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Abstract

The increased use of intermittent forms of renewable energy like wind and solar energy produces
fluctuations in the electric grid that have to be compensated. For this reason, hydraulic machines
like turbines and pumps are more often operated under non-conventional operating conditions
and are submitted to frequent starts and stops. This type of operating conditions has important
consequences on the life cycle of the machines. It is thus of paramount importance that transient
flows at off-design conditions are properly taken into account in the design phase and numerical
simulation is an appropriate way to do so.

The present study aims at developing a flexible coupling method of the meshbased Finite
Volume Method (FVM) and the meshless Smoothed Particle Hydrodynamics - Arbitrary La-
grange Euler (SPH-ALE) method, which can be used as a tool for the investigation of transient
phenomena in hydraulic machines.

SPH-ALE is very well adapted for the simulation of highly dynamic flows with moving
geometries but has difficulties to correctly represent rapidly changing gradients of the field
variables. Particle refinement is difficult to implement, especially if particles are refined in an
anisotropic way. FV methods are well established in CFD because of their accuracy and stability.
However, they can be tedious for simulations with moving geometries and often necessitate an
interface between moving and static parts of the mesh which introduces additional errors.

To overcome the shortcomings of both methods, a coupling method is developed that uses a
decomposition of the computational domain into regions where the physical field variables are
computed by the FV method, regions where they are computed by SPH-ALE and overlapping
regions where the information is transferred from the FV domain to the SPH domain and vice
versa. In the overlapping regions FV calculation points are used as neighbors for the SPH
integration in space. At the boundaries of the FV mesh, velocity and pressure are interpolated
from the SPH particles by means of scattered data interpolation techniques, similarly to Chimera
methods for overlapping grids.

For this study, an existing SPH-ALE software of the ANDRITZ Group is used. A weakly
compressible FV solver is implemented into this software that discretizes the same form of the
Navier-Stokes equations than the SPH-ALE solver. Similar to the present SPH-ALE method,
Riemann solvers with reconstructed states, obtained by a MUSCL scheme, are employed. More-
over, adaptations and improvements of the SPH-ALE solver itself are made, which are important
for the coupling and for the simulation of internal flows in general. Thus, subsonic inlet and
outlet conditions are implemented. Furthermore, a correction method of the kernel gradient
is presented that ensures zeroth order consistency of the SPH-ALE approximation of the di-
vergence of the convective fluxes. The correction improves greatly the SPH pressure field on
non-uniform particle distributions.

The implemented coupled method is successfully validated by means of inviscid academic
one-dimensional and two-dimensional testcases like a shock tube case, Taylor-Green vortices and
the flow around a symmetric NACA airfoil with particles in Eulerian description. Furthermore,
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the coupling provides a possibility to implement outlet boundary conditions to Lagrangian
moving SPH particles. It is then applied to the simulation of transient flows in rotor stator
systems in 2D with moving particles.

Keywords: SPH-ALE, FVM, coupling, transient flows, hydraulic turbines



Résumé

L’utilisation croissante des sources d’énergie renouvable avec une grande volatilité de production,
comme l’énergie éolienne et solaire, conduit à des fluctuations dans le reseau électrique qui
doivent être compensées. Pour cette raison les machines hydrauliques, turbines et pompes, sont
plus souvent opérées dans les régimes de fonctionnement hors fonctionnement nominal et la
fréquence des phases de démarrage et arrêt augmente. Ce type de fonctionnement peut avoir
des conséquences importantes sur le cycle de vie des machines. Il est donc essentiel de prendre
en compte l’écoulement dans les phases transitoires lors de la conception de la machine et la
simulation numérique des écoulements est un outil adapté pour cela.

La présente étude a pour objectif de développer une méthode de couplage flexible qui combine
la méthode à maillage volumes finis (VF) et la méthode sans maillage Smoothed Particle Hy-
drodynamics - Arbitrary Lagrange Euler (SPH-ALE). Cette méthode couplée peut être utilisée
comme outil pour l’investigation des phenomènes transitoires dans les machines hydrauliques.

SPH-ALE est particulièrement bien adapté aux simulations des écoulements fortement dy-
namiques avec des géometries mobiles mais elle a des difficultés pour calculer des forts gradients
de pression et vitesse. Un raffinement de particules est difficile à implémenter, surtout si les
particules doivent être raffinées de manière anisotrope. Les méthodes volumes finis (VF) sont
établies pour les simulations numériques d’écoulements grâce à leur stabilité et précision. Par
contre, elles peuvent être lourdes pour les simulations avec des géometries mobiles et demandent
souvent une interface entre des parties mobiles et statiques du maillage ce qui génère des erreurs
supplémentaires.

Pour combiner les deux approches complémentaires, une méthode de couplage a été
développée qui décompose le domaine de calcul en zones où la vitesse et la pression sont calculées
par la méthode VF, en zones où elles sont obtenues par SPH-ALE et en zones de recouvrement
où les informations sont transférées de la zone VF à la zone SPH et inversement. Dans les zones
de recouvrement les points de calcul VF sont utilisés comme voisins pour l’intégration en espace
des particules SPH. Aux limites du maillage VF la vitesse et la pression sont interpolées des
particules SPH, similairement aux méthodes Chimère des maillages recouvrants.

Un logiciel SPH-ALE existant du groupe ANDRITZ est utilisé pour cette étude. Un solveur
VF faiblement compressible est implémenté dans ce logiciel. Le solveur discretise la même forme
des équations de Navier-Stokes que le solveur SPH-ALE. Des solveurs de Riemann avec des états
reconstuits par la méthode MUSCL sont employés. En outre, le solveur SPH-ALE est amélioré
et adapté aux écoulements internes. Pour cette raison des conditions à l’entrée et à la sortie
du type subsonique sont implémentées. Du plus, une méthode de correction du gradient de la
fonction kernel est présentée qui améliore la précision du champs de pression, notamment si les
particules ne sont pas distribuées régulièrement.

La méthode couplée est validée à l’aide des cas test académiques en unidimensionnel et en
bidimensionnel, comme le cas de tube à choc, les tourbillons de Taylor-Green et l’écoulement
autour d’une aube symétrique du type NACA avec des particules en déscription eulerienne.
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En outre, le couplage offre la possibilité d’imposer des conditions à la sortie aux particules
lagrangiennes. La méthode est appliquée aux simulations d’écoulement transitoire en 2D avec
des particules qui se déplacent en suivant les géometries mobiles.

Mots-clés: SPH-ALE, méthodes volumes finis, couplage, écoulements transitoires, turbines
hydrauliques



Kurzfassung

Die zunehmende Verwendung volatiler Arten von erneuerbarer Energie, insbesondere Wind- und
Solarenergie, führt zu Schwankungen im Stromnetz, die kompensiert werden müssen. Aus diesem
Grund werden hydraulische Maschinen wie Turbinen und Pumpen immer öfters zu nicht konven-
tienellen Betriebspunkten betrieben und die Häufigkeit von An- und Abstellsequenzen nimmt
zu. Diese Betriebszustände haben einen direkten Einfluss auf den Lebenszyklus der Maschinen.
Es ist daher von grosser Bedeutung, die Strömungen in den transienten Betriebszuständen, von
der Designphase der Maschine an, zu berücksichtigen und numerische Simulationen sind gut
dafür geeignet.

Das Ziel der vorliegenden Studie ist die Entwicklung einer Methode zur Kopplung der git-
terbasierten Finiten Volumen Methode (FVM) mit der gitterlosen Methode, Smoothed Parti-
cle Hydrodynamics - Arbitrary Lagrange Euler (SPH-ALE). Die gekoppelte Methode soll ein
Werkzeug zur Untersuchung transienter Strömungen in hydraulischen Maschinen darstellen.

SPH-ALE eignet sich sehr gut zur Simulation dynamischer Strömungen mit be-
weglichen Geometrien, hat aber Schwierigkeiten schnell wachsende Gradienten von Druck und
Geschwindigkeit richtig darzustellen. Partikelverfeinerung ist schwierig zu implementieren, ins-
besondere wenn die Partikel anisotrop verfeinert werden sollten. FV Methoden hingegen sind,
wegen ihrer Genauigkeit und Stabilität, die am häufigsten verwendeten CFD Methoden. Für
Simulationen mit bewegten Geometrien können sie jedoch umständlich sein und benötigen meist
ein Interface zwischen bewegten und statischen Teilen des Rechengitters, das zusätzliche Fehler
erzeugt.

Um die Schwachpunkte beider Methoden zu überwinden wird eine Kopplungsstrategie en-
twickelt, die das Rechengebiet in unterschiedliche Regionen teilt. Nämlich in Regionen, in denen
Geschwindigkeit und Druck mit der FV Methode berechnet, Regionen, wo sie von SPH-ALE
berechnet und überlappende Regionen, wo die Informationen von dem FV Gebiet ins SPH-
ALE Gebiet transferiert werden und umgekehrt. In den überlappenden Regionen werden die
FV Berechnungspunkte als Nachbarn für die räumliche Integration der SPH Partikel verwen-
det. Am Rand des FV Gebietes werden Geschwindigkeit und Druck von den SPH Partikel
interpoliert, ähnlich wie es bei Chimera Methoden überlappender Gitter der Fall ist.

Für die vorliegende Studie wird eine existierende SPH-ALE Software der ANDRITZ Gruppe
verwendet. In diese wird ein schwach kompressibler FV Löser implementiert, der die selbe Form
der Navier-Stokes Gleichungen diskretisiert wie der verwendete SPH-ALE Löser. Ähnlich zur
vorliegenden SPH-ALE Methode werden Riemann Löser mit rekonstruierten Anfangszuständen
benützt (MUSCL Methode). Des Weiteren wird der SPH-ALE Löser selbst adaptiert und
verbessert, damit er für die Kopplung und für interne Strömungssimulationen im Allgemeinen
verwendet werden kann. Aus diesem Grund werden Eintritts- und Austrittsrandbedingungen für
Unterschallströmungen in die Software hinzugefügt. Darüber hinaus wurde eine Korrektur des
Gradienten der SPH Kernel Funktion präsentiert. Die Korrektur verbessert das SPH Druckfeld
stark, vor allem wenn die Partikel nicht gleichmässig im Rechengebiet verteilt sind.
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Die gekoppelte Methode wird anhand von ein- und zweidimensionalen akademischen
Testfällen erfolgreich validiert. Dafür wird unter anderem der eindimensionale Stossrohr-
Testfall, der Taylor-Green Wirbel und die Strömung um einen NACA Tragflügel mit Partikel
in Eulerscher Beschreibung gerechnet. Ausserdem bietet die Kopplung die Möglichkeit,
Austrittrandbedingungen für Lagrangesche Partikel zu implementieren. Die Methode wird zum
Schluss für die Simulation von zweidimensionalen Rotor-Stator Systemen mit Partikel, die der
Bewegung der Geometrien folgen, verwendet.

Stichwörter: SPH-ALE, FVM, gekoppelte Methode, transiente Strömungen, Wasserturbinen
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Notations

Greek symbols

α limiter function for the MUSCL scheme
β Shepard coefficient
φ field variable (pressure, velocity or density)
λ eigenvalue
µ dynamic viscosity
ν kinematic viscosity
θ non-normalized SPH kernel function
ϑ parameter for FV MUSCL scheme
ρ density
σ Shepard coefficient without self-contribution
ω particle volume, integration weight
ω∂ area of the surface element, integration weight for the discretized surface integral
ω̄ modified weight
∆x spatial discretization size
∆t time discretization size
Ω computational domain
ΩFV Finite Volume domain
ΩSPH SPH domain
∂Ω boundary of the computational domain
Φ vector of conservative variables, state variables
ΦE solution vector of Riemann problem
ν normalized direction
τ viscous shear stress tensor
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Latin characters

c speed of sound
cp pressure coefficient
d number of space dimensions
h smoothing length
p pressure
ptot total pressure
pstag stagnation pressure
r particle size
t time
u x-component of the velocity vector v
v y-component of the velocity vector v
w z-component of the velocity vector v
u0 x-component of the ALE velocity vector v0

v0 y-component of the ALE velocity vector v0

w0 z-component of the ALE velocity vector v0

x space coordinate
y space coordinate
z space coordinate
C chord length of NACA hydrofoil
D SPH kernel support
E total energy
L reference length
T maximum thickness of NACA hydrofoil
V cell volume
W SPH kernel function
b vector of closed box error
n normal vector
nS normal vector times area
v velocity vector
v0 ALE particle velocity vector
x coordinate vector, position
x̄ modified position
q̇ heat flux vector
B renormalization matrix
F ALE flux tensor
Fc convective flux tensor
Fν viscous flux tensor
I unit tensor
L vector of left eigenvectors
R vector of right eigenvectors
W vector of primitive variables



Chapter 1

Introduction

Since the industrial revolution in the 19th century, the worldwide energy consumption increases
rapidly with a raise of about fifty percent just between 1990 and 2010. Forecasts published
by the United States Energy Information Administration (EIA) [2] do not see a change of this
trend and predict a further increase of the energy demand with an annual growth rate of 1.5%.
This is mainly driven by non OECD countries, especially China and India, as it is illustrated by
Figure 1.1 (a). Most of the sources that are used for energy production are fossil fuels like e.g.
petroleum, gas and coal. However, burning them for electricity and heat generation is the largest
source of CO2 emission worldwide [51]. Carbon dioxide CO2 is one of the greenhouse gases that
are responsible for the global climate change that manifests itself as an increase of the globally
averaged land and ocean surface temperature. The global warming has many negative impacts on
human lives like for example more extreme high-temperature related events, floods and droughts
or the rise of the global mean sea level that threatens parts of Bangladesh and other countries
that are situated only a few meters above the sea level [50]. These environmental issues together
with security concerns against nuclear powerplants lead to an increasing investment in renewable
energy sources. Figure 1.1 (b) shows a forecast of the worldwide use of renewable energy that is
predicted with an annual growth rate of 2.5% which means that renewable energy consumption
is supposed to grow faster than the total energy demand. The largest part of renewable energy
for electricity generation comes from traditional hydropower but other renewable energy sources
gained in importance recently. New renewable energy sources (NRE) for electricity generation
are for example small hydro, wind and solar energy.

The energy policy of the European Commission in the last fifteen years shows a clear prefer-
ence for renewable sources of energy with the objectives of decreasing the greenhouse emissions
and gaining more independence from imported energy. In the directive 2001/77/EC and sub-
sequent documents (2003/30/EC, 2009/28/EC) and Renewable Energy Roadmap published in
January 2007 a share of 20% of renewable energy in the European energy consumption was
defined as target for 2020. The documents define renewable energy sources as wind, solar,
geothermal, wave, tidal, hydropower, biomass, landfill gas, sewage treatment plant gas and bio-
gases. Other than hydropower, wind and solar are the most important but intermittent energy
sources with large variations in production.

As an illustrative example we consider Germany where the national energy policy stimu-
lated the renewable energy sector in a way that more than twenty percent of the electricity
consumption is already produced from renewable energy forms. Amongst the renewables, wind
and photovoltaic have an extraordinarily high proportion. In 2013 wind turbines contributed
8.4% to the total electricity production in Germany, and photovoltaic systems 5.3%, which was
published by the Fraunhofer Institute for Solar Energy Systems (ISE) [33]. At the bottom of
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(a) Forecast of the world energy consumption for
OECD, non OECD countries and worldwide. An
worldwide annual growth rate of 1.5% was as-
sumed.

(b) Forecast of the consumption of hydroelectric-
ity and new renewable energy (NRE) for different
regions and worldwide.

Figure 1.1: Outlook of world energy consumption plotted with data from the U.S. Energy
Information administration [2] in petawatt hours (PWh) with 1 PWh = 1015 Wh, released on
the 25.7.2013.

Figure 1.2 the monthly average of the production is shown. As expected, there is more solar
energy produced from photovoltaic in summer but the production of energy from wind turbines
seems to be completely random. This impression is confirmed by the top of the figure where
the daily production averages are plotted. The day of minimum production of wind and solar
summed up was on the 16.1.2013 with only 22 GWh, while the day of maximum production
took place two weeks later on the 31.1.2013 with more than 25 times more output, namely 580
GWh.

These extreme variations necessitate energy storage and balancing on an hourly as well as
weekly and monthly basis. There are several possibilities for energy storage like compressed
air, flywheel, gravitational potential and thermal energy storage. But at present the most
widely-spread and efficient form is pumped storage hydropower with a pumping-generating cycle
efficiency of about 80%. Different aspects about pumped storage hydropower and its importance
in the European energy market are discussed in the proceedings of Pumped storage Powerplants:
Challenges and opportunities [101], a conference organized by Societé hydraulique de France
(SHF) in Lyon (France) 2011. Only some of the arguments presented there will be mentioned
in the following.

Worldwide, more than 380 pumped storage powerplants (PSP) are in operation and others
are under construction. Countries that are well-suited for PSP manifest a specific geographical
topology with large differences in altitude, like the Alpine countries, Austria and Switzerland,
and Norway, some parts of Germany, Spain, Portugal, USA and China amongst others. Pumped
storage hydropower is a comparably old technology that experienced a first boom in the 1970s in
Europe, where it was used to produce electricity during peak hours. This was possible because
it stored the energy produced by nuclear power plants or big thermal units during off-peak hours
[64]. In recent years, pumped storage powerplants have often been constructed in combination
with large wind parks (China, Scotland) or parks of photovoltaic cells (Morocco). But there
are countries like the above cited Germany, that already have a large percentage of intermittent
energy and plan to have even more in the near future. However, the natural requirements are not
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Figure 1.2: Annual energy production by solar and wind in Germany in 2013 taken from [33], in
terawatt hour (1 TWh = 1012 Wh). At the top, the daily average is plotted and at the bottom,
the monthly average. It can be seen that wind and solar are intermittent energy sources with
large variations in the production.

optimal for pumped storage hydropower in Germany because there are not enough mountains
and another way has to be found to guarantee the energy supply even during a few cloudy
days without wind. In this case one option is the import and export of electricity to and from
neighbouring countries and the use of the large storage capacities of Switzerland, Austria and
in particular Norway that is sometimes called the blue battery of Europe [34, 43].

1.1 Changing role of hydropower

Hydropower enjoys continuing popularity. In the past, this was mainly owing to the fact that
hydropower is a reliable energy source. It is not only used for the base load of energy production
but also as long-term storage possibilities to compensate fluctuations in the energy demand.
Fluctuations in the consumption can be of different nature and time scales. For example, there
are seasonal differences between winter and summer. Then there is the influence of the industry
operating time and the residential demand. Nuclear powerplants and big thermal units are not
flexible enough to balance these changing demands because they cannot be easily shut down and
so, hydro powerplants are often used for peak-hour production. Nowadays, in addition to the
variation of demand, there are extreme supply variations of wind and solar sources which can
change every minute. Hydropower plants, in particular pumped storage powerplants, are used to
balance these variations with important consequences on the mode of operation of hydropower
plants [45, 85, 97, 100]. An overview of the different ways how hydraulic powerplants are used
to stabilize the electrical grid is given in [95].



20 CHAPTER 1. INTRODUCTION

1.1.1 Classification of powerplants and turbines

Hydropower is the largest source of renewable energy worldwide [2] and is generated at least
in 150 countries. This is partly due to the fact that hydropower is flexible and can be used
under different geographical circumstances like low land, hilly areas or mountainous regions. A
classification of hydropower plants is given by Mosonyi [79] as follows (see also [13]).

• Conventional powerplants use the energy of flowing water and of lakes fed naturally. They
can be further classified as plants with storage and plants with a small or no storage. The
first group, plants with storage, utilizes differences in altitude and store and accumulate
water by a dam. This potential energy is transformed into kinetic energy and further into
rotational energy by the rotating turbine. The combination of flow rate and difference in
altitude determines the amount of power that can be produced.

• The second group, plants with a small or no storage, are so-called run-of-the-river power-
plants where electricity is produced by the flow rate of the river. The size of the storage,
called pondage, determines if the powerplant can regulate its water flow and if it can be
used in answer to varying energy demands. Powerplants without pondage are directly
affected by seasonal or weather-related changes in the flow rate of the river. In addition,
they cannot be used to balance variations in consumption and as a consequence, they can
only be used as base-load plants.

• The third category represents pumped storage powerplants (PSP) that consist of a higher
and a lower elevation reservoir. Traditionally, they are composed of a water turbine with
a generator and a pump with an electrical engine. In case of overcapacity in the electric
grid, water is pumped from the lower to the upper reservoir. Then, if electricity is needed,
water is passed through the turbine to the lower reservoir. For economical reasons, the
pump and the turbine are often replaced by a reversible pump-turbine.

• Furthermore, there are other forms of hydro powerplants that are less common but that
are increasingly developed. For example, there are tidal powerplants that use the energy
of tides, marine current that use currents like e.g. the Gulf stream and small hydro
powerplants for small rivers.

In the main, there are three different types of turbines that are utilized depending on the
flow rate Q and the net hydraulic head H that are illustrated by Figure 1.3. For more details
see e.g. [13].

Kaplan turbines are reaction turbines where the fluid changes the pressure while passing
through the turbines. They are used for large flow rates and low head H < 80m. The biggest
turbines have an output of up to 200 MW and they are typically used in run-of-the-river plants.

Pelton turbines are impulse turbines that are used for high head and low flow rates. Nozzles
form jets that impinge on the Pelton buckets that transform the kinetic energy of the jet into
mechanical energy. Pelton turbines can be of different size where the biggest have an output of
more than 400 MW. Pelton turbines can be used in high-head PSP.

Francis turbines are reaction turbines where the flow passes through the turbine radially
from the outside to the inside and leaves it axially. Francis turbines are the most widely used
turbine with a broad range of application. They are used for medium head and flow rates
situated inbetween the low-head Kaplan turbines and the high-head Pelton turbines. Amongst
other, they are used in PSP. A Francis turbine consists of a spiral casing, a runner and a draft
tube, see Figure 1.4. The spiral casing has the task of converting parts of the pressure energy
into kinetic energy and of distributing the water equally for the runner inlet. It includes stay
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Figure 1.3: Application range of different turbine types.

Figure 1.4: Hydrodyna pump-turbine with spiral casing, stay vanes, guide vanes, runner (im-
peller) and draft tube, taken from [97].
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Figure 1.5: Spiral casing produced by the company Escher-Wyss (Zurich) in 1938 for the Sungari
powerplant in Manchuria.

vanes and guide vanes where the variable guide vanes regulate the flow discharge. The runner
is the most important part of the turbine where the conversion into mechanical energy actually
takes place. The draft tube is situated at the runner outlet and recovers part of the kinetic
energy.

Pump-turbines are reversible hydraulic machines, mainly of the Francis type. In turbine
mode, also called generating mode, the flow passes through the spiral casing, the runner and
then the draft tube. In pump mode, the flow direction is reversed, where water passes through
the draft tube at first, then the runner and then the spiral casing that becomes the role of a
pump diffuser, see Figure 1.4.

1.1.2 Transient operation of hydraulic machines

A pump, a turbine or a pump-turbine is designed for a best efficiency point (BEP) that is a
fixed flow rate Q and a fixed net hydraulic head H where the highest efficiency is obtained.
However, to compensate fluctuations in the electric grid, the hydraulic machines are operated
more often under non-conventional conditions. They are operated under off-design conditions
like part load (Q < QBEP ) and full load condition (Q > QBEP ) with numerous changes between
the operating conditions. There are several issues connected with that type of operation that
will be described in the following.

In general, the operation at off-design condition leads to high cavitation risk in pump and
turbine mode [53, 80]. Cavitation is defined as the vaporization at constant temperature because
of a decrease in pressure. It is not only a known source of instabilities and but can damage the
turbine by erosion of cavitation [80].

Furthermore, centrifugal pumps or pump-turbines in pump mode can show instabilities at
part load conditions (low flow rates) that lead to oscillations of the hydraulic system. These
instabilities manifest themselves as a positive slope in the H(Q) characteristic, where the head
decreases when the flow rate is reduced. They are also called ”S-shaped” because of the form
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of the characteristic. In addition, this can be linked to a hysteresis, where the onset of the
instability occurs at different Q depending on the direction of the change of flow rate. The
reason for that is the appearance of recirculation zones in the pump diffuser that are called
alternate stall if they are fixed in time or rotating stall if they propagate from one guide vane
channel to the other with a speed that is observably smaller than the rotation speed of the
runner [16, 85].

Moreover, the machines are submitted to frequent starts and stops, or in the case of pump-
turbines, they are also submitted to a succession of switches from pump mode to generating
mode and vice versa. For the start-up of Francis turbines or pump-turbines the guide vanes
are opened and the runner is accelerated from rest to speed no-load where it is synchronized to
the electrical grid. Speed no-load is the operating point where the runner is rotating at nominal
speed but with small guide vanes opening and a minimal discharge. The whole energy of the
incoming flow is dissipated by losses and the generator has no electric load but the unit is ready
to be connected to the grid [60]. Then the opening of the guide vanes is continued until the
desired operating point is reached while keeping the runner speed constant [117, 81]. Due to
the fact that hydraulic machines are more often operated under this condition it is important
to evaluate the influence of the transient start-up procedure on the life-time of the turbine.

In general, more care is taken on the design of a pump-turbine in pump mode than in
turbine mode because a good pump performance is more difficult to obtain. As a consequence,
the runner of the pump-turbine is more similar to a pump impeller than a Francis runner, and
instabilities may arise in turbine mode that do not occur for Francis turbines. It is reported that
in the start-up procedure of pump-turbines another instability can occur that is not observed
for Francis turbines. Oscillations arise near no-load and turbine brake operation that makes
it slower to synchronize the pump-turbine with the electrical grid. The observed instabilities
are similar to the above described part-load instabilities in pump mode and consist of either
stationary vortex formations or rotating stall cells [25, 116, 117, 45].

Another operating point that is related to speed no-load but that is caused by a completely
different mechanism is the runaway point, that is reached after load rejection and with problems
of the guide vanes. Again there is zero torque on the shaft but the discharge is very high, i.e.
the turbine is at full load, and the runner is accelerated to a very high rotating speed. This is
a quite damaging event for the unit but it occurs rarely [60, 81].

The flow in a rotating machine exhibits pressure fluctuations that are caused by the interac-
tion of rotating and stationary parts of the machine, regardless of the considered operating point.
The so-called rotor-stator interactions (RSI) are the combination of, e.g. in generating mode,
the rotating potential flow perturbations of the runner travelling upstream and downstream and
the flow perturbations of the wakes of the guide vanes. Amongst others, the RSI depend on
the operating point and the size of the gap between rotor and stator. RSI are the source of
other effects like guide vane vibrations, impeller vibrations and shaft vibrations [97] and they
can induce resonance phenomena with the impeller or even the power house [80], yielding strong
vibrations and noise.

The above described type of operating conditions will arise even more frequently in the
upcoming years but has not been well analyzed yet. It can lead to strong structural vibrations
and is very demanding for the installation, which has a direct consequence on the life-cycle
of the machine. In extreme cases, hydrodynamic instabilities can lead to machine failure with
consequences on outage of production and safety issues. It is thus of paramount importance that
these transient flows are properly taken into account in the design phase. Numerical simulation,
together with model tests, is an appropriate way to do so. Unfortunately, classical numerical
approaches like mesh based Finite Volume (FV) methods have difficulties to capture and to
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predict these phenomena correctly.

1.2 Computational fluid dynamics for transient flows

Computational fluid dynamics (CFD) is a powerful tool that helps to understand and predict
flow phenomena in hydraulic machines. Numerical simulations are used throughout the design
process of pumps and turbines, complementary to model tests in hydraulic laboratories. In
general, it yields reliable results for normal operating points that are close to the best efficiency
point but it has difficulties in providing quantitatively correct results at off-design operating
points.

Many related simulations found in literature have been performed by the commercial software
ANSYS CFX. This is an incompressible meshbased coupled multigrid solver based on a hybrid
Finite Element (FE) - Finite Volume (FV) method that uses a high-resolution scheme for the
advective fluxes, i.e. a scheme that is between first and second order, mostly second order
depending on the flow characteristics. An implicit second-order time integration scheme is used
for transient simulations. For turbulence modelling, several turbulence models (SST, k-ε, k-ω)
for the Reynolds Averaged Navier-Stokes (RANS) equations and automatic wall functions are
implemented as well as large eddy simulation (LES), detached eddy simulation (DES) and the
novel scale-adaptive simulation (SAS) model.

In the normal stable operating range steady-state RANS simulations often yield sufficiently
accurate results for design purpose. For these simulations only parts of the turbine are simulated
and circumferential periodicity conditions are applied. In [53] for example, in turbine mode, a
guide vane channel, a runner channel and the draft tube are simulated; in pump mode, the
draft tube can be neglected. The stationary components are linked by a mesh interface to
the rotor. The mesh interface is a so-called stage interface, also called mixing plane, where
the flow variables are circumferentially averaged. This method is not able to capture rotor-
stator interactions like for example the effect of the wakes of the guide vanes on the runner in
turbine mode. Nevertheless, it yields good results close to the best efficiency operating point
and captures the most important flow features correctly [53]. Certainly, unsteady flows at off-
design conditions cannot be simulated by steady-state simulations and a transient solver has
to be applied. But even transient simulations with a meshbased solver necessitate rotor-stator
interfaces between the rotating and the stationary parts of the computational domain. At this
mesh interface, which is called general grid interface (GGI), the flow variables often have to be
interpolated by the solver in order to be transferred to the other side of the interface. This
introduces local interpolation errors at the interface. Furthermore, geometries that are moving
arbitrarily can only be simulated if the mesh is deformed or if it is regenerated regularly.

1.2.1 Transient simulations of off-design operating points

Several research projects can be found in literature that have been launched with the aim of
analyzing the above described off-design conditions by means of measurements and/or numerical
simulations. The HYDRODYNA research project is a cooperation of the Federal Institute of
Technology in Lausanne (EPFL) in Switzerland, the Universitat Politecnica de Catalunya in
Barcelona (UPC) in Spain and the industrial partners ALSTOM HYDRO, VOITH HYDRO
and ANDRITZ HYDRO. The objective is the investigation of the hydrodynamics of reversible
pump-turbines. In the frame of this project and a follow-up project, several PhD thesis were
published where numerical simulations at off-design conditions have been conducted by the
following authors. Braun [16] examined the part-load flow in radial pumps by numerical simula-
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tions and experiments. Rotating stall was observed in experiments and could be reproduced by
time-dependent RANS simulations launched with ANSYS CFX but the deviation from measure-
ments was considerable. Flow pattern similar to the observed ones were simulated at a sensibly
higher flow rate than in the experiment and even there they were quantitatively different from
experiments. Hasmatuchi [45] investigated off-design conditions in turbine mode experimentally
and numerically. He also used ANSYS CFX but with the SAS turbulence model on 10 million
nodes and obtained good qualitative agreement but again the results were not quantitatively
accurate enough. Recently, Pacot [85] simulated rotating stall at part-load condition for the
first time by a Large Eddy Simulation technique and obtained good agreement of the simulated
rotating stall compared to measurement data. An open source second-order Finite Element
LES solver called FrontFlow/Blue of the University of Tokyo was used with a mesh of 85 million
elements and a reduced Reynolds number. For the simulation more than two thousand cores on
a Japanese supercomputer were used. Moreover, the generation of such a mesh is difficult and
time-consuming.

1.2.2 Simulation of the start-up of a Francis turbine

It was explained in Section 1.1.2 that due to the changing energy markets, Francis turbines
and pump-turbines are submitted more frequently to start and stop procedures. The influence
of frequent start-ups on the life-cycle of a turbine is not well investigated yet. Only very few
studies can be found in literature that aim at simulating the transient flow in a turbine or a
pump-turbine at start-up by numerical simulation. One example is Staubli et al. [102] who
simulate a pump-turbine at no-load condition but do not simulate the start-up from rest.

The discharge in a Francis turbine or pump-turbine is regulated by the movement of the
guide vanes. Hence, transient start-up simulations that simulate the turbine from rest to speed
no-load have to simulate the opening of the guide vanes. Nicolle et al. [81] were to our knowledge
the first authors who published such a simulation with a pre-described evolution of the opening
angles of the guide vanes that was known from measurements. Because of limited computer
resources, they simulate only a portion of the turbine, i.e. one stay vane and two guide vanes,
one runner blade and a part of the draft tube cone for the outlet. A transient rotor-stator
interface is used between the guide vanes and the runner. Thanks to user defined functions
that are used together with ANSYS CFX, it is possible to update the mesh after every time
step according to the guide vane opening, while keeping the topology and the number of nodes
constant. However, the simulation can not be started from completely closed guide vanes, but
has to start at an opening angle of one degree. The opening between zero and one degree that
can not be simulated directly is modelled by an annular porous loss region. The simulation
compares well to the measured values and helps to analyze the transient flow that occurs during
start-up.

1.2.3 The meshless method SPH

When simulating transient flows in hydraulic machines, the meshbased character of standard
CFD methods introduces important difficulties. Firstly, mesh interfaces between rotating and
stationary parts of the turbine necessitate interpolation procedures in regions that are very
important for the development of transient flow phenomena. Secondly, moving geometries like
opening guide vanes can only by simulated if mesh deformations are possible without degrading
the mesh quality or if the domain, or parts of it, is remeshed regularly. We have seen that it
is possible in some cases [81] to launch such a simulation but there are other simulations that
are computationally too expensive to launch because they demand a remeshing of the whole
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Figure 1.6: Complex free surface flow in the casing of a Pelton turbine obtained by a SPH-ALE
software of ANDRITZ HYDRO. High velocity is colored in red and low velocity in blue.

domain at each time step. In addition, mesh generation is often quite cumbersome and needs a
skilled and experienced person to do it. Usually automatic mesh generation exists for standard
industrial simulations. But in general it does not exist for the kind of meshes that are adapted
for simulations of the flows in off-design operating points.

