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TELECOM-BRETAGNE

Abstract

Almost all modern mobile devices are equipped with a number of various wireless inter-

faces simultaneously, so that each user is free to select between several types of wireless

networks. This opportunity raises a number of challenges, since in general selfish choices

do not lead to a globally efficient repartition of users over networks. In order to study

this problem, we split the general users allocation subject into three subtopics. At first,

we study how the users are making network selection decision, which information is

available for them and by which means. We develop a model, where users decision are

lead by ratings of available networks and prices they have to pay. At the second step we

already study the outcome of selfish users behavior, which we found to be inefficient. We

decide to introduce a specific taxation policy, which takes into account the users diver-

sity in price (or QoS) perception, and lead to an optimal situation, when the total QoS

experienced by users is maximized. The last subtopic covers the problem of providers

interaction, which has a crucial impact on users welfare. We study both models with

static and mobile users, and for the former case we propose a novel model of Internet

access providers competition in the vehicular networks.

http://www.telecom-bretagne.eu
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Résumé de la thèse en Français

Depuis quelques années, les appareils de communication mobiles parviennent à gérer

simultanément plusieurs interfaces réseau, donnant ainsi aux utilisateurs mobiles la pos-

sibilité de choisir facilement entre plusieurs types de points d’accès et de technologies

disponibles. On peut naturellement s’attendre à ce que les différentes applications d’un

appareil mobile utilisent différentes interfaces réseau simultanément. Un utilisateur mo-

bile peut donc tirer profit de la diversité des technologies disponibles, exploitant leurs

avantages pour chaque application ou besoin de service spécifique. Notons que cette

augmentation des possibilités de choix stimule également la concurrence entre les four-

nisseurs de réseaux sans fil, qui conduit généralement à une baisse des prix d’accès et

une amélioration de la qualité de service (QoS).

Le concept de “Always best connected” [1] a été récemment introduit. Par cette ex-

pression, on comprend un système qui sélectionne automatiquement à chaque instant le

réseau le plus approprié pour un utilisateur, en tenant compte de ses préférences (tels que

la disposition à payer, le niveau de consommation d’énergie, etc), ainsi que les exigences

de son applications (par exemple de seuil tolérable de délai, le débit disponible, la gigue).

Toutefois, un mécanisme basé sur ce concept, bien que défini pour satisfaire les utilisa-

teurs, pourrait conduire à des situations où certaines technologies seraient surexploitées

et d’autres sous-utilisées par rapport à une allocation optimale. En effet, la conjonction

de décisions individuellement optimales (ici, le choix d’un point d’accès pour chaque

mobile/application) ne conduit généralement pas à un optimum global. Cette utilisation

inefficace correspondant à une qualité de service moindre, il peut alors être dans l’intérêt

des fournisseurs d’accès d’introduire des incitations afin d’influencer les décisions prises

par les utilisateurs.

Un grand nombre d’études montrent en effet l’inefficacité potentielle dans les scénarios où

les utilisateurs font égöıstement leurs décisions d’association aux points d’accès. Cela a

incité la communauté scientifique à regarder de plus près le processus de décision des uti-

lisateurs, et en particulier les méthodes qui pourraient aider les fournisseurs à influencer

le comportement des utilisateurs d’une manière souhaitable. La littérature scientifique

fournit plusieurs enquêtes consacrées au problème de la répartition des utilisateurs dans

les réseaux d’accès sans fil (comme [2–5]).

Le problème de répartition des utilisateurs dans un réseau y est généralement présenté

comme suit. Un certain nombre de points d’accès sans fil coexistent dans une zone

géographique. Ces points d’accès peuvent mettre en œuvre la même –ce type de réseau

est appelé homogène– ou différentes technologies d’accès sans fil (par exemple WLAN,
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WiMAX, UMTS, et plus récemment, LTE) –constituant ainsi un réseau hétérogène–

afin de fournir un accès à Internet. Les utilisateurs situés à l’intérieur des zones de

couverture de ces points d’accès cherchent à établir une connexion, et pour ce faire

doivent choisir un ou point(s) d’accès (ou plusieurs, en cas de multihoming).

Les points d’accès ont généralement des zones de couverture qui se chevauchent ou même

cöıncidant, et donc les utilisateurs situés dans des zones d’intersection sont en mesure

de choisir entre plusieurs réseaux. Cependant, dans certains scénarios les utilisateurs

ont la possibilité de choisir même si les zones de couverture ne se chevauchent pas : par

exemple, dans le cas de réseaux véhiculaires, les utilisateurs mobiles peuvent rencontrer

successivement plusieurs points d’accès et pour chacun décider de s’y connecter ou non.

Dans ce travail de thèse, nous étudions le problème de la répartition des utilisateurs

dans les réseaux sans fil hétérogènes. Nous avons séparé ce problème en trois thèmes

interconnectés que nous avons abordés séparément. Cette fragmentation est fondée sur

l’échelle de temps à laquelle est considéré le problème.

L’échelle de temps la plus petite que considérons correspond aux décisions prises par

les utilisateurs eux-mêmes : nous nous concentrons sur la façon dont les utilisateurs

sélectionnent parmi plusieurs alternatives, et sur quel type d’information est donné sur

ces alternatives avant ce choix. Dans le cas d’utilisateurs statiques, cette décision se

limite à un choix entre un certain nombre de réseaux disponibles. Dans le chapitre 2,

nous présentons et comparons les différentes approches considérées dans la littérature

pour ce cas.

Dans le Chapitre 3 nous étudions un système où une entité tierce est chargée de recueillir

les informations fournies par les utilisateurs sur la qualité de service dont ils ont bénéficié

lors de leur connexion, et de propager cette information sous forme d’un score aux autres

utilisateurs qui auront à effectuer un choix. Ainsi, les utilisateurs suivants pourront baser

leur choix de point d’accès sur un compromis entre la qualité de service qu’ils peuvent

attendre (estimée par les scores reçus) et le prix qu’ils auront à payer. En modélisant

l’arrivée d’utilisateurs au cours du temps par un processus de Poisson et en supposant

un temps de connexion distribué selon une loi exponentielle, nous pouvons estimer la

répartition de la demande entre les points d’accès à laquelle les fournisseurs peuvent

s’attendre pour un profil de prix fixé. Ce type de système est intéressant en raison du

fait que le choix est simplifié pour les utilisateurs, qui disposent d’une estimation du

service auquel s’attendre. En outre, le système est auto-régulé (trop de demande sur un

point d’accès conduit à une dégradation de son score et par conséquent à une réduction

de sa demande), et conduit à une distribution de la demande qui n’est pas trop éloignée

de la situation optimale (en terme de somme des scores). Nous montrons également que

même lorsque les utilisateurs entrent dans le système et le quittent au cours du temps
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(et la répartition des utilisateurs n’est jamais parfaitement stable), il est possible d’avoir

de bonnes estimations du nombre d’utilisateurs sur chaque point d’accès.

Dans le Chapitre 4 nous considérons un modèle simplifié de choix des utilisateurs, qui

nous permet une étude analytique complète. Dans un premier temps, les utilisateurs

sont supposés être non-atomiques, c’est-à-dire que leurs décisions individuelles ont une

influence négligeable sur la qualité perçue par les autres. Nous avons supposé que tous

les utilisateurs connaissent le niveau de qualité de service dans les réseaux disponibles,

leurs choix étant des compromis entre la qualité de service et le prix à payer. Cepen-

dant, les utilisateurs diffèrent dans leur sensibilité relative à ces deux quantités ; nous

modélisons cette diversité en considérant différentes catégories d’utilisateurs, chacune

avec une valeur de sensibilité au prix. La concurrence entre les utilisateurs se modélise

alors comme un jeu de routage, qui est connu pour avoir un équilibre.

Dans ce cadre, nous considérons alors l’échelle de temps supérieure : puisqu’on peut

prédire la répartition des utilisateurs dans le système à partir du comportement égöıste

des individus, comment pouvons-nous les inciter à � coopérer � en vue d’atteindre une

situation globalement optimale ? Nous avons utilisé le prix imposé sur chaque point

d’accès comme outil d’incitation. En définissant le coût social comme la somme des

temps de latence subis par tous les utilisateurs du système, nous obtenons des expressions

analytiques pour les taxes optimales sous certaines hypothèses (leur existence étant

établie par des travaux précédents), et décrivons l’algorithme pour les calculer.

Nous avons montré par simulation que ce système basé sur les prix fonctionne même

dans le scénario réaliste où les arrivées et les départs d’utilisateurs au cours du temps

sont aléatoires (le modèle analytique considère la demande des utilisateurs comme étant

statique). Nous proposons également une nouvelle interprétation de la perte d’efficacité

due à la non-coordination entre utilisateurs, en la reformulant en termes de surdimen-

sionnement (capacité de transmission qui pourrait être économisée en coordonnant les

utilisateurs) ou bien de demande supplémentaire qui pourrait être servie sans surcoût

grâce à la coordination. Ces interprétations peuvent permettre aux fournisseurs d’esti-

mer l’intérêt économique d’introduire une forme de coordination entre utilisateurs (par

exemple par les prix).

L’échelle de temps la plus grande considérée dans cette thèse correspond à la concur-

rence entre les fournisseurs d’accès. Nous nous concentrons sur ce sujet dans le Chapitre

5, où deux cas sont traités séparément. Dans une première partie, nous étendons le

modèle proposé dans le Chapitre 3, en permettant aux fournisseurs de choisir les tarifs

d’accès, ce qui influence la demande disponible (la demande totale étant alors supposée

élastique, c’est-à-dire dépendante du prix). Les fournisseurs cherchent ici à maximiser
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leurs revenus ; nous étudions le jeu simultané dans le cas où l’infrastructure des fournis-

seurs diffère (un fournisseur ayant une capacité de traitement supérieure à l’autre), et

comparons l’issue de la compétition à une situation de monopole (où un seul fournisseur

possède toutes les infrastructures).

La deuxième partie du chapitre 5, étudie la concurrence entre fournisseurs d’accès dans

les réseaux véhiculaires. Nous considérons un cas simple avec seulement deux points

d’accès, appartenant à deux fournisseurs, disposés le long d’une route. Les utilisateurs

se déplacent dans les deux sens, et voient un fournisseur avant l’autre ; ils doivent alors

décider d’accepter ou non de payer le prix observé. Les fournisseurs, sachant cela, doivent

prendre en compte les deux sens de flux d’utilisateurs : ceux qui n’ont pas vu de concur-

rent, et ceux ayant vu le concurrent auparavant et qui ont soit refusé de payer (ce qui

signifie que leurs contraintes de prix sont bas) soit été rejetés en raison des contraintes

de capacité du concurrent. Nous étudions la concurrence comme un jeu simultané sur les

prix, et montrons qu’il existe deux équilibres, dans lesquels le fournisseur qui fixe sont

prix à un niveau bas gagne des revenus plus élevés que son concurrent.

En outre, nous étudions le cas où les utilisateurs peuvent modifier leurs préférences

de prix après le premier fournisseur rencontré : cela peut représenter le fait que les

utilisateurs deviennent prêts à payer davantage car les chances de trouver une autre

opportunité d’accès diminuent. Nous constatons alors un phénomène intéressant : si les

utilisateurs acceptent de payer davantage, dans le jeu de compétition sur les prix les

fournisseurs peuvent se retrouver avec un équilibre où tous deux fixent un prix inférieur

(au cas sans variation de préférence), un des fournisseurs subissant même une perte dans

son revenu.

Enfin nous considérons le cas où des points d’accès des deux fournisseurs fonctionnent sur

la même fréquence et ainsi interfèrent, nuisant aux communications des clients du concur-

rent (si l’on ne considère que la liaison descendante). Nous étudions dans ce contexte le

problème de la localisation optimale des points d’accès, et mettons en évidence plusieurs

stratégies possibles dans le jeu de compétition entre fournisseurs. D’autre part, si les

points d’accès sont contrôlés par un seul fournisseur (monopole), il peut être rentable

de fixer un prix élevé sur l’un de ses points d’accès afin de saturer l’autre point d’accès :

de la sorte le fournisseur pourrait gagner plus de revenus, en exploitant au maximum

l’hétérogénéité de la volonté à payer des utilisateurs. De nouveau dans le cas de deux

fournisseurs en compétition, dans le jeu de compétition sur les prix nous observons que

lorsque la demande des utilisateurs est faible, le fournisseur qui fixe le prix en premier

va facturer un prix élevé que son concurrent ne cherche à interférer avec lui pour di-

minuer sa capacité et détériorer ses revenus. Par rapport au cas sans interférences, cela
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conduit donc à une situation paradoxale, où la concurrence amène l’un des fournisseurs

à augmenter son prix.
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Chapter 1

Introduction

1.1 General background

The last years witnessed a tendency in the world of mobile devices, towards an increase in

the number of different wireless network interfaces handled simultaneously. This variety

of technologies gives mobile users a possibility to easily choose between several types

of access points available. We could expect in the nearest future that it will be also

possible that different applications on a mobile device use different network interfaces

simultaneously. A mobile user could profit from the diversity of available technologies,

exploiting their advantages and drawbacks and taking into account concrete application

or service needs. Moreover, this increase of choice opportunities gives a stimulus to a

competition between wireless network providers, which usually leads to a decrease in

access prices and to Quality of Service (QoS) enhancement.

Quite recently the “Always best connected” [1] concept was introduced. By this term

we understand a system, which in every moment of time automatically selects the most

suitable network for a user, taking into account his preferences (such as desirable cost,

level of power consumption, etc.) as well as the requirements of his applications (e.g.

tolerable delay threshold, available rate, jitter). However, a mechanism based on this

concept, even if aiming to satisfy the users, could drive the system to a situation where

some technologies would be overused and some other under-utilized. This inefficient use

could further lead to a QoS degradation and it is in the interest of providers to improve

their resource management by giving users some incentives influencing their decisions.

1
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A large number of studies indeed show potential inefficiency in scenarios where users

selfishly make their access point association decisions. This fact strongly incentivizes the

scientific community to look closer on the users decision process, and specifically, on the

methods which could help providers to influence the users behavior in a desirable way.

Scientific literature provides several surveys devoted to the users allocation problem in

the wireless access networks (like [2], [3], [4], [5] ).

1.2 Problem description

The general users allocation problem scenario looks as follows. A number of wireless

access points coexist in some area. These access points can implement the same - this

type of network is called homogeneous - or different wireless access technologies (e.g.

WLAN, WiMAX, UMTS, and most recently, LTE), thus constituting a heterogeneous

network, to provide an Internet access. The users, which are located inside the coverage

areas of these access points are willing to establish an Internet connection, and to do so

they have to choose one or several (in case of multihoming) access point(s) to connect

to among the available ones.

The access points usually have some overlapping or even coinciding coverage areas, and

thus users situated in intersection areas are able to choose among several networks.

However in other scenarios the users also have an opportunity to choose, even when

coverage areas do not overlap: e.g. in the case of vehicular networks, mobile users

sequentially meet several access points and for each access point they have to decide

whether it is worth connecting to it or not. Figure 1.1 shows an example of heterogeneous

network scenario, when different types of wireless networks coexist in the same area.

Note, that in this manuscript we use terms “mobile use”, “user”, “customer”, “mobile

station” interchangeably, and by them we understand entities searching for an Internet

connection. By “network access point”, “network owner”, “provider” if not specified,

we understand an entity which provides users with an Internet connection on some

predefined conditions. By “agent” or “player” we understand an entity, that makes an

action or strategic decision in game theoretical environment, which can be both users

or providers, depending on the model considered. In game theory models these entities

are assumed to be selfish or self-interested, which means that they aim to rationally

maximize their individual welfare without regard on impact they may cause on others.



Chapter 1. Introduction 3

Figure 1.1: Users allocation problem general topology

A number of crucial questions arise regarding the problem of users allocation in the

wireless network, which we could divide into two sets: the first one concerns users (or

consumers) interests and the other one is focused on network facilities owners (i.e.,

network and service providers, government regulators, etc.) interests.

At first, to analyze user behavior we have to answer the following questions:

1. What do the user want?

We have to understand what each individual user needs. We assume that every

user wants to connect to the Internet, but particular needs could differ. We have

to classify possible user goals, trying to reveal whether he wants to download a

file, check his email, make a video call, etc., because these may influence further

the network selection process.

2. What are the users sensitive to?

Depending on their goals, the users could have different Internet connection re-

quirements, e.g., video calling users wants to have low jitter, though they could

tolerate a moderate connection rate, while users aiming to download heavy files

prefer a high speed Internet connection. We need to define the parameters users

are sensitive to.

3. How do the users make their decisions?

Obviously, knowing all parameters the users are sensitive to is not enough for
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appropriate network selection. We need to model the way users are choosing one

alternative above others, having information about network parameters, or some

“beliefs” (like in Bayesian games described later on) about their values, as well as

to determine their relative importance. Moreover we have to strictly define which

kind of information is available for users and by which means. Some information

could be advertised by network providers (e.g., cost or average connection speed),

other types of information could be predicted based on statistics from previous

sessions, or through active probing like in [6]. Every time we assume that users

have some additional information, we have to understand that in real scenarios

most probably this information advertising could lead to a serious communication

overhead (i.e., there is a trade-off between information accuracy and overhead).

It could seem that users allocation concerns the users only: they aim to establish an

Internet connection and they make the final decision about access points association.

This is not true due to several reasons. First of all, the users behavior is provider-driven,

because providers organize infrastructure and facilities, and users behave as a response

to the situation resulting from providers actions. In addition, network providers have

their own incentives and goals, and they could change the network conditions after

observing user behavior in order to reach their objectives. Second, providers may make

the association decisions: in models like [7] and [8], a user submits a bid for the services

he would like to get, and then providers decide how to treat the user’s request.

Analogically, we define a number of questions we want to answer when dealing with

Internet access providers with regard to the user allocation problem:

1. What do the providers want?

Somehow the users and the providers aims coincide: both types of entities want

users to have an Internet connection. Nevertheless, this is not the providers pri-

mary goal - more often they aim to maximize their revenues. Still there can be

variants: providers could propose fixed duration contracts and the main issue for

him in this case is to ensure the users satisfaction or to decrease current mainte-

nance costs (e.g., the power control). Therefore, we have to precisely define the

final aim provider wants to achieve.

2. What is the outcome of users behavior?

In real life, individuals’ rational actions could lead to an unsatisfying situation.

When a number of entities share the same source and every one of them tries to
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Figure 1.2: Users allocation problem subdivision

satisfy its own requirements or needs, it could lead to global dissatisfaction, due

to the fact that each individual entity does not think about the consequences of

his actions. This fact is also known as “the tragedy of commons” [9]. We need to

investigate how far the outcome of such selfish behavior is from an optimum situa-

tion regarding some global objective function, quantifying satisfaction of provider’s

aims.

3. How could the providers influence users?

Whatever providers goals are, it is important to know how they could elicit the

users to act in a desirable way. We want to investigate by which means providers

could incentivize users to change their original selfish decisions. Most frequently,

incentives are introduced through encouragements or penalties, however we will

also discuss systems where different types of incentives are considered.

4. How do the providers interact?

When several providers coexist, their behavior may change dramatically. Every

provider has to take into account the behavior of competitors, in order to predict

his own revenue and to achieve his goals. Moreover, in the situation of competition,

providers have to struggle with each other to attract users. It is matter of fact

that competition in market usually enhances the quality of proposed goods, but

whether it is the case for the wireless internet access market has to be investigated.

We have to study this interaction of neighboring providers, as well as its impact

on user behavior.

We could group the aforementioned questions into broader research topics, as illustrated

on Figure 1.2:
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1. Network selection problem:

In this area we include all questions regarding the decision a user has to make. We

have to know which network parameters are more important to users, what are

the constraints of his mobile device, budget, time, etc. We have to define which

information is available to users and by which means: whether it is advertised

by the network provider, given by some web service, observed through probing or

from previous experience. Finally, the main problem is to understand, having all

this, how the user chooses an access point to connect to.

2. Resource management problem:

– Efficiency analysis: Given the fact that each user tries to selfishly choose the

best solution, we have to investigate to which outcome this kind of behavior

could lead. This is up to provider(s) to define a criterion of optimal resource

usage. In majority of research, unregulated selfish behavior of users is found to

imply strong QoS degradation.

– Fixing inefficiency: If the outcome of users selfish behavior is inefficient regarding

some provider’s target function (e.g., revenue, power consumption), the provider

may influence users in order to make them change their decisions (it is not

possible to change the selfish nature of users behavior, but one could give some

incentives to influence it).

3. Providers interaction problem:

Effective resource management is a good solution for a provider when he is alone,

i.e. when he is a monopolist in some area. The situation gradually changes when

a competitor appears: providers now have to find a way to achieve their goals,

taking into account that they have to compete for users. Obviously, the providers

competition can has a considerable impact on users behavior and thus we have to

include it into consideration.

1.3 Thesis plan and contributions

In this thesis we tackle the users allocation problems in different scenarios. We consider

cellular, urban and vehicular wireless networks, trying to predict and analyze an outcome

of selfish behavior of involved entities.
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Chapter 2 discusses the main relevant publications on the topic. We first survey the

works, focussed on the users side of the problem: mainly it concerns the network selection

decision they have to make. Then we described articles on competition between users,

both trying to measure inefficiency of users behavior and ways to fix it. Finally, we look

on the models where the competition between providers is studied.

In Chapter 3 we describe a system, where users produce network selection knowing both

prices and ratings of networks. These ratings are averaged QoS experienced by users

in previous time slots and are gathered by a special middle controller. We study the

dynamics of the system and propose a way to predict the outcome of users decisions.

Chapter 4 is devoted to the resource management problem: we study there how Internet

access provider can minimize the total latency experienced by users through appropriate

taxes introduction. Users perceive the pricing in a different manner, thus we divide them

in a number of classes with the same price sensitivity. We apply results from the routing

games theory, and derive analytical expression for the optimal taxes.

In the next Chapter, we focus on the competition between Internet access providers.

This competition could arise in various settings, and we consider two cases: when users

are static and when users are moving. For the static users case we apply the results

for the rating-based model from Chapter 3, and for the mobile users we consider a new

model of providers competition in vehicular networks.

In the Chapter 6 we make a conclusion, briefly resume the work done and propose future

research directions.

The results described in this thesis work were published in

– V. Fux and P. Maillé. A rating-based network selection game in heterogeneous systems.

In Proc. of NGI, 2012

– V. Fux, P. Maillé, J.-M. Bonnin, and N. Kaci. Efficiency or fairness: managing appli-

cations with different delay sensitivities in heterogeneous wireless networks. In Proc.

of WoWMoM, 2013

– V. Fux and P. Maillé. Incentivizing efficient load repartition in heterogeneous wireless

networks with selfish delay-sensitive users. In Proc. of ICQT, 2013

– V. Fux, P. Maillé, and M. Cesana. Price competition between road side units operators

in vehicular networks. In Proc. of IFIP Networking, Trondheim, Norway, June 2014
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and these articles are currently in process:

– V. Fux, P. Maillé, and M. Cesana. Road side units operators in competition: a game-

theoretical approach. Journal article, 2014

– V. Fux. RSU deployment problem: unfair and aggressive competition with help of

interference. submitted to NetGCoop, 2014



Chapter 2

State of the Art

In this chapter we discuss already existing solutions for all three dimensions of the users

allocation problem. Starting from the lowest time scale we at first consider various

approaches in the area of network selection: the main accent is made on Multiple At-

tribute Decision Models (MADMs), which prescribe how a user will choose one network

among the available ones, knowing different characteristics of them. Further we survey

the articles studying the possible outcomes of selfish users behavior in heterogeneous

networks as well as the ways access providers can influence their customers. Some basic

game theory definitions are given prior to it. Then, we overview models which study

competition between providers: they struggle for users, aiming to maximize their indi-

vidual profits. Finally, we provide a short overview of research challenges with which

the research community currently deals.

2.1 Network selection problem

The network selection problem deals with how a user should select the most suitable

network among a set of alternatives. A large number of articles tackle the network

selection problem with a help of already existing tools from the decision theory such

as multiple attribute decision models. They propose a way to evaluate each available

network based on a number of observed parameters and their relative importance. In

what follows we describe the major MADMs and discuss which parameters may be

9
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important for users. Finally, we survey several other approaches to the network selection

problem, which are presented in the scientific literature.

Following [3] which provides a good overview of network selection decisions models, we

divide the decision criteria that mobile users have in the network selection problem into

four groups:

1. User preferences. These criteria are the constraints, imposed by user. The most

important criterion here is the budget the user wants to spend for the proposed

service. Other criteria here are the Quality of Experience (QoE) expectation (sub-

jective measure of the quality of a service), the time of connection (for the cases

when day/night pricing differs) and etc.

2. Application requirements. Depending on the application running, the require-

ments for a network connection could differ. The most popular example is the

difference between video call service and simple file download requirements. In the

first case, an application needs small delay and jitter values with an admissible

rate, while in the latter case it is more sensitive to the available throughput.

3. Device constraints. Given an extensively increasing market of mobile devices,

the users could have devices implementing totally different technologies. Each de-

vice could have its own constraints: the most obvious constraints are the supported

wireless connection interfaces, but here we also include battery level, screen size,

etc.

4. Network parameters and conditions. By network parameters we understand

some static information, e.g., network type and energy consumption. By network

conditions we mean information which changes over time and could vary from user

to user, like signal level, delay, jitter, rate, cost, etc.

The parameters could also be classified by the way their values are perceived by users:

– Beneficial parameters The bigger the value of this parameter, the better for users.

– Cost parameters The lower the value of this parameter the better for users.

– Nominal-the-best parameters The closer the value of this parameter to a some

predefined value, the better for users.
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Figure 2.1: Decision process in MADM

2.1.1 Multiple Attribute Decision Models (MADM) application to the

Network Selection problem

Some of the aforementioned parameters could be known by users: they could be directly

advertised by the network provider, gathered by probing or estimated from previous

experience. Given a number of parameters, a user has to decide which network to

connect to. The multiple attribute decision models describe different ways of how he

could do it. These algorithms provide a way to evaluate and to rank available networks

by their suitability for concrete user needs.

The main drawback of MADMs is that as a rule they do not take in consideration the

outcome of users decisions, i.e, they focus only on the welfare of an individual user, and

do not consider how his decision could impact the welfare of the whole population. This

is important because if all users apply the same mechanism to select the most suitable

network, most probably some changes in it could lead to increase of the satisfaction level

of every user in the system, especially if this mechanism will take into account negative

externalities caused by the selfishness of users.

The other problem with MADMs is that they are hard to evaluate. One of the attempts

to compare different decision models was made in [2]. However, in that work the decision

model were compared with the same weight values, which could be seen as not the

adequate simulation setting - clearly, in different models weights have different meanings
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and influence. More accurate simulations should consider the models trained on some

set of examples of different applications, and only when the appropriate weights for each

application are determined, they could be compared. Moreover, it is not clear how one

could evaluate different selection decisions - most likely one has to make tests regarding

the Quality of Experience, in which users after sending to an algorithm their preferences

and choosing an application they want to use, report their quality evaluation. But this

evaluation is clearly subjective, and needs quite an accurate study we do not consider

here.

The rest of the subsection will be devoted to the MADMs description and their appli-

cation examples to the network selection problem. Due to the reason stated above we

do not aim to compare them; our main objective is to show different ways of producing

the network selection decision.

2.1.1.1 The Simple Additive Weighting (SAW) and Multiplicative Expo-

nent Weighting (MEW) methods

The Simple Additive Weighting is the most simple and widely used decision model.

When only two decision parameters are considered, authors use various names for the

method, thus it is quite difficult to give concrete references, especially given the simplicity

of the approach.

In all methods described below, a user tries to choose a network from a set M . There is a

number of criteria N (like delay, jitter, cost), which a user can observe, xij , j ∈ N, i ∈M .

For each criterion, the user has some preferences, expressed as weights wj , j ∈ N . Then

the score a network receives regarding that user is equal to the weighted sum of the

criteria values:

ScoreiSAW =
∑
j∈N

wj x̄ij , (2.1)

where x̄ij is the appropriately normalized parameter depending on its type - whether it

is beneficial (the bigger the better) or the cost (the lower the better) parameter.

Multiplicative Exponent Weighting is the other one simple and commonly used decision

model. In contrast to SAW, MEW as the score of a network takes a product of network

parameters, taken in the power of corresponding weights. Using the same notation, the
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score of a network is:

ScoreiMEW =
∏
j∈N

x̄
wj
ij . (2.2)

Further, the network with higher score is selected; if the connection failed, the next one

from the score list is taken and so on.

2.1.1.2 Technique for Order Preference by Similarity to Ideal Solution Al-

gorithm (TOPSIS)

Each network in TOPSIS [16] is viewed as a parameter vector of size N . The main idea

of this approach is to find a network which is the closest to the best solution, and the

farthest from the worst one. As in the previous two models, the normalized parameters

are computed. Further, a matrix consisting of elements vij = x̄ij ·wij is considered, where

x̄ij and wij are the normalized parameter j and the weight of parameter j for network i,

respectively. Further, the best and the worst solutions are constructed, taking the best

(worst) value among all networks for each parameter j ∈ N . Finally the network with

the biggest score defined as:

ScoreTOPSIS =
d−

d+ + d−
(2.3)

is chosen, where d− and d+ is the Euclidean distance to the worst and the best solution

respectively.

2.1.1.3 Analytic Hierarchy Process (AHP) and Grey Relational Analysis

(GRA)

If in the previous methods the criteria weights are given as inputs, in this approach the

authors in [17] propose a method to compute them. In the AHP method, a user should

produce pairwise comparisons and evaluate a relative importance of parameters by as-

signing values from 1 to 9, and then the algorithm calculates the final weights. Later,

the Grey Relational Analysis is used, which aims to find a similarity between available

alternatives and the best solution. As in the previous methods the normalization of

parameters is needed. Unlike other approaches, the authors consider one more type of

parameters - nominal-the best, which means the closer the current value to the nominal
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one, the better. Further, they define the best solution x0, consisting of the best val-

ues for each parameter among all alternatives’ parameters. Then the score for network

i ∈M is calculated as follows:

ScoreiGRA =
1

N

N∑
j=1

Dmin +Dmax

Dij +Dmax
, (2.4)

where Dij = wij |x0j − x̄ij |, Dmax = maxi∈M,j∈N Dij and Dmin = mini∈M,j∈N Dij .

