N

N

Inferring intentions through state representations in
cooperative human-robot environments
Craig Schlenoft

» To cite this version:

Craig Schlenoff. Inferring intentions through state representations in cooperative human-robot en-
vironments. Other [cs.OH]. Université de Bourgogne, 2014. English. NNT: 2014DIJOS064 . tel-
01172004

HAL Id: tel-01172004
https://theses.hal.science/tel-01172004
Submitted on 6 Jul 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01172004
https://hal.archives-ouvertes.fr

UNIVERSITY OF BURGUNDY
U.F.R. SCIENCES ET TECHNIQUES

THESIS

presented by

Craig SCHLENOFF

fo obtain the degree of

DOCTOR OF THE UNIVERSITY

INFERRING INTENTIONS THROUGH STATE
REPRESENTATIONS IN COOPERATIVE
HUMAN-ROBOT ENVIRONMENTS

Présentée le 30 juin 2014, devant le

Jury:
Prof. Benoit Eynard, Université de Technologie de Compiégne, Rapporteur
Prof. Bernard Grabot, Ecole Nationale D’Ingenieurs de Tarbes, Rapporteur
Prof. Salima Hassas, Université Claude Bernard Lyon 1, Examinatrice
Prof. Dominique Michelucci, Université de Bourgogne, Examinateur

Prof. Sebti Foufou, Université de Bourgogne, Directeur de Thése

Abstract

Humans and robots working safely and seamlessly together in a cooperative
environment is one of the future goals of the robotics community. When humans and
robots can work together in the same space, a whole class of tasks becomes amenable
to automation, ranging from collaborative assembly to parts and material handling to
delivery. Proposed standards exist for collaborative human-robot safety, but they focus
on limiting the approach distances and contact forces between the human and the
robot. These standards focus on reactive processes based only on current sensor
readings. They do not consider future states or task-relevant information. A key enabler
for human-robot safety in cooperative environments involves the field of intention
recognition, in which the robot attempts to understand the intention of an agent (the
human) by recognizing some or all of their actions to help predict the human’s future
actions.

We present an approach to inferring the intention of an agent in the environment via
the recognition and representation of state information. This approach to intention
recognition is different than many ontology-based intention recognition approaches in
the literature as they primarily focus on activity (as opposed to state) recognition and
then use a form of abduction to provide explanations for observations. We infer
detailed state relationships using observations based on Region Connection Calculus 8
(RCC-8) and then infer the overall state relationships that are true at a given time. Once
a sequence of state relationships has been determined, we use a Bayesian approach to
associate those states with likely overall intentions to determine the next possible
action (and associated state) that is likely to occur.

We compare the output of the Intention Recognition Algorithm to those of an
experiment involving human subjects attempting to recognize the same intentions in a
manufacturing kitting domain. The results show that the Intention Recognition
Algorithm, in almost every case, performed as good, if not better, than a human
performing the same activity.

Résumé

Les humains et les robots travaillant en toute sécurité et en parfaite harmonie dans un
environnement est I'un des objectifs futurs de la communauté robotique. Quand les
humains et les robots peuvent travailler ensemble dans le méme espace, toute une
catégorie de taches devient préte a l'automatisation, allant de la collaboration pour
I'assemblage de pieces, a la manutention de pieces et de materiels ainsi qu'a leur
livraison. Garantir la sreté des humains nécessite que le robot puisse étre capable de
surveiller la zone de travail, déduire l'intention humaine, et étre conscient suffisamment
tot des dangers potentiels afin de les éviter.

Des normes existent sur la collaboration entre robots et humains, cependant elles se
focalisent a limiter les distances d'approche et les forces de contact entre I'humain et le
robot. Ces approches s'appuient sur des processus qui se basent uniquement sur la
lecture des capteurs, et ne tiennent pas compte des états futurs ou des informations sur
les taches en question. Un outil clé pour la sécurité entre des robots et des humains
travaillant dans un environnement inclut la reconnaissance de l'intention dans lequel le
robot tente de comprendre l'intention d'un agent (I'humain) en reconnaissant tout ou
partie des actions de l'agent pour l'aider a prévoir les actions futures de cet agent. La
connaissance de ces actions futures permettra au robot de planifier sa contribution aux
taches que I'humain doit exécuter ou au minimum, a ne pas se mettre dans une position
dangereuse.

Dans cette thése, nous présentons une approche qui est capable de déduire l'intention
d'un agent grace a la reconnaissance et a la représentation des informations de |'état.
Cette approche est différente des nombreuses approches présentes dans la littérature
gui se concentrent principalement sur la reconnaissance de |'activité (par opposition a la
reconnaissance de |'état) et qui « devinent » des raisons pour expliquer les observations.
Nous déduisons les relations détaillées de I'état a partir d'observations en utilisant
Region Connection Calculus 8 (RCC-8) et ensuite nous déduisons les relations globales
de I'état qui sont vraies a un moment donné. L'utilisation des informations sur |'état sert
a apporter une contribution plus précise aux algorithmes de reconnaissance de
I'intention et a générer des résultats qui sont equivalents, et dans certains cas, meilleurs
gu'un étre humain qui a acces aux mémes informations.

Acknowledgments

There are many people that | would like to thank for their support and encouragement
that has culminated in the publication of this thesis.

First and foremost, | would like to thank my wife, Rani. She has been incredibly
supportive of my academic pursuits, and has spent many extra hours taking care of our
family while | was hunched over a computer analyzing the experiments or writing up the
thesis. Rani, thank you and | love you very much. | would also like to thank my children,
Jake, Alec, and Tali, for giving me the time (and the quiet environment) to get through
my research. Now that my work is complete, | can start getting through the to-do list of
all of the places you want me to take you.

| would also like to thank my advisor, Professor Sebti Foufou. For many years, | have
been contemplating going back for my PhD and it was conversations with him that gave
me the push to do so. Having been over 15 years since my last degree, it took some
adjustment to get back into the grind of being a student, and | thank him for helping me
with the transition. | also owe him many thanks for guiding me through this process,
offering his help and support during the research challenges, and helping with the
language barrier between a French university and a non-French speaking student.

| would like to thank my thesis committee, made up of Prof. Benoit Eynard (rapparteur),
Prof. Bernard Grabot (rapparteur), Prof. Salima Hassas (examinatrice), and Prof.
Dominique Michelucci (examinateur) for serving on my committee and for the the
excellent comments about my thesis.

In addition, | would like to thank my employer, the National Institute of Standards and
Technology (NIST) for allowing me to leverage the strong work that NIST performs.

One of the reasons | was able to perform the significant amount of research described in
this thesis is because of the emphasis that was placed on education as | was growing up
and because of the encouragement | had as a child. My parents, Marvin and Harriet,
created this very enriching environment and gave me a lot of love throughout the
process. For all of this and much more, | am forever thankful.

Lastly, | would like to thank Zeid Kootbally for helping me understand the PhD process of
the University of Burgundy (having completed it a few years earlier) and for helping me
interpret and complete the numerous French forms that without him | would have had a
very tough time understanding.

Table of Contents

AADSITACT ..ttt e et h et b et h et et b e et h e bt bt a e a e et et e bt e he bt et et e bt bt ebeeaeent et enten 3
RESUIME ...ttt ettt bt e bbbt e et e et s bt e bt e bt e stesbeesbeenbeebeenneean 4
ACKNOWICAZIMENTS ..ottt ettt et et et et e enbeesaesaaesseesseenseensesnsesseenseenseensennsennsenseensean 5
TADIE OF COMLEIIES ..c.euvitiieeiieiteteterte ettt ettt et b ettt et b e s bt eb et et et seeebesaeebee e eneen 6
LSt OF TADIES ...ttt ettt ettt b e bbbt b et b e st be ettt enten 9
5 0 il T3 (SR 10
L U3 (e Ta L (o1 5 o) DRSSO 13
1.1. Objective and Thesis CONtIIDULIONcoueertieiiieiieie ettt neeas 14
1.2. Organization Of TRESISccuiiiiiiieieee ettt seeea e et eae e 17

2. REIALEA WOTK ..ttt ettt h e et s et e et et e bt ebe bt eneent e e e e e 21
2.1. INtention RECOZNITION ...ouviiuiiiiiiiiiitieitete ettt sttt et st e b e nbeas 21
N O 0 1Y = oV T OO OSSOSO PTOPPOS 21
2.1.2. Classification of Intention RECOGNITIONc..ooiiiiiiiieiei e e 23
2.1.3. Belief-Desire-Intention Archit@CtUIeS.cc.oociiriiriiniiniecicecrte e 33
2.1.4. AppPlications DOMAINS ...ccouiiiieiiiee ettt e et e e e et e e e e tr e e e eareeeetbeeeesasseeesanneas 35
2.1.5. Metrics for Intention RECOZGNITIONcc..iiiiiriiiiiiee e 41

2.2. Activity Recognition vs. State RECOZNITION.cccuieuiriiiiiriieieeie et 43
2.2.1. State of the Artin State RECOZNITIONoooiueiiiieee e 44
2.2.2. State of the Artin Activity RECOZNItIONcccviiiiiiieeeeeeee e 47
2.2.3. Comparison of State and Activity Recognitioncccoeiioiiiiiiiiieeee e 50

2.3. State REPIESENTATIONeeuveeeiiieiereieieete et et esteete et e eaesetesteesteesseesaeeseessaesseessesssesssesseeseensesssennes 50
2.3.1. States and Spatial Knowledge in High-Level Ontologies..........cccuveeeeviiieciieeeciiieeeiee e, 50
2.3.2. Approaches to Spaces Representation Within Detailed Ontologiescc.ccceevvvercieerneennee. 52
2.3.3. Different Dimensions of State (Spatial) Representationc.ccccceeeiiiiieicie e 54
2.3.4. Uses of Spatial Language in Various Applicationsccccoeveeecieeicieeniieiieecree e 56

2.4. (070) 162 11T T) « WO OSSOSO 57

3. State Representation and REASONINGoceeriiiiiiiiiiinieiieeeeee ettt 60
3.1. The State Relation ONtOlOZYcccvevvieriiiriieiieieeiesteieee et see e sae et esaeeraesseesseesseessesssesenes 60
31,1, RCCB APPIOACK ..o e e et e e e e et e e e et e e e et e e e eeateeeeenaeas 61
3.1.2. Defining More Complex RelatioNnsc..oooouiiiiiiiiiieeiie et 63
3.1.3. State Relation ONtology CONSTIUCES.c.viiiiiiiieiiiee e 65

3.2. The State Relation AlGOTithmsccoeiiiriiiiieiee e 66

3.2.1. Projecting the Objects onto the Planes and Determining the Contour.................cccooeeenn.. 66

3.2.2. Determining When Object Projections OVErlapcocviiieciiiiiiiiieecee e 67
3.2.3. Inferring Intermediate State Relations from RCC8 Relationscccceeeeeuviieecriieeciieneene. 68
3.3. The Manufacturing Kitting Ontology and Associated State Relations...........cceceveeiieiennennen. 70
3.3.1. Human-Robot Collaboration Manufacturing SCENArios............cccoveeeeeveeeeeeeeeeeeeeeee e 70
3.3.2. Manufacturing Kitting Domain DesCriptioncc..cooeiuviiieeeieeeeee e 72
3.3.3. The Manufacturing Kitting ONtolOgYcoouviiiiieiee e 72
3.4. COMCIUSION ...ttt st b e bt e b et et et e be bt eb e st ea b et et et st e ebe e bt ene et ense e 87
INtENtION RECOZNITION. ... icuiietiitietieieetesie sttt et et e e te et e e b e esaeesaesse e seesseessesseesseesseesseessenssesssessens 88
4.1. The Intention ONtOIOZYcc.eecviiciiiieiieiieie ettt ettt e s e e e b e e bessaesseesseesseesseessesssesseesens 88
41,1, Ordering CONSTIUCTES.ooiiiiiiieeeiieeeciieeeet ettt e et eeetb e e e etteeeesataeeeetbeeeessseeeesarseeeensseeeanns 88
A.1.20 INEENTIONS. ...ttt ettt ettt ettt ettt s a e bbbt ettt sbe e bt e a ettt s sbee b s 90
4.1.3. A KITEING EXAMIPIE..ceeiiiiiieeeeee e et e e e e et e e e e e et aaeeeaas 91
4.1.4. Kitting Example Represented in the Intention ONtology..........ccevvviieeiiiieeciiie e, 92
4.2. The Intention Recognition AIOTTthImccooiiiiiiiiiiiie e 95
4.2.1. Tracking States and State Relations as Actions OCCUNcccoeiieiuieeieiiiiieeeeee e, 95
4.2.2. Matching Perceived Real-Time State Relations to Intention Templates..........ccccccceeuveenn. 98
4.2.3. Associating Likelihoods t0 INTENTIONSoiiiiiiiiieeeeee e 100
4.2.4. Individual Intention Recognition Approaches EXploredccccvvieiiiiiieiiiiicciiieecciiee e 101
SYSLEM ATCRITECLUIE......eutieeiieeieeiesiete ettt et ettt e e e ste et e e e ebeeseesseesseenseenseensessaessaenseensensaenseans 119
5.1. US ARSI ...ttt ettt ettt et e b et e be s st et e eneansessasesesseeseeneensensensesesensenas 120
5.2. USARTIULN .ottt ettt st e nt e st et e b esseeseeseeseensensensensessenas 122
5.3. MYSQL DAtaDASEcuveeeiiieiie ettt ettt ettt ettt ettt ettt e e et e et et et e neeereeneeaeeneas 123
5.3.1. MySQL Database GENEIratioN.........c...oooeuiiiieiiie e 124
5.3.2. C++ Class Generation and USAZEcoouviiieouiie e 125
5.3.3. C++ Classes to Access Data from the MySQL Database...........cccouveeeeiiiieeiieeceieeeeeee e 126
5.4. State Relation and Kitting OntoloZYccecvveviieriieiiieiieiereenieeie et seee e ereesesenesseessaens 127
5.5. State Recognition AIGOTItRIMScoeviieiiieiieieeieeee ettt e e snaens 129
5.6. State ReCOZNItION OULPULeevieiieiieieeie sttt ettt ettt et e e ebesaeseesseesseenseenseenseessensaens 131
5.7. INtENTION ONEOLOZY ..eonvieniieiieeiie ittt ettt sttt ettt e et e st et et e et e eseesneeseenseenees 133
5.8. Intention Recognition AIGOTTtRM.........cciiiiiiiiiiieee e 134
5.8.1. Loading and Reading an ONtOlOBYcccuviiieuiiiiiiiiieeciee ettt 134
5.8.2. Methodology to Compute Likelihoodsooomiiiioiiiiee e 135
5.9. Intention LiKEIROOAScc.oouiiiiiiieieee ettt 137
Intention Recognition EXPErimeEntccceecviiviiiiirieriieiieie ettt esieeie e v sae e saeesaeeneeseesneeseeeseenns 138
6.1. EXperimental PrOCEAUIES..........cceiiiriieiieiieieeiieit ettt ettt e b e eebessaessa e seesseeneas 138

6.2. Experimental RESUItS (OVEIVIEW) ...c.ccvireierieriieiieieieesieesieeteeteseeesteesseesseessesssessaessesssesssessnes 142

6.3. Experimental Results (DeEtailS)........ccvevvieeiieieiieriieieeieiie st sieeie et stee e eseesseesessaesseesseennas 144
6.4. Experimental Results (Overall ObSErvations)cceceeeverieruienieeieeiesieieeieereseeseeesseensesnnes 171
6.5. Applying Addition Intention Recognition Approaches............cecvvevereerieniienieniiesieseeneeeeees 172
7. Conclusion and FUture WOTKcoooiriiiiiiiiiiiiieesenescse ettt 177
7.1. ACHIEVEIMENL. ..ottt ettt ettt ettt ea et e et e e eseessee st ebeenseeneeeneesneeneeenes 177
7.2. FULUIE WOTK ...ttt ettt ettt e ete et e s nee b e e eneas 178
23 10) HTe] a1 01y | 2SS 181
Appendix A: Kitting Workstation Ontology Detailscccceiiririiirieieieeiese et 192
Appendix B: Kit Plans for EXPEeriment............ccvcvuiiiiiiiiieiieiicee ettt et eveeeesteesreeaeeneeenesenesseesneenns 210

List of Tables

Table 1: Actions Used for Activity RECOZNITIONccueiiuieiiiiiieieiieeiieie et e 48
Table 2: Kitting Workstation Class HIErarchyc.cooceoieieieieiiie e e 75
Table 3: Preconditions and Effects for the Action take-Kittraycccoovoeviieeiniieieneieie e 83
Table 4: Revised Definitions of Spatial Relationshipsc.cccevviiiieiiiiiiieiieiccecceee e e 85
Table 5: Initial State Representation Ordering CONSIIUCES.ccverveeriierieeieniiesieereereeeeseesseesseesesaessnenens 89
Table 6: CONSLIUCT DIETAILScuetiriitiitieieeit ettt sttt ettt e et et st et ebeeaeeseeneenee e 90
Table 7: Kit 1 Intention TeMPLAtEcceecvieiieieriieiieieeie st ste sttt et e e seeeste e beesbeessesssessseseessesssesssensns 94
Table 8: Kit 2 Intention TeMPLALeceecvieiirierieeierieeie ettt et et e e et eseseeseesseeseeseenseennennns 95
Table 9: Real-Time State Relation Tracking Table.........cccoooveiierieniieiieieeieeeeecee e e 97
Table 10: Real-Time State Relation Tracking Table (Version 2)..........cccvecvveienienieneecienieseeseesie e 99
Table 11: Kit 1 Intention Template (VErSIOn 2)cccueiieiierieeieeieeiiesieeie ettt see e 99
Table 12: Kit 2 Intention Template (VErSIon 2)ccceoieriieierieniieieeieeie ettt ettt st sae e eeee e e 100
Table 13: Intentions vs. Matching States Relations.c.ooeiiriiiiieieieeeese e 102
Table 14: Summary of Intention Variables at State 8.........c.ccooiiviiiiiiiiinieieeeeeee e 103
Table 15: The Effect of Metrics on LiKelThoodcooiiiiiiiiiiiii e 115
Table 16: Intentions vs. Matching States Relations..........c.cccuevieriieriieiiieiinieieeie et 116
Table 17: Detailed Human Intention Recognition Datacccccvevvieiieiiniinieniiciecee e 140
Table 18. Comparison of Algorithm Output to Human Intention Recognitionccceeevvvevevvereenieennnnne. 144
Table 19: Impact of Weights on First Three Approaches - Coarse Levelcccooeveniinininicciincncncnnns 173
Table 20: Impact of Weights on First Three Approaches: Fine-Grained Levelcccceevveivievieneenne 174

List of Figures

Figure 1: Six Possible Paths for Intention ReCOGNItIONc.coveiiiiiiriiiiiieieeee e 14
Figure 2: Novel Path for Intention RECOZNITIONccuiiuiiuiiiieiiiieieieeee e 16
Figure 3: Intention Recognition Process FIOWc.ccocioiiiiiiiiiiii e 17
Figure 4: Abduction vs. Deduction vs. INAUCHIONcc.eviiiiiiieiiriieee e 25
Figure 5: Sample Bayesian Belief NetWOTKccccoiriiiiiiiiiiieeese e 29
Figure 6: Case-Based Reasoning Approach [52]......c.cocieiiiieiienieiet ettt e 31
Figure 7: An Intention Graph [13].....coooieoiiiiiiieiieieeeie ettt ettt e saesse e seeseenneennesees 33
Figure 8: High-Level DBI ATCHITECTUIEccvevtiriiriiriiniirieeceitetetestenteste sttt 34
Figure 9: Graph-Based Approach to Intention Recognition [24]cccocerieriinieiieiieieee e 40
Figure 10: Sample Machined NIST Artifacts Used in the 2011 SPC, Arranged Randomly. 45
Figure 11: The Ground Truth FIXtUIE........c.cooiiiiiiiiiiieiee et 45
Figure 12: Translation Scores Over All 399 FIamesc.ccoieieieienieneieseeie e 46
Figure 13: Precision Results from Mind's Eye Evaluationccccoceiiiiiiiiiiiineeeee e 49
Figure 14: Results Of MCC MELIICcoueuieuieiieiieieieie sttt ettt ettt sttt eee ettt et e e et e beeaeebeeneeneeneenee e 49
Figure 15: Sample Cyc Spatial REIationScoereiiiiiiiiiiiieeieeerese e e 51
Figure 16: Qualitative Entity Location [126]cccovuerieriiirieiieiierieeie ettt esteere e eae e saeesreeseesaeesaeees 55
Figure 17: RCC8 Relations (Credit: http://en.wikipedia.org/wiki/RCCR8)ccceevverierriecienieneenieeieeee e 61
Figure 18: State Relation ONOLOZYccvvevieiieieiiieiieitieie ettt ettt et et e st esteensessaeesaesseeseeseensesnnesnns 66
Figure 19: Projection Objects onto Places and Determining OVerlapccccecueveveneneneneneneeienieniennenn 67
Figure 20: Pseudcode for Computing OVETlaps........c.eevveeieioierierieeiieieeie et eeesieeieeeeeaesaeseeesneesseesaesnnesens 68
Figure 21: Predicate Evaluation PSeud0-Codecooiiiiiiiiiiiiieee e 69
Figure 22: Joint HUman-Robot ASSEMDBLYcoouiiiiiiiiiiiee e 71
Figure 23: Example Kit (courtesy of LittleMachineShop.com)ccceoiriiiiiiinieieneee e 72
Figure 24: Kitting Workstation MOdelccuiiiiiiiiiie et 77
Figure 25: End Effector Changing Station Model.............ccuiiiiiiiiiiiiieieeee e 77
Figure 26: Large BoxWith Empty Kit Trays Model.........ccocoiiiiiiiniieiiciecieeeeeeee et 78
Figure 27: Large Box With Kits MOAEL.......cccoiiiiiiiiiiieieieeesee ettt 78
Figure 28: KTt IMOAEL......cuiiiiiieiieieeec ettt bbbttt st b e et e et ee 79
Figure 29: RODOt MOAE]couiiiiiiiiiiiiiieeeeectce ettt sttt ettt sttt 79
Figure 30: Stock Keeping Unit MOAEL.........cccoeoiieiiiiiiieieeie ettt 80
Figure 31: Work Table MOdel........cc.coiiiiiiiiiiiiiiesee ettt st 80
Figure 32: Vacuum Effector Single Cup Model..........ooieiiiiiiiiiiiiee e 80
Figure 33: Kit Design IMOAEL.......cccueiiiiiieieieeiee ettt ettt ettt ettt e bt e b e te e emeeenes 81
Figure 34: Part MOAEL.......cooieiiieeee ettt ettt et e ettt et et e e bt e s bt e beeseeaeeneeenes 81
Figure 35: Pose Location MOMELcc.couiiiiiiiiiiieie ettt ettt ettt 81

Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58.
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:

The Intention ONtOIOZYcveiiirieriieiieiieieeeeeteerte et etesee st ste e bt ebessaestaessaesbeessesssesreesseensesseennns 91
Sample Kitting SCENATIOccuviriieiieiiiieiiesieerie ettt ettt aeste e beesbeessessaessaesseesseensesnsennns 92
Completed Kits 1 and 2........ccoevieiieiieiieiecieieete ettt ettt eseenneenneens 92
Diagram Explaining Overall Likelihood EQUationcccccccecevinininininceienienincnceeneece 101
Kitting Intention TOOL INEITACEeevuieiiieiieieeieeie et seeens 117
Output of the Intention Recognition Tool..........cccuiviiiiiiiiiii e 118
Experimentation ATCRItECIUIEcocuiruiiitieiieie ettt neenaens 120
USARSIm Kitting ENVIFONMENEcc.eiitieiieiiiieiieiiierie et 120
USARTIUth Channel.........coooiiiiiiieee ettt sttt sttt see s 122
OWL t0 SQL Tab ...ttt sttt ettt ettt ettt st s be e 125
Example Using the Generated CH+ ClaSSeS......c.eeueierieriireieiiieieieie ettt 127
State Relation and Kitting OntOlO@IES........ccvevverierieriieiieieetierieeie e eve st sre e ae e saeesseese e 127
Five Possible KitS (INENTIONS)covieiieriieieriiesiieiteeiesteseesteesteeteestesseesseeseesseessesssessesssesssensanns 128
State Recognition AIZOTItRMSccveiieiiiieeic et 129
Java Code for Evaluating Externally Connected RCCS8 Relationccccoceveveveeieeenienienenne. 130
State Relation OULPUL......ccueevieieeiieiieieeie e ste st e st ete et esseeseesteessessaessaesseesseensesnnesseesseensennns 131
Results of State Recognition AlZOrithmscoveiiiiieiiiiee e 131
INEENEION ONEOLOZY ..ottt ettt ettt ettt et s e bt et e e it e e teemeesaeesseenteenteeneesneenseens 133
Intention Recognition AIGOTTtRIMoo.oiiiiiiiiiee e 134
Methodology to Compute and Display Likelihoodsccccoririririeniineiiiecceeeeeee e 136
Intention LiKEITROOMSc.oouiiiiiiiieieee ettt 137
Likelihoods for Each Intention at Different States...........cccceoieoierineienincrieeeee e 137
Experiment USer INEITACEccvieiieiiriieiieiceie ettt e st teeseessesnnas 139
Human/Algorithm Comparison Data for Kit 1 Plan 1...........ccccooeiiiiiniiniiiiiiecieeeieeeeeeiens 146
Human/Algorithm Comparison Data for Kit 1 Plan 2............cccoceviiiiiniiiiiiiecieeeieeeeeeiens 147
Human/Algorithm Comparison Data for Kit 1 Plan 3........ccccoceiiiiiiininininniicciccccnee, 148
Human/Algorithm Comparison Data for Kit 1 Plan 4.........cc.ccceoeiiiininininnineiccicnenee, 149
Human/Algorithm Comparison Data for Kit 1 Plan S.........ccccoceviiviiininininnincicccnenee, 150
Human/Algorithm Comparison Data for Kit 2 Plan 1...........ccccoooiiiiiiiiiiiieeeees 151
Human/Algorithm Comparison Data for Kit 2 Plan 2............cccoooiiiiiiiiiiiieeeceeeees 152
Human/Algorithm Comparison Data for Kit 2 Plan 3...........ccccoooiiiiiiiiieeeeeees 153
Human/Algorithm Comparison Data for Kit 2 Plan 4...........ccccoiiiiiiiiniiiiieeeeeee e, 154
Human/Algorithm Comparison Data for Kit 2 Plan S.........ccccoooiiiiiininiiieeeeee e, 155
Human/Algorithm Comparison Data for Kit 3 Plan 1...........ccccoeiviiniiniiiiciecieeeieeeeeeiens 156
Human/Algorithm Comparison Data for Kit 3 Plan 2............cccooeiviinienieiiiiecieeeieeeeeieeiens 157
Human/Algorithm Comparison Data for Kit 3 Plan 3............cccoooiviiiniiniiiieieeeeeeeeeeeens 158
Human/Algorithm Comparison Data for Kit 3 Plan 4.........cc.ccceoeviiiininininnineciecicneneee, 159

11

Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:

Human/Algorithm Comparison Data for Kit 3 Plan 5............cccooviviiiniiniiciieiecieeeeeeeeeeiens 160
Human/Algorithm Comparison Data for Kit 4 Plan 1............cccoeiviiniiniiiiiiiecieeeieeeeeeiens 161
Human/Algorithm Comparison Data for Kit 4 Plan 2.........cccccceveviiininininninceiecicneneee, 162
Human/Algorithm Comparison Data for Kit 4 Plan 3.........ccccccoeviiiiininininninciccceneee, 163
Human/Algorithm Comparison Data for Kit 4 Plan 4.........c..ccceoeviiiininininninceiecceneee, 164
Human/Algorithm Comparison Data for Kit 4 Plan 5...........ccccoooiiiiiiiiiiiieeeeeeees 165
Human/Algorithm Comparison Data for Kit 5 Plan 1...........ccccoooiiiiiiiiiiieeeeee, 166
Human/Algorithm Comparison Data for Kit 5 Plan 2...........ccccoooiiiiiiiiiiiieeeeeeees 167
Human/Algorithm Comparison Data for Kit 5 Plan 3.........ccccooiiiiiiiiiniieeeeee e, 168
Human/Algorithm Comparison Data for Kit 5 Plan 4...........ccocoiiiiiiiiniiiieeeeee e, 169
Human/Algorithm Comparison Data for Kit 5 Plan S.........cccooeiiiiiiiiniieeeeee e, 170
Individual Approaches Weights Effect on Sum of Difference..........cccecevvevveniieciicieiieniennn, 174
Comparison of Human Bayesian and Additional Approaches for Kit 2, Plan 4c.cc.c..... 175

12

1. Introduction

Humans and robots working safely and seamlessly together in a cooperative
environment is one of the future goals of the robotics community. When humans and
robots can work together in the same space, a whole class of tasks becomes amenable
to automation, ranging from collaborative assembly to parts and material handling and
delivery. Keeping humans safe requires the ability of the robot to monitor the work
area, infer human intention, and be aware of potential dangers soon enough to avoid
them. Robots are under development throughout the world that will revolutionize
manufacturing by allowing humans and robots to operate in close proximity while
performing a variety of tasks [1].

Proposed standards exist for collaborative human-robot safety, but these focus on
limiting approach distances and contact forces between the human and the robot [2, 3].
In essence, the robot attempts to minimize the likelihood and potential severity of
collisions between the human and the robot. These approaches focus on reactive
processes based only on current sensor readings, and do not consider future states or
task-relevant information.

A key enabler for human-robot safety in cooperative environments involves the field of
intention recognition, in which the robot attempts to understand the intention of an
agent (the human) by recognizing some or all of their actions [4] to help predict the
human’s future actions. With the addition of reliable intention recognition, one might
imagine the following:

A robot is placed in a manufacturing kitting environment with the goal of helping the
humans in the factory complete their tasks. Orders change very frequently in the
factory, and the humans often switch between activities to make sure that all orders are
met. The robot is tasked with making sure that all necessary parts are available to the
humans and that the kits and assemblies are produced correctly. This must all occur
while insuring safe interaction with the humans. In addition, the robot may be asked to
finish the creation of a kit when the human is pulled to another task.

There are many robot functionalities needed to allow this scenario to occur, including
perception, manipulation, mobility, etc. In this thesis, we will focus on the ability for the
robot to recognize the intention of the human. By recognizing the human’s intention,
the robot will be able to determine what overall goal the human is trying to accomplish
(i.e. what kit is desired to be developed). Once the intention is determined, the robot
can: 1) retrieve any additional parts necessary for the remainder of the kit-building
process, but not immediately available to the human; 2) ensure that the reminder of the
kit is developed to specification; and/or 3) determine where the human left off and
complete the development of the kit when the human is pulled to another task. The
robot may also ensure that it interacts with the human safely by accurately predicting

13

which actions will occur next (based on the identification of the intention and its known
subsequent steps) and ensuring that it stays away from the path of those actions.

1.1. Objective and Thesis Contribution

In [5], Heinze proposed six possible paths for intention recognition that start with the
intention of the intending agent (in this case the human) and end with the recognition
of the intention by the recognizing agent (in this case the robot). These possible paths
are shown in Figure 1 and are described below:

Intended Agent Recognizing Agent Intended Agent Recognizing Agent
) Recognized) Recognized
Intention Intention Intention > Intention
. Recognized . Recognized
Activity Action Activity Action
Sensed Sensed
T
State State State State
Intended Agent Recognizing Agent Intended Agent Recognizing Agent
Intention REEDE”_IZEd Intention REEDE”_IZEd
Intention Intention
L Recognized L Recognized
T
Activity Action Activity Action
Sensed Sensed
State State State State
Intended Agent Recognizing Agent Intended Agent Recognizing Agent
A Recognized B Recognized
-
Intention - Intention Intention Intention
L Recognized L Recognized
Activity Action Activity Action
Sensed Sensed
State State State State

Figure 1: Six Possible Paths for Intention Recognition

(Top Left) This case is most common in the literature. The intending agent
executes his intentions, which is composed of actions, which causes states in the
world to be true. The states are recognized by the recognizing agent which then
infers the activities and finally infers the intention;

(Middle Left) This case requires that the intending agent provides direct access
to (and descriptions of) the actions that it is performing to the recognizing agent.
The recognizing agent then uses these activity descriptions to infer the intending
agent’s intention. This requires that the intending agent is part of the system
design process as its internal state must be made available to the recognizing
agent;

(Bottom left) This case requires that the intention of the intending agent is made
directly available to the recognizing agent, so no reasoning is needed at all. This
can be done through direct communication between the intending agent and the
recognizing agent. In a highly dynamic environment, this is not always possible
(or desired). It is envisioned that manufacturing facilities that use robots in the
future will be highly dynamic and agile, with a large variety of orders that change
quickly. We don’t want the human to have to change his/her procedures to
accommodate the robot; we want the robot to be able to figure this out on its
own;

(Top Right, Middle Right, and Bottom Right) These three cases all focus on the
concept of “direct perception,” where perception not only involves the
recognition of objects and actions, but also incorporates the inference that is
associated with them. In the top right case, the recognized intention is provided
directly from the perception of the state which innately infers the intention.
Likewise in the middle right case, the perception system innately infers which
actions are being performed based on the perceived state of the environment.
Inference then occurs to determine the intention from the recognized actions. In
the bottom right case, the recognized intention is provided directly from the
perception of the activities which innately infers the intention.

15

Intended Agent Recognizing Agent

Recognized
<

Intenti
rrention Intention
o Recognized
Activi
t Action

Sensed
N State f—m Ernse

State

Figure 2: Novel Path for Intention Recognition

In this thesis, we propose a new structure for recognizing intentions, as shown in Figure
2. In this approach, we focus on the relationship between states and intentions, while
bypassing the activity level all together. Direct state-based intention recognition offers
some interesting advantages over activity-based recognition, including:

e States are often more easily recognizable by sensor systems than actions. As
shown in [6] and discussed in the next chapter, existing algorithms that attempt
to recognize the state of the environment (the identification, location, and
orientation of objects) perform approximately 20% better than algorithms that
attempt to identify activities that are being performed in the environment. As
such, state information can be provided with higher accuracy as input into an
Intention Recognition Algorithm, which in turn would allow for better algorithm
output;

e Using activities, intention recognition is often limited to inferring the intention of
a single person [4]. State-based intention recognition eliminates this shortfall, in
that the existence of the state is independent of who created it. In the state-
based approach multiple people can work on the same intention because the
algorithms do not look at the activities that are being performed. They only focus
on the state that is achieved once each activity is completed;

e State information tends to be more ubiquitous than activity information, thus
allowing for reusability of the ontology. Spatial relations such as On-Top-Of,
Partially-In, and In-Contact-With are generic across multiple domains, while
“Place The Box in the Kit Tray” may only be specific to the manufacturing kitting
domain.

We distinguish states from state relationships. In this context, a state is defined as a set
of properties of one or more objects in an area of interest that consist of specific

16

recognizable configuration(s) and or characteristic(s). A state relationship is a specific
relation between two objects (e.g., Object 1 is on top of Object 2). A set of all relevant
state relationships in an environment at a given time composes a state. This approach
to intention recognition is different than many ontology-based intention recognition
approaches in the literature (as described in the next chapter) as they primarily focus on
activity (as opposed to state) recognition and then use a form of abduction to provide
explanations for observations. We infer detailed state relationships using observations
based on Region Connection Calculus 8 (RCC-8) [7] and then infer the overall state
relationships that are true at a given time. Once a sequence of state relationships has
been determined, we use a Bayesian approach to associate those states with likely
overall intentions to determine the next possible action (and associated state) that is
likely to occur.

1.2. Organization of Thesis

The overall flow of information that is presented in this thesis is shown in Figure 3.
State change information if sent from the USARSim simulation engine (which is meant to
simulate human actions) into a state relation algorithm. This algorithm analyzes the
state changes and infers a set of state relations that are true within the environment
(leveraging information that is present in the manufacturing kitting ontology and the
state relation ontology). The resulting state relations are fed into an intention
recognition algorithm which assigns likelihoods to possible intentions (leveraging
information in an intention ontology). The areas that are shaded in blue represent the
unique contribution of this work.

USARSIim Simulation

State Intention Intentions

Change New State Relation New State Recognition with
Detection Algorithms Relation Algorithms Likelihoods
(Chapter 3) {Chapter4)

Environment

Manuf. State
Kitting Relation
Ontology Ontology
{Chapter 3) (Chapter 3)

Intention
Ontology
(Chapter 4)

Figure 3: Intention Recognition Process Flow

Chapter 2 presents the state-of-the-art in the areas of intention recognition,
state/activity recognition, and state representation. All three of these areas play a vital
role in the novel research described in this thesis. We categorize the intention

17

recognition field into logic-based approaches (which include deductive and abductive
techniques), probabilistic approaches, and case-based approaches. Deductive
approaches give definitive and provable results, but it is very rare in intention
recognition that enough information (observations) is provided to be able to only use
this approach. Abductive approaches provide reasonable explanations when the
intention is not deductive, but mechanisms are needed to choose between the various
possible explanations. Probabilistic approaches use well-tested theories to assign
likelihoods to various intentions, but determining the input probabilities or belief to use
these approaches can be more of an art than a science. Case-based approaches leverage
previous instances of the same or similar intentions to try to match to what is being
observed in the environment, but this starts to fall apart if there are no previous cases
that match the current observations.

We then discuss the state of the art in activity and state recognition. A key component
of this thesis is the fact that we use state information as the basis to recognition
intentions as opposed to using activity information (as is predominantly performed in
the literature). We examine two evaluation efforts, the Solutions in Perception
Challenge and DARPA’s Mind’s Eye program, to show representative cases of the state-
of-the-art in state and activity recognition, respectively. These two evaluations were
purposely chosen because they are completely unbiased: an independent evaluation
(not run by the algorithm developers) was performed to assess the performance of
developed systems. Based on this analysis of these evaluations, it appears that state
recognition systems are approximately 20% (80% vs. 60%) more accurate than the
activity recognition systems. This shows the benefit of basing intention recognition on
state information as opposed to activity information.

We conclude the chapter by showing the various ways that state and spatial information
have been represented in ontologies. This ranges from very high-level abstract
representations in foundational ontologies to more specific representations in domain-
specific ontologies. We also make the case for using qualitative methods to capture a
perspective of space which is more in line with human intuition. We look at various
qualitative representation approaches, with an emphasis on RCC8, which serves as the
basis for much of the work described in this thesis.

Chapter 3 describes an approach that uses RCC8 to model state relationships based on
the relative positions of objects in the environment. We describe how we extend RCCS,
which was initially developed for a two-dimensional space, to a three-dimensional space
by applying it along all three planes (xy-plane, yz-plane, xz-plane). We then describe a
set of high-level state relationships that were developed based on a set of logical rules
that are grounded in the RCC8 relations. These RCC8 relations and corresponding high-
level state relationships easily allow a sensor system to characterize the state of the
environment, and these characterizations will serve as the basis for the Intention
Recognition Algorithm. We then discuss how these state relationships can be
represented in an ontology. We conclude this chapter by validating this approach using

18

example scenarios from the manufacturing kitting domain, along with an associated
manufacturing kitting ontology.

Chapter 4 describes how intentions are formed from states, and how these intentions
are represented in an ontology. An ordering of state relationships represents an
intention. We describe how we leverage OWL-S (Web Ontology Language — Services) [8]
to form the ordering of the states. We then provide a kitting example to show examples
of intentions based on states. Once intentions are defined, we describe a Bayesian-
based approach to associate observations in the environment to known intentions.

We then discuss additional Intention Recognition Algorithm based on the following
criteria: 1) the number of observed state relations that are true in an intention; 2) the
percentage of an intention that is complete; and 3) the number of productive states that
have occurred recently; These additional approaches will help to address situations (in
the future) when an intention is not perceived from the very beginning, or when a new
intention starts mid-way through the set of observations. We then propose an overall
equation that can be used to bring all of these approaches together and assign weights
to each.

Chapter 5 describes the overall architecture of how this approach was implemented. We
describe the overall architecture that was used to recognize states in the environment
and infer intentions. The architecture involves a Simulation System, a State Recognition
Algorithm (with associated state relation and kitting ontologies), and an Intention
Recognition Algorithm (with an associated intention ontology).

Chapter 6 focuses on an experiment used to assess the performance of the state-based
Intention Recognition Algorithm described above. This was done by comparing the
output of the algorithms to the performance of several humans watching agents
performing the same intentions. We used the manufacturing kitting domain for the
experiment. Five kits were created that each contained a unique combination of ten
differently-shaped blocks. Using these kits, a set of simulations were developed
capturing a set of steps in which one could assemble these kits. For this experiment, we
randomly chose five set of steps for each kit, resulting in 25 total runs. At each state, the
State Recognition Algorithms were run to identify the state relations in the environment
and, based on these state relations, likelihoods were assigned to each intention. To
determine how well these likelihoods compared to what a human would perceive in the
same situation, we had 15 students serve as the human participants. One by one, the
students were presented with a textual description of something that happened in the
environment (a state), for example, “Red object added in the kit tray.” Based on this
information, the students assigned likelihoods representing which kit they thought was
being developed (i.e., what was the likely intention based on the observed states).
Because there were exactly 10 objects in each kit, exactly ten states were presented per
kit. After all 10 states were completed, the student moved on to the next intention until
all 25 intentions were completed. The results of this experiment were compared to the

19

output of the Intention Recognition Algorithm, and comparison charts are presented
near the end of this chapter. We then introduce the additional three intention
recognition approaches to see how they affect the performance of the overall system.

Chapter 7 is devoted to the conclusions of the thesis. We describe future efforts which
include applying the approaches described in this thesis to areas outside of the
manufacturing kitting domain, transitioning the algorithms to a real manufacturing
environment, and performing additional experiments to further determine the optimal
weights of the proposed intention recognition approaches.

20

2. Related Work

In this chapter, state-of-the-art technologies in the areas of intention recognition,
state/activity recognition, and state representation are presented. All three of these
areas are core to this thesis and thus a thorough literature review is provided.

2.1. Intention Recognition

Intention recognition traditionally involves recognizing the intent of an agent by
analyzing some, or all, of the actions that the agent performs. Many of the recognition
efforts in the literature are composed of at least three components: 1) identification and
representation of a set of intentions that are relevant to the domain of interest; 2)
representation of a set of actions that are expected to be performed in the domain of
interest, and the association of these actions with the intentions; 3) recognition of a
sequence of observed actions executed by the agent, and matching them to the actions
in the representation. [4]

2.1.1. Overview

There have been many techniques in the literature applied to intention recognition that
follow the three steps listed above, including ontology-based approaches [9], multiple
probabilistic frameworks such as Hidden Markov Models [10], Dynamic Bayesian
Networks [11], utility-based intention recognition [12], and graph-based intention
recognition [13]. All of these approaches are described in more detail below. In this
thesis, we will focus on ontology/logic-based approaches. An overview of how to assess
ontologies, with a focus on intention recognition, can be found in [14].

In many of these efforts, abduction has been used to provide hypotheses about
intentions. In abduction, the system “guesses” that a certain intention could be true
based on the existence of a series of observed actions. For example, one could guess
that someone may have watered the lawn if the lawn is wet. There may be other
possible explanations for why the lawn is wet (e.g., it rained) but the fact that someone
watered the lawn could be the most probable explanation given the circumstances. As
more information is learned and activities are performed, probabilities of certain
intentions can be refined to be consistent with the observations.

Intention recognition, and specifically the approach described in this thesis, builds upon
research in the area of causal theory used for planning. In this approach, a background
theory is provided, which contains intentions that are expected to be performed in the
environment along with the relationships between the states and the intentions. There
are also observations of the states that exist over time, along with the hypotheses (and
probabilities) of the agent’s intentions based on these states. Such an approach is

21

conceptually related to causal theories used for planning [15], with the exception of
states taking the place of activities.

As shown above, there are often many possible, equally-plausible hypotheses an
intention of an observed agent’s intentions or to describe the situation in an
environment. Choosing which hypothesis to believe is one challenge. Another challenge
is that the adversarial nature of the observed agent may limit what actions are able to
be observed. In other words, the scene may be occluded by other objects so that it
cannot be seen in its entirety, or the agent performing the action may purposefully hide
their actions or intentions from the observer. Furthermore, agents may even
deliberatively execute misleading actions to throw off the intention recognition system.

Another challenge are situations where the observed agent may be performing multiple
intentions at the same time and may intersperse the execution of their actions, or the
case where the agent is trying different plans for achieving a single intention. In
addition, intention recognition becomes very challenging when attempting to reason
about the actions of cognitively impaired individuals. They may be executing the actions
erroneously and with confusion, as in the case of Alzheimer patients [16]. Additional
complications arise when trying to analyze the actions of many cooperating agents [17]

Much research in the intention recognition field focuses on pruning the space of
hypotheses. In a given domain, there could be many possible intentions. Based on the
observed actions, various techniques have been used to eliminate improbable
intentions and assign appropriate probabilities to intentions that are consistent with the
actions performed. Some of the efforts have weighted conditional rules used for
intention recognition as a function of the likelihood that those conditions are true [18].
For example, it may be unlikely that a person is using an umbrella outside unless it is
raining or very sunny, thus the cost associated with this condition would be very high
since the probability of this happening would be low.