In answer to these inconveniences and because of increased computational power, meshless
methods like Smoothed Particle Hydrodynamics (SPH) became more popular in the past years.
These methods do not need a mesh in the sense that no connectivity information between calcu-
lation points, also called particles, has to be known. Furthermore, SPH is a Lagrangian method
where the calculation points follow the flow and therefore also capture arbitrarily moving geome-
tries or free surfaces automatically. In the past years, an industrial in-house SPH solver has been
developed within the Research & Development Department of ANDRITZ Hydro (Switzerland
and France) in collaboration with Ecole Centrale de Lyon (France). The developments were
motivated by the need of a CFD method that is able to simulate the complex free surface flow
in Pelton runners and casings, see Figure 1.6. Since the position of the complicated free surface
of the water sheets is not known beforehand, these simulations are extremely computationally
expensive with meshbased methods and not feasible in the time frame of an industrial project.
In the contrast, SPH does not need to simulate the air phase that we are not explicitly inter-
ested in. As a consequence it needs much less calculation points than meshbased methods for
the simulation of free surface flows. However, the standard SPH method suffers from accuracy
issues and problems with solid boundary treatment. In the frame of the PhD works of J.-C.
Marongiu [67] and J. Leduc [55] a software called ASPHODEL was developed that is based
on the more accurate variant SPH-ALE. Amongst others, this variant allows using a flexible
solid boundary treatment [67] that is well-suited for industrial simulations of rotating hydraulic
machines. It also introduces an additional parameter, the particle velocity v0 that enables us
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Figure 1.7: Computational domain of a SPH-ALE simulation of two rows of hydrofoils. The first
is moving at a constant speed, while the second one is fixed. There are three blocks of particles
with different particle motion. The particles in the first and the last block do not move (Eulerian
description) but the particles in the block in the middle are translated with the hydrofoil (ALE
motion).

to launch Lagrangian simulations, where the calculation points move with the flow, Eulerian
simulations where they are fixed and ALE simulations, where the calculation points move with
another velocity that is neither Lagrangian nor Eulerian. Moreover, an implemented multiphase
solver [55] makes it possible to launch real multi-phase simulations where two phases are com-
puted. Fluid-structure interactions can be simulated thanks to the PhD work of Z. Li [59] who
coupled ASPHODEL to the open source software Code-ASTER [27] of EDF.

The ASPHODEL software is used on a daily basis in the Pelton R&D department for several
purposes, see e.g. [86]. For example, it is used during the design process of Pelton runners in
combination with a FEM stress analysis for stress assessment of the Pelton bucket. Moreover, it
helps to understand the complex flow in the Pelton turbine casing and it can be used to simulate
the flow at off-design operating conditions as e.g. start-stop sequences of Pelton turbines.

To assess its capabilities in simulating internal flows of rotor-stator systems, first preliminary
inviscid SPH simulations have been launched. They show encouraging results but also some
weak points of the method as it is illustrated by two examples in the following. A first two-
dimensional test case shows two cascades of hydrofoils where one is moving and the other one is
stationary, see Figure 1.7. The particles in the different regions move in blocks the same way as
the geometry. Figure 1.8 shows the simulated velocity field and shows that the wakes can pass
through the different blocks without problems. However, these wakes are artificial because an
inviscid simulation was launched! They are caused by the numerical dissipation and should not
appear, see Chapter 3 and 4.

Then, an inviscid SPH-ALE simulation of the start-up of a Francis turbine with opening
guide vanes is presented. In this simulation the opening of the guide vanes is imposed and the
particles move with an ALE velocity in a way that they follow the moving geometry. This type of
ALE motion will be explained in detail in Chapter 3, Section 3.9.4. Figure 1.9 shows the velocity
field and a detailed view of the position of the particles around the guide vanes. The simulation
is started from completely closed guide vanes and the particles distribute themselves in space
according to the position of the guide vanes. In addition, no rotor-stator interface, where
variables are interpolated, is necessary since the particles follow the geometry automatically.
However, the velocity is decelerated near the solid wall which should not happen in inviscid
simulations. Again this is the result of the dissipation of the numerical scheme.

Both simulations use particles with constant size because SPH is an intrinsically isotropic
method. Space refinement is very difficult to implement and an important topic of current
research on SPH, see Chapter 4. However, the gradients of pressure and velocity are changing too
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Figure 1.8: Velocity field of two cascades of hydrofoils where the first one is moving and the
second one is static.

(a) Overview of the computational domain, where
particles are colored by the velocity field with red
denoting high velocity and blue low velocity.

(b) Detailed view of the particle distribution
around the guide vanes and in the vaneless space
between guide vanes and runner.

Figure 1.9: SPH-ALE simulation of the start-up of a Francis turbine. The guide vanes are
moving according to an imposed motion. Only the guide vanes, the runner and a cone at the
outlet are simulated. The particles adapt themselves to the movement of the geometry and no
rotor-stator interface is needed.
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rapidly in regions close to wall to be captured by the scheme on this rather coarse discretization.
Meshbased methods like FV schemes solve this problem by refining the mesh locally in regions
of strong variation, preferably in the direction of the gradient. The constant particle size also
imposes itself in regions where such a fine discretization is not necessary, like for example in the
spiral casing. Hence, the constant particle size increases the computational cost due to regions
where the particle size is too small compared to the size that is imposed by the physical flow
phenomena. Furthermore, it deteriorates the results because of regions where a finer spatial
discretization is needed to capture the flow features.

1.3 Objective of this thesis

The objective of this thesis is the development of a flexible coupling algorithm of SPH-ALE and
a FV method that can be used as a tool for the investigation of transient flows in hydraulic
machines like during the previously described start-up procedure, see Sections 1.1.2 and 1.2.2.
The SPH method enables the calculation points to move and to adapt themselves to the flow
and/or to the solid geometries, while the FV method allows anisotropic refinement in regions of
rapidly changing gradients. The algorithm needs to be very flexible and uses a decomposition
of the computational domain into regions where the fields are computed by the FVM, regions
where they are computed by SPH and overlapping regions where the information is transferred
from FV to SPH and vice versa. It should be possible to use the method for fixed SPH particles,
particles in Lagrangian motion or particles that move arbitrarily (ALE). FV cells are added in
areas where a more accurate (refined) simulation is needed or in regions where there are other
advantages to use FVM, as for example at the outlet of the computational domain or in the spiral
casing of a Francis turbine. In addition for the coupling, a FV solver has to be implemented into
ASPHODEL that discretizes the same form of the weakly-compressible Navier-Stokes equations
in ALE formalism than the SPH method.

1.4 Outline of this document

The present document is organizes as follows.
Chapter 2 presents two validation cases, i.e. the inviscid Taylor-Green vortex and the inviscid

flow around a symmetric NACA hydrofoil. For the case of the NACA hydrofoil a reference
solution is given. These two test cases are used throughout this document for validation purpose.

In Chapter 3 an introduction to the physical model and the numerical methods that are used
for the coupling, i.e. the Finite Volume method (FVM) and Smoothed Particle Hydrodynamics
(SPH), is given. Furthermore, a novel correction method for the gradient of the SPH kernel
function is presented that enforces zeroth order consistency for the computation of the SPH
gradients and that improves considerably the computed pressure fields.

The core of the present thesis is Chapter 4 were the developed coupling method of SPH-ALE
and FVM is presented. At the beginning, a literature review on variable space discretization in
SPH-ALE and FVM and different coupling methods is given. In the second part of this chapter,
the coupling is validated by means of academic one-dimensional and two-dimensional inviscid
test cases. It is shown that the coupled simulations compare well to analytical solutions or to
reference solutions.

Then, the coupling algorithm is applied to two-dimensional simulations in Chapter 5. These
show the potential of the method for applications to real three-dimensional simulations of tran-
sient flows.

In the end, in Chapter 6, conclusions are given and further perspectives are discussed.
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Chapter 2

Validation cases

Our target applications are transient flow simulations in hydraulic machines like Francis turbines
and pump-turbines. Therefore, two inviscid two-dimensional validation cases are chosen that are
representative for some of the flow phenomena that are found in the target applications. Hence,
we choose the Taylor-Green vortex and the flow around a symmetric NACA hydrofoil that both
manifest strong gradients of pressure and velocity, once without and once with wall boundaries.
They are used several times in this document for different purposes, that is the validation of the
FV solver, the validation of a correction method for SPH-ALE and the validation of the coupling
of FV and SPH-ALE. For that reason, the test cases themselves as well as the analytical solution
of the Taylor-Green vortex and a reference solution of the flow around the NACA hydrofoil are
presented in this chapter.

2.1 Taylor-Green vortex

The two-dimensional Taylor-Green vortices are an exact unsteady solution of the incompressible
Navier-Stokes equations on a bi-periodic square with a length of L. They are given, for L = 1
and for an amplitude of the initial velocity of U = 1, by

u = e−8π2tν sin(2πx) cos(2πy),

v = −e−8π2tν cos(2πx) sin(2πy),

p =
ρ

4
e−16π2tν [cos(4πx) + cos(4πy)] ,

(2.1)

with (u, v)T denoting the two-dimensional velocity vector, ρ the density, p the pressure and ν
the kinematic viscosity. In this work we consider inviscid flows ν = 0 and theoretically Eq. (2.1)
describes a steady-state solution of the incompressible Euler equations, see Appendix A.

However, in practice the vortices are decaying, depending on the numerical scheme and the
discretization size that are used. Hence, the decay of the maximal velocity is a measure for
the dissipation of the numerical scheme that behaves similarly to the physical viscosity [22, 68].
In this study we are not interested in quantifying the dissipation of the scheme but we want
to analyze the errors that the fluid solvers, i.e. the FV, the SPH-ALE and the coupled solver,
introduce into the pressure and velocity field. The test case is especially useful because a closed-
form solution Eq. (2.1) is known. Moreover, it is well adapted to test the behaviour of the
solvers for a flow with high gradients without the influence of wall boundary conditions. The
analytical solution Eq. (2.1) for inviscid flows that consists of four counter-rotating vortices is
plotted in Figures 2.1, 2.2 and 2.3.
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Figure 2.1: Velocity field of the inviscid two-dimensional Taylor-Green vortex. The velocity
vectors are scaled by the magnitude of the velocity.

When we use this test case for the validation of a numerical method, the computed pressure
and velocity field as well as the derivatives of pressure and velocity are compared to the analytical
solution, which is either plotted over the whole computational domain or along a constant
coordinate line.

2.2 Flow around a symmetric NACA hydrofoil cascade

An important validation case for our target applications is the inviscid flow around a two-
dimensional symmetric hydrofoil with a 4-digit NACA profile as solid geometry. The profile was
developed by the National Advisory Committee for Aeronautics (NACA) [1] and is described by

y =
T

0.2
C

[
0.2969

√
x

C
− 0.1260

x

C
− 0.3516

( x
C

)2

+ 0.2843
( x
C

)3
− 0.1015

( x
C

)4
]
, (2.2)

where C = 0.1 denotes the chord length and T = 0.2 the maximum thickness as a fraction of
the chord length. It has a sharp trailing edge. As indicated in Figure 2.4, the computational
domain is limited by inlet boundary conditions at the left hand side, outlet boundary conditions
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(a) Pressure. (b) Magnitude of the velocity.

Figure 2.2: Pressure and velocity magnitude of the inviscid two-dimensional Taylor-Green vor-
tex.

(a) The x component of the velocity. (b) The y component of the velocity.

Figure 2.3: The x and y components of the velocity of the Taylor-Green vortex.
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Figure 2.4: The computational domain for the flow simulation around a static symmetric NACA
hydrofoil. The inlet is situated at the left hand side and the outlet at the right hand side.
Periodicity conditions are imposed elsewhere. The surface of the NACA hydrofoil is indicated
by the red line. The leading edge coordinates are (0.325, 0.05).

Figure 2.5: A structured multi-block mesh is created for the FV solver. A block of C-grid
together with a dove-tail topology is used around the NACA hydrofoil.

at the right hand side and periodic boundary conditions on top and bottom. It is to notice
that because of this periodicity condition a cascade of hydrofoils is simulated. Since the channel
height is equal to the chord length, the flow solution is expected to be different compared to an
isolated profile configuration. At the inlet, constant velocity, uin = 0.1 m/s, is imposed, and at
the outlet constant zero pressure, pout = 0 Pa, is prescribed. The angle of attack is zero.

A reference solution is provided by an inviscid, steady-state, pseudo compressible in-house
FV solver of the ANDRITZ group that is based on the work of [35] and [89]. This Euler solver
is not the same as the one developed in the frame of this project but it is well-established inside
ANDRITZ Hydro for simulations of internal flows. A semi-implicit time integration scheme
with local time stepping and a multi-grid algorithm are employed. The pseudo-compressible
solver converges to a truly incompressible solution and the numerical speed of sound is only
important for the convergence. Figure 2.5 shows the structured multi-block mesh that is used to
compute the reference solution. Around the NACA hydrofoil a C-grid with dove-tail topology
is used. The mesh blocks are connected by matching block boundaries which means that the
mesh lines are continuous through multi-block boundaries and no interpolation is required. The
mesh lines are also continuous through the periodicity boundary which makes it easy to impose
the periodicity boundary condition. This mesh is generated with an in-house mesh generation
software of the ANDRITZ group.

Figure 2.7 shows the pressure field of the reference solution. Since the hydrofoil is symmetric
and the angle of attack is zero, the pressure field is also symmetric with a stagnation point
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Figure 2.6: Detailed view of the mesh around the NACA hydrofoil.

situated at the leading edge. Because of the short distance between adjacent hydrofoils compared
to chord and thickness, the pressure does not drop to zero above and below the profile. All
simulations are inviscid which means that no wake should appear in the velocity field downstream
of the solid body. Following e.g. [48], we know that the deceleration of the velocity near wall
boundaries that manifests itself as a numerical wake is a measure for the numerical dissipation
of the method. This numerical dissipation mimics the effects of the viscosity in viscous flows. It
is known that the non-physical wake can be reduced by either employing a more accurate solver
or using more calculation points in the zone where the wake is created, i.e. close to the solid
wall. In the present case a mesh is used that is strongly refined in the direction normal to the
surface of the hydrofoil, see Figure 2.6. As a consequence, there is almost no numerical wake,
as can be seen in Figure 2.8 that shows the magnitude of the velocity field.

For validation of the implemented FV solver and the coupled solver, the numerical wake, the
pressure coefficient and the total pressure loss will be analyzed and compared to the reference
solution as it follows. For the comparison of the numerical wake, the x component of the velocity
is plotted along two lines defined by x = 0.45 m and x = 0.55 m, as shown in Figure 2.9(b) for
x = 0.55.

We define the pressure coefficient on the surface of the NACA hydrofoil as

cp :=
p− pstag
1
2ρ∞v

2
∞
, (2.3)

where pstag is the stagnation pressure, i.e. the pressure reached at the stagnation point on the
leading edge of the hydrofoil. The density and velocity at infinity are ρ∞ = 1000 kg/m3 and
v∞ = 0.1 m/s and the theoretical value for the pressure at the stagnation point is pstag = 5 Pa.
Figure 2.9(a) shows the pressure coefficient obtained for the reference solution.

We model an inviscid, incompressible flow even though we use a weakly compressible formal-
ism. Furthermore, we consider a steady flow with uniform inlet, in the present case. According
to Bernoulli’s principle, the total pressure ptot is constant in incompressible irrotational flows in
the whole computational domain. The total pressure is defined as the sum of the static pressure
and the dynamic pressure, i.e.

ptot := p+
1
2
ρv2, (2.4)

with v denoting the flow velocity vector. At the stagnation point where vstag = 0 m/s we
obtain pstag = ptot. That means that for irrotational incompressible flows the total pressure is
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Figure 2.7: Reference pressure field around the NACA hydrofoil.

everywhere equal to the stagnation pressure. This is used in the following to introduce another
measure for the numerical dissipation, which is the loss (change) of total pressure, evaluated as
the difference between the total pressure area-averaged over a section upstream of the hydrofoil,
situated at x = 0.1, and a section downstream, situated at x = 0.6. The pressure loss obtained
by the reference solution is 0.1% and the associated total pressure field is shown in Figure 2.10.
This figure shows that the error in total pressure mainly occurs close to wall boundaries where
pressure and velocity change rapidly and in the region of the numerical wake.

This kind of analysis provides us with a tool to evaluate the numerical methods that will be
presented throughout this document.
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Figure 2.8: Magnitude of the reference velocity field around the NACA hydrofoil.

(a) Pressure coefficient on the surface of the
NACA hydrofoil.

(b) The x component of the velocity plotted on a
line of x = 0.55 m.

Figure 2.9: Pressure coefficient and numerical wake obtained for the reference solution.
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Figure 2.10: Reference total pressure field around the NACA hydrofoil.



Chapter 3

Numerical Methods

In this chapter the numerical methods that are used for the coupling in Chapter 4 are introduced.
Both, Smoothed Particle Hydrodynamics (SPH) and Finite Volume (FV) methods, discretize
the weakly-compressible Navier-Stokes equations in Arbitrary Lagrange Euler (ALE) form that
are presented in Section 3.1. The main characteristics of the methods, as well as their differences
and similarities, are analyzed in this chapter. SPH-ALE is a meshless method where fluxes are
exchanged between particles, as it is presented in Sections 3.2 and 3.3. The FV method is a
meshbased method where fluxes between cells are considered, see Section 3.4. Consequently,
they require the computation of numerical fluxes that will be obtained for both methods by
Godunov’s scheme, explained in Section 3.6. Moreover, a novel correction method for SPH
that greatly improves the computed pressure field is developed in Section 3.9. In the end of this
chapter in Section 3.10, validations for the corrected SPH-ALE method and for the implemented
FV solver are presented.

3.1 Governing equations

Newtonian fluids like water can be described by the Navier-Stokes equations which are a set of
non-linear equations based on the physical principles of conservation of mass, momentum and
energy. The system of partial differential equations (PDEs) consists of the continuity equation,
the momentum equation and the energy equation and is given in the following in conservative
differential form, i.e.

∂ρ

∂t
+∇ · (ρv) = 0,

∂ρv
∂t

+∇ · (ρv ⊗ v) +∇ · (p I) = S +∇ · τ ,

∂ρE

∂t
+∇ · (ρvE + pv) = S · v +∇ · (τ · v)−∇ · q̇ + qc,

(3.1)

where ρ(x, t) is the density, p(x, t) the pressure, v(x, t) the velocity vector, τ (x, t) the viscous
shear stress tensor, I the unit tensor, qc(x, t) the heat sources, S(x, t) the vector of external
forces and q̇(x, t) the heat flux vector, with the space coordinates x ∈ Rd, the physical time
t ∈ R+

0 and d = 1, 2, 3 denoting the space dimension. The total energy E(x, t) is defined by

E := e+
1
2
v2,

as sum of the internal energy e(x, t) and the kinetic energy. The symbol ⊗ denotes the outer
product that is defined in the following way. Consider two column vectors a ∈ Rm and b ∈ Rn.
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Then the outer product a ⊗ b is equal to the matrix multiplication of a with the transpose of
b, i.e.

a⊗ b := abT ∈ Rm×n. (3.2)

In general, the system of non-linear fully coupled time-dependent equations (3.1) cannot
be solved analytically. There are a few special cases with special initial condition and specific
assumptions where an analytical solution is known. One famous example is the Taylor-Green
vortex, see Section 2.1, that we use for validation purpose throughout this document. In the
general case, the solution of Eq. (3.1) is obtained in two steps. The first step is the simplification
of the equations by means of physical considerations depending on the fluid or the applications
that are studied. The second step is the discretization of space and time in order to compute
an approximate solution by numerical methods. In the following paragraph we discuss the first
step, while the second one will be covered in Section 3.1.2.

The system of equations (3.1) is closed by an additional equation, a so-called equation of
state, that describes the relation between state variables. For example, it defines the internal
energy as function of pressure and density, i.e. e = e(ρ, p). Water is usually modelled as
incompressible fluid meaning that the density ρ is assumed constant. In that case, the continuity
equation becomes

∇ · v = 0. (3.3)

However, we do not model water as an incompressible fluid but as a weakly-compressible one
with density variations of less than 1%. We suppose that there are no heat sources and we know
from experience that temperature variations are very small. Hence, they will be neglected in the
following. A barotropic fluid is modelled which means that the internal energy is constant and
that the pressure is a function of the density p = p(ρ). As a consequence, the energy equation
does not have to be solved and System (3.1) only consists in the continuity equation and the
momentum equation. The new set of equations is closed by a barotropic equation of state that
is often referred to as Tait’s equation (see e.g. [112]),

p =
ρ0c

2
0

γ

[(
ρ

ρ0

)γ
− 1
]

+ p0, (3.4)

where γ = 7 and ρ0, p0 and c0 denote the reference density, the reference pressure and the
reference speed of sound, respectively. Therefrom an expression for the speed of sound c :=

√
∂p
∂ρ

is derived, i.e.

c = c0

(
ρ

ρ0

) γ−1
2

. (3.5)

If it is not stated differently, we choose p0 = 0 Pa and ρ0 = 1000 kg/m3. The consequence of
choosing a zero reference pressure is that relative pressures are computed. This is especially
important for the free surface treatment in SPH that will be discussed in Section 3.7.2. The
equation of state Eq. (3.4) models the compressibility behavior of water well if the real physical
speed of sound c0 ≈ 1500 m/s is chosen as reference speed of sound. However, this is not what is
done in practice since the time step size is connected to the chosen reference speed of sound. In
order to speed up the computations, c0 is most of the time set equal to ten times the maximum
flow velocity. This ensures that the flow remains weakly-compressible, i.e. the density does not
vary more than one percent, and it allows larger time steps. The Mach number Ma of a flow is
defined as the ratio of the fluid velocity and the sound speed,

Ma :=
‖v‖
c
,
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and the weakly-compressibility condition is translated into

Ma ≤ 0.1.

This places the model in the low Mach number limit which influences the accuracy of the
numerical methods that we use, see Section 3.6.1 and [41] for details.

If the dynamic viscosity µ is constant, the divergence of the shear stress tensor τ is given by
the following relation depending on the fluid velocity v and µ,

∇ · τ = µ

(
∆v +

1
3
∇ (∇ · v)

)
. (3.6)

Considering incompressible flows, we know that ∇ · v = 0 and Eq. (3.6) further simplifies to

∇ · τ = µ∆v = ∇ · µ∇v. (3.7)

Taking all these assumptions into account, the Navier-Stokes equations (3.1) are rewritten
in flux vector form,

∂Φ
∂t

+∇ · (Fc − Fν) = Q, (3.8)

with

Φ =
(
ρ

ρv

)
, Fc =

(
ρv

ρv ⊗ v + pI

)
, Fν =

(
0
τ

)
and Q =

(
0
S

)
. (3.9)

The vector Φ is called the vector of conservative variables or state variables and Fc is the
convective flux tensor and the pressure force, and Fν is the viscous flux tensor. In our case, the
vector of source terms Q contains the gravity force which means that S = ρg with g denoting
the gravity vector. The convective flux tensor Fc = Fc(Φ) can be expressed as a function of Φ
even if it also depends on the pressure p. But due to Tait’s equation, Eq. (3.4), the pressure
p itself is a function of the density ρ. The flux tensor Fc includes the convective flux vectors
Fα
c = Fα

c (Φ), α = 1, ..., d, i.e. Fc = (F1
c , ...,F

d
c)
T .

In the case of inviscid flows, with the dynamic viscosity µ = 0, the viscous fluxes Fν vanish
and the Euler equations are obtained,

∂Φ
∂t

+∇ · Fc = Q, (3.10)

where Φ and Fc are again given by Eq. (3.9).
The mathematical character of the Euler equations differs completely from the Navier-Stokes

equations. While the Navier-Stokes equations are a set of second order PDEs, because of the
viscous flux vector and Eq. (3.6), the Euler equations are a system of hyperbolic conservation
laws for which some mathematical theory exists, see e.g. [58].

In the frame of this thesis only inviscid simulations are carried out, which means that we
solve the inviscid Euler equations instead of the viscous Navier-Stokes equations. However, the
flows occurring in the target applications that were described in the introduction, Chapter 1,
are flows where the viscous effects, especially the viscous boundary layers, play an important
role. Even though the coupling algorithm that was developed in the frame of this thesis was
implemented and tested for inviscid flows, viscous terms have to be included in the future.

The computational domain is denoted by Ω ⊂ Rd where ∂Ω is the boundary of the compu-
tational domain. Eqs. (3.8) and (3.10) are given in differential form where the divergence of
the flux tensor is calculated. As a consequence, only differentiable functions can be a solution
of these equations. However in reality, discontinuous fluxes occur in presence of shock waves.
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Discontinuous flow variables are only solutions of the integral form of conservation laws, as it is
given in the following for the Euler equations,

d

dt

∫
Ω

Φ dV +
∫
∂Ω

Fc · n dS =
∫
Ω

Q dV. (3.11)

3.1.1 Arbitrary Lagrange Euler

The above equations (3.8) and (3.10) are given in Eulerian description meaning that the fluid
quantities are analyzed in a fixed frame of reference, where the material fluid particles of the
continuum are passing through a fixed region in space. The same equations can also be written
in Lagrangian description, where the frame of reference follows the material fluid particles in
their motion. A generalization of the concept was published in 1974 by Hirt et al. [49] where
an additional velocity field v0(x, t) is introduced that determines the motion of the frame of
reference. The approach is called Arbitrary Lagrange Euler (ALE) because v0 can not only
be chosen to be zero to recover the Eulerian equations, or to be equal to the fluid velocity v
to obtain the Lagrangian equations. The transport velocity v0 can also be used to move the
calculation points in a way that suits best the numerical scheme or the considered applications.
Figure 3.1 illustrates the differences between Eulerian, Lagrangian and ALE motion.

Using the flux vector notation of Eq. (3.9) and the definition of the outer product Eq. (3.2),
we obtain the Euler equations in conservative ALE form with

Lv0(Φ) +∇ · (Fc − v0 ⊗Φ) = Q, (3.12)

where we define
Lv0(Φ) :=

∂Φ
∂t

+∇ · (v0 ⊗Φ) . (3.13)

For ease of notation the flux tensor F is introduced by

F(Φ,v0) := Fc(Φ)− v0 ⊗Φ. (3.14)

The corresponding integral representation in the moving frame of reference is given by

d

dt

∫
Ω

Φ dV +
∫
∂Ω

F(Φ,v0) · n dS =
∫
Ω

Q dV, (3.15)

where the time derivative has to be considered in the moving system. It is noticed that in this
form, the boundary ∂Ω is moving at speed v0.

Next, we write the three-dimensional Euler equations explicitly because of their importance
in this document. The components of the velocity vector v are denoted by v = (u, v, w)T ,
the components of the transport velocity by v0 = (u0, v0, w0)T and the space coordinates are
x = (x, y, z)T . In 3D, the flux tensor, Eq. (3.14), consists of three flux vectors denoted by
F = (F1,F2,F3)T , that are given by

F1(Φ,v0) = F1
c(Φ)− u0Φ,

F2(Φ,v0) = F2
c(Φ)− v0Φ,

F3(Φ,v0) = F3
c(Φ)− w0Φ.

(3.16)

Using the transport operator (3.13) and the vectors

Φ =


ρ
ρu
ρv
ρw

 , F1
c =


ρu

ρu2 + p
ρuv
ρuw

 , F2
c =


ρv
ρvu

ρv2 + p
ρvw

 and F3
c =


ρw
ρwu
ρwv

ρw2 + p

 ,
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Figure 3.1: Equations can be given in Lagrangian description where the mesh points follow the
material points, Eulerian description where the frame of reference is fixed and in the general
Arbitrary Lagrange Euler (ALE) form where the mesh points can move arbitrarily. Figure
adapted from [24].
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(a) Cartesian structured mesh. (b) Curvilinear structured mesh.

Figure 3.2: Different types of space discretization strategies: structured discretizations.

we obtain the 3D Euler equations in ALE formalism

Lv0(Φ) +
∂

∂x
F1 +

∂

∂y
F2 +

∂

∂z
F3 = Q. (3.17)

The two-dimensional equations are obtained by setting the third velocity component to zero,
w = 0, as well as the third flux vector, F3

c = 0 and w0 = 0.

3.1.2 Discretizing the continuum

The Euler and the Navier-Stokes equations are a system of non-linear partial differential equa-
tions (PDEs) including time and spatial derivatives. For numerical simulations, time and the
physical space have to be discretized. A commonly used method is the method of lines that
discretizes the space to obtain a system of semi-discrete ordinary differential equations (ODEs)
that then can be discretized in time. It is illustrated as follows,

PDE
space discretization
============⇒ ODE

time integration
==========⇒ numerical solution. (3.18)

There are also schemes that discretize space and time at once but they will not be used in this
document.

Classification of different space discretization strategies

In the main there are three different ways to discretize in space that are closely linked to the
solver that will be applied. We distinguish structured meshes, unstructured meshes and meshless
discretizations.

• A structured mesh can be mapped to the unit square and an index ijk is assigned
to every node. The connectivity information can be deduced from the index, i.e. node
(i+ 1)jk is always next to the node with index ijk. Structured meshes can be a Cartesian
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(a) Unstructured mesh. (b) Meshless discretization, particles.

Figure 3.3: Different types of space discretization strategies: unstructured discretizations.

grid (Figure 3.2 (a)) or a curvilinear mesh (Figure 3.2(b)). Compared to Cartesian grids,
curvilinear meshes have the advantage that they can be constructed in a way that the
mesh lines coincide with the boundaries of the domain. In particular, they are body-fitted
around solid geometries. Structured meshes are used for Finite Difference methods (FDM)
and Finite Volume methods (FVM).

• An unstructured mesh is not ordered (Figure 3.3(a)) and the connectivity information
has to be stored explicitly by, for example, storing the IDs of the nodes that define a cell
or the IDs of the neighbour cells. Unstructured meshes are generated for solvers based on
the Finite Element method (FEM) and again Finite Volume methods (FVM).

• Meshless discretizations do not store any connectivity information. The numerical
stencil consists of clouds of points or particles without any connectivity (Figure 3.3(b)).
Methods that do not need any connectivity information are for example Smoothed Particle
Hydrodynamics (SPH) or similar methods.

In this document, we describe the implementation of an unstructured Finite Volume solver even
though we use blocks of curvilinear meshes. Furthermore, a meshless discretization is inherent
to the SPH-ALE method that we employ in the frame of this project.

3.2 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a numerical method to solve partial differential
equations on a cloud of calculation points xi in a computational domain Ω ⊂ Rd. It is a
meshless or meshfree method because there is no connectivity between the calculation points.
Traditionally, the SPH operators, that will be introduced below, are used to discretize the
Euler or Navier-Stokes equations in Lagrangian form. The calculation points are interpreted as
particles that follow the flow in Lagrangian motion.
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The method was first published by Lucy in 1977 [65] for astrophysical problems. Then it
was further developed for astrophysics by Gingold and Monaghan [37]. In the 1980s, Monaghan
applied the method with success to hydrodynamic applications [76], and in particular to free
surface applications [78]. It was found that for several reasons SPH is especially well suited to
compute dynamic free-surface flows. The fluid particles follow the flow and they are able to
capture the position of the free surface. In addition, no mesh has to be created to connect the
calculation points that are displaced with the flow. The points can adapt themselves flexibly to
changes in the flow field or in the solid geometry.

Introductions to SPH can be found in several publications, e.g. [61, 55, 67, 112]. In the
following sections an introduction to SPH is given with a special emphasis on SPH-ALE, the
variant of SPH that we actually use.

3.2.1 Kernel approximation

Consider a sufficiently smooth scalar or vector field f(x) in Ω that is written as a spatial
convolution product with the Dirac delta function δ,

f(x) =
∫
Ω

f(x′)δ(x− x′) dV ′.

The Dirac delta function δ(x−x′) is zero everywhere but for the case that x = x′ and it verifies∫
Ω

δ(x− x′) dV ′ = 1.

The so-called integral representation or kernel approximation of a function f is defined by re-
placing the delta function by a smooth kernel function. That is

< f(x) >h:=
∫
Ω

f(x′)W (x− x′, h) dV ′, (3.19)

where W (x− x′, h) is the smoothing kernel function and h is the smoothing length. The kernel
function W is a continuous and differentiable function, whose gradient can be calculated ana-
lytically. It is defined so that 1

W is homogeneous to a volume. Furthermore, the kernel function
is chosen in such a way that it satisfies the following conditions.

• Symmetry : It is a symmetric (even) function, i.e. W (x− x′, h) = W (x′ − x, h). A direct
consequence from this condition is that∫

Ω

(x− x′)W (x− x′, h) dV ′ = 0. (3.20)

The left side of the equation is called the first moment of the kernel function.

• Normalization: The kernel function is normalized, i.e.∫
Ω

W (x− x′, h) dV ′ = 1. (3.21)
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• Compact support : The kernel function has a compact support that depends on the smooth-
ing length h, i.e.

W (x− x′, h) = 0, if ‖x− x′‖ > κh, (3.22)

where κ is a constant related to the chosen smoothing function, most of the times κ = 2
or κ = 3. The kernel support of x is defined by

D(x) := {x′ ∈ Ω : W (x− x′, h) 6= 0} = {x′ ∈ Ω : ‖x− x′‖ ≤ κh}.

• Delta function property : The kernel function tends to the Dirac delta function if h tends
to zero,

lim
h→0

W (x− x′, h) = δ(x− x′). (3.23)

• Decay : The function W (x− x′, h) is monotonically decreasing when the distance between
x and x′ increases.

• Positivity : The function should be positive, i.e.

W (x− x′, h) > 0 for x′ ∈ D(x), (3.24)

to avoid non-physical approximations. For example, the integral of a positive function like
the density should not become negative.

Since the kernel function has a compact support, the kernel approximation (3.19) is written as

< f(x) >h=
∫

D(x)

f(x′)W (x− x′, h) dV ′, (3.25)

integrating over the support instead of the whole domain. Thanks to that property the ap-
proximation becomes a local approximation where < f(x) >h does not depend on the whole
computational domain but on a compact subdomain depending on the smoothing length h.

Applying Conditions (3.21) and (3.20), directly yields

x =
∫

D(x)

x′W (x− x′, h) dV ′, (3.26)

meaning that x is situated in the barycenter of the domain D(x) if the normalization and
symmetry condition are fulfilled. If we insert the second-order Taylor series approximation of
function f(x) in Eq. (3.25) and if we apply Eq. (3.20) and Eq. (3.21), we see that the kernel
approximation is equal to the value of the function plus a second order error term,

< f(x) >h= f(x) +O(h2). (3.27)

The order of consistency of an approximation is defined as the highest order of a polynomial
which can be reproduced exactly. We see from Eq. (3.27) that the kernel approximation has
first-order consistency with a second order error term. Higher order kernel approximations of
functions of kth order can be constructed but they imply that the kth order moments have to
be zero, i.e.

