in many cases, and this precludes the application of model-based
classification procedure. When the model-based classifiers become unavailable, one can choose the
case-based classifier computing the class probabilities using the correctly labeled training data set
without considering the density estimation.

There exist many well known case-based classifiers, typically the support vector machine (SVM)
[59, 60], the artificial neuron network (ANN) [61], decision trees [62] and the K-nearest neighbor
(K-NN) classifier [63], etc. Support vector machine allows to construct a hyperplane or set of
hyperplanes in a high-dimensional space using the training data set for classification, regression,
or other tasks. A good separation is achieved by the hyperplane that has the largest distance to
the nearest training data point of any class (so-called functional margin), because the larger the
margin generally leads to the lower error rate of the classifier. Artificial neuron network (ANN) is
defined by a set of input neurons which may be activated by the input data. After being weighted
and transformed by a function determined by the user, the activations of these neurons are then
passed on to other neurons. This process is repeated until an output neuron is activated. Decision
trees are used as a predictive model mapping observations about an item to conclusions about
target value, and they consist of two main types: classification and regression tree (CART) as an
umbrella term. In the tree structure, each internal (non-leaf) node denotes a test on an attribute,
each branch represents the outcome, and each leaf node represents a class label. A tree can be
learned by splitting the source set into subsets based on an attribute value test, and the process
is repeated on each derived subset in a recursive manner until the splitting cannot add value to
the predictions any more. K-nearest neighbor (K-NN) rule is a simple but efficient non-parametric
procedure, and it remains an interesting topic of research. In K-NN, an unclassified sample is
classified into the class which the majority of its K nearest neighbors (KNNs)3 in the training set
belong to.

2.3.1 Evidential classification

These traditional classifiers generally work with the probability measure, like ANN, and the im-
precise (ignorance) information is not considered in the classification process. The belief function
theory has been already applied for the data classification [12–17, 19–23, 38, 64–70], data cluster-
ing [23,24,71,72], and imprecise decision-making support [18,30,57,73–75] to model the uncertainty
and imprecision.

Some data classifiers have already been developed based on belief functions in the past. For
instance, Smets [76] and Appriou [77] have proposed the model-based classifier based on the Gen-
eralized Bayes Theorem (GBT) [76] which is an extension of Bayes theorem in Smets transferable
belief model (TBM) [5–7]. There are some other case-based evidential classifiers based on neural
network [38], K-nearest neighbors [12], decision trees [78], and SVM [64]. Particularly, the eviden-
tial version of K-nearest neighbors method (EK-NN) has been proposed in [12] based on DST, for
working only with the specific classes and the extra ignorant class defined by the union of all the
specific classes. In EK-NN, K BBA’s can be determined according to the distance between the
object and the selected K nearest neighbors, and each BBA has two focal elements: singleton class
(i.e. the label of the corresponding neighbor) and ignorance class (i.e. the frame of discernment).
The combination of the K BBA’s by DS rule is used for the classification of the object. A fuzzy
version of EK-NN, denoted FEK-NN, has been also developed in [79]. An ensemble technique for
the combination of evidential K-NN classifier based on DST has been proposed in [80] to improve
the accuracy. A neural network classifier has also been developed in [38] under the belief functions

3In this thesis, K-NN denotes the K-nearest neighbor classifier, whereas KNNs represents the K nearest neighbors.
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framework that allows one extra ignorant class as possible output of this classifier, and it can
reduce the computation burden with respect to EK-NN but it requires more complicate training
process. The relationship between the case-based and model-based approaches working with belief
functions have also been studied, and it shows that both methods actually proceed from the same
underlying GBT principle, and that they essentially differ by the nature of the assumed avail-
able information. This is helpful for us to choose the most appropriate method for the particular
application depending on the nature of the information.

2.3.2 Brief recall and comments on EK-NN

Let us consider a group of objects X = {x1, . . . ,xn} to classify over the frame of the classes
Ω = {w1, · · · , wh}. In EK-NN [12], the imperfect information is modeled by the ignorant focal
element w1 ∪ . . .∪wi ∪ . . .∪wh denoted also by Ω, and the BBA of the object xi associated to its
close neighbor xj labeled by ws ∈ Ω is defined as:

mxi
j (ws) = αe−γsd

β
ij (2.12)

mxi
j (Ω) = 1− αe−γsd

β
ij (2.13)

As recommended in [12], the default value of the discounting factor α can be taken to 0.95, and
the parameter γs must be chosen inversely proportional to the mean distance between two training
data belonging to class ws. The parameter β usually takes a small value because it has in fact a
very little influence on the performance of EK-NN, one takes β = 1 as its default value. Generally,
dij corresponds to the Euclidean distance between the object xi and the training data xj . K
BBA’s corresponding to the K nearest neighbors of the object are constructed according to Eqs.
(2.12)-(2.13). From Eq. (2.12), one can see that the bigger distance dij will yield smaller masses
of belief on the corresponding class ws. It means that if the object xi is far from the neighbor
labeled by class ws, this neighbor can provide little support to xi belonging to the corresponding
class ws.

From Eq. (2.12) and (2.13), one sees that only the two focal elements ws and Ω are involved
in a given BBA mxi

j (.), i = 1, . . . , n. The classification result of each object xi is obtained by the
fusion of the K BBA’s using DS rule given in Eq. (2.4). Because of the very particular structure of
the BBA’s, DS rule produces as focal elements of the fusion only a specific class ws and the total
ignorance class Ω. Therefore, no partial ignorance (meta-classes), say wi∪· · ·∪wj ≡ {wi, · · · , wj},
can become a focal element in EK-NN method.

It is worth to note that DS rule for the fusion of the K bba’s with such particular structure is
not very effective for the outlier detection. Indeed, for any outlier very far from its KNNs having
same class label, the most mass of belief will be committed to the specific class after the fusion
process using DS rule (when K is big enough). This behavior is abnormal since the ignorance
class Ω should normally take a larger mass of belief when the object corresponds to a true outlier.
Because of this DS behavior, this object will be incorrectly considered as belonging to a specific
class rather than to the outlier class. This behavior is not satisfactory in some real applications, like
in target tracking in cluttered environments. This behavior is clearly illustrated in the following
simple example.

Example 2.1: Let’s assume that an object x is located very far from all the training data (so
that x must reasonably be considered as a true outlier), and assume that all its KNNs belong to
the class w. The biggest distance between x and the K neighbors is d, and the corresponding
BBA’s are mk(w) = δ and mk(Ω) = 1 − δ with δ ∈ (0, 1) for k = 1, 2, . . . ,K. In such case, the
combination of these K BBA’s with DS rule gives m(w) ≥ 1− (1−δ)K and m(Ω) ≤ (1−δ)K . This
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result indicates clearly that the belief on the specific class m(w) increases when the number K of
nearest neighbors increases. So even if the value δ > 0 is very small, the belief committed to w can
become very large when K is big enough. It can be easily verified that when K > log 0.5

log(1−δ) , one
has m(w) > 0.5 > m(Ω). For example, if one takes δ = 0.1, and K > 6, then m(w) > 0.5 > m(Ω).
This inappropriate result is due to the DS combination of such particular structure of BBA’s.

Moreover, the EK-NN method appears not very effective to reveal the imprecision degree of the
objects that belong to different classes, especially for the objects lying in the overlapped zone of
different classes, as shown in the following example.

Example 2.2: Let us consider that an object x lies in the partially overlapped zone of two
classes w1 and w2. We select K = 2p nearest neighbors for the classification, and we assume that
p neighbors labeled by w1 are at the same distance d1 of x, and the other p neighbors labeled
by w2 are also at the same distance d2 of x. If d1 is quite close to d2, the object very likely
belongs to w1 and w2 with similar degrees of belief, and the corresponding bba’s are given by:
mi(w1) = α,mi(Ω) = 1 − α, i = 1, . . . p and mj(w2) = β,mj(Ω) = 1 − β, j = p + 1, . . . 2p with
α = β + ε (ε being a very small positive value). The fusion results of the 2p BBA’s using DS rule
are obtained by :

m(w1) = [1− (1− α)p](1− β)p

(1− α)p + (1− β)p − (1− α)p(1− β)p

m(w2) = [1− (1− β)p](1− α)p

(1− α)p + (1− β)p − (1− α)p(1− β)p

m(Ω) = (1− α)p(1− β)p

(1− α)p + (1− β)p − (1− α)p(1− β)p

and therefore,

m(w1)−m(w2) = (1− β)p − (1− α)p

(1− α)p + (1− β)p − (1− α)p(1− β)p

One clearly sees that m(w1) can be much bigger than m(w2) when p is sufficiently large,
although the object has the same number of neighbors in each class, and it also has the very close
masses α and β of belief committed to each. For instance, if one takes p = 7, α = 0.96 and β = 0.95,
which indicates that the class of x is quite uncertain and imprecise between class w1 and w2, then
m(w1) = 0.8266 and m(w2) = 0.1734 with m(w1) −m(w2) = 0.6532. If the value of p increases
to p = 8, one gets m(w1) = 0.8563 and m(w2) = 0.1437 with m(w1) −m(w2) = 0.7126. Hence,
the object x will be associated to class w1 with a strong belief according to the fusion results,
and m(w1) becomes bigger when p increases. This result is abnormal because we know that this
object should better belong to w1 or w2 because its class remains very imprecise based only on the
available original BBA’s. This inappropriate DS fusion result cannot reveal the imprecision of the
class of this object, and will yield misclassification errors. This behavior is due to DS rule used for
the fusion of such particular structure of BBA’s.

The limitations of EK-NN classifier have been shown through the two examples, and the new
credal classifiers will be studied based on belief function theory in this thesis to better deal with
the uncertain and imprecise data.

2.4 DATA CLUSTERING

Data clustering is a kind of unsupervised classification, and its purpose is to group a set of objects
in such a way that objects in the same group (i.e. cluster) are more similar to each other than to
those in other groups (i.e. clusters). It can deal with object data and relational data. The object
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data is represented by vector composed by the numeric attributes of the object, whereas, relational
data denotes the pairwise similarity or dissimilarity measurements of the objects. The clustering
techniques mainly include hierarchical clustering [81–83] where objects belong to a child cluster
and also belong to the parent cluster, hard clustering [84] where each object belongs to exactly
one cluster and soft (fuzzy) clustering [39, 85–87] that allows the object to belong to different
clusters with different probabilities (fuzzy membership). K-means clustering [84] is a very popular
approach for cluster analysis in data mining, and it aims to partition the objects into K clusters
in which each object belongs to the cluster with the nearest mean, serving as a prototype of the
cluster. In K-means clustering, the object belongs completely to only one cluster, and it is a hard
clustering method, whereas fuzzy c-means clustering [39] can be considered as the soft version of
K-means, and it allows that each object has a fuzzy degree of belonging to each cluster. Fuzzy c-
means (FCM) remains a very well known clustering method and it is an important tool for pattern
recognition and data mining.

FCM [39] seeks for c clustering centers of the data set, and minimizes the sum of weighted
distances between the object and the centers. It is based on minimization of the following objective
function:

JFCM (U, V ) =
n∑
i=1

c∑
j=1

uβijd
2
ij (2.14)

with subject to the constraint:


c∑

k=1
uik = 1, i = 1, . . . , n.

n∑
i=1

uik > 0, k = 1, . . . , c.
(2.15)

where β is any real number greater than 1, uij is the degree of membership of the object xi in
the cluster j and dij is the distance between the object xi and the center vj .

Fuzzy partitioning is carried out through an iterative optimization of the objective function
shown above, with the update of membership uij and the cluster centers vj defined by:

vk =

n∑
i=1

uβikxi
n∑
i=1

uβik

,∀k = 1, . . . , c. (2.16)

uij =
d
−2/(β−1)
ij

c∑
k=1

d
−2/(β−1)
ik

,∀i = 1, . . . , n;∀j = 1, . . . , c. (2.17)

The algorithm is composed of the following steps.

This iteration will stop when ||U(s + 1) − U(s)|| < ε, and this procedure converges to a local
minimum or a saddle point of JFCM (U, V ).
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Table 2.1 : Fuzzy c-means procedure
Input: Training data: X = {x1, · · · ,xn} in Rp
Parameters: c: number of clusters

ε: termination criterion
Initialization: U=[uij ] matrix, U(0)

for s=1 to k
Calculate the centers vectors vk with U(s) using eq. (2.16);
Update U(s+1)using eq. (2.17)
If ||U(s+ 1)− U(s)|| < ε then STOP.
end

2.4.1 Credal partition using belief functions

A concept of partition named credal partition [25, 26] has been recently proposed by Denœux
and Masson for data clustering under belief functions framework to well model the uncertain and
imprecise information. Credal partition can be considered as an extension of the existing concepts
of hard [84], fuzzy [39] and possibilistic partition [85], since it allows that the objects belong to
not only the singleton clusters in Ω = {w1, . . . wc} but also any subsets of Ω (i.e. meta-clusters)
with different masses of belief. It has been reported in [23] that this additional flexibility of credal
partition is able to gain a deeper insight in the data and to improve robustness with respect to
outliers. An EVidential CLUStering (EVCLUS) [24] algorithm working with credal partition has
been developed for relational data. In EVCLUS, each object is assigned a BBA over a given set of
classes, and the degree of conflict between two BBA’s is used to reflect the dissimilarity between the
corresponding objects. The bigger dissimilarity corresponds to the higher conflict degree. A recent
constrained clustering method called CEVCLUS [72] based on the EVCLUS algorithm has been
proposed in the theoretical framework of belief functions, and it is designed for dissimilarity data for
taking into account the background knowledge in form of pairwise constraints. An evidential EM
algorithm [71] has been recently developed for the parameter estimation in statistical models when
the uncertainty on the data can be modeled by belief functions. Evidential C-Means (ECM) [23]
clustering method inspired from FCM [39] and Noise-Clustering (NC) algorithm [88–90] were also
proposed for the credal partition of object data.

2.4.2 Brief review of Evidential C-Means (ECM)

ECM [23] working with credal partition can produce three kinds of cluster: singleton (specific)
clusters (e.g. wi), meta-clusters (e.g. wj ∪ · · · ∪ wk) defined by disjunction of several singleton
clusters and outlier cluster represented by ∅. Each cluster (e.g. wi, i = 1, . . . , c) corresponds to
one clustering center (prototype) (e.g. vi, i = 1, . . . , c), and the meta-cluster’s center is obtained
by the arithmetic mean value of the prototype vectors of the singleton clusters included in the
meta-cluster. The belief on each cluster mainly depends on the distance between the object and
the corresponding clustering center taking into account the cardinality of the cluster.

Let us consider a finite and discrete set of objects {x1, . . . ,xn} to be clustered over a given
frame of discernment Ω = {w1, w2, . . . , wc} with |Ω| = c, and each data point is a p-dimension
vector as xi = (xi1 , · · · , xip). In ECM, the class membership of an object xi is represented by a
BBA mi(.) over the power-set 2Ω, and 2Ω contains 2|Ω| elements (clusters). This representation is
able to model all situations ranging from complete ignorance to full certainty concerning the class
of xi.

ECM [23] is a direct extension of FCM based on credal partition. The mass of belief for
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associating the object xi with an element Aj of 2Ω denoted by mij
∆= mxi(Aj), is determined from

the distance dij between xi and the prototype vector v̄j . Note that Aj can either be a singleton
cluster, or a meta-cluster. The prototype vector (center) v̄j of Aj , is defined as the mean value of
the singleton clusters included in Aj . v̄j is defined mathematically by

v̄j = 1
|Aj |

c∑
k=1

skjvk with skj =
{

1, if wk ∈ Aj
0, otherwise

(2.18)

where vk is center of the singleton cluster wk, and |Aj | denotes the cardinality of Aj , and dij
denotes the Euclidean distance between xi and v̄j . In the clustering analysis methods (e.g. FCM,
ECM), each singleton cluster (class) is considered with a prototype vector (clustering center)
which has the same dimension (i.e. p) of the samples to be clustered. The center of meta-
cluster in ECM is calculated by the mean value of the centers of the singleton clusters included
in this meta-cluster. For instance, let us consider that a 3-class data set that has to be clustered
over the frame of discernment Ω = {w1, w2, w3}, where the center of each singleton cluster (i.e.
w1, w2, w3) is respectively denoted by a vector v1,v2 and v3. The center of the meta-cluster
A , wi ∪ wk; i = 1, 2, 3; k = 1, 2, 3; i 6= k is given by v̄A = vi+vk

|A| = vi+vk
2 , and the center of the

bigger meta-cluster B , w1 ∪ w2 ∪ w3 can be obtained by v̄B = v1+v2+v3
|B| = v1+v2+v3

3 .

In ECM, the mass of belief of the object belonging to each cluster (i.e. singleton cluster or
meta-cluster) is considered proportional to the distance between the object and the corresponding
clustering center, and the bigger distance leads to the smaller mass of belief, and the objective
function is defined by

JECM =
n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |αmβ
ijd

2
ij +

n∑
i=1

δ2mβ
i∅ (2.19)

Subject to ∑
Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1 (2.20)

The mass of belief mij
∆= mxi(Aj) is obtained by the minimization of this objective function. In

fact, the objective function is the sum of weighted distances between the objects and each cluster
center. The minimization of eq. (2.19) under the constraint eq. (2.20) ensures that the object is
as close as possible to the center of cluster it belongs to with highest mass of belief (weight), and
the mass of belief on the cluster far from the object is small. This is similar to what is done in
the FCM approach. Moreover, the mass of belief of the outlier cluster should be small when the
chosen outlier threshold is big with respect to the distances of the object to the other centers.

The solution of the minimization of (2.19) under the constraint (2.20) has been established by
Masson and Denœux in [23] and it is given for each object xi, (i = 1, 2, . . . , n) by:

• For all Aj ⊆ Ω and Aj 6= ∅,

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ak 6=∅
|Ak|−α/(β−1)d

−2/(β−1)
ik + δ−2/(β−1)

(2.21)

where α is a tuning parameter allowing to control the degree of penalization; β is a weighting
exponent (its suggested default value in [23] is β = 2); δ is a given threshold tuning parameter
for the filtering of the outliers.
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• For Aj = ∅,
mi∅

∆= mxi(∅) = 1−
∑
Aj 6=∅

mij . (2.22)

The centers of the class are given by the rows of the matrix Vc×p

Vc×p = H−1
c×c.Bc×p (2.23)

where the elements Blq of Bc×p matrix for l = 1, 2, . . . , c, q = 1, 2, . . . p, and the elements Hlk of
Hc×c matrix for l, k = 1, 2, . . . , c are given by:

Blq =
n∑
i=1

xiq
∑
wl∈Aj

|Aj |α−1mβ
ij (2.24)

Hlk =
n∑
i=1

∑
{wk,wl}⊆Aj

|Aj |α−2mβ
ij (2.25)

In ECM, the clustering center of meta-cluster is calculated by the arithmetic mean value of
the prototype vectors of the singleton clusters included in the meta-cluster. Because of this, some
distinct cluster centers can be very close and even overlapped. For example, the center of meta-
cluster (e.g. wi ∪ · · · ∪wj) can be very close to the center of an incompatible singleton cluster (e.g.
wk), and the centers of incompatible meta-clusters (e.g. wg∪· · ·∪wh and wp∪· · ·∪wq ) can also be
very close (even overlapped). Moreover, the mass of belief on any cluster (i.e. singleton cluster or
meta-cluster) is determined only by the distance between the object and the corresponding center
with a tuning parameter α. Therefore, some objects originating from wk may be wrongly classified
into wi ∪ · · · ∪wj , even if the singleton clusters (i.e. wi, . . . , wj) included in wi ∪ · · · ∪wj are quite
far from each other and clearly separated. If the distinct clusters wg ∪ · · · ∪ wh and wp ∪ · · · ∪ wq
contain the same number of singleton clusters, they will be considered even undistinguishable in
the clustering results because of their close centers, which brings big trouble to associate the objects
with these clusters.

This unexpected behavior is illustrated in the following example. Let’s consider a simple 4-
classes data set and the frame Ω = {w1, w2, w3, w4} with the corresponding centers v1, v2, v3,
v4. We denote by vi,j the center of the meta-cluster wi ∪ wj . It is possible that one has v2 ≈
(v1 + v3)/2 = v1,3 ≈ (v1 + v2 + v3)/3 = v1,2,3, but the clusters of w1 and w3 are far from each
other, which means w1 and w3 are fully well separate. Then with ECM, some objects belonging
to w2 are likely to be considered in the incompatible clusters w1 ∪ w3 or the ignorant cluster
w1 ∪ w2 ∪ w3 when they are very close to the clustering centers v1,2 or v1,2,3. Since it is still
possible that v2,3 = (v2 + v3)/2 ≈ (v1 + v4)/2 = v1,4, then the meta-clusters w1 ∪w4 and w2 ∪w3
cannot be clearly distinguished for the objects in the clustering, although they are incompatible.
Some objects belonging to w1 or w4 (w2 or w3) may be wrongly committed to w2 ∪w3 (w1 ∪w4).
Such behavior seems very unreasonable and counterintuitive. In fact, there is an infinity of such
cases that ECM cannot well deal with.

The relational version of ECM (RECM) [27] is also derived for dealing with relational data.
RECM and EVCLUS are compared in [27], and it is pointed that RECM provides similar results
to those given by EVCLUS, but the optimization procedure of RECM is computationally much
more efficient than the gradient-based procedure of EVCLUS. The constrained ECM (CECM) [28]
method has also been recently proposed for taking into account the pairwise constraints informa-
tion. In our preliminary research work, we developed a method called belief c-means (BCM) [91] to
deal with the close clustering centers by introducing an alternative interpretation of the meta-class.
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In BCM, meta-class was considered consisting of the objects far from the specific classes included
in the meta-class, but much farther to the other class, and this interpretation is quite different from
that in ECM. Hence, BCM mainly focused on outliers detection, but the uncertainty of clustering
for the objects lying in the overlapped zones of different clusters cannot be well captured in BCM.
In this thesis, a new evidential version of fuzzy c-means clustering method will be proposed to well
model the uncertainty and imprecision in clustering problem.

2.5 CLASSIFICATION OF INCOMPLETE DATA WITH MISSING VAL-
UES

In many data classification problems, the quality of the data can suffer from a common draw-
back that some samples are incomplete feature vectors with missing or unknown attribute val-
ues [92–94]. For example, some results can be missing in an industrial experiment due to the
mechanical/electronic failures during the data acquisition process. In medical diagnosis, some
tests cannot be done when the hospital lacks the necessary medical equipment. In a social survey,
the results can be incomplete since respondents may refuse to respond to some questions. More-
over, UCI repository [95] is one very well known data set collection for benchmarking machine
learning procedures, but 45% of data sets in the UCI repository contain missing values.

It is important to get a knowledge about how data attributes were missing before one selects the
appropriate way to handle incomplete data. The missing data mechanism can be mainly identified
by three types [93]:

• Missing completely at random (MCAR): the missing variable is independent of the variable
itself and any other external influences,

• Missing at random (MAR): the missing value is independent of the missing variables but
may depend on the known values, and it is predictable using other known values in the data
set.

• Not missing at random (NMAR): the missing value depends on the missing variable itself, and
the missing values cannot be predicted only using the available information in the database.

If the data is missing as in the case of MCAR or MAR, the reasons for missing data in the
analysis of the data can be ignored, and it makes the methods used for missing data analysis
become simple. Thus, most current research works for dealing with missing data mainly focus on
MAR or MCAR cases [92].

There have been a number of methods emerged to classify the incomplete data. The classifi-
cation of incomplete data with missing values generally concerns two problems including handling
missing values and classification procedure. The existing methods can be broadly divided into four
groups according to their solutions [92,93] as follows:

• The incomplete pattern is simply discarded [96]. This is the most simple method, but in-
complete pattern with missing values cannot be classified since it will be eliminated. This
process usually works just when the incomplete patterns take a small rate (i.e. 5%) in the
whole data set.

• Model-based procedures are applied, and the data distributions can be estimated by some
methods. For example, the maximum likelihood procedures (e.g. Expectation-Maximization
algorithm [97]) can be used to estimate the model parameters. Then, the patterns can be
classified based on Bayes theory.
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• The missing data is estimated at first and then the incomplete patterns with estimated
values are classified. In such case, the handling missing value and pattern classification are
treated separately, and this is also the most used procedure. Many imputation methods
have been developed, for instance, K-NN imputation [98, 99], mean imputation [100, 101],
hot dock imputation [101], regression inputation [96], multiple imputation [102], and SOM
imputation [103], etc.

• The missing data is incorporated to the classifier using the machine learning procedures
without the previous estimation of missing data, and there exist many methods directly de-
signed for incomplete pattern classification, like neural network ensembles [104,105], decision
trees [106], fuzzy approaches [107–109] and support vector machines [110], etc.

The common methodology for pattern classification dealing with missing data consists at first
to estimate the missing values using some techniques in order to complete the data, and then to
apply a chosen standard pattern classification algorithm. The estimation step plays a crucial role
in the procedure, and it can be done by statistical analysis based methods or machine learning
methods.