Once observations of actions have been made, different approaches exist to match
those observations to an overall intention or goal. For example, in [19], the authors use
existentially quantified observations (not fully grounded observations) to match actions
to plan libraries. In this instance, they can handle situations when they see some action
occur (e.g., opening a door) or without seeing or knowing who performed that action.
This is different than many other approaches in the literature that require fully
grounded activities. Other approaches have focused on building plans with frequency
information, to represent how often an activity occurs [20]. The rationale behind this
approach is that there are some activities that occur very frequently and are often not
relevant to the recognition process (e.g., a person cleaning their hands). When these
activities occur, they can be mostly ignored and only activities that are less commonly
performed can be considered. In [21], the authors combine probabilities and situation
calculus-like formalization of actions. In particular, they not only define the actions and
sequences of actions that constitute an intention, they also state which activities cannot

22

occur for the intention to be valid. For example, if the intention was to drive a car, the
activity may be to open the door, get into the car, turn on the engine, release the
emergency brake, and take the car out of park. They may also include that an activity
cannot be to turn the car off after it is turned on and before the car is taken out of park.

All of these approaches have focused on the activity being performed as the primary
basis for observation and the building block for intention recognition. However, as
noted in [4], activity recognition is a very hard problem and one that is far from being
solved. There has been limited success in using Radio Frequency ldentification (RFID)
readers and tags attached to objects of interest to track their movement with the goal
of associating their movement with known activities. Case in point, in [22], the authors
describe the process of making tea as a three step process involving using a kettle,
getting a box of tea bags, and adding some combination of milk, sugar or lemon. Each of
these activities is identified by a user wearing a special set of gloves that can read RFID
tags on objects of interest. However, this additional hardware can be inhibiting and
unnatural. Recognizing and representing states as opposed to actions can help to
address some of the issues involved in activity recognition and this will be the focus of
the thesis.

The rest of this chapter describes 1) classification of intention recognition; 2)
applications to which intention recognition has historically been applied; 3) approaches
to activity and state recognition and their performance; and 4) approaches to state
representation.

2.1.2. Classification of Intention Recognition

There are two main dimensions of intention recognition in the literature. The first deals
with the interaction and cooperativeness of the agent that is being observed. The
second is the mechanism by which the intention of the agent is determined. Each is
discussed below.

2.1.2.1. Interaction and Cooperativeness of Agent Being Observed

In [23], the authors propose two classifications of intention recognition: intended or
keyhole. In intended intention recognition, the observed agent allows his intentions to
be identified and purposefully and openly provides signals to allow the observed agent
to sense his actions. One example of this could be cooperative assembly, where the
agent openly conveys his intentions. In keyhole intention recognition, the observed
agent doesn’t expect his intentions to be identified; he is only focused on his own
activities, which may limit how much an observing agent can view his activities. This is
referred to as keyhole because it can be considered a situation where an observing
agent is watching a performing agent through the keyhole of a door, where the
performing agent cannot see the observing agent nor does the performing agent know

23

that he is being observed. An example of this may be a help system that provides
guidance, as in a home ambient intelligence system.

A third class, proposed by [24], is adversarial, in which the agent purposefully does not
want his actions being observed, for example, in a war situation where the enemy is
purposefully trying to deceive the observing agent. Almost all of the intention
recognition work in the literature focuses on the intended and keyhole cases. Recent
work in adversarial intention recognition can be found in [25].

2.1.2.2. Approaches To Perform Intention Recognition

In addition to classifying the types of intention recognition with respect to the agent
that is performing the activities, one can also classify intention recognition by the
approaches that are used to perform them. Intention recognition can roughly be broken
down into three categories: logic-based approaches (using abduction and deduction);
probabilistic approaches; and case-based approaches. Each of these are defined and
described below.

2.1.2.2.1. Logic-Based Approaches

As the name implies, logic-based approaches use some form of logical reasoning to
deduce the intentions of agents in the environment. These approaches can be broken
down into abductive, deductive, and inductive approaches. Abduction [26] is a type of
defensible reasoning, primarily used to explain observations. Abduction does not
provide a provably correct answer; instead it provides one reasonable explanation for
an observation, though there may be others.

Conversely, deduction is the process of reasoning from one or more general
observations (premises) to reach a logically certain conclusion. In this case, the
observations guarantee the truth of the conclusion.!

[4] gives the following rule to explain deduction and abduction:
room-is-hot & heating-is-on (2)

Deduction allows one to derive the fact that the room-is-hot from knowing that the
heating-is-on. In other words, if the heating is on, the room must be hot. Abduction
allows one to infer that heating-is-on to explain the fact that the room-is-hot. The room
could be hot for other reasons, (e.g., the weather is hot outside, a fireplace is burning in
the room).

L http://en.wikipedia.org/wiki/Deductive_reasoning
24

Induction is a weak prediction based on regularity of past and present observations,
true only until a contrary case is found. This is not often used in intention recognition,
but included here for completion.

Abduction Deduction Induction

Men die All men are mortal Socratesisaman

Grass dies Socratesisaman Socrates is mortal
Men are grass Socrates is mortal All men are mortal

Figure 4: Abduction vs. Deduction vs. Induction

Figure 4 shows all three logic approaches. The left part of the figure shows abduction,
where the agreement is of the predicates (in this case, ‘die’). It is not true that men are
grass, but one may guess that based on the two observations. The more observations
that are made, the stronger or weaker the conclusion will become that men are grass.
The middle part of the figure is deduction — the fact that Socrates is mortal is provable
based on the two preceding facts. The right part of the figure shows induction - a weak
prediction based on regularity of past and present observations, true only until a
contrary case is found. It is true that all men are mortal, but this cannot be proven from
the two observations.

2.1.2.2.1.1. Abductive Approaches

Abductive reasoning allows one to infer causes of a particular observation. For instance,
if one observes that there is a light in a bedroom that will not turn on, one might infer
that the light bulb burnt out. This provides a reasonable explanation of the observation,
since having a burnt-out light bulb is a viable reason why the light will not turn on in the
bedroom. It may be the case that this inference is not warranted. The power may be
interrupted in the house or the light switch may be broken. In any case, there are
multiple potential causes for the bedroom light not to have turned on in the bedroom.
Abduction allows one to reason backwards from the observation to the possible cause.
[27]

In the specific case of intention recognition one is reasoning not about cause and effect,
but about the behaviors that are being performed and the overall goal or intention that
are attempting to be produced. One reasons how potential intentions would motivate
the observed behavior. When viewed from this perspective, abductive reasoning is a key
component of intention recognition. Abduction provides a direct link from the observed
actions to possible reasons for that behavior. While other reasoning processes play a

25

role in intention recognition (e.g., deduction), abduction plays a critical role because it is
driven by observations with an unknown goal being performed. While one could
conceivably reason strictly deductively from intentions to expected actions and
eventually find an expected action that matched the observation, this would be an
extremely inefficient way to achieve the effect of abduction (especially with the
possibility of a large number of intentions). Abduction limits the scope to only those
intentions that could explain the observation.

Charniak & McDermott [15] were one of the first authors to publish that intention
recognition could be seen as a problem of abduction. Their focus was on motivation
analysis, which is now referred to as intention recognition, in the area of story
comprehension. They described the approach as the opposite of planning. In planning,
when provided a task (intention), reasoning approaches are used to determine what
actions would be utilized to achieve it. In motivation analysis, given an action, reasoning
is used to determine what intentions it could help to achieve. This opposite of the
reasoning provides the concept of abduction. In their work, plan schemas were
represented in the form of todo(G, A) which meant that goal G was achieved by Action
A. In this approach, if one observed an Action A instance, they could hypothesize goal G
as a possible intention.

Abduction can often result in multiple hypotheses to explain an observation. [15]
proposed a set of criteria for choosing between multiple hypotheses to determine which
is most probable. The first criterion focuses on the preference of the hypothesis that
utilizes the most specific characteristics of the observed action. As an example, if we see
that John picks up a magazine, there might be two explanations, he wants to read it or
he wants to throw it away. Based on the preference of using the hypothesis with the
most specific characteristics, the first hypothesis is chosen because it uses the magazine
characteristic of being an object that is readable, unlike the second one that treats the
magazine as any other object.

A second suggested criterion is to prefer a hypothesis that requires the fewest
additional assumptions. For example, using the example from above, the hypothesis of
throwing out the magazine needs an second assumption that a trash can exists, and
therefore may be less preferred to the hypothesis of reading because, in this case, no
additional assumptions are needed.

Intention recognition has been used in dialogue understanding [28] which has itself
been cast as an abductive process. Charniak represented semantic content of a
sentence as a conjunctive clause in first order logic. Interpretation is taken to be the
derivation of this clause from the current knowledge base, using abduction as required
to explain literals that cannot be otherwise derived. Such assumed literals become the
new information that is provided to the sentence. More information about how this
approach has been applied to dialogue understanding can be found in Section 2.1.4.1.

26

2.1.2.2.1.2. Deductive Approaches

Deductive reasoning is a sound form of inference that allows one to reason from causes
to effects. This type of inference plays a major role in our everyday reasoning, including
our intention recognition activities. As discussed earlier, deduction is the process of
reasoning from one or more general observations (premises) to reach a logically certain
conclusion. In this case, the observations guarantee the truth of the conclusion.

As an example, consider the example provided in [27] where a computer user
corresponds with a technical staff member in order to retrieve a file that was
accidentally deleted. In response to a staff member’s question “When do you need the
file restored?” the user might respond “The project is due on Thursday.” In order to
properly interpret the user’s response, the staff member would need to use abduction
to conclude that the file is related to the project, and deduction to conclude that the file
should be restored before the due date since it cannot be submitted before it is
restored.

In general, deductive reasoning will help abductive reasoning by deriving new facts that
allow abductive chains to be extended or to tie them together. In the previous example,
the answer to the question cannot be answered by abductive reasoning alone.
Deductive reasoning is required for the staff member to translate the project constraints
into requirements on when the file must be restored.

2.1.2.2.2. Probabilistic Approaches

Probabilistic approaches to intention recognition have been implemented to address
plan inference uncertainty (where multiple intentions can correspond to a set of
perceived actions). Probabilistic approaches are often based on Bayesian network and
(Hidden) Markov models [29]. Because the probabilistic approach is most similar to the
work presented in this thesis, more attention will be given to it as compared to the
other types of intention recognition approaches.

There are numerous papers in the literature that have addressed intention recognition
in a formal model of argumentation [30] or abduction [31, 32]. Appelt used weights in
abduction where the weights were assigned to each rule’s premises. The cost that was
associated with proving a conclusion was equivalent to the sum of the costs of
associated premises. The cost associated with a premise was a function of three things:
if it was inherently true, assumed, or proven from other rules. The best hypothesis
about the agent's plan was the one given by the proof with the smallest cost. Weighted
abduction includes domain-dependent knowledge about the probability of the truth a
premise. The disadvantage of this approach is that, for the most part, the costs are very

27

subjective and difference in cost values can greatly affect the overall cost of the
intention and therefore make a specific intention “rise to the top” when it may not be
the most appropriate one.

Formal models of probability approaches have become more popular recently. One
example includes Bauer [33] work in using Dempster-Shafer theory for rating
hypotheses about an agent's plan. The Dempster—Shafer theory is “a mathematical
theory of evidence. It allows one to combine evidence from different sources and arrive
at a degree of belief (represented by a belief function) that takes into account all the
available evidence.”? One of the arguments given by people in favor of Dempster-Shafer
is that it accurately distinguishes between the lack of evidence for a proposition as
opposed to the evidence against the proposition. Others have used Bayesian reasoning
[34]. For example, Raskutti and Zukerman [35] provides an example of applying Bayes
Rule to determine the probabilities of different hypotheses.

In the context of this thesis, Bayesian belief networks are a model for capturing belief
about the probability of an action or state occurring and how that propagates to higher-
level intentions being true. They are stochastic, which means that they use probability
theory to capture and handle uncertainty by explicitly representing the conditional
dependencies between the different information components. The network is modeled
with a directed acyclic graph of dependence structure between multiple interacting
guantities where the nodes represent random variables and the edges indicate
conditional dependencies.

One needs to represent the belief probability distribution at each graph node. If they
are discrete variables, they can be represented in tabular format which shows the belief
probability of each of the child nodes based on the combination of values of its parents.
In Figure 5, we show a simple example of binary nodes, i.e., they can have two values,
which are true (T) and false (F).

2 http://en.wikipedia.org/wiki/Dempster-Shafer_theory
28

P(C=t)|P(C=1)
cloudy ~—~ “o5 | 0s

c

P(S=t) |F’{5 =f)

P(C=t) 0.1 | 09 N e
PC=H| 05 | 05 r 1R rain
(| : J
S / P(R=t) |P(R=f)
sprinkler — P(C=t) 0.8 | 0.2
/ P(C=n| 0.2 | 08
\ ¥
POW=t)PW=1 ¥/ wet grass

P(S=t"R=t) 0.88 | 0.01
P(S=t\R=f)] 0.9 | 0.1
P(S=FR=t)] 0.9 | 0.1
P(S=FR=f)| 0O 1

Figure 5: Sample Bayesian Belief Network®

Figure 5 shows the "grass is wet" event (W) has two possible causes: the water sprinkler
has been turned on (S) or the fact that it is raining (R). The probability of these
relationships is shown in the corresponding tables. We see that Prob(W=true given
S=true, R=false) = 0.9, and, Prob(W=false given S=true, R=false) =1 - 0.9 = 0.1, because
each of the rows have to sum to one.

Charniak and Goldman [28] created the first Bayesian-based intention inference system.
Their system passed markers (a way to spread activation in a network) to determine
possible explanations for actions and to determine nodes to insert into a Bayesian belief
network. In a Bayesian belief network, nodes stand for random variables; and the arcs
connecting nodes capture the causal dependencies, which are represented by
conditional probability distributions. In these conditional probability distributions, the
parent node value dictates the probability of each of the possible child node values.
When used for intention inference, the random variables represent proposition, the
root nodes are hypotheses about an agent's intention, and the probability associated to
a node captures the probability of a proposition given the observation. Bayes Rule is

3 http://www.ra.cs.uni-tuebingen.de/software/JCell /tutorial /ch03s03.html
29

used to compute the probability of each proposition from the evidence (observations).
As new evidence is added to the network, the node probabilities at recomputed, which
propagates the evidence throughout all of the nodes. Bayesian network systems, in
general, require a lot of prior, conditional probabilities. These types of systems are most
applicable to domains that lend well to reliably estimating these probabilities.

Albrecht et al. [36] created an Dynamic Belief Network-based intention inference
system. Dynamic Belief Networks [37] capture the influence of time by using many
nodes to capture the status of variables at different instances of time. In essence, a
variable can have different values as a function of time in a dynamic environment. This
intention inference system was used to infer an agent's intention during a computer
adventure game. The designers investigated four networks of different complexity to
determine which was most appropriate for this approach, which resulted in a detailed
evaluation of the impact of the different networks on the quality of intention
recognition.

The results of [36] show that Dynamic Belief Networks may provide a good approach to
intention recognition in cases where sufficient training data can be gathered and the
network’s causal structure can be clearly determined. They did not apply it to either
intended or adversarial plan recognition, as described in Section 2.1.2.1. Other Dynamic
Belief Networks applications in intention recognition can be found in [38] and [39].

Brown [40] presented a multi-agent architecture providing a dynamic, uncertainty-
based knowledge representation for capturing the ambiguity in uncovering a user’s
intention. The knowledge representation, which is a Bayesian network, provides a
formalism for determining the probability that a user is performing a specific intention.
Goldman, Geib and Miller [41] presented an abductive, probabilistic theory of plan
recognition. This is different than other theories in that it focuses on a plan execution
model. Many other methods have represented plans as formal objects or as rules
capturing the process of recognition. Their model does address aspects omitted from
many other intention recognition theories, such as the cumulative effect of an
observation sequence of partially-ordered, interleaved plans. The model allows for
inferences regarding the plan execution evolution in cases where a different agent
becomes involved in the intention execution.

Other probabilistic intention recognition approaches in the literature include [5, 42-47]
[48-50] and [51].

2.1.2.2.3. Case-Based Reasoning Approaches
Using abstraction, an observing agent using a case-based reasoning approach can

predict the observed agent’s behavior by mapping the observed situation to an abstract
state that tracks all previous cases that have the same abstract relationship. It then uses

30

the most closely-matched previous case as the basis for predicting and interpreting the
current case. An example of this is shown in Figure 6. In the figure, abstract states (asy)
refers to ovals (bins) with disjoint equivalence classes, containing concrete past
situations (s;;) that point to the past plans (P;) in which they are contained through state
pointers (dashed lines into the library). [52]

Abstract

state-space Pi=(@ins11),(@13s 4,2_}.:(2:.3, S 13)

Pz=(az21,621),(a22 822 }.;& 23, 5 23),

(824, S 24), (8 25, 5,25)
. N / /

Pa= (? 31, 5 311) (a;z”fs 32), (8 33,533)

V7 _ ~"Plan Library

A
Piacecccnnannny
CI N P >
S12% S32=S24 Py »

Figure 6: Case-Based Reasoning Approach [52]

This approach helps to ensure robustness when confronted with new actions and new
states. The ability to do this relies on the old plan containing a state (or series of states)
that map to the same abstract condition in the current state. When this is not the case,

the agent is can’t accurately predict the next action the observed agent will perform.
[53]

Rather than inferring every new intention from scratch, case-based reasoning (CBR)
systems use can leverage previous experience represented by previously-solved
problems to address new problems that contain comparable states. The typical CBR
process is to find an old, comparable case, refine the old solution to address the new
situation (set of observations), apply and assess the solution, and then save the new
solution if it was sufficiently distinct from the previous solutions. This stored new
solution can be used for subsequent executions of the CBR system. These plans are
traditionally action sequences captured as operators whose executions will go from an
initial state to a goal state.

31

Kerkez and Cox [54] developed a CBR method that interprets observations of plan
behavior using an incrementally constructed case library of past observations. In each
domain, the system begins with an empty case knowledge base that expands to capture
thousands of past observations. It is unique in that it combines case-based reasoning
and plan recognition to leverage both strengths. The plan representation is a ordered
set of action-state pairs, thus different than traditional approaches that only represent
actions. The technique addresses the complexity of representing both states and actions
by using a form of abstraction including similarity relations to capture indices into the
set of old cases in the knowledge base. As with traditional case-based approaches, past
cases are leveraged to predict future actions by using old actions. In addition, the
approach is able to make predictions even in case of observations of unknown actions
by using the plan recognition aspects of the system. Kerkez employed evaluation criteria
by measuring the accuracy of the prediction at a concrete and abstract level, and across
multiple domains.

Riesbeck and Schank [55] introduced issues in case-based reasoning through a
comprehensive book that presented detailed explanations of four programming efforts.
Each chapter contains the program version of the information. Leake [56] wrote a book
which provides detailed examples of how fundamental issues, including indexing and
retrieval, case adaptation, evaluation, and application of CBR methods, are being
addressed in the context of a range of tasks and domains.

Somewhat related to case-based reasoning approaches are intention graph approaches.
Youn and Oh [13] described intention graphs as consisting of state, action, goal, and
intention nodes and edges. It is represented as IntentionGraph = <S, A, G, |, E> where S
is a set of state node, A is a set of action node, G is a set of goal node, | is a set of
intention node, and E is a set of edges. The general structure of an intention graph is
shown in Figure 7.

S: represents a set of states at time step t. Each state node stands for a ground literal
which is True. This assumes a closed-world assumption, implying that any condition
which is not explicitly mentioned in the state is considered to be false. Sy represents the
initial state of set S, which is assumed to be completely provided.

32

dy{—*dz

d2—0:z

Figure 7: An Intention Graph [13]

An action schema is composed of preconditions and effects sets. A precondition set
describes what has to be true in a state before the action can be performed. An effect
set is describes how the state is affected when the action is performed.

2.1.3. Belief-Desire-Intention Architectures

Belief-Desire—Intention (BDI) is not an approach as described in the previous section; it
is more of a software model developed for programming intelligent agents. As such, it is
discussed in this section but treated differently than the previously described
approaches.

BDI describes on a procedure for separating the plan selection activity (from a plan
library) from the plan execution. It focuses on the definition and implementation of an
agent’s beliefs, desires, and intentions. This permits BDI agents to appropriately allocate
resources between deliberating about plans and executing them.*

The idealized architectural components of a BDI system include:
¢ A Beliefs Component- Beliefs represent an agent’s understanding about the

world. They can include inference rules, which allows forward chaining to lead to
the determination (deduction) of new beliefs;

4http://en.wikipedia.org/wiki/Belief%E2%80%93desire%E2%80%93intention_so
ftware_model

33

e A Desires Component- These are situations that the agent would like to
accomplish. An example might be to assemble a part or to gathering information
about a product;

o A Goals Component- A goal is a desire that the agent is actively pursuing.
This implies that the active desires must be consistent with the goal.

¢ An Intentions Component- Intentions represent what the agent has chosen to
do. In other words, they are desires to which the agent has committed. This
means the agent has begun to execute a plan;

o A Plans Component- Plans are sequences of actions to achieve at least
one intention. Plans can be represented at different levels of abstraction
and may therefore contain other plans. For example, a plan to cook
dinner may include a plan to make pasta and a plan to steam vegetables.

e An Events Component- Events are triggers that cause an agent to perform a
reactive response. An event may update the state of a belief, it could trigger a
plan to start, or it could change the goals. Events may occur in the external world
and are perceived by sensors or they may occur internally to trigger updates or
initiate activity plans.

The relationships between some of these concepts are shown in Figure 8.

NG
i) —— Citn)
ol

Figure 8: High-Level DBI Architecture

BDI approaches have been applied to a wide variety of applications. Taillandier, Therond
and Gaudou [57] applied the BDI architecture in a simulation context to the problem of
agricultural cropping planning and decision-making. They propose a new architecture
based on the BDI paradigm that copes with the challenges that the BDI paradigm is
often complex to understand by non-computer-scientists and they are often very time-
consuming in terms of computation.

Dignum, Morley, Sonenberg and Cavedon [58] described an approach to social
reasoning that integrates prior work on norms and obligations with the BDI approach to

34

agent architectures. Pokahr, Braubach and Lamersdorf [59] described Jadex, a software
framework for the creation of goal-oriented agents following the BDI model. The
objective is to build up a rational agent layer that sits on top of a middleware agent
infrastructure and allows for intelligent agent construction using sound software
engineering foundations.

While BDI architectures have shown promise and have been used extensively in the
literature, they do have some limitations. They include:

e BDI agents to not have mechanisms to perform machine learning from past
behavior. [60, 61];

¢ Some classical decision theorists question the need for all three types (beliefs,
desires, and intentions), while some Al researchers questions whether the three
are enough [62];

¢ Some believe that the multi-modal logics that underlie BDI have little relevance
in practice [61, 62];

¢ The BDI model doesn’t include guidance for interacting with other agents [63];

¢ Many BDI implementations do not represent goals explicitly [64];

¢ The architecture cannot perform look-ahead deliberation or forward planning
[65].

In the next section, we will explore how these various approaches to intention
recognition have been applied to different application domains.

2.1.4. Applications Domains

In this section, we will describe domains (in no particular order) in which intention
recognition systems have been historically applied, along with a brief overview of how
researchers in the field have applied them.

2.1.4.1. lLanguage and Story Understanding

In story understanding, intention recognition systems have been used to recognize the
plans of a character based on the described actions in a story in order to answer
guestions based on the story. One can liken this to a test that a student would take after
they read a story to determine if they had a deep understanding of the characters’
goals. Story understanding is challenging, in that the actions might not be described in
the story in the actual order that they occurred. In this and other domains, the system
must allow actions to occur simultaneously with each other, or allow the temporal
ordering not to be known at all. Also, one must allow the possibility that an action may
be executed as part of two independent plans.

35

In [66], Kautz addressed this challenge by proposing that intention recognition be
considered as deductive inference based on an observation set, a taxonomy of actions,
and one or more simplicity constraints. In their work, the taxonomy of actions is a
complete description of how actions can be executed and how any sequence of actions
can be mapped to a complex action.

An action taxonomy is obtained by applying two closed-world assumptions. The first
assumption states that the described ways of executing an action are the sole ways of
performing it. Each time an abstract action is specialized, more is known about how to
perform it. For example, because the action type “throw” specializes the action type
“transfer location”, we can think of throwing as a way of transferring location of an
object.

The second assumption states that all actions done for a purpose, and that all the
possible reasons for executing an action are known. This assumption is realized by
stating that if an action A occurs and P is the set of more complex actions in which A
occurs as a sub-step, then some member of P also occurs.

2.1.4.2. Interactive Storytelling

A primary research area in interactive storytelling is how to create stories that are
interesting and coherent. It is useful to allow for means to allow the user to play a part
in the story while guaranteeing that user intervention won’t allow for events that go
against the bounds of the intended genre. Plan recognition and generation tools have
been developed to allow a system to infer the intention of the person while interactively
developing a story so that the next logical steps in the story can be automatically
determined.

Karlsson, Ciarlini, Feijo and Furtado [67] described the usage of an intention
recognition paradigm in LOGTELL, which is a logic-based tool for the interactive creation
of stories. The basis behind this work is two-fold: 1) the description of a logic model to
describe the behavior of characters and events; and 2) a tools that aids the interactive
composition of story plots by leveraging fully or partially generated plots. The user can
interact with the system at different abstraction levels, generating a variety of stories in
line with an individual’s tastes, and within the imposed understandability criteria. The
system toggles between stages of goal inference, planning, plan recognition, user
intervention, and 3D visualization.

36

2.1.4.3. Interface Design and Implementation

Intention recognition can help in the design and implementation of user interfaces by
providing a model containing possible user intention to make interfaces more intelligent
and interactive. By trying to infer the intention of the user, the system can dynamically
adjust the user interface to better match the possible next steps that a user may take
based on their perceived intention..

Goodman and Litman [68] showed how interface tasks impose constraints that have to
be satisfied for any intention recognizer to create a plan that efficiently support the
development of an intelligent assistant. They specifically looked at two questions: 1)
how can information about a plan be leveraged to design interface tasks to support
different communication types?; and 2) how can the tasks constrain creation of
intention recognition algorithms? Their research was developed using CHECS, which is a
plan-based design interface.

2.1.4.4. Collaborative Problem Solving

The field of human-computer interaction treats the human and computer and
collaborators. In order to achieve successful collaboration, the collaborators must have
a common understanding of their shared goals and the actions needed to accomplish
them. Verbal communication is often used to achieve this mutual understanding.
However, it is usually more natural to convey intentions by doing actions and allowing
the other agent to observe these actions and infer the intention [69]. For example, if it is
dinner-time and one person starts looking up restaurant phone numbers online, the
other person may infer that the proposed plan is to find a restaurant, place an order for
delivery, and eat at home.

Lesh [69] described how to focus on aspects of a collaborative environment to make
intention recognition more practical. The aspects they describe on are: the focus of
attention; partially elaborated hierarchical plans; and the possibility of requesting
clarification. They demonstrated their approach in the via a collaborative email system.
They how plan recognition reduced the communication burden of the user. To
implement their system, they used an approach based on the SharedPlan theory [70] of
task-oriented collaborative discourse. They formalized the task structure in terms of
high-level goals, such as “checking email”, lower-level goals, such as “writing a
message,” and individual actions such as single clicks on the interface.

37

2.1.4.5. Assisted Technologies and the Care of Elderly and Disabled
At Home

Over the past 20 years, there has been a large jump of the average age of people in
most western countries and it is expected that this number will be constantly growing
[18]. To address this, there has been a significant focus on supportive technology for
older people living by themselves in their own homes.

Pereira and Ahn [18] described a system they created for elder care applications in
order to provide help for elders. Their system recognizes the intentions of elders and
then provides recommendations on how to accomplish the perceived intentions. They
employed Causal Bayes Networks and plan generation techniques. They used the
Evolution Prospection Agent (EPA) system to provide suggestions for realizing the
recognized intention. This system prospectively looks ahead to choose the best set of
actions to realize the recognized intention, while being cognizant of the environment, of
the person’s desires, and of planned future events.

Smart homes could help to improve the autonomy of cognitively impaired people, and
thus alleviate the burden placed on caregivers [71]. Research in the literature strives to
turn the home into a “cognitive prosthetic.” In this process, behavior tracking and
intention recognition are fundamental pieces of the vision of a smart home
environment.

Giroux [71] presented a cognitive assistant to show how intention recognition can help
to address initiation, attention, planning, and memory cognitive defects in people with
disabilities. An experiment was conducted using a cognitive assistant (Archipel) involving
12 people with mild intellectual disabilities. During the first day, a smart apartment and
the Archipel assistance were provided to the subject. The researcher and the subject
created a recipe together monitored by Archipel to let the subject to get familiar with
the task and the environment. In the next two days, participants were asked to create a
recipe with and without Archipel. Archipel was used to monitor the actions of the
participant and to infer what intentions were being performed to allow Archipel to
guide the participant through the process. The count of human interventions needed by
the participants to complete both recipes was tracked and used as an indicator of
behavioral autonomy. Archipel dropped human assistance by 50 percent.

Roy [16] used intention recognition to predict Alzheimer patients’ behaviors to identify
techniques to support them in performing their daily activities. Because the subjects
were Alzheimer patients, this situation raised the dilemma that an observation of a
perceived novel action, different from an expected action, may not be interpreted as a
mistake. This instead could represent the start of a second plan, when the first plan was
aborted or forgotten. To address this, they created a hybrid recognition model based on
probabilistic description logic. Using the hybrid model, they performed an experiment
on 106 Alzheimer’s patients. They analyzed the cognitive performance of each patient

38

based on the Kitchen Task Assessment (KTA) [72], involving 17 common errors of
patients, each modeled in distinct scenarios. A knowledge database was created
composed of 40 primitive actions and 10 activities of necessary for daily living. These
activities consist of kitchen task (cooking cake, cooking pasta, making tea, etc.). The
results showed that their model recognized almost 100% of the errors performed by the
Alzheimer patients.

2.1.4.6. Recognition of Intention Behind Bar Chart Graphs

A rather unique use of plan and intention recognition is its application towards inferring
the intention of designers of non-pictorial graphs such as bar charts and line graphs.
Many information graphics that appear in popular media have a message they are trying
to convey. Applying intention recognition systems to this domain would allow one to
assess the impact of different communication approaches on an information graphic’s
success at conveying a message.

Carberry and Elzer [73] created an approach to plan inference of information graphics.
In their work, the graphic designer is treated as the user whose intention is being
modeled, and the intention inference system tries to infer the intention that is intended
by the user. This is similar to intention recognition in language understanding, where
the speaker wants the listener to hypothesize the speaker’s intention. One interesting
application of this is in the area of assistive technology, where the intention recognition
system infers the graphic’s intended message and speaks it to an individual with sight-
impairments.

2.1.4.7. Computer Security Intrusion Detection

Intrusion detection systems (IDSs) currently describe actions that have already
happened and do not predict what future actions may occur. For IDSs to be successful,
they must be able to analyze a hacker’s actions, infer the goals of the hacker, and make
predict the hacker’s actions in the future [24]. Intention recognition plays a vital role in
inferring future intentions.

Geib and Goldman [24] built a set of Intention Recognition Algorithms for computer
security intrusion detection and prediction based on probability distribution over the
combination of all probable actions which could occur next. For cooperative agents with
complete and accurate observations, this is acceptable. However, for hostile agents
(adversarial intention recognition as described earlier), they cannot assume that all
actions are observed. To complicate for this, they extend the observed actions with
possible unobserved actions that are consistent with the observed actions, state
changes, and the plan graph. They then determine a set of plausible execution traces,
thus attempting to infer the intention of the hacker. These execution traces enable
them to create the possible sets and then use the probability distribution over the sets

39

of hypotheses of goals and plans implicated by each of the traces and pending sets to
infer the hacker’s intention. An example of this is shown in Figure 9, where various
actions were represented in a plan graph. The challenge of plan recognition was
therefore a problem of covering aspects of the graph. They focused on computing
minimal explanations, as represented by vertex covers of the plan graph.

ft

vandalism

recon

'n—rogt S
) \clefm _

recon _/l:;reark in_ od- webpag\ /ld recon l:}reak in
\‘clean }

o

Adeleted—logs Adeleted—logs

Figure 9: Graph-Based Approach to Intention Recognition [24]

2.1.4.8. Human-Robot Interaction

There is a significant amount of literature in the area of intention recognition for
human-robot collaboration, though all of these approaches use activity recognition as
the primary input for the intention recognition system. Schrempf, Albrecht and
Hanebeck [48] used a form of Bayesian networks with a reduced state space to allow for
tractable on-line evaluation. They utilized a combination of telepresence techniques and
virtual environments in a kitchen-like environment. In this environment, they were able
to reduce the state space from 2'® to 17. Wang et. al. [74] proposed the Intention-
Driven Dynamic Model (IDDM), which is a latent variable model for inferring unknown
human intentions. They applied this model to two human-robot scenarios including
robot table tennis and action recognition for interactive robots. They showed that
modeling the intention-driven dynamics can achieve better prediction than algorithms
without modeling dynamics. Goto [75] explored human-robot collaboration in assembly
tasks. Focusing on the assembly of a table, they used finite state machines and a set of
visual recognition routines for state transition detection to recognize the human’s
intention. They also incorporated verbal messages as cues during various stages of the
process. Tahboub [47] used Dynamic Bayesian Networks with a focus on eliminating
cycles by time delay. In essence, they feed back sensed states from previous time slices
instead of the current one. This paper stressed the need to handle qualitative spatial
data, though they did not go into detail on how to address this. This need will be
focused on in this thesis. In all of these cases, activity recognition is the primary input
into the intention recognition system, with state information being of secondary
importance.

40

2.1.4.9. Possible Future Application: Computer Games

The current gaming industry around the world is one of the fastest growing industries
[76]. One very popular gaming genre is real-time strategy games, where gamers play
against other gamers in real-time. However, traditional implementations of games when
played against computer agents apply extensive usage of finite state machines that
makes them very predictable (since subsequent actions are only a function of the state
that exists at a given time) and provide less unique replayability.

Cheng and Thowanmas [76] presented a thought paper describing some of the areas
that intention recognition approaches can be applied, building off of work by Buro and
Furtak [77]:

Adversarial Real-time Planning — Planning can take place in three levels:

o Strategic planning focuses on what should be done;
o Tactical focuses on how to carry out plans;
o Operational focuses on specific actions for each tactical decision;

o Decision-making Under Uncertainty — Humans decide on specific strategies even
with lack of information. They are can also proactively determine the necessity
to look for additional information to gain an advantage;

e Opponent Learning and Modeling — The ability to infer a player’s strategies and
find ways to react to them. This has been sought after for many years, but not
yet achieved. Most current games still follow a pre-determined plan;

e Spatial and Temporal Reasoning — Strategies and plans have to be constantly
reassessed for applicability, especially in an environment that constantly
changes;

e Path Finding —The ability to quickly determine a path in a 2D terrain with mobile

objects and ever-changing environments.

Cheng Towanmas stated that the concept of opponent learning and modeling is ripe for
intention recognition approaches, but to date have not been successfully applied.

The next section will describe some of the metrics that have been used to assess
intention recognition systems.

2.1.5. Metrics for Intention Recognition

Surprisingly, the literature is very light on metrics that have been applied to measure
the performance of intention recognition systems, in a general sense. The one exception
was work that was performed by James Mayfield [78]. In this work, he proposed three
criteria including, applicability, grounding, and completeness for assessing intention

41

recognition systems. He applied these metrics to dialogue systems, but the metrics
seem to be ubiquitous enough to be applied outside of this domain. These criteria are
described below.

2.1.5.1. Applicability

The principle of applicability states that a good explanation of an intention is applicable
to the needs of the system that will use it [78]. That is, no matter how good an
explanation might be in other respects, if it doesn’t provide the information that the
system needs to do its job, then it is not a good explanation.

An assumption that underlies the principle of applicability is that a system that is trying
to explain an intention has interests of its own, which understanding the intention might
help to further. For example, on a collaborative human-robot manufacturing facility, a
robot might be trying to help a human to accomplish an assembly task. By having the
robot infer the intention of a human at a given time, it may be able to deduce what
actions it can best take to either help advance the assembly process or at a minimum,
make sure that it stays at a safe distance away.

According to Mayfield, the principle of applicability implies that the operation of an
intention recognizer cannot be independent of the system in which it is embedded, and
therefore the concept of a domain-independent intention recognizer is impractical.

The three dimensions of a description along which applicability may be assessed include
content, composition, and granularity. These three dimensions are described below,
and have been modified slightly to show their applicability outside of the dialogue
system domain.

Content applicability deals with the particular choice of elements that compose an
intention description. The principle of content applicability holds that each of the
components of a particular description should be applicable to the needs of the system.
Not all such intentions will be applicable to a given system though. A good description of
an intention will not include all of these goals, but will include only those that are
applicable to the purposes of the system.

Composition applicability concerns the type of concepts out of which intention
descriptions should be constructed. Concepts could include the objects that are used to
describe the intention along with how they are combined in the description. The
principle of composition applicability holds that the concept types that compose an
intention description must be applicable to the needs of the system. The composition of
a good description is largely a reflection of how that description will be put to use.
Different tasks require different types of descriptions.

42

Granularity applicability covers the level of generality of the elements of a particular
description. The principle of granularity applicability holds that a good description
contains the optimal amount of detail. It is often possible to divide a single action into a
number of sub-actions. The extent to which an explanation is divided in this way is its
level of granularity. Different levels of granularity may be more or less applicable to a
given system.

2.1.5.2. Grounding

The second criterion for evaluating a description is the principle of grounding. This
principle states that a good description relates what is inferred to what is already known
about the agent and the environment. Typically, before perceiving a new activity or
state, a system will already have some knowledge of previous actions or states that is
applicable to the processing of it.

2.1.5.3. Completeness

The principle of completeness states that a good description of an intention covers
every aspect of the activity or state; it leaves no relevant portion of the activity or state,
or of the description itself, unexplained. Two kinds of completeness include depth
completeness and breadth completeness.

Depth completeness is comprehensiveness of an individual aspect of the state of the
environment. A description of a state exhibiting depth completeness would consist of
the motivating goal of that state and a goal to explain each previously inferred goal.
Breadth completeness is coverage of all parts of the environment. A description that
consists of breadth completeness includes every goal that contributed to the existance
of the state.

With this background on ways of performing intention recognition, the domains in
which they have been used, and how they has been measured, the next section will
start to explore some the aspects that make this thesis unique. As mentioned earlier,
this work is taking a novel approach to intention recognition by using state information
to identify intentions as opposed to using activities. The next section will also explore
the state-of-the-art in both activity and state recognition to show the advantages of
using a state-based approach.

2.2. Activity Recognition vs. State Recognition

One of the core assumptions of this work is that existing technology can more
accurately identify and model information about the state of the environment as

43

compared to information about activities that are being performed in the environment.
Based on this assumption, the output of an intention recognition system that uses state
information as input should therefore be better than one that uses activity information
as input. While there have been many efforts that have attempted evaluate the
performance of state and activity recognition systems, they have primarily been self-
evaluated in configurations and environments that have been most conducive to their
approaches. There have, however, been some open, impartial competitions/evaluations
in these areas [79, 80]. Below we describe a state recognition competition and an
activity recognition evaluation performed by external, impartial parties. We will use the
results of these competitions as benchmarks to characterize the state—of-the-art in
these two fields.

State recognition can encompass many things, including recognizing objects’ color, size,
shape, location, and pose, as well as identifying the object itself. Later in this thesis, we
describe an intention recognition approach that relies on the identification of an object
as well as determining its location and pose to characterize its spatial relationships with
other objects. As such, we will use the competition described in Section 2.2.1 as the
basis for the performance of state recognition technology since it is well aligned with
the focus of this thesis.

2.2.1. State of the Art in State Recognition

In 2011, a Solutions in Perception Challenge (SPC) was held as part of the International
Conference on Robotics and Automation (ICRA) in Shanghai, China. [81]. The purpose of
this event was to determine the state of the art of robotic perception algorithms. There
are many algorithms that exist world-wide for object identification and pose
determination (position and orientation), yet it is difficult to determine if an algorithm is
applicable to a given task and to know its robustness. Also, these algorithm
development efforts are occurring all around the world, but there is no easy way of
knowing which algorithms have already solved particular perception challenges [80].
The SPC sought to identify the best available perception algorithms for specific
challenges. They were documented as open source software to address duplicate
development efforts and accelerate the development of advanced perception
algorithms.

The focus of the 2011 Challenge was Single and Multiple Rigid Object Identification and
Six Degrees of Freedom (6DOF) Pose Estimation in Structured Scenes. Teams developed
algorithms that could “learn” a specified number objects from the provided 3D point
cloud data. This data was enhanced with corresponding red-green-blue (RGB) point
color. The teams were then tested on how well they could correctly locate and identify
the same objects in a scene.

44

The training and evaluation data sets were assembled using 16 machined aluminum
artifacts representing commonly-encountered features of manufacturing parts (Figure
10). Each artifact was created from a unique computer-aided design (CAD) model. The
artifacts were grouped into three classifications based on the perceivable features.
Group 1 consisted of objects with maximal heights greater than two inches. Group 2
objects were shorter than two inches, but had raised features that gave them non-level
surfaces. And Group 3 objects were shorter than two inches, and had level surfaces. The
artifacts were designed to be comparable with industrial assembly parts such as
automotive or aircraft parts (see Figure 11).

Figure 10: Sample Machined NIST Artifacts Used in the 2011 SPC, Arranged Randomly.

Figure 11: The Ground Truth Fixture

The submitted algorithms were evaluated based on two criteria (rounds). Round 1
consisted of image frames with only one artifact. Round 2 consisted of three artifacts

45

each. Both rounds were contained several sub-runs which varied the objects’ translation
and rotation. Run 1 included of only object translations; Run 2 included only object
rotations; and Run 3 had a combination of the two.

For each run in Round 1, a single artifact was randomly selected from the three
classification groups. The pose of the artifact was set that was consistent with the run-
based transformation restrictions for each run, and the artifacts were each applied to
the same subset of transformations. For Round 2, a single artifact from each of the
three classification group was randomly selected. Random poses were generated for
each run, with each artifact assigned an independent location on the ground truth
fixture. There were 399 frames used as input for the participants.

100

80
60
40
20
0 . . .

Team1l Team?2 Team3 Team4

Score (Percentage)

B Translation Score
B Rotation Score
@ Recognition Score

Figure 12: Translation Scores Over All 399 Frames

For each data frame, the ground truth was composed of one or more objects. A true
positive count (hits, c,) shows that the algorithm properly determined an object within a
scene. A non-zero false positive count (noise, c,) shows that an algorithm identified
objects that were not present within a scene, and a non-zero false negative count
(misses, c¢,) shows that the algorithm couldn’t accurately identify objects in the scene.

The true positive counts were counted over all of the frames. The participants correctly
identified over 80% of all objects over all frames (at least 665 artifacts of the 831
present in all 399 frames).

Although seven teams originally participated in the event, only four were able to finish.
The other three were excluded due to hardware and software issues. The remaining
four teams scored an average of 65% on the translation test (within the allowable
tolerance) and 65% on the rotation test (see Figure 12).

46

2.2.2. State of the Art in Activity Recognition

Activity recognition can be roughly divided into two camps. The first focuses on sensor-
based activity recognition which involves the person in the environment wearing some
type of sensor (which could be a smartphone, accelerometer, or other tracking device)
that provides data as to where the person is and the motion s/he is taking. Examples of
this are included in [82] and [83]. The second is vision-based activity recognition, in
which the behaviors of agents are characterized using videos taken by various cameras.
Examples of this type of work can be found in [84] and [85].

For the work described in this chapter, the focus is on approaches that do not require
the agent to wear any external or internal device, as this is not reasonable or practical in
an industrial setting. Therefore we will only consider vision-based activity recognition. In
addition, as mentioned earlier in this section, we will limit our analysis to evaluations
that were performed by an external evaluator (i.e., not the developers of the systems)
to remove any conflict of interest and ensure an unbiased evaluation.

According to the “Defense Advanced Research Projects Agency (DARPA)” web site, the
Mind’s Eye Program’ “seeks to develop machine-based visual intelligence by automating
the ability to learn generally applicable and generative representations of actions
between objects in a scene directly from visual inputs, and then reason over those
learned representations. The focus of this project is on the military domain, where Army
scouts are commonly tasked with covertly entering uncontrolled areas, setting up a
temporary observation post, and then performing persistent surveillance for 24 hours or
longer. A truly "smart" camera would describe with words everything it sees and reason
about what it cannot see. These devices could be instructed to report only on activities
of interest, which would increase the relevancy of incoming data to users. Thus, smart
cameras could permit a single scout to monitor multiple observation posts from a safe
location.”

To evaluate the activity recognition, the DARPA program identified 2,588 short vignettes
(approximately 15 seconds to 20 seconds each) of 48 different activities. Each activity
was represented by approximately 54 of the short vignettes. The activities that were
explored are shown in Table 1.

5 http://www.darpa.mil/Our Work/I20/Programs/Minds Eye.aspx (August 14,
2012)

47

Table 1: Actions Used for Activity Recognition

Approach Close Flee Have Open Run
Arrive Collide Fly Hit Pass Snatch
Attach Dig Follow Hold Pick up Stop
Bounce Drop Get Kick Push Take
Bury Enter Give Jump Put down Throw
Carry Exchange Go Leave Raise Touch
Catch Exit Hand Lift Receive Turn
Chase Fall Haul Move Replace Walk

The eight systems under evaluation had to determine if one or more of the verbs listed
above were present in the vignettes. There were two metrics used. The first was
precision which is defined as:

b L VerbMatches (1)
Tt = e bMatches + FalsePositives

The precision results from each team are shown in Figure 13. Team scores ranged from
21% to 60%.