Mk :=
∫

D(x)

(x− x′)kW (x− x′, h) dV ′ = 0, ∀k > 0. (3.28)
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Figure 3.4: The kernel support Di of particle i is truncated by the boundary of the computational
domain ∂Ω.

The zeroing conditions of the moments is in contradiction with the positivity condition of the
kernel for moments of even orders with k ≥ 2. In practice, the positivity of the kernel is preferred
over a higher order of consistency in most of the cases.

In Section 3.2.3 we will see that kernel functions can be constructed that fulfil the Conditions
(3.20)-(3.24) and constant and linear consistency are obtained. However, this is only true if x
is not situated close to the boundary of the computational domain ∂Ω, see Figure 3.4. If the
support D(x) is truncated by the boundary of the domain, the normalization condition is not
satisfied any more and the order of consistency is reduced.

The kernel approximation (3.25) can also be applied to the gradient of a field ∇f ,

< ∇f(x) >h=
∫

D(x)

∇f(x′)W (x− x′, h) dV ′.

The key point of the kernel approximation method is that spatial derivatives of f are computed
by putting the derivatives on the kernel function using integration by parts, i.e. the kernel
approximation of the gradient of a function is computed as

< ∇f(x) >h=
∫

D(x)

f(x′)∇W (x− x′, h) dV ′ +
∫

∂D(x)

f(x′)W (x− x′, h)n dS, (3.29)

where the gradient of the kernel function ∇W (x−x′, h) is calculated analytically. The boundary
of the support D(x) is denoted by ∂D(x). Far away from the domain boundary ∂Ω, the second
integral is zero because of the compactness of the support. However, if the boundary of the
domain intersects the kernel support, D(x) ∩ ∂Ω 6= ∅, the last integral is non-zero.

It follows from the symmetry of the kernel function that the gradient is antisymmetric,

∇xW (x− x′, h) = −∇x′Wx− x′, h). (3.30)

Moreover, it can be also shown by Taylor series expansion that the kernel approximation of the
gradient ∇f is first order consistent, far away from boundaries, because a kernel function that
fulfils the above conditions also satisfies∫

D(x)

∇W (x− x′, h) dV ′ = 0, (3.31)
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and ∫
D(x)

(x′ − x)⊗∇W (x′ − x, h) dV ′ = −I. (3.32)

Again this is only true if the kernel support D(x) is not truncated by the boundary of the
computational domain ∂Ω.

If x is located close to the boundary and the kernel support D(x) is truncated, Conditions
(3.31) and (3.32) become∫

D(x)

∇W (x− x′, h) dV ′ +
∫

∂D(x)

W (x− x′, h)n dS = 0, (3.33)

and ∫
D(x)

(x′ − x)⊗∇W (x′ − x, h) dV ′ +
∫

∂D(x)

(x′ − x)⊗W (x′ − x, h)n dS = −I, (3.34)

which are not fulfilled in general. Equally the normalization condition (3.21) is not verified.
Following De Leffe [22], the kernel function can be corrected by

W̃ (x− x′, h) =
1

γ(x)
W (x− x′, h), (3.35)

with
γ(x) =

∫
D(x)

W (x− x′, h) dV ′. (3.36)

Then the kernel approximations are redefined as it follows,

< f(x) >h=
1

γ(x)

∫
D(x)

f(x′)W (x− x′, h) dV ′, (3.37)

and for the gradients

< ∇f(x) >h =
1

γ(x)

∫
D(x)

f(x′)∇W (x− x′, h) dV ′

+
1

γ(x)

∫
∂D(x)

f(x′)W (x− x′, h)n dS. (3.38)

In the interior of the domain γ(x) = 1 and it does not modify the kernel approximation. However,
close to boundaries it compensates for the truncated kernel support.

3.2.2 Particle approximation

In SPH the continuous space is replaced by a finite set of M calculation points without any
connectivity. The reconstructed value of f at the position xi of point i = 0, ...,M − 1 is
calculated by the discrete equivalent of Eq. (3.25) that is called particle approximation. It is
defined by

< fi >:=
∑
j∈Di

ωjfjWij , (3.39)
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where Di := D(xi) denotes the kernel support of xi with boundary ∂Di, Wij := W (xj −xi, hij)
with

hij :=
hi + hj

2
and ωj the integration weight associated with calculation point j. According to Eq. (3.29) the
gradient of f at xi is computed by

< ∇fi >=
∑
j∈Di

ωjfj∇iWij +
∑
j∈∂Di

ω∂j fjWijnj , (3.40)

where ∇iWij denotes the gradient of the kernel function Wij evaluated at the particle position
xi. The second term in Eq. (3.40) is the discretization of the surface integral over the boundary
of the support [67]. It is zero far away from domain boundaries but it has to be computed if the
kernel support is truncated by the boundary of the computational domain ∂Ω. A consequence
of this term is that a discretization of the boundary in surface elements with a surface area ω∂

is required.
The physical interpretation of the particle approximation is that the calculation points can

be considered as particles and the integration weight ωi as their volume. The position of the
particle is xi and each particle carries its physical fields, as pressure pi and velocity vi. For the
discretization of the surface integral we use surface elements that have a surface area of ω∂j in
3D. In 2D the surface elements are line segments and in 1D points.

The kernel function is still a symmetric function, i.e. Wij = Wji, and the gradient of the
kernel function is anti-symmetric,

∇iWij = −∇jWij . (3.41)

The anti-symmetry of the gradient is important to ensure conservation properties as will be seen
below in Section 3.3.

Again, we insert the Taylor series expansion of f and ∇f into the formulae of the particle
approximation. In contrast to the continuous kernel approximation, we do not even have zeroth
order consistency because the following conditions are not satisfied in their discrete form. The
first condition is the discrete analogon of the normalization condition Eq. (3.21),∑

j∈Di

ωjWij = 1, (3.42)

and the second condition is the discrete form of Eq. (3.33),∑
j∈Di

ωj∇iWij +
∑
j∈∂Di

ω∂jWijnj = 0. (3.43)

In practice, the particle approximation Eq. (3.40) is not able even far away from boundaries to
compute the gradient of a constant function c(x) = c correctly because

< ∇ci >=
∑
j∈Di

cjωj∇iWij = c
∑
j∈Di

ωj∇iWij︸ ︷︷ ︸
6=0

6= 0.

To enforce zero consistency for the computation of a gradient, the particle approximation is
instead of Eq. (3.40) defined by

< ∇fi >:=
∑
j∈Di

ωj(fj − fi)∇iWij +
∑
j∈∂Di

ω∂j (fj − fi)Wijnj . (3.44)



3.2. SMOOTHED PARTICLE HYDRODYNAMICS 51

This definition is also justified for non-constant functions because the added term is the particle
approximation of the gradient of a constant which should be zero in any case. We see that fi
is constant in the sum and that the added term is the particle approximation of the gradient of
the unity multiplied by a constant,

fi < ∇1 > = fi
∑
j∈Di

ωj∇iWij + fi
∑
j∈∂Di

ω∂j Wijnj

=
∑
j∈Di

ωjfi∇iWij +
∑
j∈∂Di

ω∂j fiWijnj .

By reusing γ from (3.36), evaluated at xi, for the definition of the particle approximation,
De Leffe [22] defines the SPH operator for the gradient of a function by

< ∇fi >=
1

γ(xi)

∑
j∈Di

ωj (fj − fi)∇iWij +
1

γ(xi)

∑
j∈∂Di

ω∂j (fj − fi)Wijnj . (3.45)

It would be possible to discretize γ(xi) by the SPH operator Eq. (3.39) but in literature (e.g.
[22]) it is preferred not to discretize the term. In this way the equations are not modified far
away from boundaries because γ(xi) = 1 and γ(xi) only takes effect for boundary treatments.
Different ways to evaluate γ as accurate as it is computationally affordable are discussed in
[22, 30, 74].

Summarizing, there are three different approaches in literature to compute the gradient of a
function by SPH operators in the case where the kernel support is truncated by the boundary of
the domain. Either Eq. (3.40) or Eq. (3.44) are used without the boundary term. In this case,
the kernel support has to be completed by artificial particles with prescribed physical fields. Or
the boundary term in Eq. (3.40) or Eq. (3.44) is directly computed by discretizing the boundary
surface. In this case, there is two possibilities: either compute the γ(xi) term and therefore use
Eq. (3.45) or do not compute this term. We decided not to compute γ(xi) but to compute the
boundary term for the following reason. It has been shown that in order to avoid problems at
free surfaces, the γ(xi) term should not be discretized but should be calculated analytically. This
is computationally expensive in case of three-dimensional simulations with complex geometries
that we are interested in. Hence, we will use the SPH operator from Eq. (3.44) as starting point
for the discretization of the equations in Section 3.3.

3.2.3 Choice of a kernel function

In the past, some work has been done to construct sufficiently smooth kernel functions that
satisfy the Conditions (3.20)-(3.24). Traditionally in SPH B-spline functions are used as kernel
functions ([55, 61]). This family of functions has the form,

B(x, h) =
σd
hd
θ

(
‖x‖
h

)
,

where σd is a constant that enforces the normalization condition Eq. (3.21), h is the smoothing
length and d the number of dimensions. For the third order B-spline, for example, the function
θ is piecewise defined by

θ(q) :=


1− 3

2
q2 +

3
4
q3 if 0 ≤ q < 1,

1
4

(2− q)2 if 1 ≤ q ≤ 2,

0 elsewhere,

(3.46)
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Figure 3.5: Different kernel functions, scaled in a way that W (0) = 1.

and the constant σd is σ2 := 10/(7π) in 2D and σ3 := 1/π in 3D.
Wendland [115] introduced another family of functions, the so-called Wendland kernels of

the following form,

W (x, h) =
σd
hd
θ

(
‖x‖
2h

)
.

For the Wendland C4 function, the function θ is defined by

θ(q) := (1− q)5
+(8q2 + 5q + 1), (3.47)

with the truncated power function

xn+ =
{
xn if x > 0,
0 if x ≤ 0.

The constant σd is given by σ2 := 3/(4π) in 2D and σ3 := 165/(256π) in 3D.
Throughout this thesis we use a third order B-spline or the Wendland C4 kernel function to

solve the SPH flow equations, whereas the Wendland kernel is preferred. However, still another
type of kernel, the M ′4 kernel is used in some cases for interpolation purpose.

This function was introduced by Monaghan in 1985 [75] and used by Koumoutsakos and his
co-workers (see e.g. [20]) for their remeshed particle method. It is a modification of a B-spline
function where θ is defined as

θ(q) :=


1− 5

2q
2 + 3

2q
3 if 0 ≤ q ≤ 1,

1
2(2− q)2(1− q) if 1 < q ≤ 2,
0 elsewhere.

(3.48)

The function M ′4 verifies all of the above stated properties but one: it is not positve on the
whole kernel support area because

1
2

(2− q)2(1− q) < 0, if 1 < q ≤ 2.

It was constructed to fulfil the zeroing condition of its second moment, see Eq. (3.28), which is
possible since it is not a positive function on its support. Hence, the kernel approximation using
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the M ′4 kernel function reproduces exactly a second order polynomial, i.e. it is second order
consistent.

Figure 3.5 shows the Wendland C4, the third order B-spline and the M ′4 kernel function,
plotted without multiplication by the constant σd

h . As stated above, this constant ensures the
normalization property but in this figure we just compare the shape of the functions.

3.2.4 Convergence of the SPH operators

The particle approximations Eq. (3.39) and (3.40) have two different parameters of space dis-
cretization, namely the particle size ∆x and smoothing length h. On the one hand, the particle
size ∆x defines an average spacing between the particles and so the number of calculation points
in the computational domain. On the other hand, the smoothing length determines the size of
the kernel support and so the number of neighbours of a particle. To obtain spatial conver-
gence, both discretization parameters have to tend to zero. Moreover, Raviart [93] showed that
for convergence we also need that the number of neighbours increases as both discretization
parameters tend to zero,

h

∆x
→∞ as ∆x→ 0, h→ 0. (3.49)

It is often not possible to increase the number of neighbours while decreasing the discretization
size because of the computational cost. Like most authors we keep a constant ratio of ∆x and
h, like for example

h

∆x
= 1.2,

which works well in practice.

3.2.5 SPH and its variants

The original SPH method for fluid dynamics was mainly developed by Monaghan and is often
referred to as standard weakly-compressible SPH (WCSPH). It is a Lagrangian method where
the displacement of the particle position is given by

dxi
dt

= vi. (3.50)

The system of SPH equations for fluid dynamics further consists of the SPH discretization of
the momentum equation,

Dvi
Dt

= fS −
∑
j∈Di

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇iWij , (3.51)

where fS denotes a volumic source term (S = ρ fS) and D
Dt the total time derivative, and of an

equation for the density. Note that mi denotes the mass of particle i and the particle volume
can be computed by

ωi =
mi

ρi
.

In literature, there are two different approaches to compute the density ρ, that is the scatter
density formulation, i.e.

ρi =
∑
j∈Di

mjWij , (3.52)
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where the density of a particle is directly computed by summing over its neighbours, and the
continuity density formulation,

Dρi
Dt

=
∑
j∈Di

mj (vi − vj)∇iWij , (3.53)

which is a SPH discretization of the continuity equation. The system is closed by the weakly-
compressible state equation (3.4). An artificial viscosity term has to be added to the momentum
equation for stability reasons. This treatment adds numerical dissipation to the scheme that is
difficult to tune.

Monaghan [77] introduced the extended SPH (XSPH) approach where the particles are moved
by a smoothed velocity vεi that depends on the parameter ε and replaces the flow velocity vi in
Eq. (3.50). This modification yields a more regular distribution of the fluid particles.

The standard WCSPH as well as the XSPH approaches are able to capture the position of
the free surface quite well but suffer from several weaknesses. In particular, the pressure field
often shows non-physical spurious oscillations that pollute the results significantly.

For that reason, several improved SPH schemes have been published. One of them is the
δ-SPH approach [4] that adds an artificial diffusion term in the continuity equation to get rid of
the non-physical pressure oscillations.

Another weak point of standard WCSPH is the solid boundary treatment. Traditionally the
surface integral in Eq. (3.40) is not discretized but is set to zero. In order to compensate for
the truncated kernel support, ghost or mirror particles are added that complete the support.
The pressure and velocity fields for the added particles are chosen in a way that a solid wall
is modelled. This method is accurate for simple geometries but very difficult to implement for
complex geometries like they exist in industrial applications. In [78] Monaghan uses repulsive
boundary forces that are exerted from added boundary particles on the fluid particles. The
boundary forces are given by a Lennard-Jones potential and need a considerable calibration effort
before being used. In addition, this method is not accurate enough for our target applications.

In the last years, a new approach for imposing boundary conditions was published, e.g.
[67, 22, 30]. Instead of ignoring the surface integral in Eq. (3.40) and instead of completing
the kernel support with artificial particles, the surface integral is retained. This enables us to
accurately describe the geometrical form of the boundary surface. Some authors [29, 30, 54,
112] compute the surface integral and introduce the γ(x) term (3.36) for the discrete standard
WCSPH equations to obtain better accuracy close to boundaries and to be able to impose
physical boundary conditions.

However, we use another SPH variant throughout this document, which is more accurate
and stable. It also allows us to employ an accurate and flexible treatment of boundaries by
discretizing the surface integrals and imposing the missing boundary fluxes. The method is
called SPH-ALE or Riemann SPH and will be explained in the following section.

3.3 SPH-ALE

In 1999, Vila [111] introduced SPH-ALE (Arbitrary Lagrange Euler) in order to increase accu-
racy and stability of standard WCSPH. Since then it was used and further developed by several
authors (see e.g. [67, 39, 55, 22, 5]) where most of them also show a derivation of the method.

The starting point is the conservative formulation of the Euler equations, written in ALE
form, Eq. (3.12). Using a mathematically weak formulation with compact test functions, yields
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after doing some maths ∀i = 0, ...,M − 1 :

d(ωiΦi)
dt

+ ωi
∑
j∈Di

ωj (Fi + Fj) · ∇iWij + ωi
∑
j∈∂Di

ω∂j (Fi + Fj) · njWij = ωiQi, (3.54)

with M denoting the number of particles in the computational domain Ω and Fi and Fj denoting
the fluxes tensor F in Eq. (3.14) evaluated at xi and xj , respectively. The second sum that is
computed for j ∈ ∂Di is the boundary term and is zero far away from the boundaries of the
domain. A formal demonstration of Eq. (3.54) was obtained by De Leffe [22] using mathematical
test functions that are assumed to be compactly supported in space and time. In contrast to
[22] we do not compute the γ term of Eq. (3.36).

For simplicity of notation, we will consider in the following the equations without the bound-
ary terms. The boundary terms will be added again when we discuss boundary conditions in
SPH-ALE, see Section 3.7.2. Hence, we consider the set of equations,

d(ωiΦi)
dt

+ ωi
∑
j∈Di

ωj (Fi + Fj) · ∇iWij = ωiQi. (3.55)

This is a conservative formulation because

ωiωj(Fi + Fj) · ∇iWij = −ωjωi(Fj + Fi) · ∇jWij , (3.56)

but it does not conserve mass locally for each particle as it is the case in standard WCSPH. On
the contrary, mass fluxes are introduced between particles. That means that particles should
be rather considered as moving control volumes than particles, even if we continue to call them
particles to underline the meshless character of the method.

It is known from the theory of numerical mathematics of hyperbolic equations that centered
discretizations in space of the form of Eq. (3.55) are not stable, see e.g. [58]. A decentered
scheme could be obtained by adding an artificial viscosity term like Monaghan did in [78].
However, it is preferred to follow Vila [111] who proposed to replace the term (Fi + Fj) by two
times a decentered numerical flux computed at xij := xi+xj

2 , i.e.

(Fi + Fj) ≈ 2 F̂ij(Φ,v0). (3.57)

The system of equations (3.55) represents the discretization of the conservation of mass and
momentum in ALE form. It has to be completed by the discretization of two additional PDEs
for the geometric properties of the particles. The first describes the temporal evolution of the
particle positions in ALE form,

dxi
dt

= v0(xi, t), (3.58)

and the second the evolution of the particle volume ωi,

dωi
dt

= ωi∇ · (v0(xi, t)),

that is discretized as

dωi
dt

= ωi
∑
j∈Di

ωj (v0(xj , t)− v0(xi, t)) · ∇iWij . (3.59)
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Assembling Eqs. (3.58), (3.59), (3.55) and (3.57), we obtain the following semi-discrete SPH-
ALE formulation of the Euler equations, ∀i = 0, ...,M − 1 :

d

dt
(xi) = v0(xi, t),

d

dt
(ωi) = ωi

∑
j∈Di

ωj (v0(xj , t)− v0(xi, t)) · ∇iWij ,

d(ωiΦi)
dt

+ ωi
∑
j∈Di

ωj2 F̂ij(Φ,v0) · ∇iWij = ωiQi.

(3.60)

Eq. (3.60) is called a semi-discrete equation because the original partial differential equation
(PDE) was transformed into an ordinary differential equation (ODE) depending only on time
derivatives. The approach was illustrated in Eq. (3.18).

At the beginning of the simulation, at t = t0, initial values
Φ0
i = Φ(xi, t0),

v0
0,i = v0(xi, t0),

ω0
i = ω(xi, t0),

x0
i = xi(t0),

have to be imposed. The initialization of Φi and the particle positions xi depends on the
considered physical problem. The transport velocity v0 is initialized in Eulerian, Lagrangian
or ALE mode. The particle volumes are in general initialized uniformly, i.e. ω0

i = ω0. For
simulations without free surfaces where the whole computational domain is initially filled by
water, they are usually determined in a way that the particles discretize the whole computational
domain. Hence, we have ∑

i∈Ω

ω0
i = Mω0 = VΩ, (3.61)

where VΩ denotes the total volume that is covered by the computational domain and the initial
weights can be easily computed by

ω0
i = ω0 =

VΩ

M
.

If only parts of the computational domain are filled with water and the total volume covered by
SPH particles is not known beforehand, the particle volumes are initialised by

ω0
i = ω0 = (∆x)d.

The initial total mass is a result of the prescribed density and the initial particle volumes. It
can be computed by summing the mass of the particles, i.e.∑

i∈Ω

mi =
∑
i∈Ω

ω0ρ0
i .

For the computation of the numerical flux F̂ij(Φ,v0) Godunov’s method and a MUSCL
scheme are employed which were originally developed for FV methods. These methods will be
introduced in Section 3.6 for SPH-ALE and for the FV method at once.
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Geometrical difficulties of SPH

SPH-ALE is a meshless method that does not store or compute any connectivity information
between calculation points. Paradoxically, this is the strong point as well as the weak point
of the approach. It makes SPH a very flexible method that is able to capture flows with large
deformations that a mesh could not support without remeshing. But the lack of connectivity
information also has some disadvantages. Assume that the particles are moving in a Lagrangian
way. Hence, the evolution of the particle position and the particle volume are described by Eqs.
(3.58) and (3.59) but no information is available about the shape of a particle and its size. It is
often assumed that a particle is isotropic throughout the whole simulation with a particle size
that evolves with the evolution of the volumes, i.e. ∆x = ω

1
d , but experience shows that particles

do not always distribute themselves isotropically, e.g. close to stagnation points. In literature,
some authors try to cope with this difficulty by introducing anisotropic kernel functions that
keep a constant number of neighbours in all directions, see Chapter 4.

Another weak point of the Lagrangian meshless description of SPH is that the total volume
is not conserved even if the computational domain is closed. At the beginning of a simulation
at t = t0 the particles are usually constructed in a way that (see Eq.(3.61)),∑

i∈Ω

ω0
i = VΩ,

but after several iterations at t = tn we obtain∑
i∈Ω

ωni 6=
∑
i∈Ω

ω0
i = VΩ.

Nevertheless, the total mass is conserved because of Eq. (3.56).

3.4 The Finite Volume method

The Finite Volume method (FVM) is the most widely used method in Computational Fluid
Dynamics (CFD) because of its simplicity, flexibility and applicability to a wide range of flow
problems. An introduction to Finite Volume discretizations can be found in almost every book
about CFD. In the following we use [31, 35, 46, 47, 48, 58, 103, 104].

The derivation of the method starts from a set of conservation laws in a computational
domain Ω ⊂ Rd written in integral form, see Eq. (3.15). Again Φ = (ρ, ρv)T denotes the state
vector and F the flux of Eq. (3.14) through the boundary surface ∂Ω and Q the source term.
We subdivide the computational domain into N disjoint finite control volumes, also called cells,
Ωl with

N−1⋃
l=0

Ωl = Ω.

If two cells Ωl1 and Ωl2 (l1 6= l2) have a face in common, they are called neighbouring cells. In
the case of structured meshes, a cell has two neighbours in 1D, it has four neighbours in 2D and
six neighbours in 3D. In this document, a cell-centered FV scheme is considered. Hence in 2D,
the mesh lines indicate the faces of the cells and the nodes are the corner points.

For each control volume Ωl, Eq.(3.15) is valid,

d

dt

∫
Ωl

Φ dV +
∫
∂Ωl

F(Φ,v0) · ndS =
∫

Ωl

Q dV.
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Discretizing the integrals yields the so-called semi-discrete flow equations in conservation form
for FV schemes ∀l = 0, ..., N − 1 :

d

dt
(ΦlVl) +

∑
faces

F̂S(Φ,v0) · nS = QlVl, (3.62)

where we sum over the flux terms across the faces of cell l. The surface weighted normal vector
of a face of area S is denoted by nS := nS, where ‖n‖ = 1; Vl is the cell volume. The fluxes
evaluated at the faces F̂S are called numerical flux vectors.

The vector of state variables Φl is not associated to a mesh node but is a vector of cell
averaged quantities. So d

dt(ΦlVl) is the time rate of change of the averaged flow variables over
the control volume. However, in practice it is often assumed that Φl represents the value at the
center of the control volume.

Even if we use the ALE form of the Euler equations, no mesh deformation is computed in
this work and the cell volumes Vl are assumed constant in time. That is why no equation for
the evolution of the cell volumes is required.

Due to the hyperbolic character of the Euler equations, centered space discretization schemes
are unconditionally unstable. For that reason, the numerical fluxes evaluated on the faces have
to be computed by a decentered scheme that will be discused in Section 3.6.

3.5 Similarities of SPH-ALE and FVM

In this chapter the Euler equations in ALE form were discretized by two different approaches,
namely the meshbased FVM and the meshless SPH-ALE. It may be surprising that in the end
two systems of equations were obtained that resemble each other considerably. Indeed, the
similarity of the FV system of semi-discrete equations (Section 3.4) and the one obtained by the
SPH-ALE discretization (Section 3.3) is striking and deserves more attention. To analyze the
differences and similarities, we compare the SPH-ALE equations of conservation of mass and
momentum from Eq. (3.60),

d

dt
(ωiΦi) + ωi

∑
j∈Di

ωj 2 F̂ij(Φ,v0) · ∇iWij = ωiQi, (3.63)

to the semi-discrete FV equations, Eq. (3.62),

d

dt
(VlΦl) +

∑
faces

F̂S(Φ,v0) · nS = Vl Ql.

Both equations have the form,

d

dt
(VΦ) +

∑
k

F̂k(Φ,v0) ·Ak = VQ. (3.64)

The particle weights ωi are easily identified with the cell volumes Vl, and Ak is such that
AFV
k = nS = nS and ASPH

k = 2ωiωj∇iWij . It is to notice that for FVM the numerical flux
vector is evaluated at the face center xS and for SPH-ALE at the midpoint between two particles
xij . Moreover, we see that

ASPH
k = 2ωiωj‖∇iWij‖

∇iWij

‖∇iWij‖
,
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(a) In FVM fluxes are integrated over the
faces of cell l.

(b) In SPH-ALE fluxes are integrated over
the kernel support of particle i.

Figure 3.6: The FV discretization and the SPH-ALE discretization of the Euler equations have
a similar form. In both methods fluxes are computed from the solution of Riemann problems
and then summed.

and using

nij :=
∇iWij

‖∇iWij‖
, (3.65)

we obtain
ASPH
k = 2ωiωj‖∇iWij‖nij .

It is noticed that nij represents the direction of the connecting line between the cell centers xi
and xj .

The AFV
k term in FVM is the area of the face S multiplied by a normalized direction. Anal-

ogously, we can say that the ASPH
k term is a normalized direction multiplied by 2ωiωj‖∇iWij‖

which in some way acts as the area of the interface between particles.
Thus, in FVM the Ak define an area times a direction and they verify∑

k

AFV
k =

∑
faces

nS = 0.

The equivalent statement for SPH-ALE is not true, because∑
k

ASPH
k =

∑
j∈Di

2ωiωj∇iWij = 2ωi
∑
j∈Di

ωj∇iWij︸ ︷︷ ︸
6=0

6= 0, (3.66)

since the discrete analogon (3.43) of Condition (3.31) is not fulfilled in general.
Summarizing, we see that both methods yield semi-discrete equations that compute the time

rate of change of the flow variables averaged over a control volume by summing numerical fluxes
over neighbouring cells or particles, see Figure 3.6. However, the way how it is determined if
a cell or a particle is a neighbour differs greatly. For FVM, cells are considered as neighbours
only if they have a face or parts of a face in common. Fluxes are computed through a known
surface that limits one control volume from the other. For SPH-ALE, particles have neighbours
that are located within a finite distance to the considered particle i depending on the smoothing
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length h. The fluxes are computed between particle i and its neighbours j at the midpoint of the
connecting line of the particles i and j. As a consequence, SPH-ALE has a much larger numerical
stencil, using about twenty neighbours in 2D, while structured FVM only has four neighbours in
2D. Since the exact geometrical form of a SPH particle is not known, the exact position of the
interface between two particles is unknown either, even for two adjacent particles. Furthermore,
Eq. (3.66) shows that

∑
k Ak is not necessarily zero for SPH-ALE. This can be interpreted as

using a control volume that is not perfectly closed which has important consequences on the
accuracy of the SPH-ALE method. The influence of this error on the consistency of the particle
approximation was already noted in Section 3.2.2. A discussion about this error concerning
conservation laws and a novel correction method will be given in Section 3.9.3.

3.6 Computation of the numerical fluxes

The semi-discrete SPH-ALE and FV equations (3.60) and (3.62) require the computation of a
numerical flux between two particles or between two cells. For both methods Godunov’s fluxes
are used that will be introduced in the following. For that purpose we consider the system of
semi-discrete equations (3.64) of the form,

d

dt
(VΦ) +

∑
k

F̂k(Φ,v0) ·Ak = VQ, (3.67)

with Ak = Ak νk where Ak is an area and νk is a normalized direction.

3.6.1 Godunov’s method for the ALE formalism

In 1959 Godunov published a conservative first-order upwind scheme that is applicable to non-
linear systems of hyperbolic conservation laws [38] (in Russian). This section gives a short
introduction to the method, only highlighting the main steps. The books of Leveque [58] and
Toro [103] are recommended to the interested reader. Godunov introduced his method for
conservation laws in a fixed frame of reference but the method can directly be extended to
conservation laws in ALE form [44]. See also the SPH-ALE literature on moving Riemann
problems [111, 67, 55]. In this section, the ALE form of Godunov’s method will be presented.

The main idea is to consider the discrete cell values on a mesh as initial data of local one-
dimensional Riemann problems. The local Riemann solution is computed in the direction νk,
that is the normal direction n to the face between two cells in FVM or the direction nij of the
connecting line between two particles in SPH-ALE, see Eq. (3.65). It is assumed that the initial
discontinuity is situated at a position xk that is the face center xS in FVM or the midpoint xij
of the connecting line in SPH-ALE.

We consider a local coordinate system with origin at xk and with the x(1)-axis parallel to
νk, our direction of observation. In 2D there is one tangential direction that is parallel to the
x(2)-axis. In 3D, there are two tangential directions that are parallel to the x(2)-axis and the
x(3)-axis. In the following, only the two-dimensional case is explained but the arguments can
be directly extended to 3D. The one-dimensional Riemann problem in direction νk of solution
Φ(x(1), t), with an initial discontinuity defined at the interface, is given by

∂

∂t
Φ +

∂

∂x(1)
(F · νk) = 0,

Φ(x(1), 0) =

{
ΦL if x(1) < 0,

ΦR if x(1) > 0.

(3.68)



3.6. COMPUTATION OF THE NUMERICAL FLUXES 61

If F = Fc(Φ), the classical Riemann problem in a fixed frame of reference follows. However,
if we use the ALE flux of Eq. (3.14), i.e. F(Φ,v0) = Fc(Φ) − v0 ⊗ Φ, we obtain a moving
Riemann problem, 

∂

∂t
Φ +

∂

∂x(1)
(Fc(Φ) · νk − v0(xk, t) · νkΦ) = 0,

Φ(x(1), 0) =

{
ΦL if x(1) < 0,

ΦR if x(1) > 0.

(3.69)

In this case, the interface moves with the ALE velocity v0(xk, t).
The solution of the moving Riemann problem is obtained by using the classical Riemann

problem in Eulerian description (denoted by ΦE
k ) with the following relation,{

λ0
k := v0(xk, t) · νk,

ΦE
k (λ0

k) := ΦE
k (λ0

k,ΦL,ΦR).
(3.70)

The solution of the moving Riemann problem is then inserted into the flux vector to calculate
the numerical flux. Hence,

F̂k(Φ,v0) = F(ΦE
k (λ0

k,ΦL,ΦR)) = Fc(ΦE
k (λ0

k))− v0(xk, t)⊗ΦE
k (λ0

k), (3.71)

where ΦE
k (0,ΦL,ΦR) is the solution of the classical Riemann problem at xk in the direction

of x(1)/t = 0 and ΦE
k (λ0

k) := (ρEk , ρ
E
k vEk )T is the corresponding solution of the problem in the

direction of
x(1)/t = λ0

k. (3.72)

Hence, the solution ΦE
k (λ0

k) of the moving Riemann problem is obtained in several steps as
will be explained in the following.

3.6.1.1 The structure of a classical Riemann problem

The Riemann problem Eq. (3.68) is written in conservative form where the vector Φ contains
the conserved variables. For the computation of the solution of the Riemann problem we rewrite
the equations with W containing the primitive variables [103]. The new system of equations
has the form

∂

∂t
W + A(W)

∂

∂x(1)
W = 0. (3.73)

The vector of primitive variables is defined by W := (ρ, v(1), v(2))T where v(1) denotes the
velocity component in direction νk and v(2) denotes the tangential component. Since the weakly-
compressible Euler equations Eq. (3.10) are closed by Tait’s equation (3.4), the pressure can be
expressed as a function of the density. As a consequence, the matrix A = A(W) only depends
on W and is given by

A =


v(1) ρ 0
c2

ρ
v(1) 0

0 0 v(1)

 . (3.74)

The matrix A has three real distinct eigenvalues, i.e.
λ1 = v(1),

λ2 = v(1) + c,

λ3 = v(1) − c.

(3.75)
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Figure 3.7: The structure of a one-dimensional Riemann problem for the Euler equations along
a direction of observation parallel to the x(1)-axis.

These eigenvalues determine the general form of the Riemann problem for Euler equations. Fig-
ure 3.7 shows the characteristic lines in the (x(1), t) plane that represent three non-linear waves
that are associated to the eigenvalues. The waves separate four different regions of constant
states. The central wave that is given by λ1 is known to be a contact discontinuity. However,
the other two waves can in each case either be a shock wave or a rarefaction wave. The region
which lies in-between the waves associated to λ2 and λ3 is called star-region where the state
variables are equal to the unknown state W∗. The star-region is divided by the contact discon-
tinuity into a left and a right star-region with states W∗

L and W∗
R where only the tangential

velocity is discontinuous. Since the tangential velocity does not change through a shock or a
rarefaction wave, we obtain 

ρ∗ = ρ∗L = ρ∗R,

(v(1))∗ = (v(1))∗L = (v(1))∗R,

(v(2))∗L = v
(2)
L ,

(v(2))∗R = v
(2)
R .

(3.76)

In order to get the whole structure of the local Riemann problem, the missing state (ρ∗, (v(1))∗)
in the star-region has to be computed. Moreover, the character of the left and the right wave
has to be determined and its’ speeds to be computed.

