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Summary 

 

Nanoparticles exhibit many unique properties as compared to bulk materials owning 

to their high surface to volume ratio. Elemental selenium nanoparticles also exhibit 

novel properties that are exploited in the fabrication of solar cells, semiconductor 

rectifiers and removal of mercury and copper. The chemical synthesis of elemental 

selenium nanoparticles is costly, requires specialized equipment and uses toxic 

chemicals. On the other hand, biological production of elemental selenium 

nanoparticles (BioSeNPs) can be a green replacement for their chemical synthesis.  

 

BioSeNPs are produced by microbial reduction of selenite and selenate. The source 

of the selenium oxyanions can be wastewater, where microbial reduction is employed 

as a remediation technology for the removal of selenium. The formed BioSeNPs are 

colloidal poly-disperse particles with negative surface charge and are present in the 

effluent of the bioreactor. Thus far, the properties of these BioSeNPs are not very 

well understood. This knowledge will help to produce better quality selenium 

nanomaterials, exploit BioSeNPs applications in wastewater treatment and control 

the fate of these BioSeNPs in the microbial reactors and the environment.   

 

The characterization of BioSeNPs revealed the presence of extracellular polymeric 

substances (EPS) on the surface of BioSeNPs. The EPS was identified to control the 

surface charge and to some extent the shape of the BioSeNPs. Microbial reduction at 

55 and 65 °C can lead to the formation of selenium nanowires as compared to 

nanospheres when the reduction takes place at 30 °C. These selenium nanowires 

are present in a trigonal crystalline structure and form a colloidal suspension, unlike 

the chemically formed trigonal selenium nanorods. The colloidal nature is due to 

negative ζ-potential values owning to the presence of EPS on the surface of biogenic 

selenium nanowires. Since proteins are a major component present in the EPS, the 

presence of various proteins on the surface of BioSeNPs was determined. The 

interaction of various amino acids with the BioSeNPs was also evaluated.  

 

The interaction of heavy metals and BioSeNPs was studied with a view of developing 

a technology where BioSeNPs present in the effluent of an upflow anaerobic sludge 

blanket (UASB) reactor are mixed with heavy metals containing wastewater leading 
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to the removal of both BioSeNPs and heavy metals. It was found that Cu, Cd and Zn 

can be effectively adsorbed onto BioSeNPs. Cu was 4.7 times preferentially 

adsorbed onto BioSeNPs. The interaction of BioSeNPs with the heavy metals led to 

a less negative ζ-potential of BioSeNPs loaded with heavy metals and thus better 

settling of BioSeNPs. 

 

The presence of BioSeNPs in the effluent of a bioreactor treating selenium oxyanions 

containing wastewaters is undesirable due to higher total selenium concentrations. 

When a UASB reactor was operated under mesophilic and thermophilic conditions, 

the total selenium concentration in the effluent under thermophilic conditions were 

lower than in the mesophilic bioreactor effluent, suggesting better trapping of 

BioSeNPs at elevated temperatures. When an activated sludge reactor system was 

investigated to aerobically reduce selenite to BioSeNPs and trap them in the 

activated sludge flocs, around 80% of the fed selenium was trapped in the biomass. 

Sequential extraction procedure revealed that the trapped selenium is in form of 

BioSeNPs. The trapping of BioSeNPs in the activated sludge improved its 

settleability and hydrophilicity.  

 

Keywords: Selenium, bioreduction, BioSeNPs, EPS, ζ-potential, heavy metals, 

activated sludge, UASB reactors, thermophilic 
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Sommario 

 

Le nanoparticelle presentano numerose e particolari caratteristiche, se paragonate ai 

materiali granulari, dovute alla loro elevata superficie specifica. Le particelle di 

selenio elementare, inoltre, presentano alcune nuove proprietà sfruttate nella 

produzione di celle solari e raddrizzatori semiconduttori di corrente e nella rimozione 

di mercurio e rame. La sintesi chimica di nanoparticelle di selenio elementare è 

costosa e richiede l’utilizzo di una strumentazione specifica e di reattivi tossici. D’altro 

canto, però, la produzione per via biologica di queste nanoparticelle (comunemente 

riconosciute con l’acronimo inglese “BioSeNPs”) rappresenta un’alternativa “verde” 

per la loro sintesi chimica. 

 

Le “BioSeNPs” sono prodotte in seguito alla riduzione dei seleniti e dei selenati ad 

opera di microrganismi. Un’ottima fonte di ossoanioni di selenio è costituita dalle 

acque reflue, all’interno delle quali l’attività dei microrganismi viene sfruttata come 

tecnologia per la rimozione del selenio. Le particelle così formate sono solidi 

colloidali con superficie caricata negativamente che si ritrovano negli effluenti dei 

bioreattori utilizzati. Finora le proprietà di queste particelle non sono ancora del tutto 

conosciute. Pertanto, una conoscenza più approfondita, consentirebbe di ottenere 

nanomateriali a base di selenio di qualità superiore, di sfruttare queste particelle al 

meglio per il trattamento delle acque reflue e, infine, di controllare il destino delle 

stesse particelle nei reattori biologici e nell’ambiente. 

 

Nel presente studio, la caratterizzazione delle “BioSeNPs” ha rivelato la presenza di 

sostanze polimeriche extracellulari (EPS) sulla loro superficie. È stato dimostrato che 

gli EPS permettono di controllare la carica superficiale e, in qualche modo, anche la 

forma delle nanoparticelle. A 55 e 65°C, la cinetica biologica porta alla formazione di 

nanofili di selenio mentre, a 30°C, sono state ottenute nanosfere. I nanofili di selenio 

sono presenti con una struttura cristallina trigonale e formano una sospensione 

colloidale, a differenza dei “nanobastoncini” di forma trigonale che si formano per via 

chimica. La natura colloidale, infatti, è dovuta proprio alla presenza degli EPS che 

induce valori negativi di potenziale sulla superficie dei nanofili di selenio prodotti per 

via biologica. Numerose proteine sono state rivelate all’interno degli EPS. 

L’interazione tra differenti aminoacidi con le “BioSeNPs” è stata valutata. 
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L’interazione tra i metalli pesanti e le nanoparticelle di selenio prodotte 

biologicamente è stata studiata con lo scopo di sviluppare una tecnologia di 

rimozione simultanea di metalli, provenienti da un’acqua reflua, e “BioSeNPs”, 

provenienti dall’effluente di un reattore del tipo UASB. Nel presente studio è stato 

osservato che rame, cadmio e zinco possono essere efficientemente adsorbiti sulla 

superficie delle “BioSeNPs”, con il rame che ha presentato un’affinità con le 

nanoparticelle 4.7 volte superiore a quella degli altri due metalli studiati. L’interazione 

tra nanoparticelle di selenio e metalli pesanti ha fatto sì che si ottenesse una carica 

negativa inferiore sulla superficie delle particelle permettendo una migliore 

sedimentazione delle stesse. 

 

La presenza delle “BioSeNPs” nell’influente di un bioreattore adibito al trattamento di 

acque contenenti ossoanioni del selenio non è desiderabile a causa delle elevate 

concentrazioni di selenio. Durante l’esercizio di un reattore UASB in condizioni 

mesofile e termofile, è stato osservato che la concentrazione di selenio totale 

nell’effluente era minore in condizioni termofile che in condizioni mesofile, 

suggerendo un miglior trattenimento delle nanoparticelle a temperature maggiori. 

Durante l’esercizio di un sistema a fanghi attivi finalizzato alla riduzione anaerobica 

dei seleniti in nanoparticelle e all’intrappolamento delle stesse nei fiocchi di fango, è 

stato osservato che circa l’80% del selenio alimentato al reattore è rimasto 

intrappolato nei fiocchi di fango attivo. Una procedura di estrazione sequenziale ha 

dimostrato che il selenio intrappolato era presente sotto forma di “BioSeNPs”. La 

presenza di tali particelle nei fiocchi di fango attivo ha permesso di ottenere migliori 

caratteristiche di sedimentabilità e idrofilicità del fango stesso. 

 

Parole chiave: Selenio, bio-riduzione, “BioSeNPs”, EPS, ζ-potenziale, metalli pesanti, 

fango attivo, reattori UASB, termofilia  
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Résumé  

 

Les nanoparticules présentent de nombreuses propriétés uniques par rapport aux 

matériaux grossiers et possèdent un rapport surface / volume élevée. Les 

nanoparticules de sélénium élémentaire présentent également de nouvelles 

propriétés qui sont exploitées dans la fabrication de cellules solaires, des 

redresseurs à semi-conducteurs et l'élimination du mercure et du cuivre. La synthèse 

chimique des nanoparticules de sélénium élémentaire est coûteuse, nécessite un 

équipement spécialisé et utilise des produits chimiques toxiques. D'autre part, la 

production biologique des nanoparticules de sélénium élémentaire (BioSeNPs) peut 

être une alternative verte pour leur synthèse chimique. 

 

Les BioSeNPs sont produites par réduction microbienne de sélénite et séléniate. Les 

anions de sélénium peut être présent dans les eaux usées, où la réduction 

microbienne est utilisée comme une technique d’élimination du sélénium. Les 

BioSeNPs formés sont des particules colloïdales poly-dispersés avec une charge de 

surface négative et sont présents dans l'effluent du bioréacteur. Jusqu'à présent, les 

propriétés de ces BioSeNPs ne sont pas très bien comprises. Cette connaissance 

nous aidera à obtenir de meilleurs nanomatériaux de sélénium de qualité, exploiter 

des applications de BioSeNPs dans le traitement des eaux usées et contrôler le 

devenir de ces BioSeNPs dans les réacteurs microbiens et dans l'environnement. 

 

La caractérisation de BioSeNPs a révélé la présence de substances polymèriques 

extracellulaires (EPS) à la surface de BioSeNPs. Les EPS ont été identifiés comme 

étant capable de contrôler la charge de surface et dans une certaine mesure la forme 

des BioSeNPs. La réduction microbienne à 55 et 65°C peut conduire à la formation 

de nanofils de sélénium par rapport à nanosphères lorsque la réduction a lieu à 30 ° 

C. Ces nanofils de sélénium présentent une structure cristalline rhomboédrique et 

forment une suspension colloïdale, à la différence des nanofils de sélénium trigonal 

formés chimiquement. La nature colloïdale est due à des valeurs de potentiel ζ-

négatives généré par la présence d'EPS à la surface de nanofils de sélénium 

biogènes. Étant donné que les protéines sont un composant majeur des EPS, la 

présence de différentes protéines sur la surface de BioSeNPs a été déterminée. 
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L'interaction des différents acides aminés avec des BioSeNPs a également été 

évaluée. 

 

L'interaction des métaux lourds avec les BioSeNPs a été étudiée en vue de 

l'élaboration d'une technologie où les BioSeNPs présents dans l'effluent d'un 

réacteur UASB est mélangés avec les métaux lourds contenus dans les eaux usées 

pouvant conduire à l'élimination simultanée des BioSeNPs et des métaux lourds. Il a 

été constaté que Cu, Cd et Zn peuvent être efficacement adsorbé sur BioSeNPs. Cu 

étant préférentiellement 4,7 fois plus adsorbé sur les BioSeNPs. L'interaction des 

BioSeNPs avec les métaux lourds conduit à un potentiel ζ moins négatif de 

BioSeNPs chargés de métaux lourds et ainsi une meilleure décantation des 

BioSeNPs.  

 

La présence de BioSeNPs dans l'effluent du bioréacteur traitant des eaux usées 

contenant du sélénium est indésirable en raison des concentrations élevées de 

sélénium résiduel. Lorsqu'un réacteur UASB est utilisé dans des conditions 

mésophiles et thermophiles, la concentration résiduelle en sélénium dans l'effluent 

dans des conditions thermophiles ont été plus faibles que dans le bioréacteur effluent 

mésophile, ce qui suggère un meilleur piégeage de BioSeNPs à des températures 

élevées. Quand un réacteur à boues activées a été étudié pour réduire le sélénite en 

BioSeNPs en condition aérobie et piéger le BioSeNPs dans les flocs de boues 

activées, environ 80% du sélénium apporté a été piègé dans la biomasse. Une 

procédure d'extraction séquentielle a révélé que le sélénium est piégé sous forme de 

BioSeNPs. Le piégeage des BioSeNPs dans la boue activée améliore la décantation 

et le caractère hydrophile. 

 

Mots-clés: sélénium, bio-réduction, BioSeNPs, EPS, potentiel ζ, métaux lourds, 

boues activées, réacteurs UASB, thermophiles 
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Samenvatting 

 

Nanodeeltjes vertonen vele unieke eigenschappen in vergelijking met de 

eigenschappen van bulk materialen door hun hoge oppervlakte tot volume 

verhouding. Elementair selenium nanodeeltjes vertonen eveneens nieuwe 

eigenschappen die bij de vervaardiging van zonnecellen, halfgeleidergelijkrichters en 

de verwijdering van kwik en koper kunnen worden geëxploiteerd. De chemische 

synthese van elementair selenium nanodeeltjes is duur, vereist speciale 

infrastructuur en gebruikt giftige chemicaliën. Aan de andere kant kan de biologische 

productie van elementair selenium nanodeeltjes (BioSeNPs) een groen alternatief 

zijn voor hun chemische synthese. 

 

BioSeNPs worden geproduceerd door microbiële reductie van seleniet en selenaat. 

De bron van de selenium anionen kan afvalwater zijn, waarbij microbiële reductie 

wordt toegepast als een saneringstechnologie voor de verwijdering van selenium. De 

gevormde BioSeNPs zijn colloïdaal poly-disperse deeltjes met een negatieve 

oppervlaktelading en zijn aanwezig in het effluent van bioreactoren. Tot zover zijn de 

eigenschappen van deze BioSeNPs niet goed begrepen. Deze kennis kan bijdragen 

tot de productie van selenium nanomaterialen van betere kwaliteit, de exploitatie van 

BioSeNPs in afvalwaterzuiveringstoepassingen en het beïnvloeden van het lot van 

deze BioSeNPs in microbiële reactoren en het milieu. 

 

De karakterisering van BioSeNPs toonde de aanwezigheid van extracellulaire 

polymere stoffen (EPS) op het oppervlak van de BioSeNPs aan. De EPS werden 

geïdentificeerd als regelaar van de oppervlaktelading en gedeeltelijk ook van de 

vorm van de BioSeNPs. Microbiële reductie bij 55 en 65 °C kan leiden tot de vorming 

van selenium nanodraden, in tegenstelling tot de nanobolletjes gevormd wanneer de 

reductie plaatsvindt bij 30 °C. Deze selenium nanodraden zijn aanwezig in een 

trigonale kristalstructuur en vormen een colloïdale suspensie, in tegenstelling tot de 

chemisch gevormde trigonale selenium nanostaafjes. De colloïdale aard is te wijten 

aan de negatieve ζ-potentiaalwaarden van het oppervlak, veroorzaakt door de 

aanwezigheid van EPS op het oppervlak van de biogene selenium nanodraden. 

Aangezien eiwitten een belangrijke component in de EPS zijn, werd de aanwezigheid 
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van verschillende eiwitten op het oppervlak van de BioSeNPs bepaald. De interactie 

van verschillende aminozuren met de BioSeNPs werd ook geëvalueerd. 

 

De interactie van zware metalen en BioSeNPs werd bestudeerd teneinde een 

technologie te ontwikkelen waarin BioSeNPs aanwezig in het effluent van een 

opwaartse anaërobe slibdeken (UASB) reactor gemengd worden met zware metalen 

bevattend afvalwater, wat leidt tot de verwijdering van zowel BioSeNPs en zware 

metalen. Er werd gevonden dat Cu, Cd en Zn effectief kunnen worden geadsorbeerd 

door BioSeNPs. Cu was 4,7 keer preferentieel geadsorbeerd door de BioSeNPs. De 

interactie van de BioSeNPs met de zware metalen leidt tot een minder negatieve ζ-

potentiaal van de met zware metalen beladen BioSeNPs en dus betere bezinking 

van deze BioSeNPs. 

 

De aanwezigheid van BioSeNPs is ongewenst in het effluent van een bioreactor die 

selenium oxyanionen bevattend afvalwater behandeld vanwege de hogere totale 

selenium concentraties in het effluent. Wanneer UASB reactoren onder mesofiele en 

thermofiele omstandigheden werden bedreven waren de totale selenium 

concentraties in het effluent onder thermofiele omstandigheden lager dan in het 

mesofiele bioreactoreffluent. Dit suggereert dat de BioSeNPs bij verhoogde 

temperaturen beter worden ingevangen. Wanneer de capaciteit van een actief slib 

reactor werd onderzocht om seleniet aëroob te verwijderen, bleek dat de BioSeNPs 

in de actief slibvlokken werden ingevangen en ongeveer 80% van het toegevoerde 

selenium werd in de biomassa weerhouden. Sequentiële extractieprocedures gaven 

aan dat het ingevangen selenium aanwezig was in de vorm van BioSeNPs. Het 

invangen van BioSeNPs in het actief slib verbeterde de bezinkbaarheid en de 

hydrofiliciteit van de aktief slibvlokken. 

 

Keywords: Selenium, bioreductie, BioSeNPs, EPS, ζ-potentiaal, zware metalen, 

actief slib, UASB reactoren, thermofiel 
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1.1 Background 

 

Elemental selenium displays many unique properties such as high photoconductivity, 

piezoelectric, thermoelectric and non-linear electric response (Gates et al., 2002). 

These properties are enhanced when the elemental selenium is in the form of 

nanoparticles due to high surface to volume ratio. Indeed, selenium nanomaterials 

have been used in xerography, solar cells, semiconductor rectifiers and other 

functional materials. Elemental selenium nanowires are excellent systems for 

studying size confinement effect on optical, electrical and mechanical properties of 

elemental selenium or use them as connectors in fabrication of nanodevices. 

Elemental selenium nanospheres have been used to capture mercury and copper 

from vapor and aqueous phase, respectively (Bai et al., 2011; Johnson et al., 2008).  

 

Elemental selenium nanoparticles can be fabricated using methods such as physical 

vapour deposition, vapour phase diffusion and wet chemical methods (Chen et al., 

2010; Ma et al., 2008; Shah et al., 2010; Stroyuk et al., 2008). However, these 

methods are usually costly, use toxic solvents and produce hazardous by-products. 

In general, biologically produced nanoparticles can be a good choice to replace 

chemically produced nanoparticles due to their relatively easy, non-toxic and green 

production approach, low cost and biocompatibility (Faramarzi and Sadighi, 2013). 

This also holds for microbial production of elemental selenium nanoparticles. 

 

Biogenic elemental selenium nanoparticles (BioSeNPs) are produced by the 

microbial reduction of selenium oxyanions (selenate - SeO4
2- and selenite - SeO3

2-). 

These selenium oxyanions can be sourced from wastewaters (Lenz et al., 2009). 

This is very desirable as on the one hand it produces a valuable resource in the form 

of BioSeNPs and on the other hand this process removes selenium oxyanions, which 

are toxic and bioavailable, from wastewaters (Lenz et al., 2008). The toxicity of 

selenium depends largely on its speciation. The dissolved form of selenium, selenate 

and selenite are known to be toxic due to their higher bioavailability. On the other 

hand, selenides (oxidation states -2, -1) are unstable and rapidly react to form metal 

selenide or oxidize to form elemental selenium (Lenz and Lens, 2009). The elemental 

form of the selenium is known to be stable over a large range of pH and redox 
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conditions as well as to be less bioavailable as compared to selenate or selenite 

(Winkel et al., 2012). 

 

1.2 Problem description 

 

The microbial production has always led to the formation of colloidal, polydisperse 

spherical BioSeNPs with average diameter exceeding 100 nm, thus impacting their 

applications as a nanomaterial (Oremland et al., 2004). There is not enough 

understanding on the factors governing the size and shape of BioSeNPs. Also, no 

study has so far been carried out on the production of biogenic selenium nanowires 

and to characterize these. 

 

From an environmental perspective, BioSeNPs are a "double-edged sword". On the 

one hand, BioSeNPs can be used to adsorb mercury from the vapor phase and on 

the other hand their presence in the effluent of the bioreactors increases the total 

selenium concentration leading to the requirement of a second additional step to treat 

selenium oxyanions containing wastewaters (Buchs et al., 2013). However, there are 

no studies that have explored the full potential of BioSeNPs in the heavy metal 

removal nor there are studies that have attempted to understand the fate of 

BioSeNPs in bioreactors. 

 

Selenium is a scarce resource with its application in industry and is required in 

human diet (Haug et al., 2007). The elemental form of selenium is much more 

widespread than previously thought and can constitute 30-60% of the total selenium 

content in the sediments (Zhang et al., 2004). Microbial transformation of selenium 

oxyanions to BioSeNPs is widespread and contributes greatly to the global cycle of 

selenium (Vriens et al., 2014; Winkel et al., 2012). However, our understanding on 

the factors governing the properties of BioSeNPs is very limited. Our improved 

understanding can help us to better predict, recover and reuse selenium. 
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1.3 Research objective 

 

The main objective of this thesis is to develop a better understanding of the 

production process and properties of BioSeNPs and to explore their potential and 

relevance in wastewater treatment. 

 

The specific objectives are: 

 

1) To produce and characterize BioSeNPs produced by anaerobic granular sludge: 

a) To identify the origin and effect of the organic layer present on the surface 

of BioSeNPs on their properties 

b) To produce and characterize biogenic elemental selenium nanowires 

(BioSeNWs) 

c) To study the interaction of amino acids with elemental selenium in the 

BioSeNPs 

 

2) To explore the potential of BioSeNPs in the removal of heavy metals from 

wastewaters: 

a) To assess BioSeNPs capability to adsorb the model heavy metal Zn and 

the effect of adsorption of Zn onto BioSeNPs on their colloidal stability  

b) To assess BioSeNPs capability to selectively adsorb heavy metals from an 

equimolar mixture of Cu, Zn and Cd 

 

3) To study the fate of BioSeNPs in aerobic and anaerobic wastewater treatment 

bioreactors: 

a) To assess the thermophilic conditions in an upflow anaerobic sludge 

blanket reactor (UASB) for better retention of BioSeNPs in the reactor 

b) To optimize the operating conditions in the activated sludge reactor to trap 

maximum BioSeNPs in the biomass 

c) To characterize the activated sludge fed with selenium for their 

physicochemical properties 
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1.4 Structure of the thesis 

 

This dissertation comprises eleven chapters. The thesis is divided into three main 

sections: BioSeNPs synthesis and characterization (Chapters 3 - 5), BioSeNPs 

application in heavy metal removal from wastewater (Chapters 6 and 7) and fate of 

BioSeNPs in the bioreactors (Chapter 8 - 10) (Figure 1.1).  

 

 

 

Figure 1.1. Overview of the chapters in this PhD thesis 

 

The following paragraph provides details about the composition of this thesis 

 

Chapter 1 provides a general overview of this dissertation that includes background, 

problem statement, research objectives and thesis structure. 
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Chapter 2 describes the state-of-art of BioSeNPs production methods and their 

characterization. This chapter also discusses the challenges in the production of 

BioSeNPs. 

 

Chapter 3 explores the origin of the organics present on the surface of BioSeNPs. 

This chapter also identifies the effect of the organic layer capping the BioSeNPs on 

their surface charge, shape and size. Chapter 4 presents the production and 

characterization of BioSeNWs by use of thermophilic conditions. Chapter 5 explores 

the relative affinity of amino acids to the surface of elemental selenium by means of 

statistical analysis of high-through put protein identified by Hybrid Ion Trap-Orbitrap 

Mass Spectrometer (LTQ-Orbitrap). 

 

Chapter 6 explores the potential adsorbent capacity of BioSeNPs towards Zn. This 

chapter also observed the effect on ζ-potential of BioSeNPs upon loading of Zn. 

Chapter 7 describes the selective adsorption of Cu onto BioSeNPs from the 

equimolar mixture of Cu, Cd and Zn. 

 

Chapter 8 compares thermophilic (55 oC) and mesophilic (30 oC) operating condition 

in an UASB reactor for reduction of selenate to BioSeNPs and their retention in the 

reactor. Chapter 9 optimizes the operating conditions of aerobic reduction of selenite 

and the trapping of BioSeNPs in the activated sludge reactor. Chapter 10 identifies 

the speciation and properties of the trapped selenium in the activated sludge and 

also characterizes the selenium fed activated sludge for their settleability, 

hydrophilicity, dewaterability and surface charge. 

 

Chapter 11 summarizes and draws conclusion from this study. The chapter also 

provides future recommendations and perspectives for further research. 
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Abstract: 

 

Selenium nanoparticles can be readily produced by microbial reduction of selenium 

oxyanions under anaerobic as well as aerobic conditions. This method is 

advantageous as the product can be produced at ambient temperature and pressure 

with relatively non specialized equipment. Moreover, the biogenic selenium 

nanoparticles demonstrate unique optical and spectral properties. However, the 

biogenic selenium nanoparticles are polydisperse and their size (> 30 nm) is on the 

larger side for applications. Also, in many cases, the biogenic selenium nanoparticles 

have to be separated from the biomass, leading to increased production time and 

costs. Synthetic biology can help us to better understand the mechanism and 

pathway of selenium nanoparticles production and eventually help us to improve or 

design micro-organisms those can produce selenium nanoparticles with desired 

properties.  

 

Key words: Biogenic, selenium, nanoparticles, characterization, proteins, synthetic 

biology 

 

Graphical abstract: 
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2.1. Introduction 

 

Nanotechnology is the science of developing and utilizing materials, systems or 

devices at roughly 1 - 100 nm scale. According to European Union official definition, 

"50% or more of the particles in the number size distribution, one or more external 

dimensions is in the size range 1 nm-100 nm" can be termed as nanomaterial (EU 

recommendations, 2011). At these scales, materials, devices and systems exhibit 

novel optical, electrical, photo-electrical, magnetic, mechanical, chemical and 

biological properties those are different from their bulk properties. The essence of 

nanotechnology is to use these nano-blocks to build larger structures which are 

fundamentally new materials with unique properties (Walsh et al., 2008; Qu et al., 

2013). Nanoscale materials have various applications in electronics, sensing 

devices, drug delivery, medicine and photonics. 

 

Due to the unique properties of selenium nanoparticles, there is an interest in their 

production for nanotechnology applications. For example, research is being carried 

out to use selenium nanoparticles for medicinal purposes such as antifungal 

applications, anti-cancer orthopedic implants or treatment of malignant 

mesothelioma (Webster, 2007; Shahverdi et al., 2010). Nanowires formed by 

selenium nanoparticles demonstrate novel photoconductivity (Gates et al., 2002) and 

amorphous selenium nanoparticles have shown unique photoelectric, 

semiconducting and X-ray-sensing properties (Smith and Cheatham, 1980). These 

nanomaterials can be exploited in nanowire electronics, sensors and more efficient 

solar cells.  From an environmental perspective, selenium nanoparticles have been 

shown to capture mercury from the gaseous phase and precipitate on nanoparticles' 

surface as HgSe (Johnson et al., 2008; Fellowes et al., 2011). 

 

2.2. Production of selenium nanoparticles 

 

Selenium nanoparticles can be produced using the biological or chemical methods. 

Chemical production methods include reduction of sodium selenite by glutathione 

(GSH, glutamylcysteinylglycine) (Johnson et al., 2008) or glucose (Chen et al., 

2010), by reaction of ionic liquid with sodium selenosulfate (Langi et al., 2010) and 
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various other approaches (Abdelouas et al., 2000; Gates et al., 2002; Ma et al., 

2008; Shah et al., 2010; Shah et al., 2010a; Zhang et al., 2010; Dwivedi et al., 2011).  

 

Chemical methods produce selenium nanoparticles of desired size and 

polydispersity index as reported in several studies (Johnson et al., 2008; Langi et al., 

2010). However, these methods are expensive, environmentally hazardous and in 

many cases require specialized equipment. On the other hand, the biological 

production methods are simple and can be carried out at ambient temperature and 

pressure (Oremland et al., 2004). There are numerous species of archaea and 

bacteria present in nature those can reduce selenate or selenite to produce colloidal 

elemental selenium (Oremland et al., 2004; Stolz et al., 2006).  

 

A study by Oremland et al., (2004) compares some features of biologically and 

chemically produced selenium nanoparticles. The authors show that monoclinic 

crystalline structures of selenium nanoparticles produced by selenium oxyanion 

respiring bacteria were compact, uniform, stable and their size ranged from 200 to 

400 nm. In contrast, the size of selenium nanoparticles produced by auto oxidation of 

H2Se gas and chemical reduction of selenite with ascorbate ranged between 10 nm 

- Sulfurospirillum 

barnesii, Bacillus selenitireducens and Selenihalanaerobacter shriftii used in this 

study, showed unique and different optical properties. The band gap energy, the 

energy required to excite a valence electron to the conduction electron, was lower for 

all three biologically synthesized nanospheres compared to chemically synthesized 

nanospheres. The low band gap energy gives a promising option for biologically 

synthesized nanoparticles to be used in solar cells, rectifier and xerography. This 

finding opens doors of opportunities to synthesize selenium nanoparticles 

biologically with unique structural and optical properties. 

 

2.2.1. Biological Production of Selenium Nanoparticles 

 

There are many species of bacteria, archaea and plants those produce selenium 

nanoparticles by reducing selenium oxyanions, i.e. selenate - SeO4
2- and selenite - 

SeO3
2-  (Lenz and Lens, 2009). Various bacteria and archaea have been reported to 

couple their growth to the reduction of selenite/selenate (i.e. dissimilatory reduction). 
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Under anaerobic conditions, dissimilatory reduction is the main metabolic process for 

production of selenium nanoparticles (Oremland et al., 2004; Stolz et al., 2006). 

Under aerobic conditions, redox poise (Yamada et al., 1997) and detoxification 

(Lortie et al., 1992; Dhanjal and Cameotra, 2010) are the main mechanisms. Fungi 

also reduce selenium oxyanions to elemental selenium nanoparticles as a method of 

detoxification. However, other than reduction, fungi can also take up and/or 

biomethylate selenium oxyanions to volatile derivatives of selenium, though these 

methods do not produce selenium nanoparticles (Gharieb, 1995). 

 

2.2.1.1. Biogenic production of selenium nanoparticles under aerobic conditions 

 

Kuroda et al., 2011) used Pseudomonas stutzeri to explore the effect of temperature, 

pH and NaCl concentration on selenate and selenite reduction rates (Figure 2.1) 

under aerobic conditions (Table 2.1. Yadav et al., 2008) reported the formation of 

amorphous elemental selenium under aerobic conditions by the soil bacterium 

Pseudomonas aeruginosa. The growth rate of Pseudomonas aeruginosa in the 

presence of 5, 15 and 25 mg/L (0.029, 0.087 and 0.145 mM Se) of sodium selenite 

was comparable to the growth rate without sodium selenite in the medium.  

 

 

Figure 2.1. Effect of temperature, pH and salinity on specific selenate and selenite 

reduction rates by Pseudomonas stutzeri (open square - selenate; open circles – 

selenite) (Reproduced with permission from Kuroda et al., 2011). 

 

Table 2.1. Micro-organisms capable of producing selenium nanoparticles by 

reduction of selenite or selenate under aerobic or anaerobic conditions. The 

incubation conditions, the maximum concentration of selenite or selenate and the 

size of the produced selenium nanoparticles are compiled. 
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Micro-

organism 
Conditions 

SeO4
2-  

(mM) 

SeO3
2- 

(mM) 

End product 

and Size of 

selenium 

particles (d. 

nm) 

References 

Pseudomonas 

stutzeri 

Aerobic; see 

Fig. 2.1 

48 & 122 

 

19 & 94 

Se(0), <200  

Lortie et al. 

(1992); Kuroda 

et al. (2011) 

Pseudomonas 

aeruginosa 

Aerobic; T = 28 

oC; pH 5.5 - 6 

NR 0.144 Se(0), NR Yadav et al. 

(2008) 

Pesudomonas 

alcaliphila 

Aerobic; T = 28 

oC; pH 7.5 

NR 100 Se(0), 50 – 500 Zhang et al. 

(2011) 

Pseudomonas 

fluorescens 

Aerobic; T = 26 

oC; pH neutral 

NR 0.2 Se(0), NR Belzile et al. 

(2006) 

Bacillus sp. Aerobic; Room 

temperature 

NR 1 Se(0), 100 – 

200 

Tejo Prakash et 

al. (2009) 

Bacillus 

cereus 

Aerobic; T = 37 

oC 

NR 10 Se(0), 150 - 

200  

Dhanjal and 

Cameotra. 

(2010) 

Bacillus 

megaterium 

Aerobic; T = 37 

oC; pH 7.5 

NR 2 Se(0), ~ 200  Mishra et al. 

(2011) 

Bacillus 

subtilis 

Aerobic; T = 35 

oC; pH 7.0 

NR 4 Se(0), NR Wang et al. 

(2010) 

Rhizobium sp. Aerobic; T = 28 

oC 

NO3
1- = 10 mM 

NR 

 

5 Se(0), NR Hunter et al. 

(2007) 

Enterobacter 

cloacae 

Open to atm.; 

T = 28 oC 

0.6  Se(0), NR Losi and 

Frankenberger.  

(1997) 

Bacillus 

selenitireduce

ns 

Anaerobic; T = 

25 oC; pH 9.8; 

Salinity 56 g/L 

NR 3 & 10 Se(0), 200 - 

400  

Oremland et al., 

(2004) 

Sulfurospirillu Anaerobic; T = 20 3 Se(0), 200 - Oremland et al. 
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m barnesii 25 oC, pH 7.3; 

Salinity 2g/L 

 

 400 (2004) 

Selenihalanaer

obacter shriftii 

Anaerobic; T = 

25 oC; pH 7.0; 

Salinity 205g/L 

20 3 Se(0), 200 - 

400 

Oremland et al. 
(2004) 

Shewanella 

sp. HN-41 

Anaerobic; T =  

30 oC 

NR 0.1 & 

0.5 

Se(0), Fig. 2.4 Lee et al. 

(2007); Tam et 

al. (2010) 

Shewanella 

oneidensis 

MR-1 

Aerobic, 

anaerobic 

NR 1 & 2 Se(0), NR Klonowska et al. 

(2005) 

Anaerobic 

granules 

Anaerobic; T = 

30 oC; pH 7.0;  

HRT = 6 hours, 

Superficial 

velocity = 

1m/hr 

10 & 0.04 

mM/day 

 

 Se(0), 150; 100 

- 500 

Lenz et al. 

(2008a); Lenz et 

al. (2008b) 

Klebsiella 

pneumoniae 

Anaerobic; T = 

37 oC pH 7.2 

NR 3.7 Se(0), 100 - 

500 

Fesharaki et al. 

(2010) 

Rhodospirillum 

rubrum 

Aerobic; 

anaerobic; T = 

30 oC, 

incandescent 

light (35 W/m2) 

NR 0.5 & 2   Se(0), NR Kessi et al. 

(1999) 

Azospira 

oryzae 

Micro-

aerophillic; 

anaerobic; T = 

28 oC 

10  

 

4 Se(0), NR Hunter. (2007) 

Veillonella 

atypica 

Anaerobic; T = 

37 oC; pH 7.5 

NR 5 Se(0) - 120, 

ZnSe - 30  

Pearce et 

al.(2008) 

 

NR - Not reported 
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Bacillus cereus, isolated from coalmine soils and later identified on the basis of 

morphological, biochemical and molecular methods, produced selenium 

nanoparticles by reduction of selenite (Dhanjal and Cameotra, 2010). The 

microorganism was grown between 0.5 mM to 10 mM of sodium selenite and its 

growth profile was found to be comparable to that of Bacillus cereus when grown 

without selenite stress. However, the size of the bacteria after 48 h of growth in 

selenite containing medium was smaller than the size of the bacteria grown without 

selenite stress (Figure 2.2). Bacillus species, that showed the 99% 16S rRNA gene 

sequence homology to Bacillus thuringiensis, B. anthracis, and B. cereus, produced 

selenium nanoparticles only under the aerobic conditions (Tejo Prakash et al., 2009).  

 

A strain belonging to the genus Rhizobium, with its 16S rRNA sequence more than 

2.7% different than that of R. radiobacter or R. rubi, was able to reduce selenite to 

elemental selenium under the aerobic conditions (Hunter et al., 2007). The rate of 

selenite reduction improved when nitrate was present with selenite. During the 

reduction of selenite in the presence of nitrate, reduction of nitrate and accumulation 

of nitrite was also observed. However, this microorganism was unable to reduce 

selenate, either in the presence or in the absence of nitrate. 

 

 

Figure 2.2. Flow cytometry showing that the average size of bacterial cells gradually 

decreases when Bacillus cereus was grown in the presence of selenite oxyanions. 
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The size of bacterial cell is smaller when there is a shift towards the left side on the 

log-scaled-X axis and vice versa. T indicates test population (with selenite) and C 

indicates control population without selenite., (A) After 12 h of incubation., (B) After 

24 h of incubation., (C) After 36 h of incubation and (D) After 48 h, the cell size of 

test population decreased as compared to the control population evidencing the 

stress caused by selenite (Reproduced with permission from Dhanjal and Cameotra, 

2010). 

 

2.2.1.2. Biogenic production of selenium nanoparticles under anaerobic conditions 

 

Bacillus selenitireducens was isolated for the first time from Mono Lake, California, 

USA (Switzer et al., 1998). It was able to reduce 10 mM of sodium selenite in less 

than 80 h and produced equivalent amounts of spherical selenium nanoparticles 

(Oremland et al., 2004). Apart from selenite, Bacillus selenitireducens was capable 

to utilizing 5 - 10% oxygen, arsenate, fumurate, thiosulfate, trimethylamine oxide, 

nitrate and nitrite as electron acceptor. And besides lactate, it can utilize pyruvate, 

starch, fructose, galactose and glucose as electron donor.  

 

Shewanella species HN-41 was used to study the effect of the initial biomass 

concentration, reaction time and initial selenite concentration on the selenium 

nanoparticles size and formation rate (Tam et al., 2010). As expected, the higher 

initial biomass concentrations led to higher selenite reduction rates. This study also 

evaluated the effect of the initial selenite concentration on the production of selenium 

nanoparticles or reduction of selenite. A concentration of 0.1 mM selenite was 

required to achieve the maximum selenite reduction rates under the conditions 

tested and increased initial selenite concentrations did not lead to higher selenite 

reduction rates or higher selenium nanoparticles production rates. The kinetics of the 

reaction was well described by a Michaelis-Menten relationship with estimated 

values for the Vmax and Km of 1.37µM/h and 88 µM, respectively. 

 

Shewanella oneidensis has been studied for the effect of various electron donors 

and the presence of other anions on the selenite reduction rates (Klonowska et al., 

2005). The highest selenite reduction rate was obtained when this bacterium was 

grown with Luria-Bertani or in the presence of yeast extract. The second highest 
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reduction rate was obtained with lactate (13%) of selenite reduction rate obtained 

when using Luria-Bertani as medium. The presence of other anions such as nitrate, 

nitrite, fumarate, TMAO (trimethylamine-N-oxide), and dimethyl sulfoxide resulted in 

almost 95% inhibition of the selenite reduction rate.  

 

Different types of anaerobic granular sludge, suspended sludge, soils and sediments 

were studied for their potential to remove selenate from wastewater (Astratinei et al., 

2006) 400 to 1500 µg gVSS-1 h-1 of selenate removal was achieved. In a study by 

Lenz et al., (2008a), anaerobic granules obtained from a full scale Upflow Anaerobic 

Sludge Bioreactor (UASB) reactor was used to reduce selenate oxyanion and 

selenium nanoparticles of 100 - 500 nm in diameter were obtained. In similar study 

by Lenz et al., (2008b), selenium nanoparticles of 50 - 100 nm were found on 

biofilms growing in the tubes of the bioreactor. Furthermore, precipitates of elemental 

selenium (approximately 150 nm in size) were found between the bioreactor and the 

settler tubes. The selenate removal efficiency in this study remained at values 

exceeding 91.9% and the COD removal efficiencies remained stable at 85% when 

there was no reactor disturbance such as lowering of the operating temperature or a 

decrease in the superficial upflow velocity.  

 

A facultative anaerobic bacterium, Klebsiella pneumoniae reduced selenite to 

produce selenium nanoparticles (Fesharaki et al., 2010). Among various broths 

tested, the highest selenite reduction capacity of Klebsiella pneumoniae was 

observed in Tryptic Soy broth (TSP) at 1.92 mg Se/mL followed by Muller-Hinton 

broth (1.12 mg Se/mL), Luria-Bertani broth (0.96 mg Se/mL) and Nutrient broth (0.26 

mg Se/mL). 

 

Other type of selenium nanoparticles such as zinc selenide (ZnSe) and cadmium 

selenide (CdSe) nanoparticles are known for their non-linear optics, luminescence, 

electronics and catalyst properties. Veillonella atypica has been shown to produce 

ZnSe and CdSe nanoparticles (Pearce et al., 2008). In this study, 5 mM of sodium 

selenite was added as electron acceptor and 75 mM of sodium acetate, sodium 

lactate, sodium formate or hydrogen (in the head space) as electron donor. A 

reduction rate of 252 mM g-1 (biomass) h-1 was obtained for hydrogen as sole 

electron donor in the presence of 100 µM anthraquinone-2,6-disulfonate (AQDS). 
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The study also demonstrated that the presence of 100 µM of the soluble redox 

mediator AQDS improved the selenite reduction rate from 36 mM g-1 (biomass) h-1 to 

252 mM g-1 (biomass) h-1 using hydrogen as sole electron donor. The selenite 

reduction rate was the lowest with sodium lactate (0.03 mM g-1 biomass h-1) as 

electron donor. In this study, selenite was reduced to elemental selenium and then 

further reduced to produce selenide. The selenium nanoparticles, produced as an 

intermediate, were of approximately 120 nm in size. Once ZnCl2 was added to the 

medium, ZnSe particles were formed. The ZnSe nanoparticles were 27 nm in size. 

 

2.3. Characterization of selenium nanoparticles 

 

Relevant characteristics of selenium nanoparticles that determine their applicability 

in nanotechnology are composition, size, shape, structure, atomic arrangement and 

surface charge. The composition of selenium nanoparticles is mainly characterized 

by using energy dispersive X-ray spectroscopy and X-ray photoelectron 

spectroscopy (Oremland et al., 2004; Tejo Prakash et al., 2009; Wang et al., 2010). 