For the second metric, the program used the Matthews Correlation Coefficient (MCC),
which is a balanced measure of correlation which can be used even if the classes are of
different sizes (in lieu of accuracy). The formula is:

~ TP« TN — FP « FN
J@TP +FP)(TP + FN)(TN + FP)(TN + FN)

Mcc ()

48

07

Description Precision By Team Verbe:

06
Verbs:
7
05 Verbs:
15
04 4
Verbs: M Precision
0.3 - 37 Verbs:
Verbs: 28
8
0.2 -
01 1
0 - T T T T
T™ A T™MB ™ C ™D T™ME T™F ™G TMH
Figure 13: Precision Results from Mind's Eye Evaluation
Recognition By Team

0.7 0.63

a8 05y 054

0.5

0.4

0.31
03 0.29 0.29

0.19
02 513
0.1]
0 il | | | I | | I | |
™ T™ T™ T™ T

™ M ™ ™
A B i D E F G H

Percent Recognized

Figure 14: Results of MCC Metric

49

TP are true positives, TN are true negatives, FP are false positives, and FN are false
negatives. The results of applying this metric are shown in Figure 14 and are very similar
to the precision metrics, where systems scored between 12% - 63% when using this
metric, with an average of approximately 36%.

2.2.3. Comparison of State and Activity Recognition

In both cases, the system was given a scene or video and asked to characterize it by
stating either the type/pose/orientation of an object or the existence of an activity.
While it is impossible to perform a direct comparison between these two approaches,
these examples provide a sampling of the type of performance that can be expected by
each type of technology. Based on this analysis, it appears that state recognition
systems are approximately 40% (75% vs. 35%) more accurate than the activity
recognition systems. This shows the benefit in using state information as the basis for
performing intention recognition as opposed to using activity information.

The next section will describe various approaches to state representation in the
literature, with an emphasis on ontology-based state representation as this will be the
focus of this thesis.

2.3. State Representation

In this section, we will explore approaches to representing spatial and state information,
which an emphasis on ontology-based approaches. [86] gives an excellent overview of
this field; we will summarize the key points below as it relates to this thesis. In this
thesis, spatial information refers to the relative and absolute physical location of objects
in the environment. State information is more general, and can also include information
such as color, shape, size, etc.

2.3.1. States and Spatial Knowledge in High-Level Ontologies

Foundational ontologies, such as Basic Formal Ontology (BFO) [87], Descriptive Ontology
for Linguistic and Cognitive Engineering (DOLCE) [88] and General Ontological Language
(GOL) [89] provide the fundamental concepts needed in ontologies. These include the
high-level concepts and the attributes or characteristics that pertain to them, all
stitched together with axioms which provide their relationship to each other. Typical
types of information that are captured in these ontologies are attributes of physical
objects and how those attributes change over time. One such type of attribute is the
spatial relations between and among these physical objects. However, in these
ontologies, the level of abstraction is so great that they are not directly useful to
detailed applications [90].

At a level lower, one can refer to general ontologies. Although often overlapping with
foundational ontologies, general ontologies specialize the categories needed to

50

represent detailed spatial relations. General ontologies, such as Cyc [91], Omega [92],
SUMO [93], and SWIntO [94], typically encompass a broader set of information about
specific concepts similar to what one would find in an encyclopedic. Ontologies can also
contain abstract axioms about space (such as in SUMO and Cyc).

SUMO [93] combines various approaches to space and spatial relations to provide wider
coverage of the domain. It unites theory of holes [95] with aspects of mereotopology
and specifies a set of axioms capturing basic and fundamental concepts, such as that
physical objects can be situated in space and time. Locations are further characterized
as regions, which allow provide for the specialization of specific spatial relations such as
exactlyLocated, partlyLocated, among others.

The Cyc ontology [91] leverages various sources but does so using modularization by
decomposing its description into a set of microtheories. In the area of spatial theory,
some of the microtheories include naive geometry, naive physics, and naive spatial,
which was developed to capture the natural way humans perform spatial relation
reasoning [96]. The high-level entity for space is called SpatialThing, which possesses a
diverse collection of subtypes, as shown in Figure 15. An overview of Cyc and its
representation of space can be found in [97].

spatiallyRelated [BaseKB]
coDecompositions
securedBy-Contributing
convexHullOf
fitsln
perpendicularObjects
peintingTowards

spatiallyRelated [NaiveSpatialVocabularyMt]
aligned
connectedTo
hasBeenIn
parallelObjects
notFarFrom
connectedTo
spatiallyDisjoint

spatiallyRelated [NaivePhysicsMt]

physicalParts-disjoint
onSamePlanetSurfacels

Figure 15: Sample Cyc Spatial Relations

51

Not surprisingly, in less complex ontologies, less useful details are often provided. Many
of them simply have an inheritance hierarchy plus scattered attributes and axioms.
These types of ontologies focus on large semantic lexicon initiatives [98] — and often
only provide thesaurus-type descriptions for structuring concepts. These ontologies
provide a basis for knowledge related to spatial relations to be inferred, but often little
else. For example, some information pieces that could be included are geographic
entities, building types, types of spatial relations, etc., but with little detail about their
meaning. There is a large variation in types of ontologies, with some containing loose
definition and some containing formal axioms. In addition, whenever axiomatization
does not exist in an ontology, the designers frequently do not follow basic principles of
ontological modeling, such as those described in [99, 100].

There are also application-specific ontologies. These often limit axiomatization and
definitions to only what is necessary for their specific application needs. Although not
considered to be ontologies, this information can often be very valuable for creating
more formal ontologies for those domains. Example domains that contain a rich amount
of state and spatial relations include mapping and geographic information standards,
including the ones being developed in the International Organization for Standardization
(1ISO) technical committee on geographic information (ISO/TC 211, Geographic
Information/Geomatics: http://www.isotc211.org/), the Open Geospatial Consortium
(OGC: http://www.opengeospatial.org/), the spatial reference model of the Synthetic
Environment Data Representation and Interchange Specification (SEDRIS:
http://www.sedris.org/), the Building Information Model (BIM), the W3C Geospatial
ontology incubator group (http://www.w3.0rg/2005/Incubator/geo/XGR-geo-ont/), and
national mapping agencies such as the U.K. Ordnance Survey or the U.S. Geological
Survey [101].

Well-known structures (though perhaps not ontologies in the formal sense) such as
EuroWordNet [102], FrameNet [103], WordNet [104], and VerbNet [105] all including a
large amount of terms related to space— including concept such as place, North, South,
locations, parts, regions, along with specific spatial objects— yet, as discussed above,
many of them are little more than a hierarchy of terms with few definitions. Some of the
spatial relations that do occur are modeled using case roles, but these roles do not
provide formal semantics.

2.3.2. Approaches to Spaces Representation Within Detailed Ontologies

Unlike the foundational and general ontologies discussed above, there are a large set of
detailed ontologies that offer representations of space and spatial semantics. Here, it is
beneficial to focus on the areas of qualitative spatial representation, which will be the
focus of the state representation approach present in this thesis. In qualitative
representations, a situation is characterized by variables that can only take a small,
predetermined number of values [106]. Qualitative descriptions can include concepts

52

such as in_front_of, behind, on_top_of, next_to, etc. This makes the specifics of precise
metrical information more abstract.

It is well cited in the literature that qualitative descriptions are more representative of
human perception, as this is how human typically refer to the spatial relations between
objects. The argument against this focuses on the intuitive level — for instance, the
concept of geometric points is often rejected as an adequate abstractions because zero-
dimensional objects cannot be seen [107]. Mark [108] wrote about the relation between
human judgments of relations between regions and lines, including particular spatial
calculi distinctions. Rauh, Renz and Knauff [109, 110] explored the degree of fit between
gualitative spatial descriptions and preferred mental model building during the task of
problem solving. Klippel, Kai-Florian, Barkowsky and Freksa [111] argued that
qualitatively constructed maps lend themselves well to interactions with Geographic
Information Systems. Kuehne and Forbus[112] suggested that qualitative
representations are needed for natural language semantics in various domains. Knauff
[113] provides a review of the literature focusing on cognitive adequacy.

As shown above, using qualitative methods to capture space and spatial relations within
ontologies align well for capturing a perspective on space in line with human intuition.
However, in specific domains, such as ontologies for geographic observation data, the
need for metrical representations of space is necessary and implemented [86].

One of the more well-known implementations of a qualitative representation and
reasoning is the Region Connection Calculus (RCC) [113]. RCC is a form of
characterization of the mereotopology often used in foundational ontologies. When
applied to two-dimensional areas, this calculus represents spatial configurations by
describing convex regions and a small set of spatial relations which can be applied to
those regions.

Region Connection Calculus 8 (RCC-8) [114] is a well-known and cited approach for
representing the relationship between two regions in Euclidean space or in a topological
space. There are eight possible relations, including disconnected, externally connected,
partially overlapping, etc. However, RCC8 only addresses these relationships in two-
dimensional space. There have been approaches that have tried to extend this into a
region connected calculus in three-dimensional space while addressing occlusions [115].
There have also been approaches to develop calculi for spatial relations. FlipFlop
calculus [116] describes the position of one point (the referent) in a plane with respect
to two other points (the origin and the relatum). Single Cross Calculus (SCC) [117] is a
ternary calculus that describes the direction of a point (C - the referent) with respect to
a second point (B - the relatum) as seen from a third point (A - the origin) in a plane.
Double Cross Calculus (DCC) [117] extends SCC by allowing one to also determine the
relative location of point A with respect to point B (in addition to point B with respect to
point A as in SCC). Coarse-grained Dipole Relation Algebra [118] describes the
orientation relation between two dipoles (an oriented line segment as determined by a

53

start and end point). Oriented Point Relation Algebra (OPRA) [119] relates two oriented
points (a point in a plane with an additional direction parameter) and describes their
relative orientation towards each other. All of these approaches, apart from RCC8, focus
on points and lines as opposed to regions. Also, despite the large variety of qualitative
spatial calculi, the amount of applications employing qualitative spatial reasoning
techniques is comparatively small [120]. The combination of RCC constructs with other
relations, such as proximity or time-related relationships, have also been explored—
though many of these approaches have led to much computational complexity [121].

There are many other families of spatial calculi which address other conceptualizations
of space that differ from the RCC approach. These include exploration of orientation and
direction [117, 119] and of relative movement [122]. All propose reasoning approaches
similar to RCC, but don’t involve geometric calculations. A qualitative spatial reasoning
summary is given by [123], while [97] describes spatial information approaches found in
foundational ontologies.

In the next section, we will explore some ways that spatial information can be
characterized.

2.3.3. Different Dimensions of State (Spatial) Representation

Moratz [124] identified three reference systems for spatial knowledge; intrinsic,
relative, and absolute. Each occurs from three different perspectives depending on
whether the agent is performing the actions, the agent is observing the actions, or a
third entity is observing the action. This approach, though created for dialogue systems,
will be explained in terms of the manufacturing domain, as this is the initial focus of this
thesis.

In an intrinsic reference systems, the relative position of one object (which is referred to
as the referent) to a second object (which is referred to as the relatum) is characterized
by referencing the relatum’s intrinsic properties, which could include its front or back.
In a situation where a part (the referent) is placed in the front of a machine (the
relatum), the part could be clearly identified by referencing the machine’s front as the
reference system’s origin. In such a situation, the performer’s or observer’s positions are
not relevant to identify the object. Although, the performer’s or observer’s left or right,
might also represent the origins in intrinsic reference systems in statements such as,
“The part is to the left of you.” In such cases, no further entity is needed.

Humans employing relative reference systems use the third party’s position as origin. In
this case, the part (the referent) might be placed to the right of the machine (the
relatum) from the performer’s, the observer’s, or a different entity’s point of view
(origin). All three may result in different “rights.” Here, the machine’s front and back are
not relevant.

54

In absolute reference systems, the Earth’s cardinal directions, such as east and west,
serve as directions. A third entity and intrinsic features are not used as reference. Thus,
the part might be situated to the west of the performer, the observer, or the machine.

As another perspective, Bateman and Farrar [125] described four high-level
requirements that are needed for any spatial representation. These high-level
requirements include:

e Requirement 1: A selection of an appropriate granular partition of the world that
located entities in the world compared to other entities (e.g., identifying a chair,
driveway);

e Requirement 2: A selection of a space region formalization that makes possible
relevant spatial relationships;

e Requirement 3: A selection of an appropriate partition over the space region (e.g.,
RCCS8, qualitative distance, cardinal direction);

e Requirement 4: The identification of an entity’s location with respect to the selected
space region description.

l foundatiornal ontology

¢the “office’:

s 'pf'{iﬁ'ﬁ(:ﬁ;u? ’ -

© @ charr

\ .
v . . :
e, P — -
© ©® & H— "
: -
H

desk ‘left-nght’

‘i front - belund’

locations Relations

Figure 16: Qualitative Entity Location [126]

Figure 16 shows this graphically [126]. In this example, there is an office environment
where we are characterizing the location of objects in various ways, as may be needed
by a robotic system to identify the location of the object.

We could represent the office environment at different levels of granularity
(Requirement #1 above). We could refer to the office as a single entity or by the objects

55

that are in the office (e.g., chairs, desk), or at an extremely, by the molecules that make
up the items in the office. The granularity that is appropriate here is the specification of
the objects in the office, which is decomposed as blue circles shown in Figure 16.

The space region is decomposed according to a selected specification involving spatial
relations (e.g., in front of, behind, left, right). This, represented by the green inner box,
is a parameterized set of relations (R) for describing a particular location scheme
(Requirement #2 above).

We can then map the objects in the world to locations in the world, as shown by the
arrow from the chair (e;) to the location in space (l;) where the chair is located
(requirement #3 above). If we then want to locate some additional object that was not
in our original hierarchy (e;), we can select a relation (R;) from the space region in order
to capture that new object’s location (I;). We can then use descriptions such as “e; is to
the right of the chair” or “e, is near the chair,” depending on how the space region is
constructed (requirement #4 above).

Bateman ended up using a variation of the DOLCE ontology, but there is no mention in
the literature about the detailed spatial relations that were developed as part of this
effort apart from the high-level requirements.

2.3.4. Uses of Spatial Language in Various Applications

There have been applications of spatial knowledge representation is a number of fields,
but most of them focus on dialogue-based approaches. The fields of situated robotics
and geographic information science have achieved significant results. In situated
robotics tasks, which require interaction with humans, the people that are interacting
must have the ability to communicate about spatial actions and relationships. It is not as
simple as translating a spatial relation into an abstract semantic knowledge base
because the syntax and semantics must be related to the robot’s sensor system and
actuators. The issue of tying the representation to components and modules of the kind
described in [127] therefore play a pivotal role.

The discussion above that representations be tied to robotic sensory algorithms and to
actuator movement has led to the focus on numerically-based and approximate spatial
representations. There has been a lot of interest in the literature in the area of field
potentials. These are abstractions that capture the probability that some specified
gualitative spatial representation is deemed to be appropriate at a given point in the
potential field. As an example, in the expression “the block is to the left of the device”
might result in a field potential indicating a very high confidence for a block being along
a 90 degree clockwise axis to a specified orientation, with gradually lessening values as
the point moves further away from this axis. A large number of spatial expressions have
focused on this approach [128, 129] [130]. Robotics work has also addressed the

56

challenge of using embodied spatial language more effectively primarily because the
robots themselves are embodied agents with direct environmental sensory input [131-
133].

In GIS systems, when the need arises to enable human—computer interaction, one must
find correspondences between the system’s internal representation of space and
human-understandable representations. The mappings between abstract, internal
spatial representations, and natural language expressions have been well explored in
the literature [134-137] to provide GIS-compatible semantics for those expressions.

2.4. Conclusion

In this chapter, we have presented the state-of-the-art research in the areas of intention
recognition, state/activity recognition, and state representation. All three areas play a
vital role in the novel research described in the remainder of this thesis.

We have categorized intention recognition into logic-based approaches (which include
deductive and abductive techniques), probabilistic approaches, and case-based
approaches. Deductive approaches give definitive, provable results, but it is very rare in
intention recognition that enough information (observations) is provided to be able to
only use this approach. Abductive approaches provide reasonable explanations when
the intention is not deductive, but mechanisms are need to choose between the various
possible explanations.

Probabilistic approaches use well-tested theories to assign likelihoods to various
intentions, but determining the input probabilities or belief to use these approaches can
be more of an art than a science. Case-based approaches leverage previous instances of
the same or similar intentions to try to match to what is being observed in the
environment, but this starts to fall apart if there are no previous cases that match the
current observations. We have also explored BDI approaches, which provide a
mechanism for separating the activity of selecting a plan from the execution of currently
active plans. However, BDI approaches lack mechanisms to learn from past behavior and
the architecture doesn’t have any forward planning.

We have explored metrics to measure the performance of intention recognition
systems. Surprisingly, the literature is very light on these metrics. The one set of metrics
that were found, namely applicability, grounding, and completeness, was described in
terms of manufacturing-based intention recognition although it was originally applied to
dialogue understanding systems.

We have then discussed the state-of-the-art research in activity and state recognition. A

key component of this thesis is that fact that we use state information as the basis for
recognizing intentions as opposed to using activity information as is predominantly

57

performed in the literature. We showed two evaluation efforts, the Solutions in
Perception Challenge and DARPA’s Mind’s Eye program, to represent the state-of-the-
art performance in state and activity recognition, respectively. These two evaluations
were purposely chosen because they are unbiased, independent evaluation which
occurred to assess the performance of the developed systems. In many other
evaluations, the developers evaluated themselves, often with situations and scenarios
that favored their systems.

While it is impossible to perform a direct comparison between these two evaluations,
these examples provide a sampling of the type of performance that can be expected by
each type of technology. Based on this analysis, it appears that state recognition
systems are approximately 20% (80% vs. 60%) more accurate than the activity
recognition systems. This shows the benefit in using state information as the input for
performing intention recognition as opposed to using activity information.

Finally, we show the various ways that state and spatial information have been
represented in ontologies. This ranges from very high-level abstract representations in
foundational ontologies to more specific representations in domain-specific ontologies.
We also make the case for using qualitative methods for capturing a perspective on
space more in line with human intuition. We look at various qualitative representation
approaches, with an emphasis on RCC8, which serves as the basis for much of the work
described in this thesis.

The approach described in this thesis uses what we believe to be the best aspects of all
of the intention recognition approaches. It is primarily an abduction-based approach
since it is trying to determine intentions based on a series of observations that don’t
definitively point to a single intention. In addition, it uses deduction to determine spatial
relations that are true in the world based on primitive RCC8 relations. It applies a
probabilistic approach by applying Bayesian techniques to assign probabilities to
possible intentions. It also uses case-based reasoning approaches by predefining, in an
ontology, the possible intentions that can occur in the world and the series of states
that compose them, and then matches the observed states to those in the ontology.

The primary contribution of this work is the paradigm of using state information, and
the sequence of the observed states, to infer intentions. For this we use qualitative
representations, specifically RCC8 plus some cardinality relations, to represent the state
of the world. We then map these sequences of states to those that are predefined in the
ontology to infer intentions. As shown in this section, because state detection has
shown to be more accurate that activity detection, this would therefore imply that the
results of the intention recognition that use states as opposed to activities should be
correspondingly more accurate.

58

The rest of this thesis is organized as follows:

The component of this research applied to state representation is discussed in
Chapter 3;

The component of this research applied to intention recognition based on state
representations is discussed in Chapter 4;

The system architecture that was used for the experiment is described in
Chapter 5;

The performance of these approaches applied to the manufacturing kitting
domain is discussed in Chapter 6.

59

3. State Representation and Reasoning

In this chapter, we describe an approach that uses RCC8 relations to model state
information based on the relative position of objects in the environment [138]. We
extend RCC8, which was initially developed for a two-dimensional space, into a three-
dimensional space by applying it along all three axial planes (xy-plane, yz-plane, xz-
plane) [139]. The frame of reference will be with respect to the reference object (e.g., a
worktable), with the z-dimension pointing straight upwards and the primary axes of the
object extending in the x- and y- dimension (with detailed orientation specific to the
application). Each of the high-level state relationships (to be discusses later in the
thesis) will have a set of logical rules that that are based upon the truth values of the
RCC8 relations. By basing the state information on easily observable spatial relations,
sensor systems will be able to more easily characterize the environment.

The state of objects in the real world can be determined by using different types of
sensors, including cameras, laser range finders, and depth sensors. For the purpose of
this work, we assume a Kinect-like sensor®, which includes a 3-D depth sensor and a
Red-Green-Blue (RGB) camera. In the experiments described in [81] showing the
accuracy of state detection algorithms, a Kinect sensor was used. The placement of the
Kinect sensor(s) to ensure maximum coverage of the work area is very important, and
this placement will be specific to the individual application. This thesis does not focus on
the types or placements of the sensors. Instead, it focuses on how intentions can be
inferred from the output of the sensors.

3.1. The State Relation Ontology

In this section, describe our approach to representing state relations and how this
information is captured in an ontology. An ontology-based approach was used through
this thesis for the following reasons:
e Ontologies tend to be very expressive in what they can capture (including
detailed descriptions of manufacturing objects and states);
e There are existing manufacturing ontologies that could be leveraged for this
work;
e An IEEE Ontologies for Robotics and Automation Standards group was forming in
which this work could be proposed.

6 http://support.xbox.com/en-US/xbox-360/kinect/kinect-sensor-components
60

3.1.1. RCC8 Approach

Based upon the fact that RCC8 was the most mature spatial reasoning approach
available in the literature that could handle solid region, it was chosen for this work.

As mentioned in the previous chapter, RCC8 abstractly describes regions in Euclidean or
topological space by their relations to each other. RCC8 consists of eight basic relations
that are possible between any two regions:

Disconnected (DC);

Externally Connected (EC);

Equal (EQ);

Partially Overlapping (PO);

Tangential Proper Part (TPP);
Non-Tangential Proper Part (NTPP);
Tangential Proper Part Inverse (TPPi);
Non-Tangential Proper Part Inverse (NTPPi).

These are shown pictorially in Figure 17.

XTPPY X NTPPY

XTPPiY X NTPPi Y

Figure 17: RCC8 Relations (Credit: http://en.wikipedia.org/wiki/RCCS)

RCC8 was created to model the relationships between two regions in two dimensions. In
many domains, these relations need to be modeled in all three dimensions. As such,
every pair of objects has a RCC8 relation in all three dimensions. To address this, we are
prepending an xy-, yz- or xz- before each of the RCC8 relations to denote axial planes.
For example, to represent the RCC8 relations in the xy-plane, the nomenclature would
be:

61

e xy-DG;

e Xxy-EC;

e Xxy-EQ;

e Xxy-PO;

e xy-TPP;

e Xxy-NTPP;
e xy-TPPj;
e xy-NTPP.

Similar nomenclature would be used in the yz- and xz- dimensions.

The combination of all 24 RCC relations (eight per plane) starts to describe the spatial
relations between any two objects in the scene. However, more information is needed
to represent the cardinal direction between any two objects. For example, to state that
a worktable is empty (worktable-empty(wtable)), one needs to state that there is
nothing on top of it. For this approach, we use the reference frame attached to a fixed
point of reference (in this case, the worktable) with the positive z-direction pointing
away from the gravitational center. Using this approach, we can start to model this state
by saying that:

yz-EC(wtable, obj1) 3)

This intuitively means obj1 is externally connected to the worktable in the z-dimension.
However, this is not sufficient because obj1 could be either on top of or below the
worktable, both which would make Equation 3 evaluate to true. To address this, we
need to represent directionality. We do this using the following Boolean operators:

greater-x(A,B) (4)
smaller-x(A, B))
greater-y(A,B) (6)
smaller-y(A,B) (7)
greater-z(A,B) ®)

62

smaller-z(A,B) 9)

This intuitively means, in Equation 5, that the edge of the bounding box of Object A is
greater than (in the x-dimension in the defined frame of reference) the edge of the
bounding box of Object B with respect to the separation plane..

3.1.2. Defining More Complex Relations

There are undoubtedly many other relationships that may be needed in the future to
fully describe a scene of interest. These could include absolute locations [140] and
orientations of objects (x, y, z, roll, pitch, yaw) and relative distance (closer, farther,
etc.). However, the spatial relations defined in this chapter are sufficient for describing
the manufacturing kitting example used later in this thesis.

From these RCC8 spatial relations, we can define more complex spatial relations such as
the ones below:

e Contained-In- an object is enclosed in a second object from all sides;

¢ Not-Contained-In- an object is not enclosed in a second object from all sides;

e Partially-In: an object is inside of another object in at least two dimensions but
not fully contained in;

e In—Contact-With- an object is touching at least one side of another object, but
not contained within it (i.e., touching outer edges);

e On-Top-Of- an object is in the same x-y region as second object and is greater (in
the z-dimension) than that of a second object;

e Under- an object is in the same x-y region as second object and is less than (in
the z-dimension) than that of a second object.

And from these, we can define composite spatial relationships such as:

e Under-And-In-Contact-With- an object is both under and in contact with a
second object;

e Partially-In-And-In-Contact-With- an object is inside of another object in at least
two dimensions and touching the object in at least one dimension.

Below we formalize these spatial relationships by defining them using the RCC8 state
representation [6]. In natural language, Equation 10 below states that Object 1 (obj1) is
contained in object 2 (obj2) if objl is tangentially or non-tangentially a proper part of
Object 2 in the x, y, and z-dimension. One can logically envision this by drawing two
convex figures, and the first convex figure is completely inside of the second convex
figure in all three dimensions, with it touching or not touching the second convex hull in
any of the three dimensions.

63

Contained-In(obj1, obj2) —
(xy-TPP(obj1, obj2) V xy-NTPP(obj1, obj2)) A
(yz-TPP(0obj1, obj2) V yz-NTPP(obj1, obj2)) A

(xz-TPP(obj1, obj2) V xz-NTPP(obj1, obj2))

Not-Contained-In(obj1, obj2) —
—Contained-In(obj1, obj2)

Partially-In(obj1, obj2) —
((xy-TPP(obj1, obj2) v xy-NTPP(obj1, obj2)) A (yz-PO (obj1, obj2) A xz-
PO(obj1, obj2)) V ((xz-TPP(obj1, obj2) v xz-NTPP(obj1, obj2)) A (yz-PO
(obj1, obj2) N xy-PO(obj1, obj2)) V ((yz-TPP(obj1, obj2) v yz-NTPP(obj1,
obj2)) A (xz-PO (obj1, obj2) N xy-PO(obj1, obj2))

In-Contact-With(obj1, obj2) —
xy-EC(obj1, obj2) Vyz-EC(obj1, obj2) Vv xz-EC(obj1, obj2)

On-Top-Of(obj1, obj2) —
greater-z(obj1, obj2) A (xy-EQ(obj1, obj2) vV xy-NTPP(obj1, obj2) v
xy-TPP(obj1, obj2) V xy-PO(obj1, obj2) Vv xy-NTPPi(obj1, obj2) v
xy-TPPi(obj1, obj2))

Under(obj1, obj2) —
smaller-z(obj1, obj2) A (xy-EC(obj1, obj2) V xy-NTPP(obj1, obj2) vV
xy-TPP(obj1, obj2) V xy-PO(obj1, obj2) V xy-NTPPi(obj1, obj2) vV
xy-TPPi(obj1, obj2))

Under-And-In-Contact-With(obj1, obj2) —
Under(obj1, obj2) A In-Contact-With (obj1, obj2)

Partially-In-And-In-Contact-With(obj1, obj2) —
Partially-In(obj1, obj2) A In-With-Contact(obj1, obj2)

64

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

These spatial relationships will be used later in the thesis to define two manufacturing
kitting intentions.

3.1.3. State Relation Ontology Constructs

The spatial relations above are represented as subclasses of the RelativeLocation class
which is a subtype of the PhysicalLocation class which is a subtype of the DataThing class
in the ontology (to be discussed in more detail later in the thesis). DataThings are
abstract, non-tangible things. There are three types of spatial relations, each described
below:

e RCC8_Relations- These are the 24 RCC8 relations and the six cardinality direction
operators described earlier in this chapter. These classes are not any further
defined but can be instantiated as occurrences of them are found in the
environment;

¢ Intermediate_State_Relations- These are intermediate level state relations that
can be inferred from the combination of RCC8 and cardinal direction relations.
The examples above, such as Under and In-Contact-With, are examples of
intermediate state relations. The logical expression based on the RCC8 and
cardinal direction relations (as shown in Equations 10-17) which are evaluated to
determine that truth-value of the state relations are represented within the
Equivalent Classes in the ontology. The information is exported from the
ontology during run-time and converted into code that is evaluated as new
perception data is presented to the system;

e Predicates- These are domain-specific states that are of interest to the current
intention (or set of intentions) being evaluated. For example, in the
manufacturing example to be discussed later in the thesis, one state of interest is
that the worktable is empty. This is true if the worktable is not Under-And-In-
Contact-With any object in the environment. The truth-value of predicates can
be determined through the logical combination of intermediate state relations.
As with the intermediate state relations, these are captured using the equivalent
classes in the ontology.

A screen shot of the class hierarchy of the state relations in the ontology can be seen in
Figure 18.

65

sfi][x]

& NegativePredicateSet

> ----'""'OrderlngConstruct

¥--& PositivePredicate

O KitHasKitTray

2 LBWKHasKit

2 LEWEKNotFull

£ WorkTableHasKit

2 WorkTableHasKitTray
--& WorkTableHasNoObjectOnTable
& PositivePredicateSet

B Precondition

k@ PredicateGroupElement
b0 PredicateGroupElementOR
h.

S SOAP
»--& SolidObject
¥ StateRelation
T 3NegatweStateRelatmn
-& MNotContainedIn
- & NotInContactWith
% NotOnTopwithContact
! -2 MNotUnderWithContact
"i"-----% PositiveStateRelation
- ContainedIn
- ContainedInLBWK
- InContactWith
-~ OnTopOf
@ OnTopWithContact
-0 PartiallyIn
- PartiallyInAndInContactWith
- Under
- UnderwithContact

[»

l

Figure 18: State Relation Ontology

The State Relation Algorithms

3.2.1. Projecting the Objects onto the Planes and Determining the

Contour

66

Based on the ontological constructs described in the previous section, the state relation
algorithms first project objects in the environment onto the three axial planes, then
determine if the projections overlap to establish the RCC8 relations in each plane, and
finally determine the intermediate state relations based on the RCC8 relations. This
process is described in this section.

The RCC-8 spatial relations in each axial plane can be determined by projecting the point
cloud representing the three-dimension solid object onto each of the axial planes. The
first step in this process is to determine the contour of each shape projected onto each
of the three axial planes. We use as input into this process the set of 2D vertices that are
projected on each plane as well as the list of nearest neighbor vertices. Figure 19a
shows a schematic drawing explaining the first part of algorithm. Open circles represent

the starting point (ko) and the last point (k) of a closed boundary loop organized in the
clockwise direction. Black dots correspond to vertices on a boundary while gray dot
represent vertices from inside a 2D region limited by a loop. The vertex ko is directly
connected with four vertices (nearest neighbors): ki, ..., ks. Vertex k; is set as ktry, which
is an initial candidate for the next point on the loop. Then, remaining nearest neighbors
are consecutively checked. Since the vector product of two vectors, (P(k:,) — P(ko)) x
(P(k2) - P(ko)), points behind the 2D plane, k; is rejected. The next candidate for k¢, is k3
and since this time the cross product is directed upward, this point is accepted. The last
vertex ky is rejected in the same way as k, before. Once this process is complete, the
complete contour of the object on the specified projection is determined.

Figure 18a: Build Projection Contour Figure 18b: Determine Contour Overlap

Figure 19: Projection Objects onto Places and Determining Overlap

3.2.2. Determining When Object Projections Overlap

The second step of the process is to determine if two projections are touching or
overlapping each other, as shown in Figure 19b. Two contours (A and B) intersect each
other only when there is at least one line segment in A and at least one line segment in
B which intersect. Necessary but not sufficient condition for intersection is that
bounding boxes of both loops overlap and each loop has at least one vertex in
overlapping region. In the drawing, open circle indicates the vertex belonging to loop B
which protrudes into 2D area limited by loop A. Pseudo-code for this process is shown in
Figure 20. Using this information, we can determine the overlap between the
projections of two objects, allowing us to determine the RCC relations.

67

1 function status = Check Loopintersection{A, B, eps)
2 S#input: loops A and B both orisnted dockwize, eps — small positive number {tolerance}
3 S output: status =true if A and B intsrsect, otherwise status =fake
4 status = falss;
5 bhbosa = findEBox[A}
b bboxE = findBEox[B}
7 owerlapaB = findoverlap[bboxa, bboxE}
2 if IzEmpty[overlapa B return status
a indea = findPrtsinRegion[A, overlapaE} J ind=a indices to points in A andinside overlapag
10 indxB = findPntzinRegion[B, overlapaE) /{ ind=B indic== to points in B and inside overlapaB
11 if indwa lenzth =0 | | indxB.length =0 returnstatus
12 J# there iz 3 possibility for intersection, check it now
13 if IsPointinside[A, indxa, B, indkB, eps} returntrue fF check i any point from B is inside
14 Ailoop A
15 if IsPointinside(B, indxE, A, indwd, eps}returntrue ff check i any point from A s inside
16 filoop B
17 return fales
18 end
19
20 function =status = 1zPointinside] Loop, Inda2Loop, Pots, Inde2Prt, eps)
21 InGearch=trus
22 for j=ttill Loop.length BE InSearch
23 k = Ind2 Loop[j}
24 PO = Loop[k-1)
25 wi = Loop[k) - PO ff this check is for line s=zment [k, k-1}
26 for i=1 till Pnts.length B Insearch
27 wi = Pnts[i}- PO
28 T =cross[wd, wij
29 fz<eps ff this time we check if PD i inside, not outside {3s we checked
30 £ before in algorithm for finding the boundary loop)
31 Insearch="fale
32 end
33 end
34 if ~insearch returntrue ff no need to continue, two loops intersect
35 B = Looplk)
36 wi = Loop[k+L}- PO fif this check i for line segment [k+1,k}
a7 for i=1 till Pnts. length BB InGearch
38 wi = Pnts[i} - PO
Ei] T =oross[wd, wi)
40 ifr=eps fif this time we check if PD iz inside, not outside {as we checked
41 f# before in algorithm for finding the boundary loop)
42 Insearch=fake
43 end
. end
45 end
46 if ~Insearch
47 return true [f two loops intersect
43 eles
49 return fake [two loops do not intersect
ED end
51 end

Figure 20: Pseudcode for Computing Overlaps

3.2.3. Inferring Intermediate State Relations from RCC8 Relations

Once the RCC8 relations are determined, a separate set of code is used to determine if
any intermediate spatial relation can be evaluated as true. At this point, all pairwise
relations between objects in the environment have been determined using the RCC8
relations. Intermediate state relations are based upon the RCC8 relations, and this
relationship is captured explicitly in the ontology. Examples of these relationships were
shown in Equations 10-17.

68

The code presented in Figure 21 shows an example of the On-Top-Of intermediate
state relation being evaluated. In lines 36-39, the On-Top-Of state relation is being
passed to the checkPredicate function along with two parameters: Part_A and
Worktable. The checkPredicate function in lines 1-33 take the name of the predicate
and search the ontology for the logical expression (composed of RCC8 relations) that
represents the intermediate state relation. Once this is found, it uses to two object
parameters to retrieved the truth value of the respective RCC8 relations and plugs them
into the intermediate state relation expression to determine the truth value of the
overall intermediate state relation.

1 bool PredicatesEvaluator::checkPredicate [std::string name, std:string objectl,
2 std:string object2) {

3 Predicate® pred= new Predicate/name);

4 pred-rget(nama);

5 LinkStack® s;

B std::wector<Predicate GroupElement®= relations =

7 pred->gethadByPredicateGroupElement_Predicate();

] for (unsigned inti=0;i < relations.size(); i++{

] relations[il-=get(relations[il-rgatnamea(});

10 RCCBComparator® comp;

11 if [1starts_with|

12 relstions[il-rgethasPredicateGroupElement_ReferancaMams(),

132 objectl))

14 comp = new RCCBComparatorSolidObjectSimplifier[objectl),
15 ZolidObjectSimplifier[object2));

16 glse

17 comp = new RCCBComparatorSolidObjectSimplifier[object2),
18 SolidObjectSimplifierfobject1));

19

20 StateRelation

21 * stateRelation =

22 new StateRelation| relztions[il->zethasPredicateGroupElement_Stzte Relztion|}-
23 »getnamel());

24 state Relation-=get|stateRelation->getname());

25 std::string StateRelationFormula=

26 stateRelation-»gethasStateRelation_RCCESet]);

27 5 = new LinkStack();

28 if [s-=Ewaluation(s-= postfix|s->split[StateRelationFormulz, ' 'Jj,
29 *comp)=="false")

30 return false;

31]

32 return true;

a2z |

34

35

36 and exemple ofcall :

37 bool result = pe-rcheckPredicate("On-Top-Of, "Part_A"

38 "WaorkTable");

349 std:cout << "On-Top-0f ? Part_ A, WorkTable = "<< result << std::endl;
40

Figure 21: Predicate Evaluation Pseudo-code

69

The algorithms presented in this section have an execution time proportional to the
number of points in the object projection’s contour times the total number of vertices in
the object’s projection. This is a lower bound for the best 2D convex hull algorithms
(such as Chan’s algorithm, http://en.wikipedia.org/wiki/Convex_hull_algorithms). The
execution time for the experiment presented later in this thesis is approximately 0.048
seconds for the object of interest.

3.3. The Manufacturing Kitting Ontology and Associated State Relations

Though we expect the approaches described in this chapter to be generic, we are
initially applying them to the manufacturing domain to show their feasibility. In this
section, we describe the manufacturing kitting domain, its associated ontology, the
relevant manufacturing state relations.

3.3.1. Human-Robot Collaboration Manufacturing Scenarios

The manufacturing domain is rich for human-robot interaction, which would be greatly
facilitated by an Intention Recognition Algorithm. In this section, we describe some
scenarios in which humans and robot may collaborate to accomplish a task. Some of the
these scenarios are adapted from other models [141] [142]. We will be focusing on one
of these scenarios later in the thesis, but this section is provided to show the breadth of
scenarios that would be applicable to approaches described in this thesis:

e Pick-up and Delivery of Parts - Consider a workcell during normal operation
where a person carrying or pushing something, or a mobile robot/Automated
Guided Vehicle (AGV), enters the workcell. These external agent(s) may be
passing through, dropping off or retrieving parts, arriving to perform
maintenance, or arriving to perform work at a station. The perception system
must detect and track all moving objects in the open space, with the ability to
resolve an accurate bounding shape but not necessarily to an articulated model.
The perception system must determine the positions of the AGVs, the robots
and the humans as well as identify their next steps and predict their intentions;

e Bin Picking — A robot arm, working independently while processing parts from a
bin, has its bin changed by a person. The arrangement is fenceless, so a person
can come close to the robot. The object could be a kit rather than a bin, or any
part container. The perception system needs to perceive the person coming
close, recognize the intent, stop the robot during the change, perceive that the
change has taken place correctly, and restart the robot when conditions allow;

e An AGV/Mobile Robot Working with Human(s) - The USCAR study [142] briefly
explains a current manufacturing scenario during automobile powertrain
assembly where humans and AGVs share the same space. In the example, the
workcell is “located adjacent to an aisle that is shared between pedestrian and

70

powered material handling vehicle traffic.” AGVs are not typically behind fences
and cordoned-off areas and must therefore be able to operate safely near
humans and other equipment. The AGV may be used to carry the item or pick up
the item and carry it or place it on top of another AGV. The AGV would follow
the person to a new location, recognizing gestures or verbal command along the
way, and determine the human’s intent. At the new location, the AGV would
either stop to allow the person to take the object or unload the item;
Human-Robot Assembly - As shown in Figure 22, a robot and person are on
either side of a table and collaborating on an assembly. In this case, the robot
may pick up a part and hand it to the person. The perception system needs to
track the part, the person’s gesture, and the intentions. It needs to follow them
through maintaining awareness of the changing space for safety, detect if the
part is properly handled by the person and the robot, compute the new profile
the interaction between person and robot, and identify when it is in the directed
final configuration;

Figure 22: Joint Human-Robot Assembly

Kit Building: The human takes empty kit trays out of a box containing empty kit
trays. They take parts out of parts trays or parts bins and put them into kit trays.
They take finished kits (kit trays with parts in them) and put them in a box of kits.
A robot may be in charge of monitoring the action to determine the intention
that the human is intending to perform, which could include which kit they are
currently building. The robot may take steps to help the human, including
replenishing parts that may not be available in the parts trays to complete the
kit, or simply to stay a safe distance away from the likely subsequent actions that
the human will perform. The robot may also track the actions and when the
intention is determined, make sure the subsequent steps are sufficient for
completing the kit (i.e., may sure that the human did not forget to put in a part).

71

3.3.2. Manufacturing Kitting Domain Description

We will initially focus on manufacturing kitting operations as described in the last
scenario above and in further elaborated in [143]. Kitting is the process in which several
different, but related items are placed into a container and supplied together as a single
unit (kit) as shown in Figure 23. Kitting is often performed prior to final assembly in
industrial assembly of manufactured products so all of the necessary parts are gathered
in one location. Manufacturers utilize kitting due to its ability to provide cost savings
including saving manufacturing or assembly space, reducing assembly workers’ walking
and searching times, and increasing line flexibility and balance.

In batch kitting, the kit’s component parts may be staged in containers positioned in the
workstation or may arrive on a conveyor. Component parts may be fixture (e.g., placed
in compartments on trays) or may be in random orientations (e.g., placed in a large bin).
In addition to the kit’s component parts, the workstation usually contains a storage area
for empty kit boxes as well as completed kits.

Figure 23: Example Kit (courtesy of LittleMachineShop.com)

Kitting has not yet been automated in many industries where automation may be
feasible. Consequently, the cost of building kits is higher than it could be [143].

3.3.3. The Manufacturing Kitting Ontology

An industrial kitting ontology has been developed [144] which will serve as the basis for
the Industrial Robotics Ontology as part of the IEEE Robotics and Automation Society’s
(RAS) Ontologies for Robotics and Automation (ORA) Standard Working Group’. The
industrial kitting objects ontology is written in Web Ontology Language (OWL) [145]. It is
included in Appendix A. Conceptually, the model is an object model. That is:

7 https://ieee-sa.centraldesktop.com/p1872public/
72

e the model consists primarily of class definitions;

e aclass defines a type of thing;

e classes have attributes (“elements” in XML schema language);

e the class definition gives the class (or data type for individual variables) of each
attribute;

e some attributes may occur optionally or multiple times;

e some classes are derived from others; thus, there is a derivation hierarchy;

e aderived class has all the attributes of its parent plus, possibly, some of its own;

e if class B is derived from class A, then if the type of an attribute is class A, an
instance of class B may be used as the value of the attribute;

e the model also uses primitive data types such as numbers and strings, and
provides for defining specialized data types by putting constraints on primitive
data types.

As shown in Table 1 below, the model has two top-level classes, SolidObject and
DataThing, from which all other classes are derived. SolidObject models solid objects
which are made of matter. DataThing models data. The level of indentation in the table
indicates subclassing. For example, KitTray is derived from SkuObject, and SkuObject is
derived from SolidObject. Items in italics following classes are names of data members
of the class. Derived types inherit the data members of the parent. Each data member
has a specific type not shown in the table. If the type of a data member has derived
types, any of the derived types may be used.

The names of the OWL properties that give the data members shown in the table are
formed from the data member name by adding the prefix hasclass_ where class is the
class name. For example, the name of the ObjectProperty for the SolidObjects data
member of a WorkTable is hasWorkTable SolidObjects. For the XML representation, the
prefixes are unnecessary and are not utilized.

Inverse properties are defined in the OWL version of the kitting workstation ontology
for all of the ObjectProperties. The names of the inverse object properties are formed
by changing the has at the beginning of the name to hadBy and reversing the order of
the other two components of the name. For example, the inverse of hasKit KitTray is
hadByKitTray Kit. The fact that two ObjectProperties are inverses is indicated by
putting an InverseObjectProperties statement in the ontology.

In the table, (0) means zero or one of the data member may appear in an instance file,
[0] means zero to many may appear, and [] means one to many may appear.

Each SolidObject has a native coordinate system conceptually fixed to the object. The
native coordinate system of a SolidObject with a BoxyShape, for example, has its origin
at the middle of the bottom of the object, its Z axis perpendicular to the bottom, and
the X axis parallel to the longer horizontal edges of the object.

73

Each SolidObject A has at least one Physicallocation (the primary location). A
PhysicallLocation is defined by giving a reference SolidObject B and information saying
how the position of A is related to B. Two types of location are required for the
operation of the kitting workstation. Relative locations, specifically the knowledge that
one SolidObject is in or on another, are needed to support making logical plans for
building kits. Mathematically precise locations are needed to support robot motion. The
mathematical location, PoseLocation, gives the pose of the coordinate system of A in
the coordinate system of B. The mathematical information consists of the location of
the origin of A’s coordinate system and the directions of its Z and X axes. The
mathematical location variety has subclasses representing that, in addition, A is in B
(PoseLocationIn) or on B (PoselLocationOn). The subclasses of RelativeLocation are
needed not only for logical planning, but also for cases when the relative location is
known, but the mathematical information is not available. This occurs, for example
when a PartsBin is being used, since by definition, the Parts in a PartsBin are located
randomly.

All chains of location from SolidObjects to reference SolidObjects must end at a
KittingWorkstation (which is the only class of SolidObject allowed to be located relative
to itself).