Computation of the states in the star-region

The state in the star-region W∗ is reached from the left and the right initial states, WL and
WR, through non-linear waves that can be either shock waves or rarefaction waves. A non-linear
expression for ρ∗ can be found that is based on the Rankine-Hugoniot relation for shocks or on
the conservation of Riemann invariants for rarefaction waves [103]. It has the form

g(ρ∗) := gL(ρ∗,WL) + gR (ρ∗,WR) + v
(1)
R − v

(1)
L = 0, (3.77)

where gL and gR are non-linear functions. Eq. (3.77) has to be solved iteratively, see [67]
for details. From the solution of the density ρ∗ the normal component of the velocity in the
star-region (v(1))∗ can be computed by

(v(1))∗ =
1
2

(
v

(1)
R + v

(1)
L

)
+

1
2

( gR (ρ∗,WR)− gL(ρ∗,WL)) .
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It is computationally expensive and for our purpose not necessary to compute W∗ by an exact
iterative solver. Instead we prefer to use linearized Riemann solvers for the computation of
the numerical fluxes. The fact that the numerical methods compute averaged values that are
supposed to be constant or linear on a control volume introduces more errors than an approxi-
mate Riemann solver does. Furthermore, in hydraulic applications we do not encounter strong
shocks that have to be captured. Validations and comparison of exact and different approxi-
mate Riemann solvers can be found in [67, 69]. In the simulations presented in this thesis the
approximate Primitive Variable Riemann Solver (PVRS) is used exclusively.

The PVRS solver [103, 67, 55] is a linearized Riemann solver where the matrix A(W) of Eq.
(3.73) is approximated by a constant matrix A := A(W), with W denoting a constant averaged
state. Solving exactly the Riemann problem of a linear hyperbolic system

∂

∂t
W + A

∂

∂x(1)
W = 0,

we obtain simple relations for ρ∗ and (v(1))∗, i.e.
ρ∗ =

1
2

(ρL + ρR)− 1
2

(
v

(1)
R − v

(1)
L

) ρ̄
c̄
,

(v(1))∗ =
1
2

(
v

(1)
L + v

(1)
R

)
− 1

2
(ρR − ρL)

c̄

ρ̄
,

(3.78)

with 
ρ̄ =

1
2

(ρL + ρR) ,

c̄ =
1
2

(cL + cR) .

The local sound speeds cL, cR and c∗ are determined by Eq. (3.5). These intermediate states
are at first used to determine if the left and right running waves are either shock waves or
rarefaction waves. In a next step, they are utilized to get the sought solution that is required
for the computation of the numerical fluxes Eq. (3.71).

Determining the nature of the left and the right wave

There are four different configurations of possible combinations of shock and rarefaction waves
at each side of the contact discontinuity, see Figures 3.8 and 3.9. If both waves are shocks, there
are four regions where the state variables have different values. These regions are delimited by
the lines x(1)/t = µ1 = µ2, x(1)/t = µ3 and x(1)/t = µ4 = µ5. If both waves are rarefaction
waves two additional regions are added, one between µ1 and µ2 and one between µ4 and µ5.
In the case of a shock and a rarefaction wave five different regions exist. In the following, we
determine the µα, α = 1, ..., 5.

• The left wave is a rarefaction wave if ρ∗ ≤ ρL. This is shown in Figure 3.8(b) and 3.9(a)
and we have {

µ1 = v
(1)
L − cL,

µ2 = (v(1))∗ − c∗.

• The left wave is a shock wave if ρ∗ > ρL, see Figure 3.8(a) and 3.9(b). In this case we have

µ1 = µ2 = v
(1)
L −

QL
ρL

,
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(a) Two shock waves. (b) Two rarefaction waves.

Figure 3.8: Possible configurations of the Riemann problem where the left and the right waves
are the same.

with

QL :=
(
K[(ρ∗)γ − ργL]ρLρ∗

ρ∗ − ρL

) 1
2

,

and with

K :=
c2

0

γργ−1
0

, (3.79)

where γ, c0, ρ0 are defined as in Section 3.1.

• We know that the wave associated to λ1 is a contact continuity with

µ3 = (v(1))∗.

• The right wave is a rarefaction wave if ρ∗ ≤ ρR, see Figure 3.8(b) and 3.9(b), and we
obtain analogously to the left rarefaction wave{

µ4 = (v(1))∗ − c∗,

µ5 = v
(1)
R − cR.

• The right wave is a shock wave if ρ∗ > ρR, see Figure 3.8(a) and 3.9(a). Similarly to the
left shock wave, we have

µ4 = µ5 = v
(1)
R +

QR
ρR

,

with

QR :=
(
K[(ρ∗)γ − ργR]ρRρ∗

ρ∗ − ρR

) 1
2

,

and K defined by Eq. (3.79).

Knowing W∗ from Eq. (3.78) and the nature of the left and right waves, the solution state
ΦE
k (λ0

k) that we need for the computation of the numerical fluxes will be sought in the direction
given by Eq. (3.72).
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(a) A rarefaction wave at the left hand
side and a shock wave at the right hand
side.

(b) A shock wave at the left hand side and
a rarefaction wave at the right hand side.

Figure 3.9: Possible configurations of the Riemann problem where the left and the right waves
are different.

3.6.1.2 Computation of the solution state for the numerical fluxes

The next step is to determine in which region the sought solution ΦE
k (λ0

k) lies. We simply check
between which µα, α = 1, ..., 5 the line

x(1)/t = λ0
k = v0(xk, t) · νk

is situated. This is the first time that considering a moving Riemann problem instead of a
classical Riemann problem in a fixed frame of reference intervenes in our considerations. In the
case of the classical Godunov method the solution is sought in the direction x(1)/t = 0 which
corresponds to the t-axis in the (x(1), t)-diagram.

1. If λ0
k ≤ µ1, the solution state is equal to the left initial state, i.e. ΦE

k (λ0
k) = ΦL.

2. If µ1 < λ0
k ≤ µ2, the solution is situated inside the left rarefaction wave. In this case, the

flow variables in the local coordinate system are given by

(v(1))Ek =
2

γ + 1

(
cL +

1
2
v

(1)
L (γ − 1) + λ0

k

)
,

ρEk =

(
((v(1))Ek − λ0

k)
2

γ K

) 1
γ−1

,

(v(2))Ek = v
(2)
L .

3. If µ2 < λ0
k ≤ µ3, the solution state ΦE

k (λ0
k) is equal to Φ∗L. This means that

ρEk = ρ∗,

(v(1))Ek = (v(1))∗,

(v(2))Ek = v
(2)
L .
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4. If µ3 < λ0
k ≤ µ4, the solution state is given by ΦE

k (λ0
k) = Φ∗R, i.e.

ρEk = ρ∗,

(v(1))Ek = (v(1))∗,

(v(2))Ek = v
(2)
R .

5. If µ4 < λ0
k ≤ µ5, the solution is situated inside the right rarefaction wave. In this case, the

flow variables are given by

(v(1))Ek =
2

γ + 1

(
−cR +

1
2
v

(1)
R (γ − 1) + λ0

k

)
,

ρEk =

(
(λ0
k − (v(1))Ek )2

γ K

) 1
γ−1

,

(v(2))Ek = v
(2)
R .

6. If λ0
k > µ5, the solution state is equal to the right initial state, i.e. ΦE

k (λ0
k) = ΦR.

Summarizing, several steps are necessary to obtain the solutions that are used to compute
the numerical fluxes. At first the classical Riemann problem, Eq. (3.68) is written in primitive
variables to obtain the eigenvalues of the hyperbolic system. Then we compute the variables
in the star-region in order to determine the whole structure of the Riemann problem. After
detecting if the left and right waves are shock or rarefaction waves, the required solution is
obtained by searching in the direction of Eq. (3.72).

3.6.2 The semi-discrete SPH-ALE and FV equations

The computed solution states ΦE
k (λ0

k) are used to get the numerical fluxes for the systems of
semi-discrete equations (3.60) and (3.62). Hence, the resulting system of semi-discrete SPH-ALE
equations is

d

dt
(xi) = v0(xi, t),

d

dt
(ωi) = ωi

∑
j∈Di

ωj (v0(xj , t)− v0(xi, t)) · ∇iWij ,

d

dt
(ωiρi) + ωi

∑
j∈Di

ωj2ρEij
(
vEij − v0(xij , t)

)
· ∇iWij = 0,

d

dt
(ωiρivi) + ωi

∑
j∈Di

ωj2
[
ρEijv

E
ij ⊗ (vEij − v0(xij , t)) + pEijI

]
· ∇iWij = ωiρig,

(3.80)

and analogously the system of semi-discrete FV equations in conservative ALE form reads as,
d

dt
(ρlVl) +

∑
faces

ρES
(
vES − v0(xS , t)

)
· nS = 0,

d

dt
(ρlvlVl) +

∑
faces

[
ρES vES ⊗

(
vES − v0(xS , t)

)
+ pES I

]
· nS = Vlρlg.

(3.81)

The weakly-compressible state equation (3.4) is used to close both systems. Note that the
standard Godunov equations for FVM in Eulerian description are recovered if v0 = 0 is chosen
in Eq. (3.81).
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Figure 3.10: Initial states ΦL and ΦR at the interface between two cells i and j for the original
Godunov method in the case of a 1D FV solver. Originally in Godunov’s method the states
were assumed to be constant in a cell with ΦL = Φi and ΦR = Φj .

3.6.3 The MUSCL scheme

In the previous section 3.6.1 Godunov’s method was described without specifying how the initial
states ΦL and ΦR at the interface of the Riemann problem Eq. (3.69) are chosen. The original
Godunov scheme is a first order conservative upwind scheme where the initial states ΦL and ΦR

are taken equal to the states Φi and Φj of the considered cells or particles. That means that it is
supposed that the states are constant in each control volume. Figure 3.10 illustrates the concept
for one space dimension and FVM. In 1979, Van Leer [110] published his second-order sequel
of the Godunov method where the states ΦL and ΦR are supposed to be linear inside a control
volume. Hence, they are reconstructed from the center of the control volume to the interfaces
by linear interpolation. In the original paper the method is called Monotonic Upstream-centered
Scheme for Conservation Laws (MUSCL).

3.6.3.1 The MUSCL approach adapted to unstructured FVM

We use a version of the method for unstructured grids, see [26]. We consider a face with center
xS that connects cells i and j with cell centers xi and xj .

The idea of the MUSCL scheme is to interpolate the interface states by an expression that
ideally would be {

ΦL = Φi +∇iΦ · (x̂ϑ − xi),
ΦR = Φj +∇jΦ · (x̂ϑ − xj),

(3.82)

where ∇iΦ denotes the gradient of Φ evaluated at the cell center xi. The x̂ϑ is the point where
the connecting line xixj intersects the face. In general, it is not equal to the face center xS .
Hence, there is a parameter ϑS ∈ [0, 1], such that

x̂ϑ = (1− ϑS)xi + ϑSxj , (3.83)

where the parameter is computed by

ϑS :=
‖xS − xi‖
‖xj − xi‖

. (3.84)

But expression (3.82) for the interface states cannot be used in practice and a non-linear
limiter function α is needed to prevent spurious oscillations to arise. A famous limiter is the
minmod function [58]. Thus, we obtain with α ∈ [0, 1],{

ΦL = Φi + α(Φi,Φj ,∇iΦ)∇iΦ · (x̂ϑ − xi),
ΦR = Φj + α(Φi,Φj ,∇jΦ)∇jΦ · (x̂ϑ − xj).

(3.85)
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Hence, the reconstruction of the interface states demands the computation of the gradients of
the state variables that are not needed for the Godunov scheme. In unstructured FVM the
gradients of a variable φ can be computed as

∇i φ =
1
Vi

∑
faces

φi,S nS , (3.86)

where
φi,S := (1− ϑS)φi + ϑS φj ,

see [26, 31]

3.6.3.2 The MUSCL approach adapted to SPH-ALE

The same way, to improve the accuracy of the SPH-ALE scheme, the MUSCL scheme was
adapted to SPH-ALE by [111, 67]. In contrast to FVM, the exact position of the interface
between two particles is not known but it is assumed that it is situated at the midpoint between
them. So we obtain 

ΦL = Φi + α(Φi,Φj ,∇iΦ)∇iΦ ·
xj − xi

2
,

ΦR = Φj − α(Φi,Φj ,∇jΦ)∇jΦ ·
xj − xi

2
,

(3.87)

where α again denotes a limiter function. The gradients ∇iΦ are computed by the SPH estima-
tion, Eq. (3.44).

3.7 Boundary conditions

In practical computations of flows, a finite computational domain Ω with boundary ∂Ω is consid-
ered. At the boundary, conditions have to be imposed according to several considerations. First,
the numerical stencil is not complete close to boundaries and a way has to be found such as the
missing calculation points are compensated for. Second, we want to impose physical conditions
on the boundary that depend on the boundary type, i.e. wall, inlet or outlet, periodicity or free
surface. Third, the physical conditions have to be in accordance with the hyperbolic character
of the Euler equations. Solutions of the Euler equations describe convective phenomena and
have a wave-like character. The boundary conditions have to be compatible with the direction
of propagation of the waves. The first aspect, the truncation of the numerical stencil, depends
on the numerical method that is used, in our case, SPH-ALE or FVM. The other two aspects,
the physical and mathematical constraints, are independent of the employed method.

In this section, boundary treatment for SPH-ALE and FVM for different types of boundaries
will be explained with a special emphasis on the similarities and differences between the two
methods.

3.7.1 Boundary conditions for FVM

The FV method computes the fluxes between two cells that are connected by a face. In the
interior of the domain the fluxes are calculated from the states of both neighbouring cells. At the
boundary there is a face with only one neighbour cell and a way has to be found to compute the
missing flux, see Figure 3.11 (a). Basically there are two strategies, either we add artificial cells
to complete the numerical stencil or we directly compute the boundary flux. Each of them has
advantages and disadvantages. The first necessitates the construction of artificial cells where
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(a) In FVM fluxes are integrated over the
faces of cell l.

(b) In SPH-ALE fluxes are integrated
over the kernel support of particle i.

Figure 3.11: The fluxes between two cells or two particles are determined by solving Riemann
problems. However, at the boundaries of the computational domain it is not obvious how to
compute the fluxes that are indicated by a red question mark.

the field variables are set in a way that the physical boundary conditions are satisfied. The
second one demands a modification of the numerical stencil at the boundary. Furthermore,
the boundary flux has to be determined in such a way that the hyperbolic character of the
equations is not violated. We will use both strategies depending on the type of boundaries that
is considered.

If the numerical stencil is not complete, the semi-discrete FV equations (3.81) for a cell l at
the boundary become

d(VlΦl)
dt

+
∑
IF

F̂S(Φ,v0) · nS +
∑
BF

F̂S(Φ,v0) · nS = VlQl, (3.88)

where the sum over IF is over the internal faces and the sum over BF is over the boundary
faces. The boundary faces represent a discretization of the boundary with a surface area S and
a normalized direction n that is normal to the surface element.

In this project, the FV domain can be limited by wall boundaries, inlet and outlet boundaries
and periodic boundaries. However, the implemented FV solver does not treat free surfaces or
multi-phase flows.

3.7.2 Boundary conditions in SPH-ALE

A particle that is situated close to the boundary of the computational domain has a kernel
support that is truncated like it is illustrated in Figure 3.11 (b). In general, the surface integral
in the kernel approximation of gradients Eq. (3.29) is not zero at the boundaries. In literature,
two strategies can be found for boundary treatment. Either the truncated kernel is completed by
adding particles, similar to the virtual cells in FVM, or the surface integral is directly computed.
In this document, we complete the kernel support by adding virtual particles only in order to
impose periodic boundary and plane symmetry conditions. In all other cases, we prefer to
compute the boundary integral. For that purpose, the boundaries are discretized in surface
elements j with normal vector nj and integration weight ω∂j . Note that ω∂j is equal to the area
of the surface element j. The semi-discrete SPH-ALE equations, Eq. (3.60), with boundary
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terms have the form,

d(ωiΦi)
dt

+ ωi
∑
j∈Di

ωj 2 F̂ij(Φ,v0) · ∇iWij + ωi
∑
j∈∂Di

ω∂j 2 F̂ij(Φ,v0) · njWij = ωiQi. (3.89)

The boundary flux has to be determined in a way that satisfies the physical conditions that we
want to impose and that respects the hyperbolic nature of the system. Analogously to FVM,
different strategies are applied, depending on the type of the boundary, i.e. wall, inlet or outlet.

In the following, similar to Section 3.6 we use the index k to describe the boundary contribu-
tions that appear for the SPH-ALE or the FV equations. Hence, the index k denotes the index
of the boundary faces if FVM is considered and the index of the surface elements that discretize
the boundary of the kernel support ∂Di in the case of SPH-ALE. The direction of observation
is in both cases the normalized normal nk of the boundary face or surface element.

3.7.3 Solid wall boundary conditions

In this document we want to impose inviscid wall boundary conditions, so-called free slip con-
ditions, that are translated into the equation

(v(xk, t)− vw(xk, t)) · nk = 0, (3.90)

with xk denoting a point at the wall and vw the velocity of the solid. For our target applications
we need a way to impose wall boundary conditions on complex geometries in an accurate way.
The approach that we choose is closely linked to our experience with SPH-ALE where partial
Riemann problems on surface elements are solved. For SPH-ALE the technique is based on
the work of Marongiu [67]. Originally, the notion of partial Riemann problems was developed
for unstructured FVM by Dubois [26] and can be directly applied to the FV solver that was
implemented in the frame of this thesis.

In Section 3.6.1 we have seen that Godunov’s method reinterprets faces as interfaces between
discontinuous states that are initial conditions for Riemann problems. The idea of Dubois [26]
is to stick to that interpretation, considering Riemann problems also on boundaries, but with
some necessary modifications. Again we consider a Riemann problem like in Eq. (3.69) but
this time the interface is situated at the solid wall at xk. At the boundary, one initial state
is missing because there is no control volume on the other side of the face. We assume that
the missing state that comes from the boundary is ΦR and that ΦL denotes the fluid state.
The missing information is replaced by the information that comes from the physical boundary
condition, Eq. (3.90). Since the velocity of the interface is equal to the velocity of the solid, i.e.
v0(xk, t) = vw(xk, t), Eq. (3.90) gives(

vEk − v0(xk, t)
)
· nk = 0.

As a consequence, the convective part of the flux cancels and the formulation guarantees that
no mass is transfered between the solid wall and the fluid. The numerical boundary flux in Eq.
(3.80) reduces to

F̂k = (0, pEk I)T .

According to [26] it is an acceptable simplification to seek the solution state pEk in the star
region. Applying a linearization around the interface yields for the density

ρEk = ρ∗ = ρL − (v0 − vL) · nk
ρL
cL
,
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and the pressure pEk is again obtained by Eq. (3.4).
Hence, the ALE formalism enables us to consider solids that are moving with an arbitrary

velocity vw that can be predefined or imposed by the fluid [96]. This property is of paramount
importance for the applications of flows in hydraulic machines that we are interested in. Note
that in the frame of this project, we do not use solid walls that move relatively to the border
of the FV domain because we do not consider changes in the connectivity of the FV mesh. In
Chapter 5 it will be shown that the SPH domain is used to handle this feature.

3.7.4 Inlet and outlet conditions

It is of crucial importance to impose inlet and outlet conditions correctly. Since we are consider-
ing hydraulic applications, subsonic conditions are specified because the fluid velocity is smaller
than the speed of sound, ‖v‖ < c. For simplicity, we discuss the two-dimensional case with
v0 = 0 and assume that the normal vectors nk at the inlet and at the outlet are pointing inside
the fluid domain. At the inlet, v · nk > 0, so the eigenvalues from Eq. (3.75) fulfil

λ3 < 0 < λ1 < λ2,

with 
λ1 = v · nk,
λ2 = v · nk + c,

λ3 = v · nk − c.

Hence, there are two positive eigenvalues that correspond to information that comes from the
outside of the domain and one negative eigenvalue associated to information leaving the domain.
At the outlet v · nk < 0 and we obtain

λ3 < λ1 < 0 < λ2,

which means that there is one positive and two negative eigenvalues corresponding to one infor-
mation from outside and two from inside. As a consequence, there are two components of field
variables Φ that have to be imposed at the inlet and one at the outlet. In many cases it is a
good choice to impose velocity (two components in 2D, and three in 3D) at the inlet and static
pressure at the outlet.

Launching simulations of internal flows with the weakly-compressible formalism shows re-
flections at the inlet and the outlet that pollute the results if no special treatment is applied.
A first attempt to get rid of the reflections was made by implementing non-reflecting boundary
conditions at infinity [36] that were first adapted to SPH-ALE by [22]. Boundary conditions at
infinity suppose that a state at infinity Φ∞, also called a free-stream state, is imposed and that
this state is not influenced by the flow inside the computational domain. In this approach a
numerical flux F̂ at the boundary is defined by

F̂ :=
∑

α:λα≥0

Lα(Φ∞,nk) · [(F(Φ∞) · nk)Rα(Φ∞,nk)]

+
∑

α:λα<0

Lα(Φ∞,nk) · [(F(Φi) · nk)Rα(Φ∞,nk)] , (3.91)

where Lα and Rα are the left and right eigenvectors of the matrix A in Eq. (3.74) associated
to λα with α = 1, 2, 3. The eigenvectors are evaluated at the imposed state Φ∞. Analogously,
F(Φ∞) denotes the flux tensor given by Eq. (3.14) evaluated at the imposed state Φ∞. The



72 CHAPTER 3. NUMERICAL METHODS

flux tensor F(Φi) is evaluated at Φi which is the state of the particle or the cell i that is the
neighbour of the surface element k. Note that the first term is a sum over the eigenvectors
that are associated to the positive eigenvalues, i.e. the eigenvectors that correspond to the
information that is propagating into the domain and that has to be imposed. The other term
corresponds to the information that leaves the domain. Thus, the hyperbolic characteristics of
the Euler equations are well respected.

These boundary conditions are very effective in eliminating the reflected waves but do not
allow us to impose the above introduced subsonic conditions. They were developed for simu-
lations of unbounded physical domains where the states at infinity are known and where the
imposed velocity and pressure at inlet and outlet are the same. This is not the case in the
internal flow applications that are our target applications where typically a pressure gradient
between inlet and outlet is established. Nevertheless, these conditions allow gradients of the
flow variables between inlet and outlet but the subsonic conditions cannot be imposed explictly,
especially the pressure at the outlet cannot be controlled directly.

For that reason, another approach of non-reflecting boundary conditions called Navier-Stokes
Characteristic Boundary Conditions based on the publications [82, 90] is available in our solver.
The idea is to write the conservative Euler equations in the direction normal to the inlet or outlet.
The conservative variables are transformed to primitive and then to characteristic variables which
are used to obtain the compatibility relations that allow us to identify the ingoing and outgoing
waves. This gives a relation between the primitive and the characteristic variables that is used
to understand why imposing pressure at a subsonic outlet introduces necessarily reflections. In
the end, a relaxed boundary value is used that is able to evacuate the unwanted perturbations
and that maintains a target value that we want to impose, e.g. the pressure at the outlet.
The difficulty is that a relaxation coefficient has to be determined depending on geometrical
properties of the computational domain.

Difficulties at inlets and outlets with SPH-ALE

When imposing inlet and outlet conditions to SPH particles in Eulerian description the boundary
treatment simply consists of inserting the computed boundary fluxes, e.g. Eq. (3.91), in the semi-
discrete system (3.89) like it is done for FVM. However, when condering moving SPH particles
additional difficulties arise that are due to geometrical problems. Moving particles have to be
created when they enter the computational domain at the inlet and they have to be destroyed
when they leave the domain at the outlet. Special care has to be taken to insert or remove
particles without introducing perturbations into the flow fields. At the outlet, it is especially
tricky to impose pressure correctly before deleting the particles that leave the computational
domain. Whenever it is possible, we use particles in Eulerian motion to avoid this problem.

3.7.5 Periodic boundary conditions

In order to impose periodic boundary conditions the strategy where cells or particles are added
to complete the numerical stencil is employed. In the case of FVM, Figure 3.12 shows that two
layers of virtual cells are added for the periodic boundaries by copying them from the fluid cells.
For that purpose, care has been taken during mesh generation that the part of the fluid mesh
indicated by a red frame has coincident nodes with the part indicated by a black frame if they
are translated by the domain width. If this is the case, the cells next to the boundaries of one
block can be added at the other block with continuous mesh lines. In the case of the MUSCL
scheme, two layers of cells are needed due to the computation of the gradients. Using Godunov’s
scheme with states that are supposed to be constant in a cell, necessitates only one layer of cells.
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Figure 3.12: A block-structured mesh around a symmetric NACA hydrofoil that is used for the
FV solver. The blue mesh is the normal fluid mesh while the yellow mesh are virtual cells that are
copied for the periodicity conditions. Note that the mesh lines are continuous everywhere even
between the original mesh (blue) and the virtual cells (yellow). The virtual cells are constructed
by copying the cells in the black frame (bottom) to the black framed virtual cells (top) and the
red ones (top) to the red framed virtual cells (bottom).

The same technique is applied for SPH-ALE where, in the case of the MUSCL scheme, particles
within two diameters of the kernel support are copied and translated. These fictitious particles
are also called ghost particles or phantom particles.

3.7.6 Free surface condition

Free surfaces are particular boundaries that in reality represent interfaces between water and air.
They are characterized by dynamic and kinematic conditions. For the inviscid Euler equations
the dynamic condition says that the pressure is continuous through the interface, i.e. the pressure
of the water phase at the free surface is equal to the pressure of the air phase. The kinematic
condition states that the velocity component of the water phase normal to the interface is equal
to the normal velocity of the air phase and that the interface moves according to that velocity
field.

In SPH it is possible to compute free surface flows without modelling the air phase. It
is assumed that particles in Lagrangian motion automatically satisfy the kinematic condition.
Also the dynamic condition seems to be fulfilled without any special treatment or modification
of the equations. It was said before that we usually choose a zero reference pressure, p0 = 0, in
the weakly-compressible equation of state (3.4). The reason for that is that the pressure at the
free surface has to be equal to the ambient pressure and in our case it is equal to zero. Hence,
we interpret the missing particles in the kernel support as air particles with zero pressure that
are taken into account automatically. That means that the surface integral does not have to
be computed because the kernel support should not be seen as truncated at the free surface. A
detailed explanation for free surface treatment in SPH-ALE can be found in [22].

3.8 Time integration

From the FV and the SPH-ALE space discretization we obtain two similar sets of semi-discrete
differential equations (3.60) and (3.62) of the form,

dΨ
dt

= H(Ψ,x, t).
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The same time integration scheme is used for both approaches, that is an explicit Runge-Kutta
method. In particular, we use the explicit Euler scheme, the Heun scheme (a second order
Runge-Kutta scheme) and the explicit forth-order Runge-Kutta time integration scheme. They
can be found in books about numerical mathematics in general or CFD in particular, e.g. [46].

The idea of an explicit scheme is that the update of the state variables Ψ from time t = tn

to t = tn+1 is done by using the known values of the function Hn := H(Ψn,xn, tn) at time tn.
In the contrast, an implicit method would use Hn+1 to evaluate Ψn+1.

The explicit Euler scheme is defined by

Ψn+1 = Ψn + ∆tHn. (3.92)

The higher-order Runge-Kutta schemes include s intermediate steps called stages in the interval
[tn, tn+1]. The time update for the Heun scheme is then given byΨn+1 = Ψn + ∆tHn,

Ψn+1 = Ψn +
1
2

∆t
(
H(Ψn+1) +Hn

)
.

(3.93)

Similarily, the fourth-order Runge-Kutta scheme is defined by

Ψ(1) = Ψn

Ψ(2) = Ψn +
1
2

∆tH(1),

Ψ(3) = Ψn +
1
2

∆tH(2),

Ψ(4) = Ψn + ∆tH(3),

Ψn+1 = Ψn +
1
6

∆t
(
Hn + 2H(2) + 2H(3) +H(4)

)
,

(3.94)

where the H(k) := H(Ψ(k)) with k = 1, ..., 4.
The discretization sizes of time ∆t and space ∆x are linked for hyperbolic equations by the

so-called Courant-Friedrichs-Lewy (CFL) condition,

∆t = KCFL min
i∈Ω

∆xi
‖vi‖+ ci

, (3.95)

where ci denotes the local sound speed and KCFL the CFL number that is KCFL < 1 for
explicit time integration schemes. Basically, the condition says that the time step size has to be
chosen in a way that a wave does not leave a considered cell with size ∆xi during one time step.
Hence, decreasing the spatial discretization size also yields a smaller time step size. Another
consequence of this relation is that, it is computationally too expensive to use the real physical
speed of sound for water and a numerical sound speed is used instead.

3.9 Correction methods for the SPH kernel function and its
gradient

It has been discussed in Section 3.2.2 that SPH suffers from a lack of consistency due to the
discretization of the kernel approximation that does not satisfy the continuous consistency con-
ditions anymore. In literature, different methods can be found that correct the kernel function
and/or its gradient in a way that the consistency conditions for the particle approximation of a
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function and/or its gradient are satisfied. This section does not give an exhaustive summary of
these approaches but only presents the ones that we actually use in this work. For more details
on different correction methods the reader is referred to [14, 62, 57].

In the following, two well-known correction methods for the kernel function and its gradient,
respectively, are presented. Then, a novel correction method that ensures zeroth order consis-
tency for the computation of the divergence of the flux vector is introduced and its application
to the SPH-ALE flux equations is discussed.

3.9.1 Shepard correction

It was explained in Section 3.2.2 that in general the discrete kernel function does not satisfy
the normalization condition (3.42). The Shepard correction [99] is a technique that enforces the
discrete normalization condition by defining a new kernel function as,

W̃ij =
Wij∑

j∈Di
ωjWij

. (3.96)

The Shepard coefficient βi :=
∑

j∈Di ωjWij has to be computed in an additional loop over the
particles. The correction is a zeroth-order moving least square (MLS) method, see [7]. It should
not be confused with the function γ(xi) =

∫
Di
W (x′ − xi, h)dV ′ (Eq. (3.36)) that is evaluated

analytically. Indeed, the Shepard coefficient β is not equal to one in the interior of the domain
where Di is not truncated. Hence, applying the corrected gradient of the kernel function that
is computed by

∇̃iW ij =
∇iWij∑

j∈Di
ωjWij

,

to the SPH-ALE equations, Eq. (3.60), would change the SPH equations everywhere.
For that reason, it is only used for interpolation purpose in the coupling technique of SPH-

ALE and FVM presented in the Chapter 4.

3.9.2 Renormalization

Renormalization is a correction approach that increases the order of consistency of the particle
approximation of the gradient of a function by correcting the gradient of the kernel function
[92]. We usually apply the renormalization technique to the computation of the gradients for
the MUSCL scheme (Section 3.6.3.2).

We consider a linear function f(x) = a1 + a2x, with a1, a2 ∈ R denoting two constants. A
linearly consistent particle approximation of the gradient of f (Eq. (3.44)) verifies in the interior
of the domain,

a2

∑
j∈Di

ωj(xj − xi)⊗∇iWij

Bi

 = a2I.

Accordingly, Bi the renormalization matrix of particle i, is defined by

Bi :=

∑
j∈Di

ωj(xj − xi)⊗∇iWij

−1

, (3.97)

which means that a matrix inversion has to be computed for every particle at every time step if
particles move.
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Both renormalization and Shepard’s correction destroy the anti-symmetry of the gradient
because the corrections depend on the neighbourhood of a particle i which is not the same as
for particle j. Hence, Bi 6= Bj and βi 6= βj . If they are applied to the SPH-ALE equations, Eq.
(3.60), the method is not exactly conservative anymore. For that reason, Vila [111] proposed to
use a symmetrization of the renormalization matrix, i.e.

Bij :=
Bi + Bj

2

when it is applied to the gradient of the kernel function in the SPH-ALE equations.

3.9.3 Closed box correction

In the following, a novel correction method for the kernel gradient will be presented. It was
developed in the frame of this work and it is applied to all simulations in this document. The
idea is to correct the gradient of the kernel function in a way that the condition for zeroth
consistency, Eq. (3.43), is fulfilled,∑

j∈Di

ωj∇̃iW ij +
∑
j∈∂Di

ω∂jWijnj = 0, (3.98)

where ∇̃W ij is the corrected gradient of the kernel function. We call this correction the closed
box correction and we define the closed box error bi as

bi :=
∑
j∈Di

ωj∇iWij +
∑
j∈∂Di

ω∂jWijnj 6= 0. (3.99)

It was seen in Section 3.5, comparing SPH-ALE with FVM that the failure of the particle
approximation to fulfil Eq. (3.43) can be interpreted as summing the fluxes through a control
volume that is not completely closed. As illustration of the consequences, let us consider a fluid
at rest in a periodic box (no boundary terms) where constant pressure and zero velocity are
initially imposed. Theoretically no velocity should be created. If we take a look at the SPH-
ALE equations (3.80) and if we insert v = v0 = 0 and p = pc = cst at t = 0, we obtain from the
momentum equation

d

dt
(ωiρivi) = −2ωi pc

∑
j∈Di

ωj∇iWij︸ ︷︷ ︸
6=0

6= 0.

As a consequence, momentum is created non-physically and hence, it is not even possible to
simulate a fluid at rest correctly. Figure 3.13 shows the velocity field after only hundred iter-
ations, corresponding to t = 0.01242s. There are 80 × 80 particles distributed on a Cartesian
grid that were shifted by random numbers. The simulation is launched in Lagrangian particle
motion. The left image was obtained without gradient correction and shows a maximum velocity
of 0.0127 m/s. The right image was obtained with the corrected gradient and the velocity is
smaller than 10−15.

Price [91] interprets the artificial velocity that is created as an intrinsic re-meshing of the
particles. If the distribution of the particles is bad for the SPH operators, the error term from
Eq. (3.43) is relatively big which creates a movement of the particles. In the case of a positive
uniform pressure field, the movement fills the holes and distributes the particles isotropically.
This is exactly what can be observed if the above example is ran without a corrected kernel
gradient. After 1000 iterations (t = 0.59s) the particles have distributed themselves regularly
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Figure 3.13: Artificial velocity created after 100 iterations (t = 0.01242s) without the closed box
correction (left) and with the closed box correction (right). Note the different scales.

and the maximum of the error term bi is more than 15 times smaller. To reach this optimum
distribution, which is not a Cartesian distribution, the particles have to move. Since the particle
velocity is equal to the flow velocity in Lagrangian formulation, errors are introduced into the
physical field variables.

