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Abstract 

Escherichia coli is a highly adaptable organism, able to survive in many different environments. The 

information necessary for this adaptation is encoded in the chromosome. The E. coli chromosome is a 

circular molecule condensed in a compact DNA-protein structure, called the nucleoid. The nucleoid is 

dynamically organized at different levels by DNA supercoiling,  the binding of proteins and by the DNA 

replication and gene transcription processes. The chromosome is not uniform, and shows uneven 

distributions of nucleoid-associated proteins (NAPs) binding sites, AT-rich sequences and general 

protein occupancy domains. All these factors can affect gene expression. It has been demonstrated 

that the position of important genes is highly conserved in Ȗ-Proteobacteria, with genes involved in 

exponential growth found closer to the origin than genes important during adaptation to stationary 

phase. These differences along the chromosome and the fact that the position for important genes is 

conserved lead to the idea that the position of the gene can influence gene expression, and that we 

can use gene expression to monitor the characteristics of the chromosome. Following this idea, I 

employed insertions of a fluorescent reporter gene in six different positions around the chromosome. 

The fluorescent reporter expression is under the control of the promoter of the hns gene encoding H-

NS, an abundant NAP involved in chromosome shaping, global transcriptional silencing and in several 

stress responses. For each of these chromosomal positions I measured promoter activity in the 

different growth phases as a function of growth rate. These results show that in all the positions there 

is a decrease of protein concentration at fast growth rate, and at the transition into stationary phase. 

For one of the positions the level of gene expression is significantly lower than in the others, and there 

is a weaker growth rate dependence of protein concentration.  This reduced expression is more 

evident at lower temperature. This temperature-dependent behavior is consistent with a more efficient 

repression by H-NS in this position. We propose that this position is different with respect to the others 

because it is located in a region with a higher AT-content than the genome average. A similar effect of 

a stronger H-NS repression is visible also for another position near the origin of replication in specific 

conditions such as at slow growth, low temperature and at entry into stationary phase. These results 

therefore show that the level of H-NS repression depends on a local position effect and on the growth 

condition. In order to derive further information about chromosome organization, I also inserted in the 

chromosome differently regulated promoters such as the ribosomal promoter rrnBP1 and the T5 

phage P5 promoter. The rrnBP1 promoter is sensitive to supercoiling, while P5 is a constitutive (i.e. 
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non regulated) promoter. I measured the expression of these reporter strains under different growth 

conditions and found that an increase in growth rate affects the two promoters differently, with rrnBP1 

expression increasing faster than P5, as expected since an increase in growth rate implies an increase 

in the DNA supercoiling level and a decrease in ppGpp. I also studied the impact of an inhibition in 

translation efficiency on the expression of rrnBP1 and P5 by using sub-lethal concentrations of 

chloramphenicol. Interestingly, both promoters are induced in presence of the antibiotic, while in the 

literature an up-regulation effect has been previously reported only for ribosomal genes. Finally, I 

measured the expression of both promoters in the presence or in the absence of a divergent 

neighboring gene. I showed that the effect of the neighbor gene depends on the chromosomal 

position, providing support for the existence of different levels of supercoiling in the E. coli 

chromosome. Our approach therefore allows us to measure how chromosomal properties (such as 

supercoiling or protein occupancy) can depend on the chromosomal coordinate as a function of 

different growth conditions, and how the chromosomal position can thus affect gene expression. 
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1 Who is E. coli? 

Escherichia coli, one of the best-studied microorganisms in the laboratory, remains an important 

model organism for genetic studies. The primary niche occupied by E. coli is the lower intestinal tract 

of mammals, where it resides as a beneficial component of the commensal microbiota. Beside this 

niche, E. coli is able to survive and to adapt to a variety of changes in environmental conditions, such 

as fluctuations in temperature (Bennett and Lenski, 2007; Riehle et al., 2003), pH (Hughes et al., 

2007), UV irradiation (Alcantara-Diaz et al., 2004) and the presence of high ethanol concentration 

(Goodarzi et al., 2010). In addition to this evolutionary adaptation, E. coli can counteract abrupt shocks 

by activating different pathways and stress responses, such as the glutamate-dependent acid 

resistance (GDAR) (Castanié-Cornet et al., 2010), or the cold shock response (Jones and Inouye, 

1994). The response of the E. coli cell to external conditions involves changes in growth rate and 

cellular physiology. In order to adapt to environmental changes, E. coli needs to modify several cellular 

parameters, such as DNA, rRNA per cell and macromolecular, lipid and protein composition 

(Schaechter et al., 1958) including chromosomal proteins (Ali Azam et al., 1999). The key for 

organizing these changes in a coordinated way is in the interplay between Nucleoid-Associated 

Proteins (NAPs) and DNA conformation via the level of DNA supercoiling (Balke and Gralla, 1987; 

Hsieh et al., 1991a) resulting in the change in expression of large sets of genes (Travers and 

Muskhelishvili, 2005a). In the first part of the introduction I will describe the organization of E. coli 

chromosome and the role of NAPs in gene regulation; I will then focus on the cellular adaptation to 

different growth conditions.  

 

1.1 The E. coli chromosome: a dynamically organized structure 

The E. coli genome is a circular molecule of 4.6Mb that needs to be highly compacted in order to fit 

inside the cell (Holmes and Cozzarelli, 2000) via a nucleo-protein structure called ‘nucleoid’ 

(Valkenburg and Woldringh, 1984). This compaction needs to be tightly regulated in order to have an 

accurate DNA replication and segregation and cell division (Draper and Gober, 2002), as well as in 

order to maintain the genes accessible to RNA polymerase. The spatial organization of the 

chromosome is due to its structural characteristics such as the presence of loop domains and of larger 
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scale macrodomains that depend dynamically on several factors including DNA supercoiling and 

NAPs binding.  

A supercoiled domain has been defined as the portion of DNA that becomes relaxed when a single or 

double-strand break occurs (Postow et al., 2004). In the absence of confined supercoiled domains, a 

single break would be sufficient to relax the entire genomic DNA, leading to the death of the cell 

(Gellert et al., 1976a). On the contrary, it was shown that only with multiple breaks it was possible to 

relax the chromosome in vitro. The number of breaks required for relaxation (and therefore the number 

of supercoil domains) was first estimated to be between 6 and 40 nicks per DNA strand (Worcel and 

Burgi, 1972), and later up to 400, resulting in an average domain size of 10kb (Postow et al., 2004). 

Higgins et al. found that these domains were variable from cell to cell, were changing over time and 

were more abundant in exponential than in stationary phase (Higgins et al., 1996). Chromosome 

organization is therefore very dynamic. Transcription affects the supercoil domains organization: for 

example it was shown that the activation of a strong promoter can lead to the formation of a new 

domain boundary in Salmonella typhimurium (Scheirer and Higgins, 2001). In addition, it was shown 

that several proteins are involved in the process of forming and maintaining supercoiled domains. The 

number of supercoiled domain boundaries is affected by mutations in the gyrase and topo IV enzymes 

(Staczek and Higgins, 1998). Beside gyrase and topo IV, abundant NAPs such as FIS, HU and H-NS 

have been shown to stabilize supercoiled loops (Berger et al., 2010; Dame et al., 2000; Schneider et 

al., 2001). For instance, it was found that the average distance between two FIS binding sites is 

approximately half the average size of a supercoiling domain, pointing to the structural importance of 

the presence of two FIS binding regions per domain (Cho et al., 2008). 

At a higher level, the E. coli genome is organized in several macrodomains. At first, FISH analyses 

revealed the existence of two macrodomains, the Ori and Ter macrodomains, defined as large regions 

that localize precisely in the cell, respectively toward the pole and at mid-cell (Niki et al., 2000). Valens 

et al. studied DNA organization via the percentage of recombination between pairs of sites in the 

chromosome, and observed the existence of DNA regions which do not interact one with the other 

(Valens et al., 2004). The results indicated an organization of the chromosome in four macrodomains 

and two less-structured regions (Figure 1). These regions also show a different mobility within the cell, 

higher in the non-structured regions and lower in other macrodomains (Espeli et al., 2008). 
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Figure 1 Figure from (Rimsky and Travers, 2011) describing E. coli chromosome organization in macrodomains 

as it was shown by Valens et al. (exterior circle), by Mathelier and Carbone (mid circle), and by Berger et al. 

(inner circle). The boundaries of these macrodomains appear at similar locations in the chromosome. 

With an in silico analysis of codon usage, Mathelier and Carbone found a periodical distribution of 

genes that were divided in two classes, one with metabolic genes and the other with genes involved in 

cellular processing and signaling (Mathelier and Carbone, 2010). They therefore suggested the 

existence of functional domains (Figure 1). Berger et al. showed that in a mutant lacking the NAP HU, 

there was a re-arrangement of upregulated genes in the region of OriC and ribosomal RNA operons 

with respect to the wild-type strain, pointing to the existence of two distinct structural and functional 

domains (Berger et al., 2010). Finally, it was discovered that some distal DNA sequences can 

sometimes be found spatially close together, and in several cases this proximity is related to 

transcriptional interaction between the sequences (Sexton et al., 2009). All these findings suggest that 

the organization of the E. coli genome in macrodomains corresponds to specific structural and 

functional needs.  

Different proteins preferentially bind to specific macrodomains and are involved in maintaining their 

structure: for instance, matP targets a specific 13-bp sequence which occurs several times near the 

terminus, reducing the mobility of the ter macrodomain (Thiel et al., 2012). In addition to this protein, 

SeqA binds preferentially near the origin and it is excluded from the terminus (Fossum et al., 2007; 

Sánchez-Romero et al., 2010) while H-NS is often bound to regions correlated with the macrodomain 

boundaries where pseudogenes and horizontally transferred genes are also found (Zarei et al., 2013). 
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Finally, RNAP has been shown to be organized in foci at fast growth, therefore condensing the 

nucleoid (Cabrera and Jin, 2003). The different scales of chromosomal organization are summarized 

in Figure 2. 

 

Figure 2 Figure from (Dame et al., 2011) describing the chromosome organization from the nm scale, with 

proteins interacting with DNA, to an intermediate scale, with NAPs stabilizing loops and plectonemes and RNAP 

forming transcription foci, to the µm scale, with the chromosome organized in the macrodomains. 

Genome supercoiling is a global property that acts both in the spatial organization of the chromosome 

and in the regulation of gene expression (Gellert, 1981). Negative supercoiling favors the unwinding of 

DNA, and consequently all the processes connected with helix opening (Vologodskii and Cozzarelli, 

1994), such as DNA replication initiation (Marians et al., 1986) and gene transcription (Chen et al., 

1994; Geertz et al., 2011). Similarly, activation of transcription is accompanied by an increase in the 

local level of negative supercoiling by the translocation of the RNAP on the DNA (Deng et al., 2005; 

Figueroa and Bossi, 1988). It was shown that even a small reduction of the level of negative 

supercoiling in bacteria can be lethal (Zechiedrich et al., 1997). Superhelical density varies depending 

on the growth stage of the cell (Balke and Gralla, 1987), its growth rate and the environment (Hsieh et 

al., 1991a, 1991b). This tuning of the supercoiling level depends on the interplay between DNA gyrase 

(Gellert et al., 1976b), introducing negative supercoils, and TopoI (DiNardo et al., 1982; Menzel and 

Gellert, 1983) and Topo IV (Zechiedrich et al., 2000), removing them (see Box 1). Due to the different 

distribution of gyrase binding sites in the chromosome, specifically more abundant towards the origin 

(Condemine and Smith, 1990; Jeong et al., 2004), the existence of a gradient in supercoiling in E. coli 

chromosome has been proposed (Sobetzko et al., 2012). However, no direct proof of this gradient has 



12 
 

been found: the comparison of the expression of gyrA (activated by a decrease in negative 

supercoiling) and lac (activated by an increase in negative supercoiling) promoters inserted in different 

chromosomal position did not show significant differences in supercoiling levels along the 

chromosome (Miller and Simons, 1993). Similar results were found in Salmonella thyphimurium with 

the supercoiling-sensitive proU promoter (Pavitt and Higgins, 1993) and more recently by monitoring 

resolvase activity in different chromosomal positions (Rovinskiy et al., 2012).  

Box 1 Gyrase and supercoiling 

The level of chromosomal supercoiling in the cell is regulated by the concerted activity of four 

topoisomerases: gyrase, topo I, topo III and topo IV (Zechiedrich et al., 2000). They all change the 

level of supercoiling by transiently breaking and re-arranging DNA strands (Nöllmann et al., 2007). 

Gyrase is the only topoisomerase increasing the level of negative supercoiling (Gellert et al., 1976b) 

according to the level of ATP in the cell (Cozzarelli, 1980; Cullis et al., 1992). The control of global 

supercoiling is necessary for efficient DNA replication and for transcription. Both DNA replication and 

transcription involve the unwinding of DNA double strands, and this introduces positive supercoils 

downstream and negative supercoils upstream of the ongoing process (Liu and Wang, 1987; Postow 

et al., 2001). Gyrase activity is necessary in order to remove the positive supercoiling in excess and 

to allow the replication and transcription progression (Filutowicz and Jonczyk, 1981; Kreuzer and 

Cozzarelli, 1979). A decrease in negative supercoiling stimulates the expression of the two gyrase 

subunits gyrA and gyrB (Menzel and Gellert, 1983), and it decreases topoI expression (Tse-Dinh, 

1985).    

 

The level of negative supercoiling and the chromosomal structure are dependent on the action of 

several NAPs (Hardy and Cozzarelli, 2005). NAPs are high abundant proteins that regulate gene 

expression and shape the chromosome (Maurer et al., 2009). In 1987 Drlica and Rouviere-Yaniv 

described several histone-like proteins in bacteria (Drlica and Rouviere-Yaniv, 1987), proteins that 

were able to interact and re-shape DNA. Among these are HU, IHF, FIS, H-NS. HU influences the 

expression of many genes in E. coli, including those involved in central metabolism and the acid stress 

response (Oberto et al., 2009). It was shown to interact with Topo I, altering as a consequence the 

superhelicity of DNA (Broyles and Pettijohn, 1986; Malik et al., 1996). IHF is implicated in transcription 

regulation and DNA replication (Freundlich et al., 1992) and it is able to bend DNA more than 140° 

(Rice et al., 1996). FIS activates transcription of rRNA operons (Finkel and Johnson, 1992) and re-

shapes DNA by increasing DNA branching (Schneider et al., 2001). H-NS is a global repressor 
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(Rimsky, 2004) that can form prominent foci within the nucleoid (Wang et al., 2011), induces 

condensation on chromosomal DNA (Dame et al., 2000) and compacts the chromosome upon entry 

into stationary phase (Thacker et al., 2014). Another NAP, Dps, has been shown to intervene in the 

nucleoid compaction at entry into late stationary phase (Frenkiel-Krispin et al., 2004). Genome-wide 

DNA-binding profiles of FIS, HNS, IHF show that the binding of these proteins is more abundant in 

non-coding parts of the genome (Grainger et al., 2006), supporting the idea that NAPs contribute to 

the formation of the boundaries between supercoil domains (Zarei et al., 2013). The growth phase 

dependence of these proteins (Ali Azam et al., 1999) is summarized in Figure 3. The coupling of 

chromosomal topological state and gene expression in order to adapt to the growth phase also relies 

on the change in composition of RNA polymerase (Geertz et al., 2011), with the amount of ıS  subunit 

increasing from undetectable level in exponential phase to 30% of the level of ı70 in the transition to 

stationary phase (Jishage and Ishihama, 1995; Jishage et al., 1996).  

 

Figure 3 Figure from (Dorman, 2013) showing the variation of the level of supercoiling and of NAPs composition 

as a function of growth phase. Negative supercoiling increases in exponential phase, when transcription is 

maximal, and then decreases in stationary phase. These transitions are accompanied by changes in protein 

abundance: FIS is present only in exponential phase, while for instance Dps appears only in late stationary 

phase. In exponential phase the main sigma factor is ı70, encoded by RpoD, while at entry into stationary phase 

the amount of ıs increases.  

In summary, the Escherichia coli chromosome is a dynamically organized structure whose state 

depends on the activity of several proteins, on global cellular processes (such as transcription or DNA 

replication) and on the general physiological state of the cell (ATP level). This dynamic and highly 
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flexible organization allows the cell to rapidly adapt and survive to environmental changes, as I will 

describe in the next chapter.  
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2 Adaptation 

 

E. coli is able to exploit the information included in the chromosome in order adapt to different growth 

conditions. Below I will describe the changes in macromolecular composition, gene expression and 

partitioning of resources that characterize the response of the cell to a changing environment. 

 

2.1 Adaptation to different growth rates 

It has been known since the 1920s that bacteria change their size in response to growth conditions, 

i.e. becoming bigger in exponential growth and smaller when the growth slows down (HENRICI, A. T., 

1928). In 1952 Wade observed different phases in the growth of E. coli after dilution in a fresh 

medium, and reported the existence of a lag phase, a phase of rapid cell division, a phase of constant 

division rate and growth rate (exponential phase) and a phase when the growth rate decreases 

(Wade, 1952). In agreement with the results obtained by Henrici, he reported an increase in cell 

weight during lag phase followed by a decrease when the cells decrease their growth rate. An 

increase in DNA and RNA amount per cell was observed in lag phase, when cells are adapting to 

fresh medium, followed by a decrease when cells enter exponential growth (Morse and Carter, 1949). 

Schaechter et el. studied the size, the DNA and RNA content and the number of origin per cell for S. 

typhimurium in balanced growth in different growth media (Schaechter et al., 1958). They showed that 

at a given temperature, the average mass as well as the amount of DNA and RNA and the number of 

origin per cell depend exponentially (with different exponents) on the growth rate, irrespectively on the 

kind of nutrients supplied. Cooper and Helmstetter in 1968 derived an equation connecting DNA 

amount in exponential phase and growth rate (Cooper and Helmstetter, 1968). The number of copies 

of a gene g in the cell is defined by the equation 

݃ = ʹ^ [஼∗ሺଵ−௠’ሻ +஽]/�        
with Ĳ the doubling time, m’ the distance of the gene from the origin of replication (0 in the origin, 1 in 

the terminus), C the time necessary for the completion of DNA replication, and D the interval between 

the end of DNA replication and cell division. They were able to explain how bacteria can duplicate 



16 
 

faster than the time required for DNA replication and cell division by introducing the idea of 

overlapping rounds of DNA replication, i.e. a replication process is started before the previous one is 

completed (see Figure 4).  

 

Figure 4 Figure from (Fossum et al., 2007) describing the overlapping rounds of DNA replication in cells at fast 

growth. Before the ‘old’ DσA replication round is completed, another one begins such that the two daughter cells 

inherit a chromosome where replication is already ongoing. In this way, the cell can divide faster than the time 

required for DNA replication. 

Doubling time (min) τ=100 τ=60 τ=40 τ=30 τ=24  

Protein/cell 5,6 8,7 13 18,9 25 108 aa residues 

RNA/cell 3,7 7,3 14,3 24,4 39 107 nucl residues 

DNA/cell 1,6 1,8 2,3 3 3,8 Genome equiv. 

Mass/cell 0,85 1,49 2,5 3,7 5 OD460/ 109 cells 

Protein/mass 6,5 5,8 5,2 5,1 5 1017 aa/ OD460 

RNA/mass 4,3 4,9 5,7 6,6 7,8 1016 nucl/ OD460 

DNA/mass 18,3 12,4 9,3 8 7,6 108 genomes/ OD460 

RNAP/cell 1,5 2,8 5 8 11,4 103 RNAP/cell 

%RNAP transcribing stable RNA 24 36 56 68 79  

[ppGpp] 55 38 22 15 10 pmol/ OD460 

Table 1 Cellular parameters varying as a function of growth rate, from (HANS BREMER, 1996). At increasing 

growth rate there is an increase in the amount of total protein, RNA and DNA per cell. The cellular mass 

increases as well at fast growth, such that the concentration of the protein is almost constant at different growth 

rates. The concentration of the alarmone ppGpp decreases at increasing growth rates. 

Bremer reviewed the growth rate dependence of cellular parameters (HANS BREMER, 1996). The 

most important of them are summarized in Table 1. It should be noted the strong increase in cell mass 
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at faster growth rates and the increasing fraction of RNAPs transcribing stable RNA at fast growth 

results in an increase in stable RNA concentration. The nucleotide ppGpp regulates gene expression 

during the stringent response (Gentry and Cashel, 1996). The importance of ppGpp in the regulation 

of stable RNA synthesis was shown by Hernandez and Bremer (Hernandez and Bremer, 1993). In 

their work, they measured the ratio between stable RNA synthesis rate and the total RNA synthesis 

rate at different growth rates for a wild type strain and for a ppGpp-deficient strain. They found that in 

the wild type strain this ratio was increasing with increasing growth rate, while in the mutant this ratio 

remained constant. Therefore they concluded that the regulation of stable RNA synthesis requires 

ppGpp. The effects of ppGpp on ribosomal and gene expression will be discussed in more detail in 

paragraph 2.4. 

 

2.2 Adaptation after a shift from one growth medium to another 

Several cellular parameters are affected upon a shift to a richer or a poorer growth medium. For 

instance, it was shown that after a shift to a richer growth medium there was an increase in FIS level 

(Ball et al., 1992), in the number of ribosomes (Dennis and Bremer, 1974), in the number of RNAP 

molecules (Iwakura and Ishihama, 1975) and in the level of negative supercoiling (Balke and Gralla, 

1987). Kjeldgaard et al. shifted cultures of S. typhimurium from poor to rich growth medium (upshift) 

and from rich to poor growth medium (downshift) (Kjeldgaard et al., 1958). They discovered that as a 

response to the upshift, RNA synthesis is immediately increased, mass synthesis changes quickly and 

in 5 minutes reaches the typical level for fast growth, while it takes 20 minutes for DNA synthesis to 

shift to the new rate, and 70 minutes for cell division to adapt to the new rate. The same lag in tuning 

cell division rate to the new growth conditions was obtained for E. coli by Ball et al. (Ball et al., 1992). 