We briefly recall the principles of the three main classical statistical imputation methods:

• Mean imputation [100, 101]: The missing components are replaced by the average value of
that component in all the observed cases in the unconditional mean imputation, and they
can also be estimated by the average value from the complete cases with the same class label
as the incomplete pattern in the class-conditional mean imputation. So the missing data in
the same attribute (of the same class) will be all the same. This method is very simple, but it
ignores the available attributes information of the pattern, and cannot capture the influence
of the known attribute values on the missing data.

• Multiple imputation [102]: The missing values are imputed M times to produce M com-
plete data sets with estimated values using an appropriate model that incorporates random
variation, and it can be used for handling of missing data in multivariate analysis. Thus,
each missing component is replaced by M plausible values rather than a single one, and
this reflects the uncertainty of estimation. Nevertheless, the appropriate model is difficult to
obtain in many applications.

• Hot dock imputation [101]: The imputation of the missing component value is based on a
similar complete pattern, and the missing value will be filled by corresponding components
of the most similar complete vector. However, this imputation mainly depends on a single
complete vector in the data set, and the global properties of data set are not taken into
account.

Two machine learning based imputation methods: K-NN imputation [98, 99] and SOM impu-
tation method [103] will be briefly introduced here.

• K-NN imputation [98, 99]: The imputation of the missing value is based on the K-nearest
neighbors selected from the training patterns with known values in the attributes to be
imputed (according to a chosen distance metric). Each of the K neighbors can have different
weight in the estimation of the missing values, and the smaller distance to the incomplete
pattern leads to bigger weight. The distance between the incomplete pattern and the training
samples are calculated using the available attribute data of the incomplete pattern and the
corresponding components in the training samples, and the missing values are ignored. If
one sets K = 1, K-NN imputation will become a particular hot dock imputation. K-NN
imputation generally can produce good performance in many applications, but the high
computation burden is its main drawback for processing big data set.
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• SOM (Self-Organizing Map)4 imputation [103]: In SOM, the image-node of the incomplete
pattern is chosen only measuring the distances with the known attributes, and an activation
group composed of image-node’s neighbors is selected. Each estimated value of the miss-
ing attribute is computed according to the weights of the activation group of nodes in the
corresponding dimensions. This approach has been compared with hot-deck and standard
multi-layer perceptron (MLP)5 [112] based imputation, and the result of the comparative
analysis indicates that SOM outperforms the other two methods. Particularly, SOM-based
method requires less learning observations than other models.

The existing classification methods generally commit the incomplete pattern into one specific
class with biggest probability. However, the missing values can play crucial role in classification,
and the classification result can be distinct with the different estimations of the missing values.
In such case, it is quite likely to cause misclassification error once the object is classified into a
particular class, which cannot well reflect the imprecision and uncertainty of classification due to
the missing attributes. Belief functions will be introduced to capture such imprecise and uncertain
information in the classification of incomplete pattern.

2.6 CONCLUSION

The credal classification of uncertain data based on belief function theory is studied in this thesis.
Belief function theory is the main tool used here, and its basic definitions, several often used com-
bination rules and the decision making support have been briefly introduced. In the classification
problem, we mainly consider the supervised and unsupervised conditions. Some supervised classi-
fiers based on belief functions have been recalled. Particularly, the well known EK-NN classifier is
commented and reviewed through two examples to show its limitation. Moreover, the classification
methods for incomplete pattern with missing values that is often encountered have been also briefly
surveyed. For the unsupervised classification, we mainly focus on the c-means clustering methods,
and the evidential c-means method is criticized by pointing its weakness. We have proposed four
new credal methods for dealing these different cases, and they will be presented in details.

4A self-organizing map (SOM) [111] is a type of artificial neural network (ANN), and it is trained by unsupervised
learning to produce a low-dimensional representation of the input space of the training samples. SOM uses a
neighborhood function to preserve the topological properties of the input space.

5The MLP imputation approach commonly consists of training MLP based on only the complete cases as regres-
sion model: each incomplete attribute is learned as output by means of the remaining complete attributes given as
inputs.
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3 Credal classification of
uncertain data using close

neighbors

3.1 INTRODUCTION

In classification problems, the case-based classifier can be a good solution to classify the new input
sample (the query object under test) using the collection of labeled (training) samples when the
complete statistical knowledge regarding the conditional density functions is not available. In the
classification of uncertain and imprecise data, the given attribute information can be insufficient for
making a correct specific classification of the objects. For example, the attribute data from different
classes can be partly overlapped sometimes. Such objects lying in the overlapping zone are in fact
very difficult to classify correctly in a specific class, since the (partly) overlapped classes become
undistinguishable. Moreover, some outliers (noisy data) can also be present in some applications.

The well known case-based classification methods, like K-nearest neighbor (K-NN) [113–115],
decision trees [62], support vector machine (SVM) [59], artificial neural networks (ANN) [61],
have been developed essentially based on probability measure, or fuzzy number for dealing with
the uncertain data. The samples are allowed to belong to different specific classes with different
memberships, and the class with the biggest membership is usually chosen as final assignment of
the object to a class (i.e. the decision-making). However, the probabilistic framework cannot well
model and manage the imprecision of data.

The belief function theory [3–7] offers a rigorous mathematical formalism to model uncertain
and imprecise information produced by a source of evidence. Some data classifiers have already
been developed based on belief functions in the past. For instance, the evidential version of K-
nearest neighbors method (EK-NN) has been proposed in [12] based on DST, for working only
with the specific classes and the extra ignorant class defined by the union of all the specific classes.
The meta-class defined by the union of several specific classes (say wi ∪ wj , wi ∪ wj ∪ wk, etc) is
very important and useful to explore the partial imprecision inherent of the data set. However,
it has not been considered completely in the existing evidential classifiers developed so far. We
propose in this chapter a new case-based classifier working with credal classification, where both
the meta-classes and the outlier class are taken into account to fully characterize the uncertainty
and imprecision inherent in the data set. In this new method, the sample (the object to assign) is
classified using its neighborhood of the training data space, and the K nearest neighbors (KNNs)
in each class are used. A total of c×K (c being the number of classes) neighbors is used to classify
the object. This new method is called a belief c × K neighbors (BCKN) classifier. In BCKN,
c×K basic belief assignments (BBA’s) will be constructed according to the distance between the
object and its selected neighbors. A global fusion of these BBA’s is done to decide the class, or the
meta-class to assign for the object. The credal classification of BCKN can produce specific class,
meta-class and outlier class.

An object that is very close to a particular class of data will be committed to this specific class.
An object too far from all the training samples will be naturally considered as an outlier (noise),
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which is helpful for the outlier detection in some applications. If the object is close to several specific
classes (e.g. when lying in the overlapping zone of several different classes), then this object will be
committed to the meta-class defined by the union of these specific classes. The meta-class reveals
the imprecision in the classification of this object, and can also reduce the misclassifications. Of
course the commitments are done in a soft manner thanks to the computation of proper basic belief
masses as it will be explained in details in the section 3.2. Such credal classification (a classification
based on soft assignments represented by belief functions) is very interesting in many applications,
specially those related to defense and security (like in target classification and tracking) because it
is generally preferable to get a more robust (and eventually partially imprecise) classification result
that could be precisiated later with additional techniques or resources, than to obtain directly with
high risk a wrong precise classification from which an erroneous fatal decision would be drawn.
This is the main reason why we develop such type of classifiers.

If some samples are committed to the meta-classes, it implies that the used attributes infor-
mation for classification is insufficient to get the specific classification for these samples. Thus,
the output of BCKN can be considered as an interesting source of information to be fused with
some other available complementary information sources (when available) for getting more precise
classification results in the multi-source information fusion systems. Of course, other sophisticated
and generally more costly techniques, like those applied in the military applications, could also be
used to classify more precisely the objects in the meta-classes. The use of such additional sophis-
ticated techniques highly depends on the importance of the consequences of the decision to take.
The objects in a meta-class are usually a small subset of the total data set. So the price for the
specific classification of these objects invoking costly sophisticated techniques can be acceptable
for only a limited number of objects, but not for the whole data set at the very beginning of the
classification process. Thus, BCKN method provides a way to select the objects (in meta-class)
that need a particular attention which should be treated cautiously, as far as important decisions
to take are under concern (like in a military targeting process by example).

This chapter is organized as follows. The details of the proposed method BCKN are presented
in section 3.2. Several experiments are given in the section 3.3 to show how BCKN performs with
respect to other classical methods. Concluding remarks are given in the last section.

3.2 BELIEF C ×K NEIGHBORS CLASSIFIER

3.2.1 Principle of BCKN

For the classification of an input sample (the object), we choose K nearest neighbors (KNNs) in
training data space of each class. A total of c × K (c being the number of classes in the whole
training data set) neighbors is used in BCKN method. The sources of evidence associated with
each class are constructed using these neighbors information, and they have the same weight in the
fusion process since they use the same number of neighbors in each class. In a fusion process based
on belief functions, the sources of evidence involved in the fusion are assumed to have the same
reliability and importance, otherwise some discounting techniques must be applied [3, 116]. The
class of the input sample to classify will depend on the global fusion of these sources of evidence.
The credal classification of BCKN can produce specific classes, meta-classes and ignorant (outlier)
class. A specific class consists of the data points that are very close to the training samples labeled
by this class. A meta-class is defined by the union of several specific classes. All objects that
are simultaneously close to the specific classes involved in a meta-class will be committed to the
meta-class. The ignorant class contains the objects that are too far from all the training samples.
The two main steps of BCKN approach are described in details in the next subsections.
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3.2.2 The determination of basic belief assignments

Let us consider an object ys ∈ Y = {y1, . . . ,yh}, s = 1, . . . , h to classify over a c-class frame
Ω = {w1, . . . , wc} with a given training data set X = {x1, . . . ,xn}. w0 represents the unknown
class included in Ω for the exhaustiveness (closure) of the frame. w0 is used to distinguish the
ignorant class denoted by Ω discriminating the objects too far from all the training samples and
the meta-class w1∪ . . .∪wc describing the objects lying in the overlapping zone of all the singleton
classes, as it will be shown in our experiments in section 3.3.

The KNNs of ys in each class should be found at first, and there are c×K neighbors selected in
a c-class problem. The BBA’s associated with ys can be determined using the distances between ys
and its c×K neighbors. The L2-distance (Euclidean distance) between ys and one of its neighbors
xi labeled by wg is given by:

dsi = ||ys − xi|| (3.1)

The smaller the distance dsi indicates that ys more likely belongs to the class of xi. If ys is
far from xi, it means that xi provides little useful information regarding the class of ys. In this
work, we adopt a simple and rational way for the determination of BBA’s1. The BBA’s about ys
are defined for i = 1, . . . , c×K and xi ∈ wg by{

msi(wg) = e−γdsi

msi(Ω) = 1− e−γdsi
(3.2)

where γ > 0 in eq. (3.2) is a tuning parameter that is used to determine the proper BBA’s. If γ
takes a very small value, most of the mass of belief is focused on the specific class wg, even when
the object xi is quite far from the neighbors in wg (it means xi is not likely in wg). If γ takes a
very big value, the ignorant class Ω will always take the most mass of belief, which is inefficient for
the classification problem. γ can be determined according to the average distances between each
pair of training samples in the same class. The bigger average distance should lead to a smaller γ
value, and so we compute it as

γ = 1
d̄

(3.3)

with

d̄ = 1
cni(ni − 1)

c∑
i=1

ni∑
j=1

ni∑
l=1
||xj − xl|| (3.4)

where c is the number of classes in the data set, and ni is the number of training samples in class
wi. xj ,xl are the training samples in the class wi.

According to the BBA model given by eq. (3.2), if dsi is very small, most of the mass of belief
will be committed to the class wg of xi. This indicates that the object ys is very likely in the
class of xi. Otherwise, the most mass of belief will be put on the ignorant element Ω to reflect
that xi has little impact (plays almost a neutral role) in fact on the classification of ys. So the
classification of one object mainly depends on the neighbors that are close to this object. c ×K
BBA’s corresponding to the c ×K selected neighbors of ys in each class wg, g = 1, . . . , c can be
constructed using this BBA construction model.

1There exist other methods of construction of BBA’s [117], but they need more tuning parameters and have a
higher computation complexity which makes them not easy to use.
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3.2.3 The fusion of the basic belief assignments

The fusion results of the c×K BBA’s will be used for the credal classification of the object. The
c×K BBA’s can be classified into c groups according to the labels of the neighbors from which the
BBA’s have been obtained. The BBA’s in the same group are all associated with the same class,
whereas the BBA’s from the different groups corresponding to different classes can highly conflict.
So these BBA’s are proposed to be fused following the two steps:

• Step1 (sub-combination step): We combine all the BBA’s belonging to the same group, and
this sub-combination is applied for all the available groups.

• Step 2 (global fusion step): Then, we combine the c BBA’s resulting from the previous
sub-combination Step 1.

These two steps are explained in more details in the next subsections.

• Step1: The sub-combination of BBA’s in the same group

DS rule is usually considered as acceptable in most situations where the BBA’s are not too
conflicting. However, DS rule has several serious limitations as reported [45,46]. It is not appropri-
ate to use DS rule here for combination of the BBA’s in the same group because of the particular
structure of the BBA’s which yields a very fast convergence towards a singleton as stated in the
following lemma which is consistent with the Example 2.1 in Chapter 2.

Lemma 3.1: Let us consider a group of K BBA’s defined on 2Ω having the following structure
msi(wg) = εi and msi(Ω) = 1 − εi, where εi are small positive values, i = 1, . . . ,K. Let’s denote
ε = min[ε1, . . . , εK ]. The combined mass of belief obtained by the DS fusion of the K BBA’s msi(.)
will be focused on wg because one always gets mDS(wg) > 0.5 > mDS(Ω) as soon as K > − ln 2

ln(1−ε) .

Proof: In applying the DS rule for combining the K BBA’s, we get
mDS(wg) = 1−

K∏
i=1

(1− εi)

mDS(Ω) =
K∏
i=1

(1− εi)
(3.5)

Whence the the bigger K leads to the bigger mDS(wg). The value of mDS(wg) will converge very
quickly to 1 when K increases. Since ε = min[ε1, . . . , εK ], one always has

(mDS(wg) = 1−
K∏
i=1

(1− εi)) > 1− (1− ε)K

which is always greater than 0.5 when 1− (1− ε)K > 1
2 , or equivalently when K > −ln2

ln(1−ε) . This
completes the proof. �

The lemma 3.1 indicates that when the value of K is large enough, the object ys will be
considered very likely to belong to wg (according to the combination results of DS rule) even if ys
is quite far from these K neighbors (i.e. the belief on the specific class wg is very small). Such DS
rule behavior goes against the intuition and is unacceptable. For example, if ε = εi, i = 1, . . . ,K is
a small value (say ε = 0.2) indicating that ys is far from the K neighbors, then mDS(wg) > 0.5 >
mDS(Ω) as soon as K ≥ 4. Obviously, such combination result is not very reasonable and counter
intuitive. If ys is quite far from the K neighbors of class wg (ys could however be very close to
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the neighbors of wp class, p 6= g), it means that ys doesn’t very likely belong to wg, and the most
of the belief should (in our opinion) better be committed to the ignorant class Ω after combining
efficiently the K BBA’s. We have proved in Lemma 1 that DS rule produces unsatisfactory results
and we propose to use the simple averaging fusion rule instead of combining the K BBA’s in the
same group. This rule is defined for g = 1, . . . , c by

mg
s(wg) = 1

K

K∑
i=1

msi(wg)

mg
s(Ω) = 1

K

K∑
i=1

msi(Ω)
(3.6)

With this averaging fusion rule, the mass of belief on wg always lies in the following bounds
min[ms1(wg), . . . ,msK(wg)] ≤ mg

s(wg) ≤ max[ms1(wg), . . . ,msK(wg)]. If ys is far from a group
of K neighbors labeled by wg (say msi(wg) < 0.5, i = 1, . . . ,K), then the combination results of
mg
s(wg) will be still very small as mg

s(wg) < 0.5 < mg
s(Ω), which is logical and consistent with our

analysis.

• Step 2: The global fusion of sub-combination results

The resulting BBA’s of step 1 related to the different groups are combined altogether in Step
2 for the final credal classification of the object ys. In this global fusion process, we consider not
only the specific classes and the ignorant class, but also the possible meta-classes (i.e. partial
ignorant classes) for the objects that are difficult to classify correctly into a particular class. The
partial conflicting belief (e.g. ms(wi ∩ wj) = mi

s(wi)mj
s(wj) when wi ∩ wj = ∅) produced by the

conjunction of beliefs of different exhaustive specific classes reflects the ambiguity degree (difficulty)
of the classification of the objects in the involved specific classes (e.g. wi and wj). Therefore, the
massmi

s(wi)mj
s(wj) will be committed preferentially to the corresponding meta-class (e.g. wi∪wj)

rather than being eliminated through a global normalization procedure to avoid counter-intuitive
behaviors as those observed with DS rule.

If all the conflicting beliefs are kept and committed to the associated meta-classes (as done
classically in DP rule), then too many objects will be assigned to the meta-classes. This is not
a very efficient data classification solution because we will lose a lot of specificity in the final
result. For example, let us consider a pair of BBA’s m1

s(w1) = 0.99,m1
s(Ω) = 0.01 and m2

s(w2) =
0.5 + ε,m2

s(Ω) = 0.5− ε. If ε = 0, both the focal elements w1 and w1 ∪w2 will be considered most
likely to be true in the fusion results of DP rule. If ε > 0, the meta-class w1 ∪w2 will get the most
belief after the combination of the two BBA’s by DP rule because of the existing partial conflict
belief ms(w1 ∪ w2). Nevertheless, this object is more likely in w1 than in w2, since the belief on
w1 in m1

s(·) is much bigger than the belief on w2 in m2
s(·). The classes w1 and w2 seem not so

undistinguishable for ys in such condition in fact. Thus, it is not very reasonable to commit this
object into the meta-class w1 ∪ w2. That is why in BCKN, we propose to select the meta-classes
that should be kept conditionally according to the current context.

In the c pieces of sub-combination results, the biggest mass of belief on specific class is first
identified, that is mmax

s (wmax) = max[m1
s(w1), . . . ,mc

s(wc)]. The class wmax corresponds to the
most likely class of ys. If (mmax

s (wmax)−mi
s(wi)) ≤ t, i = 1, . . . , c (t being a given threshold), then

the class wi will be also considered as potentially likely true. In fact the classes wi and wmax are
almost undistinguishable for the classification of ys with respect to the given threshold t, and it is
with high risk of error for the assignment of this object to one specific class. Therefore, the object
ys should be cautiously committed to a set of classes ψmax , {wi|mmax

s (wmax) − mi
s(wi) ≤ t}

with big mass of belief. It says that ys likely belongs to one of specific classes in ψmax, but these
specific classes cannot be well distinguished for ys. In order to deal with all the classes in an equal
manner, all the meta-classes having a cardinality less or equal to |ψmax| will be selected, and their
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corresponding conflicting beliefs will be preserved and committed to the mass of the corresponding
meta-classes. The set of the selected meta-classes is denoted by Ψ.

Example 3.1: Let’s consider Ω = {w1, w2, w3}. If wmax = w1 and ψmax = {w1, w2}, then all
the meta-classes whose cardinality is not bigger than |{w1, w2}| = 2 will be kept. Therefore, the
selected meta-classes are the elements of the set2 Ψ = {w1 ∪w2, w1 ∪w3, w2 ∪w3}. If the belief on
wmax is much bigger than that on any other classes, none meta-class needs to be preserved in order
to avoid the high imprecision of the solution. The guidelines for tuning the threshold parameter t
are discussed in the sequel.

In this work, the global fusion rule of Step 2 of our BCKN method has been inspired by DS
rule (2.4) and DP rule (2.7). It is mathematically defined by the formulas (3.7) and (3.8). The
sub-combination results associated with the ys and different classes can be fused sequentially by

m1,g
s (A) =


∑

B1,B2∈2Ω|B1∩B2=A
m1,g−1
s (B1)mg

s(B2), for A 6∈ Ψ∑
B1,B2∈2Ω|B1∪B2=A

m1,g−1
s (B1)mg

s(B2), for A ∈ Ψ
(3.7)

m1,g
s (.) is the unnormalized combination results of m1

s(.), . . . ,mg
s(.), g = 1, . . . , c. By convention,

one takes m1,1
s (.) = m1

s(.). It is worth to note that this combination rule is close to DP rule
(2.7) in its principle, but the summation of the combined BBA is not one (i.e. here one can have∑
m1,g
s (.) ≤ 1) if some partial conflicting beliefs are not preserved. In DP rule, the focal element

A can be any subset of Ω, whereas in our (restricted version of DP) rule a focal element A can be
only a specific class, the ignorant class or just a selected meta-class in Ψ (but not all possible meta-
classes). This unnormalized combination rule is not associative in general, but it is associative here
because of the very particular structure of BBA’s mi

s(.) satisfying the BCKN model. This will be
shown in the example 3.2.

The unnormalized fusion results obtained by (3.7) will then be normalized once all the BBA’s
have been combined. The mass of conflicting beliefs that have not been committed to the meta-
classes must be redistributed to the other focal elements to get a normalized final BBA. In this
work, the masses of conflicting beliefs are added together to compute the level of the total conflict
which is then redistributed to all the focal elements (including specific class and meta-class) by
the classical normalization procedure (as done in the DS rule). More precisely, the normalization
of the fusion results is done by

ms(A) = m1,c
s (A)∑

j

m1,c
s (Bj)

(3.8)

where m1,c
s (.) is the unnormalized BBA obtained after combining sequentially all the BBA’s mg

s(.)
for g = 1, 2, . . . , c with the formula (3.7).

If it is known that there is no outlier in the application under concern, then the mass on the
ignorant class can be proportionally redistributed to other focal elements using eq. (3.8). If none
meta-class is selected, the global fusion rule reduces to DS rule, since none of the conflicting beliefs
can be transferred to meta-classes. Whereas, if all the meta-classes are preserved, the global fusion
rule behaves like DP rule, and all the partial conflicting beliefs masses are transferred onto these
meta-classes. This global fusion rule can be considered as a compromise between DS rule and DP
rule, since we only select a subset of all possible meta-classes on which the conflicting beliefs masses
will be redistributed. The selection of the admissible meta-classes used in BCKN method depends
on the current context. The global fusion results can be used for the classification making support.
The belief function Bel(.), the plausibility function Pl(.) and pignistic probability BetP (.) can be

2In BCKN, the meta-classes involving w0 like w0 ∪ wi are not taken into account.
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used for final hard (binary) assignment of the objects to a specific class when it is really necessary.
Such final hard assignment is not the purpose of BCKN since we do prefer to use the credal
classification as a mean to understand the inherent structure of the data to classify, and this will
help to request specific extra resources to better precisiate the result for some important objects.

In Fig. 3.1, the flowchart of BCKN is presented to explicitly illustrate how the proposed method
works.

Determination of  

KNNs in w1

Construction of 

K  BBA’s     on w1

Combined BBA’s      

by averaging rule

Combined BBA’s      

by averaging rule

Selection of

 meta-class

……

……

……

Object   y

Output

Determination of 

KNNs in wc

Construction of

 K  BBA’s     on wc

Global fusion of 

  combined BBA’s    

Figure 3.1 : Flowchart of the proposed BCKN method.

The pseudo-code of the BCKN is also given in Table 3.1 for convenience.
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Table 3.1 : Belief c× k neighbors algorithm
Input: Training samples: X = {x1, . . . ,xn} in Rp

Objects to classify: Y = {y1, . . . ,yh} in Rp
Parameters: K: number of nearest neighbors

t > 0: threshold for meta-class
for s=1 to h
Select the K nearest neighbors of ys in each class
Construction of c×K BBA’s using (3.2);
Combination of BBA’s from neighbors with same label by (3.6);
Selection of meta-classes according to sub-combination results;
Global fusion of these sub-combination results by (3.7) and (3.8);
Credal classification of ys based on the global fusion results.
end

3.2.4 Guidelines for choosing the threshold parameter t

The BCKN method requires to choose the threshold parameter t for the contextual selection
of meta-classes. The tuning of this parameter is very important in the application of BCKN. We
provide here simple guidelines for the choice of this threshold t. The bigger threshold t can produce
the fewer misclassifications, but it usually brings the larger meta-classes which is not efficient for
maintaining an acceptable specificity of the classification result. Thus, the tuning of t depends on
the expected compromise we want between the imprecision and the misclassification of the results.
t can be optimized using the cross-validation (e.g. leave-one-out) in training data space with the
given K value. t can be also tuned by a grid-search in [0, 1]. The optimal choice of t should
correspond to the compromise we want between the imprecision and misclassification, which is
application dependent. The following example shows how BCKN works.