In meshbased ALE methods, like FVM and FEM with moving and deforming meshes, the
geometric conservation law describes the capability of the ALE method to exactly compute fields
that are constant in space and in time (see [40, 73]). If the geometric properties of the mesh are
computed following this conservation law, the computed constant fields are not influenced by the
motion and deformation of the grid. This concept is thus equivalent to the problem described
in this section.

It is to notice that in the astrophysics SPH community the so-called E0 error which is very
similar to the closed box error was analysed by several authors (see [94, 21]). It is defined by

E0,i :=
∑
j∈Di

ωj

[
gij + g−1

ij

]
∇iWij ,

with
gij :=

ρj
ρi

φi
φj
.

The E0 error is the leading error term in their formulation of the momentum equation and
the free function φi can be chosen in a way that the error is minimized. It is interesting that
they find that choosing φi = ρi improves the results. With that choice E0 corresponds to our
definition of the closed box error Eq. (3.99). It is established that E0 decreases by increasing
the number of neighbours for each particle.

Nevertheless, we do not choose to increase the number of neighbours because that increases
the computational cost of the method further. Instead we present a correction to enforce the
closed box error condition. The corrected gradient of the kernel function has the form

∇̃iW ij := ∇iWij − cijbi, (3.100)

where the coefficients cij have the property that∑
j∈Di

ωjcij = 1. (3.101)
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The kernel gradient verifies ∇iWii = 0, which means that it does not introduce any self-
contribution of particles into the flow equations. We want to keep this property for the corrected
kernel gradient. Therefore, the coefficients have to be chosen in a way that

cii = 0. (3.102)

Corrected gradients of the form (3.100) satisfy the discrete closed box condition (3.98) because∑
j∈Di

ωj∇̃iW ij +
∑
j∈∂Di

ω∂jWijnj =
∑
j∈Di

ωj (∇iWij − cijbi) +
∑
j∈∂Di

ω∂jWijnj ,

=
∑
j∈Di

ωj∇iWij − bi
∑
j∈Di

ωjcij︸ ︷︷ ︸
=1

+
∑
j∈∂Di

ω∂jWijnj ,

=
∑
j∈Di

ωj∇iWij +
∑
j∈∂Di

ω∂jWijnj − bi,

= bi − bi = 0.

Hence, the error bi of a particle i is redistributed on its fluid neighbours by changing the kernel
gradient of the particle interactions. But the gradient of the boundary contributions is not
changed even though the boundary contributions are considered in bi and in Eq. (3.98). The
coefficients cij can be chosen freely, e.g.

cij =
1

ωjNi
, and cii = 0,

where Ni denotes the number of neighbours of particle i. However, this is not what we do.
Instead we choose the coefficients in a way that corresponds better to the character of the SPH
method. We distribute the error on the neighbours weighted by the kernel function Wij , i.e.

cij =
Wij

ωjsi
, with si :=

∑
k∈Di
k 6=i

Wik, and cii = 0, (3.103)

or also weighted by the volumes ωj

cij =
Wij

σi
, with σi :=

∑
k∈Di
k 6=i

ωkWik, and cii = 0. (3.104)

Note that σi is not the Shepard coefficient βi of the Shepard correction, Eq. (3.96), because σi
does not include the self-contribution term ωiWii. If the ωj are constant in the whole neighbor-
hood of i, the sums si and σi reduce to the same expression. In this document both expressions
(3.103) and (3.104) are used where (3.104) is preferred if the ωj are varying strongly like in the
case of the coupling method presented in the next chapter. The sums bi, si or σi have to be
computed in an additional loop over the neighbours before summing the fluxes.

The formula (3.104) using σi is similar to the first step of the correction method introduced
by Leonardi et al. [57] without boundary terms. In their paper, that was presented at the
SPHERIC 2014 workshop, explicit strategies for consistent kernel approximations are intro-
duced. In particular, they use a kernel gradient correction that is of first-order consistency and
uses two steps. The first step derives a kernel gradient Ŵ ′ij that ensures zeroth order consis-
tency. The second step is a normalization step that enforces the condition for linear consistency.
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However, the corrected kernel gradient Ŵ ′ij has an important difference compared to ∇̃iW ij . It
includes self-contributions Wii that we preferred not to include. That means that Ŵ ′ii 6= 0 while
we enforce ∇̃iW ii = 0 by choosing cii = 0.

The corrected gradient ∇̃iW ij is not anti-symmetric anymore (see Eq. (3.41)) and therefore
the SPH-ALE equations together with ∇̃iW ij are not exactly conservative because Eq. (3.56)
is not fulfilled. This problem is known in literature and arises for all kernel gradient correction
methods. The correction terms are sometimes symmetrized (see Section 3.9.2) in order to
keep an anti-symmetric gradient. In this way the conservation properties are maintained but
the conditions that should be enforced are not fulfilled exactly anymore. In the case of the
closed box correction it is important to enforce bi = 0 exactly for each particle and we do not
symmetrize the correction.

Validation cases that illustrate the improvement of the results obtained by this method are
given in the end of this chapter, see Section 3.10.

3.9.4 Correction of the particle motion

A method that aims at correcting the closed box error by a different approach has been developed
in parallel to this project by J.-C. Marongiu and J. Leduc. Instead of correcting the gradient
of the kernel function, the particle velocity is modified in a way that the closed box error is
reduced. This is possible because the particle velocity in SPH-ALE is a free parameter that can
be chosen arbitrarily. Hence, the errors that are introduced by a poor particle distribution can
be reduced by adapting the particle distribution itself through a corrected particle velocity.

The main idea is to use the intrinsic re-meshing of SPH, that was described in Section
3.9.3 for the fluid at rest case, but without modifying the physical field variables, i.e. without
creating an artificial fluid velocity. To our knowledge, the intrinsic re-meshing of SPH was first
used explicitly by Colagrossi et al. [19] who developed a particle packing algorithm that makes
use of the fact that the vector wi := −bi always points in the direction of the holes in the particle
distribution. The packing algorithm utilizes this feature of SPH in order to obtain an initial
particle distribution that minimizes the closed box error, while we want to use it to correct the
particle velocity in every time step throughout the simulation.

Following [19] we want to shift the particles in the direction of bi, Eq. (3.99). For that
purpose, a uniform pressure field is considered that is applied to all particles with

∀i ∈ Ω : pi = pref =
ρ0c

2
0

γ
. (3.105)

This constant pressure only acts on the kinematics of the particles, i.e. on the particle velocity
v0(xi) and the particle position xi. Furthermore, we assume that the system that couples
the position, the particle velocity and the constant pressure pref is a hyperbolic system that
necessitates a decentered treatment of the same type as it is used in Riemann solvers. This is due
to the fact that numerical experiments have shown that the system is unstable if no decentered
treatment is employed. Hence, we compute(

dv0(xi)
dt

)
corr

:=
∑
j∈Di

ωj

[
pref +

c0

2
(v0(xi)− v0(xj)) · nij

]
∇iWij

+
∑
j∈∂Di

ω∂j

[
pref −

c0

2
(v0(xi)− v0(xj)) · nj

]
Wijnj ,
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where the direction

nij =
∇iWij

‖∇iWij‖
,

is defined as in Eq. (3.65) and nj denotes the normal of the surface element j. Then, an
additional term is employed in order to smooth the transport field,(

dv0(xi)
dt

)
smooth

:=
(
dv0(xi)
dt

)
corr

− α
∑
j∈Di

c0

hi
ωj (v0(xj)− v0(xi))Wij , (3.106)

with α denoting a numerical parameter.
Expression (3.106) is used to define two different types of corrected particle motion, a cor-

rected Lagrangian motion and a corrected Eulerian motion, as shown in the following.

• Eq. (3.106) is applied to correct particles in Lagrangian motion in a way that the closed
box error is reduced. For explicit Euler time integration scheme (see Eq. (3.92)), we obtain

vn+1
0 (xi) = vn+1(xi)−∆t

(
dv0(xi)
dt

)
smooth

. (3.107)

De Leffe [22] already introduced an ALE correction of the particle velocity based on the
closed box error but with a different formulation.

• We use Eq. (3.106) to define another type of particle motion where the particles are not
following the flow in a Lagrangian way but where they fill the holes in the distribution.
In particular, it can be used to obtain particles that follow moving boundaries in a way
that the closed box error is small. In the case of explicit Euler time integration (see Eq.
(3.92)), we have

vn+1
0 (xi) = vn0 (xi)−∆t

[(
dv0(xi)
dt

)
smooth

+ α
c0

hi
vn0 (xi)

]
, (3.108)

and v0
0(xi) = 0. The term

Ti := α
c0

hi
vn0 (xi) ∆t

is added to obtain convergence of the particle positions. A similar damping term is also
used for the packing algorithm [19]. This type of particle motion was used in the simulation
of the Francis turbine start-up that was rapidly presented in Chapter 1. Furthermore, it
will be employed in Chapter 5.

In practice, it turned out that it is sometimes better to directly correct the positions of the
particles by shifting them instead of modifying the particle velocity, i.e.

xn+1
i = xni + vn0 (xi) ∆t− 1

2
(∆t)2

(
dv0(xi)
dt

)
smooth

. (3.109)

It is important to note that the correction of the particle motion and the closed box correction are
not mutually exclusive methods. On the contrary, they work best when they are used together.
The correction of the particle motion reduces the closed box error but does not eliminate it
completely and best results are obtained when using both approaches.
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3.10 Implementation and validation

The in-house SPH-ALE solver of ANDRITZ Hydro is called ASPHODEL and is built on the
PhD theses of J.-C. Marongiu [67] and J. Leduc [55]. It is well validated for free surface flows
and for flows in hydraulic machines like Pelton turbines. Validation cases on this topic and on
an implemented multiphase solver can be found in the publications of Marongiu and Leduc,
e.g. [71], [56]. The extension of the solver to internal flows especially the implementation of
the closed box correction was amongst others done in the frame of this PhD project and some
validations are presented.

The weakly-compressible FV solver, based on Section 3.4, was on the whole implemented in
the frame of this PhD project and some validation cases are given in Section 3.10.2. However, we
want to remind the reader that the purpose of this thesis is not the development of another FV
solver but the coupling of this solver with the already existing SPH-ALE solver. This coupling
will be presented in detail in Chapter 4.

3.10.1 SPH-ALE with closed box correction

The closed box correction that was introduced in Section 3.9 was applied to all SPH-ALE
simulations presented in this document. It cannot be directly applied to free surface flows but
these flows are not subject of this thesis. In the following, the Taylor-Green vortices from
Chapter 2 are used for the validation. We compare the results obtained with and without the
closed box correction on two different particle distributions. However, at first we take a closer
look at the fluid at rest case mentionned in Section 3.9.3.

Every time a computed value for the magnitude of the closed error is plotted or explicitly
given, the closed box error is divided by a reference value. The reference value represents the
closed box error of a kernel support that is truncated by 50% and depends on the considered
kernel function and on the smoothing length. Using this scaling allows us to compare the closed
box error of different simulations with different discretization sizes to each other.

Fluid at rest in a periodic box

We start from an initial distribution with strongly disordered particles that was generated in the
following way. Particles with size ∆x = 0.0125m situated on a Cartesian grid (with grid spacing
∆x) are displaced randomly from their initial position where the displacement is smaller than
0.25 ∆x in each coordinate direction. A first simulation is launched in Lagrangian description
with a positive uniform initial pressure of 2000 Pa and v = 0 m/s and v0 = 0 m/s everywhere.
As Price [91] explained, the particles reorder themselves in a way that minimizes the closed
box error. After 2000 iterations, t = 1.1837s, the maximum error is about 0.04, see Figure
3.14 and Figure 3.16 (b). Also the artificial velocity reduced itself to less than 0.0085 m/s
and accordingly the total kinetic energy is very small, see Figure 3.15 (a). However, the initial
pressure was not maintained and the pressure is fluctuating between p ∈ [535, 597] Pa, see Figure
3.16 (a). Moreover, Figure 3.15 (b) shows that the total volume increased of about 1− 1.5%.

We see that the particles tend to reorder themselves in order to minimize the closed box
error but in more complex flows there are physical mechanisms that work against this tendency.
In the point of view of the numerical scheme and of the closed box error, particles are disordered
close to stagnation points or vortices that occur in more complicated flows.

Applying the closed box correction to this simple case prevents the creation of an artificial
velocity. The particle distribution stays constant because v0 = v ≈ 0 and the initial pressure is
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Figure 3.14: The magnitude of the closed box error for the fluid at rest case without closed box
correction. At the beginning the closed box error is high (left) but the movement of the particles
reduces the error (right) because the particles reorganize themselves.

(a) Total kinetic energy plotted over the number of
iterations. If no correction is employed, the kinetic
energy increases at the beginning when the parti-
cles redistribute themselves and decreases when a
stable configuration is reached.

(b) The total volume is not maintained with parti-
cles that move in Lagrangian motion. In the case
without correction it increases at first when the
velocity increases and reaches a stable value when
the particles found an adjusted distribution.

Figure 3.15: The evolution of the kinetic energy and the total volume plotted over the number
of iterations for the fluid at rest case with and without closed box correction.
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(a) The minimum and maximum pressure plotted
over the number of iterations. If no correction
is employed the pressure decreases, while it stays
constant at the correct value if the correction is
used.

(b) In the case without correction, the maximum
closed box error in the fluid domain decreases be-
cause the particles redistribute themselves in a
way that the error is reduced.

Figure 3.16: The evolution of the pressure with and without closed box correction and the closed
box error plotted over the number of iterations for the fluid at rest case.

maintained, see Figure 3.16 (a). No variation of the global mass has been detected after 2000
iterations with and without closed box correction.

Taylor-Green vortex

We have seen in Chapter 2, Section 2.1, that the bi-periodic Taylor-Green vortex is an analytical
steady-state solution of the Euler equations. In the following, this case is used to illustrate the
effect of the closed box correction on the flow fields.

We launch simulations in Eulerian description without applying renormalization on the gra-
dients of the MUSCL scheme. Two different distributions of the particles are considered. The
first one, Distribution 1, is a Cartesian distribution where 80 × 80 particles are situated on a
Cartesian grid in the unit square [0, 1] × [0, 1]. The particle size is ∆x = 0.0125m. We assume
that this distribution leads to very small closed box errors which is confirmed by the simu-
lation. For all particles the closed box error is small, ‖bi‖ < 5 · 10−6. The second particle
distribution, Distribution 2, is modified from the Cartesian one, where the original positions are
randomly modified by a displacement that is smaller than 1

40∆x in each coordinate direction.
Note that this randomly disturbed mesh is not a random mesh but a mesh that only slightly
differs randomly from a Cartesian mesh.

Figure 3.17 shows the closed box error bi for both particle distributions with and without
the correction. Distribution 1 shows a closed box error that is three magnitudes smaller than
Distribution 2. With the correction the error term is almost zero (‖bi‖ smaller than 4 · 10−16)
for both distributions. Hence, this confirms that the error can be interpreted as a measure for
the particle disorder.

If the error is too big, i.e. if the particles are disordered, it is directly translated into a very
noisy pressure field. Figure 3.18 shows a comparison of the computed pressure field with both
particle distributions with and without closed box correction after a relatively short physical
time of t = 0.1s. Distribution 1 shows a smooth pressure field with and without correction
because the closed box error is initially small. Distribution 2 on the contrary shows big errors
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(a) The particles are situated on a Cartesian grid.
The error closed box is shown with and without
correction.

(b) The particles are situated on a grid that
was randomly disturbed. The error closed box
is shown with and without correction.

Figure 3.17: Comparison of the closed box error on a Cartesian and on a slightly disturbed
particle distribution. The closed box error for the disturbed distribution is three orders of
magnitude bigger than on the Cartesian distribution.

(a) The particles are situated on a Cartesian grid
and the closed box error is smaller than 5 · 10−6

for every particle. The pressure is very smooth
and the correction has no visible effect.

(b) The particles are situated on a grid that
was randomly disturbed. The maximum closed
box error is 0.0267 and the pressure for the non-
corrected simulation is extremely noisy.

Figure 3.18: Pressure field for the Taylor-Green vortices after t = 0.1s for two different particle
distributions with and without closed box correction.
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Figure 3.19: Pressure on a line at y = 0.5m for Distribution 1 and Distribution 2 with and
without correction. The position of the line is indicated in Figure 3.18 by a black dotted line.

and the pressure field without correction is disturbed. However, applying the correction allows
us to recover the smooth pressure field of the Cartesian grid. A more detailed analysis is given
by Figure 3.19 that shows the pressure on a line at y = 0.5m. It confirms that the non-corrected
pressure on the Cartesian distribution and the corrected pressure on the ”random” distribution
correspond very well while it is not possible to obtain correct results on Distribution 2 without
the correction.

The same analysis is carried out for the velocity field where the effect of the error is less
visible. Figure 3.20 shows the magnitude of the velocity field on Distribution 2 with and without
correction. The x component of the velocity on a line is plotted in Figure 3.21 where a detailed
view in the zone around the maximum velocity shows that the correction also improves the
velocity field.

3.10.2 Finite Volume solver

The implemented FV solver is an unstructured solver based on the numerical schemes introduced
in Sections 3.4, 3.6, 3.7 and 3.8. We have seen in Section 3.5 that the numerical fluxes that are
summed over the neighbour cells can be computed in the same way as in the SPH-ALE solver
and the same time integration schemes can be used. In practice, this means that Riemann
solvers and time integration schemes, that were already implemented in ASPHODEL, can be
reused for the FV solver.

Even though the solver is unstructured, we use structured multiblock grids because they
are advantageous close to boundaries. These meshes are either simple regular grids or they are
obtained by an in-house meshing software of ANDRITZ. In the following, the validation cases
are utilized that were presented in Chapter 2. At first the results for the Taylor-Green vortex is
presented, then the inviscid flow around symmetric NACA hydrofoil.
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Figure 3.20: Velocity field on Distribution 2 with and without closed box correction. The
velocity without correction is less smooth but the difference is less visible than for the pressure
field.

(a) Velocity on a constant line with and without
correction. The differences are less visible than
for the pressure field. The black box indicated the
view of the picture on the right hand side.

(b) Detailed view in the zone of maximum veloc-
ity. The velocity is less smooth without correction
but the difference is less important than for the
pressure.

Figure 3.21: The x component of the velocity plotted on a line y = 0.5m for the Taylor Green
vortices after t = 0.1s for two different particle distributions with and without closed box
correction.
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Figure 3.22: Pressure and magnitude of the velocity field of the Taylor-Green vortex computed
with the weakly-compressible FV solver on 150 × 200 cells on the unit square. The results are
given after t = 10s.

Taylor-Green vortex

We have seen in Section 2.1 that the inviscid Taylor-Green vortices are given by a closed-form
solution of sine and cosine functions, Eq. (2.1). The pressure and velocity fields show the same
length scales along the x axis and the y axis. As a consequence, using a uniform Cartesian grid
would be a good choice for this test case. However, we consider a regular mesh with 150× 200
cells in the unit square in order to stress the solver. Figure 3.22 shows the pressure and the
magnitude of the velocity computed with the MUSCL scheme (3.85). The results are shown for
a physical time of t = 10s.

Furthermore, Figure 3.23 shows the velocity gradients plotted on the line y = 0.5m, where
only ∂u

∂x and ∂v
∂y are non-zero. They are computed by the solver from the analytical solution of

the velocity field. The computed gradients, Eq. (3.86), correspond very well to the gradients
that are obtained analytically, Eqs. (A.3) and (A.6).
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Figure 3.23: Derivatives of the velocity computed by the solver from the analytical velocity field.
Only the derivatives ∂u

∂x and ∂v
∂y are non-zero on the line y = 0.5m.

Figure 3.24: A structured multi-block mesh is created for the FV reference solution. A block of
C-grid together with a dove-tail topology is used around the NACA hydrofoil.

Inviscid flow around a NACA hydrofoil

The testcase of the inviscid flow around a symmetric NACA hydrofoil that was introduced in
Section 2.2 is reused in this section for the validation of the FV solver. Figure 3.24 shows the
mesh that used for the simulation. It consists of several blocks and it was already presented in
Chapter 2, Section 2.2.

Figure 3.25 compares the magnitude of the velocity field obtained with the FV solver to
the reference solution. The obtained velocity field corresponds well to the reference solution. It
shows the same shape and the same range of values. Moreover, it shows almost no numerical
wake because of the mesh refinement close to the hydrofoil in the normal direction to the solid
boundary.

In Figure 3.26 the pressure field can be seen that compares equally well to the reference
solution. A more quantitative analysis is given by Figure 3.27 that shows the pressure coefficient,
Eq. (2.3), at the hydrofoil, obtained with the FV solver and the FV reference solution. Again
good agreement is found.

3.11 Summary and discussion

In this chapter two numerical methods, the meshless method SPH-ALE and the meshbased
FVM, were introduced. It was found that discretizing the Euler equations in ALE form by
FV operators or by SPH operators yields two systems of semi-discrete equations that manifest
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Figure 3.25: Magnitude of the velocity field around a static NACA hydrofoil. The result obtained
with the implemented weakly-compressible FV solver (ASPHODEL-FV) is compared to the FV
reference solution.

Figure 3.26: Pressure field around a static NACA hydrofoil. The result obtained with the
implemented weakly-compressible FV solver (ASPHODEL-FV) is compared to the FV reference
solution.
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Figure 3.27: Pressure coefficient plotted at the hydrofoil. The implemented weakly-compressible
FV solver (ASPHODEL-FV) is compared to the FV reference solution.

important similarities. First, both methods sum numerical fluxes over neighbours. Second, these
numerical fluxes can be determined in the same way, i.e. by local one-dimensional Riemann
problems with reconstructed initial states obtained by the MUSCL scheme. Third, the same
time integration schemes can be used to advance the equations in time. The main difference
between these two methods lies in the way how neighbours are defined. FVM is a meshbased
method where the neighbours are the adjacent cells, while SPH-ALE is a meshless method
where the neighbours are particles that lie in a compact region around the considered particle,
depending on the so-called smoothing length.

The meshless character of SPH-ALE is the reason for its strong points and its weaknesses.
On the one hand, SPH-ALE is a flexible methods where the particles can move in a Lagrangian
way, in an arbitrary way or they can be fixed in space (Eulerian description) since no connec-
tivity information between particles is necessary. On the other hand, a SPH particle in 2D
has about five times more neighbours than a cell in a structured FV mesh which makes SPH
computationally expensive. Moreover, the exact geometrical shape of a particle and the exact
position of the interface between two particles is unknown.

As a consequence, SPH suffers from a lack of consistency and not even zeroth order con-
sistency is obtained for the semi-discrete SPH-ALE equations. This introduces errors into the
pressure field that pollute the results considerably. Therefore, a novel correction method was
proposed in this work to correct the gradient of the kernel function in such a way that zeroth
order of consistency for the divergence of the flux vector is recovered. The benefit of this cor-
rection method, that was named closed box correction, was shown by means of a fluid at rest
case and the Taylor-Green vortex on two different particle distributions.

In the frame of the thesis, an unstructured FV solver was implemented in the in-house SPH-
ALE software ASPHODEL of ANDRITZ Hydro. Validation of the solver by the Taylor-Green
vortex and the flow around a static symmetric NACA hydrofoil was shown in the last part of
this chapter.

This FV solver together with the corrected SPH-ALE method constitutes the basis for the
developed coupling strategy in Chapter 4.



Chapter 4

Coupling of SPH-ALE with a Finite
Volume method

We have seen in Chapter 1 that SPH is more and more used for industrial applications in the
last years. Especially for free surface flows with moving geometries like for example the flow in
the runner of hydraulic Pelton turbines [71], the use of SPH or variants of SPH is advantageous
compared to traditional meshbased numerical methods. But also for internal flows without free
surfaces there are applications where SPH has great potential because of its meshless nature
that treats geometries moving in a complex way without remeshing or mesh interfaces.

However, there is one important drawback of the SPH method. It is difficult to have non-
constant particle sizes, i.e. particle refinement is complicated for particles in Lagrangian motion,
in particular, anisotropic refinements. SPH is an intrinsically isotropic method with isotropic
particles and a kernel function with an isotropic support but flow phenomena often necessitate
fine space discretization only in one direction. Close to solid walls for example many particles
are needed in direction normal to the wall but not tangential to the wall. In Finite Volume
methods (FVM) long thin cells are used in this region that can feature aspect ratios of ten or
more.

In the past, some work has been done to develop anisotropic kernel functions for SPH (see
Section 4.1.1.2) but this is not the approach that this work takes as will be explained below.

We present a flexible coupling method of SPH-ALE with FVM that allows us to refine
anisotropically in space and to benefit of the other advantages of mesh based methods like
imposing open boundary conditions more easily. Section 4.2 describes the coupling algorithm
that is validated by means of 1D and 2D academical testcases in the subsequent section.

We have seen in Chapter 3 that even though SPH-ALE is a meshless method, there are
important similarities with FVM. Hence, it suggests itself to adapt approaches to SPH that
were first developed for FVM. In the 1980s the bottleneck of meshbased methods applied to
industrial problems was the mesh generation and multi-domain methods were developed to
make it possible to subdivide the computational domain into subdomains where the mesh can
be created independently. These methods can be reinterpreted for the coupling of FVM with
other methods by applying different solvers to the subdomains. For that reason multi-domain
methods for FVM are reviewed in Section 4.1.2.1. Emphasis is placed on one family of these
methods that is called Chimera methods and that was the inspiration for the development of
the present coupling method. It uses overlapping meshes where information is transferred from
one mesh to the other by interpolated boundary cell values [9]. In general, these methods are
very robust but not conservative but for the case where conservative interpolation methods are
employed. The disadvantages of non-conservative methods and the difficulties of developing
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conservative methods on overlapping domains are discussed in the following, as well as the
different approaches found in literature to overcome that problem are presented.

4.1 Literature review

In the first part of this section, Section 4.1.1, we discuss how several authors realized non-uniform
space discretization in SPH. Then some developments on an anisotropic SPH method with kernel
functions with an elliptic support are reviewed in Section 4.1.1.2. In the second part, Section
4.1.2, multi-domain approaches in FVM are discussed with regard to their applicability to the
coupling of SPH and FVM. In the third part of this section, Section 4.1.3, different techniques
for coupling SPH with other mesh-based methods are cited and compared to the present method.

4.1.1 Variable resolution methods for SPH

The review of particle refinement techniques includes variable resolution schemes and dynamic
refinement and de-refinement strategies. These approaches are discussed in quite some detail
because they show us not only how refinement in space can be implemented without coupling
SPH to an other method, but also because these techniques have some similarities with the
present coupling method. This is especially true for Barcarolo’s method of refinement and de-
refinement [5] that can be interpreted as a method for overlapping domains with different sized
particles.

4.1.1.1 Isotropic refinement of SPH particles and kernels

It was mentioned previously that traditionally all SPH particles in the computational domain
have the same size and the same smoothing length h. We have seen in Section 3.2.4 that the
smoothing length is in practice often chosen by

h = 1.2 ∆x. (4.1)

However, physical flow phenomena do not necessitate the same space discretization size every-
where in the computational domain and it is computationally expensive to launch simulations
with a fine constant particle size everywhere. For that reason, many authors work on implement-
ing SPH schemes with varying particle sizes. But not only the particle size can be reduced, also
the smoothing length might be adapted because the number of neighbours per particle varies
strongly if the particles are refined without changing the smoothing length. If the number of
neighbours should be kept approximatively constant, the smoothing length h has to be adapted
according to the particle size by Eq. (4.1) or a similar relation. However, varying smoothing
length implies non-zero gradients of h which means that the ∇h terms should be included into
the computation of the gradient of the kernel function ∇W ,

∇W
(
q =
‖xi − xj‖

h

)
=
∂W

∂q

[
∂W

∂‖xi − xj‖
∇‖xi − xj‖+

∂W

∂h
∇h
]
. (4.2)

It is not obvious how to compute ∇h and some possibilities and ideas are discussed below.
The different approaches for variable resolution schemes found in literature can be classified

in three main categories that will be discussed in the following paragraphs.

• The first one initialises particles with varying sizes and smoothing length that then move
in a Lagrangian way without any special treatment [83, 72]. In this case the particle size
depends on the initial position of the particle and Ulrich et al. [106] call it a Lagrangian
variable-resolution approach.
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• The second one is an Eulerian variable-resolution strategy introduced by Ulrich [105] that
prescribes a spacing between particles depending on their instantaneous position.

• The third one is a dynamic refinement (and de-refinement) strategy that splits particle
according to certain criteria that can be physical or geometrical [28, 108, 5].

Lagrangian variable-resolution approach

Lagrangian variable-resolution approaches initialize particles non-uniformly according to pre-
defined refinement zones. Since the particle distribution is not adapted during the simulation,
these techniques are only appropriate if particles stay near their initial position. Either they are
in Eulerian motion (only possible for SPH-ALE), or the flow has no high mean flow velocity.

Omidvar [84] uses a variable particle mass approach with predefined zones where at the
beginning of the simulation one particle is replaced by four lighter particles. The mass is equally
distributed and the sum of the new particles has the same mass as the original particle. The
smoothing length is kept constant and is determined by the heavier particles and there is a sharp
transition between lighter and heavier particles. In addition, lighter and heavier particles might
mix in the case of dynamically moving flows which can lead to numerical instabilities.

Starting from a refined zone of constant h0 in the form of a semicircle or a rectangle, Oger
et al. [83] de-refine the particles by defining the smoothing length of the ith particle counted in
rows from the boundary of the constant h0 area as hi = δih0. The ∇h term is not included in
the computation of ∇iW and the constant δ = 1.03 is chosen in a way that the absence of the
∇h term does not introduce visible errors. Marsh et al. [72] improve this method by adding an
approximation for the ∇h term. Given that far away from boundaries the SPH approximation
of ∇h is

< ∇hi >= −
∑
j

ωjhj∇iW (xi − xj , hi),

it is proposed to approximate

∇hi ≈ −ωjhj∇iW (xi − xj , hi),

where the gradient of the kernel function ∇iW (xi − xj , hi) is computed without taking into
account the contributions from ∇h. The new gradient of the kernel function is then obtained
by symmetrization, i.e.

∇̃iW ij :=
1
2

(∇iW (xi − xj , hi) +∇iW (xi − xj , hj))

+
1
2

(
∂W (xi − xj , hi)

∂h
∇hi +

∂W (xi − xj , hj)
∂h

∇hj
)
. (4.3)

The gradient ∇̃iW ij of Eq. (4.3) is inserted into the SPH-ALE equations, Eq. (3.80), in order
to compute the physical fields. According to [72], this formulation also works if the smoothing
length is approximately constant and has the nice side effect of distributing the particles more
regularly than in the case of standard Lagrangian simulations.

Eulerian variable-resolution approach

Ulrich et al. [105, 106, 107] develop an approach of particle refinement applied to XSPH (see
Section 3.2.5) called Eulerian variable-resolution technique that prescribes a particle spacing
with constant gradient ∇(∆x) and then computes the gradients of the smoothing length ∇h



94 CHAPTER 4. COUPLING OF SPH-ALE WITH A FINITE VOLUME METHOD

and of the particle mass ∇m analytically there-from. The changing particle mass introduces
source terms in the continuity equation and the momentum equation. In [105] it is shown by
means of a hydrostatic tank simulation that it is necessary to include the ∇h term into the
computation of the gradient of the kernel function, see Eq. (4.2), in order to obtain a stable
hydrostatic pressure distribution. In the case of this Eulerian variable resolution approach, ∇h
is evaluated analytically.

Dynamic refinement (and de-refinement) strategy

Feldman [28] proposes a particle splitting scheme for standard WCSPH (see Section 3.2.5)
where bigger ”mother” particles are split into several smaller ”daughter” particles according
to a predefined splitting pattern. The new particle size and the new smoothing length are given
by a set of splitting parameters (ε, α) ∈ [0, 1] × [0, 1] with ∆xd = ε∆xn and hd = αhn, where
the subscript d stands for the daughter particle and n for the mother particle. The mass of
the daughter particles is chosen in order to minimize the global density error introduced by the
splitting and so that global mass is conserved. Feldman uses the scatter density formulation,
see Eq. (3.52), to compute the density and a local density refinement error is defined as the
change of density due to the introduction of new particles. The velocity of the mother particles
is assigned to the daughter particles vd := vn which represents the unique fully conservative
velocity distribution. This method can be applied dynamically where particles are split during
simulations according to certain refinement criteria that can be physical criteria like strong
gradients of the physical field variable, or geometrical criteria where particles are split when
entering refinement zones.

Vacondio et al. [108] apply Feldman’s splitting scheme to shallow water SPH in order to
simulate flooding. The method is further extended to a de-refinement procedure that consists of
coalescing (merging) two particles in a conservative way without introducing density errors. The
particle splitting and merging is extended to a 3D SPH scheme in Vacondio et al. [109]. It is also
shown that the optimal splitting pattern replaces one mother particle by 13 daughter particles,
where one is situated at the position of the mother particle and the other 12 particles are located
at the vertices of a icosahedron. According to the analysis in the paper, the refinement pattern
of the form of a cube behaves less well than the icosahedron and should be avoided. No matter
what refinement pattern is chosen, they show that a particle has to be kept at the position of
the original mother particle.

Nevertheless, López et al. [63] proposed a two-dimensional splitting pattern where the daugh-
ter particles are situated on a square centered around the mother particle and mass is distributed
uniformly, i.e. md = 0.25mn. This pattern does not include a particle at the position of the
original mother particle. In contrast to Feldman [28], they use the continuity density formulation
and cannot directly apply the same definition of the density error. A more general definition of
the refinement error is given instead. That is the error introduced by the splitting to the SPH
approximation of the gradient of any function f . That makes the method applicable to all SPH
variants even to those that do not use the scatter density formulation. The density refinement
error can be defined corresponding to the SPH method that is employed and in particular to
the way the density is calculated.