The size and shape of selenium nanoparticles are determined by field emission 

scanning electron microscopy, transmission electron microscopy and atomic force 

microscopy (Oremland et al., 2004; Tejo Prakash et al., 2009; Wang et al., 2010; 

Dhanjal and Cameotra, 2010). The structure of selenium nanoparticles is determined 

by a combination of techniques such as Raman spectroscopy, Fourier transform 

infra red spectroscopy, UV-visible spectroscopy and X-ray diffraction (Oremland et 

al., 2004; Wang et al., 2010). More detailed analysis such as the atomic 

arrangement of selenium nanoparticles can be determined by X-ray absorption 

spectroscopy (van Hullenbusch et al., 2007; Lee et al., 2007; Pearce et al., 2008; 

Lenz, 2008; Lenz et al., 2008c; Lenz et al., 2011a). 

 

2.3.1. Elemental composition of selenium nanoparticles 

 

In all studies, the biologically produced selenium nanoparticles were entirely 

composed of elemental selenium (Figure 2.3; Oremland et al., 2004; Dhanjal and 

Cameotra, 2010; Fellowes et al., 2011) with an exception (Pearce et al., 2008) in 

which metal selenide nanoparticles were produced. 
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Figure 2.3. SEM and EDX spectra of selenium nanoparticles and selenium 

nanoparticles exposed to Hg a) Se nanoparticles produced by G. sulfurreducens, b) 

HgSe precipitation on surface of Se nanoparticles, c) Higher magnification of image 

b, d)  EDX spectra of  Se nanoparticles (i) and Se nanoparticles after being exposed 

to Hg vapor (ii) (Reproduced with permission from Fellowes et al., 2011). 

 

2.3.2. Size and shape of selenium nanoparticles 

 

Biogenic selenium nanoparticles, produced by all the reported micro-organisms, 

were spherical in shape and in some cases transformed from spherical particles to 

nanowires. However, the size of the biogenic nanoparticles differs depending on the 

production time and the type of micro-organism reducing selenium oxyanions. All 

microorganisms studied so far produce polydisperse nanoparticles with size ranging 

from 50 nm to 500 nm. The average size is always above 100 nm (Oremland et al., 

2004; Tejo Prakash et al., 2009; Dhanjal and Cameotra, 2010; Kuroda et al., 2011; 

Zhang et al., 2011). 

 

The effect of the temperature and oxygen concentration on the shape and size of 

selenium nanospheres produced by Shewanella sp HN-41 was studied (Lee et al., 

2007). The average size of the nanospheres was higher at elevated (4, 15 and 30 

oC) temperatures. Conversely, when the O2 concentration in the medium was 
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increased, the average size of the selenium nanospheres decreased (Figure 2.4) 

and the shape of the particles became more irregular. These results suggest that 

production of size-controlled biological selenium nanospheres may be achieved by 

simply changing the culture conditions. The effect of the initial biomass 

concentration, reaction time and initial selenite concentration was systematically 

investigated on the size distribution and formation rate of selenium nanoparticles 

produced by Shewanella sp HN-41 (Tam et al., 2010). The initial biomass 

concentration did not affect the average size of the particles but affected their size 

distribution to a small extent. Over time, the average size of the selenium 

nanoparticles increased from 35 - 40 nm (2 h) to 120 nm (12 h). The initial selenite 

concentration (0.1 mM to 1.0 mM) had no effect on the particles size. In another 

study using Pseudomonas alcaliphila, selenium nanoparticles increased in size from 

50 - 200 nm at 12 h of reaction time to 500 - 600 nm selenium particles after 24 h of 

reaction, indicating that the particles grew via Ostwald ripening process (Zhang et 

al., 2011). 

 

It has been reported that Veillonella atypica reduced selenite to selenium 

nanospheres of 120 nm (Pearce et al., 2008). The reduction process continued and 

led to the formation of selenide in the system and when ZnCl2 was added, it lead to 

the formation of ZnSe particles of 27 nm in size. However, ZnCl2 particles of 27 nm 

are too large for quantum dot applications. To further decrease the size of ZnSe, 

biogenic selenide was extracted and a simple wet chemical reaction with Zn and Cd 

was carried out in the presence of thiol as a capping agent. Size variation between 

3-6 nm was achieved for ZnSe particles and 2-4 nm for CdSe nanoparticles (Pearce 

et al., 2008). 
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Figure 2.4. SEM images and size distribution of selenium nanoparticles produced by 

Shewanella sp HN-41 under different conditions. - N2-purged incubations at a) 4 oC , 

b) 15 oC and c) 30 oC ; d) N2-O2 purged incubations and e) O2 purged incubations. N 

stands for the number of particles counted and the average size and standard 

deviations are also given. Log normal distribution is shown by solid lines 

(Reproduced with permission from Lee et al., 2007). 

e 

d 

c 

b 

a 
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2.3.3. Structure of selenium nanoparticles 

 

Biogenic selenium nanoparticles produced by S.barnesii, S. shriftii and B. 

selenitireducens have displayed features in its UV-visible spectra as compared to 

featureless spectra of chemically formed black selenium particles (Oremland et al., 

2004). Selenium nanospheres produced from S. shriftii exhibited broader absorption 

spectra at wavelengths greater than 600 nm, indicating bimodal distribution 

consisting of single Se chains and polymer Se (formed after the van der Waals 

interaction between two or more octahedral Se rings). 

 

Selenium nanoparticles produced by S.barnesii, S. shriftii and B. selenitireducens 

also exhibit Raman spectra with different features (Oremland et al., 2004). Selenium 

nanospheres produced by S. barnesii and B. selenitireducens formed Se6 

conformation (i.e. chains of 6 Se atoms), while S. shriftii nanoparticles had a Se8 (i.e. 

chain of 8 Se atoms). The Raman spectra of selenium nanoparticles produced by S. 

shriftii displayed a feature at 260 cm-1 that indicates a single chain of Se while a 

feature at 234 cm-1 indicates Se polymer formation, thus further confirming the 

bimodal distribution. Selenium nanospheres formed by S. barnesii and B. 

selenitireducens had a Se6 structure, but their vibrational spectra differ from each 

others. This is indicative that they differed in the configuration of the Se6 chains. For 

selenium nanospheres produced by B. selenitireducens, Se6 vibrational modes A1g 

and Eg were dominated in the table D3d (chair) structure as compared to those in the 

unstable C2v (boat) structure of selenium nanospheres formed by S.barnesii. 

 

The spherical (50 - 400 nm) monoclinic selenium nanoparticles produced by Bacillus 

subtilis changed into an anisotropic, one-dimensional (1D) trigonal structure in 24 h 

when kept at ambient temperature in aqueous solution (Figure 2.5; Wang et al., 

2010). The color of the solution changed from red to black that can be attributed to 

the formation of trigonal selenium nanowires. X-ray diffraction (XRD) analysis of 

these selenium nanoparticles also confirmed the transformation of monoclinic 

selenium nanoparticles to trigonal selenium nanowires. All peaks were in accordance 

to characteristic peaks of trigonal selenium. A packing of long helical chains of 

selenium atoms in a space group gave the cell parameters that corresponds to 
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single phase trigonal structured selenium. Based on Raman spectra analysis and 

XRD, this study proposed a model for the transformation of monoclinic selenium 

nanoparticles to trigonal selenium nanowires (Figure 2.6). The first step of the 

proposed model is the reduction of selenite on the surface of proteins as the 

negative charge of selenite interacts with the positively charged groups of proteins. 

The formed selenium atoms would then act as nuclei and would grow in size 

following the Ostwald ripening process (Gates et al., 2002). Smaller particles 

dissolve or merge into larger particles which grow in size following the Gibbs - 

Thomson law (Elhadj et al., 2008). This study highlights the role of proteins in 

determining the shape of selenium nanoparticles. 

 

 A similar phenomenon, the transformation of monoclinic Se to trigonal Se during the 

course of incubation, was observed in selenium nanoparticles produced by 

Pseudomonas alcaliphila (Figure 2.7; Zhang et al., 2011). A peak was observed at 

254 cm-1 in the Raman spectra after 24 h of incubation indicating the presence of 

monoclinic Se. However, when Raman spectra were taken after 48 h of incubation, a 

peak was observed at 234 cm-1, which can be assigned to vibration of trigonal Se 

helical chains, indicating transformation of monoclinic Se to trigonal Se. 
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Figure 2.5. Spherical selenium nanoparticles change their crystal structure from 

monoclinic to trigonal selenium over time. This transformation was observed on 

selenium nanoparticles produced by Bacillus subtilis.  Field emission scanning 

electron microscope (FESEM) and TEM images of selenium nanoparticles a) 0 h, b) 

12 h, c) 24 h and d) the high magnification of (c). TEM image (e) and electron 

diffraction pattern (f) of an individual Se nanowire (Reproduced with permission from 

Wang et al., 2010). 
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Figure 2.6. Illustration of the transformation of selenious acid to selenium nanowire. 

The process involved biological reduction of selenite ion by proteins produced by B. 

subtilis (1). The end product of the step 1 are selenium particles linked with proteins. 

More elemental selenium particles join and this complex grows in size (2). Numerous 

complexes of protein and elemental selenium join together to form a mesh like 

structure (3) which grow to become larger spherical particles (4). These spherical 

particles then transform to produce smaller spheres and trigonal selenium nanowires 

seeds (5) which eventually grow to become long trigonal selenium nanowires at the 

cost of spherical selenium nanoparticles (6, 7) (Reproduced with permission from 

Wang et al., 2010). 

 

X-ray Absorption Fine Structure (XAFS) spectroscopy is a powerful technique that 

can be applied for determining the solid phase speciation of selenium in a direct 

manner. This technique can assess the speciation of amorphous as well as 

crystalline samples. X-ray Absorption Near Edge Surface (XANES) spectra of large 

sets of model selenium compounds were recorded in order to find out the speciation 

of solid phase selenium precipitated in anaerobic bioreactors (Table 2.2; van 

Hullenbusch et al., 2007; Lenz, 2008; Lenz, 2008c).  
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Figure 2.7. Transformation of red spherical elemental selenium to trigonal elemental 

selenium nanowires,  (a) Spherical selenium particle; (b) Start of formation of 

selenium nanowires; (c) Formation of more nanowires and their aggregation; (d) 

Single nanowire (Reproduced with permission from Zhang et al., 2011). 

 

Samples recovered from UASB reactors operated under sulfate reducing and 

methanogenic conditions were analyzed using XANES (Figure 2.8; van Hullenbusch 

et al., 2007; Lenz, 2008). On the basis of the main edge crest, spectra of both 

samples can be assigned to trigonal grey selenium and vitreous, black selenium. 

However, the first point of inflection for both samples does not match to any 

compound and is varied from trigonal selenium and vitreous black selenium by 0.4 

and 0.5 eV. Also, a variation of only 0.3 eV was observed in both the main edge 

crest and the first inflection point between samples and model compounds such as 

ferroselite. Thus, the contribution of ferroselite in XANES spectra cannot be 

excluded. For the samples of a sulfate reducing bioreactor, linearly combined 

a b 

d c 
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modeled speciation showed exclusively the contribution of trigonal grey selenium. 

On the other hand, samples from the methanogenic reactor consist of trigonal grey 

selenium and selenide. Although the main crest edge, inflection point and linear 

combination indicated trigonal elemental selenium, the Extended X-ray Absorption of 

Fine Structure Fourier Transform (EXAFS FT) did not show the second selenium 

neighbors in the bioreactor samples observed in the model compound (Figure 2.8). It 

is suggested that the selenium present in the bioreactor samples is dominantly in an 

aperiodic form of elemental selenium, most likely red amorphous selenium due to the 

visual red color and absence of XRD signal. 

 

 

 

a b 
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Figure 2.8. Normalized Se K-edge XANES of (a) model compounds; (b) model 

selenium compounds with different oxidation states and space groups; samples of 

UASB reactor operated under sulfate reducing conditions (SR-R) and methanogenic 

conditions (MG-R) with arrows point to the first inflection point (c) and feature "A" (d); 

(e) linear combination of model compounds (dashed line); (f) Fourier Transforms of 

EXAFS spectra of model compounds and samples obtained from UASB reactor 

operated under sulfate reducing (SR-R) and methanogenic (MG-R) conditions 

(Reproduced with permission from van Hullenbusch et al., 2007; Lenz, 2008).

c d 

e f 
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Table 2.2. Selenium model compounds studied with main edge crest and first inflection points of the XANES spectra 

(Reproduced with permission from van Hullenbusch et al., 2007, Lenz, 2008). 

 

 

TBD - To be determined; NA - Not applicable 

* For more detailed explanation of space groups, please refer to Ladd, 2003. 

Specimen Chemical formula Origin

Formal 

oxidation  

state

Crystal system Space group*
Main edge 

crest (eV)*

First 

inflection 

point (eV)*

Achavalite FeSe Synthetic -II Dihexagonal Dipyramidal P 6/mmc 12662.2 12659.9

Klockmannite CuSe Synthetic -II Dihexagonal Dipyramidal P 6/mmc 12662.3 12660.0

Selenocysteine C3H7NO2Se Synthetic -II NA NA 12663.4 12660.7

Sodium selenide Na2Se Synthetic -II Cubic F m3m 12665.8 12661.1

Stilleite ZnSe Synthetic -II Cubic F 43m 12665.7 12662.9

Berzelianite Cu2Se Czech Republic -II Cubic F 43m 12666.6 12663.0

Berzelianite Cu2Se Sweden -II Cubic F 43m 12666.9 12662.9

Penroseite (Ni, Co, Cu)Se2 Bolivia -I Isometric - Diploidal P a3 12662.1 12659.9

Krutaite CuSe2 Bolivia -I Isometric - Diploidal P a3 12662.1 12659.8

Ferroselite FeSe2 Utah (USA) -I Isometric - Dipyramidal P nnm 12662.8 12660.9

Red α-monoclinic Se(0) Se Synthetic 0 Monoclinic P 2/n 12662.1 12659.5

Black, vitreous Se(0) Se Synthetic 0 Amorphous NA 12662.5 12660.0

Grey Se(0) Se New Mexico (USA) 0 Trigonal P 321 12662.5 12661.1

Sodium selenite Na2SeO3 Synthetic +IV Monoclinic P 2/c 12667.3 12664.1

Sodium selenate Na2SeO4 Synthetic +VI Orthorhombic P ddd 12670.8 12667.9

Sample from sulfate reducing reactor TBD Sulphate reducing reactor TBD TBD TBD 12662.5 12660.6

Sample from methanogenic reactor TBD Methanogenic reactor TBD TBD TBD 12662.5 12660.5
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XANES has also been used for scrutinizing the selectivity of the chemical extraction 

methods towards the speciation of selenium (Lenz et al., 2008c). It was observed that 

during the chemical extraction method, 58% selenium that is present as metal selenides 

and organic selenium compounds is estimated as the elemental selenium fraction. In 

this study, the best fit for the selenium precipitation in selenate treating UASB anaerobic 

granules was obtained using four model compounds (Figure 2.9). Out of these four 

model compounds, two model compounds were dominated in both anaerobic and 

aerobic (10 minutes exposure to air) extraction. One of the dominant compounds in both 

the aerobic and anaerobic extraction was trigonal elemental selenium. In the case of 

anaerobic extraction, the other dominant compound was stilleite or sodium selenide. In 

the case of aerobic extraction, stilleite or achavalite was the other dominant form. The 

effect of short exposure of air during the sequential extraction procedure was also 

investigated using XANES. The presence of highly oxidized species in the first 

(extraction with 0.25 M KCl) and second step (extraction with 0.1 M K2HPO4) of the 

aerobic sequential extraction procedure after 10 minutes exposure to air can be 

attributed to oxidation of organic selenocysteine like species. Change in speciation after 

the third step of the aerobic as compared to the anaerobic sequential extraction 

procedure (extraction with 0.25 M Na2SO3, sonication at 20 kHz for 2 min, then 

ultrasonic bath for 4 h) was attributed to the oxidation of cubic (sodium selenide, -II) 

type to elemental selenium. However, the cubic compound is more likely to be an 

insoluble PbSe type compound because sodium selenide is soluble and highly labile. 

 

The selenium oxidation state in the selenium nanoparticles was examined using XANES 

(Lee et al., 2007). Selenium K-edges XANES spectra for biogenic produced selenium 

by Shewanella sp. HN-41 and four other model compounds depicting -2 (FeSe as 

selenide), 0 (elemental selenium powder), +4 (sodium selenite) and +6 (sodium 

selenate) was obtained (Figure 2.10a). The first feature in the normalized absorbance of 

XANES spectra of biogenic selenium nanoparticles cannot be used to distinguish 

between the elemental selenium and selenide. To get more insight, first inflection point 

energies of absorption edges were examined (2.10b). When comparing the inflection 

point energies of biogenic selenium nanoparticles with those of elemental selenium 
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powder and selenide (FeSe), the inflection point energies of biogenic selenium 

nanoparticles was closer to elemental selenium than that of selenide. 

 

 

 

 

Figure 2.9. Normalized Se K-edge XANES spectra for sequential extraction residues 

R1, R2 and R3 to R3 (solid lines) and best fit by linear combination of model 

compounds (×) after extraction performed anoxically (a) and under ambient air (b). 

Contributions by model compounds (text box in the chart) to the best fit results are given 

in % relations. Misfits are related to unidentified selenium species (Lenz et al., 2008c). 

R1, R2 and R3 are defined as the residual obtained after the first, second and third of 

sequential extraction procedure, respectively (Reproduced with permission from Lenz et 

al., 2008c). 
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Figure 2.10. Normalized Se K-edge (a) XANES spectra and (b) the second derivatives 

for elemental selenium nanoparticles produced by Shewanella sp. HN-41 and model 

compounds (FeSe, Se powder, Na2SeO4 and Na2SeO3) (Reproduced with permission 

from Lee et al., 2007). 

 
2.4. Challenges in biogenic selenium nanoparticles production 

 

The biogenic production of selenium nanoparticles by reduction of selenium oxyanions 

is a bottom up process that follows the Ostwald ripening principle and thus the size of 

the formed selenium nanoparticles increases with time (Zhang et al., 2011). One of the 

most important challenges in the biological production of selenium nanoparticles is 

being able to control the size and polydispersity index of the particles. The importance 

of controlling the size lies in the fact that many properties of nanoparticles such as 

a 

b 
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optoelectronic, material and catalytic properties are affected by the size of the 

nanoparticles. The biologically produced selenium nanoparticles are polydisperse with 

an average diameter greater than 100 nm (Oremland et al., 2004; Tejo Prakash et al., 

2009; Dhanjal and Cameotra, 2010; Kuroda et al., 2011; Zhang et al., 2011; Bajaj et al., 

2012). Since current nanotechnology applications use particles much smaller than 100 

nm, there is a need to understand the mechanisms of biogenic formation of selenium 

nanoparticles so that effective control of their size can be achieved.  

 

Another challenge in the biogenic production of selenium nanoparticles is their 

purification. As selenium nanoparticles can also be formed intracellularly, the separation 

of these particles from the biomass without altering their properties is extremely 

challenging. The ideal situation would be that selenium nanoparticles are produced 

extracellularly.  

 

2.4.1. Controlling the size of selenium nanoparticles 

 

Selection of an appropriate capping agent can control the size and shape of the 

nanoparticles (Pramanik et al., 2007; Saraswathi et al., 2007; Lu et al., 2008; Li et al., 

2013). Biomacro-molecules such as proteins and DNA act as capping agent by 

attaching to nanoparticles, thus preventing uncontrolled growth and limiting the size of 

nanoparticles (Niemeyer, 2001). A study by Dobias et al. (2011) showed the role of 

proteins in controlling the shape and size distribution of biogenic selenium 

nanoparticles. Cell free extract of E. coli grown in the presence of selenite was used to 

expose biologically produced selenium nanoparticles and iron nanoparticles. Chemically 

produced selenium nanoparticles were also produced in the presence of cell free 

extracts. It was found that chemically produced selenium nanoparticles in presence of 

cell free extract showed a more narrow size distribution (106.7 ±  8.7 nm) in comparison 

to chemically produced selenium nanoparticles in the absence of cell free extracts (10 - 

90 nm). This suggests that the cell free extract stabilizes the nanoparticles or provides a 

template for the controlled growth of crystals. Six different proteins were found to bind to 

selenium nanoparticles. Two of these proteins (EF-Tu and 3-oxoacyl synthase) were 
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found to bind non-specifically as these two proteins could bind to iron nanoparticles as 

well. The other four proteins were found to be specifically and strongly attached to 

selenium nanoparticles. These four proteins were isocitrate lyase, isocitrate 

dehydrogenase, outer membrane protein C precursor and alcohol dehydrogenase. All 

these four proteins have a size in the range of 36 to 48 KDa, exhibit enzymatic to 

structural functions and have an isoelectric point between pH 4.58 to 5.94. The authors 

also demonstrated that when the chemical synthesis of selenium nanoparticles occurs 

in the presence of alcohol dehydrogenase, the size of the produced nanoparticles was 

three fold smaller (122 ± 24 nm) than the size of chemically synthesized selenium 

nanoparticles in absence of alcohol dehydrogenase (319 ± 57 nm).     

 

2.4.2. Controlling the location of selenium nanoparticle production - intra or extracellular 

 

Biogenic selenium nanoparticles can be produced either extracellularly or intracellularly. 

One of the proposed mechanisms of extracellular production is reduction of the 

selenium oxyanion via outer membrane cytochromes. For intracellular production, it has 

been proposed that selenium oxyanion reacts with thiols inside the cell to produce 

selenium nanoparticles which may be expelled outside the cell (Figure 2.11; Zannoni et 

al., 2008; Pierce et al., 2009). The extracellular production would give a higher yield 

while the intracellular production provides monodisperse nanoparticles with a better 

control of size.  

 

In the study by Oremland et al. (2004), when B. selenitireducens was grown with nitrate, 

followed by a washing step and then fed with selenite, the external selenium 

nanospheres were predominantly produced. In another study to understand the 

excretion of selenium nanoparticles from inside the cell, a new protein of approximately 

95 kDa was discovered. This protein was associated with selenium nanoparticles and 

was produced during selenate respiration by Thauera selenatis (Debieux et al., 2011). 

The protein was named Se factor A. Subsequent experiments revealed that the protein 

is secreted in response to increasing selenite concentration and hence is up-regulated. 

The genome analysis of T. selenatis disclosed an open reading frame that leads to a 
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protein with an estimated mass of 94.5 kDa. Due to the absence of a cleavable signal 

peptide, it was suggested that the protein is exported directly from the cytoplasm. It has 

been demonstrated that in vitro production of selenium nanoparticles by reduction of 

selenite by glutathione (GSH, glutamylcysteinylglycine) are stabilized by the presence of 

Se factor A. This study also proposes a selenate reduction pathway in T. selenatis. In 

this proposed pathway, selenium nanoparticles are produced and stabilized in 

cytoplasm before being expelled outside the cell.  

 

 

 

Figure 2.11. Proposed mechanisms for the biogenesis of Se0 nanoparticles. (a) Se 

oxyanions react intracellularly with thiols and nanoparticles are produced (Reproduced 

with permission from Zannoni et al., 2008. (b) Se oxyanions are reduced in the 

periplasmic space of gram-negative bacteria; Se0 may be excreted via vesiculation. (c) 

Reduction via outer membrane cytochromes (Reproduced with permission from Pearce 

et al., 2009. Transmission electron microscopic (TEM) images are from Gonzalez-Gil et 

al., in preparation) showing anaerobic granular sludge contains various microorganisms 

that can synthesize Se0 nanoparticles. Scale bars, 0.2 µm. 

a 

b 

c 



                                                         Chapter 2 

37 
 

2.4.3. Role of synthetic biology in achieving biogenic production of selenium 

nanoparticles 

 

The biogenic production of selenium nanoparticles involves "a bottom-up approach" 

meaning that a single atom joins together with other atoms or molecules to form 

nanoparticles. This growth process is affected by the presence of organic molecules 

such as proteins, DNA and sugars. These molecules act as “templates” for nucleation 

and control the shape and size of the resulting crystals (Niemeyer, 2001). The growth 

process is also affected by the concentration of the solute and the temperature of the 

system. Thus, it is important to not only understand the complete mechanism and 

factors affecting the formation of selenium nanoparticles, but also to have the ability to 

regulate the concentration of proteins and reducing agents involved in their production. 

For example, a mutant of Shewanella oneidensis lacking the outer membrane C type 

cytochromes produced smaller size Ag and AgS nanoparticles as compared to 

Shewanella oneidensis with outer membrane C type cytochromes (Ng et al., 2013). 

Moreover, the nanoparticles produced by the mutant showed higher antibacterial and 

catalytic activities. Thus, by playing with the expression profile of important proteins, the 

size and activity of nanoparticles could be better controlled. 

 

The chemical reduction of sodium selenite by glutathione (GSH, 

glutamylcysteinylglycine) in the presence of bovine serum albumin at room temperature 

resulted in the production of particles smaller than 100 nm (Johnson et al., 2008). This 

process closely resembles the dissimilatory reduction of sodium selenite in R. rubrum 

and E. coli (Kessi and Hanselmann, 2004). In R. rubrum, the selenite reduction rate 

decreased with decreasing glutathione (GSH, glutamylcysteinylglycine) concentration, 

whereas in E. coli, the synthesis of glutathione (GSH, glutamylcysteinylglycine) was 

induced when selenite was present. This suggests that by appropriately controlling the 

expression of glutathione (GSH, glutamylcysteinylglycine) and by eliminating other 

factors such as expression of any other reductase or excess production of any other 

protein that may impact the crystal growth, it may be possible to produce selenium 

nanoparticles extracellularly with E. coli produced glutathione (GSH, 
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glutamylcysteinylglycine). To achieve this objective, a detailed understanding of cell 

survivability, cell growth, reduction pathways and mechanisms is required. Once we 

have this understanding, a synthetic cell with minimal functions can be designed where 

expression of every protein is tightly regulated to produce selenium nanoparticles with 

desired characteristics. 

 

The Se factor A protein found in T. selenatis stabilizes the selenium nanoparticles inside 

the cell prior to be expelled outside the cell (Debieux et al., 2011). However, the 

transport mechanism including trigger factors for transporting selenium nanoparticles 

from inside the cell to outside is not understood. A detailed understanding of this 

transport mechanism can help to trigger expulsion of selenium nanoparticles when they 

have reached a desired size. 

 

The role of enzymes and proteins in the production of selenium nanoparticles and their 

stability is well known (Kessi and Hanselmann, 2004; Yee et al., 2007; Ma et al., 2009; 

Choudhury et al., 2011; Lenz et al., 2011). However, till to date only the structure of 

selenate reductase in Thauera selenatis has been studied in detail (Maher and Joan, 

2006; Dridge et al., 2007). Our understanding of the regulation, structure and active 

sites of proteins involved in the selenate or selenite reduction is severely lacking. The 

expression levels of these proteins determine the rate of reaction and hence affect the 

growth of selenium nanoparticles. The active sites in the 3-dimensional (3D) structure of 

the protein can act as a template for controlling the growth of selenium nanoparticles. A 

better understanding of the expression levels and the 3D structure of these proteins 

would lead to better control of size and polydispersity of biologically produced selenium 

nanoparticles.  

 

The understanding of complete mechanism and pathways of biological reduction of 

selenium oxyanions as well as the need of designing new synthetic micro-organism can 

be achieved by synthetic biology approach. The power of synthetic biology lies in 

combining the knowledge of metagenomics, proteomics, structural biology, molecular 

biology and bioinformatics (Marner, 2009; Ellis and Goodacre, 2012; Lam et al., 2012; 
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Velenich and Gore, 2012; Lim et al., 2013). After the demonstration of the first devices 

in 2000 – the genetic toggle switch and the genetic oscillator – synthetic biology has 

grown rapidly from single gene/protein devices to more complex transcription and 

signaling networks (Elowitz and Leibler, 2000; Gardner et al., 2000). However, the 

beauty of synthetic biology lies in its engineering-driven approaches of modularization, 

rationalization and modeling. It can play a role in analyzing and synthesizing the 

signaling pathways and cellular control (Marner, 2009. Synthetic biology can help us in 

reconstruction of the natural pathways in evolutionary distant hosts. This will help in 

subtracting the interference from the original host which in turn will help us in developing 

strategies in designing more complex signaling networks at DNA, RNA and protein level 

to reprogram cellular functions for selenium nanoparticles production (Figure 2.12; 

Deplazes, 2009). 

 

 

 

Figure 2.12. Illustration of different categories of synthetic biology. In silico design 

would help in minimizing the experiments and is thus useful for all parts of synthetic 
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biology. Synthetic genomes can be used in designing model organisms with completely 

synthetic genome. For example, a synthetic genome encoding new metabolic pathways 

can be integrated in protocells for the production of selenium nanoparticles with 

optimized desired characteristics. The same approach can be used for understanding 

the mechanism of selenium oxyanions reduction by transferring the natural pathway in 

evolutionary distant host (Reproduced with permission from Deplazes, 2009). 

 

2.5. Conclusions 

 

The biogenic production of selenium nanoparticles is a promising eco-friendly option to 

produce selenium nanoparticles at ambient temperature and pressure. Biological 

production methods also give cost advantage vis a vis chemical methods as they do not 

require the use of specialized equipment and costly chemicals. The major challenges in 

the biological production method are poor product quality (higher polydispersity and 

larger size) and need for exhaustive post production treatment. However, there are 

enough evidences present in the literature to suggest that the above challenges can be 

addressed provided that we understand the detailed mechanisms involved in the 

biogenic formation of selenium nanoparticles. This understanding would allow 

researchers to optimize the presently known microorganisms and or to completely 

design a new synthetic microorganism with desired properties. These desired properties 

will include inducing the extracellular production of selenium nanoparticles, controlling 

the size of nanoparticles by controlling the expression of desired reducing agents and 

expression of appropriate capping agents in the exact amount that would lead to 

desired surface properties, size and monodispersity. The expression of an appropriate 

template can also lead to the formation of smart self assembled systems. Synthetic 

biology has a lot of potential to completely revolutionize the biogenic production of 

selenium nanoparticles in near future. 
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Abstract: 

 

The origin of the organic layer covering colloidal biogenic elemental selenium 

nanoparticles (BioSeNPs) is not known, particularly in the case when they are 

synthesized by complex microbial communities. This study investigated the presence 

of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in 

capping the extracellularly available BioSeNPs was also examined. FT-IR 

spectroscopy and colorimetric measurements confirmed the presence of functional 

groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting 

the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the 

presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded 

stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, 

BioSeNPs and chemically synthesized EPS capped selenium nanoparticles had 

similar surface properties, as shown by ζ-potential versus pH profiles and iso-electric 

point measurements. This study shows that the EPS of anaerobic granular sludge 

forms the organic layer present on the BioSeNPs synthesized by these granules. 

The EPS also govern the surface charge of these BioSeNPs, thereby contributing to 

their colloidal properties, hence affecting their fate in the environment and the 

efficiency of bioremediation technologies. 

 

Keywords: EPS, BioSeNPs, surface charge, capping, FT-IR 
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3.1. Introduction 

 

Selenium is an essential nutrient in the human diet (Rayman, 2000). However, the 

higher concentrations of selenium, especially those of the selenium oxyanions 

selenate and selenite, are toxic to humans, animals and aquatic life (Hamilton, 2004; 

Lenz and Lens, 2009; Qin et al., 2013). Therefore, regulatory agencies have set 

limits on total selenium discharges, e.g. the Environmental Protection Agency of the 

United States has recommended a discharge limit of 5 µg L−1 total selenium in 

freshwater (USEPA, 2013). Anaerobic bioreduction of dissolved selenium oxyanions 

to elemental selenium is considered a promising technology for the remediation of 

selenium oxyanions containing wastewaters (Cantafio et al., 1996; Lenz et al., 2008). 

However, the produced biogenic elemental selenium is in the form of colloidal 

spherical nanoparticles with a diameter of 50 - 500 nm (Oremland et al., 2004; Jain 

et al., 2014). Such colloidal biogenic elemental selenium nanoparticles (BioSeNPs) 

are present in high concentrations in the effluent of upflow anaerobic sludge blanket 

reactors (UASB), in which anaerobic granules treat selenium rich wastewaters (Lenz 

et al., 2008). Buchs et al. (2013) showed that the colloidal properties of these 

BioSeNPs determine their transport and fate in the environment as well as the 

bioremediation efficiency. Thus, it is important to understand the factors governing 

the colloidal properties of BioSeNPs. 

  

Capping agents are known to affect the surface properties of chemically produced 

metal(loid) nanoparticles, including surface charge and consequently colloidal 

stability (Figure S1 in Appendix 1) (Faure et al., 2013). For instance, sterically 

stabilized silver nanoparticles capped by polyvinylpyrrolidone (PVP) do not 

agglomerate while electrostatically stabilized silver nanoparticles by citrate do 

agglomerate at low pH or high ionic strength (El Badawy et al., 2010). 

Electrosterically stabilized silver nanoparticles by branched polyethyleneimine 

capping are more resistant to agglomeration at low pH or high ionic strength as 

compared to citrate stabilized silver nanoparticles (El Badawy et al., 2010). Proteins 

such as bovine serum albumin (BSA), which stabilize silica nanoparticles through 

electrosteric mechanisms (Paula et al., 2014), are also known to stabilize chemically 

produced selenium nanoparticles (CheSeNPs) (Zhang et al., 2001). Proteins are 

also known to be associated with the BioSeNPs (Dobias et al., 2011; Lenz et al., 
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2011). It has been proposed that BioSeNPs are coated with an organic layer of 

microbial origin, composed not exclusively of proteins (Winkel et al., 2012). However, 

to the best of our knowledge, the origin of this organic layer and its effect on the 

surface charge and thus, on the colloidal properties of BioSeNPs, is not known. 

 

This study hypothesized that extracellular polymeric substances (EPS) are the 

capping agents and thus can affect the surface charge of the BioSeNPs that are 

available extracellularly. EPS are high molecular weight macromolecules that contain 

mainly proteins, carbohydrates, humic-like substances and small concentrations of 

DNA (Sheng et al., 2010; More et al., 2014). Thus, they provide many sites that can 

interact with the elemental selenium. EPS are an important component of mixed 

microbial aggregates i.e. biofilms or anaerobic granules employed for the treatment 

of selenium rich wastewaters in bioreactors (Flemming and Wingender, 2010; Sheng 

et al., 2010; Dhanjal and Cameotra, 2011). Besides, reduction of selenite to 

BioSeNPs by pure cultures has been reported both in the periplasmic space (Li et 

al., 2014) and extracellularly (Jiang et al., 2012), which further indicates that the 

BioSeNPs are likely to be grown in the presence of EPS.  

 

In this study, the presence of an organic layer on the surface of BioSeNPs was 

determined from Energy Disperse X-ray spectroscopy (EDXS) and ζ-potential 

measurements as well as acid-base titrations. The presence of proteins and 

carbohydrates, suggesting the presence of EPS on the BioSeNPs, was confirmed by 

Fourier-transform Infrared Spectroscopy (FT-IR) and colorimetric measurements. 

EPS extracted from selenite fed anaerobic granules was used as a capping agent for 

CheSeNPs (EPS capped CheSeNPs) and their colloidal properties were studied as 

well. BSA, a well-known capping agent for CheSeNPs (Tran and Webster, 2011; 

Zhang et al., 2001), was used as a reference material to (a) demonstrate the capping 

ability of EPS and (b) show that the capping of BioSeNPs does not exclusively 

consists of proteins. 

 

3.2. Materials and methods 

 

3.2.1. BioSeNPs production and purification 
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BioSeNPs were produced using an anaerobic granular sludge treating pulp and 

paper wastewater, which has been described in detail by Roest et al. (2005). 

Anaerobic granular sludge (13 g L−1 wet weight) was added to the oxygen-free 

growth medium (NH4Cl 5.6, CaCl2
.2H2O 0.1, KH2PO4 1.8, Na2HPO4 2.0, KCl 3.3, in 

mM) with 20.0 mM of sodium lactate and 5.0 mM of sodium selenite. The incubation 

was carried out at 30 °C and pH 7.3 for 14 days. The production of elemental 

selenium was confirmed by the appearance of a red color (Figure S2b in Appendix 

1). The produced BioSeNPs were purified following the protocol developed in Dobias 

et al. (2011) with minor modifications. Briefly, the supernatant was decanted, 

followed by simple centrifugation (Hermle Z36HK) at 3,000 g and 4 °C for 15 minutes 

to separate the suspended biomass. The collected BioSeNPs present in the 

supernatant from the previous centrifugation step were concentrated by 

centrifugation (Hermle Z36HK) at 37,000 g and 4 °C for 15 minutes. The pellet was 

re-suspended in Milli-Q (18MΩ cm) water and purified by sonication (15 minutes at 

23 KHz, Soniprep 150, UK) followed by hexane separation. The concentration of 

BioSeNPs was determined by dissolving them in concentrated HNO3 and then 

measuring the Se concentration by ICP-MS (Jain et al., 2015).  

 

3.2.2. Analysis of the chemical composition of the BioSeNPs' surface 

 

30 mL of purified BioSeNPs (390 mg L−1) were sonicated for 15 minutes at 23 KHz 

using Soniprep 150 (MSE, UK) sonicator. After the sonication, BioSeNPs were 

centrifuged at 37,000 g for 30 minutes at 4 oC (Hermle Z36HK). The supernatant was 

collected and analyzed for carbohydrates (phenol-sulfuric acid method)(DuBois et 

al., 1956), proteins and humic-like substances (modified lowry method by Fr¢lund et 

al., 1995). The DNA concentration in the supernatant was measured after 

precipitation of the DNA with iso-propanol and then measuring the absorbance of the 

pellet using a spectrophotometer at 260 nm.(Wu and Xi, 2009) 

 

3.2.3 EPS extraction and characterization 

 

EPS was extracted from anaerobic granules, which were fed with selenite and 

lactate, and incubated at 30 °C for 14 days, using the NaOH extraction method (Liu 

and Fang, 2002). It is important to note that the NaOH extraction method may 
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slightly alter the molecular structure of the EPS (Sheng et al., 2010), which is, 

however, unavoidable. The total organic carbon (TOC) and total organic nitrogen 

(TN) content of the extracted EPS was determined using a total organic carbon 

analyzer (Shimadzu TOC-VCPN analyzer, Kyoto, Japan). 3D excitation (220 - 400 

nm) and emission (300 - 500 nm) fluorescent spectroscopy of extracted EPS (total 

organic carbon concentration 0.5 mg L−1) was carried out using a FluoroMax-3 

spectrofluorometer (HORIBA Jobin Yvon, Edison, NJ, USA) instrument. The 

carbohydrate, protein, humic-like substances and DNA content in the EPS were 

determined as described above. The FT-IR spectra of EPS were recorded on a 

Bruker Vertex 70/v spectrometer equipped with a D-LaTGS-detector (L-alanine 

doped triglycine sulfate) (more details in Appendix 1). 

 

3.2.4. Production and purification of CheSeNPs, EPS capped CheSeNPs and BSA 

capped CheSeNPs  

 

CheSeNPs were produced by reduction of sodium selenite (100 mM, 0.35 mL) by L-

reduced glutathione (GSH) (100 mM, 1.4 mL) in a total volume of 30 mL at 22 °C. 

EPS capped CheSeNPs and BSA capped CheSeNPs (chemically produced 

selenium nanoparticles in the presence of EPS and BSA, respectively) were 

produced in a similar manner, but in the presence of 100 mg L−1 total organic carbon 

of the extracted EPS and 100 mg L−1 of BSA, respectively. After the addition of 

NaOH (1 M) to adjust the pH to 7.2, the produced CheSeNPs, EPS capped 

CheSeNPs and BSA capped CheSeNPs were dialyzed against Milli-Q water (18MΩ 

cm) using a 3.5 kDa regenerated cellulose membrane while changing water every 12 

hours for 96 hours (Zhang et al., 2001).   

 

3.2.5. Selenium nanoparticles characterization 

 

BioSeNPs were characterized by scanning electron microscopy (SEM) coupled with 

EDXS, ζ-potential measurements, hydrodynamic diameter (HDD) measurements, 

FT-IR and acid-base titrations (see Appendix 1 for more details). CheSeNPs were 

characterized by transmission electron microscopy (TEM) coupled with EDXS (TEM-

EDXS) (see Appendix 1 for more details). BSA and EPS coated CheSeNPs were 

characterized by TEM-EDXS, ζ-potential measurements, HDD measurements and 
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FT-IR spectra (see Appendix 1 for more details). EPS and BSA capped CheSeNPs 

were contacted with different initial concentrations of Zn for ζ-potential 

measurements (see Appendix 1 for more details). 

 

3.3. Results  

 

3.3.1. SEM-EDXS analysis of BioSeNPs  

 

The red BioSeNPs synthesized by the reduction of SeO3
2− by anaerobic granular 

sludge are primarily spherical in shape (Figure S2a in Appendix 1). The resultant 

BioSeNPs formed a stable colloidal suspension (Figure S2b in Appendix 1). EDXS 

analysis of the BioSeNPs confirmed the presence of selenium (Figure S2c in 

Appendix 1). In addition, carbon, nitrogen, oxygen as well as weak signals of 

phosphorous, sulfur, calcium, and iron were also observed. The presence of carbon, 

nitrogen, oxygen, phosphorous and sulfur may be attributed to the EPS coating of 

the BioSeNPs, while calcium and iron can be likely traced back to the anaerobic 

granules used for the production of BioSeNPs.  

 

3.3.2. Determination of functional groups present on the surface of BioSeNPs 

 

The carbohydrates, proteins, humic-like substances and DNA concentrations 

released in the supernatant after the sonication of purified BioSeNPs were, 

respectively, 313.8 ± 3.5, 144.1 ± 2.1, 158.2 ± 2.3 and 4.6 ± 0.8 mg g−1 of BioSeNPs, 

confirming the presence of EPS components (Sheng et al., 2010) on the surface of 

the BioSeNPs. Acid-base titrations were carried out to determine the pKa values of 

the different functional groups present on the surface of the BioSeNPs. The acid-

base titration curves for BioSeNPs (Figure S3 in Appendix 1) showed smoother 

lowering of the pH, as compared to the control, with the addition of acid (HCl). This 

can be attributed to the buffering capacity of the BioSeNPs due to the presence of 

various functional groups on their surface (Wang et al., 2012).   