Example 3.2: Let us consider the frame of classes Ω = {w0, w1, w2, w3} and the given value of
K = 2. In the training data space of each class3 wi, i = 1, 2, 3, K = 2 nearest neighbors are
searched at first. Then, the K × c = 2× 3 = 6 BBA’s of the object ys to classify are determined
using the distances between ys and the K × c = 6 neighbors. Let’s suppose in this example that
these BBA’s are given by:

ms1(w1) = 0.9, ms1(Ω) = 0.1
ms2(w1) = 0.8, ms2(Ω) = 0.2
ms3(w2) = 0.9, ms3(Ω) = 0.1
ms4(w2) = 0.7, ms4(Ω) = 0.3
ms5(w3) = 0.4, ms5(Ω) = 0.6
ms6(w3) = 0.2, ms6(Ω) = 0.8

Thus ms1(.) and ms2(.) strongly support w1, ms3(.) and ms4(.) support w2, and ms5(.) and ms6(.)
support moderately the class w3. The combination results of the BBA’s in the same group using

3In this work, the training samples are all considered with specific labels, and w0 is the potential unknown class
for some objects to test. So none training samples belongs to w0.

48



CHAPTER 3. CREDAL CLASSIFICATION OF UNCERTAIN DATA USING CLOSE
NEIGHBORS

3

the averaging rule eq. (3.6) gives

m1
s(w1) = ms1(w1) +ms2(w1)

2 = 0.85, m1
s(Ω) = ms1(Ω) +ms2(Ω)

2 = 0.15

m2
s(w2) = ms3(w2) +ms4(w2)

2 = 0.8, m2
s(Ω) = ms3(Ω) +ms4(Ω)

2 = 0.2

m3
s(w3) = ms5(w3) +ms6(w3)

2 = 0.3, m3
s(Ω) = ms5(Ω) +ms6(Ω)

2 = 0.7

We see that mmax
s = m1

s(w1) = 0.85. If we choose the value of t = 0.1, one gets ψmax = {w1, w2} ,
w1 ∪ w2 since mmax

s − m2
s(w2) < 0.1. Then the meta-classes having cardinality no bigger than

|Ψmax| = |{w1, w2}| = 2 should be selected from the power-set 2Ω. Therefore, the selected meta-
classes are Ψ = {w1∪w2, w1∪w3, w2∪w3}. Because of the particular4 structure of the BBA’s, the
unnormalized combination rule (3.7) is associative as we can verify in this simple example. Indeed,
if A is a specific class or the ignorant class Ω, then one always has from eq. (3.7)

m1,3(A) = m1(A)m2(Ω)m3(Ω) = m1,2(A)m3(Ω) = m1(A)m2,3(Ω) = m1,3(A)

If A is a selected meta-class, say A = w1 ∪ w2, then one gets from eq. (3.7)

m1,3(w1 ∪ w2) = m1(w1)m2(w2)m3(Ω) = m1,2(w1 ∪ w2)m3(Ω)
= m1(w1)m2,3(w2) = m1,3(w1 ∪ w2)

Such result is similar when considering A = w1 ∪ w3 and A = w2 ∪ w3.

Finally the result obtained by the global fusion rule (3.7) of Step 2 is

m1,3
s (w1) = m1

s(w1)m2
s(Ω)m3

s(Ω) = 0.1190
m1,3
s (w2) = m1

s(Ω)m2
s(w2)m3

s(Ω) = 0.0840
m1,3
s (w3) = m1

s(Ω)m2
s(Ω)m3

s(w3) = 0.0090
m1,3
s (Ω) = m1

s(Ω)m2
s(Ω)m3

s(Ω) = 0.0210
m1,3
s (w1 ∪ w2) = m1

s(w1)m2
s(w2)m3

s(Ω) = 0.4760
m1,3
s (w1 ∪ w3) = m1

s(w1)m2
s(Ω)m3

s(w3) = 0.0510
m1,3
s (w2 ∪ w3) = m1

s(Ω)m2
s(w2)m3

s(w3) = 0.0360

These masses are then normalized according to (3.8), and we get

ms(w1) = 0.1495 ms(w2) = 0.1055 ms(w3) = 0.0113
ms(w1 ∪ w2) = 0.5980 ms(w1 ∪ w3) = 0.0641
ms(w2 ∪ w3) = 0.0452 ms(Ω) = 0.0264

The result indicates that the sample ys most likely belongs to the meta-class w1 ∪ w2, since
w1 ∪ w2 gets the most mass of belief. We can see that the belief granted to w1 are similar to the
belief granted to w2 with respect to the given threshold t. It indicates that ys is close to both the
classes w1 and w2, and w1 and w2 are not very distinguishable for making a precise classification
of ys. What we can only reasonably infer is that ys belongs to {w1, w2}. So the meta-class
w1 ∪w2 can be a good (acceptable) compromise for the classification of ys, which reduces the risk
of misclassification. This solution is also consistent with our intuition. Such fusion result can be
considered as a useful mean to ask for other complementary information sources if a more precise
classification is absolutely necessary for the problem under consideration.

4The focal elements of each BBA are nested.
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3.2.5 Expressive power of BCKN

The expressive power of a method can be seen as its ability to identify and manipulate complex
propositions. The expressive power of the classification methods can be represented by the focal
elements they can generate in the classification results. Let us examine and compare the expressive
power of credal classification in BCKN with respect to probabilistic classification and classification
in classical evidential methods. Let us consider a finite frame of discernment Ω = {w0, w1, . . . , wc}
with c > 1 specific classes. Probabilistic classification provides only a Bayesian BBA (a probability
measure) which can focus only on the c possible focal elements (singletons) of Ω. So the expressive
power of probabilistic classification is c. In the classical evidential methods [12], it can provide a
positive mass only on the c singletons of Ω and also the ignorance class Ω. So its expressive power
is c + 1. In BCKN, the credal classification can provide a positive mass on the c singletons of Ω,
on the ignorance class Ω, and on 2c − c− 1 meta-classes as well. So the expressive power of credal
classification in BCKN is 2c. It is worth to note that the meta-class in BCKN is conditionally
selected according to the given threshold t under the current context. The meta-class is not
included when all the objects can be clearly classified, but meta-class is necessary when some objects
are difficult to classify correctly. One sees that the credal classification produces more enlarged
classifications and has a better expressive power than classical methods. The expressive power of
BCKN goes from c+ 1 (no meta class) to 2c. The more expressive it is, the more computationally
costly it is. The following example shows the expressive power of different classifications.

Example 3.3: Let us consider a 3-classes data set. The three specific classes are w1, w2, and w3.
Below are the feasible classes expressed by the different methods.

• probabilistic classification: w1, w2, and w3;

• classical evidential classification: w1, w2, w3, and Ω;

• credal classification: w1, w2, w3, w1 ∪ w2, w1 ∪ w3, w2 ∪ w3, w1 ∪ w2 ∪ w3 and Ω.

However, the computation burden of BCKN is generally bigger than the classical neighbor-
based methods. In K-NN and EK-NN, there are K neighbors involved in the classification of one
object, whereas it requires c×K (c being the number of the classes) neighbors in BCKN. The K
BBA’s corresponding to the K neighbors are simply combined using the DS rule to classify the
object in EK-NN. Nevertheless, the combination of the c ×K BBA’s in BCKN should follow the
two steps: 1) the sub-combination of the BBA’s associated with the same class and 2) the global
fusion of these sub-combination results in BCKN. So the computational complexity of BCKN seems
bigger than EK-NN and K-NN. This is the necessary price we have to pay for the enlarged credal
classification of the uncertain and imprecise data.

3.3 EXPERIMENTS

BCKN has been tested in several experiments to evaluate its performance with respect to K-
NN, EK-NN, Classification And Regression Tree (CART), Artificial Neural Networks (ANN) and
Support Vector Machine (SVM) methods. In the following three experiments (i.e. Experiment
1, 2 and 3.), the tuning of parameters in these different methods are introduced as follows. The
different methods have been programmed and tested with MatlabTM software. The parameters of
EK-NN were automatically optimized using the method introduced in [118]. In ANN, we use the
feed-forward back propagation network with epochs = 500 and goal = 0.001. In SVM, we selected
a Gaussian Radial Basis Function kernel with σ = 0.125. The tuning threshold t in BCKN is
optimized using the training data. The optimized value corresponds to a suitable compromise
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between error rate and imprecision rate (for example, imprecision rate is no more than five percent
and it is no bigger than the error rate). The t value has been found by a grid search with 10−4

step width in the range [0, 1]. This optimization procedure can be done off-line.

In order to explicitly show the use of meta-class introduced in BCKN, the objects are directly
committed to the class that receives the maximal mass of belief. In this work, we use both the
common error rate, and a new concept of imprecision rate (related with the meta-classes) to
evaluate the performance of BCKN. For one object originated from wi, if it is classified into A
with wi ∩A = ∅, it will be considered as an error. If wi ∩A 6= ∅ and A 6= wi, it will be considered
with imprecise classification. The error rate denoted by Re is calculated by Re = Ne/T , where
Ne is number of objects wrongly classified, and T is the total number of the objects tested. The
imprecision rate denoted by Rij is calculated by Rij = NIj/T , where NIj is number of objects
committed to the meta-classes with the cardinality value j.

It is worth noting that the x-axis corresponds to the first dimension of test and training data,
and y-axis corresponds to the second dimension in Fig. 3.2–3.3. In Fig. 3.4 and 3.5, the x-axis
represents the number of K value used in BCKN method, and y-axis represents the error rate( or
imprecision rate for BCKN).

3.3.1 Experiment 3.1 (with artificial data sets)

This experiment consists of two particular tests (numerical simulations) and shows how BCKN
works and its difference with respect to EK-NN and K-NN methods. The tuning of parameters of
these methods have been presented in the beginning of Section 3.3.

3.3.1.1 Test 1

BCKN is tested here using two particular 2-D data classes w1 and w2 that are obtained from
two uniform distributions as shown by Fig. 3.2-a. Each class has 200 training samples and 200
test samples, and one more noisy sample (outlier) is included in the test samples. The uniform
distributions of the two classes are characterized by :

x-label interval y-label interval
w1 (-0.5, 2.5) (-0.4, 0.4)
w2 (0.15, 0.45) (-1, 3)

A particular value of K = 11 is selected here, since it produce good results for all the three
methods. So K = 11 neighbors are selected by K-NN and EK-NN, whereas there are c × K =
2×11 = 22 neighbors used in BCKN. The classification results of the tested objects by the different
methods are given by Fig. 3.2-b–3.2-d. For notation conciseness, we have denoted wte , wtest,
wtr , wtraining and wi,...,k , wi ∪ . . . ∪ wk.

As we can see on Fig. 3.2-a, some tested objects originating from w1 and w2 can belong to
the crossed (overlapped) zone and such objects are really hard to classify into a particular class
w1 or w2. However, K-NN and EK-NN just commit these objects in the overlapping zone to two
specific classes as shown on Fig. 3.2-b and on Fig. 3.2-c because of the limitation of probabilistic
framework, and this can cause many misclassifications (i.e. EK-NN produces 26 errors, and K-NN
also produces 26 errors). In BCKN, these objects are automatically reasonably classified into the
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c. Classification result by EK-NN. d. Classification result by BCKN (t = 0.005).

Figure 3.2 : Classification results by K-NN, EK-NN and BCKN.

meta-class w1 ∪ w2 thanks to the belief functions framework as shown on Fig. 3.2-d. BCKN is
thus able to effectively reduce misclassification (i.e. BCKN produces 3 errors, and 36 points in
the meta-class). One object labeled by black pentagram is far from the others. Therefore, it is
considered as outlier by BCKN. Whereas, this noisy point is not detected by other methods. This
example shows the interest of the credal classification provided by the BCKN approach.

3.3.1.2 Test 2

A 3-class 2-D data set composed by three rings shown by Fig. 3.3-(a) is used in this example.
Each class contains 303 training samples and 303 objects for testing. The radiuses and centers of
the three rings are given by:

center radius interval
w1 (-2, 0) [3, 4]
w2 (1.5, 0) [3, 4]
w3 (6, 3) [3, 4]

52



CHAPTER 3. CREDAL CLASSIFICATION OF UNCERTAIN DATA USING CLOSE
NEIGHBORS

3

We have also taken K = 11 in this second test. The classification results of test data by K-NN,
EK-NN and BCKN are respectively shown in Fig. 3.3-(b)-(d).
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(c). Classification result by EK-NN. (d). Classification result by BCKN (t = 0.002).

Figure 3.3 : Classification results of a 3-class data set by K-NN, EK-NN and BCKN.

We can see that the three rings intersect, and the objects in the overlapping (intersecting) zones
are impossible to classify correctly. In the classification results of K-NN and EK-NN, all the objects
are committed to a particular class as shown on Fig. 3.3-(b), (c). K-NN and EK-NN generate both
109 misclassifications. In BCKN, the objects in the overlapping zones are reasonably automatically
associated to meta-classes as shown on Fig. 3.3-(d). The BCKN produces only 4 misclassifications,
but it commits 141 objects in the meta-classes. This example shows the effectiveness of BCKN for
dealing with ambiguous data in a complex situation.

3.3.2 Experiment 3.2 (with 4-class data set)

In this second experiment, we compare the performances of BCKN with respect to the performances
of EK-NN, K-NN, CART, ANN and SVM on a 4-classes problem. The data set is generated from
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three 2D Gaussian distributions characterizing the classes w1, w2, w3 and w4 with the following
means vectors and covariance matrices:

µ1 = (−5, 0),Σ1 = [1, 0; 0, 6]

µ2 = (5, 0),Σ2 = [1, 0; 0, 6]

µ3 = (0, 5),Σ3 = [6, 0; 0, 1]

µ4 = (0,−5),Σ4 = [6, 0; 0, 1]

There are 4×100 test samples, and the training sets contain 4×N samples (for N = 100, 200, 300).
Values of K ranging from 5 to 15 neighbors have been tested. For each pair (N,K), the reported
error rates and imprecision rates are averages of 10 trials performed with 10 independent random
generation of the data sets. The mean of the classification error and imprecision rates with different
numbers of training samples (for N = 100, 200, 300) have been calculated, and the classification
results by different methods are shown on Fig. 3.4. The average error rate Rea, imprecision rate
Ria and execution time (second) of BCKN, K-NN, EK-NN with K = 5, 6, . . . , 15, as well as the
error rate and computing time of CART, ANN and SVM are given in Table 3.2. It is worth noting
that there are c × K = 4K neighbors involved in the classification by BCKN. The outliers have
not been introduced in this experiment, and the belief on ignorant class has been proportionally
redistributed to other available classes. In this experiment, none object is committed to the meta-
class with cardinality value of three or four, and that is why we have only considered Ria2. The
tuning of parameters in these different methods have been introduced in the beginning of Section
3.3.

Table 3.2 : The statistics of classification results by different methods (in %).

N = 100 N = 200 N = 300
K-NN Rea 16.86 16.73 15.75

time 0.0220 0.0362 0.0496
EK-NN Rea 16.77 16.56 15.90

time 0.0695 0.0872 0.1099
CART Rea 17.55 16.50 16.35

time 0.2387 0.3182 0.4306
ANN Rea 16.00 15.15 15.10

time 3.5475 7.7657 7.7751
SVM Rea 36.50 35.80 35.35

time 2.1466 11.7625 67.8916
Rea 11.91 10.00 8.98

BCKN Ria2 2.73 5.14 6.77
time 0.9169 1.8826 2.9016

In Fig. 3.4 and Fig. 3.5, the X-axis corresponds to the K values, and the Y-axis corresponds
to the classification error rate Re expressed in [0, 1] (and also the imprecision rate Ri2 for BCKN)
of the classification methods.

We can observe on Table 3.2 and Fig. 3.4 that BCKN produces the smallest error rate. In fact,
the objects in class w1 and w2 are partly overlapped with the samples in w3 and w4. The objects
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(c). Classification results with N = 300

Figure 3.4 : Classification results of the 4-class problem by different methods.

in the overlapping zones are very difficult to classify, and most of them are wrongly classified
by the classical methods. Whereas, these objects that are difficult to correctly classify are mostly
committed to the associated meta-classes (i.e. w1∪w3, w1∪w4, w2∪w3 and w2∪w4) by BCKN. That
is why BCKN produces the fewest errors but brings naturally some imprecision of classification
(i.e. meta-class).

We can see that BCKN takes more execution time than K-NN and EK-NN on Table 3.2, and it
indicates that the computational complexity (burden) of BCKN is bigger than the other classical
neighbor-based methods. This is the price we pay for the enlarged credal classification, which can
provide more useful information in the classification than other classical methods.

3.3.3 Experiment 3.3 (with real data sets)

Four well-known data sets available from UCI [95] (the Wine data set, the Iris data set, the Breast
cancer and Yeast data sets) are widely used by the scientific community to test data classification
methods. So we have also used these real data sets to evaluate the performance of BCKN with
respect to other classical methods. The basic information about these data sets are given in Table
3.3. Three classes (CY T,NUC and ME3) are selected in Yeast data set to the evaluate our
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method, since these three classes are close and hard to classify.

The k-fold cross validation is performed on the three data sets by different classification meth-
ods, and k generally remains a free parameter [119]. We use the common 10-fold cross validation
here. The tuning parameter t is optimized using the training samples in each fold. The classifica-
tion results by different methods with different values of K ranking from 5 to 15 are respectively
shown on Fig. 3.5-(a)–(d). The average error rate Rea, imprecision rate Ria (for BCKN) and
execution time (second) of the different methods including K-NN, EK-NN, CART, ANN, SVM
and BCKN are given in Table 3.4. The outlier class is absent in this real data sets, and the belief
on the ignorant class is proportionally distributed to the other focal elements. The parameters in
these different methods are tuned following the way introduced in the beginning of Section 3.3.

Table 3.3 : Basic information of the real data sets used for the test.
name classes attributes instances
Wine 3 13 178

Breast cancer 2 9 683
Iris 3 4 150
Yeast 3 8 1055
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Figure 3.5 : Classification results of real data sets by different methods.
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Table 3.4 : The statistics of the classification results for different real data sets (in %).
Yeast Breast cancer Wine Iris

K-NN Rea 35.97 3.16 30.45 2.79
time 0.0143 0.0098 0.0030 0.0024

EK-NN Rea 35.24 2.99 30.25 3.15
time 0.2261 0.1326 0.0228 0.0186

CART Re 37.71 5.59 11.67 5.33
time 0.8034 0.1934 0.1045 0.0811

ANN Re 58.76 3.97 63.33 4.67
time 6.7049 6.4584 3.3072 2.9905

SVM Re 34.29 3.95 5.00 2.67
time 2.1528 1.8861 0.2792 0.2308
Rea 27.05 2.54 23.84 2.55

BCKN Ria2 17.59 1.34 16.01 0
time 0.7484 0.2714 0.0211 0.0156

In these tests based on real data sets, none object is committed to the meta-class with cardi-
nality value of three, and we have just taken Ria2 for the evaluation. In the classification of Breast
cancer data set and Yeast data set, the error rate of BCKN is smaller than the error rates obtained
with other classical methods since the samples difficult to classify are automatically committed to
the meta-classes by BCKN. For the Iris data set, although none object is committed to meta-class
by BCKN, BCKN still provides a smaller error rate than with other methods. In the classification
of Wine data set, BCKN produces a lower error rate than with K-NN, EK-NN and ANN meth-
ods, but SVM and CART obtain better results than the other neighbor-based methods5. BCKN
requires a bit more time-consuming than K-NN and EK-NN on Table 3.4, which indicates that the
computation burden of BCKN is bigger than K-NN and EK-NN. In Wine, Yeast and Breast cancer
data sets, there are some objects belonging to meta-classes. The BCKN results clearly indicate
that the attributes used in these three real data sets are in fact insufficient for making the cor-
rect specific classification for the objects in the meta-classes. We should treat these objects more
cautiously and other complementary information sources will be necessary to get better specific
results (if necessary). If we are forced to make a hard classification of these objects, we must be
ready to take a high risk of misclassification, although a small part of the objects in meta-classes
may be correctly classified in the hard classification. Our tests and analysis illustrate the interest
and the potential of this new BCKN approach in real classification problems.

3.4 CONCLUSION

A new belief c×K neighbors (BCKN) classifier has been developed in this chapter to deal with the
uncertain and imprecise data, and it works with credal classification based on the belief functions.
The main advantage of this approach is the classification of the objects done according to the
context. With BCKN, the object can be either in the specific classes, or in the meta-classes
(i.e. the union of several specific classes), or eventually in the ignorant class. The BCKN credal

5CART and SVM being based on very different principles, it is difficult to draw a firm conclusion to establish if
they outperforms or not BCKN in general. This question remains an interesting topic for future research.
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classification allows to reduce the error rate by introducing the meta-class, which characterizes
the partial imprecision of classification, and it allows also to well detect the outliers thanks to the
ignorant class. The output of the BCKN classifier can be used as a primary source of information
to orient the need of other complementary means of analysis when more precise results on the
ambiguous objects are necessary. The comparative analysis of BCKN method with respect to
other classical methods through several experiments (using both synthetic data sets and real data
sets) has shown its real ability to reduce the classification errors by increasing judiciously the
imprecision rate that one accepts in the applications. In practice, a suitable compromise between
the error rate and imprecision rate must always be found by optimizing the choice of threshold
parameter entering in the BCKN approach. BCKN is able to well deal with the general and
complicate cases, but its computation burden is higher than with K-NN and EK-NN due to the
enlarged credal classification. The reduction of the computational burden of the BCKN will be
investigated in next chapter when the situation of classification is simple.
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4 Credal classification rule for
uncertain data using

prototype of each class

4.1 INTRODUCTION

In the previous chapter, a belief c×K neighbors (BCKN) classifier working with credal classification
has been developed to deal with uncertain data by considering all possible meta-classes in the
process. In BCKN, the distances between the object and all the training samples should be
calculated, and such method requests a high computational burden which is usually the main
drawback of all K-NN alike methods [113–115]. In this chapter, we propose a new straightforward
and more simple mathematical solution, called Credal Classification Rule (CCR), for directly
computing the basic belief assignments of uncertain data for their credal classification.

The interest of credal classification mainly resides in its ability to commit objects to the meta-
classes rather than to the specific classes when the information is insufficient for making it correctly.
By doing so, we preserve the robustness of the result and we reduce the risk of misclassification
errors. Of course the price to pay is the increase of the non-specificity of the classification. In
some applications, like in target classification and tracking, it is very crucial to maintain such
robustness than to provide immediately (with high risk of error) a precise classification. The credal
classification can be very helpful to manage external (possibly costly) complementary resources in
order to reduce some particular ambiguities. Our approach is very helpful for requesting (or not) a
complementary information sources (if possible and available) in order to get more precise reliable
classification results, and to reduce dramatic errors in the final decision-making process.

In this new CCR approach, each specific class is characterized by the corresponding class
center (i.e. prototype) computed from the training data. The center of a meta-class is calculated
based on the centers of specific classes included in the meta-class. In the multi-class classification
problem, there are usually only few (not all) classes that partly overlap, and most classes that
are in fact far from each other can be well separated. The meta-class defined by the union of
the classes that are far from each other are not useful in such applications. In order to reduce
the computational complexity, we just need to select the useful meta-classes according to the
context of the application under concern. The belief mass assignment of the object to classify with
each specific class is determined based on the Mahalanobis distance between the object and the
corresponding specific class center. Intuitively, the object committed to a specific class should be
very close its center. If the object to classify is assigned to a meta-class, it means that the true
class of the object is among the specific classes included in the meta-class but we don’t know which
one precisely. The ratio of the maximum distance of the object to the involved specific classes’
centers, over the minimum distance, is introduced to measure the degree of distinguishability of
these classes. Thus, the belief mass of a meta-class is determined from the distance between the
object and the center of meta-class and its corresponding ratio value. An object will be committed
to a meta-class with a high belief mass as soon as it is located at (almost) the same distances
of several specific classes centers. Because in that case, it means that the object is very difficult
to be correctly classify into a specific class. CCR provides credal classification results with low
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computational burden due to the simple working principle.

We state in Section 4.2 the principles of CCR and the mathematical computation of BBA’s for
the credal classification. In Section 4.3, we present some classification results based on artificial
and real data sets, and we compare the performances of the CCR with respect to well-known
classification methods. Conclusions are given in Section 4.4.

4.2 CREDAL CLASSIFICATION RULE (CCR)

In this section we present in details the Credal Classification Rule (CCR) for classifying uncertain
data. CCR provides a simple and an efficient way to compute the belief mass of the assignment of
the object with the specific classes, with the meta-classes (which characterize the partial imprecision
of class), and with the outlier class (i.e. the full ignorant class). The CCR consists of two main
steps: 1) the determination of centers of the specific and meta classes, and 2) the construction of
the BBA’s based on the distances between the object and each class center.