Barcarolo [5, 6] validates this method for SPH-ALE (what they call Riemann SPH) and
δ-SPH and propose a novel de-refinement procedure that does not coalesce particles but keeps
the mother particles throughout the whole simulation and simply deletes the daughter particles
when they leave the refinement zone. If there are daughter particles, the mother particle is
advanced passively in time. That means that the flow equations are solved for the particle but
that it does not contribute itself to the integration of the others. For that purpose, Barcarolo
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Figure 4.1: Adaptive particle refinement [5] where coarse mother particles (black points) that
enter a predefined region are split into four daughter particles (green points) but the mother
particles are still kept and moved passively (grey points). The daughter particles that leave the
refinement zone are deleted and the mother particles are active again (black points).

introduces a flag γ that is γ = 0 if the particle is passive (OFF) and γ = 1 if the particle is
active (ON). The SPH approximations become for a function f and its gradient ∇f

fi =
∑
j

ωjγj fjWij , (4.4)

and
∇fi =

∑
j

ωjγj fj∇iWij . (4.5)

Barcarolo points out that the sharp transition between γ = 0 and γ = 1 can introduce additional
errors in the pressure field in some simulations, especially in cases of slow flows. Therefore, a
transition zone is added where γ follows a smooth function defined by geometrical properties
depending on the position of the particle in the transition zone. For the mother particle, the
parameter γn ∈ [0, 1] is defined by the ratio of the distance of the particle to the zone of constant
γ and the size of the transition zone. For the daughter particle γd = 1− γn is used.

Barcarolo calls this method adaptive particle refinement (APR) in correspondence to the
adaptive mesh refinement (AMR) method that is discussed in Section 4.1.2. Figure 4.1 shows
that particles are refined in a similar way than cells that are refined in AMR, see Figure 4.4.
He points out that AMR refines space and time equally which is not yet the case for APR. In
addition, AMR is a conservative method in contrast to APR.

In the context of the present thesis, we are especially interested in Bacarolo’s method be-
cause it can be interpreted as a method of overlapping domains where a domain with a finer
discretization as the other (green points in Figure 4.1) is completely overlapped by the domain
with the coarse discretization size (black and grey points in Figure 4.1). (This is also true for
AMR, see Section 4.1.2.) As a consequence, similar questions arise as in the present coupling
method. In particular, the SPH particles that are overlapped by the FV domain during the
coupling are treated similarly to the passive ”mother” particles in the refinement zone, since
their fields are computed but they do not contribute themselves to the integration of the FV
cells.

4.1.1.2 Anisotropic kernels

The methods that were introduced in the above Section 4.1.1.1 refine particles isotropically and
only employ kernel functions with an isotropic support. Schick [98] develops in his diploma
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Figure 4.2: Evolution of the kernel support area in time [98, 39]. The initially circular kernel
support area follows the deformation of the particle distribution and becomes anisotropic of the
form of an ellipse. The number of neighbours stays approximately the same in every direction
along the axes of the ellipse.

thesis adaptive anisotropic kernels that are then further improved by Guilcher [39] and applied
to the SPH modelling of shallow-water flows by de Leffe [23]. In their approach the smoothing
length h is replaced by a symmetric positive definite matrix H ∈ Rd×d that defines a norm,

‖x‖H =
√

xT ·H · x.

All x ∈ Rd with
‖x‖H = const

lie on an ellipse with center 0 and axes h1 and h2 in 2D and on an ellipsoidal in 3D. The
anisotropic kernel function Wi of xi is given by

Wi(y,H) :=
1

vol(Pi)
θ (‖y − xi‖Hi) ,

where vol(Pi) is the volume of the elliptic support

Pi(t) := {y ∈ Rd : ‖y − xi‖Hi ≤ 1},

with Hi := H(t,xi). The function θ is the same as in the case of the circular kernel function
defined in Chapter 3, Section 3.2.3, for the 3rd order B-Spline or the Wendland kernels. If
h1 = h2, the kernel function with spherical support is recovered. The matrix H depends on the
time t and changes in a way that not only the number of neighbour particles is kept approximately
constant but also the number of neighbours in each direction varies little. In [39] the evolution
of H is given by

dHi

dt
= −

(
GT
i ·Hi + Hi ·Gi

)
, Gi = ∇v0(xi),

where v0 denotes the transport velocity. Figure 4.2 shows an example where an initially circular
kernel support area deforms into an ellipse during the simulation.
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Figure 4.3: Example of a multi-block mesh around a symmetric NACA hydrofoil. There are
five different blocks colored differently that have matching boundaries, i.e. all mesh lines are
continuous at the block boundaries.

Even though this is an interesting approach, it will not be further investigated in the follow-
ing. The industrial applications, that we are interested in, necessitate many points in direction
normal to solid walls and much fewer in tangential direction. This would lead to very long
and thin elliptical kernel support areas with high aspect ratios whose numerical behavior, to
our knowledge, has not been investigated yet in literature. In FVM block structured meshes
for example allow us to use cells with high aspect ratios. Furthermore, it is possible in FVM
to refine quite abruptly with a high refinement ratio from one cell to the other according to
well-established best practice guidelines for mesh construction. Refining an SPH domain in an
equal way would lead to strong variations of the minor or major axes of the ellipses and therefore
to strong gradients of the smoothing length H. For that purpose Eq. (4.2) would have to be
adapted to the anisotropic formalism in order to be taken into account for the computation of
the gradient of the kernel function with all the connected difficulties of variable h formulations
that were discussed above, in Section 4.1.1.1.

Instead of a pure SPH solution, anisotropic refinement will be added by a coupling with a
FV method that uses meshes with anisotropic hexahedral cells because we felt more confident
in obtaining an efficient coupling method in the time frame of this PhD project than an equally
efficient anisotropic SPH solver.

4.1.2 Variable resolution and multi-domain methods for FVM

In Chapter 3 SPH-ALE was introduced and it was explained that SPH-ALE has many similar-
ities with FV formalisms. Hence, it is not surprising that techniques that were first developed
for FVM are often adapted successfully for SPH. In the following, different multi-domain ap-
proaches for FVM are discussed with a special emphasis on methods for overlapping grids. At
the beginning of the 1980s increasing computational power and advanced numerical and phys-
ical models made it possible to launch more and more complicated simulations. So, the mesh
generation became the bottleneck of meshbased methods applied to industrial problems. As a
consequence multi-domain methods were developed to make it possible to subdivide the compu-
tational domain into subdomains where the mesh can be created independently. In particular,
there were two types of methods that appeared in that time, i.e.

• grid patching : The computational domain is divided into a set of disjoint subdomains with
common boundaries. The mesh of each subdomain is easier to generate than one mesh
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for the whole domain. In general, mesh lines through the boundaries between subdomains
are discontinuous and interpolation procedures are needed for the transfer of information
from one subgrid to the other. These interpolations are conservative. A special case
of patched grids are multi-block grids that have several blocks of curvilinear bodyfitted
meshes with matching boundaries, i.e. continuous mesh lines. In this case no interpolation
between the subdomains is necessary but the mesh generation is more demanding than
for the non-matching case. In Figure 4.3 a multi-block mesh around a symmetric static
NACA hydrofoil is shown. There are five different blocks with matching block boundaries.
Multi-block meshes are often used for turbomachinery applications.

• grid embedding or overset grids or overlapping grids: Again the computational domain is
divided into subdomains but this time the domains are overlapping. Grid generation is even
easier than for patched grids because each grid can be generated completely independently
from the other and no matching boundaries are needed. The only constraint is the size of
the overlapping region that has to be large enough to guarantee information transfer from
one grid to the other and vice versa which is done by interpolation. This approach will be
discussed in detail below.

Another important approach originates in that time that is strictly speaking no multi-domain
method but is still connected to these approaches,

• grid adaptation or adaptive mesh refinement (AMR) [12]: In the main, there are two
different types of adaptive refinement. There is the moving grid points methods that
adapts the grid distribution by moving mesh lines into one region and leaving a coarser
region somewhere else. This method tries to get the most accurate solution by a fixed
number of mesh points. However, it is not easy to maintain a smooth grid and the number
of necessary grid points has to be guessed at the beginning of the simulation. The second
method is a local grid refinement that adds new points in regions where a local error
estimation is too big or where a physical criteria is fulfilled and removes them if necessary.
This method tries to reach a fixed accuracy by a minimum number of mesh points. A
drawback is that the equations have to modified at the interfaces between the coarser and
refined zones in order to preserve conservation. The grids are also refined in time by the
the same refinement ration which means that

∆tcoarse
∆xcoarse

=
∆tfine
∆xfine

,

and the same explicit difference schemes are stable on all grids. In practice, this implies
that more time steps are taken on the finer grids than on the coarser ones. In [11] only
two-dimensional rectangular grids are considered that are refined by other rectangular
grids but the method has been generalised afterwards. Figure 4.4 shows coarse cells that
are refined by rectangular cells with a constant refinement factor

R =
∆xcoarse
∆xfine

.

The solution φij on the coarse cell with index (i, j) is computed by

φcoarseij =
1
R2

R−1∑
p=0

R−1∑
q=0

φfinek+p,m+q,
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Figure 4.4: Coarse rectangular cells are refined by fine rectangular cells [12]. The cell with index
(i, j), colored in red, is refined by the cells of indices k, ..., k+R− 1 and m, ...,m+R− 1, where
R denotes the refinement factor. The physical fields of cell (i, j) are computed by Eq. (4.6).

where the indices are taken from Figure 4.4. This formula is written for two-dimensional
rectangular grids, but it can be rewritten in a more general manner

φcoarseij =
R−1∑
p=0

R−1∑
q=0

Vfine
Vcoarse

φfinek+p,m+q, (4.6)

which is a formula that we will find again in several other methods including in the present
coupling method for particles covered by FV cells that are close to solid walls.

Berger [11] points out that AMR can be interpreted as a special case of overlapping grids
with aligned boundaries. The fine grid with green grid lines in Figure 4.4 is overlapping the
coarse grids with black mesh lines. However, it can equally be interpreted as a special case of
patched grids where the fine grid with green mesh lines is patched into the coarse grid. Hence,
AMR can be considered as one of the multi-domain approaches.

In [10] a combination of AMR and the Chimera method was developed. The background
grids are refined by moving overlapping grids that are automatically generated by solving an
optimization problem. The improvement compared to AMR is that the overlapping grids do
not have to be aligned with the background grid but can be oriented in a way that physical
phenomena are better captured. A successful application to blade vortex interactions was shown
by the author.

4.1.2.1 Overlapping grids

In this document, FVM for overlapping grids are discussed in more detail because it is important
for the understanding of the presented coupling algorithm. In the following, we consider a
computational domain Ω ⊂ Rd, where d = 1, 2, 3 denotes the space dimension. The domain Ω
is subdivided into two (or more) subdomains Ω1 and Ω2 that are overlapping each other, i.e.

Ω1 ∩ Ω2 = Ω12 6= ∅. (4.7)
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The Chimera method

In 1983, Benek et al. [8, 9] published a method for overlapping grids applied to the solution
of the Euler equations for aerodynamics in 2D and 3D. In order to simplify mesh generation,
component parts are meshed independently. Then the component grids are put together by
an underlying background grid in which they are embedded. Figure 4.5 shows the example
of a curvilinear grid G2 around a cylinder that is embedded into a rectangular grid G1. The
equations are solved independently on each grid and communication between them is done by
interpolating boundary cell values from one grid to the other. The Chimera boundary cells are
indicated in grey in Figure 4.5. Hence, only the minimum overlap that is necessary for the
interpolation method is used. Other overlapped cells, that are in the interior of the embedded
grid and that are not necessary for the interpolation of the boundary value, are disactivated.
That means that the component grids introduce ”holes” into the background grids. In [8] a grid
hierarchy and an algorithm for hole generation is described.

The authors named their method Chimera method after the legendary creature of Greek
mythology that is composed of different animal parts. The Chimera method is very flexible and
can bring together different types of grids that were generated independently. In the original
method only structured grids were used because the aim was the flexible refinement without
loosing the advantages of structured grid. Nevertheless, extensions to mixed grids, unstructured
and structured, were published thereafter [113].

Due to the fact that the method was extended from the compressible Euler equations to
conservation laws in general [11] and that the individual grids are independent, it is not necessary
to solve the same set of equations on each subdomain. Already in [9] it was proposed to solve
the Navier-Stokes equations on body fitting meshes around the solid geometries and the Euler
equations in the interior of the fluid domain. Hence, viscous effects are only taken into account
in the boundary layer where they are indispensable for many flow simulations. Away from these
regions viscous effects are less important and computation time can be saved by solving the
inviscid Euler equations. Pärt-Enander [87] successfully applies a Navier-Stokes/Euler coupling
to supersonic and hypersonic compressible flows on overlapping grids.

Almost immediately after the publication of the Chimera method, some discussion started
about the interpolation technique to employ. In the original paper [9] a Taylor series approxi-
mation was proposed, then a bi-linear for 2D (and tri-linear in 3D) interpolation was found to
be better [8]. However, both methods are not conservative. This presents a problem especially
if shocks appear in the simulation because the shock speed is not computed correctly at the
interface if a non-conservative interpolation is used. In the case of slowly travelling shocks that
are parallel to the mesh boundary, shocks might not even pass through the interface. That is
the reason why conservative interpolation methods were developed by several authors that are
discussed below.

Conservative interpolation and stability

In this section we follow [87, 88] for the classification of different interpolation methods. For
simplicity we consider a scalar one-dimensional model problem,

{
∂
∂tϕ+ ∂

∂xf(ϕ) = 0, −∞ < x <∞, t ≥ 0,
ϕ(x, 0) = ϕ0(x),

(4.8)
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Figure 4.5: Two 2D grids that are overlapping each other. The rectangular grid G1 with the
black mesh lines is the grid that envelops the curvilinear component grid G2 with green mesh
lines. The original Chimera algorithm detects which cells of G1 are covered by G2, determines
the minimum overlap necessary for the interpolation and excludes the mesh points of G1 that
lie in the interior of G2. That means that the embedded grid G2 (green) introduces a hole into
G1 and only boundary cell values are interpolated. The dark grey cells are interpolated from
G2 while the light grey cells are the boundary cells of G2 that are interpolated from G1. The
cells of G1 that are inside the zone that is limited by dark grey boundary cells are disactivated.
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Figure 4.6: Two 1D grids that are overlapping each other [87]. Grid G1 has uniform cells of size
h1 and G2 has uniform cells of size h2. The cell with center yN is the boundary cell of G1 and
the cell with center x0 is the boundary cell of G2. This is where information between the grids
has to be exchanged.

discretized on two uniform overlapping grids G1 and G2 with a discretization size of h1 and h2.
For the inner cells we apply a conservative numerical scheme of the form

ψn+1
j = ψnj − ∆t

h1

(
fn
j+ 1

2

− fn
j− 1

2

)
, yj ∈ G1,

ϕn+1
j = ϕnj − ∆t

h2

(
gn
j+ 1

2

− gn
j− 1

2

)
, xj ∈ G2.

(4.9)

We denote the numerical flux on G1 with fn
j+ 1

2

= f(ψnj , ψ
n
j+1) and the numerical flux on G2 with

gn
j+ 1

2

= g(ϕj , ϕnj+1). Figure 4.6 shows a sketch of two 1D overlapping grids and the notation
that we use. The cells with centers x0 ∈ G2 and yN ∈ G1 are the two boundary cells. In this
example, only one layer of cells is interpolated for each grid. Depending on the stencil of the
numerical scheme that is used, two or more layers of interpolated cells at the boundary might
be needed.

In the main, three different approaches of interpolation are distinguished as follows.

• Most industrial applications use a non-conservative method that interpolates the cell val-
ues. The cell value of the cell with center x0 is determined by

ϕn+1
0 = (1− ω1)ψn+1

q + ω1ψ
n+1
q+1 , (4.10)

with the interpolation weight ω1 = x0−yq
h1

that are chosen in a way that the cell in G1

where the center yq or yq+1 is closer to x0 contributes more to ϕn+1
0 than the other cell.

• Berger [11] proposed a conservative method that interpolates the fluxes by

g̃n− 1
2

= (1− ω1)fn
q− 1

2

+ ω1f
n
q+ 1

2

, (4.11)

with the interpolation weight w1 = d1
h1

. The interpolated flux g̃n− 1
2

replaces gn− 1
2

in Eq.

(4.9). This method reproduces the correct shock speed but Pärt-Enander [87, 88] showed
that it is not stable and the solution blows up if the interface is an outflow boundary.
Hence, it depends on the orientation of the characteristics at the interface. Therefore, a
characteristic decomposition of the interpolated fluxes was proposed depending on the flow
direction at the boundary. In addition, a filter has to be applied that removes non-physical
oscillations in front of shocks.



4.1. LITERATURE REVIEW 103

• Another non-conservative method is the reconstruction-integration method that uses a
piecewise linear reconstruction of the solution, known from the MUSCL scheme, see Section
3.6.3. The reconstructed function on G1 is given by

ψ(x) = ψnj +
sj
h1

(x− xj) , xj− 1
2
< x < xj+ 1

2
,

where the slope sj of cell j is limited by a well established slope limiter like the minmod
function. The boundary cell value ϕn+1

0 is evaluated by integrating over the reconstruction,

ϕn+1
0 =

1
h2

∫ x 1
2

x− 1
2

ψ(x)dx. (4.12)

The French aerospace lab ONERA implemented the non-conservative Chimera method to
their structured FV solver elsA. They first applied it to helicopter simulations with curvilinear
grids around the rotor blades and the fuselage and a Cartesian background grid [52]. Then
they used it for complex simulations of turbomachinery including technology effects like cooling
holes, gaps separating fixed and rotating walls and many more [17, 18]. The Chimera method
is particularly well suited to study the influence of these geometrical components. Adding one
of them to the simulation does not necessitate a remeshing of the whole computational domain,
but simply adds another component grid that can be modified independently. ONERA uses a
non-conservative interpolation because of its flexibility and simplicity. However, mass flow is a
very important parameter for the analysis of flows in turbomachines. Therefore, the introduced
conservation losses have to be smaller than a prescribed upper bound. If this is not the case,
the meshes are refined.

Hadžić [42] applies the Chimera method to the computation of the incompressible Navier-
Stokes equations for flows around moving bodies. Again a non-conservative interpolation is used
for the interpolated Chimera cells because the lack of conservation of momentum does neither
introduce computational difficulties nor degrade the solution, according to [42]. However, mass
conservation is indispensable for the correct solution of the pressure-correction equation that
has to be solved for the used incompressible algorithm. For that reason, a correction method is
introduced that enforces global mass conservation by correcting the mass fluxes at the interface
between overlapping grids in a way that the sum of the mass fluxes is zero. The interface is
defined as the faces between the Chimera cells that are interpolated and the fluid cells that are
updated by the FV method. We define ṁi as the mass flux between a Chimera cell and a fluid
cell, where i = 0, ..., n− 1 with n ∈ N0 denoting the number of faces between Chimera cells and
fluid cells. The total mass flux over the interface

∆Ṁ :=
n−1∑
i=0

ṁi (4.13)

should be zero and is used to correct the fluxes by

ṁcor
i = ṁi − βi∆Ṁ, (4.14)

where βi is defined as

βi :=
|ṁi|
Ṁ

with Ṁ :=
n−1∑
i=0

|ṁi|.

That means that the mass conservation error ∆Ṁ is redistributed among the Chimera-fluid
faces, weighted by the magnitude of the uncorrected mass flux of each face. The sum of the
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Figure 4.7: Mancip’s coupling method [66] on overlapping domains Ω1 and Ω2 where the solution
from Ω1 at time tn+1 denoted by un+1

1C is projected on Ω2 and vice versa in Ω12 and weighted by
a smooth coupling function α(x). The method is conservative. (Both figures taken from [66].)

βi is equal to one and hence, a zero total mass flux is enforced. Note that the idea behind the
correction approach is similar to the closed box correction introduced in Chapter 3 even though
the corrected error is of a different nature.

A different method to obtain conservation is proposed by Wang [114, 113]. Instead of im-
posing boundary conditions on the overlap, a common boundary is detected by the algorithm.
In Figure 4.5 this would be the external green mesh line, i.e. the boundary of G2. At these
interfaces Riemann problems are solved similarly to the interior of a grid. The physical fields are
linearly reconstructed and limited like for the MUSCL scheme, see Eq. (4.12), but here ΦL is
reconstructed from a cell in G1 and ΦR from an adjacent cell in G2 or vice versa. This technique
combines the strong points of overset method with the advantages of patched grids. On the one
hand, grids can be generated independently from each other without special constraints on the
boundaries which means that Chimera grids can still be used. On the other hand, the method
is fully conservative like it is usually the case for patched grids.

In 2001, Mancip presented yet an other approach to obtain a conservative method for over-
lapping grids that he also applied to the coupling of SPH and FVM. To our knowledge this is
the first publication about the coupling of SPH and FVM.

Mancip’s coupling method

The starting point of Mancip’s thesis [66] is the Chimera method and the work that has been
done by Berger [11] and Pärt-Enander [87, 88] on conservative interpolation and the analysis of
its stability (see the section above). On this basis Mancip develops a stable and conservative
coupling algorithm on overlapping domains where the coupling no longer consists of imposing
boundary values for each domain. Instead of a local interpolation, a projection is used on
Ω12 (defined by Eq. 4.7) and the approximative solution is constructed by means of a smooth
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coupling function defined over the whole computational domain α(x) ∈ C1
(
Rd
)

with

α(x) =


1 if x ∈ Ω1 \ Ω12,
0 ≤ α(x) ≤ 1 if x ∈ Ω12,
0 if x ∈ Ω2 \ Ω12.

(4.15)

A one dimensional example of α(x) is shown in Figure 4.7 (b). Figure 4.7 (a) shows the algorithm
of the coupling method. Consider two triangulations (grids) G1, G2 with C ∈ G1 in Ω1 and
D ∈ G2 in Ω2. Assuming that the approximate solutions on each domain at time tn have been
computed, the numerical schemes S1 and S2 are applied separately on both domains to obtain
intermediate approximate solutions at time tn+1, i.e. un+1

1C and un+1
2D . Then projections Π12, Π21

and the coupling function α(x) are used to obtain a coupled solution for both domains, hence

vn+1
1C = αC un+1

1C + (1− αC) Π21(un+1
2 )C , (4.16)

with
Π21(un+1

2 )C =
∑

C:D∩C 6=∅

VD∩C
VC

un+1
2D , (4.17)

and
vn+1

2D = (1− αD) un+1
2D + αDΠ12(un+1

1 )D, (4.18)

with
Π12(un+1

1 )D =
∑

D:D∩C 6=∅

VD∩C
VD

un+1
1C . (4.19)

The αC , αD ∈ [0, 1] are the projection of α(x) on cells C and D, VC , VD are the volumes of cell
C and D and VD∩C denotes the volume of the intersection of cell C and D. That means that the
intersection between the two triangulations has to be computed for the projection. If the meshes
are static, the intersection is computed once at the beginning of the simulation. However, if the
mesh is moving, the intersection has to be computed in every time step. In 1D the intersection
can be easily computed but in 2D/3D it is not obvious if the mesh is not regular. Therefore
an approximation based on a quadrature formula is employed, similar to what we propose for
the computation of the modified weights (see Section 4.2.2). Note that Eq. (4.17) and (4.19)
correspond to Eq. (4.6), that Berger et al. [12] call the conservative average of finer cells that
replaces the physical fields of the coarse cells that are refined in AMR.

Mancip shows the convergence of the coupling algorithm in the scalar case and gives an error
estimation. Then he shows 1D and 2D applications of the method for the coupling of two FV
domains where the measured convergence rate is better than the one obtained by the theoretical
analysis. The general construction of a multidimensional coupling function α is also explained.
In the last chapter he adapts the method to couple SPH and FVM for an injection problem.
SPH is a meshless method, in the sense that no mesh information is explicitly available since no
connectivity information between the points is stored. Only the position xj and the weight ωj
of particle j is known at any moment tn. For Mancip’s algorithm mesh information about the
position of the corner points is needed and therefore he computes what he calls an approximative
and deformed mesh where he moves the corner points in the same way as the particle positions.
The resulting mesh cells have volumes that are very close to the ωj . The computation of a mesh
and the computation of the intersection in every time step increases the computational cost of
the method. In addition, the Lagrangian velocity in the coupling zone has to be smooth enough
to make the computation of the mesh possible without too strong deformations which means
that the coupling zone has to be chosen accordingly.
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4.1.3 Coupling of SPH with meshbased methods

Recently, several authors developed techniques to couple SPH with different meshbased meth-
ods. Amongst others, there are two main motivations to couple SPH with another method. The
first is to discretize the fluid domain by SPH and couple it to a solid domain that is discretized
by the Finite Element method (FEM). The coupling aims at simulating fluid-structure interac-
tion. The other reason to couple SPH with a meshbased method like FVM is to obtain more
information about the fluid by using more accurate operators, (an-)isotropic refinement or a
better description of the physical boundary conditions.

4.1.3.1 Coupling of SPH with Finite Element methods

In structural mechanics the Finite Element method (FEM) is well established and used to
compute stresses and deformations of structures but in many applications the influence of the
fluid domain on the structure has to be considered. The so-called fluid-structure interactions
(FSI) are the dynamic interactions of a structure with the fluid flow. Their computation needs
an exchange of information from the fluid solver to the solid domain and vice versa in the course
of the simulation. Some work has been done on the coupling of SPH for the fluid domain and
FEM for the solid domain, where only two examples are cited here. In [32] the field variables at
the interface between the solvers are directly exchanged, where the pressure is computed from
the fluid for the structure by means of ghost particles. Another approach that conserves the
energy at the interface exactly can be found in [59]. Due to the conservation of energy, different
time integration schemes can be used without degenerating the order of the scheme in time
or introducing numerical instabilities. Instead of ghost particles, surface elements and partial
Riemann problems are used for wall boundaries [67].

4.1.3.2 Coupling of SPH with FV methods

To our knowledge the first published coupling method for SPH and FVM was presented by
Mancip [66] in 2001. As it was explained above, it adapts the Chimera method to a conservative
approach with a smooth coupling functions but necessitates the computation of an auxiliary grid
for the SPH particles in the overlapping zone. This is a limitation of the method that makes it
difficult to apply it to dynamic flows where the auxiliary grid would be very distorted or even
impossible to construct because the particles moved away from their initial neighbours.

Then at the 8th SPHERIC Workshop in Trondheim 2013, where the coupling method pro-
posed in this thesis was presented for the first time, two other contributions dealt with the same
subject. They will be discussed in the following paragraphs.

In [15] a multi-domain method is presented that makes it possible to couple SPH to any
other external solver or analytical solution. An interface with ghost particles in Lagrangian
motion imposes boundary conditions on the SPH domain. Like in Section 4.1.2.1 we consider
two subdomains Ω1 and Ω2 that overlap each other, see Eq. 4.7. The domain Ω1 is discretized
by SPH particles. The other domain Ω2 can be discretized by SPH particles as well but with
a different discretization size, or it can be discretized by a FV mesh or the physical fields can
be given by an analytical solution. The physical variables of the ghost particles in the interface
region are interpolated from the interior of Ω2, using an interpolation method that is adapted
to the way Ω2 is discretized. The multi-purpose interface is successfully applied to a coupling
with an implicit FV solver.

A coupling of SPH-ALE and Voronoi-FVM is developed in [5] that is called Hybrid-SPH.
The idea is to combine the more precise Voronoi-FVM operators with the surface treatment of
SPH. For that purpose, a Voronoi tesselation is constructed on the whole fluid domain, the free
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surface is detected and the SPH domain is defined close to the free surface. Away from the free
surface, Voronoi FVM is employed. Similar to what is done for the coupling algorithm presented
in this thesis, the same weakly-compressible Euler equations are discretized by FV operators and
Riemann problems are solved between Voronoi cells using the same MUSCL reconstruction to
obtain ΦL and ΦR at the cell faces as between particles. Thanks to the Voronoi tesselation the
interface between the SPH domain and the FV domain is known. However, no special interface
treatment is used but SPH particles (with its known tesselation) are used as neighbours for
the Voronoi FVM integration and the Voronoi cells included in the kernel support area are
themselves neighbours for the SPH particles. Due to the different operators on the SPH domain
and the FV domain, the method is not conservative.

4.1.4 Summary and discussion

In this section different approaches from literature concerning spatial refinement in SPH and
FVM were discussed. Special emphasis was placed on multi-domain methods like the Chimera
method for overlapping grids because we identify a multi-domain strategy as a possible candidate
for the coupling of SPH and FVM that will be presented in the next section. These methods are
known to be flexible and there are good experiences with industrial applications. However, in
general they are not conservative and mass conservation has to be checked after each simulation.
Patched grid methods or improved Chimera methods like the one proposed by [114] do not have
this problem. But its application to the coupling of SPH and FVM might be tricky because
the movement of the particles in Lagrangian motion has to be managed explicitly at interfaces
between the FV domain and the SPH domain where particles cannot penetrate.

Recently, three different coupling methods of SPH and FVM were published. The first
one by Mancip [66] is conservative and uses a smooth coupling function defined on the whole
overlapping region but needs an auxiliary mesh that is computed by evolving the corner points
of the initial grid in the same way as the particle centers. This is not adapted to our target
applications where we want to use SPH in particular for very dynamic flows that cannot be
easily computed with meshbased methods.

The second method published by Bouscasse et al. [15] is a multi-domain method that uses
Lagrangian ghost particles to impose boundary conditions to the SPH domain. The domains
can be overlapping but are not necessarily overlapping. The region of ghost particles has to
be larger than the radius of the smoothing length. The authors use ghost particles for every
boundary of the SPH domain, the solid boundaries, the inflow and outflow boundaries and it is
consistent to use them also for multi-domain boundaries. The SPH-ALE method used in this
thesis employs partial Riemann solvers and surface elements for solid wall boundaries and no
ghost particles are constructed for wall boundary treatment. Nevertheless, this method is a
possible candidate for the coupling of SPH and FVM for our target applications but it is not
the one that we employ.

The third method proposed by [5] couples SPH-ALE to Voronoi-FVM. The domains do not
overlap and there is a known interface between the SPH particles and the Voronoi cells. The
Voronoi tesselation has to be computed for the cells and for the SPH particles and information
is transferred through the interface by using the particles as neighbours for the FVM and the
Voronoi cells as neighbours for the SPH integration. In the method that we present in the next
section, FV cells are used as neighbours for the SPH integration similar to what is done by
[5]. However, no tesselation for the SPH particles will be computed and the FV mesh is an
anisotropic block structured mesh and not a Voronoi tesselation. In [5] it is explained that the
Voronoi cells should be kept as isotropic as possible in order to conserve accuracy. This is not
what we are searching for our target applications.
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Figure 4.8: Sketch of the coupling strategy for overlapping domains, where communication works
in two ways. On the one hand, FV calculation points are used as SPH neighbours (indicated by
a blue arrow), while on the other hand, FV boundary values are interpolated from SPH particles
(indicated by a red arrow). The FV cells that obtain interpolated fields, that we call Chimera
cells, are shown by a grey box. The green line denotes the limit of the FV mesh (excluding the
Chimera cells).

In the following, a flexible coupling method is presented that does not require the construction
of a mesh for the SPH particles or the construction of ghost particles. It is based on overlapping
domains where not only boundary conditions are applied, but the refined and more accurate FV
cells of the overlapping meshes are used as neighbours for the SPH integration. The method is
applicable to all kinds of FV meshes even though anisotropic block structured meshes are best
adapted for our target applications.

4.2 The proposed coupling methodology

The coupling strategy that we propose in this thesis is based on a multi-domain technique of
overlapping domains of SPH particles ΩSPH ⊂ Rd and FV meshes ΩFV ⊂ Rd, d = 1, 2, 3, with

ΩI = ΩSPH ∩ ΩFV 6= ∅.

Domains are completely or partially overlapped by others in order to enable communication
between them. A different technique is applied for the transfer of information from the SPH
to the FV domain than for the transfer from the FV to the SPH domain. On the one hand,
boundary values are interpolated from the SPH particles to the FV mesh and on the other hand,
FV cells are used as SPH neighbours for the SPH space integration in ΩI . In Figure 4.8 the idea
of the coupling is illustrated in one space dimension.

In the following, we assume that the field variables computed on the FV domain are more
accurate than the ones computed by the SPH method because we use FV meshes that have
smaller discretization sizes on the overlapping domain than the SPH particles. Hence, the
condition

max(∆ξl,∆ψl,∆ζl) ≤ r ∀l ∈ [0, N − 1] (4.20)

has to be respected in the overlapping region ΩI when constructing the mesh. Here the number
of cells in ΩI is denoted by N ∈ N0 and the notation for the mesh lines is described in Figure
4.9. In this chapter the particle size of the SPH particles is denoted by r instead of ∆x to avoid
confusion with the discretization size of the FV mesh. Note that for most applications this
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Figure 4.9: Notation for a twodimensional cell l with center xl. Each side has a center xS , a
surface area S and a normal n pointing from cell l to its neighbour cell. The normal multiplied
by the surface area is denoted by nS = nS and the cell volume by Vl.

condition is not a real restriction because the mesh cells can be bigger than SPH particles on
ΩFV \ ΩI and we use the FV mesh for local refinement most of the time. However, in the case
of boundary layers long and thin cells are traditionally used for FVM. In this case, care has to
be taken to fulfil the above condition in all directions of the mesh lines.

4.2.1 Interpolation of boundary cell values to the FV domain

Since the FV domain is the more refined and therefore the more accurate one, only boundary
values are interpolated from the SPH particles to the FV mesh. In analogy to the Chimera
method density and velocity are interpolated for two layers of boundary cells. For the inter-
polation scattered data approximation techniques are well adapted as the SPH particles are an
unstructured cloud of points. Moving least square (MLS) approximation of any order can be
chosen. In the testcases presented below, Shepard interpolation [99] is used. That means that
we interpolate the fields φl for the FV boundary cells, i.e. density and velocity, as follows,

φl =
∑

j∈DSPHl

φj
ωjWlj∑
k ωkWlk

.

The size of the kernel support for the interpolation is determined by the SPH discretization size
in order to have enough neighbours for the interpolation. Analogously to what was said for
Chimera methods in Section 4.1.2.1, the interpolation is not conservative. That means that the
mass unbalance has to be evaluated at the end of simulations.