For planning, it is assumed that SolidObjects do not move unless a command moves
them. Also, if SolidObject A is in or on SolidObject B (so that the reference object for A
is B), then if B is moved, the position of A relative to B is unchanged.

A SolidObject may be given multiple locations by using its SecondaryLocation data
member. If multiple locations are used, they are expected to be logically and
mathematically consistent.

The kitting ontology includes several subclasses of SolidObject that are formed from
components that are SolidObjects. These are: Kit, LargeBoxWithEmptyKitTrays, and
LargeBoxWithKits. Combined objects may come into existence or go out of existence
dynamically when a kitting workstation is operating. For example, when all the kit trays
in a LargeBoxWithEmptyKitTrays have been removed and put into kits, the
LargeBoxWithEmptyKitTrays should go out of existence and the LargeContainer that
was holding kit trays should have its location switched from its location relative to the
LargeBoxWithEmptyKitTrays to the former location of the
LargeBoxWithEmptyKitTrays.

74

Table 2: Kitting Workstation Class Hierarchy

SolidObject PrimaryLocation Secondarylocation[0]

NoSkuObject InternalShape(0) ExternalShape(0)

EndEffector Description Weight MaximumLoadWeight HeldObject(0)

GripperEffector

VacuumEffector CupDiameter Length

VacuumEffectorMultiCup ArrayNumber ArrayRadius

VacuumEffectorSingleCup

EndEffectorChangingStation Base EndEffectorHolder][]

EndEffectorHolder EndEffector(0)

Human

Kit DesignName KitTray Part[0] Slot[0O] Finished

KittingWorkstation AngleUnit ChangingStation KitDesign[] LengthUnit
OtherObstacle[0] Robot Sku[] WeightUnit

LargeBoxWithEmptyKitTrays LargeContainer KitTray[0]

LargeBoxWithKits LargeContainer Kit[0] KitDesign Capacity

MechanicalComponent

Robot Description EndEffector(0) MaximumLoadWeight WorkVolume

WorkTable ObjectOnTable[0]

SkuObject Sku

KitTray SerialNumber

LargeContainer SerialNumber

Part SerialNumber

PartsVessel SerialNumber PartSku PartQuantity Part[0]

PartsBin

PartsTray

DataThing

BoxVolume MaximumPoint MinimumPoint

KitDesign KitTraySku PartRefAndPose[]

PartRefAndPose Sku Point XAxis ZAxis

PhysicalLocation RefObject Timestamp(0)

Poselocation Point ZAxis XAxis
PositionStandardDeviation(0) OrientationStandardDeviation(0)

PoselLocationin

PoseLocationOn

PoseOnlyLocation

RelativelLocation Description

RelativeLocationln

RelativeLocationOn

Point X Y Z

ShapeDesign Description GraspPose

ExternalShape ModelFormatName ModelFileName ModelName(0)

InternalShape

BoxyShape Length Width Height HasTop

CylindricalShape Diameter Height HasTop

Slot PartRefAndPose Part

StockKeepingUnit Description InternalShape(0) ExternalShape(0)
Weight EndEffector[0]

Vector | J K

75

The kitting workstation ontology provides two methods of describing shape: use a shape
defined in the ontology (an InternalShape), or use a shape described in a separate file
(an ExternalShape). Currently, there are only two types of InternalShape: BoxyShape
and CylindricalShape. An ExternalShape identifies the format and name of the file
containing the shape. If that file contains more than one shape, the Mode/Name data
member may be used to identify a particular one. Each SolidObject must have at least
one of the two types of shape and may have both. If both types of shape are assigned,
they should describe the same shape at different levels of detail.

In the kitting workstation ontology, there two principal subclasses of SolidObject:
SkuObject and NoSkuObject. If the SolidObject is a SkuObject, it gets its shape from its
SKU. If it is a NoSkuObiject, it gets its shape directly.

3.3.3.1. Class Structure Diagram

This section provides figures containing diagrams of the structure of the principal classes
in the kitting workstation ontology. All figures were generated by XMLSpy from the XML
schema. In the figures:
e Each box contains a data member of the class;
e A dotted line around a box means the data member is optional (may occur zero
times);
e A 0..e0o underneath a box means it may occur zero or more times, with no upper
limit on the number of occurrences;
e A 1..eo underneath a box means it must occur at least once, with no upper limit
on the number of occurrences;
e The irregular octagons with a line and three dots indicate sets of data members
added at different levels of the inheritance hierarchy.

76

KittingWorkstation

PrimaryLocation

= WeightUnit

Figure 24: Kitting Workstation Model

EndEffectorChangingStation

PrimaryLocation

EndEffectorHolder
S ——|
o0

1..

Figure 25: End Effector Changing Station Model

77

LargeBoxWithEmptyKitTrays

PrimaryLocation

Figure 26: Large BoxWith Empty Kit Trays Model

The robot model is simple and does not currently have any kinematics or even any
shape for the robot. It is likely that additional data members will be added in the future.

LargeBoxWithKits

PrimaryLocation

P

Figure 27: Large Box With Kits Model

78

Kit

PrimaryLocation

==
--4 ExternalShape

KitTray +3s]

Figure 28: Kit Model

Robot

PrimaryLocation

= MaximumLoadWeight ‘

WorkVolume [+
v—l
w

1.

Figure 29: Robot Model

79

StockKeepingUnit

Description

Figure 30: Stock Keeping Unit Model

WorkTable

PrimaryLocation

-+ ObjectOnTable

0=

Figure 31: Work Table Model

VacuumEffectorSingleCup

Figure 32: Vacuum Effector Single Cup Model

80

KitDesign

i KitTray SkuName

PartRefAndPose []
b ——
-

Figure 33: Kit Design Model

Part

PrimaryLocation

E.‘ieriall‘\llurrmer

Figure 34: Part Model

Poselocation

= RefObjectiame

" 4+~ Position StandardDeviation |

——————————————————————————————

Figure 35: Pose Location Model

3.3.3.2. Data Types

The OWL language borrows most of the XSDL built-in datatypes. In addition, specialized
OWL datatypes may be derived from the built-in datatypes by DatatypeDefinitions.
These correspond to XSDL derivations of simple types by restricting built-in types. The

OWL datatypes used in the kitting workstation ontology include:

81

AngleUnit- The angleUnit may be one of “degree” or “radian.” It specifies that
any property that represents angles will be expressed in angleUnit units. This is
defined by a DatatypeDefinition;

Boolean- A boolean is the XSDL xsd:boolean. Valid values for a boolean are true,
false, 0, and 1, where 0 is equivalent to false, and 1 equivalent to true;
DateTime- a dateTime is the XSDL xsd:dateTime. It represents the date and time
in the form YYYY-MM-DDThh:mm:ss.sss, where YYYY is the year, MM the month,
DD the day, T a literal T, hh the hour (00 to 23), mm the minutes, and ss.sss the
seconds (from which the .sss may be removed or extended);

Decimal- a decimal is the XSDL xsd:decimal. It represents a decimal number of
arbitrary precision. The format of a decimal is a sequence of digits optionally
preceded by a sign ("+" or "-") and optionally containing a period. The value may
start or end with a period. If the fractional part is O then the period and trailing
zeros may be omitted. Leading and trailing zeros are permitted, but they are not
considered significant. For example, the decimal values 8.0 and 8.000 are
considered equal;

LengthUnit- The lengthUnit may be one of “inch,” “meter,” or “millimeter.” It
specifies that any property that represents lengths will be expressed in
lengthUnit units. This is defined by a DatatypeDefinition;

NMTOKEN- The NMTOKEN is the XSDL xsd:NMTOKEN. It represents a single
string token. NMTOKEN values may consist of letters, digits, periods (.), hyphens
(-), underscores (), and colons (:). They may start with any of these
characters. NMTOKEN does not preserve white space, so any leading or trailing
whitespace will be removed. In addition, no whitespace may appear within the
value itself;

NonNegativelnteger- A nonNegativelnteger is the XSDL xsd:nonNegativelnteger.
This is defined as an arbitrarily large nonnegative integer. The digits may be
optionally preceded by a plus (+) sign. Leading zeros are permitted, but decimal
points are not;

PositiveDecimal- A positiveDecimal is derived from the XSDL xsd:decimal and is
restricted to be greater than zero. This is defined by a DatatypeDefinition;
Positivelnteger- A positivelnteger is the XSDL xsd:positivelnteger. This is defined
as an arbitrarily large positive integer. The digits may be optionally preceded by a
plus (+) sign. Leading zeros are permitted, but decimal points are not;

String- A string is the XSDL xsd:string. The type represents a character string that
may contain any Unicode character allowed by OWL. The string type preserves
white space, which means that all whitespace characters (spaces, tabs, carriage
returns, and line feeds) are preserved;

WeightUnit- The weightUnit may be one of “gram”, “kilogram”, “milligram”
“ounce”, or “pound”. It specifies that any property that represents weights will
be expressed in weightUnit units. This is defined by a DatatypeDefinition.

82

3.3.3.3. Activity Representation in the Manufacturing Kitting Ontology

In addition to representing objects, the ontology also represents activities [146].
Activities are needed show the transition between states. To represent activities in the
manufacturing kitting ontology, both the actions and the pre- and post-conditions of
those actions need to be represented. Preconditions and post-conditions (effects) are
formed by combining state relations, as described earlier in this chapter. An example of
the take-kittray (take kit tray) action is shown in Equation 18. In natural language, the
take-kt action involves a robot (robot) equipped with an end effector (eff) picking up a
kit tray (kittray) from within a large box with empty kit trays (/lbwekt). The action is
formally defined in the State Variable Representation [147] as:

take-kittray(robot, kittray, Ibwekt, eff, worktable) (18)

Table 3 shows the preconditions and effects (predicates) that are associated with this
action.

Table 3: Preconditions and Effects for the Action take-kittray

precondition Effects

robot-empty (robot) —robot-empty (robot)
Ibwekt-not-empty (Ibwekt) kittray-loc-robot(kittray, robot)
robot-with-endeffector (robot, eeff) robot-holds-kittray (robot, kittray)
kittray-loc-lbwekt (kittray, Ibwekt) —kittray-loc-lbwekt (kittray, Ibwekt)

endeffector-loc-robot (eeff, robot)

worktable-empty (worktable)

endeffector-type-kittray (eef, kittray)

Each of the state relations in the table above is described below:

e robot-empty(robot): TRUE iff robot (robot) is not holding anything;

e |bwekt-non-empty(/bwekt): TRUE iff Large Box With Empty Kit Trays (lbwekt) is
not empty;

e robot-with-endeffector(robot, eeff): TRUE iff Robot (robot) is equipped with an
EndEffector (eeff);

e kittray-loc-lowekt(kittray, Ibwekt): TRUE iff the Kit Tray (kittray) is in the large
box with empty kit trays (Ibwekt);

e endeffector-loc-robot(eeff, robot): TRUE iff the EndEffector (eeff) is being held by
the robot (robot);

e worktable-empty(worktable): TRUE iff there is nothing on the Worktable
(worktable);

83

e endeffector-type-kittray(eeff, kittray): TRUE iff the end effector (eeff) is designed
to handle the Kit Tray (kittray);

e —rhold-empty(robot): TRUE iff the robot (robot) is holding something;

e kittray-loc-robot(kittray, robot): TRUE iff the Kit Tray (kittray) is being held by
the robot (robot);

e robot-holds-kittray(robot, kittray): TRUE iff the Robot (robot) is holding the kit
tray (kittray);

e —kittray-loc-lbwekt(kittray, Ibwekt): TRUE iff the kit tray (kittray) is not in the
large box with empty kit trays (/bwekt).

There are many other actions that can be performed during the kitting operation,
including putting down a kit tray, picking up and putting down a part,
attaching/removing an end effector, etc. Each of these actions has associated
preconditions and effects as well, but is not used in this example.

3.3.3.4. Representing Manufacturing States

When modeling the state relations in the preconditions and effects shown in the
previous section, the first step is to precisely define the predicates in such a way as to
determine if there were similar intermediate spatial relations that could be leveraged.
We can start to formalize the previous definition of the state relations as shown in the
Revised Definition column of Table 4.

The predicates robot-empty, —robot-empty, and robot-holds-kittray depend on the
type of effector that is being used to define the predicate. We will assume there are two
types of end effectors: a vacuum end effector and a parallel gripper end effector. The
vacuum end effector picks objects up by positioning itself on top of the object and uses
air to create a vacuum to adhere to the object. The parallel gripper end effector picks
objects up by squeezing the object from both sides. Because the vacuum end effector
would not reasonably be used to pick up the kit tray, the vacuum-rhold(r, kt) state is not
included below. In the case of the vacuum end effector, the relevant predicates would
be:

e Vacuum-robot-empty(robot)- there is no object under and in contact with the
robot (robot) vacuum effector;

e —Vacuum-rhold-empty(robot)- there is an object under and in contact with the
robot (robot) vacuum effector.

84

Table 4: Revised Definitions of Spatial Relationships

Predicate

Previous Definition

Revised Definition

Ibwekt-not-
empty(/bwekt)

TRUE iff an object is in
the Large Box With
Empty Kit Trays (Ibwekt)

there is an object that is
contained in the Large Box
With Empty Kit Tray

robot-with-

TRUE iff Robot (r) is

the effector is in contact

endeffector(robot, eff) equipped with an with the robot
EndEffector (eff)
kittray-loc- TRUE iff the Kit Tray (kt) the Kit Tray is contained in
Ibwekt(kittray, is in the Large Box With the Large Box With Empty
Ibwekt) Empty Kit Trays (/lbwekt) Kit Trays
endeffector-loc- TRUE iff the EndEffector the effector is in contact
robot(eff, robot) (eff) is being held by the with the robot (Note:
robot (r) Same as (3) above)
worktable- TRUE iff there is nothing there is no object that is on
empty(worktable) on the Worktable top of and in contact with
(wtable) the Worktable
endeffector-type- TRUE iff the EndEffector the Effector can handle the
kittray(eff, kittray) (eff) is designed to KitTray

handle the Kit Tray (kt)

kittray-loc-
robot(kittray, robot)

TRUE iff the Kit Tray (kt)
is being held by the

the Kit Tray is in contact
with the Robot and there is

Robot (r) nothing under and in
contact with the Kit Tray
—kittray-loc- TRUE iff the Kit Tray (kt) the Kit Tray is not
Ibwekt(kittray, is not in the Large Box contained in the Large Box
Ibwekt) With Empty Kit Trays With Empty Kit Trays

(Ibwekt)

In the case of the parallel gripper end effector, the predicates would be

e Gripper-robot-empty(robot)- there is no object partially in and in contact with
the robot (robot) gripper;

e —Gripper-robot-empty(robot)- there is an object partially in and in contact with
the robot (robot) gripper;

e Gripper-holds-kittray(robot, kittray)- the Kit Tray (kittray) is partially in and in
contact with the robot (robot) gripper.

There is also one predicate that does not rely on spatial relations. The definition of
endeffector-type-kittray(eff, kittray) states that a specific effector must be able to be

85

used on a kit tray. This information is included in the ontology class to describe the kit
tray and therefore is out of scope of this document.

Based on the manufacturing kitting ontology and the spatial relations, we can formally
define the 11 manufacturing kitting predicates:

Ibwekt-not-empty(/lbwekt) —

SolidObject(obj1) A Contained-In(obj1, Ibwekt) (19)
robot-with-endeffector(robot, eff) — In-Contact-With(robot,
(20)
endeffector)
kittray-loc-lbwekt(kittray, Ibwekt) — Contained-In(kittray, Ibwekt) (21)

worktable-empty(worktable) —
SolidObject(obj1) A —On-Top-Of(obj1, worktable) A (22)
—In-Contact-With(obj1, worktable)

gripper-holds-kittray(robot, kittray) —
GripperEffector(eff) A robot-with-endeffector(robot, eff) (23)
A Partially-In-And-In-Contact-With(kittray, eff)

—kittray-loc-lbwekt(kittray, Ibwekt) — —Contained-In(kittray, Ibwekt) (24)

vacuum-robot-empty(r) >
SolidObject(obj1) A SolidObject(obj2) A VacuumEffector(eff) A
robot-with-endeffector(robot, eff) A —=(Under-And-In-Contact- (25)
With(obj1, eff) A
—Under-And-In-Contact-With(obj2, obj1))

86

—vacuum-robot-empty(r) >
SolidObject(obj1) A SolidObject(obj2) A VacuumEffector(eff) A
robot-with-endeffector(robot, eff) A Under-And-In-Contact-With(obj1, (26)
eeff) A
—Under-And-In-Contact-With(obj2, obj1)

gripper-rhold-empty(r) —>
SolidObject(obj1) A GripperEffector(eff) A

robot-with-endeffector(robot, eff) A (27)
—Partially-In-And-In-Contact-With(obj1, eff)
—gripper-rhold-empty(r) >
SolidObject(obj1) A GripperEffector(eff) A (28)

robot-with-endeffector(robot, eff) A
Partially-In-And-In-Contact-With(obj1, eff)

kittray-loc-robot(kittray, robot) — gripper-holds-kittray(robot, kittray) (29)

The formal definitions of these predicates will allow their existence to be logically
recognized in a manufacturing environment, which in turn can be used as input into a
state-based intention recognition system. The presence of predicates in certain
predefined orders can help a robot recognize the intention of a human in the
environment, which would allow the robot to better assist the human in performing
upcoming activities. This will be discussed in the next chapter.

3.4. Conclusion

In this chapter, we described an approach to state representation and reasoning that
will serve as the basis for the intention recognition approach to be described in the next
chapter. We also described how these state relations are represented in the ontology
and gave some background about the manufacturing scenarios to which this could be
applied. We then applied the state representation and reasoning approaches to the
kitting domain and described the manufacturing kitting ontology and how states could
be represented in this domain. Finally, we showed some exceptions to the algorithms
and how these exceptions could be identified and resolved.

In the next chapter, we will describe the intention recognition approaches. These
approaches are based on the output of the state representation algorithms.

87

4. Intention Recognition

In this chapter, we describe the Intention Ontology, how intentions are composed of
states, and how the Intention Ontology is used to determine the likelihood of intentions
that are perceived in the environment. [148].

4.1. The Intention Ontology

The Intention Ontology is composed of ordering constructs and intentions. Each is
described below.

4.1.1. Ordering Constructs

In this thesis, an ordering of state relationships represents an intention. As such, we
need a formal ontological mechanism to allow for this ordering. To do this, we borrow
some concepts that are described in OWL-S (Web Ontology Language — Services) [8].
OWL-S is described on the website (http://www.w3.org/Submission/OWL-S/) as “an
ontology of services enabling a user and software agents to discover, invoke, compose,
and monitor Web resources offering particular services and having particular
properties.” Though intended for web-based services, many of the same ordering
constructs are equally applicable to the representation of the sequencing of states.
OWL-S defines eight control constructs:

e Perform - execution of an action;

e OrderedlList - a list of control constructs to be done in order;

e Split- a “bag” of process components to be executed concurrently. The Split
completes when all of its component processes have been scheduled for
execution;

e Split+Join - concurrent execution of a group of process components with
synchronization. Split+Join completes when all of its components processes
have completed;

e Any-Order - process components (specified as a bag) to be executed in some
unspecified order, but not concurrently. All components must be executed;

e Choice - the execution of a single control construct from a given bag of control
constructs;

e If-Then-Else - intended as “"Test If-condition; if True do Then, if False do Else";

e lterate - makes no assumption about how many iterations are made or when to
initiate, terminate, or resume. The initiation, termination, or maintenance
condition could be specified with a whileCondition or an untilCondition;

e Repeat -While/Repeat-Until- Both of these iterate until a condition becomes
false or true. Repeat-While tests for the condition, exits if it is false and does the
operation if the condition is true, then loops. Repeat-Until does the operation,
tests for the condition, exits if it is true, and otherwise loops.

88

Table 5:

Initial State Representation Ordering Constructs.

OWL-S Control Construct

Adapted State
Representation
Ordering Construct

State Representation
Ordering Construct
Definition

Perform

Exists

A state relationship must
exist

Sequence

OrderedList

A set of state relationships
that must occur in a specific
order

Any-Order

Any-Order

A set of state relationships
that must all occur in any
order

Iterate

Count

A state relationship that
must be present exactly the
number of times specified
(greater than one).

Choice

Choice

A set of possible state
relationships that can occur
after a given state
relationship

Join

Co-Exist

Two or more state
relationships that must be
true

We adapt some of these control constructs to represent the ordering of states by
changing their name and definition as shown in Table 5. Column 2 in Table 5 shows the
state ordering constructs that we defined in this work. This is not an exhaustive list, but
the constructs shown are sufficient for representing the kit assembly shown later.

In the ontology, we represent the ordering constructs listed in Column 2 above as
subclasses of the overall “OrderingConstructs” class. In addition, we also leverage the
state relations that were modeled in the State Relation Ontology. In this context, a state
refers to an unordered list (a bag) of state relationships which completely describe the
state at a given point in time. A state contains one to many state relationships.
StateRelationships are defined using the RCC8 relationships described earlier. Table 6
shows what each ontology construct points to and its cardinality restrictions.

89

Table 6: Construct Details

Construct Points to: Cardinality

State StateRelationshipBag 1:n StateRelationships

StateRelationships SolidObject Exactly 2 SolidObjects

Ordering Constructs
AnyOrder OrderingConstructsBag 2:n OrderingConstructs
Choice OrderingConstructsBag 2:n OrderingConstructs
CoExists OrderingConstructsBag 2:n OrderingConstructs
Count OrderingConstruct Exactly 1 OrderingConstruct
Exists StateRelationship Exactly 1 StateRelationship
NotExists StateRelationship Exactly 1 StateRelationship
OrderedList OrderingConstructsList 2:n OrderingConstructs

4.1.2. Intentions

The second part of the Intention Ontology is the representation of the intentions
themselves. This part is very straightforward, since an intention is simply composed of
its corresponding ordering construct. In this case, we have a ontological construct call
intention, which contain subclasses representing each individual type of intention (e.g.,
Kit_1_Intention), and each type of intention has an attribute which points its
appropriate ordering construct. Both the ordering constructs and the intentions

represented in the ontology is shown in Figure 36.

90

j Claszs hisrarchy |/ Glas hiera‘rc‘h—y.{in.fe'rréﬂ:):
Clas= hiers o .

V@ Thing
v DataThing

@ Intention
@Kit_1_Intention
@ Kit_2_Intention
@Kit_3_intention
@ Kit_4_Intention
@ Kit_5_Intention
ActionBase
& ActionParameterSet
-& Domain
O Effect
@ Function
@ FunctionBooleanExpression
B--& FunctionOperation
NegativePredicate
-& NegativePredicateSet
OrderingConstruct
& AnyOrderOrderingConstruct
@ ChoiceOrderingConstruct
@ CoExistOrderingConstruct
& CountOrderingConstruct
& ExistOrderingConstruct
- & OrderedListOrderingConstruct

PositivePredicate
-& PositivePredicateSet
~ @ Precondition
- PredicateGroupElement
-~ PredicateGroupElementOR
-~ StateRelation

Figure 36: The Intention Ontology

4.1.3. AKitting Example

In this section, we will use the detailed scenario shown in Figure 37. In this scenario, a
person (not shown) is constructing one of two possible kits. In this case, the type of kit
being constructed constitutes the intention that is trying to be inferred. Both kits use
the same kit tray (Kit Tray) and contain a series of parts placed in the kit in any order. Kit
1 contains two Part A’s, two Part B’s, one Part C, and one Part D. Kit 2 contains three
Part A’s, one Part B, and one Part C. This is shown in Figure 38. In this scenario, all parts
with the same letter are identical (e.g., all A’s are the same, all B’s are the same). Other
parts are available at the workstation and could be used for other kit assemblies that
are not of interest for this example. A table is provided on which all work is performed.
Parts and part trays are available from a set of boxes that can be refilled as needed.
When a kit is completed, it is placed in a completed_kit box (not shown).

91

arge Box With
Empty Kit Tray

Part A Part C
Box Box
-, -, Kit Tra
nAan (] '
Part D Part E Part F
P;DIIB Box Box Box

a4 /& ()

Figure 37: Sample Kitting Scenario

Figure 38: Completed Kits 1 and 2

A person is tasked with creating these kits. The person may choose to create either of
these kits at any given time. A robot is available to assist the person by inferring which
kit the person is intending to create at a given time and providing support where
needed. The goal of the robot is to infer the intention of the human based on what it
perceives (i.e., which kit tray the human is assembling).

4.1.4. Kitting Example Represented in the Intention Ontology

For Kit 1, we can infer from the description above that the process for assembling this
kit would initially involve placing the kit tray (Kit Tray) on the table and then adding, in
any order, two Part A’s, two Part B’s, one Part C, and one Part D. Similarly, for Kit 2, we
can infer from the description above that the process for assembling this kit would
initially involve placing the kit tray (Kit Tray) on the table and then adding, in any order,
three Part A’s, one Part B, and one Part C. We can now use the state relations and the
ordering relationships to build intentions.

92

For Kit 1, we start by requiring that the Kit Tray be on the Table (where SR# stands for
state relation and OC# stands for Ordering Construct):

SR1 = On-Top-Of(KitTray, Table) (30)

OC1 = Exists(SR1) (31)

Next, we represent all of the states that can happen in any order and the number of
occurrences that must happen for each state relationship:

SR2 = Contained-In(PartA, KitTray) (32)

SR3 = Contained-In(PartB, KitTray) (33)

SR4 = Contained-In(PartC, KitTray) (34)

SR5 = Contained-In(PartD, KitTray) (35)

0OC2 = Count(SR2, 2) (36)

OC3 = Count(SR3, 2) (37)

OC4 = Count(SR4, 1) (38)

OCS5 = Count(SR5, 1) (39)

0C6 = AnyOrder(OC2, OC3, OC4, OC5) (40)
SR6 = Contained-In(KitTray, CompletedKitBox) (41)

93

OC7 = Exists(SR6) (42)

We also need to represent the states that cannot be true if this kit assembly is indeed
the intention. In reality, there are likely an infinite number of states that could make this
intention be deemed false. However, for this work, we will specifically focus on the
states that are possible in other intentions, but are not possible here. One of these
states may include:

SR7 = Contained-In(PartE, KitTray) (43)

0C8 = —Exists(SR7) (44)

Based on the above, we can represent the intention of the Kit 1 assembly as follows:

0OC9 = OrderedList(OC1, OC6, OC7) & OC8 (45)

The ‘&’ symbol in Equation 45 represents that the ordering constraint after the symbol
(OC8 in this case) must be true throughout the entire process (OC9). In other words,
Part E cannot exist within the Kit Tray during any part of the process.

Using OC9 above, and applying the same approach to the Kit 2 intention (not shown),
we can use a template-based approach to represent the sequence associated with the
Kit 1 and Kit 2 intentions, which may look something like what is shown in Table 7 and
Table 8:

Table 7: Kit 1 Intention Template

State 1 2 2 3 3 4 5 6 7

Relation

Kit 1 On_ Contained || Contained | Contained | Contained | Contained | Contained | Contained- Not(
Top_ -In (PartA, || -In (PartA, | -In (PartB, | -In (PartB, | -In (PartC, || -In (PartD, | In (KitTray, | Contained
Of (Kit | KitTray) KitTray) KitTray) KitTray) KitTray) KitTray) Completed -In(PartE,
Tray, KitBox) KitTray))
Table)

Previous n/a 1 1 1 1 1 1 2,3,4,5 n/a

State

Relation

94

Table 8: Kit 2 Intention Template

State 1 2 2 2 3 4 5 6 7

Relation

Kit 2 On_ Contained | Contained | Contained | Contained | Contained | Contained | Not Not(
Top_ -In (PartA, || -In (PartA, | -In (PartA, | -In (PartB, | -In (PartC, | -In (Contained- || Contained
Of (Kit | KitTray) KitTray) KitTray) KitTray) KitTray) (KitTray, In(PartD, -In(PartE,
Tray, Complete KitTray KitTray))
Table) dKitBox)

Previous | n/a 1 1 1 1 1 2,3,4 n/a n/a

State

Relation

All state relationships are listed, and the ones that must be true more than once (as
represented by the Count construct in the ontology) are represented in separate
columns. The state relationships that cannot be true for a specific intention are
represented at the end of the table. Under each state relationship is a pointer to the
state relationship that must occur before this one is relevant. For example, in Table 7,
before the Contained-In(PartA, KitTray) state relationship can be evaluated as being
true, the On-Top_Of(KitTray, Table) (as indicated by the number 1 at the bottom of the
table) must have occurred. This table will be used in subsequent sections to show how
intentions can be recognized based upon observations.

4.2. The Intention Recognition Algorithm

In this section, we describe the intention recognition algorithm and explain how it is
used to track states and state relations as they occur, match observed state relations
to intentions in the ontology, and assign likelihoods to those intentions.

4.2.1. Tracking States and State Relations as Actions Occur

Now that we have specified how the states, state relationships, and intentions are
represented in the ontology, we will show how state relationships are tracked by
observations and associated with the intentions. Based on the detailed kitting example
described in Section 4.1.3, the first step is to determine which objects and state
relations of interest are relevant to be tracked. These are referred to as objects of
interest (Ol) and state relations of interest (SRI). If a state relation appears in any
tracked intention, that state relations becomes an SRI. If an object appears in any
intention, then that object becomes an Ol.

95

In this domain, the Ols are:

e Parth;
e PartB;
e PartC;
e PartD;
e PartE;
o Kit Tray;
e Table;

e Part ABox;
e Part B Box;
e Part CBox;
e Part D Box;
e Completed Kit Box.

Note that Part E is of interest not because it is a part if the kit assembly, but because it is
explicitly prohibited from being in one of the kit assemblies. Even though Part F is
available within the environment, it is not of interest to either intention and is therefore
not tracked.

Using the approaches described above, the robot first extracts the state relationships
that are relevant to the various intentions it is trying to perceive. In the cases of the two
kit assemblies, the relevant state relationships include:

e PartAisin Part ABox;

e PartBisin Part B Box;

e PartCisin Part CBox;

e PartDisin Part D Box;

e KitTray is in Large Box With Empty Kit Trays;
e KitTray is on Table;

e Part Aisinthe KitTray;

e PartBisin the KitTray;

e PartCisinthe KitTray;

e Part Disin the KitTray;

e PartDis notin the KitTray;

e Part Eis notin the KitTray;

e Kit Tray is in Completed Kit Box.

The truth-value of these state relationships can be evaluated at a given point in time by
applying the state representation approach based on RCC8 as described in the previous
chapter. In tabular format, the state relationships can be represented as shown in Table
9. Columns in this table represent states. As defined earlier, a state is the union of the
truth-values of the state relations on interest. Rows in this table represent individual

96

state relations of interest. The value in the cells represents the number of instances in
which the state relation is true in a given state. This will be described further in the next
few paragraphs.

Actions occur between each state to cause the truth-value of the relevant state
relations to change. However, for this approach, we care about the truth-value of the
state relations in each state without needing to track the actions that cause them to be
true or false.

New states (columns in the table) can occur at different frequencies. A new state only
occurs when the truth-value of at least one state relation of interest changes. There may
be multiple state relations (that are not of interest) that change their truth-value (e.g.,
Part F moves its location) before a new state of interest occurs. New states only come
into existence when a state relation of interest changes its truth-value.

State 1 in Table 9 shows the state of the environment as described in Figure 37.
Numbers in the cells represent how many instances of the state relationship are true. In
this example, there are three instances of Part A in the Part A Box, as shown in Figure
37. If, at the next state, the Kit Tray was removed from the Kit Tray Holder and placed
on the Table, the next state would be represented as in State 2. If one of the Part A’s is
then removed from the Part A Box and placed into the Kit Tray, the state representation
would look like State 3.

Table 9: Real-Time State Relation Tracking Table

State Relation State 1 State 2 State 3 (Part
(Initial (Kit Tray on A in Kit
State) Table) Tray)

Part A is in Part A Box
Part B is in Part B Box
Part Cis in Part C Box
Part D is in Part D Box
Kit Tray is in Large Box
With Empty Kit Trays
Kit Tray is on Table

Part A is in Kit Tray

Part B is in Kit Tray

Part Cis in Kit Tray

Part D is in Kit Tray

Part E is in Kit Tray

Kit Tray in Completed
Kit Box

97

Understanding which states are relevant also plays a significant role in determining
which sensors to use and where to place the sensors that are meant to track objects in
the environment [149]. For example, if we assume that the Part A Box is not a clear box
and there is an opening at the top, a sensor would need to be placed above the box so
that it is evident if (and how many) objects are present within the box (addressing the
state relationship “Part A is in the Part A Box”).

4.2.2. Matching Perceived Real-Time State Relations to Intention
Templates

As mentioned above, a new state in the State Relation Tracking Table comes into
existence when a state relation of interest that is being tracked changes its truth-value.
As an example, if the Kit Tray goes from not being on the table to being on the table, a
new state is formed. At each state, the state relationships that have changed value are
compared to the intention templates shown in Table 7 and Table 8.

Only the eligible state relationships in Table 7 are available for matching. A state
relationship becomes eligible if all required previous state relationships have occurred.
For example, in The Kit 1 Intention Template in Table 7, the state relationship
Contained-In(PartA, KitTray) can not occur until On_Top_Of (Kit Tray, Table) has
occurred. Therefore, even if Contained-In(PartA, KitTray) is true in the observed scene, it
is not eligible for matching unless On_Top_Of (Kit Tray, Table) has previously been
matched.

As each observed state occurs and is entered in the State Relation Tracking Table, the
corresponding state relationships are compared with those associated with the possible
intentions. When the observed state relationship(s) match an eligible state relationship
in an Intention Template, it is “checked off” indicating that the state relationship has
occurred. This same process occurs with every new observed state that occurs.
Continuing with our example, if the State Relation Tracking Table was updated to look
like Table 10, the corresponding Kit 1 and Kit 2 Intention Templates would look like
Table 11 and Table 12, respectively, with green cells representing those state relations
which have been observed and whose precondition state relations have been met.

One benefit of this approach is the lack of the underlying assumption that the observer
started watching the intention from the beginning. In the example of the kit tray above,
once the kit tray is on the table and once the parts are in the kit tray, they will continue
to be in that location and the corresponding state relations will be true independent of
when the observer started to observe. When the intention recognition system starts up,
and once the initial state of the environment is assessed, the relevant Intention
Templates will be matched with the state relations that are true at that time. The
subsequent “filled in” tables should be identical to what is shown in Table 11 and Table
12, even if the intentions were not observed from the beginning. This is a clear

98

advantage over intention recognition systems that rely on activity recognition, because
if the activity occurs before the intention is being observed, there is no way for the
system to be able to account for the activities that were not perceived.

Table 10: Real-Time State Relation Tracking Table (Version 2)

State Relation

State 1
(Initial
State)

State 2
(Kit Tray
On
Table)

State 3
(PartAln
Kit Tray)

State 3

(2" Part

A In Kit
Tray)

Part AisinPart A
Box

PartBisin PartB
Box
PartCisinPartC
Box

PartDisin PartD
Box

Kit Tray is in Large
Box With Empty
Kit Trays

Kit Tray is on Table
Part A is in Kit Tray
Part B is in Kit Tray
Part Cis in Kit Tray
Part D is in Kit Tray
Part E is in Kit Tray
Kit Tray in
Completed Kit Box

Table 11: Kit 1 Intention Template (Version 2)

Contained Contained
-In (PartD, | -In
KitTray) (KitTray,
Complete
dKitBox)

Contained
-In (PartC,
KitTray)

Contained
-In (PartB,
KitTray)

Contained
-In (PartB,
KitTray)

Contained
-In (PartA,
KitTray)

Contained
-In (PartA,
KitTray)

Contained
-In(PartE,
KitTray

2,3,4,5

Previous
State
Relations

99

Table 12: Kit 2 Intention Template (Version 2)

State 1 2 2 2 3 4 5 6 7 Sum
Relation
Kit 2 On_ Contained | Contained | Contained | Contained | Contained | Contained Not(Not(5
Top_ -In (PartA, | -In (PartA, | -In (PartA, | -In (PartB, | -In (PartC, | -In Contained | Contained
of KitTray) KitTray) KitTray) KitTray) KitTray) (KitTray, -In(PartD, -In(PartE,
(Kit Complete KitTray KitTray
Tray, dKitBox)
Table
)
Previous n/a 1 1 1 1 1 2,3,4 n/a n/a
State
Relations

The exception to this is intentions that require an object to be moved multiple times.
For example, if the steps to creating a kit required a part to be first moved to the table
and then to be moved to the kit tray, and the observer started observing only after the
part was in the kit tray, there would be no way for the system to know that the part was
previously on the table. The observer would therefore not have the knowledge to know
that the state relation of the part of the table was ever true. However, the focus of this
thesis does not include intentions that required multiple moves of a single object.

4.2.3. Associating Likelihoods to Intentions
Based on the content of Table 11 and Table 12 above, along with other supporting

information, we can start to associate likelihoods to the intentions being considered
[150]. Section 4.2.3.1. describes the overall approach to do so.

4.2.3.1. Overall Likelihood Equation

The overall equation that is used to determine the likelihood of intentions is as follows:

r_(Apis* W
Li,S _ <Zk—1(nk,1,s Ak)> + 100
k=1 WAk

(46)

where:
e L;isthe numeric likelihood of an intention i in state s;
e Ay ;sis the numeric result of applying intention recognition approach k for
intention j in state s;

100

o W,, is the weight of intention recognition approach k;
e nis the total number of intention recognition approaches

The output of all individual intention recognition approaches must contain a value
between 0 and 1, where 0 is the lowest value and 1 is the highest value. Intention
recognition approaches (multiplied by their associated weights) are added together and
then divided by the sum of all of their weights. Weights are associated with the
intention recognition approaches to show the relative importance of one approach over
another. The larger the weight, the greater the impact the approach will have on the
overall likelihood. These weights can contain any value greater than or equal to zero (no
upper bound).

The concept behind this equation is shown in Figure 39, where the individual intention
recognition approaches, multiplied by their respective weights, are fed into the overall
likelihood equation presented in Equation 46.

Overall Likelihood
Equation

Approach 1 Approach 2 Approach 3 Approach 4
Weight Weight Weight Weight
Intention Intention Intention Intention
Recognition Recognition Recognition Recognition s
Approachl Approach 2 Approach3 Approach4

Figure 39: Diagram Explaining Overall Likelihood Equation

4.2.4. Individual Intention Recognition Approaches Explored

There were four intention recognition approaches explored as part of this thesis. The
first, a Bayesian approach, is a fairly well documented approach in the literature. The
next three approaches are unique to this thesis. These additional three approaches
were determined by performing a simple non-scientific experiment. | asked
approximately twenty people to look at data in Table 13. As described below, the table
represents true state relations in five different possible intentions. | also explained that
intentions could start in the middle of the table; they did not need to start at the
beginning. Based on this table, | asked them to guess which intention was being

101

performed and why they though that it was. All twenty people different answers, but
what was common was the rationale behind why they chose the intention that they did.
Three common rationales emerged:

e “lI chose Intention X because it had the more true state relations.”

e “l chose Intention X because it had the highest percentage of state relations
complete.”

e “l chose Intention X because it seems that most of the true state relations
occurred most recently.”

These three responses served as the basis for three of the intention recognition
approaches described in this section.

All approaches are explained through the use of a simple example. For the purpose of
the experiment described in the next chapter, the Bayesian approach was initially used,
with the additional three intention recognition approaches added afterwards to show
their effect on the overall performance.

4.2.4.1. Intention Recognition Example

Table 13 show five sample intentions listed as one through five in the left-most column.
Each intention has a total number of state relations that must be true for the intention
to be considered complete. This is shown in column two. The next eight columns show
the progression of eight states (time periods) in which the environment was observed.
Green boxes show that a single state relation because true in an intention at that state.
In State 1, some set of state relations occurred that caused a state relation to become
true in intentions 2, 3, and 5. In state 2, an addition set of state relations occurred that
also caused a state relation to become true in intentions 2, 3, and 5. In state 3, some set
of state relations occurred that caused a state relation to become true in intentions 1, 2,
and 6, and so on. This chart does not show what state relation became true in each
intention; it only shows that some state relation became true.

Table 13: Intentions vs. Matching States Relations

States
Intention Total 1 2 3 4 5 6 7 8
State
Relations
10
16
6
20
6

N B|WN|—

102

Based on the data in Table 13, we can determine the value of the following variables
that will be used as input into some of the subsequent intention recognition
approaches.

e matchedSR;; - Number of matched state relations (SR) in an intention i as of the
current state s;

e totalSR,— Total number of state relations (SR) (whether matched or not) in an
intention /;

e allSR;— Number of matched state relations (SR) in all possible intentions as of
the current state s;

e S;otai— Number of states (S) that have occurred since observation began;

e rmatchedSR,;; - Number of matched state relations (SR) in the past r states in
intention i as of the current state s. In other words, in the most recent r states,
how many true state relations for an intention exist?

We can summarize the variables for each intention as of State 8 in Table 14 (the whole
table) as follows:

Table 14: Summary of Intention Variables at State 8

Intention (i) Total True State Total True State Relations that
Relations State Have Occurred in the Past
(matchedSR,;) Relations r=4 States
(totalSR)) (rmatchedSR,,;g)
1 4 10 4
2 4 16 2
3 2 6 0
4 2 20 2
5 4 6 0

In addition for State 8:

e Number of states that have occurred since observation began (S:otqa) = 8;
e Number of matched state relations in all possible intentions at the current state
(allSRs) =16 (sum of 4, 4, 2, 2, 4).

These variables will now be used as input into the approaches described in the next
sections.

The subsequent intention recognition algorithms, apart from the Bayesian approach,
were chosen more empirically than theoretically. Based on an informal experiment, |
showed a set of students Table 13 and asked them which intention they thought was
being developed and why. | got answers such as:

103

e The intention that had the most state relations that were true (independent of
when they happened and independent of how many total state relations
possibilities there were in the intention).

e Theintention that had the highest percentage of state relations that were true

e The intention that had the most true state relations recently

These formed the basis for the additional intention algorithms described below.

4.2.4.2. Bayesian Approach

Bayesian probability theory provides a mathematical framework for performing
inference, or reasoning, using probability. It is based on Bayes rule, which involves the
manipulation of conditional probabilities. In Bayesian probability theory, one of these
“events” is the hypothesis and the other is data, and we wish to judge the relative truth
of the hypothesis given the data. It also used a likelihood function to assess the
probability of the observed data arising from the hypothesis. Usually this is known by
the experimenter, as it expresses one’s knowledge of how one expects the data to look
given that the hypothesis is true. One of the advantages of Bayesian probability theory
is that one’s assumptions are made up front, and any element of subjectivity in the
reasoning process is directly exposed. [25, 28, 51]

The formula describing the chance that kit j is being made after a given set of observed
parts is:

Pr(observed parts|kit;)Pr(kit;)
Dy Pr(observed parts|kitj) Pr(kit;)

Pr(kit;| observed parts) = 47)

Here, m is the total number of intentions and Pr(observed parts|kit;)Pr(kit;)
describes the chances of seeing a particular combination of state relations composed of
parts (“observed parts”) given that the parts are being taken for kit j. If each time a
new state relation occurs, it is created randomly from the remaining parts, then this is
described by a multivariate hypergeometric distribution. For this work, there is the
assumption that each part is randomly selected from the set of part remaining for the
kit that is being built.

Pr(kit;) denotes the proportion of all kits made that are kit j. The assumption is that
each kit is equally likely to be built, but this can be easily changed.

A description of the flow of the Bayesian algorithm is as follows:

Suppose a kit is described by the number of pieces it contains for each type. That is, kit i
= (ni1,ni2, ..., nig) has nil pieces of type “1”, ni2 pieces of type “2” and so on. Suppose

104

an observation is described by the number of pieces seen for each type. Observation j =
(xj1, xj2, ..., xjq) has seen xj1 pieces of type “1”, xj2 pieces of type “2” and so on. The
likelihood, L(), of observation j under kit i is given by the multivariate hypergeometric
distribution:

A(observation j |kit i)
product, = 1,..., q (nip choose xjp)

_ 48
(sump = 1, ..., q(nip))choose (sum_p = 1, ...,q (xip)) @)

Below is a solution written in the form of commented R code. (R is a free, open-source
statistical programming language available for download at www.r-project.org). The
areas highlighted in yellow represent output from the code. The code captures part of
the experiment that is presented in the next chapter, not the simple example that was
provided in the previous section. The previous simple example will be used for
subsequent intention recognition approaches.