4.2.1 Determination of the centers of classes

Let us consider a given set of data Y = {y1,y2, · · · ,yn}, where the vectors yi (i = 1, . . . , n)
have to be classified over a frame of discernment Ω = {w1, · · · , wh} using the training data set
X = {x1,x2, · · · ,xg}. The element w0 is explicitly included in the frame Ω to represent the
unknown extra class for the closure of the frame.

The center of each specific class of Ω can be obtained in many ways1. For instance, one can use
a given data pdf model, or the average of training data, or the centers produced by an unsupervised
clustering (estimation) method (e.g. FCM, EM, etc). In this work, the center of each specific class
is simply defined by the mean value of the training data X = {x1,x2, · · · ,xg} in the corresponding
class. It is assumed that C = {c1, . . . , ch} are given, and correspond to the centers of the specific
classes w1,. . . , wh. For j = 1, 2, · · · , h, the center cj is defined ∀xi ∈ wj by

cj = 1
Sj

∑
xi∈wj

xi (4.1)

where Sj is the number of training samples in the class wj .

The interest of the credal classification is the taking into account of the meta-classes that are
used to model the imprecision of the class of the object to classify. The clustering center of meta-
class is usually defined by the simple mean value of the involved specific classes’ centers as done
in [23]. This is mainly for the convenience and simplicity of linear optimization of the objective
function. In fact, the arithmetic mean value of the specific classes’ centers generally does not take
the same distance to the each center of the associated specific class. Because of this, the centers
of the involved specific classes is not precisely indistinguishable for the center of the meta-class
according to the distance measure. In this work, we propose a new method to determine the center
of the meta-classes, which should fairly reflect the real impossibility to distinguish the involved
specific classes for the object belonging to this meta-class.

Basically in our approach, an object to classify will be committed to a meta-class (e.g. wi ∪
wj . . . ∪ wk), as soon as all the specific classes (e.g. wi, wj , . . . , wk) become undistinguishable for
this object according to the distance measures. Therefore, we argue that the center of a meta-class

1It is worth noting that there is no class center corresponding to the outlier class w0. The meta-classes involving
wo do not enter in CCR because w0 plays the role of the default (closure) class which will contain all data points
that cannot be reasonably associated within 2Θ\{wo}.
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must be located at the same distances of all the centers of the specific classes included in the
meta-class under consideration.

For instance, let us consider the simplest meta-class (e.g. U = wi ∪ wj) having a cardinality
equals to two, e.g. |U | = 2. The meta-class center, denoted cU , should be at the same distance to
all the specific classes’ centers include in U , which are ci and cj . Therefore, the following condition
must be satisfied

d(cU , ci) = d(cU , cj) (4.2)
Eq. (4.2) represents only one constraint, and it can produce only one solution of cU when the
dimension of the vector cU (i.e. the number of the attributes of data) is exactly one. If the
dimension of cU is bigger than one, there are many possible solutions for cU . Then, we will
select the one which is closest to all the centers of the specific classes included in U , and given by
arg[mincU

∑
wj∈U

(d(cU , cj))] because the meta-class center should be also simultaneously close to all

the involved specific classes as much as possible.

It is worth noting that Mahalanobis distance (i.e. the normalized Euclidean distance) is used
in this work to deal with the anisotropic data sets. This distance between two vectors cU and ci
is given by:

dUi , d(cU , ci) =

√√√√ N∑
k=1

(cU (k)− ci(k))2

δi(k)2 (4.3)

where N is the number of dimensions (attributes/features) of cU and ci, and δi(k) is the standard
deviation of the training data of class wi in its k-th dimension.

The object committed to a meta-class (e.g. U = wi ∪ wj) indicates that it must truly belong
to one of the specific classes included in this meta-class, but these specific classes are not very
distinguishable for this object. So the meta-class center should be closer to the centers of these
involved specific classes than to other incompatible classes’ centers2. Therefore, the following
condition must be satisfied

max
wi∈U

dUi < min
wj /∈U

dUj (4.4)

If the condition given by Eq. (4.4) is fulfilled, then one considers that the meta-class U must
be kept as a potential solution of the classification, i.e. as a focal element of the BBA. Otherwise,
if the meta-class center is closer to the center of an incompatible specific class wk /∈ U than to the
center of a specific class wi ∈ U , it indicates that the objects close around the center cU should
belong more likely to the specific class wk /∈ U rather than to wi ∈ U . In such case, this meta-class
U cannot be considered as effective3 for the classification solution, and the center cU should be
eliminated to reduce the computational burden by reducing the number of focal elements of the
BBA.

Figure 4.1 illustrates the selection of the meta-class. One considers a three classes problem
with Ω = {w1, w2, w3} and the corresponding set of centers {c1, c2, c3} as shown on Fig. 4.1.
One sees that the class w2 partly overlaps w1 and w3, whereas w1 and w3 are well separated.
The meta-class center c1,2 is more close to c1 and c2 than to c3. So the meta-class4 w1 ∪ w2 is

2The elements A and B are considered incompatible if A ∩B = ∅, and compatible if A ∩B 6= ∅.
3because it is very likely that the specific classes (e.g. wi and wj) in U are separated by the class wk. The classes

wi and wj in fact do not overlap, and so none object need to be assigned to the meta-class U = wi ∪ wj .
4Actually according to the Fig.4.1, the overlapped zone between w1 and w2 should better correspond to w1 ∩w2.

Because in this work we don’t allow an object to belong simultaneously to several distinct classes, the object in the
overlapped zone is supposed to belong to one class only, but we cannot exactly determine precisely which class (w1
or w2). So the meta-class w1 ∪ w2, which is more coherent with our interpretation here than w1 ∩ w2, is used to
represent the overlapped zone.
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Figure 4.1 : Simple illustration of the meta-class selection.

considered acceptable and its center c1,2 should be kept for the determination of the mass of belief.
For a similar reason, the meta-class w2 ∪ w3 with the center c2,3 is also acceptable. However,
the center c1,3 is closer to the incompatible class’ centerc2 than to c1 and to c3 which indicates
that the objects around c1,3 will more likely belong to the class w2. Consequently, the meta-class
w1 ∪w3 will not be taken into account in the credal classification, and its center c1,3 is useless for
the determination of the bba because one will take m(w1 ∪ w3) = 0 in that case.

Let us consider the more general situation with the cardinality value of the meta-class bigger
than two (i.e. |U | ≥ 3). If the meta-class U is accepted5 in the credal classification, it indicates
that all the specific classes included in U should be undistinguishable for the objects committed
to this meta-class. So all the subsets (i.e. the sub-meta-classes) of U should be also acceptable
before entering the calculation of meta-class center cU . If one meta-class A ⊂ U is considered
unacceptable, it means that several specific classes in A can be distinguished by all the objects,
and there is no necessity to preserve the meta-class A as a focal element of the BBA. In that case,
the meta-class U of course becomes unacceptable (useless), and we do not need to calculate its
center. If all the subsets of U are acceptable, then one can go for the computation of the center
cU to determine m(U) > 0.

Because the center cU must be located at the same Mahalanobis distance with respect to all
centers of the specific classes included in U , the following conditions must hold

d(cU , ci) = d(cU , cj),∀wi, wj ∈ U, i 6= j. (4.5)

Since one can obtain a set of |U | − 1 independent constraints from Eq. (4.5), there will be only
one solution of cU when the number of the available attributes of data is equal to |U | − 1. If the
number of attributes is bigger than |U | − 1, there exist many solutions for cU . If so, we will select
the solution which is closest to all the centers of the specific classes included in U , and given by
arg[mincU

∑
wj∈U

(d(cU , cj))]. If the dimension of cU is smaller than |U | − 1, one has to solve an

optimization problem to seek the solution for cU that should be satisfied with all the constraints
as much as possible, such as for ∀wi, wj ∈ U, i 6= j, arg[mincU

∑
wi,wj∈U

(d(cU , ci)−d(cU , cj))2]. This

can be done using any classical nonlinear optimization method. In this work, we seek the solution
using the classical nonlinear least squares estimate method [120].

5then U is a focal element of the BBA.
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Moreover, cU should be also satisfied with the constraint given by Eq. (4.4). Otherwise,
this meta-class cannot be included in the credal classification results. In real applications, many
unacceptable meta-classes will be eliminated through this step, and we just consider only the
selected acceptable meta-classes as true focal elements of the BBA. By doing so, we greatly reduce
the computational complexity, which is very appealing for most engineering applications.

4.2.2 Construction of BBA’s

Let us consider a particular object ys ∈ Y, s = 1, . . . , n to classify over the frame of discernment
Ω = {w0, w1, . . . , wh} using the framework of the belief functions. The mass of belief of the
specific class (e.g. wi) should depend on the Mahalanobis distance between the object and the
corresponding center of class, and the bigger distance generally leads to the smaller mass of belief.
If ys is closer to a specific class center (e.g. ci), it indicates that ys belongs very likely to the class
wi as done in the classical way. So the initial mass of ys of a singleton class should be a monotone
decreasing function (denoted by f1(·)) of the distance between the object and the corresponding
class center, which is denoted

m̃(wi) = f1(d(ys, ci)),∀i = 1, . . . , h (4.6)

The credal classification approach offers the possibility that the object belongs with different
masses of belief to all the specific classes, and also to some meta-classes as well. The meta-classes
are introduced as a means for modeling the imprecision of the class of the object. To reduce the
computational burden, we have shown in the previous step devoted to the determination of meta-
class center how some unacceptable meta-classes can be reasonably ignored. Moreover, we can
reasonably assume that the object is close to the true class it belongs to in general. Consequently,
the object should not very likely belong to the classes very far away of its true class. Based on this
remark, we also consider (for the construction of the BBA) the compatibility of the meta-classes
according to the ascending order of the distances between the object and all the centers of specific
classes.

If the specific classes are listed in the ascending order of the distances of ys to the centers as
(wi, wj , wk, . . . , wg). It means that ys belongs most likely to wi, then to wj , wk, . . ., wg. Thus, we
just need to consider only the nested meta-classes wi ∪wj , wi ∪wj ∪wk, . . . , wi ∪wj ∪wk . . .∪wg
because the object ys will not very likely belong to the other meta-classes.

For example, let us consider the simple frame Ω = {w1, w2, w3}, and an object ys which is the
most close to w1, and then to w2, and then to w3. In that case, we select only the following nested
meta-classes w1 ∪w2 and w1 ∪w2 ∪w3 as potential focal elements. The meta-class w2 ∪w3 is not
considered as compatible because the true class of ys cannot be reasonably compatible with w2∪w3
only (because ys is in fact the most close to w1). Moreover, if some selected compatible nested
classes appear finally unacceptable (according to the step of meta-class center determination), they
will be ignored in the construction of the BBA for the credal classification of the object.

Once all the acceptable meta-classes of the object ys have been determined, we can proceed
with the computation of the mass of these meta-classes (i.e. the focal elements of cardinalities
greater than one). The principle of construction of the mass for a meta-class U is based on the
following considerations:

• If an object is committed to a meta-class U , then of course it should be very close to the
center cU of this meta-class.

• the ratio γ = dmax/dmin of the maximum distance dmax of the object to the centers of the
specific classes included in U over the minimum distance dmin is used to measure the degree of
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distinguishability among the classes in U . The smaller ratio indicates a poor distinguishability
degree among the classes in U from the object. The object committed to a meta-class must
have a small ratio value (close to one) indicating that the involved specific classes are not
very distinguishable for the object. So the value of the ratio γ will be used to put more or
less mass of belief to the meta-class U .

Based on these considerations, the mass of belief of assignment of the object ys with the
meta-class U is mathematically defined as

m̃(U) = f2(d(ys, cU ), γU ) (4.7)

where

d(ys, cU ) = 1
|U |

∑
wi∈U

√√√√ N∑
k=1

(ys(k)− cU (k))2

δi(k)2 (4.8)

γU = maxwi∈U d(ys, ci)
minwi∈U d(ys, ci)

(4.9)

The smaller value of d(ys, cU ) and γU will yield bigger mass of belief m̃(U), and vice versa.
Hence, f2(.) should be a monotone decreasing function with respect to d(ys, cU ) and γU .

To get good results, the functions f1(.) and f2(.) must be determined according to the applica-
tion under concern. Unfortunately, we do not have found yet general guidelines for the selection of
these functions. Here, we have chosen the exponential decreasing function because it is commonly
used in many engineering applications [12,117].

In summary, the (unnormalized) masses of belief for the specific classes and the acceptable
meta-classes are finally given by:

m̃(wi) = e−d(ys,ci) (4.10)

m̃(U) = e−λUγUd(ys,cU ), for |U | ≥ 2 (4.11)

with λU = η|U |α. The quantity |U |α is a penalized parameter for the meta-classes having a big
cardinality value. In most cases, the classification of the object is imprecise only among a small
number of specific classes, and there are usually only few objects to assign with the meta-classes
having big cardinalities. Thus, bigger cardinalities generate stronger penalization. η is a tuning
parameter used to control the number of objects committed to the meta-classes. In practice, we
always have to find a good compromise between the error rate and the imprecision rate. The
guidelines for tuning the parameters are given at the end of this Section.

The outlier class w0 is also taken into account to deal with the case where the potential outliers
(noise) can be involved. The object will be considered as outlier if it is far from all the other classes
according to a given outlier threshold t. The mass of the object in the outlier class is defined by:

m̃(w0) = e−t (4.12)

∀A ⊆ Ω, the previous unnormalized mass of belief m̃(.) is normalized as follows

m(A) = m̃(A)∑
B⊆Ω

m̃(B) (4.13)
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This normalized BBA m(.) is then used for the credal classification of the object ys.

• Guidelines for tuning the parameters in the CCR approach

The parameters α, η and t can be optimized using the training data with the cross-validation
method (e.g. leave-one-out) before the application of CCR. The bigger penalized parameter α will
lead to smaller number of the objects in the meta-class with big cardinality, and the suitable value
can be found according to the classification results of the training data. Generally, one can take
α ∈ [1, 3], e.g. 1 or 2. The parameter η is used to control the number of objects in the meta-classes.
The bigger value of η will produce smaller number of objects committed to the meta-classes. It is
recommended to take η ∈ (0, 1), but the exact value of η can be tuned according to the imprecision
degree (i.e. the rate of the objects in the meta-classes) of the classification results one can accept
in the application under concern. The outlier threshold t should be determined according to the
outlier rate one expects in the classification. The bigger t will cause smaller number of outliers,
and we generally recommend to take t ∈ [2, 5].

4.3 EVALUATION OF CCR ON ARTIFICIAL AND REAL DATA SETS

In this section we present four experiments to evaluate and compare the performances of CCR with
respect to four classical methods: 1) the Classification And Regression Tree (CART) [62], 2) the
Artificial Neural Networks (ANN) [61], 3) the EK-NN [12], and 4) the BCKN. The experiment 4.1
based on artificial data sets, is presented to show the difference between the credal classification and
the classical methods. The experiment 4.2 allows to evaluate the performance of CCR with respect
to the other methods based on a 4-class artificial data set. The experiment 4.3 is used to illustrate
the efficiency of CCR for dealing with the large scale data set. The experiment 4.4 is based on
four real-data sets from UCI [95]. It shows the advantage of CCR over the other methods. The
different methods in the experiments have been programmed and tested with MatlabTM software.

In order to show the ability of CCR to deal with the meta-classes, the class of each object
is decided according to the maximal mass of belief criterion. In CCR, the error rate Re and
imprecision rate Rij defined in the same way as in last chapter are introduced to evaluate the
performance of CCR.

Please note that in Fig. 4.2 and 4.3, the x-axis and y-axis respectively represent the first and
the second dimension of test and training data.

4.3.1 Experiment 4.1 (with artificial data sets)

4.3.1.1 Test 1: A 2-class problem with artificial data

Two classes of artificial data set w1 and w2 are obtained from two uniform distributions as shown by
Fig. 4.2-(a). Each class has 200 training samples and 200 test samples. The uniform distributions
of the samples of the two classes are characterized by the following bounds:

x-label interval y-label interval
w1 (4, 6) (0, 10)
w2 (0, 10) (4, 6)

Three classical classifiers (CART, ANN and EK-NN) are compared with the proposed CCR
method. A particular value of K = 9 is selected here for EK-NN, since it provides good results.
The other parameters in EK-NN are optimized using the method introduced in [118]. In ANN, we

65



4

4.3. EVALUATION OF CCR ON ARTIFICIAL AND REAL DATA SETS

used the feed-forward back propagation network with epochs = 500 and goal = 0.001 in all the
experiments. In CCR, one has taken α = 1, t = 2, and tested two different values of η to show its
influence on the performances of CCR. The classification results of the objects with the different
methods are given in Fig. 4.2-b–4.2-f. For notation conciseness, we have denoted wte , wtest,
wtr , wtraining and wi,...,k , wi ∪ . . . ∪ wk.
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(a) Original data. (b) Classification result by ANN (Re = 9.00).
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(c) Classification result by CART (Re = 10.75) . (d) Classification result by EK-NN (Re = 12.25).
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(e) Classification result by CCR with η = 0.25
(Re = 4.25, Ri2 = 10.25) .

(f) Classification result by CCR with η = 0.3
(Re = 5.25, Ri2 = 7.00).

Figure 4.2 : Classification results obtained by different methods for a 2-class problem.
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The misclassification rate obtained by the different methods is indicated in the title of each
subfigure. The objects of classes w1 and in w2 are distributed over two overlapping areas following
a cross shape as shown in Fig. 4.2-(a). Obviously, all objects belonging to the middle of the
cross area are really difficult to associate with a particular class. However, EK-NN, CART and
ANN just commit these objects into a specific class w1 or w2 as shown in Fig. 4.2-(b)-(d). Such
classification methods generate many misclassification errors (the error rate is about ten percent).
CCR provides one more meta-class w1 ∪ w2 as shown in Fig. 4.2-(e),(f). The classes w1 and w2
are undistinguishable for all the objects located in the intersecting (overlapping) zone. Thus, it is
more judicious and prudent to assign these objects to the meta-class w1 ∪ w2. By doing this, one
greatly reduces the number of misclassification, and also deeply reveals the imprecision degree of
class of the objects. Once the tuning parameter η = 0.25 increases to η = 0.3, the imprecision rate
will decrease but meanwhile the error rate will increase. So one should find a good compromise
between the error rate and imprecision rate by tuning η in the training data space.

4.3.1.2 Test 2: A 3-class problem with artificial data

In this second test, we consider a particular 3-classes data set in a round shape as shown in Fig.
4.3-(a). This data set consists of 615 training data points and 617 test data points including two
noisy data (outliers). The radii of the circles for w1, w2 and w3 are r1 = 10, r2 = 10, r3 = 12. The
centers of three circles are located at c1 = (0, 0), c2 = (16, 0) and c3 = (8, 15). CCR is applied for
the classification of this particular data set and it is compared with the CART, ANN and EK-NN
classification methods. A particular value of K = 9 is also selected in EK-NN. In CCR, we have
chosen the tuning parameters α = 2, t = 2 and η = 0.4. The classification results obtained by the
different methods are shown in Fig. 4.3-(b)-(e).

The error rate and the imprecision rate of classification results obtained by the different methods
are also given in the title of each subfigure. In Fig. 4.3-(a), one sees that the three classes w1,
w2 and w3 partly overlap on their borders, and the points belonging to the overlapped zones are
really difficult to classify correctly due to their ambiguity. Moreover, two noisy points far from
the other data are included in the test data set. As shown in Fig. 4.3-(b)-(d), ANN, CART and
EK-NN produce only three singleton clusters w1, w2 and w3. Thus, most of the points in the
overlapped zone are probably misclassified because of the inherent limitation of the framework
adopted for these methods. These classifiers cannot detect the noisy data (outliers), and they
all commit the noisy data into the class w3. CCR produces more reasonable credal classification
results in comparison with other methods. The points in the middle of w1 and w2, w2 and w3
and w1 and w3 are respectively committed to w1 ∪ w2, w2 ∪ w3 and w1 ∪ w3 as shown in Fig.
4.3-(e) because these points are really difficult to classify correctly into a particular class. All of
the three classes overlap in their middle, and the points in this zone are prudently committed to
the meta-class w1 ∪w2 ∪w3 because their classes are totally imprecise with respect to w1, w2 and
w3. CCR is also able to well detect the outliers. This example clearly shows the potential interest
of the credal classification done by this new CCR approach.

4.3.2 Experiment 4.2 (with artificial data sets)

In this second experiment, the statistics of the performances of CCR are compared with CART,
ANN, EK-NN and BCKN on a 4-class artificial data set, which is generated from four 2D Gaussian
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(a) Original data. (b) Classification result by ANN (Re = 14.42).
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(c) Classification result by CART (Re = 10.86) . (d) Classification result by EK-NN (Re = 12.68).
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(e). Classification result by CCR with η = 0.4 (Re = 1.13, Ri2 = 15.07, Ri3 = 3.73).

Figure 4.3 : Classification results by different methods for a 3-class problem.

distributions characterizing the classes w1, w2, w3 and w4 with the following means vectors

µ1 = (0, 0),Σ1 = 2 · I

µ2 = (7, 0),Σ2 = 2.5 · I

68



CHAPTER 4. CREDAL CLASSIFICATION RULE FOR UNCERTAIN DATA USING
PROTOTYPE OF EACH CLASS

4

µ3 = (15, 0),Σ3 = 3 · I
µ4 = (22, 0),Σ4 = 2 · I

There are 3×200 test objects, and the training sets contain 3×N samples (for N = 200, 300, 500).

For EK-NN and BCKN methods, the values of K ranging from 5 to 15 neighbors have been
tested. The error rates Re, the imprecision rates Rij , and the computation time (in seconds) have
been averaged over 10 Monte Carlo runs (i.e. 10 independent random generation of the data sets).
The results obtained with the different classifiers are shown in Table 4.1. The BCKN and CCR
have been tuned to get a good compromise between the misclassification error and the imprecision
of the results.

Table 4.1 : Classification results for a 4-class problem with different methods (in %).
N=200 N=300 N=500

ANN Re 13.40 12.73 13.08
time 10.8327 11.8592 13.0573

CART Re 14.17 14.23 14.55
time 0.0265 0.0374 0.0546

EK-NN Re 11.20 11.02 10.97
time 0.5171 0.6518 1.1950

BCKN Re 10.19 9.74 9.26
Ri2 1.50 2.28 2.95
time 3.9126 5.9837 9.7273

CCR Re 8.45 8.06 7.50
Ri2 6.53 6.20 6.12
time 0.0125 0.0140 0.0156

The meta-classes with cardinalities bigger than two are not considered in this application, that
is why we did just mention Ri2 in Table 4.1. One sees in Table 4.1 that CCR and BCKN produce
smaller error rate than other methods. This is normal because the objects that are difficult to
classify correctly have been assigned to the associated meta-classes. In general, the classification
results of BCKN and CCR are similar. The error rate for CCR is a bit lower than for BCKN, but
in counterpart the imprecision rate for BCKN is lower than for CCR. However, BCKN requires
much more computational time than CCR, which shows that the computational burden of BCKN
is much bigger than CCR. CCR consumes much less time than any other tested methods which
indicates that CCR has the least computational complexity which offers a strong advantage for
some engineering applications with respect to other methods.

4.3.3 Experiment 4.3 (with large scale artificial data sets)

The performance of CCR for dealing with large scale data sets (i.e. big number of samples with
high-dimensional features) is evaluated in this experiment by comparing CCR with several other
classical methods6 (ANN, CART and EK-NN).

In this experiment, an artificial data set with four class w1, w2, w3 and w4 is generated from
four 30D Gaussian distributions with the means vectors and covariance matrices as follows:

µ1 = zeros(1,30),Σ1 = 10 · I
6It is well known that the K-NN based methods (e.g. EK-NN, BCKN, etc) are usually not very effective for

dealing with the big data set due to the large computation burden. We have shown that BCKN can produce results
similar to CCR, but it requires more computational time than CCR, EK-NN and CART. So we just use the EK-NN
method here to compare its performance with CCR.
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µ2 = 5 · ones(1,30),Σ2 = 10 · I

µ3 = 20 · ones(1,30),Σ3 = 15 · I

µ4 = 30 · ones(1,30),Σ4 = 15 · I

Here zeros(1,30) represents the 30-dimensional vector with value of zero in each dimension, and
ones(1,30) is the 30-dimensional vector with value of one in each dimension, and I denotes the
30× 30 identity matrix.

In each class, we use the same number (i.e. n) of training samples and test samples. So
there are totally N = 4 × n training samples and N = 4 × n test samples, and we take N =
8000, 40000, 200000, 1000000. In EK-NN, the values of K ranging from 5 to 15 neighbors are
tested. The parameters have been tuned to get a good compromise between the misclassification
error and the imprecision of the results by CCR. The error rates Re, the imprecision rates Rij , and
the computation time (in seconds) are the average value over 10 Monte Carlo runs. The results
produced by the different classifiers are illustrated in Table 4.2 where ’NA’ means ’Not Applicable’.