Cooper suggested that the reason for this lag was to be found in the constant C an D period (Cooper, 

1969). New replications initiated after the shift will result in cell division only after the C+D period 

(~70min). Brunschede et al. studied the effect of an upshift on macromolecular composition in E. coli 

(Brunschede et al., 1977). Their results show that stable RNA, DNA and protein amounts increase 

such that the ratios ∆RσA/∆Protein and ∆DσA/∆Protein are constant.  



18 
 

After a down-shift, synthesis of mass and RNA stops for 30-40 min while cell division and DNA 

synthesis continue until the cell mass is reduced to an half (Kjeldgaard et al., 1958). The rate of 

synthesis of RNA then increases up to the value characteristic of the slower growth rate, while the 

DNA and protein synthesis reacts more slowly to the downshift (Neidhardt and Magasanik, 1960). The 

synthesis of RNAP subunits behaves like the RNA synthesis rate, dropping rapidly and then regaining 

the rate typical of the new growth medium (Iwakura and Ishihama, 1975). The importance of the 

changes in these cellular parameters is underlined by the recent observation that upon a change in 

growth phase gene expression is mainly dependent on the global state of the cell (free RNAP, free 

ribosomes, nutrient availability and gene copy number) than on the activity of specific transcription 

factors (Berthoumieux et al., 2013). 

 

2.3 Adaptation to changes in growth phase: entry into stationary 

phase 

As it was described above, E. coli is able to adapt for rapid growth in presence of increased nutrients. 

In this section I will describe how E. coli adapt in order to survive to starvation. When E. coli faces an 

environment with a lack of nutrients, it activates a starvation-induced reaction that decreases the 

metabolism and increase the resistance to external stresses (Siegele and Kolter, 1992). Upon 

starvation, cells enter stationary phase and become smaller and spherical via the induction of the 

morphology regulator bolA  (Lange and Hengge-Aronis, 1991). The synthesis of peptidoglycan during 

amino acid starvation is subjected to stringent control by ppGpp and continues at 30% of the rate of 

growing cells (Ishiguro and Ramey, 1976). The cell wall has a different structure from the cell wall 

synthesized during exponential (or rapid) growth and is less sensitive to degradation and to autolysis 

induced by penicillin (Tuomanen et al., 1988). When ppGpp accumulation is prevented by 

chloramphenicol treatment (Sokawa and Sokawa, 1978), there is no increased resistance to autolysis 

and the starved cell lyses when peptidoglycan synthesis is inhibited (Kusser and Ishiguro, 1985). The 

bacterial surface also changes upon starvation (Kjelleberg and Hermansson, 1984; Nyström et al., 

1988). Upon entry into stationary phase, glycogen is synthesized and accumulated (Romeo and 

Preiss, 1989). Under conditions of starvation, when no net synthesis of protein is possible, the cell is 
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nevertheless able to synthesize new proteins for  adaptation by degrading already existing proteins 

(Reeve et al., 1984a) and RNA (Mandelstam and Halvorson, 1960). This synthesis of new proteins is 

necessary for cell survival (Reeve et al., 1984b), since a starved cell has no means to quickly respond 

to the environment, and therefore has to be prepared in advance to possible hostile conditions. For 

this reason, about 30 proteins are upregulated and synthesized during the first 3-4 hours of stationary 

phase (Groat and Matin, 1986), and some of them are typical of other stress responses, such that 

ethanol exposure, heat-shock and SOS response (Gottesman, 1984). Coherently with this 

observation, starved cells display higher resistance to heat shock, oxidative stress, and osmotic 

challenge than exponentially growing cells (Jenkins et al., 1988, 1990, 1991). The induction of 

expression of these proteins depends both on changes in the level of negative supercoiling and on 

changes in the RNAP composition. 

Coherently with a slowdown of metabolism, ATP concentration decreases while the cell enters into 

stationary phase, decreasing slowly to about 40% and then dropping faster (Chapman et al., 1971), 

with this steep decrease in ATP concentration corresponding to a loss of viability of the cells. In 

concomitance with the decrease in ATP levels, also the negative superhelicity decreases, because 

gyrase needs ATP (Balke and Gralla, 1987). This decrease of negative supercoiling is fundamental for 

the recognition of promoter sequences by the ıs subunit of RNAP (Kusano et al., 1996), since the 

promoters recognized by ıs and ı70 have an almost identical consensus (Gaal et al., 2001) and 

several promoters can be recognized by both holoenzymes  (Tanaka et al., 1993). One example is the 

osmE gene, a gene induced by ı70 upon osmotic shock during exponential phase and by ıs at the 

entry into stationary phase (Conter et al., 1997). Cells lacking the sigma factor ıs maintain a rod shape 

in stationary phase (Lange and Hengge-Aronis, 1991) and are not resistant to thermic or osmotic 

shocks (McCann et al., 1991). The amount of sigma factor ıs increases in the cell facing stresses or 

entering into stationary phase (Loewen et al., 1993), and it was shown that ı70 and ıs  compete for a 

limited amount of RNAP in stationary phase (Farewell et al., 1998). Factors determining this 

competition are again the level of supercoiling, which triggers the shift between the ı70 and the ıs 

usage (Bordes et al., 2003), and ppGpp which reduces the ability of ı70 for core binding (Jishage et al., 

2002). In addition to the role played in the competition between sigma factors, ppGpp is required for ıs 

synthesis (Gentry et al., 1993; Lange et al., 1995). In the next paragraph I will discuss more in detail 

the importance of ppGpp during stringent response. 
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2.4 Adaptation to amino acids starvation: the stringent response 

When E. coli faces the lack of an essential amino acid, the cell reacts with a severe restriction of 

ribosomal synthesis, named stringent control. RNA accumulation is strongly reduced (Sands and 

Roberts, 1952), the rate of RNA synthesis rapidly decreases to 30% of the level in exponential growth 

and RNA is enriched in mRNA with respect to ribosomal RNA (Lazzarini and Dahlberg, 1971). Upon 

amino acids starvation, there is a sudden accumulation of ppGpp (Cashel, 1969; Erlich et al., 1971).  

 

Figure 5 Figure from (Magnusson et al., 2005) describing the regulation by ppGpp upon amino acid starvation. 

ppGpp is produced by RelA and SpoT and binds to RNAP molecule resulting in particular in a repression of stable 

RNA synthesis and in the induction of rpoS, which encodes for sigma factor associated with stress response in E. 

coli. 

This nucleotide, produced via RelA and SpoT (Xiao et al., 1991), binds to the ȕ and ȕ’ subunits of core 

RNA polymerase (Chatterji et al., 1998; Toulokhonov et al., 2001). This results in an inhibition of rRNA 

synthesis (Gourse et al., 1986; Travers, 1976; Zhou and Jin, 1998), due to a decrease in the stability 

of the complex formed between a ribosomal promoter and the ı70 holoenzyme (Gourse et al., 1998). 

Barker et al. showed that ppGpp decreases the stability of open complexes, therefore inhibiting 

transcription from ribosomal promoters that already make short-lived open complexes due to the 

presence of the GC-rich discriminator region (Barker et al., 2001a, 2001b). The rate of stable RNA 

synthesis decreases from 1.0 at a ppGpp concentration of 0, to 0.24 at saturating concentrations of 
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ppGpp (Ryals et al., 1982). The increase in ppGpp therefore causes the dissociation of RNAP from 

ribosomal promoters, resulting in an increased availability of polymerase for metabolic promoters 

(Zhou and Jin, 1998). In addition to this passive regulation of metabolic promoters, ppGpp and DksA 

work together to increase transcription from amino acids promoters in response to nutrient limitation 

(Paul et al., 2004, 2005).  

 

 

Figure 6 Figure from (Paul et al., 2005) showing the effect of ppGpp and DksA on the stability of RNAP-promoter 

complex for metabolic (A) and ribosomal promoters (B). The decrease of the barrier between the two intermediate 

states I1 and I2 in the isomerization process is beneficial for the metabolic promoters, because the step to the I2 

state is facilitated and I2 state is still stable, being its energy lower than the one of I1. For ribosomal promoters the 

decrease in the Energy barrier between intermediate 1 and 2 has a negative effect, because it destabilizes the 

state I2, therefore resulting in a decrease of ribosomal promoter expression. 

 

The destabilization of the RNAP-promoter complex was described by Paul et al., for two intermediates 

separated by a transition state RP‡ that the promoter and the polymerase have to form on the 

pathway to open complex formation (Paul et al., 2005). For a metabolic promoter, there is a high 

barrier in the free energy to overcome the transition state and get to the second complex, but since the 

free energy of this second complex is lower than the one of the first complex, the second complex is 

stable.  The effect of ppGpp and DksA is to lower the barrier between the two complexes (i.e. the free 

energy of the transition state). In case of a metabolic promoter, this facilitates the step to the second 

complex and the reaction is still stable. In this way, ppGpp and DksA increase the transcription from 

metabolic promoters. In contrast, for a ribosomal promoter the energy of the transition state is also 

lowered, making the step to the second complex easier, but the free energy of the second complex is 

higher than the free energy of the first one, therefore the second complex is unstable. This instability is 
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worsened when ppGpp and DksA decrease the free energy of the transition state, inhibiting 

transcription and releasing RNAP molecules from ribosomal promoters as a result.  

In addition to the release of polymerase from ribosomal promoter (with the consequent passive up-

regulation of metabolic promoters) and the direct activation by ppGpp and DksA, the effect of ppGpp 

on ribosomal and metabolic promoters has been explained in a different way via the Michaelis–Menten 

model described below (Figure 7 and Box 2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 A) Enzymatic reaction process: an enzyme E binds to the substrate S at rate k f, dissociates at rate kr 

and once bound to the substrate converts the substrate in product P at a rate kcat. B) The complex of reactions 

from the recognition of the promoter by the RNAP to the open complex formation and the initiation of transcription 

can be modeled in the same way via the Michaelis-menten equation. 

Box 2 Isomerization 

RNAP recognize a promoter sequence via and interaction of the sigma subunit with the -10 and -35 

regions to form a closed complex RPc. At this stage, either the polymerase falls from the sequence or 

there is a series of conformational changes (isomerizations) both in RNAP and in the DNA, leading 

through different intermediate states (I1, I2) first to the opening of the DNA double helix and then to 

the formation of a stable open complex (RPo) (Saecker et al., 2011). From this point, the transcription 

process begins.  

 

A B 
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In 1913 Michaelis and Menten derived a mathematical model to describe the process of the enzymatic 

reaction in which sucrose is hydrolyzed into fructose and glucose (Michaelis and Menten, 1913). The 

process can be described as in Figure 7, with E the concentration of the enzyme, S the concentration 

of the substrate, P the concentration of the product and kcat, kf and kr the kinetic constants of the 

process. At equilibrium, the velocity of the reaction is defined by 

 

Ͳݒ = ݉�ሺ[ܵ] ݔܽ݉� + [ܵ]ሻ 

with 

�݉ = ݇� + ݂݇ݐܽܿ݇  

Vmax the maximal reaction velocity occurring when the entire amount of enzyme is bound to the 

substrate. Km is the concentration of the substrate for which the velocity of the reaction is half of the 

maximal velocity Vmax, and is the inverse of the affinity of the substrate for the enzyme. The ratio 

Vmax/Km can be considered as the catalytic ability of the enzyme, i.e. the efficiency of the 

transformation of the substrate. To be noticed that different values of Km and Vmax can result in the 

same catalytic ability. 

The process of RNAP binding to the promoter in order to form an open complex and to start 

transcription can be regarded as a Michaelis-Menten process, where the parameters Km and Vmax 

depend on the promoter characteristics (Figure 7). A high value of Km means that the affinity of the 

promoter for RNAP is low, therefore promoters approach saturation only at high concentration of 

RNAP. On the contrary, promoters with a low Km are saturated at a lower RNAP concentration and 

their expression at fast growth (when the amount of RNAP is high) is limited by Vmax. The parameter 

Vmax in this case represents the frequency of transcription events in the case of promoter saturated by 

RNAP. 

It was shown that the activity of ribosomal promoters increases at increasing growth rate, while it 

decreases for other promoters (Liang et al., 1999a; Miura et al., 1981). Knowing that the amount of 

free RNA polymerase increases at fast growth rate (HANS BREMER, 1996), this result means that 
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ribosomal promoters are not saturated by RNAP, therefore their activity can increase in presence of a 

higher amount of RNAP, while the other promoters are saturated at a lower level of RNAP, thus they 

cannot increase indefinitely their activity at increasing growth rate. Following this idea, Jensen and 

Pedersen proposed that the promoter strength Vmax/Km was low for stable RNA promoters, with both 

Vmax and Km high, while the promoter strength was high for metabolic promoters, with low values of 

Vmax and Km (Jensen and Pedersen, 1990). Therefore a ribosomal promoter has low affinity for RNAP 

(unstable open complex) and a high rate of transcription, while open complex at metabolic promoters 

is stable and the frequency of initiation of transcription is low. In this way Jensen and Pedersen 

proposed an explanation of the different effect of ppGpp on ribosomal and metabolic promoters. Since 

the increase in ppGpp enhances pauses of RNAP during transcription (Kingston et al., 1981), the 

amount of free RNAP decreases in presence of ppGpp. For this reason, in presence of ppGpp the 

expression of metabolic promoters that are saturated at low concentration of RNAP is favored with 

respect to the one from ribosomal promoters that need a higher concentration of free RNAP to 

approach their maximal rate. 

Klumpp and Hwa analyzed the different explanations for ppGpp effect on metabolic and ribosomal 

promoters (Klumpp and Hwa, 2008). In their model, RNAP sequestration due to pauses in the 

transcription does not have an effect strong enough to inhibit the expression of ribosomal promoters. A 

post-transcriptional auto-regulation of ribosomal proteins binding to their own mRNA and suppressing 

translation in case of lack of rRNA is a more efficient mechanism to ensure inhibition of ribosomal 

protein expression (Fallon et al., 1979; Scott et al., 2014). Similarly, the increase in free polymerase 

due to ppGpp’s effect on the unstable open complex at the ribosomal promoters can only partially 

explain the induction of metabolic promoters in presence of ppGpp. Therefore they propose that the 

leading force in the upregulation of metabolic promoter is the direct induction operated by ppGpp and 

DksA together. 
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Box 3 Effects of Chloramphenicol on ribosome regulation 

As described previously, ppGpp binds to RNA polymerase, causing a decrease in rRNA synthesis. In 

case of a reduced amount of rRNA, ribosomal proteins instead of binding to rRNA and form 

ribosomes bind to their own mRNA, repressing r-protein synthesis (Dean and Nomura, 1980; Yates et 

al., 1980). In this way the equilibrium stable RNA-ribosomal proteins is maintained. When 

chloramphenicol is added in sub-lethal concentration to an exponentially growing E. coli culture, the 

growth rate decreases (Harvey and Koch, 1980) because chloramphenicol binds to ribosomes 

inhibiting translation (Wolfe and Hahn, 1965). In this situation, the internal concentration of amino 

acids increases rapidly due to translation inhibition (Kurland and Maaløe, 1962) with a consequent 

rapid decrease in the level of ppGpp (Gallant et al., 1972) and derepression of ribosomal promoters. 

For this reason, when cells are exposed to chloramphenicol there is an accumulation of stable RNA 

and ribosomes (Shen and Bremer, 1977a, 1977b). 

 

In summary, the cell is able to regulate gene expression in response to the environmental conditions. 

This regulation is achieved both via digital control, i.e. specific transcription factors, and via global 

regulators, such as supercoiling level, NAPs or sigma factors, defining the analog control of cellular 

functions. Both these digital and the analog types of information are enclosed in the DNA molecule, its 

sequence and its structure, thus creating a self-referential and connected system allowing the cell to 

respond to perturbations as a unit (Muskhelishvili et al., 2010).   
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3 Economy in a cell 

 

As it was shown in the previous section, the cell needs to adapt its macromolecular composition to the 

growth rate and to divide its resources among different processes. One of the parameters changing 

with the growth rate and affecting gene expression is the amount of RNA polymerase (HANS 

BREMER, 1996). In 2008 Klumpp and Hwa proposed a model to calculate the growth-rate 

dependence of free RNA (Klumpp and Hwa, 2008). They divided the total number of RNAPs into 

different classes: the number of RNAPs transcribing mRNA (Nm), RNAPs transcribing rRNA (Nr), 

RNAPs that are bound to DNA nonspecifically (Ns), immature RNAP (Ninterm) and RNAP that are free 

to begin transcription (Nfree). Using different values from previous works (HANS BREMER, 1996), 

they calculated the growth rate dependence of these different classes (see table 2). 

Growth rate 

(db/hr) 

0,6 1 1,5 2 2,5 

Ntotal 1500 2800 5000 8000 11400 

Nm 184 341 457 599 709 

Nr 59 194 568 1302 2598 

Nfree 97 238 476 718 868 

Table 2 Growth rate dependence of the number of total RNAP, of RNAP transcribing mRNA, of RNAP 

transcribing ribosomal RNA and of RNAP free in the cytoplasm, as derived from (Klumpp and Hwa, 2008). At fast 

growth, there is a strong increase in the number of RNAP molecules transcribing rRNA, while the number of 

molecules transcribing mRNA increases less.  

It should be noted the strong increase at increasing growth rates in the number of RNA polymerase 

molecules transcribing ribosomes, while the number of RNA polymerases transcribing mRNA has just 

a 4-fold increase. This difference gives an idea of how the cell divides its resources between 

ribosomes and protein synthesis at different growth rates. For ribosomal promoters, there is an 

increase in promoter activity at fast growth (Zhang and Bremer, 1995) due to activation by FIS (Zhang 

and Bremer, 1996), to the release of the repression by ppGpp (Zhang et al., 2002) and to increased 

negative supercoiling level (Travers and Muskhelishvili, 2005a). This partitioning of polymerase has 

important consequences on gene expression. Liang et al. measured beta-galactosidase expression 
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driven by three different constitutive promoters and showed that at slow growth there was an increase 

in beta-galactosidase activity with respect to fast growth (Liang et al., 2000). Wanner and co-workers 

had already shown that at rapid growth the expression of several promoters was decreased, with the 

exception of the strong promoter lacUV5 that maintains the level of expression constant as a function 

of growth rate (Wanner et al., 1977). Klumpp et al. proposed a simple model to explain this 

dependence of expression on the growth rate (Klumpp et al., 2009). They use the value for the amount 

of free RNAP calculated before (Klumpp and Hwa, 2008) in order to compute the transcription rate per 

copy of a gene, and then they defined the protein concentration p for a constitutive (i.e. non-regulated) 

gene by 

݌ =  ݃ ∗ ݉ߙ  ∗ ݉ߚ݌ߙ  ∗ ݌ߚ  ∗ �  

with V the cell volume, g the gene copy number, αm the transcription rate, αp the translation rate per 

mRNA, ȕm the degradation rate of mRNA and ȕp the one for protein. Since ȕm and αp are considered 

independent on the growth rate, the dependence on the growth rate lies in g, αm, ȕp and V. On the 

considered range of growth rate, g increases approximately 2.5 fold and αm less than 3-fold, while the 

volume and the degradation rate of the protein (approximated as the dilution rate for a stable protein) 

increases both 4- fold from slow to fast growth. Therefore a decrease in protein concentration is 

unavoidable (see Figure 8A). An almost constant level of protein concentration as a function of growth 

rate in this model is possible only for a repressed promoter.  

 

   

 

 

A B 
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Figure 8 Plots from (Klumpp et al., 2009) showing the growth rate dependence of protein concentration for a 

constitutive promoter (black) and a promoter repressed by a constitutive promoter (red) for different degrees of 

cooperativity in the repression, and protein concentration for a promoter repressed by a negatively autoregulated 

promoter (blue). When cooperativity is required for repression, the expression of the target gene increases at fast 

growth because the repressor protein is diluted (A). For the expression of a target repressed by an autorepressed 

gene, this derepression at fast growth is less prominent because the concentration of the regulator tends to be 

constant at the different growth rates. 

After having addressed the question of the growth rate dependence of metabolic genes expression, 

Scott et al. studied the connection between growth rate and repartition of resources for ribosomal and 

metabolic genes (Scott et al., 2010). It has already been shown by Ryals et al. that at fast growth 

almost all the RNA in bacteria is stable rRNA and tRNA, while at slow growth or in presence of high 

levels of ppGpp almost the 75% of RNA is mRNA (Ryals et al., 1982). Following this result, Scott et al. 

found a linear relationship connecting growth rate and the fraction of RNA over total protein via the 

translational capacity of the organism kt 

� = �଴  +  �/݇� 

and via the nutrient quality of the medium at changing translational inhibition 

� = �௠��  –  �/݇௡ 

RNA fraction therefore increases both at increasing growth rate and at increasing level of translational 

inhibition, while metabolic proteins display an opposite behavior (sees Figure 9) 

 

 

Figure 9 Figures from (Scott et al., 2010) describing the growth rate dependence of the fraction of RNA over total 

protein (A), and of the fraction of protein expressed by a constitutive promoter over total protein (B). At increasing 

nutrient quality, the fraction of RNA increases while the concentration of the constitutively expressed protein 

decreases (pink arrow). At fixed growth medium, an inhibition of translation via chloramphenicol (blue arrow) 

results in an increase of the fraction of RNA over total protein and a decrease of the concentration of the protein 

synthesized from the constitutive promoter. 

A B 



29 
 

They explained the increase in RNA/protein by a compensation for the reduced translational capacity, 

and the decrease in protein synthesis by the consequent increased number of RNAPs synthetizing 

ribosomes. This competition between ribosomal and metabolic proteins is due to the limited amount of 

resources in the cell (see Figure 10) that have to be divided between housekeeping genes (Q), 

ribosomal and translational proteins (R) and metabolic proteins (P). An increase in the fraction of 

resources devoted to ribosomal genes happens at the expense of the metabolic proteins fraction. The 

repartition of resources necessary to maximize the growth rate in a given environment is the result of 

the balance of the amino acid influx, guaranteed by the transport proteins belonging to the P fraction, 

and the number of ribosomes consuming amino acids in order to produce proteins (Scott et al., 2014). 

If the amino acids level is low, the protein translation rate decreases while if the amino acids pool 

increases, there is an increase in the ribosome fraction R and a consequent reduction of transport 

proteins (and of nutrient influx) that guarantees the flux balance of the system.   