Clearly, the Grey Relational Analysis could be used with predefined weights, as well as

the Analytic Hierarchy Process could be used in conjunction with other decision models.

2.1.1.4 Elimination and Choice Translating Priority (ELECTRE)

This method originally proposed in [18] was first applied with slight modifications to

the problem of network selection in [19]. At the first step of the mechanism a reference

network is chosen. In [19] as the reference network an unreal network with a desired set of

attributes is considered (similar to what we called best solution in the previous method).

Further, for each network and each attribute an absolute difference is computed, followed

by normalization. Then, the normalized values are multiplied by the criteria weights.

On the next step, concordance and discordance sets are constructed:

Csetkl = {j : (wj x̄kj) ≥ (wj x̄lj)}

Dsetkl = {j : (wj x̄kj) < (wj x̄lj)},

where k, l ∈M are the compared networks, x̄lj is the normalized value of the difference

between attribute j of network l and the reference network.

Based on these sets, the concordance and discordance matrices C and D are constructed.

The elements k, l in the matrices look as follows:

Ckl =
∑

j∈Csetkl

wj

Dkl =

∑
j∈Dsetkl |wj x̄kj − wj x̄lj |∑
j∈N |wj x̄kj − wj x̄lj |
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On the last step the net concordance and discordance indexes are calculated. The net

concordance (discordance) index corresponds to a measure of dominance (weakness)

of network k over other networks compared with the measure of dominance of other

networks over network k:

Ck =
M∑

l=1,l 6=k
Ckl −

M∑
l=1,l 6=k

Clk

Dk =
M∑

l=1,l 6=k
Dkl −

M∑
l=1,l 6=k

Dlk

A network with the highest net concordance index and the lowest discordance index

should be chosen. If there is no such network, the networks could be ranked by both

parameters, and then the network with the highest average ranking is the best one.

2.1.1.5 VIKOR

One application of this mechanism to the problem of network selection is described in

[20]. Similarly to previous methods, at first it is necessary to determine the best and

the worst values for each criterion:

x+
j = {(max

i∈M
xij |j ∈ Nb), (min

i∈M
xij |j ∈ Nc)},

x−j = {(min
i∈M

xij |j ∈ Nb), (max
i∈M

xij |j ∈ Nc)},

where Nb and Nc are the sets of benefit and cost criteria, respectively (the authors do

not consider nominal-the best parameters).

Further, for each network the authors compute several values, based on which the ranking

would be made:

Si =
∑
j∈N

wj
x+
j − xij
x+
j − x

−
j

,

Ri = max
j∈N

[wj
x+
j − xij
x+
j − x

−
j

],

Qi = γ(
Si − S+

S− − S+
) + (1− γ)(

Ri −R+

R− −R+
),



Chapter 2. State of the Art 16

where

S+ = min
i∈M

Si, S+ = max
i∈M

Si,

R+ = min
i∈M

Ri, R+ = max
i∈M

Ri.

Here γ is a parameter such that 0 ≤ γ ≤ 1. On the final step, the authors propose two

conditions, such that if both of them are satisfied, a network with the smallest value of

Qi is chosen and if not, several networks are proposed as output (for detailed description

see [20]).

2.1.1.6 The weighted Markov chain (WMC) method

The idea of the WMC approach presented in [21] is to rank networks according to

stationary probabilities of the Markov chain. The transition matrix is constructed, in

which each element tij represents the probability of transition from network i to network

j. At the initial step all values in the matrix are equal to 0. Then, for each criterion q

a ranking list should be obtained:

τq = [i1 ≥ i2 ≥ . . . ≥ iM ], (2.5)

where ” ≥ ” denotes an appropriate ordering relation, depending on the type of param-

eter (note that this is general enough to include all three types of parameters) and τq(i)

denotes the ranking of network i from the point of view of factor q.

Then, for each tij it is necessary to make an update following the rule:

tij = tij +
wq
τq(i)

, if τq(i) ≥ τq(j). (2.6)

Finally, the authors compute the stationary probabilities:

πj =
M∑
i=0

πitij ,
M∑
j=0

πj = 1, (2.7)

and the ranking list is a list of networks with decreasing probabilities.
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2.1.1.7 Matching degrees and Weighted Bipartite Graph Algorithm

In [22] the authors assume that there is a special entity gathering network parameters

at some predefined periods of time. The system obtains the users requirements in the

beginning of each connection. At the first step, the authors use two exponential smooth-

ing, which allows them to predict network parameters between gathering periods (the

authors consider that network parameters could significantly change from the moment

the network status is collected to the moment when a handover is performed). Then,

the authors calculate the Matching Degree (MD) between each user requirements and

each network predicted parameters, taking into account weights obtained from Analytic

Hierarchy Process. If we denote the user requirements by the vector X = {x1, . . . , xN}

and the network parameters by the vector Y = {y1, . . . , yN}, then the similarity sj for

each parameter j ∈ N is defined as follows:

sj =


xj−|xj−yj |

xj
, 0 ≤ yj ≤ 2xj ,

0, yj > 2xj .

And finally, the MD between the current user and the network is simply a weighted sum:

MD =
N∑
j=1

wjsj . (2.8)

Somehow, the MD calculation is close to the idea of the TOPSIS algorithm, where the

distance from the best solution is computed. But in [22] the authors complement the

MADM. They also propose an algorithm (Weighted Bipartite Graph Algorithm), which

maximizes the sum of users MDs and acceptance rate, with respect of a constraint

condition.

2.1.1.8 Spearman footrule based algorithm

The last approach we consider in this section was proposed in [23]. The main idea is

to construct a ranking that would be the closest possible to all ranking lists based on

each decision criterion separately. The authors assume that for each criterion j ∈ N it

is possible to make an ordering by its appropriately normalized value. The Spearman



Chapter 2. State of the Art 18

footrule defines a distance between two ranks in the following way:

D(τx, τy) =
2

M(M − 1)

M∑
i=1

(τx(i)− τy(i)), (2.9)

where τx(i) denotes the position of network i in the ranking made by parameter x.

Further, the optimal ranking is computed:

τ∗ = arg min
τx

N∑
j=1

D(τx, τj). (2.10)

Analogically, the same approach could be used when decision criteria have different

weights, which will contribute to the computation of the optimal ranking. The authors

also propose an algorithm for optimal ranking computation.

2.1.2 Other network selection and handoff algorithms

In this section we consider several network selection algorithms which take into account

the dynamics of the system, contrary to MADMs, which simply rank all the available

networks by their suitability and do not consider the previous history of network pa-

rameters and do not predict their future values.

One of the most popular ways to model the dynamics of users decision involves Markov

Process applications. The common idea is to consider states of the system, each of them

representing a decision epoch. In each decision epoch a system/provider decides how to

treat a newly arriving user: whether he has to be rejected or connected to a concrete

network based on the load distribution. The optimal policy then is the set of actions in

each state.

This approach can be found in [24]: in the model time is splitted into decision epochs,

and the connection time of each user assumed to be geometrically distributed. Figure

2.2 illustrates this process, where by St, 0 ≤ t ≤ T we denote the random variable which

contains the state of the process at time epoch t (it includes the current network used by

a user and all networks parameters taken in consideration) and At is the action chosen

by the user at time t.
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Figure 2.2: MDP time scale

The user reward function is the difference between the link reward function f(St, At),

which reflects the QoS provided by the chosen network during time interval (t, t + 1)

and the signaling cost function g(St, At), which takes non-zero values only in the case

when the network is different from the one chosen in the previous time epoch:

r(St, At) = f(St, At)− g(St, At).

As the link reward function f(·) the authors consider a weighted sum of the utility

functions of different network parameters (their number can vary). The idea is to find

optimal decision rules for each state. By decision rules the authors understand a proce-

dure for action selection in each state at a specified decision epoch δt : S → A, where S

is the state space and A is the action space. A set of decision rules for each time epoch

gives a policy π = (δ1, . . . , δT ).

The authors try to find a policy that maximizes the expected total reward for the time

a user spends in the system, and propose an algorithm to compute such an optimal

stationary policy.

Quite similar ideas appear in [25]. The authors consider two access points, implementing

different access technologies (namely WLAN and HSDPA) and having the same coverage

area. This area is divided into several rings, and for each ring the users inside it have

the same achievable throughput and moreover, the users arrival process is the same in

all rings: they are Poisson arrivals.

Service rates are assumed to differ among access points. For WLAN the authors assume

users to receive an equal service rate, while for HSDPA an equal transmission time

interval is supposed. The user satisfaction is a function of the throughput and the

global reward. The authors aim to maximize the difference between the total users

satisfaction and the penalty for user rejection and propose an iteration algorithm in

order to determine the optimal policies.
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In [26] the authors consider a system in which WLAN, WiMAX and cellular networks

form a heterogeneous environment, and providers jointly decide who will serve the next

arriving users. The original idea is that the user allocation has two steps: the offline

stage, where the system computes the optimal policies for each possible state (similar

to [24]) and writes them to a public table, and the online stage, when providers for each

newly arriving user check this table to decide whether they should serve this user or not.

The restless bandit approach [26] provides an indexable rule - for each network in a

particular state it attaches an appropriate index. The network with the lowest index

will serve an arrived user. The authors show how to compute these indices and check

efficiency of the restless bandit system approach through simulations. In comparison

with ”existing scheme”, which is not described well in the article, this approach showed

significant gain in terms of expected reward.

Unfortunately, the authors were not clear enough regarding the session types they con-

sider - it looks that depending on the type of wireless network, the users of the same

session type have different QoS requirements. This differentiation is strange and needs

some clarification.

2.1.3 Summary

In this section we described the most popular approaches from the decision theory and a

few method involving Markov Process modeling. MADMs have an obvious disadvantage

that they make a decision, taking into account only the current system parameters and

do not include into consideration previous history of each network. Therefore MADMs

also do not consider an outcome of all population behavior, they just prescribe how to

produce a network selection decision. The approaches based on Markov Processes also do

not consider this issue, they rather prescribe what a user should do in the case when he

knows his current state and probability distribution of the next states to occur. However

in real-world systems the current state information is quite hard to get. This is why in

Chapter 3 we study a rating-based system, where users leave their feedbacks about the

QoS they experience, and a third party entity forms a special rating of networks, which

also includes previous history of each particular network QoS.
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2.2 Game Theory basics

The next sections describe works devoted to the investigation of competition between

mobile users looking for Internet connection, and Internet access providers aiming to

directly or indirectly maximize their profit. The natural way of studying competition

between selfish entities is to apply game theoretical models, in which players are com-

peting users or providers, and the satisfaction level from their decisions is described by

a payoff function.

Game theory allows us to predict the consequences of users behavior, assuming that all

players are rational. That means that a player knows all alternatives available to him

and has clear preferences. In what follows we consider different game models, which

have various competition rules. But the basic game structure is almost the same for all

undermentioned models:

Definition 2.1. A strategic game (see [27]) is a tuple < N,M,P >, where N is a finite

set of players, M = M1×M2× . . .Mn is the strategy space, with Mi denoting the set of

actions (strategies) available to user i, and P = (P1, P2, . . . , Pn) is the vector of players

payoff functions, which represent their preference relations.

Besides strategic games we will also consider some implementations of extensive games,

where players do not choose actions simultaneously, but do it in a sequence. This group

of games contains quite complex models and we will focus only on leader-follower games,

where one player chooses his action before his opponent.

2.2.1 Steady state

The main concept we will focus in the following models is the steady state of a game,

i.e., a situation when no player could increase his payoff by unilaterally changing his

strategy. In the case of a simple simultaneous game this steady state is called Nash

equilibrium:

Definition 2.2. A Nash equilibrium of a strategic game is a strategy profile m∗ ∈ M

such that for every player i ∈ N :

Pi(m
∗
−i,m

∗
i ) ≥ Pi(m∗−i,mi) for all mi ∈Mi,



Chapter 2. State of the Art 22

where m∗i stands for a vector of strategies of all players except player i.

Sometimes players can observe some random variable and taking into account that the

other player also observes its values, play different strategies. In this case the steady

state situation is called Correlated Equilibrium (CE):

Definition 2.3. Correlated equilibrium [27] of a strategic game < N,M,P > consists

of:

– a finite probability space (Ω, π), where Ω is a set of states and π is a probability

measure on Ω

– a information partition Hi of Ω for each player i ∈ N

– a function σi : Ω → Mi, with σi(ω) = σi(ω
′) whenever ω ∈ Hi and ω′ ∈ Hi for

Hi ∈ Hi. This function σi is the strategy of user i

such that for every i ∈ N and any other strategy σ′i we have:

∑
ω∈Ω

π(ω)Pi(σ−i, σi) ≥
∑
ω∈Ω

π(ω)Pi(σ−i, σ
′
i)

When the number of users is relatively large and the individual impact of users is neg-

ligible, we call them non-atomic players. In the case of routing games (and congestion

games), where users want to send their flows to some destination, by choosing paths with

minimum total cost, we have a special equilibrium, also known as Wardrop equilibrium:

Definition 2.4. At a Wardrop equilibrium, the cost of every used route is less or equal

to the cost of any unused route.

2.2.2 Equilibria evaluation

Often, an equilibrium situation of a game is inefficient: probably the players will gain

more in total if they decided to cooperate, or their selfish behavior leads to negative

externalities, which may be fixed by giving appropriate incentives. Moreover, it may

happen that a game possesses several equilibria. Thus, sometimes we need some way to

evaluate/characterize an equilibrium of a game.

For comparison purposes we define Pareto efficiency:
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Definition 2.5. The strategy profile m∗ is Pareto efficient if there is no strategy profile

such that at least one player has strictly higher payoff, while no other player has strictly

lower payoff:

@ m ∈M, j ∈ N : ∀ i 6= j Pi(m) ≥ Pi(m∗) and Pj(m) > Pj(m
∗)

Note that not every Nash equilibrium is Pareto efficient.

If we have some efficiency measuring function of strategy profiles, which we want to

maximize, then we may evaluate possible selfish an equilibria inefficiency using the so-

called Price of Anarchy.

Definition 2.6. If we denote by MNash the set of Nash equilibria, then Price of Anarchy

regarding some efficiency measuring function F (the bigger value the better) is

PoA =
maxm∈M F (m)

minm∈MNash F (m)
.

A high Price of Anarchy means that selfish equilibria are inefficient, while close to 1 value

implies that selfish equilibria are close to optimal situation. Sometimes the authors use

the so-called Price of Stability:

Definition 2.7. If we denote by MNash the set of Nash equilibria, then the Price of

Stability regarding some efficiency measuring function F is

PoS =
maxm∈M F (m)

maxm∈MNash F (m)
.

2.3 Users competition analysis and resource management

In this section we discuss different works focused on the possible outcomes of mobile

users making selfish decisions. Some authors claim that the selfish equilibrium of a

game is a situation when everyone is satisfied and the only question is how to reach

this situation avoiding the long period of convergence. That means that the final steady

state is not so easy to reach, and some distributed network selection algorithms may be

needed in order to decrease the number of handovers of users between several networks.
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Other authors try to analyze an equilibrium of a game, using a global metric (e.g.,

total users utility). In most cases selfish behavior leads to a situation different from the

optimal one (with high PoA) and in this situation an intervention from the provider is

needed. Knowing the current inefficient situation and the desirable outcome, providers

may introduce some penalties or incentives in order to fix the inefficiency.

2.3.1 Congestion games

In a subset of strategic games called congestion games [28] there is a set of alternatives,

which are congestable. It means that the utility of a user when he chooses an alternative

depends only on this alternative characteristics, and on the number of other users who

made the same selection.

Formally, a congestion game is a tuple < N,M,C >, where N is the set of users, M is

the set of alternatives (networks in our case) and C is the vector of cost functions, such

that cj = cj(nj), where nj is the number of users who selected alternative j. If players

are able to select some subset of alternatives, then the cost function is just a sum of

costs from all selected alternatives. This class of game is especially interesting because

in [28] the author showed that all finite congestion games have a pure strategy Nash

equilibrium.

It is quite natural to apply the congestion games models to users competition analysis:

usually users compete for scarce radio resources, and the higher load on the access point

implies the lower QoS (and thus the lower game payoff). E.g, reference [29] considers an

interference-based network selection game - which is an instance of the congestion game

- where a user selects an access point, preferring the one which operates on a frequency

with the smallest number of interferers. The authors propose a way of calculating the

Nash equilibrium as a solution of the mathematical programming problem; as a quality

measure of users allocation, the average number of interferers is considered.

In [30] the same authors try to find PoA and PoS bounds for three different user cost

functions, depending on the throughput (which depends on the distance between a user

and an AP) and the congestion on an AP. Despite that theoretical inefficiency bounds

appeared to be quite high, simulations show that in realistic scenarios the inefficiency

due to selfish users behavior is negligible and thus no intervention from the provider
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is needed. This work was extended in [31], where a more detailed comparison through

simulations is provided for the same cost function types.

Throughput-based utility function is also considered in [32]. The authors study the user

allocation problem focusing on the comparison between two multiple access protocols:

namely TDMA and HSDPA. In the game considered, the users are competing for ac-

cessing different base stations, trying to maximize a difference between the obtained

throughput and the power cost. With a slight modification of the model, the authors

manage to transform it into a congestion game, for which they use a simple algorithm for

finding the Nash equilibrium. Analogically in [33] the users are assumed to be sensitive

to the throughput of a connection and the price they have to pay. There the authors

emphasize that NE is quite difficult to reach in a distributed manner, thus they focus

on a more general case of equilibrium - Correlated Equilibrium.

2.3.2 Routing games

A wide range of works is devoted to a special case of congestion games - called routing

games - in which a network (graph) is considered. In general, there is a graph (directed

or undirected) G =< V,E >, where V is the set of vertices and E denotes the set of links.

Users are willing to route their flows from the source to the destination, with the aim to

minimize the experienced delay or latency. There can be several commodities, meaning

several source-destination pairs {sw, tw} ∈ W . Sometimes commodities differ not only

by their source and destination, but also by some other specific parameters, e.g. the

sensitivity to a possible monetary cost imposed by a provider. An important theoretical

study for multicommodity setting is shown in [34], [35]: they prove the existence of taxes

(monetary costs the users have to pay for routing their flows on each link), such that

a selfish users equilibrium will be optimal from the point of view of the total latency

minimization. Other important results about PoA bounds and optimal equilibria in

multi commodity routing games can be found in [36] and [37].

A routing problem with multiple commodities k ∈ W (origin-destination pairs) is in-

vestigated in [38], where the users are sensitive to the latency they experience, which

is additive. Two types of traffic are considered which have different utility functions:

inelastic traffic has a step function utility, while for elastic traffic the utility function

is nondecreasing and concave. Only one provider is considered, who aims to maximize
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his profit. As the social optimum the authors consider the total users utility without

taking into account prices payed by them. For inelastic traffic the authors proved that

for the monopoly price, which the provider chooses in order to maximize his revenue,

there exists a Wardrop equilibrium (which is not true in general) and moreover, this

equilibrium is socially optimal. Thus, there is no need for any optimization of traffic -

due to the inelastic nature of traffic, meaning that a user will refuse to maintain con-

nection when the rate is below some threshold, the provider sets a price such that all

users distribute in an optimal way. For elastic traffic the authors prove the existence of

Wardrop equilibrium and find that it can be inefficient.

In this thesis we also apply the routing games model to the problem of network selection.

In the model proposed in Chapter 4 we study the selfish users allocation between two

access points. We assume that these access points belong to the same entity, which

is interested in social welfare optimization (minimization of total experienced latency).

Due to theoretical results from [34], [35] we know that the optimal taxes exist, and

additionally to results of [38] we aim to determine their closed-from expression.

2.3.3 Bayesian games and auctions

In real word systems the preferences of mobile users may vary. For example, if the

current active application of a user is VoIP, then the user may prefer a network with

lower delay/jitter, while when he lunches video streaming content he may prefer the one

with better throughput. When we model strategic behavior of users in such scenarios,

we have to take into account that every individual is aware only of his own preferences,

but can hardly guess those of others. For this situation it is convenient to apply Bayesian

games.

In the simplest variant of Bayesian game each player has a type - a variable determining

his preferences, which influences his utility function. The set of types of all players is

called a state of the game, and each player has a priory beliefs about the real state as a

probability measure on the set of all possible states. All players then try to maximize

their expected payoffs.

One example of Bayesian game application can be found in [39]. The article studies

a model where users are sensitive to the bandwidth they are allocated (bandwidth is
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shared equally between users), and every user has his own bandwidth requirements,

and these requirements are private information they do not share with each other. The

authors consider a Bayesian network selection game, where each user i has bandwidth

requirement bi (which is the user’s type) and the utility of connection to network j is:

uji =


U(τ ji )− Pj , if τ ji ≥ bi,

−Pj , otherwise,

where τ ji is the allocated bandwidth from network j, Pj is the price charged for network

j, and U(τ ji ) is the utility from the allocated bandwidth. The strategy of a user here is

a mapping from the type (requirement) space to the action space, and the action here

is the probability distribution over available networks.

One quite obvious application of Bayesian games is auctions. Indeed, for auctions usually

users are aware of their own preferences for some good (e.g., the maximum cost they

want to pay for it), but can only guess about how the same good is valued by other

competitors. This type of model is investigated in [40]: there is only one wireless network

and a number of users are competing for the bandwidth. The wireless network provider

organizes an auction, where each user i bids a time interval ti (his type) he would like

to stay connected and the price pi per unit of bandwidth per unit of time, which he

would like to pay (which should be bigger than the minimum price threshold fixed by

the provider). Further, each user obtains a bandwidth value proportional to his bid.

For our study we preferred to apply routing games model rather than Bayesian games,

since the former have all necessary theoretical bases about the optimal taxes existence.

The fact that all users types are deterministic doesn’t harm our model: in Chapter 4 we

assume that there are several classes of users (having some individual parameters) and

we consider that they just simply connect to the network with the lowerst cost. So each

user can try to connect to all available networks in order to check the QoS (or it can

be a passive probing) and make a choice based on this information, without the need to

know the parameters distribution among all users.
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2.3.4 Population games

In population (evolutionary) games there is a set of Q classes of non-atomic players.

Each class has its own strategy set Mq and mass or size dq. The way each class is

distributed among its available strategies is called strategy distribution vector yq =

{y1
q , y

2
q , . . . , y

Mq
q }, with the condition

∑Mq

i=1 y
i
q = dq.

Reference [41] proposes an example of population games application to the case of multi-

homing (each user being able to split his demand between several APs) network selection.

The authors consider two transport layer models: UDP and TCP; they influence the

throughput of an individual user. The population is divided in classes, each class is a

group of people sharing the same parameters (like physical layer rate, frame size and

available APs). In the game considered, each user is willing to maximize his utility func-

tion, which is the difference between the achieved throughput and the cost imposed by

the network provider. This cost consists of two parts: the first one is called ”cost-price”

- it is the cost of externalities caused by all users belonging to the same class, and the

second part is the usual price, charged by the provider.

Other population games applications can be found in [42] and [43]. In [42], populations

are users situated within the same area, or differently speaking, having access to the

same set of access points. The authors apply replicator dynamics in order to achieve an

evolutionary equilibrium (which is the fixed point for the replicator dynamics, for details

see [42]). Further they also study the Nash equilibrium of the game, considering whole

classes of users as players. In [43] the population is the ratio of users, choosing concrete

network and the authors propose an algorithm to reach an equilibrium situation.

Actually, the model we consider in Chapter 4 is an instance of a population game as

well: we have several non-atomic classes, and the users in the same class can choose

different alternatives.

2.3.5 Other strategic games

In this subsection we describe some other game theoretical approaches, which we find

to be useful to mention since they present different points of view on the user allocation

problem.
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A basic game-theoretical network selection scheme appears in [44]. The idea is that users

report their request type to the system and further, the coexisting networks compete for

users requests. The authors assume that each user gives different preference numbers to

all networks, depending on they parameters. The provider payoff is preference number

of users he serves. The game is played in rounds: at each round, every provider selects a

request to serve; if the request is chosen to be served by one network, the others can not

choose it. This model has a number of drawbacks and is quite naive, but is interesting as

one of the first steps of game theory applications to the network selection problem. This

model has an extension, proposed in [45]. There the authors use Analytical Hierarchy

Process and Grey Relational Analysis to quantify the suitability of a network for a

particular request.

In [46], users association is made taking into account both the utility of a user and

the congestion of a network. The decision of user association is not distributed since

users communicate with all available networks in order to know their current loads. The

authors consider three different types of access points: WCDMA, IEEE 802.16 WMAN

and IEEE 802.11 WLAN.

An example of the distributed network selection algorithms is shown in [47]. Several

Internet access points coexist in the same area, and each access point’s coverage is

separated into zones of identical throughput. The users are sensitive to the throughput

they receive, which depends on the number of users connected to the access point. The

authors propose a Nash Learning algorithm, which converges to a Nash equilibrium.

However they state that the selfish behavior of users may lead to a inefficient situation,

and thus some special rewards should be introduced. They consider an algorithm, in

which users are not competing for throughput, but for a reward. For this purpose they

apply marginal cost pricing [48], which assigns a fee for a user to balance the loss of

throughput caused by his choice.

In [49] the authors consider a game between users with intra-cell optimization and find

that the equilibrium reached is the optimal one from the point of view of total users

utility. A multi-cell network with several base stations is considered, where the users are

non-atomic. The users are divided in a number of classes, having the same rate vector

for users inside a class. Two scheduling policies are considered as in [25]: equal time and

equal throughput allocations. All users are aiming to maximize their throughputs, which
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depend on the policy and the class they belong to. In the case of equal time allocation,

the authors find that the Nash equilibrium is unique and that it also maximizes the total

utility of users.

A distinguishing work is presented in [6], where the authors compared different probing

schemes. They modeled the access point selection as a dynamic load-balancing game

with slotted time, where n players (each one having work of size w units in each period

of time) are selecting among m access points. The users are sensitive to the delay they

experience being connected to network a at time period t:

da,t = (st + ut)w + pqt,

where st and ut are the jobs assigned at period t and assigned on the previous periods

but not yet processed (due to maximum jobs per period constraints) respectively. If a

user makes qt probes of different networks, then he has an additional cost pqt, where p

is the size of a probe.

A case of multiple access points selection is also considered, when each user has j jobs

to process. Denoting by πi,t user i jobs assignment at time t (and π−i,t is all other users

assignments) and by Ai,t the set of networks that receive jobs from user i at time t, we

could express the total delay over all periods t ∈ T , which user i wants to minimize as

follows:

Di =
∑
t∈T

[
(|Ai,t| − 1)δ + arg max

a∈Ai.t
da(πi,t, π−i,t)

]
,

where δ is a cost of managing connection with several networks. The user experiences the

maximum delay over all selected access points. Two information models are compared:

the bulletin board model, in which users are informed of the delay of each network at

the end of each time slot; and the probing model, where users have an information only

about probed networks or those to which they were connected at the previous time slot.

Several probing policies are considered :

1. Naive probing policies. These are two policies: one prescribes not to probe any

network and the other one says to probe all of them

2. Freshness-based policy. A network whose information is less up to date is

probed
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3. Variance-based policy. The users are probing at each time slot a network with

the biggest variance of probing information.

as well as six association policies (two of each type, corresponding to the cases of multiple

and single network selection scenarios):

1. Random policy. A network to associate with is choosen randomly

2. Hedge Algorithm. A no-regret learning algorithm is applied for network selec-

tion

3. Expected delay minimization. The users are selecting a network with mini-

mum expected delay.

Strictly speaking, the authors do not investigate competition among users, but compare

different “association policy - probing policy” pairs with the help of game theory. The

authors produce simulations and compute users payoffs for each policy pair and then

find mixed strategy equilibria as well as point out dominated strategies. Based on these

results the authors find that the users should either not probe at all, or probe the least up

to date network, and that the preferable association policy is to minimize the expected

delay. This work presents a new interesting research direction of the network selection

problem, studying the way users may obtain the information about networks states.

In [50] only one access point is considered; users are sensitive to their signal-to-interference-

ratio (SIR), and their strategies are the power levels on which their mobile devices op-

erate. The authors proved that the simultaneous game between users has a Nash equi-

librium, which is unique. Further they show that this Nash equilibrium is not Pareto

efficient. Then they consider a modified game, where users are sensitive to price, which

is proportional to their power levels and some common pricing coefficient c. Finally,

the authors proposed an algorithm, reaching Nash equilibrium, and numerically found a

value of c such that no other c can increase the revenue for all users. In [51] the authors

consider a multi access points version of the same model.

The other type of users competition is considered in [52], where users are free to choose

a connection rate for their VoIP applications. In the proposed model only one access

point is considered, but still the work is interesting, due to experiment results, which

show that even if users are able to freely choose their connection rates, this does not

lead to a congestion. Moreover, the authors find that the Nash equilibrium between

users is close to the optimum situation. However, the article shows results only with a
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small number of users, and it is difficult to predict how the situation will change when

the population is relatively large.

In some papers, the users are assumed to perform additional actions in order to con-

nect to a desirable network. In [53] this kind of scenario is considered: users receive

information about the current load and the geographical location of all available access

networks, and then decide which one to connect to, taking into account the distance

they need to travel for it. More formally, the cost user i will experience to connect to

network j is defined as follows:

ci,j = α · nj +Di,j ,

where nj is the load on network j, Di,j is the cumulated distance user has to travel in

order to have an access to network j (it takes into account the distance already passed)

and α is a weighting parameter, which is assumed to be non negative.

The authors assume that the users make their decision in a sequence and have perfect

information about the previous actions of all others (which is a quite limiting assump-

tion, taking into account that users are unable to make any action during other users

movement). Under these strong assumptions, the game considered appeared to have the

Nash equilibrium. Moreover, the authors proposed an intuitive myopic algorithm, which

is proved to lead to the Nash equilibrium.

2.3.6 Summary

In this section we described various game theoretical approaches and their application

in user allocation studies. Each model application implies its own assumption, but in

most cases the authors found selfish user behavior lead to suboptimal outcomes. Some

authors claim that this inefficiency is small, and thus it is not worth trying to incentivize

users to change their decisions. However, in Chapter 4 we describe how the inefficiency

of users behavior can be interpreted into potential revenue losses. Thus even in the

case when the inefficiency seems to be small, provider still can be interested in fixing

it, since the revenue losses are incrementing. One of the most natural ways to influence

customer’s behavior is through monetary penalties or rewards. This is why Chapter 4

focuses on taxation policies.
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2.4 Competition among providers

Provider competition may crucially impact the welfare of their customers. Often, the

providers competition arises in situations when the APs they own have overlapping

coverage areas. However it is not always the case. For example, in vehicular networks,

where users are highly mobile, competition arises even without overlapping coverage

areas: mobile users move by a road, and meet APs in sequence. Thus, users unserved

by the first provider met may be served by the next one.