Table 4.2 : Classification results large scale data with different methods (in %).
ANN CART EK-NN CCR

(Re, time) (Re, time) (Re, time) (Re,Ri2, time)
N=8000 (33.09, 15.6313) (29.59, 1.2168) (8.46, 47.5023) (5.26, 5.84, 0.2340)
N=40000 (35.04, 58.9684) (26.66, 6.4428) (8.25, 1669.1) (5.15, 6.41, 1.1544)
N=200000 (33.93, 241.7703) (24.34, 35.1470) NA (5.11, 6.24, 5.8032)
N=1000000 NA (22.25, 200.3053) NA (5.14, 6.16, 29.0162)

We can see that CCR produces the lowest error rate with some partial imprecision results,
since it assigns some objects that are hard to be correctly classified into the proper meta-classes.
Meanwhile, CCR consumes the shortest operation time. EK-NN can obtain the reasonable classi-
fication results, but it requires the longest running time, which is the main drawback of the K-NN
based methods. EK-NN is even not applicable when the number of samples is big (i.e. N=200000
and N=1000000), since it takes too long time, which is not convenient in many cases where the
high speed of execution is necessary. ANN and CART cause much higher error rate than CCR and
EK-NN, and they are also much more time-consuming than CCR. ANN is not applicable for the
big data set (i.e. N=1000000) because of its high computational burden. So it indicates that CCR
is effective for dealing with the large scale data set thanks to its low computational and complexity
burden.

4.3.4 Experiment 4.4 (with real data sets)

Four well-known real data sets obtained from UCI Machine Learning Repository [95] (the Iris,
Seeds, Wine and Yeast data sets) have been tested in this experiment to evaluate the performances
of CCR compared with CART, ANN, EK-NN and BCKN. For the Yeast data set, three classes
named as CYT, NUC and ME3 are selected here, since these three classes are close and difficult
to discriminate. The main characteristics of the four data sets are summarized in Table 4.3 below.
All the detailed information can be found on UCI repository archive at http://archive.ics.
uci.edu/ml/.

The k-fold cross validation is performed on the four data sets by different classification methods.
In previous chapter on BCKN, the classification results of the classifiers (i.e. K-NN, EK-NN,
CART, SVM, ANN, SVM, BCKN) have already been shown using the 10-fold cross validation. In
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Table 4.3 : Basic information of the real data sets
name classes attributes instances
Iris 3 4 150
Seeds 3 7 210
Wine 3 7 255
Yeast 3 9 683

this chapter, we use the different 2-fold cross validation7 here, since it has the advantage that the
training and test sets are both large, and each sample is used for both training and testing on each
fold. The tuning parameter of CCR and BCKN were optimized using the training samples. The
classification results including Re and Rij of BCKN and EK-NN are calculated with values of K
ranging from 5 to 15. The reported error rates Re, the imprecision rates Rij , and the computation
time (in seconds) for the different methods are given in Table 4.4.

Table 4.4 : Classification results of real data with different methods (in %).
Iris Seeds Wine Yeast

ANN Re 4.00 16.665 33.71 51.42
time 4.5708 9.3289 8.4553 9.9841

CART Re 5.33 11.90 8.89 37.73
time 0.0156 0.0234 0.0312 0.0936

EK-NN Re 3.98 10.57 28.94 36.51
time 0.0094 0.0296 0.0135 0.2366

BCKN Re 4.00 8.66 25.81 27.46
Ri2 0 3.33 4.39 14.22
time 0.0348 0.0803 0.0668 1.6214

CCR Re 2.00 7.14 3.37 25.31
Ri2 6.67 6.19 0 19.43
time 0.0000 0.0000 0.0078 0.0156

In these tests, none object is committed to the meta-class with cardinality value of three, and
that is why we have just given Ri2 in Table 4.4. From the table 4.4, one sees that CCR and BCKN
produce the smaller error rate than other classical methods. It is normal because the objects
difficult to classify correctly have been reasonably and automatically committed to the associated
meta-classes. It shows that the credal classification can effectively reduce error occurrences, and
the meta-classes indicate that the attributes information is not good enough to obtain the correct
specific class of some objects. In that case, some other complementary sources of information, or
techniques, will be necessary if one wants to precisely discriminate the objects committed to the
meta-classes with high belief mass value (if a precise classification is absolutely required). The
CCR and BCKN methods provide similar performances for the Iris, Seeds and Yeast data sets
according to the compromise between error rate and imprecision rate. For the Wine data set,
CCR yields the lowest error rate due to its inherent working principle which is very different of
the other classifiers. It is worth noting that BCKN requires a very long running time due to the
heavy computational load. The proposed CCR method requires less computational time than the
other methods. This shows again that CCR working with credal classification can deal efficiently
with uncertain data using belief functions with a serious computational complexity advantage over
other methods.

7More precisely, the samples in each classes are randomly assigned to two sets S1 and S2 having equal size. Then
we train on S1 and test on S2, and reciprocally.
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4.4 CONCLUSIONS

A new simple and effective credal classification rule (CCR) based on the belief functions has been
proposed in this chapter to deal with the classification of uncertain data when the data classes
can be well characterized using the prototype vectors. CCR strengths the robustness of results by
reducing the misclassification errors thanks to the introduction of meta-classes. The CCR approach
is also able to detect the outliers in the data sets. In CCR, each specific class corresponds to a
center (i.e. prototype) obtained using the training data, and the center of meta-class is located
at the equal Mahalanobis distances to all the centers of the involved specific classes. Mahalanobis
distance is used here to deal with the anisotropic data sets. The acceptable meta-classes are
selected according to the current context and distance ratios, and all the unacceptable meta-
classes are automatically rejected to reduce the number of focal elements and the computational
complexity. A tuning parameter has been introduced in CCR to control the number of objects
in the meta-classes. The output of CCR can be used efficiently to alert the classification system
designer that other complementary information sources are necessary to remove (or reduce) the
ambiguity of the classification of some particular data points. Several experiments using both the
artificial and real data sets have been presented to evaluate the performance of CCR with respect
to other methods. Our results show that CCR is able to provide good credal classification results
with a relatively low computational complexity with respect to other methods.
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5 Credal classification of
incomplete patterns

5.1 INTRODUCTION

Missing (unknown) data is a common problem encountered in the classification problem, and a
number of methods [92, 93] have emerged for classifying incomplete data (pattern) with missing
values. The estimation strategy [94] is usually adopted for missing values in many cases, and
then the incomplete patterns with estimated values are classified. We develop a new method for
classification of incomplete data based on the estimation of missing values. There exist many
methods for estimating missing values. In the often used mean imputation (MI) method [100,101],
the missing values are simply replaced by the mean of all known values of that attribute. In the
K-nearest neighbor imputation (KNNI) method [98, 99], the missing values are estimated using
the K-nearest neighbors of the object (incomplete pattern), but KNNI requires a big computation
burden. In fuzzy c-means imputation (FCMI) method [121,122], the missing values are filled based
on the clustering centers produced by FCM and the distances between the object and the centers.
There are also other methods of imputation, such as the SOM imputation [103], the regression
imputation [96], the multiple imputation approach [102], etc. Most methods (except multiple
imputation) produce only one precise estimation for the missing value, and they are not able to
well reflect the uncertainty about the prediction of the missing values. In the multiple imputation
method [102], the missing values are imputed M times to produce M complete data sets based
on an appropriate model with random variation, but the model is hard to obtain sometimes. The
multiple imputation approach mainly focus on the imputation of the missing values, whereas this
work is devoted to the classification of incomplete pattern.

In some applications, the missing data of attribute may have several different possible estimated
values, and the classification result of the incomplete pattern (test sample) with different estima-
tions can be distinct. As a simple example, Fig. 5.1 shows a 2-class problem with 2 dimensions of
attributes corresponding to x-coordinate and y-coordinate.

In the example of Fig. 5.1, it is assumed that the attribute values in x-coordinate are all
missing, and these incomplete patterns can be denoted by [?, y]. Then, the classification of the
objects mainly depends on the only attribute value in y-coordinate. For the objects labeled by
red square, the class B and A are indistinguishable based on the known value in y-coordinate. If
the estimation of missing value is below the upper bound of the B class in x-coordinate, these
red square points are likely committed to class B. Whereas, if the estimated value is bigger than
the lower bound of class A in x-coordinate, these points are very likely assigned to class A. It
is similar for the objects labeled by green circles, which cannot be clearly distinguished by class
A and C. Such conflict (uncertainty) of classification is caused by the lack of information of the
missing values, and it is hard to correctly classify the object in such condition because the known
(available) attributes information is really insufficient for making a specific classification. The belief
function theory [3–7] is appealing for dealing with such uncertain and imprecise information [2].
In the previous works, the classification methods developed based on belief functions [76] were all
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Figure 5.1 : Simple illustration of incomplete pattern classification.

designed for classifying complete patterns only, and the missing data aspect was not taken into
account.

A new efficient prototype-based1 credal classification (PCC) method for incomplete patterns
working with belief function framework is proposed here. The missing values, which cannot be
precisely determined from the incomplete available information, can play a crucial rule in the
classification of the pattern, and different estimations of these missing values can lead to distinct
classification results. If one uses the classical methods to commit the pattern to a particular
class (based on the highest probability value), one will generate very likely misclassifications. In
some applications, it is primordial to get a robust (even partially imprecise) classification result,
which could be refined later by additional techniques, rather than to obtain the specific result with
high risk of error that may bring fatal collateral damages. For this reason, PCC can well model
such partial imprecision (uncertainty) thanks to meta-class introduced in credal classification.
The object hard to be correctly classified due to the imprecision caused by missing values will
be reasonably committed to the proper meta-class defined by the union (disjunction) of several
specific classes (e.g. A ∪B in Fig. 5.1) that the object likely belongs to. This approach allows us

1The estimation of missing data in this new method is based on the prototypes of the classes.
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to reduce the misclassification error rate and to reveal the imprecision of classification.

In PCC, the prototypes of all classes obtained by the training data (complete pattern) are
used to estimate the missing values of the incomplete pattern. Thus in a c-class problem, one has
to deal with c estimations of the missing values. The object with each of the c estimated values
will be classified using a standard classifier, and PCC will produce c pieces of classification results
represented by basic belief assignments (BBA’s). These c pieces of results have different weighting
factors (determined by the distances between the object and the prototypes) playing the role of
discounting factor of the BBA’s. The global fusion of the c discounted results will be adopted for
obtaining the final credal classification of this object. In the fusion process, meta-classes will be
conditionally kept for the uncertain objects that are hard to correctly classify. Conflicting beliefs
are very important to capture the imprecision (ambiguity) degree of classification, and they will be
also selected and transferred to the corresponding meta-classes depending on the current context.

This chapter is organized as follows. The new prototype-based credal classification method is
presented in the section 5.2. The proposed method PCC is then tested in section 5.3 and compared
with several other classical methods, followed by conclusions.

5.2 PROTOTYPE-BASED CREDAL CLASSIFICATION METHOD

A new prototype-based credal classification (PCC) method is proposed in this chapter to deal
with incomplete patterns based on evidential reasoning. PCC method provides multiple possible
estimations of missing values according to class prototypes obtained by the training samples. For
a c-class problem, it will produce c probable estimations. The object with each estimation is
classified using any standard classifier working with complete patterns. Then, it yields c pieces of
classification results, but these results take different weighting factors depending on the distance
between the object and the corresponding prototype. So the c classification results should be
discounted with different weights, and the discounted results are globally fused for the credal
classification of the object. If the c classification results are quite consistent on the decision of
class of the object, the fusion result will naturally commit this object to the specific class that
is supported by the classification results. However, it can happen that high conflict among the
c classification results occurs, and it indicates that the class of this object is quite imprecise
(ambiguous) only based on the known attribute values. In such case, it is very difficult to correctly
classify the object in a particular (specific) class, and it becomes more prudent and reasonable to
assign the object to a meta-class (partial imprecise class) in order to reduce the error rate. The
classification of the uncertain object in meta-class can be eventually precisiated (refined) using
some other (costly) techniques or with extra information sources. So PCC approach prevents us
to take erroneous fatal decision by robustifying the specificity of the classification result whenever
it is essential to do it.

5.2.1 Classification of incomplete patterns with c estimations

Let us consider a test data set Y = {y1, . . . ,yN} to be classified using the training data set X =
{x1, . . . ,xH} in the frame of discernment Ω = {ω1, . . . , ωc}. Because we focus on the classification
of the incomplete data (test sample) in this work, one assumes that the test samples are all
incomplete data (vector) with single or multiple missing values, and the training data set Y consists
of a set of complete patterns2.

2In some applications, there exist incomplete patterns in the training data set. If the training samples with
missing values take a very small amount say less than 5%, they can be ignored in the classification. If the rate
of the incomplete patterns is big, then the missing values are usually estimated at first, and the classifier will be
trained using the edited set, i.e. complete data portion and incomplete patterns with estimated values. In this
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The prototype of each class i.e. {o1, . . . ,oc} is calculated using the training data at first, and
og corresponds to class ωg. There exists many methods to produce the prototypes. For example,
the K-means method can be applied for each class of the training data, and the clustering center
is chosen for the prototype. The simple arithmetic average vector of the training data in each
class can also be considered as the prototype, and this method is adopted here for its simplicity.
Mathematically, the prototype is computed for g = 1, . . . , c by

og = 1
Tg

∑
xj∈ωg

xj (5.1)

where Tg is the number of the training samples in the class ωg.

Once each class prototype is obtained, we use the value of the prototype to fill the missing
values of the object in the same attribute dimension. Because one has considered c possible classes
with their prototypes, one gets c versions of estimated values. For the object yi with some missing
component values, the c versions of estimations of the missing component values yij of yi are given
by

ygij = ogj (5.2)

where ogj is the j-th component of the prototype og, g = 1, 2, . . . , c.

When working with a n-dimensional incomplete pattern, it can happen that more than one
component (attribute value) of the pattern is missing. In our work we estimate these missing
components by the corresponding components coming from the same prototype. More precisely,
we do not consider hybrid cases3. For example, let us consider the following 3D incomplete pattern
yi = [?, yi2, ?] to be classified in a 3-class problem using the three prototypes o1,o2,o3. The edited
pattern with three versions of estimated values are given by ygi = [og1, yi2, og3], g = 1, 2, 3, and the
hybrid cases like [og1, yi2, oh3], g 6= h are considered irrelevant for our analysis.

From each complete estimated vector ygi , g = 1, 2 . . . , c, we can draw a classification result
using any standard classifier working with the complete pattern. At this step, the choice of the
classifier, denoted Γ(.), is left to user’s preference. For instance, one can use for Γ(.) the artificial
neural network (ANN) [61] or evidential neural network (ENN) approach [38], or the K-NN [113],
or the EK-NN [12], etc. The c pieces of sub-classification results for yi are given for g = 1, . . . , c
by

Pg
i = Γ(ygi |Y ) (5.3)

where Γ(.) represents the chosen classifier, and Pg
i is the output (i.e. classification result) of the

classifier when using the prototype of class ωg to fill the incomplete pattern xi. Pg
i can be a

Bayesian BBA if the chosen classifier works under probability framework (e.g. K-NN, ANN), and
it can also be a regular bba with having some mass of belief committed to the ignorant class Ω if
the classifier works under belief functions framework (e.g. EK-NN, ENN).

In this new PCC approach, we propose to combine these c pieces of classification results in
order to get a credal classification of the incomplete pattern. These c pieces of classification results
are considered as c distinct sources of evidences. Because the distances between the object and the
c prototypes are usually different, some discounting technique must be applied to weight differently
the impact of these sources of evidences in the global fusion process. If the distance of the object to
prototype is big according to the known attribute values, it means that the estimation of missing
values using this prototype is not very reliable. So the bigger distance dij generally leads to the
smaller discounting factor αj . A rational way that has been widely applied in many works is

work, we want to focus on the classification of the incomplete patterns as test samples. So the training samples are
all assumed complete.

3Hybrid case means that if two (or more) components are missing in a pattern, there are replaced by the
components coming from different prototypes.
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adopted here to estimate at first the weighting factor wgi . For g = 1, . . . , c, this factor wgi is defined
by

wgi = e−dig (5.4)

where

dig =

√√√√1
p

p∑
s=1

(
yis − ogs
δgs

)2
(5.5)

with
δgs =

√
1
Tg

∑
xi∈ωg

(xis − ogs)2 (5.6)

yis is value of yi in s-th dimension, and xis is value of xi in s-th dimension. p is the number of
dimensions of known values of yi. The coefficient 1/p is necessary to normalize the distance value
because each test data can have a different number of dimensions of missing values. δgs is the
average distance of all training data belonging to class ωg to the prototype og in s-th dimension,
and it is introduced mainly for dealing for the anisotropic data set. Tg is the number of training
samples in the class ωg.

From these weighting factors wgi for g = 1, . . . , c, one then defines the relative reliability factors
(discounting factor) αgi by

αgi = wgi
wmax
i

(5.7)

where wmax
i = max(w1

i , . . . , w
c
i ).

The discounting method proposed by Shafer in [3] is applied here to discount the BBA of each
source of evidence according to the factors αgi . More precisely, the discounted masses of belief are
obtained for g = 1, . . . , c by {

mg
i (A) = αsiP

g
i (A), A ⊂ Ω

mg
i (Ω) = 1− αgi + αgiP

g
i (Ω)

(5.8)

In Eq. (5.8), the focal element A usually represents a specific class in Ω because most classical
classifiers work with probability framework, and thus they just consider specific classes as an
admissible solution of the classification. Nevertheless, some classifiers based on DST, like EK-NN
and ENN can generate results on specific classes and also on the full ignorant class Ω as well.
P gi (A) is the probability (or belief mass) committed to the class A by the chosen classifier.

5.2.2 Global fusion of the c discounted classification results

The c classification results obtained according to the c prototypes may strongly support different
classes that the object should belong to. For instance, several sources of evidence could support
that the object is most likely in class A, whereas some others could strongly support the class B,
with A ∩ B = ∅. In practice, the conflict usually exists in global fusion process. The maximum
of belief function Bel(.) given in Eq. (2.2) is used as criteria4 for the decision making of the class
which is strongly supported by the classification results, and the c pieces of results can be divided
into several distinct groups G1, G2, . . . , Gr according to the classes they strongly support.

The classification results in the same group are combined at first, and then these sub-combination
results are globally fused for the credal classification. The classification results in the same group

4The plausibility function Pl(.) can also be used here, since Bel(.) and Pl(.) have a straight corresponding
relationship in such particular bba’s structure.
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are generally not in high conflict. Therefore, one proposes to apply DS rule, defined in Eq. (2.4),
to fuse these results, because DS rule offers a reasonable compromise between the specificity of the
result and the level of complexity of the combination.

For Gs = {mj
i , . . . ,mk

i }, the fusion results of the BBA’s in the group Gs using DS rule5 are
given for a focal element A ∈ 2Ω by:

mωs
i (A) = [mj

i ⊕ . . .⊕mk
i ](A) (5.9)

where ⊕ represents the DS combination defined in Eq. (2.4). Since DS rule is associative, these
BBA’s can be combined sequentially using Eq. (2.4) and the sequential order doesn’t matter.

These sub-combined BBA’s mωs
i (.), for s = 1, . . . , r, will then be globally fused to get the final

BBA of credal classification. In the global fusion process, these sub-combination results of the
different groups of sub-classification results can be in high conflict because of the distinct classes
they strongly support. Because DS rule is known to produce counter-intuitive results specially
in high conflicting situations [40, 44–46, 123, 124] due to its way of redistributing the conflicting
beliefs, we propose to use another fusion rule to circumvent this problem. We recall that in
DS rule the conflicting masses of belief are redistributed to all focal elements by the classical
normalization step of Eq. (2.4). In our context, the partial conflicting information are very
important to characterize the degree of uncertainty and imprecision of the classification caused
by the missing values, and they should be preserved and transferred to the corresponding meta-
classes specially in the high conflicting situation. Nevertheless, if all the partial conflicts are
always unconditionally kept in the fusion results, they generate a high degree of imprecision of
the result, which is not an efficient solution of the classification. To avoid this drawback, we
make a compromise between the misclassification error rate and the imprecision degree we want to
tolerate. This compromise is obtained by selecting the conflicting beliefs that need to be transferred
to the corresponding meta-classes. The selection is done conditionally and according to the current
context following the method explained in the sequel.

For simplicity and notation convenience, we assume that the resulting sub-combined BBA of
group Gs is focused on the the class ωs. That is mωs

i (ωs) = max(mωs
i (.))6, for s = 1, . . . , r. This

indicates that ωs is strongly supported by the BBA’s in group Gs. Moreover, the class ωmax is the
most believed class of the object if one has

mωmax
i (ωmax) = max(mω1

i (ω1), . . . ,mωg
i (ωg)) (5.10)

We remind that ωmax is the class having the biggest m(.) value among all the classification
groups, whereas ωs, s = 1, . . . , g just takes the biggest m(.) value in the group Gs. In practice,
it can happen that the belief mωs

i (ωs) of the strongest class of the group Gs can be very close
(or equal) to mωmax

i (ωmax) with ωs 6= ωmax. In such case, the object can also potentially belong
to ωs with a high likelihood. So we must consider all the very likely specific classes as potential
solution of the classification of the object yi. The set of these potential classes is denoted Λi and
it is defined by

Λi = {ωs|mωmax
i (ωmax)−mωs

i (ωs) < ε} (5.11)

where ε ∈ [0, 1] is a chosen threshold. Because all classes in Λi can very likely correspond to the real
(unknown) class of yi, they appear not very distinguishable with respect to the threshold ε. This

5In the previous classifier BCKN, the simple averaging rule is used in the fusion of BBA’s in the first step due to
the particular structure of BBA’s (with only single class and ignorant class). In PCC, there exists multiple single
classes and the ignorant class in each BBA, and DS rule works quite well under these conditions.

6In fact, there are just single classes and total ignorant class involved in the classification result here. So the
value of m(.) for single class is equal to the value of Bel(.) here.
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means that a strategy of classification of the object yi based only on one specific class of Λi is very
risky, and all elements of Λi must be considered as acceptable in fact. To reduce misclassification
errors with such type of strategy, we propose to keep all the subsets of Λi in the fusion process
and we deal with the involved meta-classes.

If the beliefs of the other classes (e.g. ωf ) are all much smaller thanmωmax
i (ωmax) asmωmax

i (ωmax)−
m
ωf
i (ωf ) > ε, it means that the class ωmax is generally distinct for the object with respect to the

other classes (e.g. ωf ). Then, there is no necessity to keep the meta-class in such case.

The global fusion rule for these sub-combination results is defined by: ∀Bi ⊆ Ω

m̃i(A) =



for A ∈ Ω with|A| = 1, or A = Ω∑
r⋂
g=1

Bg=A

mω1
i (B1) · · ·mωr

i (Br),

for A ⊆ Λi,with |A| ≥ 2∑
|A|⋂
i=1

Bi=∅

|A|⋃
i=1

Bi=A

[mω1
i (B1) · · ·mωs

i (Bs)
r∏

g=|A|+1
m
ωg
i (Ω)]

(5.12)

In Eq. (5.12), r is the number of the groups of the classification results. |A| is the cardinality of
the hypothesis A, and it is equal to the number of singleton elements included in A. For example,
if A = ωi ∪ ωj , then |A| = 2.

In the first part of Eq. (5.12), the conjunctive combination is exactly the same as the unnormal-
ized DS rule in Eq. (2.4), and it is used to calculate the mass of belief of the specific classes and of
the ignorant class7, since the degree of assignment of the object to a specific class or to the ignorant
class depends on the consensus of sub-combination results represented by BBA’s. In the second
part of Eq. (5.12), mω1

i (B1) · · ·mωs
i (Bs) represents the partial conflicting beliefs produced in the

fusion of the S sub-combined BBA’s. This product characterizes in fact the joint belief that the
object simultaneously belongs to these specific exhaustive and incompatible classes Bi, i = 1, . . . , s.
m
ωg
i (Ω) denotes the ignorance, and it plays a neutral role in the fusion process. Therefore, the

product of them (i.e. the whole second part of Eq. (5.12)) reflects the imprecision (uncertainty)
degree of classification of the object with these different specific classes in the global fusion of all
the sub-combined BBA’s. For this reason, one reasonably commits it to the meta-class composed
by the union (disjunction) of these classes as A =

s⋃
i=1

Bi. If none meta-class is selected, the second

part of formula can be ignored, and the Eq. (5.12) will reduce to DS rule after the normalization
step given in Eq. (5.13).