#H### R code #i#
Computer output is highlighted in yellow

install.packages("BiasedUrn")
library(BiasedUrn)

Create part.list to match the following description

##- Kit one has four red parts, three green parts, three blue parts

##- Kit two has four red parts, four green parts, two blue parts

##- Kit three has five blue parts, three green parts, two red parts

##- Kit four has four red parts, three green parts, two blue parts, and one orange part

##- Kit five has thee blue parts, three green parts, two red parts, one orange part, and one

yellow part

part.list<-list(c(4,3,3,0,0),

c(4,4,2,0,0),

c(2,3,5,0,0),

c(4,3,2,1,0),

c(2,3,3,1,1))

names(part.list)<-paste("kit",1:5)

for(i in 1:length(part.list)) names(part.list[[i]])<-c("red","green","blue","orange","yellow")
part.list

$kit 1°
red green blue orange yellow

105

4 3 3 0 0

$kit 2
red green blue orange yellow
4 4 2 0 O

$kit 3°
red green blue orange yellow
2 3 5 0 0

$kit 4°
red green blue orange yellow
4 3 2 1 0

$kit 5°
red green blue orange yellow
2 3 3 1 1

kit.probs <- function(obs, part.list, prior = NULL) {

If unspecified, assume all kits are equally likely to be made
if (is.null(prior))
prior <- rep(1, length(part.list))

Normalize prior so it sums to 1
prior <- prior/sum(prior)

Compute Pr(obs|kit) for each kit assuming multivariate hypergeometric distribution
like <- NULL

for (i in 1:length(part.list)) like <- c(like, AIMWNCHypergeo(x = obs, m = part.list[[i]],
n = sum(part.list[[i]]), odds = rep(1, length(part.list))))

if (fany(like = 0)) {
print("Observed parts do not match part list for any kit")
prob <- like

}

if (any(like != 0)) {
prob <- like * prior
prob <- prob/sum(prob)
}

names(prob) <- names(part.list)
Return Pr(kit|obs) for each kit
prob

}
106

##H Example progression when observed parts order is: 1. Red, 2. Green, 3. Green, 4.
Orange

kit.probs(c(red = 1, green = 0, blue = 0, orange = 0, yellow = 0), part.list = part.list)

kit 1 kit 2 kit 3 kit 4 kit 5
0.250 0.250 0.125 0.250 0.125

kit.probs(c(red = 1, green = 1, blue = 0, orange = 0, yellow = 0), part.list = part.list)

kit1 kit2 kit3 kit4 kit
0.2307692 0.3076923 0.1153846 0.2307692 0.1153846

kit.probs(c(red = 1, green = 2, blue = 0, orange = 0, yellow = 0), part.list = part.list)

kit 1 kit 2 kit 3 kit 4 kit 5
02 04 01 02 01

kit.probs(c(red = 1, green = 2, blue = 0, orange = 1, yellow = 0), part.list = part.list)

kit1 kit2 kit3 kit4 kit
0.0 000 0.0000000 0.6666667 0.3333333

For this simple example, a Bayesian approach does not lend well because we are only
focusing on cases where a state relation is true or not true, not what state relation is
true (e.g., the red block was put into the kit tray). In the experiment describes later in
this thesis, we will show how the Bayesian approach provides significant value in
determining the intention. For the purpose of this simple example, we will assume that
the Bayesian approach indicated that all intentions are equally possible (each have a
value of 0.20).

AM; 14 = 0.20 (49)
AM, 55 = 020 (50)
AM, 34 = 0.20 (51)
AM, 44 = 0.20 (52)
AM,; 55 = 0.20 (53)

107

We need to assign a weight capturing the importance of this intention recognition
approach with respect to the others. This could be any value greater than zero. In this
example, we will use a value of 10 (which is the same value we will use for all of the
approaches). Later in the thesis, we will explore the optimal set of weights for the
individual intention recognition approaches.

At this stage, we only have one intention recognition approach (n=1), and therefore
Equation 46 for each intention would be represented as follows:

L (A, cx W 0.20 10
L, = (Zk—l(1k,l.s Ax)> « 100 = 22222 1100 = 20 (54)
Zk:l WAk 10

b (Agis* W, 0.20 % 10
Zk:l WAk 10

o (Agisx W, 0.20 % 10
L3,8 _ (Zk_l(1k,1,s A)) % 100 = «100 = 20 (56)
Yk=1Wa, 10

b (Agis* W, 0.20 % 10
Zk:l WAk 10

by (Agis * W, 0.20 * 10
Lsg = (Z"‘l(S Ak)) 100 = ————— % 100 = 20 (58)
Zk=1 WAk 10

4.2.4.3. Number of Observed State Relations That Are True in an
Intention (Compared to Other Intentions)

The second intention recognition approach is the number of state relations that are true
in an intention. Recall above the variable matchedSR;;s represents the number of true
state relations in Intention i at State s and the variable allSRs represents all matched
state relations in all possible intentions as of the State s. The formula for this intention
recognition approach for Intention i in State s (A, ;) is:

108

__ matchedSR;

 —
2Ls allSR (59)

This formula represents the percentage of true state relations that are in Intention i as
compared to the sum of all of the true state relations in all of the intentions of interest.
It is evaluated for every intention of interest at every state. When there are no true
state relations in any intention of interest, the denominator will equal zero and the
equation will be undefined. To address this, a rule is included which states that when
allSR ¢ = 0, then the overall equation should be set to zero.

As with all of the intention recognition approaches, they must contain a value between
0 and 1. Based on this formula, at each state, the sum of all of the A, ; ;values will equal
one (since each one is a percentage of the whole), thus the value of each 4, ; ; will be
between 0 and 1.

Using our example above and the data in Table 14, we can evaluate the value for 4, ;
for State 8 as follows. Note that there are five intentions of interest, so m = 5 in this
case. In addition, because there are two intention recognition approaches, n = 2. The
same procedure could be followed for each previous and subsequent state.

matchedSR, g 4

A2,1,8 = allSR8 = 1_6 = 0.25 (60)

A _ matchedSR,g 4 0.25 61
2287 allSRg 16 1)

2 _ matchedSRsg 2 0.13 62
2387 allSRg 16 62)

y _ matchedSRyg 2 0.13 63)
248 7 qllSRg 16 (

4 _ matchedSRsg 4 0.25 64)
2387 qliSRg 16

109

In addition, we need to assign a weight capturing the importance of this intention
recognition approach with respect to the others. This could be any value greater than
zero. In this example, we will again use a value of 10.

At this stage, we have two intention recognition approaches (n=2), and therefore
Equation 46 for each intention would be represented as follows:

2 (A, * W 0.20 * 10) + (0.25 * 10
L18:<Zk_1(k Ak)>*100=(*10) + (*)*100=22.5 (65)

Y1 Wy, 10 + 10

2 (A, W 0.20 * 10) + (0.25 * 10
L28:<Zk_1(Kk * Ak)>* 100:(*10) + (*)*100 - 225 (66)

Z2_W,, 10 + 10

2_ (A, * W 0.20 * 10) + (0.13 * 10
L38=<Zk_1(k* Ak)>*100=(*10) + (*)*100216_3 (67)

P Wy, 10 + 10

2_ (A, * W, 0.20 * 10) + (0.13 * 10
L48=<Zk_1(k* Ak))*mo:(10+ (013+10) 100 — 163 (68)

P Wy, 10 + 10

2 (A, x W 0.20 * 10) + (0.25 % 10
L58=<Zk_1(K * Ak)>*100=(*10) + (0.25 *)*100=22.5 (69)

Y2 W, 10 + 10

Adding this new approach, Intentions 1, 2, and 5 become the most probable, which
Intentions 3 and 4 have a lower likelihood. This is not surprising since Intentions 1, 2,
and 5 have the highest number of state relations that are true as of State 8.

4.2.4.4. Percentage of an Intention That Is Complete

The third intention recognition approach is the percentage of state relations that are
true in an intention. Recall above the variable matchedSR; s represents the number of
true state relations in Intention i at State s and totalSR;represents the total number of
state relations (whether matched or not) in Intention i. The formula for the percent
complete for Intention i in State s (PercentComplete;) is:

matchedSR; s

PercentComplete; ; = totalSR
i

(70)

110

We then normalize this for all intentions of interest to find the value of this intention
recognition approach for Intention i in State s (A3 s):

PercentComplete;

Azis = (71)

P
i—, PercentComplete;

where p represents the total number of intentions.

This formula represents the percentage of state relations that have been evaluated as
true in an intention compared to the total number of state relations in all intentions. It is
evaluated for every intention of interest at every state. As with all of the approaches, it
must contain a value between 0 and 1.

Using our example above and the data in Table 14, we can evaluate the value for
AM,; ; for State 8 as follows.

matchedSRyg 4

PercentComplete; g = P— = 10" 0.40 (72)
1
matchedSR, g 4
PercentComplete, g = T talSR == 6= 0.25 (73)
2
matchedSR;g 2
PercentComplete; g = P— — = i 0.33 (74)
3
matchedSR, g 2
PercentComplete, g = TotalSR — = 50" 0.10 (75)
4
matchedSRsg 4
PercentCompletes g = — = —= 0.66 (76)

totalSRg 6

The sum of all of these percentages is 0.40 + 0.25+0.33 + 0.10 + 0.66 = 1.75.

As before, because there are five intentions of interest, p = 5. We can normalize these
as follows:

111

4 B PercentComplete, g _ 0.40 — 023 77
318 ™ > PercentComplete; 175 (77)

4 B PercentComplete, g . 0.25 — 0.14 78
328~ > PercentComplete; 1.75 7%)

4 B PercentCompletes g _ 0.33 — 019 79
338 ™ >_, PercentComplete; 175 ™

4 B PercentComplete, g _ 0.10 — 006 30
348 > PercentComplete; 1.75 (80)

PercentCompletesg 0.66

A3,5,8 - == 038 (81)

> PercentComplete; 1.75

As with the other intention recognition approaches, we need to assign a weight
capturing the importance of this approach with respect to the others. In this example,
we will again use a value of 10. In addition, because there are three intention
recognition approaches, n = 3.

Equation 46 for each intention would be represented as follows:

Y3 1A x W) (0.20 * 10) + (0.25 * 10) + (0.23 10)
Ly = (2REnfe Pad) | qo0 = 100 = 22. 82
18 < siw,)1 10+ 10+ 10 00 =226 (52
Y3 (A x Wy) (0.20 * 10) + (0.25 * 10) + (0.14 = 10)
L. = k> Mad) L 100 = 100 = 19. 83
28 (sw,)1 10+ 10+ 10 100 =198 (83)
YA x Wy,) (0.20 x 10) + (0.13 10) + (0.19 * 10)
Lag = (=il Pad) | q00 = 100 =17.2 84
38 (sw,)1 10+ 10 + 10 * 100 4)

e (A x W, 0.20 * 10) + (0.13 * 10) + (0.06 * 10
Lyg = (—Z“(: Ak))* 100 = ¢ hat) +) 100 = 127 (85)

Y3 Wy, 10 + 10 + 10

112

21+ W, 0.20 * 10) + (0.25 x 10) + (0.38 x 10
L58=<M>* 100=(*10) + (025 10) + (038 -)*100=27,7 (86)

YriWa, 10+ 10+ 10

Adding this new approach, Intention 5 rises to the top by a considerable amount,
followed by Intention 1, then Intention 2, 3, and 4 in that order. Intention 5 has the
greatest percentage complete (67% of all of its state relations), which is why this
approach had such a strong effect on it. Intention 4 has the lowest percentage
complete, which is why this approach caused it to drop to the bottom.

4.2.4.5. Number of Productive States That Have Occurred Recently

The fourth intention recognition approach is the number of productive states that have
occurred recently. This approach attempts to focus on the intentions that are likely
occurring near the current time as opposed to those which have started many states in
the past.

Recall from above that the variable rmatchedSR, ;s represents the number of true state
relations in the past r states in an Intention i as of the current State s. In this case, we
will set r equal to four (the past four states), though this number can be varied by the
user. The formula for this intention recognition approach for Intention i in State s (A4 s)
is:

rmatchedSR, ;

Zle rmatchedSR, ;

A4,i,s =

(87)

As before, p is the total number of intentions of interest.

As with the previous intention recognition approach, it is evaluated for every intention
of interest at every state and must contain a value between 0 and 1.

Using our example above and the data in Table 14, we can evaluate the value for A, ; ¢
for State 8 as follows.

The sum of the productive state relations in the most recent four states to State 8 were:
4+2+0+2+0 = 8. Therefore, the equation becomes:

113

P rmatchedSR, 1 g 4 0.50 (88)
418 = 8
le rmatchedSR, ;g3 8
o rmatchedSRy,5 2 0.25 (39)
42,8 Zle rmatchedSR, ;s 8 .
p rmatchedSR,3 g 0 0.00 (90)
438 — 8
1; ,rmatchedSR,;g 8
P rmatchedSR, 4 g 2 0.25 (29)
448 = 8
le rmatchedSR,;gs 8
a rmatchedSR,ss 0 0.00 92
b8 f=1 rmatchedSR, ;g 8 o

We again need to assign a weight capturing the importance of this approach with
respect to the others. In this example, we will again use a weight of 10 for this approach.

With these four intention recognition approaches (n=4), Equation 46 for each intention
would be represented as follows:

t (A W,
Lig= <M> + 100
k=1WAk

(0.20 * 10) + (0.25 * 10) + (0.23 * 10) + (0.50 * 10) (93)
- +100 = 29.5
10+ 10+ 10 + 10
Y (A W,
. <2k_1£ ‘ Ak)>* 100
Yi=1Wa, 94)
0.20 % 10) + (0.25 * 10) + (0.14 * 10) + (0.25 * 10
=(*10) + (*10) + (*10) + (*)*100221_1

10+ 10+ 10+ 10

(A x W,
Lyg= <2k_1£ k* Wa,)> - 100
Yi=1 Wa,
(0.20 * 10) + (0.13 * 10) + (0.19 = 10) + (0 * 10)
= *

10+ 10 + 10 + 10 100 =129

114

Lyg = <

1 (A * W,
k=1(Ag * Ak)>* 100

Zi=1Wa,

_ (0.20 % 10) + (0.13 * 10) + (0.05 * 10) + (0.25 = 10)

(A x W,
Lo = <Zk_1(k* Wy,)) « 100

Tik=1 Wa,

~(0.20 % 10) + (0.25 * 10) + (0.38 * 10) + (.00 * 10)

10+ 10+ 10+ 10

10+ 10+ 10+ 10

*100 =15.8

*100 = 20.8

9%)

(96)

Adding this new intention recognition approach causes a significant change in ordering
in the likelihoods of the intentions. Intention 1 jumps to the top by a significant amount,
followed by Intention 5, the Intentions 2, 3, and 4 (in that order). Intention 1 had
productive state relations in all four of the most recent states, while the next highest
intention had no more than two. Two intentions had zero true state relations in the last
four states. These intentions (three and five) had their likelihood drop significantly when
applying this approach.

4.2.4.6. Exploring the Impact of the Intention Recognition Approaches

Table 15 shows how the likelihood of the intention changes once additional approaches
are added into the equation.

Table 15: The Effect of Metrics on Likelihood

Intention Approach1- | Approach2 - Approach 3 - Approach 4
Bayesian Quantity of Percentage — Recent
Approach True State Intention True State
(Weight 10) Relations Complete Relations
(Weight 10) (Weight 10) (Weight 10)
1 20 22.5 22.6 29.5
2 20 22.5 19.8 21.1
3 20 16.25 17.2 12.9
4 20 16.25 12.7 15.8
5 20 22.5 27.7 20.8

115

Table 16: Intentions vs. Matching States Relations

States
Intention Total 1 2 3 4 5 6 7 8
State
Relations
10
16
6
20
6

N[|W[N|—

It is interesting to look at Table 15 and compare it to data presented in Table 16 (same
as Table 13 but included here for easy reference). As mentioned earlier, Approach 1
(the Bayesian Approach) was not aligned with this simple example and thus is not
discussed in detail in this section. Approach 2 (Quantity of True State Relations) bumped
up the likelihood of the intentions that had the most true state relations, independent
of how many state relations composed the intentions. Intentions 1, 2, and 5 all had four
true state relations, thus they had the highest likelihood. Ironically, from a percentage
perspective, the first two of these intentions had a relatively low percentage of their
overall state relations completed, but this was not accounted for in this approach. The
next approach (Approach 3) looked specifically at the percentage of the intention that
was complete. When combined with the other approaches, it bumped Intention 5 up to
the top, since it had the highest percentage of the intention complete (67%), even
though the true state relations happened earlier in the process and no true state
relations occurred in the last four states. The last approach (Approach 3) explored which
state relations happen most recently. When applying this approach, Intention 1 jumped
to the top by a significant amount (when combined with the other approaches) because
it had four true state relations in the last four states, while no other intention had more
than two.

Clearly, the weights assigned to these metrics played a very big factor in their effect.
Different weights have different strengths of impacts. The determination of the proper
weights is more of an art than a science, and will take some trial and error. Chapter 6 of
this thesis starts to explore the optimum combination of weights for the manufacturing
kitting domain. It will likely change with different domains. The purpose of this section
was to explore the various metrics that were being considered and their impact on a
sample intention being performed in the environment.

4.2.4.7. ATool to Adjust Weights

To facilitate the process of determining the impact of the intention recognition
approaches’ weights on the output of the Intention Recognition Algorithm, a Java-based
tool was developed. This tool allows the user to specify the weights associated with
each approach and to generate a line chart showing the results of the overall Intention

116

Recognition Algorithm for each kit and for each state during the run. The interface for
the tool is shown in Figure 40.

@Intentions for Kitting PR —— | == | RS |

1. Generate Data for a single kit or all kits?

@ Single kit O All kits

2. Display data from users? O

3. Select the Instance file.

CiUsers\schlenofiDocumentsiupdated-to -3|".int-'=nti|| Browse |
4, Select a kit to build. 1-a4b3c3 -
5. Select a plan. 1-abbcbcaaac |«

6. Metrics Weights.

A1 0
AM2 0
AM3 0
A4 0
AMS 100
6. Select where to save the CSV file.

Figure 40: Kitting Intention Tool Interface

The interface provides the option for the user to run the approaches and associated
weights over a single kit or for all kits. If the user selects all kits, the information will be
saved in a comma separated value (csv) file in the location specified in the field at the
bottom of the screen. If the user specifies only one kit, the results will be provided in a
separate pop-up window in a set of line charts. The user also has a checkbox to indicate
whether the comparable data provided by the user should be shown on the same line
graph. Having the user data on the line graph allows for the direct comparison between
the results of the human and the results of the algorithm. This option was chosen for
some of the graphs shown in the next chapter. The next field asks the user to specify the
location of the ontology instance file. This instance file is needed as input to the
Intention Recognition Algorithm.

Iltems 4 and 5 in Figure 40 allow the user to specify the kit (1 through 5) that represents
the intention and the plan (1 through 5) that represents the sequence (plan) in which
the kit is created. There are five unique plans (arbitrarily chosen) for each kit. Lastly, in
item 6, the user can specify the weights that s/he wants to associate with each intention
recognition approach. These can be any value greater than or equal to zero. In the
figure, because every intention recognition approach has a weight of zero except for the
last approach (the Bayesian approach), only that approach is being used. Note that the

117

interface was set up to allow for five different approaches to be used, but only four
were implemented.

The output of the tool is shown in Figure 41. In this figure, the user results are not
presented, but could have been if the option was chosen in the tool interface. The left
pane gives the user an option of which kit intention to display. Each kit intention is
represented as a line in the top right pane, with a key to show which color represents
which kit intention. There are ten states in each plan (as shown in the x-axis), and the
likelihood of each intention (as shown on the y-axis) is presented for each kit at each
state. For example, if we look at Kit 1, which is represented by the purple line, the
algorithm shows that there is a 25% chance that the kit is being created in State 1, 22%
in State 2, and so on until State 10 where the likelihood is 100%. The bottom right pane
gives a textual description of what happened in each state (e.g., Object blue added to
the kit tray in State 6).

[intention Recognition e &
Eile Edit

i [Metrics |

Select the intention(s) you want to display.
Press the OK button Likelihoods

[¥] &3 inmtentions 100 11
v [} Kit_1_algorithm
¥l [Kit_2_algorithm

v :] Kit_3_Algorithm 80
] [Kit_d_Algorithm 70|
¥ [Kit_5_Algorithm -
2 60
g s
s

Q.

———

DI = = = = = == = =
State 1 State 2 State 3 State 4 State S State 6 State 7 State 8 State 9 State 10
State

O Kit_5_Algorithm -O- Kit_4_Algorithm = Kit_3_Algorithm Kit_2_Algorithm — Kit_1_Algorithm

| Partiallyln,part_c_2_ir stock_keeping_unit_parts_c_tray_ir kit_tray_1_ir KitTray
| Object blue added in the kit tray

] Partiallyin part_a_2_ir stock_keeping_unit_paris_a_tray_ir kit_tray_1_ir KilTray
| | Object red added in the kit tray.

Partiallyln,part a 3 ir,stock keeping unit parts a tray irkit tray 1 irKitTray

Figure 41: Output of the Intention Recognition Tool

In the next chapter, we will take a detailed look at applying the main Bayesian approach
to various kitting intentions and use this tool to show some results of the experiment.

118

5. System Architecture

In this chapter, we discuss the results of applying the techniques presented in this
thesis. We will start by describing the overall architecture that was used to recognize
states in the environment and to infer intentions.

The overall system architecture that was used for the Intention Recognition Algorithm
can be found in Figure 42. This is the same architecture that was presented in the
introduction of this thesis, with more detail provided. A recap of flow of information is
provided here while a detailed description of how this was implemented for the
experiment is described in the next few sections.

A kitting simulation environment was created in the simulation tool. The robotic arm
was meant to simulate a human developing a kit. The arm ran through a kit
development plan that was not made known to the state recognition or intention
recognition systems. The only information that was provided out of the simulation
system was through the USARTruth system, which provided information about the
coordinates, orientation, and dimensions of the objects in the environment. Taking the
information as input, the State Recognition Algorithms were constantly assessing the
truth value of the state relations of interest to the domain using the information stored
in the state relations ontology and the kitting ontology. The state relations of interest
were determined based on the domain, as discussed earlier in this thesis, and captured
in the ontology. The results of the State Recognition Algorithms were output in a tabular
format when a state relation of interest changed it truth value. The results of the state
relation algorithms, along with the pre-defined intentions captured in the intention
ontology, were fed as input into the Intention Recognition Algorithm. The Intention
Recognition Algorithm used metrics to match the state relations perceived in the
environment to the intentions that were predefined in the algorithms. The output of the
Intention Recognition Algorithm was a set of likelihoods, which show which intentions
were most likely to be occurring in the environment at a given time.

119

USARSiIm Simulation

State Relation Algorithms Intention Algorithms

Intentions

Project Determine Compute -, Cakulate

New En% Objects — = overlap | JNEN Stats Likelhood ~ ~ Results with 5
—-)| Likelihoods

Environment
Detection

Data Relation

Environment

Manuf. Kitting Ontology State Relation Ontology Intention Ontology

Ordering Intention

[RCCE Inter. State ! X
Constraints Definition

Specific Relations Relations
Relations

Figure 42: Experimentation Architecture

A detailed description of each box above is provided below.

5.1. USARSim

USARSim Simulation

Figure 43: USARSim Kitting Environment

USARSIim (Unified System for Automation and Robot Simulation) [151] [152] was
originally designed as a high-fidelity simulation of Urban Search And Rescue robots and
environments intended as a research tool for the study of Human-Robot Interaction
(HRI) and multi-robots coordination. USARSim is an open source simulation
environment based on Epic Games Unreal Tournament 2004. Since its initial release,
USARSIm has been expanded to support many diverse environments including
manufacturing robots, highway robots, the DARPA urban challenge, robotic soccer,
submarines, humanoids, and helicopters. USARSIim is designed as a simulation
companion to the National Institute of Standards and Technology’s (NIST) Reference
Test Facility for Autonomous Mobile Robots for Urban Search and Rescue [153].

120

USARSiIm utilizes the Karma Physics engine and high-quality 3D rendering facilities of the
Unreal game engine to create a realistic simulation environment that provides the
embodiment of a robotic system. The current release of the USARSim consists of various
environmental models, models of commercial and experimental robots, and sensor
models. High fidelity at low cost is made possible by building the simulation on top of a
game engine. In the development of this simulation environment, mcuch effort was
devoted to the robotics-specific tasks of modeling platforms, control systems, sensors,
interface tools and environments. These tasks are in turn, accelerated by the advanced
editing and development tools integrated with the game engine leading to a virtuous
spiral in which a wide range of platforms could be modeled with greater fidelity in short
time.

For this experiment, a manufacturing kitting environment was developed, as shown in
Figure 43.

This environment consisted of:

e A robot arm (which was meant to represent the arm of a human);

e One of five kit trays composed of colored areas to represent the type and
placement of various parts;

e A series of parts of different size and color.

The part shapes in the simulation were generated from models created in the Blender
tool.® Blender provides a broad spectrum of modeling, texturing, lighting, animation
and video post-processing functionality.

The robot arm had a vacuum effector at the end which it used to pick up the parts. The
suction for the gripper was turned on when the effector was first in contact with the
part, and was then turned off after the part was in its final location.

8 http://www.blender.org/
121

5.2. USARTruth

USARTruth
N |

.

| .
x-location, y-location, z-location,
rotation, dimensions

Figure 44: USARTruth Channel

Information about the location (x, y, and, z coordinates) and orientation (roll, pitch, and
yaw) of each object in the simulation was provided by the USARTruth channel within
USARSIim. USARTruth is capable of reading out information on objects in USARSIim by
connecting as a client to TCP socket port 3989. The simulator USARTruth-Connection
object listens for incoming connections on the port and receives queries over a socket in
the form of strings formatted into key-value pairs. The USARTruth connection accepts
two different keys, \class" and \name," which are both optional. When USARSIim
receives a new string over the connection, it sends a sequence of key-value formatted
strings back over the socket, one for each Unreal Engine Actor object that matches the
requested class and object names. An example of the strings returned by USARSIm is
given below along with a description for each key.

[Name P3AT_0] [Class P3AT] [Time 29.9739] [Location 0.67,2.30,1.86] [Rotation -
0.00,0.46,0.00]

The variables are as follows:
¢ Name- the name of the object;
e Class- the class type of the object;
e Time- the time that the information was returned;
e Location- the x, y, and z coordinates of the center of gravity of the object;
e Rotation- the roll, pitch, and yaw of the object.

For this work, the frequency of these updates was twice per second, though this value
could be changed as necessary.

One could either specify the specific objects they want information about by adding an
argument (e.g., USARTruth.exe -s [Actor]) or the system could return all objects in the
simulation if no argument was specified.

In addition to the location and orientation of objects, additional information was
needed about the dimension of the objects. The x-, y-, and z-dimensions of the objects

122

were stored within the kitting ontology. Using the location information provided by
USARTruth and the information about the dimensions of the object from the ontology,
information about the space in which an object occupies could be determined.

5.3. MySQL Database

The MySQL database was developed to address some of the shortcomings of ontology-
based approaches. Ontologies are very strong at representing detailed information
about objects in the environment, but do not lend themselves well to real-time
applications requiring frequent updates of information. It is desirable to represent the
dynamic information in a dynamic database. For this reason, a technique was developed
to: 1)automatically generate tables for storing data; and 2)access functions for
obtainingthe data from the ontology in a MySQL database. [154]

Reading data to and from the MySQL database instead of the ontology file offers the
easier access to live data structure. Furthermore, it is more practical to modify the
information stored in a database than that stored in an ontology, which in some cases,
requires the deletion and re-creation of the whole file. A literature review reveals many
efforts and methodologies that have been designed to produce SQL databases from
ontologies. Our effort builds upon the work of Astrova et al. [155].

In addition to generating and filling the database tables, tools were created that
automatically generate a set of C++ classes for reading and writing information to the
kitting MySQL database. The Generator tool is a graphical user interface developed in
Java, allowing the user to transfer and store data from OWL files into a MySQL database.
This tool also permits the user to query the database using the C++ function calls. The
Generator tool is composed of the following functionalities:

e Convert OWL documents (ontologies) into SQL syntax (OWL to SQL);

e Translate SQL syntax to OWL language in order to modify an OWL document
(SQL to OWL);

e Convert the OWL language into C++ classes (OWL to C++).

In order to generate the SQL database and C++ classes, the OWL object model must be
mapped to the C++ object model and the relational SQL model. Therefore, the notions
of single-valued and multi-valued properties as well as the inheritance must be mapped
from the ontology to the SQL database and C++ classes. The mapping from OWL
proceeds as follows:

e Data properties- In an ontology, data properties link an individual to a data
value. Single-valued data properties are mapped into a SQL table entry or C++
class variable with the corresponding type of the original property. For example,
in the manufacturing kitting ontology, a robot has a single-valued data property

123

hasRobot_Description, represented in the SQL database as a variable character
(varchar) and in the corresponding C++ class as std:string. Multi-valued data
properties are mapped from the ontology into the SQL database as a table and
into the C++ class as a std:vector with the corresponding type of the original
property. For example, in the ontology, a stock-keeping unit has a multi-valued
data property hasSku_EndEffectorRefs. This maps to a SQL table containing
varchar entries and the C++ std::vector<std::string> in the corresponding C++
class;

e Object property- In an ontology, object properties link one individual to another
individual. The single-valued object properties are mapped to a SQL table entry
or C++ class variable. Their type is a pointer to the range of the object properties.
For example, in the manufacturing kitting ontology a solid object has the object
property hasRobot _Description linking it to a physical location. In the SQL
database, we use a foreign key to link the two entries. In the C++ classes, this is
represented by a reference to a physical location: PhysicalLlocation*
hasSolidObject_PrimaryLocation. Multi-valued object properties are mapped
from the ontology into the SQL database as a table and into the C++ class as a
std:vector of pointers referencing objects of the range of the property. For
example, a solid object also has a list of secondary locations corresponding to a
multi-valued object property in the ontology: std::vector <PhysicallLocation*>
hasSolidObject_SecondaryLocation.

5.3.1. MySQL Database Generation

This section provides basic information on the Generator Java tool. Converting an OWL
ontology to SQL script files is easily performed using the OWL to SQL tab (Figure 45). The
required fields are:

e Ontology Path- This is the OWL file to be converted. Note that all /Import

statements in this file must use absolute paths;
e Saves Path- This is the directory where you want to save the SQL files.

124

™ owWLtosQL

Owlto SQL | SQL to Owl | Owlto C++

Ontology Path

Browse

Saves Path

Browse

Generate SQL

Figure 45: OWL to SQL Tab

Clicking on the “Generate SQL" will generate the SQL script files. Two files will be
created by the tool:

e owlCreateTable.sql- This is the file used to create tables in the database:
<inputfile>;

e owlinsertinto.sql This is the file used to populate the database tables:
<inputfile>.

These files may then be used with the SQL command line interface to create and
populate the database.

5.3.2. C++ Class Generation and Usage

As previously mentioned, the C++ classes were automatically generated by the
Generator tool. In addition to the class structure, Data Access Objects (DAOs) that are
needed to interact with the MySQL database were generated. To map the MySQL
database and indirectly the ontology to C++ classes, both the C++ classes and the DAO
must be generated.

The C++ class files (.cpp) and header files (.h) are generated in a two-step process.

The first step does not depend on the content of the ontology, it only initializes the
specific objects related to the MySQL connector driver. The second step generates all
the C++ headers and class files relative to the ontology. All of the include statements are
made directly in the C++ class files; and only forward declarations are performed in the
headers. This resolves problems associated with circular includes or multiple includes.

125

The actual data access was provided through the use of a Data Access Object (DAO). A
DAO provides an abstract interface to some type of database or other persistence
mechanism. A DAO maps application calls to the database or persistence mechanism,
thus providing some specific data operations without exposing details of the database.
The use of the DAO separates the data accesses that the application needs from how
these needs could be satisfied with a specific Database Management System (DBMS),
database schema, etc. The different methods of the DAO are the same for any ontology.
The concern here is not about the data, but only about the way to retrieve or store it.

When the DAO is generated, four vectors are built as follows:

e A structure with the SQL query to select the characteristics of an entity is
created. The table relative to the entity itself and the ones relative to its super
classes are queried;

e A structure with the SQL query to select multi-valued attributes (multi-valued
data) for a given entity is created,;

e A structure with the names of the tables linked to this entity in the ontology is
created;

e A structure with the names of the association tables linked to an object is
created.

With these four structures, one is able to read (get method) and write (set method) data
from and to the MySQL database. The get method fills a C++ map and gets the object
itself, while the copy method handles the data. The set method is called with a C++ map
containing the values of the different attributes as input and writes these values into the
MySQL database.

5.3.3. C++ Classes to Access Data from the MySQL Database

Figure 46 depicts an example using the generated classes to retrieve the location of the
kit tray kit_tray_name from the MySQL database. The different sections of the example
are described below:

e Lines 1-4- Includes the different headers necessary to query MySQL tables. Here,
the tables Point, PoselLocation, Vector, and KitTray are required;

e Line 9- Initializes an object from the class KitTray by passing its name;

e Line 10- Allows access to any data from the table KitTray;

e Lines 12-13- Initializes an object of type Poselocation and allows access to any
data from the table Poselocation;

e Lines 18-19- Retrieves X, Y, and Z coordinates from the table Point for the kit tray
kit_tray_name;

e Lines 22-23- Retrieves the X axis vector (X, X;, Xi) from the table Vector for the
kit tray kit_tray_name;

126

e Lines 26-27- Retrieves the Y axis vector (Y;, Yj, Yi) from the table Vector for the
kit tray kit_tray _name.

1. #include "Point.h"
2. #include "Poselocation.h"
3. #include "Vector.h"
4. #include "KitTray.h"
5.
6. void CanonicalRobotCommand::
7. getKitTrayLocation(string kit tray name) {
8.
9. KitTray* kit _tray = new KitTray(kit_tray name);
10. kit_tray->get (kit_tray_name);
11.
12. PoseLocations kit_tray pose = new PoseLocation(
13. kit _tray->gethasSclidObject_PrimaryLocation()-—>
14. getname ());
15. kit_tray_pose->get(kit_tray_ pose->getname());
16.
17. //——Retrieve hasPoselLocation Point
18. Point % kit tray point =
19. kit_tray_pose->gethasPoselocaticn_Point (};
20.
21. //——Retrieve hasPoseLocation XAxis
22. Vector % kit tray x axis =
23. kit_tray_pose->gethasPoselocation_XAxis();
24.
25. //——Retrieve hasPoselLocation_ZAxis
26. Vector = kit tray z axis =
27. kit_tray_pose->gethasPoselocaticn_ ZAxis();
28. }

Figure 46: Example Using the Generated C++ Classes

5.4. State Relation and Kitting Ontology

State Relation Ontology

Figure 47: State Relation and Kitting Ontologies

The state relations and kitting ontology discussed in Chapter 3 were used during the
experiment discussed in this chapter. Instances of certain classes were created in the

kitting ontology, including:

127

e Parts:

o 18 instances of Part A (red in Figure 48);
o 12 instances of Part B (green in Figure 48);
o 8instances of Part C (blue in Figure 48);
o 9instances of Part D (dark yellow in Figure 48);
o 6instances of Part E (light yellow in Figure 48);
e Five unique instances of kits, containing the following configurations (also shown
in Figure 48):
o Kit 1- two Part A’s, three Part B’s, three Part C’s, one Part D, one Part E;

O
O
O
O

Kit 2- two Part A’s, three Part B’s, five Part C’s;

Kit 3- four Part A’s, three Part B’s, two Part C’s, one Part D;
Kit 4- four Part A’s, three Part B’s, three Part C’s;

Kit 5- four Part A’s, four Part B’s, two Part C’s;

— ==
muml | =S
TTE I | i 1 |
& |
Kit 2 Kit 3 Kit 4 Kit 5

Figure 48: Five Possible Kits (Intentions)

e Five unique instances of part trays, each holding a different type of part;
e Five unique instances of kit trays, one for each kit that could be created;
e An instance of a kitting workstation, where the kitting operation was taking

place;

e Aninstance of a work table;

e Aninstance of a robot (representing a human arm for this work);

e Two instances of a large container, one representing an empty kit tray box
(where the empty kit trays were retrieved from) and one representing a finished
kit box (where the finished kit were placed).

Similarly, specific classes were created in the state relation ontology to match the RCC
state relations, intermediate state relations, and predicates. Only the relevant relations
to the domain in the experiment were included.

128

e RCC8 Relations:

O
O
O
O

xy-DC, xy-EC, xy-EQ, xy-NTPP, xy-NTPPi, xy-PO, xy-TPP, xy-TPPi;
yz-DC, yz-EC, yz-EQ, yz-NTPP, yz-NTPPi, yz-PO, yz-TPP, yz-TPPi;
xz-DC, xz-EC, xz-EQ, xz-NTPP, xz-NTPPi, xz-PO, xz-TPP, xz-TPPi;

x-Minus, x-Plus, y-Minus, y-Plus, z-Minus, z-Plus;

e Intermediate State Relations:

O
O
O

OnTopWithContact;
Partiallyln;
UnderWithContact;

e Predicates:

@)

O O O O O O O

Kit_Location_In_Large_Box_With_Empty_ Kit_Trays;
Kit_Location_On_Worktable;
Part_Location_on_Table;

Part_Location_In_Kit;
Part_Location_In_Robot_Gripper;
Robot_Gripper_Empty;

Robot_Holding_Part;

Worktable_Empty.

Within the state relation classes, the logical formulas are captured as data properties for
the relevant class. An example of this is shown in Figure 49 for the Partiallyln
intermediate state relation.

5.5.

State Recognition Algorithms

0 (ZPlus

LTl
Relation ”?:]
Recognition [l

- or X-TPP

Algorithms or X.TPP)
and (Y-NTPP

r Y-NTPPy

or Y-TPP

or Y-TP#)

Figure 49: State Recognition Algorithms

The kitting and state relation ontology and the output from USARTruth were used as
inputs to the State Recognition Algorithms. The information in the ontology was
extracted using the OWL-API°, which is an open source Java Application Programming

9 http://owlapi.sourceforge.net/

129

Interface (API) and reference implementation for creating, manipulating and serializing
OWL Ontologies. The latest version of the API is focused towards OWL 2, in which the
ontology for this effort is represented. These state representation rules were then
converted into Java code for evaluation. An example of this Java code for the Externally
Connected RCC8 relation is shown in Figure 50.

if (equal(objsX.get(0).getX() + objsX.get(0).getWidth() / 2.0, objsX
.get(1).getX() - objsX.get(1).getWidth() / 2.0))
rcc.put("xy-EC", true);
if (equal(objsZ.get(0).getZ() + objsZ.get(0).getHeight() / 2.0, objsZ
.get(1).getZ() - objsZ.get(1).getHeight() / 2.0))
rcc.put("xz-EC", true);
if (equal(objsY.get(0).getY() + objsY.get(0).getDepth() / 2.0, objsY
.get(1).getY() - objsY.get(1).getDepth() / 2.0))
rcc.put("yz-EC", true);
Figure 50: Java Code for Evaluating Externally Connected RCC8 Relation

The Java code first used the input from USARTruth and the relevant dimension
information of the objects to determine which RCC8 relations were true for any pair of
relevant objects in the environment. Once new RCC8 relations were discovered, the
intermediate state relations were evaluated, and were defined based on the RCC8
relations. As new intermediate state relations were evaluated as true, the domain-
specific predicates were evaluated, which were based on the intermediate state
relations. Postfix notation'® is used for evaluating these expressions. This is a
mathematical notation used to write down equations and other mathematical formulae.
When postfix notation is used, no grouping elements, such as parentheses, are needed.
The operations are noted after their arguments.

Though not shown in Figure 50, the code introduced a tolerance for evaluating the RCC8
relations. Due to inaccuracies in the simulation system and real perception systems, a
two centimeter tolerance was introduced. In order to evaluate the RCC8 relation
Externally_Connected, if the values in the x-, y-, or z-dimensions were within two
centimeters of each other (as opposed to being equal as shown in Figure 50), then the
statement would evaluate to true. This value of two centimeters could be set to any
appropriate value by the user, depending on the domain and the accuracy of the
systems being used.

As mentioned earlier, this process was run twice per second as new input was received
from USARTruth.

10 http://simple.wikipedia.org/wiki/Postfix_notation
130

5.6. State Recognition Output

State Relations Output

Figure 51: State Relation Output

The output of the state relation algorithms could be visualized as a table and series of
states, as shown in Figure 52.

|State ||# undereffector“#AonTable ”#Ain KitTray”#BonTable ”#Bin KitTray| I#Con Table ”#Cin KitTrayl
B IE |E [0 |E [E IE |E |
2 I I [0 |E Lo IE IE |
E IE I |[o [B IE |E |

State: 3

On top with contact(PartA_1, StaticMeshActor_0)
Under with contact(StaticMeshActor_0,PartA_1)

State: 2

- On top with contact(PartA_0,StaticMeshActor_0)
- Under with contact(StaticMeshActor_0,PartA_0)

State: 1
On top with contact(WCKitTray_0,StaticMeshActor_0)
On top with contact(PartC_0,StaticMeshActor_0)
On top with contact(PartB_0,StaticMeshActor_0)
On top with contact(PartA_0,StaticMeshActor_0)
Under with contact(StaticMeshActor_0,WCKitTray_0)
Under with contact(StaticMeshActor_0,PartC_0)
Under with contact(StaticMeshActor_0,PartB_0)
Under with contact(StaticMeshActor_0,PartA_0)

Figure 52: Results of State Recognition Algorithms

The top of Figure 52 shows the truth value of state relations of interest for the domain.
Not all state relations of interest are shown in the table so the table can fit on the page.
Each row in the table represents a state. A state in this table was created when a state
relation of interest changes its truth value. For example, if a part went from being on
the table to in (under) the robot vacuum effector, a new state was created. This is
shown in the transition from State 1 to State 2. Originally, in State 1, Part A is shown as
being on the table (as represented by a 1 in the cell under the heading “# A on Table”).

131

In State 2, Part A is shown as being in the gripper (as represented by a 0 in the cell under
the heading “# A on Table” and a 1 in the cell under the heading “# under Effector.”)

The first column in the table represents the sequential number of the state. Each
subsequent column represents the truth value of that state relation described in the
header of the column. State relations could be true more than once in a state. For
example, there could be two Part A’s in a kit tray. When this happens, there would be
the number 2 in the appropriate cell.

In addition to the tabular format, the system also outputted the information in a textual
format. This is shown in the blue box under the table in Figure 52. As with the table, this
textual description was updated every time a new state was created. State 1 at the
bottom shows all of the state relations of interest that were true in that state. These
include:

e On_Top_Of With_Contact(WC_KitTray_0, StaticMeshActor_0);
e On_Top_Of With_Contact(PartC_0, StaticMeshActor_0);

e On_Top_Of With_Contact(PartB_0, StaticMeshActor_0);

e On_Top_Of With Contact(PartA_0, StaticMeshActor_0);

e Under_With_Contact(StaticMeshActor_0, WC_KitTray_0);

e Under_With_Contact(StaticMeshActor_0, PartC_0);

e Under_With_Contact(StaticMeshActor_0, PartB_0);

e Under_With_Contact(StaticMeshActor_0, PartA_0).

In the bullets above, the ‘_0" after each attribute signifies the identifier for the instance
of that class. In addition, the StaticMeshActor was the table. There are two ways of
representing each state relation. One could either say that PartA was
on_top_of with_contact the table or that the table was under_with_contact PartA. Both
state relations are true. For our work, we identify these redundant state relations, but
only represent this once.

In subsequent states, only the state relations that change from the previous state were
listed. If a state relation was true in state n, it was also true in state n+1 if it was not
explicitly stated otherwise. If a state relation was no longer true, there will be a *-
before it. If a new state relation becomes true, it will be shown in State 2 just like all
other true state relations in State 1. For State 2, the following state relations were true
in State 1, but were no longer true in State 2:

e On_Top_Of With_Contact(PartA_0O, StaticMeshActor_0);
e Under_With_Contact(StaticMeshActor_0, PartA_0).

In addition, but not shown in the table, the relation Under_Effector(PartA_0O, Effector_O
was also true).

132

In State 2, another instance of Part A appeared in the table while the previous instance
of Part A was still in the robot effector, so the following two state relations became true:

e On_Top_Of With_Contact(PartA_1, StaticMeshActor_0);
e Under_With_Contact(StaticMeshActor_0, PartA_1).

This table and associated textual descriptions would continue to grow until the kit
building intention was complete.

5.7. Intention Ontology

Intention Ontology

Figure 53: Intention Ontology

The structure of the intention ontology was discussed in Section 4.1 and was used
during the experiment discussed in this chapter. Instances of certain classes were
created in the intention ontology, including:

e Intentions- there were five kitting intention instances developed, one of each kit
design. They named to represent the number of each part in the kit, namely:
o intention-kit-a2b3c3dlel;
o intention-kit-a2b3c5;
o intention-kit-a4b3c2d1;
o intention-kit-a4b3c3;
o intention-kit-a4b4c2;
e Ordering Construct Subclasses- four ordering constructs subclasses were
developed that were relevant to the kitting examples. They were:
o AnyOrder;
o Count;
o Exists;
o OrderedList;
e Ordering Construct Instances- Each of the ordering construct subclasses listed
above have multiple instances which were used to describe the intentions as

133

described in Section 4.1.1. Each of the ordering construct instances bottom out
at the state relations described above.

5.8. Intention Recognition Algorithm

Intention Algorithms

m

TR (AM, + W,
L= l_[MM- . ("' 1AM ""‘)). 100
£ Tra W,

-

ezl szl i
B

Figure 54: Intention Recognition Algorithm

The Intention Recognition Algorithm has a Java-based GUI front-end with Eclipse IDE
(http://www.eclipse.org) that is capable of analyzing intention and ordering construct
information to compute and display the likelihood of each intention based on input
state relations. To achieve these tasks, the tool reads the ontology that captures
information on each intention described for the kitting domain and stores this
information in memory. Using input data (true state relations of interest) from the State
Recognition Algorithms, the Intention Recognition Algorithm matches these state
relations with those that constitute each intention. The output of this process computes
and displays the likelihood of each intention at each state of the process. The following
sections detail the aforementioned procedures.

5.8.1. Loading and Reading an Ontology

To query and access data in the ontology we use the OWL-API
(http://owlapi.sourceforge.net/). The OWL-API is a Java APl and reference
implementation for creating, manipulating, and serializing OWL ontologies. Individuals
of these classes are stored in Java data structures (list, vector, etc). The following
snippet depicts how to load and access the intention class in the ontology.