We consider two main types of approaches focusing on provider competition. The first

group studies provider interactions as a game with some specially introduced payoff

function, which is quite similar to what we surveyed in the previous section. We denote

this type of competition as one-level game. The second group of works takes the result

of underlying users competition and further considers it as a prediction of providers

revenues. Then, these revenues are used as the payoff function in the providers game.

This second type of games is called hierarchical games and these games are especially

interesting because they allow to implicitly observe how providers competition influences

user behavior and vice versa.

2.4.1 One level games

In [7] the so-called bankruptcy game is considered in order to model the bandwidth

allocation and the admission control problems. A user coming into the system with

several heterogeneous access points requests some amount of bandwidth and the access

points operators want to provide as much bandwidth units as possible. In the decorations

of bankruptcy game, the user is considered as a bankrupt entity, requested bandwidth as

the money he has to return to the creditors (access points owners). The operators may

form coalitions, and when they do so, their payoffs increase. The optimal bandwidth

share is found due to Shapley value ([54]) and simulations show that it can decrease the

connection blocking probability. This work shows an interesting interpretation of the

user allocation problem, which, however, seems to us unrealistic.

The other one-level providers game is proposed in [55]. The authors introduce the

bandwidth demand function which says how many bandwidth units the users want

to buy, given the providers prices. The users are naturally divided into two classes:



Chapter 2. State of the Art 34

the premium users which have access only to one big provider, and best-effort users

which may choose between two providers. Then, the authors consider two types of

competition: simultaneous and leader-follower games, and in both cases the providers

want to maximize their revenues by playing with prices for bandwidth unit.

2.4.2 Hierarchical games

In [56] a hierarchical game is considered, where on the first level mobile users are selecting

among two available base stations, preferring the one which provides the highest SINR.

Contrary to most works, the authors focus on the uplink transmission, and thus the

entities which are producing interference are the mobile users by themselves (not the

base stations). The users are distributed with uniform density on a segment of specified

length [−L,L] and are able to connect to both base stations, without any distance

restrictions.

Two scenarios are considered: in the first one, the base stations are assumed to operate

on the same frequency and thus all users are interfering with each other, and in the

second scenario, the base stations operate on different frequencies, and in this case a

user experiences interference only from users belonging to the same network as he does.

In the one-frequency case, the authors find an interesting feature: it appears that the

sets of users choosing the same base station (cells in the terminology of the authors)

could be non-convex. This happens when one base station (assume it situated on the

right side of the segment, close to L) is located at a large distance, and thus interference

on it is not as big as on the base station which is in the middle of users segment. Thus,

users which are on the left edge of the segment, though being far away from the distant

base station would prefer it due to its low interference level. In this case, the set of users

choosing this distanced base station would be a union of two subsegments of original

user segment.

On the second level of the hierarchical game the authors investigate how base station

owners should locate their equipment in order to maximize the throughput of users,

associated with their base station. Both the cooperative and non-cooperative types of

games are considered. The authors managed to find equilibrium points due to analytical

and numerical studies, considering the one-frequency case as well as the two-frequency
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case. It appears that in the non-cooperative game the players tend to place the base

station closer than in the cooperative case, thus leading to a less efficient situation from

the point of view of users throughput (which depends on SINR).

The other hierarchical game can be found in [43]. On the first level an evolutionary

game is considered, for which the authors propose new dynamics and find stationary

points. These stationary points are viewed as the outcomes of users competition and

are helpful for the providers revenue prediction in the pricing competition game. In this

hierarchical game one provider is considered to be a neutral provider, meaning that his

aim is not to maximize his revenue, but to regulate the market. The authors show how

this regulator can influence the market, increasing the average utility of users and the

total revenue gained by providers.

In [29] the authors consider competition between providers on top of an interference-

based network selection game. This underlying game is the congestion game, where

users try to minimize the interference they experience, which depends on how many

users transmit on the same frequency. Thus, for providers it is crucial to choose an

appropriate operating frequency. The authors prove that the Nash equilibrium in the

providers frequency game is Pareto-Optimal, and deduce that the proposed system has

a nice feature to be self-regulated, meaning that even if all participants behave selfishly,

it does not imply that they harm each other.

2.4.3 Summary

In the thesis we decided to study two different models: where the users are static and

where there are highly mobile. For the first case, the model we consider is quite close to

the approaches described in this section: two access points have an overlapping coverage

area, and the users located in the intersection are able to choose which access point they

want to connect to. Later, the outcome of their decisions is used in order to predict the

providers’ revenues in the situation of competition. Thus, the first model we study in

Chapter 5 is the hierarchical game. For the second case we consider a novel model of

Internet access providers competition in vehicular networks. All users are highly mobile

there, thus we can not use the approaches presented before: the users make a binary

decision for each access point they see. They decide whether they want to pay the
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price charged by the provider, and if not, they continue moving by the road to the next

Internet access provider.

2.5 Challenges and open questions

Given a large number of opportunities and the variety of available network access tech-

nologies, a user searching for a network connection has to deal with a quite challenging

problem. In order to select the most suitable network, he has to understand which

networks parameters are important for him, and moreover, what priority or weight he

should assign to each of these parameters. There are a number of sophisticated al-

gorithms, which define how a user should prioritize the available networks, taking into

account the current application needs, the location, the level of the mobile device battery

charge, etc. In general, these algorithms provide a list of available networks, sorted by

their suitability; the user’s mobile device automatically selects the best one. These sys-

tems are clearly user-centric, and here comes their disadvantage: trying to satisfy every

individual user in a distributed maker, they do not take into account how the proposed

selections could influence the system as a whole. It could appear that some network

access point would be overused, yet being the most suitable due to some reasons, and

that a negligible offloading of this network would drastically enhance the performance

for a large number of users.

For this reason, when we consider the users allocation problem, in order to make a

proper investigation we have to consider a heterogeneous network as a whole system.

It is necessary to avoid unbalanced resource utilization, that may result from the user-

centric approach. Obviously, users are not able to coordinate by themselves, that is

why the majority of works consider network providers as the entities responsible for the

regulation. The objective of the regulator could vary: a provider could aim to maximize

users’ QoS (or some function of it), to optimize the energy consumption, or simply

to increase its own profit, etc. As users are behaving selfishly, trying to ensure good

performance for themselves and thus competing with each other for scarce resources, it

is natural to apply Game Theory tools to study such situations. In general, users are

sensitive to a number of parameters, some of which are congestion-dependent and some

of which (such as prices) can be regulated or influenced by providers.
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However providers by themselves are not so free in setting prices. When a provider

constitutes a monopoly in some area, he can manage his resources more easier than in

a scenario when he has several competitors. In the latter case providers may compete

for users, and this could lead to prices decrease as well as to QoS degradation (due to

a higher number of users attracted), which constitutes an important part of the users

allocation problem.

In what follows we try to enumerate the most important research challenges in the users

allocation problem:

1. Modeling complex networking phenomena

In order to investigate all the consequences of selfish users behavior, we have to

know how individual decisions influence different network parameters. It is hard to

include all physical phenomena in an analytical model; it makes the model more

realistic and easier to apply, though increases computational complexity and in

most of the cases makes the analytical study impossible.

2. Solving optimization problems in real time

Given that in practical scenarios the time for making decisions is very small, it

is necessary to make the trade-off between computation speed and distance to

the optimal solution. It may appear that in some situations, due to computational

limitations of devices it is not worth performing elaborate optimization algorithms.

3. Dealing with the lack of information available to users

In current systems, users have quite poor information about access points, like

signal level, name, technology and price. In the nearest future, social services may

offer users the possibility to leave their feedback in manually through scores or

automatically with connection statistics. In the first case, with all networks there

would be associated a rank, based on which users will make network selection

decisions. In the second case, an algorithm can use previous data for the prediction

of the possible QoS level at AP. When one of these systems is deployed, providers

would be interested not only in short term revenue (e.g. in the situation when a

user connects due to low price and the QoS is low as well), but also in maintaining

the acceptable QoS level, which strongly affects their future gain. Finally, if a user

plans to stay connected for a long period of time, he may produce a probing of

available networks (this approach is studied in [6]).
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4. Dealing with the lack of information available to network providers

Typically, a provider is not aware which application his customer is using (he

could try to deduce it by incurred load). Some authors propose systems where

users implicitly claim the type of application they want to use, in order to produce

appropriate resource management. But some users may want to launch several

application simultaneously, or in sequence, which means that they have to send

session information several times. Moreover, it means additional load on the uplink

channel. Internet access providers may use some users statistics, but this in turn

implies some errors and may be not optimal.

5. Influencing users behavior without harming to the quality of connec-

tion, provider’s revenue, and users welfare

Most commonly, as an influencing means authors consider price or tax charged

(per packet, per time unit, etc.) on different networks. Obviously, playing with

prices will give us the necessary effect - users would prefer the cheapest network,

but one has to remember that playing with price could have negative externali-

ties, such as reluctance of users to stay in a system with dynamically changing

prices and revenue degradation. Moreover, providers calculate their prices based

on a large number of parameters, and prices change involves a complex risk-aware

computations. In this case more accurate economical models are needed.

6. Considering other scenarios of providers competition

Most works dealing with providers competition consider scenarios when coverage

areas of access points have an intersection, and thus users have a choice between

several networks. However, in some systems this situation is very rare but yet

competition between providers exists. This is the case for vehicular networks,

where APs may not intersect, but due to highly mobile users, there is always

competition for them between providers.

In this thesis we partially tackle these challenges. E.g, for our providers interaction

study we take into consideration the interference the users may experience from a closely

located access point, which allows us to study one more interesting leverage in pricing

competition. We cope with the lack of information available to users in Chapter 3, where

we propose a rating based system, where each user leaves a feedback about the QoS he

experienced, which is further processed by a third part entity, resulting in a network

rating. We also try to model the insufficient or not-up-to-date information available
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to providers in Chapter 4, when the computation of taxes (imposed in order to lead

the system to the optimal situation) is based on some approximated data. In the same

Chapter we show that the optimal taxes can be adjusted, in order to ensure a minimum

level of revenue, thus allowing the provider to keep his revenue level unchanged after

optimization. Finally, Chapter 5 contains a different from the “classical” scenario of

providers competition: we study a vehicular network, where users are highly mobile and

thus competition arises even if providers’ access points have no intersection in coverage

areas.



Chapter 3

Dynamic adaptation of user

decisions through a

noncooperative game

In this section we describe a network selection mechanism, where users share their

experience about connection quality at different Internet access points. The special

entity which we call central controller gathers this users feedback and transforms it into

a rating of an access point, which impacts network selection decision of further arriving

users. We do not focus on the technical aspects of the proposed mechanism, rather on

the dynamics of users behavior in this kind of system. We aim to study a steady state

in the proposed system from the point of view of the total users welfare: whether selfish

decisions of users are optimal in this setting? The results of this work will be further

used in Chapter 5, where we will consider a game between providers taking into account

the steady state of users competition.

3.1 Model

3.1.1 Network topology

In this model we consider a system consisting of two networks. For the sake of simplicity,

we assume that both networks have the same coverage area, as illustrated in Figure 3.1.

40
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Note that the model provided above could be easily extended to case, when access points

have only partial overlapping. We also consider that all mobile users own technologies

allowing them to connect to both networks.

1 2

Figure 3.1: Network topology considered.

3.1.2 User behavior

Users are sensitive to the QoS they experience, and to the price they are charged for the

service. While the latter is clearly advertised by the networks, the former is less obvious

to determine, since QoS estimations based on probing often involve some nonnegligible

amount of uncertainty, due to the rapid changes in radio conditions. To cope with that

problem, we consider a controller that computes in real time an averaged (over all users)

value of the QoS level of each network, and propagates those levels to all users in the

system. That average value will be called the rating of the considered network: it can

be computed based on some feedback of the experienced QoS from all users (hence the

averaging), or directly calculated by central controller based on the number of connected

users. The details of that aspect are beyond the scope of this paper: we focus here on

the dynamics implied by the rating scheme, and will consider that this rating depends

on the level of congestion of each network (i.e., the number of connected users).

We consider that time is slotted; at each time slot users that are present in the system

make a choice. Recall that the final decision is left to the user herself (instead of an

algorithm implemented within the mobile terminal). To describe user behavior, we use

the well-known logit model [57], where each user chooses a network based on its quality

and price, but also on other individual criteria that we model as random variables

(see [57] for details). In the case of two networks, the probability that a user j chooses

network i ∈ {1, 2} then equals, at each time slot:

pji =
e(V ji −s

jPi)

e(V j1 −sjP1) + e(V j2 −sjP2)
, (3.1)
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where V j
i is the current quality of network i for user j, Pi is the price per time slot of

network j, and sj is the price sensitivity of user j (that will be assumed to follow a given

distribution over the user population).

3.1.3 Perceived quality and loyalty effect

At each time slot, the central controller gathers information about the QoS experienced

by users, and updates the network ratings. We chose the following update mechanism

for the rating Qti at time t:

Qti = β ·Qt−1
i + (1− β)Q̄i

t−1
, (3.2)

where Qt−1
i is the rating of network i on period t − 1, Q̄i

t−1
is the (estimated) QoS

computed by the central controller at period t−1, and β ∈ (0, 1) is a memory coefficient,

that prevents ratings from changing too fast after a temporary QoS variation. It is

easy to see that a bigger β reduces the oscillations in Qi, but in the other hand the

information about the network congestion state then becomes less representative of the

current situation.

The quality value V j
i in (3.1) can be considered as a simple rating (this quality value

being then the same for all users), or alternatively we could consider this value to vary

from user to user. More precisely, we will consider in this paper that V j
i contains a QoS-

related term Qi, that is modulated by the network (if any) that the user was attached

to in the previous time slot. This way, we are modeling some loyalty effect, meaning

that a user is reluctant to switch networks once he is connected to one. More precisely,

we consider that the quality of network i considered in (3.1) by user j is V j
i = Qi(1 +α)

if user j was with network i during the previous time slot, and V j
i = Qi otherwise. The

parameter α > 0 can be interpreted as the loyalty value (or some cost corresponding to

switching networks) of users. It introduces a bias in (3.1), that favors the decision to

stay with the same network. Note that in this paper, we assume that all users have the

same loyalty value α.

The intuition about this system is that it should be self-regulating, i.e., independently of

the QoS function used (delay, interference level, available bandwidth, ...), users should

end up being distributed over the networks, in accordance with the quality and price
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levels. In other words, a situation where most users constantly choose the cheapest

network is not possible in our system, because the rating of the congested network will

degrade significantly, and consequently less users will choose that network in the next

round.

3.1.4 User arrival and departure processes

We consider that at each time slot, the number of new users entering the game (i.e., will-

ing to benefit from the service) is randomly distributed, following a Poisson distribution

with mean value λ.

Users leave the system after some (randomly distributed) time. We assume that this

service duration follows a memoryless distribution, i.e. at each time slot there is a

probability 1−q that the user ends its service (call) at the end of the slot, independently

for each user participating in the system. It is easy to see that the expected number of

users in the system then converges to λ
1−q .

3.2 Analytical results for fixed network prices

In this section, we analyze the lower level of the game, that is the one played among

users, selecting their network based on prices and quality. We therefore assume in this

section that the prices P1 and P2 are fixed and constant. In that context, we derive some

analytical results regarding the steady-state situation of the stochastic process defined

in Section 5.3.2.

3.2.1 Existence of a stationary distribution

We first remark that the discrete-time process (nt1, n
t
2), giving the evolution of the num-

ber of users connected to each network, is a Markov chain. Indeed, at each time slot the

quality of service Qji considered by users for their next decision, and the number of new

arrivals, only depend on the current state (and not on the previous ones). Since those

values are the only ones determining the distribution of (nt+1
1 , nt+1

2 ), the process satis-

fies the Markov property. It is easy to check that this Markov chain is irreducible and
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aperiodic: just consider that any transition (n1, n2)→ (0, 0) has a non-zero probability,

as well as any transition (0, 0)→ (n1, n2).

To establish that the Markov chain is ergodic (and thus, admits a stationary distribu-

tion), it remains to show that at least one state is positive recurrent. This can be done

easily by considering the state (0, 0), which allows us to reason only on the total number

of users regardless of their network choice. The total number of users in the system is

itself a (discrete-time) Markov process, that is irreducible and aperiodic, and obviously

positive recurrent since the number of users converges to the finite value λ/(1 − q), as

pointed out in Subsection 3.1.4. Therefore all its states are recurrent, including the state

with no users that coincides with the state (0, 0) of the process (nt1, n
t
2).

Consequently, the process (nt1, n
t
2) is an ergodic Markov chain, that therefore admits a

stationary distribution: after some time, the probabilities of visiting each state (n1, n2)

do not change. In particular, we can then claim that the number of users in each

network has a mathematical expectation, around which it will oscillate during a process

trajectory.

3.2.2 Expected number of users in each network

For simplicity reasons, we first consider the case without loyalty effect (i.e., α = 0),

so that the perceived network ratings are the same for all users, i.e., V j
i = Qi. We

assume the price sensitivities of users to be uniformly distributed on the interval [a, b],

for 0 ≤ a < b. Thus, when the quality scores (Q1, Q2) of the previous time slot and

the number of users nt in the network are given, the mathematical expectation of the

number of users choosing network i at time slot t is, with ī := {1, 2} \ {i}:

E[nti]=

nt∑
j=1

Es[E[1l{user j selects network i}|sj = s]]

=nt
∫ b

a

e(Qi−xPi)

eQ1−xP1 + eQ2−xP2

1

(b− a)
dx

=nt

[
1+

1

(Pī−Pi)(b−a)
ln

1+eQī−Qie−b(Pī−Pi)

1+eQī−Qie−a(Pī−Pi)

]
(3.3)
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when P1 6= P2. If P1 = P2, then

E[nti] =
nt

1 + eQī−Qi
. (3.4)

When there is some loyalty effect (i.e., α > 0), the computation is a bit more complicated

since the perceived rating is user-specific: we have V j
i = Qi(1 + α1l{j∈Nt−1

i }), where N t
i

represents the set of users connected to network i during time slot t, and N t := N t
1∪N t

2.

We then have for a user present at time slot t,

j ∈ N t−1
i ⇒ pji (t) =

e(Qi(1+α)−sjPi)

e(Qi(1+α)−sjPi) + e(Qī−sjPī)

j ∈ N t−1
ī

⇒ pji (t) =
e(Qi−sjPi)

e(Qi−sjPi) + e(Qī(1+α)−sjPī)

j /∈ N t−1 ⇒ pji (t) =
e(Qi−sjPi)

e(Qi−sjPi) + e(Qī−sjPī)
.

Consequently, we have, if we define mi := |N t−1
i ∩N t

i |,

E[nti] = miE

[
e(Qi(1+α)−sjPi)

e(Qi(1+α)−sjPi) + e(Qī−sjPī)

]
+

mīE

[
e(Qi−sjPi)

e(Qi−sjPi) + e(Qī(1+α)−sjPī)

]
+

(nt −m1 −m2)E

[
e(Qi−sjPi)

e(Qi−sjPi) + e(Qī−sjPī)

]
,

where the three summands respectively represent the expected number of users which

were in network i and did not change their choice, the expected number of users which

migrated from network ī to network i, and the expected number of newly arrived users

that chose network i.

After some algebra, we obtain, conditionally on nt−1, m1 and m2, and on the values of

Q1 and Q2 at the previous time slot,

E[nti]=mi

[
1 +Ki ln

1 + eQī−Qi(1+α)e−b(Pī−Pi)

1 + eQī−Qi(1+α)e−a(Pī−Pi)

]

+mī

[
1 +Ki ln

1 + eQī−Qie−b(Pī−Pi)

1 + eQī(1+α)−Qie−a(Pī−Pi)

]

+(nt −m1 −m2)

[
1 +Ki ln

1 + eQī−Qie−b(Pī−Pi)

1 + eQī−Qie−a(Pī−Pi)

]
,
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for the case when P1 6= P2, with Ki := 1
(Pī−Pi)(b−a) . When prices are equal, we have

E[nti] =
mi

1+eQī−Qi(1+α)
+

mī

1+eQī(1+α)−Qi
+
nt −mi −mī

1+eQī−Qi
.

Finally, to have results conditionally on the user repartition at time slot t − 1 only, we

can plug in the previous expression the relations E[mi] = nt−1
i q and E[nt] = qnt−1 + λ,

where we recall that q is the probability that a user continues his service at the next

time slot and λ is the expected number of new entrants at each time slot.

3.2.3 Average churn rate

In this subsection, we focus on the phenomenon of churn, that is, the fact that users

switch networks during their communication. This can be due to the mobility of users

(that is not considered here), to some temporary changes in the network conditions

(reflected by a change in the quality values (Qi)), or to some user-specific criteria.

Quantifying the occurrence of that phenomenon is of crucial importance to the network

management, since switching networks incurs energy-costly procedures to perform the

handover. The frequency of churns is therefore directly linked to the overall energy

consumption of the global network.

Using the same method as before, the expectation of the number of network changes ht

at time slot t (conditionally on the situation at time slot t) can be computed:

E[ht] = nt−1
1 q

[
1−K1 ln

1 + eQ1(1+α)−Q2e−b(P1−P2)

1 + eQ1(1+α)−Q2e−a(P1−P2)

]

+nt−1
2 q

[
1 +K1 ln

1 + eQ2(1+α)−Q1e−b(P2−P1)

1 + eQ2(1+α)−Q1e−a(P2−P1)

]

still with K1 = 1
(P2−P1)(b−a) .

3.2.4 Illustrations

In this subsection, we present some simulations that illustrate the selection game we

have defined, and the analytical results of this section. Two cases are considered: one
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without loyalty effect (α = 0), and one with a loyalty value α = 3. Unless specified

otherwise, the parameters used in the simulations are the following:

– range of the price sensitivity values sj : [a, b] = [0, 0.4],

– average number of new entrants per time unit: λ = 200,

– probability of leaving the system at the end of the current time slot: 1− q = 0.2,

– quality score of network i of the form 1 Q̄i = 1 − (nti/Ci)
2, with Ci the capacity of

network i,

– networks of respective capacities C1 = 1000, C2 = 600,

– respective prices of each network P1 = 9, P2 = 8,

– memory effect in the computation of Qi in (3.2): β = 0.9.

Figure 3.2 shows the evolution of the number of users in each network, without any

loyalty effect. We remark that due to the inner probabilistic nature of user choices, those

numbers do not converge to a given value. However, after a few iterations the system

is close to its steady state, and the number of users in each network oscillates around

their expected value. Note here that the expectation on each iteration is computed

from (3.3)-(3.4), but using previous iteration’s expectations E[nt−1
i ] instead of the real

values nt−1
i . Therefore, the curves for E[nt1] and E[nt2] are completely deterministic. We

observe that those expected values are very good estimators of the average values of nt1

and nt2, respectively.

We plot in Figure 3.3 the corresponding values of the ratings (Q1, Q2), computed over

time following (3.2). Similarly to the number of users in each network, after the starting

phase where ratings are high due to the small number of users, ratings stabilize around a

constant value, still with oscillations. Note however that the amplitude of the oscillations

are smaller than for the number of users, due to the memory effect introduced in (3.2)

that smoothes the variations.

Figures 3.4 and 3.5 are the counterparts of Figures 3.2 and 3.3, but with a loyalty value

α = 3. We remark as expected that oscillations still take place, but to a smaller extent

with respect to the no-loyalty case. Notice also that the loyalty phenomenon affects not

only the number of handovers (the churn effect), but also the average balance between

networks: users tend to go more to network 1 when the loyalty effect is introduced. The

explanation of this is as follows: without the loyalty effect the majority of users already

1. Note that we could also consider totally different forms for Q1(n1) and Q2(n2), that could reflect
the different technologies used in the heterogeneous network. With the form taken here, the only
heterogeneity lies in the capacity differences among networks.
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Figure 3.2: Number of users in each network, without loyalty effect.

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

Iteration t

R
a
ti

n
g

Q1

Q2

Figure 3.3: Rating dynamics, without loyalty effect.

used to prefer the first network, and the loyalty effect then retains them from changing

networks. Users spend less time “exploring” the other network, and prefer to stick to

their current one (in most cases, their preferred one). Another direct consequence is

that the loyalty effect tends to reduce the difference in the steady-state ratings Q1 and

Q2: users mostly preferring network 1 and churning less, that network becomes more

congested, hence a reduction in its rating.
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Figure 3.4: Number of users in each network, with loyalty effect (α = 3).
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Figure 3.5: Rating dynamics, with loyalty effect (α = 3).

Finally, Figure 3.6 illustrates the dependence of the loyalty coefficient on the churn phe-

nomenon: as expected, a larger reluctance to switch networks reduces churn significantly,

even if the other network is temporarily more attractive.

3.2.5 Computing the steady-state user distribution

The simulation results of Subsection 3.2.4 suggest that the mathematical expectations

of the number of users (computed by recursively estimating the number of users at each
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Figure 3.6: Number of handovers per time slot.

time slot) are very close to the steady-state average values. This is partially due to

the memory effect β: when β tends to 1 then the quality values Qi converge to a fixed

value. Considering that limit case when β → 1, we expect that without loyalty effect,

the average number n∗i of users in network i is close to the solution of the following

fixed-point equation when P1 6= P2:

n∗i =
λ

1− q

[
1 +Ki ln

1 + eQī(n
∗
ī
)−Qi(n∗i )e−b(Pī−Pi)

1 + eQī(n
∗
ī
)−Qi(n∗i )e−a(Pī−Pi)

]
, (3.5)

and when P1 = P2 :

n∗i =
λ

1− q
1

1 + eQī(n
∗
ī
)−Qi(n∗i )

, (3.6)

with Ki = 1
(Pī−Pi)(b−a)

With some loyalty effect, that fixed-point equation becomes:

n∗i =n∗i q

[
1 +Ki ln

1 + eQī(n
∗
ī
)−Qi(n∗i )(1+α)e−b(Pī−Pi)

1 + eQī(n
∗
ī
)−Qi(n∗i )(1+α)e−a(Pī−Pi)

]

+

(
λ

1−q
−n∗i
)
q

[
1+Ki ln

1 + eQī(n
∗
ī
)(1+α)−Qi(n∗i )e−b(Pī−Pi)

1 + eQī(n
∗
ī
)(1+α)−Qi(n∗i )e−a(Pī−Pi)

]

+λ

[
1 +Ki ln

1 + eQī(n
∗
ī
)−Qi(n∗i )e−b(Pī−Pi)

1 + eQī(n
∗
ī
)−Qi(n∗i )e−a(Pī−Pi)

]
(3.7)
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when P1 6= P2 and

n∗i =
n∗i q

1+eQī(n
∗
ī
)−Qi(n∗i )(1+α)

+
n∗
ī
q

1+eQī(n
∗
ī
)(1+α)−Qi(n∗i )

+

λ
1−q − n

∗
i q − n∗ī q

1+eQī(n
∗
ī
)−Qi(n∗i )

. (3.8)

Remark that Equations (3.5) - (3.8) can be solved numerically.

3.2.6 Price of Anarchy

It is interesting to evaluate, how far the steady state in users rating based dynamics from

optimal distribution. We will focus on optimization of the total users welfare, which is

the sum of quality of connection scores for all users:

W = n1Q(n1) + n2Q(n2),

and as a quality function we use the same as in simulations latency function : Q(ni) =

1− ( niCi )
2. For this quality function it is easy to find optimal distribution:

W ′ = 3(
n− n1

C2
)2 − 3(

n1

C1
)2 = 0⇐⇒

n2
1(C2

1 − C2
2 )− 2nC2

1n1 + C2
1n

2 = 0,

where n is the total number of users in the system. From last equation we deduce that

nopti =
nCi

C1 + C2
.

We calculated the PoA of the users dynamics for both when loyalty effect takes place

and nor, assuming that providers charge equal prices P1 = P2. Thus, we applied the

equations (3.6) and (3.8). The results are shown on Figures 3.7 - 3.8. We observed

that for simulation settings we have the PoA is lower when users are loyal, however the

dependance of PoA on α is not obvious.

3.3 Summary

We have introduced a model of network selection by wireless users in an heterogeneous

network. In that system, users make their choice based on networks’ ratings, that
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Figure 3.8: PoA with loyalty effect

are computed and distributed by a third-part entity, possibly using feedbacks from

users’ experienced QoS. We also took into consideration that users may be reluctant to

switch to another access point, even if it proposes better QoS. We model this type of

user behavior through a loyalty value, which drastically impacts the considered model.

We have investigated the model dynamics, and we proved that the numbers of users

in networks oscillate around their expectation values. Despite the fact that networks

parameters never converge due to the realistic assumption of users arrivals being random,

we managed to provide good estimates for them through an analytical expression.
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We also studied the efficiency of the steady state of the proposed rating-based scheme.

For this purpose we introduced the total users welfare function, we found its optimal

value and then calculated the Price of Anarchy for different loyalty values. From the

numerical study we observed that for the case when technologies used by providers are

homogeneous (access points could serve almost the same number of users) the PoA is

very close to one and thus the proposed scheme leads to an efficient situation.

The main disadvantage comes from the fact that this system needs a central controller,

which gathers users feedback. However, we could assume that there is a special web

service, which gathers QoS feedback automatically, and then users in real time could

observe the rating of available networks.

Those results can be used to forecast providers’ revenues, the handover frequency, and

the energy consumption as we will show in Chapter 5. It gives an interesting insight on

how this type of system can behave. Due to the middle controller the system is self-

regulative, which potentially can reduce the harm providers make to users with their

selfish revenue-maximizing pricing decisions. The historical impact allows to avoid ping-

pong effects, which can take place in a crowded area, and gives an idea about how the

rating computation can be organized in this kind of system.

However, before being implemented, the system needs a more careful parametrization.

Due to Price of Anarchy analysis we found there is some inefficiency regarding social

welfare of users, especially for the cases when the system is heterogeneous. In fact, it

may be possible to introduce in the rating update mechanism some bias, which will

allow to reach the social optimum. From the other point of view these ratings will not

be truthful and also can be criticized by providers.