Because not all partial conflicting masses of belief8 are transferred into the meta-classes through
the global fusion formula (5.12), the combined bba is normalized as follows before making a decision:

mi(A) = m̃i(A)∑
Bj

m̃i(Bj)
(5.13)

7The ignorant class represents the outlier (noisy) class.
8In Eq. (5.12), the partial conflicts with redundant elements (e.g. with mass m1(ω1)m2(ω1)m3(ω2)) are neither

committed to the most redundant specific class (e.g. ω1), nor assigned to a meta-class (e.g. ω1 ∪ ω2) because they
contain some partial consensus (e.g. m1(ω1)m2(ω1) for ω1). So it seems more appropriate to distribute such type
of partial conflicting beliefs to all the focal elements through the final classical normalization step according to Eq.
(5.13).
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The credal classification of the object can be made directly based on this final normalized
combined result BBA’s, and the object will be assigned to the focal element (a specific class or a
meta-class) with maximal mass of belief. The maximum of belief Beli(.) of the singleton (specific)
class, or the maximum of plausibility Pli(.), or the maximum of pignistic probability BetPi(.)
drawn from the global combined BBA mi(.) are usually used as the criteria for making hard
(specific) classification, but the hard classification is not recommended in such uncertain case. The
credal classification based on the BBA’s is preferred here since it can well reflect the inherent
imprecision (ambiguity) degree of the classification due to the missing values.

The flowchart of PCC is presented in Fig. 5.2 to explicitly show how PCC works and the
pseudo-code of the PCC is given in Table 5.1 for convenience.

Table 5.1 : Prototype-based Credal classification method.
Input:
Training samples: X = {x1, . . . ,xH} in Rp
Incomplete test samples: Y = {y1, . . . ,yN} in Rp
Parameters:
ε ∈ [0, 1]: threshold of meta-class
for i=1 to N
Calculate prototypes using Eq. (5.1);
Classify c versions of edited xi with estimated values;
Determine the weighting factors by Eq.(5.7);
Discount the c classification results using Eq. (5.8);
Subcombination of consistent classification results by Eq. (5.9);
Select meta-classes according to Eq. (5.11);
Global fusion of the subcombination results by Eqs. (5.12), (5.13);
end

Guideline for choosing the meta-class threshold ε: In the applications, the threshold ε of
PCC must be tuned according to the number of objects in the meta-classes. A small ε value
generally leads to fewer objects in the meta-classes, but it may cause more misclassifications for
the uncertain objects. A big ε value yields more objects in the meta-classes and leads to high
imprecision degree, which is not an efficient solution for the classification. So ε should be tuned
according to the imprecision degree of the fusion results that one accepts.

The following simple example shows how PCC works.

Example 5.1: Let us consider a 3-D object yi = [yi1, ?, ?] with the missing values in the 2nd
dimension and 3rd dimension to be classified over the frame of classes Ω = {ω1, ω2, ω3}. It is
assumed that the prototypes O = {o1,o2,o3} of the three classes can be calculated using the
training data as:

o1 = [o11, o12, o13]
o2 = [o21, o22, o23]
o3 = [o31, o32, o33]

So the object with three versions of estimation of the missing value is obtained by:

y1
i = [yi1, o12, o13]

y2
i = [yi1, o22, o23]

y3
i = [yi1, o32, o33]
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Figure 5.2 : Flowchart of the proposed PCC method.

The patterns with three estimated values are respectively classified using a standard classifier, and
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5.2. PROTOTYPE-BASED CREDAL CLASSIFICATION METHOD

the classification results represented by the probability membership are given by9:

P 1
i (ω1) = 0.8, P 1

i (ω2) = 0.2.
P 2
i (ω1) = 0.1, P 2

i (ω2) = 0.8, P 2
i (ω3) = 0.1.

P 3
i (ω1) = 0.5, P 3

i (ω2) = 0.2, P 3
i (ω3) = 0.3.

The relative weighting factor of each classification result is calculated according to the distance
between yi and the three prototypes using Eq. (5.7). For simplicity and convenience, they have
been randomly chosen as follows for this example:

α1
i = 1, α2

i = 0.9, α3
i = 0.3

Then, each classification result P ki (.), k = 1, . . . , 3 can be discounted using Eq. (5.8), and the
discounted BBA’s are given by

m1
i (.) : m1

i (ω1) = 0.8, m1
i (ω2) = 0.2.

m2
i (.) : m2

i (ω1) = 0.09, m2
i (ω2) = 0.72,

m2
i (ω2) = 0.09, m2

i (Ω) = 0.1.
m3
i (.) : m3

i (ω1) = 0.15, m3
i (ω2) = 0.06,

m3
i (ω3) = 0.09, m3

i (Ω) = 0.7.

Because of the particular choice of α1
i = 1 the BBA m1

i (.) is not discounted in this example.

The belief functions Beli(.) corresponding to each BBA mi(.) are obtained using Eq. (2.2) and
are given by

Bel1i (ω1) = 0.8, Bel1i (ω2) = 0.2.
Bel2i (ω1) = 0.09, Bel2i (ω2) = 0.72, Bel2i (ω3) = 0.09.
Bel3i (ω1) = 0.15, Bel3i (ω2) = 0.06, Bel3i (ω3) = 0.09.

For the singleton (specific) class, m1
i (.) and m3

i (.) put the most belief on class ω1, whereas m2
i (.)

commits most of mass to the class ω2. It means that the object likely belongs to class ω1 with the
estimation from prototype o1 and o3, but it is very probably classified into ω2 with the estimation
according to o2. This uncertainty (conflict) is mainly caused by the lack of discriminant information
inherent of the missing values. Then, the three BBA’s can be divided into the two following groups:
G1 = {m1

i (.),m3
i (.)} and G2 = {m2

i (.)}.

The sub-combination results of each group of BBA’s using DS rule (2.4) are:

mω1
i (.) : mω1

i (w1) = 0.8173, mω1
i (w2) = 0.1827.

mω2
i (.) : mω2

i (w1) = 0.09, mω2
i (w2) = 0.72,

mω2
i (w3) = 0.09, mω2

i (Ω) = 0.1.

Then one gets: Belωmax
i (ωmax) = Belω1

i (ω1) = 0.8173 and Belω2
i (ω2) = 0.72. If the meta-class

threshold is chosen as ε = 0.3, we get Belω1
i (ω1) − Belω2

i (ω2) < ε, and thus Λi = {ω1, ω2}. So
the meta-class ω1 ∪ω2 will be kept, and the conflicting mass of belief produced by the conjunctive
combination mω1

i (w1)mω2
i (w2) +mω1

i (w2)mω2
i (w1) will be transferred to ω1 ∪ ω2.

The global fusion of BBA’s mω1
i (.) and mω2

i (.) using Eq. (5.12) yields the following unormalized
combined BBA

m̃i(.) : m̃i(ω1) = 0.1553, m̃i(ω2) = 0.1498,
m̃i(ω1 ∪ ω2) = 0.6049.

9In this example, we just want to show the main steps of the PCC method. The classification results Pk
i (.) and

the relative factors αk
i have been arbitrarily chosen here for convenience.
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As we see, the BBA m̃i(.) is not a normalized BBA because some conflicting masses of belief are
voluntarily discarded of the redistribution on the meta-classes. After the normalization step, we
finally get:

mi(.) : mi(ω1) = 0.1707, mi(ω2) = 0.1646,
mi(ω1 ∪ ω2) = 0.6647.

One sees that the biggest mass of belief is committed to the meta-class ω1∪ω2. This result indicates
that the classes ω1 and ω2 are not very distinguishable based only on the known attribute infor-
mation, and the object must quite likely belong to ω1 or ω2 according to the different estimations
of the missing values. In this simple example, it is difficult to commit the object to a particular
class. If one had to take a specific class decision, one would very probably make a mistake. So
the hard classification is not recommended in such case, and the object will be committed to the
meta-class ω1 ∪ ω2 by PCC approach, which is prudent and reasonable behavior consistent with
the intuitive reasoning. Some additional sources (if available) need to be used and combined with
the available information to get a more precise classification result.

5.3 EXPERIMENTS

Four experiments have been carried out to test and evaluate the performance of this new PCC
method. The performances of PCC are compared to that of the mean imputation (MI) method,
K-NN imputation (KNNI) method and FCM imputation (FCMI) method. In MI, the missing
values are replaced using the mean value of the same attribute of the training samples. In KNNI,
the missing values are estimated using its K-nearest neighbors in training data space. In FCMI, the
missing values are imputed according to the clustering centers of FCM and the distances between
the object and these centers [121, 122]. In this work, the EK-NN classifier [12] and evidential
neural network classifier (ENN)10 [38] are adopted as the standard classifier to classify the test
samples with the estimated values in PCC, MI, KNNI and FCMI. In fact, many other standard
classifiers can be applied here according to the actual request, and the selection of standard classifier
is not the main purpose of this work. The parameters of EK-NN [118] and ENN [38] can be
automatically optimized. In the applications of PCC, the tuning parameter ε can be automatically
tuned according to the imprecision rate one can accept, and can also be optimized using cross
validation in training data space where the attribute value is randomly missed in every dimension.
In order to show the ability of PCC to deal with the meta-classes, the class of each object is decided
according to the criterion of the maximal mass of belief.

In our simulations, the error rate denoted by Re and the imprecision rate denoted by Rij are
still used to evaluate the performance of CCR. In the sequel experiments, the classification of
object is generally uncertain (imprecise) among a very small number (e.g. 2) of classes, and we
only take Ri2 here since there is no object committed to the meta-class including three or more
specific classes.

It is worth noting that in Fig. 5.3 and 5.4, the x-axis and y-axis respectively correspond the
first and the second dimension of test and training data used in the experiments.

10In this work, it is considered that the uncertainty of classification is mainly caused by the missing values,
and the meta-class is not necessarily taken into account in the classification of the complete data for simplicity of
computation. So the proposed credal classifier in previous chapters is not used in this step.
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5.3. EXPERIMENTS

5.3.1 Experiment 5.1 (with 2D 3-class data set)

This experiment shows the results of the credal classification obtained by PCC with respect to other
classical methods, and the EK-NN is applied here to classify the test samples with the estimated
values. We consider a particular 3-class data set Ω = {ω1, ω2, ω3} in the circular shape as shown
in Fig. 5.3-a. Each class contains 305 training samples and 305 test samples. Thus, we consider
3× 305 = 915 training samples and 3× 305 = 915 test samples. The radius of the circle is r = 3,
and the centers of three circles are given by the points c1 = (3, 3)T , c2 = (13, 3)T , c3 = (8, 8)T ,
where T denotes the transposed vector. The values in the second dimension corresponding to
y-coordinate of test samples are all missing, and the there is only one known value in the first
dimension corresponding x-coordinate for each test sample. The different meta-class selection
thresholds ε = 0.3 and ε = 0.45 have been applied in PCC to show their influences on the results.
A particular value of K = 9 is selected in the classifier EK-NN and the K-NN imputation11. The
classification results of the test objects by different methods are given by Fig. 5.3-b–5.3-f. For
notation conciseness, we have denoted wte , wtest, wtr , wtraining and wi,...,k , wi ∪ . . . ∪ wk.
The error rate (in %) and imprecision rate (in %) for PCC have been given in the caption of each
subfigure.

The values of the y-coordinate of the test samples are all missing, and the class of each test
sample is determined only based on the value of x-coordinate. We can see from Fig. 5.3-(a)
that the class ω3 partly overlaps with the classes ω1 and ω2 on their margins with respect to
x-coordinate. The objects lying in the overlapped zone are really difficult to be correctly classified
into a particular class, since ω1 and ω3 (resp. ω2 and ω3) seem undistinguishable for these objects
based on the values on x-axis. The mean, K-NN and FCM estimation methods provide only one
value for the missing data, and then the EK-NN classifier is used to classify the test samples with
this estimated value. The objects are all committed to a particular class by these methods with
big error rate, and the results cannot well reflect the uncertainty and imprecision of classification
caused by the missing values. With the PCC approach, most objects lying in the overlapped zones
are reasonably assigned to the proper meta-classes ω1 ∪ ω3 and ω2 ∪ ω3. So PCC is able to reduce
the error rate and well characterize the imprecision (ambiguity) of the classification thanks to the
use of meta-class under belief functions framework. One can see that the increases of ε value leads
to the decrease of error rate but meanwhile it brings the increase of imprecision rate. So we should
find a good compromise between the error rate and imprecision rate. In real applications, ε can
be optimized using the training data, and the optimized value should correspond to a suitable
compromise between the error rate and imprecision rate. ε can also be tuned according to the
imprecision rate one can accept in the classification.

5.3.2 Experiment 5.2 (with 4-class data set)

A 4-class data set Ω = {ω1, ω2, ω3, ω4} obtained from four 2-D uniform distributions is used to test
the performance of PCC with respect to other methods. Each class has 100 training samples and
100 test samples. The uniform distributions of the samples of the four classes are characterized by
the following interval bounds:

11In fact, the choice of K ranking from 7 to 15 does not affect seriously the results.
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(a). Training data and test data. (b). Classification result by method with mean
estimation (Re = 8.52).
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(c). Classification result by method with K-NN
estimation (Re = 4.15).

(d). Classification result by method with FCM
estimation (Re = 4.15).
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(e). Classification result by PCC ε = 0.3
(Re = 1.75, Ri2 = 4.81).

(f). Classification result by PCC ε = 0.45
(Re = 0.87, Ri2 = 8.31).

Figure 5.3 : Classification results of a 3-class data set by different methods.

x-label interval y-label interval
w1 (10, 20) (5, 65)
w2 (10, 20) (110, 170)
w3 (35, 45) (50, 120)
w4 (55, 65) (150, 230)
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We consider that the values in the first dimension corresponding to x-coordinate of test samples
are all missing, and each test sample has only one value in the second dimension corresponding
y-coordinate. Both EK-NN and ENN classifiers are employed here to classify the test samples with
estimated values. The averages error rates and imprecision rates are given in Table 5.2 over 10 trials
performed with 10 independent random generation of the data sets. For the K-NN based methods,
the mean value of error and imprecision rates for K ∈ [5, 20] are calculated. The parameter ε
in PCC has been optimized to find the proper compromise between error and imprecision. The
classification results (with EK-NN classifier) of a particular data set picked out from the random
generations are displayed in Fig. 5.4 to clearly illustrate the use of meta-class in credal classification
with respect to other classical methods.

Table 5.2 : Statistics of classification for 4-class data set by different methods (in %).

MI KNNI FCMI PCC
Re Re Re {Re,Ri2}

EK-NN 28.37 13.04 16.53 {8.62, 13.87}
ENN 18.90 13.63 16.01 {8.75, 11.75}

In Table 5.2, we can see that error rates of PCC method with EK-NN and ENN are smaller
than the other applied methods. Meanwhile, some incomplete patterns that are very difficult to
classify into a specific class have been committed to the proper meta-class. For example, the
objects labeled by blue square in Fig. 5.4-(e) can not be clearly distinguished by class w1 and w3
according to the only one known value in y-coordinate. So they are automatically committed to
the meta-class w1 ∪ w3 to reduce the risk of mistake. It is similar for some other objects that are
committed to w2 ∪ w3 and w2 ∪ w4 shown in Fig. 5.4-(e). Nevertheless, these uncertain objects
are all specifically classified into the particular class by other methods, which produce a lot of
errors. Both EK-NN and ENN were applied in this experiment to classify the samples with the
estimated values. The difference of their performances is quite small in this experiment, but the
high computation burden is usually the main drawback of the K-NN method. So ENN can be a
good choice especially for dealing with the large scaled data set.

5.3.3 Experiment 5.3 (with 4D 3-class data sets)

In this experiment, the statistics of the performances of PCC are compared with KNNI, MI and
FCMI on a 3-class data set which is generated from three 4D Gaussian distributions characterizing
the classes ω1, ω2, ω3. The 4D Gaussian distributions of probabilities used in our simulations have
the following means vectors and covariance matrices ( I is the 4× 4 identity matrix):

µ1 = (1, 5, 10, 10)T ,Σ1 = 6 · I

µ2 = (10, 3, 2, 1)T ,Σ2 = 5 · I

µ3 = (15, 15, 1, 15)T ,Σ3 = 7 · I

We have used N training samples, and N test samples (for N = 100, 200) in each class. Each test
sample has n missing values (for n = 1, 2, 3), and the missing component value is chosen randomly
in every dimension. The values of K ranging from 5 to 20 neighbors in EK-NN and KNNI have
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(a). Training data and test data. (b). Classification result by method with mean
estimation (Re = 31.25).
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(c). Classification result by method with K-NN
estimation (Re = 12).

(d). Classification result by method with FCM
estimation (Re = 14).
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(e). Classification result by PCC (Re = 5.25, Ri2 = 15.25).

Figure 5.4 : Classification results of a 4-class data set by different methods.

been tested. For each pair (N,n), the reported error rates and imprecision rates are the averages
over 10 trials performed with 10 independent random generation of the data sets. The mean of
the classification error and imprecision rates for K ∈ [5, 20] are calculated and given in Table
5.3. In PCC method, the parameter ε has been optimized to obtain an acceptable compromise
between error rate and the imprecision degree. EK-NN and ENN are respectively applied for
the classification of the test samples with estimated values. In Table 5.3 and Table 5.5, we have
denoted SC , standard classifier, A , EK-NN and B , ENN for notation conciseness.
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Table 5.3 : Statistics of classification for 3-class data set by different methods (in %).

(N, n) SC MI KNNI FCMI PCC
Re Re Re {Re,Ri2}

(100, 1) A 19.24 18.28 18.17 {11.67, 12.60}
(100, 1) B 19.33 17.99 17.50 {14.67, 5.33}
(100, 2) A 25.94 24.57 24.27 {16.72, 12.01}
(100, 2) B 25.20 24.32 24.13 {16.85, 11.00}
(100, 3) A 41.85 41.00 40.06 {29.00, 14.39}
(100, 3) B 40.57 39.91 38.43 {27.70, 15.07}
(200, 1) A 19.62 18.83 18.81 {12.65, 11.34}
(200, 1) B 17.83 17.60 17.50 {15.17, 4.50}
(200, 2) A 28.06 25.00 24.90 {15.73, 14.86}
(200, 2) B 23.85 23.52 23.22 {18.27, 8.83}
(200, 3) A 41.34 40.86 39.59 {29.82, 14.86}
(200, 3) B 39.90 38.99 37.85 {29.67, 15.13}

One can see from Table 5.3 that PCC produces the smallest error rate, since the objects that
are very difficult to classify have been assigned to the proper meta-class. So there are some
imprecision in the credal classification of PCC, and this represents well the uncertainty caused by
the missing values. When the number of missing values is big (i.e. n = 3), the uncertainty degree
of classification becomes high, and then the PCC method provides much better performances than
the other methods. This experiment illustrates the interest of credal classification of incomplete
data based on evidential reasoning. EK-NN and ENN are used as standard classifiers for dealing
with the imputed patterns, and it seems that ENN generally has a bit better performance (with
lower error rate and computation burden) than EK-NN here.

5.3.4 Experiment 5.4 (with real data sets)

In this experiment, we use the four real data sets (Breast cancer, Seeds, Yeast and Wine data sets)
available from UCI Machine Learning Repository [95] to test the performance of PCC with respect
to MI, KNNI and FCMI. Both EK-NN and ENN are still selected here as standard classifiers.
Three classes (CY T,NUC and ME3) are selected in Yeast data set to the evaluate our method,
since these three classes are close and difficult to classify. The basic information of the four data
sets is given in Table 5.4.

The simple 2 -fold cross validation was performed on the four data sets by the different clas-
sification methods here. Each test sample has n missing (unknown) values, and they are missing
completely at random in every dimension. The average error rate Rea and imprecision rate Ria
(for PCC) of the different classical methods with values of K ranging from 5 to 20 are given in
Table 5.5.

Table 5.4 : Basic information of the used data sets.
name classes attributes instances
Breast 2 9 699
Seeds 3 7 210
Wine 3 13 178
Yeast 3 8 1050
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Table 5.5 : Classification results for different real data sets (in %).
data set (n, SC) MI KNNI FCMI PCC

Re Re Re {Re,Ri2}
(3, A) 4.71 6.10 3.95 {4.10, 3.38}
(3, B) 4.25 3.95 3.81 {3.81, 2.34}
(5, A) 8.20 8.15 5.07 {4.38, 4.69}

Breast (5, B) 6.44 5.76 5.27 {3.81, 6.00}
(7, A) 38.33 14.35 13.00 {7.91, 8.05}
(7, B) 14.64 11.54 11.42 {6.88, 12.44}
(1, A) 37.59 38.13 38.54 {34.36, 6.95}
(1, B) 37.71 36.70 36.19 {32.67, 6.19}
(3, A) 45.08 44.29 45.95 {34.71, 18.00}

Yeast (3, B) 42.10 40.90 41.33 {34.19, 14.95}
(5, A) 51.16 50.95 51.11 {33.46, 31.01}
(5, B) 49.33 49.22 46.00 {32.29, 27.62}
(3, A) 21.03 9.68 12.46 {7.14, 3.72}
(3, B) 21.43 11.19 13.33 {9.05, 2.86}

Seeds (5, A) 33.49 12.54 20.08 {9.67, 6.70}
(5, B) 31.43 12.14 20.00 {9.52, 9.05}
(6, A) 40.71 25.87 21.75 {16.79, 12.77}
(6, B) 39.52 25.71 20.95 {16.19, 14.76}
(3, A) 30.71 26.59 30.15 {26.05, 1.05}
(3, B) 29.78 26.97 26.97 {26.97, 1.69}

Wine (6, A) 34.93 25.84 32.12 {26.62, 0.84}
(6, B) 33.71 28.09 32.02 {27.53, 1.12}
(10, A) 39.23 30.90 32.30 {25.84, 3.86}
(10, B) 37.64 31.18 31.46 {27.53, 3.93}

The results of Table 5.5 clearly show that the PCC method generally produces lower error rate
than the MI, KNNI and FCMI classification methods, but meanwhile it yields some imprecision
in the classification result due to the introduction of meta-classes, which indicates that some
incomplete objects are very difficult to classify because of lack of discriminant information. The
increase of the number (i.e. n) of missing values in each test sample generally causes the increment
of error rate in the classifiers. The imprecision rate becomes bigger in PCC, since the more missing
values lead to the bigger imprecision (uncertainty) in the classification problem. So the credal
classification including meta-class is very useful and efficient here to represent the imprecision
degree and it can help also to decrease the misclassification rate. The PCC approach allows to
indicate that the objects in meta-classes are really hard to be correctly classified, and they should
be cautiously treated in the applications. If one wants to get more precise results, some other
(possibly costly) techniques seem necessary to discriminate and classify such uncertain objects.
EK-NN and ENN are respectively applied to classify the test samples with estimated values in MI,
KNNI, FCMI and PCC methods. The computation burden of K-NN based methods like EK-NN
is usually big, which is not very convenient for the real applications requiring high running speed.
ENN provides a bit lower error rate than EK-NN in many cases, but the training procedure of
ENN is a bit complicate. The proper standard classifier for dealing with complete data can be
selected according to the actual application.
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5.4 CONCLUSION

A new prototype-based credal classification (PCC) method has been presented in this chapter for
classifying incomplete patterns thanks to the belief function framework. This PCC method allows
the object (incomplete pattern) to belong not only to specific classes, but also to meta-classes (i.e.
union of several specific classes) with different masses of belief. The meta-class is introduced to
characterize the imprecision of classification due to the missing values, and it can also reduce errors.
In a c-class problem, the c class prototypes obtained from training data are respectively used to
estimate the missing values of the incomplete pattern. The object with each of the c estimations
can be classified by any standard classifier, and it will produce c pieces of classification results with
different weighting factors determined by the distances between the object and the prototypes.
These results are respectively discounted according to their relative weights. The global fusion
of these discounted results is adopted for credal classification of the object. If the c results are
consistent on the classification, the object will be committed to a particular class that is strongly
supported by the c results. However, the high conflict among these c results means that the class
of the object is quite uncertain and imprecise only based on the known attributes information.
In such case, the object becomes very difficult to classify correctly in a specific class and it is
reasonably assigned to the proper meta-class defined by the union of the specific classes that the
object is likely to belong to. Then the conflicting mass of belief is transferred conditionally to the
selected meta-class. Once an object is committed to a meta-class, it means that the specific classes
included in the meta-class seem undistinguishable for this object based on the known attributes. If
one wants to get more precise result, some other (possibly costly) techniques or information sources
must be developed and used. Four experiments with artificial and real data sets have been done to
evaluate the performances of PCC with respect to other classical methods. The results show that
PCC is able to reduce error rate, and well capture and represent the imprecision of classification
caused by missing data.
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6 Credal c-means clustering
method

6.1 INTRODUCTION

Fuzzy c-means (FCM) [39] remains so far the most popular data clustering method, and it works
with fuzzy partition under the probabilistic framework. In the clustering of imprecise data, some
data points (objects) can be simultaneously close to several clusters, and these clusters may seem
undistinguishable for the objects. Such imprecise data are really difficult to classify correctly into
a particular cluster. The imprecision of information cannot be well captured by the probabilistic
framework [2], whereas belief functions theory [3–6] also called evidence theory is able to well model
the imprecision and uncertainty.