  

 

 

Figure 10 A) Schematic representation from (Scott et al., 2010) of the repartition of transcription and translation 

resources between housekeeping genes Q, ribosomes and translational proteins R and metabolic proteins P. At 

increasing translational inhibition, the growth rate decreases and the fraction allocated for the R part increases. B) 

The level of amino acids in the cell determines both the rate of the nutrient influx and the amount of ppGpp, which 

regulates ribosomes synthesis.  
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Box 4  A strange constitutive: lacUV5 

 

 

 

 

 

 

 

(Klumpp et al., 2009) 

In this figure the black dots show the expression of the lacL1 promoter from (Wanner et al., 1977), a 

constitutive lac promoter mutant whose activity does not decrease as a function of growth rate like the 

other promoters plotted (Klumpp et al., 2009). Wanner et al. studied the expression of the wild type 

lac promoter and of several mutants under different growth conditions (Wanner et al., 1977). In 

particular, they studied the expression of lacL1 and lacUV5 mutants, which are not activated by CRP-

cAMP. For the lacL1 promoter, they found that for growth rates faster than one doubling per hour, the 

ȕ-galactosidase synthesis decreases at increasing growth rate. τn the contrary, the ȕ-galactosidase 

synthesis driven by the UV5 promoter was not dependent on the growth rate. UV5 has the same -35 

region and the same sub-optimal spacer of the wild type promoter (Stefano and Gralla, 1982), but in 

addition it has mutations resulting in a consensus -10 region (Malan and McClure, 1984). Due to this 

fact, UV5 is a strong promoter with a high rate of isomerization (de Crombrugghe et al., 1984) and 

frequent initiation (McClure, 1980). At strong promoters, as soon as a polymerase elongates beyond 

the promoter, another polymerase is bound and starts another RNA chain (McClure, 1980). This 

mechanism was observed for rRNA operons (Pace, 1973). Wanner et al. suggested that the strength 

of the UV5 promoter was the reason of the observed a constant ȕ-galactosidase concentration as a 

function of growth rate, because strong promoters compete well against ribosomal promoters for free 

polymerases and therefore are able to take advantage of the increased amount of polymerase at fast 

growth. This different dependence of protein synthesis as a function of growth rate for constitutive 

promoters with different promoter strength is not taken into account in the previously mentioned 

model by Klumpp et al. (Klumpp et al., 2009).  

 

In summary, in this chapter I present the models that have been proposed in order to give a 

quantitative description of resources partitioning (RNAP, ribosomes) that could explain the observed 

dependence of gene expression on growth rate. The role of promoter strength in the growth rate 
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dependence of gene expression is a player that has not been considered in the model, and that I will 

study further (see results 6.2.3). 
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4 Uncovering the Influence of chromosomal 

position on gene expression 

 

In eukaryotes, the organization of DNA in tightly condensed (heterochromatin) or lightly condensed 

(euchromatin) structures has a clear influence on gene expression, since the degree of DNA 

compaction in the gene neighborhood determines the accessibility to the transcriptional machinery (Li 

and Reinberg, 2011; Voss and Hager, 2014; Zlatanova et al., 2000). It is less clear whether this 

influence of chromosomal position on gene expression also exists in bacteria. A clear effect on gene 

expression of the distance from the origin of replication has been widely shown in literature, but other 

facts such as the uneven distribution of protein binding sites, AT-content as well as the tendency of co-

regulated genes to lie one in proximity to the other suggest that the position in the chromosome can 

play a more subtle role than mere gene abundance. First, I will describe the effect of DNA replication 

on gene dosage, and the consequence on gene expression. Then I will describe the results pointing to 

the possibility of an influence of chromosomal position on gene expression beyond gene abundance. 

 

4.1 Gene dosage effect 

DNA replication in E. coli begins at one origin (von Meyenburg et al., 1978) and proceeds 

bidirectionally towards the terminus (Prescott and Kuempel, 1972). As already mentioned, it was 

shown by Cooper and Helmstetter that in fast growing bacteria there are multiple overlapping 

replication rounds (Cooper and Helmstetter, 1968). This implies that the chromosome in cells at fast 

growth rate is highly branched, leading to a higher amount of genes located near the origin in 

comparison to genes that are close to terminus, while at slow growth this difference in gene 

abundance is lower (Bipatnath et al., 1998). This gene copy number effect has been regarded as the 

only effect of chromosomal position in gene expression. Back to the ‘70es, Chandler and Pritchard 

evidenced a proportionality between gene copy number and amount of enzyme produced in steady 

state (Chandler and Pritchard, 1975). In Salmonella typhimurium, the orientation of the traslocated 

gene did not affect gene expression, and the level of expression from all the insertions followed the 

trend dictated by gene dosage (Schmid and Roth, 1987). Sousa et al. measured the expression for the 
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LacZ gene driven either by the Psal promoter (involved in the biosynthesis of salicyclate) or by the 

gyrB promoter at different chromosomal positions by using mini transposons insertion (Sousa et al., 

1997). They aimed to detect a difference in gyrB expression due to differences in the local levels of 

supercoiling in the chromosome, but all the positions appeared to be affected in the same way by 

changes in the supercoiling, and the only effect that was shown was again the decrease in gene 

expression due to a decrease in gene dosage while approaching to the terminus. Block et al. built a 

synthetic network made up of the LacI repressor on one side, and on the other the YFP reporter gene 

under the control of PLlacO-1 promoter (Lutz and Bujard, 1997) with translation regulated by the T7 10 

5’ UTR sequence (Block et al., 2012). They showed that changes in chromosomal position or in gene 

orientation or in the distance of the target from the repressor did not affect gene expression, and that 

the only variation in gene expression as a function of chromosomal position was due to changes in 

gene abundance and in the local effect when the reporter was not isolated from the environment. Ying 

et al. inserted the fluorescent reporter GFP gene in different position in the chromosome either under 

the control of a native promoter located in the chosen position, or replacing the native promoter with 

the Ptet promoter (Ying et al., 2014). They studied the level of expression during exponential phase in 

presence or in absence of the repressor TetR. Their results for the Ptet promoter show a clear scaling 

in gene expression with the increasing distance from the origin, compatible with a decrease in gene 

copy number, both with and without the repressor. For the native promoters they didn’t find a decrease 

in gene expression with increasing distance from the origin, therefore they concluded that not all the 

highly expressed promoters are located near the origin.   

 

4.2 The Escherichia coli chromosome is not uniform 

4.2.1 The intrinsic structural properties of DNA sequences 

Differences in the chromosomal structure could result in differences in gene expression according to 

the gene’s position. Satchwell et al. studied eukaryotic sequences and found certain triplets that 

correlate with the DNA wrapping around the histone (Satchwell et al., 1986). They defined the ‘position 

preference’ as the measure of the frequency in which the triplet is specifically positioned on the 

nucleosomal DσA with respect to the surface of the core protein. The concept of ‘position preference’ 
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was extended by Willenbrock and Ussery in order to describe the general property of DNA to be 

wrapped around proteins (Willenbrock and Ussery, 2007). They measured position preference in 

several bacterial genomes (E. coli, P. aeruginosa, G. sulfurreducens, C. jejuni, B. subtilis, S. 

cerevisiae) and discovered that highly expressed genes such as ribosomal RNAs and ribosomal 

proteins are located in regions with low values of position preference, i.e. in less flexible regions of the 

chromosome. They postulated that these regions were more accessible to RNAP and other elements 

of the transcriptional machinery. Pedersen et al. studied DNA curvature, DNA flexibility, and DNA 

stability of several prokaryotic genomes, discovering that the terminus was characterized by high level 

of curvature, low flexibility, and low DNA stability (Pedersen et al., 2000). They also showed the 

existence of several regions with strong curvature, probably acting as domain boundaries, and they 

observed, in agreement with Willenbrock and Ussery, that the regions in which ribosomal genes are 

located display similar structural parameters, pointing to the importance of chromosomal structure in 

gene expression. Sobetzko et al. measured the melting temperature distribution in the chromosome of 

Ȗ-proteobacteria and found a gradient from high average negative DNA melting in the origin to low 

average negative melting energy in the terminus (Sobetzko et al., 2013). In addition, they were able to 

show that depending on the growth phase, the cell is using genes with different melting temperature: 

at the beginning of exponential phase the cell activates genes that are close to the origin and that 

have lower negative melting temperature, while in later stage of growth the activated genes have a 

higher negative melting temperature and are located farther from the origin of replication. This pattern 

of expression reflects the decreasing level of energy and supercoiling in the cell going from 

exponential to stationary phase.  

4.2.2 Dynamics in vivo: diffusion of DNA and of proteins, heterogeneity in the 

cytoplasm, gradients in local concentrations 

The motility of tagged DNA as a function of macrodomain position was studied by Javer et al., and it 

was observed that on short time scales (ms-s) the diffusion of loci located in different chromosomal 

positions was dependent on the chromosomal coordinate (Javer et al., 2013). Protein diffusion is also 

influenced by the location of the encoding gene. Kuhlman and Cox used single-molecule 

measurement of the protein expressed by LacI fused with a fluorescent protein gene in different 

chromosomal position to test the influence of the encoding gene position on protein diffusion (Kuhlman 
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and Cox, 2012). They grew cells in different growth media, fixed them, imaged in the microscope and 

found that when the encoding gene was located on a plasmid, the protein was evenly distributed, while 

for chromosomal insertions the protein location was correlated with the gene position. Moreover, they 

were able to show that the distribution of the protein was highly influenced by the degree of 

chromosome compaction: in stationary phase, when DNA is highly dense, the protein is excluded from 

the volume occupied by DNA and it is located towards the cell poles, while it can diffuse more freely 

during exponential phase. Wunderlich and Mirny proposed that a transcription factor searches its 

target by either sliding on DNA, or with a free diffusion in the cytoplasm (Wunderlich and Mirny, 2008). 

If the protein is unevenly distributed, and if it is not very abundant, a rapid regulation of the target 

requires proximity between regulator and target (Kolesov et al., 2007). With an in silico analysis of the 

regulatory network, Hershberg et al. demonstrated that genes regulated by the same transcription 

factor tend to be adjacent to each other, and that a transcription factor generally regulates targets 

close to its encoding gene (Hershberg et al., 2005) or located at regular distances, possibly due to 

solenoidal organization of the chromosome (Képès, 2004).  

4.2.3 Patterns in the genome suggest possible three dimensional organizations of 

the nucleoid 

Periodicity in the localization on the chromosome was found also for most essential and highly 

transcribed genes (Mathelier and Carbone, 2010; Wright et al., 2007), and co-regulated operons were 

found to be transcribed in divergent direction, in such a way that their regulatory upstream sequences 

overlap (Warren and ten Wolde, 2004). Horizontally transferred genes tend to cluster along the 

genome close to macrodomain barriers (Zarei et al., 2013), and genes regulated by H-NS as well as 

genes co-regulated by H-NS and StpA are found in clusters located mainly in the terminus and at 

macrodomain barriers (Srinivasan et al., 2013). Therefore, it seems that one of the forces driving gene 

location on the chromosome is the co-regulation and the proximity to regulators. Montero Llopis et al. 

demonstrated that mRNA remains localized near the encoding gene, therefore suggesting that for 

interacting proteins the proximity of the encoding genes could be an advantage in order to facilitate 

their interaction and assembly (Montero Llopis et al., 2010).  
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4.2.4 Important genes are arranged in the chromosome according to their temporal 

pattern of expression 

Transcription seems to be the driving force also for spatial arrangement of the genes in the cell. A 

strain expressing a fusion lac repressor-GFP was engineered in order to localize a plasmid carrying an 

array of lac operator sites and to compare its position to the one of the same plasmid with a 

constitutive promoter inserted (Sánchez-Romero et al., 2010). It was shown that while the first plasmid 

was evenly distributed in the cytoplasm, for the second one carrying the constitutive promoter an 

aggregation of plasmids was located toward the cell poles, suggesting an advantage for gene 

expression deriving from a specific localization in the cell. Sobetzko et al. gave a global picture of both 

the proximity target-regulator, confirming the results described in the previous paragraph, and the 

precise location of important genes in the chromosome (Sobetzko et al., 2012). They analyzed the 

chromosomal position of important genes in Ȗ-Proteobacteria, and found that their distance from the 

origin of replication (see Figure 11) reflects the temporal pattern of their expression during cell growth: 

genes required in exponential phase (such as fis, dnaA and the ribosomal genes) are located toward 

the origin, while genes connected with stationary phase or stress response (such as topA, topB or fnr) 

are closer to the terminus. They also found that rpoD, coding for ı70, is closer to the origin than rpoS, 

gene encoding for the stationary phase-related ıs. In addition, targets for ı70 are located mainly close 

to the origin, while the targets for ıs are found near to the terminus. The origin is also enriched in 

genes upregulated by gyrase (Jeong et al., 2004).  
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Figure 11 Figure from (Sobetzko et al., 2012) representing the conservation of the distance from the origin in Ȗ-

Proteobacteria of important genes such as ribosomal genes, NAPs, genes coding for sigma factors. 

4.2.5 The role of dynamic assemblies in the change of nucleoid organization as a 

function of growth rate: the transcription foci. 

At fast growth, different chromosomal positions are characterized by the formation of transcription foci 

(Cabrera and Jin, 2003). This precise co-localization of polymerase vanishes at slow growth, under 

stringent response or when transcription is inhibited by rifampicin, showing that the distribution of the 

polymerase changes with the transcription activity in the cell. A similar result was obtained by 

measuring RNAP localization on the chromosome by chromatin immunoprecipitation and microarrays 

(Grainger et al., 2005). It was shown that at fast growth the polymerase is mainly bound to ~90 regions 

in the chromosome, corresponding to genes involved in translation and in ATP synthesis. Upon 

inhibition of transcription by the addition of rifampicin, or upon addition of IPTG and salicylic acid, the 

RNAP localization was reorganized accordingly (for example, upon addition of IPTG the polymerase 

was found bound to lacZ). Therefore, the distribution of RNAP polymerase is dynamic, and the 

proximity to a highly expressed gene could be an advantage due to a higher amount of polymerase 

molecules nearby.  
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4.2.6 Heterogeneous distribution of NAPs 

The distribution of NAPs binding sites along the chromosome is also uneven. In the terminus, there is 

an increase in the total length of H-NS binding regions when the cell proceeds from exponential to 

stationary phase (Zarei et al., 2013). Grainger et al. showed that half of the binding sites for FIS, H-NS 

and IHF were found in non-coding regions of E. coli genome, probably responding to an architectural 

function, while there is an overlap of the binding sites for FIS and H-NS in coding regions, pointing to a 

combined regulation of gene expression (Grainger et al., 2006). The NAP HU was found to bind non 

specifically to the chromosome, with a particular preference toward A/T-rich regions (Prieto et al., 

2012). More in general, protein occupancy is not homogeneous along the chromosome: instead, the 

existence of extended regions of protein binding was shown (Vora et al., 2009). These regions could 

be distinguished in highly transcribed (heEPODs) and transcriptionally silent ones (tsEPODs), with the 

latter being characterized by high AT-content and by the binding of H-NS, FIS and IHF. Therefore a 

specific position of the gene in the chromosome could be characterized by a different protein binding, 

resulting in a specific gene expression. 

Even with this clear heterogeneity of the chromosome, the influence of chromosomal position on gene 

expression in E. coli has been elusive. One step in the direction of discovering this influence has been 

recently made by Busby’s group (Bryant et al., 2014). They inserted lac promoter driving the 

expression of a fluorescent reporter gene in different position in the chromosome, and measured the 

fluorescence per unit of OD for cultures in exponential phase in minimal media supplemented with 

IPTG. Their results show a strong impact of chromosomal position on the reporter gene expression, 

with fluorescence concentration varying over a ∼300-fold range. These differences were not due to 

gene dosage effects, but they were instead to be ascribed to different protein occupancy levels, to 

gyrase effects and to transcribing neighboring genes. This interesting result gives new stimulus for 

further research, in order to study to which extent chromosomal position affects gene expression for 

different promoters and in different growth conditions and growth phases.  
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5 Experimental approach: 

 

We decided to study the effect of chromosomal position on the expression of fluorescent reporter gene 

under the control of HNS promoter, of the ribosomal rrnBP1 promoter and of the phage promoter P5 in 

different growth conditions and at different growth phase of the cell.  

 

5.1 Phns 

H-NS is an abundant nucleoid associated protein that acts as a global repressor (Hommais et al., 

2001) especially in silencing horizontally acquired genes (Oshima et al., 2006; Zarei et al., 2013). It 

binds preferentially to AT-rich sequences (Dame et al., 2001) and to high affinity sites (Bouffartigues et 

al., 2007) and can form heteromeric (Williams et al., 1996) or oligomeric structures (Dorman et al., 

1999). These structures contribute in shaping the chromosome (Dame et al., 2000; Noom et al., 2007) 

and in bridging distal regions creating foci  (Wang et al., 2011). H-NS protein is expressed at a 

relatively constant level in Escherichia coli (Free and Dorman, 1995). Overproduction of H-NS is lethal 

for the cell (Spurio et al., 1992) due to excessive compaction of the chromosome, and the lack of H-

NS has a strong impact on several aspects of cell life (Giangrossi et al., 2005; Soutourina et al., 1999). 

For this reason, H-NS expression needs to be regulated: it was shown that FIS binds to different sites 

on H-NS promoter (Falconi et al., 1996) and contrasts the repression that H-NS exerts on its own 

promoter (Falconi et al., 1993). As a response to cold shock, CspA enhances H-NS expression (La 

Teana et al., 1991). H-NS expression is repressed by its paralogue StpA (Williams et al., 1996). The 

two proteins show almost the 70% of sequence similarity (Sonnenfield et al., 2001; Zhang et al., 

1996), StpA expression can complement ∆hns phenotype (Shi and Bennett, 1994) and the double 

mutation ∆stpA∆hns strongly affects cell growth (Sonden and Uhlin, 1996).  
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Figure 12 A) Schematic representation of the hns regulatory region. One of the binding sites of H-NS overlaps 

with the -35 region, therefore repressing its own expression, while the binding of FIS to the promoter region 

prevents H-NS repression. B and C) The Phns+YFP reporter construct studied in this work and the six 

chromosomal positions in which it has been inserted.  

 

5.2 rrnBP1 

In Escherichia coli there are seven ribosomal genes, located near the origin of replication (Figure 13). 

The activities of the different promoters are similar, after correction for gene abundance effects 

(Condon et al., 1992) and they are tightly regulated (Schneider et al., 2003). 

 

Figure 13 Figure from (Condon et al., 1992) showing the seven ribosomal genes located mainly near the origin of 

replication. This proximity to the origin of replication guarantees high levels of expression at faster growth due to 

the increase in gene copy number. 

 There are two promoters responsible for transcription of rRNA operon, named P1 and P2 (Gilbert et 

al., 1979) (Figure 14A). P2 maintains a basal level of expression and is not affected by growth rate 
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(Dennis et al., 2004), while P1 expression increases with increasing growth rate (Sarmientos and 

Cashel, 1983) and is sensitive to ppGpp (Liang et al., 1999a). Gourse et al. showed that the growth 

rate dependence of P1 promoter was due to a specific sequence located inside the promoter itself 

(Gourse et al., 1986), and this sequence was identified in the GC-rich discriminator located between 

the -10 element and the transcription start point (Travers et al., 1986). The discriminator is responsible 

for regulation by ppGpp (Lamond and Travers, 1985) and for supercoiling sensitivity (Travers and 

Muskhelishvili, 2005a). A sequence located upstream the -35 element, named UP element, was found 

to be necessary for optimal promoter activity (Gourse et al., 1986; Lamond and Travers, 1983). The 

sequence named box A, situated downstream the promoter P2, is required for efficient rRNA chain 

elongation (Gourse et al., 1986).  FIS binds upstream the UP element and increases P1 activity ~40 

times, and P2 activity ~5 times, at increasing growth rate (Zhang and Bremer, 1996), while H-NS 

represses ribosomal promoter expression (Afflerbach et al., 1998; Schröder and Wagner, 2000). In our 

analysis we focused on the short version of rrnBP1 promoter, without the FIS binding sites (Figure 

14B), that is less active but nevertheless growth-rate dependent and stringent control dependent 

(Bartlett and Gourse, 1994; Josaitis et al., 1995). 
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Figure 14 Figure adapted from (Bartlett and Gourse, 1994). A) The structure of the P1 and P2 promoters driving 

ribosomal genes expression. Both P1 and P2 have the UP element, required for recruiting RNAP, and P1 has 

three FIS binding sites upstream the UP element. B) Close-up on the P1 promoter and on the sequence without 

the FIS binding sites we used in our analysis. The UP element, the -10 and -35 regions as well as the GC-rich 

discriminator region are indicated.  

 

5.3 T5-P5 

As a constitutive promoter, we decided to study the strong virulent T5 coliphage promoter P5 (Wang et 

al., 2005). This promoter has both a consensus -10 and -35, as well as an optimum 17bp spacer, and 

it was demonstrate to have a high affinity for E. coli RNAP (Gentz and Bujard, 1985). In the P5 

sequence below the -10 and -35 regions are shown in bold. 

 5’-ACAACATCTAAGAGAAAAATTATATTGACATCTGCCCTTGAATAAGCTATAATAGTAGTCTT 

AGTTAGAGAAGGAGGGTATAAT-γ’ 

 

We expect the P5 promoter to have similar characteristics with the lacUV5 and ribosomal P2 

promoters described above (Wanner et al., 1977). 
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6 Results 

 

In this chapter I will describe the results obtained by studying Phns expression as a function of 

chromosomal position, which we conveyed in a paper, under submission, reproduced below, and then 

I will present the results obtained with the P1 and P5 reporter insertions. The work on the Phns 

reporters began in the laboratory of Prof. Georgi Muskhelishvili at Jacobs University, where the strains 

were engineered by Michael Berger (PostDoc), Veneta Gerganova and Viktoras Lisicovas (Master 

students) while the work on the P1 and P5 promoters was carried out at the LBPA where I engineered 

the strains, with the help of Damel Mektepbayeva (Master student).  