The model can be extended in several directions. It would first be interesting to consider

different coverage areas for both networks, so that only some fraction of users would

have a choice to make. Second, the mobility of users, moving from one area to another,

would be worth considering. Finally, we intend to model not only two cells, but two

cellular networks covering a wide area, with possibly different cell dimensions for each

(representative of the different technologies considered).



Chapter 4

Focusing on equilibrium

situations for the user game:

non-atomic models

We expect that one of the major objectives in future generations of mobile networks

would be to find a convenient solution for the vertical handover (switching between

networks implementing different technologies) decision, for both the mobile users and

the providers. Indeed, each user being able to select at any time its most suitable

wireless network, i.e., to be always-best-connected [1] could cause the overload of some

technologies and the under-utilization of others. This is due to user selfishness: users

ignore the negative consequences of their actions on others when making their choices,

which can lead to an ineffective situation. In order to cope with that problem and

profit from the diversity of technologies, operators have to improve the current resource

management technologies.

A number of recent papers in the transportation science literature addressed that same

problem (see [34, 48, 58]). Those works discuss the introduction of some incentive tools,

interpreted as taxes, which could influence user choices towards a more efficient situation.

In this chapter, we focus on applying that idea to influence user’s choice between several

wireless heterogeneous networks. Due to the specificity of the wireless framework, our

problem can be modeled as a routing game simpler than the general ones studied in

[34, 48, 58], which allows us to reach analytical results.

54
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We consider that users select their access network based on a combination of the tax

imposed on each network and the QoS provided, where QoS is the (congestion-sensitive)

latency. The problem is described as a non-cooperative game [59], where the mobile

users are the players, and their strategies are the network they choose. For our analytical

study, we assume that the number of users is large enough, so that the game is non-

atomic [60], i.e. the individual actions of a player have no influence on the QoS of the

others. Note that the final choice of which access network to use is left to the mobile user,

thus avoiding the heavy computations and one-to-one signaling of a centrally-decided

association scheme.

The network selection model proposed in Chapter 4 is too complex, and hard for ana-

lytical study, thus in this chapter we model users decisions in a more simple way: the

users are assumed to be aware of the current QoS-level of each network connection and

to select a network based on a trade-off between QoS and price. Also we consider that

users are heterogeneous in their price perception, which makes the model more realistic.

Also, if in Chapter 4 we were focused on the network selection problem mainly, here we

already tackle the resource management problem of a single provider.

4.1 Model description

The network topology we consider here is close to the one considered in Chapter 3:

there are n wireless access networks owned by the same operator, who aims to achieve

an efficient use of his access points. The coverage areas of all networks coincide as

on Figure 4.1. We assume that users seek an Internet connection through one of the

available networks, and their choices depend on the values of the taxes fixed by the

operator and the QoS (here, the congestion-dependent latency) they experience. Note

that the term “tax” used here rather in the sense of price or monetary cost. We decided

to stick to this term mainly due to the fact that this is the common way to call the

monetary cost in the routing game literature.

4.1.1 Mathematical formulation

We identify all parameters related to a specific network i through the use of the lower

index i, for 1 ≤ i ≤ n. Each network i has a QoS-related cost function `i(fi) that is the
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1 n

Figure 4.1: Network topology: n networks cover the same area with two classes of
users

latency function, where fi is the flow (cumulated throughput) on network i. All networks

are owned by the same provider, which is aiming to minimize some cost function and

could influence users behavior by charging a tax τi on each network i.

We consider m classes of users, implying that users from the same class have the same

price sensitivity value. We write all the parameters related to class j with the upper

index j , 1 ≤ j ≤ m; users in class j have tax sensitivity αj ≥ 0 and the total demand

from class-j users is denoted by dj , so that
∑m

j=1 d
j = D.

The cost perceived by a class-j user connected to network i is a weighted sum of the

congestion-sensitive cost (the latency) and the monetary cost (the tax) on that network:

Cji (f) = `i(fi) + αjτi. (4.1)

Assuming that only radio links incur QoS-related costs (i.e., latency), the setting de-

scribed above could be seen as a routing problem, with a common source for all users,

represented by the common coverage area of the networks, and one common destination

(the Internet). Each user forwards his flow through one of n routes, which are the n

networks, with a routing cost equal to the cost in (4.1), as depicted in Figure 4.2. When

users selected their route, their interactions form a noncooperative routing game.

s t

`n(fn) + αjτn

`1(f1) + αjτ1

d1, . . . , dm d1, . . . , dm
...

Figure 4.2: Logic representation of the network selection problem as a routing prob-
lem: the perceived cost on each route i depends on the load fi and the tax τi, but also

on the user type j through the sensitivity αj

To simplify notations, we assume without loss of generality that:
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Assumption 1. The users classes and networks are numbered such that:

1. c1 ≥ c2 ≥ . . . ≥ cn

2. α1 < α2 < . . . < αm

The delay on each network i is assumed to increase with the network load fi, through

the delay function `i described below.

Assumption 2. The delay of a network carrying some flow level fi is assumed to be

given by the mean sojourn time in an M/M/1 queue:

`i(fi) =


(ci − fi)−1 if fi < ci,

∞ if fi ≥ ci.
(4.2)

The units used need to be clarified: modelling the packets as clients of an M/M/1 queue,

the average sojourn time should be the one in (4.2), but multiplied by the packet size in

the network. Assuming that the packet size is the same on both networks, we remove

that multiplicative constant without loss of generality, leading to an interpretation of

the tax τi as the price charged per packet sent on network i.

4.1.2 Social cost

We assume that the provider owning all considered networks is interested in minimizing

the social cost (or total cost) expressed as:

C(f) =
n∑
i=1

fi`i(fi), (4.3)

where f = (f1, . . . , fn) is the flow distribution vector, with
∑n

i=1 fi = D. That cost cor-

responds to the aggregated latencies undergone by users and is the total cost classically

considered in routing games [61, 62].

To minimize this cost function provider may to apply taxes, and the problem of their

computation is tackled in the rest of the Chapter.
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4.1.3 The case of several providers

In this study we consider that all networks are owned and controlled by the same entity,

that we call the provider. The objective for the provider here is to make the best use of

the network resource, in the sense of the aggregated user cost of Equation (4.3). Hence

the provider is not directly driven by revenue, the taxes imposed on network are only

used as incentives to reach the best flow repartition.

Considering several providers managing the different networks would totally change the

paradigm, since those providers would compete to attract customers and make revenue,

and would use taxes for that purpose. We would then have a non-cooperative game

played among providers deciding their tax levels, and anticipating user reactions when

making those decisions. Such situations of competing providers have been studied in [63]

with cost functions similar to ours, but with few positive analytical results: even the

existence of a Nash equilibrium of the tax-setting game is not guaranteed. However, if

such an equilibrium exists, it can reasonably be expected to benefit to users (a general

property of competition) with respect to a case where a single entity controls all networks

and sets prices to maximize revenue (not the case treated here).

The case when several providers perfectly cooperate to optimize network usage would be

equivalent to the one-provider case. However there are some in-between situations, where

providers may partially compete and cooperate: for example they may have roaming

agreements, or may have to share the capacity of their access networks. Those aspects

are partially treated in [64] but deserve more attention.

4.2 User equilibrium and optimal situations

In this section we define the user equilibrium of the routing game, and compare the

equilibrium without taxes to an optimal situation from the point of view of social cost

(4.3).

4.2.1 User equilibrium

In order to model user behavior, we follow a common assumption of users being selfish,

in the sense that each user routes his flow to the network which minimizes his individual
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cost given in (4.1). We assume that the number of users is large enough, and therefore

each user is non-atomic [60], i.e. his individual action has no influence on the QoS of

others. The cost functions given by (4.1) define a game between users, where the steady

situation (or users equilibrium) follows Wardrop’s principle [65]:

– At equilibrium for each source-destination pair the travel costs on all the routes actually

used are equal, or less than the travel costs on all non used routes.

A flow repartition satisfying this principle is called a Wardrop equilibrium among users.

It is actually the non-atomic version of the more general concept of Nash equilibrium

[59].

Now we propose the Wardrop equilibrium definition for our model:

Definition 4.1. A Wardrop equilibrium is a flow repartition f = (f ji )1≤i≤n,1≤j≤m , such

that

 f ji ≥ 0 ∀i, j

dj =
∑n

i=1 f
j
i ∀j

and such that

∀i, i′, j f ji > 0⇒ `i(fi) + αjτi ≤ `i′(fi′) + αjτi′ , (4.4)

with fi =
∑m

j=1 f
j
i . The quantity f ji represents the flow from class-j users that is routed

through network i (recall that dj is the total flow of class-j users).

In other words, at a Wardrop equilibrium, the cost of each used route is lower (for the

users taking that route) than the cost of any other.

4.2.2 User equilibrium without taxes

Consider the case when the provider does not charge taxes for using his networks (or

equivalently all taxes are the same), and thus users make their choices without any

intervention from the provider. Then the flows at a Wardrop equilibrium have the form

stated in the following proposition.
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Proposition 4.2. Under Assumptions 1 and 2, at a Wardrop equilibrium fWE with no

taxes being applied, we have:

fWE
i =


D−

∑t
q=1 cq+tci
t if i ≤ t,

0 otherwise,

(4.5)

where 1 ≤ t ≤ n is the maximum index for which

D −
t∑
i=1

ci + tct > 0, (4.6)

and represents the number of used networks.

The proof comes quite directly from Definition 4.1, since without taxes all users should

perceive the same cost on all used routes.

Proposition 4.2 provides a way to compute the equilibrium flows (in a time linear in the

number n of flows).

Example 4.1. In the case of two networks and two users classes, under Assumptions

1 and 2 the flows in Wardrop equilibrium are

fWE =


(D, 0) if D ≤ c1 − c2,

(D+c1−c2
2 , D+c2−c1

2 ) otherwise.

(4.7)

4.2.3 Optimal situation

In this section we investigate the optimum situation, which we later intend to reach

by introducing appropriate taxes. An optimal flow assignment fopt = (fopt
1 , . . . , fopt

n )

which minimizes social cost (4.3) is the solution of the following mathematical program:

min
f1,...,fn

n∑
i=1

fi`i(fi) (4.8)

s.t.


∑n

i=1 fi = D

fi ≥ 0, for i = 1, . . . , n

(4.9)
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Note that this problem does not distinguish among user classes, it only involves aggregate

flows on each network. With the specific latency functions (4.2) we can express the

optimal flows analytically.

Proposition 4.3. Optimal flows (fopti )1≤i≤n minimizing (4.3) are unique and given by:

fopti =


ci −

√
ci(

∑k
j=1 cj−D)∑k
j=1
√
cj

if i ≤ k,

0 otherwise,

(4.10)

where 1 ≤ k ≤ n is the maximum index for which

ci −
√
ci(
∑k

j=1 cj −D)∑k
j=1
√
cj

≥ 0. (4.11)

Proof. We apply the following result from [61]:

Lemma 4.4 (Beckmann et al., 1956). For any non-atomic routing game with latency

functions (`i), the optimal flows minimizing social cost (4.3) correspond to the Wardrop

equilibrium flows of a modified game where latency functions are

¯̀
i(fi) = `i(fi) + fi`

′
i(fi). (4.12)

Therefore, applying the equilibrium conditions (4.4) there exists H > 0 such that for all

i, 1 ≤ i ≤ n:


fopt
i > 0⇒ `i(f

opt
i ) + fopt

i `′i(f
opt
i ) = H,

fopt
i = 0⇒ `i(f

opt
i ) + fopt

i `′i(f
opt
i ) = `i(0) ≥ H.

(4.13)

With our latency functions (4.2), we immediately remark that

fopt
i > 0⇔ 1

ci
< H, (4.14)
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thus from Assumption 1 there exists k (the number of used networks at the optimal

situation) such that (fopt
i > 0⇔ i ≤ k). From (4.13) we get

fopt
i = ci −

√
ci√
H
, i = 1, . . . , k, (4.15)

and the condition
∑k

i=1 f
opt
i = D yields H =

(
∑k
i=1

√
ci)

2

(
∑k
i=1 ci−D)2

. Plugging that last expression

into (4.15) gives (4.5), while plugging it into (4.14) leads to the characterization (4.11)

for k.

Similarly to Proposition 4.2 for equilibrium flows, Proposition 4.3 implicitly defines

a linear-time algorithm to compute optimal (i.e., globally cost-minimizing) flows. Note

that to compute optimal (as well as equilibrium) flows we only need to know the network

capacities (ci)1≤i≤n and the total demand D, that do not depend on any characteristics

of user classes.

Example 4.2. In the case of two networks and two users classes, the optimal flows are

given by the following equation:

fopt = (fopt1 , fopt2 ) =

(D, 0) if D ≤ c1 −
√
c1c2,(

(D−c2)
√
c1+c1

√
c2√

c1+
√
c2

,
(D−c1)

√
c2+c2

√
c1√

c1+
√
c2

)
oth.,

(4.16)

with the corresponding total cost

Copt =


D

c1−D if D ≤ c2 −
√
c1c2,

2D−c1−c2+2
√
c2c1

c1+c2−D otherwise .

(4.17)

4.3 Eliciting optimal user-network associations with taxes

To reduce the total cost the provider has to give an incentive to some users to switch

networks, so as to provide higher QoS to the majority of users and lower QoS to some

others, instead of providing the same QoS to everyone (what we get at the Wardrop

equilibrium without taxes). Here the provider introduces special taxes, such that the

flow assignment in the Wardrop equilibrium induced by these taxes is the optimum flow
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assignment. Previous works (see [48]) ensure that those taxes exist, and the following

lemma will help to compute them.

Lemma 4.5. Under Assumptions 1 and 2, optimal taxes are such that τ1 ≥ τ2 ≥ . . . ≥

τk, where k is the number of networks used (i.e., networks with positive flows) at the

optimal situation. For networks i > k, it is sufficient to have τi ≥ τk.

Proof. Let us first consider used networks, i.e. networks 1, . . . , k. From Lemma 4.4, for

i, i′ ≤ k we have
ci

(ci − fopt
i )2

=
ci′

(ci′ − fopt
i′ )2

:= K2 (4.18)

for some constant K.

Suppose that τi < τi+1 for some i < k, and that those taxes lead to an equilibrium

coinciding with the optimal situation. Then for a class of users j choosing network i+1,

we have from the equilibrium conditions

`i+1(fopt
i+1) + αjτi+1 ≤ `i(fopt

i ) + αjτi,

hence `(fopt
i+1) < `(fopt

i ).

But `i(f
opt
i ) = 1/(ci − fopt

i ) = K/
√
ci from (4.18), therefore since ci ≥ ci+1 we have

`(fopt
i+1) ≥ `(fopt

i ), a contradiction.

Now, we consider networks k + 1, . . . , n, which do not carry any flow in the optimal

situation: no user should prefer one of those networks to their current one. In particular,

denoting by j a class sending flow to network k under optimal taxes, we must have

`i(0) + αjτi ≥ `k(fopt
k ) + αjτk, ∀i = k + 1, . . . , n,

thus

τi ≥
`k(f

opt
k )− `i(0)

αj
+ τk, ∀i = k + 1, . . . , n. (4.19)

But from (4.13) we have `k(f
opt
k ) − `i(0) ≤ 0, therefore taking τi ≥ τk is sufficient to

ensure that (4.19) holds, i.e., that networks i = k+ 1, . . . , n are not chosen by users.

Now we provide a method to calculate the optimal taxes:
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Proposition 4.6. Under Assumptions 1, the following taxes are optimal:

τi+1 = τi +
`i(f

opt
i )− `i+1(fopti+1)

αsi
, (4.20)

for i = 1, . . . , n− 1, with τ1 taken arbitrarily, and with

si := min

j :
i∑

r=1

foptr ≤
j∑
q=1

dq

 . (4.21)

For networks used at the optimal situation (networks with fopti > 0), the index si repre-

sents the class with maximum sensitivity among those sending flow to network i.

Proof. For a network i with positive optimal flow, we define αmax
i and αmin

i as respec-

tively the maximum and minimum sensitivities among classes sending some flow to

network i (i.e., classes j such that f ji > 0). Then the Wardrop equilibrium conditions

for classes choosing networks i and i+ 1 (both with positive optimal flows) yield

αmax
i (τi − τi+1) ≤ `i+1(fopt

i+1)− `i(fopt
i ) ≤ αmin

i+1(τi − τi+1)

Since τi ≥ τi+1 from Lemma 4.5, we obtain αmax
i ≤ αmin

i+1 .

• If αmax
i = αmin

i+1 then a class of users, denoted by j′, is indifferent between both networks.

From the Wardrop equilibrium conditions we have:

`i(fi) + αj
′
τi = `i+1(fi+1) + αj

′
τi+1. (4.22)

From this we derive (4.25), with j′ satisfying (4.21).

• If αmax
i < αmin

i+1 , then this corresponds to a rare case, when two neighbor classes

are perfectly divided, and there is no class whose users are indifferent between both

networks. One more time using the Wardrop equilibrium conditions we write:


`i(fi) + αmax

i τi ≤ `i+1(fi+1) + αmax
i τi+1

`i(fi) + αmin
i+1τi ≥ `i+1(fi+1) + αmin

i+1τi+1.

(4.23)
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These two inequalities imply that

τi +
`i(fi)− `i+1(fi+1)

αmax
i

≤ τi+1 ≤ τi +
`i(fi)− `i+1(fi+1)

αmin
i+1

.

So, in this particular case a whole range of taxes for network i + 1 induce an optimal

division of users. Note that our proposition in Equation (4.25) falls in that range.

For networks with empty flows in the optimal situation, our proposition is still valid.

Indeed, since taxes decrease with the network index, the class m with the highest sensi-

tivity to price is the first class which would be interested in connecting to these empty

networks. It is easy to see that the taxes defined by (4.25) will prevent them from doing

this. If k is the maximum index of a network with non-empty flow in optimal situation,

then from the Wardrop equilibrium conditions we should have:

`k(f
opt
k ) + αmτk ≤ `i(0) + αmτi ∀i > k, (4.24)

which is verified with the tax defined by (4.25).

Example 4.3. For the case of two networks and two users classes, the tax should be

applied only on network 1. Under Assumptions 1 and 2, for given values of network

capacities (ci)i=1,2, demands D = d1 + d2 < c1 + c2, and sensitivities (αj)j∈{1,2}, an

optimal tax τ1 to apply to network 1 when D > c1 −
√
c1c2 is given by

τ1 =


c1−c2

α2√c1c2(c2+c1−D)
if d1 ≤ fopt1 ,

c1−c2
α1√c1c2(c2+c1−D)

otherwise.

(4.25)

When D ≤ c1 −
√
c1c2, no tax is necessary.

Like the two previous propositions in the paper, Proposition 4.6 implicitly defines an

algorithm to compute optimal taxes: Proposition 4.3 should first be applied to obtain

optimal flows, then (4.21) provides the value of si for each network i to be inserted

into (4.25) so as to get the tax value.

The freedom to arbitrary choose τ1 gives us an interesting feature: the provider could

regulate his total revenue by adjusting appropriately τ1 without any harm to the social
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cost. For example, τ1 could be set (to a negative value) such that the total revenue is

null.

The intuition behind Proposition 4.6 is illustrated in Figure 4.3. We already know

d1α1

d2α2

d3α3

d4α4

fopt
1

fopt
2

fopt
3

C2
1 (fopt

1 ) = C2
2 (fopt

2 )

C3
2 (fopt

2 ) = C3
3 (fopt

3 )

Figure 4.3: Example of user distribution among networks with optimal taxes for the
case m = 4, n = 3: class-1 (resp. class-4) users all attach to network 1 (resp. 3), while

class-2 (resp. class-3) users are split among networks 1 and 2 (resp. 2 and 3).

from Lemma 4.5 that the bigger tax should be charged on networks with lower indexes

(bigger capacities). This in turn means that the “richest” users are connected to them

(the smaller their sensitivity values). Thus, the least price-sensitive users will choose

network 1. On the example on Figure 4.3, the total flow of class-1 users is not enough

to ensure an optimal flow fopt
1 in network 1. So, the following (by sensitivity value)

class should fulfill the optimal flow in network 1. The total flow of classes 1 and 2

is bigger than the optimal flow fopt
1 , so we have to split users from class 2. Here we

should use the Wardrop equilibrium conditions to find an expression for τ2 depending on

τ1, this condition meaning that users of class 2 are indifferent between networks 1 and

2. In general, the only computational difficulty is to find a class with users indifferent

between two networks with consecutive indices. In the proposed example, it is class 2

for networks 1 and 2, and class 3 for networks 2 and 3.

4.3.1 Effect of optimal taxes on perceived QoS

As intended, our approach allows to separate delay-sensitive and delay-insensitive re-

quests, as illustrated on Figure 4.4, where the average latencies experienced for two

classes of users are plotted when the proportion of class-2 users vary, and compared to

the Wardrop Equilibrium case (where both classes have the same latency). Note that

delay-sensitive class-1 users benefit from the best quality in average (lower latency),

and this happens at the expense of class-2 users, which suffer higher delay but are less

sensitive to it.
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Figure 4.4: Average latency of both classes at the Wardrop equilibrium and for the
optimal situation. Parameters: D = 8Mbit/s, c1 = 11Mbit/s, c2 = 4Mbit/s.

4.3.2 Information needed to compute the optimal taxes

In what follows we discuss the values needed for the tax computation, and the possible

ways to measure them:

– The capacities (ci)i=1,...,n of the access networks are obviously known by the network

owner.

– The total demand D varies over time (we nevertheless assume here that the demand

variations are on a larger time scale than the time needed to compute and apply the

taxes). Therefore, for the tax calculation the operator needs only to measure the total

throughput on the gateway with the core network, which can be done quite easily, for

example using SNMP (Simple Network Management Protocol) statistics.

– The optimal traffic flow fopt
i that should use network i is quite simple to compute by

the operator, from the previously mentioned values: only the capacities (ci)i=1,...,n of

both networks and the overall network demand D are needed.

– The tax sensitivities (αj)j∈{1,...,m} quantify the relative importance of taxation and

QoS. These parameters depend on the applications type and the access network per-

formance, and we assume them to be known from statistical observations.

– The total demand dj of users of class j is the hardest to measure in practice, since

the network owner can not determine the exact number of users from each class being

connected to his networks at a particular moment of time. Note that our scheme does
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not require a user to declare his type when opening a connection, since incentives

would then be needed to ensure user truthfulness. However, we recall that the exact

values of dj are not needed: we need to know how they relate with optimal flows fopti ,

and thus the taxes could be compute with a small error using approximate values of

dj .

An approximation we propose is to use the average load of users of class j, j ∈

{1, . . . ,m}, which is much easier to determine, as an estimator of dj . We can indeed

assume that the arrival process of class j members and the time they spend in average

in the network are known stochastically, and calculate the average class j load. The

impact of such an approximation will be evaluated through simulations in the simple

case of two user classes in the next section.

4.4 Efficiency analysis

In this section we present some analytical investigations about the efficiency of our

taxation method. As an efficiency measure we use the Price of Anarchy (PoA), which is

the ratio between the total cost value achieved from the selfish users behavior and the

minimum total cost value that could be reached by coordinating users [34]. This value

is larger or equal to one. The larger the PoA, the less efficient the selfish users behavior,

while if the PoA equals one, then selfish user behavior leads to an optimal situation and

no intervention is needed. Recall that the taxes computed in Proposition 4.6 drive the

system to an optimal situation, i.e., to a situation with PoA equal to one.

4.4.1 Influence of heterogeneity on the PoA

At first, we provide the PoA values while varying the heterogeneity among networks,

which comes from the different capacities. For simplicity, we consider capacities of the

form ci = c0w
i−1 for i = 1, . . . , n, where we call w ∈ (0, 1] the homogeneity value. On

Figure 4.9 we plot the PoA for different values of the total user demand D, with c0 such

that the total capacity of the system equals 10 [Mbit/s]. We observe more heterogeneous

systems lead to a larger worst-case PoA (higher inefficiency due to user selfishness). It

is especially clear when total demand is close to the total capacity value (i.e, the system

is congested), but for very heterogeneous systems the PoA is quite high even for small
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demand values, thus the introduction of taxes would lead to significant performance

gains.
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Figure 4.5: PoA versus total demand D with n = 10 and total capacity equal to 10
[Mbit/s].

4.4.2 Some economic interpretations of the PoA

Finally, we present two counterparts for the Price of Anarchy in our model. For sim-

plicity, we consider only a case with two networks in which c1 = 4 [Mbit/s] and c2 = 11

[Mbit/s]. First, Figure 4.6 shows how many more users the operator could serve if using

network resources in an optimal way for the same total cost, compared to the case when

he does not influence users behavior. In a somehow similar way, Figure 4.7 indicates

the capacity (or investment) reduction that would lead to an unchanged total cost, just

because of effective resource management. These two values are comparable to the Price

of Anarchy, but have the advantage of being convertible into monetary gains, probably

more appealing to network providers. These figures have to be understood as follows.

Consider a system with relative load equal to 0.7 (dotted curve) and a PoA of 1.02:

Figure 4.6 show that if we optimize resource usage (e.g., through optimal taxes), we

could have 2% more users in our system without increasing the total cost. The ana-

logical explanation works for Figure 4.7: in the same situation, if we introduce optimal

taxes, we can decrease our system’s capacity by 2% without changing the overall cost

perceived by users.
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Figure 4.6: Demand gain versus PoA, for different demand levels in the case of two
networks.
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Figure 4.7: Capacity gain versus PoA, for different demand levels in the case of two
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4.5 Simulation Scenario

This section complements the mathematical results, by providing a simulation model

to evaluate the performance of our tax mechanism in a wireless network where users

dynamically enter and leave the system. For simplicity of both presentation and com-

putation, we provide only results for a simple case with two access points and two users

classes.

4.5.1 Simulation model and scenarios

We consider a simple scenario where the operator owns two access points, with respective

WiFi implementations IEEE 802.11b (c1 = 11Mbit/s) and IEEE 802.11g (c2 = 4Mbit/s).

We assume mobile users of class i ∈ {1, 2} join the system according to a Poisson process

with parameter λi. We further assume that the classes correspond to different services

(traffic with the same properties):

– Delay-sensitive (real-time) video conversation call for users of class 1, with individual

throughput ε1 = 0.184Mbit/s.

– Streaming audio (non-real time: music or radio, for example) for users of class 2, with

individual throughput ε2 = 0.064Mbit/s.

Those definitions are compliant with our model convention, where type-1 users are more

delay-sensitive than type-2, thus α2 > α1.

Note that each user has a non-zero individual throughput, hence the game is not perfectly

non-atomic. Nevertheless, the individual throughput values are small with regard to

the network capacities (c1 = 11Mbit/s, c2 = 4Mbit/s), so that the impact on QoS of

individual choices remain small (unless networks are extremely loaded).

Each user is connected to the network for a duration modeled as a random variable,

following an exponential distribution with parameter µi. The average listening time of

class-1 users is therefore 1
µ1

(seconds), and the average video conversation time of class-

2 users is 1
µ2

(seconds). Users choose an access network upon their arrival, selecting

the cheapest one in the sense of their cost (4.1) . We investigate two settings: in the

first setting, users remain attached to the same network for the whole duration of their

connection (no handovers), even if QoS conditions vary. In the second setting, vertical

handovers between networks can occur.
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Note that under our assumptions, the process describing the number of users of each class

in each network is a continuous-time Markov chain, which we study through simulations

due to the excessively large number of states. Note that the latency function we consider

(Equation (4.2)) are only defined when demand is below capacity. We tackle this problem

by dropping the arriving users for which there is no sufficient available capacity on any

network. The resulting blocking rate is measured in our simulations.

We investigate three different scenarios for each aforementioned simulation setting. In

the first scenario, the tax is not applied at all - the users act without any intervention

from the provider’s side. In the second scenario, the operator is willing to apply the

optimal tax expressed, but is not able to measure the exact value of d1. In that case

the tax expression is chosen based on the average load of class-1 users (d̂1 = ε1λ1
µ1

) in the

network: the arrival process λ1 of users 1 and the duration of time 1
µ1

a user spends in

the network are supposed to be known by the operator. The third scenario, called the

optimum situation, assumes that the operator is able to determine precisely the load d1

of class-1 users, and thus to apply the exact optimal tax. Recall that for the scenarios

involving taxes, the tax is applied only when the network load D exceeds c1 −
√
c1c2,

i.e. when selfish user behavior does not lead to an optimal situation.

4.5.2 Simulation results

This section presents the results obtained with the simulations scenarios described above,

for the parameter values 1
µ1

= 2.5 minutes, 1
µ2

= 4 minutes, and the tax sensitivities

parameters α1 = 1 and α2 = 2 (cost units per (dollar per packet)).

In particular, we analyze the (average) Price of Anarchy, that is the ratio between the

total cost value achieved from the selfish users behavior and the optimum total cost

value [34]. This metric helps us investigate the efficiency of tax application for different

flow conditions. There we compare both settings: when the vertical handover could take

place and when it is forbidden.

Let us first observe some simulation trajectories, with the arrival rates λ1 = 4.5 (ar-

rivals/minute), λ2 = 3 (arrivals/minute). The evolution of the total network load for

one simulation is shown on Figure 4.8, with the horizontal line corresponding to the
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threshold value of total load c1 −
√
c1c2, above which taxes are needed to improve the

QoS cost C.

10 11 12 13 14 15 16

4.5

5

5.5

6

6.5

120:(0.5, 0, 5)
c1 −

√
c2c1

Time (min)

T
o
ta

l
L

o
a
d

[M
b
it

/
s]

Figure 4.8: Total load versus time

Figure 4.9 displays the corresponding evolution over time of the Price of Anarchy for

those three scenarios.
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Figure 4.9: Price of anarchy versus time, without vertical handovers.

We notice from Figure 4.9 shows that taxation can yield significant performance gains,

even if vertical handovers are not allowed (i.e., users do not constantly adapt to the
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changes in QoS conditions). Interestingly, we remark that the optimal tax does not

always imply the lowest total cost: the total cost with that tax being sometimes even

higher than without any tax. We have to recall here that there are several differences

between our mathematical model and the simulation model considered in this section.

Notably, we do not allow here users to switch networks, which can lead to the following

situation. Consider some moment of time when the total flow suddenly falls below the

c1 −
√
c1c2 threshold; the optimal flow in the network 2 then equals zero (see (4.16)).