Credal partition [25] has been recently proposed for data clustering using belief functions, and
it allows that the objects belong to not only the singleton clusters in Ω = {w1, . . . wc} but also any
subsets of Ω (i.e. meta-clusters) with different masses of belief. An evidential C-Means (ECM) [23]
clustering method as an extension of Fuzzy C-means under belief functions framework is proposed
for the credal partition of object data. The relational version of ECM (RECM) for dealing with
relational data [27] and constrained ECM (CECM) [28] taking into account the pairwise constraints
information have been developed. In the ECM [23] method, each class is characterized by its class
center, and the center of meta-class is the simple mean value of the involved specific classes’ centers.
The mass of belief committed to each class is proportional to the distance between the object and
the corresponding class center. The bigger distance leads to the smaller mass of belief. However,
when the different cluster centers are close, ECM will produce very counterintuitive results that
some objects belonging to a singleton cluster can be wrongly committed into an incompatible
meta-cluster whose center is close to the singleton cluster’s center. The important contribution of
ECM mainly lies in the introducing of meta-clusters to FCM, but the use of meta-cluster in ECM
is still questionable. The limitations of ECM has been pointed out in Chapter 2.

We propose a new evidential version of FCM called credal c-means (CCM) to overcome the
limitation of ECM, and a justified use of meta-clusters is presented. CCM also works with credal
partition for the clustering of imprecise data based on belief functions. In CCM, the meta-cluster
is considered as a kind of transition cluster among the different close singleton clusters. Thanks
to meta-cluster, the credal partition provides an effective tool for the clustering of the imprecise
data that are difficult to be correctly committed to a particular cluster, and it can reduce the error
occurrences. If one object is considered in a meta-cluster, it must be simultaneously close to the
singleton clusters included in the meta-cluster, which means this object is not likely to belong to the
other incompatible clusters, and this mainly depends on the distances between the object and these
singleton cluster centers. Meanwhile, these singleton clusters should be undistinguishable for the
object, which indicates the objects are hard to be correctly committed into a particular singleton
cluster, and this mainly depends on the distance between this object and the meta-cluster’s center
(i.e. the mean value of the involved singleton cluster centers). Thus, in the determination of the
belief on the meta-cluster, we should take into account not only the distance to the meta-cluster’s
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center but also the distances to the involved singleton cluster centers.

One object in a meta-cluster means that it belongs to one of the singleton clusters included in
the meta-cluster, but the available information used for making the classification is not sufficient
enough to obtain a clear (specific) class of the object. CCM can well reveal the imprecision degree
of the object belonging to different classes and can also reduce the misclassification errors due to
the meta-cluster. CCM is also robust to noisy data (i.e. outlier) using the outlier cluster, and
it is mainly determined according to a given outlier threshold. The singleton cluster in CCM
corresponds to the objects very close to the center of this cluster, which is similar to FCM and
ECM. The output of CCM is not always used to provide a final decision about classification of
an object. In fact, it can be seen as an interesting source of information to be combined with
some other complementary information sources in order to get more precise clustering results if
necessary.

The objective function of CCM is defined following this basic principle. The clustering centers
and the belief of each cluster for the objects can be obtained by the optimization (minimization)
of this objective function. For a c-class data set, the credal partition produces 2c clusters, and
its computation complexity is very high when c is big. In real applications, the classification of
imprecise objects are usually unspecific among several (a very small number, e.g. two or three)
singleton clusters, and there are very few objects belonging to the meta-clusters with big cardinality.
So a threshold tc is introduced in CCM to eliminate the meta-clusters with big cardinality, which
can effectively reduce the computation burden. If necessary, the credal partition can be simply
reduced to fuzzy partition.

It is worth noting that the BBA’s determination way in the unsupervised CCM method is
quite different from the way used in supervised CCR introduced in Chapter 3. In CCM, there
is no training samples available for classification, and the clustering analysis is mainly based on
the objective function, which will be optimized to obtain the clustering centers and the BBA’s of
each object associated with different clusters. If meta-cluster center is considered with exact the
same distance to all the involved specific classes’ centers and distinguishability degree is used for
the determination of BBA’s as done in CCR, the objective function will become unlinear, and it
could be too complicate to be simply optimized. We want to make the objective function linear,
which is convenient for the optimization procedure. So the meta-cluster center is defined by the
simple mean value of the involved specific clusters’ centers in CCM, and the mass of belief on
the meta-cluster directly depends on the distance of the object to the meta-cluster center and the
distances to all the involved clusters’ centers.

The details of the new CCM approach is presented in section 6.2. Some experiments are given
in section 6.3 to illustrate the effectiveness of CCM with respect to FCM and ECM approaches,
before concluding this chapter in section 6.4.

6.2 CREDAL C-MEANS (CCM) APPROACH

6.2.1 The objective function of CCM

In order to circumvent the limitation of ECM, a new alternative evidential version of fuzzy c-
Means, called credal c-means (CCM), is proposed for modeling and clustering the uncertain and
imprecise data. The basic principle of CCM is as follows.

Let us consider a set of n > 1 objects. Each object also called a data point #i is represented
by a given attribute vector xi of dimension p ≥ 1. These objects will be clustered over a given
frame of discernment Ω = {w1, w2, . . . , wc} with the corresponding centers {v1,v2, . . . ,vc}, and
the credal partition is generalized based on the power-set 2Ω.
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In clustering of a data set, if one object xi is very close to a singleton cluster’s center vj but
far from the others, it will be committed to this singleton cluster wj . The mass of belief mxi(wj)
of xi committed to wj should be determined according to the distance dxivj between xi and the
center vj , which is similar to FCM and ECM.

If the object xi is too far from all the clustering centers according to the given outlier threshold
δ, it will be naturally considered as outlier.

If the object xi is simultaneously close to several singleton cluster centers as vj, vj+1,. . ., vt,
and these centers appear undistinguishable for xi (it indicates the object is close to the mean
value of these singleton cluster centers), then it will be very hard to correctly commit this object
to a particular singleton cluster. So it should be better to consider this object in a meta-cluster
represented by the disjunction of these several singleton clusters as wj ∪ wj+1 . . . ∪ wt, which can
well reveal the imprecision of the class of this object and can also decrease the misclassification
errors. The belief committed to a meta-cluster should depend on the distances between the object
and the centers of these singleton clusters included in the meta-cluster, as well as on the distance
to the meta-cluster’ center defined by the mean value of these singleton cluster centers.

If the frame of discernment Ω contains |Ω| = c elements, the credal partition over the power-set
2Ω will produce 2|Ω| = 2c clusters including c singleton clusters, 2c − c − 1 meta-clusters, and
1 outlier cluster. When Ω contains a large number of elements (i.e. |Ω| = c is a big value),
the computation burden of credal partition will be very high, which is a serious problem for
the application. For example, if |Ω| = 5, it produces 2|Ω| = 25 = 32 clusters. In the real
applications, the class of imprecise objects are usually unspecific among very few singleton clusters
(which means the cardinality of the associated meta-cluster is small), and there is even no objects
belonging to the meta-cluster with big cardinality. So we do not have to consider all the meta-
clusters in 2Ω, and we can eliminate some meta-clusters with big cardinality according to a given
threshold tc ∈ [2, 2|Ω|]. If the cardinality of a meta-cluster Aj is bigger than the given threshold as
|Aj | > tc, Aj will be removed from 2Ω. In CCM, the set of the selected available clusters is given
by SΩ = {Ai||Ai| ≤ tc} ⊆ 2Ω1. tc is typically chosen as a small integer number, say two or three.
This can effectively reduce the size of the credal partition, and it has very little influence on the
clustering results, which will be shown in our experiments. For example, if one has |Ω| = 5, the
original size of the credal partition is 2|Ω| = 25 = 32 clusters, but if we take tc = 2, we just select
16 clusters since the other 16 meta-clusters whose cardinality is bigger than tc = 2 are eliminated.

The objective function of CCM denoted by JCCM is designed according to this basic principle,
and it is given by

JCCM (M,V ) =
n∑
i=1

∑
j/Aj∈SΩ

mβ
ijD

2
ij (6.1)

with

D2
ij =


δ2; Aj = ∅
d2
ij ; |Aj | = 1,∑
Ak∈Aj

d2
ik+γd2

ij

|Aj |+γ ; |Aj | > 1.

(6.2)

where M = (m1, · · · ,mn) ∈ Rn×2|Ω| is the mass of belief matrix for all objects, and Vc×p is the
matrix of clustering centers. In the objective function JCCM , we just consider the selected clusters

1The cardinality of outlier cluster is usually defined by |∅| = 0.
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in SΩ, and JCCM should be satisfied with the following constraint:∑
j|Aj∈SΩ

mij = 1 (6.3)

dij is the distance between the data point xi and the center of cluster Aj . If Aj is a singleton
cluster, its center is vj. If Aj is a meta-cluster, its center is defined by the mean value of the
singleton clusters included in Aj as eq. (2.18).

The tuning parameters β is a weighting exponent, and β = 2 can be used as default value as
in FCM [39], and ECM [23] approaches. δ is a chosen outlier threshold, which is strongly data-
dependent, and it can be determined according to the outlier rate one expects, for example five
percent. The bigger δ causes the fewer outliers. γ is the weighting factor of the distance between
the object and the center of the meta-clusters, and it is generally used to control the number of
objects in the meta-clusters. The bigger γ usually leads to more objects in the meta-clusters and
the fewer misclassification errors. So the γ should be tuned to find a good compromise between
the imprecision (corresponding to the number of objects in the meta-clusters) rate and error rate
of the clustering results. In practice, γ can be determined according to the imprecision rate that
the user is ready to accept. We generally suggest to take γ ∈ [0.5, 3] according to our experience
acquired in different applications.

Objective function JCCM can be well justified as follows:

• The belief of an object on outlier cluster represented by ∅ is mainly determined by the given
outlier threshold δ.

• The belief of an object on a singleton cluster is proportional to the distance between the
object and the center of the singleton cluster. The smaller distance leads to the bigger belief.

• The belief of an object on a meta-cluster is proportional to the average distance to the
involved singleton cluster centers, and also to the distance to the meta-cluster’s center with
a tuning factor γ. If the object xi is closer to the centers vj , vj+1,. . ., vt, it indicates
that xi has potentially more chance to belong to the classes wj , wj+1, . . ., wt than to
other clusters. Meanwhile, if the distances between the object and meta-cluster’s center
v = vj+···+vt

t−j+1 is smaller, it reflects the fact that these involved singleton clusters are more
likely to be undistinguishable for the object. Then the belief committed to the meta-cluster
wj ∪ · · · ∪ wt will be bigger.

In CCM, the mass of belief matrix M = (m1, · · · ,mn) and the clustering centers matrix Vc×p
can be obtained by the minimization of the objective function JCCM .

6.2.2 Minimization of the objective function JCCM

To minimize JCCM , we use Lagrange multipliers method. In the first step, the centers of the clusters
V are considered fixed. Lagrange multipliers λi are used to solve the constrained minimization
problem with respect to M as follows:

L(M,λ1, . . . , λn) = JCCM (M,V )−
n∑
i=1

λi(
∑

j|Aj∈SΩ

mij − 1) (6.4)
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By differentiating the Lagrangian with respect to the mij and λi and setting the derivatives to
zero, we obtain:

∂L
∂mij

= βmβ−1
ij D2

ij − λi = 0 (6.5)

∂L
∂λi

=
∑

j|Aj∈SΩ

mij − 1 = 0 (6.6)

We thus have from (6.5)

mij = (λi
β

)
1

β−1 ( 1
D2
ij

)
1

β−1 (6.7)

using (6.6) and (6.7)

(λi
β

)
1

β−1

= 1∑
j|Aj∈SΩ

D
2

β−1
ij

(6.8)

Returning in (6.7), one obtains the necessary condition of optimality for M :

mij =
D
−2
β−1
ij∑

Ak∈SΩ
D
−2
β−1
ik

(6.9)

Using (6.2), we can get the following masses of belief respectively committed to different focal
elements including singleton cluster, meta-cluster and outlier cluster:

mij = δ
−2
β−1∑
(D) ; Aj = ∅ (6.10)

mij =
d
−2
β−1
ij∑
(D) ; |Aj | = 1 (6.11)

mij =
(

∑
Ak∈Aj

d2
ik+γd2

ij

|Aj |+γ )
−1
β−1∑

(D) ; |Aj | > 1 (6.12)

where the denominator in these formulas, denoted
∑

(D), is given by:

∑
(D) =

∑
Aj=∅

δ
−2
β−1 +

∑
Aj∈SΩs.t.|Aj |=1

d
−2
β−1
ij +

∑
Aj∈SΩs.t.|Aj |>1

(

∑
Ak∈Aj

d2
ik + γd2

ij

|Aj |+ γ
)
−1
β−1 (6.13)

Now let us consider that M is fixed. The minimization of JCCM with respect to V is an
unconstrained optimization problem. The partial derivatives of JCCM with respect to the centers
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are given by:

∂JCCM
∂vl

=
n∑
i=1

∑
Al∩Aj 6=∅

mβ
ij

∂D2
ij

∂vl
(6.14)

with

∂D2
il

∂vl
= 2(vl − xi), |Al| = 1 (6.15)

∂D2
ij

∂vl
=

2(vl − xi) + 2γ
|Aj | (

∑
Ag∈Aj

vg

|Aj | − xi)
|Aj |+ γ

, Al ∈ Aj , |Aj | > 1 (6.16)

Thus,

∂JCCM
∂vl

=
n∑
i=1

2mβ
il(vl − xi) +

n∑
i=1

∑
Al∈Aj

mβ
ij

2(vl − xi) + 2γ
|Aj | (

∑
Ag∈Aj

vg

|Aj | − xi)
|Aj |+ γ

(6.17)

Setting these derivatives to zero gives c linear equations that can be written as:

(
n∑
i=1

mβ
il +

n∑
i=1

∑
Al∈Aj

mβ
ij

1 + γ
|Aj |

|Aj |+ γ
)xi =

n∑
i=1

mβ
ilvl +

n∑
i=1

∑
Al∈Aj

mβ
ij

vl +
γ
∑

Ag∈Aj

vg

|Aj |2

|Aj |+ γ
(6.18)

The system of linear equations can be written more concisely as:

Bc×nXn×p = Hc×cVc×p (6.19)

where

Bli , m
β
il +

∑
Al∈Aj

mβ
ij

1 + γ
|Aj |

|Aj |+ γ
(6.20)

Hll ,
n∑
i=1

mβ
il +

n∑
i=1

∑
Al∈Aj

mβ
ij

1 + γ
|Aj |2

|Aj |+ γ
(6.21)

Hlq ,
n∑
i=1

∑
Al∈Ak,Aq∈Ak

mβ
ik

γ

|Ak|2(|Ak|+ γ) , l 6= q (6.22)

V is the solution of the above linear system (6.19), and it can be solved by using a standard
linear system solver as

Vc×p = H−1
c×cBc×nXn×p (6.23)
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Table 6.1 : Credal C-Means algorithm.
Input: Data to cluster: X = {x1, · · · ,xn} in Rp
Parameters: c: number clusters, 2 ≤ c < n

tc: meta-cluster threshold (by default take tc = 3)
δ > 0: outlier threshold
γ > 0 weight of the distance(by default take γ = 1)
ε > 0: termination threshold (by default take ε = 0.001)

Initialization: Choose randomly initial mass M0
t ← 0
Repeat
t← t+ 1
Compute Bt and Ht by (6.20)-(6.22);
Compute Vt by solving (6.23);
Compute Mt using (6.10)-(6.12);

until ||Vt − Vt−1|| < ε

The pseudo-code of the CCM algorithm is given in Table 6.5 for convenience.

The initial BBA M0 can be randomly generated, and the final clustering results are not very
sensitive to the choice of the initialization of M0 after the process of optimization. CCM is an
extension of FCM with the credal partition, and its convergence is similar to FCM. These properties
of CCM have been validated in our tests and applications.

In CCM, the number of clusters c can be selected according to some prior experience or knowl-
edge. If no prior knowledge about the value of c is available, it can be determined by minimizing
the validity index of a credal partition as the average normalized specificity following the idea
proposed in [23]:

N∗(c) = 1
n log2(c)

n∑
i=1

[
∑

A∈2Ω\∅

mi(A) log2 |A|] (6.24)

where 0 ≤ N∗(c) ≤ 1. The validation of the method has been tested in [23].

In some applications, the approximations of credal partition to the fuzzy (probabilistic) par-
tition may be useful. Then, the meta-clusters and the outlier cluster need to be eliminated, and
their masses of belief should be redistributed to the other clusters. The Pignistic probability trans-
formation BetP (.) introduced by Smets in his Transferable Belief Model (TBM) [5,6] is commonly
used to transfer a BBA to the probability measure, and it is rewritten here for convenience .

BetP (w) =
∑
w∈A

m(A)
|A|(1−m(∅)) , w ∈ Ω (6.25)

Besides that, the lower and upper bounds of imprecise probability associated with BBA’s can
be approximated using the belief function Bel(.) as eq. (2.2), plausibility function Pl(.) as eq.
(2.3) in credal partition context [3]. [Bel(A), P l(A)] is interpreted as the interval characterizing
the imprecision of the unknown underlying probability measure on A. Bel(.) and Pl(.) can also
be used for decision-making support if necessary.

6.3 EXPERIMENTS

Four experiments have been applied to test our method. Experiment 1 is a particular 3-class data
set, and it is used to explicitly show the use of CCM and the limitations of ECM. Experiment 2 is
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a particular 4-class data set, and it is given to show again the limitations of ECM and also to show
the interest of the meta-cluster threshold tc in CCM. Experiment 3 is given to simply illustrate
the potential use of the CCM in the supervised classification of remote sensing image. Experiment
4 with five real data sets is presented to evaluate the effectiveness of CCM with respect to ECM
and FCM.

In order to show the interest of the use of meta-class in CCM, the decision of classification is
made by a simple criterion where the class of the object receives the biggest mass of belief in the
following experiments.

In our data clustering analysis, the masses of belief of the object is unknown at the beginning,
and the initializations of mass of belief M are randomly generated in our experiments. This is
a very common way used in the clustering methods (e.g. ECM, FCM, CCM). The initial mass
values must be positive in [0, 1] and satisfy the constraint of eq. (6.3), which stipulates that the
sum of mass values of one object associated with each cluster must be normalized to one. In fact,
the initializations of M have no effect on the final results due to the convergence of the clustering
methods, e.g. CCM, ECM and FCM. This behavior has always been demonstrated in our results
of simulations. We have repeated all the tests many times with different random generations of M
and the clustering results are very similar.

In CCM, the number of objects in meta-clusters corresponding to the imprecision level can
be controlled by the tuning of the parameter γ. The bigger value of γ generally causes higher
imprecision level and lower error rate. So one should find a proper compromise between the error
and imprecision depending on the actual applications. The influence of different values of γ on the
clustering results have been evaluated in our experiments.

In the following figures, as Fig. 6.1 and 6.2, the x-axis and y-axis respectively correspond the
first and the second dimension of data (2-D vector) used in the experiments.

6.3.1 Experiment 6.1 (with 3-class artificial data set)

In the first experiment, we consider a particular 3-class data set in the round shape as shown in
6.1-a. This data set consists of 1245 data points including 3 noisy data. The radius of the circle is
r = 5, and the centers of three circles are given by

c1 : [−8, 5]′

c2 : [0, 0]′

c3 : [9, 0]′

FCM, ECM and CCM are applied for the clustering this particular data set. The outlier
threshold used in ECM and CCM is δ2 = 49. One takes different value of γ = 1 and γ = 0.5
in CCM, and α = 1 and α = 0.5 in ECM to test the effect of the tuning parameters on the
results. In CCM, all the meta-clusters are kept (i.e. tc = 3). The clustering results obtained with
FCM, ECM and CCM are shown in Fig. 6.1-b-f. For the convenience of denotation, we defined
wi,...,j , wi ∪ . . . ∪ wj .

The clustering centers are an important criteria to evaluate the performance of clustering
method. The clustering centers v obtained by different methods and their distances d(v, c) to the
original centers of the three circles are given in Table 6.2, and we also show the average distance
d(v, c) between the clustering centers and the circles’ centers for convenience.
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a. Original data set. b. Clustering result by FCM.
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c. Clustering result by ECM with α = 0.5. d. Clustering result by ECM with α = 1.
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e. Clustering result by CCM with γ = 0.5. f. Clustering result by CCM with γ = 1.

Figure 6.1 : Clustering results for the 3-class data set by different methods.

It is considered better if the clustering centers are closer to the given circles’ centers. FCM and
CCM provide the similar clustering centers, and it is good that their distances to the given circles’
centers is very small. Whereas, clustering centers obtained by ECM are not so close to the given
circles’ centers, which reflects that the performance of ECM is not very good.
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Table 6.2 : Clustering centers with different methods.
V d(v, c) d(v, c)

v1 (-8.1062, 5.0792) 0.1327
FCM v2 (0.1997, -0.0248) 0.2012 0.2522

v3 ( 9.4209, 0.0392) 0.4227
v1 ( -9.4147, 6.2224) 1.8697

ECM v2 (-0.7470, -1.8270) 1.9738 1.9407
(α = 0.5) v3 (10.9682, 0.2019) 1.9785

v1 (-9.1464, 6.0584) 1.5603
ECM v2 ( -0.6453, -1.6931) 1.8119 1.6901
(α = 1) v3 (10.6826, 0.2291) 1.6981

v1 ( -7.9931, 4.9661) 0.0346
CCM v2 ( 0.3307, 0.1789) 0.3760 0.2172

(γ = 0.5) v3 (9.2375, -0.0402) 0.2409
v1( -8.0995, 5.0176) 0.1010

CCM v2( 0.3072, 0.1407) 0.3379 0.2581
(γ = 1) v3 (9.3520, -0.0494) 0.3554

We can see on Fig. 6.1-a, the class w2 is partly overlapped with w1 and w3 on their borders,
and these points in the overlapped zone are really difficult to be clearly classified. FCM produces
3 singleton clusters w1, w2 and w3 based on the probability framework, and the points in the over-
lapped zone are all committed to a singleton cluster, which is likely to cause the misclassification
errors. The three outliers quite far from the other data cannot be detected by FCM, and they are
simply considered belonging to w3.

ECM provides the credal partition in belief functions framework. We can see that w1 and w3
are not close and they are totally separate, but there are still many points originally from w2 that
are wrongly committed to the meta-cluster w1 ∪ w3 labeled by purple plus symbol in Fig. 6.1-
c,d. Even worse, that many points from w2 labeled by green hexagon are even considered in the
total ignorant cluster w1 ∪ w2 ∪ w3. These unreasonable results are produced mainly because the
clustering centers v2, v{1,3} = v1+v3

2 and v{1,2,3} = v1+v2+v3
3 are close to each other, and the belief

on each cluster is determined mainly by the distance between the object and the corresponding
clustering center.

In CCM, no point belongs to w1∪w3 or w1∪w2∪w3. Some points in the middle of w1 and w2,
w2 and w3 are respectively committed to w1∪w2 and w2∪w3 in Fig. 6.1-e,f, since these points are
really difficult to classify into a particular class. This can effectively reduce the misclassification
errors using meta-clusters. w1 ∪ w2 can be interpreted as the transition class between w1 and w2,
and it is similar to w2 ∪ w3. It seems that CCM has much better performance than ECM and
FCM for dealing with the meta-clusters. Three objects labeled by black pentagram are far form
the others, and they are well detected by ECM and CCM.

If the tuning parameter α increases from α = 0.5 to α = 1 in ECM as Fig. 6.1-c,d, the number
of points committed to the meta-clusters obviously decreases, since the distances used to determine
the mass of belief of the meta-clusters are greatly penalized. The increase of γ from γ = 0.5 to
γ = 1 in CCM as shown in Fig. 6.1-e,f generates few extra points committed to the meta-clusters,
but the clustering results is not so sensitive to γ in CCM as ECM is to changes of its tuning
parameter α.
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6.3.2 Experiment 6.2 (with 4-class simulated data set)

A particular 4-class data set as in Fig. 6.2-a is applied here. We use 4 ∗ 50 = 200 data points
generated from four 2D Gaussian distributions characterized by ( I being the 2×2 identity matrix):

µ1 = [−2, 0]′, Σ1 = 1.5I
µ2 = [−9,−10]′, Σ2 = I
µ3 = [3, 0]′, Σ3 = 1.5I
µ4 = [9, 8]′, Σ4 = I

where µ is the mean value and Σ is variance value.

The number of singleton clusters is set to c = 4. The parameters in ECM and CCM are δ = 7,
γ = 1 and α = 1, and the different value of tc is selected here for showing its influence on the
results. The clustering results obtained with FCM, ECM and CCM are shown in Fig. 6.2-b-d.