 

To evaluate the buffering capacity of BioSeNPs in more detail, the derivative of the 

acid-base titration was plotted with pH (Figure 3.1). The local minima represent the 

minimum variation of the pH and hence the buffering zones due to the adsorption of 
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H+ ions on the surface of BioSeNPs, which corresponds to pKa values of the 

functional groups present on the surface of the BioSeNPs (Braissant et al., 2007). It 

is important to note that local minima will not be observed prominently in the 

beginning and the end of titration due to the relatively small pH change. The different 

pKa values and their corresponding functional groups are detailed in Figure 3.1. The 

presence of carboxylic acid (pKa = 3.9), phosphoric groups (pKa = 6.3) and sulfonic, 

sulfinic or thiol groups (pKa = 7.5) were confirmed by the acid-base titration (Figure 

3.1) (Wang et al., 2012). Most notable absents are the amino groups, but this may 

be due to a small change in the pH value at the beginning of the titrations. 

 

 

Figure 3.1. Derivative of acid-base titration data of BioSeNPs (—).  

 

3.3.3. Characterization of EPS, EPS capped CheSeNPs, BSA capped CheSeNPs 

and CheSeNPs 

 

The total organic carbon and total nitrogen concentration of the extracted EPS was 

116.7 ± 0.5 mg L−1 and 19.0 ± 0.3 mg L−1, respectively. 3D excitation emission 

fluorescent spectroscopy of EPS confirmed the presence of aromatic proteins and 

humic substances (Figure S4 in Appendix 1). The carbohydrates, proteins, humic-

like substances and DNA concentrations in the extracted EPS were, respectively, 

106.9 ± 2.3, 239.5 ± 6.2, 184.7 ± 15.3 and 2.7 ± 0.6 mg L−1. 

 

The extracted EPS and BSA were used as a capping agent for CheSeNPs produced 

by the reduction of sodium selenite using reduced-glutathione (Zhang et al., 2001). 

The addition of EPS during the chemical synthesis of selenium nanoparticles led to 

the formation of a clear suspended yellow-red colloidal solution (Figure 3.2a). A 

comparable result was obtained for BSA stabilized CheSeNPs (Figure 3.2b). In 
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contrast, selenium nanoparticles produced in the absence of EPS formed a turbid 

brownish suspension (Figure 3.2c) in an hour, but settled only within two days. No 

agglomeration and settling of EPS and BSA capped CheSeNPs were observed even 

two weeks after their formation. It is important to note that the selenium 

concentration in the BSA capped CheSeNPs, EPS capped CheSeNPs and 

CheSeNPs was identical (1.1 mM). TEM micrographs revealed that EPS and BSA 

capped CheSeNPs were spherical in shape (Figure 3.2d, e). In contrast, wires of 

selenium were formed in the absence of EPS (Figure 3.2f). Obviously, EPS acted as 

a capping agent, thereby influencing the morphology of the CheSeNPs (Shah et al., 

2010; Zhang et al., 2010; Zheng et al., 2012). EDX spectra confirmed the presence 

of selenium in all three types of CheSeNPs investigated (Figure 3.2g, h, i). 

 

Figure 3.2. CheSeNPs formed in the presence of the capping agents (a) EPS and 

(b) BSA as well as (c) in the absence of any capping agent. High-angle annular dark-
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field-scanning TEM micrographs of (d) EPS and (e) BSA stabilized CheSeNPs and 

(f) bright-field TEM micrograph of unstabilized CheSeNPs (no capping agent). EDX 

spectra obtained from (g) a single spherical EPS capped CheSeNp, (h) an ensemble 

of spherical BSA capped CheSeNPs and (i) from CheSeNPs nanowires prepared in 

the absence of EPS or BSA. Note that the Cu signal in the EDX spectra is caused by 

the carbon-coated copper support grid used for the TEM analysis. 

 

3.3.4. Comparison of the capping agents on BioSeNPs, EPS capped CheSeNPs and 

BSA capped CheSeNPs 

 

3.3.4.1. FT-IR analysis  

 

FT-IR spectroscopy provided information of the functional groups present on the 

BioSeNPs (Figure 3.3, Table S1 in Appendix 1). The BioSeNPs had a broad feature 

between 3404 to 3270 cm−1, corresponding to -OH and -NH stretching vibrations of 

amine and carboxylic groups (Xu et al., 2011). Additionally, small but sharp features 

at 2959, 2928 and 2866 cm−1 are observed which can be attributed to aliphatic 

saturated C-H stretching modes (Wang et al., 2012). The strongest feature is 

observed at 1646 cm−1 and mainly represents the stretching vibration of C=O 

present in proteins (amide I) (Xu et al., 2011). Thus, the feature at 1542 cm−1 

corresponds to the N-H bending vibration in amide linkage of proteins (amide II) 

(Wang et al., 2012). The band around 1460 cm−1 might correspond to methyl groups 

and/or carboxylate groups (antisymmetric stretching vibration), whereas the feature 

at 1394 cm−1 is most likely attributed to the symmetric stretching vibration (Zhu et al., 

2012). The presence of carboxylic groups is also evidenced by the weak shoulder 

observed around 1720 cm−1. C-N stretching and N-H bending vibrations might 

contribute to the band observed at 1242 cm−1 (amide-III) (Wang et al., 2012). The 

small band at 1151 cm−1 is characteristic for P=O stretching modes (Wang et al., 

2012). Another broad feature was observed between 1073 and 1038 cm−1, which 

corresponds to C-O-C and C-H stretching arising from the carbohydrate groups 

(Wang et al., 2012; Zhu et al., 2012). The presence of S-H or S-O groups cannot be 

fully ascertained in the IR spectra due to their weak intensities or due to overlapping 

bands, respectively.  
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Figure 3.3. IR spectra of (a) EPS stabilized CheSeNPs, (b) extracted EPS, (c) 

BioSeNPs, (d) BSA stabilized CheSeNPs and (e) BSA. Indicated values are in cm−1.  

 

FT-IR spectra for BioSeNPs, EPS and EPS capped CheSeNPs were similar (Figure 

3.3) and confirmed the presence of proteins (amide I: 1653-1646 cm−1, amide II: 

1537-1542 cm−1 and amide III: 1236-1242 cm−1) and carbohydrates (1040-1077 

cm−1) (Figure 3.3 a-c). In contrast, the absence of carbohydrates for BSA and BSA 

stabilized CheSeNPs is shown in the IR spectra by the missing bands in the lower 

frequency range (Figure 3.3 d,e). The absence of carbohydrates residues is 

obviously reflected in the OH-stretching region (~3400 cm−1) where reduced band 

intensities are observed in these spectra (Wang et al., 2012).  

 

The overall shape of the FT-IR spectra of EPS capped CheSeNPs and EPS was 

very similar (Figure 3.3 a,b). Small spectral deviations were observed at 3400 cm−1 

for EPS which were shifted to 3420 cm−1 for EPS capped CheSeNPs. The relative 

intensities of the features around 1450 and 1400 cm−1 are more different for EPS 

capped CheSeNPs than for EPS. This indicates a change of the carboxylate 

functional groups due to the presence of the selenium nanaoparticles. Interestingly, 

the same spectral feature was also observed for BSA stabilized CheSeNPs and BSA 

(Figure 3.3 d,e). 
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3.3.4.2. ζ-potential and HDD measurements  

 

The ζ-potential of the BioSeNPs was −41.6 ± 0.5 mV at pH 7.0 and 1 mM NaCl 

concentration. At the same pH, but with 10 and 100 mM NaCl, the ζ-potential of the 

BioSeNPs was −29.7 ± 0.7 mV and −17.5 ± 0.9 mV, respectively. Similar negative ζ-

potential values were reported for BioSeNPs formed at ambient temperature by 

bacterial cultures, i.e. Bacillus selenatarsenatis and Bacillus cereus (Dhanjal and 

Cameotra, 2010; Buchs et al., 2013). At a 10 and 100 mM background NaCl 

concentration, the iso-electric point of studied BioSeNPs was, respectively, 3.2 ± 0.1 

mV and 2.4 ± 0.1 mV (Figure 3.4a, b). 

 

Figure 3.4. ζ-potential measurement of BioSeNP (□), EPS (◊), EPS capped 

CheSeNPs (∆), BSA (○) and BSA capped CheSeNPs (＊) versus pH at (a) 10 mM 

and (b) 100 mM NaCl background electrolyte concentrations. (c) Hydrodynamic 

diameter of BioSeNP (□), EPS capped CheSeNPs (∆) and BSA capped CheSeNPs (

＊) versus pH at 100 mM NaCl background electrolyte concentration. 

 

The ζ-potential of EPS, EPS capped CheSeNPs, BSA and BSA capped CheSeNPs 

was, respectively, −35 ± 1.1 mV, −31.5 ± 0.8 mV, −42.9 ± 3.2 mV and −38 ± 0.4 mV 

at 1 mM NaCl concentration and neutral pH. The ζ-potential versus pH curve showed 
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an iso-electric point at pH 2.3 ± 0.1 mV for both EPS and EPS capped CheSeNPs at 

10 and 100 mM NaCl background electrolyte concentrations (Figure 3.4a, b). It was 

not possible to determine the ζ-potential versus pH curve of uncapped CheSeNPs as 

a small contamination of glutathione affected the ζ-potential versus pH profile. In this 

experiment, the profile of BSA and BSA capped CheSeNPs are a positive control as 

BSA is known to stabilize the selenium nanoparticles (Zhang et al., 2001; Tran and 

Webster, 2011) with a reported iso-electric point of 4.6 ± 0.1 mV (Salg et al., 2012) 

(Figure 3.4a, b).  

 

The ζ-potential versus pH profiles of BioSeNPs, EPS, EPS capped CheSeNPs, BSA 

and BSA capped CheSeNPs are similar from pH 9.5 to 6.0. However, at pH values 

below 6.0, BioSeNPs, EPS and EPS capped CheSeNPs follow similar profiles and 

remain more negative than BSA and BSA capped CheSeNPs (Figure 3.4). This 

leads to a similar iso-electric point of BioSeNPs, EPS and EPS capped CheSeNPs 

(~pHIEP 2.4 at 100 mM NaCl concentration) as compared to 4.6 observed for BSA 

and BSA capped CheSeNPs. It is important to note that the iso-electric point of 

BioSeNPs (pHIEP 3.2 ± 0.1) at 10 mM NaCl background electrolyte was slightly 

different than the iso-electric point (pHIEP 2.4 ± 0.1) of BioSeNPs at 100 mM NaCl 

background electrolyte. This change is not significant enough to unambiguously 

conclude that the differences are due to the interfering background electrolyte.  

 

It has been shown that the ζ-potential of BioSeNPs loaded with Zn becomes less 

negative leading to a lowering of their colloidal stability (Jain et al., 2015). Similar 

experiments with BSA and EPS capped CheSeNPs suggested that loading of Zn on 

these CheSeNPs also lead to a less negative ζ-potential of −7.3 and −11.0 mV for, 

respectively, BSA and EPS capped CheSeNPs contacted with 1000 mg L−1 Zn 

(Figure S5 in Appendix 1). The equilibrium pH varied between 5.5 and 6.5. The zinc 

concentration required to achieve −5 to −10 mV for BSA and EPS capped 

CheSeNPs was 10 times more than that required for BioSeNPs, even when the 

concentration of selenium concentration was 4 times higher in the BioSeNPs (Jain et 

al., 2015). This might be due the smaller size of BSA and EPS capped CheSeNPs 

(30-50 d-nm) as compared to BioSeNPs (180 d-nm) (Jain et al., 2015).  
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The HDD of BioSeNPs increased slightly from 403 ± 8 to 531 ± 6 d-nm when the pH 

changed from 10.2 to 5.8 at 100 mM NaCl concentration. However, when the pH 

dropped to 4.7 and 3.8, the HDD increased to 862 ± 29 and 2130 ± 180 d-nm, 

respectively (Figure 3.4c). The HDD of EPS capped CheSeNPs and BSA capped 

CheSeNPs also increased as the pH decreased (Figure 3.4c). There is a large jump 

in the HDD of BSA capped CheSeNPs as the pH approached the iso-electric point of 

BSA. A similar, but smaller jump, in HDD of EPS capped CheSeNPs is observed as 

the pH approaches the iso-electric point of EPS. HDD measurements at 10 mM NaCl 

background electrolyte (Figure S6 in Appendix 1) gave similar profiles as observed in 

Figure 3.4c. It is important to note that it was not possible to compare the HDD 

versus pH profile of CheSeNPs free of capping agents, as these CheSeNPs had a 

different shape (wire versus sphere) and they sediment as compared to the capped 

CheSeNPs (Figure 3.2).  

 

3.4. Discussion  

 

3.4.1. EPS are present on the BioSeNPs 

 

This study suggested, for the first time, that the organic layer present on the 

BioSeNPs synthesized by anaerobic granules is the EPS. The presence of the 

various functional groups on the BioSeNPs' surface (Figure 3.1, 3) is due to the 

attached organic polymers, most likely produced by the microorganisms present in 

the anaerobic granules. The presence of carbohydrates, proteins and humic-like 

substances, which were released upon sonication of the purified BioSeNPs, 

suggests that EPS comprising of these components is present on the surface of the 

BioSeNPs. The presence of EPS was further suggested by the presence of amide-I 

and amide-II bands (proteins) and strong bands at 1073 and 1038 cm−1 

(carbohydrates) in the IR spectra (Figure 3.3, Table S1 in Appendix 1). The presence 

of these carbohydrates, which are always a part of EPS and are not observed in IR 

spectra of pure proteins (Kong and Yu, 2007; Wang et al., 2012), indicates that not 

protein but EPS containing both proteins and carbohydrates, are present on the 

BioSeNPs (Figure 3.3, Table S1 in Appendix 1). Moreover, the similar overall shape 

of the IR spectra and ζ-potential versus pH variation of BioSeNPs, EPS and EPS 

capped CheSeNPs (Figures 3 and 4a, b) further confirms the presence of EPS on 
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the surface of BioSeNPs. The small DNA concentration found on the surface of 

BioSeNPs rules out the possibility of cell lysis, thus further confirming the layer on 

BioSeNPs is from EPS and not due to intracellular organics from the microbial cells. 

This is an interesting finding as previously only the presence of proteins has been 

reported on the surface of BioSeNPs (Dobias et al., 2011; Lenz et al., 2011) and the 

origin of the organic layer on the BioSeNPs was unknown(Winkel et al., 2012).  

 

The similar overall shape of the amide-I and –II modes in IR spectra of EPS and 

EPS capped CheSeNPs suggests (Figure 3.3) that the EPS was attached to 

elemental selenium without major modification in its secondary structure. The distinct 

shift of some spectral features, e.g. shifting of features from 3400 to 3420 cm−1 and 

1384 to 1405 cm−1 in EPS capped CheSeNPs as compared to EPS cannot be 

unambiguously attributed to the interaction of hydroxyl or carboxylic acid groups(Zhu 

et al., 2012) with elemental selenium, respectively, although such assignments 

appear to be obvious. For instance, a slightly different water content in the EPS 

capped CheSeNPs and EPS samples might cause similar shifts in the spectrum of a 

KBr pellet used in the sample preparation for FT-IR analysis. However, the band at 

1452 cm−1 observed in the spectrum of EPS, but not in the EPS capped CheSeNPs 

spectrum, most likely represents the antisymmetric stretching mode of carboxylate 

groups. Thus, the disappearance of this mode reflects the interaction of elemental 

selenium with these functional groups of EPS. The interaction of EPS and elemental 

selenium with hydroxyl groups suggests the likely interaction of the carbohydrate 

fraction of the EPS with elemental selenium, as the sugar residues can be expected 

to show much more -OH groups. However, further research is required to identify the 

exact EPS fractions interacting with the CheSeNPs and BioSeNPs. 

 

The synthesis of BioSeNPs involves two steps: (1) the reduction of selenite to 

elemental selenium and (2) the subsequent growth of elemental selenium to 50-250 

d-nm BioSeNPs with a median of 180 d-nm (Jain et al., 2015) (Figure 3.5). 

Reduction of selenite to elemental selenium is carried out intracellularly (Debieux et 

al., 2011), in the periplasmic space (Li et al., 2014) or extracellulary (Jiang et al., 

2012) in different microorganisms and thus, the growth of BioSeNPs can take place 

either intracellularly or extracellularly. It should be noted that this study did not 

distinguish between the BioSeNPs that grew intracellularly, which are then 
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subsequently expelled outside in the supernatant from those which grew 

extracellularly. For the elemental selenium that was formed extracellularly, the 

growth to BioSeNPs takes place in the presence of EPS which is per definition 

present extracellularly. The elemental selenium, which was formed intracellularly, will 

most likely have a coating of predominantly proteins that are involved in their 

production and subsequent secretion (Debieux et al., 2011). These intracellular 

elemental selenium particles may partially grow to BioSeNPs coated with proteins 

(Debieux et al., 2011). The size of these BioSeNPs secreted from the cell is likely to 

be much smaller (considering the BioSeNPs transport through the cell without 

damaging the membrane or cell wall). Since the average size of BioSeNPs observed 

in the majority of the studies is greater than 150 d-nm (Winkel et al., 2012; Jain et al., 

2014), further growth of the excreted BioSeNPs can then take place extracellularly, 

in the presence of the EPS. For the BioSeNPs produced and growing intracellularly 

but expelled outside the cell due to cell lysis, the full growth would have taken place 

in absence of EPS and the BioSeNPs are thus capped by predominantly proteins. 

The smaller quantity of DNA on the BioSeNPs suggests that cell lysis in this study 

was minimal, thus, the majority of the BioSeNPs observed in this study were formed 

or growing extracellularly in the presence of EPS.  

 

 

Figure 3.5. Scheme demonstrating the growth of elemental selenium to BioSeNPs. 

 

3.4.2 .EPS govern the surface charge of BioSeNPs  

 

The ζ-potential versus pH curves and iso-electric points of BioSeNPs, EPS and EPS 

capped CheSeNPs (Figure 3.4a, b) were similar, while also those of BSA and BSA 

capped CheSeNPs were identical (Figure 3.4a, b). This shows that the ζ-potential 
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and iso-electric point of BioSeNPs and EPS capped CheSeNPs are governed by the 

surface charge of the EPS, rather than that of the elemental selenium. The almost 

identical iso-electric points of BioSeNPs, EPS and EPS capped CheSeNPs (Figure 

3.4b) further suggests that the EPS is capping the BioSeNPs and CheSeNPs for the 

entire pH range tested.  

 

Capping agents can provide the colloidal stability to nanoparticles either by 

electrostatic, steric or electrosteric mechanisms (El Badawy et al., 2010). The 

sudden jump in HDD of BioSeNPs and EPS capped CheSeNPs (Figure 3.4c and 

Figure S6 in Appendix 1) at a pH close to the iso-electric point indicates 

agglomeration of nanoparticles which is a hint for electrostatic stabilization by EPS. 

The dependence of the ζ-potential on the ionic strength further suggests that the 

EPS stabilize the BioSeNPs and CheSeNPs by electrostatic repulsion (Figure 3.4a 

and b) (El Badawy et al., 2010). However, due to the bulky structure of EPS, partial 

stabilization of EPS capped CheSeNPs by steric hindrance cannot be excluded, as 

demonstrated for the stabilization of silica nanoparticles and quantum dots by BSA 

(Bucking et al., 2010; Paula et al., 2014). Thus, this study strongly suggests that the 

EPS stabilizes the BioSeNPs and CheSeNPs both electrostatically and sterically, 

thus electrosterically. It is important to note that the larger HDD of BioSeNPs as 

compared to EPS capped CheSeNPs at a pH exceeding 6 might be due to 

suboptimum EPS to elemental selenium ratio during the formation of the BioSeNPs. 

 

The carboxylic acid group, whose presence on the BioSeNPs' surface was confirmed 

by the IR and acid-base titration data, has a pKa value of 3.9 (Figure 3.1, 3.3 and 

Table S1 in Appendix 1). Due to their low pKa values, this group will be largely 

deprotonated at pH values above 5.5 (more than 98%, calculated using the 

Henderson-Hasselbalch equation). The negative ζ-potential value of the BioSeNPs 

at a pH below 5.5 suggests a large number of carboxylic acid group sites in the EPS 

capping the BioSeNPs (Figure 3.1 and 3.4). 

 

3.4.3. Environmental implications 

 

This study has demonstrated that EPS present in anaerobic granular sludge are 

capping the BioSeNPs, govern their surface charge and thus, affect their colloidal 
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properties in the engineered settings where they are synthesized. It is important to 

point out that the intracellularly grown BioSeNPs will be capped by (a mixture of) 

proteins and thus their ζ-potential versus pH profile and iso-electric point might be 

different than that of the BioSeNPs growing extracellularly in the presence of EPS 

(Figure 3.4a, b and 3.5). This would lead to a different colloidal behavior of 

BioSeNPs that are capped with proteins and those that are capped with EPS in 

various environmental conditions (pH and interactions with heavy metals, Figure S5 

in Appendix 1), thus, affecting their fate in the environment. 

 

The presence of EPS on the surface of BioSeNPs makes them stable in the colloidal 

suspension and thus, mobile in the low ionic strength and neutral pH environment. 

This is in contrast to our understanding that EPS of biofilms restrict the dispersion of 

natural and engineered nanoparticles, as shown for Se (Bajaj et al., 2012), CdSe, Ag 

or ZnS nanoparticles (Tourney and Ngwenya, 2014). Thus, this study highlights the 

importance of further studies on the role of EPS in the fate of bioreduced products of 

redox active elements in both natural and engineered settings.  
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Abstract: 

 

The microbial reduction of selenium oxyanions always lead to the formation of 

amorphous or monoclinic colloidal elemental spherical selenium nanoparticles. This 

study demonstrated the production and characterization of biogenic trigonal 

elemental selenium nanowires (BioSeNWs). Selenite was reduced in the presence of 

anaerobic granules under anaerobic conditions at thermophilic conditions (55 and 65 

oC). The produced BioSeNWs were purified using a protocol developed in an earlier 

study.  Scanning electron microscopy (SEM) revealed the median diameter of 20-30 

nm and 40-50 nm for BioSeNWs produced at 55 and 65 oC, respectively. Energy 

disperse X-ray specta confirmed that BioSeNWs were mainly composed of selenium. 

The produced BioSeNWs were in trigonal crystalline state as confirmed by raman 

spectroscopy and X-ray diffraction. The BioSeNWs were colloidally stable owning to 

negative ζ-potential. The negative ζ-potential of the BioSeNWs was due to the 

presence of organic layer most likely originating from the extracellular polymeric 

substances (EPS). 

 

Keywords: Biogenic, nanowires, selenium, trigonal, EPS 
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4.1. Introduction 

 

Elemental selenium displays many unique properties such as high photoconductivity, 

catalytic activities as well as piezoelectric and thermoelectric effects (Gates et al., 

2002) These properties become more pronounced and effective as the size of the 

particles decreases (< 100 nm) to form nanoparticles (Gates et al., 2002; Shah et al., 

2010) Therefore, selenium nanoparticles are used in solar cells, semiconductor 

rectifiers, xerography and other functional materials (Gates et al., 2002) Of the 

different selenium nanoparticles that can be synthesized,  the one dimensional 

nanowires are very attractive for material scientists as these nanowires can be used 

as connectors in the fabrication of nanodevices as well as to study the effects on the 

mechanical, optical and electrical properties due to the size confinement (Gates et 

al., 2002). 

 

In general, biologically produced nanoparticles can be a good choice to replace 

chemically produced nanoparticles due to their relatively easy, non-toxic and green 

production approach and low cost (Faramarzi and Sadighi, 2013; Kharissova et al., 

2013; Wang et al., 2012). The formation of spherical selenium nanoparticles has 

been reported widely as the microbial reduction of selenite or selenate always results 

in the formation of amorphous or monoclinic spherical selenium nanoparticles (Jain 

et al., 2014; Oremland et al., 2004). Most studies have been conducted at mesophilic 

temperature (30 0C), and all report on the formation of nanospheres with a diameter 

between 50 and 400 nm.  

 

There is, however, no systematic study on the morphology and characteristics of 

biogenic formed selenium nanoparticles. For instance, a simple exposure to elevated 

temperatures is an effective way to trigger the transformation of amorphous selenium 

to trigonal selenium nanowires (Gates et al., 2002). Therefore, this study 

investigated the anaerobic reduction of selenite by anaerobic granules at 55 and 65 

oC and compared these to the nanospheres that are produced at 30 oC that were 

described previously (Jain et al., 2014a). The produced biogenic elemental selenium 

nanowires (BioSeNWs) were also compared for their shape, size, colloidal stability 

and crystallinity with chemically synthesized elemental selenium nanoparticles 

(CheSeNPs) using scanning electron microscopy - energy disperse X-ray 
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spectroscopy (SEM-EDXS), X-ray diffraction and Raman spectroscopy. The surface 

and optical properties of the BioSeNWs were also characterized using zetametry, 

acid-base titration and FT-IR. 

 

4.2. Materials and methods 

 

4.2.1. Production and purification of BioSeNWs and CheSeNPs 

 

BioSeNWs were produced by the reduction of selenite by anaerobic granular sludge 

using lactate as electron donor under anaerobic incubation at 55 and 65 oC for 7 

days. The composition of the medium (pH 7) and the biomass is described in (Jain et 

al., 2015). BioSeNWs were purified as described in Jain et al. (2014a). Briefly, the 

formation of BioSeNWs was observed by the appearance of greyish color in the 

incubated bottles. The biomass was separated from the BioSeNWs by simple 

decanting followed by centrifugation at 3,000g and then concentrated by 

centrifugation at 37,000g. This step was followed by resuspension of the pellet in 

Milli-Q water (18 MΩ*cm), followed by sonication and hexane separation. The 

collected aqueous phase was washed thrice with Milli-Q water. The concentration of 

selenium was determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-

MS) as described in Jain et al. (2015). CheSeNPs were produced at ambient 

temperature by reduction of selenite by L-glutathione reduced in absence of any 

capping agent and then purified by dialysis against Milli-Q water using a 3.5 kDa 

regenerated cellulose membrane while changing water every 12 hours for 96 hours 

(Zhang et al., 2001). 

 

4.2.2. Characterization of BioSeNWs 

 

SEM-EDXS, FT-IR, acid-base titration and ζ-potential measurements were carried 

out as described in Jain et al. (2014a). XRD analysis was carried out as described in 

Jain et al. (2015). Raman measurements were performed at room temperature with 

a Bruker Vertex 70/v vacuum FT-IR spectrometer equipped with a Ge detector 

where a FT-Raman module (Nd-YAG laser, λexc.= 1064 nm, P = 450 mW) has been 

implemented. Spectra were averaged out of 256 scans for BioSeNWs produced at 

55 and 65 oC and out of 32 scans for CheSeNPs. 
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4.3. Results 

 

4.3.1. Shape, size and crystallinity of BioSeNWs 

 

Anaerobic reduction of selenite to elemental selenium was observed by the 

appearance of grey color in the supernatant for both 55 and 65 oC . SEM images 

confirmed the formation of BioSeNWs with a median diameter of 20-30 nm and 40-

50 nm at 55 and 65 oC, respectively (Figure 1a, b, g). The length to diameter ratio of 

the BioSeNWs exceeded 20. The median diameter of the CheSeNPs was 30-40 nm 

(Figure 1c, f) and their length to diameter ratio was less than that observed for 

BioSeNWs.  

 

EDXS analysis revealed that BioSeNWs are mainly composed of elemental 

selenium. In addition, carbons, oxygen, sulfur and phosphorous were presentin the 

BioSeNWs produced at both 55 and 65 oC (Figure 1d, e). The presence of these 

elements can be attributed to presence of extracellular polymeric substances that 

are formed as a coating on the BioSeNWs. The presence of iron, as revealed by 

EDXS analysis, can be attributed its presence in the inoculum anaerobic granular 

sludge. EDXS analysis of CheSeNPs revealed the presence of only selenium, 

carbon and oxygen. The presence of carbon and oxygen is possibly due to the use 

of the carbon coating used for the preparation of the SEM samples.  
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Figure 4.1. Secondary electron SEM images of different samples deposited onto a 

piece of Si wafer: BioSeNWs prepared at (a) 55 °C, (b) 65 °C and (c) CheSeNPs 
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produced at ambient temperature and their representative EDXS analysis (d), (e) 

and (f), respectively. (f) Diameter distribution of the BioSeNWs produced at 55 °C 

(■), 65 °C (□) and CheSeNPs (■). Note that the presence of silicon in the EDXS 

analysis is due the use of silicon wafer for holding of the samples. 

 

4.3.2. Crystallinity of BioSeNWs 

 

The BioSeNWs produced at 55 and 65 oC and CheSeNPs all had identical XRD 

patterns. All peaks observed in the diffraction pattern of both BioSeNWs can be 

indexed to trigonal phase of selenium (Figure 2a). The intensity of the peaks at the 

2-theta values of 23.5 and 29.5 are comparable and all the other peaks are minor for 

the BioSeNWs. In contrast, the intensity of the peak at theta value 29.5 2- for the 

CheSeNPs is higher than the one observed at theta value 23.5 2. The Raman 

spectra of both the BioSeNWs and CheSeNPs showed a feature at 235 cm−1 and 

140 cm−1 (Figure 2b). These features are characteristics of trigonal elemental 

selenium arising from the vibration of Se-helical chains (Gates et al., 2002). The 

XRD and Raman spectra thus confirmed that the BioSeNWs and CheSeNPs are 

largely present in form of trigonal elemental selenium. 

 

 

Figure 4.2. (a) XRD and (b) Raman spectra of reference grey trigonal selenium (─) 

and BioSeNWs produced at 55 (─) and 65 oC (─).  

4.3.3. Colloidal properties of BioSeNWs 

 

The produced BioSeNWs were present in the form of a colloidal suspension unlike 

the CheSeNPs at similar concentraton of 3.8 mM (Figure 3a, b, c). The ζ-potential of 
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BioSeNWS produced at 55 and 65 oC was −39 and −40 mV, respectively, at pH 7 

and 1 mM background electrolyte concentration. The negative ζ-potential of the 

elemental selenium produced by Bacillus selenatarsenatis, Bacillus cereus as well 

as anerobic granules have been reported (Buchs et al., 2013; Dhanjal and 

Cameotra, 2010; Jain et al., 2015). However, all these studies reported the formation 

of nanospheres, unlike nanowires as reported in this study. The iso-electric point of 

BioSeNW produced at 55 and 65 °C was 2.7 and 2.6, respectively, at 10 mM 

background electrolyte concentration (Figure 3d). It is important to note that it is not 

possible to remove all the glutathione used for the formation of CheSeNPs which 

would have impacted the ζ-potential measurements of CheSeNPs and thus, the ζ-

potential versus pH profile of the CheSeNPs is not reported. 

 

 

Figure 4.3. Colloidal suspension of BioSeNWs produced at (a) 55 oC and (b) 65 oC 

and (c) settled CheSeNPs. (d) ζ-potential versus pH profile of of BioSeNWs 

produced at 55 oC (□) and 65 oC (∆).   

4.3.4. Functional groups associated with the BioSeNWs 

 

BioSeNWs produced at 55 and 65 °C exhibit the same features as BioSeNPs 

produced at 30 °C except a feature missing at 1394 cm−1 (Figure 4) (Jain et al., 

2014a). Briefly, FT-IR confirmed the presence of OH (3404 to 3270 cm−1), CxHy 

(2959 - 2866 cm−1), COO (1720 cm−1), C=O (1646 cm−1), N-H (1542 cm−1), C-N 
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(1242 cm−1), P=O (1151 cm−1) and C-O-C and C-H (1073 - 1038 cm−1) stretching or 

vibrations. The features at 1646 cm−1 and broad feature between 1073 - 1038 cm−1 

suggests the presence of proteins and carbohydrates on the BioSeNWs. The 

absence of a feature at 1394 cm−1 when compared to BioSeNPs produced at 30 oC 

may be explained by the fact that the features at 1459 and 1398 cm−1 combined to 

give the feature at 1438 and 1449 cm−1 for BioSeNWs produced at 55 and 65 °C, 

respectively, corresponding to the methyl groups or the symmetric stretching 

vibration of deprotonated carboxylic acid groups. 

 

 

Figure 4.4. FT-IR spectra of BioSeNWs produced at 55 and 65 oC. 

 

The acid-base titration of the BioSeNWs produced at 55 and 65 oC were carried out 

to determine the pKa values of various functional groups. The slower slope of both 

the BioSeNWs as compared to Milli-Q water suggests the presence of surface 

functional groups on the BioSeNWs (data not shown). The local minima in the 

derivative of the acid-base titration versus pH gives pKa values of the various 

functional groups as described in an earlier study (Jain et al., 2014a). The local 

minima were observed at pH 7.3, 5.4 and 3.4 for the BioSeNWs produced at 55 oC. 

For the BioSeNWs produced at 65 oC, the local minima were observed at 7.2, 5.6 

and 3.4. The pKa values observed at 7.3-7.2 can be assigned to sulfonic, sulfinic or 
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thiol groups. The pKa values at 5.6-5.4 can be assigned to phosphoryl or carboxylic 

acid groups. The pKa values at 3.4 can be assigned to carboxylic acid groups. 

 

 

Figure 4.5. Derivative of pH plotted versus pH to determine the pKa values of 

various functional groups present on the surface of BioSeNWs produced at 55 oC (─) 

and 65 oC (─). 

 

4.4. Discussion 

 

4.4.1. Morphology of the produced BioSeNWs 

 

This study demonstrates for the first time the biological synthesis of selenium 

nanowires and further characterized these BioSeNWs. When comparing the aspect 

ratio (length/diameter) of thermophically produced BioSeNWs and room temperature 

CheSeNWs, the BioSeNWs showed a similar or better aspect ratio thus suggesting 

that the produced BioSeNWs are comparable in shape and size to the CheSeNWs. 

The median diameter of the produced BioSeNWs (20-30 and 40-50 nm) also 

compares well with the uniform trigonal selenium nanowires produced after refluxing 

the reduction reaction at 100 oC (Gates et al., 2002).   
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4.4.2. Surface coating on the BioSeNWs 

 

The produced BioSeNWs are colloidally stable (Figure 3), unlike the CheSeNPs, due 

to the presence of the capping agent on the BioSeNWs that provides colloidal 

stability to the nanoparticles through either electrostatic or steric interactinos or both 

(El Badawy et al., 2010). Indeed, the acid-base titration results and FT-IR confirmed 

the presence of an organic layer on the surface of BioSeNWs (Figure 4, 5). The FT-

IR confirmed the presence of proteins and carbohydrates. The protein and 

carbohydrates are the main component of EPS and their presence on BioSeNWs 

suggests that the organic layer capping the BioSeNWs can be the EPS. The ζ-

potential vs pH profile of BioSeNWs are very similar to the one of EPS produced by 

the selenium fed anaerobic granular sludge inoculum (Jain et al., 2014a). Moreover, 

the iso-electric point of BioSeNWs is very close to the one observed for EPS, EPS 

capped CheSeNPs and BioSeNPs (Jain et al., 2014a). This suggests that like 

biogenic elemental selenium nanoparticles, the surface charge of BioSeNWs is 

governed by the EPS, rather than by the elemental selenium. Thus, the EPS govern 

the surface charge of formed elemental selenium nanoparticles at all the 

temperatures.  

 

4.4.3. Formation of BioSeNWs 

 

Microbial reduction of selenite always results in the formation of spherical elemental 

selenium nanoparticles at ambient temperatures (Jain et al., 2014; Oremland et al., 

2004). The produced selenium spherical nanoparticles sometimes transformed to 

trigonal selenium (Wang et al., 2010) or can stay stable for months (Oremland et al., 

2004). In this study, we demonstrated that the trigonal phase of selenium can be 

easily triggered in-situ by incubating at slightly higher temperatures (55 and 65 oC). 

This transformation may follow the scheme detailed by Wang et al. (2010), where the 

reduction of selenite is considered to lead to the formation of amorphous elemental 

selenium nanspheres, which produce seeds of trigonal selenium which then 

transform the amorphous selenium to trigonal BioSeNWs. This transformation is 

attributed to the lower free energy of trigonal elemental selenium as compared to the 

higher free energy of monoclinic or amorphous elemental selenium (Wang et al., 

2010). The glass transition temperature of elemental selenium is 31 °C. Thus, above 



 Chapter 4 

82 
 

this temperature, the transformation to trigonal BioSeNWs is favorable. The 

CheSeNPs formed at room temperature (less than 31 oC) has trigonal crystalline 

structure (Figure 2). Thus, the transformation of amorphous elemental selenium to 

trigonal selenium is possible at room temperature. However, this transformation does 

not readily take place when nanospheres are produced by microbial reduction 

(Oremland et al., 2004).  

 

The reason for this ambiguity might be due to presence of the extracellular polymeric 

substance (EPS) present on the surface of biogenic elemental selenium 

nanospheres (Jain et al., 2014a). Indeed, the presence of EPS has been shown to 

produce nanospheres as compared to nanowires when the EPS is absent during the 

chemical reduction of selenite by L-glutathione (Jain et al., 2014a). In the present 

study, the transformation to nanowires could not be prevented in the presence of 

EPS. Thus, the role of EPS in controlling the shape and crystallinity is limited to 

mesophilic temperature conditions, while merely the temperature plays the key role 

in determining the shape and crystallinity of the biogenic elemental selenium 

nanoparticles. 

 

4.5. Conclusion 

 

This study demonstrated that colloidal BioSeNWs can be synthesized in-situ by 

microbial reduction of selenite under thermopohilic (55 and 65 oC) conditions. 

Temperature plays an important role in determining the crystallinity of the 

BioSeNWs. The produced BioSeNWs were similar in shape, size and crystallinity to 

CheSeNPs. The colloidal nature of BioSeNWs was due to negative ζ-potential 

values at near-neutral pH. The negative ζ-potential of BioSeNWs is due to the 

presence of an organic coating on the surface of the BioSeNWs, most likely 

originating from the EPS. The surface charge of BioSeNWs is governed by the 

properties of the EPS rather than those of elemental selenium. 
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Abstract: 

 

Understanding the interaction of elemental selenium and amino acids is important for 

not only designing new self-assembled selenium based nanomaterials but also to 

determine the fate of colloidal biogenic elemental selenium nanoparticles 

(BioSeNPs) in the environment. There are few studies that have demonstrated the 

presence of proteins or peptides on the surface of the BioSeNPs. However, there are 

no study that has analyzed the interaction of BioSeNPs and peptides neither at a 

macroscopic nor at a molecular level. This study proposes to reveal the interaction of 

BioSeNPs and amino acids at microscopic level. The objective of the study is to 

evaluate the binding preference of amino acids towards elemental selenium. For this, 

elemental selenium nanoparticles were produced at mesophilic and thermophilic 

conditions. The proteomics data analysis suggested the presence many proteins 

including 60 kDa chaperonin, ATP synthase subunits (alpha and beta), chaperone 

protein dnaK and elongation factor Tu. The statistical analysis on the selected 

proteins revealed the occurrence of hydrophibic amino acids indicating that the 

interaction of elemental selenium and amino acids might be of hydrophobic nature. 

Further research including more critical analysis of proteomic data and density 

functional theory calculations is necessary to achieve the objectives. 

 

Keywords: amino acids, elemental, selenium, 60 kDa chaperonin, biogenic 

 

Graphical abstract: 
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5.1. Introduction 

 

The interaction of polypeptide with metal(loid) surfaces is studied to design self 

assembling of nanodevices, to observe cell adhesion to biomaterials or selectivity of 

a biosensor (Puddu & Perry, 2012). For example, specificity of arginine-rich anti-gold 

antibodies towards gold is exploited for the self assembly of colloidal gold where 

antibodies are a selective linker between colloidal gold nanoparticles and bulk gold 

surface (P. Jain et al., 2014). Understanding the interaction of polypeptides or 

proteins with elemental selenium is important not only for designing new selenium 

based nanomaterials but also to determine the formation and fate of colloidal 

biogenic elemental selenium nanoparticles (BioSeNPs) in bioreactors and 

environment. 

 

BioSeNPs has been known to be associated with proteins (Debieux et al., 2011; 

Dobias, Suvorova, & Bernier-latmani, 2011; Lenz, Kolvenbach, Gygax, Moes, & 

Corvini, 2011). In our previous study, we demonstrated the capping ability of 

extracellular polymeric substances (EPS), mainly composed of proteins and 

polysaccharides (Flemming & Wingender, 2010), onto the BioSeNPs (R. Jain et al., 

2015). To fully explore the biotechnology for designing of selenium based bottom-up 

nanodevices or to completely comprehend the factors governing the formation and 

fate of BioSeNPs in the environment, it is important to understand the interaction of 

elemental selenium and polypeptides at the molecular level which would imply the 

study of amino acids or small peptides with elemental selenium (Puddu & Perry, 

2012; Ramakrishnan et al., 2013). However, so far there are no study on the 

interaction of elemental selenium and amino acids. 

 

The objective of this study was to ascertain whether any amino acid bind favorably to 

the elemental selenium. The evolution of protein also depends on the temperature, 

thus for this study, elemental selenium nanoparticles were produced at different 

temperatures. Different temperatures also lead to the formation of different crystal 

structure of elemental selenium, which may affect the interaction of amino acid with 

elemental selenium (Ramakrishnan et al., 2013).  
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5.2 Materials and methods 

 

BioSeNPs were produced and purified under mesophilic (30 oC) and thermophilic 

conditions (65 oC) as detailed in previous studies (R. Jain et al., 2014, 2015).  

 

The proteomics on the BioSeNPs was carried out as follows. The digested peptide 

mixtures from proteins in the selenium nanoparticles were obtained following similar 

protocols as described by Thomas et al. (2013). Digested peptide mixtures were 

resuspended in 5% (v/v) acetonitrile (ACN) and 0.1% (v/v) formic acid and analyzed 

on an LTQ Orbitrap Velos mass spectrometer (MS; Thermo Scientific, Bremen, 

Germany) according to the procedure described by Thomas et al. (2013), except that 

the flow of the mobile phase was 400 nL min-1. The obtained spectra were submitted 

to a local MASCOT (version 2.4.0; Matrix Science, London, UK) server and set-up to 

search bacteria in the Swiss-Prot database (release 2012). Proteins were considered 

positively identified if the molecular weight search (MOWSE) score from MASCOT 

was over the 95% confidence limit corresponding to a score ≥ 37. Data validation 

was performed with Scaffold (version 4.3.2; Proteome software, Portland, OR) at a 

protein and peptide thresholds of 95%, a minimum of one unique peptide and a 

protein false discovery rate (FDR) of ≤ 1%. Protein probabilities were assigned by 

the Protein Prophet algorithm (Nesvizhskii, Keller, Kolker, & Aebersold, 2003). 