134

// Define the IRI (Internationalized Resource Identifier) for the ontology
String ontology_IRI = "http://www.semanticweb.org/ontologies/2013/0/soap.owl";

// Get hold of an ontology manager
OWLOntologyManager manager = OWLManager.createOWLOntologyManager();

// Get hold of a data factory
OWLDataFactory factory = manager.getOWLDataFactory();

// Load the Ontology
manager.loadOntologyFromOntologyDocument(soap.owl).getimports();

// Access the Intention Class
OWLClass intentionClass =
factory.getOWLClass(IRl.create(ontology_IRI.concat(“#Intention”)));

5.8.2. Methodology to Compute Likelihoods

Figure 55 displays the methodology to compute and display intention likelihoods. To
compute the likelihood for each intention, the Intention Recognition Algorithm received
state relations information from the State Recognition Algorithms. The Intention
Recognition Algorithm searched the intentions for which of these state relations held
true and computed the likelihood for these intentions in each state. The constructs
within an intention were organized through the ordering construct OrderedList. The
algorithms first tried to match the input state relations with the ones that constitute the
first element (which was also an ordering construct) of OrderedList. For instance, if an
Intention (intention1) consists of an Exists condition (exist1) as its first element and an
Ordering Construct (anyorderl) as its second element, the algorithms would first
explore exist1 to ensure that the condition is met. If none of the state relations satisfies
the first element of orderedlist1, then the other elements of orderedlist1 would not be
checked. However, if the first element of orderedlist1 was satisfied, the next set of input
state relations would be tested against the second element of orderedlist1.

To date, the state relations coming out of the State Recognition Algorithms were written
in a text file. This text file was processed by the Intention Recognition Algorithm.

135

1: procedure COMPUTE AND DisPLay LIKELIHOODS
2 load ontology

A rarse OWL class Intention

1 or each individual from Intention do

5 create a Java object of type lntention

6 for each Intention object do

7! store ardering constructs

A store state relations

1 store predicates

10 end for

11: for each state input s do

12: read input state relation

13: for {"II('IL state relation do

14 search for the state relation in each intention object
15: if state relation is found in intention ¢ then

16: for each intention ¢ do

17: for each additive metric AM; do

14: set the weight for AM; through the user interface
14 compute metric AM;; .

20 end for

[
=

set the weight for MM, through the wer interface
compute metric MM, ;

oy i

23: end for

24 end if

a5: end for

26i: (‘()Itl[]lll{? likelihood

a7 display likelihood in wser interface
a end for

end for
. end procedure

SEE

|
Figure 55: Methodology to Compute and Display Likelihoods

To represent the likelihoods, the Intention Recognition Algorithm encoded each
approach in its own Java class. Each approach required its own weight (integers) that
could be adjustable by the user. As such, the user interface included a text field for each
approach. The weights could be assigned before running the algorithms and after the
algorithms were completed. At the end of the process, the Intention Recognition
Algorithm displayed the likelihoods computed with the weights assigned at the
beginning of the simulation. Once the simulation ended, the user could change the
weights to determine their impact on the results without running the simulation from
the beginning.

136

5.9. Intention Likelihoods

Intention Likelihoods

¢

[__—

Figure 56: Intention Likelihoods

The likelihood for each intention is displayed as graphs using the free, Java-based
JFreeChart (http://www.jfree.org/jfreechart/) library. Figure 57 depicts the likelihood
for each intention for each state of the 12 states presented. The colors of the lines and
the bars correspond to individual intentions, as shown at the bottom of the figure. Both
graphs (bar and line) displayed the same result in different formats. As shown, before
State 10, the likelihoods for each intention (5 intentions in this case) were the same.
From State 10 to State 12, the likelihoods branch out for some intentions. This is due to
the existence of new state relations in these states that were part of some intentions
and not part of others.

Intention Recognition

20 - - - - - - - - —

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10 State 11 State 12
State
B kit adb3c2d1 © kit adb4c2 w kit adb3c¢3 m kit a2b3c¢5 M kit a2b3c3dlel

Figure 57: Likelihoods for Each Intention at Different States

In the next chapter, we will describe an experiment that uses the infrastructure
described in the chapter to validate the overall intention recognition approach
presented in this thesis.

137

6. Intention Recognition Experiment

An experiment was run to assess the performance of the state-based Intention
Recognition Algorithm described above. This was done by comparing the output of our
algorithm to the performance of several humans watching agents performing the same
intentions. This section described the experimental procedures and the results.

6.1. Experimental Procedures

Since there are no clear metrics to assess the performance of intention recognition
algorithms, an experiment was developed to compare the results of the Intention
Recognition Algorithm to the performance of humans [156].

Five kits were used that each contained ten blocks (as shown in Figure 58), but each
contained a unique combination of different-shaped blocks. In the figure, blocks of
different sizes were represented by different colors. The combination of blocks was
carefully chosen to provide an appropriate level of challenge to the humans and the
algorithm. We used a distance metrics (specifically the L1 distance) to characterize the
difference between kits. In this case, the L1 distance represents the sum of the absolute
differences between the number of each colored part between two kits. For example,
Kit 4 has four red blocks, two blue blocks, three green blocks, zero yellow blocks, and
one orange block. Kit 5 has two red blocks, three blue blocks, three green blocks, one
yellow block, and one orange block. The distance metric between these two kits would
be:

|4-2] +|2-3] +|3-3| +|0-1| + |1-1| =4 (97)

The smallest the distance measure could be zero if both kits were identical and the
largest is 20 if there were no common blocks between the two. For this work, we chose
values between two and six to represent challenging cases where any two kits were very
similar but there were enough difference for an intention recognition system to be able
to distinguish between the two.

Using these kits, a set of simulations was developed (in USARSim [157]) capturing the
process in which one could assemble these kits. For a kit with five types of parts and ten
total instances of parts, there are approximately 5*° (almost 10 million) possible orders
in which the parts can be placed in the kit tray. For this experiment, we randomly chose
five different orders for each of the five kits, resulting in 25 total runs (shown in
Appendix B). At each state, the State Recognition Algorithm (described in Chapter 3)
was run to identify the state relations in the environment. Based on these state
relations, the Intention Recognition Algorithm in Chapter 4 was run to assign likelihoods

138

to intentions. The resulting likelihoods were captured for each possible intention (kit) at
each state.

Instructions :

» Select your username and validate i,
& For each object added 1n the kat, fill out the percentages and vahdate the row,
* When all the objects are in the kit, a submit button appears. Click on it to save the results.

Userd - | Validate User |

Eitl it £ it 3 Lit 4 Cik 5
Click on it 3
FOHOI
- 20 20 20 | 20 20

1. Object red added in the kit tray,
2. Object green added 1o the kit tray.

Percentape left to assipn for this line: 10053

Walidate row |

Figure 58. Experiment User Interface

To determine how well these likelihoods compared to what a human would perceive in
the same situation, we built a data set based on these same five kits. To compile the
data set, 15 students served as the human participants. They were considered novice
users. They were presented with the interface shown in Figure 58. Included in the
interface were five images of kits as shown in the figure. The kit images could be
enlarged by clicking on them. Each kit represents an intention. Students were not told
how many of each kit were being built in each of the 25 runs. All kits were presented in
random order and the order varied from participant to participant.

One by one, the human was presented with a textual description of something that
happened in the environment, for example, “Red object added in the kit tray.” Based on
this information, the human assigned likelihoods as to which kit was being developed
(i.e., what the intention was based on the observed events). The likelihoods that the
human assigned were based on personal preferences. In the example shown in Figure
58, the human assigned a 20% likelihood to all kits based on the first state because a red
object exists in all kit trays. In some cases, the human scaled the likelihood based upon
how many red objects existed in each kit tray. The only rule was that all likelihoods for
each state must sum to 100%. An update of how many percentage points were available

139

to assign to each row is shown at the bottom of the figure. Once a human finished with
a given row, he pressed the “Validate Row” button at the bottom. If the sum of the
percentages added to 100%, a new environment observation was provided, a new row
was added to the table, and the process started again. If they did not equal 100%, the
human was alerted to this and asked to change their percentages until they equalled
100%. Once a human clicked the “Validate Row” button and it successfully validated,
they could not go back and edit the previous row. Because there were exactly ten
objects in each kit, exactly ten states were presented per kit. After ten states were
completed, the human moved on to the next intention until all 25 intentions were
complete.

To compare these results to the output of the Intention Recognition Algorithm, we
averaged the likelihoods for all 15 humans for each plan, each state, and each kit. Based
upon this, we identified two performance metrics for evaluation:

1. The average state in which the humans first correctly identified the kit that was
being created (and consistently identified that correct kit for the remainder of the
states)- This was measured by averaging likelihoods that all humans assigned to
each kit within a state, and then determining if the kit with the highest likelihood
was the correct kit being created;

2. The average state in which the humans were over 20 percentage points more
confident that the correct kit was being developed compared to the second most
probable kit: The 20 percentage point value can be changed as necessary, but
appeared to be a reasonable value to show that the humans were confident that
their choice was correct.

Table 17: Detailed Human Intention Recognition Data

Kit | Plan | State | Kit Kit Kit Kit Kit Highest Correct | Correct Over 20%

1 2 3 4 5 Probability Kit Intention | Confident
Kit First of

Chosen Intention
1 5 1 21.6 | 21.7 | 17.8 | 21.2 | 17.8 2 NO NO NO
1 5 2 229 | 225 | 16.1 | 223 | 16.1 1 YES NO NO
1 5 3 20.8 | 19.7 | 21.8 | 19.6 | 18.0 3 NO NO NO
1 5 4 229 | 174 | 25 |17.2 | 17.4 3 NO NO NO
1 5 5 39.7 | 296 | 1.7 | 273 | 1.7 1 YES YES NO
1 5 6 369 | 29.0 | 44 | 252 | 4.4 1 YES YES NO
1 5 7 36.7 | 30.2 | 4.1 | 24.8 | 4.13 1 YES YES NO
1 5 8 76.1 | 26 | 100 | 59 | 5.4 1 YES YES YES
1 5 9 813|806 | 15 | 7.7 | 1.5 1 YES YES YES
1 5 10 780 | 9.0 | 40 | 5.0 | 4.0 1 YES YES YES

140

To explain these two metrics, we refer to Table 17. This is actual data from one part of
the experiment, in which Kit 1 was being developed using Plan 5 (as shown in the first
two columns). All plans are included in Appendix B, but this specific plan is included
below for reference.

Kit 1, Plan 5
1. Red object in the kit tray;
. Red object in the kit tray;
. Blue object in the kit tray;
. Blue object in the kit tray;
. Red object in the kit tray;
. Green object in the kit tray;
. Green object in the kit tray;
. Blue object in the kit tray;
. Red object in the kit tray;
10. Green object in the kit tray.

O o0 NOULL P WN

For each state, the average of all 15 humans’ likelihoods associated with each kit is
shown in the blue columns in the table. For example, in State 1, which corresponded to
a red object being in the kit tray, the average of the humans’ likelihoods for Kit 1 was
21.6, which means that on average, after the humans observed that the red object was
in the kit tray, they thought that there was a 21.6% chance that the Kit 1 intention was
being performed. Likewise, they thought there was a 21.7% chance that the Kit 2
intention was being performed, and so on. The table shows the likelihoods for every kit
after every state for the duration of the experiment (Kit 1, Plan 5). The next column
(highest likelihood kit) shows which kit (1-5) had the highest likelihood for each state.
The next column (Correct Kit) indicates whether the highest likelihood kit is the kit
intention that was actually being performed. In the example, because this part of the
experiment focuses on Kit 1, this column will have a “yes” when the highest likelihood
kit was Kit 1. The next column (Correct Intention First Chosen) is one of the metrics that
was used in the results of the experiment. It indicates the first time that the correct kit
was chosen and was subsequently chosen at every state thereafter. In the table, Kit 1
was chosen as the highest likelihood kit in State 2, but then not chosen in states 3 and 4.
As such, State 2 does not count as the state in which the kit was “first correctly chosen.”
It is not until State 5 when the Kit 1 was correctly chosen (based on the highest
likelihood) and then subsequently chosen in every state thereafter.

The last column (Over 20% Confident of Intention) is the second metric that was used in
the results of the experiment; it represents the state in which the highest likelihood
intention is at least 20 percentage points higher than the second highest intention. This
is computed by simply subtracting the second highest likelihood intention from the
highest likelihood intention and checking to see if it is greater than 20. As mentioned
earlier, the 20% figure is meant to represent the case when the humans and algorithms

141

are very confident which intention is being performed. That 20% value can be changed
by the user as desired. In this example, this does not evaluate to true until State 8.

This same process was performed for all intentions (kits) and all plans for both the
humans and the algorithm. The next section will compare the results of human
experiments with the output of the Intention Recognition Algorithm.

6.2. Experimental Results (Overview)

Based on the experiments described in the previous section, we directly compared the
results from the human experiments with the output of the Intention Recognition
Algorithm described in Section 4 [158]. The Intention Recognition Algorithm was scored
based on how closely it matched the human-generated results. We judged closeness by
determining the difference between the algorithm’s performance and the average
humans’ performance using the two performance metrics defined in the previous
section (both the state in which the intention was first identified and the state in which
the intention were confidently identified).

Table 18 shows the comparison of the output of the Intention Recognition Algorithm to
that of humans’ performance. Column 1 (Kit) shows the kit that was being developed
and Column 2 (Plan) shows the plan that was used to developed the kit. The description
of each plan is shown in Appendix B. As mentioned earlier, the two main points of
comparison that were used in this experiment were 1) the state (from 1 to 10) when the
humans or algorithms first correctly identified the kit that was being created (and
consistently identified that correct kit for the remainder of the states), and 2) the state
in which the humans were over 20% more confident that the correct kit was being
developed compared to the second most probable kit.

The third through fifth columns (blue columns) of the table (“Correct Intention First
Chosen”) show the average state in which the humans first identified the correct kit that
was being developed (“Human”), the state in which the algorithm first identified the
correct kit that was being developed (“Algorithm”), and the difference between the two
(“Difference”). Similarly the sixth through eighth columns (green columns) of the table
(“Over 20% Confident of Intention”) shows the average state in which the humans first
identified the correct kit that was being developed with over a 20% confidence as
compared to the second most probable intention (“Human”), the state in which the
algorithm first identified the correct kit that was being developed with over a 20%
confidence as compared to the second most probable intention (“Algorithm”), and the
difference between the two (“Difference”). A positive value in the difference column
means that the algorithm identified the correct kit that many states earlier than the
humans. Conversely, a negative value in the difference column means the algorithm
identified the kit that many states later than the humans. A zero means the humans and
the algorithm identified the kit at the same state.

142

In analyzing Table 18, we see some very promising results about the performance of the
Intention Recognition Algorithm as compared to humans’ performance. If we first
examine Columns 3-5 (the light blue columns) which compare the state which the
algorithms and the humans first chose the correct intention, we see that in over half of
the runs (13/25), the Intention Recognition Algorithm determined the proper kit at the
exact same state as the humans (as indicated by the zero in the difference column). In
eight of the runs, the Intention Recognition Algorithm determined the proper kit earlier
than the humans (as indicated by the positive number in the difference column). This
ranged from one to four states earlier than the humans. In only four runs did the
Intention Recognition Algorithm determine the proper kits later than the humans. In
three cases, this was one state later and in the other it was three states later.

When looking at the data that represents when the algorithms and humans were
greater than 20% confident (as compared to the next most probable intention), the
results are equally promising. In almost half of the runs (12/25), the Intention
Recognition Algorithm determined the proper kit (with over 20% confidence compared
to the next most probably kit) at the exact same state as the humans (as indicated by
the zero in the difference column). In all of the remaining runs, the Intention
Recognition Algorithm determined the proper kit earlier than the humans (as indicated
by the positive number in the difference column). This ranged from one to five states
earlier than the humans.

This data shows that the Intention Recognition Algorithm, in almost every case
performed as good, if not better, than humans performing the same activity. In the next
section, we will take a deeper look at the individual runs to assess the performance of
the Intention Recognition Algorithm at a lower level.

143

Table 18. Comparison of Algorithm Output to Human Intention Recognition

Kit Plan Correct Intention First Chosen Over 20% Confident of Intention
Human Algorithm | Difference | Human | Algorithm | Difference
1 1 10 10 0 10 10 0
1 2 7 7 0 7 7 0
1 3 10 10 0 10 10 0
1 4 3 2 1 6 5 1
1 5 5 3 2 8 8 0
2 1 4 4 0 7 5 2
2 2 5 1 4 7 3 4
2 3 9 6 3 9 8 1
2 4 9 8 1 9 9 0
2 5 1 1 0 7 3 4
3 1 6 4 2 7 6 1
3 2 4 1 3 5 2 3
3 3 3 4 -1 7 5 2
3 4 1 1 0 6 3 3
3 5 6 3 3 8 6 2
4 1 8 8 0 8 8 0
4 2 5 5 0 6 5 1
4 3 7 8 -1 9 8 1
4 4 7 7 0 7 7 0
4 5 5 8 -3 8 8 0
5 1 4 4 0 4 4 0
5 2 3 3 0 3 3 0
5 3 6 6 0 6 6 0
5 4 8 9 -1 9 9 0
5 5 2 2 0 7 2 5

In this section, we provide the results of all 25 runs (five kits with five runs each). For
each run, we provide the following figures:

1. Top Left Figure- for the specified run, the results of the human experiment. The
x-axis represents the sequence of the ten states and the y-axis represents the
likelihood that the specified kit is being developed. In each of these figures are
five lines, each representing one kit. Each line shows the perceived likelihood by

2.

6.3. Experimental Results (Details)

the humans that the specific kit is being developed at each state;

Top Right Figure- for the specified run, the results of the Intention Recognition
Algorithm. The x-axis represents the sequence of the ten states and the y-axis
represents the likelihood that the specified kit is being developed. In each of
these figures are five lines, each representing one kit. Each line shows the

144

perceived likelihood by the algorithm that the specific kit is being developed at
each state;

3. Bottom Figure- for the specified run, the comparison of the result of the humans
and the algorithm for the individual kit that was being created (i.e. the correct
kit). In all cases, both the humans and the algorithm ultimately predicted the
correct kit that was being created.

The format of the section is consistent for all 25 runs. In each case, the figures described
above are presented for the specific run (kit and plan), and a set of observations for
each are presented, specifically focusing on the kit that we being created. The
observations in this section are all subjective (as opposed to the objective metrics
described in Table 18) and all focus on the bottom of the three figures. The top two
figures are provided for reference. Three subjective observations that will be discussed
in each observation are:

e Observation 1 - The comparison of the pattern of lines representing the humans
and the algorithm results in the bottom figure. In other words, do these lines
have the same general pattern, indicating that the algorithm and the humans are
“thinking alike”?

e Observation 2 - In general, are the likelihoods at every state for the line
representing the results of the algorithm greater or less than that representing
the results of humans for the correct kit (the bottom figure)?

e Observation 3 - At what state did the likelihood of the correct kit dramatically
increase (as represented by the steepest slope between any two states) and how
does this compare between the humans and the algorithm? This shows the state
in which the confidence level of the humans/algorithm greatly increased.

145

Likelihoods

el State2 State3 Stated StateS Stite® State7 Stats
State
Kit_1_User ©-Kit_2_User = Kit_3_User

Kit_4_User — IKit_5_User

Likelihoods

Value (9%)

MeS State§ State7 Stated State§ State 10
State
Kit_3_Algerithm

Kit_1_Algerithm -~ Kit_2_Algerithm Kit_4_Algorithm — Kit_5_Algorithm

Humans’ Likelihood Data for All Five Kits

Algorithm Likelihood Data for All Five Kits

100 {|
a0 1t

80 1}

60 {}

S0 1}

Value (%0)

401t
30 {f
20 1}

10|

Likelihoods

State 1 State2 State3 Stated

- Kit_1_User - Kit_1_Algorithm

State 5

State & State7 State8 State9 State 10

State

Comparison of Human and Algorithm Data for Kit 1 (Correct Kit)

Figure 59: Human/Algorithm Comparison Data for Kit 1 Plan 1

Observations from Figure 59:

Pattern of the Lines- Both the red line representing the humans’ perceived

likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern, with the exception of State 10 where
the algorithm’s likelihood shoots to a higher relative percentage (100%);

Likelihoods at Every State- Except for State 5, the algorithm’s likelihood at each

state is greater than or equal to that of the user, thus indicating better results by

the algorithm;

Dramatic Increase in Likelihood- For both the humans and the algorithm, the

likelihood of the correct kit increases dramatically at State 10, where the
percentages went up to 75% and 100%, respectively.

146

Likelihoods

value (90)
W &2 ®m 3 3 B B

<'.|Ew. 1 State 2 ’;l.l:-_- 3 State 4 State 5 State 6
State
Kit_3_Usar

State 7 State 8 State 9 State 10

Kit_1_Usar - Kit2_User Kit_4_User — Kit_5_User

Likelihoods
60
T
e
P
LR
>

State] State2 State3 Stated StateS State6 State7 State8 Staled State10
State
Kit_1_User <-IGt_2_User = Kit_3_User Kit_4_User —Kit_5_User

Humans’ Likelihood Data for All Five Kits

Algorithm Likelihood Data for All Five Kits

Likelihoods

100 1t

90 1}

80 1}

70 1}

60 it

50 1}

Value (%0)

40 1

30 1}

State 1 State2 State3 Stated

O [Kit_1_User o= Kit_1_Algorithm

State 5

State6 State7 State8 State9 State 10

State

Comparison of Human and Algorithm Data for Kit 1 (Correct Kit)

Figure 60: Human/Algorithm Comparison Data for Kit 1 Plan 2

Observations from Figure 60:

Pattern of the Lines- Both the red line representing the humans’ perceived

likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a
more pronounced “bump” at States 3 and 4 and a more pronounced jump at

Likelihoods at Every State- The algorithm’s likelihood at each state is greater

[]

State 7;
[]

than that of the user, thus indicating better results by the algorithm;
[]

Dramatic Increase in Likelihood- For both the humans and the algorithm, the

likelihood of the correct kit increases dramatically at State 7, where the
percentages went up to 78% and 100%, respectively.

147

Likelihoods

State]l State2 State3 Stated State5 State® State7 StateB Stated State 10
State

Kit_1_User - Kit 2 User < Kit 3 Usar Kit_4_ User — Kit_5_User

Human Likelihood Data for All Five Kits

Likelihoods

Value (96)
“

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10
State
Kit_1_Algoithm - Kit 2 Algorithm - Kit_3_Algorithm Kit_4_Algorithen — Kit_5_Algorithm

B Algorithm Likelihood Data for All Five Kits h

Likelihoods

100 1t

90 {1

80 1}

70 4}

60 {t

S0 1t

Value (%0)

40|

30 {|

20 1}

10 4}

0

- ok ik &

State1 State2 State3 State 4

- Kit_1_User - Kit_1_Algorithm

State 5

State 6
State

State 7 State 8 State 9 State 10

Comparison of Human and Algorithm Data for Kit 1 (Correct Kit)

Figure 61: Human/Algorithm Comparison Data for Kit 1 Plan 3

Observations from Figure 61:

e Pattern of the Lines- Both the red line representing the humans’ perceived
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm line has a

more pronounced “bump” at State 6;

e Likelihoods at Every State- The algorithm’s likelihood at each state is greater
than that of the user, thus indicating better results by the algorithm;

e Dramatic Increase in Likelihood- For both the humans and the algorithm, the
likelihood of the correct kit increases dramatically at State 7, where the
percentages went up to 85% and 100%, respectively.

148

Likelihoods:

value (90)
g & 8 8 &3

= oy

Statel State2 State3 Stated State5 States State7

State
Kit_1_User << Kit_2_User = Kit_3_User Kit_4_User— Kit_5_User

State® State @

100';
90 1t
80 1}
70 1t
60 1

S0 1

Value (%)

401t

30 4
20 1t

10 1t

State 1 State 2 State 3 State 4

O Kit_1_User -O- Kit_1_Algorithm

B Humans’ Likelihood Data for All Five Kits
Likelihoods

State 10

Likelihoods

Value (%)

State5 State® State7 Stated Stated State 10
State

Kit_1_Algorithm <~ Kit_2_Algorithm - Iit_3_Algarithm Ki_4_Algorithm - Kit_5_Algorithm

State 1 State2 Stated Stated

StateS5 State 6

B Algorithm Likelihood Data for All Five Kits h

State 7 State8 State 9 State 10

State

Comparison of Human and Algorithm Data for Kit 1 (Correct Kit)

Figure 62: Human/Algorithm Comparison Data for Kit 1 Plan 4

Observations from Figure 62:

Pattern of the Lines- Both the red line representing the humans’ perceived

likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm line has a

Likelihoods at Every State- The algorithm’s likelihood at each state is greater

[]

more pronounced jump at States 5 and 6;
[]

than that of the humans’, thus indicating better results by the algorithm;
[]

Dramatic Increase in Likelihood- For both the humans and the algorithm, the

likelihood of the correct kit increases dramatically at State 6, where the
percentages went up to 78% and 100%, respectively.

149

Likelihoods

8 8

value (%)
@ &

Stted StateS Ste6 State7 Stated Stated
State

Kit_1_User=- Kit_2_User < Kit_3_User Kit_4_User — Kit_§_User

Statel Statez State3 State 10

Likelihoods

Value (%0)

Statel State2 State3 Stated StateS StateS State7 Stated State® State 10

State
Kit_1_Algorithm <> Kit_2_Algorithm < Kit_3_Algarithm __K_4_Algorithm ~ Kit_§_Algorithm

Humans’ Likelihood Data for All Five Kits

Algorithm Likelihood Data for All Five Kits

Value (20)

100':
90 {t
80 {t
70 {t
60 {t
S0 {t
40 {t

301

Likelihoods
:;'1—.)—‘) J‘
1
7 < |
,:\// ‘
State 1 State2 State3 Stated4 StateS State6 State7 State8 State9 State 10
State
- Kit_1_User - Kit_1_Algorithm

Comparison of Human and Algorithm Data for Kit 1 (Correct Kit)

Figure 63: Human/Algorithm Comparison Data for Kit 1 Plan 5

Observations from Figure 63:

Pattern of the Lines- Both the red line representing the humans’ perceived

likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a
more pronounced “bump” at States 3, 4, and §;

Likelihoods at Every State- The algorithm’s likelihood at each state is greater

than that of the humans’, thus indicating better results by the algorithm-

Dramatic Increase in Likelihood- For both the humans and the algorithm, the

likelihood of the correct kit increases dramatically at State 8, where the
percentages went up to 78% and 100%, respectively.

150

Likelihoods

Value (20)
w &2 w2

Statel State2 State3 Stated State5 State s State?

State

Stated State9 State 10

Kit_1_User<- Kit 2_Usar = Kit_3_Usar Kit_4_Usar — Kit 5_User

Likelihoods

Value (20)

Statel State2 State3 Stated4 State5 States State 7

State

State8 State9 State 10

Kit_1_Algorithm = Kit_2_Algorithm < Kit_3_Algorithm Kit_4_Algorithm — kit_5_Algorithm

Humans’ Likelihood Data for All Five Kits

Algorithm Likelihood Data for All Five Kits

Likelihoods

100 1t

value (%)

State 1 State 2 State 3 State 4

Kit_2_User -0 Kit_2_Algorithm

State S

State 6 State 7 State 8 State 9 State 10

State

Comparison of Human and Algorithm Data for Kit 2 (Correct Kit)

Figure 64: Human/Algorithm Comparison Data for Kit 2 Plan 1

Observations from Figure 64:

Pattern of the Lines- Both the red line representing the humans’ perceived

likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a

more pronounced jump at State 5;

Likelihoods at Every State- The algorithm’s likelihood at each state is greater

than that of the humans’, thus indicating better results by the algorithm;

Dramatic Increase in Likelihood- For both the humans and the algorithm, the

likelihood of the correct kit increases dramatically at State 7, where the
percentages went up to 86% and 100%, respectively.

151

Likelihoods:

value (90)

8 8 3 8 3

Statel State 2 State 5
State

Kit_1_User-o- Kit_2_User < Kit 3 User Kit_4_Usar~ Kit_5_User

B Humans’ Likelihood Data for All Five Kits

State3 Stated State6 State7 State® Stated State 10

Likelihoods

Likelihoods

Value (%)

State 6 State 7 State §
State
Kit_1_Algorithm < Kit_2_Algorithm - Kit_3_Algorithm Kit_4_Algorithm - Kit_5_Algorithm

B Algorithm Likelihood Data for All Five Kits h

Statel State2 State3 Stated StateS State @ State 10

100 {;
90 {;

80 {

60 {f

S0 1

Value (%)

40|
20 1t

10 1t

State 1 State2 State3 State 4

- Kit_2_User -0~ Kit_2_Algorithm

State 5

State 6
State

State 7 State8 State 9 State 10

Comparison of Human and Algorithm Data for Kit 2 (Correct Kit)

Figure 65: Human/Algorithm Comparison Data for Kit 2 Plan 2

Observations from Figure 65:

Pattern of the Lines- Both the red line representing the humans’ perceived

likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a

Likelihoods at Every State- The algorithm’s likelihood at each state is greater

[]

more pronounced jump at States 3, 5, and 6;
[]

than that of the humans’, thus indicating better results by the algorithm;
e Dramatic Increase in Likelihood-

For both the humans and the algorithm, the

likelihood of the correct kit increases dramatically at State 7, where the
percentages went up to 85% and 100%, respectively.

152

Likelihoods

Value (20)
; x

Statel State2 State3 Stated State§

State

State® State7 Stated State 9

Kit_1_User<- Kit 2_Usar = Kit_3_Usar Kit_4_Usar — Kit 5_User

State 10

Likelihoods

Value (20)
.

State3 State4 StateS
State

Statel State2 State& State7 Stated State State 10

Kit_1_Algorithm = Kit_2_Algorithm < Kit_3_Algorithm Kit_4_Algorithm — kit_5_Algorithm

Humans’ Likelihood Data for All Five Kits

Algorithm Likelihood Data for All Five Kits

Likelihoods

50 {f

Value (%0)

30 1| s
20 1

10 4t

40 1| g iy

State 1 State2 State3 Stated

- Kit_2_User -0~ Kit_2_Algorithm

State 5

State6 State7 State8 State9 State 10

State

Comparison of Human and Algorithm Data for Kit 2 (Correct Kit)

Figure 66: Human/Algorithm Comparison Data for Kit 2 Plan 3

Observations from Figure 66:

e Pattern of the Lines- Both the red line representing the humans’ perceived
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a

more pronounced jump at State §;

e Likelihoods at Every State- The algorithm’s likelihood at each state is greater
than that of the humans’, thus indicating better results by the algorithm;

e Dramatic Increase in Likelihood- For both the humans and the algorithm, the
likelihood of the correct kit increases dramatically at State 9, where the
percentages went up to 89% and 100%, respectively.

153

[Likelihoods T Likelihoods
s 100 44
B0 o0
707 80
2.l 2w
B > w0
5
i s
T Gwal Sz Sul3 Saind WS Sweo Sws7 Saes Swmd Sl Wi Swmz G#e3 Suld Suls Saiet Sae? Saes Swid owe
State State
Kit_1_User < Kit_2_User - Kil_3_User Kit_4_User — Kit_5_User Kit_1_Algerithm - Kit_2_Algoithm = Kit_3_Algorthm K#_4_Algerithm — Kit_5_Algarithm
Humans’ Likelihood Data for All Five Kits Algorithm Likelihood Data for All Five Kits
Likelihoods
100 { p—0
90 {|
80 {}
70 1t
Q A
L S0 o
G I
= il g gt
e O e o
o Wy i
20 .-»-ho_r_ T
10 1
04t

State 1 State2 State3 Stated4 StateS State6 State7 State8 State9 State 10
State
- Kit_2 User - Kit_2_Algorithm

Comparison of Human and Algorithm Data for Kit 2 (Correct Kit)

Figure 67: Human/Algorithm Comparison Data for Kit 2 Plan 4

Observations from Figure 67:

e Pattern of the Lines- Both the red line representing the humans’ perceived
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a
more pronounced jump at States 6, 8, and 9;

o Likelihoods at Every State- The algorithm’s likelihood at each state is greater
than that of the humans’, except for State 2, thus indicating better results by the
algorithm;

e Dramatic Increase in Likelihood- For both the humans and the algorithm, the
likelihood of the correct kit increase dramatically at State 9, where the
percentages went up to 87% and 100%, respectively.

154

Likelihoods

State1 State2 State3 Stated StateS State6 State7 State® Stite9 State 10

State

Kit_1_User <-Kit_2_User - Kit 3 Usar Kit_4_User — Kit_5_User

Likelihoods

Value (90)

State3 Stated StateS State6 State7 State8 Stated State 10
State
KGt_1_Algorithm - Kit_2_Algorithm - Kit_3_Algorithm Kit_4_Algarithm — Kit_5_Algorithm

State 1 State 2

Humans’ Likelihood Data for All Five Kits

Algorithm Likelihood Data for All Five Kits

Likelihoods

100 1}
a0 1}
80 1}
70 1}
60 1t

50 1|

Value (%0)

40

30 {1

20 {f

101t

State 1 State2 State3 State4

- Kit_2_User -0~ Kit_2_Algorithm

State S5

State6 State7 State8 State9 State 10

State

Comparison of Human and Algorithm Data for Kit 2 (Correct Kit)

Figure 68: Human/Algorithm Comparison Data for Kit 2 Plan 5

Observations from Figure 68:

Pattern of the Lines- Both the red line representing the humans’ perceived

[]
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern with the exception of States 2-6. In
these states, the likelihood from the algorithm consistently increases while the
likelihood from the humans remains relatively constant;

e Likelihoods at Every State- The algorithm’s likelihood at each state is greater
than that of the humans’, thus indicating better results by the algorithm;

[]

Dramatic Increase in Likelihood- For both the humans and the algorithm, the

likelihood of the correct kit increases dramatically at State 7, where the
percentages went up to 88% and 100%, respectively.

155

Likelihoods T Likelihoods]
90 10X
801 €
0 L
i K
) P o
201 .
104 1
0 : - . . > = ! ‘ . . - 2 = =
State State
Kit_1_User-<- Ki_2_User & Kit 3 User Kit_4_User — Kit_5_User Kit_1_Algorithm <~ Kit_2_Algorithm < Kit_3_Algorithm Kit_4_Algorithm — Kit_5_Algorithm
Humans’ Likelihood Data for All Five Kits Algorithm Likelihood Data for All Five Kits
Likelihoods
100 {} > . o} }‘
90 1 / J o ‘
80 {1 = = '
J |
70 {1 /. {
E’g B0 /'/ J‘
rd
2 soq o ‘
] . /
= a0l - R | ‘
301t / ‘
204 B > - - [
|

State 1 State2 State3 State4 StateS State6 State7 State8 State9 State 10
State
- Kit_3 User - Kit_3_Algorithm

Comparison of Human and Algorithm Data for Kit 3 (Correct Kit)

Figure 69: Human/Algorithm Comparison Data for Kit 3 Plan 1

Observations from Figure 69:

e Pattern of the Lines- Both the red line representing the humans’ perceived
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a
jump at State 4 which does not exist to that extreme in the humans’ results;

e Likelihoods at Every State- The algorithm’s likelihood at each state is greater
than that of the humans’ with the exception of States 2 and 3;

e Dramatic Increase in Likelihood- For both the humans and the algorithm, the
likelihood of the correct kit increases dramatically at State 7, where the
percentages went up to 90% and 100%, respectively.

156

Likelihoods

Value (o)
S

Stated StateS State6 State7 State 9
State

Kit_3_User

State 8 State 10

Kit_1_Usar - Kit_2_User Kit_4_User — Kit 5_User

Likelihoods

Value (00)
492 38 8 B

State1 State2? State3 Stated StateS Stats State State State 10
State

Kit_1_Algerithm kit 2_Algorithm < Kit_3_Algorithm Kit_4_Algorithm — IKit_5_Algorithm

6 Stat

Humans’ Likelihood Data for All Five Kits

Algorithm Likelihood Data for All Five Kits

Likelihoods

100'?
90 1
80 {t
70 {t
60 1}

S0 1

Value (%)

40 |

30 {t

State 1 State2 State3 Stated

- Kit_3_User - Kit_3_Algorithm

StateS State6 State7 State8 State9 State 10

State

Comparison of Human and Al

gorithm Data for Kit 3 (Correct Kit)

Figure 70: Human/Algorithm Comparison Data for Kit 3 Plan 2

Observations from Figure 70:

Pattern of the Lines- Both the red line representing the humans’ perceived

likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a

Likelihoods at Every State- The algorithm’s likelihood at each state is greater

icating better results by the algorithm;

[J

more pronounced jump at State 2;
[J

than that of the humans’, thus ind
e Dramatic Increase in Likelihood-

For both the humans and the algorithm, the

likelihood of the correct kit increases dramatically at State 5, where the
percentages went up to 90% and 100%, respectively.

157

Likelihoods:

Statel State2 State3 Stated StateS State6 State 7

State

State State® State 10

Kit_1_User <> Kn_2_User < Kit_3_User Kit_4_User — Kit_5_User

Likelihoods

Value (94a)

PN -]

Statel State2 State3 State4 StateS Stated State7 Stated Stated State 10
State

Kit_|_Algorithm - Kit_2_Algrithm <~ it_3_Algorithm Kit_4_Algorithm - Kit_S_Algorithm

Humans’ Likelihood Data for All Five Kits |

100 {

90 {

701
60 1

S0 1

Value (%)

40 4
30
201

10 {

Likelihoods

i Algorithm Likelihood Data for All Five Kits]

State1 State2 State3 Stated

- Kit_3_User -2~ Kit_3_Algorithm

State S

State6 State7 State8 State9 State 10

State

Comparison of Human and Algorithm Data for Kit 3 (Correct Kit)

Figure 71: Human/Algorithm Comparison Data for Kit 3 Plan 3

Observations from Figure 71:

Pattern of the Lines- The two lines have slightly different patterns. They start out

en the algorithm’s line has a quick jump at
n in similar Pattern, with a more consistent

Likelihoods at Every State- The algorithm’s likelihood at each state after State 3

s’, while the humans’ line shows greater

[]
about the same in States 1-3, but th
States 4 and 5. After that they remai
likelihood (100%) through States 7-10;
[]
is greater than that of the human
likelihoods from States 1-3;
[]

increases — one from States 4-5 and
has a dramatic increase at State 7.

15

Dramatic Increase in Likelihood- The algorithm’s line shows two dramatic

a second at State 7. The humans’ line only

8

Likelihoods T Likelihoods]
2 0
%51 % ;"
%
e R ER T O T T = e e e T
State State
Kit_1_User-c- Kit_2_User & Kit_3_User Kit_4_User— Kit_5_User Kit_1_Algorithm -0~ Kit_2_Algorithm = Kit_3_Algorithm Kit_4_Algorithm — Kit_5_Algofithm
Humans’ Likelihood Data for All Five Kits Algorithm Likelihood Data for All Five Kits
Likelihoods
100 1 /;-" O
P
901 s
80 /U
/
70 {
. Vi
e 7
2 so s—
g /
40 1
R
304
20 {
10 1}
G.

State1 State 2 State 3 State 4 State 5 State6 State7 State 8 State 9 State 10
State
- Kit_3 User - Kit_3_Algorithm

Comparison of Human and Algorithm Data for Kit 3 (Correct Kit)

Figure 72: Human/Algorithm Comparison Data for Kit 3 Plan 4

Observations from Figure 72:

e Pattern of the Lines- Both the red line representing the humans’ perceived
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a
more pronounced jump at State 3;

o Likelihoods at every State- The algorithm’s likelihood at each state is greater
than that of the humans’, thus indicating better results by the algorithm-

e Dramatic Increase in Likelihood- For both the humans and the algorithm, the
likelihood of the correct kit increases dramatically at State 6, where the
percentages went up to 90% and 100%, respectively. The humans’ line then trails
off a bit at the end, but still keeps a very high likelihood.

159

Value (ob)
@ a

Humans’ Likelihood Data for All Five Kits | Algorithm Likelihood Data for All Five Kits]

Likelihoods Likelihoods

Value (94a)

Statel State2 State3 Stated State5 State6 State7 State® State 9 State 10 Statel State2 State3 Stated StateS Stated State7 Stated State9 State 10

State State
Kit_1_User-<- Kit_2_User - Kin_3_User Kit_4_User— Kit 5_User Kt_1_Algorithm <> Kit_2_Algorithm - Kit_3_Algorithm Kit_4_Algorithm ~ Kit_5_Algarithm

Likelihoods
100 | p——o0——0
90 {| 7
80 /
7011 / \ ,__.«'. /
60 {| 7. \.ﬁ'f /
501t /

40t e Sr—
O
30 {| s

20 {1

Value (90)

10 1t

State1 State2 State3 State4 StateS State6 State7 State8 State9 State 10
State
- Kit_3_User - Kit_3_Algorithm

Comparison of Human and Algorithm Data for Kit 3 (Correct Kit)

Figure 73: Human/Algorithm Comparison Data for Kit 3 Plan 5

Observations from Figure 73:

Pattern of the Line- Both the red line representing the humans’ perceived
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a
more pronounced dip at State 2 and then a significant jump at State 6;
Likelihoods at Every State- The algorithm’s likelihood at each state is greater
than that of the humans’, thus indicating better results by the algorithm;
Dramatic Increase in Likelihood- The algorithm line has two jumps, one at State
6 and one at State 8. Conversely, the humans’ line one has one significant jump
at State 8.

160

Likellhoods Likelihoods

State5 State6 State7 State® Stated State 10 Stte] State? Stste3 Stted StaeS Swte6 State7 StateB Stated State 10
State State
K_1_User <~ Kit_2_User - Ki_3_User Kit_4_User — Kit_5_Ussr Kit_1_Algorithm - Kit_2_Algorithm < Kt _3_ASgorithm __ 1<t_4_Algosithm — Kit_5_Algorithm

Humans’ Likelihood Data for All Five Kits Algorithm Likelihood Data for All Five Kits

Likelihoods
100 1} S
0 1}
804}
70 1t
60 4}

50 1} | /

40 1t

Value (20)

20 4t

20 1t . . _7._.__--::‘-7"-—- =
o

e
|
|

10 4}

State 1 State2? State3 State4 StateS State6 State 7 State8 State9 State 10
State
Kit_4_User -0~ Kit_4_Algorithm

Comparison of Human and Algorithm Data for Kit 4 (Correct Kit)

Figure 74: Human/Algorithm Comparison Data for Kit 4 Plan 1

Observations from Figure 74:

e Pattern of the Lines- Both the red line representing the humans’ perceived
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a
more pronounced jump at State 8;

e Likelihoods at Every State- The humans’ likelihood is greater than the
algorithm’s likelihood at almost every state between 1 and 7, with the exception
of State 4. However, in every case, the likelihoods between the two lines are
very close at each of these states. After State 7, the algorithm’s likelihoods are
consistently higher than the humans’;

e Dramatic Increase in Likelihood- For both the humans and the algorithm, the
likelihood of the correct kit increases dramatically at State 8, where the
percentages went up to 83% and 100%, respectively.

161

Value (%)

2 3 8

State 1

Likelihoods

B
\
\
N

State? State3 Stated StaeS States State7 States

State
Kit_1 _User < Kit_2_User - Kit_3_User Ki_4_User — Kit_5_User

100 {;

90 1

70 1t
60}

501

Value (20)

40 1|

30 1}

D

Humans’ Likelihood Data for All Five Kits | Algorithm Likelihood Data for All Five Kits]
Likelihoods

Likelihoods

Value (90)
8

6,5
State 1 State 2 State 3 State 4 State S State 6 State 7 State 8 State 9 State 10
State
Kit_1 _Algorithm < Kit_2_Algarithm - Kit_3_Algorthm Kit_4_Algarithm — it _5_Algorithm

State1 State2 State 3

State4 StateS State6 State7 State8 State 9 State 10

- Kit_4_User 0= Kit_4_Algorithm

Comparison of Human and Algorithm Data for Kit 4 (Correct Kit)

State

Figure 75: Human/Algorithm Comparison Data for Kit 4 Plan 2

Observations from Figure 75:
Pattern of the Lines- Both the red line representing the humans’ perceived
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a
more pronounced jump at States 5 and 8;

Likelihoods at Every State- The algorithm’s likelihood at each state (except for
State 1) is greater than that of the humans’, thus indicating better results by the

algorithm;

Dramatic Increase in Likelihood- There are two dramatic increases in the
algorithm’s likelihood at states 5 and 8, while in the humans’ likelihoods, there is
only a dramatic increase at State 8.

162

Value (%)
% 2 u e

Humans’ Likelihood Data for All Five Kits | Algorithm Likelihood Data for All Five Kits]

Statel State2 State3 Stated State5 State6 State7 State® State 9 State 10 Statel State2 State3 Stated StateS Stated State7 Stated State9 State 10

Likelihoods Likelihoods

Value (94a)

N oW &2 W 2

o

State State
Kit_1_User-<- Kit_2_User - Kin_3_User Kit_4_User— Kit 5_User Kt_1_Algorithm <> Kit_2_Algorithm - Kit_3_Algorithm Kit_4_Algorithm ~ Kit_5_Algarithm

Likelihoods
100 || p—o0

90 1t a

60 {t 7
501 Pyt

40 {1 -

Value (90)

20 1t =
104 o e,

—d
p*]

State1 State2 State3 State4 StateS State6 State7 State8 State9 State 10
State
- Kit_4_User - Kit_4_Algorithm

Comparison of Human and Algorithm Data for Kit 4 (Correct Kit)

Figure 76: Human/Algorithm Comparison Data for Kit 4 Plan 3

Observations from Figure 76:

Pattern of the Lines- Both the red line representing the humans’ perceived
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the humans’ line has a dip
at State 8 which does not exist in the algorithm’s line;

Likelihoods at Every State- The humans’ likelihood at each state between States
1 and 7 is slightly greater than the algorithm’s likelihood. Starting at State 8, the
algorithm’s likelihood is slightly better;

Dramatic Increase in Likelihood- The algorithm’s likelihoods start to increase at
State 7 and then continues to increase through State 9. The humans’ likelihoods
also start to increase at State 7, but then take a dip at State 8 before increasing
again at State 9.