We can see from the original simulated data set in Fig. 6.2-a that w2 and w4 are far from each
other, whereas w1 and w3 are close and even partly overlapped on their border. The objects on the
border are really difficult to classify, and they should be prudently committed to the meta-cluster
w1 ∪ w3 to avoid the misclassification error. FCM produces only four singleton clusters without
meta-clusters, and some objects on the border between w1 and w3 will be very likely wrongly
classified. In ECM, a number of data points original from w1 and w3 are unreasonably and even
wrongly committed to many meta-clusters including w1 ∪ w3, w2 ∪ w4, w1 ∪ w2 ∪ w3, w2 ∪ w3 ∪
w4, w1 ∪ w2 ∪ w4 and even total ignorant cluster w1 ∪ w2 ∪ w3 ∪ w4 shown by Fig. 6.2-c. The
reason of this counterintuitive behavior is that these meta-cluster centers are close to the objects
belonging to w1 or w3. This particular example explicitly show the limitations of ECM.

Once CCM is applied as shown in Fig. 6.2-d,e,f, only six points labeled by blue plus symbol
in the middle of w1 and w3 are classified into w1 ∪ w3, which consistent with what we intuitively
expect. CCM is able to produce better results than ECM because the distances between the object
and the involved singleton cluster centers are additionally taken into account in the determination
of the belief on the meta-cluster.

If one selects tc = 4, it means that all the meta-clusters produced by the four classes are
available in CCM, then the clustering results contains 16 clusters with 11 meta-clusters. If one
takes tc = 3, the total ignorant cluster w1 ∪ w2 ∪ w3 ∪ w4 will be eliminated since its cardinality
is |w1 ∪ w2 ∪ w3 ∪ w4| = 4 > 3. When this threshold decreases to tc = 2, it means that the meta-
clusters whose cardinalities are bigger than 2 (i.e. 3 or 4) will be removed, and there will remain
only 11 clusters with 6 meta-clusters. Then the computation complexity of the credal partition
will become much smaller. Whereas, one can see that the clustering results with different value of
tc (i.e. tc = 2, 3, 4) are almost the same as shown in Fig.6.2-d,e,f. This indicates that the small
value of tc can be used in the applications, and this can greatly reduce the computation burden in
maintaining good clustering results.

6.3.3 Experiment 6.3 (with real remote sensing data)

In this example, we show the potential use of CCM in the unsupervised classification of the remote
sensing images with respect to FCM and ECM. A small piece QuickBird satellite image about
urban region in Fig. 6.3-a is applied here, and it mainly includes wooded area, bared soil, and
building area. The clustering results by different methods are shown in Fig. 6.3-b-d. The outlier
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a. Original data set. b. Clustering result by FCM.
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c. Clustering result by ECM. d. Clustering result by CCM with tc = 4.
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e. Clustering result by CCM with tc = 3. f. Clustering result by CCM with tc = 2.

Figure 6.2 : Clustering results by different methods for 4-class data set .

threshold in CCM and ECM is δ = 70. We select the default value of α = 1 in ECM, since it
provides a good result. γ = 2, and tc = 3 have been used in CCM.

102



CHAPTER 6. CREDAL C-MEANS CLUSTERING METHOD

6

a. Original image. b. Clustering result by FCM.

c. Clustering result by ECM . d. Clustering result by CCM.

Figure 6.3 : Clustering results by different methods .

Table 6.3 : Class description of the classifications in image.
Class Color in Fig. 6.3-b,c,d description
∅ dark area outlier
w1 red area bared soil
w2 green area building area
w3 blue area wooded area

w1 ∪ w2 yellow area
w1 ∪ w3 purple
w2 ∪ w3 cyan area

w1 ∪ w2 ∪ w3 white area

The descriptions of the classifications are given in Table 6.3. FCM just produces 3 specific
clusters for the image, but the border of the different classes regions are not so clear. Thus,
the contents on the border correspond probably to false classifications in FCM. ECM and CCM
mainly commit the contents on the border of the different classes to the meta-clusters, which is
more prudent and reasonable than FCM. Nevertheless, ECM commits some points in the bared
soil w1 on the left side of the image into the incompatible meta-cluster2 w2 ∪ w3 labeled by cyan
color and into the total ignorant cluster w1 ∪w2 ∪w3 labeled by white color in Fig. 6.3-c, which is
not very reasonable. With CCM, there is no point in the bared soil w1 on the left side committed
to w2 ∪ w3 or w1 ∪ w2 ∪ w3. Moreover, several white areas in Fig. 6.3-a are detected by outlier
clustered using both ECM and CCM as shown in Fig. 6.3-c with dark color. This indicates that
this special area is quite different from the other areas according to the pixel values. The clustering
results by CCM show that this SPOT image is insufficient to obtain the specific classification of
the observed area. Some other available sources of images, for example the radar image, etc, must
be used for the fusion with this image to obtain more precise results.

2Clusters A and B are compatible if A ∩B 6= ∅, and they are incompatible if A ∩B = ∅.
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6.3.4 Experiment 6.4 (with real data sets)

In this experiment, we use five well-known real data sets, i.e. Statlog (Heart), Iris, Ecoli, Seeds
and Wine from UCI Repository [95] to test the performance of CCM with respect to ECM and
FCM. In Ecoli data set, the three classes named as im, pp and imU are close and difficult to
correctly classify, and they are selected for the evaluation of our method. The classes im, pp and
imU contains respectively 77, 52 and 35 samples. So there are 164 samples available, and each
sample contains 7 attributes. The basic attributes information of the used data sets are shown
in table 6.4. The detailed information of all the used data sets can be found on UCI repository
archive at http://archive.ics.uci.edu/ml/.

In the clustering analysis of these data sets, the instances are represented using several attributes
which are all measured by real numbers here. In fact, the instance is denoted by a numerical vector,
and each attribute corresponds to one dimension of the vector. For example, Iris data set can be
considered as a 3-class problem with 150 samples (instances) to be clustered, and each sample is
a 4-dimension numerical vector. This is similar to the other real data sets. Then, the clustering
method FCM, ECM and CCM can be applied for the clustering of these real data sets as similarly
done in the normal numerical data sets. The masses of belief (or fuzzy membership for FCM)
of the object associated with different clusters can be obtained by optimization of the objective
function described in the clustering methods (e.g. FCM, ECM and CCM).

The outlier threshold applied in ECM and CCM for both data sets is δ = 20, and different
values of γ, tc and α are chosen to test their effect on the results. It is worth to note that tc = 3
means that all the meta-clusters are kept, whereas tc = 2 means that we just select the meta-
clusters with the cardinality value of two. The clustering results of the two data sets by different
methods are respectively shown in Tables 6.5–6.9 where "NA" means "Not applicable".

In this work, the common error rate Re and imprecision rate Rij corresponding to the meta-
class are used to evaluate the performance of CCM. They are defined in the same way as already
presented in Chapter 3.

Table 6.4 : Basic information of the applied data sets.
name classes attributes instances

Statlog (Heart) 2 13 270
Iris 3 4 150
Seeds 3 7 210
Ecoli 3 7 164
Wine 3 13 178

Table 6.5 : Clustering results of Statlog (Heart) data set with different methods (in %).
Re Ri2

FCM 40.74 NA
α=2.0 36.67 7.41

ECM α=1.5 34.81 12.22
α=1 34.81 19.63
γ=1.0 34.44 9.26

CCM γ=1.5 33.70 14.07
(tc = 2) γ=2.0 33.33 14.81

With these real data sets, FCM produces the most misclassification errors because of the
limitations of the probability framework. The number of classification errors generated by ECM
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Table 6.6 : Clustering results of Iris data with different methods (in %).
Re Ri2 Ri3

FCM 10.67 NA NA
α=2.0 8.00 4.67 0

ECM α=1.5 10.00 8.67 0.67
α=1.0 10.00 15.33 6.00
γ=1.0 5.33 8.00 0

CCM γ=1.5 4.67 10.67 0
(tc = 3) γ=2.0 4.00 12.00 0

γ=1.0 5.33 8.00 NA
CCM γ=1.5 4.67 10.00 NA

(tc = 2) γ=2.0 3.33 12.00 NA

Table 6.7 : Clustering results of Seeds data with different methods (in %).
Re Ri2 Ri3

FCM 10.48 NA NA
α=2.0 7.62 10.48 0.95

ECM α=1.5 5.24 14.76 2.38
α=1.0 5.24 18.10 4.76
γ=1.0 5.71 10.00 0

CCM γ=1.5 5.24 12.86 0
(tc = 3) γ=2 5.24 14.29 0

γ=1.0 5.71 10.00 NA
CCM γ=1.5 5.24 12.86 NA

(tc = 2) γ=2 5.24 14.29 NA

Table 6.8 : Clustering results of Ecoli data with different methods (in %).
Re Ri2 Ri3

FCM 25.00 NA NA
α=2.0 24.39 1.22 0

ECM α=1.5 23.17 1.83 0
α=1.0 21.34 7.32 0.61
γ=1.0 20.73 4.88 0

CCM γ=1.5 19.51 6.71 0
(tc = 3) γ=2.0 18.29 8.54 0

γ=1.0 20.73 5.49 NA
CCM γ=1.5 18.90 7.93 NA

(tc = 2) γ=2.0 18.29 9.15 NA

is a bit less than with FCM, but it causes too many samples committed to the meta-clusters
(corresponding to the high imprecision degree of the results), and even some samples are considered
belonging to the total ignorant class (i.e. the frame of discernment). Moreover, the result of ECM
is very sensitive to the tuning of parameter α. When α increases, the number of false classifications
will increase, but the number of the objects in meta-clusters will decrease.

CCM generally provides the smallest number of errors among the different methods for the
Statlog (Heart), Iris, Seeds and Ecoli data sets, and the number of samples in meta-clusters is
smaller than what we obtain with ECM. For the Wine data set, ECM has lower error rate than
CCM, but it is with much higher imprecision rate, and it even commits some samples in the total
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Table 6.9 : Clustering results of Wine data with different methods (in %).
Re Ri2 Ri3

FCM 31.46 NA NA
α=3.0 21.35 23.03 2.81

ECM α=2.0 17.98 28.65 3.37
α=1.5 16.85 33.15 3.93
γ=1.5 24.72 15.73 0

CCM γ=2 24.72 17.98 0
(tc = 3) γ=3.0 23.60 22.47 0

γ=1.5 24.72 15.73 NA
CCM γ=2 24.72 17.98 NA

(tc = 2) γ=3.0 23.60 22.47 NA

ignorant class, which is not an efficient solution of data clustering. In CCM, there is no sample
committed to the ignorant cluster for all the applied data sets which shows that this new approach
provides more specific clustering results than ECM. The increasing of γ causes the decreasing of the
error but the increasing of imprecision degree. So we should find a compromise between the error
and imprecision, and it also depends on the imprecision rate the user is ready to accept. Moreover,
the clustering results are not very sensitive to γ in CCM contrariwise to ECM in regards with the
parameter α.

In CCM, if the meta-cluster threshold tc is changed from tc = 3 to tc = 2 for the 3-class data
sets (i.e. Iris, Seeds, Ecoli and Wine data sets), it indicates that the meta-cluster whose cardinality
value is three will be eliminated, and the computation complexity will decrease. However, we find
that the clustering results are almost the same with different value of tc. So it shows again that
one can choose a small value of tc in the real applications. Consequently, CCM can still provide
good clustering results with an acceptable computational burden. The CCM results reflect that
the used information is in fact not sufficient for making the specific classification of the samples in
the meta-clusters. Therefore, other complementary information sources are really necessary if one
wants to get more precise and correct classification results.

6.4 CONCLUSION

The credal c-means (CCM) clustering method has been introduced in this chapter to well char-
acterize the uncertainty and imprecision of information. CCM working with credal partition can
produce three kinds of clusters: singleton clusters, meta-clusters and outlier cluster. CCM can
effectively reduce the misclassification errors using the meta-clusters, and it is also robust to the
outliers. If one object is very close to a singleton cluster’s center, it will be committed to this
singleton cluster as done with FCM and ECM. If one object is simultaneously close to several
singleton clusters, it will be considered in the meta-cluster defined by the disjunction of these
singleton clusters, since these singleton clusters cannot be clearly distinguished by the object. This
indicates the available information is not sufficient for making the specific classification of these
objects in the meta-clusters, and these objects should be treated more cautiously. If an object is
too far from the others according to the given outlier threshold, it will be naturally considered as
outliers. A meta-cluster threshold is introduced in CCM to eliminate the meta-clusters with big
cardinalities to reduce the computational burden of CCM, while maintaining very good clustering
results. The credal partition can be easily approximated to a fuzzy partition if necessary, and the
transformation rule has also been given. The output of CCM is not necessarily used for making the
final classification of objects, but it can serve as an interesting source of information to combine
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with additional complementary information sources if one wants to get more precise results. The
effectiveness of CCM has been shown through different experiments using both artificial and real
data sets.
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7 Conclusion and
perspectives

In this chapter, we conclude this thesis and we also propose several topics to explore in future
research works.

7.1 CONCLUSION

The credal classification of uncertain data based on belief function theory has been studied in this
thesis, and it allows the objects to belong to not only single (specific) classes but also to meta-class
(i.e. set of several specific classes) with different masses of belief. The credal classification can well
characterize the uncertainty and imprecision of classification, and can also efficiently reduce the
errors thanks to the use of belief functions.

We have proposed four credal classification methods to deal with different encountered cases.
When the training samples can be used for classification, belief c×K neighbors classifier is proposed
to manage the partially overlapped classes in the general and complicate cases, but it requires
a high computational burden which is the necessary price one has to pay for the complicate
situation. If each class can be represented by one prototype (i.e. class center) vector, a simple
credal classification rule has been developed which can directly compute the mass of belief of the
object belonging to each class (e.g. single class and meta-class) with quite low computational
complexity. Moreover, the credal classification of incomplete data with missing values has been
also developed in this work, and the imprecision of classification due to the lack of information
can be well modeled using the belief functions. In fact, the intrinsic nature of the uncertainty and
imprecision in the overlapped case and incomplete case are the same, and it reflects the fact that
the available (known) attribute information is insufficient for making the specific classification of
these patterns. When the training information becomes unavailable, the data clustering analysis
must be applied, and a new efficient credal clustering method called credal c-means (CCM) has
been proposed for uncertain data. This new CCM approach is an efficient extension of Fuzzy
c-means clustering method in the belief functions framework.

7.1.1 Belief c × K neighbors classifier (BCKN)

In the classification of uncertain data, the different classes can be partially overlapped in some
cases, and the objects in the overlapped zones are quite difficult to correctly classify, since these
overlapped classes appear undistinguishable for these objects according to the available attribute
information. In order to well model such uncertainty and imprecision and to reduce the errors, a
new belief c×K neighbors (BCKN) classifier has been developed working with credal classification
based on the belief function theory. In BCKN, the query object is classified using its K nearest
neighbors in each class, and there are total c×K neighbors involved in a c-class problem. Then,
c×K BBA’s are constructed corresponding to the c×K neighbors based on the distance between the
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object and the neighbors, and the global fusion of these BBA’s is used for the credal classification
of the object. The object can be committed, with different masses of belief, to a particular class
or to the proper meta-class, and the outlier represented by ignorant class can also been detected.
The objects lying in the overlapped zone of different classes cannot be reasonably committed to
a particular class, and they will be classified to the associated meta-class defined by the union of
these different classes. The objects too far from the others will be naturally considered as outliers.
This approach can reduce the misclassification errors by introducing the meta-class to characterize
the partial imprecision of classification, Of course, this is achieved at the detriment of the overall
classification precision, which is usually preferable in some applications. The output of the BCKN
classifier can be used as a primary source of information to ask for other complementary means
of analysis when more precise results on the ambiguous objects are necessary. The performance
of BCKN method has been tested and evaluated with respect to other classical methods through
several experiments using both synthetic data sets and real data sets. Our comparative analysis
shows that BCKN is able to efficiently reduce the classification errors by increasing judiciously
the imprecision rate in the applications, and a suitable compromise between the error rate and
imprecision rate must always be found by optimizing the threshold parameter for the selection of
the meta-classes in practice.

7.1.2 Credal classification rule (CCR)

BCKN is an efficient classifier of uncertain data for dealing with the complicate case, but it has
the high computational complexity as other K-NN alike classifiers. In some simple cases, the
data classes can be well characterized using the prototypes vectors, and we have proposed a new
prototype-based credal classification rule (CCR), which provides a fast solution to directly calculate
the mass of belief of the object associated with the single classes and meta-classes. In CCR, each
class center (i.e. prototype) should be obtained at first, and the specific class center is simply
defined by the arithmetic mean value of the training data in the corresponding class. The meta-
class center is considered with the same (and as small as possible) distance to the centers of all the
involved specific classes, and it can be found by optimizing these constraints. Once obtained, the
effective meta-class will be selected according to the distances between the meta-class center and
each specific class center. The useful meta-class center should be closer to the involved classes’
centers than to other centers. The meta-class will be ignored if it doesn’t satisfy the proposed
conditions. The mass of belief of a given object with a specific class is determined from the
Mahalanobis distance between the object and the center of the corresponding class. The mass of
belief on the meta-class mainly depends on the distance between the object and the center of meta-
class taking into account the associated indistinguishability degree defined using the distances of
the object to centers of all the involved specific classes. A tuning threshold is used to detect the
noises and outliers. The specific class consists of all the objects that are sufficiently close to its
center. The meta-classes are used to capture the imprecision in the classification of the objects
when they are difficult to correctly classify because of the poor quality of available attributes. The
objects assigned to a meta-class should be close to the center of this meta-class and meanwhile
its distances to all centers of the involved specific classes should be similar. The objects too far
from the others will be considered as outliers (noise). The experiments using both artificial and
real data sets were presented to evaluate and compare the performances of the new CCR method
with respect to other classification methods. Our comparative analysis shows that CCR provides
efficient credal classification results with a relatively low computational burden.
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7.1.3 Credal classification of incomplete data with missing values

It can happen that the useful attribute values are missing in many applications. The edited incom-
plete pattern with different possible estimations of missing values may yield distinct classification
results. A prototype-based credal classification (PCC) method for incomplete patterns has been
proposed using belief functions to model the uncertainty (imprecision) of classification caused by
the lack of information of the missing data. In PCC, the class prototypes obtained using training
samples are used to estimate the missing values. For example, if one has to deal with c prototypes
in a c-class problem, it yields c estimations of the missing values. Each estimation has a different
weighting factor determined by the distance between the object and the corresponding prototype
ignoring the missing values. The edited patterns with different estimations will be respectively
classified using a normal classifier dealing with the complete pattern. Then, one can get multiple
(e.g. c) classification results for the incomplete pattern. Since all these distinct classification re-
sults are potentially admissible, the final credal classification of the object depends on the global
fusion of these classification results. However, these results cannot be equally treated, because the
estimations of the missing values are obtained with different weights. The discounting technique
will be applied in the classification results using the weighting factors of the associated estimations
before the fusion process. The 2-step fusion strategy is used for the global fusion, and a new
combination rule has been introduced. It transfers the conflicting beliefs to the proper selected
meta-classes, since the conflicting beliefs can capture the imprecision degree of the classification
delivered by different estimations of the missing values. The incomplete patterns that are very
difficult to classify in a specific class will be reasonably committed to some proper meta-classes
by the PCC method in order to reduce errors. Several experiments using real data sets have been
presented to illustrate the effectiveness of PCC method. Our analysis indicates that PCC is able
to efficiently reduce the error rate and well characterize the imprecision of classification thanks to
the meta-class.

7.1.4 Credal c-means (CCM) clustering method

When no training information is available for the classification, data clustering analysis can be
applied. Evidential C-means is an extension of FCM in the belief function framework, but it
produces very unreasonable results on the clustering of close data sets. The credal c-means (CCM)
clustering method working with credal partition has been developed in this thesis to overcome
the limitations of ECM. The CCM allows the objects to lie in both the singleton clusters and
the sets of clusters (i.e. meta-cluster) with different masses of belief. CCM can reduce the errors
using the meta-cluster that is able to characterize the imprecision of classification for the partially
overlapped clusters. In CCM, the mass of belief on each specific (single) cluster is proportional
to the distance of the object to the corresponding clustering center. Whereas, the mass of belief
on the meta-cluster is determined by both the distances of the object to the meta-cluster’s center
and to all the involved specific clusters’ centers. If one object is too far from the other data points
with respect to the given threshold, it will be considered as an outlier. According to this basic
principle, an objective function has been proposed, and the clustering centers and the mass of
belief of object belonging to each specific cluster and meta-cluster can be obtained by optimization
of this objective function. For the convenience and simplicity of the linear optimization, the center
of meta-cluster is defined by the mean value of the involved specific classes’ centers. If the object
is quite close to only one clustering center, and it is naturally committed to this cluster as done in
the classical methods. If the object is simultaneously close to several clusters, and it is difficult to
classify it correctly into a particular cluster, because these clusters are not easily distinguishable
for this object. In such case, this object will be cautiously committed to the meta-cluster defined
by the union of these several clusters. CCM is robust to the noisy data thanks to the outlier
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cluster. The credal partition can be simply reduced to fuzzy partition as in FCM if necessary,
and transformation way has been given using Pignistic probability transformation BetP (.). The
experimental evaluation based on synthetic and real data shows that CCM can well deal with the
special cases where ECM does not work well, and CCM can also efficiently reduce the errors by
capturing the imprecision of the classification.

7.2 PERSPECTIVES

7.2.1 Credal classification of sequential data with few training samples

In some applications, like those related with defense, the training samples are quite difficult to
obtain for making the target classification (identification). In such case, the training information
is insufficient for the learning phase of classifier. We plan to develop a new classifier, in which the
sequential test samples will be conditionally included in the training data set. In the classification
of sequential data, if the test sample can be clearly classified with high confidence, it will be
included in the training data set to make the training information more and more substantial. The
selection of the proper test samples will be carefully studied. The class label of the training data
selected from the test samples will be not binary (0 or 1), but either characterized by a probabilistic
measure (for the classifier working with probability framework) or belief functions (for the classifier
working with belief function theory), etc. For this, efficient management techniques will have to
be developed to deal with this uncertain class label information for the classification of coming
samples. Moreover, we will also globally take into account how to well characterize the uncertainty
and imprecision of classification due to the insufficient attribute information.

7.2.2 Classification of incomplete pattern using imprecise probability

In the classification of incomplete pattern, the estimation of the missing values can be represented
using an interval rather than several single values. The interval seems more suitable for the
characterization of uncertainty of the estimations. Thus, the classification of the object (incomplete
pattern) could be also represented using probability (fuzzy membership) interval, which could help
to reveal the ambiguity degree of the classification caused by the missing data. At first, the interval
of the estimation value for the missing attributes should be determined. Then, the classification
of the object will be done. It is crucial to find a method to determine how to find the lower and
upper boundary of the probability (fuzzy membership) of the object belonging to each class based
on the estimated interval value of missing attributes. Then, the class of the object will be decided
according to a strategy based on the probability interval. For example, the object could be assigned
to the class with the maximum expected probability value. However, if the intervals associated
with different classes are (partially) overlapped, then the object could be committed to the proper
meta-class defined by the union of these several classes according to the context.

7.2.3 Credal c-means clustering with some constraints

In the data clustering analysis, there may exist extra knowledge on some constraints on clusters.
For example, we may know beforehand that some samples belong to a same cluster. In the CCM
clustering method developed in this thesis, no constraint information has been taken into account.
Therefore, it will be necessary to include constraints in the objective function to improve the
clustering performance of CCM. The main challenging issue will be the mathematical modeling
of the constraints in the objective function, and its minimization. For example, one can use the
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conflicting beliefs to model the constraint, and the conflicting belief should be as small as possible
if the associated objects are in the same cluster. It will be better if one can use linear equations to
capture the constraints, since this will be facilitate for the optimization of the objective function.
If the modeling equation is nonlinear, it should be as simple as possible to make the optimization
tractable by existing non-linear optimization techniques. Once the objective function is determined,
it will be optimized to obtain the clustering centers and BBA’s of each object belonging to the
different classes.

7.2.4 Unified evaluation criteria for performance of credal classifier

The performance evaluation with uncertainty is an important and still open problem. Some new
evaluation measures has been proposed by Arnaud, et al, for image classification and segmentation
taking into account the uncertain labels [125]. In the credal classifier, the meta-class (i.e. a set of
classes) has been introduced to capture the imprecision of classification, and the imprecision rate is
defined for the analysis of performance of a credal classifier. In the traditional classifiers, the object
is usually committed to a particular class rather than to meta-class. So there is no imprecision
rate in the classification results, and the accuracy rate is the common criteria to evaluate the
performance of the traditional classifier. We want to develop an efficient unified evaluation criteria
taking into account both the accuracy rate and imprecision rate, and this unified criteria can be
compared with the common accuracy rate of traditional classifiers. Moreover, the confusion matrix
of credal classification will be designed, which will be helpful to compute various quantitative
metrics, like recall rate, precision rate, error rate, imprecision rate, and so on. An extended
criterion based on the confusion matrix could also be developed to facilitate the comparison of
performances of different credal classifiers.
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