Results from two extractions were combined to increase protein coverage. It is 

important to note that in the subsequent analysis of the proteomic data, those 

proteins with less than 4 unique peptides were considered insignificant and thus, 

discarded. 

  

5.3. Results and discussion 

 

The proteomics data revealed the presence of many different functional proteins as 

shown in Table 5.1. The major proteins present in both mesophilic and thermophilic 

selenium nanoparticles were 60 kDa chaperonin, ATP synthase subunits (alpha and 

beta), chaperone protein dnaK and elongation factor Tu. The presence of these 

protein were also observed in the study by Lenz et al. (2011). All the above proteins, 

except elongation factor Tu, have shown preference towards both biogenic and 

chemogenic elemental selenium (Lenz et al., 2011). Elongation factor Tu and 30S 
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ribosomal protein (S1 and S2) have shown preference towards only biogenic 

elemental selenium. Other proteins such as lysine-sensitive aspartokinase 3 and 

Trigger factor have shown selectivity towards chemogenic elemental selenium.  

 

To evaluate the possibility of group of amino acid favoring the interaction with 

elemental selenium, the four protein that interact with biogenic and chemogenic, two 

proteins that interact only with biogenic but not with chemogenic and the two more 

proteins that interact with only chemogenic but not biogenic elemental selenium were 

chosen. The proteins are listed in Table 5.2. 

 

A simple counting of the particular amino acid in the sequences of the selected 

proteins and then selecting the top 5 amino acids present in all the selected proteins 

was used to draw the order for the occurrence of a single amino acid (Table 5.2). 

The top four amino acids were identified as glycine, valine, leucine and alanine when 

the data was analyzed for all the selected proteins. It is interesting to note that 

among the selected amino acids, three of them are hydrophobic. This suggests the 

possibility of hydrophobic interaction of amino acids and elemental selenium as 

observed in the case interaction of silica with amino acids(Puddu & Perry, 2012). 

This finding is also true for the proteins that were showing affinity to both biogenic 

and chemogenic selenium particles (60 kDa chaperonin, ATP synthase subunits 

(alpha and  beta), chaperone protein dnaK and outer membrane porin protein 32). 

For the proteins that were showing affinity towards biogenic elemental selenium 

(elongation factor Tu and 30S ribosomal protein (S1 and S2)), there is a presence of 

hydrophilic positively charged amino acid (aspartic acid) in the top 4 amino acids. A 

similar observation was made, but with glutamic acid, for those proteins that were 

showing affinity to chemogenic elemental selenium (lysine-sensitive aspartokinase 3 

and Trigger factor).  

 

5.4. Further work 

 

The above data analysis is the first step towards understanding the interaction of 

amino acids with elemental selenium. The next steps would include more critical 

analysis of the data which would include the identification of the active sites in the 

proteins. This will be followed by the statistical analysis of only those amino acids 



 Chapter 5 

90 
 

that are present at the active sites providing indications towards affinity of elemental 

selenium. The interaction of selenium with the active sites of the proteins will then be 

studied using density functional theory calculation to determine the affinity of 

selenium towards amino acids or peptides. 
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Table 5.1. Proteins detected after LTQ Orbitrap and their categorization on the basis of their function. The obtained proteins were 

also compared with their presence in the earlier study but using pure culture (Lenz et al., 2011). The affinity of the obtained proteins 

were compared toward biogenic and chemogenic elemental selenium from the literature. 

Protein name 
(Microorganism) 

Functions 
T = 65 
hits* 

T = 30 
hits 

Affinity for  
Biogenic Chemogenic 

(Lenz et al., 2011) 

30S ribosomal protein S2 
(Pseudomonas syringae) 

Structural constituent of ribosome 4 0 
Y - 30S ribosomal 
protein S3/S4/S9 

N 

50S ribosomal protein L1 
(Pseudomonas entomophila) 

primary rRNA binding proteins 

6 6 Y N 

50S ribosomal protein L6 
(Pseudomonas fluorescens) 

5 0 
Y - 50S ribosomal 

protein L1 
N 

60 kDa chaperonin 
(Pseudomonas aeruginosa, 

Bordetella petrii ) 

Prevents misfolding and promotes the refolding and 
proper assembly of unfolded polypeptides generated 

under stress condition 
81 110 

Y- many different 
Chaperonin 

Y 

Aconitate hydratase 2 
(Pseudomonas aeruginosa) 

Catalyzes the isomerization of citrate to isocitrate 4 6 N N 

Arginine deiminase 
(Pseudomonas aeruginosa) 

Catalytic activity 8 11 N N 

ATP synthase subunits (alpha 
and  beta) (Pseudomonas 

fluorescens) 

Produces ATP from ADP in the presence of a proton 
gradient across the membrane. 

53 105 Y Y 

Catalase HPII (Pseudomonas 
putida) 

Decomposes hydrogen peroxide into water and 
oxygen 

4 6 N N 

Chaperone protein dnaK 
(Pseudomonas fluorescens) 

Acts as a chaperone 10 41 Y Y 
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Dihydrolipoamide 
dehydrogenase 

(Pseudomonas putida) 

Catalytic activity  
Protein N(6)-(dihydrolipoyl)lysine + NAD+ = protein 

N(6)-(lipoyl)lysine + NADH 
8 8 Y N 

DNA-directed RNA 
polymerase subunit alpha 

(Pseudomonas fluorescens) 

DNA-dependent RNA polymerase catalyzes the 
transcription of DNA into RNA 

7 6 N N 

Elongation factor Tu 1 
(Methylobacillus flagellatus) 

Promotes the GTP-dependent binding of aminoacyl-
tRNA to the A-site of ribosomes during protein 

biosynthesis 

5 7 

Y - Elongation 
factor TU - 

Enterococcus 
casseliflavis 

EC30) 

N 

Elongation factor Tu 2 
(Acidovorax sp.) 

8 11 N 

Elongation factor Tu 
(Pseudomonas fluorescens) 

36 79 Y N 

Lysine-sensitive 
aspartokinase 3 (Escherichia 

coli) 

Catalytic activityi 
ATP + L-aspartate = ADP + 4-phospho-L-aspartate. 

5 0 

N - Acetate Kinase 
and acetate 

propionate Kinase 
were associated 
with Biogenic Se 

but Aspartate 
kinase was 

associated with 
chemogenic 

Y 
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Malate dehydrogenase 
(Bordetella petrii) 

Catalyzes the reversible oxidation of malate to 
oxaloacetate 

4 6 

N - other 
associated 

dehydrogenase 
but not malate 
dehydrogenas 

N 

Maltoporin (Salmonella 
agona) 

Involved in the transport of maltose and maltodextrins 4 0 N N 

Outer membrane porin protein 
32 (Delftia acidovorans) 

Forms anion selective channels. 7 9 
Y - Metalloid 

reductase 
Y - Metalloid 
reducatase 

Outer membrane protein A 
(Bordetella avium) 

Structural protein that may protect the integrity of the 
bacterium. 

5 4 N N 

Succinyl-CoA ligase [ADP-
forming] subunit alpha and 

beta (Pseudomonas 
aeruginosa) 

Catalytic activity 
ATP + succinate + CoA = ADP + phosphate + 

succinyl-CoA 
15 

4 (only 
subunit 
alpha) 

N N 

30S ribosomal protein S1 
(Pseudomonas aeruginosa) 

Structural constituent of ribosome 0 5 
Y - 30S ribosomal 
protein S3/S4/S9 

N 

Acetyl-coenzyme A 
synthetase 1 (Pseudomonas 

putida) Catalyzes the conversion of acetate into acetyl-CoA 
(AcCoA) 

0 5 N N 

Acetyl-coenzyme A 
synthetase (Pseudomonas 

syringae) 
0 5 N N 

Antibiotic efflux pump outer 
membrane protein arpC 
(Pseudomonas putida) 

Confers resistance to numerous structurally unrelated 
antibiotics such as carbenicillin, chloramphenicol, 

erythromycin, novobiocin, streptomycin and 
tetracycline 

0 4 N N 
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Pyruvate dehydrogenase E1 
component (Pseudomonas 

aeruginosa ) 

Component of the pyruvate dehydrogenase (PDH) 
complex, that catalyzes the overall conversion of 

pyruvate to acetyl-CoA and CO2. 
0 5 N N 

Trigger factor OS 
(Pseudomonas putida) 

Involved in protein export. Acts as a chaperone by 
maintaining the newly synthesized protein in an open 

conformation 0 4 N Y 

 

Note: *the "hits" refer to number of times a unique peptide from a particular protein sequence was observed. "T" refers to the 

temperature of synthesis of biogenic elemental selenium nanoparticles. 

 

Table 5.2. Selected proteins on which the counting of occurrence of amino acids was carried out. 

 

Protein family Biogenic Chemogenic Order of occurrence of amino acids in respective proteins 

60 kDa chaperonin (Pseudomonas 
aeruginosa) 

Y Y Alanine Valine Glycine 
Glutamic 

acid 
Leucine 

ATP synthase subunit beta (Pseudomonas 
fluorescens) 

Y Y Glycine Valine Leucine Alanine isoLeucine 

ATP synthase subunit alpha 
OS=Pseudomonas putida 

Y Y Alanine Glycine Valine Leucine isoLeucine 

Chaperone protein dnaK (Pseudomonas 
fluorescens) 

Y Y Alanine Valine 
Aspartic 

acid 
Lysine 

Glutamic 
acid 

Outer membrane porin protein 32 (Delftia 
acidovorans) 

Y Y Glycine Alanine Leucine Serine 
Aspartic 

acid 
30S ribosomal protein S1 (Pseudomonas 

aeruginosa) 
Y N Valine 

Glutamic 
acid 

Glycine 
Aspartic 

acid 
Leucine 

30S ribosomal protein S2 (Pseudomonas 
syringae) 

Y N Glycine Alanine Leucine isoLeucine Valine 
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Elongation factor Tu (Pseudomonas 
fluorescens) 

Y N Valine Glycine 
Glutamic 

acid 
Aspartic 

acid 
Alanine 

Lysine-sensitive aspartokinase 3 (Escherichia 
coli) 

N Y Leucine Alanine Valine 
Glutamic 

acid 
Glycine 

Trigger factor (Pseudomonas putida) N Y Tryptophan Glycine Valine 
Glutamic 

acid 
Histidine 
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Abstract: 

 

The adsorption of Zn2+ ions onto biogenic elemental selenium nanoparticles 

(BioSeNPs) was investigated. BioSeNPs were produced by reduction of selenite 

(SeO3
2−) in the presence of anaerobic granules from a full scale upflow anaerobic 

sludge blanket (UASB) reactor treating paper mill wastewater. The BioSeNPs have 

an iso-electric point at pH 3.8 at 5 mM background electrolyte concentration. X-ray 

photoelectron spectroscopy showed the presence of a layer of extracellular 

polymeric substances on the surface of BioSeNPs providing colloidal stability. Batch 

adsorption experiments showed that the uptake of Zn2+ ions by BioSeNPs was fast 

and occurred at a pH as low as 3.9. The maximum adsorption capacity observed 

was 60 mg of zinc adsorbed per g of BioSeNPs. The Zn2+ ions adsorption on the 

BioSeNPs was largely unaffected by the presence of Na+ and Mg2+, but was 

impacted by the presence of Ca2+ and Fe2+ ions. The colloidal stability of BioSeNPs 

decreased with the increasing Zn2+ ions loading on BioSeNPs (increase in mg of zinc 

adsorbed per g of BioSeNPs), corresponding to the neutralization of the negative 

surface charge of the BioSeNPs, suggesting gravity settling as a technique for solid-

liquid separation after adsorption. This study proposes a novel technology for 

removal of divalent cationic heavy metals by their adsorption on the BioSeNPs 

present in the effluent of an UASB reactor treating selenium oxyanions containing 

wastewaters.  

 

Keywords: adsorption, selenium nanoparticles, zinc removal, XPS analysis, ζ-

potential, colloidal stability 

 

Graphical abstract: 
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6.1. Introduction 

 

Heavy metals at elevated concentrations are toxic to humans, animals and aquatic 

ecosystems (Singh et al., 2010). Removal of heavy metals from wastewater is 

carried out using a variety of techniques, including chemical precipitation, ion 

exchange, adsorption, membrane filtration or electrochemical separation (Hua et al., 

2012). Among these technologies, the adsorption process is advantageous as it is 

cheap, flexible to operate and maintain, and also generates a high quality effluent, 

even when metal ions are present in low concentrations in the feed wastewater. 

Therefore, there is a constant search for adsorbents with higher adsorption capacity, 

faster kinetics and low cost (Arias and Sen, 2009; Reddad et al., 2002; Wang et al., 

2010).  

 

Biologically produced elemental selenium nanoparticles  (BioSeNPs) can be a 

potential new adsorbent for heavy metal cations such as zinc, copper, nickel, lead 

and cadmium due to the BioSeNPs' amorphous nature (Jain et al., 2014), small 

diameter (~300 nm (Jain et al., 2014; Oremland et al., 2004) and negative surface 

charge (ζ-potential −35 mV at neutral pH and 5 mM background electrolyte 

concentration) [8,9]. Indeed, chemically produced selenium nanoparticles 

(CheSeNP) adsorb high quantities of copper (800 mg of Cu adsorbed per g of 

elemental selenium nanoparticles) (Bai et al., 2011). Both CheSeNPs and BioSeNPs 

adsorb mercury from mercury vapor by forming mercury selenide precipitates 

(Fellowes et al., 2011; Jiang et al., 2012; Johnson et al., 2008). However, chemical 

elemental selenium nanoparticles production methods entail high production costs 

and are not environmental benign due to the use of toxic solvents, high temperature 

and high pressure (Kharissova et al., 2013; Quintana et al., 2002; Stroyuk et al., 

2008). In contrast, BioSeNPs can be produced at an ambient temperature without 

the use of specialized equipments (Oremland et al., 2004; T. Wang et al., 2010). 

Moreover, BioSeNPs are present in the effluent of an upflow anaerobic sludge 

blanket reactor (UASB) treating selenium containing wastewaters due to microbial 

reduction of selenium oxyanions present in the wastewaters to elemental selenium, 

thus, further reducing the BioSeNPs' production cost (Jain et al., 2014; Lenz et al., 

2009) 
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Zinc was selected as a model divalent heavy metal ion as it is used extensively in 

metallurgy, transport, power and construction industries. Zinc is also a major 

micronutrient in the human body (Hambidge and Krebs, 2007). However, 

overexposure to zinc can cause stomach cramps, skin irritations, vomiting, anemia, 

damage to the pancreas, cause arteriosclerosis, impair immune functioning and 

disturb protein metabolism (Naito et al., 2010). Due to the adverse health impact of 

overexposure to zinc and the undesirable taste of drinking water at zinc 

concentration higher than 5 mg L−1, the environmental regulatory agency of the USA 

and the Food and Agriculture Organization of the United Nations have set limits of 

5 mg L−1 in the drinking water (USEPA, 2013; FAO, 2014) and the European 

Commission have set a limit of 5-10 mg L−1 zinc in domestic wastewater (EC, 2001). 

This manuscript, for the first time, attempts to study the interaction of BioSeNPs with 

Zn2+ ions. Based on this fundamental understanding, a zinc removal unit and 

technique can be developed.   

 

In this study, BioSeNPs were produced by the anaerobic reduction of selenite in 

presence of anaerobic granules. The reduction of selenite is reported to take place 

through dissimilatory respiration and the BioSeNPs are mainly formed in the 

periplasm or extracellularly (Kessi and Hanselmann, 2004; Li et al., 2014). Prior to 

batch adsorption experiments, BioSeNPs were characterized by X-ray diffraction 

(XRD), Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy 

analysis (SEM-EDXS), ζ-potential measurements and X-ray photoelectron 

spectroscopy (XPS). The Qe-Zn (mg of zinc adsorbed per g of BioSeNPs) was 

determined as a function of adsorption duration, ionic strength, initial metal solution 

pH and concentrations, and in the presence of competing cations (Na+, Ca2+, Mg2+ 

and Fe2+) by means of batch experiments. The effect of Zn2+ ions adsorption on the 

BioSeNPs' colloidal stability and residual BioSeNPs concentration in the filtrate was 

determined with the increase in Qe-Zn. The adsorption of Zn2+ ions on the BioSeNPs 

was characterized using electrophoretic measurements and XPS analysis. For future 

practical application, removal of Zn2+ ions from synthetic wastewater at low pH by the 

BioSeNPs present in the simulated effluent of an UASB reactor was investigated. 
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6.2. Materials and methods 

 

6.2.1. BioSeNPs production and purification 

 

BioSeNPs were produced by incubating anaerobic granular sludge (13 g L−1 wet 

weight) in an oxygen-free growth medium at 30 °C and pH 7.3 for 14 days. The 

growth medium and incubation conditions were applied as these were successfully 

used for the reduction of selenate using the same inoculum (Lenz et al., 2008). The 

growth medium contained (in mg L−1): NH4Cl (300.1), CaCl2
.2H2O (14.7), KH2PO4 

(245.0), Na2HPO4 (283.9) and KCl (245.9). Acid & alkaline trace elements and 

vitamins were not added to growth medium to avoid their interaction with the formed 

BioSeNPs. 2.24 g L−1 of sodium lactate and 0.86 g L−1 of sodium selenite were used, 

respectively, as carbon and selenium source. This medium was flushed with nitrogen 

to maintain anaerobic conditions. Anaerobic granular sludge from a full scale UASB 

reactor used for treating paper mill wastewater in Eerbeek (The Netherlands), 

described in detail (Roest et al., 2005), was used as inoculum.  

 

The production of elemental selenium was confirmed by the appearance of red 

colorization of the medium. The supernatant was collected by simple decanting and 

concentrated by centrifuging (Hermle Z36 HK) at 37,000 g and 4 oC. The pellet was 

re-suspended in Milli-Q (18MΩ*cm) water and purified by the protocol from Dobias, 

et al. (2011) with minor modification. Briefly, the concentrated BioSeNPs were 

sonicated in ice cold water for 1 hour at 100 watt and 42 kHz. NaOH (6 N) was 

added to raise the pH to 12.5 and the concentrated BioSeNPs were again sonicated 

at 42 kHz in ice cold water for 2 hours to lyse any remaining biomass present in the 

supernatant. The pH was lowered back to 7.3 by addition of 1 N HCl. An equal 

volume of n-hexane was added and the resultant mixture was kept overnight in a 

separatory funnel. The BioSeNPs were collected from the aqueous phase and 

washed three times with Milli-Q (18MΩ*cm) water. After washing, the BioSeNPs 

were re-suspended in Milli-Q water and the pH was adjusted to 7.3 by the addition of 

a few drops of 1 N NaOH before adding them for adsorption experiments. The 

BioSeNPs preparation were carried out in duplicate to ensure that the characteristics 

of the nanomaterial are reproducible. 
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6.2.2. Batch adsorption experiments 

 

Batch isotherm studies were carried out at different initial zinc concentrations (5.8 -

 215.0 mg L−1, 960 minutes of shaking, pH 6.5, added as ZnCl2). Time-dependency 

studies were carried out at different contact times (1 - 960 minutes, pH 6.5, 

70 mg L−1 of initial zinc concentration). No background electrolyte was added for 

isotherm and time-dependency studies. 3 mL of 0.917 g L−1 BioSeNPs at pH 7.3 

were added as adsorbent. The experiments were carried out at 30 °C, under 

atmospheric conditions for 16 hours (this duration was found sufficient to reach 

equilibrium as observed from kinetic experiments).  Adsorption of Zn2+ ions was also 

carried out at various initial zinc solution pH (2.0 - 7.2) values with an initial zinc 

concentration of 70 mg L−1. The theoretical pH values varied from 2.7 to 7.2, and 

were determined by calculating the final concentration of H+ ions in the samples 

while discounting any adsorption reactions. For example, when 3 mL of BioSeNPs at 

pH 7.3 (H+ concentration is 10−7.3 M) was added to 7 mL of zinc metal ion solution of 

pH 3 (H+ concentration will be 10−3 M), the final H+ ion concentration and the 

theoretical pH in the sample will be approximately 710−4 M and 3.2, respectively. 

The adsorption experiments were also carried out at various ionic strengths (0.7 - 

70.0 mM NaCl) and in the presence of competing cations (Ca2+, Mg2+ and Fe2+, 

added as CaCl2
.2H2O, MgCl2 6H2O and FeCl2

.4H2O, respectively). The zinc and 

competing ions were added simultaneously at the beginning of the adsorption 

experiments. Simulation by Visual MINTEQ software confirmed that more than 98% 

of the total initial zinc added was in the Zn2+ speciation in all the batch adsorption 

experiments.  

 

As the volumes used in the batch experiments were low, the use of gravity settling 

for solid-liquid separation was difficult. The samples were, therefore, filtered with a 

0.45 µm syringe filter (cellulose acetate, Sigma Aldrich) to be analyzed for the 

residual zinc concentration. Control experiments were carried out to discard the 

possibility of adsorption of Zn2+ ions to the filter material or by precipitation (more 

details in Appendix 2). All the experiments were carried out in duplicate. If the 
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difference in two measurements exceeded 10%, experiments were repeated. The 

average values and errors of duplicate measurements are presented in the figures. 

 

6.2.3. Analysis of BioSeNPs loaded with Zn2+ ions 

 

5 mL of BioSeNPs (0.22 g L−1, pH 7.3) was used for adsorbing different initial zinc 

concentrations (0.9 - 90.9 mg L−1, pH 5.5). The final volume of the samples was 5.5 

mL and the final pH of the samples varied between 5.8 and 6.5. The ζ-potential of 

the BioSeNPs loaded with different concentrations of Zn2+ ions was measured (more 

details in Appendix 2). The samples were then filtered with a 0.45 µm syringe filter 

(cellulose acetate, Sigma Aldrich) and analyzed for the selenium concentration in the 

filtrate by ICP-MS. For XPS analysis of BioSeNPs loaded with Zn2+ ions, 90.1 mg L−1 

of zinc were added to BioSeNPs (0.917 g L−1). The final pH of the BioSeNPs loaded 

with zinc after adsorption was 6.2. Prior to XPS analysis, the samples were 

centrifuged at 37,000 g for 15 minutes followed by re-suspension in Milli-Q water 

(see Appendix 2 for details). 

 

6.2.4. Adsorption experiments with simulated wastewaters  

 

Synthetic wastewater containing zinc was generated by adding chloride salts of Zn2+ 

(30 mg L−1), Mg2+ (64.6 mg L−1), Ca2+ (24 mg L−1) and NH4
+ (60 mg L−1) as described 

in Zhao et al. (Zhao et al., 1999), but the pH was adjusted to 2.9 to prove 

applicability of the proposed technology for more challenging wastewater. The 

effluent of an UASB reactor containing BioSeNPs was simulated by using effluent of 

batch incubations without any post treatment (Lenz et al., 2008). This effluent 

contained Cl− (766 mg L−1), NO3
− (29 mg L−1), PO4

3− (50 mg L−1), SO4
2− (159 mg L−1), 

BioSeNPs (34.2 mg L−1) and 860 mg L−1 of Carbon Oxygen Demand. The synthetic 

zinc containing wastewater was mixed with simulated effluent containing BioSeNPs 

at a ratio of 1:1 and 1:1.5 for 60 minutes followed by 60 minutes of gravity settling. 

No filtration was used for solid-liquid separation. After the setting, residual zinc and 

selenium concentrations were measured in the supernatant. The control experiments 

were carried out by the same effluent but after removal of BioSeNPs by centrifuging 

at 37,000 g and collecting the supernatant. 
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6.2.5. Analytics 

 

Residual zinc, calcium, magnesium and iron concentrations were measured by 

Atomic Absorption Spectroscopy (see Appendix 2 for details). The selenium content 

of the BioSeNPs was determined by ICP-MS after being dissolved in concentrated 

HNO3 (see Appendix 2 for details). The produced BioSeNPs were characterized by 

SEM-EDX spectra, XRD, ζ-potential measurements and XPS (more details in 

Appendix 2). All chemicals were of analytical grade and purchased from Sigma 

Aldrich (The Netherlands).  

 

6.3. Results 

 

6.3.1. Characterization of the BioSeNPs 

 

The BioSeNPs' particles were spherical in shape (Figure 6.1a) and mainly composed 

of selenium (Figure 6.1b). In addition, carbon, oxygen as well as small amounts of 

nitrogen and sulfur were detected by EDX spectra of the SEM (Figure 6.1b). The 

presence of carbon, oxygen, nitrogen and sulfur can be attributed to the presence of 

extracellular polymeric substances (EPS) attached to the BioSeNPs, which was 

further confirmed by the XPS data: the C 1s, N 1s and O 1s peaks were found in the 

XPS analysis of BioSeNPs (see Figure S1 in Appendix 2). These EPS bound to the 

surface of the BioSeNPs particles provide colloidal stability to the BioSeNPs at 

different pH values (Buchs et al., 2013). Note that the large Si signal in Figure 6.1b 

was due to the use of a silicon wafer during the SEM-EDXS measurements. 

 

The BioSeNPs diameter varied between 80 and 260 nm with a median of 160 - 

180 nm (see Figure S2 in Appendix 2). When filtering the BioSeNPs with 1.0 µm and 

0.45 µm filters, the filtrate fraction of BioSeNPs obtained was 13.9% and 5.2% of the 

original concentration, respectively, suggesting retention of the BioSeNPs to the 

filter. The presence of EPS (Figure 6.1b, S1 in Appendix 2), that can interact with 

filter material and also increase the hydro-dynamic diameter, can be the cause of 

this retention (Kayaalp et al., 2014; Nuengjamnong et al., 2005). XRD patterns of 

BioSeNPs after purification (see Figure S3 in Appendix 2) only show hints for diffuse 
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scattering, suggesting an amorphous nature of the BioSeNPs (Figure S3 in Appendix 

2), as observed in previous studies (Tejo Prakash et al., 2009; Wang et al., 2010). 

 

 

Figure 6.1. a) Secondary electron SEM image of the BioSeNPs deposited onto a 

piece of Si wafer and b) EDXS analysis of BioSeNPs.  

 

6.3.2. Adsorption of Zn2+ ions by BioSeNPs 

 

6.3.2.1. Time-dependency study 

 

The equilibrium pH of the samples was 6.5 at all contact times tested. More than 

70% of the Zn2+ ions were adsorbed in the first minute of reaction (Figure 6.2a). The 

uptake of Zn2+ ions was completed within 4 hours and remained unchanged for 

longer contact times. All the further experiments were thus carried out for 16 hours to 

ensure adsorption equilibrium was achieved. 
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Figure 6.2. Batch adsorption experiment of Zn2+ ions by BioSeNPs. a) Adsorption at 

pH 6.5, initial zinc concentration of 70 mg L−1 and no background electrolyte with 

time. Zoomed adsorption kinetics for the first 30 minutes presented in the inset.  

Each data point represents an independent sample; b) Adsorption isotherm at pH 6.5 

with different initial (□ with dotted line) and equilibrium (Δ) zinc concentration; c) 

Adsorption at 70 mg L−1 zinc with theoretical pH (× with dotted line) and equilibrium 

pH (Δ); d) Adsorption at pH 6.5 and 1.0 mM initial zinc concentration with different 

competing cations, (e) ζ-potential measurements of BioSeNPs (◇) and BioSeNPs 

exposed to 1 mM zinc (Δ) at a background electrolyte concentration of 5 mM NaCl, 

(f) ζ-potential measurements of BioSeNPs (◊) and % concentration of BioSeNPs in 

the filtrate (□)  after exposure to increasing zinc concentrations. The % of BioSeNPs' 
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concentration in the filtrate was calculated compared to filtration of BioSeNPs without 

Zn2+ ions adsorption. 

 

6.3.2.2. Adsorption isotherms 

 

The equilibrium pH remained at 6.5 for all the initial zinc concentrations tested. The 

adsorption of Zn2+ ions increased with increase in initial zinc concentration (Figure 

6.2b). The adsorption increased sharply when the initial zinc concentration was 

increased from 5.8 mg L−1 to 21 mg L−1. The plateau was reached at an initial zinc 

concentration of 36 mg L−1. A further increase in initial zinc concentration from 

36 mg L−1 to 215 mg L−1 led to an increase in the adsorption of Zn2+ ions and a 

second plateau was reached. The maximum adsorption capacity of BioSeNPs 

achieved was 60 mg of zinc adsorbed per g of BioSeNPs. The adsorption isotherms 

were modeled with the Langmuir and Freundlich models to obtain the theoretical 

adsorption capacity (Figure S4 in Appendix 2) as explained in Shin et al. (2011). The 

R2 values obtained for Langmuir and Freundlich were 0.980 and 0.977, respectively. 

The Qe-Zn predicted by the Langmuir and Freundlich are 62.1 and 45.5 mg of zinc 

per g of BioSeNPs. The maximum Qe-Zn predicted by the Langmuir model was 

close to that observed in the experiments, while the one predicted by the Freundlich 

model was 25% lower than that observed in the experiments. 

 

6.3.2.3. Effect of variation of pH 

 

In the pH study, the amount of Zn2+ ions adsorbed increased with increasing 

theoretical and equilibrium pH (Figure 6.2c). The Qe-Zn was 21.1 mg g−1 (35% of the 

maximum adsorption) at a theoretical and equilibrium pH value of 3.2 and 5.6, 

respectively. A steep increase in Qe-Zn to 38.6 mg g−1 (64% of the maximum 

adsorption value) was observed when the theoretical and equilibrium pH value was 

increased from 3.2 to 3.5 and 5.6 to 6.4, respectively. The maximum adsorption at 

70 mg L−1 initial zinc concentration was 45 mg g−1 (75% of the maximum adsorption), 

achieved at theoretical pH values above 3.9 and almost equal equilibrium pH value 

of 6.5 to 6.6. 
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6.3.2.4 Effect of competing monovalent and divalent cations 

 

NaCl was used as background electrolyte in the Zn/Na ratios: 1.0/0.7, 1.0/7 and 

1.0/70 mM/mM to observe their effect on the adsorption of the Zn2+ ions onto 

BioSeNPs (Figure 6.2d). The initial and equilibrium pH values were constant at 6.5. 

For the 1.0/0.7 and 1.0/7 mM/mM ratio, the adsorption was 100% as compared to 

the control experiment (without any electrolyte). With the further decrease in the 

Zn/Na ratio to 1.0/70 mM/mM, the adsorption was 95% of the zinc adsorption in the 

absence of any background electrolyte.  

 

Ca and Mg were used as competing cations in the Zn/X (where X = Ca or Mg) ratios: 

1.0/1.0, 1.0/5.0 and 1.0/10.0 mM/mM to observe potential competing effects on the 

adsorption of Zn2+ ions on BioSeNPs (Figure 6.2d). The initial and equilibrium pH 

values were 6.5. The Qe-Zn at 1.0 mM (65.4 mg L−1) initial zinc concentration was 

45 mg g−1 in the absence of any competitive ions (Figure 6.2b). At similar initial 

experimental conditions, the Qe-Ca (mg of Ca adsorbed per g of BioSeNPs) was 

18.7 and 51.7 mg g−1, at respectively, 1 and 5 mM of calcium in the absence of zinc. 

Similarly, the Qe-Mg (mg of Mg adsorbed per g of BioSeNPs) was 62.6 and 

113.8 mg g−1, at respectively, 1 and 5 mM magnesium in the absence of zinc. It is 

important to note that though the initial experimental conditions were identical for all 

experiments, the final pH for Mg2+, Ca2+ and Zn2+ was 8.3, 8.3 and 6.5, respectively. 

 

With calcium as the competing ion in the ratio (Zn/Ca): 1.0/1.0, 1.0/5.0 and 1.0/10.0 

mM/mM, the respective Qe-Zn was 98%, 87% and 76% (42.8, 39.2 and 34.2 mg g−1) 

of the control experiments (45 mg g−1). The presence of Ca2+, thus, decreases the 

adsorption of Zn2+ ions at a Zn/Ca ratio < 1.0/1.0. With MgCl2 as background 

electrolyte, the Qe-Zn was almost equal to control experiments (45 mg g−1): 104%, 

99% and 100% (46.8, 44.6 and 45 mg g−1) at the Zn/Mg ratio of 1.0/1.0, 1.0/5.0 and 

1.0/10.0 mM/mM, respectively. Thus, Mg2+ does not impact zinc ion adsorption under 

the applied experimental conditions.  

 

To see the competitive effect of Fe2+, 0.18 mM (10 mg L−1) of Fe2+ was added 

externally at an initial metals ion pH of 4.0 (Zn concentration was 70 mg L−1). The 

equilibrium pH of this experiment was 5.0. The Qe-Zn in these conditions was 
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reduced to 60% (27 mg g−1) of the maximum (45 mg g−1), showing iron has a strong 

competitive adsorption effect. 

 

6.3.2.5. Colloidal stability of BioSeNPs  

 

The ζ-potential of the BioSeNPs particles produced by anaerobic granules was −31.0 

mV at pH 7 and 5 mM background electrolyte concentration (Figure 6.2e). Similar 

negative ζ-potential values of BioSeNPs produced by Bacillus cereus and Bacillus 

selenatarsenatis were reported in other studies (Buchs et al., 2013; Dhanjal and 

Cameotra, 2010). The iso-electric point of BioSeNPs particles was at pH 3.8 as 

compared to 3.5 of selenium nanoparticles produced by B. selenatarsenatis (Buchs 

et al., 2013). The adsorption of zinc on BioSeNPs has led to less negative ζ-potential 

values (Figure 6.2e, f). No appreciable change in the iso-electric point of BioSeNPs 

loaded with Zn2+ ions was observed. In Figure 6.2f, with the increase in Qe-Zn from 0 

to 23.0, ζ-potential values changed from −36.7 to −13.4 mV. When the Qe-Zn value 

increases to 64.5, the ζ-potential became less negative (−10.2 mV). Figure 6.2f also 

shows a decrease in concentration of BioSeNPs in the filtrate after adsorption of zinc 

with the increase in Qe-Zn. The concentration of BioSeNPs decreased by more than 

92% (240 µg L−1 in the filtrate after adsorption and filtration as compared to 3200 µg 

L−1 in the filtrate after filtration only) with a Qe-Zn of 62 mg of zinc adsorbed per g of 

BioSeNPs. It is important to note that after adsorption and filtration, 99.9% of the 

added BioSeNPs were retained in the filter. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

6.3.3. XPS analysis  

 

During the XPS analysis of BioSeNPs, the Se 3d5/2 binding energy for the BioSeNPs 

was observed at 55.3 eV (Figure 6.3a). This is in good agreement with binding 

energy values previously reported in the literature for elemental selenium (see 

Tables S1 and S2 in Appendix 2). The assignment of the doublet of Se 3d3/2 and 

Se 3d5/2 is often overlooked in the literature and authors only refer to Se 3d, probably 

due to the use of non-monochromatic X-ray excitation. In agreement with 

observations of Guo and Lu, (1998), the binding energies of the different elemental 

selenium phases, e.g. amorphous, trigonal or monoclinic are comparable. No 

additional peaks at binding energies corresponding to other selenium oxidation 
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states were detected (Figure 6.3a). XPS confirmed, therefore, the formation of 

BioSeNPs particles via selenium(IV) reduction. 

  

At 53.7 eV, a peak corresponding to the Fe 3p elemental line was observed. The 

presence of Fe is due to the use of anaerobic granular sludge for BioSeNPs 

production. The total Fe concentration measured after dissolving BioSeNPs in HNO3 

was 5.4±2.5% (n=4) w/w of the BioSeNPs. As the signals of Fe in XPS were weak, 

assignment of the oxidation state of Fe was not possible. Since XPS is a surface 

probing technique, this suggests that most Fe was not present on the surface of the 

BioSeNPs but entrapped inside the BioSeNPs.  

 

Figure 6.3. (a) XPS spectra of BioSeNPs confirming the production of elemental 

selenium Se 3d lines of BioSeNPs and XPS spectra of BioSeNPs loaded with zinc, 

(b) Se 3d lines and (c) Zn 2p3/2 lines. 

 

The signal of C 1s can be fitted into three components with binding energies located 

at 284.8, 286.3 and 288.1 eV, corresponding to hydrocarbon chains (CxHy), alpha-

carbon (α-C) + C-N, and carboxylic acid (COOH groups), respectively (Bansal et al., 
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2006, 2005). The N 1s peak is centered at 400.1 eV and lays in the range 

corresponding to nitrogen containing groups (such as amine or amide groups) 

(Bansal et al., 2006; Graf et al., 2009; Wang et al., 2010) . The O 1s signal can be 

fitted into two components at 531.7 and 532.9 eV, corresponding to hydroxyl (─OH) 

and carboxylate (─COOH) groups, respectively (Senapati et al., 2005) (see Figure 

S1 in the Appendix 2). 

 

During the XPS analysis of BioSeNPs loaded with zinc, the Se 3d5/2 binding energy 

of the Zn2+ ions loaded on the BioSeNPs was centered at 55.1 eV (Figure 6.3b), 

while the Se 3p3/2 line was found at 161.4 eV. These binding energy values are in 

agreement with the energies found for the no zinc exposed BioSeNPs, 

corresponding also to elemental selenium (see Tables S1 and S2 in Appendix 2). No 

significant differences in the C 1s, N 1s and O 1s lines were observed after 

interaction with Zn2+ ions. 

 

The binding energy of the Zn 2p3/2 signal is located at 1022.2 eV (Figure 6.3c). The 

difficulty of attributing this binding energy is due to the fact that Zn compounds such 

as ZnO, ZnSe, ZnCO3 or Zn(OH)2 (NIST database) show similar Zn 2p3/2 binding 

energies (refer to Table S3 in Appendix 2). 

 

6.3.4. Zinc removal from synthetic wastewater 

 

Figure 6.4 demonstrates the zinc removal from simulated zinc containing 

wastewater. The final pH, after the mixing and settling of the synthetic metal 

wastewater fed with the simulated UASB effluent containing BioSeNPs and without 

BioSeNPs, was between 7.6 - 7.8. 97.2±0.2% and 97.2±0.1% of the total zinc was 

removed at 1:1 and 1:1.5 ratios, respectively, fed with BioSeNPs containing UASB 

effluent. In the control experiments, 80.7±0.7%, and 79.4±4% of total zinc was 

removed 1:1 and 1:1.5 ratios, respectively. The enhanced removal of zinc in 

synthetic wastewaters in comparison to control experiments is due to the presence 

of BioSeNPs. The removal of zinc in control experiments was due to precipitation of 

zinc in form of ZnO, Zn(OH)2, Zn3(PO4)2 and complexes with organic carbon as 

predicted by Visual MINTEQ. The final zinc concentrations, when BioSeNPs were 

added, for ratio 1:1 and 1:1.5 were 0.39 and 0.32 mg L-1, respectively, which is well 
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below the regulatory discharge limits (USEPS, 2013; FAO,2014; EC, 2001) and 10 

times less than zinc concentration in the control experiments. More than 97 and 80% 

of added BioSeNPs could be retained in the settled sludge (comprising BioSeNPs 

and Zn) at the ratio of 1:1 and 1:5, respectively. 

 

Figure 6.4. Zinc removal efficiency (■) and BioSeNPs retention (■) in the effluent 

and settled sludge, respectively, at different ratios of synthetic metal wastewater and 

simulated UASB effluent containing BioSeNPs. Zinc removal efficiency in the control 

experiments (□) at different ratio when synthetic metal wastewater is mixed with 

UASB effluent without BioSeNPs.  

 

6.4. Discussion 

 

6.4.1. Mechanisms of Zn2+ adsorption onto BioSeNPs at near-neutral pH 

 

This study demonstrated, for the first time, that adsorption of Zn2+ ions on BioSeNPs 

is carried out by different mechanisms depending on the initial zinc concentrations. 

The ζ-potential of BioSeNPs loaded with Zn2+ ions vs Qe-Zn (Figure 6.2f) has the 

same double-plateau as the adsorption isotherm of Zn2+ ions (Figure 6.2b), 

suggesting two kinds of sorption mechanisms prevail at near neutral pH values.  The 

double-plateau isotherm for Zn2+ adsorption on BioSeNPs observed at initial and 

equilibrium pH of 6.5 (Figure 6.2b) might be due to the presence of high and medium 

affinity sites on the surface of the adsorbent, as suggested in the adsorption of zinc, 

cadmium, copper and nickel by amorphous hydrous manganese dioxide (Kanungo et 

al., 2004) or zinc adsorption by hydroxy intercalated Al and Zr-pillared bentonite 

(Matthes et al., 1999). Alternatively, the double-plateau adsorption isotherm can be 
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explained by the BET type IV isotherm (Do, 1998).  This type of isotherm proposes 

the formation of adsorbate monolayers on the site, followed by precipitation of 

adsorbate in the pores of the adsorbent.  

 

XPS analysis of BioSeNPs loaded with Zn2+ confirms the formation of zinc 

precipitates on the surface of BioSeNPs (Figure 6.3c), as predicted in BET type IV 

isotherm. However, the XPS analysis of BioSeNPs loaded with Zn2+ does not allow 

to assign unambiguously the zinc compound found on the surface, since ZnO, 

Zn(OH)2, ZnCO3 and ZnSe exhibit very similar Zn 2p3/2 binding energies (see Table 

S3 in Appendix 2). The possibility of the presence of ZnO, Zn(OH)2 and ZnCO3 can 

be explained on the basis of increased concentrations of Zn2+ ions in the electrical 

double layer as compared to the bulk solution due to electrostatic attractions 

between the high negative ζ-potential of BioSeNPs and the positive charge of the 

Zn2+ ions leading to precipitation of Zn(OH)2, ZnO or ZnCO3 on the surface of the 

BioSeNPs. 