The most striking result for the Phns study was the identification of a chromosomal position 

characterized by a stronger repression by H-NS than the others. By carefully considering the data from 

exponential to stationary phase and the data in exponential phase for different growth rates, we were 

able to define three different levels of sensitivity to H-NS repression according to chromosomal 

position. We therefore conclude that the position in the chromosome for a gene regulated by the global 

regulator H-NS can confer to the target a different degree of repression conditional on the growth 

phase and environmental parameters affecting H-NS activity. On the other hand, gene expression for 

P1 and P5 scales with the gene copy number as a function of chromosomal position at different 

growth rates and in different growth phases. Different kinds of experiments have allowed us to put in 

evidence the different behaviors of the two promoters upon nutritional upshift or upon inhibition of 

translation, but only by removing the neighboring kanamycin gene of the reporter cassette were we 

able to identify a positional effect on gene expression. Our results therefore show a dependence of 

gene expression as a function of chromosomal position that is different for the different promoters. 
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6.1 Gene regulation by H-NS as a function of growth conditions 

depends on chromosomal position in E. coli.  

6.1.1 Abstract 

Cellular adaptation to changing environmental conditions requires the coordinated regulation of 

expression of large sets of genes by global regulatory factors. It remains to be established whether in 

bacterial cells there is an influence of chromosomal position on the efficiency of these global 

regulators. Here we show for the first time that genome position can affect transcription activity of a 

promoter regulated by the H-NS protein, a global regulator of bacterial transcription and genome 

organization. We have used as a local reporter of H-NS activity the level of expression of a fluorescent 

reporter protein under control of an H-NS regulated promoter (Phns) at different sites along the 

genome. Our results show that the activity of the Phns promoter depends on whether it is placed 

within the AT-rich regions of the genome that are known to be bound preferentially by H-NS. This 

modulation of gene expression moreover depends on the growth phase and the growth rate of the 

cells, reflecting the changes taking place in the relative abundance of different nucleoid proteins and 

the inherent heterogeneous organization of the nucleoid. Genomic position can thus play a significant 

role in the adaptation of the cells to environmental changes, providing a fitness advantage that can 

explain the selection of a gene’s position during evolution. 

6.1.2 Introduction 

The effect of genomic position on the regulation of gene expression is a long standing question that 

has been addressed in both eukaryotic and prokaryotic cells. While gene expression in eukaryotes  is 

clearly affected by the position due to the level of compaction of chromatin  (Voss and Hager, 2014), 

for bacterial cells this influence of chromosomal position on gene expression has been more elusive. 

Since the pioneering work of Chandler and Pritchard in 1975 (Chandler and Pritchard, 1975) it was 

clear that due to the presence of overlapping DNA replication rounds, there are more copies and 

therefore more expression for a gene close to the origin of replication than for one close to the 

terminus (Cooper and Helmstetter, 1968). This has been proposed to be the main reason for the 

conservation of gene position (Couturier and Rocha, 2006; Sobetzko et al., 2012), but other factors 

could be involved.  



45 
 

Cellular adaptation to changing environmental conditions requires the coordinated regulation of 

expression of large sets of genes. This regulation can take place via the activity of specific 

transcription factors and/or through the effects of global regulators. The latter include small 

metabolites, such as cAMP, ppGpp or c-di-GMP, specific sigma factors, the set of abundant nucleoid 

proteins (NAPs) and changes in DNA topology (Blot et al., 2006; Bradley et al., 2007; Geertz et al., 

2011). Recent high throughput studies have identified the genes whose expression is affected by 

these different regulatory factors and the binding sites of nucleoid proteins along the genome (Cho et 

al., 2008; Grainger et al., 2006; Kahramanoglou et al., 2011; Lucchini et al., 2006; Oshima et al., 2006; 

Peter et al., 2004; Wade et al., 2007), as well as the presence of clusters of co-regulated genes along 

the genome (Scolari et al., 2011; Vora et al., 2009; Zarei et al., 2013). These findings suggest that the 

level of expression of a given gene may also depend on its local environment and thus its position in 

the genome, an idea that is also supported by the high level of conservation of a gene’s position with 

respect to the distance from the origin of replication in the family of gammaproteobacteria (Sobetzko et 

al., 2012).  

In order to determine the extent to which chromosomal position can influence the regulation of 

expression of a given gene, one can place the same reporter construct at different sites along the 

genome. Previous studies using this approach have reported that the basal activity as well as the level 

of induction or repression of a reporter gene by a specific transcription factor were not affected by the 

position (Block et al., 2012; Ying et al., 2014). This is in agreement with earlier reports using other 

promoters in E.coli and other bacterial species (Dryselius et al., 2008; Schmid and Roth, 1987; Sousa 

et al., 1997; Thompson and Gasson, 2001). In order to address whether the regulation of gene 

expression by a global regulator such as H-NS was also independent on genomic position we have 

inserted a construct consisting of an H-NS dependent promoter (Phns) regulating YFP expression at 

six different mirror sites across the two replichores. The use of this promoter not only allows us to 

probe the local level of H-NS activity, but also allows us to obtain some information on how the hns 

gene itself might be regulated and the effect it would have if moved away from its evolutionary 

conserved position in the genome, near the terminus of replication. 

 H-NS is a well characterized, highly abundant (~20000 copies), nucleoid organizing protein that can 

affect the expression of hundreds of genes (Dorman, 2007). Notably, gene regulation by H-NS plays 

an important role in the response to stress, such as acid or cold shock (Giangrossi et al., 2005; La 
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Teana et al., 1991). H-NS has a high affinity for AT-rich regions (Tanaka et al., 1991) and can also 

recognize a specific consensus sequence (Lang et al., 2007). The high affinity sites can act as 

nucleation sites for further oligomerisation. This oligomerized state can repress transcription either by 

trapping RNAP already bound on the DNA or inhibiting RNA polymerase (RNAP) binding to a 

promoter sequence (Dame et al., 2006; Hommais et al., 2001; Maurer et al., 2009; Schröder and 

Wagner, 2000), thus H-NS has been shown to also play a role in preventing transcription of spurious 

RNA from -10 sequences found within AT-rich regions (Singh et al., 2014). Moreover, the ability of the 

H-NS protein to bridge different DNA regions together contributes to compaction of the nucleoid (Dillon 

and Dorman, 2010).  

 

6.1.3 Materials and Methods 

 Chromosomal insertions 

 The hns promoter (+ 12 to -540 bp from the start site of transcription) was cloned upstream the YFP 

gene and the gene coding for resistance to chloramphenicol. Upstream of the promoter and 

downstream of the YFP gene T1 terminators from the E. coli rrnB coding sequence were added in 

order to stop transcription from RNA polymerases coming from neighboring genes. The construct was 

amplified by PCR and inserted in the E. coli CSH50 strain in six different chromosomal positions 

(Table 1) following the protocol by Datsenko and Wanner (Datsenko and Wanner, 2000).  The 

insertions were made between two convergent genes, in order to avoid perturbations due to promoter 

regions of neighboring genes. More details about these constructions can be found in (Berger et al., 

2014). 

  

Plate reader Assay 

Cultures were grown overnight in LB supplemented with chloramphenicol (20µg/ml), at 37°C in a 

shaking incubator. Using the automated pipetting workstation Biomek 3000 (Beckman Coulter), 

samples were diluted 1:10000 into a 96well plate, and grown in triplicates at 37°C or 30°C inside the 

plate reader Victor3 (Perkin Elmer), with shaking. Samples were covered with mineral oil (Sigma 
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Aldrich) in order to avoid evaporation. OD600 measurements and fluorescence measurements 

(excitation filter = F485/14, emission filter=F535/40) were taken for each well every 5 minutes. The 

growth media used were M9 minimal media supplemented with glucose 0.4%, casaamino acids 0.5%, 

casaamino acids 0.2%, glucose 0.4% and casaamino acids 0.5%.  

 

The data obtained from the plate reader measurements was analyzed using a custom Matlab 

(MathWorks) program. The value of the OD600 for each well was normalized for the value of the well 

containing only the growth medium. The fluorescence measurements were normalized by subtracting 

the fluorescence of the wild type strain that does not contain the fluorescent reporter gene. 

Fluorescent protein concentration was calculated as YFP/τD600, and the growth rate α as  

= ߙ �ሺ�஽6଴଴ሻ/���஽6଴଴ .  

The doubling time is then calculated as  � = ݈݊ሺʹሻ/ ߙ.  
 

Flow cytometer 

Cultures were grown overnight in LB supplemented with chloramphenicol (20µg/ml), at 37°C in a 

shaking incubator, and diluted in the morning 1:250 in M9 minimal media supplemented with the 

desired nutrients. The strains were grown in flasks at 37°C, shaking.  At mid-exponential phase 

(OD600~0.2) 2 ml samples were harvested, washed with filtered PBS and fixed with 4% formaldehyde 

(Sigma) at room temperature for 15 minutes, washed again with PBS and then analyzed with a flow 

cytometer (BD FACS CaliburTM  , BD biosciences) using the software BD CellQuest™ Pro. 

 

The voltage for FSC and SSC were chosen so that the bacterial population was entirely on scale on 

an FSC vs SSC plot. A non-fluorescent bacterial sample was used in order to appropriately set the 

FL1 voltage. Individual FSC, SSC and FL1 histograms were checked to insure that the bell-shaped 

populations are not cut off on the display. An event rate of ~1000 events per second was maintained 

in order to minimize the chance of coincidence and to improve population resolution. In the FSC vs 
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SSC plot a live gate R1 was set around the bacterial population and a total of ~20000 events inside 

the gate were measured. 

 

6.1.4 Results: 

The reporter construction, comprising the Phns promoter upstream of the YFP gene next to an 

antibiotic resistance cassette, was inserted at six sites along the genome in three sets of mirror sites 

on each side of the origin of replication (H-NS Fig. 1 and H-NS Table 1). Gene expression from the 

hns promoter is mainly regulated by FIS and the H-NS protein itself(Falconi et al., 1993, 1996; 

Ueguchi et al., 1993), therefore these reporter strains can be used to measure the relative changes in 

activity of these two nucleoid proteins along the chromosome as a function of the growth phase and 

growth rate. The strains containing the reporter construct in different positions were grown in a 96-well 

plate overnight in order to monitor the changes in OD and fluorescence as a function of time in growth 

media of different composition resulting in different growth rates. In order to control for the emergence 

of heterogeneity in the bacterial population, possibly leading to a decreased average amount of 

measured fluorescence from YFP, the amount of fluorescence per cell was also measured in parallel 

experiments by flow cytometry, for cells growing in exponential phase, in a flask, in a shaking 

incubator, confirming the results obtained in the plate reader (SI Fig. 1).  

Insertion Orientation 

of Phns-YFP 

Gene1 Insertion 

position 

Gene2 

LO: Left Origin +1 yhcN 3,383,900 yhcO 

RO: Right Origin -1 ytfL 4,437,900 ytfK 

LM: Left Medium -1 yfiF 2,715,500 Ung 

RM: Right Medium +1 gsK 500,700 ybaL 

LT: Left Terminus -1 yehA 2,185,400 yohN 

RT: Right Terminus +1 yccU 1,027,600 yccV 

LT 2 +1 yeeJ 2,050,100 yeeL_1 

RT1 +1 ycdT 1,093,500 insEF-4 

LT1 +1 yegS 2,167,700 gatR_1 

H-NS Table 1 Genomic position of the insertion sites used in this work. Gene 1 and gene2 correspond to the 

convergent genes upstream and downstream of the reporter construct. 
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H-NS Figure 1 Schematic representation of the Phns promoter and of the insertions in the E. coli chromosome. 

(A) The boxes indicate the binding sites for different proteins in the Phns promoter region (striped for FIS, grey for 

H-NS, white for CspA) as derived from the literature(Falconi et al., 1996; La Teana et al., 1991; Ueguchi et al., 

1993). Stars indicate the H-NS high affinity DNA binding sites (Lang et al., 2007). The -10, -35 regions and the 

transcription starting site, +1, are also annotated. (B) The promoter-yfp unit is flanked by two T1 terminators from 

the E. coli rrnB coding sequence. (C) Representation of the six different mirror sites on the E coli chromosome in 

which the yfp gene was inserted under the control of the Phns promoter next to the gene conferring resistance to 

chloramphenicol. The symbols used here are the ones used to indicate these positions in H-NS Fig. 2B, H-NS 

Fig. 5 and H-NS Fig. 8. Details about the insertion positions can be found in H-NS Table 1. 

 

The growth phase dependence of Phns promoter activity depends on the growth rate 

The results obtained in the plate reader show that the change in YFP concentration as a function of 

growth phase depends on the growth rate (H-NS Fig. 2A). In the richer medium (glu04caa05) the 

protein concentration is lower than in the other growth media (caa02 and caa05) and it remains more 

or less constant in the growth curve. On the other hand, when the bacteria grow in the poorer media 

there is an increase in protein concentration as the growth rate slows down during the transition to 

stationary phase. During growth in caa02 there is a second increase in concentration as the cells enter 

stationary phase. The high temporal resolution of the plate reader measurements allows us to obtain a 

measure of the change in promoter activity and growth rate as a function of time. These results 

indicate that during this growth phase transition, the growth rate slows down before the change in 

promoter activity does, resulting in a net accumulation of YFP (SI Fig. 2). Therefore a specific 

induction of hns promoter activity upon entry into stationary phase needs not to be invoked in order for 

this protein accumulation to take place. These results can provide an explanation for the different 
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profiles in H-NS expression observed in previous studies (Atlung and Ingmer, 1997; Dersch et al., 

1993; Free and Dorman, 1995; Ueguchi et al., 1993). 

 

H-NS Figure 2 Change in OD and YFP concentration obtained from the plate reader measurements. The 

average protein concentration as a function of time is shown from technical triplicates within a single experiment, 

which is one out of three independent experiments. The dashed lines represent the change in OD, while the 

continuous lines the change in YFP concentration. (A) The growth phase dependence of YFP concentration 

depends on the growth rate. At fast growth (glu04caa05) there is no accumulation of the protein while entering in 

stationary phase, while at slow growth (caa02) the amount of protein per unit of OD increases as cells approach 

to stationary phase. This difference in promoter expression as a function of the growth condition doesn’t depend 
on the chromosomal position of the insertion. (B) YFP concentration depends on the chromosomal position of the 

gene. In the same growth conditions (caa05 at 30°C), the amount of protein concentration is higher for insertions 

near the origin of replication (as expected due to gene copy number). It is possible to see that for the strain with 

the insertion in the Left Terminus (LT, white squares), the concentration is considerably lower than the one in the 

Right Terminus strain (RT, black squares), even though for both the positions the gene copy number is the same. 

 

For most of the sites, comparison of YFP concentration as a function of genomic position in 

exponential phase shows a difference between the sites that can be explained by the differences in 

gene copy number expected from the DNA replication process (H-NS Fig. 3). Interestingly, there is 

also a difference in gene expression between the sites that are equidistant from the origin, notably 
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between Left Terminus (LT) and Right Terminus (RT) and Right Origin (RO) and Left Origin (LO). The 

latter difference becomes evident especially at slow growth and upon entry into stationary phase (H-

NS Fig. 3 and H-NS Fig. 4). 

 

H-NS Figure 3 The difference in YFP concentration in exponential phase at two different growth rates can be 

explained for most positions by the change in gene copy number. YFP concentration was measured in mid 

exponential phase for the six chromosomal insertions at two different doubling times as a function of 

chromosomal position (0 for the origin of replication, 1 for the terminus). Data are the average of three 

independent plate reader experiments, the error bar is the SEM. The dotted line is the theoretical dependence of 

protein concentration as expected by the difference in gene copy number (Cooper-Helmstetter relation) for each 

growth rate (Cooper and Helmstetter, 1968). The protein concentration for the LT strain is lower than what would 

be expected as a consequence of gene dosage, both at fast and at slow growth rates. At slow growth, the 

concentration in RO strain also deviates from the theoretical expectation. 

 

H-NS Figure 4 The difference in YFP concentration is larger at lower temperature and in the transition to 

stationary phase. The protein concentration was normalized by the LT values for strains in exponential, entry into 

stationary and stationary phase for three independent experiments, the error bar corresponds to the SEM. Data 

were taken at the time of maximum growth rate, at the time where the growth rate was half of the maximum and 

at growth rate equal to zero, respectively. The difference between YFP concentration in LO and RO strains arises 

at the entry into stationary phase. This is not observed when the experiment is carried out at 37°C (see SI Fig. 3). 

In stationary phase the protein concentration for all the positions decreases. The protein concentration for the LT 

strain is always lower than in the other strains. 
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The differences in gene expression at positions equidistant from the origin increase 

at slower growth rates 

By measuring the amount of fluorescence in exponential phase in the different growth media, these 

experiments show a decrease in YFP concentration in exponential phase as a function of increasing 

growth rate (H-NS Fig. 5). The faster dilution rate at faster growth results in a lower YFP 

concentration. This is observed for all six positions, independently of the expected increase in copy 

number due to DNA replication of the sites near the origin. H-NS Fig. 3 shows in fact that the change 

in copy number can explain the differences in gene expression between the different positions at the 

different growth rates. This is consistent with all positions having the same promoter activity that in 

addition does not change significantly with growth rate. The activation of the Phns promoter by FIS in 

exponential phase at fast growth (Falconi et al., 1996) doesn’t seem sufficient to counteract the 

dilution rate. There is however one strain that does not follow this trend, the one where the reporter is 

inserted at the LT position. In this case the concentration of YFP remains almost constant as a 

function of growth rate.  

 

H-NS Figure 5 The change in YFP concentration as a function of growth rate shows an increase in protein 

dilution at faster growth and a growth rate dependence in the difference between RT and LT. Protein 

concentration for samples growing in M9 minimal media supplemented with various concentration of glucose and 

casamino acids at 30°C. The error bars are the SEM resulting from three independent experiments. Data were 

taken at mid exponential phase. At fast growth there is a low YFP concentration due to a faster dilution rate. For 
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the LT strain (white squares) the YFP concentration values are low also at slow growth, indicating a stronger 

repression in this position than at the others. 

H-NS binding density due to a higher AT content correlates with promoter repression 

The activity of the Phns promoter depends on the activation by the FIS protein in early exponential 

phase at fast growth (Falconi et al., 1996), CspA for induction upon cold shock (La Teana et al., 1991) 

and on the binding of the H-NS protein itself resulting in repression (Falconi et al., 1993; Ueguchi et 

al., 1993). Binding of the H-NS protein along the genome is not uniform and changes as a function of 

the growth phase (Kahramanoglou et al., 2011; Zarei et al., 2013). When the sites of insertion of the 

reporter construct are mapped on the H-NS binding patterns one can see that those sites that are less 

expressed (LT and RO) are found in regions with a higher probability of H-NS binding as measured by 

formaldehyde crosslinking (H-NS Fig. 6 and SI Fig. 4).   

Furthermore, it has been shown that the binding of H-NS to the lower affinity sites leading to 

oligomerisation and repression is temperature dependent (Bouffartigues et al., 2007). Comparing the 

results obtained at 30°C and 37°C one can see that the differences between LT and RT and RO and 

LO are greater as the temperature is decreased, again pointing to an H-NS dependent effect (compare 

H-NS Fig. 4 and SI Fig. 3). Finally, the loss of the difference between the expression in RT and LT 

strains in bacteria lacking H-NS confirms that the reduced expression of LT is due to an increased 

level of repression by H-NS (SI Fig. 5). 

 



54 
 

 

H-NS Figure 6 (A) Global view of H-NS binding, AT content and presence of tsEPODs in the E. coli chromosome. 

From the bottom to the top: The macrodomains, as defined by Boccard (Valens et al., 2004). Sites bound by H-

NS in early exponential (HNS_EE), mid exponential (HNS_ME), transition to stationary (HNS_TS) and stationary 

phase (HNS_S) (Kahramanoglou et al., 2011). There is an increase in the number and the length of regions 

bound by H-NS when approaching stationary phase, especially in the terminus. tsEPODs mapped on the E. coli 

chromosome (Vora et al., 2009). The plot shows the number of genes overlapping with tsEPODs as determined 

from the NUST software, with multiple sliding windows histogram performed choosing a bin number equal to 32 

(Scolari et al., 2012). The AT content is calculated with a sliding window of 50kb with a shift of 10kb. The two 

horizontal dashed lines correspond to 45 and 55 % AT. The terminus shows a higher AT-content. HNS binding: 

Sites bound by H-NS in the different growth phases (Kahramanoglou et al., 2011). (B-G) Genomic neighborhood 

of the chromosomal insertion positions of the reporter construct. From the bottom to the top of each plot: Genes 

on the lagging and on the leading strand. In grey, the two convergent genes between which the Phns-YFP 

construct was inserted. The site of insertion is shown by a red dot. Position of the sites bound by FIS in early 

exponential (FIS_EE) and in mid exponential (FIS_ME) phases (Kahramanoglou et al., 2011). There are more 

sites bound by FIS near the origin (LO and RO, plots on the top) than in the terminus (LT and RT, plots in the 

bottom). Position of the sites bound by H-NS in early exponential (HNS_EE), mid exponential (HNS_ME), 

transition to stationary (HNS_TS) and stationary (HNS_S) phases (Kahramanoglou et al., 2011). In the proximity 

of LT and RO there is an extended region of sites bound by H-NS. Presence of genes identified as 

transcriptionally silent (Vora et al., 2009). The AT content is calculated with a 4000 bp sliding window with a shift 

of 500 bases. The two horizontal dashed lines correspond to 45 and 55 % AT. A peak in AT-content is visible 

near LT and RO. 

In order to test whether the difference in expression was specific to the location of the original insertion 

sites, additional strains were created with insertions at two distances from LT, at about 18000 and 

135000 base pairs (LT1 and LT2 respectively) and one additional strain with an insertion at about 

66000 base pairs from RT (RT1). The reporters at these sites exhibit a similar level of expression as 

the original sites (SI Fig. 6), indicating that the differences observed between LT and RT are not 

limited to the local genomic environment, but that H-NS activity can affect sets of genes within a larger 

region of the genome. If one takes into account the position of the H-NS binding sites with respect to 
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the location of the reporter gene (SI Fig. 4) one can see however that RT1 is found in an H-NS rich 

region compared to RT (H-NS Fig. 6B-G): this results in increased repression upon entry into 

stationary phase (SI Fig. 6), similarly to what is observed when comparing RO to LO (H-NS Fig. 4).  