163

Likelihoods

80 {t

Value (%)
O R T

State'S State
State

Kit_1_User-o- Kn_2_User = Kt_3_ User Kit_d_User— Kit_5_User

ate2 State3 Stated State &

Likelihoods

State& State7 State® Stated State 10
State

Kit_1_Algorithm -0~ Kit_2_Algorithm = Ki_3_Algorithm Kit_4_Algorithm — Kit_5_Algorithm

Statel State2 Stite3 Stated StateS

Humans’ Likelihood Data for All Five Kits

Algorithm Likelihood Data for All Five Kits

Likelihoods

100}
90 1|
801
70 1|
60 1|

50

Value (%0)

40 1
30 1t
-

204

10 1

State 1 State 2 State 3 State 4

- Kit_4_User < Kit_4_Algorithm

State 5

State 6 State 7 State B8 State 9 State 10

State

Comparison of Human and Algorithm Data for Kit 4 (Correct Kit)

Figure 77: Human/Algorithm Comparison Data for Kit 4 Plan 4

Observations from Figure 77:

Pattern of the Lines- Both the red line representing the humans’ perceived

[]
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithm’s line has a
more pronounced jump at State 7;

e Likelihoods at Every State- The algorithm’s likelihood at each state (except for
States 1, 5, and 6) is greater than that of the humans’;

[]

Dramatic Increase in Likelihood: For both the humans and the algorithm, the

likelihood of the correct kit increases dramatically at State 7, where the
percentages went up to 80% and 100%, respectively.

164

Likelihoods

0 \

e Stated StateS State
State
Kit_1_User =-Kit_2_User = Kit_3_User Kit_4_User — Kit_5_Usar

\ cr r o

tate7 State Stated State 10

Value (90)

Statel State2 Sta

Kis_1_Algorithm <~ Kii_2_Algerithm

Likelihoods

3 Stated State5 Stated State7 State® Stated State
State
Kit_3_Algerithm Kit_4_Algorithm — Kit_5_Algarithm

Humans’ Likelihood Data for All Five Kits

Algorithm Likelihood Data for All Five Kits

Likelihoods
100 1| y a—
/
90 {;
80 {t
70 1| o
= Va
$ 601 7
2 soq T
o 7
= 40| Pp—o—C
30 {; /
.'/
201! - ,'/
o— o T~/
10 1} e
0- S = = = - S = = = =
State1 State2 State3 Stated4 StateS State6 State7 State8 State9 State 10
State
- Kit_4_User - Kit_4_Algorithm

Comparison of Human and Algorithm Data for Kit 4 (Correct Kit)

Figure 78: Human/Algorithm Comparison Data for Kit 4 Plan 5

Observations from Figure 78:

e Pattern of the Lines- Both the red line representing the humans’ perceived
likelihoods and the blue line representing the algorithm’s likelihoods at each
state have almost the exact same pattern. However, the algorithms line has a

more pronounced jump at State

8;

o Likelihoods at Every State- The humans’ likelihood at each state until State 7 is
greater than that of the algorithm’s, often by a small margin. Starting at State 8,
the algorithm’s likelihood is greater than the humans’;

e Dramatic Increase in Likelihood- For both the humans and the algorithm, there
is a dramatic increase in likelihood at both States 5 and 9. However, at State 8,
the algorithm’s has a dramatic increase in likelihood that does not exist in the

humans’ line.

165

Likelihoods

10 ™

State4 StateS Stae6 State7 Stated Stated State 10
State
Kit_3_Usar

State1 State2 State 3

Kit_1_User - Kit_2_User Kil_d_User — Kt _5_Usar

Likelihoods

Stte] State? Stse3 Stated StateS State6 State7 State8 Stated State 10
State
Kit_1_Algorithm <~ Kit_2_Algorithm - Kit_3_Algorthm _ Kit_4_Algorithm — Kit_5_Algorithm

Humans’ Likelihood Data for All Five Kits

Algorithm Likelihood Data for All Five Kits

Likelihoods
100 j
90 | /
80 1} /
70 [
g’ 60 1t ."F
2 sof
)
> 40
30
20 1|
10 e
State 1 State2 State3 State 4 State 5 State 6 State 7 State 8 State @ State 10
State
- Kit_5_User - Kit_5_Algorithm

Comparison of Human and Algorithm Data for Kit 5 (Correct Kit)

Figure 79: Human/Algorithm Comparison Data for Kit 5 Plan 1

Observations from Figure 79:

line representing the humans’ likelihoods and

the blue line representing the algorithm’s likelihoods at each state have almost
identical patterns. However, the humans’ line has a pronounced dip at State 5

Likelihoods at Every State- The humans’ likelihood at States 1 to 3 a greater than

They are about the same at State 4 and then

e Pattern of the Lines- Both the red

which does not exist in the algorithm’s line;
[

the algorithm’s by a small margin.

the algorithm’s likelihoods are great than the humans’ from states 5-10;
e Dramatic Increase in Likelihood-

For both the humans and the algorithm, the

likelihood of the correct kit increase dramatically at State 4, where the
percentages went up to about 100% each.

166

Likelihoods Likelihoods

Value (%)
@

Value (va)
o 2

State] State2? State3 Stated StateS Stats

5 st State7 State State9 State 10
State

Kif_1_User-0- Ki_2_User & Ki_3_User Kit_d_User— Kit_5_User Kit_1_Algorithen -0~ Kit_2_Algorithm < Kit_3_Algorithm K#t_4_Algosithm — Kit_5_Algorithm

Humans’ Likelihood Data for All Five Kits Algorithm Likelihood Data for All Five Kits

Likelihoods

100 1| - . 0 0

90 {f

80 1}

70 1t

60 1t

S50 {f

Value (90)

40 1

30 1}

State1 State? State3 State4 StateS State6 State7 State8 State9 State 10
State
- Kit_5_User -0~ Kit_5_Algorithm

Comparison of Human and Algorithm Data for Kit 5 (Correct Kit)

Figure 80: Human/Algorithm Comparison Data for Kit 5 Plan 2

Observations from Figure 80:

e Pattern of the Lines- Both the red line representing the humans’ likelihoods and
the blue line representing the algorithm’s likelihoods at each state have almost
identical patterns. However, the humans’ line has a slight dip at State 4 which
does not exist in the algorithm’s line;

e Likelihoods at Every State- The algorithm’s likelihood at each state is greater
than or equal to that of the humans’, thus indicating better results by the
algorithm;

e Dramatic Increase in Likelihood- For both the humans and the algorithm, the
likelihood of the correct kit increases dramatically at State 3, where the
percentages increase to 100% each.

167

Likelihoods

State4 StateS State6 State7 state 9

State

2 State3 State 8 State 10

Kit_1_User < Kit_2_User < Kit_3_User Kit_4_User — Kit_§_User

Likelihoods

Statel State2? Stale3 Stated State5 State6 State7 State8 State9 State

State

9 10

Kin_1_Algorthm -o-Kit_2_Algonithm = Kit_3_Algorithm Kit_4_Algosithm — Kit_5_Algorithm

Humans’ Likelihood Data for All Five Kits B

N Algorithm Likelihood Data for All Five Kits]

Value (%0)

Likelihoods

/

State 1 State 2 State 3 State 4 State

Kit_5_User -0 Kit_5_Algorithm

Comparison of Human and Algorithm Data for Kit 5 (Correct Kit)

o State 6 State 7 State 8 State @ State 10

State

Figure 81: Human/Algorithm Comparison Data for Kit 5 Plan 3

Observations from Figure 81:

Pattern of the Lines- Both the red line representing the humans’ likelihoods and

the blue line representing the algorithm’s likelihoods at each state have almost
identical patterns. However, the humans’ line has a slight dip at State 7 which

ates 1-5, the humans’ likelihood is slightly

greater than the algorithm’s. Start at States 6 - 10, the algorithm’s likelihood is

[]
does not exist in the algorithm’s line;
e Likelihoods at Every State- From St
slighter greater or equal to the humans’;
e Dramatic Increase in Likelihood- Fo

r both the humans and the algorithm, the

likelihood of the correct kit increases dramatically at State 6, where the

percentages increase to 100% each.

16

8

Value (%)
2 8 5 2 2 &

Likelihoods Likelihoods

Value (%)

StateS State6 State7 State8 State9 State 10 State1 State? State3 Stated
State

Kit_3_User

2 State3 Stated State5 State6 S

State

Kit_1_User o Kit_2_User Kit_4_User — Kit_5_User Kit_1_Algorithm o K_2_Algerithm = Kit_3_Algorithm

Humans’ Likelihood Data for All Five Kits

Value (90)

Kit_4_Algorithm — Ki_5_Algorithm

Algorithm Likelihood Data for All Five Kits

Likelihoods
100 1 f—0
90 | -
80 {}
70 1t f--f
60 1
501
40| /
o
30 4} frvseeif
4
20 1| O~ o /
=) —0— S /
10 1 ——o ,/
State1 State2? State3 State4 StateS State6 State7 State8 State 9 State 10
State
- Kit_5_User - Kit_5_Algorithm

Comparison of Human and Algorithm Data for Kit 5 (Correct Kit)

Figure 82: Human/Algorithm Comparison Data for Kit 5 Plan 4

Observations from Figure 82:

Pattern of the Lines- Both the red line representing the humans’ likelihoods and

the blue line representing the algorithm’s likelihoods at each state have almost
identical patterns. However, the humans’ line has a slight dip at State 10 which

Likelihoods at Every State- The humans’ line has a slightly higher likelihood from

States 1-8 as compared to the algorithm’s line. Starting in State 9, the
algorithm’s line has a slightly greater or equal to likelihood as compared to the

[J

does not exist in the algorithm’s line;
[J

humans’ line;
[}

Dramatic Increase in Likelihood- For both the humans and the algorithm, the

likelihood of the correct kit increases dramatically from States 8-9, where the
percentages increase to 100% each.

169

Likelihoods

Value (20)

— -

N L
State2 State3 State d StateS State & State 7
State
Kit_3_Ussr

State 1 State8 State 9 State 10

Kit_1_Ussr- Kit_2_User Kit_4_User— Kit_5_User

Likelihoods

Stated StateS State® State? Stated Stated State 10
State

Kit_1_Algorithm <>~ Kit_2_Algorithm -~ Kit_3_Algarithm Iit_4_Algorithm — Kit_5_Algorithm

Statel State? Stated

Humans’ Likelihood Data for All Five Kits

Algorithm Likelihood Data for All Five Kits

Likelihoods

100 1t

90 {t

60 {}

50 {f

Value (%0)

40 {|

30 /

=3

State 1 State2 State3 State 4

Kit_5_User -0 Kit_5_Algorithm

State S

State6 State7 State8 State9 State 10

State

Comparison of Human and Algorithm Data for Kit 5 (Correct Kit)

Figure 83: Human/Algorithm Comparison Data for Kit 5 Plan 5

Observations from Figure 83:

Pattern of the Lines- Both the red line representing the humans’ likelihoods and

the blue line representing the algorithm’s likelihoods at each state have almost
identical patterns. However, the algorithm’s line has a more pronounced jump at

Likelihoods at Every State- The algorithm’s likelihood at each state is greater

than or equal to that of the humans’, thus indicating better results by the

[]

State 4 and the humans’ line has a dip at States 3 and 8;
[]

algorithm;
[]

Dramatic Increase in Likelihood- For both the humans and the algorithm, the

likelihood of the correct kit increases dramatically at State 2 and State 7. At State
7, the likelihoods from the humans’ and the algorithm increase to 100% each.

170

6.4. Experimental Results (Overall Observations)

The analysis in Sections 6.2 and 6.3 shows that the results of the Intention Recognition
Algorithm closely replicated the performance of humans performing the same
experiment and in some cases, exceeded their performance. This was determined by
comparing the output from the experiment by looking at the following factors:

e The state in which algorithm and the humans first identified the correct
intention (and consistently identified it throughout the rest of the run)- We
showed that in over half of the runs (13/25), the Intention Recognition Algorithm
determined the proper kit at the exact same state as the humans (as indicated
by the zero in the difference column). In eight of the runs, the Intention
Recognition Algorithm determined the proper kit earlier than the humans. In
only four runs did the Intention Recognition Algorithm determine the proper kits
later than the humans. In three cases, this was one state later and in the other it
was three states later.

e The state in which the algorithm and the humans were greater than 20%
confident (as compared to the next most probable intention)- In almost half of
the runs (12/25), the Intention Recognition Algorithm determined the proper kit
(with over 20% confidence compared to the next most probably kit) at the exact
same state as the humans. In all of the remaining runs, the Intention Recognition
Algorithm determined the proper kit earlier than the humans. This ranged from
one to five states earlier than the humans.

e The comparison of the pattern of lines representing the humans and the
algorithm results- In other words, do these lines have the same general pattern.
In almost every one of the 25 runs, the general pattern of the lines representing
the humans’ and algorithm’s results were almost identical. The exact values of
the percentages often varied by a small amount, but the general path of the lines
was extremely comparable. This shows that the algorithms exhibit the same
pattern of intention recognition as a humans as the plan progresses, which
indicates that the algorithms are mimicking the “thinking” of the humans.

e The comparison of the likelihoods at every state for the lines representing the
results of the humans and the algorithm for the correct kit- Out of the 250
possible states (5 kits * 5 plans/kit * 10 states/plan), 189 times (75.6%) the
algorithm performed better than the humans, as indicated by a higher
percentage for the correct intention at each state. Twenty times (8%) the
humans and the algorithm performed the same, and 41 times (16.4%) the
humans performed better than the algorithm.

e The comparison between the humans and the algorithm regarding the state in
which the likelihood of the correct kit dramatically increased- This represents
the point in which the humans and algorithm became very confident in their
guesses. As shown in Section 6.3, in 20 of the 25 plans, there was exactly one
dramatic increase in likelihood and both the humans and the algorithm showed
this increase at the exact same state. In one of the plans Kit 5,Plan 5) there were

171

two dramatic increases and both the humans and the algorithm showed this
increase at the exact same state. In the remaining four plans, the algorithms
showed a dramatic increase at the same state as the humans, but also
introduced an additional dramatic increase that was not present in the humans’
results. In all of these cases, this additional increase only brought the likelihood
to close to 50%, while all of the others brought the likelihood into the 80-100%
range. This indicates that the algorithm became much more confident that the
intention was being performed, but was not “certain” as would be indicated by a
likelihood in the 80-100% range.

From these five metrics, we can infer that the Intention Recognition Algorithm
performed at least as well (often superior) as a humans in almost all cases and showed
the same pattern of intention recognition as a humans as the plan progressed.

6.5. Applying Addition Intention Recognition Approaches

Overall, the Intention Recognition Algorithms performed superior to humans. Part of
this could be due to natural human error in recognizing intentions. However, | was
curious to see if, apart from human error, there were other factors that were affecting
the difference between the algorithm and human results. Interestingly, the three other
intention algorithms described in Section 4.2.4 seemed to play a large factor in
accounting for the difference. The analysis below shows that we can mimic a human’s
behavior, so that we can better understand what a human takes into account when
performing intention recognition. This will allow us to be better prepared to develop
algorithms that leverage the best of these approaches.

As described in Section 4.2.4, in addition to the Bayesian approach, there were also
three other intention recognition approaches that were explored, namely:

e Intention Recognition Approach 1: Number of observed state relations that are
true in an intention at a given state (compared to other intentions). Every
intention is composed of a set of state relations. The number of state relations
that are true in one intention, as compared to others, should give an indication
of the relative likelihood of that intention;

e Intention Recognition Approach 2: Percentage of an intention that is complete at
a given state. As opposed to the number of true state relations, the percentage
of state relations that are true in an intention could also provide a relative
likelihood of that intention occurring;

e Intention Recognition Approach 3: Number of productive states that have
occurred recently (within the past X states, where X is determined by the user).
This approach looks at what intention is most probable based on what has
happened recently. The supposition is that the more positive outcomes that

172

have happened in the past X states, the more likely that a given intention is
occurring.

In this section, we apply these additional three approaches to determine how they
affect the performance of the overall likelihood equation shown in Equation 46.
Applying these additional three approaches to the experiment described earlier showed
some interesting results. Each approach on its own did not provide results that were
superior to that of the humans. However, the introduction of these approaches to
Equation 46 with relatively small weights combined with the Bayesian approach
containing a relatively high weight provided results that better mimicked the detailed
performance of the humans. In all cases, the quantitative metrics (average state in
which the kit was first detected and state which the likelihood was over 20 % greater)
described in Section 6.1 did not change. However, by varying the weights assigned with
the additional three approaches, we observed that the similarity of the line generated
by Equation 46 as compared to the line generated by the humans increased. In this case,
we assigned equal weights to all three additional approaches for simplicity purposes,
but these approaches could have easily been assigned differing weights.

We analyzed the difference between the line generated by Equation 46 and the line
generated by the humans. We measured the difference by looking at the sum of the
absolute distance between corresponding points on each of the two lines at each of the
ten states. This is shown in Table 19.

Table 19: Impact of Weights on First Three Approaches - Coarse Level

Weights Assigned to Approaches Sum of Differences Standard
Approach 3 Weight - Bagesian Approach Welght) Deviation
0-0-0-100 83.03 6.16
10-10-10-100 42.97 3.71
20-20-20-100 56.88 7.83
30-30-30-100 66.41 11.36
40-40-40-100 79.09 13.58
50-50-50-100 85.58 15.06
60-60-60-100 94.33 16.23
70-70-70-100 103.86 17.32
80-80-80-100 111.28 18.04
90-90-90-100 114.99 18.37
100-100-100-100 118.12 19.01

Based on Table 19, there appears to be a significant reduction in the difference
between the two lines when applying weights from zero to ten to the first three
approaches, with a gradual and continuous increase when weights greater than ten are

173

applied. Exploring the weights between zero and ten provided the data in Table 20.

Table 19 and Table 20 combined are shown graphically in Figure 84.

Table 20: Impact of Weights on First Three Approaches: Fine-Grained Level

20

40 60

80 100

Weights Assigned to Approaches Sum of Differences Standard
Format: (Approach 1 Weight - Approach 2 Weight- (measured in likelihood points) Deviation

Approach 3 Weight - Bayesian Approach Weight)
1-1-1-100 77.14 5.40
2-2-2-100 65.01 5.32
3-3-3-100 55.84 4.74
4-4-4-100 48.03 4.85
5-5-5-100 37.42 4.57
6-6-6-100 20.48 2.50
7-7-7-100 38.13 3.94
8-8-8-100 41.21 3.75
9-9-9-100 41.90 3.88

E 120

A ..n-'"—————.-——.-

E //

e — 100 ,--""f

: EL) \ / /

= E 60 —

gz

= 20

a

c 0

IndividualWeights of Four Additional Metrics

Figure 84: Individual Approaches Weights Effect on Sum of Difference

Figure 84 shows that there is a clear pattern in the weight assigned to these three
additional approaches as compared to the “closeness” of the resulting Equation 46 line
with that of the humans’. At a weight of six, the two lines most closely align and then

174

consistently deviate as the weight move further away in both directions. The
comparison of the humans’ performance, the Bayesian approach by itself, and the
addition of the three approaches at a weight of six are shown in Figure 85. As can be
seen in the figure, the humans’ performance (represented by the blue line) and the
addition of the three approaches (represented by the green line), while not exactly the
same, align quite well.

100 l

Qo

a0
70 /II j
60 I.J =—Human Performance
|
50 I']Il Onhby Bayesian MWetric
AL

40
Nj — % Weight on Additional
 —— Four Metrics

Lilelihood of Correct Intention

10

1 2 3 dq 5 B 7 8 o 10
State at Which Observation is Made

Figure 85: Comparison of Human Bayesian and Additional Approaches for Kit 2, Plan 4

The results are interesting for the following reasons. From the original experiment, it
was clear that humans’ performance followed that of a traditional Bayesian probability
algorithm in the sense that the forms of the lines were very similar, though the actual
location of the lines on the graph did not align (the algorithm line was generally higher
on the graph than the humans’ line). The addition of the three new approaches started
to explain this difference. When these additional approaches were introduced at a
relatively small weight as compared to the Bayesian approach, the resulting algorithm
line greatly approached that of the humans. This may indicate that the humans were
consciously or unconsciously considering the other three approaches when anticipating
which kit was being developed, namely, the number of true observed states, the
percentage of the intention complete, and the number of productive states that have
occurred recently. Based on the data, a relative weight of six percent for these
additional three approaches (as compared to the Bayesian approach) appear to best
represent the thought process of the humans.

175

This was meant to be an initial exploration of these additional three approaches. More
experiments would be necessary to determine if the six percent relative weight holds
for other situations and for different sets of humans. Additional exploration would also
be necessary to determine how independently varying the weights of these three
additional approaches would change the results and which of the approaches, if any,
contribute to the best correspondence with the humans’ performance. The goal of this
analysis was to determine if there appears to be a benefit in introducing these
additional three approaches, which appears to be the case.

176

7. Conclusion and Future Work

7.1. Achievement

In this thesis, we presented a novel approach for inferring the intention of an agent in
the environment via the recognition and representation of state information. This
approach to intention recognition is different than many ontology-based intention
recognition approaches in the literature as they primarily focus on activity (as opposed
to state) recognition and then use a form of abduction to provide explanations for
observations. We inferred detailed state relationships using observations based on
Region Connection Calculus 8 (RCC-8) and then combined the RCC-8 relations to define
the overall state relationships that are true at a given time. Once a sequence of state
relationships was determined, we used a Bayesian approach to associate those states
with likely overall intentions to determine the next possible action (and associated
state) that were likely to occur.

The five main contributions of this thesis are as follows:

e State Recognition and Representation Algorithms: These algorithms recognize
relevant qualitative state relations in the environment and represent them using
a combination of extended RCC-8 relations and cardinal direction information.
These low-level state relations are combined to form more abstract state
relations which are used as the basis to represent intentions. In this work, a
sequence of state relations constitutes an intention.

e Intention Recognition Algorithms: These algorithms compare observation of
qualitative state information against predefined intentions which are possible in
the environment. Based on these comparisons, the algorithms assign likelihoods
to each relevant intention. Likelihoods are determined through a weighted
average among various intention recognition approaches, with the primary
approach being Bayesian.

e Manufacturing Kitting Ontology: This ontology represents the key concepts
relevant to the manufacturing kitting domain. It serves as the basis for the
intention recognition work by defining the relevant concepts and explicitly
defining the relationships between the concepts.

e State Representation Ontology: This ontology representation the various levels
of qualitative state information need for the intention recognition work. At the
lowest level, the RCC8 relations are represented along each axial plane. A set of
logical expressions are represented to abstract the RCC8 relations into
intermediate state relations and ultimately to predicates that can be used as the
basis for intention recognition.

e Intention Ontology: This ontology leverages and modifies the OWL-S ontology to
construct intentions based on the combination and sequencing of state

177

information. Sequencing constructs are captured in this ontology along with
constructs to represent the relevant intentions for the domains being explored.

An experiment was developed to assess the performance of the state-based Intention
Recognition Algorithm described above. This was done by comparing the output of our
algorithm to the performance of several humans watching agents performing the same
intentions. Five kits were used that each contained ten blocks, but each contained a
unique combination of differently-shaped blocks. For this experiment, we randomly
chose five of those orders for each kit, resulting in 25 total runs.

The results of the experiment showed very promising results:

e In over half of the runs (13/25), the Intention Recognition Algorithm determined
the proper kit at the exact same state as the humans. In eight of the runs, the
Intention Recognition Algorithm determined the proper kit earlier than the
humans. In only four runs did the Intention Recognition Algorithm determine the
proper kits later than the humans. In three cases, this was one state later and in
the other it was three states later;

e In almost half of the runs (12/25), the Intention Recognition Algorithm
determined the proper kit (with over 20% confidence compared to the next most
probably kit) at the exact same state as the humans. In all of the remaining runs,
the Intention Recognition Algorithm determined the proper kit earlier than the
humans. This ranged from one to five states earlier than the humans;

e In almost all of the 25 runs, the general pattern of the lines representing the
humans’ and algorithm’s results were almost identical. The exact values of the
percentages often varied by usually a small amount, but the general form of the
lines was extremely comparable. This showed that the algorithms mimicked the
same pattern of intention recognition as a human as the plan progressed, thus
showing it was “thinking” like a human.

¢ In more than three-quarters of the 250 possible states (5 kits * 5 plans/kit * 10
states/plan), the algorithm performed better that the humans (189 times,
75.6%), as indicated by a higher percentage for the correct kit at each state. The
humans and the algorithm performed the same 20 times (8%), and the humans
performed better than the algorithm 41 times (16.4%).

7.2. Future Work

Although substantial work has been performed, there are extensions of this work that
will be the focus of future efforts. First, the State-Based Intention Recognition approach
will be applied to areas outside of the manufacturing kitting domain. The State
Recognition Algorithm as well as the Intention Recognition Algorithm have been
developed to be generic in nature, but because they have only been applied to the
manufacturing kitting domain, there are undoubtedly additional extensions that will be

178

needed. The next area to which they will be applied to is manufacturing assembly,
which is an extension of manufacturing kitting. Additional high-level state relations that
will need to be developed include concepts such as “attached to.” Additional
intermediate state relations may also needed. For example, in the case of a screw being
inserted into a hole, there may need to be different levels of “Partially_In” to
differentiate when a screw is partially screwed in vs. when it is completely screwed in.
Lastly, additional intentions will need to be developed that align to the product that is
being assembled.

Second, the algorithms have currently only been testing in simulation where we assume
that sensor processing is perfect and relevant state relationships can be determined
without any specified uncertainty. We have already begun establishing the
infrastructure to transition this to a real environment as described in Chapter 5, but
more work needs to be done to make this a reality. This includes developing the
interfaces needed to task the sensory processing system to return location and
orientation information about objects in the environment. Considering the results of the
sensory processing system will not be perfect, we need a way to represent uncertainty
in the output of these systems and to apply this uncertainty to the results of the State
Recognition Algorithms. Uncertainty can come from the recognition of the object, the
identification of the position of the object, and the identification of the orientation of
the object. The Bayesian approach can still be used even when the input state relations
have an associated uncertainty. For example, if the observation states that there is a
70% chance that a blue part is in the tray, a 20% probability that a red part is in the tray,
and a 10% probability that nothing is in the tray, the Bayesian probability can still be
used for each scenario and then a weighted average can be applied to the three
scenarios to determine an overall probability.

Third, in Chapter 4, we described additional approaches to intention recognition. This
included approaches such as: the number of observed state relations that were true in
an intention; the percentage of an intention that were complete; and the number of
productive states that occurred recently. Initial exploration applied these approaches to
the experiment, but more work is needed to determine the impact that each approach
has on the performance of the overall intention recognition system by varying the
weights of each independently and determining the optimal set of weights for all of the
approaches. Additional experiments can also try to find the optimal weights to maximize
the difference between the algorithms’ and humans’ results, ensuring that the
algorithms’ results are always greater.

Fourth, though learning was not specifically addressed in this thesis, there are a number
of ways that it can be incorporated. They include:

1. In the Bayesian probability equation (Equation 47), part of the equation

focused on the proportion of all kits that are a specific type of kit. This

number can be “learned” over time by look at the historical proportion of

179

kits that are different types and modifying this number in real time as
new kits are being developed.

In the overall likelihood equation (Equation 46), there are multiple
intention recognition algorithms proposed, each with a separate weight.
These weights can be “learned” over time by looking at the kits that have
been developed and modifying the weights to provide optimal values
based on the development of previous kits.

180

Bibliography

[1]

[2]

[3]
[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

S. Szabo, R. Norcross, and W. Shackleford. (2011). Safety of Human-Robot
Collaboration Systems Project. Available:
http://www.nist.gov/el/isd /ps/sathumrobcollsys.cfm

M. Shneier, "Safety of Human-Robot Collaboration in Manufacturing,"
presented at the 8th Safety Across High-Consequence Industries Conference,
Saint Louis, MO, 2013.

J. Chabrol, "Industrial robot standardization at ISO," Robotics, vol. 3, pp. 229-
233,1987.

F. Sadri, "Logic-Based Approaches to Intention Recognition," in Handbook of
Research on Ambient Intelligence and Smart Environments: Trends and
Perspectives, N.-Y. Chong and F. Mastrogiovanni, Eds., ed, 2011, pp. 346-375.
C. Heinze, "Modeling intention recognition for intelligent agent systems,"
Australia2003.

C. Schlenoff, A. Pietromartire, Z. Kootbally, S. Balakirsky, T. Kramer, and S.
Foufou, "Inferring Intention Through State Representation in Cooperative
Human-Robot Environments," in Engineering Creative Design in Robotics and
Mechatronics, M. Habib and P. Davim, Eds., ed, 2013.

D. Randell, Z. Cui, and C. A., "A spatial logic based on regions and connection,"
presented at the 3rd International Conference on Representation and
Reasoning, San Mateo, CA, 1992.

D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. Mcllrath, et al.
(2004). OWL-S: Semantic Markup of Web Services. Available:
http://www.w3.org/Submission/OWL-S/

H. Jeon, T. Kim, and]. Choi, "Ontology-based User Intention Recognition for
Proactive Planning of Intelligent Robot Behavior," presented at the
International Conference on Multimedia and Ubiquitous Engineering Busan,
Korea, 2008.

R. Kelley, A. Tavakkoli, C. King, M. Nicolescu, M. Nicolescu, and G. Bebis,
"Understanding Human Intentions Via Hidden Markov Models in
Autonomous Mobile Robots," presented at the 3rd ACM/IEEE International
Conference on Human Robot Interaction Amsterdam, 2008.

O. Schrempf and U. Hanebeck, "A Generic Model for Estimating User-
Intentions in Human-Robot Cooperation,” presented at the 2nd International
Conference on Informatics in Control, Automation, and Robotics ICINCO 05
Barcelona, 2005.

W. Mao and]. Gratch, "A Utility-Based Approach to Intention Recognition,"
presented at the AAMAS Workshop on Agent Tracking: Modeling Other
Agents from Observations New York, 2004.

S.--J. Youn and K.-W. Oh, "Intention Recognition using a Graph
Representation,” World Academy of Science, Engineering and Technology, vol.
25, 2007.

181

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]

C. Schlenoff, S. Foufou, and S. Balakirsky, "Performance Evaluation of Robotic
Knowledge Representation (PERK)," presented at the Performance Metrics
for Intelligent Systems (PerMIS), College Park, MD, 2012.

E. Charniak and D. McDermott, Introduction to artificial intelligence. Reading,
MA: Addison Wesley, 1985.

P. Roy, B. Bouchard, A. Bouzouane, and S. Giroux, "a hybrid plan recognition
model for Alzheimer's patients: interleaved-erroneous dilemma," presented
at the I[EEE/WIC/ACM International Conference on Intelligent Agent
Technology, 2007.

G. Sukthanker and K. Sycara, "Team-aware robotic demining agents for
military simulation,” presented at the Innovative Applications of Artificial
Intelligence (IAAI), 2001.

L. M. Pereira and H. T. Ahn, "Elder care via intention recognition and
evolution prospection,” presented at the 18th International Conference on
Applications of Declarative Programming and Knowledge Management
(INAP'09), Evora, Portugal, 2009.

F. Mulder and F. Voorbraak, "A formal description of tactical plan
recognition," Information Fusion, vol. 4, 2003.

P. A. Jarvis, T. F. Lunt, and K. L. Myers, "Identifying terrorist activity with Al
plan-recognition technology," Al Magazine, vol. 26, p. 9, 2005.

R. Demolombe, A. Mara, and O. Fern, "Intention recognition in the situation
calculus and probability theory frameworks,” presented at the
Computational Logic in Multi-Agent Systems (CLIMA) Conference, 2006.

M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson, D. Hahnel, D. Fox, et al,
"Inferring ADLs from interactions with objects," IEEE Pervasive Computing,
2005.

P. R. Cohen, C. R. Perrault, and]. F. Allen, "Beyond question answering," in
Strategies for Natural Language Processing, W. Lenhart and M. Ringle, Eds., ed
Hillsdale, NJ: Lawrence Erlbaum Associates, 1981, pp. 245-274.

C. W. Geib and R. P. Goldman, "Plan recognition in intrusion detection
systems," presented at the DARPA Information Survivability Conference and
Exposition (DISCEX), 2001.

L. M. Pereira and T. A. Han, "Intention recognition via causal Bayes networks
plus plan generation," presented at the Progress in Artificial Intelligence,
Proceedings of the 14th Portugese International Conference on Artificial
Intelligence (EPIA'09), 2009.

C. S. Pierce, Collected Papers, Band VII (Hrsg.): Arthur W. Burks, 1958.

P. Michalak, "Intention Recognition for Task Learning," 2005.

E. Charniak and R. P. Goldman, "A bayesian model for plan recognition,"
Artificial Intelligence, vol. 64, pp. 53-79, 1993.

T. A. Han and L. M. Pereira, "State-of-the-Art of Intention Recognition and its
use in Decision Making," Studies in Applied Philosophy, Epistemology and
Rational Ethics, vol. 2, pp. 263-287, 2012.

K. Knonlige and M. Pollack, "Ascribing plans to agents: preliminary report,"
presented at the International Joint Conference on Artificial Intelligence,
Detroit, MI, 1989.

182

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

D. E. Appelt and M. E. Pollack, "Weighted abduction for plan ascription," User
Modeling and User-Adapted Interaction, vol. 2, pp. 1-25, 1991.

A. Waern, "Plan inference for a purpose,” presented at the Fourth
International Conference on User Modeling, Hyannis, MA, 1994.

M. Bauer, "A Demster-Shafer approach to modeling agent preferences for
plan recognition," User Modeling and User-Adapted Interaction, vol. 5, pp.
317-348, 1996.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Morgan Kaufman,
1988.

B. Raskutti and 1. Zukerman, "Generation and selection of likely
interpretations during plan recognition in task-oriented consultation
systems," User Modeling and User-Adapted Interaction, vol. 1, pp. 323-353,
1991.

D. W. Albrecht, 1. Zukerman, and A. E. Nicholson, "Bayesian models for
keyhold plan recognition in an adventure game," User Modeling and User-
Adapted Interaction, vol. 8, pp. 5-47, 1998.

T. Dean and T. Wellman, Planning and Control. San Mateo, California: Morgan
Kaufman, 1991.

D. V. Pynadath and M. P. Wellman, "Accounting for context in plan
recognition with applications to traffic monitoring," presented at the
Conference on Uncertainty in Artificial Intelligence (UAI'95), 1995.

J. Forbes, T. Huang, K. Kanazawa, and S. Russell, "The batmobile: towards a
Bayesian automated taxi," presented at the The 24th International Joint
Conference on Artificial Intelligence, 1995.

S. M. Brown, "A decision theoretic approach for interface agent
development,” USA1998.

R. P. Goldman, C. W. Geib, and C. Miller, "A new model of plan recognition,"
presented at the Conference on Uncertainty in Artificial Intelligence (UAI'99),
1999.

H. Bui, S. Venkatesh, and G. West, "Policy recognition in the abstract hidden
markov model," Journal of Artificial Intelligence Research, vol. 17, pp. 451-
499, 2002.

N. Blaylock and]. Allen, "Corpus-based statistical goal recognition,"
presented at the 18th International Joint Conference on Artificial Intelligence
(IJCAT'03), 2003.

H. Bui, "A general model for online probabilistic plan recognition,” presented
at the 8th International Joint Conference on Artificial Intelligence (IJCAI'03),
2003.

M. Huber and R. Simpson, "Recognizing the plans of screen reader users,"
presented at the Workshop on Modeling Other Agents from Observations
(M002004), 2004.

C. W. Geib, "Assessing the complexity of plan recognition,” presented at the
Conference of the American Association of Artificial Intelligence
(AAAI'2004), 2004.

183

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]
[56]

[57]

[58]

[59]

[60]
[61]
[62]

[63]

K. A. Tahboub, "Intelligent human-machine interaction based on dynamic
Bayesian networks providing probablistic intention recognition," Journal of
Intelligent Robotic Systems, vol. 45, pp. 31-52, 2006.

0. C. Schrempf, D. Albrecht, and E. D. Hanebeck, "Tractable probabilistic
models for intention recognition based on expert knowledge," presented at
the International Conference on Intelligent Robots and Systems, 2007.

C. W. Geib and R. P. Goldman, "A probabilistic plan recognition algorithm
based on plan tree grammars," Artificial Intelligence, vol. 173, pp. 1101-1132,
20009.

M. G. Armentano and A. Amandi, "Goal recognition with variable-order
markov model," presented at the 21st International Joint Conference on
Artificial Intelligence, 2009.

T. A. Han and L. M. Pereira, "Context-dependent and incremental intention
recognition via Bayesian network model construction," Journal of Artificial
Intelligence Research (submitted), 2011.

M. T. Cox and B. Kerkez, "Case-based Plan Recognition with Novel Imputs,"
International Journal of Control and Intelligent Systems, vol. 34, pp. 96-104,
2006.

J. L. Kolodner, Case-based reasoning. San Mateo, CA: Morgan Kaufman, 1993.
B. Kerkez and M. T. Cox, "Incremental case-based plan recognition with local
predictions," International Journal on Artificial Intelligence Tools:
Architectures, language, algorithms, vol. 12, pp. 413-463, 2003.

C. K. Riesbeck and R. C. Schank, Inside case-based reasoning. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1989.

D. Leake, Case-based reasoning: Experiences, lessons, & future directions.
Menlo Park, CA: AAAI Press / MIT Press, 1996.

P. Taillandier, O. Therond, and B. Gaudou, "A new BDI agent architecture
based on the belief theory. Application to teh modelling of cropping plan
decision-making," presented at the International Congress on Environmental
Modelling and Software : Managing Resources of a Lmited Planet, Leopzig,
Germany, 2012.

F. Dignum, D. Morley, E. A. Sonenberg, and L. Cavedon, "Towards socially
sophisticated BDI agents," presented at the Fourth International Conference
on MultiAgent Systems, 2000.

A. Pokahr, L. Braubach, and W. Lamersdorf, "Jadex: A BDI Reasining Engine,"
in Multi-Agent Programming: Languages, Platforms, and Applications. vol. 15,
ed, 2005, pp. 149-174.

A. Guerra-Hernandez, A. E. Fallah-Seghrouchni, and H. Soldano, Learning in
BDI Multi-Agent Systems, 2004.

M. Rao and P. Georgeff, "Formal models and decision procedures for multi-
agent systems," 1995.

M. Rao and P. Georgeff, "BDI-agents: From Theory to Practice,” presented at
the First INternational Conference on Multiagent Systems (ICMAS), 1995.

M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge, The Belief-
Desire-Intention Model of Agency, 1999.

184

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]
[78]

[79]

A. Pokahr, L. Braubach, and W. Lamersdorf, Jadex: A BDI Reasoning Engine,
2005.

S. Sardina, L. d. Silva, and L. Padgham, "Hierarchical planning in BDI agent
programming langauges: a formal approach,” presented at the Fifth
International Joint Conference on Autonomous Agents and Multiagent
Systems, 2006.

H. Kautz and J. Allen, "Generalized plan recognition," presented at the The
Conference of the American Association of Artificial Intelligence
(AAAI'1986), 1986.

B. Karlsson, A. E. M. Ciarlini, B. Feijo, and A. L. Furtado, "Applying a plan-
recognition / plan-generation paradigm to interactive storytelling, the
LOGTELL case study,”" presented at the ICAPS06 Workshop on Al Planning
for Computer Games and Synthetic Characters, Lake District, UK, 2006.

B. A. Goodman and D.]. Litman, "On the interaction between plan recognition
and intelligent interfaces," User Modeling and User-Adapted Interactions, vol.
2, pp- 83-115, 1992.

N. Lesh, C. Rich, and C. L. Sidner, "Using plan recognition in human-computer
collaboration," presented at the Seventh International Conference on User
Modelling, Canada, 1999.

M. H. Nguyen and W. Wobcke, "A Flexinble Framework for SharedPlan,"
presented at the Advances in Artificial Intelligence19th Australian Joint
Conference on Artificial Intelligence, Hobart, Australia, 2006.

S. Giroux,]. Bauchet, H. Pigot, D. Lusser-Desrochers, and Y. Lachappelle,
"Pervasive behavior tracking for cognitive assistance," presented at the Third
International Conference on Pervasive Technologies Related to Assistive
Environments (PETRA'08), Greece, 2008.

C. Baum and D. Edwards, "Cognitive Performance in Senile Dementia of the
Alzheimer's Type: The Kitchen Task Assessment," American Journal of
Occupational Therapy, vol. 1, 1993.

S. Carberry and S. Elzer, Exploiting evidence analysis in plan recognition.
Berlin Heidelberg: Springer-Verlag, 2007.

Z. Wang, M. Deisenroth, H. B. Amor, D. Vogt, N. Scholkopf, and]. Peters,
"Probabilistic Modeling of Human Movements for Intention Inference,” in
Robotics: Science and Systems, Sydney, Australia, 2012.

H. Goto,]. Miura, and J. Sugiyama, "Human-Robot Collaborative Assembly by
On-line Human Action Recognition Based on an FSM Task Model," presented
at the Human-Robot Interaction 2013 Workshop on Collaborative
Manipulation, Tokyo, 2013.

D. C. Cheng and R. Thowanmas, "Case-based plan recognition for real-time
strategy games," presented at the 5th Game-On International Conference
(CGAIDE'04), Reading, UK, 2004.

M. Buro and T. Furtak, "RTS Games as Testbeds for Real-Time Research,"
presented at the Workshop on Game Al, JCIS, 2003.

J. Mayfield, "Evaluating Plan Recognition Systems: Three Properties of a Good
Explanation,” Artificial Intelligence Review, vol. 14, pp. 351-376, 2000.
DARPA, "Information Innovation Office: Mind's Eye Program," 2012.

185

[80]

[81]

[82]

[83]

[84]

[85]

[86]
[87]
[88]
[89]

[90]

[91]
[92]

[93]
[94]

[95]

[96]
[97]

J. Marvel, T.-H. Hong, and E. Messina, "2011 Solutions in Perception Challenge
Performance Metrics and Results," presented at the Performance Metrics for
Intelligent Systems (PerMIS) Conference, College Park, Maryland, 2012.

M. Newman and S. Balakirsky. (2011) Contests in China Put Next-Generation
Robot Technology to the Test. IEEE Robotics and Automation Magazine, DOI
10.1109/MRA.2011.942540.

T. Choudhury and G. Borriello. (2008) The Mobile Sensing Platform: An
Embedded System for Activity Recognition. IEEE Pervasive Magazine- Special
Issue on Activity-Based Computing.

N. Ravi, N. Dandekar, P. Mysore, and M. Littman, "Activity Recognition from
Accelerometer Data," presented at the Seventeenth Conference on Innovative
Applications of Artificial Intelligence (IAAI/AAAI), 2005.

R. Bodor, B. Jackson, and N. Papanikolopoulos, "Vision-Based Human
Tracking and Activity Recognition," presented at the 11th Mediterranean
Conference on Control and Automation, 2003.

A. Hoogs and A. G. A. Perera, "Video Activity Recognition in the Real World,"
presented at the American Association of Artificial Intelligence (AAAI)
Conference, 2008.

J. Bateman, "Situating Spatial Langauge and the Role of Ontology: Issues and
Outlook," Langauge and Linguistic Compass, vol. 4, pp. 639-664, 2010.

B. Smith and P. Grenon, "The cornucopia of formal ontological relations,"
Dialectica, vol. 58, pp. 279-296, 2004.

C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari, "Ontologies
library (final)," Padova, Italy2003.

B. Heller and H. Herre, "General ontological language GOL: a formal
framework for building and representing ontologies," Leipzig, Germany2004.
N. Asher and L. Vieu, "Towards a geometry of common sense: a semantics
and a complete axiomatisation of mereotopology,” presented at the 15th
International Joint Conference on Atrificial Intelligence (IJCAI), San Mateo,
CA, 1995.

D. Lenat and R. Guha, Building Large Scale Knowledge-Based Systems:
Representation and Inference in the Cyc Project. Addison-Wesley, 1990.

A. Philpot, E. Hovy, and P. Pantel, "The omega ontology," presented at the
ONTOLEX Workshop at I[JCNLP, 2005.

I. Niles and A. Pease, "Towards a Standard Upper Ontology," 2001.

D. Oberle, A. Ankolekar, P. Hitzler, P. Cimiano, M. Sintek, M. Kiesel, et al,
"DOLCE ergo SUMO: on foundational and domain models in the SmartWeb
Integrated Ontology (SWInt0O)," Journal of Web Semantics, vol. 5, pp. 156-174,
2007.

R. Casati and A. C. Varzi, Holes and other superficialities. Cambridge, MA and
London: MIT Press (Bradford Books), 1994.

Cycorp, "OpenCyc 0.7.0 Technical Report," 2004.