 

ZnSe could also be present on the surface of BioSeNPs following the 

disproportionation of elemental selenium to selenium(IV) and selenium(−II) leading to 

ZnSe formation (Nuttall, 1987; Su et al., 2000; Zhang et al., 2000). Indeed, based on 

solubility products, the formation of HgSe and Ag2Se through disproportionation of 

elemental selenium into selenide and selenite was reported to be highly favorable, in 

comparison to ZnSe whose formation was considered to be less favorable (Nuttall, 

1987). Such a disproportionation reaction of elemental selenium was experimentally 

observed during synthesis of CuSe and Ag2Se in alkaline and hydrothermal 

conditions (Su et al., 2000), however not at the experimental conditions applied in 

this study (pH = 6.5, T = 30 oC). Preliminary analysis of Extended X-ray Absorption 

Fine Structure (EXAFS) data of BioSeNPs loaded with Zn2+ ions at Zn K-edge 

suggests that the first neighbor of Zn is O (See appendix 3). The Zn precipitate can 

be either ZnO, Zn(OH)2, ZnCO3 or even Zn-organic complexes, rather than ZnSe. To 

better evaluate the chemical environment of zinc at the BioSeNPs surface, further 

analysis of the EXAFS data is required, which is beyond the scope of the present 

study. 
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6.4.2. Mechanisms of Zn2+ ions adsorption onto BioSeNPs at different pH 

 

The adsorption of Zn2+ ions on BioSeNPs follows different mechanisms at different 

solution pH. At initial pH values from 2.9 to 3.8 (the theoretical pH values were 

calculated to be 3.0 to 4.0 and the equilibrium pH values varied from 4.4 to 6.6), the 

Zn2+ ions adsorption on BioSeNPs followed a ligand-like (type II) adsorption 

mechanism (Kanungo et al., 2004). In the ligand-like adsorption, ligands can bind to 

solid surfaces by replacing OH− and decreasing repulsion between solids and 

cations, which in turn assist in binding of the cations to the same site as the ligand or 

at some other sites. Ligands also increase the number of sites taking part in 

adsorption by maintaining electro-neutrality on the surface of the adsorbent. The 

excess of OH− or lack of H+ ions was observed in the samples while carrying out the 

mass balance for H+ ions for the adsorption of Zn2+ ions by BioSeNPs at initial pH 

values of 2.9 to 3.8. The Zn2+ ions adsorption was highly correlated to the H+ sorbed 

during this pH range (R2 = 0.99, see Figure S5 in Appendix 2). This high correlation 

suggests that at low pH, a release of OH− ions or adsorption of H+ ions takes place 

during the interaction of Zn2+ ions with the BioSeNPs. A similar increase in 

equilibrium pH was reported during adsorption of Cu2+ at initial pH of 3.0 by 

polyglycidyl methacrylate and polyethyleneimine (Navarro et al., 2001). The 

equilibrium pH varied between 4.8 and 5.9, increasing with increase of the 

background chloride ion concentrations, suggesting ligand-like (type II) assisted 

adsorption (Kanungo et al., 2004).  

 

To quantify the amount of the chloride ions adsorbed, experiments were carried out 

at an initial zinc concentration of 60.0 mg L−1, chloride ion concentration of 82.8 mg 

L−1, pH of 3.7 and with 2.2 g L−1 of BioSeNPs. The Qe-Cl was 1.8 mg of chloride 

adsorbed per g of BioSeNPs (see details for Cl− measurement in Appendix 2). The 

adsorption of Cl− points to the possibility of the presence of anion assisted Zn2+ ions 

adsorption by BioSeNPs (Kanungo et al., 2004). Since the Qe-Cl is much lower than 

that of Qe-Zn (25.5 mg g−1) at these experimental conditions, anion assisted Zn2+ 

ions adsorption is most likely not the dominant mechanism or is only valid for a small 

pH range. 
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At the theoretical pH value of 7.2, the replacement of the H+ ion by Zn2+ ions on the 

surface of BioSeNPs was suggested by the drop in the equilibrium pH to 6.5 from 

theoretical pH of 7.2. This release of H+ ion was also observed when the theoretical 

pH value was increased from 4.0 to 5.7.  

 

6.4.3. Effect of competing ions on Zn2+ ions adsorption  

 

The effect of Zn2+ ions adsorption on BioSeNPs in the presence of common 

competing ions as Na, Ca, Mg and Fe is important to assess the applicability of 

BioSeNPs for real wastewaters. To this point, it was observed that the increase in 

NaCl concentration from 0.001 M to 0.1 M, there was no significant effect on the zinc 

ion adsorption by BioSeNPs (Figure 6.2d). This suggests that the Zn2+ ions are 

adsorbed on the surface of BioSeNPs via inner sphere complexation (Wang et al., 

2013).  

 

The relative increase in adsorption of the cations either follows a decrease in ionic 

radius or an increase in electronegativity of the metal ion or an increase in ratio of 

the ionisation potential and ionic radius (McKay and Porter, 1997). Qe-Mg > Qe-Zn > 

Qe-Ca, which is explained by the trend in ionic radius of the ions: Mg2+ < Zn2+ < Ca2+ 

(see Table S4 in Appendix 2). However, the relative preference of cations for 

adsorption by BioSeNPs follows the trend in the ratio of ionisation potential and ionic 

radius, which is the highest for Zn2+ (−1.03), lower for Ca2+ (−2.89) and the lowest for 

Mg2+ (−3.63), thus implying that Zn2+ would outcompete calcium and magnesium at 

the equimolar ratios.  

 

The ratio of ionization potential and ionic radius for Fe2+ (−0.77) exceeds that of Zn2+ 

(−1.03), thus Fe2+ would outcompete zinc at equimolar ratio. The effect of entrapped 

Fe in BioSeNPs on its adsorption capacity could not be measured as it is impossible 

to remove Fe entirely from the BioSeNPs without altering or destroying them. The 

entrapped Fe is, however, unlikely to have inhibited the adsorption of Zn2+ on 

BioSeNPs as the majority of Fe was not present on the surface of BioSeNPs (Figure 

6.3a).  
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6.4.4. Colloidal stability of BioSeNPs  

 

The increase of Zn2+ ions adsorption with increasing pH can be ascribed to the 

change in ζ-potential of the BioSeNPs. The ζ-potential of the BioSeNPs is negative 

at pH values above the iso-electric point (pH 3.8) and becomes more negative with 

increasing pH. The negative charge on the surface of BioSeNPs attracts the Zn2+ 

ions and thus, the more negative charge, the stronger will be the attraction and 

hence increases the adsorption (Arias and Sen, 2009). Furthermore, the change in 

pH leads to deprotonation of functional groups present on the surface of BioSeNPs 

(see Figure S1 in Appendix 2) which, in turn, provides more binding sites to Zn2+ ions 

and thus increases adsorption. 

 

The interaction of Zn2+ ions and BioSeNPs leads to less negative BioSeNPs loaded 

with zinc, suggesting that the zinc is adsorbed either by electrostatic interactions or 

by covalent bond formation (Figures 6.2e, f and Table S5 in Appendix 2). The same 

trend was observed for interaction of BioSeNPs with Ca2+ and Mg2+ (see Figure S6 

in Appendix 2) and was also observed during the interaction of calcium ions with 

BioSeNPs produced by Bacillus selenatarsenatis (Buchs et al., 2013). No 

appreciable shift in iso-electric point of BioSeNPs loaded with zinc was observed 

(Figure 6.2e). This can be attributed to the relatively small amount of zinc adsorption 

at an equilibrium pH value of 4. A similar observation was made during adsorption of 

U(VI) on MnO2 (Wang et al., 2013). 

  

The ζ-potential becomes less negative at increasing Qe-Zn (Figure 6.2f, Table S5 in 

Appendix 2). This suggests that as the load of Zn2+ ions on the surface of BioSeNPs 

increases, the colloidal stability of BioSeNPs decreases. The effect of lower colloidal 

stability of BioSeNPs loaded with Zn2+ ions led to settling and a lower concentration 

of BioSeNPs in the filtrate: 99.9% of retention of total added BioSeNPs on the filter 

was achieved (240 µg L−1 of selenium concentration after zinc adsorption and 

filtration; 3200 µg L−1 after only filtration, 220,000 µg L−1 of added BioSeNPs, Figure 

6.2f). Thus, the heavy metals loaded on BioSeNPs can be separated from the liquid 

phase by simple gravity settling.  
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6.4.5. Practical implications 

 

This study demonstrated that the adsorption of Zn2+ ions can be performed at acidic 

pH values (pH 3.9). This is an interesting characteristic as the pH of the metal 

containing wastewaters such as electroplating industry wastewater or acid mine 

drainage wastewater (Lenz et al., 2008) varies from highly acidic to near neutral 

(Amer, 1998; Boricha and Murthy, 2009; Kanawade and Gaikwad, 2011; Zhao et al., 

1999), where activated carbon is unable to adsorb zinc (Kouakou et al., 2013). 

Though the adsorption capacity of BioSeNPs is low in comparison to Dowex HCR 

S/S resin (Qe 172.2 mg g−1) (Zhang et al., 2010), NaA and NaX zeolites (Qe 118.9 

and 106.4 mg g−1) (Nibou et al., 2010), the adsorption capacity of BioSeNPs is 

higher than most of the common adsorbents used for zinc removal such as 

aluminosilicates, non-modified zeolite, bentonite or activated carbon (see Table 6.1). 

 

Table 6.1. Maximum Qe-Zn of common adsorbents for Zn2+ ions at relevant 

conditions  

Adsorbent 
Q max  

(mg g−1) 
pH 

Concentration 

(mg L−1)                 

i = initial conc.               

e = equilibrium  

conc. 

Reference 

BioSeNPs 60 6.5 200 (i) This study 

Hydrous manganese 

dioxide 
57.2, 85.0 6.0 

18.3 (e) 

3.3 (e) 

(Kanungo et 

al., 2004; Su 

et al., 2010) 

Graphene oxide 345  5.0 100 (e) 
(Sitko et al., 

2013) 

Aluminosilicates 6.5 6.5 65.4 (i) 
(Miyazaki et 

al., 2003) 

Al2O3 22.9 6.5 195.9(i) 
(Miyazaki et 

al., 2003) 

PVA/EDTA resin 38.7 6.0 40 (i) 
(Zhang et 

al., 2010) 
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Dowex HCR S/S resin 172.2 6.0 18 (e) 
(Zhang et 

al., 2010) 

Sodium rich bentonite 23.6 6.9 97.3 (e) 
(Matthes et 

al., 1999) 

AI-pillared Na-rich 

bentonite 
31.8 6.9 97.3 (e) 

(Matthes et 

al., 1999) 

Commercial activated 

powder carbon 
20.5 7.0 400 (e) 

(Kouakou et 

al., 2013) 

 

This study opens perspectives to develop a novel adsorption technology where 

BioSeNPs present in the effluent of an UASB reactor treating selenium oxyanions 

containing wastewater (Buchs et al., 2013; Lenz et al., 2008) is used as a metal 

adsorbent. It is important to note that the BioSeNPs are always present in the fore 

mentioned effluent due to microbial conversion of dissolved selenium oxyanions to 

BioSeNPs and these BioSeNPs has to be removed prior to discharging of the 

effluent (Buchs et al., 2013). Figure 6.4 demonstrated that the regulatory discharge 

concentration of zinc can be achieved by use of BioSeNPs at the tested conditions. It 

was also observed that at the appropriate metal to BioSeNPs ratio, 1:1 in this study, 

more than 97% of BioSeNPs can be retained in the settled sludge or removed from 

the effluent of an UASB reactor treating selenium oxyanion wastewater by a simple 

cost-effective gravity settling. The settled BioSeNPs loaded with zinc metal then can 

be used for recovery of the heavy metal and BioSeNPs.  

 

6.5. Conclusion 

 

In this study, the adsorption of Zn2+ ions on BioSeNPs was investigated. Adsorption 

of Zn2+ ions on BioSeNPs follows a two-step process at near-neutral pH values and 

follows ligand-like (type II) mechanisms at acidic pH. Furthermore, Zn2+ ions adsorbs 

to BioSeNPs mainly through inner-sphere complexation. Major advantages of using 

BioSeNPs as an adsorbent are the material's fast kinetics and capacity to adsorb 

more than 75% of the maximum adsorption capacity even at pH values below 3.9. 

The ζ-potential of BioSeNPs changed from −31 mV to −15 mV after interaction with 

the Zn2+ ions, leading to aggregation of the BioSeNPs and subsequent settling of the 
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colloidal suspension. This allows recovering the metal loaded BioSeNPs by simple 

gravity settling as observed in experiments with synthetic zinc wastewaters. This 

study provides understanding of Zn2+ ions adsorption onto BioSeNPs, which can be 

exploited to develop a new heavy metal removal process based on BioSeNPs 

produced out of effluents of UASB reactors treating selenium oxyanions rich 

wastewaters. 
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Abstract: 

 

Selective adsorption of heavy metals contained in wastewaters is desirable as the 

selected metal can then be reprocessed and reused. In this study, biogenic 

elemental selenium nanoparticles (BioSeNPs) were assessed for their ability to 

selectively adsorb Cu, Cd and Zn from an equimolar mixture. BioSeNPs showed the 

following preference order for adsorption: Cu>Zn>Cd at the theoretical pH variation 

of 3.0 to 5.6. BioSeNPs adsorbed 4.7 times more Cu from an equimolar mixture (0.5 

mM) of Cu, Zn and Cd at a theoretical pH of 4.3 and metals to BioSeNPs ratio of 1:1 

(v:v). Infrared spectroscopy analysis revealed that the Cu, Cd and Zn were 

interacting with the hydroxyl and carboxyl functional groups present on the surface of 

the BioSeNPs. The adsorption of the heavy metals onto the BioSeNPs led to less 

negative ζ-potentials of BioSeNPs, leading to a lower colloidal stability and induced 

their settling. Cu was the most effective metal in neutralizing the negative surface 

charge of the BioSeNPs and thus induced a better settling or better retention in the 

filters. 

 

Keywords: Adsorption, selenium, nanoparticles, BioSeNPs, selective, heavy metals, 

ζ-potential 

 

Graphical abstract: 
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7.1. Introduction 

 

Heavy metals such as Cu, Zn and Cd have many technical and industrial 

applications. Toxicity induced by exposure to high Cu, Zn and Cd concentrations in 

humans, animals, plants and the environment is well documented. Thus, regulatory 

agencies have set discharge limits for these metals, e.g. the United States 

Environmental Protection Agency (US EPA) limits the maximum contamination level 

(MCL) to 1.3, 0.5 and 5.0 mg L−1 for Cu, Cd and Zn, respectively, in discharged 

wastewaters (US EPA, 2013). Adsorption is the most recommended technology for 

the removal of heavy metals, including Cu, Zn and Cd, from low concentration and 

high volume wastewater, such as acid mine drainage or electroplating industry (Fu 

and Wang, 2011; Hua et al., 2012; Kanawade and Gaikwad, 2011; Wingenfelder et 

al., 2005). To separate, reprocess and reuse these metals, their selective adsorption 

from multimetal mix wastewaters is required.  

 

Selective adsorption of heavy metals onto the adsorbent depends on the metals' 

properties, such as ionic radius, electronegativity, ratio of ionic radius and ionization 

potential, as well as metal speciation (McKay and Porter, 1997). The presence of 

functional groups such as carboxyl and hydroxyl on the surface of adsorbents also 

leads to selective adsorption of heavy metals (Sitko et al., 2013; Yan et al., 2011). 

Furthermore, the wastewater pH also plays a significant role in optimizing the 

selective and sequential adsorption of heavy metals onto the adsorbent as the 

change in pH affects the metal speciation and protonation/deprotonation of the 

functional groups present on the adsorbent (Arias and Sen, 2009; Sitko et al., 2013). 

Most adsorbents have to be pretreated to improve their selectivity which increases 

the cost of application (Yan et al., 2011). Thus, there is a constant search for 

adsorbents with lower cost and better selectivity. 

 

Biogenic elemental selenium nanoparticles (BioSeNPs) can be a good selective 

adsorbent for heavy metals due to the presence of carboxyl and hydroxyl functional 

group on their surface (Jain et al., 2015). Moreover, the median diameter of 

BioSeNPs is 180 nm, thus providing a high surface area for adsorption, resulting in 

high Qe-Me values (mg of metal adsorbed per g of BioSeNPs) (Jain et al., 2015) . 

Also, BioSeNPs are a low cost adsorbent, as they can be produced by microbial 
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reduction from selenium oxyanions containing wastewaters (Lenz et al., 2009, 2008). 

Although, there is a single metal adsorption study on the  removal of Zn by 

BioSeNPs (Jain et al., 2015), there are so far no studies carried out on multiple 

heavy metal adsorption onto BioSeNPs. 

 

The objective of this study was to assess the selective adsorption of Cu, Cd and Zn 

onto BioSeNPs as well as their effect on the colloidal stability of BioSeNPs. In order 

to achieve this objective, adsorption of Cu and Cd was performed in a single metal 

system at different initial pH values. Competitive adsorption of Cu, Cd and Zn at 

different metals to BioSeNPs ratios was carried out at different pH. The 

concentration of selenium in the filtrate was measured for all the batch adsorption 

experiments. The interaction of BioSeNPs with metals was also studied with 

Scanning Electron Microscopy - Energy Disperse X-ray Spectroscopy (SEM-EDXS), 

Fourier Transform Infrared Spectroscopy (FT-IR) and zetametry.  

 

7.2. Materials and methods 

 

7.2.1. Production, purification and characterization of BioSeNPs 

 

BioSeNPs were produced, purified and characterized as described in previous study 

(Jain et al., 2015). Briefly, reduction of selenite was carried out under anaerobic 

conditions in the presence of anaerobic granular sludge. The produced BioSeNPs 

were decanted and concentrated by centrifugation at 37,000g. The pellet of 

BioSeNPs was re-suspended in Milli-Q water (18 MΩ*Cm), followed by sonication, 

NaOH treatment, hexane separation and finally washing with Milli-Q water. 

 

7.2.2. Batch adsorption tests 

 

Single metal batch adsorption experiments were carried out for Cu (added as CuCl2) 

and Cd (added as CdCl2). 3 mL of 0.84 g L−1 of BioSeNPs (pH 7.3) was added to 7 

mL of heavy metal solution. Time-dependent adsorption experiments were carried 

out for different duration (1 - 960 minutes) at an initial metal ion concentration of 70 

mg L−1, at pH 3.0 and pH 5.0 for Cu and Cd, respectively. The influence of the initial 

pH was ascertained (2.0 - 6.2 for Cu and 2.0 - 7.0 for Cd, respectively), at an initial 
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metal ion concentration of 70 mg L−1 and a contact time of 960 minutes on the 

adsorption of Cu and Cd. 

 

For competitive Cu, Cd and Zn adsorption experiments, a multi metal solution 

containing 0.5 mM of Cu, Cd and Zn (31.6, 56.2 and 32.6 mg L−1), added as 

respective chloride salts, was prepared. 5 mL of the multi metal solution at different 

initial pH (2.5 - 6.1) was added to 5 mL or 10 mL of the BioSeNPs (0.29 g L−1, pH 

7.3). For competitive Cd and Zn adsorption experiments, 0.5 mM of Cd and Zn (32.6 

and 56.2 mg L−1), added as chloride salts, was prepared. 5 mL of this heavy metal 

solution at different initial pH (2.5 - 6.5) was added to 5 mL or 10 mL of BioSeNPs 

(0.29 g L−1, pH 7.3). All the batch adsorption experiments were carried out under 

atmospheric conditions at 30 °C and 150 rpm in an orbital shaker. 

 

It is important to note that for the adsorption experiments, the two solutions with 

different volume and different initial pH were mixed together, the concept of 

theoretical pH was used, as described in detail by (Jain et al., 2015). In short, the 

theoretical pH was obtained after calculating the final H+ concentration in the 

samples after the addition of the metal ion solution and the BioSeNPs, without 

considering any adsorption reaction.  

 

At the end of all adsorption experiments, the samples were filtered with a 0.45 µm 

syringe filter (cellulose acetate, Sigma Aldrich). Filtrates were analyzed for residual 

heavy metals and selenium concentrations using Atomic Adsorption Spectroscopy 

(AAS) and Inductively Coupled Plasma - Mass Spectrometry (ICP-MS), respectively. 

All experiments were carried out in duplicate and if the duplicate values varied by 

more than 10%, then the experiments were repeated. Average of the duplicate 

values and their errors are presented in the figures. 

 

7.2.3. Characterization of heavy metals loaded on BioSeNPs 

 

The ζ-potential of the BioSeNPs were measured with a Nano Zetasizer (Malvern 

instrument) at increasing heavy metals concentrations at the equilibrium pH of 5.4 as 

described in (Jain et al., 2015). The samples for SEM-EDXS and FT-IR were 

prepared after addition of 100 mg L−1 of Cu, Cd and Zn at initial metal ion pH of 3.0, 
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5.0 and 6.5, respectively, to 10 mL of 0.84 g L−1 and pH 7.3 BioSeNPs. For the 

multimetal FT-IR samples, equal metal concentrations in mg L-1 were added so that 

the total final metal concentration was 100 mg L−1.  

 

7.2.4. Analytics 

 

SEM-EDXS, ICP-MS and AAS measurements were carried out according to the 

procedures described in (Jain et al., 2015). AAS for Cu and Cd were carried out 

using their respective lamps at 324.8 and 228.8 nm, respectively. For the FT-IR, the 

samples were vacuum dried and 1 mg of sample was measured. 300 mg of dried 

KBr was mixed with the samples, followed by pressing at 145,000 psi for 2 minutes 

to obtain clear KBr pellets. The spectroscopic data over the range 4000-400 cm−1 in 

the transmittance mode was recorded by a Bruker Vertex 70/v spectrometer 

equipped with a D-LaTGS-detector (L-alanine doped triglycine sulfate). Each 

spectrum was averaged out over 64 scans. 

 

7.3. Results 

 

7.3.1. SEM-EDXS analysis of BioSeNPs loaded with heavy metals 

 

Figure 7.1a shows that the produced BioSeNPs are spherical in shape and 

composed of selenium (Figure 7.1b). EDXS analysis also suggests the presence of 

C, O, N and S on the BioSeNPs. These elements can be attributed to the presence 

of an EPS layer associated with the BioSeNPs (Jain et al., 2015). Figure 7.1c shows 

that there are no changes in the shape of the BioSeNPs after simultaneous loading 

with Cu, Zn and Cd. The presence of these heavy metals on the BioSeNPs was 

confirmed by EDXS analysis (Figure 7.1d). It is noteworthy to mention that the 

presence of Si in the EDXS analysis is due to the use of silicon wafer to hold the 

respective samples. 
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Figure 7.1. Secondary electron SEM image and EDXS analysis of (a), (b) BioSeNPs 

and (c), (d), BioSeNPs loaded with Cu, Zn and Cd. Figure a and b are reproduced 

from Jain et al. (2015).  

 

7.3.2. Single component study 

 

7.3.2.1. Adsorption time dependency  

 

The equilibrium pH for the time-dependent adsorption experiments for Cu and Cd 

was 5.5 and 7.2, respectively. Time-dependent studies demonstrate that the 

adsorption of both copper and cadmium, like Zn as observed in a previous study 

(Jain et al., 2015) was fast and occurred mostly  within the first 12 min (see inset) 

(Figures 7.2a, b and c). During the first five minutes of contact between the heavy 

metals and the BioSeNPs, nearly 84.3% of the maximum Qe-Cu (mg of Cu adsorbed 
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per g of BioSeNPs) and 63.2% of maximum Qe-Cd (mg of Cd adsorbed per g of 

BioSeNPs) was adsorbed. 88% and 97% of the maximum Qe-Cu was achieved in 60 

and 240 min of the reaction, respectively. In contrast, for cadmium, 85.7% and 

93.2% of maximum Qe-Cd was achieved in 60 and 240 min, respectively. The 

maximum Qe-Cu and Qe-Cd was found to be 178.6 and 106.7, respectively after 

220 min of contact time and remained constant afterwards. Hence, all the further 

adsorption experiments were carried out during 960 minutes to ensure that 

equilibrium is reached. It is important to note that Visual MINTEQ does not predict 

any precipitation of Cd at the conditions used in the time dependency study. 

However, Visual MINTEQ predicts 30% precipitation of Cu (tenorite) at the 

equilibrium pH 5.5 and equilibrium Cu concentrations of 30 mg L−1. There was no 

evidence of Cu precipitation at the theoretical pH of 3.1 and concentrations of 70 mg 

L−1. 

 

 

Figure 7.2. Single component batch adsorption experiments at the initial metal 

concentration of 70 mg L−1 with no background electrolyte with time for (a) Cu, (b) Cd 

and (c) Zn at equilibrium pH of 5.5, 7.2 and 6.5, respectively. Inset graphs are 
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zoomed in for the respective metal's adsorption kinetics. Figure 7.2c is reproduced 

from Jain et al. (2015). 

 

7.3.2.2. Effect of pH 

 

For the pH dependent Cu adsorption by BioSeNPs, the theoretical and equilibrium 

pH varied from 2.1 to 6.3 and 2.5 to 6.4, respectively (Figure 7.3a). The adsorption of 

Cu increased with an increase in theoretical and equilibrium metal ion pH (Figure 

7.3a). The Qe-Cu increased to a value of 48.4 mg of Cu adsorbed per g of 

BioSeNPs when the theoretical and equilibrium pH values increased to 2.8 and 5.1, 

respectively. No Cu precipitation was predicted by Visual MINTEQ at these 

initial/theoretical (pH 3.0, 70 mg L−1) and equilibrium conditions (pH 5.1, 56 mg L−1) 

as noted by the black line in Figure 7.3a. When the Qe-Cu value reached to 114.3, 

164.3 and 239.7 mg Cu per g BioSeNPs, Visual MINTEQ predicted that 23%, 60% 

and 95% of the Cu, respectively, was precipitated, mainly as tenorite. Like Qe-Cu, 

the Qe-Cd also increased with an increase in the theoretical and equilibrium pH. The 

maximum Qe-Cd of 114.3 mg of Cd per g of BioSeNPs was obtained when the 

theoretical and equilibrium pH values were 7.1 and 7.4, respectively (Figure 7.3b). 

There was no precipitation predicted by Visual MINTEQ at all the theoretical and 

equilibrium conditions. The effect of pH on adsorption of Zn onto BioSeNPs has 

been described in a previous study (Jain et al., 2015). It is important to note that the 

metals to BioSeNPs ratio (v/v) is identical for Cu and Cd, but not same for Zn. Thus, 

the absolute Qe-metals values cannot be compared among different heavy metals 

from Figure 7.3. 
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Figure 7.3. Single component adsorption of (a) Cu, (b) Cd and (c) Zn onto 

BioSeNPs with the change in theoretical (Cu, Cd and Zn : ◊, □ and ∆, respectively) 

and equilibrium pH (Cu, Cd and Zn : ♦, ■ and ▲, respectively) at an initial metal 

concentration of 70 mg L−1 and no background electrolyte. The zone below the black 

dash line in Figure 3a represents no precipitation zone. Please note that Zn 

adsorption data have been reproduced from (Jain et al., 2015). 

 

7.3.3. Multimetal batch adsorption experiments 

 

7.3.3.1. Cu, Cd and Zn 

 

The objective of this experiment was to assess if the pH and metal to BioSeNPs ratio 

can be varied to optimize the preferential adsorption of one of the supplied metals 

(Cu, Cd and Zn). Simulations by Visual MINTEQ suggest that there was no 

precipitation at the theoretical and equilibrium conditions (respective, pH values and 

metal concentrations). When the theoretical pH was increased from 3.0 to 4.5 and 

2.8 to 4.8 for metals to BioSeNPs ratios (v:v) of 1:2 and 1:1, respectively, the 
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removal of the copper ion increased to 79.8 and 45.2% for 1:2 and 1:1 ratios, 

respectively (Figure 7.4a). The equilibrium pH increased from 3.6 to 5.6 and 3.1 to 

5.3 during this theoretical pH increase for the 1:2 and 1:1 ratios, respectively (Figure 

7.4b).  

 

 

Figure 7.4. Removal of Cu (◊), Cd (□) and Zn (∆) at different metals to BioSeNPs 

ratios with change in (a) theoretical pH and (b) equilibrium pH at ratio of 1:2 and with 

change in (c) theoretical pH and (d) equilibrium pH at ratio of 1:1. 

 

A further increase in theoretical pH led to less than 10% and 5% increase in metal 

removal and equilibrium pH for both ratios. For ratios 1:2 and 1:1, the maximum 

percentage of copper removed was 83.0% and 61.6%, respectively. The maximum 

percentage of cadmium removed for the ratio 1:2 and 1:1 was 21.1% and 8.6%. The 

maximum percentage of zinc removed for the ratio 1:2 and 1:1 was 17.8% and 3.2%, 

respectively.  

 

7.3.3.2. Cd and Zn 
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As Cu was shown to be selectively adsorbed from the metal solution containing Cu, 

Cd and Zn, it was important to elucidate if the pH or metal to BioSeNPs ratio can be 

further optimized to preferentially adsorb either Cd or Zn. To this point, the metal 

solution containing Cd and Zn was contacted with to BioSeNPs at different 

theoretical pH and metal to BioSeNPs ratios. 

 

The increase in the theoretical and equilibrium pH of the samples with a metals to 

BioSeNPs ratio of 1:2 (v:v) show two different slopes for both Cd and Zn removal 

(Figure 7.5a, b). At the theoretical and equilibrium pH of 3.8 and 6.5, respectively, 

the end of first slope was observed with a Zn and Cd removal efficiency of 66.1% 

and 58.2%, respectively. The end of the second slope was observed when the 

theoretical and equilibrium pH of 7.0 was obtained, where the maximum Zn (80.5%) 

and Cd (76.3%) removal efficiency was achieved for metals to BioSeNPs ratio of 1:2 

(v:v). Interestingly, no selective adsorption of either Zn or Cd was observed at this 

metals to BioSeNPs ratio.  
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Figure 7.5. Removal of Cd (□) and Zn (∆) at different metals to BioSeNPs ratios with 

change in (a) theoretical pH and (b) equilibrium pH at ratio of 1:2 and with change in 

(c) theoretical pH and (d) equilibrium pH at ratio of 1:1. 

 

At the metals to BioSeNPs ratio of 1:1 (v/v), no two distinct slopes for Zn or Cd 

removal was observed (Figures 7.5c, d). Both Zn and Cd removal increased with an 

increase in theoretical and equilibrium pH. The maximum Zn (56.6%) and Cd 

(40.0%) removal efficiency was achieved at theoretical and equilibrium pH of 6.7 and 

6.8, respectively. At this metal to BioSeNPs ratio, Zn was 16% more adsorbed than 

Cd suggesting a slight preference of BioSeNPs towards Zn. It should be noted that 

simulations by Visual MINTEQ did not indicate any precipitation of Cd and Zn at 

these theoretical and equilibrium conditions (respective, pH and metals 

concentrations). 

 

7.3.4. BioSeNPs flow-through in single, binary and ternary experiments 

 

BioSeNPs flow-through in the filtrate or retention in the filter was measured for single 

and multimetal adsorption experiments. For pH dependent single metal ion batch 

adsorption experiments of Cu, the flow-through of BioSeNPs dropped from 920 to 

265 µg L−1 with an increase in the theoretical and equilibrium pH values to 3.1 and 

5.7, respectively (Figures 7.6a, b). With a further increase in the theoretical and 

equilibrium pH from 3.3 to 6.3 and 5.7 to 6.4, respectively, there was a slight drop in 

selenium concentration in the filtrate, from 265 to 243 µg L−1. The residual selenium 

concentration or flow-through BioSeNPs in the filtrate without adsorption was 13710 

µg L−1, which was 56.4 times higher than the lowest selenium concentration 

observed in the filtrate after adsorption of copper ions. It is important to note that the 

selenium concentration in the filtrate was 23.1 times lower when no precipitation of 

Cu was observed compared to the selenium concentration or flow-through BioSeNPs 

after filtration, but without adsorption. 
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Figure 7.6. Variations of selenium concentrations in the filtrate or flow-through of the 

single metal adsorption experiments of Cu (◊) and Cd (□) with change in (a) 

theoretical pH and (b) equilibrium pH. Percentage removal of added BioSeNPs in the 

filtrate during the simultaneous Cu, Cd and Zn adsorption experiment (◊ : metals to 

BioSeNPs ratio of 1:2; □ : metals to BioSeNPs ratio of 1:1) and simultaneous Cd and 

Zn adsorption experiments (○ : metals to BioSeNPs ratio of 1:2; ∆ : metals to 

BioSeNPs ratio of 1:2) adsorption experiments with (c) theoretical and (d) equilibrium 

pH. 

 

As observed previously in the pH dependent adsorption study of Cu, the residual 

selenium concentration or flow-through of BioSeNPs decreased as the pH increased 

in the adsorption study of Cd (Figure 7.6b). However, unlike observed in the pH 

dependent adsorption study of Cu, the residual selenium concentration or flow-

through of BioSeNPs for the cadmium experiments did not drop sharply and 

remained close to 1434 µg L−1 when the theoretical and equilibrium pH was 

increased from 2.2 to 3.7 and from 2.3 to 7.2. When the theoretical pH value was 
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increased further from 3.7 to 7.1 (equilibrium pH changed from 7.2 to 7.4), the 

residual selenium concentration or flow-through of BioSeNPs dropped from 1434 to 

324 µg L−1. The residual selenium concentration or flow-through BioSeNPs in the 

filtrate after filtration but without adsorption was 42.3 times higher than the lowest 

selenium concentration observed in the filtrate after cadmium adsorption. 

 

The removal of BioSeNPs in the multi-component experiments was calculated by 

comparing with the selenium concentration obtained when the BioSeNPs were 

mixed with Milli-Q water (at the same metals to BioSeNPs ratio: 1:1 and 1:2) and 

filtered but without any adsorption of heavy metals. For the Cu, Cd and Zn 

experimental system, selenium removal decreased from 98.8% to 93.3% when the 

theoretical and equilibrium pH increased from 2.8 to 5.5 and 3.1 to 5.4, respectively, 

at the metals to BioSeNPs ratio of 1:1. When the theoretical and equilibrium pH was 

increased from 3.0 to 5.6 and 3.6 to 5.8, the selenium concentration in the filtrate 

decreased from 97.5 to 92.9% when the metals to BioSeNPs ratio was 1:2 (Figures 

7.6c, d).  

 

For the Cd and Zn adsorption experiments, when the theoretical and equilibrium pH 

increased from 2.8 to 6.7 and 3.1 to 6.8, respectively, the selenium concentrations in 

the filtrate decreased from 100.0 to 66.0% when the metals to BioSeNPs ratio was 

1:1. The selenium concentration decreased from 91.7% to 74.4% when the 

theoretical and equilibrium pH increased from 3.0 to 6.8 and 4.2 to 7.0, respectively, 

when the metals to BioSeNPs ratio was 1:2. 

 

7.3.5. Effect of heavy metals loading on the ζ-potential of BioSeNPs 

 

The ζ-potential of BioSeNPs loaded with Cu and Cd ions became less negative 

when the initial metal concentrations were increased (Figure 7.7). The equilibrium pH 

varied from 5.5 to 6.2 in all cases investigated. Similar observations were made with 

BioSeNPs loaded with Zn (Jain et al., 2015) which are being reproduced in Figure 

7.7. The ζ-potential of BioSeNPs loaded with copper ions was more negative than 

BioSeNPs loaded with cadmium or zinc ions when the initial metal ion concentration 

exceeded 40 mg L−1 (Figure 7.7). It is important to note that the change in the ζ-



 Chapter 7 

140 
 

potential of the BioSeNPs without being exposed to heavy metals at the equilibrium 

pH of 5.5 to 6.2 is less than -5 mV as observed in earlier studies (Jain et al., 2015).  

 

 

Figure 7.7. ζ-potential variations of BioSeNPs loaded with Cu (◊), Cd (□) and Zn (∆ ) 

(a) at an increasing metal ions concentrations. Please note that Zn adsorption data 

are from Jain et al. (2015). 

 

7.3.6. FT-IR analysis of BioSeNPs prior and after loading with heavy metals 

 

 The FT-IR analysis of BioSeNPs has been described in detail in a previous study 

(Jain et al., 2014). Briefly, FT-IR analysis revealed the presence of hydroxyl (3435 

cm−1), hydrocarbons (2924 - 2855 cm−1), proteins (amide I - 1637 cm−1, amide II - 

1533 cm−1 and amide III - 1239 cm−1), methyl groups (1446 cm−1), carboxyl groups 

(1403 and 1388 cm−1) and carbohydrates (1075 to 1032 cm−1) as described in 

(Wang et al., 2012; Xu et al., 2011).     
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Figure 7.8. FTIR spectra of BioSeNPs (―) and BioSeNPs loaded with Zn (―), Cu 

(―), Cd (―), Zn+Cd (―) and Cu+Cd+Zn (―). 

 

BioSeNPs loaded with the heavy metals in single (Cu, Cd, and Zn) and multimetal 

(Cd+Zn, Cu+Cd+Zn) systems showed subtle differences as compared to BioSeNPs 

that were not exposed to heavy metals. There was a distinct rise of the feature at 

3290 cm−1 in all the BioSeNPs loaded with heavy metals, while this feature was not 

present in the BioSeNPs not exposed to heavy metals. The strong feature at 1403 

cm−1 present in the BioSeNPs not exposed to heavy metals disappeared in the 

BioSeNPs loaded with heavy metals. There was also a rise of the feature at 1313 

cm−1, most likely corresponding to S-O stretching, in the BioSeNPs exposed to 

heavy metals which was absent in the BioSeNPs not exposed to heavy metals. 

 

7.4. Discussion 

 

7.4.1 Optimized pH and metals to BioSeNPs ratio for selective adsorption of heavy 

metals 

 

This study demonstrated that the pH and metal to BioSeNPs ratio can be used to 

selectively adsorb Cu from an equimolar Cu, Zn and Cd mixture. The ratio of the 

percentage of Cu removal to the sum of Zn and Cd removal was used to observe the 

optimized pH and metal to BioSeNPs ratio for the maximum preferential adsorption 

of Cu onto BioSeNPs. Table 1 shows that the maximum ratio observed for the metal 

to BioSeNPs ratio of 1:1 and 1:2 were 6.6 and 3.1, respectively. However, at the 

ratio of 6.6, only 17.2% of total Cu was adsorbed, the next best ratio was 4.7. The 

ratio of 4.7 and 3.1 was achieved at a theoretical pH of 4.3 and 3.8 for the metal to 

BioSeNPs ratio of 1:1 and 1:2, respectively. Interestingly, the percentage of Cu 

removal at this theoretical pH was 45.2 and 45.8% for the metal to BioSeNPs ratio of 

1:1 and 1:2, respectively. This suggests that for preferential adsorption, the influent 

pH of the metal solution or metals to BioSeNPs ratio could be modified to futher 

optimize the preferential adsorption.  

 

Table 7.1. Ratio of % of Cu removed to sum of % of Cd and Zn removed in the 

multimetal (Cu+Cd+Zn) system.  
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Metals to BioSeNPs ratio 

1:1 1:2 

Theoretical 

pH 

Equilibrium 

pH 

Ratio Theoretical 

pH 

Equilibrium 

pH 

Ratio 

2.8 3.1 - 3.0 3.6 - 

3.6 4.5 6.6 3.8 5.0 3.1 

4.3 5.3 4.7 4.5 5.6 2.4 

4.8 5.5 4.5 4.9 5.5 2.8 

5.5 5.4 4.0 5.3 5.7 2.3 

- - - 5.6 5.7 2.0 

 

For the Cd and Zn containing metal solution, the ratio of % removal of Zn to Cd was 

close to 1 when the metal to BioSeNPs ratio was 1:2. The maximum ratio achieved 

was 1.4 above the theoretical pH of 3.8 for metals to BioSeNPs ratio of 1:1. In the 

binary system (Zn and Cd containing metal solution), the theoretical pH did not affect 

the preferential adsorption of Zn or Cd, while the metal to BioSeNPs ratio (v/v) had a 

limited effect on the preferential adsorption of either Zn or Cd. 

 

For both multi-metal systems investigate (Cu, Cd, Zn and Cu, Cd), the metal to 

BioSeNPs ratio of 1:1 is more preferred for preferential adsorption. This may be due 

to the fact that lower concentrations of BioSeNPs limit the number of sites, resulting 

in a stronger competition for the existing sites and hence more preferential 

adsorption. 

 

7.4.2. Selective adsorption of heavy metals by BioSeNPs 

 

This study demonstrated that BioSeNPs showed preference for the metals adsorbed 

in the order of Cu>Zn>Cd. This fact was further confirmed by the lower ζ-potential of 

Cu loaded BioSeNPs as compared to Cd and Zn loaded BioSeNPs at equal metal 

concentrations (Figure 7). Selective adsorption of Cu among the other heavy metals 

present in the mixture was also observed in adsorption studies with untreated coffee 
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husks (Oliveira et al., 2008), graphene oxide nanoparticles (Sitko et al., 2013) and 

marine algal biomass (Sheng et al., 2004).  

 

The preferential adsorption of heavy metals onto any adsorbent occurs following the 

lower ionic radius, the higher electronegativity, or the higher ratio of ionization 

potential to ionic radius (McKay and Porter, 1997). Among the metals investigated in 

this study, i.e. Cu, Cd and Zn, Cu has the lowest ionic radius and highest 

electronegativity and ratio of ionic potential to ionic radius (Table 2). Metal ions are 

also known to hydrolyze or to complex with acetate or equivalent carboxylic 

functional groups present on the surface of adsorbent (Sitko et al., 2013). So, the 

relative ease of the formation of metal hydroxo species or acetate complexes also 

suggests the relative preference of the metals towards the adsorbent. The first 

stability constant of metal hydroxo and acetate formation is also higher for Cu, 

followed by Zn and Cd  (Table 2) (Dean, 1999). 

 

Table 7.2. Chemical properties of Cu, Cd and Zn. 

Properties Cu2+ Cd2+ Zn2+ 

Ionic radius (Ao) 0.73 0.95 0.74 

Pauling electronegativity (a.u.) 1.90 1.69 1.65 

*Std. reduction potential vs. NHE(V) M2+ + 2e− = 

M 
0.34 -0.40 -0.76 

log K1 - Me2+ + OH− = Me(OH)+ 7.0 4.177 4.4 

log K1 - Me2+ + Ac− = Me(Ac)+ 2.16 1.5 1.5 

 

*Note: NHE refers to normal hydrogen electrode 

 

The formation of metal hydroxo and metal acetates complexes in this study was 

evident from the changes in the FT-IR spectra of BioSeNPs compared to the 

BioSeNPs loaded with heavy metals (Figure 8). The rise of the feature at 3290 cm−1 

suggests the interaction of the hydroxyl and metal ions. Though a difference in the 
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water contents could cause this shift, the presence of this shift in all the BioSeNPs 

loaded with metal ions rules out the possibility of this artifact. Similarly, the 

disappearance or shift of the feature at 1403 cm−1 observed in the BioSeNPs, but 

absent in all the samples of BioSeNPs loaded with heavy metals, suggests the 

interaction of heavy metals with the carboxyl functional groups.  