Previous work had identified regions of the E. coli genome that are rich in DNA-bound proteins and 

have a lower average level of expression compared to other genes, called tsEPODs, for 

transcriptionally silent Extensive Protein Occupancy Domains (Vora et al., 2009). A subsequent 

analysis of the correlation of the genes within these regions with H-NS binding confirmed the 

colocalization of significant clusters of both tsEPODs and H-NS binding, particularly in regions 

containing horizontally acquired genes, suggesting that tsEPOD could correspond to H-NS rich 

regions(Zarei et al., 2013). The map of the sites of insertion of the reporters used here overlapped with 

both tsEPODs and H-NS binding along the genome. It shows however that the decreased level of 

expression correlates better with H-NS binding regions than with the presence of tsEPODs. This could 

be explained in part by the different protocols used to enrich the protein-crosslinked DNA in the 

tsEPOD (phenol chloroform extraction) and H-NS (antibody pulldown) experiments.  

 

Moving the hns gene itself does not have a significant effect on the cell’s phenotype 

or fitness in the short term. 

The results obtained with the reporter strains naturally lead to the question of whether the position of 

the hns gene near the terminus has been conserved through evolution because it results in a specific 

advantage in growth and thus an increase in fitness. In order to test this we have moved the hns gene 

at the six genomic positions used here and have tested the ability of these strains to survive the acid 

and cold shocks that are a hallmark of H-NS activity (Genet et al., 1994; Giangrossi et al., 2005) or 

their ability to compete with the wild type strain in different growth conditions. In addition, since the 

Δhns strain is known to lose its ability to swarm (Soutourina et al., 1999), we also carried out swarming 

assays.  All of these experiments showed that the mutant strains grew equally well compared to the 

wild type (data not shown). This might be due to the fact that, in addition to being a negatively auto-

regulated gene, it is also regulated post-transcriptionally by the DsrA RNA resulting in a robust 

expression level of its product independently from its local genomic environment (Lease and Belfort, 
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2000). Moreover, H-NS activity is closely coupled with its interaction with other proteins, such as StpA 

and Hha that can complement its activity (Madrid et al., 2007; Paytubi et al., 2004; Sonnenfield et al., 

2001; Ueda et al., 2013; Williams et al., 1996; Zhang et al., 1996). Displacing the hns gene therefore 

does not have a significant effect, at least in the timescales of a few days probed of our experiments. It 

is however still possible that there might be an effect on a longer term evolution experiment (Chib and 

Mahadevan, 2012). We are currently exploring this possibility.  

 

6.1.5 Discussion: 

Measuring changes in a transcription regulator activity in vivo: heterogeneous effects 

along the genome. 

In the current work we provide evidence for an uneven effect of H-NS dependent regulation of a 

reporter gene expression along the genome. Furthermore we have shown that these differences 

depend on the growth conditions, such as growth phase, growth rate and temperature, reflecting 

changes in H-NS activity along the genome and thus also changes in nucleoid structure and 

organization as the cell adapts to different growth environments.  

Since the Phns promoter is known to be repressed by H-NS itself via the presence of specific H-NS 

binding sites and AT-rich sequences upstream of the core promoter region (Falconi et al., 1993; 

Giangrossi et al., 2001; Lang et al., 2007; Ueguchi et al., 1993), the promoter-reporter construct used 

here measures the local activity of H-NS. The high affinity of H-NS for AT-rich sequences can result in 

a higher local concentration of the protein in AT-rich regions of the nucleoid, such as the terminus, and 

in a higher level of DNA binding cooperativity (Azam and Ishihama, 1999). For example, H-NS is 

known for playing an important role in silencing horizontally acquired genes, which tend to be more 

AT-rich than the rest of the genome, and which sometimes also include pathogenicity islands 

(Dorman, 2013). This level of repression takes place most of the time, except when the genes of the 

pathogenicity island are induced by specific environmental changes coupled with the activity of a 

transcription factor (Beloin et al., 2002; Kane and Dorman, 2011; Prosseda et al., 2004). Partly 

because of the acquisition of heteronomous DNA fragments, the AT content along the genome is not 
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equally repartitioned, with regions as long as tens of kilobases having a higher average AT content 

than surrounding sequences (Eisen, 2000; Lawrence and Ochman, 1997)( H-NS Fig. 6). 

Three different levels of H-NS dependent regulation as a function of chromosomal 

position  

We found that Phns promoter expression in the LT position is always more repressed by H-NS than 

the other sites, such as RT, which is equidistant from the origin. The reporter at the LT position, and its 

neighboring insertions, LT1 and LT2, are situated in a ~10 Kb region with an AT content higher than 

average (H-NS Fig. 5 and SI Fig. 4). The repression in LT is probably enhanced by the fact that it is 

found near the boundary with the left macrodomain, featuring a significant cluster of horizontally 

acquired AT-rich genes and silent pseudogenes (Zarei et al., 2013). An additional factor that could 

facilitate DNA compaction by H-NS and stabilize H-NS oligomerisation at the ter macrodomain is the 

presence of binding sequences for the MatP protein, which has been shown to play a structuring role 

by the formation of bridges between different sites (Dupaigne et al., 2012; Mercier et al., 2008). 

The greatest difference between LT and RT sites is observed when looking at the growth rate 

dependence of expression. LT is significantly more repressed than RT at slower growth rates, 

resulting in a constant YFP concentration as a function of doubling time (H-NS Fig. 5). This indicates 

that H-NS activity is higher at the LT site at slow growth. A similar effect is observed comparing RO 

and LO, but to a smaller extent (H-NS Fig. 3). The constant YFP concentration (YFP/OD equivalent to 

YFP/mass) as a function of growth rate of the LT strain is consistent with what would be expected from 

a gene cooperatively repressed by negative auto-regulation (Klumpp et al., 2009). The hns gene is 

found in an environment similar to the one of LT (SI Fig. 4), therefore this suggests that H-NS itself 

may follow a similar pattern of expression. At slower growth there is a reduced dilution rate and a 

smaller amount of DNA per cell, and thus less H-NS binding sites per cell. This could result in a 

greater amount of H-NS available to bind a promoter and repress gene expression, particularly in the 

case of decreasing amounts of FIS (see below). The other strains are less sensitive to H-NS 

repression in exponential phase. Variation of their YFP concentration as a function of growth rate is 

similar to that expected from either a weakly repressed or a constitutive promoter, whose gene product 

becomes more diluted at fast growth, independently of the gene copy number. 
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A different pattern in the level of expression is observed when growth rate slows down during entry 

into stationary phase. During this growth phase transition the YFP concentration from RO is 

significantly lower than the one measured in LO. Similarly, in these conditions the expression from 

RT1 is lower than the one from RT. An important factor contributing to the difference in expression 

among the strains can be found in the interplay between the NAPs along the bacterial growth curve. In 

the literature there is ample evidence for changes in the composition of NAPs according to growth 

phase and to growth rate of the cell(Ali Azam et al., 1999; Browning et al., 2010; Dillon and Dorman, 

2010; Ishihama, 1999; Ohniwa et al., 2006). FIS, a NAP known for being necessary for fast growth 

(Nilsson et al., 1992a) and for being involved in shaping the chromosome (Dame, 2005; Schneider et 

al., 2001), is expressed in a growth rate and growth phase dependent fashion. A peak of the cellular 

FIS concentration is observed in exponential phase, while it becomes undetectable in stationary phase 

(Ali Azam et al., 1999; Nilsson et al., 1992a). In exponential phase the higher FIS concentration can 

better compete with H-NS at the Phns promoter (Falconi et al., 1996), explaining the lack of difference 

in expression between the sites during this growth phase.  

The competition between FIS activation and H-NS repression occurs also at other genes, such as the 

ribosomal promoters (Afflerbach et al., 1998; Nilsson et al., 1992b; Schröder and Wagner, 2000). 

Furthermore, in similar growth conditions as those used here, ChIP assays have shown that there is a 

significant overlap between FIS binding and AT-rich regions and FIS and H-NS binding to the 

genome(Cho et al., 2008; Grainger et al., 2006). Therefore when the amount of FIS in the cell 

decreases at the end of exponential phase, H-NS can extend its action on the chromosome and to a 

higher extent in the regions with a higher amount of H-NS binding sites. Our data support this idea: the 

expression from LO and RO is similar when FIS is abundant, and lower in RO when FIS concentration 

decreases, due to the presence of AT-rich H-NS binding sites near RO. The same effect can be seen 

in the difference between RT and RT1 at entry into stationary phase.  

Recent results obtained on purified nucleoids have shown that H-NS plays an important role in 

maintaining the level of compaction of the nucleoid when the total level of transcription activity 

decreases during the transition to stationary phase (Thacker et al., 2014). Previous studies have 

shown that ongoing transcriptional activity can contribute to increased compaction of the nucleoid 

(Cabrera et al., 2009; Jin et al., 2013). Most of the transcriptional activity in the cell derives from 

ribosomal genes that are activated by FIS in exponential phase and repressed by H-NS (Afflerbach et 
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al., 1998; Schröder and Wagner, 2000). An increase in H-NS to DNA ratio upon entry into stationary 

phase could thus explain at the same time both the decrease in total transcription activity and the 

compensatory compaction of the nucleoid. This H-NS dependent repression however takes place first 

at the genes within AT-rich regions of the nucleoid during the transition to stationary phase and then is 

extended to the other genes as cell growth slows down even more in stationary phase. 

In a parallel work, similar reporter constructs using the fis and dps genes promoters were inserted in 

some of the same positions used here (Berger et al., 2014). Both of these reporter constructs, showed 

a chromosomal position dependent expression, but only in a hupA/B- background, in which the global 

nucleoid structure is altered (Jaffe et al., 1997). For the dps promoter a chromosomal position 

dependent expression was observed when the insertion was placed at the LT position or within a 

specific genomic island in the ABU8379 strain, known for being AT-rich and for containing non-

essential genes (Hacker and Kaper, 2000). The dps promoter is also regulated by both H-NS and FIS, 

albeit by a different mechanism compared to the Phns promoter that results in its induction in late 

stationary phase (Grainger et al., 2008). These results therefore show that H-NS regulation is 

necessary but not sufficient to determine a chromosomal position dependence of gene expression and 

that this positional effect is also dependent on the promoter sequence used. 

Recently a similar analysis of gene expression as a function of chromosomal position has been 

presented by Block and coworkers (Block et al., 2012) and Ying and coworkers (Ying et al., 2014). 

They inserted in different positions of the chromosome the gene for a fluorescent reporter protein 

under the control of a synthetic promoter, PLacO-1 or Ptet respectively. The first is an inducible 

promoter repressed by LacI, while the second is repressed by TetR. In agreement with previous 

results obtained in E. coli and other bacterial species (Chandler and Pritchard, 1975; Dryselius et al., 

2008; Schmid and Roth, 1987; Sousa et al., 1997; Thompson and Gasson, 2001), no differences in 

expression as a function of chromosomal position, gene orientation and regulator-target gene distance 

was detected. Here again, the reason for the differences between our results and the previous ones 

could lie in the different promoters used, since the promoter used here is repressed specifically by H-

NS, and that in this case we carried out measurements as a function of growth phase and growth rate 

while in most of the works cited above gene expression was measured in mid exponential phase in a 

single or at most two growth media. On the other hand, the result showing that the concentration of 
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YFP expressed from Phns at the different chromosomal insertions doesn’t depend on the distance 

from the regulator gene agrees with the data obtained previously.  

 

6.1.6 Overall conclusions 

A number of cellular parameters affecting the gene expression change during both growth transitions 

and cellular adaptation. These include the increased dilution rate of transcription factors due to the cell 

division and the amount of DNA per cell due to overlapping DNA replication rounds; the amount of 

active ribosomes and of available RNA polymerase, taking into account changes in the amounts of the 

different sigma factors; the concentration of small metabolites, such as ppGpp and cAMP; the 

concentration of nucleoid proteins and the level of negative supercoiling (Berthoumieux et al., 2013; 

Klumpp and Hwa, 2014; Travers and Muskhelishvili, 2005b). This type of regulation can be thought of 

as an analog control, complementing the digital control, i.e. the network of regulation mediated by 

dedicated transcription factors (Blot et al., 2006; Marr et al., 2008; Sonnenschein et al., 2011). All of 

these factors can potentially affect gene expression independently of where the genes are found in the 

genome. The genomic sequence however, and especially its AT content, can affect both the affinity for 

nucleoid proteins and the stability of the DNA under torsional stress due to changes in topology 

(Sobetzko et al., 2013). 

Here we provide evidence for modulation of gene expression depending on the chromosomal position 

by a global regulator. We have identified three different levels of regulation: those regions where H-NS 

has small effect (RT, LO, RM, LM); regions where regulation by H-NS is conditional (RT1 and RO) and 

a region where H-NS repression is strongest and results in a growth rate independent protein 

concentration (LT and its neighbors, LT1 and LT2). This indicates that the position of H-NS regulated 

genes will influence their growth phase, growth rate and temperature dependence of expression. The 

nucleoid protein dependent structure of the chromosome can thus affect the gene expression in E. 

coli.  
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6.1.7 Supplementary information 

 

SI Figure 1 Fluorescence intensity within the bacterial population is homogeneous. Example of FACS 

measurement of the six bacterial strains. The distribution of YFP per cell is normal for all the strains, excluding 

therefore heterogeneity in the population. In the plot comparing LT and RT it is possible to notice how the LT 

strain (blue) is less fluorescent than the RT strain (black). This is more evident when plotting the mean of the YFP 

distribution as a function of the distance from the origin of replication. The mean YFP for the LT strain is lower 

than that expected from the difference in gene copy number (dotted line).    

 

SI Figure 2 The increase in YFP concentration in stationary phase at slow growth is due to the delay in the 

decrease of promoter activity with respect to the decrease in growth rate. The change in OD is shown by a 

dashed line, the change in growth rate (d(OD)/dt/OD) in the line with the error bars from the three technical 

repeats within the experiment and the change in promoter activity (d(YFP)/dt/OD) by a continuous line. (A) 

Growth rate and promoter activity for cells growing in M9 minimal media supplemented with 0.4% glucose and 

0.5% casamino acids (fast growth). The decrease in growth rate at the entry into stationary phase happens at the 

same time as the decrease in activity, leading to no accumulation of YFP (H-NS Fig. 2A main text). (B) Growth 

rate and promoter activity for cells growing in M9 minimal media supplemented with 0.2% casamino acids (slow 

growth). The decrease in activity happens later than the decrease in growth rate, there is therefore an 

accumulation of YFP at the entry into stationary phase for cells growing more slowly.    
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SI Figure 3 No difference in YFP concentration between RO and LO as a function of growth phase at 37°C 

compared to 30°C (H-NS Fig. 4 in the main text). YFP concentration was normalized by the LT values for strains 

in exponential, entry into stationary and stationary phase for three independent experiments, the error bars 

indicate the SEM. Data were taken at the time of maximum growth rate, at the time where the growth rate was 

half of the maximum and at growth rate equal to zero, respectively. The YFP concentration in the LT strain is 

always lower than in the other strains. AT 37°C there is no significant difference between LO and RO. 

 

SI Figure 4 Genomic neighborhood of the additional insertions near LT and RT and of the hns gene shows that 

these sites are found in regions with a higher than average AT content and large H-NS bound regions that 

A B 

C D 
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increase in size as the cells enter stationary phase. For each plot, from the bottom to the top: Genes on the 

lagging and on the leading strands. In grey are plotted the convergent genes where the insertions have been 

made, and the hns gene itself. FIS binding in early exponential phase (FIS_EE) and in mid-exponential phase 

(FIS_ME), data from (Kahramanoglou et al., 2011). Sites bound by H-NS in early exponential (HNS_EE), mid-

exponential (HNS_ME), transition to stationary (HNS_TS) and stationary (HNS_S) phases (Kahramanoglou et al., 

2011). On the top of these, in LT and in RT1 there are also tsEPOD (Vora et al., 2009). AT content is calculated 

within a 4000 bp sliding window with a shift of 500 bases. In the proximity of all the insertions it is possible to 

detect a strong occupancy by H-NS as well as a higher AT content of the genomic sequence. For the hns gene 

there is a clear increase in the length of the H-NS bound region while cells are passing from exponential to 

stationary phase. 

 

 

SI Figure 5 The difference between RT and LT is lost in a ∆hns background. The bar graph shows the ratio 

between the average YFP per cell for the RT and LT insertions in a WT background and ∆hns background. Data 

were obtained by flow cytometry for cells in exponential phase growing in 0.5% casamino acids at 37°C in flasks, 

shaking. Error bars represent the standard deviation for four independent experiments. The ratio between the 

fluorescence in RT and LT becomes closer to 1 in the ∆hns background with respect to the ratio in the wild type 

background. This is due to a stronger increase in fluorescence for the LT position in absence of H-NS with 

respect to the slight increase of fluorescence for RT position in the ∆hns background. 
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SI Figure 6 Phns promoter activity remains similar for insertions placed up to 135 Kb away from the original sites. 

Plate reader experiment for strains growing in M9 supplemented with 0.2% casamino acids, at 37°C. The effect of 

silencing in the LT position extends over several tens of kilobases (LT position= 2185402, LT2=2050038 

(Δ1γ5γ64), LT1=β1676γ5 (Δ17767)), such that the signal from the neighboring strains LT1 and LTβ is similar to 
the one in LT strain. The YFP concentration in RT1 is similar to the one in RT (RT=1027582, RT1=1093457 

(Δ65875)) during exponential phase, while at the entry into stationary phase the expression of RT1 is lower than 
that of RT. 
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6.2 How does chromosomal position influence the expression of a 

supercoiling-sensitive ribosomal promoter? 

In the previous chapter I showed that the chromosomal position affects the expression of a complex 

promoter such as the hns promoter. This modulation of gene expression can be ascribed to the 

different level of protein binding, notably H-NS itself, in the different parts of the chromosome, as a 

function of the AT content. But are there other aspects of chromosomal organization that can influence 

gene expression? In order to answer this question, we inserted in the chromosome the ribosomal 

promoter rrnBP1 (a shortened version without the FIS binding sites, see below) and the T5 phage P5 

promoter driving the expression of the GFP reporter gene. The P1 promoter is sensitive to supercoiling 

and ppGpp, while P5 is a strong constitutive promoter (see 5.3 and below for a detailed description).  

In Figure 15 the sequences of the two promoters are compared: both promoters have the AT-rich UP 

element, required for recruiting the polymerase via an interaction with the α-CTD (Ross and Gourse, 

2005). P5 has consensus -35 and -10 sequences and the optimal 17bp-spacer, while P1 has a 

suboptimal -35 sequence and a suboptimal 16bp-spacer, both “sub-optimalities” necessary for growth 

rate control (Josaitis et al., 1995), a consensus -10 and the GC-rich discriminator region overlapping 

the transcription initiation site also necessary for the growth rate control because it makes P1 promoter 

sensitive to supercoiling (Travers, 1976).  One aspect that could change as a function of chromosomal 

position is the level of supercoiling, and P1 could act as a supercoiling sensor due to the presence of 

the discriminator in the promoter region, while P5 is less sensitive to supercoiling and therefore can be 

taken into account as a control. This version of the P1 promoter, lacking the FIS binding sites, in 

addition should be more sensitive to changes in DNA topology given the role of FIS in stabilizing 

RNAP in the absence of negative supercoiling (Pemberton et al., 2002). We therefore studied P1 and 

P5 expression as a function of chromosomal position at different growth rates and in different growth 

phases. We also studied the effect on the chromosomal reporter activity of an upshift in growth rate, 

and measured the change in gene expression as a function of neighboring genes and upon inhibition 

of translation, influencing the cellular ppGpp concentration. The results I will present in the following 

paragraphs have been obtained by me in collaboration with Damel Mektepbayeva, Master 2 student, 

and Qing Zhang, postdoc.    
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                P1 

TTGCGCGGTCAGAAAATTATTTTAAATTTCCTCTTGTCAGGCCGGAATAACTCCCTATAATGCGCCACCACTGACA 

 

               P5  

ACAACATCTAAGAGAAAAATTATATTGACATCTGCCCTTGAATAAGCTATAATAGTAGTCTTAGTTAGAGAAGGAGGGTATAA 

 

 

 

Figure 15 A) The sequence of the core rrnBP1 promoter and the one of the T5 phage P5 promoter. In light green 

the UP element, underlined the -35 and -10 regions, between them the spacer, in red for P1 the discriminator 

region, in dark yellow the transcription start site. B) A scheme of the two construct promoter+GFP+kanamicyn 

gene and the positions in which they have been inserted in the E. coli chromosome. 

   

6.2.1 P1 and P5 expression as a function of chromosomal position at different 

growth rates 

As I reported before, ribosome synthesis is tightly regulated in order to respond to change in growth 

rate (Schaechter et al., 1958), both by supercoiling level and by ppGpp. While ppGpp diffuses rapidly 

in the cell, and therefore the concentration of ppGpp should be the same along the whole 

chromosome, it is possible that the level of chromosomal supercoiling can vary. As I already described 

in the introduction, several factors that are known to affect supercoiling, such as NAPs binding sites or 

RNAP foci, are not evenly distributed along the chromosome (Grainger et al., 2005, 2006; Prieto et al., 

2012; Sobetzko et al., 2012; Zarei et al., 2013). It is therefore interesting to test if a change in the 

chromosomal position affects the precise regulation acting on the ribosomal promoter, with P5 

promoter as a control. 