But in general more users (among those still in the system) had chosen network 2 when

a tax was previously applied on network 1, hence the no-tax case leads temporarily to

a situation closer to the optimal one. In other words, our simulation system without

vertical handovers shows some inertia: the flow distribution cannot instantly change

when QoS conditions evolve. This situation occurs in Figure 4.9 around t = 10 minutes

for example, and similar cases (when demand suddenly drops and inertia impacts the

outcome) occur around time t = 14 and t = 15 minutes even if demand remains above

c1 −
√
c1c2.

Those phenomena being highlighted on one trajectory, we now turn our attention to

their statistical impact, through extensively many simulations of the same scenarios.

The results of these repeated simulations are presented on Figures 4.10-4.13, when the

total average load D̄
c1+c2

varies, with D̄ = λ1
µ1
ε1 + λ2

µ2
ε2. For comparison aims, we consider

two different ratios between the arrival rates of users of both classes, namely we used

λ1/λ2 = 0.6 and λ1/λ2 = 1.5.

We first notice from Figures 4.10-4.13 that the no-tax curve has a form similar to the one

predicted by the theoretical study in [66]. On those figures, we also depicted the demand

thresholds corresponding to some blocking rates values (proportion of users rejected due

to lack of capacity). Since wireless systems are designed to have low blocking rates

(below 1%), those values show that the range in which we expect some performance

gain lies between 0 and 0.8.

We remark that when λ1/λ2 = 0.6, the curves corresponding to the optimal tax and the

approximate tax appear to be very close to each other. It comes from the fact that the

flow from delay-sensitive class-1 users is relatively small, thus in the majority of cases

the optimal tax has the same value as the approximate one.
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Figure 4.10: Average PoA versus load with λ1/λ2 = 0.6 with vertical handovers.
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Figure 4.11: Average PoA versus load with λ1/λ2 = 0.6 without vertical handovers.
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Figure 4.12: Average PoA versus load with λ1/λ2 = 1.5 with vertical handovers.
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Figure 4.13: Average PoA versus load with λ1/λ2 = 1.5 without vertical handovers.
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When vertical handovers are permitted, we observe that the PoA of the system applying

optimal taxes is very close to the optimal situation - the PoA does not rise above 1.01,

for both considered ratios between the arrival rates. For the approximate tax the PoA

can reach 1.03, which is still significantly lower than the PoA of the no tax case (that

goes up to 1.10). We also observe a significative influence on efficiency, of the presence

of vertical handovers. As mentioned before, prohibiting handovers prevents the system

from balancing rapidly the load among networks, implying larger costs.

A curious phenomenon worth mentioning from Figures 4.11 and 4.13 is the small range

of average total load for which the average PoA of the no-tax case is lower than for

the case with taxes (load values between 0.2 and 0.3). This implies that the cases

explained similarly on the single trajectory before (Figure 4.9) are not so rare in that

case. Indeed, as a result of total load being low, at very few moments of time the load

goes above c1 −
√
c1c2, which causes the taxes introduction, deterring new entrants to

use network 1. But this situation does not hold for a long time: quite soon the load goes

below the threshold value, and because of switches being forbidden, the flow in the first

network stays bigger than zero, causing inefficiency. Nevertheless, this inefficiency range

remains small, and the PoA difference is limited, so this does not question the gain of

our incentive mechanism. In our simulations, the taxation approach appears to be most

effective for average total loads above 30% (for the considered simulation parameters) of

the total capacity, and the highest efficiency gain is reached around loads corresponding

to the 50% of the total capacity.

Finally, we present now two counterparts for the Price of Anarchy in our model. First

Figure 4.6 shows how many more users the operator could serve if using network re-

sources in an optimal way for the same total cost, compared to the case when he does

not influence users behavior. In a somehow similar way, Figure 4.7 indicates the capacity

(or investment) reduction that would lead to an unchanged total cost, just because of

effective resource management. These two values are comparable to the Price of Anar-

chy, but have the advantage of being convertible into monetary gains, probably more

appealing to network providers. As an example, we can see on Figure 4.10 that for an

average network load of 0.5, the PoA is around 1.12. From Figures 4.6-4.7, we deduce

that the system could handle about 5% more demand, or a capacity reduction of about

5%, for the same cost perceived by users.



Chapter 4. Focusing on equilibrium situations for the user game 78

4.6 Summary

In this chapter we have considered the inefficiency of selfish user behavior in heteroge-

neous wireless systems. Using the theoretical results of [34], which prove the existence of

optimal taxes for our scenario, we derive an analytical expression of the optimal incen-

tive (tax) for the case when the number of access points and user classes are arbitrary.

We have showed that the “cost” of inefficiency of users allocation can have monetary

equivalents.

We tried the proposed taxation policy in a realistic scenario, where not all information

about users is available. In this case the provider has to compute an approximate tax,

based on statistical information from his previous experience/history. We found that in

the simple case of two access points being collocated, the gap between the performance

of the optimal tax and the approximate one is relatively small, which supports the

application of the proposed model in practice.

Our taxation algorithm can be applied to crowded access points with big capacity,

where the non-atomicity assumption will make sense. Based on statistical observation

the provider may compute the taxes which to minimize the revenue variation, while still

making users to distribut in an optimal way. Moreover, if provider will still observe

deviation from the optimal distribution, he may introduce corrections in taxes in order

to achieve the desirable users allocation.

Our model relies on some strong assumptions, one of which is the simple network

topology–all networks being supposed to have the same coverage area. Note that the

model is easy to extend to a more realistic setting, where coverage areas have only par-

tial overlapping. For this case we could predict to have decreased PoA comparing to

what we observed in the current study.

Additionally, the non-atomicity assumption significantly simplifies the analysis, however

its validity becomes questionable if we consider small-cell networks with only a few users

and bandwidth-consuming applications. Extending our work to the atomic case would

thus be of high interest; in such a case the decisions made by users could involve attaching

simultaneously to several networks and splitting the flows among them (benefiting from

protocols such as MultiPath TCP).
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Finally, our work did not consider the practical implementation aspects of our mech-

anism. Those of course need to be examined for our mechanism to be applicable. In

particular, measuring precisely the congestion level at the access point, and transmitting

this information to users so that they make their decisions, warrants specific investiga-

tions. Among the possible tools that can be used for the latter task, one can evoke the

802.21 standard [67] and the Generic Access Network techniques for the management of

cross-technology handovers and the information diffusion to users.



Chapter 5

The higher level: competition

among providers

In this Chapter we discuss the competition which arise between Internet access providers

in wireless networks. Two main scenarios are covered: in the first part we study the

case, when access points, belonging to different providers, cover the same area (or have

overlapping) and compete for static users, and in the second part we look at the case,

when access points do not have any overlapping area, and the competition arises due to

the high users mobility.

For the first scenario we use the model studied in Chapter 3. We apply the prediction

of load distribution (resulting from the competition between users) in order to esti-

mate providers revenues. These revenues, which depend on providers prices, generate a

simultaneous game.

For the second scenario we consider a vehicular network, where mobile users owning

the necessary equipment are passing providers’ access points in a sequence, and for

each access point they make a decision whether to connect to it or not, given the price

charged by provider. We start by description of a basic model, where users keep their

pricing preferences unchanged and access points are already located on a highway. We

further extend this model, by an assumption that mobile users do not pay the full price

they could afford when they see the first access point. Through this assumption we

aim to model a type of users, which change their pricing constraints when get some

additional information. Finally, we take into consideration a negative externalities,

80
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which competing Internet access providers could pose on clients of each other, specifically

QoS degradation due to interference. By this we include one more parameter in providers

competition, which is the distance between the access points.

5.1 Providers competition: static vs mobile users

Internet access providers interaction plays a crucial role in determining the satisfaction

level of users in terms of price and QoS. But the type of users willing to establish an

Internet connection in its turn also impacts the way competition between providers is

organized. The two users types we consider in this Chapter are :

1. Static users, which do not move, or their movement distance is negligible comparing

to the size of access points’ coverage areas

2. Mobile users, which do move from one access point to another, following their own

aims or trying to reach a more suitable access point (as in [53])

We differentiate these two types of users, because it influences whether the competition

between different access points arise or not. On Figure 5.1 we depicted topologies, where

competition arise between providers for different users types. Obviously, when users are

static and access points do not overlap - there is no direct competition between providers,

because their pricing policies influence only users in their own coverage area, and these

users can not migrate to other access point. In this case the decision of users is binary

one: they simply choose whether to pay to the only access point they see or not. The

situation changes, when access points overlap: then, the users in ”competition zone”

do have a choice between two access points, and thus the pricing policy of one provider

influences the revenue of the other one, which leads to providers competition

With mobile users the model is more complicated: they could move in random directions

and with random speeds, and thus we have to make a stochastical analysis in order to

obtain an expectation of providers revenues. In what follows, we do not consider that

users intentionally move from one access point to another: actually we assume that they

are unaware about others access point location. For our study we consider a vehicular

network model, since it allows us to make several simplifying assumptions about users

mobility patterns.
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Figure 5.1: Static vs mobile users

5.2 Providers competition with static users

For the static users case we consider the model, described in Chapter 3. We study the

higher-level of our game, that consists in provider(s) setting the prices P1 and P2 aiming

to revenue maximization. Knowing the prices and access points ratings (which depends

on latency users experienced in past), users make network selection decision. Since users

arrivals and departure processes are random, we can only estimate the loads on each

access point.

5.2.1 Model

We use Equations (3.5) and (3.7), which give a relation between the price profile (P1, P2)

and the average number of users on each network when the loyalty effect takes place:

n∗i =n∗i q

[
1 +Ki ln

1 + eQī(n
∗
ī
)−Qi(n∗i )(1+α)e−b(Pī−Pi)

1 + eQī(n
∗
ī
)−Qi(n∗i )(1+α)e−a(Pī−Pi)

]

+

(
λ

1−q
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)
q

[
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∗
ī
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∗
ī
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]

First of all, we introduce an elastic (i.e., price-sensitive) demand, that prevents providers

from charging the maximum possible price to maximize revenue. We assume here that

the average number of user arrivals per time period depends on providers’ prices as
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follows:

λ(P1, P2) = λmax

(
1− P1 + P2

P

)
, (5.1)

where P represents a price above which no one wants to use the network services, and

λmax is the number of users that would use the system if services were free. Note

that the demand in (5.1) can be derived from classical linear demand functions, often

used in the literature [68]: there could be two potential sources of demand, of the form

λ1 = A − ηP1 + αP2 and λ2 = B − ηP2 + αP1, where η (resp. α) represent the direct

(resp. indirect) effect of the price of an operator (resp., its competitor). Aggregating

those demands, to consider that users enter the game based on those and then select a

network, we obtain the form given in (5.1).

We now investigate how the prices P1 and P2 are fixed, depending on the relation between

the network owners.

5.2.2 The noncooperative case: price competition

We first consider the situation where both networks are controlled by different entities

(operators), that do not collaborate. The operators then play a pricing game to at-

tract customers, but still making revenue. Their strategic choice is then driven by the

maximization of their payoff.

The analysis of the two-player noncooperative game is then performed numerically: we

look for a Nash equilibrium [27] (P ∗1 , P
∗
2 ) as a price profile such that P ∗i is the best that

operator i can play when its competitor sets P ∗
ī

so as to maximize its revenue.

Figure 5.2 plots the best-response prices of both operators, for the parameter values

given in Subsection 3.2.4 with loyalty effect, except that we consider the elastic demand

case with λmax = 200 and P = 20, and we take price sensitivity values distributed over

the interval [a, b] = [0, 0.5]. We observe that the game has a unique Nash equilibrium,

an observation we also made for the other parameter values tried. Interestingly, remark

in Figure 5.2 that best-response prices are not necessarily monotonous in the price of

the competitor.
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Figure 5.2: Best-response prices.

5.2.3 The cooperative case: a monopoly situation

We will also consider the situation where both networks are owned by the same entity

(that then acts as a monopolist) fixing prices to maximize the global revenue P1n
∗
1+P2n

∗
2.

Equivalently, the same outcome is reached when two operators control one network each,

but decide to collude and set prices to maximize the sum of their revenues, possibly

through some agreements regarding the sharing of the benefits of collusion.

In what follows we compare the competitive and cooperative (monopoly) situations, in

terms of different performance criteria. The parameters taken for the numerical results

shown here are those of Subsection 3.2.4.When the ratio C2/C1 varies, we actually fix

C1 to 1000, and have C2 vary from 100 to 1000.

5.2.4 Network prices

With a loyalty coefficient α varying from 0 to 6, we did not find any significant changes

in equilibrium prices for both the monopoly and competition case. Figure 5.3 plots the

equilibrium prices depending on the heterogeneity of the network (expressed by the ratio

C2/C1). Here we observe that when heterogeneity decreases (i.e., C2/C1 gets closer to

1), prices for both settings converge to different values, and price in the competition
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case is lower than with a monopoly. In the competition situation, both providers tend

to monotonically decrease their prices when C2 increases. The price decrease for network

1 is obvious, because if the competitor increases the quality of its product, it then has

to decrease price. For the second provider it is different: with the rise of the capacity of

its network, operator is interested in attracting more users in the system, which it does

by decreasing its price.

On the other hand, a monopolist is interested in charging a small price for the services

in the network with bad capacity, and a high price for the network with better capacity,

because in this case, a larger number of clients is attracted to the system (because of the

total demand (5.1), that depends on the average of both prices, hence the low P2), and

because of congestion many of them will choose the largest (least congestion-sensitive)

network, thus increasing the total revenue with a quite high P1.
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Figure 5.3: Equilibrium prices in each network, versus capacity heterogeneity C2/C1.

5.2.5 Number of users in each network

Very small changes of in the number of users in each network were noticed when the

loyalty coefficient varies, which is consistent with the results of the previous section. In

the same vein, the total number of users in the competition case appears to be bigger

than in the monopoly case.
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Figure 5.4 highlights the influence of the network heterogeneity on the user repartition

among networks. As expected, in all cases the largest network attracts more users. In
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Figure 5.4: Equilibrium number of users in each network, versus capacity heterogene-
ity C2/C1.

accordance with Figure 5.3, when C2/C1 is close to 1, the total number of users in the

competitive case is higher than in the monopoly case for each network.

5.2.6 Distribution of user sensitivities to prices among networks

It is interesting to see how a user’s sensitivity to prices influences her network choices.

This is illustrated in Figure 5.5, where the average sensitivity to price of users selecting

each network is plotted.

We observe that the monopoly leads to a strong discrimination of users according to

their price sensitivity: when the system is very heterogeneous (C2/C1 small), only users

with a very low price sensitivity choose network 1 (that is the most expensive one but

also the one with the best QoS). Note that the tendency is inverted for the competition

case (network 1 tends to be chosen by less price-sensitive users than network 2), but the

difference is much smaller. This can also be an argument in favor of the competition

situation: the monopoly may lead to strong inequalities among users, where only “rich”

users will benefit from a very good QoS.
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Figure 5.5: Average user sensitivities of users in each network, versus capacity het-
erogeneity C2/C1.

5.2.7 Energy consumption

Finally, we focus on the energetic performance of the competitive versus monopolistic

situations. Figure 5.6 displays the average user’s energy consumption (AEC) dynamics

depending on the loyalty effect parameter α. We compute the AEC as the average
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Figure 5.6: Energy consumption for different cases

value of ei(j) + v1l{j∈Nt−1
ī(j)
}, where ei is the energy that a user consumes per time slot
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when connected to network i, i(j) is the network chosen by j at the current time slot,

and v is the energy cost of a handover, that takes place if the user was attached to the

other network at the previous time slot. The following values have been considered here:

e1 = 1, e2 = 1.3, λmax = 200, P = 20, q = 0.2, v = 0.3.As expected, for both cases the

AEC value decreases when the loyalty effect becomes more significant, mainly because

of the decrease in the number of handovers. We also notice a slightly smaller energy

consumption in the competitive case with respect to the monopolistic one, but with

small differences (less than 1%).

5.3 Providers competition with highly mobile users

For the mobile users scenario we decided to study a simplified model of a vehicular

highway network. In the analysis of this type of networks, we can restrict our study

only to two direction of users movement. Additionally we assume that all users move

with the same speed, which also could be justified: there is a speed limit almost on every

highway (with exception such as German autobahns) and the actual speeds of cars vary

in some range below this limit value. These two assumption allow us to simplify a lot

the general mobile users model and make an analytical traction possible.

5.3.1 Vehicular networks background

The constant increase in the number of cars traveling along the roads worldwide calls for

effective means to improve the road safety and the efficiency of the overall transportation

infrastructure. To this end, the research community, the industries and the governments

all over the world are investing much of their efforts and money on the development of

integrated Intelligent Transportation Systems (ITS) based on wireless communication

networks allowing vehicles, equipment on the road, service centers and intelligent sensors

to exchange information in a prompt and cost effective way. In this scenario, vehicles

are geared with wireless communication hardware, often referred to as On Board Units

(OBUs), to support communication with other vehicles (Vehicle-to-Vehicle, V2V) and

with road infrastructure (Vehicle-to-Infrastructure, V2I). In this last case, the devices

composing the roadside infrastructure are often called RoadSide Units (RSUs).
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A broad classification of the applications which are enabled by vehicular networks can be

found in [69] where a distinction is made between applications targeting safety, transport

efficiency, and information/entertainment. Safety applications include, as an example,

collision warning services, transport efficiency application may include lane merging as-

sistance, and navigation services, whereas information/entertainment application range

from file sharing among vehicles to Internet access on the move.

In this work, we focus on the vehicle-to-infrastructure (V2I) communication paradigm

for VANETs to support content distribution to moving vehicles. Namely, we consider

the case where multiple content providers coexist and compete in a given geographical

area. Each content provider owns a physical infrastructure of RSUs which she uses to

sell contents to moving vehicles. Content provider/RSU owners compete by adapting

their pricing strategies with the selfish objective to maximize their own revenues. In

such a scenario, we ask ourselves the following simple question: if competing providers

wish to select the pricing strategy in order to provide or collect data to/from passing

vehicles, what kind of strategies should they follow? The answer is far from being trivial

as it predictably depends on several factors including the vehicles’ willingness to pay, the

traffic densities, the configuration of the physical networks of RSUs, and the strategic

interaction among the content providers.

The design of efficient V2I and V2V networks has already attracted much attention

within the research community. Most of the work generally targets the design and opti-

mization of communication protocols to be used in vehicular networks. As an example,

the optimization of V2I segment is targeted in [70] where the focus in on uplink and

downlink packet scheduling techniques. Along the same lines, Yang et al. study in

[71] the applicability and performance of IEEE 802.16 for the communication between

groups of vehicles and an RSU.

V2V communications are addressed in [72–74]. In [72] a Medium Access Control (MAC)

protocol is proposed to support reliable communication among vehicles. The work in

[74] proposes a protocol framework to support the dissemination of warning messages in

V2V, whereas the use of V2V communications to support proactive data monitoring in

urban environments in studied in [73].

In the field of V2I networks, besides the work on protocol design/optimization, it is
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worth mentioning the research field targeting the optimal design of the roadside infras-

tructure. In this case, the goal is to optimize the deployment of the RSUs with respect to

specific objectives which are generally related to the coverage ratio of vehicles. Trullols

et al. [75] propose three formulations for the the deployment problem as a Maximum

Coverage Problem, Knapsack Problem, and Maximum Coverage with Time Threshold

Problem, respectively; heuristics based on local-search and greedy approaches are then

introduce to get suboptimal solutions. Along the same lines, Cavalcante et al. [76]

focus on the Maximum Coverage with Time Threshold Problem and propose a genetic

algorithm to solve it. Yan et al.. [77] study the very same RSU deployment problem in

case the candidate sites for deployment are limited to the intersections between crossing

roads. The interested reader may refer to [78] and references therein for a more com-

prehensive description on the general problem of RSU deployment. Different from the

aforementioned work which assumes one central entity to optimize the RSU deployment,

[79] studies the competitive scenario where different network operators compete in the

deployment of their respective RSUs by resorting to a non-cooperative game. Spatial

positioning games are also proposed in [56] for generic wireless access networks.

Game theory has been used to evaluate the strategic interaction between the different

agents in vehicular networks [80]. In [81], the authors introduce a stochastic game

among OBUs which compete to get service from shared RSUs. Nyiato et al. propose

in [82] a hierarchical game framework to capture the competition of different actors;

besides OBUs and RSUs, the concept of Transit Service Provider is used to model

an entity which manages groups of vehicles and is in charge of minimizing the total

cost to support streaming application to its vehicles while meeting the application QoS

requirement. The available bandwidth at each RSU can be split in reserved bandwidth

and on-demand bandwidth. OBUs make short-term decisions between on-demand and

reserved bandwidth (if available), TSPs decides what kind of bandwidth split to purchase

from different RSUs along the road, whereas Network Service Providers owning RSUs

set their price for on-demand bandwidth to maximize their revenues. Differently, in [83]

a coalition formation game among RSU is analyzed, with the aim of better exploiting

V2V communications for data dissemination.

The matter of pricing in generic wireless access networks is largely debated in the liter-

ature. Reference [55] provides a nice overview on pricing problems in wireless networks,

and further analyze a specific case where two wireless Internet service providers compete
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on prices, one owning a WiMAX-based infrastructure and the other running a WiFi-

based infrastructure. Differently from previously mentioned literature, in this work we

focus on price competition between network operators for V2I networks, which is, to

the best of our knowledge, a novel issue. Even if V2I networks bear some similarities

with generic wireless access networks, there are distinctive features which make the pric-

ing problem worth analyzing; in generic wireless access networks, the network operator

competition is generally on the “common” users, that is, those users which fall in the

coverage area of the competing network providers. In other words, there is actually a

competition only if the coverage areas of the network providers (partially) overlap as

in [55]. Users themselves tend to choose the network operator which maximizes some

quality measure as in [12]. On the other side, in V2I networks competition may arise due

to vehicles mobility even if the coverage areas of competing RSUs are not overlapping,

since if a RSU does not serve a moving vehicle in its own coverage range, the very same

user can be served later by competing operators.

5.3.2 Basic model

5.3.2.1 Usage scenario

We consider two Internet access providers (labeled by 1 and 2), competing to attract

users on a stretch of a highway. They offer the possibility to access the Internet through

Road Side Units, which allows cheaper or better QoS than the other available cellular

networks. (Note that we ignore vehicle-to-vehicle communications in this paper.) We

assume that each provider has already deployed one RSU –on different locations along

the road–, and that both RSU are identical; we denote their individual goodput (or

capacity) by c. (Note that this model easily extends to the case when providers own

disjoint “connectivity regions”, each one made of several RSUs and with total service

capacity c.)

Since both providers’ RSU are at different locations, vehicles taking the road in one

direction first enter the coverage area of Provider 1’s RSU, while those traveling in the

opposite direction first see Provider 2. We denote by ρj , j = 1, 2 the average number of

commuters per time unit that first enter Provider j’s coverage area; they will cross the

competitor’s coverage area afterwards (since we are considering only one road).
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Each user wants to download data files, for an average volume per user (assumed inde-

pendent of the travel direction) normalized to 1 without loss of generality; the potential

demand (in volume) from users seeing Provider j first thus also equals ρj . In this paper,

we treat those average loads as static values, i.e. we do not model the time variations

of the load. Moreover, we assume that the coverage area size of RSUs and the vehicles’

speed do not constrain the transfers: if a RSU’s capacity exceeds its (average) load, all

requests are successfully served.

Each provider j = 1, 2 chooses the (flat-rate) price pj to charge for the connection

service. To model heterogeneity among users, we assume that only a proportion w(p)

of users accept to pay a unit price p for the service (this being independent of the

download volume). As a result, if Provider j sets his price to pj , the users who first

enter Provider j’s service area generate a demand (again, per time unit, and treated as

static) of w(pj)ρj . Note that we are assuming here that users do not try to anticipate the

price set by the next provider: when a user first sees an RSU access offer, she responds

to it as if there were no other RSU afterwards.

Figure 5.7 summarizes that scenario in terms of demand flows. The total potential

demand (volume per time unit) ρj from users seeing Provider j can be decomposed into:

1. users accepting the price pj and being served by Provider j;

2. users accepting the price pj and being rejected due to the RSU capacity limit

(forming a spillover flow ρsp
j heading to the competitor’s RSU);

3. and users refusing the price pj (forming a flow ρref
j heading to the competitor’s

RSU).

The two latter flows then enter the coverage area of the competing provider, where they

can be served or not. In the latter case, we denote the corresponding (unserved) demand

by ρusj . Note that we assume users keep the same willingness-to-pay for the service when

they enter the second RSU coverage area.

5.3.2.2 Mathematical formulation

We now give analytical expressions for the different demand components, using the RSU

capacity c and the willingness-to-pay function w(·). In the whole paper, w(·) is assumed

continuous and non-increasing, and such that w(0) = 1 and w(pmax) = 0 for some
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Figure 5.7: Flows involved in the model: among the total potential demand ρj seeing
Provider j first, we distinguish ρspj (demand from users agreeing to pay pj , but not

served by this provider), ρrefj (demand from users refusing to pay pj).

pmax > 0. If the quality of the alternative cellular access (say, 4G) is sufficient, the price

pmax may be interpreted as the unit price for that cellular service: above pmax, users

have no interest to use an RSU-based access.

The demand submitted to Provider j comes from three different types of users:

1. those seeing Provider j first, and accepting to pay the proposed price pj , hence

issuing a total demand

w(pj)ρj ;

2. those seeing Provider k 6= j (the competing provider) first, who refused to pay pk

but would accept the price pj , forming a total demand level (smaller than ρref
k , and

null when pk ≤ pj)

ρk[w(pj)− w(pk)]
+,

where x+ := max(0, x) for x ∈ R.

3. and those seeing Provider k first, who agreed to pay pk but were rejected because

of Provider k’s limited capacity, and who also agree to pay pj , for a total demand

min

(
1,
w(pj)

w(pk)

)
ρsp
k ,

where ρsp
k is the part of the demand w(pk)ρk that is spilled over by Provider k.
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The total demand ρT
j (pj , pk) for Provider j then equals the sum of the aforementioned

components:

ρT
j (pj , pk) :=

w(pj)ρj + ρk[w(pj)− w(pk)]
+ + min

(
1,

w(pj)
w(pk)

)
ρsp
k

Note the dependance in both prices, although for simplicity we will sometimes just write

ρT
j when there is no ambiguity.

When the total demand at an RSU exceeds its capacity, some requests are rejected:

we assume the RSU serves users up to its capacity level, and the rejected requests are

selected randomly among all requests. This leads to an identical probability of success

Pj for each request submitted to Provider j, that is simply given by

Pj = min

(
1,

c

ρT
j

)
(5.2)

so that the served traffic at RSU j equals ρT
j Pj = min(c, ρT

j ). Again, the probability Pj

depends on the price vector (pi, pj). The corresponding revenue of Provider j is then

Rj = pj min[c, ρT
j (pj , pk)]. (5.3)

The traffic ρsp
j spilled over by Provider j (and that will then enter the competitor’s

coverage area) also depends on both prices through the probability Pj , and equals

ρsp
j = w(pj)ρj(1− Pj), (5.4)

with

Pj = min

1,
c

w(pj)ρj+[w(pj)−w(pk)]+ρk+min[1,
w(pj)
w(pk) ]ρsp

k

. (5.5)

Remark that for a given price configuration (p1, p2), the success probabilities P1 and

P2 are the solution of a fixed-point system, since the success probability Pj of Provider

j depends on the spillover demand ρsp
k and thus on Pk, that itself depends on ρsp

j and

hence on Pj . More specifically, assuming without loss of generality that p1 ≥ p2, those
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success probabilities should satisfy

 P1 = min
(

1, c
w(p1)(ρ1+ρ2)−w(p1)ρ2P2

)
P2 = min

(
1, c

w(p2)(ρ1+ρ2)−w(p1)ρ1P1

)
.

(5.6)

Proposition 5.1. For any price vector (p1, p2), the system (5.18) has a unique solution

(P1, P2).

Proof. We again assume without loss of generality that p1 ≥ p2. Since the right-hand

sides of the equations in (5.18) are continuous in (P1, P2) and fall in the interval [0, 1],

Brouwer’s fixed-point theorem [84] guarantees the existence of a solution to the system.

To establish uniqueness, remark that P2 is uniquely defined by P1 through the second

equation in (5.18), so (P1, P2) is unique if P1 is unique. But P1 is a solution in [0, 1] of

the fixed-point equation x = g(x) with

g(x) := min

1,
1

a+ b− bmin
(

1, 1
a+b+ε−ax

)
 ,

where a = w(p1)ρ1

c , b = w(p1)ρ2

c , and ε = (w(p2)−w(p1))(ρ1+ρ2)
c are all positive constants; we

also assume a > 0 and b > 0 otherwise the problem is trivial. As a combination of two

functions for the form x 7→ min
(

1, 1
K1−K2x

)
, g is continuous, nondecreasing, strictly

increasing only on an interval [0, x̄] (if any) –it is in addition convex on that interval–,

and constant for x ≥ x̄ (note we can have x̄ = 0 or x̄ ≥ 1).

Assume g(x) = x has a solution x̃ ∈ (0, x̄]. Then g is left-differentiable at x̃, and

g′(x̃) =
x̃2ab

(a+ b+ ε− ax̃)2
≤ x̃2a

(a+ b+ ε− ax̃)
(5.7)

where we used the fact that x̃ ≤ 1 (as a fixed point of g). Moreover, since x̃ is in the

domain where g is strictly increasing we have η := 1
a+b+ε−ax̃ ≤ 1 on one hand, and

x̃ = 1
a+b−bη on the other side. Their combination yields x̃ ≤ 1

a and finally

g′(x̃) ≤ x̃ ≤ 1.

Remark also that g′(x̃) < 1 if x̃ < 1. We finally use the fact that g(0) > 0 to conclude

that the curve y = g(x) cannot meet the diagonal y = x more than once: assume
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two intersection points x̃1 < x̃2, then g′(x̃1) < 1 thus the curves cross at x̃1, another

intersection point x̃ would imply g′(x̃2) > 1 (recall g is convex when strictly increasing),

a contradiction. Hence the uniqueness of the fixed point and of the solution to (5.18).

We can also establish continuity properties for the solution of (5.18), which will be used

in the remainder of this paper.

Proposition 5.2. The success probability pair (P1, P2) is continuous in the price profile

(p1, p2).