 

Zn is 16% more preferentially adsorbed onto BioSeNPs when Zn and Cd are present 

at a metal to BioSeNPs ratio of 1:1 (Figure 5c). While when the metal to BioSeNPs 

ratio was 1:2, there was no preferential adsorption of Zn. The ionic radius of Zn is 

smaller than Cd and their electronegativity is similar, but the ratio of ionization 

potential to ionic radius is lower (−0.42 for Cu as compared to −1.02 for Zn) (Table 

2). Thus, there should not be much preference towards either Zn or Cd. This is also 

evident from various studies where in some cases Zn is preferentially adsorbed onto 

Sphaerotilus natans (Pagnanelli et al., 2003) and in some cases Cd is preferentially 

adsorbed on graphene oxide (Sitko et al., 2013) or marine algal biomass (Sheng et 

al., 2004).  

 

7.4.3. Colloidal stability of BioSeNPs 

 

The colloidal stability of the BioSeNPs decreases with an increase in the metal 

loading and decrease in the pH as observed in previous studies (Buchs et al., 2013; 

Jain et al., 2015; Staicu et al., 2014). This study also showed that the concentration 

of selenium in the filtrate decreases (colloidal stability decreases) with an increase in 

the heavy metals owning to a larger loading of Cu and Cd onto BioseNPs with 

increasing pH (Figures 7.3, 7.6a, b). The increased loading of Cu and Cd neutralizes 

the negative charge on the surface of BioSeNPs leading to a lower colloidal stability 

and lower selenium concentration in the filtrate. The neutralization of the negative 

charge on the surface of BioSeNPs was done more effectively by Cu compared to 

Cd, asevidenced by the lower selenium concentration in the filtrate after adsorption 

and filtration (Figures 7.6a, b). This observation is also evident from Figure 7.7 

where copper loaded BioSeNPs have lower ζ-potential wheexposing BioSeNPs to an 

equal individual metal concentration. The less negative ζ-potential of BioSeNPs 

loaded with Cu as compare to BioSeNPs loaded with Cd or BioSeNPs loaded with 

Zn is due to a higher preference of Cu to the properties or the functional groups of 
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the BioSeNPs surface. This finding is further evident when the BioSeNPs loaded 

with Cu, Zn and Cd  were effectively retained in the filter or removed in the filtrate 

(Figures 7.6c, d). However, when the BioSeNPs were loaded with only Cd and Zn, 

the retention of the BioSeNPs was almost 10% less than at near-neutral pH values 

when compared to the Cu, Cd and Zn system. This further demonstrates the affinity 

of Cu to the BioSeNPs and the effect of Cu in decreasing the colloidal stability of 

BioSeNPs and hence improving their retention in the filter or removal from the 

filtrate. 

 

7.4.4. Effect of pH on the adsorption of heavy metals 

 

The increase in the initial metal solution and equilibrium pH leads to an increase in 

the Qe-Metal for both Cu and Cd. The increase in the pH leads to deprotonation of 

the sites of the BioSeNPs that are made available for the metals ions to interact 

(Arias and Sen, 2009). This deprotonation of the sites with increase in pH also 

makes the ζ-potential of the BioSeNPs less negative, thus increasing the 

electrostatic attraction between BioSeNPs and metal ions, and hence leading to a 

higher adsorption. The increase in the pH also leads to precipitation, especially in the 

case of Cu leading to high Qe-Cu values. Indeed, precipitation was predicted by 

Visual MINTEQ and also observed in the Figures 2 and 3a when the initial and 

equilibrium pH exceeded 5.5. Since, the equilibrium pH of the time-dependency 

experiments was close to 5.5, the presence of precipitation cannot be excluded. The 

highest Qe-Cu values observed without any sign of precipitation was 48.4 mg of Cu 

adsorbed per g of BioSeNPs (Figure 3). The maximum Qe-Cd values observed was 

almost 2 times higher than the one observed for Cu. This suggest that at higher pH, 

adsorption of Cu onto BioSeNPs is competing with precipitation of Cu mainly as 

tenurite, as predicted by Visual MINTEQ. The Qe-Zn for zinc adsorption onto 

BioSeNPs observed in the earlier study (Jain et al., 2015) was 48% lower than the 

ones observed in this study for Cu and Cd. This might be due to the different heavy 

metals to BioSeNPs ratios used in these studies. 
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7.5. Conclusions 

 

This study demonstrates that Qe-Metal for Cu and Cd is 48.4 and 114.3 mg of heavy 

metal per g of BioSeNPs without the occurrence of precipitation. The higher Qe-Cu 

values of 239.7 mg of Cu adsorbed per g of BioSeNPs observed was most likely due 

to precipitation. In the multimetals adsorption experiments, BioSeNPs adsorbed 4.7 

times more Cu than combined Zn and Cd at the theoretical pH of 4.3 when the metal 

to BioSeNPs ratio was 1:1. This preference towards Cu can be attributed to the 

chemical properties of Cu and functional groups present on the BioSeNPs. FT-IR 

data suggest that BioSeNPs might be interacting through hydroxyl and carboxyl 

groups to the heavy metals. The retention of BioSeNPs on the filter increased with 

an increase in the pH when BioSeNPs were loaded with heavy metals. This study 

also demonstrated that Cu is effective in neutralizing the surface charge on 

BioSeNPs and leading to their removal from the filtrate.  
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Abstract: 

 

The effect of temperature and nitrate on the biological anaerobic reduction of 

selenate in an upflow anaerobic sludge blanket (UASB) reactor was investigated 

under mesophilic (30 0C) and thermophilic (55 0C) conditions. Under both conditions, 

selenate was effectively removed from 790 µg L-1 (10 µM) to less than 50 µg L-1 in 

the effluent in a UASB reactor (pH 7 + hydraulic retention time 8 h) operating with 

lactate as the electron donor at an organic loading rate of 0.5 gCOD L-1.d-1. At a feed 

concentration of 50 µM of selenate (3950 µg L-1), the thermophilic reactor achieved a 

higher total selenium removal efficiency than the mesophilic reactor (~ 93% and ~ 

85%, respectively). The dissolved selenium removal efficiencies were, however, 

similar, i.e. 95.2% and 94.9% for the thermophilic and for mesophilic UASB reactors, 

respectively, suggesting the presence of elemental selenium in the effluent. When 

100 and 500 µM nitrate was added to the synthetic wastewater, the selenate removal 

efficiency under mesophilic conditions was not affected. In contrast, 100 µM nitrate 

initially affected the reduction of selenate under thermophilic conditions (total 

selenium removal efficiency dropped to 85.3%), but the total selenium removal 

efficiency increased to 92.2% when the nitrate concentration was increased to 500 

µM.  

 

Keywords: Selenate reduction, thermophilic, nitrate, dissolved selenium, UASB 

reactor 

 

Graphical abstract: 
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8.1. Introduction 

 

Selenium is considered as an “essential toxin” for humans (Lenz and Lens, 2009) 

because there is only one order of magnitude difference between the nutritious 

requirement (30-85 µg Se d-1) and toxicity (400 µg Se d-1) level. The deleterious 

effect of selenium is not due only to its concentration, but also due to its speciation in 

the environment. In fact, both volatile and dissolved forms of selenium are more toxic 

compared to solid elemental selenium.  

 

Due to the toxicity of selenium, the United States Environmental Protection Agency 

(US EPA) has set a treatment standard at 50 µg Se L-1 and the recommended limit is 

5 µg Se L-1 (USEPA, 2001). Both physical (nanofiltration, reverse osmosis) and 

chemical (ion exchange, ferrihydrite absorption, zero valent iron absorption) methods 

have been widely tested for selenium removal from wastewaters (Frankenberger et 

al., 2004; NSMP, 2007; USEPA, 2001; Zhang et al., 2005). However, their 

application in full-scale systems is rather limited due to low efficiencies and 

economic reasons. Biological remediation including microbial reduction of selenium 

oxyanions into elemental selenium in bioreactors is considered a promising option 

(Lenz et al., 2009; Lenz et al., 2008; Soda et al., 2011). Indeed, pilot scale 

bioreactors have been demonstrated to reduce selenate from agriculture drainage 

wastewater (Cantafio et al., 1996). However, the biological reduction of selenium 

oxyanions always results in the production of colloidal elemental selenium 

nanoparticles that are present in the effluent of the reactor (Buchs et al., 2013; Jain 

et al., 2015). If the concentration of nanoparticles in the effluent is too high, a second 

treatment step is required to fulfil the discharge limit, thus increasing the operating 

costs. Another challenge is the presence of competitive electron acceptors such as 

nitrate that can hinder the selenate reduction and thus reduce the selenium removal 

efficiency (Lenz et al., 2009). 

 

Biological reduction of selenate under thermophilic conditions (55°C) can be an 

option to overcome the challenges that are commonly encountered during the 

treatment of selenium laden wastewater. It has been reported that a rise in 

temperature can increase the crystallinity (Jain et al., 2014) and size (Lee et al., 

2007; Tam et al., 2010) of selenium nanoparticles, allowing them to settle without the 
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addition of any coagulant. It is also known that the bacterial populations change 

significantly with a temperature transition from mesophilic to thermophilic conditions 

(Khemkhao et al., 2012; Li et al., 2014). In comparison to mesophilic conditions, 

under thermophilic conditions microorganisms could evolve in a such a way that their 

selenate removal efficiency is not affected by the presence of nitrate.  

 

In this study, the biological reduction of selenate at thermophilic (55°C) conditions 

was investigated in an UASB reactor inoculated with anaerobic granular sludge. A 

second reactor, operating at identical conditions but at mesophilic (30°C) conditions 

was used as a control. The research focused on the effect of temperature on the 

total and dissolved selenium removal efficiency and selenium speciation in the 

effluent. Both reactors were fed with a synthetic wastewater (pH 7.0) containing 

selenate, lactate as electron donor, micro and macro nutrients and trace metals. The 

effect of nitrate at different concentrations (100 µM, 500 µM and 5000 µM) on the 

total and dissolved selenium removal efficiency in both reactors was also 

investigated. Denaturated Gradient Gel Electophoresis was carried out to quantify 

changes in the microbial communities of the UASB reactors. 

 

8.2. Materials and methods 

 

8.2.1. Source of biomass 

 

The seed sludge originated from a full scale UASB reactor treating wastewater of 

four paper mills (Industriewater Eerbek B.V., Eerbek, The Netherlands) and has 

been described in detail by Roest et al. (2005). Both reactors were inoculated with 

anaerobic granular sludge, 200 g wet weight, as described by Lenz et al. (2008).  

 

8.2.2. Composition of the synthetic wastewater 

 

The reactors were fed with a synthetic selenate containing wastewater. The 

composition of the synthetic wastewater as well as the acid and alkaline trace metal 

solution is summarized in Tables 8.1, 8.2 and 8.3, respectively. Lactate was used as 

sole electron donor at an organic loading rate of 0.5 gCOD.L-1.d-1. Sodium selenate 
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(Na2SeO4) and potassium nitrate (KNO3) were added at different concentrations 

during the experiment, as explained in the section 8.24. 

 

 

Table 8.1. Composition of synthetic wastewater 

Compound Concentration 

(g L-1) 

Na2HPO4·2H2O 0.053 

KH2PO4 0.041 

NH4Cl 0.300 

CaCl2·2H2O 0.010 

MgCl2·6H2O 0.010 

NaHCO3 0.040 

Acid trace metals solution* 0.100 

Alkaline trace metals solution* 0.100 

*Acid and alkaline  trace metals solution was added in mL L-1 

 

Table 8.2. Composition of acid trace metals solution 

Compound Concentration 

(mM) 

FeCl2 7.5 

H3BO4 1 

ZnCl2 0.5 

CuCl2 0.1 

MnCl2 0.5 

CoCl2 0.5 

NiCl2 0.1 

HCl 50 

 

Table 8.3. Composition of alkaline trace metals solution 

Compound Concentration 

(mM) 

Na2WO4 0.1 
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Na2MoO4 0.1 

NaOH 10 

 

 

8.2.3. UASB setup and operating conditions 

 

Two identical UASB reactors were used during the experiments (Figure 8.1). The 

operating parameters are summarized in the Table 8.4. One of the reactors was 

maintained at 30°C, while the other one was maintained at 55°C with the help of a 

water jacket. The scheme of the reactors is shown in Figure 8.1c. The sampling 

ports of both reactors were called S1, S2 and S3 from the bottom to the top, 

respectively. Please note that the influent was fed from the bottom and the 

recirculation ratio of 2 was maintained for effective mixing. Samples were collected 

daily from the influent and effluent. The samples from the different sampling ports for 

profiling of elemental selenium in the reactor were taken in period II. Gas samples 

were analyzed at the end of every period. Volatilized selenium was trapped by 

collecting vapour phase in two gas traps. The first one (G1) contained 200 ml of 

concentrated HNO3 (12 M) with the purpose to trap alkylated selenium compounds 

(DMSe and DMDSe); the second one (G2) contained 100 ml of 6M NaOH was used 

to trap H2Se.  
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Figure 8.1. (a) Photograph of the UASB reactors used in this study; (b) Dimensions 

in cm of the reactors and (c) Schematic overview of the reactors. Influent tank (1), 

anaerobic sludge (2), recirculation system (3), sampling ports S1, S2 and S3 from 

the bottom to the top (4), effluent tank (5), gas seperator (6), HNO3 trap (7), NaOH 

trap (8), gas outlet (9) and peristaltic pumps (10).  

 

Table 8.4. Operating parameters of the reactors 

 

Volume   

(ml) 

HRT          

(h) 

Influent 

flow 

(ml min-1) 

Recirculation 

ratio 

Recirculation 

flow 

(ml min-1) 

Upflow 

velocity 

(cm h-1) 

1000 8 2.2 2 4.4 27.3 

 

8.2.4. Experimental conditions 

 

Table 8.5 summarizes the operating conditions for both the reactors. Both reactors 

were operated in excess of electron donor for the entire duration of the study. 

Lactate concentration was increased 10 times on day 85. During period I, sodium 

selenate (Na2SeO4) was added to the influent solution at a concentration of 10 µM, 

as operated in the study carried out by Lenz et al. (2008a). The pH was adjusted to 

7.0 - 7.5. During period II, the biomass was removed and the UASB reactors were 

restarted keeping the previous conditions, but increasing the selenate concentration 

to 50 µM. During period III, nitrate (100 µM) was added to the influent along with 

selenate (50 µM). The concentration of nitrate was increased 5 times (500 µM) in 

period IV and 10 times more (5000 µM) during period V.  

 

Table 8.5. Operating conditions of UASB reactors during different operational 

periods. 

Period Days SeO4
2-

 

(µM) 

NO3
-
 

(µM) 

Lactate 

(µM) 

I 1-25 10 0 1.38 

II
a
 26-43 50 0 1.38 

III 44-60 50 100 1.38 
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IV 61-82 50 500 1.38 

V 83-90 50 5000 13.8
b
 

a The reactors were inoculated with the fresh biomass at this period. 

b Lactate concentration was increased by 10 times from day 85 onwards. 

 

8.2.5. DGGE analysis 

 

DGGE analysis has been carried out as described in a previous study (Jain et al., 

2014a). The samples for DGGE analysis were taken on day 0 (inoculum), day 43 

(end of period II) and day 90 (end of the study). 

 

8.2.6. Analytics 

 

The samples from the influent, effluent and the sampling ports were analyzed for the 

residual total Se concentration, after acidification, using an atomic absorption 

spectroscopy - Graphite Furnace (AAS-GF) (ThermoElemental Solaar MQZe GF95) 

and a Se lamp at 196.0 nm. The samples were acidified prior to measurement by 

adding a few drops of concentrated HNO3 to see the concentration of total selenium. 

15 ml of the original samples were centrifuged for 10 minutes at 37,000g, to separate 

the liquid phase from the pellets. The obtained pellets were re-solubilized in 15 ml of 

Milli-Q (18 MΩ*cm) water and acidified with 14.4 M HNO3. Both the supernatant and 

re-solubilized samples were analyzed by AAS-GF to obtain the dissolved and 

elemental selenium concentration, respectively, in the effluent. Prior to AAS-GF 

analysis, the supernatant was acidified by adding a few drops of concentrated HNO3.  

Selenate, nitrate and lactate in the effluent were determined by Ion Chromatography 

(IC) (Dionex ICS 1000), equipped with an AS4A column. The retention time of 

lactate, nitrate and selenate was 1.3, 3.9 and 11.3 min, respectively. Gas phase 

samples taken from the HNO3 and NaOH traps were diluted two times with 6M 

NaOH (G1) and 14.4M HNO3 (G2), respectively, to adjust the pH before AAS-GF 

analysis. 
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8.3. Results 

 

8.3.1. Selenate reduction at 10 µM feed concentration (Period I) 

 

Both UASB reactors were able to remove 10 µM selenate (790 µg Se L-1) 

corresponding to a loading rate of 2.37 mg Se L-1 d-1. After 25 days of operation, 

concentrations of total and dissolved selenium in the effluent were lower than the US 

EPA limit of 50 µg Se L-1 (USEPA, 2001), as shown by Figure 8.2. However, the 

performance of both reactors was not similar in the first few days of operation (0 - 9 

days). The reduction of selenate was almost instantaneous in the mesophilic reactor, 

achieving a total and dissolved selenium removal efficiency of > 85% already after 

the first day of operation. The thermophilic reactor was able to achieve comparable 

efficiencies only after ~ 15 days. However, at the end of period I, the removal 

efficiency of both total and dissolved selenium was nearly identical (> 94%), when 

operating under mesophilic and thermophilic conditions. 

 

 

Figure 8.2. Comparison between the total and dissolved selenium removal efficiency 

in period I obtained under mesophilic (30°C, ◇ total, □ dissolved) and thermophilic 

(55°C, Δ total, × dissolved) conditions (influent concentration = 10 µM).  
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8.3.2. Selenate reduction at 50 µM fed concentration (Period II) 

 

In period II, the fresh biomass was added to avoid interference of the trapped 

elemental selenium from period I in determining the real concentration of elemental 

selenium along the length of the reactor. In this period, a higher feed of selenate 

loading rates (5 times more than period I) did not affect the selenium removal 

efficiency of the mesophlic reactor and a high total selenium removal was achieved 

immediately. For the thermophilic reactor, removal of the total selenium started 

instantaneously, in contrast to when the influent selenate concentration was 5 times 

lower. During period II, the average removal efficiency of the total selenium was 

85.0% under mesophilic conditions and 93.0% under thermophilic conditions. The 

dissolved selenium removal efficiency was 94.9% and 95.2% under mesophilic and 

thermophilic conditions, respectively (Figure 8.3a).  

 

 

a 
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Figure 8.3. (a) Comparison between the total and dissolved selenium removal 

efficiency in period II obtained under mesophilic (30°C, ◇ total, □ dissolved ) and 

thermophilic (55°C, Δ total, × dissolved) conditions (influent concentration = 50 µM). 

(b) Comparison between the selenate and lactate removal efficiency in period II 

obtained under mesophilic (30°C, ◇ selenate, □ lactate) and thermophilic (55°C, Δ 

selenate, × lactate) conditions (influent concentration = 50 µM).  

 

For period II, after a few days of stabilization, selenate was not detected anymore in 

the influent (< 400 µg L-1) until the end of the experiment. The removal efficiency was 

> 90% during the entire operation time in period II, excluding the start-up period 

(Figure 8.3b) for both the reactors. Lactate, used as carbon source and electron 

donor for the reduction of selenate with a concentration of 167 mg COD L-1, was 

consumed by more than 99%.  

 

8.3.3. Elemental selenium stratification along the length of the reactors 

 

The elemental selenium concentration measured in each sampling port (S1, S2 and 

S3) of the mesophilic reactor was higher than the corresponding sampling port 

values measured in the thermophilic reactor (Figure 8.4a) during the entire period II 

of the reactor operations. The concentration of elemental selenium measured in the 

different ports of the thermophilic reactor did not change with the time, and it ranged 

b 
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between 50 and 140 µg L-1 in the different sampling ports. The concentrations of 

elemental selenium in the samples recovered from the mesophilic reactor were more 

unstable. It was higher on day 34, ranging between 800 to 1000 µg L-1 in the 

different sampling ports, which then started to decrease reaching a minimum (~400 

µg L-1) on day 39 and then increased and decreased again until the end of the 

experiment (day 43). The concentration of elemental selenium measured at sampling 

port S3 of the thermophilic reactor was every time higher than the concentrations 

measured at the other sampling ports.  

 

 

Figure 8.4. a) Concentration profiles of elemental selenium along the reactor height 

as a function of operational time. The concentration of elemental selenium measured 

in the samples recovered by sampling ports S1 (◇), S2 (□), S3 (Δ) and effluent (×) 

of the mesophilic reactor; concentration of elemental selenium measured in the 

samples recovered by sampling port S1 (*), S2 (○), S3 (+) and effluent (-) of 

thermophilic reactor. (b) Color of elemental selenium produced under mesophilic 

(left) and thermophilic (right) conditions. 

 

The color of elemental selenium produced under mesophilic and thermophilic 

conditions were different from day 1 (Figure 8.4b). This was observed in all the ports 

as well as in the effluent. Red colored elemental selenium was observed in the 

mesophilic reactor, while grey colored elemental selenium was observed in the 

thermophilic reactor.  

 

a b 
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8.3.4. Effects of nitrate on selenate removal (Period III - V) 

 

During period III (44 - 60 days), an addition of 6.2 mg L-1 (100 µM) of nitrate (NO3
- / 

SeO4
2- = 2) in the influent did not affect or rather slightly improve the selenium 

removal efficiency in the mesophilic reactor. Both the total (88 ± 3%) and dissolved 

(95 ± 2%) selenium removal efficiencies in the effluent of the mesophilic reactor was 

comparable to the concentrations measured prior to the addition of nitrate (Figure 

8.5a, b). Selenate was never detected in the effluent of the mesophilic reactor for the 

whole period III (Figure 8.5c).  

 

A decrease of total and dissolved selenium removal efficiency was observed in the 

thermophilic reactor after the addition of 100 µM of nitrate. During the first 4 days of 

period III (days 44 - 47), the concentration of both the total and dissolved selenium in 

the effluent steadily increased, rising to 8-9 times higher than the concentration 

measured prior to the addition of nitrate. The lower removal efficiency of ~68 and 

~70% of total and dissolved selenium, respectively, was detected on day 56. The 

selenate concentration in the effluent of the thermophilic reactor followed the same 

trend of dissolved selenium. Nitrate was not detected in the effluent of the 

thermophilic reactor, suggesting that the concentration was lower than the detection 

limit of 1 mg L-1 (~ 16 µM). Surprisingly, nitrate was increasingly found in the effluent 

of mesophilic reactor, reaching a concentration of 30 µM (1.86 mg L-1) on day 60 

(Figure 8.5d). Lactate was completely consumed by both the reactors at 1.38 µM of 

feed concentration (Figure 8.5e). 
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Figure 8.5. Removal efficiency (%) of total selenium (a), dissolved selenium (b), 

selenate (c), nitrate (d) and lactate (e) during periods III, IV and V (□ mesophilic, Δ 

thermophilic).  

 

During period IV (61-82), when the concentration of nitrate was increased to 31 mg 

L-1 (500 µM) (NO3
- / SeO4

2- = 10), the removal efficiency of total selenium under 

mesophilic conditions was lower than 4% as compared to the efficiency observed in 

period III. The removal efficiency of dissolved selenium remained unaffected, ranging 

between 92 and 96%.  Selenate was never found in the effluent of the mesophilic 

reactor during period IV.  

 

The thermophilic reactor was affected by the presence of 500 µM of nitrate when 

compared to the removal efficiencies observed in period II. However, when the total 

selenium removal efficiency was compared to those observed in period III, there was 

an increase of 7% in period IV with an average removal efficiency of 86.9%. The 

average dissolved selenium removal efficiency also increased by 7% when 

compared to period III, from 85.3 to 92.2% (Figure 8.5b). As observed previously in 

period III, nitrate was not detected in the effluent of the thermophilic reactor, while 

low nitrate concentrations < 2.5 mg L-1 (40 µM) were detected in the effluent of 

mesophilic reactor (Figure 8.5d). Selenate was detected at an average concentration 

e 
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of 217 µg L-1 in the thermophilic reactor (Figure 8.5c). Lactate was completely 

consumed under both the operating conditions (Figure 8.5e). 

 

The concentration of nitrate in the influent was increased to 310 mg L-1 (5000 µM, 

NO3
- / SeO4

2- = 100) in period V. The removal efficiency of both total and dissolved 

selenium in the effluent of both the reactors decreased during days 83 – 85 as 

lactate was limiting. After a 10 times increase in the influent lactate concentration 

from 1.38 to 13.8 mM, the removal efficiency of both total and dissolved selenium 

increased until the end of the experiment. The removal efficiency of the total and 

dissolved selenium under mesophilic conditions on day 90 were ~ 48% (Figure 8.5a) 

and ~ 80% (Figure 8.5b), with a concentration of total and dissolved selenium equal 

to 2070 and 800 µg L-1, respectively. On the same day, the removal efficiency of the 

total and dissolved selenium under thermophilic conditions were ~ 71% and ~ 92%, 

with a concentration of total and dissolved selenium equal to 1160 and 300 µg L-1, 

respectively.  It is interesting to note that nitrate was removed more than 99% in both 

the reactors in period V, after the increase in the lactate feed concentration (Figure 

8.5d). 

 

The removal efficiency of selenate under thermophilic and mesophilic decreased 

when lactate was limiting (days 83-85). However, selenate was not detected after an 

increase in lactate concentration under mesophilic operating conditions, but was 

detected at ~ 2000 µg L-1 for two more days (days 85-87) under the thermophilic 

conditions. After the increase in the lactate concentration from 1.38 mM to 13.8 mM, 

nitrate was almost completely removed (> 99%) under both operating conditions 

(Figure 8.5d). The removal efficiency of lactate, after a 10 times increase in the 

influent concentration, was > 80% under both operating conditions. The average 

removal efficiencies of total and dissolved selenium, selenate, nitrate and lactate in 

the different operating periods for mesophilic and thermophilic reactors are 

summarized in Table 8.6. 

 

Table 8.6. Average removal efficiencies of total selenium, dissolved selenium, 

selenate, nitrate and lactate during different operating periods under mesophilic and 

thermophilic conditions. Influent concentrations: 10 µM L-1 (period I) and 50 µM L-1  

(periods II, III, IV, V) of selenate; 100 µM L-1  (period III), 500 µM L-1  (period IV) and 
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5000 µM L-1  (period V) of nitrate; 1.389 mM L-1 (periods I, II, III and IV) and 13.89 

mM L-1  (period V) of lactate 

 

Operating 

condition 
Period 

Operating 

days 

Total Se 

removal 

(%) 

Diss. Se 

removal 

(%) 

SeO4
2-

 

removal     

(%) 

NO3
-
 

removal 

(%) 

Lactate 

removal 

(%) 

Mesophilic I 1 - 25 85.9 91.7 - - - 

 II 26 - 43 85.0 94.9 98.6 - 98.8 

III 44 - 60 88.3 95.1 99.9 83.0 99.8 

IV 61 - 82 84.6 94.3 99.9 97.0 99.8 

V 85 - 88
a
 39.5 79.8 99.9 99.9 91.4 

Thermophilic I 1 - 25 66.7 70.1 - - - 

 II 26 - 43 93.0 95.2 96.9 - 98.7 

III 44 - 60 80.1 85.3 90.0 97.0 95.3 

IV 61 - 82 86.9 92.2 94.5 99.1 99.6 

V 85 - 88
a
 47.6 68.4 80.1 99.9 83.8 

Note: 
a
Days 83 and 84 were removed from the table because lactate was limiting under those 

conditions 

 

8.3.5. Speciation of selenium in the effluent 

 

Figure 8.6 shows the average selenium speciation in the effluent of both the reactors 

at all the periods. In the mesophilic reactor, the elemental selenium fraction was 60% 

in average and thus higher than the other fractions (dissolved selenium and 

selenate). In contrast, the average elemental selenium fraction during the various 

operational periods in the thermophilic reactor was only 30%. Most of the dissolved 

selenium was found as selenate in the effluent of the mesophilic reactor, while the 

percentage of other unknown dissolved selenium species were higher in the effluent 

of the thermophilic reactor. 
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Figure 8.6. Percentage of total selenium found as elemental selenium (■), selenate 

(□) and other dissolved selenium compounds (■) during period II (a), III (c), IV (e) 

and V (g) in the effluent of mesophilic reactor and during period II (b), III (d), IV (f) 

and V (h) in the effluent of thermopilic reactor. 

 

8.3.6. DGGE analysis of anaerobic granules at the end of periods II and V 

 

A DGGE analysis was carried out to observe the rise of the different microbial 

populations due to the exposure of selenium, nitrate as well as the effect of 

temperatures (Figure 8.7a).  The differences in the bands in the DGGE analysis 

(marked by square) suggest the change in the microbial population in the anaerobic 

granules fed with selenate at the end of period II. At the end of period V, there are 

differences in the bands suggesting the further change in the microbial community of 

both reactors upon the addition of nitrate in the feed of the reactor (Figure 8.7a). 

DGGE analysis of the methanogens revealed the presence of methanogens in the 

inoculum sludge. These methanogens survived the period II and were present in the 

mesophilic reactor (Figure 8.7b). However, methanogens were completely absent in 

the thermophilic reactor as well upon addition of nitrate in the fed in both the 

mesophilic and thermophilic reactor  (Figure 8.7b). 
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Figure 8.7. DGGE analysis of (a) bacteria and (b) methanogens (Archae) for the 

inoculum anaerobic granules (L1), mesophilic anaerobic granules at the end of 

period II (L2) and V( L4) and thermophilic anaerobic granules at the end of period II 

(L3) and V (L5). 

 

8.4. Discussion 

 

8.4.1. Biological removal of selenium in UASB reactors  

 

This study demonstrated that operating UASB reactor at thermophilic conditions are 

more suited for the better removal of the total selenium when the competing electron 

acceptor nitrate is absent (Period II, Figure 8.3). Both reactors achieved a similar 

total dissolved selenium removal efficiency in period II, which suggests that selenate 

reduction to elemental selenium can be carried out in an UASB reactor under 

thermophilic conditions as well (Lenz et al., 2008a). The higher total selenium 

removal efficiency in the thermophilic reactor was due to the higher elemental 

selenium nanoparticles concentration in the effluent of mesophilic reactors (6% of 

total fed selenium) as compared to the thermophilic reactor (3% of total fed 

selenium).  The absence of selenium in the gas traps for both the reactors suggests 

that the major selenate removal mechanism in both reactors was selenate reduction 

to elemental selenium and its subsequent retention in the bioreactor. The elemental 

selenium formed in the UASB reactor could be formed intracellularly or trapped 

within the anaerobic granules in their elemental form or as metal selenide (Lenz et 
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al., 2008a). Another possibility is that the low upflow velocity (27.3 cm h-1) allows 

selenium particles to settled down following interactions with wastewater cations that 

decrease the colloidal stability of the Se nanoparticles  (Buchs et al., 2013; Jain et 

al., 2015; Lenz et al., 2008a; Pi et al., 2013). 

 

It is also interesting to point out that the size and shape of the elemental selenium 

precipitates is very different in the mesophilic and thermophilic reactors (Figure 

8.4b). Elemental selenium formed under thermophilic conditions, as used in this 

study, leads to the formation of trigonal selenium nanowires (BioSeNWs) with a 

median diameter of 40-50 nm and length of micrometer (Jain et al., 2014),. In 

contrast, the elemental selenium produced under the mesophilic conditions is in the 

form of spherical particles with a median diameter of 180nm (BioSeNPs) (Jain et al., 

2015). Both the BioSeNPs and BioSeNWs display nevertheless similar ζ-potential 

profiles (Jain et al., 2014; 2014b), the difference in their shape would lead to different 

interactions with cations leading to different settling properties. 

 

 

 

Selenate reduction under anaerobic conditions normally follows the pathway leading 

to selenite and then to elemental selenium. This reduction can take place either 

intracellularly or extracellularly depending on the type of microorganisms (Hockin 

and Gadd, 2006; Kessi and Hanselmann, 2004; Li et al., 2014a; Tomei et al., 1995). 

Thus, the presence of elemental selenium in the effluent would be strongly 

influenced by the evolution of the microbial community. Indeed, the DGGE analysis 

showed large differences in the microbial community structure of anaerobic granules 

under mesophilic and thermophilic conditions (Figure 8.7).  

 

It is interesting to note that the at 10 µM selenate feed, 9 days longer adaptation time 

was required for the thermophilic reactor to achieve selenium removal efficiencies 

that are comparable to those obtained under mesophilic conditions. Surprisingly, this 

was not observed when the same inoculum sludge was used, but when using a feed 

selenate concentration of 50 µM. This can be attributed to the fact that the selenate 

reduction rate in a continuous reactor has a strongly dependence by the selenium 

loading (Takada et al., 2008), making the reduction of selenate faster. At the lower 
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selenate feed concentrations investigated, the longer adaptation time can be 

attributed to the time required for acclimatization of the mesophilic inoculum to the 

thermophilic conditions (Khemkhao et al., 2012; Li et al., 2014).  

 

8.4.2. Effect of nitrate on selenium removal 

 

Lai et al. (2014) demonstrated that the reduction of selenate is dramatically inhibited 

by the presence of nitrate at a surface loading higher than 1.14 g N m-2 d-1 (10 mg L-1 

fed in the reactor) and that the selenate-reducing microbial community can be 

reshaped by the presence of nitrate in a hydrogen based membrane biofilm reactor 

(MBfR). On the contrary, in this study, the selenate reduction was not affected by the 

presence of nitrate until a nitrate to selenate ratio of 100 (31 mg L-1 fed in the 

reactor) under mesophilic operating condition (Table 8.6). This might be due to the 

fact that the UASB reactors operated in this study were not under electron donor 

limitation. The other possible reasons is the rise of specialist selenate reducing 

bacteria which has also been indicated by the DGGE analysis  (Figure 8.7) and also 

observed by Lenz et al. (2009). The presence of residual nitrate in the effluent of the 

mesophilic reactor (Figure 8.5d) suggests the possibility of the rise of specialist 

selenate reducing bacteria which were not affected by the presence of nitrate. 

 

The presence of nitrate affected the selenate removal under thermophilic conditions, 

which was evident from the detection of selenate in the effluent and a near complete 

removal of nitrate from the effluent. This further suggests that the reason for selenate 

removal in presence of nitrate under mesophilic conditions might be due to 

development of specialist selenate reducing bacteria and not due to unlimited 

electron donor. The DGGE analysis showed the different microbial population at the 

end of period II for both the mesophilic and thermophilic reactors ( 8.7).  

 

When the feed concentration of nitrate was increased from 100 to 500 µM L-1, there 

was an increase in the total selenium concentration in the effluent of the mesophilic 

reactor (period IV). However, the dissolved selenium concentration almost remained 

the same (Table 8.6). This suggests the excess release of elemental selenium in the 

effluent of the mesophilic reactor in period IV. This can be due to the change in the 

metabolic pathways of selenate reduction in the microorganism leading to 
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extracellular production of elemental selenium. Indeed, growth of the 

microorganisms in the nitrate followed by selenite reduction resulted in extracellular 

production of elemental selenium in Sulfurospirillum barnesii, Bacillus 

selenitireducens, and Selenihalanaerobacter shriftii (Oremland et al., 2004). The 

increase in the difference between total and dissolved selenium was not observed in 

periods III and IV for the thermophilic reactor. This suggests that thermophilic 

reactors are less susceptible to release of elemental selenium when nitrate is fed. 

Though the selenium removal efficiency is affected when nitrate is fed in the 

thermophilic reactor, the increase in total and dissolved selenium removal efficiency 

in period IV (from period III) to 92.2 and 86.9%, respectively, suggests the possibility 

of acclimatizing the thermophilic reactor to achieve a desirable total and dissolved 

selenium removal efficiency even in the presence of nitrate. 

  

8.4.3. Selenium speciation in the effluent 

 

The concentration of elemental form of selenium was consistently less in the effluent 

of the thermophilic reactor than in the mesophilic reactor (Figure 8.6). This was 

further corroborated with the higher total selenium concentration in the mesophilic 

reactor as compared to thermophilic reactor in period II of reactor operations. The 

presence of volatile selenium compounds in the gas traps was negligible at 30°C, as 

observed in earlier studies (Lenz et al., 2008a; Lenz al., 2008b). Surprisingly, it was 

also negligible at 55°C, suggesting that the vaporization of alkylated compounds is 

not related to the operational conditions. Dimethylselenide and dimethyldiselenide 

can exist also as dissolved alkylated compounds (Lenz et al., 2008b), contributing to 

the concentration of dissolved selenium that leaves the UASB reactor with the 

effluent. Indeed, the dissolved selenium concentration was greater than the selenate 

concentration in both reactors, suggesting the presence of dimethylselenide and 

dimethyldiselenide. Also, no selenide was observed in the reactor operation as the 

concentration of selenium in the gas trap 2 was negligible. However, it is plausible 

that selenide was formed and then quickly oxidized to elemental selenium or formed 

metal selenide and thus, would be virtually undetectable.  

 

 

 



 Chapter 8 

172 
 

8.5. Conclusions 

 

This study demonstrated that at 50 µM (3950 µg L-1) feed of selenate, average total 

selenium removal efficiency was higher (+ 8%) under thermophilic conditions, 

because of the higher concentration of elemental selenium in the effluent of the 

mesophilic reactor which were also confirmed by the stratification results (Figure 

8.3a). Elemental selenium produced under mesophilic and thermophilic conditions 

was different in color most likely due to a different crystalline structure. The addition 

of 100 and 500 µM L-1 of nitrate affected the reduction of selenate only under 

thermophilic conditions, highlighting the development of different microorganisms 

under mesophilic and thermophilic conditions, confirmed by DGGE analysis. 

However, the total and dissolved selenium removal efficiency improved by 6% when 

the nitrate feed was increased from 100 to 500 µM L-1 in the thermophilic reactor, 

suggesting the possibility of development of specialist selenate reducers. 

Interestingly, the increase in the concentration of nitrate feed led to a larger release 

of elemental selenium in the effluent under mesophilic conditions. This phenomenon 

was not observed under thermophilic conditions.  
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Abstract: 

 

This study proposes a one-step process for total selenium removal using activated 

sludge, where selenite is reduced, while the produced colloidal elemental selenium 

nanoparticles (BioSeNPs) are entrapped in the activated sludge flocs. Glucose as 

carbon source gave 2.9 and 6.8 times higher total selenium removal at neutral pH 

and 30 oC as compared to lactate and acetate at 2.0 g L-1 COD.  Total selenium 

removal efficiencies of 79±3 and 86±1% were achieved, respectively, in shake flasks 

and batch reactors at a dissolved oxygen (DO) > 4.0 mg L−1 and 30 oC when fed 

with 172 mg L−1 Na2SeO3 and 2.0 g L−1 chemical oxygen demand (COD) of 

glucose. Continuous reactors operated at neutral pH and 30 oC removed 33.98 and 

36.65 mg of total selenium per g of total suspended solids (TSS) at TSS 

concentrations of 1300 and 3000 mg L−1, respectively. However, the operated 

reactors crashed upon continuous feeding of selenium after 10-20 days at the 

applied loading rates, most likely due to toxicity of selenite to the aerobic bacteria. 

 

Keywords: aerobic processes, selenium, nanoparticles, waste-water treatment, 

bioreactors, dissolved oxygen, one-step process 

 

Graphical abstract: 
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9.1. Introduction 

 

The toxicity of selenate (SeO4
2-) and selenite (SeO3

2-) to the environment, including 

humans, aquatic life and animals, has been well documented in the past few 

decades (Lenz and Lens, 2009). Anaerobic biological reduction converts selenate 

(SeO4
2-) and selenite (SeO3

2-) to the more stable elemental selenium at a reasonable 

cost and an acceptable remediation efficiency (Cantafio et al., 1996; Lenz et al., 

2008). However, the elemental selenium formed after microbial reduction is in the 

form of dispersed colloidal elemental selenium nanoparticles (BioSeNPs). These 

BioSeNPs are present in the effluent of selenate and selenite reducing upflow 

anaerobic sludge blanket (UASB) reactors and can re-oxidize in the environment 

(Buchs et al., 2013). These BioSeNPs have to be removed prior to discharge, thus 

an additional coagulation step is required leading to increased treatment costs 

(Buchs et al., 2013; Staicu et al., 2014). 

 

Selenite reduction through the dissimilatory pathway under anaerobic conditions, as 

present in an UASB reactor, results in the extracellular production of BioSeNPs 

resulting in higher total selenium effluent concentrations (Li et al., 2014). Selenium 

tolerant bacteria can reduce selenite (SeO3
2-) to BioSeNPs through detoxification 

mechanisms, in which BioSeNPs remain entrapped within the biomass under 

aerobic and microaerobic condition (Dhanjal and Cameotra, 2010; Tejo Prakash et 

al., 2009). This provides an alternative pathway of total selenium removal, without 

the need of a second step to remove the BioSeNPs as required in the anaerobic 

removal.  

 

The reduction of selenium oxyanions under aerobic conditions has been 

documented for axenic cultures (Jain et al., 2014). In contrast to axenic cultures, 

activated sludge may have better trapping ability of BioSeNPs due to its flocs 

structure. The entrapment of selenium in the biomass is attractive as the BioSeNPs 

containing activated sludge can be used to recover the selenium, can be applied as 

a slow release selenium fertilizer (Haug et al., 2007), or used for treating mercury 

contaminated soils (Johnson et al., 2008).  
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This study aimed to investigate the removal of the total dissolved selenium by 

reduction of selenite to elemental selenium and entrapping of the formed BioSeNPs 

in the activated sludge flocs. Shake flask experiments were conducted to identify the 

optimum carbon source, dosage and temperature for total selenium removal from the 

aqueous phase. The effect of dissolved oxygen (DO levels) concentration on the 

total selenium removal from the aqueous phase was studied in batch reactors. A 

continuously operated activated sludge reactor with sludge recycle was operated to 

evaluate the total selenium removal by a continuously fed system. Population 

dynamics in the activated sludge biomass were characterized by denaturing gradient 

gel electrophoresis (DGGE) analysis.  