4.2.2 FV calculation points as neighbours for the SPH space integration

The main idea of the coupling approach is to use FV cells as neighbours for the SPH space
integration if FV cells as well as SPH particles discretize the same space. If there are no FV
cells overlapping the kernel support area of a certain particle, the other SPH particles in the
neighbourhood are used, like in non-coupled standard SPH. However, a special treatment has to
be applied for overlapped particles close to solid walls that will be described below. Figure 4.10
shows a 1D mesh overlapping SPH particles, where the considered SPH particle at xi uses FV
cells as well as other SPH particles as neighbours. In the kernel support there are particles that
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Figure 4.10: A 1D mesh is overlapping SPH particles and the SPH space integration of the
particle at xi is considered. Only parts of the kernel support area are covered by FV cells and
there are FV calculations points as well as other SPH particles acting as SPH neighbours.

are themselves only partially overlapped by the FV mesh and their weight has to be adjusted
in a way that only the part of the particle that is not covered by the FV domain is taken into
account for the SPH integration. We call the new weight of the cut particle modified weight.

Far away from solid walls, we obtain the coupled SPH-ALE flow equations that are written
as

d(ωiΦi)
dt

= ωi

 ∑
k∈DFVi

VkF̂ik∇iWik +
∑

j∈DSPHi

ω̄jFij∇iW ij

 , (4.21)

where ω̄j denotes the modified weights, Φi the vector of state variables of particle i and F̂ij

the numerical flux between calculation points i and j. Note that ω̄j = 0 if particle j is fully
overlapped by FV cells. Not only the weight of a partially covered particle has to be modified,
also its position. A particle with a new weight should again be situated close to its barycenter
and the position has to be modified accordingly. If the particle is not overlapped at all, the
position should not change.

Since the positions are modified, the kernel function and its gradient ∇iWij change as well,
and is denoted by ∇iW ij . The modified position equally alters the direction of the vector
connecting the particle with its’ neighbours and therefore also the numerical flux F̂ij that is
obtained by solving Riemann problems. We denote the modified numerical flux by Fij , to
emphasize that it is not the same as for non-coupled simulations.

Figure 4.11 shows a 2D mesh (coloured in red) that is overlapping particles. The particles
that have to adjust their weight and position are coloured in green. Figure 4.12 summarizes the
three different types of neighbourhoods that an SPH particle can have for the coupling. There
can be other SPH particles as neighbours (Zone 1), other unchanged SPH particles, modified
SPH particles and FV cells (Zone 2) or exclusively FV cells (Zone 3).

Computation of modified weights and modified positions

In Zone 2 in Figure 4.12 and 4.16 every SPH particle has other SPH particles as well as FV
cells as neighbours. If the neighbour particle is situated at the boundary of the FV domain,
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Figure 4.11: A FV mesh (colored in red) is overlapping SPH particles where a green dashed line
indicates the boundary of the FV domain. The weight of the particles that are colored in green
has to be adjusted for the coupling to obtain a correct space discretization, while the particles
that are completely overlapped by the mesh are not taken into account as neighbours. Note
that the Chimera cells are not indicated in this figure.

Figure 4.12: Distinction of three different zones that occur for the coupling far away from solid
walls. In Zone 1 the particles exclusively have other SPH particles as neighbours, in Zone 2
(colored in grey) there are particles as well as cells in the neighbourhood of each particle, while
in Zone 3 there are only FV neighbours. The green line indicates the boundary of the FV mesh
(without indicating the Chimera cells). The width of Zone 2 corresponds to the diameter of the
kernel support.



112 CHAPTER 4. COUPLING OF SPH-ALE WITH A FINITE VOLUME METHOD

the weight of the neighbour particle has to be adjusted in accordance with the volume that is
overlapped by the FV mesh. We define the modified weight, ω̄j , of a particle j as the weight that
is taken into account for the space integration in the coupling. The modified weight is equal to
the original weight ωj if the particle is not covered at all by a FV cell, i.e. ω̄j = ωj . It is zero if
the particle is completely overlapped, i.e. ω̄j = 0, and it is between zero and the original weight,
ω̄j ∈ (0, ωj), if the particle is partially overlapped like the ones coloured in green in the example
of Figure 4.11. Hence, we define the modified weight by

ω̄j := ωj − Ṽj , (4.22)

where Ṽj is the exact volume of the FV mesh that is overlapping the SPH particle j. In the
general case, it is not possible to compute Ṽj exactly but an approximate method has to be
employed. One possible method to compute approximately the modified weight ω̄j of particle j
is given by

ω̄j ≈

{
ωj −

∑
l Vl if (ωj −

∑
l Vl) > 0, with l : ‖xl − xj‖ < 1

2 ω
1
d
j

0 elsewhere
, (4.23)

where d denotes the space dimension. The size of the particle is approximated by ω
1
d
j in this

expression and Ṽj is approximated by the sum of the cell volumes whose cell center is situated
inside the isotropic particle. Note that in SPH only the position of a particle and its volume
are known but its exact extent in space is not known. Supposing that the particle is a sphere in
3D or a circle in 2D, like we do in Eq. 4.23, is an approximation of the real form of the particle
that is not computed in SPH.

If the SPH particles are distributed homogeneously, their position is situated at the barycen-
tre of the neighbouring particles, i.e. xi =

∑
j∈Di ωjxjWij . In [3] it is shown that truncation

errors increase significantly if the particle is not situated in its barycentre. Hence, it is neces-
sary not only to modify the weights but also the particle positions. From the definition of the
barycentre it is known that the barycentre of the cut particle can be written as

x̄jω̄j = xjωj − X̃j Ṽj , (4.24)

where X̃j is the barycentre of the part of the FV mesh that overlaps the particle. We assume
that the particles are initially situated at their barycentre. Then we can compute the modified
position as

x̄i ≈

{
1
ω̄j

(xjωj −
∑

l xlVl) if ω̄j > 0,
xj if ω̄j = 0,

(4.25)

where the sums are again calculated over

l ∈ [0, N − 1] : ‖xl − xj‖ <
1
2
ω

1
d
j , (4.26)

and d denotes the space dimension.
Figures 4.13 and 4.14 show a one dimensional sketch of a SPH particle that is overlapped

by FV cells. In the case of Figure 4.13 we obtain the exact ω̄j1 of the ”cut” particle j1 by
computing ω̄j1 = ωj1 − (l1 + l2 + l3) . Also the modified weight of the completely overlapped
particle j2 is computed correctly, since we obtain ω̄j2 = 0. This is exact in this case because
the left particle interface and the cell interface of cell l1 are aligned. However, in general this is
not true. Considering the example of Figure 4.14 we again obtain ω̄j2 = 0 for particle j2 but we
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do not obtain the correct modified weight for particle j1 because the volume indicated by a red
rectangle is not seen by the formula and therefore the computed ω̄j1 is too big. Even though
one part of the FV cell l1 covers the considered SPH particle, the volume of the cell will not be
taken into account in the sum

∑
l Vl because the cell center does not verify the condition (4.26),

i.e. l : ‖xl − xj‖ < 1
2 ω

1
d
j . The modified weight that is computed by Eq. (4.23) also contains the

volume indicated by the red square which is not correct.
Figure 4.15 shows that in general it is not even possible to compute correctly the modified

weights of particles that are completely overlapped by FV cells and that should be zero to
exclude them from space integration.

Analogously to what was said for Eq. (4.23), Eq. (4.25) does not yield the exact barycentre
for the modified particle in general, even if the particles are initially situated at their barycentre.

The errors that are introduced by the computation of the modified weights by Eq. (4.23)
and the positions by Eq. (4.25) considerably deteriorate the quality of the results, especially if
a particle that is completely overlapped by FV cells does not have a zero modified weight which
means that a contribution of a SPH particle is added to the integration that is wrong.

To improve the accuracy of Eqs.(4.23) and (4.25) quadrature points are added, similar to
Newton-Cotes formulae for numerical integration. In the following the approach is outlined
for quadrilateral/hexahedral meshes that are used in this work but it can be easily adapted
to triangle/tetrahedral meshes. For simplicity the two-dimensional case is explained but the
extension to 3D is straight forward.

A reference length L is defined by

L := α ω
1
d
j ,with α ∈ (0, 1]. (4.27)

For each direction of the mesh lines ζ, ξ we compute

nζ(l) =
⌈

∆ζ(l)
L

⌉
and nξ(l) =

⌈
∆ξ(l)
L

⌉
using a ceiling function d·e and constructing nζ(l)×nξ(l) refined quadrilateral cells for each cell
l with edges smaller or equal to L. Note that L does not depend on the FV mesh but only
on the discretization size of the SPH domain. The number of auxiliary subcells for each cell,
nζ(l)×nξ(l), depends on the discretization size in the direction of each mesh line, ∆ζ(l), ∆ξ(l),
that varies for each cell l.

The auxiliary cells are then used for the sums in (4.23) and (4.25) that become

Ṽj ≈
∑
l

∑
k(l)

Vk (4.28)

and
X̃j Ṽj ≈

∑
l

∑
k(l)

xkVk, (4.29)

where
l ∈ [0, N − 1], 0 ≤ k < (nζ(l)× nξ(l)) :

‖xk − xj‖ < 1
2 ω

1
d
j .

(4.30)

In Section 4.3.2 the influence of the choice of the refinement factor α on the accuracy of
the computed modified weights and on the resulting pressure field is shown by means of the
two-dimensional Taylor Green vortices.
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Figure 4.13: A FV mesh is overlapping SPH particles, where the black lines indicate the interfaces
between the cells and between the particles, respectively. The green line shows the boundary of
the FV domain and the SPH particles are covered by FV cells in a way that the particle j1 at
the right side is ”cut” by the boundary of the FV mesh. The modified weight of this partially
overlapped particle is computed by Eq. (4.23). This is exact because the sum of the volumes of
cell l1, l2 and l3 represents exactly the volume that is overlapping particle j1.

Figure 4.14: SPH particles are covered by FV cells in a way that the particle j1 at the right
side is ”cut” by the boundary of the FV mesh. The modified weight of this partially overlapped
particle is computed by Eq. (4.23). In contrast to what is shown in Figure 4.13, the volume
of the considered SPH particle (indicated by a dotted line) extends beyond the volume that is
covered by the sum of cells l2 and l3 and is partially covered by cell l1. Since the center of
cell l1 lies outside the limits of the particles, its volume is not taken into account. The volume
indicated by the red square is wrongly added to the modified weight.
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Figure 4.15: Finite volume cells (above) that are overlapping SPH particles (below). In (a) the
error that is made by computing the modified weight of the considered particle by Eq. (4.23)
is colored in red. In (b) it is shown how the error can be reduced by applying Eq. 4.23 with
refined FV cells.

Particles close to solid walls

In SPH-ALE solid wall boundaries are taken into consideration by integrating over surface
elements and solving partial Riemann problems at these surface elements, see Section 3.7.2.
For the coupling we detect the particles whose kernel support area is truncated by the surface
elements and then interpolate density and velocity directly from the underlying FV cells using
the same quadrature points as for the computation of the modified weights. We compute

φj =
1
Ṽj

∑
l

∑
k(l)

φkVk, (4.31)

for φj denoting density and velocity of particle j and φk = φl with l and k as in (4.30) and Ṽj
defined by (4.28). Note that Eq. (4.31) is very similar to the projections introduced by Mancip,
Eq. (4.19), (4.17), and the conservative average from AMR, Eq. (4.6). An important difference
between literature and Eq. (4.31) is that Ṽj is only an approximation of the volume of the FV
domain that is covering particle j. That means that even for completely overlapping domains
ΩSPH ∩ ΩFV = ΩFV = ΩSPH , ∑

j∈ΩSPH

Ṽj 6=
∑

j∈ΩSPH

ωj 6=
∑
l∈ΩFV

Vl,

for several reasons. We denote the total volume that is coverd by ΩFV = ΩSPH by VΩ. FV cells
always cover the exact volume that they discretize, independent of the discretization size, i.e.∑

l∈ΩFV
Vl = VΩ. However, in SPH there is no conservation of volume and it is not guaranteed
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that the sum of all SPH weights is equal to VΩ. Hence, even for completely overlapping domains
it is not certain that the total volume covered by the SPH particles is equal to the total volume
covered by the FV cells. Moreover, the Ṽj are computed approximately to approximate the SPH
weights and additional errors are introduced. These errors decrease by decreasing α and hence,
by decreasing the reference length L of the auxiliary cells.

A constraint on the meshes that are used for the coupling around solid geometries follows
from the interpolation of the physical field variables of the covered particles close to walls, using
Eq. (4.31). It means that if there is a FV mesh around a solid geometry, it has to be at least
as large as the radius of the kernel support even if the interpolation itself only requires cells
covering the volume of the considered particle. However, the field variables of every particle,
whose kernel support is truncated by the wall and that has cells covering parts of its kernel
support, are interpolated by Eq. (4.31).

Choice of the smoothing length

In the coupled solver, the smoothing length h that determines the size of the kernel support
area for the SPH space integration is given by the SPH particles. That means that the smooth-
ing length is not adapted to the discretization size of the FV mesh. As a consequence, the
number of neighbours varies strongly when coupled to a fine FV mesh. In Section 4.1 we saw
that variable h introduces ∇h terms in the computation of ∇W that are not easy to add. In
particular, the FV meshes are anisotropic, often strongly refined in one direction, e.g. normal
to solid walls. Anisotropic kernel functions (see Section 4.1.1.2) would have to be used if a
constant number of neighbours had to be kept in all directions of the mesh lines. This is very
complicated to implement for arbitrary geometries like they arise in industrial applications. For
these reasons, the smoothing length is not adapted to the FV mesh in the coupled solver and a
higher computational cost arising from a higher number of neighbours is accepted.

4.2.3 Practical implementation

A description of the sequential SPH-ALE algorithm used in ASPHODEL is given in [70]. In
this thesis, only the three main parts, that are run for each time step, are mentioned. That
are the preliminary loops (pre-loops) where the gradients for the MUSCL reconstruction are
computed, the flux balance loop where the numerical fluxes are computed and accumulated, and
the time integration loop where the variables are advanced in time. The FV solver was directly
implemented into ASPHODEL following a similar structure containing the same three main
parts. In the same way, the coupling algorithm is implemented directly into ASPHODEL, see
Algorithm 1.

Algorithm 1 Coupled SPH-ALE and FV solver
1: while t < tend do
2: Interpolate the physical fields for Chimera cells
3: Compute modified weights and positions for SPH particles
4: Interpolate the fields from the FV cells to the covered SPH particles close to walls
5: Execute the pre-loops SPH and SPH-FV
6: Execute the pre-loops FV: compute gradients
7: Execute the flux balance loop SPH and SPH-FV
8: Execute the flux balance loop FV
9: Perform the time integration for SPH and FV domains

10: end while
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The loops over the FV cells as SPH neighbours are denoted by pre-loops SPH-FV and flux
balance loop SPH-FV. The loops pre-loops SPH and flux balance loop SPH use the modified
weights and positions. That means that also the gradients for the SPH particles are computed
by the coupled method, i.e. SPH neighbours and FV neighbours are used.

4.2.4 Properties of the coupling

The coupling algorithm is very flexible and allows us to add FV meshes for anisotropic local
refinement anywhere in the SPH domain. The SPH particles can be in Eulerian or Lagrangian
motion or something in-between (ALE) and their motion is not disturbed by the meshes. One
advantage of the present method is that the creation and destruction of particles is handled by
the SPH solver and no additional interfaces where particles have to be added or deleted are
needed. Moreover, FV meshes can be easily used to impose inlet or outlet conditions to the
SPH domain. This will be further discussed in Chapter 5.

However, a drawback of overlapping domain techniques is the loss of conservation (see Section
4.1.2.1). Both, the FV scheme and the SPH-ALE scheme, are written in conservative form but
the coupling algorithm does not guarantee conservation of mass and momentum. That means
that FV solver and the SPH solver are conservative but the coupling is not. If particles are
used as SPH neighbours interactions are still symmetric but in the overlapping region FV cells
are taken as neighbours and the particles are passive without contributing to the integration of
the other particles. Hence, conservation is not verified automatically any more. Moreover, for
the interpolation of the FV boundary values no conservative interpolation technique has been
used. Analogously to the Chimera technique, conservation has to be checked carefully for each
simulation. However, the validation cases in the section below show that conservation losses
are very small and no big issue for practical applications. It is known from literature that non-
conservative methods can introduce additional problems like non-physical shock speeds for shock
simulations. We did not observe that for the validation cases presented below. Furthermore,
shock simulations are not part of the target applications that we are interested in but it is still
something that has to be kept in mind when analysing the results.

The same time step size is used for the FV domain as well as the SPH domain. However,
cells can be much smaller than particles, especially close to solid walls. The small cells reduce
the timestep considerably due to the CFL condition that has to be verified. Coupling methods
with different time integration exist in meshbased methods. Implementing a coupling method
for SPH with different timestep sizes or even different time integration schemes is left to future
research.

In Section 4.1 refinement and de-refinement strategies were discussed including Barcarolo’s
de-refinement method with passive mother particles. Eq. (4.4) and Eq. (4.5) define the SPH
operators for a function and its gradient for a computational domain including mother and
daughter particles. It was already stated above that the passive mother particles are treated
similarly to SPH particles in the present coupling method that are completely covered by FV
cells. If we define γi := ω̄i

ωi
, we obtain similar SPH operators as [5] with γ ∈ [0, 1], depending on

the position of the particle to the FV domain. We can write the coupled SPH operators as

fi =
∑

j∈DSPHi

fjW ijωjγj +
∑

j∈DFVi

fjWijVj ,

for a function f and

∇fi =
∑

j∈DSPHi

fj∇iW ijωjγj +
∑

j∈DFVi

fj∇iWijVj ,
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for its gradient ∇if , using W ij and ∇iW ij to remind the reader that also the positions are
modified for the cut particles.

4.2.5 Summary

A coupling algorithm for SPH-ALE and FVM was developed that is based on communication
on overlapping domains where information is transferred in two ways.

For the coupled SPH integration, we distinguish between the following four zones, as it is
shown in Figure 4.16, depending on the neighbours of the considered particle.

• In Zone 1 there are only SPH particles and no FV mesh. Every SPH particle has exclu-
sively other particles as neighbours in its kernel support.

• Zone 2 is an intermediate region where the particles have other particles as neighbours as
well as FV cells. Particles that are completely overlapped by FV cells are excluded from
the integration to avoid integrating twice over a control volume, once by integrating over
the particles and once over the cells. Some particles are only partially overlapped by the
FV mesh, they are at the boundary of the FV domain and their weights and positions
have to be adjusted to guarantee a correct space discretization. In Figure 4.11 the particles
whose weight has to be adjusted are coloured in green.

• In Zone 3 the particles are situated in the interior of the FV mesh and the whole kernel
support area lies within the FV domain. All SPH particles in the neighbourhood are
completely overlapped by FV cells and do not contribute to the SPH space integration.
They are passive and only FV cells are used as neighbours. The modified weights are set
to zero.

• In Zone 4 the particle is situated close to a solid wall and its kernel support area is
intercepted by the wall. In this region we do not perform a SPH space integration but
interpolate velocity and density directly from the FV cells, see Eq. (4.31). The SPH
particles in this zone do not contribute to the space integration of its’ neighbours.

The coupled FV solver receives two layers of interpolated boundary cell values, the so-called
Chimera cells, from the SPH particles in every timestep. The rest of the FV solver is carried
out as usual.

4.3 Validation of the coupling strategy

The coupling method is validated by academic testcases in one and two space dimensions where
either an analytical solution is known or a reference solution from another well-established
CFD solver is available. All validation cases are inviscid flow simulations. In 1D we present a
shock tube case and a Lagrangian case with a sinusoidal initial velocity. In 2D the bi-periodic
Taylor-Green vortices and the flow around a symmetric NACA hydrofoil that were introduced
in Chapter 2 are reused.

The closed box correction that was presented in Section 3.9.3 is applied to all simulations
for the following reason. For the coupling algorithm FV cells are taken as SPH neighbours.
Usually the SPH neighbourhood consists of neighbouring particles and the considered particle
itself. Since the gradient of the kernel function at the position of the considered particle is zero,
no self-contributions are added. But because of the particle in the center, the other particles are
distributed around it. This is not the case if FV cells are the neighbours. They are not situated
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Figure 4.16: Distinction of four different zones that occur for the coupling. In Zone 1 the
particles exclusively have other SPH particles as neighbours, in Zone 2 (colored in grey) there
are particles as well as cells in the neighbourhood of each particle, while in Zone 3 there are only
FV neighbours. In Zone 4 close to solid walls (colored in red) the physical fields are directly
interpolated from the underlying FV mesh. The green line indicates the boundary of the FV
mesh.

around the considered particle and in general there is no cell situated in the middle with a center
at the position of considered particle. Hence, there is no symmetry of the cells regarding the
position of a considered particle. In addition, the cells are not isotropic and they are not able to
redistribute themselves because they are part of a mesh. It is therefore important to apply the
closed box correction to the SPH integration in order to obtain good results for the coupling.

4.3.1 One-dimensional testcases

The following one-dimensional testcases are inviscid, i.e. ν = 0 and all SPH particles are in
Lagrangian motion, i.e. u0(x, t) = u(x, t). For the SPH and FV domain an explicit forth order
Runge-Kutta time integration scheme is employed with the same time step size. The Riemann
problems in the FV solver and the SPH solver were solved by approximative Riemann solvers
and MUSCL reconstruction with minmod-limiters, see e.g. [68].

4.3.1.1 Shocktube testcase

We consider the one dimensional shock tube testcase presented in [55] and [67]. The initial data
was chosen according to [55] with a density discontinuity in the middle of the domain at x = 0.5,{

ρL = 1100, uL = 0,
ρR = 1000, uR = 0,

with the reference density ρ0 = 1000 kg/m3 and the reference speed of sound c0 = 1450 m/s.
The analytical solution consists of a rarefaction wave travelling from the discontinuity to the
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left and a shock wave travelling to the right. This testcase is chosen to illustrate the following
two aspects. First, it shows that the coupling does not introduce any significant errors if the
initial discontinuity is situated exactly at the interface. In this case the discretization size of
both domains is the same. Then, we show how the FV domain can be used to refine a certain
region of interest, where of course different discretization sizes are used.

Coupling with equal discretizaton sizes

We use 5000 SPH particles distributed in the whole computational domain and 500 FV cells
distributed in xl ∈ [0.5, 0.6]. That means that the discretization size for the SPH domain is the
same as for the FV domain, i.e. r = ∆x = 0.0002m. Figure 4.17 shows the pressure and velocity
at time t = 10−5s. It can be seen that the discontinuity is propagated correctly through both
domains. No variation of the global mass has been detected until the end of the simulation.

Coupling with refinement in a zone of interest

The idea of this case is to show that using a coupled simulation, where certain regions are
refined, can yield a comparable result for a lower cost than a refined SPH-ALE simulation. We
have a coarse (1000 particles) and a fine (5000 particles) SPH-ALE reference simulation without
coupling. We compare a coupled simulation to them, where the SPH particles have the same
size as for the coarse simulation and the FV cells the same discretization size as the fine SPH
particles. Therefore, we use 1000 SPH particles that are distributed in the whole computational
domain and 200 FV cells distributed around the initial discontinuity, i.e. xl ∈ [0.48, 0.52]m.
Starting from a rather coarse discretization for the SPH domain, we use the FV domain to
refine in a region of interest around the initial pressure discontinuity. Figure 4.18 compares the
coupled simulation to the coarse and the fine SPH-ALE simulation. The coupled simulation is
very close to the fine SPH-ALE simulation, while only 1200 calculation points were used instead
of 5000. The total mass increases of about 2 · 10−3% until the end of the simulation.

4.3.1.2 Sinusoidal inlet velocity

Figure 4.19 shows the velocity and the pressure of a 1D coupled simulation at the same physical
time tn, where a sinusoidal velocity is imposed at the inlet of the domain and constant pressure
at the outlet. We use 50 SPH particles distributed in the whole computational domain and 50
FV cells distributed in xl ∈ [0.45, 0.55]m. That means that r = 0.02m and ∆x = 0.002m. The
discretization size of the FV cells is ten times smaller than the discretization size of the particles.
This corresponds to the fact that we want to use the FV mesh to obtain a refined solution. In
our target applications, the refined FV mesh will be often used to simulate the region close to
solid wall boundaries where pressure and velocity change rapidly. In this case the mesh size will
be much smaller than the particle size.

In Figure 4.19 it can be seen that the sinusoidal velocity and the pressure are transferred
without any problems from the SPH to FV domain and back again to the SPH particles.

4.3.2 Two-dimensional testcases

The two-dimensional testcases are inviscid flow simulations. In this section, all SPH particles are
in Eulerian motion but Lagrangian applications are presented in the next chapter. An explicit
second order Runge-Kutta time integration scheme, also called Heun scheme Eq. (3.93), was
used with the same time step sizes for the FV and the SPH domain. The Wendland C4 kernel,



4.3. VALIDATION OF THE COUPLING STRATEGY 121

Figure 4.17: Pressure (top) and velocity (bottom) of the coupled shock tube simulation.
SPH particles are situated everywhere in the domain while the FV domain extends from
x ∈ [0.5, 0.6]m. The analytical solution is indicated by a thin grey line, the coupled SPH
simulation by a red line and the solution on the FV domain by a green line.
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Figure 4.18: Pressure (top) and velocity (bottom) of the coupled shock tube simulation.
SPH particles are situated everywhere in the domain while the FV domain extends from
x ∈ [0.48, 0.52]m. The analytical solution is indicated by a thin grey line, the coupled SPH
simulation by a red line with the corresponding FV domain indicated by a dashed red line.
This is compared to a fine (blue line) and a coarse (green line) SPH simulation (without any
coupling).
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Figure 4.19: Velocity (above) and pressure (below) of a coupled 1D simulation. A sinusoidal
velocity is imposed at the inlet situated on the left hand side (x = 0m), while constant pressure
is imposed at the outlet (x = 1m). The green line indicates the solution obtained by the Finite
Volume methods, while the red points represent the SPH particles in Lagrangian motion. The
particles that are covered by the FV cells are not shown.
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Eq. (3.47), was employed for the SPH space integration and the closed box correction (see
Section 3.9.3) was applied.

4.3.2.1 Taylor-Green vortices

The Taylor-Green vortices are an exact steady-state solution of the Euler equations on the bi-
periodic 2D unit square. They were presented in detail in Chapter 2, Section 2.1. This test case
is reused to validate the coupling method.

For this purpose, a simulation was launched to analyze in particular the physical field vari-
ables in Zone 2 (see Figure 4.16) at the boundary of the FV domain. The SPH domain consists
of 160× 160 particles in the unit square [0, 1]× [0, 1]. A regular FV mesh is added in the middle
of the SPH domain with 147× 147 uniform cells in [0.257, 0.743]× [0.257, 0.743] plus two layers
of Chimera cells. Figure 4.20 shows the pressure and the magnitude of the velocity field of
the Taylor Green vortices after t = 4s, plotted on the SPH particles. The contour lines are
very smooth and no visible errors are introduced by the coupling. Figure 4.21 confirms this by
showing the velocity plotted on a coordinate line in a region around the boundary of the FV
domain. As mentioned above the coupling algorithm is not conservative. In this case the loss of
global mass is smaller than 0.005% after 4s and therefore insignificant.

Influence of the refinement factor on the computation of the modified weights

In Section 4.2 it was explained that additional integration points are used for the computation of
the modified weights and positions, similar to Newton-Cotes quadrature formulae. The number

of points is determined by a refinement factor α that defines a reference length L := α ω
1
d
j , see

Eq. (4.27). The reference length gives a target edge size for the auxiliary cells. A FV cell l is
subdivided into smaller cells with an edge size close to L. Note that L does not depend on the
FV mesh but on the SPH discretization size.

In the following, we use the Taylor-Green vortices to study the influence of α on the error
of the modified weights and on the resulting pressure field. For that purpose, three different
regular FV meshes are used, each of them covering the whole computational domain. Mesh 1 is
a non-uniform mesh with 200× 250 cells, Mesh 2 is a coarse uniform mesh with 150× 150 cells
and Mesh 3 is a fine uniform mesh with 250 × 250 cells. Bi-periodic boundary conditions are
imposed on the FV domain. A domain of 59 × 59 static SPH particles is added in the middle,
see Figure 4.22 (left). This set up is chosen because the analytical value of all modified weights
ω̄j is known. All particles are covered by FV cells and ω̄j should be zero. That means that
all particles have FV neighbours exclusively and the particles are passive, i.e. their fields are
updated in time but they do not contribute to the field variables of the other particles or cells.

Figure 4.22 (right) shows the modified weight, accumulated over the whole SPH domain, as
a function of the refinement factor α for all three meshes. If we choose α = 1, the errors are
quite big for all meshes, especially for the coarse one as expected. The error decreases rapidly
by decreasing α and for α = 1

8 all meshes lead to the analytical value of ω̄j = 0, ∀j ∈ ΩSPH .
The meshes used in the example are regular which is not always the case in other validation
cases or applications. In the following, α = 1

16 will be chosen, if not stated differently, to ensure
that no wrong contributions are added for the SPH space integration.

Figure 4.23 shows the modified weights for Mesh 1. If α = 1
4 all modified weights are zero

for this mesh. In addition, it can be seen in the figure how the resulting pressure field on
the SPH particles is strongly perturbated if the modified weights are not computed correctly.
The pressure is plotted after a very short physical time, t = 5 · 10−3s, corresponding to thirty
iterations.



4.3. VALIDATION OF THE COUPLING STRATEGY 125

Figure 4.20: Pressure (above) and magnitude of the velocity field (below) after t = 4s. The
particles inside the black square are covered by a uniform FV mesh. There are 160×160 particles
in a square [0, 1] × [0, 1] and 147 × 147 uniform cells in [0.257, 0.743] × [0.257, 0.743] plus two
layers of Chimera cells.
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Figure 4.21: The z component of the velocity plotted at a constant line at t = 4s in a region
around the boundary of the FV domain.

Figure 4.22: The whole computational domain is covered by FV cells and SPH particles are only
added in the middle of the domain (left). Every SPH particle is completely overlapped by the
FV mesh and has only FV neighbours. All modified weights ωj should be zero. On the right
side,

∑
j∈ΩSPH

ω̄j is plotted as a function of the refinement factor α.
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Figure 4.23: Influence of the refinement factor α on the accuracy of the computation of the
modified weights ω̄j . The whole SPH domain shown here is covered by FV cells (see Figure 4.22)
and all modified weights should be zero. The errors in the computation of the modified weights
deteriorate considerably the pressure field computed on the SPH particles by the coupling, shown
here after 30 iterations (t = 0.005s).
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Figure 4.24: The computational domain for the flow simulation around a static symmetric
NACA airfoil. The inlet is situated at the left hand side and the outlet at the right hand side.
Periodicity conditions are imposed elsewhere. A FV mesh covers the SPH particles around the
solid geometry that is indicated by a red line. The Chimera cells of the mesh are coloured in
green and the fluid cells in blue. The above figure shows a zoom of the zone around the NACA
profile (indicated by a black dashed box in the figure below). SPH particles are coloured in grey.

4.3.2.2 Flow around a symmetric NACA hydrofoil

It was explained in Chapter 1 that our target applications are transient flow simulations in
hydraulic machines like Francis turbines and pump-turbines. An important validation case
for these applications is the flow around a symmetric NACA hydrofoil that was introduced in
Chapter 2, Section 2.2. For the coupled simulations, a block-structured mesh is overlapping the
SPH particles around the hydrofoil. Figure 4.24 shows the computational domain with SPH
particles, colored in grey, the FV mesh colored in blue and two layers of Chimera cells that are
colored in green. At the inlet, constant velocity uin = 0.1 m/s is imposed, at the outlet constant
zero pressure, pout = 0 Pa, and the numerical sound speed is chosen equal to ten times the inlet
velocity.

The SPH particles are initially distributed by using the packing algorithm of Colagrossi et
al. [19] and are static throughout the simulation (Eulerian description).

A reference solution is provided by an inviscid, steady-state, pseudo compressible in-house
FV solver of ANDRITZ that was presented in Section 2.2. It is important to note that this
Euler solver is not the same as the one used for the coupling but a solver that is well-established
inside the ANDRITZ group for simulations of internal flows.

Several simulations with and without the coupling have been launched, compared and ana-
lyzed. Table 4.1 gives an overview over the ran simulations. All simulations are inviscid which
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Table 4.1: Different simulations launched for the NACA validation case

Simulation type SPH SPH coupled FV No of particles/cells

1 SPH coarse, r = 2mm YES NO NO 15808/-

2 SPH intermediate, r = 1mm YES NO NO 63728/-

3 SPH fine, r = 0.5mm YES NO NO 254714/-

4 SPH coupled coarse, r = 2mm NO YES YES 15808/2356

5 SPH coupled intermediate, r = 1mm NO YES YES 63728/10448

6 FV reference solution NO NO YES -/24320

7 FV solution, no wall refinement NO NO YES -/24320

means that no wake should appear downstream of the solid body. However, launching a coarse
non-coupled SPH simulation shows a very strong wake. This non-physical wake can be reduced
by either employing a more accurate solver or using more calculation points in the zone where
the wake is created, i.e. close to the solid wall.

The first three non-coupled SPH simulations in Table 4.1 are used to show the influence
of the particle size r to the artificial wake. Figure 4.25 confirms that reducing the particle
size decreases the numerical dissipation of the scheme. It shows the velocity field around the
NACA hydrofoil as well as the x component of the velocity u plotted on a line with x = 0.55m
downstream of the NACA geometry. For these simulations no special visibility criterion was
used at the trailing edge which intensifies the wake. A particle situated near the trailing edge on
one side of the NACA ”sees” the particles on the other side of the NACA which is not physical
and does not occur in FVM. To test the influence of it in this particular case, a simple visibility
criterion was implemented. The visibility criterion excludes from space integration the particles
”on the other side” of the NACA and the surface elements with normals that are not oriented
in the direction of the considered particle. This criterion greatly improves the results but we are
still not able to reproduce the velocity field of the reference solution even though the reference
solution uses more than ten times fewer cells than we use particles, see Figure 4.26.