J. Bateman and S. Farrar, "Spatial ontology baseline," University of Bremen,
Germany: Collaborative Research Center for Spatial Cognition2004.

186

[98]

[99]

[100]

[101]

[102]
[103]
[104]
[105]

[106]

[107]
[108]

[109]

[110]

[111]

[112]

[113]

P. Buitelaar, "Semantic Lexicons: Between Terminology and Ontology,"
presented at the OntoLex Workshop on Ontologies and Lexical Knowledge
Bases, Bulgaria, 2000.

N. Guarino and C. Welty, "An overview of OntoClean," in Handbook on
Ontologies, S. Staab and R. Studer, Eds., ed Heidelberg and Berlin: Springer-
Verlag, 2004, pp. 151-171.

C. Welty and W. Anderson, "Towards OntoClean 2.0: a framework for
rigidity," Applied Ontology, vol. 1, pp. 107-116, 2005.

J. Albrecht, "Towards interoperable geo-information standards: a comparison
of reference models for geo-spatial information," Annals of Regional Science,
vol. 33, pp. 151-169, 1999.

P. Vossen, Euro WordNet: a multilingual database with lexical semantics
networks. Dordrecht: Kluwer Academic Publishers, 1998.

C. F. Baker, C. Fillmore, and]J. Lowe, "The Berkeley FrameNet Project,"
presented at the ACL/COLING, Montreal, Quebec, 1998.

G. Miller, "WordNet: an online lexical database,” International Journal of
Lexicography, vol. 3, 1990.

K. Kipper-Schuler, "VerbNet: a broad-coverage, comp[rehensive verb
lexicon," Philadelphia, PA2005.

J. d. Kleer and]. S. Brown, A qualitative physics based on confluence. Formal
theories of the commonsense world. Norwood, NJ: Ablex Publishing
Corporation, 1985.

P. Simon, Parts: a study of ontology. Oxford: Clarendon Press, 1987.

D. Mark, D. Comas, M. Egenhofer, S. Freundschuh,]J. Gould, and]. Nunes,
"Evaluating and refining computational models of spatial relations through
cross-linguistic human-subjects testing." in Spatialinformation theory: a
theoretical basis for GIS, A. Frank, Ed., ed Berlin: Springer-Verlag, 1995, pp.
553-568.

J. Renz, R. Rauh, and M. Knauff, "Towards cognitive adequancy of topological
spatial relations,” in Spatial cognition Il - integrating abstract theories,
emperical studies, formal methods, and practical applications, C. Freksa, W.
Brauer, C. Habel, and K. F. Wender, Eds., ed Berlin: Springer, 2000, pp. 184-
197.

R. Rauh, C. Hagen, M. Knauff, T. Kuss, C. Schlieder, and G. Strube, "Preferred
and alternative mental models in spatial reasoning," Spatial Cognition and
Computation vol. 5, pp. 239-269, 2005.

A. Klippel, R. Kai-Florian, T. Barkowsky, and C. Freksa, "The cognitive reality
of schematic maps," in Mp-based mobile services - theories, methods, and
implementations, L. Meng, A. Zipf, and T. Reichenberger, Eds., ed Berlin:
Springer, 2005, pp. 96-100.

S. Kuehne and K. Forbus, "Qualitative physics as a component in natural
langauge semantics: a progress report,” presented at the 24th Annual
Meeting of the Cognitive Science Society, Fairfax, VA, 2002.

M. Knauff, "Stop using introspection to gather data for the design of
computational modeling and spatial assistance,” presented at the AAAI

187

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]
[126]

[127]

Spring Symposium on Reasoning with Mental and External Diagrams:
Computational Modeling anf Spatial Assistance, Menlo Park, CA, 2005.

F. Wolter and M. Zakharyaschev, "Spatio-temporal representation and
reasoning based on RCC-8," presented at the 7th Conference on Principles of
Knowledge Representation and Reasoning (KR2000), Breckenridge, CO,
2000.

J. Albath, J. Leopold, C. Sabharwal, and A. Maglia, "RCC-3D: Qualitative Spatial
Reasoning in 3D," presented at the 23rd International Conference on
Computer Applications in Industry and Engineering (CAINE), Las Vegas, NV,
2010.

G. Ligozat, "Qualitative triangulation for spatial reasoning," in CPSIT 1993.
vol. 716, 1. Campari and A. U. Frank, Eds., ed Heidelberg: Springer, 1993, pp.
54-68.

C. Freksa, "Using orientation information for Qualitative spatial reasoning," in
Theories and methods of spatio-temporal reasoning in geographic space A. U.
Frank, I. Campari, and U. Formentini, Eds., ed Heidelberg: Springer, 1992, pp.
162-178.

C. Schlieder, "Reasoning about ordering," in COSIT. vol. 988, W. Kuhn and A.
U. Frank, Eds., ed Heidelberg: Springer, 1995, pp. 341-349.

R. Moratz, F. Dylla, and J. Frommberger, "A relative orientation algebra with
adjustable granularity,” presented at the Proceedings of the Workshop on
Agents in Real-Time and Dynamic Environments, IJCAI Edinburgh, Scotland,
2005.

J. 0. Wallgrun, L. Frommberger, D. Wolter, F. Dylla, and C. Freksa, "Qualitative
spatial representation and reasoning in the SparQ-Toolbox," in Spatial
Cognition V, T. Barkowsky, M. Knauff, G. Ligozat, and D. R. Montello, Eds., ed:
Springer, 2006, pp. 39-58.

J. Renz and B. Nebel, "On the complexity of qualitative spatial reasoning; a
maximal tractable fragment of the region connection calculus," Artificial
Intelligence, vol. 108, pp. 69-123, 1999.

N. V. d. Weghe, A. G. Cohn, P. D. Maeyer, and F. Witlox, "Representing moving
objects in computer-based expert systems that overtake event examples,”
Expert Systems with Applications, vol. 29, pp. 977-983, 2005.

A. G. Cohn and S. M. Hazarika, "Qualitative spatial representation and
reasoning: An overview," Fundamenta Informaticae, vol. 43, pp. 2-32, 2001.

R. Moratz, T. Tenbrink, J. Bateman, and K. Fischer, "Spatial Knowledge
Representation for Human-Robot Interaction,” in Spatial Cognition III -
Lecture Nores in Computer Science. vol. 2685, ed, 2003, pp. 263-285.

J. Bateman and S. Farrar, "Spatial Ontology Baseline Version 2.0," University
of Bremen2006.

J. Bateman and S. Farrar, "Towards a generic foundation for spatial ontology,"
presented at the Formal Ontology in Information Systems (FOIS), 2004.

F. Jackendoff, "The architecture of the linguistic-spatial interface,” in
Language and space, P. Bloom, M. A. Peterson, L. Nadel, and M. F. Garrett,
Eds., ed Cambridge, MA: MIT Press, 1999, pp. 1-30.

188

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

E. Stopp, K. Gapp, G. Herzog, T. Laengle, and T. Lueth, "Utilizing spatial
relations for natural language access to an autonomous mobile robot,"
presented at the KI-94, 1994.

P. Olivier and H. Tsujii, "A computational view of the cognitive semantics of
spatial prepositions,” presented at the 32nd Annual Meeting of the
Association for Commputational Linguistics, Las Cruces, NM, 1994.

C. Kray and A. Blocher, "Modeling the basic meaning of path relations,"
presented at the 16th INternational Joint Conference on Artificial Intelligence
(IJCAI), Los Altos, CA, 1999.

M. Levit and D. Roy, "Interpretation of spatial language in a map navigation
task," IEEE Transactions on Systems, Man, and Cybernetics, vol. 37, pp. 667-
679, 2006.

N. Mavridis and D. Roy, "Grounded situation models for robots: Where words
and percepts meet," presented at the IEEE/RS] International Conference on
Intelligent Robots and Systems (IROS), 2006.

L. Steels and M. Loetzsch, "Perspective alignment in spatial language,” in
Spatial language and dialogue, K. Coventry, T. Tenbrink, and]. Bateman, Eds.,
ed Oxford: Oxford University Press, 2009, pp. 70-88.

A. Rashid, N. M. Sharif, M.]J. Egenhofer, and D. M. Mark, "Natutal-language
spatial relations between linear and areal objects: the topology and metric of
English-language terms," International Journal of Geographical Information
Science, vol. 12, pp. 215-246, 1998.

M. Egenhofer, A. Rashid, and B. M. Shariff, "Metric details for natural-
language spatial relations,”" ACM Transactions on Information Systems, vol. 16,
pp. 295-321, 1998.

D. M. Mark, W. Kuhn, B. Smith, and A. G. Turk, "Ontology, natiural language,
and information systems: implications of cross-linguistic studies on
geographic terms," presented at the 6th AGILE conference on geographic
information science, Lyon, France, 2003.

D. M. Mark and A. G. Turk, "Landscape categories in Yindjibarndi: ontology,
environment, and language," in Spatial information theory: foundations of
geographic information science, W. Kuhn, M. Worboys, and S. Timpf, Eds., ed
Berlin & Heidelberg: Springer-Verlag, 2003, pp. 31-49.

C. Schlenoff, A. Pietromartire, S. Foufou, and S. Balakirsky, "Ontology-Based
State Representation for Robot Intention Recognition in Ubiquitous
Environments," presented at the UBICOMP 2012 Workshop on "Smart
Gadgets Meet Ubiquitous and Social Robots on the Web (UbiRobs)",
Pittsburgh, PA, 2012.

C. Schlenoff, A. Pietromartire, Z. Kootbally, S. Balakirsky, and S. Foufou,
"Ontology-Based State Representation for Intention Recognition in
Cooperative Human-Robot Environments," Robotics and Autonomous
Systems, vol. 61, pp. 1224-1234, 2013.

J. Carbonera and C. Schlenoff, "Defining Position in a Core Ontology for
Robotics," presented at the IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS), Tokyo, Japan, 2013.

189

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

J. Tan, F. Duan, Y. Zhang, K. Watandbe, R. Kato, and T. Arai, "Hman-Robot
Collaboration in Cellular Manufacturing Design and Development,” presented
at the International Conference on Information Systems (ICIS), Phoenix,
Arizona, 20009.

J. Shi, G. Jimmerson, T. Pearson, and R. Menassa, "Levels of Human and Robot
Collaboration for Automotive Manufacturing," presented at the Performance
Metrics for Intelligent Systems (PerMIS), College Park, MD, 2012.

S. Balakirsky, Z. Kootbally, C. Schlenoff, T. Kramer, and S. Gupta, "An
Industrial Robotic Knowledge Representation for Kit Building Applications,"
presented at the International Robots and Systems (IROS) Conference
Vilamoura, Algarve Portugal, 2012.

C. Schlenoff, E. Prestes, R. Madhavan, P. Goncalves, H. Li, S. Balakirsky, et al.,
"An IEEE Standard Ontology for Robotics and Automation,” presented at the
International Conference on Intelligent Robots and Systems (IROS),
Vilamoura, Algarve (Portugal), 2012.

F. Harmelen and D. McGuiness. (2004). OWL Web Ontology Language
Overview, W3C web site: http://www.w3.orq/TR/2004/REC-owl-features-
20040210/.

S. Balakirsky, Z. Kootbally, T. Kramer, A. Pietromartire, C. Schlenoff, and S. K.
Gupta, "Knowledge Driven Robotics for Kitting Applications,” Robotics and
Autonomous Systems, vol. 61, pp. 1205-1214, 2013.

D. Nau, M. Ghallab, and P. Traverso, Automated Planning: Theory and Practice.
San Francisco, CA: Morgan Kaufmann Publishers Inc., 2004.

C. Schlenoff, S. Foufou, and S. Balakirsky, "An Approach to Ontology-Based
Intention Recognition Using State Representations,” presented at the Fourth
International Conference on Knowledge Engineering and Ontology
Development, Barcelona, Spain, 2012.

C. Schlenoff, T. Hong, C. Liu, R. Eastman, and S. Foufou, "A Literature Review
of Sensor Ontologies for Manufacturing Applications," presented at the IEEE
International Symposium on Robotic and Sensors Environments (ROSE),
Washington DC, 2013.

C. Schlenoff, A. Pietromartire, and S. Foufou, "Performance Evaluation of
Intention Recognition in Human-Robot Collaborative Environments," The
ITEA Journal, vol. 34, 2013.

S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, "USARSim: a
Robot Simulator for Research and Education,” presented at the 2007 IEEE
International Conference on Robotics and Automation (ICRA), Roma, Italy,
2007.

C. Scrapper, S. Balakirsky, and E. Messina, "MOAST and USARSim: A
Combined Framework for the Development and Testing of Autonomous
Systems," presented at the 2006 SPIE Defense and Security Symposium,
Orlando, FL, 2006.

A. Jacoff, E. Messina, and]. Evans, "A Reference Test Course for Urban Search
and Rescue Robots," presented at the 14th International Florida Artificial
Intelligence Research Society Conference, Key West, FL, 2001.

190

[154]

[155]

[156]

[157]

[158]

S. Balakirsky, T. Kramer, Z. Kootbally, and A. Pietromartire, "Metrics and Test
Methods for Industrial Kit Building," Gaithersburg, MD2013.

I. Astrova, N. Korda, and A. Kalja, "Storing OWL ontologies in SQL Relational
Databases," World Academy of Science, Engineering and Technology, vol. 29,
pp. 167-172,2007.

C. Schlenoff and S. Foufou, "Evaluating State-Based Intention Recognition
Algorithms Against Human Performance," in Robot Intelligence Technology
and Applications 2. vol. X1V,]J.-H. Kim, E. Matson, H. Myung, P. Xu, and F.
Karray, Eds., ed Denver, Colorado: Springer, 2014, pp. 219-232.

S. Carpin, M. Lewis,]. Wang, S. Balakirsky, and C. Scrapper, "USARSim: a robot
simulator for research and education,” presented at the IEEE International
Conference on Robotics and Automation (ICRA), 2007.

C. Schlenoff and S. Foufou, "Comparing State-Based Intention Recognition to
Human Performance," IEEE Transactions on Human-Machines Systems
(submitted), 2013.

191

Appendix A: Kitting Workstation Ontology Details

This section provides descriptions of each of the classes in the kitting workstation
ontology, in alphabetical order. The names used below are those in the OWL version of
the ontology. Each description lists the data members of the class and explains what the
class and its data members mean. The terms inherited, optional, and multiple that
follow many data member names mean the obvious things. The term inverse means
that the property (hasThis_That) for the data member has an inverse. This occurs
whenever the value of a data member is an object rather than a datatype and the data
member is not inherited. In this case a hadByThat_This property for the data member is
also defined in the OWL version of the ontology. If the data member is inherited, some
ancestor of the class has the inverse.

BoxVolume is derived from DataThing.
An instance of BoxVolume has the following: MaximumPoint (inverse)
MinimumPoint (inverse).

The MaximumPoint and MinimumPoint are diagonally opposite corner points of a box
shaped volume whose edges are aligned with the coordinate system in which the
BoxVolume is located. The MinimumPoint has the minimum values of X, Y, and Z. The
MaximumPoint has the maximum values of X, Y, and Z.

BoxyShape is derived from InternalShape.
An instance of BoxyShape has the following:
Description (inherited)
GraspPose (inherited, optional)
Length
Width
Height
HasTop.

A BoxyShape is box shaped. The Length is larger of the two dimensions that are not the
Height. The Width is smaller of the two dimensions that are not the Height. The
coordinate system of a BoxyShape (i.e. the thing that is located and oriented by a Pose)
has its origin in the middle of the bottom, its z-axis parallel to the height sides and
pointing into the box, and its x-axis parallel to the length sides. If HasTop is true, the top
of the box (i.e. the side through which the +Z axis passes) exists and is closed. If HasTop
is false, the box has no top.

192

CylindricalShape is derived from InternalShape.
An instance of CylindricalShape has the following:
Description (inherited)
GraspPose (inherited, optional)
Diameter
Height
HasTop.

The cylinder is a right circular cylinder with a circular base having the given Diameter.
The axis is perpendicular to the base. The base is always a surface that is part of the
cylinder. The sides of the cylinder stop at the given Height as if cut by a plane
perpendicular to the axis. The coordinate system of a CylindricalShape (i.e. the thing
that is located and oriented by a pose) has its origin in the middle of the bottom, and its
z-axis on the axis of the cylinder. If HasTop is true, the top of the cylinder (i.e. the side
through which the +Z axis passes) exists and is closed. If HasTop is false, the cylinder has
no top.

DataThing is an abstract type from which more specific types of data thing are derived.
That includes all complex data types such as Vector, PhysicalLocation, etc.

EndEffector is derived from NoSkuObject.
An instance of EndEffector has the following:

PrimaryLocation (inherited)
Secondarylocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)
Description
Weight
MaximumLoadWeight
HeldObject (optional, inverse).

EndEffector is an abstract type from which more specific types of end effector are
derived. An EndEffector is an end effector for a robot. The optional HeldObject is for the
object being held by the end effector, if the end effector is holding an object. Every
EndEffector is either a GripperEffector or a VacuumkEffector. Every EndEffector in a
KittingWorkstation is either attached to the end of a robot arm or sitting in an
EndEffectorHolder at an EndEffectorChangingStation.

193

EndEffectorChangingStation is derived from NoSkuObject.
An instance of EndEffectorChangingStation has the following:

PrimaryLocation (inherited)
SecondaryLocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)
Base (inverse)
EndEffectorHolder (multiple, inverse).

An EndEffectorChangingStation is a place where end effectors are stored and where the
robot can change end effectors. The coordinate system of an
EndEffectorChangingStation is in the same place as the coordinate system of its Base.
The shape of an EndEffectorChangingStation may also be found from the shapes of the
Base and the EndEffectorHolders and their relative positions.

EndEffectorHolder is derived from NoSkuObject.
An instance of EndEffectorHolder has the following:
PrimaryLocation (inherited)
Secondarylocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)
EndEffector (optional, inverse).

An EndEffectorHolder holds zero or one end effector and is part of an
EndEffectorChangingStation.

ExternalShape is derived from ShapeDesign.
An instance of ExternalShape has the following:
Description (inherited)
GraspPose (inherited, optional)
ModelFormatName
ModelFileName

ModelName (optional).

194

An ExternalShape is a shape defined in an external file. The ModelFormatName is the
name of the format of model (for example, 'STEP Advanced Brep' or 'USARSIm'). The
ModelFileName is the name of the file containing the model and may include a path (for
example 'partFiles/STEP/ANC101.stp'). The model file may contain more than one shape
model. The ModelName is optional and is the name of a model within the model file.
The ModelName is necessary if the model file contains more than one model.

GripperEffector is derived from EndEffector.
An instance of GripperEffector has the following:

PrimaryLocation (inherited)
SecondarylLocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)
Description (inherited)
Weight (inherited)
MaximumLoadWeight (inherited)
HeldObject (inherited, optional).

A GripperEffector holds an object by gripping it with fingers or claws or by suction.

Human is derived from NoSkuObiject.
An instance of Human has the following:
PrimaryLocation (inherited)
Secondarylocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional).

A Human is a type representing a human being. An internal shape used with a human
should be a bounding box or cylinder that encloses the human completely.

InternalShape is derived from ShapeDesign.
An instance of InternalShape has the following:
Description (inherited)

GraspPose (inherited, optional).

195

InternalShape is an abstract type from which more specific types of shape are derived.
Instances of InternalShape in a instance file contain information about the appearance
of the shape without referring to another file.

Kit is derived from NoSkuObiject.

An instance of Kit has the following:
PrimaryLocation (inherited)
SecondarylLocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)
Design (inverse)

KitTray (inverse)

Finished

Part (optional, multiple, inverse)
Slot (optional, multiple).

Finished is a boolean indicator of whether the Kit is finished. Part may occur several
times (once for each part in the kit). The optional Slots may be used to keep track of
whether each place in the kit that should have a part on it does have a part on it. The
PartRefAndPose of each Slot should indicate a PartRefAndPose in the design of the kit
(different for each slot). The locating point of the Tray in the kit should be (0,0,0), and its
X and Z axes should be (1,0,0) and (0,0,1), respectively.

KitDesign is derived from DataThing.
An instance of KitDesign has the following:
KitTraySku (inverse)
PartRefAndPose (multiple, inverse).

The KitTraySku identifies a type of kit tray. The Pose in a PartRefAndPose is the location
of the part relative to the coordinate system of the ShapeDesign of the tray.

KittingWorkstation is derived from NoSkuObiject.
An instance of KittingWorkstation has the following:
PrimaryLocation (inherited)

SecondarylLocation (inherited, optional, multiple)

196

InternalShape (inherited, optional)
ExternalShape (inherited, optional)
AngleUnit

LengthUnit

ChangingStation (inverse)

Object (multiple, inverse)
OtherObstacle (optional, multiple, inverse)
Robot (inverse)

KitDesign (multiple, inverse)

Sku (multiple, inverse)
WeightUnit.

All angle, length, and weight values related to the workstation use the units implicitly.
The workstation includes one robot and one end effector changing station. There may
be many instances of Object in the workstation, including such things as work tables,
large boxes with kits, large boxes with empty kit trays, and parts trays. The collection of
instances of KitDesign is a library of all kit designs known to the workstation. The
collection of instances of Sku is a library of all stock keeping units known to the
workstation. The OtherObstacles are obstacles to robot motion of unspecified type.
Containers of various sorts enter and leave the workstation. The robot builds kits of
parts by executing kitting plans as directed by a kitting plan execution system. The
location of each instance of KittingWorkstation should be given relative to itself in order
to end the chain of relative locations.

KitTray is derived from SkuObject.
An instance of KitTray has the following:
PrimarylLocation (inherited)
Secondarylocation (inherited, optional, multiple)
Sku (inherited)
SerialNumber.

The Sku specifies the SKU of the kit tray. A KitTray is designed to hold Parts with various
SKUs in known positions.

197

LargeBoxWithEmptyKitTrays is derived from NoSkuObject.
An instance of LargeBoxWithEmptyKitTrays has the following:

PrimaryLocation (inherited)
Secondarylocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)
LargeContainer (inverse)
KitTray (optional, multiple, inverse).

The location point of the LargeContainer should be (0,0,0), its Z axis should be (0,0,1),
and its X axis should be (1,0,0). The PrimaryLocation of a KitTray in a
LargeBoxWithEmptyKitTrays should be given by a PoselLocationln or RelativeLocationln
that is relative to the LargeContainer. The KitTrays in a LargeBoxWithEmptyKitTrays are
intended to all be of the same SKU, although there is currently no formal requirement
for that.

LargeBoxWithKits is derived from NoSkuObject.

An instance of LargeBoxWithKits has the following:
PrimaryLocation (inherited)
Secondarylocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)
LargeContainer (inverse)
Kit (optional, multiple, inverse)
KitDesign (inverse)
Capacity.

The coordinate system of a LargeBoxWithKits is in the same place as the coordinate
system of its LargeContainer. The PrimarylLocation of the LargeContainer should be
relative to the LargeBoxWithKits. The KitDesign is an identifier for a KitDesign. The
PrimaryLocation of a Kit in a LargeBoxWithKits should be given by a PoselocationIn or
Relativelocationin that is relative to the LargeContainer. The Capacity is an
xs:positivelnteger giving the maximum number of kits of the given design that can be
held in the box. The Kits in a LargeBoxWithKits are intended to all be of the given design,
but there is currently no formal constraint requiring that.

198

LargeContainer is derived from SkuObject.
An instance of LargeContainer has the following:
PrimarylLocation (inherited)
Secondarylocation (inherited, optional, multiple)
Sku (inherited)
SerialNumber.

The Sku specifies the SKU of the LargeContainer. A LargeContainer can hold one or more
instances of a single type of tray, bin, or kit.

MechanicalComponent is derived from NoSkuObiject.
An instance of MechanicalComponent has the following:
PrimaryLocation (inherited)
SecondarylLocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional).

A MechanicalComponent is a component of kitting workstation device such as a robot
or an end effector changing station.

NoSkuObject is derived from SolidObject.
An instance of NoSkuObject has the following:
PrimaryLocation (inherited)
Secondarylocations (inherited, optional, multiple)
InternalShape (optional, inverse)
ExternalShape (optional, inverse).

A NoSkuObject is an abstract type from which more specific types of solid object are
derived. The InternalShape and ExternalShape are not required to represent the same
shape, but they should not be inconsistent. If a NoSkuObject consists of components it
may also get its shape from the shape of the components and their relative positions.

Part is derived from SkuObject.
An instance of Part has the following:
PrimarylLocation (inherited)

SecondarylLocation (inherited, optional, multiple)

199

Sku (inherited)

SerialNumber.

The Part represents a part. The Sku specifies the SKU for the part.

PartRefAndPose is derived from DataThing.
An instance of PartRefAndPose has the following:
Sku (inverse)
Point (inverse)
ZAxis (inverse)

XAxis (inverse).

The Sku identifies a type of part. The Point specifies the location of the origin of the part
in the coordinate system of the tray of the KitDesign to which the PartRefAndPose

belongs. The ZAxis and XAxis specify the orientation of the part relative to that
coordinate system.

PartsBin is derived from PartsVessel.
An instance of PartsBin has the following:

PrimaryLocation (inherited)
Secondarylocation (inherited, optional, multiple)
Sku (inherited)
SerialNumber (inherited)
PartSku (inherited)
PartQuantity (inherited)
Part (inherited, optional, multiple).

The Sku specifies the SKU for the PartsBin. A PartsBin holds a number of Parts
(PartQuantity) with the same SKU (PartSku) in unknown random positions. Each Part in

the tray should be listed explictly and have a RelativeLocationln with the bin as its
RefObject.

PartsVessel is derived from SkuObiject.
An instance of PartsVessel has the following:
PrimarylLocation (inherited)

SecondarylLocation (inherited, optional, multiple)

200

Sku (inherited)

SerialNumber

PartSku (inverse)

PartQuantity

Part (optional, multiple, inverse)

PartsVessel is an abstract type from which more specific types of things that supply
parts are derived. The Sku specifies the SKU for the PartsVessel. The shape of a
PartsVessel is as specified in its Sku. The PartSku specifies the SKU for the Parts in the
PartsVessel. The value of PartQuantity should be the number of instances of Part.

PartsTray is derived from PartsVessel.
An instance of PartsTray has the following:

PrimaryLocation (inherited)
SecondarylLocation (inherited, optional, multiple)
Sku (inherited)
SerialNumber (inherited)
PartSku (inherited)
PartQuantity (inherited)
Part (inherited, optional, multiple).

The Sku specifies the SKU of the PartsTray. A PartsTray holds a number of Parts
(PartQuantity) with the same SKU (PartSku) in known positions. Each Part in the tray
should be listed explictly and have a PoselLocation with the parts tray as its RefObject.

PhysicalLocation is derived from DataThing.
An instance of PhysicalLocation has the following:
RefObject (inverse)
Timestamp (optional).

PhysicalLocation is an abstract type from which more specific types of physical location
are derived. A PhysicallLocation says where a SolidObject is relative to its reference
object. Timestamp represents the most recent date and time when the location was
updated.

201

Point is derived from DataThing.
An instance of Point has the following:
X
Y
Z.

X, Y, and Z are the Cartesian coordinates of the Point.

Poselocation is derived from PhysicalLocation.
An instance of Poselocation has the following:
RefObject (inherited)
Timestamp (inherited, optional).
Point (inverse)
XAxis (inverse)
ZAxis (inverse)
PositionStandardDeviation (optional)
OrientationStandardDeviation (optional).

Poselocation is an abstract type from which more specific types of pose location are
derived. The Point locates the origin of a coordinate system. The XAxis and ZAxis give
the orientation of the coordinate system. The data for the Point, the ZAxis and the XAxis
are expressed relative to the coordinate system of the reference object.

The PositionStandardDeviation is based on a normal distribution of actual position
about its given value. Thus, for example, the actual position is expected to be within the
given PositionStandardDeviation amount 68% of the time and within twice the given
amount 95% of the time. The PositionStandardDeviation is measured in the length units
being used.

The OrientationStandardDeviation is based on a normal distribution of orientation
about its given value. The error is to be measured as the angle of rotation about a single
axis needed to rotate a solid object from its stated orientation to its actual orientation.
The OrientationStandardDeviation is measured in the angle units being used.

202

Poselocationln is derived from Poselocation.
An instance of PoselocationIn has the following:

RefObject (inherited)
Timestamp (inherited, optional).
Point (inherited)
XAxis (inherited)
ZAxis (inherited)
PositionStandardDeviation (inherited, optional)
OrientationStandardDeviation (inherited, optional).

A Poselocationln indicates that the object is inside the RefObject. The notion of 'inside’
is vague and might be made more precise.

PoselocationOn is derived from Poselocation.

An instance of PoseLocationOn has the following:
RefObject (inherited)
Timestamp (inherited, optional).
Point (inherited)
XAxis (inherited)
ZAxis (inherited)
PositionStandardDeviation (inherited, optional)
OrientationStandardDeviation (inherited, optional).

A PoselocationOn indicates that the Object is on top of the RefObject. The notion of 'on
top of' is vague and might be made more precise.

PoseOnlyLocation is derived from Poselocation.
An instance of PoseOnlyLocation has the following:
RefObject (inherited)
Timestamp (inherited, optional).
Point (inherited)
XAxis (inherited)
ZAxis (inherited)

PositionStandardDeviation (inherited, optional)

203

OrientationStandardDeviation (inherited, optional).

An object located by a PoseOnlyLocation may or may not be inside or on top of the
reference object of the PoseOnlyLocation.

RelativelLocation is derived from PhysicalLocation.
An instance of RelativeLocation has a the following:
RefObject (inherited)
Timestamp (inherited, optional)
Description.

Relativelocation is an abstract type from which more specific types of relative location
are derived. A RelativeLocation indicates that the SolidObject that has the
RelativelLocation is on or in the RefObject. The Description may be used to describe the
relative positions of the object and its reference object.

RelativeLocationln is derived from RelativeLocation.
An instance of RelativeLocationIn has the following:
RefObject (inherited)
Timestamp (inherited, optional)
Description (inherited).

A RelativelocationIn indicates that the SolidObject that has the RelativelLocation is in
the RefObject. The notion of 'in' is vague and might be made more precise.

RelativeLocationOn is derived from RelativelLocation.
An instance of RelativeLocationOn has the following:
RefObject (inherited)
Timestamp (inherited, optional)
Description (inherited).

A RelativeLocationOn indicates that the SolidObject that has the RelativelLocation is on
top of the the RefObject. The notion of 'on top of' is vague and might be made more
precise.

204

Robot is derived from NoSkuObject.
An instance of Robot has the following:

PrimarylLocation (inherited)
Secondarylocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)
Description
EndEffector (optional, inverse)
MaximumLoadWeight
WorkVolume (multiple, inverse).

The Robot ontology given here might be expanded greatly to include, for example, its
kinematic description, the values of joint angles, arm lengths of variable length arms,
gripper actuation (open, closed, etc.), ranges, velocities, and accelerations of each joint,
etc.

ShapeDesign is derived from DataThing.
An instance of ShapeDesign has the following:
Description (optional)
GraspPose (optional, inverse).

ShapeDesign is an abstract type from which more specific types of shape design are
derived. Each ShapeDesign has a coordinate system that is expected to be specified
explicitly or implicitly. A shape defined using coordinate values has an implicit
coordinate system. The GraspPose is relative to the coordinate system of the
ShapeDesign. The Point in the pose is the point at which a gripper should make contact
with the shape. The ZAxis of the pose may be used to indicate a direction for aligning
the ZAxis of the gripper (parallel or antiparallel) and is usually normal to the the object
having the shape and pointing away from the object. The GraspPose should not use the
optional Timestamp.

SkuObject is derived from SolidObject.
An instance of SkuObject has the following:
PrimarylLocation (inherited)
SecondarylLocations (inherited, optional, multiple)

Sku (inverse)

205

A SkuObject is an abstract type from which more specific types of solid object are
derived. A SkuObject is an instance of a stockkeeping unit. The shape of a SkuObject is
specified by its stockkeeping unit.

Slot is derived from DataThing.
An instance of Slot has the following:
PartRefAndPose (inverse)
Part (optional, inverse).

A Slot identifies whether or not a particular PartRefAndPose from the design of a Kit is
occupied in an instance of a Kit. The PartRefAndPose identifies a PartRefAndPose from
the Design of the Kit. The Part identifies a Part that occupies the PartRefAndPose. The
Sku of the PartRefAndPose should be the Sku of the Part, the PartRefAndPose should be
in the Kit design, and the Part should be in the Kit. The location described by the Pose of
the Part in the Kit may differ from the location described by the Pose in the
PartRefAndPose, but will usually be very close to it. If the Part is not used for a slot, that
means the slot is empty.

SolidObject is an abstract type from which more specific types of solid thing are derived.
An instance of SolidObject has the following:

PrimaryLocation (inverse)

SecondarylLocations (optional, multiple, inverse)

The secondary locations are required to be logically and mathematically consistent with
the value of the PrimarylLocation so that all locations of a SolidObject describe (or are
consistent with) a single place in space. No SolidObject except the Workstation may be
located with respect to itself, and all chains of primary location must end at the
Workstation.

StockKeepingUnit is derived from DataThing.
An instance of StockKeepingUnit has the following:
Description
InternalShape (optional, inverse)
ExternalShape (optional, inverse)
Weight

EndEffector (optional, multiple, inverse).

206

A StockKeepingUnit is an object type description. SKU is an abbreviation for Stock
Keeping Unit. Each EndEffector identifies an instance of EndEffector that can handle the
SKU. One or both of InternalShape and ExternalShape must be given. The shapes are not
required to represent the same shape, but they should not be inconsistent.

VacuumEffector is derived from EndEffector.

An instance of VacuumEffector has the following:
PrimaryLocation (inherited)
SecondarylLocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)

Description (inherited)

Weight (inherited)
MaximumLoadWeight (inherited)
CupDiameter

Length.

VacuumeEffector is an abstract type from which more specific types of VacuumEffector
are derived. A VacuumEffector holds an object by putting a cup or cups against the
object and applying a vacuum.

VacuumEffectorMultiCup is derived from VacuumEffector.
An instance of VacuumEffectorMultiCup has the following:
PrimaryLocation (inherited)
Secondarylocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)
Description (inherited)
Weight (inherited)
MaximumLoadWeight (inherited)
CupDiameter (inherited)
Length (inherited)
ArrayNumber

ArrayRadius.

207

The ArrayNumber is the number of cups, which must be at least 2. The cups are
arranged in a circular array spaced evenly apart. The center of the wide end of one cup
is on the x-axis of the coordinate system of the VacuumEffectorMultiCup. The center of
the circular array is at the origin of the coordinate system. The axis of the array circle is
the z-axis of the coordinate system, and the length of the VacuumEffector is measured
along that axis. The wide ends of the cups lie on the xy plane of the coordinate system.
Note that a square array can be represented easily as circular array.

VacuumEffectorSingleCup is derived from VacuumEffector.
An instance of KitTray has the following:

PrimaryLocation (inherited)
SecondarylLocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)
Description (inherited)
Weight (inherited)
MaximumLoadWeight (inherited)
CupDiameter (inherited)
Length (inherited).

A VacuumeEffectorSingleCup has one cup. The center of the wide end of the cup (which
is a circle) is at the origin of the coordinate system of the VacuumEffectorSingleCup. The
Z axis of the coordinate system is the axis of that circle, and the length of the
VacuumeEffector is measured along that axis.

Vector is derived from DataThing.
An instance of Vector has the following:
I
J
K.

I, J, and K represent the usual i, j, and k components of a 3D vector.")

WorkTable is derived from NoSkuObiject.
An instance of WorkTable has the following:

PrimaryLocation (inherited)

208

Secondarylocation (inherited, optional, multiple)
InternalShape (inherited, optional)
ExternalShape (inherited, optional)
ObjectOnTable (optional, multiple, inverse).

Each ObjectOnTable is a SolidObject located with respect to the WorkTable. The
reference object of each ObjectOnTable should be the WorkTable. Typically, those
objects will be on top of the WorkTable. Typically, the shape of a WorkTable will be a
BoxyShape, so that the table has Length, Width, and Height.

209

Appendix B: Kit Plans for Experiment

Kit 1, Plan 1

. Red object in the kit tray.

. Blue object in the kit tray.

Blue object in the kit tray.
. Red object in the kit tray.
. Red object in the kit tray.
. Red object in the kit tray.

Kit 2, Plan 2

1
2
3
4
5
6.
7
8
9
1

. Blue object in the kit tray.
. Red object in the kit tray.
. Red object in the kit tray.
. Blue object in the kit tray.
. Blue object in the kit tray.

. Red object in the kit tray.

0. Red object in the kit tray.

Kit 1, Plan 3

1
2
3
4
5
6.
7
8
9
1

. Red object in the kit tray.
. Blue object in the kit tray.

. Blue object in the kit tray.
Red object in the kit tray.

. Red object in the kit tray.
. Red object in the kit tray.

. Green object in the kit tray.
. Green object in the kit tray.

1
2
3
4
5. Green object in the kit tray.
6.
7
8
9
1

0. Blue object in the kit tray.

Green object in the kit tray.

. Green object in the kit tray.
. Green object in the kit tray.

. Green object in the kit tray.
. Green object in the kit tray.

. Green object in the kit tray.

0. Blue object in the kit tray.

210

Kit 1, Plan 4

1
2
3
4
5
6.
7
8
9
1

. Red object in the kit tray.

. Blue object in the kit tray.

. Red object in the kit tray.

. Red object in the kit tray.

. Blue object in the Kit tray.
Blue object in the kit tray.

. Green object in the kit tray.
. Red object in the kit tray.

. Green object in the kit tray.

Kit 1, Plan 5

1
2
3
4
5
6.
7
8
9
1

. Red object in the kit tray.

. Red object in the kit tray.

. Blue object in the kit tray.

. Blue object in the kit tray.

. Red object in the kit tray.
Green object in the kit tray.
. Green object in the kit tray.
. Blue object in the Kit tray.

. Red object in the kit tray.

Kit2,Plan 1

1
2
3
4
5
6.
7
8
9
1

. Green object in the kit tray.
. Red object in the kit tray.
. Blue object in the kit tray.
. Green object in the kit tray.
. Green object in the kit tray.
Red object in the kit tray.
. Green object in the kit tray.
. Red object in the kit tray.
. Red object in the kit tray.
0. Blue object in the kit tray.

0. Green object in the Kit tray.

0. Green object in the kit tray.

211

Kit 2, Plan 2

1. Green object in the kit tray.
2. Green object in the kit tray.
3. Red object in the kit tray.

4. Blue object in the kit tray.

5. Green object in the kit tray.
6.
7
8
9
1

Red object in the kit tray.

. Green object in the kit tray.
. Blue object in the kit tray.

. Red object in the kit tray.
0. Red object in the kit tray.

Kit 2, Plan 3

1
2
3
4
5
6.
7
8
9
1

. Red object in the kit tray.
. Red object in the kit tray.
. Green object in the kit tray.
. Red object in the kit tray.
. Blue object in the kit tray.
Green object in the kit tray.
. Red object in the kit tray.
. Green object in the kit tray.
. Green object in the kit tray.
0. Blue object in the kit tray.

Kit 2, Plan 4

1. Red object in the kit tray.

2. Blue object in the kit tray.

3. Green object in the kit tray.
4. Red object in the kit tray.

5.
6
7
8
9
1

Red object in the kit tray.

. Green object in the kit tray.
. Blue object in the kit tray.
. Green object in the kit tray.
. Green object in the kit tray.
0. Red object in the kit tray.

212

Kit 2, Plan 5

. Red object in the kit tray.
. Red object in the kit tray.

Blue object in the kit tray.
. Red object in the kit tray.

. Blue object in the kit tray.
0. Red object in the kit tray.

Kit 3, Plan 1

. Red object in the kit tray.
. Blue object in the kit tray.
. Blue object in the kit tray.

Blue object in the kit tray.
. Blue object in the kit tray.
. Red object in the kit tray.

Kit 3, Plan 2

1
2
3
4
5
6.
7
8
9
1

. Blue object in the kit tray.
. Blue object in the kit tray.
. Red object in the kit tray.
. Blue object in the Kit tray.
. Blue object in the kit tray.
Red object in the kit tray.

0. Blue object in the kit tray.

. Green object in the kit tray.
. Green object in the kit tray.

1
2
3
4
5. Green object in the kit tray.
6.

7. Green object in the Kit tray.
8
9
1

. Green object in the kit tray.

1
2
3
4
5. Green object in the kit tray.
6.

7

8
9. Green object in the kit tray.
10. Blue object in the kit tray.

. Green object in the kit tray.
. Green object in the kit tray.
. Green object in the kit tray.

213

Kit 3, Plan 3

1
2
3
4
5
6.
7
8
9
1

. Green object in the kit tray.

. Red object in the kit tray.

. Blue object in the kit tray.

. Blue object in the kit tray.

. Blue object in the Kit tray.
Green object in the kit tray.

. Blue object in the Kit tray.

. Red object in the kit tray.

. Blue object in the kit tray.

0. Green object in the Kit tray.

Kit 3, Plan 4

1
2
3
4
5.
6
7
8
9
1

. Blue object in the kit tray.

. Green object in the kit tray.

. Blue object in the kit tray.

. Green object in the kit tray.
Blue object in the kit tray.

. Blue object in the kit tray.

. Blue object in the kit tray.

. Red object in the kit tray.

. Red object in the kit tray.

0. Green object in the kit tray.

Kit 3, Plan 5

1
2
3
4
5.
6
7
8
9
1

. Blue object in the kit tray.

. Red object in the kit tray.

. Blue object in the Kit tray.

. Green object in the kit tray.
Green object in the kit tray.

. Blue object in the Kit tray.

. Red object in the kit tray.

. Blue object in the kit tray.

. Blue object in the kit tray.

0. Green object in the kit tray.

214

Kit 4, Plan 1

1
2
3
4
5
6.
7
8
9
1

. Blue object in the kit tray.

. Red object in the kit tray.

. Green object in the kit tray.

. Red object in the kit tray.

. Green object in the kit tray.
Green object in the kit tray.

. Red object in the kit tray.

. Orange object in the kit tray.
. Blue object in the kit tray.

0. Red object in the kit tray.

Kit 4, Plan 2

1
2
3
4
5
6.
7
8
9
1

. Green object in the kit tray.

. Red object in the kit tray.

. Red object in the kit tray.

. Blue object in the kit tray.

. Orange object in the kit tray.
Green object in the kit tray.

. Blue object in the Kit tray.

. Red object in the kit tray.

. Green object in the kit tray.
0. Red object in the kit tray.

Kit 4, Plan 3

1
2
3
4
5
6.
7
8
9
1

. Green object in the kit tray.

. Green object in the kit tray.

. Blue object in the Kit tray.

. Red object in the kit tray.

. Green object in the kit tray.
Blue object in the kit tray.

. Orange object in the kit tray.
. Red object in the kit tray.

. Red object in the kit tray.

0. Red object in the kit tray.

215

Kit 4, Plan 4

1. Green object in the kit tray.
1. Red object in the kit tray.
3. Red object in the kit tray.
4. Green object in the kit tray.
5. Red object in the kit tray.
6. Blue object in the kit tray.
7
8
9
1

. Orange object in the kit tray.

. Red object in the kit tray.
. Green object in the kit tray.
0. Blue object in the kit tray.

Kit 4, Plan 5
. Blue object in the kit tray.
. Green object in the kit tray.
. Red object in the kit tray.
. Blue object in the kit tray.

. Orange object in the kit tray.

. Green object in the kit tray.
. Red object in the kit tray.
. Red object in the kit tray.

1

2

3

4

5

6. Green object in the kit tray.
7

8

9

10. Red object in the kit tray.

Kit 5, Plan 1

1. Red object in the kit tray.

2. Green object in the kit tray.
3. Blue object in the kit tray.

4. Yellow object in the kit tray.
5. Blue object in the kit tray.

6. Green object in the kit tray.
7. Red object in the kit tray.

8. Green object in the kit tray.

9. Orange object in the kit tray.

10. Blue object in the kit tray.

216

Kit 5, Plan 2

1. Green object in the kit tray.
2. Blue object in the kit tray.

3. Yellow object in the kit tray.
4. Red object in the kit tray.

5. Green object in the kit tray.
6. Blue object in the kit tray.

7. Red object in the Kit tray.

8. Blue object in the kit tray.

9. Green object in the kit tray.

10. Orange object in the kit tray.

Kit 5, Plan 3

1. Red object in the kit tray.

2. Green object in the kit tray.
3. Green object in the kit tray.
4. Green object in the kit tray.
5. Blue object in the kit tray.

6. Yellow object in the kit tray.
7. Blue object in the kit tray.

8. Red object in the kit tray.

9. Orange object in the kit tray.
10. Blue object in the kit tray.

Kit 5, Plan 4

. Blue object in the kit tray.

. Blue object in the kit tray.

. Green object in the kit tray.
. Green object in the kit tray.
. Red object in the kit tray.

. Green object in the kit tray.
. Red object in the kit tray.

8. Orange object in the kit tray.
9. Yellow object in the kit tray.
10. Blue object in the kit tray.

NO UL WIN

217

Kit 5, Plan 5
1. Blue object in the kit tray.

2. Orange object in the kit tray.

3. Green object in the kit tray.
4. Blue object in the kit tray.

5. Red object in the kit tray.

6. Green object in the kit tray.
7. Yellow object in the kit tray.
8. Green object in the kit tray.
9. Blue object in the kit tray.
10. Red object in the kit tray.

218

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