16-bp spacer 

17-bp spacer 

-35 
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Box 5 Ribosome synthesis regulation 

(Dennis et al., 2004) 

Ribosomes are made of both proteins and rRNA. The ribosomal proteins are negatively autoregulated, 

when there is not enough rRNA to bind, they bind to their own mRNA, preventing translation (Liang et 

al., 1999b; Mattheakis et al., 1989). There are seven rRNA operons in E. coli (Ellwood and Nomura, 

1982) with a similar level of expression once corrected for gene copy number (Condon et al., 1992), 

and each of them is expressed by two promoters, P1 and P2. P2 is a constitutive promoter and 

maintains a basal level of expression proportional to the amount of free RNAP (Dennis et al., 2004), 

while P1 is sensitive to supercoiling (Oostra et al., 1981) and growth rate, due to the presence of the 

discriminator region bordering the -10 sequence (Josaitis et al., 1995). P1 expression is enhanced by 

FIS (Muskhelishvili et al., 1995, 1997) and repressed by the alarmone ppGpp (Condon et al., 1995; 

Zacharias et al., 1989). FIS does not affect stringent control or growth rate regulation of ribosomal 

promoters (Ross et al., 1990), but it is necessary in order to sustain P1 activity at fast growth (Dennis 

et al., 2004), while during slow growth ppGpp prevents FIS activation of P1 (Nilsson et al., 1992b). 

 

With this aim, we measured the change in fluorescence in the different strains as a function of growth 

rate. As for the Phns strains, the overnight cultures were diluted 1:10000 in different growth media and 

then grown at 37°C in the plate reader, shaking. OD600 and fluorescence were measured every 5 

minutes, and the protein concentration as a function of time was calculated for the different strains. 

Figure 16 shows the values for protein concentration in exponential phase as a function of growth rate 

for the different P1 and P5 chromosomal insertions. At increasing growth rate the protein 

concentration for the ribosomal promoter P1 increases, as expected. P5 shows an opposite behavior, 

with accumulation of the protein at slow growth rate and dilution of the protein at fast growth. This is 

consistent with the behavior of a constitutive promoter as previously described (Klumpp et al., 2009). 
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Figure 16  GFP concentration as a function of growth rate for the P1 (A) and P5 strains (B). For the ribosomal 

promoter there is an increase in protein concentration at increasing growth rate, while expression of the P5 

promoter decreases at fast growth rate. All the different chromosomal insertions show a similar dependence on 

the growth rate. 

The decrease in GFP concentration for the P1 strains at fast growth (more than 1.5 db/hr) is due to the 

fact that, with respect to the original rrnBP1 promoter sequence, the one we used here lacks the FIS 

binding sites, which are required for activation (Zhang and Bremer, 1996). This behavior is in 

agreement with what has been previously described (Dennis et al., 2004), as shown in Figure 17.  

 

 

(Dennis et al., 2004) 

Figure 17 Figure from Dennis et al showing ȕ-galactosidase activity as a function of growth rate expressed from 

rrnBP1, P2, and associated P1-P2 promoters in the wild-type and ∆FIS strains as a function of growth rate. FIS is 

necessary in order to ensure high promoter expression at fast growth. 

Both for P1 and P5 the trend of protein concentration as a function of growth rate is similar for all the 

chromosomal positions, with the insertions close to the origin (aidb and yqeb) showing a higher protein 

concentration than the one close to the terminus (uspe, yedl). In order to verify whether this difference 

in the level of protein expression is a result of a difference in gene copy number, we normalized 

A B 

growth rate growth rate 
1               2 1               2 
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protein concentration by dividing for the gene copy number expected at the given growth rate. The 

result in Figure 18 shows in fact that the observed differences in protein concentration at the different 

chromosomal positions can be explained by the differences in gene copy number.  

 

Figure 18 Protein concentration as a function of growth rate for P1 and P5 strains normalized by the gene copy 

number. Gene copy number was calculated from the Cooper-Helmstetter equation. It is possible to notice that the 

differences among different chromosomal position vanish after normalization. 

 

6.2.2 P1 and P5 expression as a function of chromosomal position at different 

growth phases 

Since changes in growth phase are accompanied by changes in supercoiling level and ppGpp (Balke 

and Gralla, 1987), we measured the expression of the reporter promoters P1 and P5 in the different 

chromosomal positions in order to test whether the different parts of the chromosome are differently 

affected by growth phase transitions. Figure 19 shows that the GFP concentration for the P1 promoter 

decreases while the cells move toward stationary phase independently of the position on the 

chromosome and on the growth medium, while the concentration for P5 increases. Again, this result 

agrees with the expected change in ppGpp concentration resulting in a decrease in P1 promoter 

activity at entry into stationary phase. On the other hand, since the P5 promoter is constitutively 

expressed, its GFP protein accumulates in the cell when the growth rate decreases due to a faster 
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decrease in the dilution rate compared to the change in promoter activity. This difference in activity 

between P1 and P5 as a function of growth phase is visualized in Figure 21. 

 

 

Figure 19 Protein concentration for P5 and P1 promoter inserted in the Crl position growing in M9+glu04caa05 at 

37°C. While the cells move toward stationary phase there is an increase in GFP concentration for the P5 strain 

and a decrease in GFP concentration for the P1 strain, due to the different regulation acting on them. The error 

bar is given from the average of two independent experiments.  

If we consider the dependence on the growth phase for the different chromosomal positions for cells 

growing in different growth media, we obtain a different behavior for P1 and P5 (see Figure 20). In 

order to compare the different datasets, the value for protein concentration in the uspE strain has been 

set equal to one.  
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Figure 20 Protein concentration for the P1 and P5 promoters in the different chromosomal position (x axis) in 

three different growth media (colors, richer medium on the left), normalized on the uspe value. While the cells 

move toward stationary phase, P1 expression stops in all positions (Figure 21), therefore the protein 

concentration is diluted to the same extent in all the strains, leaving the ratio between them unchanged. For P5, in 

exponential phase there is a clear effect of gene copy number on GFP concentration, with the insertion near the 

origin producing more GFP than the one near the terminus. This difference is lost once replication is arrested, 

because the promoter is still expressed and therefore the GFP concentration in the different strains becomes 

similar. 

As expected from the changes in gene copy number, in both the P1 and P5 strains the GFP 

concentration is higher near the origin than in the terminus. For the P5 promoter this difference 

decreases in stationary phase, coherently with a slowdown of replication and the consequent 

decrease of the origin/terminus ratio. For the P1 promoter the difference in protein concentration 

between the origin and terminus insertions remains similar as the cells enter into stationary phase. 

This can be explained by the P1 promoter being shut off in all the chromosomal positions before the 

entry into stationary phase, resulting in the same dilution of the GFP for the different strains and 

therefore maintaining the difference between origin and terminus. The promoter activity decreases 

abruptly for P1 and more smoothly for P5 when the growth rate decreases in the growth curve (shown 

P1 

P5 
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in Figure 21). This rapid decrease can be attributed to the stringent response acting on ribosomal 

promoters (see chapter 2.4). The two different peaks in P1 activity reflect the existence of two growth 

rates during bacterial growth in M9+caa02 (the growth rate as a function of time is displayed in black 

in Figure 21). The higher growth rate corresponds as expected to higher ribosomal promoter activity. 

When ribosomal promoter expression is repressed during the stringent response, there is an increase 

in the amount of polymerase available for transcribing other promoters (Zhou and Jin, 1998). We don’t 

detect an effect of this passive regulation on P5 activity because at entry into stationary phase there is 

also an increase in the sigma factor ıs (Loewen et al., 1993). This sigma factor competes with ı70 

(Farewell et al., 1998; Mauri and Klumpp, 2014), resulting in a down regulation of ı70 promoters, such 

as P5 (see chapter 5.3),  

 

Figure 21 Promoter activity for P1 (blue) and P5 (pink) promoters inserted in the crl position and growing in 

M9+CAA02 at 37°C. The growth rate is in black, while the OD curve is dotted. P1 activity stops abruptly at the 

entry into stationary phase (300 minutes), while P5 activity decreases more gradually. 

 

We have been able to identify a specific dependence on growth phase of GFP concentration for the 

P5 and P1 promoters, but we could not identify a specific influence of chromosomal position on 

promoter expression. In order to point out possible differences among the chromosomal insertions, we 

measured gene expression for cells growing under stressed condition (inhibition of translation) and for 

cells adaptation after a shift from one growth media to another. The results are presented in the next 

paragraphs. 



73 
 

6.2.3 Changes in P1 and P5 expression when translation is inhibited 

As I previously described, by using sublethal concentration of chloramphenicol one can observe cell 

growth and promoter activity upon inhibition of translation (Wolfe and Hahn, 1965). This inhibition 

results in an increase of the internal concentration of amino acids (Kurland and Maaløe, 1962) and in a 

consequent decrease of ppGpp (Gallant et al., 1972) and a derepression of ribosomal promoters in 

order to have enough ribosomes to continue cell growth even at decreased ribosomal activity (see 

chapter 3). Therefore in the presence of chloramphenicol, a large part of RNAP and ribosomes are 

allocated for ribosome synthesis.  As it was suggested by Scott et al., inhibition of translation results in 

an increase of the fraction of transcription and translation resources devoted to the expression of 

ribosomal genes and synthesis of ribosomal proteins at the expense of the metabolic proteins 

expression (Scott et al., 2010). 

This enhanced synthesis of ribosomes compared to the rest of metabolic proteins could induce 

changes in the distribution of RNAP and ribosomes in the cell, concentrating them closer to the origin 

where the ribosomal operons are located. If such an effect existed, we could detect it by measuring 

the expression of our reporters in conditions of translation inhibition. From what is described above, 

we expected that in presence of chloramphenicol P1 expression should increase, while P5 expression 

should decrease (see Figure 9).Surprisingly, when we measured GFP expression for bacteria growing 

with different concentration of chloramphenicol we detected an increase in the fluorescence for both 

theP1 and P5 strains as a function of increasing chloramphenicol concentration (see Figure 22).  

 

Cm 
Cm 
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Figure 22 Protein concentration as a function of growth rate in four different media (colors) at different 

chloramphenicol concentrations (lower concentration on the right, increasing toward the left) for the aidb insertion 

of P1 and P5 promoter. The GFP concentration for both promoters increases at increasing chloramphenicol 

concentration. 

 

This result does not agree with the theory by Scott et al., therefore we tried to understand what was 

different between their experiment and ours. In their experiment they measured the ȕ-gal activity per 

unit of total protein. In our experiment we measure the fluorescence per unit of OD600, i.e. per mass. It 

has been shown that the protein per mass remains fairly constant as a function of growth rate (HANS 

BREMER, 1996), therefore our measurements should be compatible to theirs.  

We asked ourselves whether the difference between our assay and theirs could reside in the rate of 

translation of the reporter gene. The codon usage could differ between our reporter (GFPmut2) and 

their reporter (lacZ). It was shown that ribosomal and highly expressed proteins in general use codons 

with high translation rate (Gouy and Gautier, 1982; Post et al., 1979; Sharp and Li, 1986), and that 

mRNA with infrequent codons required a longer translation time than mRσA with ‘fast codons’ 

(Sørensen et al., 1989). This delay could be amplified by the inhibition of translation, giving an 

advantage to translation of mRNA with fast codons. We used the classification of optimal codons 

suggested by Klumpp et al. in order to calculate the percentage of fast codon in the reporters 

sequences (Klumpp et al., 2012). The results are shown in table 3. The GFP_mut2 gene has a lower 

percentage of fast codons than lacZ and a lower percentage than other metabolic, regulatory and 

ribosomal genes in E. coli. On the other hand, the GFP_mut2 sequence is shorter than lacZ, resulting 

in a faster synthesis rate. Could this difference in length in conditions of translational inhibition 

matters? In order to test this hypothesis, we should either study P5 expression associated with lacZ, 

either use simulation in order to assess the effect of having a promoter with high transcription rate 

associated with a short reporter compared with a promoter with low transcription rate and a long 

reporter.  
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Gene Number of  codons Percentage fast codons 

GFP_mut2 238 46 

lacZ 1025 58 

dnaA 468 60 

fis 99 72 

fliA 240 58 

hns 138 77 

malP 798 65 

rmsD 199 58 

Table 3 Gene length and percentage of optimal codons (as defined in (Klumpp et al., 2012)) for our reporter, 

Hwa’s reporter and several genes in E. coli. Important regulatory genes such as hns, fis or the ribosomal rmsD 

are short and rich in optimal codons, while the two metabolic genes taken into account are longer and with a 

lower percentage of optimal codons.  

 

Between our and their measurements there is also a difference in the promoter considered. In their 

measurements of constitutive promoter expression, Scott et al. used a strain in which lacY gene was 

deleted, and in which lacI gene and the original lac promoter were replaced by the kanamycin 

resistance gene and the synthetic promoter PLtetO1 (Lutz and Bujard, 1997). The sequence of this 

promoter is compared to the one of P5 in Figure 23. Both promoters have a consensus -35, an optimal 

-17 bases spacer but PLtetO1 has a non-optimal -10. The degree of homology of the -10 region 

influences the rate of the isomerization step (Burr et al., 2000; Cook and deHaseth, 2007), while the 

UP element upstream the -35 region in P5 activates transcription by stabilizing the isomerization steps 

and quickening the transition from one intermediate to the following (Gourse et al., 2000). The strength 

of these two promoters can be measured with the method of Brewster et al. (Brewster et al., 2012), 

and this measurement shows an higher affinity for RNAP for P5 promoter with respect to the PLtetO1 

promoter (see Figure 24). The P5 promoter is therefore stronger than the PLtetO1 promoter. 
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PLtetO1 

TCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATACTGAGCACATCAGCAGGAC

GCACTGACCgaattcATTAAAGAGGAGAAAggtaccatg 

P5 

ACAACATCTAAGAGAAAAATTATATTGACATCTGCCCTTGAATAAGCTATAATAGTAGTCTTAGTTA

GAGAAGGAGGGTATAATtctagaAATAATTTTGTTTAACTTTAAGAAGGAGATATACATatg 

Plac 

CCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACG

CAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTA

TGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGGA

TTCACTGGTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCTAGCAAAGGAG

AAG 

Figure 23 Promoter sequences for PLtetO1, P5 and the version of Plac we use in our lab. -10 and -35 are 

underlined for PLtetO1, P5 and for lacP2 promoter, while they are in grey for lacP1 promoter. The ribosome binding 

site is in yellow, the transcription start site in dark yellow and the restriction sites used for the cloning steps are in 

magenta.  

Adapted from (Brewster et al., 2012) 

Figure 24 Promoter strength calculated as in Brewster et al. The promoter strength was calculated by summing 

the energy contribution of the single bases in the promoter region. A low promoter strength indicates a high 

affinity for RNAP. This simple approach does not take into account the sequences upstream of -41, such as the 

UP element, or the effect of the discriminator region, therefore it can predict the activity of a specific subset of 

promoters, it is informative but not complete. 
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We decided to test whether the promoter sequence could be responsible for the increase in P5 

expression at increasing chloramphenicol concentration, or whether this difference was to be ascribed 

to the short GFP gene. We therefore compared the expression of P5 to the expression of a weaker 

promoter associated with the same GFP reporter. We decided to use the lac promoter inserted in 

3,080,693 bases position. Transcription initiation at this promoter is repressed by lacI (Gilbert and 

Müller-Hill, 1966) and activated by cAMP (de Crombrugghe et al., 1984) both directly and by 

inactivation the competing P2 promoter (Malan and McClure, 1984).   Since lac promoter is weakly 

expressed (and therefore not suitable for the plate reader assay), we measured both the lac and the 

P5 strain using the flow cytometer for two different growth conditions and three chloramphenicol 

concentrations. For each condition, we measured GFP per cell and we normalized this value over the 

total amount of protein, stained with the AlexaF633H dye (Life Technologies). The result is shown in 

Figure 25. 
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Figure 25 Flow cytometry assay for the Plac and P5 promoters in two different growth media supplemented with 

increasing amount of chloramphenicol. On the top, GFP per cell for Plac (A) and P5 (B) strains. On the bottom, 

the value of the GFP per cell is normalized over the total amount of proteins in the cell. The concentration of GFP 

for the weak Plac is almost zero in presence of glucose, and it is decreasing at increasing chloramphenicol 

concentration (C), while the concentration for P5 promoter is increasing with increasing chloramphenicol 

concentration (D). 

 

As expected, in presence of glucose (red dots) the lac promoter expression is repressed. At increasing 

chloramphenicol concentration, the GFP expressed from the lac promoter decreases, both per cell and 

per total protein, while the protein expressed by P5 increases. This is in agreement with a study in 

literature in which it was shown that in the presence of chloramphenicol there was no transcription 

from the lac wild type promoter, while transcription was not stopped in the mutated promoter lacUV5 

(Hirschel et al., 1980). We thus demonstrated with an independent experiment that our result for P5 is 

not an artifact resulting from the use of the GFP protein as a reporter of promoter activity, but it is a 

consequence of P5 strength.  

There is a difference also in the distance from the origin of their insertion and ours, since our aidb 

insertion is located at 4,413,923 bases and their insertion is in the original lac position (365,529 

bases). We then wanted to verify that the difference between the expected behavior of a constitutive 

and the P5 behavior was not due to our insertion being close to the origin of replication. 

Knowing that mRNA translation is localized near the encoding gene (Montero Llopis et al., 2010), if the 

amount of free ribosomes in the cell decreases because ribosomes are mainly (and slowly) translating 

mRNA from ribosomal proteins, a gene located near the origin and therefore near the ribosomal genes 

could take an advantage with respect to a gene located near the terminus. For this reason we 

repeated the plate reader experiment with uspE insertion (1,395,696 bases). 
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Figure 26. GFP concentration as a function of growth rate for P5 inserted in the uspe position in different growth 

media at different chloramphenicol concentrations. The increase in GFP at increasing chloramphenicol 

concentration is similar to what we measured for P5 inserted near the origin. 

In the insertion near the terminus we found the same behavior of the P5 promoter inserted near the 

origin, with GFP concentration increasing at increasing chloramphenicol concentration, therefore the 

increase in protein concentration driven by P5 cannot be a result of a higher gene copy number in the 

aidb position we studied with respect to the original lac position of the Scott et al. study. We can 

positively affirm that the P5 promoter has a similar dependence on chloramphenicol as a ribosomal 

promoter. This common behavior can be explained by the similarity in the promoter sequence of P1 

and P5: both are strong promoters, therefore they compete equally well for resources in conditions of 

translation limitation. However, P1 and P5 show differences for instance in the value of the intercept 

on the y axes, i.e. the maximal protein concentration attained when translational capacity is zero (see 

Figure 22 and table 4).  

 P1  P5  

 intercept slope intercept slope 

glycerol 2,24E+06 -2,60E+06 2,71E+06 -3,26E+06 

glucose 2,47E+06 -1,84E+06 2,38E+06 -1,90E+06 

caaglyc 2,22E+06 -1,08E+06 1,76E+06 -1,05E+06 

glucaa 1,88E+06 -685182 1,24E+06 -536014 

no cm -81481,7 535508,4 487424,2 -79496,2 

Table 4 Values of the linear fit for GFP concentration as a function of growth rate in bacteria growing in one 

growth media with different chloramphenicol concentration. 
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For P1, the value of the Y intercept is weakly dependent on the growth medium, and it has been 

considered as the maximum amount of resources that the cell can devolve to ribosome synthesis 

(Scott et al., 2010). For P5, the value of the intercept decreases at increasing nutrient content. This 

could point to the fact that in richer media the competition for resources is stronger because there are 

more kinds of proteins being synthesized, therefore decreasing the resources available for P5 

transcription and translation, while in the poor media only the strong promoters are able to drive 

protein synthesis. This should be verified with the study of different promoters in different growth 

media. 

Until now we observed a constitutive promoter behaving under translation inhibition like a ribosomal 

one, and we confirmed our observation with several tests. It remains to be determined whether there 

are detectable differences in the induced response on promoters located in different parts of the 

chromosome. We measured therefore the GFP concentration for the P5 promoter at different 

chromosomal positions in one growth rate and at different chloramphenicol concentrations. The result 

is shown in Figure 27. 

 

Figure 27 Protein concentration as a function of growth rate for the P5 strains growing in M9+glu04caa05 with 

different chloramphenicol concentrations before (A) and after normalization (B) by the gene copy number. A 

difference in the expression of uspe and yedL strains with respect to the others remains after correcting for the 

gene dosage.  

For all the chromosomal positions there is an increase of GFP concentration at increasing translational 

inhibition. After normalization for the gene copy number, the GFP produced by the insertions close to 

the terminus (yedL and uspE) appears lower than the fluorescence resulting from the other strains. It 

could be a sign of the displacement of the available RNAP pool (RNAPfree) and ribosomes toward the 
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origin, where ribosomal promoters are located (Berger et al., 2010). However, a more accurate 

measurement of gene copy number by rtPCR is required in order to confirm possible effects of 

chloramphenicol. It is anyway interesting to test whether this effect of chromosomal position on gene 

expression detected for P5 exists also for P1 insertions, or whether the expression of this ribosomal 

promoter remains unaffected by the location on the chromosome. We are currently trying to answer 

this question.  

 

6.2.4 Effect of a nutritional upshift on P1 and P5 expression as a function of 

chromosomal position 

As I described in the introduction, bacteria adapt to abrupt changes in growth conditions by modifying 

the protein composition, the amount of ribosomes and RNAP, and the level of supercoiling. We can 

use our P1 strains in order to test whether all the parts of the chromosome react to the same extent 

and at the same time to a nutritional upshift, using the P5 strains as a control. The change in activity of 

the P5 promoter upon upshift can be regarded as a monitor of the level of available RNAP and the 

change in gene copy number, while P1 promoter expression is influenced also by the supercoiling 

level and by the concentration of ppGpp. For this reason, a change in P1 expression that is different 

from one chromosomal position to another could be ascribed to a different change in the supercoiling 

level of that region. To test at first the difference between P1 and P5, we grew the aidbP1 and aidbP5 

cultures in minimal media supplemented with 0.2% casamino acids and then we transferred them to 

LB. Samples were harvested and analyzed by flow cytometry. The result is shown in Figure 28. 
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Figure 28 A) flow cytometry experiment and B) microfluidic experiment of changes in gene expression upon a 

change in growth condition. The plots show the amount of GFP per cell for P1 and P5 in the aidb strains upon 

nutritional upshift, plot A and magenta and red in plot B, and a downshift, blue and black in plot B. Upon upshift, 

both P1 and P5 expression increases, to a larger extent for P1. To be noticed the increased time resolution and 

the longer duration of the measurements one can obtain with a microfluidic device with respect to flow cytometry. 