Proof. For a given price profile (p1, p2), the solution (P1, P2) of (5.18) can also be seen

as a solution of the minimization problem

min
(P1,P2)∈[0,1]2

(
P1−min

(
1,

c

w(p1)(ρ1+ρ2)− w(p1)ρ2P2

))2

+

(
P2−min

(
1,

c

w(p2)(ρ1+ρ2)− w(p1)ρ1P1

))2

,

where the objective function is jointly continuous in (P1, P2) and (p1, p2). From the

Theorem of the Maximum [85], the mapping of prices (p1, p2) into the corresponding set

of solutions (P1(p1, p2), P2(p1, p2)) is an upper hemicontinuous correspondence. From

the uniqueness result above, that correspondence is single-valued and hence continuous.

We therefore have continuity for p1 ≥ p2 and for p2 ≥ p1 (exchanging the roles of

providers), hence continuity for all price profiles.

5.3.3 Revenue-maximizing price for a provider

In this section we assume that provider k has already chosen his price, while provider

j has to set his. We describe the revenue function of provider j for different scenarios,

and provide an example when the willingness-to-pay function is linear.

In this whole section, we only consider prices p such that w(p) > 0, since a larger price

would yield no revenue to the provider setting it.

We first establish a monotonicity result, that will be useful in the rest of the analysis.

Lemma 5.3. The total demand ρTj of provider j is a continuous function of his price

pj; that function is in addition non-increasing while provider j is not saturated (i.e.,

while ρTj < c).



Chapter 5. Providers competition 97

Proof. Recall that

ρT
j (pj , pk) = w(pj)ρj + ρk[w(pj)− w(pk)]

+

+ min (w(pk), w(pj)) ρk(1− Pk).

The components of the first line are trivially continuous and non-increasing in pj with

our assumptions on w(·).

The continuity of ρT
j (pj , pk) follows from the continuity of Pk in the price vector (pj , pk),

established in the previous section. To establish monotonicity, we distinguish two cases.

• If pj ≤ pk, we show that the success probability Pk is non-decreasing in pj : applying

System (5.18) (with k = 1, j = 2) we get that Pk is the solution of the fixed-point

equation x = g(x), where the function g can be written as

g(x)=min

1, c

w(pk)ρk+w(pk)ρj

[
1− c

w(pj)(ρj+ρk)−w(pk)ρkx

]+
.

We then remark that, all else being equal, g(x) is non-decreasing in pj , so the solution

Pk of the fixed-point equation g(x) = x is also non-decreasing in pj .

As a result, when pk ≥ pj the component min (w(pk), w(pj)) ρk(1 − Pk) decreases with

pj , and so does ρT
j .

• If pk < pj , then we have

ρT
j (pj , pk) = w(pj)ρj + w(pj)ρk(1− Pk).

When ρT
k < c, then Pk = 1 and ρT

j is non-increasing in pj .

Now if ρT
k > c then from System (5.18) (this time with k = 2, j = 1), we have w(pk)(ρj+

ρk)− w(pj)ρjPj > c and

ρT
j (pj , pk) = w(pj)(ρj + ρk)

+w(pj)ρk
c

w(pk)(ρj + ρk)− w(pj)ρjPj
.
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Assuming that provider j is not saturated, Pj = 1 and thus ρT
j = f(w(pj)) with

f(x) := x(ρj + ρk)− xρk
c

w(pk)(ρj + ρk)− xρj
.

But f is a non-decreasing function of x when x ∈ [0, w(pk)] and w(pk)(ρj+ρk)−xρj > c:

differentiating we indeed get

f ′(x)

ρj + ρk
= 1− ρkc

w(pk)

(w(pk)(ρj + ρk)− xρj)2

≥ 1− ρkw(pk)

w(pk)(ρj + ρk)− xρj

≥ 1− ρkw(pk)

w(pk)(ρj + ρk)− w(pk)ρj
≥ 0,

where we used w(pk)(ρj + ρk) − xρj > c in the second line, and x ≤ w(pk) in the last

one. The non-increasingness of ρT
j = f(w(pj)) in pj then comes from that of w(·).

5.3.3.1 Capacity saturation price

For further analysis, we define the capacity saturation price of a provider, that depends

on the price of his competitor.

Definition 5.4. The capacity saturation price of provider j is

pc
j(pk) := inf{p ∈ [0, pmax] : ρT

j (p, pk) < c}.

Since ρT
j (pmax, pk) = 0, for all pk we have pc

j(pk) < pmax.

Additionally, Lemma 1 implies that if pc
j > 0, then ρT

j (pc
j , pk) = c and pj ≤ pc

j ⇒ ρT
j ≥ c.

We now provide analytical expressions for that price, in the case when ρT
j (p, pk) ≥ c. In

that case ρT
j (pc

j) = c, hence pc
j satisfies


w(pj)ρj + ρk[w(pj)− w(pk)]

+ + min
(

1,
w(pj)
w(pk)

)
ρsp
k = c,

ρsp
k = w(pk)ρk

[
[w(pk)−w(pj)]

+ρj+w(pk)ρk−c
[w(pk)−w(pj)]+ρj+w(pk)ρk

]+
.

(5.8)
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Let us define a generalized inverse of w, as

W (q) := inf{p ∈ [0, pmax] : w(p) < q}. (5.9)

For q ≤ 1, W (q) is the maximum price that can be accepted by a proportion q of users.

Then the capacity saturation price can be computed as follows. (The proof is omitted

due to space constraints.)

– If w(pk) ≤ min[ cρj ,
c
ρk

], then pc
j = W

(
c+w(pk)ρk
ρj+ρk

)
.

– If c
ρk
< w(pk) ≤ 2c

ρj+ρk
, then pc

j = W
(

2c
ρj+ρk

)
.

– If c
ρj
< w(pk) ≤ 2c

ρj+ρk
, then pc

j = W
(
c
ρj

)
.

– If w(pk) >
2c

ρj+ρk
, then pc

j = W (x), with x the unique solution in [0, w(pk)] of

−x2ρj + x

(
w(pk)(ρj + ρk)− c

ρk − ρj
ρj + ρk

)
− cw(pk) = 0.

5.3.3.2 Piece-wise expression of the revenue function

The revenue function of each provider j is continuous in his price (from the continuity

of ρT
j and of Pj), and can be expressed analytically on different segments.

1. When pj ≤ pc
j(pk) (or ρT

j (pj) ≥ c when pc
j(pk) > 0), the RSU capacity of provider

j is saturated, and thus his revenue is simply

Rj = pjc. (5.10)

This is the case in Figure 5.9 for prices pj below approximately 2.5. Figure 5.11

shows that for these prices, provider j spills some flow over toward provider k.

Above pc
j , provider j is not saturated anymore. Then if the total demand ρk(p

c
j , pk)

of the competitor is strictly below c, we have a price range with no provider being

saturated. In that case we have no spillover demand, and the revenue of provider

j is:

Rj = pj
(
w(pj)ρj + [w(pj)− w(pk)]

+ρk
)
.

If pc
j < pk, then we remark that necessarily ρT

k (pk, pk) ≤ c, i.e., we meet the price

of the opponent provider before he gets saturated. Indeed, at (pc
j , pk) provider j

does not spill traffic over to k, thus ρT
k (pc

j , pk) = ρkw(pk) (where we also used the
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fact that w(pk) ≤ w(pc
j)). From the definition of pc

j , provider j is not saturated

at (pk, pk), so that ρT
k (pk, pk) = ρkw(pk) = ρT

k (pc
j , pk) ≤ c. Summarizing, we then

have the two following segments.

2. If pc
j < pk and ρT

k (pc
j , pk) ≤ c, then for pj ∈ [pc

j , pk]

Rj = pj (w(pj)(ρj + ρk)− w(pk)ρk) .

Remark that this segment is empty if pc
j ≥ pk or ρT

k (pc
j , pk) ≥ c. Figure 5.11

illustrates that when pj is between approximately 2.5 and 4, provider j serves his

own traffic and the one from the competitor who refused the price pk but agrees

to pay pj .

3. If ρT
k (pc

j , pk) ≤ c, then for pj ≥ max(pc
j , pk) we have while provider k remains

unsaturated:

Rj = pjw(pj).

4. Now if ρk(p
c
j , pk) > c, then provider k is saturated for pj ∈ [pc

j , pmax] (which is easy

to see since j has no spillover traffic), and for pj ∈ [pc
j , pk] we have

Rj = pj (w(pj)(ρj + ρk)− c) .

Remark that this segment appears only when both providers can be simultaneously

saturated, a case not occurring in the example we display here.

5. There may be a price of provider j larger than pk, and above which the competitor

gets saturated, so that provider j may serve part of the traffic spilled over by k.

In that case the revenue of provider j is:

Rj = pj

(
w(pj)ρj +

w(pj)

w(pk)
ρsp
k

)
, (5.11)

where

ρsp
k = w(pk)ρ

(w(pk)− w(pj))ρj + w(pk)ρk + ρsp
j − c

(w(pk)− w(pj))ρj + w(pk)ρk + ρsp
j

. (5.12)

Figure 5.12 shows that provider k gets saturated, and the spillover traffic is served

partly by provider j as illustrated in Figure 5.11.

Figure 5.8 illustrates those different zones for the special case ρ1 = ρ2 = 11, c = 10,

and w(p) = 1 − p/10. Figure 5.9 shows the corresponding different segments for Rj
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when pk = 4, and Figure 5.10 for various prices pk of the competitor. We observe

that a revenue-maximizing price can belong to different segments, depending on the

competitor’s price.
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original flow ρj served by provider j, “SP-k” the part from users who agreed to pay pk
but were unserved by k due to capacity constraints, and “Refused” the part from users

who refused to pay pk
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Figure 5.12: Flow served by provider k for pk = 4. “Own” denotes the part of the
original flow ρk served by provider k, “SP-j” the part from users agreeing to pay pj but
unserved by j due to capacity constraints, and “Refused” is the part of users refusing

to pay pj .

5.3.4 Providers pricing game

In this section we consider a non-cooperative game, where providers –the players– simul-

taneously choose their prices, trying to maximize their individual payoffs given by (5.3).

Our aim is to find a Nash equilibrium (NE) of this game: a pair of prices (p̄1, p̄2), such

that no player could increase his revenue by unilaterally changing his price. Further, we

investigate the situation where providers would decide to cooperate, trying to maximize

the sum of their individual revenues (as a monopoly would do). We analyze how much

the providers lose in terms of total revenue by refusing to cooperate.

Below is a more formal definition of the Nash equilibrium in the pricing game.

Definition 5.5. A pair of prices (p̄1, p̄2) is a Nash equilibrium for the pricing game if

R1(p̄1, p̄2) ≥ R1(p1, p̄2) for all p1 ∈ (0, pmax],

R2(p̄1, p̄2) ≥ R2(p̄1, p2) for all p2 ∈ (0, pmax].

Nash equilibria can be interpreted as predictions for the outcome of the competition

between selfish entities, assumed rational and taking decisions simultaneously.
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5.3.4.1 The case of large capacities

We first consider here that RSUs capacities are larger than the users flows (c ≥ ρj +ρk).

So, for any price pair RSUs capacities are not saturated and spillover traffic never

appears.

Without loss of generality we consider that ρ1 = γρ2 = γρ, for γ ∈ (0, 1]. (The case

γ = 0 is trivial and not considered here.) In all this subsection, we consider a linear

willingness-to-pay function, i.e., w(p) = 1− p/pmax for some pmax > 0.

Proposition 5.6. The pricing game has at maximum two equilibria:
p̄1 = pmax(γ+1/2)

2(1+γ) ,

p̄2 = pmax

2 ,

is an equilibrium for any γ ∈ (0, 1] and
p̄1 = pmax

2 ,

p̄2 = pmax(1+1/2γ)
2(1+γ) ,

is an equilibrium only for γ ∈ [s, 1], where s ≈ 0.73

Proof. To show that a pair of prices is a Nash equilibrium, we verify that no provider

can increase his individual revenue by unilaterally changing his price. For the large

capacities case, the revenue curves of both providers have only two different expressions,

since RSUs are never saturated. Again, we consider two cases:

• First, when p1 ≤ p2 we have to verify that the price profile


p̄1 = pmax(γ+1/2)

2(1+γ) ,

p̄2 = pmax

2

is an equilibrium.

For Provider 1, we thus have to check whether the revenue-maximizing price p1 = pmax/2

in the zone where p1 ≤ p2 could be better for him, or equivalently, determine for which

γ we could have R1(p1, p̄2) > R1(p̄1, p̄2), in which case the proposed profile is not an
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equilibrium. Taking the mathematical expressions:

R1(p̄1, p̄2) =
pmaxρ(γ + 1/2)2

4(1 + γ)
,

R1(p1, p̄2) = 1/4ργpmax.

We then observe that for any γ ≥ 0, we have (γ+1/2)2 ≥ γ(1+γ) and thus R1(p1, p̄2) ≤

R1(p̄1, p̄2). Hence Provider 1 cannot increase his revenue by unilaterally changing his

price.

For Provider 2, we similarly have to check, whether the peak price p2 = pmax+p̄1γ
2(1+γ) in the

zone where p1 ≤ p2 could be preferable. Let us first rewrite

p2 =
pmax + p̄1γ

2(1 + γ)
=
pmax(γ2 + 5/2γ + 2)

4(1 + γ)2
.

The revenue corresponding to this price is

R2(p̄1, p2) =
pmax(γ2 + 5/2γ + 2)

4(1 + γ)2
×(

(1 + γ)ρ(1− (γ2 + 5/2γ + 2)

4(1 + γ)2
)

−γρ(1− γ + 1/2

2(1− γ)
)
)

=
pmaxρ(γ2 + 5/2γ + 2)2

16(1 + γ)3
,

while with p̄2 Provider 2 gets a revenue

R2(p̄1, p̄2) = 1/4ρpmax. (5.13)

Therefore the condition R2(p̄1, p2) > R2(p̄1, p̄2) is equivalent to

(γ2 + 5/2γ + 2)2 > 4(1 + γ)3

⇔ γ4 + γ3 − 7/4γ2 − 2γ > 0.

For γ ∈ [0, 1] that last condition is never satisfied (the function being nonpositive), and

thus Provider 2 cannot increase his revenue by unilaterally changing his price.
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As a result, the proposed price profile (p̄1, p̄2) is indeed a Nash equilibrium for all γ ∈

(0, 1].

• We now turn our attention to the case when p1 > p2. As before, we have to verify

whether 
p̄1 = pmax

2 ,

p̄2 = pmax(1+1/2γ)
2(1+γ) ,

is a Nash equilibrium. Let us study whether Provider 1 has an incentive to change

his price to p1 =
γpmax+p̄2

2(1+γ ) (his best price in the zone where he is cheaper than the

competitor). Plugging the expression of p̄2 we have:

p1 =
2γ2 + 5/2γ + 1

4(1 + γ)2
,

which would earn Provider 1 a revenue

R1(p1, p̄2) = pmaxρ
2γ2 + 5/2γ + 1

4(1 + γ)2
·(2γ2 + 11/2γ + 3

4(1 + γ)
− 3/2γ + 1

2(1 + γ)

)
=

ρpmax(2γ2 + 5/2γ + 1)2

16(1 + γ)3
,

while under the proposed price profile he gets

R1(p̄1, p̄2) = 1/4ρpmaxγ.

Then we have R1(p1, p̄2) > R1(p̄1, p̄2) if and only if

(2γ2 + 5/2γ + 1)2 > 4γ(1 + γ)3

⇔ 2γ3 + 7/4γ2 − γ − 1 < 0.

The polynomial expression above has a unique root s ≈ 0.73: thus, for γ < s Provider 1

could increase his revenue by changing his price, and (p̄1, p̄2) is not an equilibrium. On

the other hand, for γ > s, the price p̄1 is a best-response of Provider 1 to p̄2.
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Finally, for Provider 2 we follow the same logic, investigating whether taking the optimal

price above the price of Provider 1 could lead to a revenue increase:

R2(p̄1, p2) = 1/4ρpmax,

R2(p̄1, p̄2) =
pmaxρ(1 + 1/2γ)2

4(1 + γ)
.

Observing that (1 + 1/2γ)2 > 1 + γ for all γ, we deduce that R2(p̄1, p2) ≤ R2(p̄1, p̄2),

hence Provider 2 cannot increase his revenue by unilaterally changing his price.

Thus an equilibrium with p1 > p2 exists only for γ ∈ [s, 1].

Summarizing, we have:

1. When p1 ≤ p2, the provider revenue functions are


R1 = p1(w(p1)ρ(1 + γ)− w(p2)ρ),

R2 = p2w(p2)ρ.

with an equilibrium pair of prices


p̄1 = pmax(γ+1/2)

2(1+γ) ,

p̄2 = pmax

2 .

The corresponding total revenue is

R = R1 +R2 =
pmaxρ(γ2 + 2γ + 5/4)

4(1 + γ)
.

2. When p1 > p2, the revenue functions are:


R1 = p1w(p1)γρ,

R2 = p2(w(p2)ρ(1 + γ)− w(p1)γρ),

giving the equilibrium existing only for γ ∈ [s, 1], where s ≈ 0.73:


p̄1 = pmax

2 ,

p̄2 = pmax(1+1/2γ)
2(1+γ) ,

with the corresponding total revenue

R =
pmaxρ(5/4γ2 + 2γ + 1)

4(1 + γ)
.
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We now compare the minimum total revenue in the duopoly case with the revenue a

monopolist would obtain, to evaluate the cost of competition. Following the literature

on the Price of Anarchy [86], we use the ratio between the total revenue in the worst-case

Nash equilibrium and the monopoly total revenue as the cost measure.

It is easy to check, that the second Nash equilibria highlighted before –corresponding to

the case p1 > p2– gives a lower total revenue if it exists.

Proposition 5.7. The cost of competition is:


4(1+γ3)

(3+4γ)(γ2+2γ+5/4)
if γ ∈ (0, s),

4(1+γ3)
(3+4γ)(5/4γ2+2γ+1)

if γ ∈ [s, 1].

(5.14)

Proof. We first derive an expression for the optimal (for providers) revenue value, which

is the maximum possible sum of their revenues (that we can reach by collaborating). We

use a linear expression for the willingness-to-pay function w(p) = pmax−p
pmax

As previously,

we consider two cases:

• First, when p1 ≤ p2 the total revenue is

R = R1 +R2

= p1

(pmax − p1

pmax
(1 + γ)ρ− pmax − p2

pmax
ρ
)

+ p2ρ
pmax − p2

pmax

=
ρ

pmax
(p1γpmax − p2

1(1 + γ) + p1p2 + pmaxp2 − p2
2).

The necessary extremum condition are :


∂R
∂p1

= ρ
pmax

(γpmax − 2p1(1 + γ) + p2) = 0,

∂R
∂p2

= ρ
pmax

(p1 + pmax − p2) = 0.

Therefore the prices maximizing the total revenue should satisfy


popt

1 =
γpmax+popt

2
2(1+γ) ,

popt
2 =

pmax+popt
1

2 .
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Solving that system gives


popt

1 = pmax(2γ+1)
3+4γ ,

popt
2 = pmax(3γ+2)

3+4γ .

(5.15)

It is easy to verify that the sufficient conditions for this pair to be a maximum are also

satisfied. The maximum total revenue with p1 ≤ p2 is therefore

R =
pmaxρ(γ + 1)2

3 + 4γ
.

• Let us now consider the case p1 > p2. The total revenue is:

R = R1 +R2

=
ρ

pmax
(−γp2

1 + p2pmax − (1 + γ)p2
2 + p1p2γ + p1γpmax).

The necessary extremum conditions are :


∂R
∂p1

= ρ
pmax

(γpmax − 2p1γ + p2γ) = 0,

∂R
∂p2

= ρ
pmax

(p1γ + pmax − p22(1 + γ)) = 0,

leading to the system


popt

1 =
pmax+popt

2
2 ,

popt
2 =

pmax+popt
1 γ

2(1+γ) ,

from which we get


popt

1 = pmax(2γ+3)
4+3γ ,

popt
2 = pmax(γ+2)

4+3γ .

Again, the sufficient maximality conditions are satisfied; the total revenue is:

R =
pmaxρ(γ + 1)2

4 + 3γ
.
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Figure 5.13: Cost of competition for large capacities in the heterogeneous-flows case
(γ small corresponds to high flow heterogeneity). The cost of competition function
is discontinuous (because the least efficient equilibrium does not exist for all γ) and

reaches its maximum at γ = s.

Comparing both cases, we find that for γ ∈ (0, 1] the total revenue with p2 ≥ p1 is larger

than (or equal to) in the other case, meaning that the price profile (5.15) maximizes

total revenue.

Then, we divide that revenue by the minimum equilibrium revenue (i.e., we compute

the Price of Anarchy 5.14 for the game played among providers); it is easy to remark

that the equilibrium yielding the smallest total revenue is the one with p1 > p2 (which

exists only for γ ∈ [s, 1], otherwise there is only one equilibrium).

Remark that if we consider only the best-case Nash equilibrium (under a Price of Sta-

bility logic), then the first expression above applies for γ ∈ [0, 1]. Figure 5.13 shows

the cost of competition of (5.14), that is maximum for γ = s, i.e., when the second

candidate becomes actually an equilibrium.
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5.3.4.2 Homogeneous flows and arbitrary capacities

With arbitrary capacities, the model becomes intractable analytically. We treat here

the special case when user flows are homogeneous, i.e., ρ1 = ρ2 := ρ. In that case, we

can prove necessary conditions for a price profile to be an equilibrium.

Proposition 5.8. If (p̄j , p̄k) is an equilibrium, then

p̄j > pcj(p̄k),

p̄k > pck(p̄j).

Proof. We first prove that if at least one provider –say j– charges a price lower than

or equal to his capacity saturation price, then the price profile is not an equilibrium.

Assume that (p̄j , p̄k) is an equilibrium, with p̄j < pc
j(p̄k): then provider j is saturated

and gets revenue p̄jc. But deviating to pc
j(p̄k) would improve his revenue to Rj = pc

j(p̄k)c,

a contradiction.

Now we prove that there is no equilibrium where at least one provider charges his exact

capacity saturation price. Again we assume that (p̄j , p
c
k(p̄j)) is an equilibrium. From

the result above we necessarily have p̄j ≥ pc
j(p

c
k(p̄j)), hence ρsp

j = 0.

• We first show that p̄j ≥ pc
k(p̄j): if it were not the case (p̄j < pc

k, omitting writing p̄j in

the saturation price of k) then w(p̄j) ≥ w(pc
k(p̄j)), yielding

ρT
k (p̄j , p

c
k) = w(pc

k)ρ = c,

ρT
j (p̄j , p

c
k) = 2w(p̄j)ρ− w(pc

k)ρ = 2w(p̄j)ρ− c ≤ c.

This implies w(p̄j) ≤ w(pc
k), therefore w(p̄j) = w(pc

k) thus ρT
j (p̄j , p

c
k) = c, yielding

p̄j ≤ pc
j(p

c
k(p̄j)). Since the opposite inequality also holds we have p̄j = pc

j(p
c
k(p̄j)), i.e.,

each provider charges his saturation price. We then deduce that they are equal, because

they are both maximum prices such that w(p)ρ = c, which contradicts our assumption

that p̄j < pc
k(p̄j).



Chapter 5. Providers competition 112

• Therefore p̄j ≥ pc
k(p̄j). Consider some p > p̄j ; we have

Rj(p, p
c
k(p̄j)) = pw(p̄j)ρ

(
2− c

2w(pc
k)ρ− w(p̄j)ρ

)
.

We now prove that this revenue, as a function of p, has a positive right-derivative at

p = p̄j . Differentiating, we get

R′j(p, p
c
k(p̄j)) = (pw′(p)ρ+ w(p)ρ)

(
2− c

2w(pc
k)ρ− w(p)ρ

)
−pw(p)ρ

cw′(p)ρ

(2w(pc
k)ρ− w(p)ρ)2

.

At (p̄j , p
c
k(p̄j)) the flow of provider k equals c:

ρT
k (p̄j , p

c
k(p̄j)) = w(pc

k)ρ+ (w(pc
k)ρ− w(p̄j))ρ) = c,

which implies

R′j(p̄j , p
c
k(p̄j)) = w(p̄j)ρ+ ρp̄jw

′(p̄j)(1− w(p̄j)ρ/c). (5.16)

If w′(p̄j) = 0, R′j(p̄j , p
c
k(p̄j)) is strictly positive. We now show it is also the case if

w′(p̄j) < 0.

– First, if p̄j > pc
j(p

c
k(p̄j)), then

R′j(p̄j , p
c
k(p̄j)) = w(p̄j)ρ+ ρp̄jw

′(p̄j)(1− w(p̄j)ρ/c)

> w(p̄j)ρ+ ρp̄jw
′(p̄j).

But as an equilibrium price, p̄j should maximize the revenue of provider j over

(pc
j(p

c
k(p̄j)), pmax), and thus p̄j should make the derivative of Rj = pw(p)ρ equal

to zero, giving w(p̄j)ρ+ ρp̄jw
′(p̄j) = 0, which implies R′j(p̄j , p

c
k(p̄j)) > 0 .

– Second, if p̄j = pc
k(p̄j), then w(p̄j)ρ = c and the revenue function derivative in (5.16)

is equal to c > 0.

Thus by increasing his price Provider j could increase his revenue, therefore (p̄j , p
c
k(p̄j))

is not an equilibrium.
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Formally, in order to show that a pair of prices is an equilibrium, we have to compare

the revenue they yield with the maximum revenues in all other zones (as defined in

Subsection 5.3.3.2) for each provider. Proposition 5.8 reduces this search, to zones

where both prices are strictly above capacity saturation prices. It can be easily checked

that situations where providers charge equal prices cannot be equilibria. Therefore the

equilibrium candidates remaining can be characterized by
p1 6= p2,

p1 > pc
1(p2); p2 > pc

2(p1),

R′1(p1, p2) = 0;R′2(p1, p2) = 0,

To show that such pairs are indeed Nash equilibria, we have to compare the revenue

they give with the maximum revenue in other segments.

For a linear willingness-to-pay function, the system above only leaves two candidates

(p̄1, p̄2) ∈ {(1/2pmax, 3/8pmax), (3/8pmax, 1/2pmax)} (5.17)

Numerically, we found that these two pairs of prices are indeed equilibria only when

ρ/c ≤ t, with t ≈ 1.23. Figure 5.14 shows the best-response curves when ρ/c = t.

5.3.4.3 The cost of ignoring competition

In our scenario, providers may not be aware of the presence of each other (especially if

they are located far from each other), and thus do not play a noncooperative game on

prices. In that case each provider would treat users seeing him first the same way as he

treats those coming from the competitor’s direction. We estimate here the cost of this

ignorance in terms of revenue loss.

Assume that each provider j believes his total flow to be ρ1 +ρ2 independently of pj , and

therefore simply selects his price so as to maximize pj min(c, (ρ1 + ρ2)w(pj)), leading to

a situation where p1 = p2 = arg maxp pmin(c, (ρ1 +ρ2)w(p)). Let us consider a situation

where each provider believes he is the only one serving users, so that he can set his price

to the monopoly price (pmax/2 for linear willingness-to-pay functions, if capacities are

sufficiently large). Then in practice each provider will serve only some of the users seeing
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Figure 5.14: Best-response curves in the general case, when pmax = 10, for the max-
imum value of ρ/c such that an equilibrium exists. At the equilibrium point (3.75, 5),
the best-response function of Provider 2 is discontinuous: that provider is indifferent
between the maximum in the segment where Provider 1 is saturated (≈ 6.2) and the

maximum in the segment where provider 1 is not saturated (3.75).

him first. But from such a situation, one provider could lower his price to serve some

of the traffic that refused to pay the price of the competitor, and increase his revenue.

We compute here the amount of extra revenue that a provider could get by making this

price move.

When pj ≤ pk, the revenue of Provider j with symmetric flows (ρ1 = ρ2 = ρ) is

Rj = pj(2w(pj)ρ− w(pk)ρ).

The optimal price when the willingness-to-pay function w(·) is linear equals 3/8pmax,

leading to Rj = 3/8pmax(5/4ρ − 1/2ρ) = 9/32pmaxρ, while the revenue was Rj =

1/4pmaxρ initially. Hence Provider j can improve his revenue by a factor 1/8 ≈ 12%.

Let us consider again the large capacity case, but heterogeneous flows. Assume ρ1 =

γρ < ρ2 = ρ. When Provider 1 sets his price below p2 = pmax/2, his revenue is

R1 = pmax
γ + 1/2

2(1 + γ)
(
γ + 3/2

2(1 + γ)
(1 + γ)ρ− 1/2ρ)

=
pmax(γ + 1/2)2ρ

4(1 + γ)
,
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to be compared to R1 = 1/4ργpmax when ignoring Provider 2 (i.e., when taking p1 =

pmax/2). The ratio between the two revenues equals (γ+1/2)2

γ(1+γ) and is maximized for

γ = 1/2, in which case it equals 4/3.

5.3.5 Users, varying their willingness-to-pay

With respect to our basic model, we consider here that users may change their price

acceptance threshold after meeting one provider and having either refused its price or

been rejected due to capacity limits. Several interpretations can explain this kind of

behavior:

– If the user’s request was rejected due to congestion, this signal of resource scarcity

may increase the user’s willingness-to-pay.

– Alternatively, users may know that there are several RSUs on the highway they are

using, and hence may “take a bet” for the first RSU they meet, by being more de-

manding than they could really afford. The logic in this case is that probably the next

RSUs are cheaper. As more RSUs are crossed, the risk raises to find no other RSU (or

only more expensive ones) before some delay limit, hence a higher price acceptance

threshold after passing each RSU.

This willingness-to-pay change impacts two components of the total available demand

at a provider–refused and spilled-over users from the competitor–, making them more

valuable for the provider (who may extract more revenue from those users).

We consider a simple acceptance threshold change, of a multiplicative form:

– if a user refused to pay the price of the first RSU met, his price acceptance threshold

is multiplied by α > 1;

– if a user accepted the price of an RSU but his request was rejected due to congestion,

his price acceptance threshold is multiplied by β > 1.

Note that if all users simultaneously accept to pay a price k times bigger than before,

then the proportion of users accepting to pay price p is changed from w(p) to w( pk ).