 

9.2. Materials and methods 

 

9.2.1. Source of biomass and growth medium 

 

Activated sludge reducing selenite under aerobic conditions was collected from a full 

scale domestic wastewater treatment plant in Harnaschpolder, The Netherlands 

(Karya et al., 2013). A synthetic mineral medium for shake flask experiments, batch 

reactors and continuous reactor was prepared by dissolving 600 mg NH4Cl, 200 mg 

MgCl2·6H2O, 20 mg CaCl2·2H2O and 1 mL micronutrient solution in 1.0 L of Milli-Q 

(18 MΩ*cm) water. For the continuous reactor, 23 mg Na2HPO4 was also added in 

1.0 L of Milli-Q water. 

 

9.2.2. Batch flask experiments 

 

Shake flask experiments to determine the optimum carbon source, dosage and 

temperature for total selenium removal were carried out. The tests were done in 300 

mL Erlenmeyer flasks, with a working volume of 100 mL. Each flask was inoculated 

with activated sludge for a resulting total suspended solids (TSS) of 500±50 mg L−1. 

Mixing in the shake flasks were carried out using rotary shakers at 150 rpm. The 

initial pH was manually adjusted to values around 7.5, and if needed sodium 

carbonate (Na2CO3) was used to buffer the medium.  
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Selenite, in the form of sodium selenite (Na2SeO3), was added until achieving a final 

selenium concentration of 79 mg L−1 (1mM). Glucose (glucose monohydrate - 

C6H12O6·H2O), lactate (sodium lactate - NaC3H5O3) and acetate (sodium acetate - 

NaC2H4O2) were tested with different chemical oxygen demand (COD) 

concentrations of 0.5, 1.0 and 2.0 g L−1. The experiments with glucose as the carbon 

source were incubated at 15±1, 30±1 and 45±1 °C, while experiments with lactate 

and acetate as the carbon source were incubated at 30±1 °C.  For the calculations of 

the amount of total selenium removed per unit of biomass, the TSS concentration 

measured at the end of each experiment was used. All the shake flasks experiments 

were done in triplicate. 

 

9.2.3. Batch reactors 

 

Batch reactors were used to close the mass balance of the fed selenium at two 

different DO levels. The reactors consisted of 1 L glass vessel with a working volume 

of 500 mL. Each reactor was closed and connected to two gas traps filled with 65% 

concentrated nitric acid (100 mL and 50 mL respectively) in order to trap the 

volatilized selenium species (dimethyl selenide and dimethyl diselenide) potentially 

generated inside the reactors as described previous (Winkel et al., 2010).  

 

All reactors were inoculated with the activated sludge (for a resulting TSS of 

1300±100 mg L−1) in the same mineral medium as in the batch flasks, and 

supplemented with glucose (2.0 g L−1 COD) and sodium selenite (172 mg L−1 or 

1mM). The pH was controlled by addition of sodium carbonate, as well as by manual 

adjustment to values around 7.5 along the experiment. DO levels were varied by 

controlling the airflow rate through a sparger and DO levels were measured every 4 

hours. The lower air flow rate of 2-5 L h−1 and higher air flow rate of 10-15 L h−1 were 

maintained. Batch reactors were operated in duplicates and if the difference in 

measurements were more than 10%, experiments were repeated. The average 

values are presented in the figures. 

 

9.2.4. Continuous reactors 
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A continuous flow reactor with complete sludge recycle and two gas traps was used 

to assess the selenium removal efficiency of a continuous activated sludge system 

(Figure 9.1). A synthetic wastewater with glucose (1 g L−1) and sodium selenite (17.2 

mg L−1 or 0.1 mM) was pumped into a 1 L glass reactor operating at a hydraulic 

retention time (HRT) of 8 hours. The reactor was operated at 30±1 °C, mixed with a 

magnetic stirrer and aerated with air flow of 20-25 L h−1 through sparger to keep the 

DO levels > 4.0 mg L−1. The reactor was operated at a TSS concentration of 

1300±100 mg L−1 for the first 28 days (Periods I to III), followed by re-inoculation with 

biomass at a TSS concentration of 3000±100 mg L−1. The reactor was operated at 

these conditions for another 38 days (Periods IV to VI) (Table 1). More details about 

the continuous reactor operational parameters are available in Table S1 of Appendix 

4. 

 

 

Figure 9.1. Configuration of the continuous activated sludge reactor with 

recirculation of the sludge and connected to two gas traps. 

 

Table 9.1. Different operating conditions of the continuous activated sludge reactor 

with sludge recycle. Please note that the * represents the addition of fresh activated 

sludge at the start of period IV 
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Parameter 

Days 

Experimental periods 

I 

0-10 

II 

11-21 

III 

22-29 

IV* 

30-36 

V 

37-56 

VI 

57-66 

Influent COD [mg L−1] 1000 1000 1000 1000 1000 1000 

Influent SeO3
2− [mg 

L−1] 
0 23.7 0 0 23.7 0 

COD / Se ratio - 126.6 - - 126.6 - 

TSS [mg L−1] 4500 1300 1500 4300 3000 2900 

TSS / Se ratio - 54.9 - - 126.6 - 

 

9.2.5. Analytical methods  

 

The total selenium concentration from the supernatant, activated sludge and gas 

phase were measured using Inductively Coupled Plasma Mass Spectrometry (ICP-

MS) (Jain et al., 2015). BioSeNPs were separated from the aqueous phase by 

centrifugation (37,000 g, 15 minutes, Hermle Z36HK). The supernatant and pellet 

constitute the dissolved selenium and BioSeNPs, respectively, and their 

concentrations were determined by dissolving them in concentrated HNO3 prior to 

selenium concentration determination using ICP-MS. Trapped selenium 

concentration in the activated sludge flocs was measured after addition of HNO3, 

followed by microwave destruction of the biomass and then measuring the selenium 

concentration. Selenium concentrations in the gas traps were measured after 

appropriate dilutions. The COD and total suspended solids measurements were 

carried out using the standard methods (APHA, 2005). Transmission electron 

microscopy-Energy Disperse X-ray spectroscopy was carried on diluted samples as 

described in Cosmidis et al. (2013) (more details in Appendix 4). The DNA extraction 

for DGGE analysis of activated sludge fed with and without sodium selenite and 

incubated for 7 days in the batch reactors at neutral pH, 2.0 g L−1  COD (glucose) 

and DO > 4 mg L−1  was carried out using FAST DNA SPIN kit from MP Biomedicals, 

USA as reported in Ahammad et al. (Ahammad et al., 2013). The details of 

polymerase chain reaction (PCR) amplification of DNA including used primers are 
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described in Appendix 4 (Table S2 in Appendix 4). DGGE was carried out as 

described in Muyzer et al. (Muyzer et al., 1993) (more details in Appendix 4). 

 

9.3. Results 

 

9.3.1. Selenite reduction in batch flask experiments 

  

Figures 9.2a shows the developed red color when activated sludge is incubated with 

172 mg L−1 (1 mM) sodium selenite at 30 oC in the shake flasks, suggesting the 

reduction of selenite to elemental selenium or BioSeNPs. TEM-EDXS confirm the 

presence of spherical particles (Figure 9.2b1) in the activated sludge flocs, 

comprising of selenium (Figure 9.2b2). The Cu signals observed are due to the use 

of Cu grid for holding the samples.  

 

 

Figure 9.2. (a) Activated sludge trapping red elemental selenium (left) and control 

activated sludge fed no selenite (right); (b1) TEM image of the activated sludge 

trapping BioSeNPs and (b2) corresponding EDX spectrum of marked square of the 

sludge sample in b1; (c) % total selenium concentration as a function of time in the 
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supernatant of the activated sludge in shake flask experiments performed at 15 (■), 

30 (□) and 45 oC (■) and 79 mg L−1 (1mM) of initial selenium concentrations and (d) 

Total selenium removal per g of TSS in the supernatant with increasing COD 

concentration of acetate (■), lactate (□) and glucose (■) in shake flask experiments. 

 

The shake flask study at 2.0 g COD L−1 (glucose as carbon source) and different 

temperatures showed that the total selenium removal efficiency from aqueous phase 

was 84±7, 79±3 and 31±4% respectively, at 15, 30 and 45 oC, suggesting better total 

selenium removal at lower temperatures by the activated sludge (Figure 9.2c). No 

selenite reduction was observed in the abiotic control experiments with killed and 

without biomass (data not shown), confirming the selenite reduction is mediated by 

microbial activity.  

 

Glucose removed total selenium 2.9 and 6.8 times higher from the liquid phase per g 

of TSS compared to lactate and acetate, respectively, at 2.0 g L−1 COD, suggesting 

that glucose was the best carbon source tested in this study (Figure 9.2d). The 

selenium removal efficiency from the liquid phase per g TSS at 2.0 g COD L−1 was, 

respectively, 2.8 and 1.7 times higher than at 0.5 and 1.0 g L−1 COD with glucose as 

the carbon source (Figure 9.2d). No detectable growth in the TSS was observed for 

all experimental conditions.  

 

9.3.2. Selenite reduction in aerated batch reactors 

The lower air flow rate (2-5 L h−1 ) resulted in DO concentrations of 3.0 - 4.0 mg L−1  

for entire duration, except for a few hours when the DO dropped to 0.1 mg L−1  

(Figure 9.3a). The higher air flow rate (10-15 L h−1) maintained DO levels 

consistently exceeding 6 mg L−1, while the DO level was lowered to 4 mg L−1 only for 

a few hours In the aerated batch reactors, with DO levels always exceeding 4.0 mg 

L−1 (Figure 9.3a), the BioSeNPs (colloidal elemental selenium fraction) after 96 h of 

incubation at 30 oC constitutes only 3±1% of the total selenium added as compared 

to 17±1% in the reactor with DO levels below 4.0 mg L−1 (Figure 9.3b). The total 

selenium removal from the aqueous phase was 86±1% and 67±2% for reactors 

operating with DO levels, respectively, higher and lower than 4.0 mg L−1 (Figure 

9.3b). The dissolved selenium removal efficiency for both DO levels was similar: 

90±1% for higher DO levels compared to 85±3% for lower DO levels (Figure 9.3b). 
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This was further confirmed by the excess trapping of selenium in the biomass at 

higher DO levels: 65±1% at DO levels > 4.0 mg L−1  as compared to 48±2 % of total 

selenium at DO levels lower than 4.0 mg L−1  (Figure 9.3c). At both DO levels, COD 

removal profiles were similar (Figure 9.3b). 

 

 

Figure 9.3. (a) Dissolved oxygen levels with time at high (□) and low (■) air flow rate, 

(b) Evolution of total selenium (□,■) and COD (―o―, -●-) concentration with time 

and dissolved selenium concentration at the end of incubation (∆,▲) at DO levels 

always >4.0 mg L−1: open symbols and at DO levels<4.0 mg L−1: closed symbols, 

and (c) Mass balance: transfer of total fed selenium in the aqueous phase to 

biomass, gas traps, samples, remaining total selenium in the aqueous phase and 

unaccounted selenium. 

 

9.3.3. Continuous operated activated sludge reactor 

 

The pH and DO of the continuous reactor was near neutral (7-7.5) and always 

greater than 4 mg L−1 (Figure S1 in Appendix 4 for period I-III). In period I (Figure 

9.4), no selenite was fed and a 90% COD removal efficiency was achieved. The TSS 

concentration increased to 2500 mg L−1 due to the biomass growth. On day 10 
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(Period II), the TSS concentration was set to 1300 mg L−1  in order to apply the same 

operative conditions as used in the batch reactors. In the period II, 77% removal of 

total selenium (23.7 mg L−1 d−1 or 0.3 mM d−1 selenium fed in form of selenite) was 

achieved in the first 2 days. The differences in the DGGE gel of the activated sludge 

fed with and without selenite in the batch reactors (Figure 9.5) suggest that a new 

population, most probably selenite reducing bacteria would have developed in the 

continuous reactors as well. However, both the total selenium and COD removal 

dropped to almost 0 and 20%, respectively, on the 21st day of operation, suggesting 

that selenite toxicity deteriorated the activated sludge performance and the newly 

developed selenium degrading species could not completely detoxify the selenite 

loading rate. 

 

 

Figure 9.4. Evolution of the COD (●, ○) and total selenium concentration (▲, ∆) in 

the influent (closed symbols) and effluent (open symbols) in a continuously aerated 

activated sludge reactor with complete sludge recycle at a TSS of 1300 mg L−1, pH 

7.3 and DO >4.0 mg L−1. 
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Figure 9.5. Microbial community analysis of the activated sludge fed by DGGE. 

Activated sludge fed with 172 mg L−1 of sodium selenite (AS+Se) and activated 

sludge (AS) without sodium selenite after 7 days of incubation with 2.0 g L−1 of 

glucose. 

 

In period III, the selenite feed was stopped, however, the reactor could not recover. 

On the 28th day of reactor operations, the COD removal was still below 10%, 

suggesting an irreversible inactivation of the biomass. When the reactor was re-

inoculated with fresh biomass at a higher TSS concentration (3000 mg L−1; period IV-

VI), a similar performance was observed (Figure S2a in Appendix 4). The neutral pH 

and DO levels greater than 3 mg L−1 were also maintained during the period V of the 

continuous reactor operations (Figure S2b in Appendix 4). The COD removal 

dropped to 40% from 90% and total selenium removal dropped to 0% from 60% in 

the period V. When the selenite feed was stopped in period VI, the COD removal did 

not improve suggesting irreversible crashing of reactor. The total selenium removed 

per unit of biomass in the aqueous phase was 33.98 mg Se gTSS−1 and 36.65 mg of 

Se gTSS−1 when operating the continuous reactor at TSS concentrations of 1300 

(period II; Figure 9.3) and 3000 mg L−1 (period V; Figure S2a in Appendix 4), 

respectively.  
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9.4. Discussion 

 

9.4.1. Entrapment of BioSeNPs in the activated sludge 

 

This is the first study demonstrating selenite reduction by activated sludge and 

trapping of the produced BioSeNPs in the activated sludge flocs (Figure 9.2c, 9.2d, 

9.3c). The reduction of the total selenium concentration in the supernatant suggests 

that the BioSeNPs are either trapped in the biomass or volatilized and subsequently 

trapped in gas traps (Figure 9.2c, 9.2d, 9.3b, 9.4). The negligible presence of 

selenium in these gas traps and the significant presence of selenium in the biomass 

(Figure 9.3c) suggest that the majority of the produced BioSeNPs are trapped in the 

activated sludge flocs.  

 

Lower temperatures and higher DO levels led to the trapping of BioSeNPs in the 

activated sludge flocs (Figures 9.2c, 9.3b, 9.3c). At lower DO levels, anoxic and 

anaerobic zones might be present, where dissimilatory reduction of selenite could 

take place extracellularly or in the periplasm resulting in extracellular synthesis of 

BioSeNPs (Figure 9.3b, 9.3c) (Li et al., 2014). Selenite reduction at higher 

temperatures (45 oC in this study) had a lower dissolved oxygen concentration in the 

shake flasks (data not shown), which might have also allowed BioSeNPs production 

extracellularly, resulting in higher total selenium concentrations in the medium 

(Figure 9.2c).  

 

The two different mechanisms were also evident in the total selenium removal 

kinetics at different DO levels (Figure 9.3b). The total selenium concentration in the 

supernatant was consistently higher at low DO level than the one observed at high 

DO level, even when the dissolved selenium concentrations were similar (Figure 

9.3b). This suggests that reduction of selenite in the activated sludge studied is due 

to a detoxification mechanism at high DO levels and not via dissimilatory reduction 

(Dhanjal and Cameotra, 2010). The detoxification mechanism in this study involves 

the reduction of selenite to BioSeNPs rather than the conversion to volatilized 

species, indeed only minor quantities of selenium were trapped in gas phase 

washing bottles (Figure 9.3c). The presence of different reduction mechanisms by a 

non-specialized biomass suggests the development of a new population depending 
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on the DO concentration, as was indeed observed in the DGGE analysis (Figure 

9.5). 

 

9.4.2. Practical implications 

 

Glucose was clearly the more favorable substrate for selenite reduction by activated 

sludge compared to lactate and acetate (Figure 9.2d), due to the higher amount of 

electrons donated by glucose while converting to CO2. A similar preference by 

activated sludge during the reduction of Cr(VI) was observed when glucose, lactose, 

cheese whey, acetate and citrate were used as carbon sources (Ferro Orozco et al., 

2010).  

 

It is interesting to note that no growth in the TSS of the biomass fed with sodium 

selenite (172 mg L−1 or 1mM) was observed. Similarly, very low biomass growth (less 

than 70% as compared to control) was observed when selenite was reduced under 

aerobic conditions by Phanerochaete chrysosporium (Espinosa-Ortiz et al., 2014). 

Similar non-growth related detoxification mechanisms have been reported for the 

microbial decolorization of reactive red 22 by Pseudomonas luteola, a toxic dye used 

in textile and paper industry (Chen, 2002).  

 

The crashing and non-recoverability of the continuous reactor at two different TSS 

concentrations (Figure 9.4 and Figure S2a in Appendix 4) suggest that the toxicity of 

selenite was irreversible. On the other hand, anaerobic reduction of selenate and 

selenite in a UASB reactor may remove similar loading rates without a apparent 

toxicity but it would lead to presence of BioSeNPs in the effluent. Sequencing batch 

feeding can be used to overcome the toxicity of selenite, as has been used for 

aerobic reduction of Cr(VI) to Cr(III) (Dermou et al., 2005).  

 

The higher DO requirement for trapping elemental selenium in the activated sludge 

flocs would entail higher cost for selenite reduction under aerobic conditions. This 

high cost can be offset by the use of the activated sludge trapping selenium as a 

slow selenium release fertilizer, which might requires no further processing (Haug et 

al., 2007). The use of an alternative electron donor, such as cheese whey (Ferro 

Orozco et al., 2010), could further reduce the treatment costs without affecting the 



 Reduction of selenite to elemental selenium under aerobic conditions 

190 
 

performance. Furthermore, the successful implementation of such a process would 

lead to a single step selenium removal and recovery process vis-a-vis the two-step 

anaerobic selenium removal, where high recovery efficiencies can only be achieved 

by applying a chemical (Buchs et al., 2013) or electrocoagulation (Staicu et al., 2014) 

post-treatment step. 

 

9.5. Conclusions 

 

This study provided the proof-of-concept for the removal of total selenium fed as 

selenite from the aqueous phase in a one-step process. The higher DO levels and 

lower temperature were required to ensure trapping of produced BioSeNPs in the 

activated sludge flocs. This study also showed that the glucose was the best carbon 

source to achieve maximum selenium removal per g of COD. The DGGE analysis 

showed the possibility of rise of new microbial populations. The crashing of 

continuous reactor at two different TSS values suggests the need for different 

strategy for continuous reactor operations. 
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Abstract: 

 

Selenium containing wastewaters can be treated in activated sludge systems, where 

the selenium oxyanions are reduced to elemental selenium by activated sludge, the 

latter is entrapped in the activated sludge flocs. So far, no studies have been carried 

out on the characterization of selenium fed activated sludge flocs, which is important 

for the development of this process. This study showed that more than 93% of the 

trapped selenium in activated sludge flocs is in the form of elemental selenium, both 

as amorphous selenium nanospheres and trigonal selenium nanorods. The 

entrapment of the elemental selenium nanoparticles affects the physico-chemical 

properties of activated sludge. Selenium fed activated sludge has faster settling rates 

and lower hydrophobicity compared to the control activated sludge. The selenium fed 

activated sludge showed less negative surface charge density, most likely due to the 

presence of elemental selenium nanoparticles. However, selenium fed activated 

sludge has a poorer dewaterability at higher total suspended solids concentrations 

as compared to control activated sludge. 

 

Keywords: selenium nanoparticles, activated sludge, settleability, hydrophobicity, 

surface charge 
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10.1. Introduction 

 

Selenium is an essential element and is required in low doses for synthesizing 

selenoproteins, preventing cardiovascular disease, assisting in sperm mobility and 

avoiding miscarriage (Rayman, 2000). However, at higher doses selenium oxyanions 

(selenate and selenite) can cause toxicity to humans, but also to animals and aquatic 

organisms. Thus, they need to be removed from wastewaters prior to discharge 

(Lenz and Lens, 2009; Winkel et al., 2012; Wu, 2004). Physico-chemical remediation 

is expensive and yet sometimes ineffective in achieving the stringent selenium 

discharge criteria (less than 50 μg L–1) (Lenz and Lens, 2009). Anaerobic microbial 

reduction of selenium oxyanions to elemental selenium is often a recommended 

biological process for selenium oxyanions containing wastewater treatment (Cantafio 

et al., 1996; Lenz et al., 2008). However, biological anaerobic reduction of selenium 

oxyanions leads to the presence of colloidal elemental selenium nanoparticles 

(BioSeNPs) in the discharged wastewaters (Jain et al., 2014a). These BioSeNPs 

have to be removed prior to discharge, which requires an additional treatment step 

that further increases the remediation cost (Buchs et al., 2013).  

 

Aerobic reduction of selenium oxyanions to either volatilized selenium compounds 

followed by gas trapping (Kagami et al., 2013) or selenium trapped in biomass such 

as Bacillus cereus (Dhanjal and Cameotra, 2010), Escherichia coli (Dobias et al., 

2011) or activated sludge (Jain et al., 2014) would be a one-step process for 

treatment of selenite containing wastewaters. The entrapment of selenium in the 

activated sludge is progressive as they are in the solid state and much easier to 

handle as compared to volatilized selenium trapped in concentrated HNO3 (Kagami 

et al., 2013). So far, there are no studies carried out to characterize selenium fed 

activated sludge. This characterization is important for the development of activated 

sludge based selenium remediation process. Therefore, the present work focused on 

the characterization of the selenium fed activated sludge.  

 

In this study, activated sludge loaded with selenium was produced by aerobic 

reduction of selenite. The localization, speciation and crystallinity of selenium in the 

activated sludge flocs were identified by Scanning Electron Microscopy-Energy 

Disperse X-ray Spectroscopy (SEM-EDXS), Transmission Electron Microscopy 
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(TEM), sequential extraction, X-ray diffraction (XRD) and selected area electron 

diffraction (SAED). The elemental constituents, morphology, hydrophobicity, sludge 

volume index (SVI), capillary suction time (CST) and surface groups density of 

selenium fed activated sludge were compared with control activated sludge without 

selenium.  

 

10.2. Materials and methods 

 

10.2.1. Production of activated sludge loaded with selenium and control activated 

sludge 

 

Activated sludge used in this study was collected from a full scale domestic 

wastewater treatment plant in Harnaschpolder (The Netherlands). The synthetic 

wastewater was composed of NH4Cl (600 mg L–1), MgCl2.2H2O (200 mg L–1), 

CaCl2.2H2O (20 mg L–1). Na2SeO3 (173 mg L–1) and glucose (2000 mg L–1) were 

used for selenium and carbon source, respectively. The total suspended solid (TSS) 

concentration added was 1300 ± 100 mg L–1. Mixing was carried out with a magnetic 

stirrer (500 rpm). The selenite reduction was carried out under continuous aeration 

by an air flow (15-20 L air h–1). After the reduction of selenite, selenium fed activated 

sludge was collected by settling and the supernatant was discarded. Control 

activated sludge without the addition of sodium selenite was produced using the 

same constituents and collected by settling. The pH was maintained at 7.5-8.0 by 

manual addition of Na2CO3 when needed. 

 

10.2.2. Elemental determination in the selenium fed activated sludge  

 

10 mL of concentrated HNO3 was added to 0.5 g (TSS) of selenium fed as well as 

control activated sludge. The sludge was destroyed using microwave digestion by 

heating to 175 °C for 45 minutes. The samples were appropriately diluted and 

elemental concentrations were measured by induced couple plasma mass 

spectroscopy (ICP-MS). The experiments were done in triplicate. 

 

10.2.3. Selenium localization and speciation determination 
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SEM-EDXS and TEM were carried out to locate selenium in the microorganisms and 

activated sludge flocs. For SEM-EDXS analysis, each sample was diluted in Milli-Q 

water and filtered using 0.22 µm pore-size polycarbonate membrane filters. Filters 

were deposited on carbon tape, dried at ambient temperature and finally coated with 

a thin carbon film. Samples for TEM were diluted in Milli-Q water, deposited copper 

TEM grid covered with a lacey formvar film and dried at ambient temperature. 

 

Selenium species concentration was determined by carrying out sequential 

extraction following the protocol published by Wright et al. (Wright et al., 2003) but 

using a 30 times higher extractant to solid ratio for complete selenium recovery. 

Sequential extraction analysis was carried out in quadruplicates. The crystallinity of 

the trapped selenium was determined by XRD and SAED associated with the TEM. 

 

10.2.4. Physico-chemical properties of activated sludge  

 

The SVI and CST of the selenium fed activated sludge and control activated sludge 

were determined as per standard methods (APHA, 2005). For SVI, 1.8 g L–1 of TSS 

was used. The relative hydrophobicity (RH) was measured following the protocol 

described in Laurent et al. (2009a). Fourier Transform-Infrared spectroscopy (FT-IR) 

was carried out to determine the functional groups present in the sludge.  

 

Acid-base titration was carried out for determining the pKa of the functional groups 

using a Metrohm autotitrator unit. 0.0266 g of selenium fed and control activated 

sludge (TSS) was suspended in 30 mL of Milli-Q water with 1 mM of NaCl 

background electrolyte. The titration was carried by automatic addition of 0.1 mL HCl 

(0.01214 M). The acid-base titration data were fitted using a PROTOFIT software 

(Turner and Fein, 2006) as described by Laurent et al. (2009b). Briefly, a non-

electrostatic model with four discrete acidic sites and an extended Debye-Huckel 

activity coefficient were used. Prior to simulation using PROTOFIT, the derivative of 

the acid-base titration versus moles of HCl added was plotted to determine the local 

minima. These local minima represent the pKa of the functional groups (Braissant et 

al., 2007). Taking these pKa as the initial guess, the data fitting was carried out. 

10.2.5. Analytical methods 
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Selenium measurements by ICP-MS and XRD analysis were carried out as 

described in previous studies (Jain et al., 2015). For IR spectroscopy, KBr pellets 

were prepared by mixing approximately 1 mg of the samples with 300 mg dried KBr. 

Clear pellets were obtained after pressing for 2 minutes at 145,000 psi. A Bruker 

Vertex 70/v spectrometer equipped with a D-LaTGS-detector (L-alanine doped 

triglycine sulfate) was used to measure FT-IR spectra of the sludge samples. The 

measurements were carried over the range 4000-400 cm−1 in the transmittance 

mode, with a spectral resolution of 4 cm−1. Each spectrum was averaged out over 64 

scans. 

 

SEM observations were performed with a Field Emission Gun Scanning Electron 

Microscope (GEMINI ZEISS Ultra55) operated at 2 kV. SEM-EDXS analyses were 

performed on the selected particles at 15 kV. TEM and SAED analyses were 

performed using a JEOL 2100F (FEG) operating at 200 kV and equipped with a field 

emission gun, a high-resolution UHR pole piece, and a Gatan energy filter GIF 200.  

 

10.3. Results 

 

10.3.1. Concentration of various elements in selenium fed activated sludge 

 

The selenite was reduced to red elemental selenium as observed from the 

appearance of the red color in the activated sludge. More than 78% of the fed 

selenium was entrapped in the biomass. The concentration of trapped selenium in 

the activated sludge is 54.9 ± 2.3 mg of Se per g of TSS. The concentrations of Na, 

Mg Al, K, Ca and Fe in selenium fed activated sludge are presented in Table 10.1. 

Other elements such as Cu, Mn, Zn, Ba, Cr, V, Ni, Co, Pb and Mo were less than 1.0 

mg per g of TSS.  

 

Table 10.1. Concentrations of various common elements in the selenium fed 

(As+Se). 

 
Se Na Mg Al K Ca Fe  

mg of elements per g of TSS 
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AS+Se  
54.9 

± 2.3  

26.9 

± 4.3  

4.6 

± 0.3  

3.1 

± 0.7  

2.9 

± 1.8  

31.4 

± 1.6  

14.0 

± 0.3 

 

10.3.2. Characterization of trapped selenium in the activated sludge 

 

Sequential extraction of selenium trapped in the activated sludge suggests that the 

93.3 ± 9.7% of trapped selenium is in the form of elemental selenium. The sequential 

extraction method was able to account for 95.7% of the total selenium trapped in the 

activated sludge. All other fractions such as soluble/exchangeable fraction, adsorbed 

fraction and residual fraction were insignificant as they constitute only 2.4 ± 0.6% of 

the total trapped selenium.  

 

SEM images showed the presence of two different morphologies of selenium: 

nanospheres and nanorods (Figure 10.1a). EDX spectra confirmed that these 

morphologies are composed of selenium (Figure 10.1b1, 10.1b2). The presence of 

selenium nanorods and nanospheres was further confirmed in SEM images and its 

corresponding cartography (Figure 10.1.e, f). SEM image of the bacterial cells 

suggests that the some fractions of the selenium trapped in the biomass are present 

inside the bacterial cells (Figure 10.1c). The white colored spheres in the Figure 

10.1c are selenium nanospheres. The black dots in the Figure 10.1c are pores of the 

filters. The TEM image showed that the selenium nanospheres are closely 

associated with bacterial cells. Some of the spheres are indeed present at the 

surface of the bacteria, while others are possibly found inside the bacteria, 

confirming SEM observations (Figure 10.1d). 
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Figure 10.1. SEM (a) and EDX spectra of nanospheres (b1) and nanorods (b2) 

present in the selenium fed activated sludge. Zoomed in SEM image (c), TEM image 

(d) suggests the presence of selenium inside the cells and flocs and (e) SEM images 

and corresponding cartography (f) clearing showing presence of selenium nanorods. 
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Biogenic elemental selenium exist mainly in trigonal, monoclinic or amorphous forms 

(Jain et al., 2014a). In order to determine the crystallinity of trapped elemental 

selenium, XRD was carried out on selenium fed activated sludge. XRD results 

showed the features at 23.4 and 30.0 2-theta values corresponding to 100 and 101 

facet of trigonal selenium, respectively while the feature at 26.9 2-theta value 

corresponds to 220 facet of β-monoclinic selenium (Ding et al., 2002) (Figure 10.2a). 

The XRD also showed a hump like structure between 15 to 40 2-theta values 

suggesting the presence of amorphous structures. In contrast to selenium fed 

activated sludge, control activated sludge showed no features in the XRD. The 

diffuse SAED pattern of the spherical particles present in the activated sludge 

suggests that these nanospheres are either amorphous or poorly crystalline (Figure 

10.2b). Selenium nanospheres are known to be generally either amorphous or 

monoclinic (Jain et al., 2015; Oremland et al., 2004). Thus, the SAED pattern of the 

nanospheres and XRD of selenium fed activated sludge suggest that selenium fed 

activated sludge has a mixture of different crystalline structure of elemental 

selenium: trigonal (nanorods) and monoclinic (nanospheres). The biological 

conversion of selenium oxyanions always results in the formation of amorphous or β-

monoclinic nanospheres (Oremland et al., 2004; Pearce et al., 2009), which may 

later transform to trigonal nanorods (Zhang et al., 2011). 

 

 

Figure 10.2. (a) XRD of selenium fed (▬) and control (without selenium, ―-―-) 

activated sludge and (b) SAED pattern of trapped elemental selenium nanospheres.  

3.3 Spatial distribution of elements in activated sludge flocs 
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Elemental selenium is known to adsorb heavy metals including mercury (Fellowes et 

al., 2011; Jiang et al., 2012; Johnson et al., 2008), copper (Bai et al., 2011) and zinc 

(Jain et al., 2015). Figure 10.3a shows the SEM image of a single bacterium from 

selenium fed activated sludge. Figure 10.3b showed the corresponding EDXS 

analysis, which indicates that the nanospheres observed in the SEM image of Figure 

10.3a are composed of selenium. Al and Mg were found to be closely associated to 

the selenium particles (Figures 10.3c, d). Other elements such as Ca, Fe, Cu, Zn, Pb 

and Ba were not found to have gradient towards elemental selenium trapped in the 

sludge (data not shown). It is important to note that the distortion of one of the 

nanosphere of selenium observed in Figure 10.3a is due to the damage by the 

electron beam while making the measurements.  

 

 

Figure 10.3. (a) SEM image of a single bacterium from selenium fed activated 

sludge and EDXS analyses corresponding to the spatial distribution of (b) Se, (c) Al 

and (d) Mg in the SEM image. 
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10.3.4. Functional groups in the activated sludges  

 

FT-IR analysis of the selenium fed activated sludge and the control sludge showed 

the presence of hydroxyl (3419-3386 cm–1) (Wang et al., 2011), aliphatic 

hydrocarbons (2958-2925 cm–1) (Wang et al., 2012), amide (1652, 1540, 1236 cm–1) 

(Wang et al., 2012) and polysaccharides (1074-1056 cm–1) groups (Xu et al., 2011) 

(Figure 10.4). The details of the FT-IR for both selenium fed and control activated 

sludge are captured in Table 10.2. Selenium is known to show no features at 

wavenumbers 4000 to 800 cm–1 (Nakamura and Ikawa, 2001). The FT-IR confirms 

the presence of carboxyl and amine groups. A weak shoulder at 1161 and 1151 cm–1 

suggests the occurrence of phosphate groups.  

 

 

Figure 10.4. FT-IR of features for selenium fed (―) and control (― ―) activated 

sludge. 

 

Table 10.2. FT-IR features of selenium fed and control activated sludges. 

Functional 

groups 

Se fed 

activated 

sludge 

(cm–1) 

Control 

activated 

sludge 

(cm–1) 

O-H 3419 3386 

C-H 2958-2925 2958-2925 

C=O 1652 1652 
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C-N, N-H 1540 1540 

CH2 1456 1454 

COO 1378 1378 

C-N, N-H 1238 1236 

P=O 1161 1156 

C-O, C-O-C 1074 1056 

 

To further evaluate the surface charge present on the selenium fed activated sludge, 

an acid-base titration was carried out. The delta pH versus micro-moles of HCl 

added was plotted in Figure 10.5. The local maxima in the Figure 10.5a represent 

the maximum shift in pH and hence the equivalence points. Similarly, the local 

minima represent the minimum change in pH and hence the pKa
 of the functional 

groups present (Braissant et al., 2007). The local minima for selenium fed activated 

sludge are observed at pH 7.1, 6.9, 5.2, 3.7 and 3.4 (Figure 10.5a). Similarly, the 

local minima for control activated sludge are observed at pH 7.2, 5.1 and 3.2. The 

local minima at 6.9 - 7.2 correspond to either sulfinic acids, sulfonic acids or thiol 

groups (Braissant et al., 2007). Carboxyl or phosphoryl groups can be assigned to 

local minima at pH 5.1-5.2 (Martinez et al., 2002). The local minima observed at pH 

of 3.2-3.7 are due to the presence of carboxyl groups (Martinez et al., 2002). 



 Entrapped Se nanoparticles affect properties of activated sludge 

205 
 

 

Figure 10.5. (a) Derivative of acid-base titration data of selenium fed (―) and control 

(― ―) activated sludge, (b) Titration data for selenium fed (◊ Raw, ― Simulated) 

and control (∆ Raw, ― ― Simulated) activated sludge, (c) Surface charge density of 

activated sludge trapping selenium (―) and control activated sludge (― ―) and (d) 

% sites with corresponding pKa values of various functional groups for selenium fed 

and control activated sludge. 

 

The simulation of the acid-base titration data fitted well with the experimental data 

(Figure 10.5b). The surface charge density of the selenium fed activated sludge was 

two times more negative than the control activated sludge at neutral pH (Figure 

10.5c). The simulation of acid-base titration data predicted the pKa of functional 

groups at pH of 3.2, 5.2, 7.1 and 9.7 for selenium fed activated sludge (Figure 

10.5d). For the control activated sludge, predicted pKa values of functional groups 

are at pH 3.9, 5.0, 7.2 and 9.5. It is important to note that we may not observe the 

local minima in the derivate of pH vs moles of acid graph at the start and end of the 

titration due to a small change in pH and hence the most acidic and basic groups 
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may be missed out. But as shown above, these groups can be successfully 

predicted by the simulation. 

 

10.3.5. Physical properties of selenium fed and control activated sludge 

 

The SVI of the selenium fed and control activated sludge was 61.1 ± 0.3 and 

138.8 ± 0.1 mL g–1 (Figure 10.6a). The CST of the selenium fed activated sludge and 

control activated sludge was in the range of 20 seconds at a TSS of 3 g L–1 (Figure 

10.6b). With the increase in TSS, the CST of the selenium fed activated sludge 

increased to a high value of 67.2 s as compared to 19.0 s for control activated 

sludge at TSS value of 9 g L–1. The relative hydrophobicity of selenium fed activated 

sludge was 1.6 times lower than that of the control activated sludge (Figure 10.6c). 

 

Figure 10.6. SVI (a), CST (b) and RH (c) of selenium fed (◊) and control (∆) 

activated sludge. 

 

10.4. Discussion 
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10.4.1 Entrapment of elemental selenium affects the physical properties of activated 

sludge flocs 

 

This study demonstrated for the first time the trapping of microbiologically produced 

inorganic particles, i.e. elemental selenium, in activated sludge flocs improves their 

settleability, decreases their relative hydrophobicity, but negatively impacts their 

dewaterability. Sequential extraction experiments suggest that the elemental form of 

the selenium is the main constituent of the trapped selenium. Elemental selenium is 

4.5 times denser than the activated sludge, thus the improved settleability can be 

attributed to the dense elemental selenium nanoparticles that increase the density of 

activated sludge and thus, lead to better settling. The lower RH of activated sludge 

with entrapped elemental selenium as compared to control activated sludge 

suggests the presence of more polar groups such as hydroxyl, carboxyl or 

phosphoryl groups in the flocs (Laurent et al., 2009a). The larger presence of 

carboxyl groups on the surface was verified by higher percentage of carboxyl sites 

and less negative surface charge in the selenium fed activated sludge as compared 

to control activated sludge (Figure 10.5c, d).  

 

The higher CST of selenium fed activated sludge at high TSS values as compared to 

the control indicates a poorer dewaterability of the sludge (Figure 10.6b). The reason 

for the poor dewaterability can be due to the blockage of filter pores by elemental 

selenium (nano)particles (Figure 10.1c, d), thus, leading to a higher CST. The 

blocking of the filter pores by nanoparticles can be due to the agglomeration of 

selenium nanoparticles caused by their interaction with metals such as Al and Mg 

(Jain et al., 2015). The poor dewaterability of the activated sludge with entrapped 

elemental selenium as compared to control activated sludge can also be attributed to 

a different extracellular polymeric substances (EPS) content (Li and Yang, 2007; Ye 

et al., 2011). Selenite reduction has been shown to cause stress on Bacillus sp., 

leading to the production of larger amounts of EPS, with a different composition, as 

compared non stressed microorganisms (Xu et al., 2009). It is important to note that 

the entrapped selenium does not affect the CST at TSS concentrations (< 3 g L–1) 

normally maintained in activated sludge reactors. 
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10.4.2 Entrapment of elemental selenium affects the surface properties of the 

activated sludge flocs 

 

The less negative surface charge density of the selenium fed activated sludge flocs 

as compared to the control activated sludge is due to the higher site concentration of 

carboxyl groups as well as their lower pKa value (3.2 for selenium fed activated 

sludge as compared to 3.9 for control activated sludge). The difference in the EPS 

content can be a one of the reason for the difference in the surface charge density of 

the selenium fed and control activated sludge. The other reason for less negative 

selenium fed activated sludge is the presence of elemental selenium nanoparticles. 

Elemental selenium nanoparticles are known to have a negative ζ-potential with an 

acidic iso-electric point (pH 3.5) due to the presence of organic moieties produced by 

microorganisms on their surface (Buchs et al., 2013; Dhanjal and Cameotra, 2010). 

These negative ζ-potential nanoparticles might contribute to the less negative 

surface density of the selenium fed activated sludge.  

 

Due to the negative ζ-potential of these elemental selenium nanoparticles, the spatial 

distribution showed a higher concentration of Al and to some extent of Mg near the 

elemental selenium nanoparticles trapped in the activated sludge flocs (Figure 10.3), 

as observed in case of Cu (Bai et al., 2011), Zn (Jain et al., 2015) as well as other 

cations such as Ca and Ba (Buchs et al., 2013). However, it is interesting to see that 

other than Al and Mg, all the other possible elements such as Ca, Ba, Fe, Na did not 

show any concentration gradient towards elemental selenium.  

 

The preference of any cation towards an adsorbent follows 1) a decrease in ionic 

radius, 2) an increase in electronegativity of the metal ion or 3) an increase in ratio of 

the ionisation potential and ionic radius (McKay and Porter, 1997). The ionic radius 

of Al was the smallest among the metals tested (Table 10.1) other than Mn. 

However, the concentration of Mn was 15 times lower than that of Al and thus Al 

would have outcompeted Mn for the sites on the elemental selenium nanoparticles. 

Moreover, as Al is a trivalent ion as compared to divalent Mn, the tendency of Al for 

forming complexes with the protein coatings of EPS present on elemental selenium 

(Jain et al., 2014) would be higher than Mn and thus would also outcompete Mn. The 

case of Mg being the second most for the preference of elemental selenium also 
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follows the smaller ionic radius theory. However, Fe has a smaller ionic radius than 

Mg (0.645 Å as compared to 0.72 Å), higher electronegativity (1.88 compared to 

1.31), higher ratio of ionization potential to ionic radius (-0.68 compared to -3.3) and 

also a higher concentration (14.0 Fe as compared to 4.6 mg of mg per g of TSS). 

However, Fe(III) has a very low solubility and may be forming phosphates or oxides 

and hence non-available to compete for adsorption sites on elemental selenium 

nanoparticles. For similar reason, Fe would not compete with Al for adsorption sites 

on elemental selenium nanoparticles. Ca has higher ionic radius than Mg but it is 

almost 9 times higher in concentration than Mg and thus would have shown 

preference for elemental selenium nanoparticles as observed in Jain et al. (Jain et 

al., 2015). However, the absence of Ca gradient towards elemental selenium 

nanoparticles also suggests that it was not available for binding to elemental 

selenium nanoparticles in the activated sludge. 