 

The mean GFP per cell increases after the shift to the richer medium for both the P1 and P5 strains. 

However, for P1, expression changes faster than P5, reflecting probably the combined effect of a 

dilution of ppGpp and an increase in supercoiling leading to an increase in P1 activity as a 

consequence of the upshift. The observed difference in P1 and P5 activity upon a nutritional upshift 

has been confirmed by microfluidic experiments with an increased time resolution (Long et al., 2014). 

The microfluidic device has clear advantages with respect to bulk experiment (more stable conditions, 

short time scales, rapidity in the media switch and single cell resolution) and would be the best choice 

for this kind of experiments, but plate reader and flow cytometer experiments provide necessary 

controls to ensure that growth in the microfluidic device is compatible with growth in standard 

conditions. In order to proceed with our study and to test whether there are differences in promoter 

induction for different chromosomal positions, we measured the expression of the P1 promoter for 

three different positions (aidb, uspe, yedl) for a shift from minimal media supplemented with casamino 

acids 0,2% (M9+CAA02) to richer media (M9+CAA05 or M9+GLU04CAA05), and followed the 

evolution of the samples using both the plate reader and the flow cytometer. Results are shown in 

Figure 29 and 30.   

P1 P1 

P5 
P5 
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Figure 29 Plate reader measurements of the effect of a nutritional upshift on P1 promoter in aidb, yedL and uspe 

positions. Cells were grown until exponential phase in M9+CAA02 and then shifted to richer media (M9+CAA05 

and M9+GLU04CAA05). The extent of induction is higher for the aidb position than for the others, but it could be 

due to an effect of gene copy number. 
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Figure 30 Flow cytometer measurements of the effect of a nutritional upshift on P1 promoter in aidb, yedL and 

uspe positions. Cells were grown until exponential phase in M9+CAA02 and then shifted to richer media 

(M9+CAA05 and M9+GLU04CAA05). Samples were harvested at different time points and the mean GFP per cell 

was measured. The extent of induction is higher for aidb position than for the others, but it could be due to an 

effect of gene copy number. 

 

It appears clearly that the extent of induction upon nutritional upshift is higher for the insertion near the 

origin than for the insertion near the terminus. The rapidity of the increase in activity does not exclude 

the possibility that this effect is due only to a change in gene copy number, since it takes 20 minutes 

for DNA replication to shift from the old to the new rate (Kjeldgaard et al., 1958). The time required for 

adaptation to the new growth rate appears similar for the three P1 positions, and it is longer for the 

shift to the richer medium (M9+GLU04CAA05). 

The same experiment should be repeated with the P5 strains, using P5 as a monitor of the change in 

gene copy number, in addition it should be realized in the microfluidic chamber, in order to have a fast 

monitoring of the change in fluorescence.  
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6.2.5 The influence of a neighboring gene on gene expression depends on the 

chromosomal position 

In topologically constrained domains (Hardy and Cozzarelli, 2005), ongoing transcription generates 

increased negative supercoiling upstream of the promoter, and positive supercoiling downstream 

(Hanafi and Bossi, 2000; Liu and Wang, 1987), as shown in Figure 31A. In this situation, gyrase is 

required in order to release positive supercoiling and to allow transcription to proceed (Drlica, 1992). 

 

 

Figure 31 A) The graphical representation of the effect of ongoing transcription on the supercoiling of the DNA 

upstream and downstream the RNAP molecule. Positive supercoils are accumulated downstream the RNAP, and 

negative upstream (Liu and Wang, 1987). B) In order to measure the impact of transcription in different 

chromosomal positions, in our analysis we compare the expression of the reporter gene with or without the 

kanamycin divergent gene. 

In addition, transcription from a neighbor gene can influence the expression of a downstream gene by 

competition for RNAP, transcriptional interference (Callen et al., 2004; Sneppen et al., 2005). On this 

basis, we asked whether the presence of the kanamycin resistance gene cassette (kanR) could affect 

the expression of the P1 and P5 promoters, and whether this influence could depend on chromosomal 

position. We therefore removed the kanR from our strains using the FLP recombinase protocol 

(Datsenko and Wanner, 2000), and we compared the expression of the promoter as a function of time 

with and without the resistance gene. For P1, we expected to detect a decrease in promoter activity 

once kanR has been removed, due to a decrease of induced negative supercoiling in the P1 promoter 

region. At the same time, the absence of a diverging gene could increase the activity of the other 
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promoter because of reduced competition for RNAP. We measured therefore the activity of the P1 

promoter in different chromosomal positions in presence or in absence of the kanR, and compared 

these results with the ones obtained for P5. We expect P5 not to respond in the same way as P1, 

since it is not as sensitive to changes in negative supercoiling. Figure 32 shows the outcome of this 

experiment for the P1 promoter and Figure 33 the result for the P5 promoter.  

 

Figure 32 P1 promoter activity in different chromosomal positions in the presence (black) or in absence (red) of 

the divergent kanamycin resistance gene. Strains were growing in M9+CAA02 at 37°C in the plate reader. P1 

activity is increased by the presence of kanR to a different extent as a function of chromosomal position. 
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Figure 33 P5 promoter activity in different chromosomal positions in the presence (black) or in absence (red) of 

the divergent kanR. Strains were growing in M9+CAA02 at 37°C in the plate reader. P5 activity remains 

unaffected or slightly increases in absence of the kanamycin gene. 

The activity of the P1 promoter is enhanced by the presence of the kanamycin resistance gene, being 

the activity 20% and even 80% higher than the correspondent strain where kanR has been deleted 

(see Figure 34). For P5 there is not a strong change in promoter activity with or without the divergent 

resistance gene but in the uspE position the activity in presence of the resistance gene is 30% lower 

than the promoter activity in its absence.  
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Figure 34 The difference in percentage between the integrals of the area below the promoter activity curve in 

presence or in absence of the kanR gene for two independent experiments. P1 activity is enhanced by the 

presence of kanR, while the effect of the neighbor gene on P5 expression is either none or negative.  

 

The absence of the kanR gene has the opposite effects on P1 and P5, decreasing activity for the 

former, and leaving it unchanged or even increasing it in the latter. The decrease in P1 activity 

consequent to the absence of the resistance gene follows the behavior that is expected as a 

consequence of the decreased induced negative supercoiling, and the independence of P5 with 

respect to supercoiling can be the reason of the difference in the change between these two 

promoters. From the data shown in Figure 34, it is possible to notice that the change in P1 activity is 

weaker near the origin of replication. This could be the result of a higher level of supercoiling or a 

higher amount of RNAP near the origin, buffering the effect of increased supercoiling in the presence 

of the kanR gene.  

A reduced concentration of RNAP polymerase near the terminus could explain the result found for 

uspeP5: in this case, the lack of kanamycin is increasing P5 expression because the competition for 

RNAP is released.  

The reason for which P1 expression in yedL and in crl is so reduced in absence of kanR is not evident. 

yedL is located in the ter macrodomain between two convergent genes of unknown function , while crl 

is located inside the non-structured right domain, between the phoE gene, coding for a porin, and the 

crl gene, which stimulates the binding of the ı70 and ıs factors to core RNAP (Gaal et al., 2006). If 

(Act kan- Actnokan)/Actkan 
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there were an influence of transcriptionally silent high protein occupancy domains (tsEPODs) on these 

two insertions, the presence of active transcription of the kanamycin gene could contribute to weaken 

local protein binding, release the repression and increase P1 expression. However a similar effect 

should also be observed for P5 at these positions. Table 5 lists the chromosomal insertions and the 

genes flanking them. In the work by Bryant et al. it was found that high promoter activity in some 

specific positions on the chromosome was a consequence of the action of DNA gyrase (Bryant et al., 

2014), this could be the case also for the crl and yedL insertions. The study of more chromosomal 

insertions and the use of drugs changing the activity of topoisomerases and thus the level of 

supercoiling could help in elucidating the mechanism causing the detected difference in gene 

expression in these two positions. 

 

Insertion Orientation of 

promoter-GFP 

Gene1 Insertion 

position 

Gene2 

aidB -1 aidB 4413923 yifN 

crl -1 crl 258230 phoE 

phep -1 pheP 602558 ybdG 

yedL -1 yedL 2009103 yedN_2 

yqeB -1 yqeA 3010636 yqeB 

uspE -1 ynaJ 1395696 uspe 

Table 5 List of the chromosomal insertions of the complex kan+promoter+GFP and of the genes at the two sides 

of the insertion.   
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7 Conclusions and future perspectives 

 

The goal of this work was to study the organization of chromosomal structure by analyzing the 

expression of a fluorescent reporter gene associated with different promoters as a function of 

chromosomal positions. By studying the expression driven by Phns as a function of chromosomal 

position in different growth conditions I was able to put in evidence the fact that the extent of the 

repression carried out by a global silencer such as H-NS depends both on the position of the regulated 

gene and on the growth conditions of the cell. For a highly abundant protein such that H-NS the 

repression of a target does not appear to depend directly on the spatial proximity of the target to the 

regulator’s gene. The strength of the repression was mediated via the local properties of the 

chromosomal position, namely the higher than average AT content, and by the physiological state of 

the cell. At slow growth, or at entry into stationary phase, the detected repression by H-NS increased 

and extended also to a region close to the origin of replication, always in a way modulated by a local 

sequence effect. This could be a confirmation of the gradient model proposed by Sobetzko et al, 

where, according to the state of the cell, the level of negative chromosomal supercoiling is more or 

less high, and therefore the influence of H-σS can’t (at high supercoiling states) or can (when the 

energy in the cell is lowered) influence the entire chromosome (Sobetzko et al., 2012).  

 

Figure 35 The gradient model from (Sobetzko et al., 2012). In exponential phase, the energy level and the 

negative supercoiling in the cell are high. In addition, H-NS has to compete with FIS for regulating target genes; 

therefore H-NS activity is mainly concentrated toward the terminus. At the entry into stationary phase, FIS 

concentration, cell energy and chromosomal supercoiling decrease, and H-NS extends its influence on the entire 

chromosome. 

By studying P1 expression as a function of chromosomal position we wanted to measure the 

differences in supercoiling level in the different chromosomal locations. At equilibrium there is little 

difference in promoter activity between the different positions, even when looking as a function of 
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growth rate and growth phase. This result underlines the specificity of the effect that we have 

observed using the Phns reporter to the activity of the H-NS protein. 

In order to detect possible change in the local level of supercoiling we decided to concentrate on 

experiments that cause a change in the level of supercoiling and thus in the transcription activity, such 

as the nutritional upshift experiments. The first results obtained with the upshift experiments have 

been presented in this thesis. It would also be interesting to modulate the dependence of P1 on ppGpp 

by mutating the discriminator region (Haugen et al., 2006), since the regulation of P1 by this nucleotide 

could mask the effect of changes in supercoiling. By removing the kanR cassette we were 

nevertheless able to reveal effects on P1 expression that depend on the chromosomal position that 

could be linked to local difference in the supercoiling level.   

 In order to have a negative control for P1 behavior we chose the strong, constitutive, T5 phage P5 

promoter. Surprisingly, this promoter actually exceeded our expectations, becoming more interesting 

than a mere control. Actually we discovered that upon inhibition of translation the protein concentration 

driven by this promoter increased with increasing translational inhibition, to a similar extent than the 

one for the ribosomal P1 promoter. This was not expected, because in the literature it is commonly 

accepted that ribosomal promoter are induced during inhibition of translation in order to sustain growth 

even at reduced ribosome activity, but the amount of the other proteins should decrease due to the 

shift of transcriptional and translational resources toward ribosomes synthesis (Scott et al., 2010). This 

deviation from standard constitutive behavior is similar to what had been shown about another strong 

promoter, lacUV5 (Wanner et al., 1977), and about the constitutive ribosomal promoter P2 (Dennis et 

al., 2004). The concentration of protein synthesized by lacUV5 has been shown to be constant at 

changing growth rates, while one would expect that, being a constitutive promoter, its product should 

be diluted at faster growth (Klumpp et al., 2009). The activity of the P2 promoter even increases at 

increasing growth rates. In an effort to conciliate our result and the previous ones on lacUV5 and P2 

with the model proposed by Klumpp et al., we can suggest that strong constitutive promoters can 

compete for the pool of free RNAP almost as well as ribosomal promoters, therefore their activity does 

not remain constant as a function of growth rate and their product is not diluted more at fast growth 

when the amount of free RNAP increases (HANS BREMER, 1996; Klumpp and Hwa, 2008). We could 

therefore proceed in this direction, both via the study of other promoters and via mathematical 
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simulations, and try to give a new definition of constitutive promoter and a new idea of resources 

partitioning based on promoter strength. 
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Appendix 

I. Materials and methods 

A. P5-P1STRAINS CONSTRUCTION 

The medium-low copy plasmid pkk-GFPmut2 (Bouffartigues et al., 2007; Saggioro et al., 2013) was 

used for construction of rrnbP1-GFP and P5-GFP fusion. rrnBP1 was amplified by PCR from genomic 

DNA, while P5 was amplified by PCR from the PGEM plasmid (gift of Marta de Frutos). The promoter 

sequence was inserted in the XmaI-XbaI digested pkk plasmid. The pkk plasmid was then digested by 

XmaI-HindIII (located the first upstream the promoter, and the second downstream the GFP gene), 

and transform in the XmaI-HindIII digested pdocK (Lee et al., 2009). Both steps were verified by 

sequencing. From pdocK, the fragment promoter+GFP+Kan was amplified by PCR with primers with 

50bp ends homologous to the chromosomal region of interest. The purified PCR product was then 

transformed via electroporation in BW25113 cells prepared according to the protocol of Datsenko and 

Wanner (Datsenko and Wanner, 2000). All the insertions were targeted in between convergent genes, 

in order to limit the perturbation on the environment, as well as the influence of the environment on our 

construct.  The insertions were verified by PCR and by sequencing. For some of them, kanamycin 

resistance gene was removed by using FLP-helper plasmid pCP20. Below I list the plasmid 

sequences, as well as the sequences of the primers used for chromosomal insertion.  
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Figure A1 Schematic representation of pkk and pdoc-k plasmids. The resistance genes (AMP, Kan and CAT), the 

terminators (ter), the FLP sites (Flp1 and Flp2), the promoter and the GFP reporter gene  and the annealing sites 

of the primers used to amplify the construct to be inserted in the chromosome (Reverse and Forward) are 

annotated. 

 

B. PKK-RRNBP1-GFPMUT2 PLASMID 

GTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCT

TTCGTCTTCAAGAATTCCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATC

TGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGCAA

CGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGGAATTCCCGGGTTGCGCGGTCAGA

AAATTATTTTAAATTTCCTCTTGTCAGGCCGGAATAACTCCCTATAATGCGCCACCACTGACATCTAGAAATAA

TTTTGTTTAACTTTAAGAAGGAGATATACATATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTGTCCCAATTC

TTGTTGAATTAGATGGTGATGTTAATGGGCACAAATTTTCTGTCAGTGGAGAGGGTGAAGGTGATGCAACATA

CGGAAAACTTACCCTTAAATTTATTTGCACTACTGGAAAACTACCTGTTCCATGGCCAACACTTGTCACTACTT

TCGCGTATGGTCTTCAATGCTTTGCGAGATACCCAGATCATATGAAACAGCATGACTTTTTCAAGAGTGCCAT

GCCCGAAGGTTATGTACAGGAAAGAACTATATTTTTCAAAGATGACGGGAACTACAAGACACGTGCTGAAGT

CAAGTTTGAAGGTGATACCCTTGTTAATAGAATCGAGTTAAAAGGTATTGATTTTAAAGAAGATGGAAACATTC

TTGGACACAAATTGGAATACAACTATAACTCACACAATGTATACATCATGGCAGACAAACAAAAGAATGGAAT

CAAAGTTAACTTCAAAATTAGACACAACATTGAAGATGGAAGCGTTCAACTAGCAGACCATTATCAACAAAATA

CTCCAATTGGCGATGGCCCTGTCCTTTTACCAGACAACCATTACCTGTCCACACAATCTGCCCTTTCGAAAGA

TCCCAACGAAAAGAGAGACCACATGGTCCTTCTTGAGTTTGTAACAGCTGCTGGGATTACACATGGCATGGA

TGAACTATACAAACACATGGCATGGATGAACTGTACAACTGAGGATCCGGCTGCTAACAAAGCCCGAAAGGA

AGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGA

GGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATATCCCGCAAGAGGCCCGGCAGTACCGGCATAACCA

AGCCTATGCCTACAGCATCCAGGGTGACGGTGCCGAGGATGACGATGAGCGCATTGTTAGATTTCATACACG

GTGCCTGACTGCGTTAGCAATTTAACTGTGATAAACTACCGCATTAAAGCTTGAGTAGGACAAATCCGCCGA

GCTTCGACGAGATTTTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATA

TATCCCAATCGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGT

TCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACA

TTCTTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGG

T1ter 

T2ter 

PrrnBP1 

GFP mut2 

T7ter 

CAT 
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ATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCA

CGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTC

CCTAAAGGGTTTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAA

CGTGGCCAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGT

GCTGATGCCGCTGGCGATTCAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGA

ATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATTTTTTTAAGGCAGTTATTGGTGCCCTTAAAC

GCCTGGTGCTACGCCTGAATAAGTGATAATAAGCGGATGAATGGCAGAAATTCGTCGAGGCGGCACCTCGC

TAACGGATTCACCACTCCAAGAATTGGAGCCAATCAATTCTTGCGGAGAACTGTGAATGCGCAAACCAACCC

TTGGCAGAACATATCCATCGCGTCCGCCATCTCCAGCAGCCGCACGCGGCGCATCTCGGCTGTTTTGGCGG

ATGAGAGAAGATTTTCAGCCTGATACAGATTAAATCAGAACGCAGAAGCGGTCTGATAAAACAGAATTTGCCT

GGCGGCAGTAGCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGATG

GTAGTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAA

AGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGGGAGC

GGATTTGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCAT

CAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTTCCTGTCGTCATATCTA

CAAGCCATCCCCCCACAGATACGGTAAACTAGCCTCGTTTTTGCATCAGGAAAGCAGCTGTTTTGGCGGATG

AGAGAAGATTTTCAGCCTGATACAGATTAAATCAGAACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGC

GGCAGTAGCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGATGGTA

GTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGA

CTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGGGAGCGGA

TTTGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAA

ATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTTCCTGTCGTCATATCTACAA

GCCATCCCCCCACAGATACGGTAAACTAGCCTCGTTTTTGCATCAGGAAAGCAGTCGGGCAGCGTTGGGTC

CTGGCCACGGGTGCGCATGATCGTGCTCCTGTCGTTGAGGACCCGGCTAGGCTGGCGGGGTTGCCTTACT

GGTTAGCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTGCTGCAAAACGTCTGCGACCTG

AGCAACAACATGAATGGTCTTCGGTTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCAGCGCCCTGCAC

CATTATGTTCCGGATCTGCATCGCAGGATGCTGCTGGCTACCCTGTGGAACACCTACATCTGTATTAACGAA

GCGCTGGCATTGACCCTGAGTGATTTTTCTCTGGTCCCGCCGCATCCATACCGCCAGTTGTTTACCCTCACA

ACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCCGTATCGTGAGCATCCTCTCTCGTTTCATCGGTATC

ATTACCCCCATGAACAGAAATCCCCCTTACACGGAGGCATCAGTGACCAAACAGGAAAAAACCGCCCTTAAC

ATGGCCCGCTTTATCAGAAGCCAGACATTAACGCTTCTGGAGAAACTCAACGAGCTGGACGCGGATGAACAG

GCAGACATCTGTGAATCGCTTCACGACCACGCTGATGAGCTTTACCGCAGCTGCCTCGCGCGTTTCGGTGAT

GACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAG

CAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGT

AGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGC

GGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTG

ACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCC

ACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAA

GGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTC

AGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCT

CCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAA

TGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCC

CGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATC

GCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGA

AGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCT
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TCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCA

AGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTC

AGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTT

AAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAAT

CAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATA

ACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGC

TCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCG

CCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGT

TGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCA

ACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGT

TGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATG

CCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGAC

CGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCA

TTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCA

CTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCA

AAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATT

GAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGG

GTTCCGCGCACATTTCCCCGAAAA 

  

Amp 
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C. PDOC-K-RRNBP1-GFPMUT2 PLASMID 

GACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGG

TGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGC

TCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGT

GTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAA

AAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTG

AGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATC

CCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTC

ACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAG

TGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAA

CATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGC

GTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAG

CTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTC

CGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTG

GGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACG

AAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATAT

ATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATG

ACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTT

GAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTT

GCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGT

CCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCT

AATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTT

ACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACC

TACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGA

CAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTG

GTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGG

GCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCA

CATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCT

CGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAAC

CGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGC

AGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCG

GCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCA

AGCTCTAGGGATAACAGGGTAATCGATGAATTCAAGCTTTAATGCGGTAGTTTATCACAGTTAAATTGCTAAC

GCAGTCAGGCACCGTGTATGAAATCTAACAATGCGCTCATCGTCATCCTCGGCACCGTCACCCTGGATGCTG

TAGGCATAGGCTTGGTTATGCCGGTACTGCCGGGCCTCTTGCGGGATATCCGGATATAGTTCCTCCTTTCAG

CAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGTTATTGCTCAGCGGTGGCAGCAG

CCAACTCAGCTTCCTTTCGGGCTTTGTTAGCAGCCGGATCCTTTGTATAGTTCATCCATGCCATGTGTAATCC

CAGCAGCTGTTACAAACTCAAGAAGGACCATGTGGTCTCTCTTTTCGTTGGGATCTTTCGAAAGGGCAGATT

GTGTGGACAGGTAATGGTTGTCTGGTAAAAGGACAGGGCCATCGCCAATTGGAGTATTTTGTTGATAATGGT

CTGCTAGTTGAACGCTTCCATCTTCAATGTTGTGTCTAATTTTGAAGTTAACTTTGATTCCATTCTTTTGTTTGT

CTGCCATGATGTATACATTGTGTGAGTTATAGTTGTATTCCAATTTGTGTCCAAGAATGTTTCCATCTTCTTTAA

AATCAATACCTTTTAACTCGATTCTATTAACAAGGGTATCACCTTCAAACTTGACTTCAGCACGTGTCTTGTAG

Amp 

Forward 

GFP mut2 
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TTCCCGTCATCTTTGAAAAATATAGTTCTTTCCTGTACATAACCTTCGGGCATGGCACTCTTGAAAAAGTCATG