We now decompose formally the components of the user flows reaching Provider j and

accepting to pay his price pj :

1. those seeing Provider j first, thus issuing a total demand (since they accept to pay

pj)

w(pj)ρj ;
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2. those seeing Provider k 6= j (the competing provider) first, who refused to pay pk

but would accept the price pj (possibly due to the acceptance threshold increase),

forming a total demand level (smaller than ρref
k , and null when pk ≤ pj/α)

ρk[w(pj/α)− w(pk)]
+,

where x+ := max(0, x) for x ∈ R;

3. and those seeing Provider k first, who agreed to pay pk but were rejected because

of Provider k’s limited capacity, and who also agree to pay pj , for a total demand

min

(
1,
w(pj/β)

w(pk)

)
ρsp
k ,

where ρsp
k is the part of the demand w(pk)ρk that is spilled-over by Provider k.

The total demand ρT
j (pj , pk) for Provider j then equals the sum of the aforementioned

components:

ρT
j (pj , pk) :=

w(pj)ρj + ρk[w(pj/α)− w(pk)]
+ + min

(
1,

w(pj/β)
w(pk)

)
ρsp
k

5.3.5.1 Rejected users and uniqueness of flows

Analogically to the basic model formula (5.5), the success probability equals

Pj = min

1,
c

w(pj)ρj+[w(pj/α)−w(pk)]+ρk + min[1,
w(pj/β)
w(pk) ]ρsp

k

.

To simplify a bit the analysis, we assume in the following that α = β, i.e., users that are

not served increase their acceptance threshold price by the same factor, whether they

had accepted or refused the price of the first RSU they met. Such an assumption is

realistic, if the price variation is interpreted as a response to the decreasing likelihood

of finding another (cheap) RSU. If p1/α > p2, then those success probabilities should

satisfy  P1 = min
(

1, c
w(p1)ρ1+w(p1/α)ρ2−w(p1/α)ρ2P2

)
P2 = min

(
1, c

w(p2)ρ2+w(p2/α)ρ1−w(p1)ρ1P1

)
.

(5.18)
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We obtain similar equations when p1 < p2/α, by switching the roles of Providers 1 and

2. Finally, if p2/α ≤ p1 ≤ p2α then

 P1 = min
(

1, c
w(p1)ρ1+w(p1/α)ρ2−w(p2)ρ2P2

)
P2 = min

(
1, c

w(p2)ρ2+w(p2/α)ρ1−w(p1)ρ1P1

)
.

(5.19)

And now we have to prove extension of Proposition 5.1

Proposition 5.9. For any price vector (p1, p2), the system (5.18) has a unique solution

(P1, P2).

Proof. The proof is analogical to the one in the basic model. For the details see Appendix

A.1.

The proof of Proposition 5.2 stating that success probability pair is continuous in the

price profile p1, p2 for our case is straightforward and similar to the one in basic model.

5.3.5.2 Piece-wise expression of the revenue function

In this section, we study the situation when provider k has fixed his price pk, and

provider j wants to maximize his revenue by setting appropriately his price pj .

The Lemma 5.3 stating that the total demand ρT
j of provider j is a continuous function

of his price pj is non-increasing while provider j is not saturated, is still valid in our

extended model, the proof could be found in Appendix A.2.

The revenue function piece-wise expression has more cases, comparing to the basic

model:

1. When ρT
j (pj) ≥ c (or pj ≤ pc

j(pk) when pc
j(pk) > 0), the RSU capacity of provider

j is saturated, and thus his total load is simply

ρTj = c,

the revenue then equals

Rj = pjc.
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The corresponding segment of the revenue curve is the linear part on Figure 5.16,

and corresponds in Figure 5.15 to prices on the left of the capacity saturation curve

of provider j.

2. If pj < pk/α, then provider k cannot attract users having refused the price of

provider j:

ρTj = w(pj)ρj + w(pj/α)ρk − w(pk)ρk + ρsp
k ,

with

ρsp
k =

[
w(pk)ρk − c

]+
.

(a) If pk < pck, then the capacity of provider k is saturated and

Rj = pj
(
w(pj)ρj + w(pj/α)ρk − c

)
,

(b) Otherwise, provider k is not saturated and

Rj = pj
(
w(pj)ρj + w(pj/α)ρk − w(pk)ρk

)
.

Only case 2b occurs on the example of Figures 5.15-5.16.

3. If pk/α ≤ pj ≤ pkα, then both providers are able to serve the refused traffic of

each other:

ρTj = w(pj)ρj + w(pj/α)ρk − w(pk)ρk + ρsp
k ,

with

ρsp
k =

[
w(pk)ρk

w(pk)ρk + w(pk/α)ρj − w(pj)ρj − c
w(pk)ρk + w(pk/α)ρj − w(pj)ρj

]+

(a) If pk < pck, then the capacity of provider k is saturated and he gains

Rj = pj
(
w(pj)ρj + w(pj/α)ρk −

c

w(pk)ρk + w(pk/α)ρj − w(pj)ρj

)
,

(b) Otherwise, provider k is not saturated and his revenue is

Rj = pj
(
w(pj)ρj + w(pj/α)ρk − w(pk)ρk

)
.
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Figures 5.15-5.16 illustrate both cases, with the only remark that on Figure 5.16,

cases 2b and 3b constitute one segment of the revenue curve (indeed, the expres-

sions of the revenue function are identical in both cases).

4. If pj > pkα, then the total load of provider j is

ρTj = w(pj)ρj +
w(pj/α)

w(pk)
ρsp
k ,

where

ρsp
k =

[
w(pk)ρk

w(pk)ρk + w(pk/α)ρj − w(pj)ρj − c
w(pk)ρk + w(pk/α)ρj − w(pj)ρj

]+
.

(a) If pk < pck, then the capacity of provider k is saturated and his revenue is

Rj = pj

(
w(pj)ρj + w(pj/α)ρk ·

w(pk)ρk + w(pk/α)ρj − w(pj)ρj − c
w(pk)ρk + w(pk/α)ρj − w(pj)ρj

)
,

(b) Otherwise, provider k is not saturated and his revenue is simply

Rj = pjw(pj)ρj .

We could observe both cases on the example on Figures 5.15-5.16.

Due to the complex form of the revenue function, computing the optimal price as a

response to the price of the opponent leads to considering many subcases and hence

appears analytically intractable. However, it is quite easy to compute it numerically.

5.3.5.3 Large capacities assumption

In what follows, we assume that RSU capacities exceed the total user flow (i.e.,

c ≥ ρj + ρk). In particular, for any price profile RSU capacities are not saturated, and

there is no spillover traffic.

This assumption is not necessarily restrictive; indeed in the basic model we have estab-

lished that at an equilibrium (if any) of the pricing game, no provider is saturated.
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For the case of homogeneous users flows, if there is an equilibrium in the general case

- it is identical to the one we have in the scenario when spilled-over flows do not exist,

which is the case of the large capacities. Thus, in the large capacities case we have

all the equilibria we may have in the general case, with the only difference that in the

general case the equilibria may not exist.

5.3.5.4 Providers competition

The revenue expressions are again defined by segments (only two now, because of the

large-capacity assumption):

Rj =

 pj

(
w(pj)ρj + w(

pj
α )ρk − w(pk)ρk

)
if pj ≤ pkα,

pjw(pj)ρj otherwise.

In the rest of this section, we derive analytical expressions for the particular case of a

linear willingness-to-pay function, of the form w(p) = [1 − p/pmax]+ for some constant

pmax.

We are interested in obtaining the best response function BRj(pk) of each provider j,

that is the function indicating the optimal price to set as a response to the competitor’s

price pk. For the best response function of provider j we isolate only two candidate

values from the revenue piecewise expressions above:

1. On the segment [0, pkα], the best response of Provider j is

BRa
j = min

(
pkα,

pmaxρj + pkρk
2ρj + 2ρk/α

)
.

which is strictly below pkα if pk >
pmaxρj

2ρjα+ρk
.

2. On the segment [pkα,∞), Provider j maximizes his revenue with

BRb
j = max (pkα, pmax/2) ,

which is strictly larger than pkα if pk <
pmax

2α .

Now remark that
pmaxρj

2ρjα+ρk
< pmax

2α , hence because of the continuity of the revenue function:

– if pk <
pmaxρj

2ρjα+ρk
the best response is BRj = pmax/2;

– if pk >
pmax

2α the best response is BRj =
pmaxρj+pkρk
2ρj+2ρk/α

;
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– for
pmaxρj

2ρjα+ρk
≤ pk ≤ pmax

2α , we have to compare the two best-response candidates above,

which we do now in the case of symmetric flows.

Proposition 5.10. Assume user flows are homogeneous, i.e., ρ1 = ρ2 = ρ, and consider

a linear willingness-to-pay function w(p) = [1 − p/pmax]+. Then the best-response of

Provider j is

BRj =


pmax+pk
2+2/α if pk ≥ pmax(

√
1 + 1

α − 1)

pmax

2 otherwise.

Proof. Let us focus on the region where
pmaxρj

2ρjα+ρk
≤ pk ≤ pmax

2α . In that region,

Rj(BRb
j) =

pmax

4
ρ

and

Rj(BRa
j ) =

pmax + pk
2 + 2/α

ρ
[
1−

1 + pk
pmax

2 + 2/α
−

1 + pk
pmax

2α+ 2
+

pk
pmax

]
=

pmax + pk
α(2 + 2/α)2

ρ
[
α+ 1 + α

pk
pmax

+
pk
pmax

]
.

The difference Rj(BRa
j )−Rj(BRb

j) has the same sign as

p2
k

1

pmax
+ 2pk −

pmax

α
,

which is positive iff pk ≥ pmax(
√

1 + 1
α − 1). Finally we check that for all α,

1/(2α+ 1) <

√
1 +

1

α
− 1 < 1/(2α),

which concludes the proof.

At a Nash equilibrium (p∗1, p
∗
2), each provider is playing a best-response to the price

set by the competitor. But we remark that we cannot have an equilibrium of the form

(BRb
1,BRb

2), since this would imply that p1 ≥ αp2 and p2 ≥ αp1. As a result, only two

types of equilibrium can occur:
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– A symmetric Nash equilibrium, of the form (BRa
1,BRa

2), leading to

p∗1 = p∗2 =
pmax(2

ρ2
j

α + ρ2
k + 2ρkρj)

4(ρk +
ρj
α )(ρj + ρk

α )− ρjρk
; (5.20)

– an asymmetric Nash equilibrium, with one provider (say, Provider j) playing BRa
j and

the other one playing BRb
k, leading to

 p∗j =
pmax(ρj+ρk/2)

2ρj+2ρk/α

p∗k = pmax/2
(5.21)

Considering again the homogeneous flow case, we determine the conditions on α for

those price profiles to be Nash equilibria.

1. From Proposition 5.10, the symmetric equilibrium described in (5.20) exists only

when

p∗1 ≥ pmax(

√
1 +

1

α
− 1),

i.e. when 2/α+3
4(1+1/α)2−1

≥
√

1 + 1
α − 1, which holds if and only if α ≥

√
4
3 .

2. For the asymmetric equilibrium described in (5.21), the conditions of existence

are:  pmax/2 ≥ pmax(
√

1 + 1
α − 1),

3pmax/2
2+2/α ≤ pmax(

√
1 + 1

α − 1).

The first condition is always satisfied (recall that α ≥ 1), while the second one

holds if and only if α ≤ s, where s ≈ 1.0766.

Table 5.1 summarizes the equilibrium outcomes we can expect from the pricing game,

depending on the value of α.

Two sets of best responses curves are shown on Figure 5.17, for different α values illus-

trating the different types of equilibria. We observe that the prices in the symmetric

equilibrium are lower than prices in asymmetric ones, which means that users accepting

to pay more (through a larger α) may lead to a situation where providers charge lower

prices, a counterintuitive phenomenon

Figure 5.18 shows the corresponding equilibrium prices and the average price payed by

users depending on α and Figure 5.19 plots the equilibrium revenue of both providers.
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α ∈ [1, s] 2 equilibria:{
p∗j = 3pmax/(4 + 4/α)

p∗k = pmax/2
and{
p∗j = pmax/2

p∗k = 3pmax/(4 + 4/α)

α ∈ (s,
√

4
3) No equilibrium

α ≥
√

4
3 1 equilibrium: p∗1 = p∗2 =

pmax
2/α+3

4(1+1/α)2−1

Table 5.1: Nash equilibria of the pricing game, with homogeneous flows and a linear
willingness-to-pay function.
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Figure 5.17: Best responses curves for ρ1 = ρ2 = 11, for various α

These figures confirm that for some values of α, providers decrease their prices with

respect to the reference case α = 1, resulting in a decrease of their total revenue.

5.3.5.5 Providers cooperation

For comparison purposes we can assume that both providers agreed to cooperate, trying

to maximize the sum of their revenue. We again assume users flows to be homogeneous,

i.e., ρ1 = ρ2 = ρ.

To find optimal prices, we again have to consider two cases:
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1. First, if pj ≤ pk
α The total revenue is

RT = pj

(
w(pj)ρ+ w(

pj
α

)ρ− w(pk)ρ
)

+ pkw(pk)ρ.

Further, we take partial derivatives:

∂RT

∂pj
= ρ

(
1− pj

pmax
(2 + 2/α) + pk

pmax

)
= 0,

∂RT

∂pk
= ρ

(
1 +

pj
pmax

− 2pk
pmax

)
= 0,

and finally get expressions for optimal prices:


p̄j = 3pmax

3+4/α ,

p̄k = (3+2/α)pmax

3+4/α .

After substituting this optimal prices in total revenue expression we obtain:

R̄′
T

=
pmaxρ(9α+ 15 + 4/α)

α(3 + 4/α)2
.

2. If pk
α < pj < pkα, the total revenue is:

RT = pj

(
w(pj)ρ+ w(

pj
α

)ρ− w(pk)ρ
)

+

pk

(
w(pk)ρ+ w(

pk
α

)ρ− w(pj)ρ
)
.

Further, we take partial derivatives:

∂RT

∂pj
= ρ

(
1− pj

pmax
(2 + 2/α) + 2pk

pmax

)
= 0,

∂RT

∂pk
= ρ

(
1− pk

pmax
(2 + 2/α) +

2pj
pmax

)
= 0,

and the optimal prices are:

p̄j = p̄k =
pmaxα

2
.
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Putting them in total revenue expression gives:

R̄′′
T

=
pmaxαρ

2
.

Now we have to decide, which revenue expression gives higher value depending on α.

Let us obtain a condition on R̄′
T ≥ R̄′′T :

pmaxρ(9α+ 15 + 4/α)

α(3 + 4/α)2
≥ pmaxαρ

2
,

and after some manipulations we obtain:

9α3 + 6α2 − 14α− 8 < 0,

and taking into account that α ≥ 1, we have only root. Than we could write:


α ∈ [1, λ] RT = pmaxρ(9α+15+4/α)

α(3+4/α)2 ,

α > λ RT = pmaxαρ
2 .

where λ ≈ 1.215.

Assuming equal share of cooperative revenue, we plotted individual revenue of both

providers in competition and cooperation cases on Figure 5.19.

5.3.5.6 Users surplus

In this section we evaluate equilibria we got in previous section from the point of view

of the users surplus, which is the difference the between what the users wanted to pay,

and what they actually payed in the case of large capacities. In our scenario, in which

users willingness-to-pay varies, the users, which accept to pay the price of the second

provider met, actually pays more than they wanted to pay originally and thus in this

case the users surplus may be negative.

If we consider just one direction of flow ρj and denote by pj the price of the first provider

this flow meets, and by pk the price of the second one, then we have positive part of
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users surplus as follows:

US+
j =

∫ pmax

pj

w(p)ρdp+

∫ pj

pk

[w(p)− w(pj)]
+ρdp,

which includes surplus from the served at first operator j flow and from the refused flow,

served at operator k. The negative part of users surplus is:

US−j =
[
w(pk/α)−max(w(pj), w(pk))

]+
(pk − pk/α)ρ−∫ min(pj ,pk)

pk/α

[
w(p)−max(w(pj), w(pk))

]+
ρdp,

which is the case when users from refused traffic of provider j accepted to pay price of

provider k, which is higher than their original price they accepted to pay. Notice, that

expression of US−j is general enough to present both cases when pj > pk and pj < pk.

Figures 5.23 - 5.24 illustrate the logic behind computation of users surplus for two cases

of relation between competing providers prices. Red square denotes the negative part

of users surplus, when they pay more, than wanted, and yellow zones denote positive

parts of users surplus.

In the case of linear willingness-to-pay function they transform to:

US+
j = (pmax − pj)w(pj)

ρ

2
+ (w(pk)− w(pj))[pj − pk]+

ρ

2
,

and

US−j =
ρ

2
(w(pk/α)− w(pk))(pk − pk/α)−

ρ

2
(w(pj)− w(pk))[pk − pj ]+

and the total user surplus is

US = US+
j + US+

k −

US−j − US
−
k .

Figure 5.22 shows total users surplus for different α values for large capacities case in

the similar settings as above. We could see that it is consistent with what we observed
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about average price payed by user: quite big range of values of α leads to increase in

users surplus, which means that accepting to pay more leaded to the situation when

overall users pay less.
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Figure 5.22: Users surplus in equilibrium vs α for ρ1 = ρ2 = 11
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Figure 5.23: Users surplus of ρ1 flow when p1 > p2

5.3.5.7 Heterogeneous willingness-to-pay variations

In this section we assume that user pricing preferences change differently for both flow

directions. Some users may for example move toward a city and thus expect to meet

quite a lot APs, while the users moving in the opposite direction are risking not to meet
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Figure 5.24: Users surplus of ρ1 flow when p2 > p1

any APs in the nearest future. The former may not increase much their willingness-to-

pay, while the latter have higher risks to fail to establish Internet connection, and thus

are more flexible in price perception.

Let us consider without loss of generality that αj = hαk = hα, for some h ≥ 1.

Similarly to the case when α was common to both flow directions, we consider three

cases:

1. If pj <
pk
α , then


Rj = pj

(
w(pj)ρj + w(

pj
αh)ρk − w(pk)ρk

)
,

Rk = pkw(pk)ρk

and for a linear w(p) 
BRa

j =
pmaxρj+pkρk

2ρj+
2ρk
αh

,

BRb
k = pmax/2.

and

BRa
j (BRb

k) =
pmax(ρj + 1/2ρk)

2ρj + 2ρk
αh

.
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This is valid for

α ≤
ρj +

√
ρj2 + 4ρk/h(ρj + 1/2ρk)

2ρj + ρk
,

which in homogeneous case

α ≤
1 +

√
1 + 6/h

3
.

2. If pk
α ≤ pj ≤ pkαh, then


Rj = pj

(
w(pj)ρj + w(

pj
αh)ρk − w(pk)ρk

)
,

Rk = pk

(
w(pk)ρk + w(pkα )ρj − w(pj)ρj

)
and for a linear w(p)


BRa

j =
pmaxρj+pkρk

2ρj+
2ρk
αh

,

BRa
k =

pmaxρk+pjρj

2ρk+
2ρj
α

, .

and 
BRa

j (BRa
k) =

pmax(2ρjρk+
2ρ2j
α

+ρ2
k)

(2ρj+
2ρk
αh

)(2ρk+
2ρj
α

)−ρjρk
,

BRa
k(BRa

j ) =
pmax(2ρjρk+

2ρ2k
αh

+ρ2
j )

(2ρk+
2ρj
α

)(2ρj+
2ρk
αh

)−ρjρk
.

For this equilibrium the condition pk
α ≤ pj ≤ pkαh is true only if


α ≥ −ρj(ρj−2ρk)+

√
ρj2(ρj−2ρk)2+8ρk3/h(ρk+2ρj)

2ρk(ρk+2ρj)
,

α ≥ −ρk(ρk−2ρj)+
√
ρk2(ρk−2ρj)2+8ρj3h(ρj+2ρk)

2hρj(ρj+2ρk) ,

and in homogeneous flows case:

{
α ≥ 1+

√
1+24/h

6 .

3. If pj > pkαh, then


Rj = pjw(pj)ρj ,

Rk = pk

(
w(pk)ρk + w(pkα )ρj − w(pj)ρj

)
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and for a linear w(p) 
BRb

j = pmax/2,

BRa
k =

pmaxρk+pjρj

2ρk+
2ρj
α

, .

and

BRb
k(BRa

j ) =
pmax(ρk + 1/2ρj)

2ρk +
2ρj
α

,

with a condition on α

α <
ρk +

√
ρk2 + 4ρjh(ρk + 1/2ρj)

2h(ρk + 1/2ρj)
,

and in homogeneous flows case:

α <
1 +
√

1 + 6h

3h
.

What is different in this new scenario is that we have three types of equilibrium now

(BRa
j ,BRb

k), and (BRa
j ,BRb

k) are not identical anymore). With homogeneous users flows

we have the following conditions:

1. (BRa
j ,BRb

k) is an equilibrium when


BRa

j (BRb
k) < pmax(

√
1 + 1

αh − 1),

BRb
k(BRa

j ) ≥ pmax(
√

1 + 1
α − 1),

α <
1+
√

1+6/h

3 .

or α < min{s/h, 1+
√

1+6/h

3 }.

2. (BRa
j ,BRa

k) is an equilibrium when


BRa

j (BRa
k) ≥ pmax(

√
1 + 1

αh − 1),

BRa
k(BRa

j ) ≥ pmax(
√

1 + 1
α − 1),

α ≥ 1+
√

1+24/h

6 .
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This set of inequalities is not solvable for αh, but for each concrete h value we can

find numerically a condition on α for the conditions to hold. This dependence is

presented on Figure 5.25

3. (BRb
j ,BRa

k) is an equilibrium when


BRb

j(BRa
k) ≥ pmax(

√
1 + 1

αh − 1),

BRa
k(BRb

j) < pmax(
√

1 + 1
α − 1),

α < 1+
√

1+6h
3h ,

or α < min{s, 1+
√

1+6h
3h }.
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Figure 5.25: Threshold α values for different h

Figure 5.25 shows threshold α values for different h, showing whether there exists a

particular type of equilibria. The figure suggests that there is no pair of α and h such

that all three types of equilibria exist.



Chapter 5. Providers competition 135

5.3.5.8 Various WTP functions

Due to complexity of the model it is hard to analytically show, that the phenomenon,

when increase of users willingness-to-pay may cause prices decrease is still valid for gen-

eral willingness-to-pay function (almost all our results so far concerned linear willingness-

to-pay function only). Note, that it is possible to prove, that in the case of large capac-

ities at high α values we indeed have at least one symmetric equilibrium, but we could

say nothing about its quality.

Thus, in current section we present numerical results for equilibrium prices for several

willingness-to-pay functions. We were interested in finding a minimum willingness-to-

pay variation value ᾱ at which symmetric equilibrium appears and to compare prices in

this equilibrium with those we have in the case of α = 1.

Table 5.2: Equilibrium prices decrease for different willingness-to-pay functions. The
results are obtained numerically with the step of 0.01

w(p) Equilibrium
prices,
α = 1

Equilibrium
prices,
α = ᾱ

ᾱ

Linear (3.75, 5.0) (3.68, 3.68) 1.16
Square (2.35, 3.33) (2.27, 2.27) 1.2
Power Law (5, 2.2) (1.35, 1.92) (1.32, 1.32) 1.17
Exponential (0.65, 1.0) (0.59, 0.59) 1.25

We are considering the following functions:

– Linear: w(p) = 1− p
pmax

– Square: w(p) = (1− p
pmax

)2

– Power Law (C, n): w(p) = C
C+pn

– Exponential: w(p) = 1
ep

Table 5.2 shows the prices which providers charge in competitive equilibrium in the

case when there is no variation (α = 1) and when the variation leaded to symmetric

equilibrium. We observe that for these willingness-to-pay functions, which follow our

convexity and monotonicity assumptions, we still have the prices decrease after some

α. From this results we may suspect that it is somehow more general result and is not

caused by simple linear willingness-to-pay function. However, this general result seems

to us to be relatively hard to prove and is matter for further research.
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5.3.6 Optimal RSUs location

In this subsection we study a scenario, when RSUs belonging to competing Internet

access providers operate on the same frequency and thus could interfere. Note, that we

do not consider that users may change their willingness-to-pay; in what follows we study

the scenario, when users keep their pricing preferences unchanged.

We further assume that capacity of closely situated RSUs depends on distance d ∈ [0, D]

between them. In what follows we assume that all users move with the same constant

speed. We could describe signal to interference and noise ratio (SINR) for user at

distance x from RSU he is connected to by the following function:

SINR =
P (x)

N + P (d− x)
,

where P (x) is the power of incoming transmission of RSU located at distance x, and d

is the distance between RSUs. As in Altman’s paper [56] let P (x) = (1 − x2)−α/2 for

some α ≥ 1. Each users is connected to a RSU inside its diameter L. Thus, the average

goodput they experience could be defined as:

c(d) =

L/2∫
−L/2

w

L
log2(1 +

(1 + x2)−α/2

N + (1 + (d− x)2)−α/2
)dx, (5.22)

where w is allocated bandwidth. If provider wants to ensure that all connected users

finish files download, the total flow per second, served by provider ρTj should not exceed

this goodput value c(d). In what follows, when we write c(d) we imply this capacity

function.

5.3.6.1 The optimal distance

We assume that Provider 1 has already fixed his price p1 and location, and only Provider

2 makes decision simultaneously about price p2 ∈ [0, pmax] and distance d ∈ [0, D] from

RSU 1 position. We are interested in getting some insight on which distance Provider 2

has to choose to maximize his revenue.

Further, we denote:

– by popt(d) the optimal price of Provider 2 for distance d.
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– by dsp := sup{d ∈ [0, D] : ρsp1 (d, popt(d)) > 0} the maximum distance at which

Provider 1 has positive spillover traffic when Provider 2 charges the optimal price.

If it is undefined, we assume it to be equal to zero.

– by dc := sup{d ∈ [0, D] : popt(d) = pc2(d)} the maximum distance at which the optimal

price of Provider 2 equals his capacity saturation price pc2, i.e., when the optimal

strategy of Provider 2 is to charge a price, such that all his capacity is used. If this

distance is undefined, we assume it to be equal to zero.

To get some analytical results about the optimal distance and price for Provider 2, we

introduce several lemmas. The first lemma gives us a useful result about monotonicity

of the revenue function of Provider 2 in distance d in the case when Provider 1 has a

positive spillover traffic:

Lemma 5.11. If for some d2 > 0 and for p = popt(d2), spillover traffic of Provider 1 is

positive ρsp1 (d2, p) > 0, then for any dc ≤ d1 < d2, R2(d1, p) > R2(d2, p).

Proof. Let us consider both revenue functions. The flows are homogeneous, and thus

p > p1, because p is optimal price for provider 2 and thus he has no spillover for d1 and

moreover for d2.

R2(d1, p) = w(p)ρ(2− c(d1)w(p)ρ

2w(p1)ρ− w(p)ρ
),

R2(d2, p) = w(p)ρ(2− c(d2)w(p)ρ

2w(p1)ρ− w(p)ρ
),

from what is it easy to see since c(d2) > c(d1) that R2(d1, p) > R2(d2, p)

The following lemma states that for every distance smaller than dsp, Provider 1 is satu-

rated when Provider 2 charges the optimal price.

Lemma 5.12. In homogeneous flows case for d ∈ [0, dsp] when Provider 2 charges the

optimal price, Provider 1 has positive spilled-over traffic ρsp1 (popt(d)) > 0.

Proof. See Appendix A.3.

And the last lemma will help us further to identify the optimal distance:

Lemma 5.13. If dsp > dc, then for d ∈ [dc, dsp] revenue of Provider 2 R2(d, popt(d)) is

decreasing function of d.
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Proof. See Appendix A.4.

For simplicity we introduce the following assumption:

Assumption 3. In what follows we assume that capacity of RSUs degrade significantly

in the case of collocation, or c(0)� ρ.

Taking into account Assumption 3 we can determine the optimal distance:

Proposition 5.14. In homogeneous flows case we determine the optimal distance dopt

for Provider 2 as follows:

1. If dsp = 0, then dopt is any d ∈ [dc, D].

2. If dsp > dc ≥ 0, then

dopt = d̄

3. If dc ≥ dsp > 0, then we have several candidates for the optimal distance:

dopt =


d̄ or

∀ d ∈ [dc, D],

(5.23)

where

d̄ = arg max
d∈[0,min(dc,dsp)]

c(d)pc(d).

Proof. See Appendix A.5.

Taking into account the result of Proposition 5.14 the following Assumption can simplify

the further analysis.

Assumption 4. In what follows we assume that if there is a set of optimal distances,

Provider 2 will prefer the smallest one.

Assumptions 3 - 4 and Proposition 5.14 allow us decrease complexity of the model: in

what follows we consider that at optimal situation Provider 2 always charges capacity

saturation price.
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Figure 5.26 shows for different capacity values flows of both providers in the case when

Provider 2 charges the optimal price and p1 is fixed. On this Figure we could clearly

see two special points: the maximum capacity at which Provider 2 is fulfilled (saturated

capacity) which corresponds to distance dc and the maximum capacity at which Provider

1 has spillover traffic (when demand flow exceeds capacity) which happens at distance

dsp.
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Figure 5.26: Flow of providers with optimal price of Provider 2 depending on capacity
when ρ = 10, p1 = 5.23, pmax = 10 and linear w(p)

5.3.6.2 Optimal strategy of Provider 2

Now we study a scenario, when price p1 of Provider 1 is fixed, the willingness-to-pay

function is linear (for general w(p) similar results could be obtained numerically) and

Provider 2 tries to find his best response in terms of capacity (distance) and price, taking

into account Assumptions 3-4.

Since we assume that Provider 2 always has his capacity saturated, he has two oppor-

tunities: 1) charge a higher than p1 price and cause spillover from Provider 1 and 2) to

charge a lower price in order to serve refused traffic of Provider 1 (and thus spillover of

Provider 1 is zero). Thus we write:

– If p2 > p1 then Provider 2 at the optimal price causes spillover traffic of Provider 1

to appear (otherwise such a price is not optimal). We know that capacity saturation
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price when opponent has spillover is:

p̄c2 =
(

1− w(p1) +

√
w(p1)

ρ
(w(p1)ρ− c̄opt)

)
pmax,

and taking into account that price and distance chosen by Provider 2 should maximize

pc2 · c(d), we get:

c̄opt = min
[
C,

ρ
9
2w(p1)

(
− 1 + 2w(p1) + 2w2(p1) + (5.24)√

1− 4w(p1) + 9w2(p1)− 10w3(p1) + 4w4(p1)
)]
,

where C = c(D) is the maximum possible capacity and w(p1)ρ ≥ c̄opt.