In order to confirm that the large errors in the velocity field occur because of a lack of spatial
resolution and not because of the SPH scheme itself, another FV simulation is launched. For that
purpose, the mesh for the FV reference simulation is modified in a way that the number of cells
stays the same, see Table 4.1, but the distribution of the nodes changes. The new mesh shows
almost no refinement in direction normal to the NACA solid geometry. Figure 4.27 compares
the two meshes, one refined and one with almost no refinement close to the wall. A comparison
of the velocity field of the two FV simulations is given in Figure 4.28. As we expected the
velocity field for the unrefined FV simulation is strongly decelerated at the solid wall because
the spatial resolution together with the precision of the scheme are not able to capture the
rapidly changing gradients. We conclude that the SPH particle size has to be adapted according
to the discretization size of the FV mesh of the reference solution in order to obtain similar
results.

Taking a look at the mesh in Figure 2.5 and Figure 4.27, it becomes evident that it would
be much too computationally expensive to have particles with a constant size everywhere that
is equal to the smallest edge of a cell. The smallest edge in the mesh that was used to obtain
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Figure 4.25: Velocity field around a static symmetric NACA hydrofoil computed with different
particle sizes r (left). The numerical wake is reduced by reducing the particle size r (right)
because the numerical dissipations reduces. No visibility criterion was used for this comparison.

Figure 4.26: The numerical wake plotted for a refined non-coupled SPH simulation with r =
0.5mm is further reduced by employing a visibility criterion. However, even though ten times
as many particles are used as cells for the FV reference solution, the numerical wake is still too
important.
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Figure 4.27: Comparison of a mesh with refinement close to the solid wall boundary (above) and
a mesh without refinement close to the solid (below). Both meshes contain the same number of
mesh points.

the reference solution is ∆x = 0.1mm and the second smallest ∆x = 0.25mm. Even if we use
the second smallest size ∆x = 0.25mm we would end up with four times as many particles as in
the fine simulation, which would be fourty times more than in the FV reference simulation.

In contrast, the coupled simulations allow us to refine in an anisotropic way. We launch
simulations with the coarse and the intermediate particle size and couple them to a mesh that is
constructed according to Condition (4.20). That means that the mesh used for the intermediate
SPH particle size is more refined than the one used for the coarse particle size. Both meshes do
not correspond to the one used for the reference solution because this mesh contains cells with
edges that are even bigger than the coarse particle size. But all of the used meshes are block
structured meshes generated with the same in-house mesh tool.

Figure 4.29 shows the modified weights for the coarse coupled simulation, computed by (4.23)
with additional quadrature points. In Figure 4.30 the particles are colored by the closed box
error bi that was presented in Chapter 3, Section 3.9.3. This error is a measure for the disorder
of the particles in the point of view of the discrete SPH operators.

In Figure 4.31 the effect of the coupling is illustrated by showing the velocity field for two
simulations with both particles of the coarse size of r = 2mm, one simulation without coupling
and one coupled simulation. The SPH simulation shows a very strong numerical wake as it was
discussed above. In the coupled simulation the numerical wake almost disappears because the
FV mesh locally refines the simulation anisotropically with long and thin cells close to the wall.
Again the x component of the velocity is plotted on a line of constant x downstream of the NACA
in Figure 4.32. On the left hand side, the numerical wake of the coupled simulation is compared
to the one obtained by the non-coupled SPH simulation. On the right hand side, a detailed view
shows the numerical wake of the coarse and the intermediate coupled simulations. For both
the velocity is varying less than 0.5% but reducing the discretization size further decreases the
numerical dissipation as it is expected.

In Figure 4.33 the comparison between the velocity field of the intermediate coupled sim-
ulation r = 1mm and the FV reference solution can be seen. It compares very well, but the
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Figure 4.28: Comparison of the magnitude of the velocity field computed on a mesh with refine-
ment close to the solid boundary (above) and without refinement close to the solid boundary
(below). The velocity is strongly decelerated close to the wall if no mesh refinement is applied.
This deceleration and the resulting numerical wake are not physical.

Figure 4.29: FV mesh around a symmetric NACA hydrofoil. The particle size is r = 2mm and
the mesh is constructed accordingly, verifying Condition (4.20). It can be seen that the modified
weights ω̄ are equal to ω if they are not covered by the mesh, and zero if they are completely
overlapped.
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Figure 4.30: FV mesh around a symmetric NACA hydrofoil. The particles are colored by the
closed box error that was introduced in Chapter 3, Section 3.9.3.

Figure 4.31: Magnitude of the velocity field around a symmetric NACA airfoil with particles
of r = 2mm, only SPH above and a coupled simulation below. Since this is an inviscid simu-
lation the wake that appears for the SPH simulation without coupling is purely numerical and
nonphysical. The coupling leads to an almost complete disappearance of the artificial wake.
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Figure 4.32: The x component of the velocity plotted on a constant line downstream of the
NACA. The wake that is seen for the SPH simulation without coupling (left) is purely numerical
and non-physical. A detailed view (right) shows that the artificial wake still exists for the coupled
simulation but it is very small and reduces if the particles and the mesh are refined.

velocity contours differ a little far away from the NACA geometry. It is in this region where
the coupled SPH simulation is more refined than the FV reference simulation because of the
anisotropic mesh that has larger cells far away from solid boundaries and that is not restricted
by the SPH particle size as the coupled simulation.

Figure 4.34 shows the pressure and the velocity field for the refined coupled simulation
plotted on the SPH particles. It confirms that no visible errors are introduced by the coupling
between the overlapping domain and ΩSPH \ ΩFV .

We define the pressure coefficient as in Eq. (2.3). The density and velocity at infinity are
ρ∞ = 1000 kg/m3 and v∞ = 0.1 m/s and the analytical value for the pressure at the stagnation
point is pstag = 5. Figure 4.35 shows that the pressure coefficient computed at the wall of the
FV domain obtained by the coupled simulation with r = 1mm and the FV reference solution
compare very well. Note that the pressure computed at the wall is obtained from the FV solver
that receives its’ boundary conditions from the SPH domain.

In this validation case we model an inviscid, incompressible flow even though we use a weakly
compressible formalism. According to Bernoulli’s principle, the total pressure ptot is constant in
incompressible irrotational flows throughout the whole simulation in the whole computational
domain. This is used in the following to introduce another measure for the numerical dissipation,
which is the loss (change) of total pressure, evaluated as the difference between the total pressure
integrated over a section upstream of the NACA and a section downstream, defined in Section
2.2. Table 4.2 shows the error of the integrated total pressure on the section next to the inlet
and next to the outlet compared to the analytical value. In the last column the change of total
pressure between the two sections is given, independently of the analytical value.

For the non-coupled simulations the total pressure loss reduces with the particle size but it
does not reach the same order of magnitude as in the reference simulation. In order to reach
the same level of accuracy as for the FV reference solution, the coupling is needed, similar to
what was found above concerning the numerical wake. The coupled simulation with r = 1mm
performs even better than the FV reference solution but this is not surprising because it is more
refined than the FV reference solution. Recall that the FV reference solutions is obtained using
more cells than the coarse coupled simulation (r = 2mm) uses cells and particles together. But
the total number of particles and cells for the intermediate coupled simulation (r = 1mm) is
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Figure 4.33: Comparison of the magnitude of the velocity field obtained by the intermediate
coupled simulation and the FV reference solution. Both of them do not a visible numerical wake
and the velocity contours compare well.

Table 4.2: Loss of total pressure and error at sections upstream and downstream

Simulation type
ptot error [%] ptot error [%] ptot change

upstream downstream [%]

1 SPH coarse 7.98 −4.5 −11.55

2 SPH intermediate 4.6 −0.28 −4.67

3 SPH fine 2.57 0.71 −1.81

4 SPH coupled coarse 0.42 0.31 −0.12

5 SPH coupled intermediate 0.05 0.06 0.011

6 FV reference solution −0.03 −0.13 −0.1
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Figure 4.34: Pressure and the magnitude of the velocity field around a static NACA hydrofoil
obtained by a coupled simulation with a fine discretization size. The particles have the size
r = 1mm and the mesh is adapted according to Condition (4.20).
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Figure 4.35: Comparison of the pressure coefficient cp computed with a coupled SPH simulation
with particles of size of r = 1mm and a FV reference solution. The SPH particles are in Eulerian
motion.

larger than for the FV reference simulation, see Table 4.1.

4.4 Summary and discussion

A flexible coupling algorithm for SPH-ALE and FVM was developed that is based on a multi-
domain approach of overlapping SPH and FV domains. Information is transferred in two ways.
On the one hand, boundary cell values are interpolated from the SPH particles to the FV
domain, while on the other hand, the FV cells are used as neighbours for the SPH integration.
Particles that are completely covered by FV cells are moving passively through the FV mesh,
having their field variables updated in each time step without contributing themselves to the
integration of the other particles or cells.

The method was validated by means of well known academic inviscid test cases in one or
two space dimensions. It was shown that the coupling method performs well for shock tube
simulations, dynamic 1D Lagrangian simulations as well as the 2D Taylor Green vortices. The
validation case that is the most significant for our target applications is the flow around a 2D
static symmetric NACA hydrofoil. This testcase not only showed that the coupling works but
it showed that the coupling is necessary to obtain good results for a reasonable computational
cost. At first non coupled SPH simulations were launched and we have seen that using a
constant coarse discretization size in the whole domain leads to the creation of large numerical
errors around the solid geometry, even in the case of inviscid simulations. The numerical errors
manifest themselves in the form of an artificial wake. Coupling a SPH simulation with a strongly
refined FV mesh, reduces the wake drastically. The coupled simulation compares very well to a
reference simulation obtained by an in-house FV solver. Both, velocity and pressure field show
a very good agreement, just as good as the pressure coefficient at the solid wall.

In the next chapter, Chapter 5, the coupling method will be applied to SPH particles in
Lagrangian motion. Adding a FV mesh in order to impose outlet boundary conditions to
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Lagrangian moving particles, opens the door to many interesting applications.



Chapter 5

Applications

The objective of this thesis is the development of a flexible coupled SPH-ALE/FV method that
can be employed for the investigation of transient flows in hydraulic machines. For that reason,
the following properties are important. The method combines the strong points of SPH and
FVM. On the one hand, it is applicable for particles in Eulerian, Lagrangian and ALE motion,
while on the other hand all kind of meshes, unstructured or structured, moving or static are
usable. Note that we do not investigate free surface flows in the frame of this project and
no free surface treatment was implemented in the FV solver. Until now, we only considered
SPH particles in Eulerian motion and fixed meshes for the validation of the coupling algorithm.
This is not due to a limitation of the coupling algorithm but due to the difficulties of the SPH
method to impose subsonic boundary conditions to Lagrangian moving particles. Hence, a novel
approach for outlet boundary conditions is proposed in the following. The main idea is to apply
the coupling method at the outlet, where a partially overlapping FV mesh is used to impose
outlet boundary conditions to the SPH domain.

In Chapter 1 the start-up of a Francis turbine with imposed guide vane opening angles was
identified as target application for the method. We saw that SPH-ALE has interesting advan-
tages for this kind of applications but that local refinement and de-refinement is indispensable
for a successful simulation of dynamic internal flows with stagnation points. In order to show
the potential of the coupled method for these applications, a preliminary two-dimensional test
is presented. For that purpose, we consider a NACA hydrofoil that is rotating about its center.
The mesh around the NACA hydrofoil follows the motion of the solid geometry and guaran-
tees a refined space discretization close to the solid during the whole simulation. Instead of
Lagrangian moving particles, an ALE motion, see Chapter 3, Section 3.9.4, is employed that
follows the moving geometry. Comparison with the pressure coefficient of FV reference solutions
shows good agreement.

5.1 Outlet boundary conditions for particles in Lagrangian mo-
tion

In SPH it is especially difficult to impose subsonic outlet boundary conditions to Lagrangian
moving particles because of the following reasons. Particles follow the flow and usually leave
the domain at the outlet. When they are leaving the computational domain, they are deleted.
But before their destruction, boundary values should be imposed, i.e. a constant static pressure.
This has to be done in a way that the imposed boundary value can be transferred upstream. In
addition, care has to be taken that the destruction of particles does not introduce errors. The
particles have a certain volume and it is not obvious at what moment they should be deleted.
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Figure 5.1: A block of FV cells is overlapping the SPH particles at the outlet. The particles are
deleted before reaching the outlet and the boundary conditions are imposed by the FV mesh by
means of the coupling.

Ideally, the particles would be deleted continuously, where the particle weight is reduced in
correspondence to the volume that actually leaves the computational domain. However, the
exact extent in space of a particle is not known and it might be quite complicated in practice
to delete a particle gradually.

Instead of dealing with these problems that are due to our choice to use Lagrangian moving
particles, we propose a different way of outlet boundary treatment. The idea is to use the
coupling to impose boundary conditions. A block of FV cells is added in a way that it is
overlapping the SPH particles at the outlet. The mesh extends further than the particles that
are deleted before reaching the outlet, as it is illustrated in Figure 5.1. In this way, the boundary
information is transferred from the FV mesh to the SPH particles by the coupling. As it was
explained in Chapter 3, Section 3.7.4, boundary conditions are easier to implement for fixed
FV meshes than moving particles because the geometrical properties do not change. From the
moment on that the particles are completely overlapped by the FV mesh, they are moving
passively through the mesh and do not contribute themselves to the computation of the physical
fields. As a consequence, they can be deleted without any influence on the simulation. Note that
it is true in general for the coupled method, that particles in Lagrangian motion can be deleted
if they are completely overlapped by a mesh and if they are not needed any more downstream
of their current position.

As illustrative test case, the flow around the NACA hydrofoil is chosen, that was considered
in Chapter 4 for validation purpose with Eulerian particles. This is an example where it is
indispensable to impose subsonic non-reflecting boundary conditions. Due to the use of the
above described boundary treatment, it can be relaunched with particles in Lagrangian motion.

Flow around a static NACA hydrofoil cascade with Lagrangian moving parti-
cles

So we reconsider the test case of the flow around a static NACA hydrofoil from Chapters 2,
Section 2.2, and Chapter 4 but this time with particles in Lagrangian motion, together with
the previously described boundary treatment. Figure 5.2 shows the computational domain that
corresponds to the one that was used in Chapter 4 but for the block of FV cells that was added
at the outlet. At the inlet, once again constant velocity is imposed, directly to the SPH particles,
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Figure 5.2: Computational domain of the simulation of a NACA hydrofoil with Lagrangian
moving particles. A block of FV mesh is added at the outlet to impose outlet boundary conditions
to the SPH particles.

Figure 5.3: Detailed view of the distribution of the particles in Lagrangian motion around the
NACA hydrofoil and the FV mesh that is used around the solid geometry. The surface elements
are colored in red, the normal fluid cells in blue and the Chimera cells in green.

and at the outlet, constant pressure is imposed by the coupling
Figure 5.3 shows the Lagrangian particle distribution around the NACA and the mesh in-

cluding the Chimera cells. It can be seen that the particles follow the flow and pass through
the mesh without being disturbed by the mesh. The particles move according to the velocity
field along lines and they are not isotropically distributed anymore, see Figure 5.4. Furthermore
as a result of the Lagrangian particle motion, there are no particles at the stagnation point at
the leading edge of the hydrofoil. In the case of moving particles, the modified weights ω̄ of
the particles change at every time step since particles are moving into the mesh and out again.
Figure 5.5 shows ω̄

ω ∈ [0, 1] that is again computed by the approximate method of Section 4.2.2
where it is assumed that particles are spherical.

In Figure 5.6 the velocity field obtained by Lagrangian particles is compared to the one
obtained by Eulerian particles. The velocity field compares well, however, the pressure field has
a slightly different form, see Figure 5.7. This is also confirmed by the pressure coefficient Eq.
(2.3) in Figure 5.8 that compares less well to the reference solution than the one obtained by
the Eulerian simulation.

In the case of Eulerian particles the initial particle distribution is prepared with Colagrossi’s
packing algorithm [19] that distributes the particles isotropically by reducing the closed box
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Figure 5.4: Detailed view of the distribution of the particles in Lagrangian motion close to the
stagnation point. The interior FV cells are colored in blue and the Chimera cells in green.

Figure 5.5: The modified weight ω̄ is equal to the original weight ω if the particle is not over-
lapped by the FV mesh. If it is completely covered, the modified weight is zero. The particles
are moving in Lagrangian motion and the modified weights change at every time step.
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Figure 5.6: Comparison of the velocity field computed by the coupled algorithm around a NACA
hydrofoil. At the top the particles are in Lagrangian motion, while they are in Eulerian motion
at the bottom.

Figure 5.7: Comparison of the pressure field computed by the coupled algorithm around a NACA
hydrofoil. At the top the particles are in Lagrangian motion, while they are in Eulerian motion
at the bottom.
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Figure 5.8: Comparison of the pressure coefficient computed by the coupled algorithm with
particles in Lagrangian motion and by a FV reference solution. The Lagrangian simulation
(green line) yields less good results than the Eulerian simulation (blue line).

error. In this way there are always enough particles in the neighborhood for the interpolation of
pressure and velocity for the boundary values of the Chimera cells. Moreover, the approximate
method that computes the intersection of a cell and a particle assumes that particles are of
spherical shape which is an acceptable simplification for uniformly distributed particles but it
is less true for the present particle distribution obtained by Lagrangian moving particles.

5.2 Rotating NACA hydrofoil cascade

In all the previously described coupled simulations the hydrofoil was static and the mesh was
fixed. But if flows in rotating machines are considered, it suggests itself to use meshes around
the solid geometry that move in the same way as the solid that they are attached to. In this
way, a fine space discretization close to the solid wall boundary is guaranteed throughout the
whole simulation. Entire blocks of the mesh are moved and the connectivity inside the mesh as
well as the geometrical properties like volumes and surfaces do not change.

As an two-dimensional example we reconsider the symmetric NACA hydrofoil cascade from
Figure 5.2. However, this time it is not static but the hydrofoil rotates with a predefined rotation
speed about its center. The motion of the geometry is imposed similarly to what is done for the
opening guide vanes in the Francis start-up simulations.

A first simulation was launched where the particles move in a Lagrangian way and the
hydrofoil rotates with a rotation speed of ω = 0.03 rad/s. As expected, the particles follow the
flow and the motion of the geometry, see the particle distribution at t = 3s in Figure 5.9. Figure
5.10 shows the velocity field at the same physical time. Launching the simulation with particles
in Lagrangian motion, works in this case for small angles. However, since the particles follow
the flow, they are not uniformly distributed anymore and might even manifest holes which can
increase numerical errors drastically. As long as the particles are completely overlapped by a
mesh, the particle distribution does not pose a problem for the SPH domain. However, if there
are not enough particles in the vicinity of the Chimera cells, the simulation crashes because
no correct boundary values can be interpolated for the FV solver. In our target application
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Figure 5.9: Distribution of Lagrangian particles around a rotating hydrofoil with a rotation
speed of ω = 0.03 rad/s at t = 3s.

Figure 5.10: Magnitude of the velocity field plotted on Lagrangian particles and on the FV mesh
that is situated around a rotating hydrofoil with a rotation speed of ω = 0.03 rad/s at t = 3s.
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(a) Position of the hydrofoil that is rotated by 2◦. (b) Position of the hydrofoil that is rotated by 10◦.

Figure 5.11: Particle distribution and modified weight around the rotating NACA hydrofoil.

of transient flows, large areas of flow separation may occur which might generate holes in the
resulting particle distribution. It would not be possible to predict the position of the holes and
add meshes that are large enough in these regions. Other solutions to overcome this problem
would be to use particle shifting that alters the position of the particles, or interpolation methods
that need less calculation points. But these are not the approaches that we take.

Given that we do not consider free surface or multiphase flows, the only motivation to
use Lagrangian moving particles is that geometries are moving. Thus, instead of Lagrangian
particles, we use a ALE particle motion that fills the holes in the SPH domain and therefore
follows the motion of the hydrofoil, see Section 3.9.4. As a result, the particles are distributed
very isotropically in a way that reduces the errors of the SPH operators.

For validation, a simulation is considered where the hydrofoil rotates with a very low rotation
speed of ω = 0.01 rad/s about its center. This low rotation speed is chosen because we want
to compare the pressure coefficient at two degrees, ten degrees and thirty degrees to reference
results of a static simulation with an angle of attack of two, ten and thirty degrees, respectively.
A higher rotation speed would modify the relative velocity of the geometry too strongly to allow
such a comparison.

Figure 5.11 shows the particle distribution after a rotation of 2◦ and 10◦ where the particles
are colored by modified weight over the original weight, i.e. ω̄i

ωi
∈ [0, 1]. It can be seen that

the particles are very isotropically distributed around the hydrofoil without showing any holes.
Moreover, it shows the mesh that moves with the NACA and the computed modified weights
that detect the movement of the mesh correctly. Figures 5.12, 5.13 and 5.14 show the position
of the NACA at three different instances (2◦, 10◦ and 30◦) with the corresponding pressure and
velocity fields.

For validation, the pressure coefficient on the NACA, computed from the FV domain, is
compared to static FV reference solutions and good agreement is found, see Figures 5.15, 5.16
and 5.17.

After comparing of the simulation with the low rotation speed at three instances to static
reference solutions with different angle of attack, the same simulation is launched with a larger
rotation speed of ω = 0.03 rad/s. Again the particles follow the geometries by the ALE motion
from Section 3.9.4. Figures 5.18 and 5.19 show the magnitude of the velocity field and the
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(a) Magnitude of the velocity field plotted on the
FV mesh and the SPH particles.

(b) Pressure field plotted on the FV mesh and the
SPH particles.

Figure 5.12: NACA hydrofoil at a rotation of 2◦ where the FV mesh is plotted above the SPH
particles.

(a) Magnitude of the velocity field plotted on the
FV mesh and the SPH particles.

(b) Pressure field plotted on the FV mesh and the
SPH particles.

Figure 5.13: NACA hydrofoil at a rotation of 10◦ where the FV mesh is plotted above the SPH
particles.
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(a) Magnitude of the velocity field plotted on the
FV mesh and the SPH particles.

(b) Pressure field plotted on the FV mesh and the
SPH particles.

Figure 5.14: NACA hydrofoil at a rotation of 30◦ where the FV mesh is plotted above the SPH
particles.

Figure 5.15: Comparison of the pressure coefficient at the NACA rotated by two degrees obtained
by a transient simulation with the coupled method and a static FV reference solution.
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Figure 5.16: Comparison of the pressure coefficient at the NACA rotated by ten degrees obtained
by a transient simulation with the coupled method and a static FV reference solution.

Figure 5.17: Comparison of the pressure coefficient at the NACA rotated by thirty degrees
obtained by a transient simulation with the coupled method and a static FV reference solution.
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Figure 5.18: Pressure field of the rotating NACA after t = 11.8s plotted on the SPH particles
and the FV mesh. A rotation speed of ω = 0.03 rad/s is imposed. This instance corresponds to
an angle of attack of 33.4◦.

pressure field at t = 11.8s which corresponds to an angle of attack of 33.4◦.

5.3 Summary and discussion

It was shown by means of two-dimensional simulations that the coupling algorithm is capable of
treating Lagrangian moving particles as well as particles moving arbitrarily. Outlet boundary
conditions can be applied to Lagrangian moving particles by adding a block of overlapping FV
cells next to the outlet in a way that the boundary condition is imposed by the coupling from
FV domain to the SPH domain. This was used to simulate the flow around a static hydrofoil
with Lagrangian moving particles.

Next, the test case was readopted to the simulation of rotating hydrofoils with a prescribed
rotation about the center of the NACA. The mesh that refines the region close to the solid
geometry moves with the solid body. The SPH particles move either in a Lagrangian way or in
an ALE way that fills the holes and distributes the particles isotropically. The simulation with
a very low rotation speed was compared to FV reference solutions which show good agreement
for the pressure coefficient on the NACA hydrofoil. Then, the results of a simulation with a
higher rotation speed were shown.

These simple two-dimensional test cases show the potential of the coupled method for its
application to real three-dimensional transient simulations like the start-up of a Francis turbine.
The meshes can follow a prescribed motion that is for example determined by the moving solid
geometry. The particle positions evolve without being disturbed by the motion of the mesh,
following the flow (Lagrangian motion), being fixed (Eulerian motion) or moving in an arbitrary
way (ALE).
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Figure 5.19: Magnitude of the velocity field of the rotating NACA after t = 11.8s plotted on the
SPH particles and the FV mesh. A rotation speed of ω = 0.03 rad/s is imposed. This instance
corresponds to an angle of attack of 33.4◦.
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

The objective of this thesis was the development of a flexible coupling methodology that combines
the meshless Smoothed Particle Hydrodynamics - Arbitrary Lagrange Euler (SPH-ALE) with
the meshbased Finite Volume method (FVM). The coupled approach was designed as a tool for
the investigation of transient flows in hydraulic turbines and pumps, like for example the flows
that occur during the start-up procedure of a Francis turbine. Traditional numerical methods
like FVM have difficulties to correctly simulate these transient flows because of their meshbased
character. A mesh necessitates interfaces between rotating and static parts of the computational
domain. In some cases it might even require the regeneration of parts of the mesh at every time
step.

In contrast, SPH-ALE is a meshless method without any connectivity between particles that
can follow the flow in Lagrangian motion, or that can be fixed in space (Eulerian description),
or that move in an arbitrary way, e.g. following the motion of solid bodies. However, SPH
suffers from several weaknesses, where some have been addressed in this thesis. First, the SPH
operators used for the discretization of the Euler equations show a lack of consistency. As a
consequence, in many simulations the computed pressure field is very noisy. Second, SPH does
not easily allow anisotropic refinement because it is an intrinsically isotropic method. But in
real applications different length scales occur. Thus, some zones and some directions require
a smaller space discretization size than others. Third, subsonic outlet boundary conditions
are difficult to impose on Lagrangian moving particles, even though they are indispensable for
internal flow simulations.

In the frame of this thesis, an improvement of the SPH-ALE method was achieved by cor-
recting the gradient of the SPH kernel function in order to increase accuracy. As a result of
the correction, the sum over a particle’s neighborhood of the modified gradient of the kernel
function vanishes identically for each particle. In this way, zeroth order consistency for the SPH-
ALE discretization of the divergence of the flux vector is enforced. The correction improves the
smoothness of the computed pressure field considerably, especially if particles are disordered.

Then, an unstructured FV solver was implemented into the SPH-ALE software that dis-
cretizes the same weakly-compressible Euler equations in ALE formalism than the SPH-ALE
method. The obtained semi-discrete FV equations are very similar to the SPH-ALE equations.
This allows us to compute the numerical fluxes analogously using the same Riemann solvers with
initial states reconstructed by the MUSCL scheme. In addition, the same explicit Runge-Kutta
time integration schemes were employed.

The corrected SPH-ALE method was then coupled to FVM by a flexible multi-domain ap-
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proach that was inspired by the Chimera method of overlapping grids. The proposed methodol-
ogy uses regions of SPH particles, regions of FV cells and overlapping regions where the pressure
and velocity are transferred. Communication on the overlapping regions is done by interpolating
boundary cell values from the SPH domain to the so-called Chimera cells of the FV domain and
by using FV cells as neighbours for the SPH space integration. This allows us to use anisotropic
meshes that are strongly refined in zones where velocity and pressure fields manifest strong
gradients, in particular close to solid wall boundaries.

Contrary to variable resolution SPH methods, the discretization size of the SPH particles
does not vary much and the smoothing length stays approximately constant since the refinement
is handled by the FV mesh. Consequently, the difficulties linked to variable smoothing length
SPH formulations are avoided. It is not necessary to include the gradient of the smoothing
length in the computation of the gradient of the kernel function. The refinement ratios of the
mesh, which are chosen according to best practice in structured FV meshes, can be quite large
from one cell to the other and high aspect ratios are possible.

Compared to other coupled approaches in literature the present coupling strategy has the
advantage that no additional geometrical information for the SPH particles has to be computed,
i.e. no Voronoi tesselation or auxiliary mesh. The intersection of an SPH particle and a FV
cell is computed approximately by adding quadrature points that divide the considered cell into
subcells with egdes smaller than a reference length that depends on the particle size. Further-
more, it is assumed that particles are of spherical shape. This approximate computation of the
intersection is relatively fast and simple and it is applicable to two- and three-dimensional simu-
lations. Knowing an approximation of the intersection between particles and cells, the physical
fields of the completely overlapped particles can be either computed by taking the FV cells as
neighbors or by directly interpolating velocity and pressure from the overlapping cells. The
latter approach is used for particles close to solid wall boundaries. In both cases, completely
overlapped SPH particles do not contribute to the evolution of the flow fields of its’ neighbors.

For validation, the Taylor-Green vortex and the flow around a static hydrofoil was presented.
It was shown that FV meshes can be added flexibly to the compuational domain without intro-
ducing artificial discontinuities in the flow fields. Furthermore, the latter test case also underlined
that the coupling is necessary to obtain accurate results with a reasonable number of calculation
points.

In the last chapter, the overlapping FV meshes were also used to impose subsonic outlet con-
ditions to moving particles. This enables us to perform internal flow simulations with Lagrangian
moving particles. Then, a two-dimensional illustrative example of a rotating hydrofoil was pre-
sented. The FV mesh rotates with the solid body and guarantees a fine space discretization
close to the wall throughout the whole simulation.

6.2 Perspectives

The developed coupled SPH-FV method possesses the features that are important for the inves-
tigation of transient flows in hydraulic machines. Amongst others, it offers the usage of variable
anisotropic space resolution and is able to handle arbitrarily moving solid bodies.

However, real flows in hydraulic machines are viscous and turbulent with high Reynolds
number. In the future, the coupled method has to be extended to the simulations of viscous
fluids. Hence, the discretized viscous terms have to be added to the semi-discrete SPH-ALE
and FV equations and a turbulence model is necessary for both solvers. It suggests itself to use
the FV solver close to solid wall for the computation of the viscous boundary layer. For that
purpose, correct viscous boundary layer treatment has to be implemented into the FV solver.
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In literature, Chimera methods were applied to a Euler/Navier-Stokes coupling where bound-
ary layers were computed with a Navier-Stokes solver and the flow in the interior of the domain
by an Euler solver. As a first step, this approach could be applied to the coupled method, where
the FV solver could be used to compute the Navier-Stokes equations while the SPH solver could
be used unchanged.

The coupled method was designed for simulations of transient flows with moving geometries
where standard CFD simulations have difficulties to correctly capture the important flow phe-
nomena. It was not developed to compete with standard steady-state FV simulations where
FVM are well-established, stable and accurate. Due to its larger numerical stencil SPH is
more computationally expensive than FVM. Furthermore, traditionally SPH-ALE is an explicit
method in time that demands small time steps for stability reasons, which makes the method
even more expensive compared to FVM with implicit time integration. But then, the explicit
time integration has the advantage of making it very well adapted for parallelization on mul-
tiple CPUs or GPUs that are designed for the purpose of high performance computing. The
coupled method uses the same time integration and the same time step size as the SPH-ALE
method. Since we use the FV domain for refinement, the cells can be much smaller than the
particles, especially close to walls. These small cells decrease the time step size on the entire
coupled domain and slow down the whole simulation. Interesting questions for future research
are connected to the problem of different time steps and even different time integration schemes
for the FV domain and the SPH domain. Once again some inspiration can be found in literature
on adaptive mesh refinement and Chimera methods for FVM where different time step sizes on
different parts of the computational domain are successfully used.

In the last years, multi-physics simulations gained in importance. The increasing computa-
tional power made it possible to couple CFD simulations to structural FEM calculation in order
to compute fluid-structure interactions. In the future, the present coupling method should be
combined with the already existing coupling of SPH-ALE and FEM to better understand the
consequences of transient operation modes on the life cycle of hydraulic machines. Hydraulic
machines are rigid and only small deformations occur in general. The FV solver that is already
in ALE form could be adapted to slightly deformable meshes where the volumes and other
geometrical information of the cells are recomputed regularly.
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Appendix A

Taylor-Green vortex for
incompressible Euler equations

The two-dimensional incompressible Euler equations in non-conservative form are given by
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(A.1)

where (u, v)T denotes the velocity vector, p the pressure, ρ the density and x and y the space
coordinates. The first equation of System (A.1) is called continuity equation and the second
and the third are the momentum equations. The Taylor-Green vortex on the bi-periodic unit
square,

(x, y) ∈ [0, 1]× [0, 1],

for the incompressible Euler equations is given by the initial condition
u = sin(2πx) cos(2πy),
v = − cos(2πx) sin(2πy),

p =
ρ

4
(cos(4πx) + cos(4πy)) .

(A.2)

This is actually a steady-state solution of the incompressible Euler equations (A.1), which can
be seen as follows. The derivatives of u and v are

∂u

∂x
= 2π cos(2πx) cos(2πy), (A.3)

∂u

∂y
= −2π sin(2πx) sin(2πy), (A.4)

∂v

∂x
= 2π sin(2πx) sin(2πy), (A.5)

∂v

∂y
= −2π cos(2πx) cos(2πy), (A.6)
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and the derivatives of p are

∂p

∂x
= −ρπ sin(4πx), (A.7)

∂p

∂y
= −ρπ sin(4πy). (A.8)

Inserting Eq. (A.3) and Eq. (A.6) into the incompressible continuity equation yields directly
that u and v defined by Eq. (A.2) are solutions of the continuity equation. In order to show
that u, v and p are also steady-state solutions of the momentum equations some properties of
the sine and cosine function are used. In particular, we can write

∂p

∂x
= −ρπ sin(4πx) = −2ρπ sin(2πx) cos(2πx), (A.9)

∂p

∂y
= −ρπ sin(4πy) = −2ρπ sin(2πy) cos(2πy). (A.10)

If we insert Eq. (A.3), Eq. (A.4) and Eq. (A.9), we obtain

∂u

∂t
= −u∂u

∂x
− v∂u

∂y
− 1
ρ

∂p

∂x

= −2π sin(2πx) cos(2πy) cos(2πx) cos(2πy)
− 2π cos(2πx) sin(2πy) sin(2πx) sin(2πy)
+ 2π sin(2πx) cos(2πx)

= −2π sin(2πx) cos(2πx)
[
cos2(2πy) + sin2(2πy)

]︸ ︷︷ ︸
=1

+ 2π sin(2πx) cos(2πx) = 0.

Analogously it can be shown that

∂v

∂t
= −u∂v

∂x
− v∂v

∂y
− 1
ρ

∂p

∂y
= 0,

by inserting Eq. (A.5), Eq. (A.6) and Eq. (A.10).
Summarizing, we have seen that Eq. (A.2) are steady-state solutions of the incompressible

Euler equations Eq. (A.1).
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