 

10.5. Conclusions 

 

This study showed that most of the trapped selenium in activated sludge flocs is in 

the form of elemental selenium. SEM and TEM images suggest that elemental 

selenium is present both inside the flocs as well as inside the microbial cell. XRD 

and SAED suggest the presence of amorphous and β-monoclinic nanospheres and 

trigonal nanorods. The trapping of this elemental selenium in the activated sludge 

flocs improves the settleability and lowers the hydrophobicity of the sludge. However, 

the presence of the elemental selenium affects the dewaterability of the activated 

sludge, but only at higher TSS concentrations. The presence of selenium 

nanoparticles led to Al and Mg concentrations gradient in the selenium fed activated 

sludge.  
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11.1 Summary of the results 

 

The main objective of this thesis was to study biogenic elemental selenium 

nanoparticles (BioSeNPs) produced by anaerobic granular sludge and activated 

sludge systems. The three subobjectives were: BioSeNPs production and 

characterization, BioSeNPs' application in heavy metal removal and fate of 

BioSeNPs in the bioreactors. All three sub objectives have provided valuable insight 

into the properties of BioSeNPs that can be exploited to better treat selenium rich 

wastewaters and develop recovery systems.  

 

In chapter 3, the extracellular polymeric substances (EPS) were the organic layer 

present on the surface of BioSeNPs. EPS was found to govern the surface charge of 

the BioSeNPs. It was also observed that EPS can effectively cap the elemental 

selenium nanoparticles during their chemical synthesis (CheSeNPs). The EPS 

capped CheSeNPs were spherical nanospheres as compared to nanorods formed in 

the absence of EPS at ambient temperature. Biogenic elemental selenium nanowires 

(BioSeNWs) were produced at more elevated temperatures (55-60 0C), as 

demonstrated by incubations performed at these temperatures in chapter 4. The 

produced BioSeNWs were of similar shape and size as synthesized by chemical 

production methods. The BioSeNWs were colloidally stable and were capped by 

EPS as opposed to CheSeNPs produced in absence of EPS. The ζ-potential versus 

pH profile of BioSeNWs was similar to the one observed for EPS, EPS capped 

CheSeNPs and BioSeNPs suggesting that EPS govern the surface charge of 

BioSeNWs as well. 

 

In chapter 6, adsorption of Zn, as a model divalent heavy metal, onto BioSeNPs was 

investigated. The adsorption of Zn onto BioSeNPs at acidic pH values follow a 

ligand-like (type II) adsorption mechanism. The adsorption of Zn onto BioSeNPs 

followed a two-step process at near-neutral pH.  X-ray photoelectron spectroscopy 

(XPS) suggested the precipitation of one of the Zn species which could have been 

ZnO, ZnSe, Zn(OH)2, or ZnCO3. Preliminary Extended X-ray Absorption of Fine 

Structure (EXAFS) data analysis suggests the absence of ZnSe, thus discarding the 

occurrence of disproportionation of elemental selenium. The ζ-potential of BioSeNPs 

became lesser negative at higher loading of Zn, resulting in lower colloidal stability, 
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thus leading to higher retention of BioSeNPs on the filter when compared to 

BioSeNPs after filtration but without adsorption.  

 

The selective adsorption of heavy metals onto BioSeNPs was explored in chapter 7. 

It was found that the metals to BioSeNPs ratio (v:v) and pH can be manipulated to 

optimize the selective adsorption of Cu. At the metal to BioSeNPs ratio of 1:1 (v:v) 

and theoretical pH of 4.3, Cu was found to adsorb 4.7 times more onto BioSeNPs 

than the total sum of Cd and Zn adsorbed, when an equimolar mixture of Cu, Cd and 

Zn was used in the adsorption experiments. The selective preference of Cu onto 

BioSeNPs depends on the intrinsic properties of Cu: smaller ionic radius, higher 

electronegativity, higher ratio of ionization potential to ionic radius, higher first 

stability constant of metal hydroxo species and acetate complexes. The selective 

preference of Cu also depends on the presence of functional groups such as 

hydroxyl and carboxyl on the surface of BioSeNPs. Indeed, FT-IR analysis of 

BioSeNPs loaded with heavy metals confirmed the interaction of hydroxl and 

carboxyl groups on the surface of BioSeNPs with heavy metals. 

 

Chapter 8 explored the use of thermophilic conditions to retain the produced 

elemental selenium after the reduction of selenate in an upflow anaerobic sludge 

blanket reactor (UASB). The total selenium concentration in the effluent of 

thermophilic reactors was lower than the one measured in the mesophilic reactor 

when the feed selenate concentration was 50 µM. However, the dissolved selenium 

concentration in the effluent of both the reactors was similar. This suggested that the 

produced elemental selenium was better retained in the thermophilic reactor as 

compared to the mesophilic reactor. When nitrate was fed in the influent, dissolved 

selenium concentrations remained the same but there was an increase in the total 

selenium concentration in the mesophilic reactor, suggesting extracellular production 

of elemental selenium. The presence of nitrate in the feed deteriorated the 

performance of thermophilic UASB reactor. However, the removal efficiency of total 

selenium and dissolved selenium increased by 6% when the nitrate feed was further 

increased, suggesting that thermophilic reactors can also be adapted for higher 

selenium removal efficiencies at high nitrate to selenate ratios.  
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Aerobic removal of selenite by activated sludge, as explained in Chapter 9, can be 

exploited to develop a single-step process for selenium removal. The higher airflow 

rate and lower temperature displayed better entrapment of selenium in the biomass. 

This was due to the fact the intracellular production of elemental selenium is 

enhanced under aerobic conditions, in contrast to selenite reduction under micro-

aerobic or anaerobic that mainly takes place in the periplasmic space or 

extracellularly. It was also observed that glucose was by far the best substrate to 

reduce selenite under aerobic conditions. The selenium fed activated sludge showed 

better settleability and hydrophilicity, but poorer dewaterability at higher total 

suspended solids (TSS) concentrations as compared to the control activated sludge. 

The selenium fed activated sludge also showed a less negative surface charge 

density as compared to the control activated sludge. This all can be ascribed to 

presence of trapped elemental selenium in the biomass, as shown by sequential 

extraction procedures, scanning/ transmission electron microscopy and X-ray 

diffraction pattern. The other possible reason can be the higher amount and different 

composition of EPS generated by selenium fed activated sludge as compared to the 

control activated sludge. 

 

11.2 Role of EPS in the fate of selenium in environment and bioreactors 

 

EPS is mainly composed of polysaccharides, proteins, humic substances, lipids and 

nucleic acids (D’Abzac et al., 2010; Sheng et al., 2010). Proteins and 

polysaccharides are the major components of EPS. Generally, EPS is known to 

retard or prevent the dispersion of nanomaterials such as silver nanoparticles (Kang 

et al., 2014; Tourney and Ngwenya, 2014). In contrast, this study (Chapter 3) 

showed that the EPS provides colloidal stability to the BioSeNPs due to less 

negative ζ-potential values (Buchs et al., 2013; Dhanjal and Cameotra, 2010; Jain et 

al., 2015). Bare elemental selenium has been reported to have a ζ-potential of -10 

mV as compared to -30 mV observed for BioSeNPs (Dhanjal and Cameotra, 2010; 

Feng et al., 2013; Jain et al., 2015). This colloidal stability of the BioSeNPs is the 

reason for their presence in bioreactors effluents as well as the high mobility of 

BioSeNPs in the environment. The role of the EPS in the formation and 

characteristics of BioSeNPs has been demonstrated in Figure 11.1. 
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Figure 11.1. Role of EPS in determining the properties of the BioSeNPs. 

 

The presence of EPS on the surface of BioSeNPs determines the mechanism of 

interaction of BioSeNPs with heavy metals. The capture of mercury from the vapor 

phase by elemental selenium is due to the precipitation of mercury selenide on the 

surface of the elemental selenium (Fellowes et al., 2011; Johnson et al., 2008). 
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However, the interaction of Zn with BioSeNPs does not lead to formation of ZnSe as 

observed in Chapter 6 (Jain et al., 2015). The interaction of heavy metals with 

BioSeNPs is essentially an interaction of heavy metals with the EPS layer present on 

the surface of the BioSeNPs. Indeed, EPS is known to interact with heavy metals 

(Guibaud et al., 2009). The presence of amine and carboxylate groups on the 

surface can lead to the adsorption of heavy metals by ligand-like (Type II) 

adsorption, as observed during the adsorption of Cu on cellulose modified with 

poly(glycidyl methacrylate) and polyethyleneimine (Navarro et al., 2001). The 

presence of these surface groups on BioSeNPs was confirmed by the XPS and FT-

IR analysis (Chapters 3 and 6). Thus, the presence of such a layer of EPS onto 

BioSeNPs is responsible for ligand-like (Type II) adsorption of Zn onto BioSeNPs at 

acidic pH (Jain et al., 2015).  

 

The presence of hydroxl and carboxyl groups on the surface of BioSeNPs can be 

attributed to the presence of EPS. The FT-IR data confirm that these groups interact 

with the heavy metals. The presence of these groups and higher first stability 

constant of metal hydroxo and metal acetate complexes for Cu lead to a higher 

preference of BioSeNPs towards Cu (Chapter 6, Sitko et al., 2013). Thus, the 

presence of EPS on the surface of BioSeNPs is further affecting the affinity of the 

BioSeNPs towards different heavy metals.  

 

EPS not only effected the selenium transformation or BioSeNPs dispersion in the 

environmental directly, but played an indirect role as well. The presence of selenite 

in the growth medium is known the induce larger and diverse production of EPS in 

Bacillus sp. Strain JS-2 (Dhanjal and Cameotra, 2011). This might be the case, in 

this study, when selenite was reduced by activated sludge under aerobic conditions 

(Chapter 10). The larger and diverse presence of EPS may have resulted in 

improved hydrophilicity of selenium fed activated sludge as compared to control 

activated sludge (Chapter 10). Indeed, the variation of EPS has an effect on the 

hydrophilicity of the activated sludge (Sheng et al., 2010; Tourney and Ngwenya, 

2014). Similarly, a lesser negative surface charge of selenium fed activated sludge 

as compared to the control activated sludge can be attributed to larger number of 

carboxyl and hydroxyl groups in the EPS of selenium fed activated sludge (Tourney 

and Ngwenya, 2014, 2010). 
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11.3 Role of temperature in determining selenium properties and its 

transformation 

 

The most direct effect of temperature on the properties of biogenic elemental was 

the transformation of amorphous or monoclinic red colored elemental selenium to 

trigonal gray elemental selenium nanowires as observed in chapter 4. The use of 

thermophilic conditions (55 oC and 65 oC) lead to the formation BioSeNWs whose 

shape and size seems similar to the ones observed in study by Gates et al. (2002). 

This transformation to BioSeNWs was also observed during the thermophilic 

reduction of selenate in an UASB reactor (Chapter 8). Though the surface charge on 

BioSeNPs and BioSeNWs is similar, the difference in the shape and size of these 

BioSeNWs would certainly lead to differences in their capacity to adsorb metals ions. 

This might be the reason of a higher retention of elemental selenium in the 

thermophilic UASB reactor (Chapter 8). The surface charge on BioSeNWs is due to 

the presence of EPS on the surface. It is interesting to note that when CheSeNPs 

have been formed at room temperature in the absence of EPS, the produced 

CheSeNPs transformed to the trigonal phase. The transformation to trigonal 

crystalline state is thermodynamic favorable, however, it does not take place at 30 oC 

for BioSeNPs (Oremland et al., 2004; Wang et al., 2010). However, for the case of 

BioSeNPs, this transformation takes place at much more elevated temperature (55 

and 65 oC, Chapter 4). This might be due to the presence of EPS that inhibits or 

retard this transformation.  

 

Elevated temperature also has an indirect effect on the transformation of selenate to 

elemental selenium. The anaerobic granular sludge showed higher adaptation time 

to reduce selenate at elevated temperature and low influent selenate concentration 

(Chapter 8). Another interesting effect of elevated temperature was the non-release 

of elemental selenium in the effluent as observed when nitrate was introduced at 

mesophilic temperatures. This might be due to a shift in the micro-organisms that 

produce BioSeNPs and thus, differences in selenate reduction mechanisms (Chapter 

8). The effect of temperature on the morphology of elemental selenium nanoparticles 

and their fate in the bioreactors is summarized in Figure 11.2. 
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Figure 11.2 Effect of thermophilic conditions on the transformation of selenium.  

 

 



 Discussion 

222 
 

11.4 Future perspectives 

 

The microbial interactions with selenium and its transformation to elemental 

selenium were studied in this thesis. This study improved our understanding on the 

formation, properties and fate of the BioSeNPs in the bioreactors. This study also 

shed light on the effect of temperature on the reduction of selenate and 

transformation to trigonal elemental selenium. 

 

There are still many areas identified by this study that needs to be explored. One of 

line of research that needs to be explored is the manipulation of EPS to change the 

surface charge of the BioSeNPs. The change in the surface charge of BioSeNPs can 

be used to selectively adsorb cations and also possibly anions. This might be 

achieved by shifting of iso-electric point. The protein to polysaccharide ratio in the 

EPS needs to be manipulated to change the surface charge of the EPS and 

consequently the iso-electric point of BioSeNPs (More et al., 2014). The 

manipulation of the protein to polysaccharide can be manipulated by means of 

changing the C/N ratio in the feed (Ye et al., 2011). 

 

Another phenomenon that still not fully understood is the intracellular or extracellular 

production of BioSeNPs. This understanding would help to improve the treatment 

processes and better manage selenium recovery. For example, a complete 

intracellular BioSeNPs production, as observed in the case of activated sludge at 

higher dissolved oxygen levels in Chapter 9, would make the additional step required 

for the treatment of the effluent of an UASB reactor redundant (Buchs et al., 2013; 

Jain et al., 2015; Staicu et al., 2014). The activated sludge that is trapping BioSeNPs 

can then be used to recover selenium or used as a slow selenium fertilizer for the 

fortification of the crops (Bhatia et al., 2013; Haug et al., 2007). On the other hand, 

for the application of BioSeNPs in material science, it will be of interest that reduction 

of selenium oxyanions takes place extracellularly. This was observed for the 

reduction of selenite by Shewanella oneidensis MR-1(Li et al., 2014). However, the 

exact reduction mechanisms and the ability to manipulate those mechanisms to 

trigger the extracellular or intracellular production of BioSeNPs are not well 

understood. 
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The chemical reactivity of BioSeNPs with other elements, especially heavy metals, is 

not well known. For example, elemental selenium can disproportionate to form 

selenide and selenite upon interaction with heavy metals. The likelihood of 

disproportionation is based on the metal selenide solubility product (Li et al., 1999; 

Nuttall, 1987). The disproportionation of BioSeNPs is important as the products of 

this reaction: metal selenide and selenite, both are more mobile and toxic than the 

BioSeNPs (Winkel et al., 2012). However, there is no research so far to explore the 

disproportionation of selenium with heavy metals other than Zn (Chapter 6). 
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ζ-potential measurements for EPS and BSA capped CheSeNPs loaded with Zn 

EPS and BSA-capped CheSeNPs (50 mg L−1) were produced and purified by 

dialysis as described in the manuscript. The pH of the EPS and BSA-capped 

CheSeNPs was changed to 7.3 using 1 M NaOH. 0.5 mL of ZnCl2 was added to 5.0 

mL of EPS and BSA-capped CheSeNPs to vary the Zn concentration from 50 to 

1000 mg L−1. The final pH of the EPS and BSA-capped CheSeNPs varied from 5.5 to 

6.5. The ζ-potential of EPS and BSA-capped CheSeNPs loaded with Zn were 

measured in triplicates. 

 

Analytics 

  

SEM-EDXS 

To characterize the surface morphology of the BioSeNPs, scanning electron 

microscopy (SEM) was performed using a S-4800 microscope (Hitachi) operated at 

an accelerating voltage of 10 kV. For qualitative chemical analysis of the BioSeNPs, 

energy-dispersive X-ray spectroscopy (EDXS) analysis was carried out by means of 

a conventional Si(Li) detector with S-UTW window (Oxford Instruments) attached to 

the SEM. Sample preparation was done by spreading a small amount of BioSeNPs 

solution over a piece of a silicon wafer, drying it for a few hours at room temperature 

and mounting the sample on an aluminum holder for SEM analysis.  

  

ζ-potential and hydrodynamic diameter measurements 

The ζ-potential and hydrodynamic diameter (HDD) were calculated by DTS software 

(Malvern Instrument) using electrophoretic mobility and dynamic light scattering 

measurements carried out at 22 °C by a Nano Zetasizer (Malvern Instruments) at a 

laser beam of 633 nm and a scattering angle of 173°. The refractive index of 2.6 for 

selenium was used in the HDD measurement (Dobias et al., 2011). As the 

concentration of selenium nanoparticles in water was low, viscosity of water at 22 °C 

was used for the measurements. The general purpose algorithm in the DTS software 

was used for calculating the size distribution. 

  

FT-IR spectroscopy 

For IR spectroscopy, KBr pellets were prepared by mixing approximately 1 mg of the 

samples with 300 mg dried KBr and subsequent pressing for 2 minutes at 145,000 
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psi until clear pellets were obtained. The FT-IR spectra of BioSeNPs and CheSeNPs 

were carried out on a Bruker Vertex 70/v spectrometer equipped with a D-LaTGS-

detector (L-alanine doped triglycine sulfate), over the range 4000-400 cm−1 in the 

transmittance mode, with a spectral resolution of 4 cm−1. Each spectrum was 

averaged out over 64 scans.  

  

Acid-base titration 

To determine the pKs of BioSeNPs, acid-base titration was carried out using a 

Metrohm autotitrator unit. 0.1966 mg of BioSeNPs was used in a total volume of 30 

mL with a background electrolyte concentration of 1 mM NaCl. The initial pH raised 

above 9.4 by addition of 0.102 M NaOH. The BioSeNPs were continuously stirred 

and flushed with nitrogen. The titration was carried by automatic addition of 0.1 mL 

of HCl (0.01214 M). The change in background ionic strength due to the addition of 

acid was less than 8%. For the control titration, Milli-Q water (18MΩ cm) at 1 mM of 

background electrolyte concentration was used.  

  

Total organic carbon analyzer 

The extracted EPS was characterized by total organic carbon and total nitrogen 

measurements using a Shimadzu TOC-VCPN analyzer. Prior to analysis, the 

samples were filtered with 0.45 μm filters (Whatman, Dassel, Germany). The 

determined dissolved organic carbon was considered as the total organic carbon.  

  

Fluorescence excitation and emission matrix spectroscopy 

EPS was characterized for various components using a FluoroMax-3 

spectrofluorometer (HORIBA Jobin Yvon, Edison, NJ, USA). The samples were 

diluted to bring the dissolved organic carbon concentration below 1 mg L−1. The 

fluorometer was operated and stabilized as described in a previous study (Maeng et 

al., 2012). The measurements were carried out at excitation and emission 

wavelengths of 200-400 nm and 300-500 nm, respectively.  

  

TEM-EDXS 

Transmission electron microscopy investigations were performed to locally analyze 

the microstructure and in particular the morphology of the EPS and BSA-capped 

CheSeNPs and CheSeNPs formed in the absence of EPS or BSA. An image-
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corrected Titan 80-300 microscope (FEI) operated at an accelerating voltage of 300 

kV was used. For sample preparation, one droplet of nanoparticles suspended in 

water was deposited onto a 400 mesh Cu grid coated with a carbon support film. 

After drying in a desiccator at room temperature and covering with an additional 

carbon-coated Cu grid, the TEM specimen was placed into a double-tilt analytical 

holder to perform the TEM analyses. 

 

 

 

 

Figures and tables 

 

Figure S1.  Graphical representation of various stabilization mechanisms of the 

nanoparticles inhibiting agglomeration. 
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Figure S2. Secondary electron SEM images of (a) BioSeNPs, (b) colloidal 

suspension of BioSeNPs and (c) representative EDX spectra confirming the 

presence of selenium in BioSeNPs from the area marked by red square in (a). 

Please note that the samples were deposited onto a piece of Si wafer.  
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Figure S3. Acid-base titration of BioSeNPs produced at 30 °C (—) and MQ water as 

control (—‧—‧—). 
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Figure S4. 3D fluorescence spectra of extracted EPS: (a) confirming the presence of 

aromatic proteins and soluble microbial byproduct by observing a maxima at 
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excitation and emission wavelength of 230/370 nm and excitation and emission 

wavelength of 300/370 nm, respectively; and (b) further aromatic proteins by 

observing a maxima at excitation and emission wavelength of 230/330 nm. 

 

 

Figure S5. ζ-potential variation of BSA (＊) and EPS (∆) capped CheSeNPs with 

increasing Zn concentrations. 

 

 

Figure S6. Hydrodynamic measurements were carried out for BioSeNP (□), EPS 

capped CheSeNPs (∆) and BSA capped CheSeNPs (＊) versus pH at 10 mM NaCl 

background electrolyte concentrations. 

 

Table S1. Assignments of various functional groups to different features (cm−1) in the 

FT-IR spectra of BioSeNPs, EPS, EPS capped CheSeNPs, BSA and BSA capped 

CheSeNPs. 
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Functional 

groups               
BioSeNPs EPS 

EPS 

capped 

CheSeNPs 

BSA 

BSA 

capped 

CheSeNPs 

Ref. 

-O-H, -N-H 
3404-

3270 

3400, 

3062 

3420, 

3062 

3315, 

3063 

3283, 

3063 

(Xu et 

al., 

2011) 

-C-H 

2959, 

2928, 

2866 

2962, 

2932 
2928 

2959, 

2932, 

2866 

2955, 

2934, 

2865 

(Wang 

et al., 

2012) 

-COOH 1720 1720 1720 – 1720  

-C=O 

Amide-I 
1646 1653 1646 1654 1654 

(Xu et 

al., 

2011) 

-N-H  

 Amide-II 
1542 1530 1537 1532 1540 

(Wang 

et al., 

2012) 

-CH3/-COO− 

antisymmetri

c 

1460 1452 - 1451 - 

(Zhu et 

al., 

2012) 

-COO− 

symmetric 
1394 1388 1404 1390 1401 

(Zhu et 

al., 

2012) 

-C-N, -N-H,  

P=O 
1242 1236 1243 1242 1238 

(Wang 

et al., 

2012) 

-P–O 1151 1153 1151 1166 - 

(Wang 

et al., 

2012) 

-C-O-C, -C-H 
1073 - 

1038 
1077-1040 1077-1040 - - 

(Wang 

et al., 

2012), 

(Zhu et 

al., 

2012) 
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BioSeNPs concentration determination 

 

The biologically produced elemental selenium nanoparticles (BioSeNPs) 

concentration was measured by ICP-MS by dissolving the sample in concentrated 

HNO3. The measurements were carried out with the reaction gas H2:He (7:93) and 

used 78Se for quantification and 80Se for verification. The samples were prepared in 

0.5% HNO3 and injected in a 1:1 ratio with internal standards of Li, Ga, Sc, Rh and Ir. 

The samples were measured in triplicate and the entire system was flushed with 

ultrapure 0.5% HNO3 in MilliQ (18MΩ*cm) water. 

 

Metal determination 

 

The residual zinc ions were measured by Atomic Absorption Spectroscopy (AAS200, 

PerkinElmer) at 213.9 nm. Calcium, magnesium and iron were measured using 

AAS200 at 422.8, 285.2 and 248.3 nm, respectively. 

 

Chloride ion measurements 

 

Anion (Cl−, NO3
−, PO4

3− and SO4
2−) concentrations were measured by an ion 

chromatograph (Dionex ICS 1000) using an IonPac As-14A anion-exchange column 

using carbonate/bicarbonate eluent coupled with suppressed conductivity detection 

at a flow rate of 0.5 mL min−1.  

 

 

 

BioSeNPs characterization  

 

 SEM-EDXS 

  

To characterize the surface morphology of the BioSeNPs, scanning electron 

microscopy (SEM) was performed using a S-4800 microscope (Hitachi) operated at 

an accelerating voltage of 10 kV. For qualitative chemical analysis of the BioSeNPs, 

energy-dispersive X-ray spectroscopy (EDXS) analysis was carried out by means of 

a conventional Si(Li) detector with super ultrathin window (Oxford Instruments) 
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attached to the SEM. Sample preparation was done by spreading a small amount of 

the BioSeNPs solution  over a piece of a silicon wafer, drying it for a few hours at 

room temperature and mounting the sample on an aluminum holder for SEM 

analysis.  

 

 Electrophoretic mobility measurements  

 

The ζ-potential was calculated by DTS software (Malvern Instrument) using 

electrophoretic measurements carried out at 23 °C by a Nano Zetasizer (Malvern 

instrument) at a laser beam of 633 nm and a scattering angle of 173o.  

  

 X-ray diffraction 

 

X-ray diffraction (XRD) analysis was performed on a Bruker D8 Advance 

diffractometer equipped with an energy dispersion Sol-X detector with copper 

radiation (CuKα, λ = 0.15406 nm). The acquisition was recorded between 2° and 

80°, with a 0.02° scan step and 1 s step time. Samples were spread over the sample 

holder and dried at room temperature. 

 

 XPS measurements 

 

The uppermost surface layers (up to ~10 nm) of BioSeNPs as well as zinc ion 

contacted BioSeNPs were analyzed by X-ray Photoelectron Spectroscopy (XPS) at 

room temperature. XPS analysis was carried out by a XP spectrometer (ULVAC-PHI, 

Inc., model PHI 5000 VersaProbe II). A scanning microprobe X-ray source 

(monochromatic Al Kα (1486.6 eV) X-rays) was applied in combination with low 

energy electrons and low energy Ar ions for charge compensation (dual beam 

technique). The spectrometer is equipped with a hemispherical capacitor analyzer 

(mean diameter 279.4 mm), and the detector consists of a microchannel detector 

with 16 anodes. Calibration of the binding energy scale of the spectrometer was 

performed using well-established binding energies of elemental lines of pure metals 

(monochromatic Al Kα: Cu 2p3/2 at 932.62 eV, Au 4f7/2 at 83.96 eV) (Seah et al., 

1998). Standard deviations of binding energies of isolating samples were within ±0.2 

eV.  
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Samples were centrifuged and decanted. Aliquots were deposited onto an indium foil 

and mounted on a stainless steel sample holder under anoxic conditions (glovebox 

with Ar atmosphere). Samples were transferred into the analysis chamber of the 

XPS using a vacuum transfer vessel (without air contact).  

 

Spectra were collected at a take-off angle of 45° (angle between sample surface and 

analyzer) and the pressure inside the spectrometer was about 2 × 10−7 Pa. To 

retrieve information about the chemical state of selenium and zinc, narrow scan 

spectra of elemental lines were recorded from an analysis area of 0.5 x 0.5 mm2 and 

with a pass energy of 23.5 eV. All spectra were charge referenced to the C 1s 

elemental line of adventitious hydrocarbon at 284.8 eV.  

 

Spectra of selenium (Se 3p1/2, Se 3p3/2, Se 3d5/2 and Se 3d3/2) and zinc (Zn 2p3/2) 

were fitted using PHI MultiPak Version 9.4 (data analysis program). The background 

subtracted elemental lines (Shirley background) were fitted by applying a non-linear 

least-squares optimization procedure using Gaussian–Lorentzian sum functions. 

Oxidation states were identified by comparison with binding energies reported in the 

literature. 

 

In order to assign unambiguously the obtained binding energies by XPS, reference 

selenium spectra from former studies were used for comparison. This survey 

highlighted that each oxidation state of Se has its specific binding energy, based on 

Se 3p3/2 and Se 3d5/2 peaks (Table S1). The binding energy difference between each 

oxidation state of selenium (−II, 0, IV and VI) is always higher than 1 eV for both 

Se 3p3/2 and Se 3d5/2 signals, i.e. clearly above the standard deviation of binding 

energies (± 0.2 eV). This allows an accurate identification and discrimination 

between the different oxidation states of selenium. 

 

Adsorption experiments to confirm absence of precipitation 

 

To confirm the absence of precipitation in the control sorption experiments, a control 

at the same pH and zinc concentration as of the data point but without BioSeNPs 

was run. The initial zinc concentration of the control was measured before the 16 h 

incubation. After the incubation, to check for possible precipitation, the sample was 
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centrifuged at 37,000g and the zinc concentration in the supernatant was measured. 

To check for any retention or release of zinc by the filter, supernatant after the 

centrifugation was filtered with a 0.45 µm syringe filter (cellulose acetate, Sigma 

Aldrich) and the zinc concentration was measured in the filtrate. All the determined 

zinc concentrations were always within 2% of standard deviation. 

 

Figures 

 

Figure S1. XPS spectra of BioSeNPs: (a) C 1s spectral lines suggesting the 

presence of hydrocarbon chains (CxHy), alpha-carbon (α-C) + C-N, and carboxylic 

acid (COOH groups; (b) N 1s spectral line suggesting the presence of nitrogen based 

compounds (amine or amide groups) and (c) O 1s spectral lines suggesting the 

presence of hydroxyl (OH) groups and carboxylate (COOH) groups. 
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Figure S2. Size distribution (diameter) of BioSeNPs (n = 100).  

 

 

Figure S3. XRD pattern of gray trigonal selenium (reference) and BioSeNPs after 

purification. 
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Figure S4. Adsorption isotherm data fitted with the (a) Langmuir and (b) Freundlich 

model. 

 

Figure S5. Moles of zinc ions adsorbed per mole of H+ sorbed. 

 

 

Figure S6. ζ-potential measurements of BioSeNPs (◇); BioSeNPs + calcium (×) and 

BioSeNPs + magnesium (－) at a background electrolyte concentration of 1 mM 

NaCl. Error bars indicate standard deviation from triplicate measurements. 
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Tables 

 

Table S1. Binding energies (eV) of Se 3p3/2, Se 3d5/2 and Se 3d signal of Se 

reference compounds. 

Compound Se 3p3/2 Se 3d5/2 Se 3d 

Na2SeVIO4 

164.6(0.1) 

(Swartz et 

al., 1971) 

165.8(0.1) 

(Jordan, 2008) 

_ 

59.4(0.1) 

(Jordan, 

2008) 

_ 

Na2SeIVO3 

164.1(0.1) 

(Swartz et 

al., 1971) 

164.1 (Wagner, 

1975) 

164.1(0.1) 

(Jordan, 

2008) 

57.9(0.1) 

(Jordan, 

2008) 

_ 

Se(0) 

161.9 (0.2) 

(metal) (Behl 

et al., 1980) 

161.4 

(amorphous)a 

(Guo and Lu, 

1998) 

161.3 (trigonal) 

(Guo and Lu, 

1998) 

161.6 

(Sasaki et 

al., 2008) 

Se powder 

55.3 

(Sasaki et 

al., 2008) 

Amorphous 

55.0 (Guo 

and Lu, 

1998) 

Na2Se _ _ 

158.4(0.1)b 

(Jordan, 

2008) 

_ 

52.7(0.1)b 

(Jordan, 

2008) 

a Se 3p signal 

b a strong O 1s line indicating surface oxidation to Se(IV) was also observed 

 

Table S2. Binding energies (eV) of Se 3d signal of Se(0) reported in the literature. 

Se 3d5/2 Se 3d 

Grey crystalline 

electrodeposited 

55.5 (Cannava et 

al., 2002) 

Se 

powder 

55.3 

(Sasaki 

et al., 

2008) 

Amorphous 

55.0 (Guo 

and Lu, 

1998) 

Trigonal 

55.0 (Guo 

and Lu, 

Trigonal 

54.9 (Xi et 

al., 2006) 

Trigonal 

54.32 

(Yang et 

al., 2008) 

Monoclinic 

55.74 (Wang 

et al., 2010) 
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1998) 

 

 

Table S3. Binding energies (eV) of Se 3p, Se 3d and Zn 2p3/2 signal of zinc 

compounds reported in the literature. 

Compound Se 3p3/2 Se 3d Se 3d5/2 Zn 2p3/2 

ZnSe (Swartz et 

al., 1971) 
159.7 _ _ _ 

ZnSe (Islam et al., 

1996) 

_ 54.2 _ 1022.0 

ZnSe (Sasaki et 

al., 2008) 
161.0 _ 54.9 _ 

ZnO (Ennaou et 

al., 1998) 

_ _ _ 1022.6 

Zn(OH)2 (NIST, 

2012) 

_ _ _ 
1021.8, 

1022.7 

ZnCO3 
   1022.5 

 

 

Table S4. Ionic radius, pauling electronegativity, standard reduction potential of Zn2+, 

Ca2+ and Mg2+ ions. 

Ion Ionic radius (Å)  
Pauling 

electronegativity (a.u.)  

Std. reduction potential vs. 

NHE(V) M2+ + 2e− = M 

Zn
2+

 0.74 1.65 −0.762 

Ca
2+

  0.99 1 −2.87 
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Mg
2+

  0.65 1.31 −2.36 

Fe
2+

 0.57 1.83 -0.44 

 

 

Table S5. ζ-potential values at different Zn/BioSeNPs ratio at pH range of 5.8-6.5. 

Zn/BioSeNPs ratio Qe-Zn (mg g
−1

) ζ-potential (mV) 

0 0 -36.8 

0.0009 0.8 -31.2 

0.0045 3.6 -28.6 

0.0090 6.4 -28.1 

0.0182 13.4 -22 

0.0455 13.5 -18.6 

0.1818 23 -13.5 

0.3010 38.9 -11.9 

0.4545 64.5 -10.1 
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A) Overview: 

 

Understanding the interaction of metals in general - Zn in this case - and biologically 

produced colloidal elemental selenium (BioSeNPs) is essential to determine the fate, 

mobility and toxicity of Se in the environment (Jain et al., 2014). To this point, this 

interaction was studied under different pH, ionic strength and Zn ion concentrations. 

The difference in ζ-potential measurements for BioSeNPs and BioSeNPs + Zn (-36 

mV to -15 mV) suggests the electrostatic nature or covalent bond formation (can be 

either inner or outer sphere complex or both) interaction. X-ray photoelectron 

spectroscopy (XPS) analysis of Bio Se + Zn samples suggests the formation of an 

unidentified covalent Zn-Se phase (Jain et al., 2015). However, this interaction 

cannot be confirmed due to close proximity of binding energy of ZnO to ZnSe. Thus 

X-ray Absorption Spectroscopy (XAS) is required to fully understand this interaction. 

The EXAFS measurements carried out at Dubble beam line has allowed us, for the 

first time, to identify the first and second neighbours of Zn adsorbed on the surface of 

BioSe under different experimental conditions. 

 

B) Data quality: 

 

The measurements were successful and data recorded was of high quality. A variety 

of model compounds (those which were not measured during earlier experiments) 

and samples were measured at Zn-k edge. Even though the Zn concentration was 

relatively “low” (around 2000 ppm) in some samples, we were able to record the data 

successfully, thanks to the Ge-solid state detector. Also, we used a new graphical 

interface called as Generic Data Aquisition (GDA) installed at Dubble beamline for 

the first time and it worked quite well. To this end, we would like to acknowledge the 

help from Dr. Dip Banerjee and Dr. Alessandro Longo for their valuable support 

through out the beam time. 

 

C) Status and progress of evaluation: 

 

Primary data reduction has already been carried out. More detailed analysis and Feff 

ab-initio calculations and modeling will be carried out in the following months. The 

primary data analysis suggests to some interesting findings (please see section D for 
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more details) and excellent signal/noise ratio related to excellent beam stability and 

detector sensitivity. 

 

 

Figure A3.1. Zn K-edge data collected for (A) model compound with k3 weighted 

EXAFS in transmission mode and (B) for a sample at high zinc loading along with k 3 

weighted EXAFS in fluorescent mode at 50 K. 

 

D) Results: 

 

The primary data analysis already suggests intriguing results to be debvelopped incl. 

that Zn is adsorbed to BioSeNPs in different ways under different experimental 

conditions. In some cases, the ZnCO3 precipitation is possible and in other cases, Zn 

is linked to oxygen like many organic compounds (Zn-acetate, Zn-lactate and so on). 

The results obtained at DUBBLE indicates the interaction of Zn is primarily to the 
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polymeric substances attached to the surface of BioSeNPs. This understanding 

would help us to more closely predict the fate of BioSeNPs in the environment. 
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Transmission electron microscopy - Energy disperse X-ray spectroscopy 

 

Samples for TEM were diluted in distilled water, deposited on a formvar-coated TEM 

grid and dried at ambient temperature. The analyses were performed using a JEOL 

2100F (FEG) operating at 200 kV and equipped with a field emission gun, a high-

resolution UHR pole piece, and a Gatan energy filter GIF 200. EDXS analysis were 

performed on the selected zone at 15 kV 

 

DNA extraction and DGGE analysis 

 

DNA was isolated using the FAST DNA SPIN kit from MP Biomedicals, USA. The 

DNA was isolated in accordance with the method given by Ahammad et al. (2013). 

The concentration of DNA in the isolated samples was 40 ng µL−1. A nested PCR 

strategy was employed in which the first round PCR (Bio-Rad, C1000 Thermocycler, 

USA) was performed with primer set PRA46f and PRA1100r of amplicon size of 

1054 bp. The following thermal cycling was used: Initial denaturation at 92oC for 3 

min followed by 30 cycles of 92°C for 1 min, annealing at 55°C for 1 min, with a final 

elongation step at 72°C for 7 min. In the second round, the PCR products of first 

round were re-amplified with a set of universal primers PARCH340f-GC and 

PARCH519r with the following thermal cycling programme: Initial denaturation at 

95°C for 3 min followed by 30 cycles of 92°C for 1 min, annealing at 55°C for 1 min, 

with a final elongation step at 72oC for 7 min. 

 

In the first round of amplification the following recipe was used for making 25 µL 

PCR reaction mix. PCR master mix (Bioline, UK) 12.5 µL, H2O 9.5 µL, forward 

primer PRA46f 0.5 µL, reverse primer PRA1100r 0.5µL, template DNA 2 µL. In the 

nested PCR, 50 µL reaction mix was prepared using 25 µL PCR master mix (Bioline, 

UK), 21 µL H2O, 1.0 µL forward Primer (P340f), reverse Primer (P519r-GC) having 

added GC clams 1.0µL, template DNA 1µL (amplified DNA from the first round of 

PCR). 

 

Primers UNIBACT341f-GC and UNIBACT518r were used for amplification of 

bacterial (V3) 16S rRNA gene fragment. The following thermo cycler programme was 

used for amplification of bacterial V3 region: 95°C for 3 min initial denaturation 
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followed by 35 cycles of 95°C for 1 min, a touchdown protocol was used at annealing 

step with 65 to 55°C for 30 second with a decrement of (-0.5°C /step), elongation 

steps 72°C for 1 min and 72°C for 7 min for final elongation. The sizes of amplicon 

was checked by electrophoresis in 1.5% (wt./V) agarose gel stained with ethidium 

bromide. The list of primers used for PCR is provided in Table S3. 

 

The denaturing gradient gel electrophoresis (DGGE) technique was used to estimate 

the community profile of the sludge samples. DGGE was performed in accordance 

with the protocol given by Muyzer et al. (1993). Bio-Rad D Code Universal Gene 

Mutation System (Bio-Rad Laboratories, Hercules, CA, USA) was used for running 

the gel. The PCR amplified products of the second round of the nested PCR were 

loaded on 8% polyacrylamide gels in 1% TAE (20 mmol/L Tris, 10 mM acetate and 

0.5 mM EDTA pH 7.4 and a gradient of 45-60 % was maintained. The gel was run at 

60 ⁰C and 70 V for 16 h. Immediately after the gel electrophoresis, the plates were 

removed from the D-Code assembly and soaked in SYBR gold for 30 min for 

staining the gels. The stained gels were photographed in a Gel Documentation 

imaging system (Bio-Rad Laboratories, Hercules, CA, USA). Band pattern obtained 

were subjected to digital analysis. The intensities of the bands were analysed by Gel 

Doc XR+, Image LabTM 2.0 (Bio-Rad, Hercules, CA, USA). 
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Tables 

Table S1. Operating parameters of continuous activated sludge reactor with sludge 

recycle  

Parameter Value 

Influent flow (R1) [L h−1] 0.125 

Effluent flow (R2) [L h−1] 0.250 

Recirculation flow (R3) [L h−1] 0.125 

HRT [h] 8 

Glucose (in terms of COD) [mg L−1] 1000 

OLR [gCOD L−1d−1] 3 

Selenite [mM] 0.1 

SeLR [mg Se L−1d−1] ~23.7 

 

 

Table S2. List of primers used in the PCR for amplification of 16S rRNA gene 

Name Target 

group 

Function Sequences (5’-3’) References 

PRA46f Archaea Forward (C/T)TAAGCCATGC(G/A)A

GT 

(Øvreås et al., 

1997) 

PRA1100r Reverse (T/C)GGGTCTCGCTCGTT(

G/A)CC 

(Øvreås et al., 

1997) 

PARCH340fG

C 

Archaea, 

V3 

region 

Forward CCCTACGGGG(C/T)GCA(G

/C)CAG 

CGCCCGCCGCGCGCGGC

GGGCGGGGCGGGGGCAC

GGGGGG 

(Øvreås et al., 

1997) 

PARCH519r Reverse TTACCGCGGC(G/T)GCTG (Øvreås et al., 

1997) 

UNIBACT341f

GC 

Bacteria, 

V3 

region 

Forward ACTCCTACGGGAGGCAGC

AG 

CGCCCGCCGCGCGCGGC

[4] 
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GGGCGGGGCGGGGGCAC

GGGGGG 

UNIBACT518r Reverse ATTACCGCGGCTGCTGG (Muyzer et al., 

1993) 

 

Figures 

 

 

Figure S1. Dissolved oxygen concentration (left hand Y axis, ●) and pH (right hand Y 

axis, ■) in the continuous reactor for period I, II and III at TSS of 1300 mg L−1 
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Figure S2. (a) Evolution of the COD (●, ○) and total selenium concentration (▲, ∆) in 

the influent (closed symbols) and effluent (open symbols) fed as selenite to a 

continuously aerated activated sludge reactor with complete sludge recycle at a TSS 

of 3000 mg L−1 and (b) Dissolved oxygen concentration (left hand Y axis, ●) and pH 

(right hand axis Y axis, ■) in the continuous reactor for period IV, V and VI at TSS of 

3000 mg L−1 
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