– If p2 ≤ p1, then Provider 2 charges the capacity saturation price:

pc
2

= (1− copt + w(p1)ρ

2ρ
)pmax,

with optimal distance

copt = min[C, ρ− w(p1)ρ

2
],

with a condition w(p1)ρ ≤ copt or w(p1) ≤ 2
3 .

We found that for situation when

max(c̄opt(p1), copt(p1)) < C, ∀ p1 ∈ [0, pmax] (5.25)

functions p̄c2 · c̄opt and pc
2
· copt are monotonously increasing and decreasing in p1, respec-

tively, and thus there is only one price pt at which Provider 2 is indifferent between both

opportunities.

Figure 5.27 illustrates demand flows (of users accepting to pay providers prices) for

the case when Provider 2 chooses optimal distance and price with price of Provider 1

p1 varying. We see, that Provider 2 flow is always equals capacity, while the flow of

Provider 1 is strictly below capacity when his price is high, and above capacity when

his price is low enough, to provoke Provider 2 to set spillover-causing price.
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Figure 5.27: Demand flows (flow of users accepted to pay) when Provider 2 charges
optimal price and chooses optimal distance vs p1 with ρ = 10, C = 10, pmax = 10 and

linear w(p)

5.3.6.3 Simultaneous game

From the basic model we know that for the simultaneous providers game, in equilibrium

both RSUs capacities are not fulfilled, i.e., p1 > pc(p2), p2 > pc(p1). From this fact

we deduce that the only one type of equilibrium is possible. Indeed, from all possible

optimal distances and prices, only one strategy profile leads to zero spilled-over flows

and thus is acceptable for both providers:

popt1 (d), popt2 (d), d,

such that d ∈ (max(dc(popt1 ), dsp(popt1 )), D]. When such kind of triple of values does not

exist - there is no equilibrium in simultaneous game.

We remind that in Assumption 3 we agreed that if Provider 2 has a choice between several

distances which give the same optimal revenue, he will choose the smallest. Under this

assumption, equilibrium in simultaneous game never exists (taking into account that

dc > 0), since Provider 2 always charge his capacity saturation price. But if we release

this assumption, we may notice that the only possible equilibrium is the one, when

Provider 2 does not want to decrease RSUs capacity, which corresponds to the scenario

when there is no interference between two RSUs (the basic model).
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5.3.6.4 Leader-Follower game

Here we discuss the case when Provider 1 makes his price decision first, and then Provider

2 chooses the optimal distance (and thus capacity) and price.

From the previous section we deduce that when Provider 1 charges a high enough price,

Provider 2 does not cause him to spill over, and when he charges a lower price, some part

of his flow would be spilled-over due to the capacity constraints imposed by Provider 1.

Thus, when Provider 1 has no spillover, his revenue equals

p1w(p1)ρ.

However, when the competitor cause him to spillover, the revenue changes to

p1c̄
opt,

where c̄opt is determined by equation (5.25).

What is more profitable for Provider 1 - to have higher price without being forced to

spill-over or to charge a lower price and loose some customers due to interference posed

by competitor? The answer on this question is given on Figures 5.28-5.29 where the

prices and demand flows in equilibrium are depicted for different users flows values ρ.

We notice that when the users flow ρ is lower than some threshold value ρT (which

could be computed numerically), Provider 1’s best strategy is to charge high price and

to avoid having spillover traffic, while after this threshold value the flow is so big, that

the maximum revenue is gained when Provider 1 has positive spillover.

Putting pt1 value (which we find numerically) in (5.25) we get a threshold value of ρt,

below which optimal prices of both providers are independent of ρ:

max
(
copt(ρt, pt1), c̄opt(ρt, pt1)

)
= C.

This threshold value is depicted on Figure 5.28.

A curious phenomena we notice is that for relatively small flow values (ρ ∈ [0,≈ 10])

Provider 1 tends to charge higher price comparing to the situation when he is the

only provider on the highway. Actually, Provider 1 has to do so, in order to not be
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caused to spill-over. This is something different from what we observe in other types of

competition, where introduction of a new player leads to prices decrease.

Figure 5.30 shows providers revenues in equilibrium depending on users flow value ρ.

We observe, that in the case of leader follower game with interference, Provider 2 al-

ways gains higher revenue. If we remove capacity term from consideration and assume

that RSUs operate on different frequencies (thus do not interfere), we will observe that

provider, that makes his turn first always has an advantage. He will charge lower price

in order to serve refused traffic coming from the opponent and this allows him to gain

higher than competitor’s revenue. Thus, the possibility to harm opponent’s capacity

drastically changes the rules of the competition.
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Figure 5.28: Optimal prices in leader follower game for different flows values with
C = 10, pmax = 10 and linear w(p)

5.3.6.5 Monopoly case

In the monopoly case, when both RSUs belong to one provider, that provider will prefer

to locate his access points as far as not to harm their capacities, so we further assume

that RSUs are situated at maximum distance D from each other.

Figure 5.29, illustrating flows in optimal situation, contains an interesting phenomena:

monopolist is interested in causing one of his RSUs to spill-over. Despite that it looks

as a contra productive strategy, logically it makes sense.
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Figure 5.29: Optimal demand flows in leader follower game for different ρ with C =
10, pmax = 10 and linear w(p)
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Figure 5.30: Providers revenue in equilibrium in leader follower game for different
flows with C = 10, pmax = 10 and linear w(p)
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Let us consider such a big ρ, that optimal prices of monopolist are not higher than

corresponding capacity saturation prices. Note, that such ρ exists, because if both

optimal prices are higher than capacity saturation prices, then they do not depend on

ρ (since there is no spilled-over traffic), while capacity saturation prices are increasing

and limiting to pmax on infinity.

From the basic model we know, that if both access points charge capacity saturation

prices, then one of providers could increase his price, in order to cause spilled-over

traffic from opponent and thus increase his own revenue, without harming the revenue

of competitor (the competitor serves the same traffic for the same price). The same

strategy is adopted by the monopolist: he prefers one of his RSU to have higher price, in

order to maximize the revenue. We propose the following interpretation: the monopolist

wants to efficiently use willingness-to-pay function by making users which could afford

higher expenses to pay more. The monopolist causes one of his RSUs to spill-over, in

order to make some of users with high willingness-to-pay to come to the second RSU

which is more expensive. Other way to tract it is as en effort to separate users by their

willingness-to-pay.

5.3.6.6 Users Surplus and Social Welfare

We measure the users welfare in terms of users surplus, which is the sum of differences

between what each user wanted to pay and what he actually pays. In both cases of

competition and monopoly, only one provider has spillover. Let us for simplicity assume

that p1 < p2. Then the total users surplus in the case of linear willingness-to-pay

function is:

US = P1w(p1)ρ (pmax−p1)
2 +

w(p2)ρ (pmax−p2)
2 +

P1(w(p1)− w(p2))ρ (p2−p1)
2 +

w(p2)
w(p1)ρ

sp
1

(pmax−p2)
2 ,

where P1 is probability for user to be served defined in (5.18).

Figure 5.31 shows users surplus variation depending on flow values for monopoly and

competition cases. Surprisingly, for some users flow ρ values monopoly situation brings
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higher users surplus than competition between providers. If we look on Figures 5.29

and 5.28 we may notice that for these ρ values the total flow served in monopoly case

is higher than in competition, while the average prices are quite close. The monopolist

tends to use his capacities fully, while in competition Provider 1 still prefers to have no

spillover traffic.
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Figure 5.31: Users surplus in monopoly and competition scenarios for different users
flows values ρ with C = 10, pmax = 10 and linear w(p)

5.4 Summary

In this Chapter we studied competition of Internet access providers and its influence on

the user welfare. We analyzed two different types of models: in the first one the users

assumed to be static, while in the second one we assume users to be moving.

For static users we considered the same model as in Chapter 3, where the rating-based

game between users was studied. We used the demand estimation in order to predict

the revenues of providers, based on the prices they charge. We considered both the

competition case and the monopolistic scenario, where both access points belong to

one provider. Those cases have been compared in terms of prices, network usage, and

energy consumption, highlighting some interesting results like the fact that monopolistic

situations are likely to lead to very unfair outcomes.
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For the mobile users case we analyzed the price competition between roadside units

operators which are providing wireless Internet access to moving vehicles. In contrast to

the static users case, in the reference scenario competition arises due to vehicles mobility

even if the roadside units do not have overlapping coverage areas. The strategic inter-

action between two roadside units operators is analyzed through game theoretic tools.

Namely, the analysis of the best-response function having fixed the competitor’s price

sheds light on interesting and counterintuitive behaviors in the systems which lead one

roadside unit operator to increase her price to cause traffic spillover from the competi-

tor’s side. The results from the best-response analysis are then leveraged to characterize

the simultaneous competitive game between the two roadside units operators in terms

of equilibrium existence and optimality.

We further extended this basic model of roadside units operators competition in two

ways. At first, we studied a specific scenario when users may change their pricing

preferences. Several reasons might cause this change in preferences: the users could

experience a fear to be unserved, and thus accept to pay more, or try to risk and see if

the next access point they meet will be cheaper and thus not pay the price they could

really afford to the first provider met. We studied the optimal behavior of a provider,

given the opponent’s price fixed. We managed to study the competitive game between

providers trying to maximize their revenues, and compared it to the cooperative scenario,

where providers agree on prices and share the total revenue.

We found that in the framework of our model the perturbations of users willingness-to-

pay drastically impacts competition of providers: in the case when users willingness-to-

pay is modeled by the linear function we showed that releasing pricing constraints by

users could make providers lower their prices and lead to significant losses in terms of

revenue for one provider. Further we showed that releasing pricing constraints may also

reduce the average price payed by users as well as total users surplus, measured as the

difference between what users wanted to pay and what they actually have payed. Numer-

ically, we experimented with different types of willingness-to-pay functions and observed

the similar phenomenon, which allows us to suspect that this paradoxical situation has

a general nature and thus needs further study.

The second extension covers the case when roadside units operate on the same frequency

and thus interfere with each other. In this scenario we studied the problem of the optimal
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location of access points and discovered that for a monopolist it may be profitable to

charge prices with a bigger gap, thus segmenting users by their willingness-to-pay. We

observed that in the leader-follower game when users demand is low, the provider which

takes his turn first is interested to charge of higher price in order to avoid provoking

his opponent to decrease capacity and to cause spillover. Thus a paradoxical situation,

when competition makes one of the agents to increase his price, may occur. Finally,

we showed that interference could be used as a powerful tool to increase one’s revenue,

while harming that of the opponent. We also discovered non-trivial optimal pricing

strategy for a monopolist, owning both access points and thus trying to maximize the

total revenue he gets.

Our results reveal how an Internet access provider should behave, in different scenarios,

and how his behavior influences users. We found that the model where mobile users are

considered significantly differs from the static cases; several paradoxical situations occur

when users are moving. Also, by our study we provided an insight on how emerging

provider has to behave in order to have an advantage over the already operating one.

This kind of competition may seem unrealistic, but it indeed can influence providers

pricing policies: the provider owning already deployed RSU may charge a higher price

at first (in order to not provoke emerging provider to harm his capacity), and then to

deviate to his real optimal strategy, which we studied in the scenario where interference

is not taken into account.

These results can be used as well by government regulator, which gives an permision for

operating on a highway. Knowing that monopolist -owning several access points- may

cause spilled over traffic on some of his RSU for selfish revenue maximization (which

means that some users may end up unserved), the regulator may pose some additional

requirements on him in order to maximize the number of users which successfully estab-

lish an Internet connection.
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Conclusion and perspectives

6.1 Thesis summary

In this thesis we have studied the user allocation problem in heterogeneous wireless

networks. We fragmentized this problem into three interconnected topics and tackled

them separately. This fragmentation is based on the time scale at which the problem is

considered.

The smallest time scale we considered corresponds to the decisions made by users by

themselves: we focused on how users select among several connection alternatives and

what kind of information about these alternatives is given prior to that choice. In the

situation of static users this decision is just a choice between a number of available net-

works. In Chapter 3 we studied a system with a third-party entity, which is responsible

for gathering users feedback on the QoS they experienced during their connection, and

propagating this information as network ratings back to users. Users, when choosing

which network to connect to, observe these ratings to make their choice based on a

trade-off between the QoS they expect and the price to pay. We modeled dynamical

users arrivals through a Poisson process and by introducing some assumptions estimate

the demand distribution, that providers can expect, given their prices. This type of

system is interesting because the choice is simplified for users: if in the general case

they know nothing about the network they decide to connect to, in the rating-based

system they know what to expect. Also, the system is self-regulating, and we found
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that the equilibrium demand distribution in this system is not far from the optimal situ-

ation (with the best total QoS). Our study gives an insight on how rating-based systems

could evolve. We showed that even when users arrivals and departures are modeled as

stochastic processes (and thus demand distribution varies over time) it is possible to

have good estimations of the user behavior outcome.

Further, in Chapter 4 we considered a simplified model of user choice. First, users are

assumed to be non-atomic, meaning that their individual decisions have a negligible

influence on the other users’ welfare. We assumed that all users possess information

about the QoS level in observed networks and that their choices are trade-offs between

the QoS of the network and the price they have to pay. However, users differ in the way

they perceive the latency of their connection (or equally the price they have to pay); we

model this diversity with different users classes, each one having its own price sensitivity

value. The competition between users in the described model is convenient to model as

a routing game, which is known to have an equilibrium.

In this setting we studied the higher time scale problem: how users distribute in the

system given that every individual behaves selfishly and how we could incentivize them

to “cooperate” in order to achieve the optimal social welfare. We defined the social

welfare as the sum of latencies that all users in the system experience, and we considered

taxes which the access points owner charges as an incentive for users. It is well known

that selfish individuals behavior may lead to inefficient outcomes, and this is true for

the model under consideration. In our analysis we considered a general scenario where

the number of access points and users classes are arbitrary, and proposed analytical

expressions of the optimal taxes, as well as an algorithm to compute them.

For illustration purposes we developed further a basic version of the model, with only

two users classes and two access points. We showed that the proposed taxation scheme

performs well even in the realistic scenario when users arrivals and departures are ran-

dom (our initial model consider user demands to be static). Also we proposed a novel

interpretation of the PoA measure in terms of inefficiently used capacity, and in terms

of demand that could be served without any additional cost if the provider charges the

optimal taxes. These interpretations allow providers to estimate in economic terms their

potential losses due to inefficient resource management.
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The largest time scale corresponds to the competition among Internet access providers.

We focus on this topic in Chapter 5, where two cases are tackled separately. In the

first case we extend the model proposed in Chapter 3, by allowing the two providers to

choose access prices which influence the available demand (demand is elastic). Providers

set their prices to maximize their revenues. We studied the simultaneous game in the

case when provider infrastructures differ: we assumed that the serving capacity of one

provider is bigger, and then compared to the situation when only one provider owns all

the infrastructure.

In the second case we studied the Internet access providers competition in a vehicular

network. We considered a simple case with only two road side units owned by two

providers, but this model could be generalized. The users demand flows in two directions,

and thus there are users which see one provider prior to another, and their decisions

are whether to pay the price they observe or not. The providers, knowing this, have

to take into account that there are two flows of users: those who haven’t seen any

provider before, and those who have seen a competitor and either refused to pay his

price (that means that price they want to pay is low) or were rejected due to capacity

constraints. We studied the competition as a simultaneous game, described its equilibria,

and found that the first provider to charge a low price always makes more revenue than

his competitor. Though our model of Internet access providers competition is fairly

simple, it shows important differences with the general competition scenarios. We found

an interesting strategy which one provider can adopt to maximize his revenue: he can

decide to charge a high price, such that the competitor will be caused to spillover some

users with high willingness-to-pay values.

Further, we studied the case when users may change their pricing preferences after

passing the first provider they met, assuming they release their pricing constraints, i.e,

they accept to pay more. We found an interesting phenomenon: with respect to the case

when users do not vary their pricing preferences the providers pricing game may end up

with an equilibrium where both players charge lower prices and one provider experiences

revenue losses.

Finally we considered the case when road side units operate on the same frequency and

thus interfere to clients of each other (if we consider only downlink traffic). We studied

the problem of optimal access point location, and found several interesting strategies
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for an emerging provider through a leader-follower game. We also discovered that for a

monopolist provider owning two RSUs, it may be profitable to charge one of his RSU a

high price to cause the second RSU to spillover. By this the monopolist can gain more

revenue, exploiting at maximum the users willingness-to-pay. We also observed that

when users demand is low, the provider makes sets his price first is interested to charge

a higher price in order to avoid provoking his opponent to decrease capacity and to cause

spillover. This leads to a paradoxical situation, when competition leads to higher prices

that the monopoly. To sum up, we showed that interference can be used as a powerful

tool by providers, allowing to increase their revenue, while harming their of opponent.

6.2 Contributions with regard to the main research chal-

lenges

In the current thesis we tried to tackle some of the research challenges mentioned in

the end of Chapter 2. The first rating-based network selection problem is aimed to

answer the question which type of information may be available to users, and what will

happen when the information is not full or not up-to-date. We studied the system, where

ratings are refreshed periodically with some time gap and also includes information about

previous quality of an access point, and we found that with this mechanism we still can

predict the outcome of users behavior.

In Chapter 4 we studied the resource management problem, where we found a simple

algorithm (can make real-time optimization fast) which determines the taxes, that min-

imize the total latency experienced by users. In this model, the lowest tax can be chosen

arbitrary, which allows to control the total revenue level of provider (we do not consider

elastic demand there). However, the users welfare (which also depends on the tax the

users pay) obviously may be harmed by the proposed taxation mechanism. Further, we

managed to investigate the situation, when the provider does not have all the informa-

tion about users. For this we considered a simple example, where the provider is not

aware about users classes separation; in this case the proposed taxation mechanism lead

to a situation fairly close to the optimal one.

Finally, in Chapter 5 we considered a vehicular network, where all users are mobile. In

the general case mobile users study is quite complex, but our model allows to simplify this
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issue. Also, at an extension of the basic model, we introduce an interference phenomena,

which is one more step forward the realistic system description.

6.3 Prospective research directions

Usually, when we discuss the network selection problem, we have to strictly define which

information is known by users and by which means. The two most realistic network

selection models, where some QoS parameters of networks are known by users are based

on 1) rating and 2) probing. The former model was described in Chapter 3, and the

probing based approach was proposed in [6]. The authors considered different probing

schemes, which should be adopted by all users, and for each scheme they studied a

corresponding game. The chosen scheme defines information which is known by users.

This model seems to be quite interesting, and one of the follows-up for it could consist in

considering the case where users selfishly select their probing schemes. That means that

users select how many networks they want to probe, and, obviously, a higher probing

number leads to overall QoS degradation.

The rating-based model is also a good candidate for further research. We showed that it

is easy to predict the users demand distribution given providers pricing, and further we

investigated how providers compete in this setting. But in this model we did not take

into account that users may experience different QoS in the same network conditions.

For example, we did not consider that the latency degrades due to path loss. Also, we

considered only two networks with overlapping coverage areas, and it is interesting to

study more general topologies (where the rating could play as less important role).

We have discovered several features of vehicular network providers competition, which

shows that this type of competition differs from what we observe in the case of static

users. If in the static users case, users select the network to connect to, in vehicular

networks the decision is rather binary: users decide whether or not to connect to the

currently observed access point at the proposed price conditions. We focus more on

competition among providers which aim to maximize their revenues, but we found there

an interesting feature: if all users decide to pay a higher price for the second access

point, than they initially wanted to pay, then in average the price they will pay may

decrease. This result inspires one more research direction: it is interesting to study how
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the variation of individual users willingness-to-pay values (separately) may influence the

total population welfare. This can be considered as a game, where each user decides

based on the service evaluation, how much he can risk on refusing a price which he

actually is able to pay.

Other possible follow-up for the model with vehicular networks providers competition

is to consider cellular networks as one more alternative for mobile users. In this case

users will make a trade-off between cost and quality of connection (assuming that the

data rate in the cellular network is lower). There can be several interesting strategies for

users, which will influence providers competition: if the users are unaware of the number

of RSUs on the road, they may decide whether they can tolerate a delay or they need to

fulfill their requests immediately, which also dictates which type of network connection

they will prefer.



Appendix A

Chapter 5 Proofs

A.1 Proof of Proposition 5.9

We first assume that p1/α ≥ p2. Since the right-hand sides of the equations in (5.18) are

continuous in (P1, P2) and fall in the interval [0, 1], Brouwer’s fixed-point theorem [84]

guarantees the existence of a solution to the system.

To establish uniqueness, remark that P2 is uniquely defined by P1 through the second

equation in (5.18), so (P1, P2) is unique if P1 is unique. But P1 is a solution in [0, 1] of

the fixed-point equation x = g(x) with

g(x) := min

1,
1

a+ b− bmin
(

1, 1
a+b+ε−ax

)
 ,

where a = w(p1)ρ1

c , b = w(p1/α)ρ2

c , and ε = (w(p2/α)−w(p1))ρ1+(w(p2)−w(p1/α))ρ2

c are all

positive constants; we also assume a > 0 and b > 0 otherwise the problem is trivial.

As a combination of two functions for the form x 7→ min
(

1, 1
K1−K2x

)
, g is continuous,

nondecreasing, strictly increasing only on an interval [0, x̄] (if any) –it is in addition

convex on that interval–, and constant for x ≥ x̄ (note we can have x̄ = 0 or x̄ ≥ 1).

Assume g(x) = x has a solution x̃ ∈ (0, x̄]. Then g is left-differentiable at x̃, and

g′(x̃) =
x̃2ab

(a+ b+ ε− ax̃)2
≤ x̃2a

(a+ b+ ε− ax̃)
(A.1)
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where we used the fact that x̃ ≤ 1 (as a fixed point of g). Moreover, since x̃ is in the

domain where g is strictly increasing we have η := 1
a+b+ε−ax̃ ≤ 1 on one hand, and

x̃ = 1
a+b−bη on the other side. Their combination yields x̃ ≤ 1

a and finally

g′(x̃) ≤ x̃ ≤ 1.

Remark also that g′(x̃) < 1 if x̃ < 1. We finally use the fact that g(0) > 0 to conclude

that the curve y = g(x) cannot meet the diagonal y = x more than once: assume

two intersection points x̃1 < x̃2, then g′(x̃1) < 1 thus the curves cross at x̃1, another

intersection point x̃ would imply g′(x̃2) > 1 (recall g is convex when strictly increasing),

a contradiction. Hence the uniqueness of the fixed point and of the solution to (5.18).

By symmetry, we have the same kind of results when p2/α ≥ p1.

Finally, we can also prove existence and uniqueness of a solution of system (5.19), when

p2/α ≤ p1 ≤ p2α. Here we have

g(x) := min

1,
1

a+ b− dmin
(

1, 1
d+a+ε−ax

)
 ,

where a = w(p1)ρ1

c , b = w(p1/α)ρ2

c , d = w(p2)ρ2

c and ε = w(p2/α)ρ1−w(p1)ρ1

c are all positive

constants; we again assume a > 0 and b > 0 otherwise the problem is trivial.

Differentiating g at x̃, we get

g′(x̃) =
x̃2ad

(a+ d+ ε− ax̃)2
≤ x̃2a

(a+ d+ ε− ax̃)
, (A.2)

and the rest is similar to the case when p1/α ≥ p2.

A.2 Proof of Lemma 5.3 for the varying WTP case

Recall that

ρT
j (pj , pk) = w(pj)ρj + ρk[w(pj/α)− w(pk)]

+

+ min (w(pk), w(pj/α)) ρk(1− Pk).
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The components of the first line are trivially continuous and non-increasing in pj with

our assumptions on w(·).

The continuity of ρT
j (pj , pk) follows from the continuity of Pk in the price vector (pj , pk),

established in the previous section.

To establish the monotonicity result, we distinguish three cases.

• If pk < pj/α, then we have

ρT
j (pj , pk) = w(pj)ρj + w(pj/α)ρk(1− Pk).

When ρT
k < c, then Pk = 1 and ρT

j is non-increasing in pj .

Now if ρT
k > c then from System (5.18) (this time with k = 2, j = 1), we have w(pk)ρk+

w(pk/α)ρj − w(pj)ρjPj > c and

ρT
j (pj , pk) = w(pj)ρj + w(pj/α)ρk

−w(pj/α)ρk
c

w(pk)ρk + w(pk/α)ρj − w(pj)ρjPj
.

Assuming that provider j is not saturated, Pj = 1. Then

ρ′
T
j (pj , pk) = w′(pj)ρj +

w′(pj/α)ρk
α

−w
′(pj/α)ρk

α

c

w(pk)ρk + w(pk/α)ρj − w(pj)ρj

+w(pj/α)ρk
cw′(pj)ρj

(w(pk)ρk + w(pk/α)ρj − w(pj)ρj)2

< w′(pj)ρj +
w′(pj/α)ρk

α

−w
′(pj/α)ρk

α

+w(pj/α)ρk
cw′(pj)ρj

(w(pk)ρk + w(pk/α)ρj − w(pj)ρj)2

≤ 0,

where the last inequality comes from the nonincreasingness of w(·).

• If pj/α ≤ pk ≤ pjα then

ρTj = w(pj)ρj + w(pj/α)ρk −
cw(pk)ρk

w(pk)ρk + w(pk/α)ρj − w(pj)ρjPj
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Assuming that provider j is not saturated and then Pj = 1 we can differentiate in pj :

dρTj
dpj

= w′(pj)ρj + w′(pj/α)
ρk
α

+
cw(pk)w

′(pj)ρjρk
(w(pk)ρk + w(pk/α)ρj − w(pj)ρj)2

≤ 0,

where w′ is the derivative of w, and the last inequality comes from the fact that w′(·) ≤ 0.

• If pk > pjα, we show that the success probability Pk is non-decreasing in pj : applying

System (5.18) (with k = 1, j = 2) we get that Pk is the solution of the fixed-point

equation x = g(x), where the function g can be written as

g(x)=

min

1, c

w(pk)ρk+w(pk/α)ρj

[
1− c

w(pj)ρj+w(pj/α)ρk−w(pk)ρkx

]+
.

We then remark that, all else being equal, g(x) is non-decreasing in pj , so the solution

Pk of the fixed-point equation g(x) = x is also non-decreasing in pj .

As a result, when pk ≥ pj/α the component min (w(pk), w(pj/α)) ρk(1 − Pk) decreases

with pj , and so does ρT
j .

A.3 Proof of Lemma 5.12

Assume it is not true and there is some d̄ ∈ [0, dsp], such that ρsp1 (popt(d̄)) = 0. Further

we assume that in dsp we have strictly ρsp1 (popt(d̄)) > 0, otherwise we consider some

dsp − ε, at which by definition of dsp spillover of provider 1 should be greater than zero.

The optimal price at distance dsp we denote by p̂ = popt(dsp), and from the fact that at

dsp Provider 1 has spillover, we deduce that p̂ ≥ p1.

Note that ρT2 (popt(d)) ≤ c(d) for all d ∈ [0, D] (otherwise the price is not optimal). Also

we could deduce that popt(dsp) > p1, because at (dsp, popt(dsp)) provider 1 has spillover

and provider 2 does not.

For this particular d̄, consider two cases. First, if p̄ = popt(d̄) < p1. Then,

R2(d̄, p̄) = p̄
[
2w(p̄)ρ− w(p1)ρ

]
,
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and because p̄ is optimal price, we should have R2(d̄, p̄) ≥ R2(d̄, p̂)).

Note that ρT2 (d̄, p̂) < c(d), otherwise p̄ would’t be optimal price: indeed, we have to

recall that p̄ < p1 < p̂

Then, from Lemma 5.11 we know that R2(d̄, p̂) > R2(dsp, p̂). Further we could deduce

that R2(d̄, p̄) ≤ R2(dsp, p̄), because at dsp we have additional traffic coming from spillover

of Provider 1, which is not the case for d̄. Thus we have a contradiction, because

R2(dsp, p̄) ≥ R2(d̄, p̄) ≥ R2(d̄, p̂) > R2(dsp, p̂),

which is not possible because p̂ = popt(dsp).

The same is true for the case if p̄ = popt(d̄) ≥ p1 with revenue function

R2(d̄, p̂) ≤ R2(d̄, p̄) = p̄(w(p̄)ρ) =

p̄w(p̄)ρ = R2(dsp, p̄).

and we know from Lemma 5.11 that R2(d̄, p̂)) > R2(dsp, p̂)), from which we again receive

contradiction.

A.4 Proof of Lemma 5.13

Let us consider d̄ < d̂, and d̄, d̂ ∈ [dc, dsp].

Let us assume contrary to lemma’s statement that:

R2(d̄, p̄) ≥ R2(d̂, p̂),

where p̄ = popt(d̄) and p̂ = popt(d̂). Now if we take a look on the revenue function of

Provider 2 (taking into account Lemma 5.12) for some d ∈ (dc, dsp] at fixed price, e.g.

p̂:

R2(d, p̂) = p̂w(p̂)ρ
[
2− c(d)

2w(p1)ρ− w(p̂)ρ

]
,

we could notice that it is decreases with d due to increasing c(d). Thus we could deduce

that

R2(d̄, p̂) > R2(d̂, p̂) > R2(d̄, p̄),
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which contradicts to the fact that p̄ = popt(d̄).

A.5 Proof of Proposition 5.14

For the first case with dsp = 0, when Provider 2 decreases his distance below dc, he

obviously decreases the maximum revenue he gets, since for any distance Provider 1 has

no spilled-over traffic.

For the case when dsp > dc ≥ 0, from Lemma 5.13 we deduce that the optimal distance

for Provider 2 belongs to [0, dc], i.e, at optimal distance Provider 2 has his capacity

saturated. This implicitly means that in situation when dsp > dc ≥ 0, the optimal

distance for Provider 2 is

arg max
d∈[0,dc]

c(d)pc(d),

When dc ≥ dsp > 0 the only result we get is that the optimal distance does not belong

to the range (dsp, dc). Since dsp ≤ dc, all distances from [dc, D] are equivalent from the

point of view of optimal revenue (optimal price does not depend on capacity, as well as

revenue function). The optimal distance could belong to this range and thus could be

expressed as

arg max
d∈[0,dsp]

c(d)pc(d),

or to [0, dsp]. Numerically we can find the threshold price of Provider 1, which defines

the optimal distance Provider 2 have to choose in this case, and it does not depend on

users flow value ρ.
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