CTGTTTCATATGATCTGGGTATCTCGCAAAGCATTGAAGACCATACGCGAAAGTAGTGACAAGTGTTGGCCAT

GGAACAGGTAGTTTTCCAGTAGTGCAAATAAATTTAAGGGTAAGTTTTCCGTATGTTGCATCACCTTCACCCT

CTCCACTGACAGAAAATTTGTGCCCATTAACATCACCATCTAATTCAACAAGAATTGGGACAACTCCAGTGAA

AAGTTCTTCTCCTTTACTCATATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGATGTCAGTGGTGG

CGCATTATAGGGAGTTATTCCGGCCTGACAAGAGGAAATTTAAAATAATTTTCTGACCGCGCAACCCCGGG

TACCTAGGACCGGTCAATTGGCTGGAGCTGCTTCGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGGAAT

AGGAACTTCAAGATCCCCCACGCTGCCGCAAGCACTCAGGGCGCAAGGGCTGCTAAAGGAAGCGGAACAC

GTAGAACTTAAGGGAATTGCCAGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGA

TGGCTTTCTTGCCGCCAAGGATCTGATGGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGAGGATCG

TTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTAT

GACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGG

TTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGG

CTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGC

TATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGG

CTGATGCAATGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGC

ATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGG

GCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCTCGTCGTGACC

CATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGG

CTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGA

ATGGGCTGACCGCTTCCTCGTGCTCTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCT

TCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATC

ACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTG

GATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAGCTTCAAAAGCGCTCTGAAGTT

CCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTAAGGAGGATATTCATATCTCGAGCTCATATGCT

AGCGTCGACTAGTAGGGATAACAGGGTAATGAGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGG

AAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAG

AGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGAGCTTGGCTGTTTTGG

CGGATGAGAGAAGATTTTCAGCCTGATACAGATTAAATCAGAACGCAGAAGCGGTCTGATAAAACAGAATTTG

CCTGGCGGCAGTAGCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCG

ATGGTAGTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTC

GAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGGG

AGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGG

CATCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTTTTTGTTTATTTTTC

TAAATACATTCAAATATGCATGCGCCTGATGCGGTATTTTCTCCTTACGCATATCGACATCCGCCCTCACCGC

CAGGAACGCAACCGCAGCCTCATCACGCCGGCGCTTCTTGGCCGCGCGGGATTCAACCCACTCGGCCAGC

TCGTCGGTGTAGCTCTTTGGCATCGTCTCTCGCCTGTCCCCTCAGTTCAGTAATTTCCTGCATTTGCCTGTTT

CCAGTCGGTAGATATTCCACAAAACAGCAGGGAAGCAGCGCTTTTCCGCTGCATAACCCTGCTTCGGGGTCA

TTATAGCGATTTTTTCGGTATATCCATCCTTTTTCGCACGATATACAGGATTTTGCCAAAGGGTTCGTGTAGAC

TTTCCTTGGTGTATCCAACGGCGTCAGCCGGGCAGGATAGGTGAAGTAGGCCCACCCGCGAGCGGGTGTTC

CTTCTTCACTGTCCCTTATTCGCACCTGGCGGTGCTCAACGGGAATCCTGCTCTGCGAGGCTGGCCGGCTA

CCGCCGGCGTAACAGATGAGGGCAAGCGGATGGCTGATGAAACCAAGCCAACCAGGAAGGGCAGCCCACC

TATCAAGGTGTACTGCCTTCCAGACGAACGAAGAGCGATTGAGGAAAAGGCGGCGGCGGCCGGCATGAGC

CTGTCGGCCTACCTGCTGGCCGTCGGCCAGGGCTACAAAATCACGGGCGTCGTGGACTATGAGCACGTCC

GCGAGCTGGCCCGCATCAATGGCGACCTGGGCCGCCTGGGCGGCCTGCTGAAACTCTGGCTCACCGACGA

KanR 

Reverse 

FLP 

PrrnBP1 
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CCCGCGCACGGCGCGGTTCGGTGATGCCACGATCCTCGCCCTGCTGGCGAAGATCGACTCTAGCTAGAGG

ATCGATCCTTTTTAACCCATCACATATACCTGCCGTTCACTATTATTTAGTGAAATGAGATATTATGATATTTTC

TGAATTGTGATTAAAAAGGCAACTTTATGCCCATGCAACAGAAACTATAAAAAATACAGAGAATGAAAAGAAAC

AGATAGATTTTTTAGTTCTTTAGGCCCGTAGTCTGCAAATCCTTTTATGATTTTCTATCAAACAAAAGAGGAAA

ATAGACCAGTTGCAATCCAAACGAGAGTCTAATAGAATGAGGTCGAAAAGTAAATCGCGCGGGTTTGTTACT

GATAAAGCAGGCAAGACCTAAAATGTGTAAAGGGCAAAGTGTATACTTTGGCGTCACCCCTTACATATTTTAG

GTCTTTTTTTATTGTGCGTAACTAACTTGCCATCTTCAAACAGGAGGGCTGGAAGAAGCAGACCGCTAACACA

GTACATAAAAAAGGAGACATGAACGATGAACATCAAAAAGTTTGCAAAACAAGCAACAGTATTAACCTTTACTA

CCGCACTGCTGGCAGGAGGCGCAACTCAAGCGTTTGCGAAAGAAACGAACCAAAAGCCATATAAGGAAACA

TACGGCATTTCCCATATTACACGCCATGATATGCTGCAAATCCCTGAACAGCAAAAAAATGAAAAATATCAAG

TTCCTGAGTTCGATTCGTCCACAATTAAAAATATCTCTTCTGCAAAAGGCCTGGACGTTTGGGACAGCTGGCC

ATTACAAAACGCTGACGGCACTGTCGCAAACTATCACGGCTACCACATCGTCTTTGCATTAGCCGGAGATCC

TAAAAATGCGGATGACACATCGATTTACATGTTCTATCAAAAAGTCGGCGAAACTTCTATTGACAGCTGGAAA

AACGCTGGCCGCGTCTTTAAAGACAGCGACAAATTCGATGCAAATGATTCTATCCTAAAAGACCAAACACAAG

AATGGTCAGGTTCAGCCACATTTACATCTGACGGAAAAATCCGTTTATTCTACACTGATTTCTCCGGTAAACAT

TACGGCAAACAAACACTGACAACTGCACAAGTTAACGTATCAGCATCAGACAGCTCTTTGAACATCAACGGTG

TAGAGGATTATAAATCAATCTTTGACGGTGACGGAAAAACGTATCAAAATGTACAGCAGTTCATCGATGAAGG

CAACTACAGCTCAGGCGACAACCATACGCTGAGAGATCCTCACTACGTAGAAGATAAAGGCCACAAATACTT

AGTATTTGAAGCAAACACTGGAACTGAAGATGGCTACCAAGGCGAAGAATCTTTATTTAACAAAGCATACTAT

GGCAAAAGCACATCATTCTTCCGTCAAGAAAGTCAAAAACTTCTGCAAAGCGATAAAAAACGCACGGCTGAG

TTAGCAAACGGCGCTCTCGGTATGATTGAGCTAAACGATGATTACACACTGAAAAAAGTGATGAAACCGCTG

ATTGCATCTAACACAGTAACAGATGAAATTGAACGCGCGAACGTCTTTAAAATGAACGGCAAATGGTATCTGT

TCACTGACTCCCGCGGATCAAAAATGACGATTGACGGCATTACGTCTAACGATATTTACATGCTTGGTTATGT

TTCTAATTCTTTAACTGGCCCATACAAGCCGCTGAACAAAACTGGCCTTGTGTTAAAAATGGATCTTGATCCTA

ACGATGTAACCTTTACTTACTCACACTTCGCTGTACCTCAAGCGAAAGGAAACAATGTCGTGATTACAAGCTA

TATGACAAACAGAGGATTCTACGCAGACAAACAATCAACGTTTGCGCCTAGCTTCCTGCTGAACATCAAAGG

CAAGAAAACATCTGTTGTCAAAGACAGCATCCTTGAACAAGGACAATTAACAGTTAACAAATAAAAACGCAAA

AGAAAATGCCGATTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACAC

CCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGAC

CGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGA 
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D. PRIMERS FOR CHROMOSOMAL INSERTIONS 

 Sequence 

aidbF GAATGATTTATTGCTGCGGGCGACGGGGGGAGTGTGTGTGtaaGCGTATACCAACTCAGCTTCC

TTTCG 

aidbR CAATTTTCACATATTTCATTTAGTTAATCGAAACCAGCGTCGCATCAGTCGATGAGCTCGAGATAT

GAATATC 

yqebF CGTTTGTCATCAGTCTCAGGCCGGGTGGGTAATACCATCCGGCCATTTTCCCAACTCAGCTTCC

TTTCG 

yqebR GCATCAGGGCGTGAAAGCGACAAAAGAAGTGCTGGAAGTGGCTtaaATATGAGCTCGAGATATG

AATATC 

crlF GCGGATGATTTTCGTGACGAGCCGGTGAAGTTAACGGCGtgaGTGAACCAACTCAGCTTCCTTTC

G 

crlR GACGTATCAGTTTtaaTGAATATTGCCGGATGTGATGCATCCGGCACATATGAGCTCGAGATATG

AATATC 

uspeF GTAAGTAAAAAATAGGCCCGATAACTCGGGCCTTGTCAGTTATTGAACCAACTCAGCTTCCTTTC

G 

uspeR GTATCAGACACCCGTTGAACTGGATGACGAAGAAGACGATtaaCGACTCATGAGCTCGAGATATG

AATATC 

yedlF GCGAAAATAATGAATTGCCAtgaGCCAGACGCAGCACATTCTTGCATTCGACCAACTCAGCTTCC

TTTCG 

yedlR CAAGGCGTTTCCTGCTGGTGATAAATAAAGGCGCAGCACGTCGAATGCATGAGCTCGAGATATG

AATATC 

phepF ATTCCTGTTTATGGCATTTAAAACGCTGCGTCGGAAAtaaGGCATTCACGCCAACTCAGCTTCCTT

TCG 

phepR GAATGGATGAGAGCGGTTTCGGATGGTTGACATCGTTTTGTCGGATGTAGATGAGCTCGAGATA

TGAATATC 

Table A1 Sequences of the primers used for the chromosomal insertions. Each primer has the γ’ part annealing 
to pdoc-k plasmid, and the 5’ homologous to the region of interest in the chromosome. 
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E. PLATE READER ASSAY 

Strains were grown overnight in LB supplemented with the appropriate antibiotic. In the morning, 

bacteria were diluted 1:10000 times in the appropriate medium with the automated liquid handler 

Beckman Coulter Biomek 3000. Samples were covered with mineral oil (Sigma) in order to avoid 

evaporation. The 96-well plate was then incubated in the plate reader Perkin Elmer Viktor 3, at 30°C 

or at 37°C, shaking. OD600 and fluorescence (485-535nm) were measured every 5 minutes for several 

hours. For the chloramphenicol experiments, in the morning the overnight cultures were diluted in the 

appropriate growth medium supplemented with chloramphenicol. Cultures were allowed to adapt for 6 

hours in this growth conditions, then were diluted in the 96-well plate and measured in the plate 

reader. For the upshift experiment, cell grown in flask until exponential phase were pelleted, 

resuspended in the appropriate medium and loaded in the 96-well plate. 

 

F. MATLAB ALGORITHM FOR PLATE READER DATA ANALYSIS  

The core of the algorithm to analyse the 96-well plate experiment output is the WellReader 

implemented by Boyer et al. (Boyer et al., 2010). The data are loaded from the output file of the plate 

reader, and they are smoothed by using cubic smoothing splines. Background levels of absorbance 

and fluorescence from the wells with only the growth medium are subtracted to the other wells. To our 

purposes I customized the program, in order to align the OD curves such that the 15% of the OD 

values temporally coincide. We consequently shift the fluorescence curves as well, and we then 

subtract the autofluorescence signal from the BW25113 WT without any insertion. We then calculate 

the protein concentration, promoter activity and growth rate α as 

 

[ܲܨܩ] =  6ͲͲ�ܱ  ݋ݑ݈ܨ

ݕݐ�ݒ�ݐܿ� = ݀ሺܲܨܩሻ/݀6�ܱ ݐͲͲ  

ߙ  = ݀ ሺܱ�6ͲͲሻ/݀6�ܱ ݐͲͲ  
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G. FLOW CYTOMETER ASSAY  

Overnight cultures were obtained by inoculating a single colony into M9 minimal medium 

supplemented with 0.2% casamino acids and Kanamycin 50 µg/ml, and by incubating them at 37°C 

shaking. For the upshift experiment, in the morning cultures were diluted 200-fold into fresh M9 

minimal medium supplemented with 0.2% casamino acids, and grown to mid-log phase. Cultures were 

diluted 10 fold in the same medium, in order to extend the exponential phase.  After 2 hours, each 

culture was split in two, cells were centrifuged 5’ at γ500 rpm at room temperature, and then 

resuspended either in M9 minimal medium 0.2% casamino acids, or in LB. Samples were harvested 

every ten minutes, centrifuged for 5 minutes at 4°C at γ500 rpm, washed with PBS, fixed for γ0’ at 

room temperature with 2%  Formaldehyde solution (Sigma) and washed three times with PBS. The 

fluorescence of the GFP/cell in the samples was then measured by flow cytometry. For the 

chloramphenicol experiment, the overnight culture was diluted 1:200 in the growth media 

supplemented with chloramphenicol. Cells were allowed to adapt until they reach exponential phase, 

then they were diluted again 1:10 in the growth medium with chloramphenicol, and grew until 

exponential phase. Samples were harvested and fixed as previously described. The samples were 

then measured on a FACS Calibur flow cytometer (BD Biosciences) with a 488 nm laser, using the 75 

software BD CellQuest™ Pro. All instrument parameters were logarithmically amplified. Individual 

FSC, SSC and FL1 histograms were checked to be sure that the bell-shaped populations are not cut 

off on the display. An event rate of <1000 events per second was maintained in order to minimize the 

chance of coincidence and to improve population resolution. In the FSC versus SSC plot a live gate 

R1 was set around the bacterial population and a total of 20,000 events inside the gate were 

measured.  
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II. Noise as a measure of genome complexity? 

The variability in the population of gene expression (noise) is connected with allocation of resources 

and survival. Is it more beneficial to spend energy and be prepared for a possible change in the 

environment or is it better to grow faster without allocating resources to alternative pathways? Is it 

more beneficial a tight control of gene expression in the population or is it more favorable to have a 

wide spectrum of expression? And, more connected with our analysis: can we derive useful 

information about chromosomal organization by studying the noise? Can the noise tell us if the 

position influences gene expression? Can the noise be a detector of RNAP distribution? I will describe 

first the theoretical findings about the noise, and then the questions to which the study of our reporters 

could give an answer. 

A. WHY NOISE? 

Gene expression affects the phenotype of the cell, and it is the result of a series of events during 

transcription and translation that require the formation of specific macromolecular complexes that can 

include for example RNA polymerase, transcription factors and ribosomes. Since the number of the 

molecules involved in these processes is usually small, gene expression is stochastic and leads to a 

variation in the amount of mRNAs and proteins per cell in a population of genetically identical 

organisms. This difference in gene expression from cell to cell is called “noise”. τne of the first 

examples of this variation in a population is the “all-or-none” behavior of LacZ expression at low 

inducer concentrations, with some individual bacteria that are producing ȕ–galactosidase at full rate 

and others that don’t produce the enzyme at all (Novick and Weiner, 1957). Another example is given 

by the differences in gene expression leading to a different lysis-lysogeny decision in lambda phage-

infected E. coli  cells (Arkin et al., 1998). Molecular-level fluctuations therefore can generate 

macroscopic differences in phenotype, and this variability can be an advantage for cell survival. In 

case of a irregularly fluctuating environment it has been shown that having different subsets of the 

total population with a metabolic pathway activated or inactivated is an advantage for the overall 

population (Kussell and Leibler, 2005). Another example of noise facilitating survival is the random 

switch of E. coli to a slow growth phenotype (persistence), which allows cells to survive to antibiotic 

exposure (Balaban et al., 2004). On the other hand, noise can be detrimental. It has been shown in 

mouse tissues that aging and noise in gene expression are correlated (Bahar et al., 2006), and in C. 
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elegans that the  variation in the level of induction of a gene predicts the organism survival (Rea et al., 

2005). Another hint that noise in gene expression is not always welcome is the existence of 

mechanisms devoted to minimize it, like in the robust chemotaxis network of E. coli (Kollmann et al., 

2005) or in the plasmid copy number control (Paulsson and Ehrenberg, 2001).  

Below, I will discuss the different sources of cell-to-cell variability in gene expression, and how it is 

possible to use noise to understand gene regulation. 

B. DIFFERENT KINDS OF NOISE 

Once the distribution of the number of proteins per cell is measured, the noise in the population is 

defined as  

� = �ଶ  µଶ  

with ı and µ the standard deviation and the mean of the distribution, respectively (see Figure A2). 

In 2002 Elowitz et al. distinguished two different sources of noise in the cell (Elowitz et al., 2002). The 

first one, called extrinsic noise, is caused by the variations in the concentration and activity of 

molecules such as RNA polymerase and regulatory proteins. These factors are common for all the 

genes in a cell but differ from cell to cell. On the other hand, even with the same molecular 

components, promoters within the same cell would show differences in activity due to the stochasticity 

of the microscopic events leading to gene expression. This source of variation is called intrinsic noise. 

In order to discriminate between the two sources of variation, Elowitz et al inserted two copies of the 

same promoter in the E. coli genome, one driving the expression of the cyan fluorescent protein and 

the other the yellow fluorescent protein, and then measured with time-lapse microscopy the amount of 

each fluorescent molecule per cell. Extrinsic fluctuations are those affecting in the same way the two 

promoters, while intrinsic noise affects the two promoters independently. Extrinsic noise can be 

furthermore divided into global noise, that affect expression of all genes, and pathway-specific 

extrinsic noise, such as fluctuations in the abundance of a particular transcription factor that affects a 

specific gene but not another one (Raser and τ’Shea, β005). These different components of cell-to 

cell variability are summarized in Figure A2. 
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Figure A2 A) The distribution of fluorescence in a population, with µ the average value of the fluorescence per 

cell and ı the standard deviation of the distribution, adapted from (Ozbudak et al., 2002).  B) Figure adapted from 

(Maheshri and τ’Shea, β007) showing the experimental setup for measurements of intrinsic and extrinsic noise. 

1) Two different fluorescent genes are driven by the same promoter: the deviation of one with respect to the other 

is an effect of fluctuations at the promoter level (intrinsic noise), while the common variation is an effect of the 

physiological state of the cell (extrinsic noise). 2) By comparing the expression of two promoters involved in 

different cellular process, one can determine which component of noise is specific to the particular process, and 

therefore is changing the expression of one gene with respect to the other (pathway specific), and what is due to 

global fluctuation, affecting both promoters in the same way (global). 

An overall inverse-proportional relationship between noise and gene expression is expected from 

uncorrelated stochastic systems. Elowitz et al. showed that strong constitutive promoters have low 

intrinsic noise, and also low overall cell-to-cell variation. When they lowered the rate of transcription, 

they detected an increase of both intrinsic and extrinsic noise.  Raser and τ’Shea applied the same 

method to the study of different promoters in Saccharomyces cerevisiae , and found that the total 

noise of gene expression was dominated by the contribution from extrinsic factors, and that noise 

intrinsic to gene expression was promoter-specific  (Raser and τ’Shea, β004). The existence of a 

universal principle regulating noise was raised.  

C. THERE IS A COMMON, GENERAL TREND OF NOISE, WITH SOME EXCEPTIONS 

Different genome-wide studies have looked for a general behavior connecting noise and mean 

expression level of a gene. Newman et al. used high-throughput flow cytometry and a library of GFP-

fusion proteins in S. cerevisiae to monitor protein levels and variance for cells growing in a rich growth 

 

ı 

B A 

µ 

ı 



106 
 

medium  (Newman et al., 2006). In order to uncover the contribution of intrinsic and extrinsic noise 

they chose four promoters to be studied with two fluorophores. Intrinsic noise makes a significant 

contribution to the total variation of gene expression in the population. They also detected an inverse-

proportional relationship between noise and protein abundance for low abundant proteins, while the 

distribution of abundant proteins was mainly governed by extrinsic noise as measured from the 

differences between cells (see Figure A3).  

 

Figure A3 Figure from (Newman et al., 2006) describing the noise, defined as (ı/µ)2, as a function of protein 

abundance µ for a library of promoter in different growth media. For lowly expressed proteins, the noise shows a 

strong negative dependence on the protein abundance, while for highly expressed genes the noise reaches a 

plateau determined by extrinsic fluctuations. 

Beyond this global behavior, they also found large differences in the coefficient of variation (CV=100* 

ıp/µp) values for proteins expressed at similar levels. For instance, translation/ribosomal proteins and 

proteins whose production is regulated by transcription factors showed low noise, while other genes 

including enzymes that participate in ATP synthesis and those involved in stress-response were highly 

noisy. This suggests that transcriptional regulation plays an important role in determining noise level. 

The evidence of a proportional scaling of the noise with respect to the mean expression, with some 

deviations from this general behavior, was found in S. cerevisiae  for cell facing different environments 

(Bar-Even et al., 2006). Further studies in yeast revealed a connection between the characteristics of 

a promoter and its level of intrinsic noise: highly noisy genes have a strong TATA-box and occupied 

proximal nucleosome (Field et al., 2008; Tirosh and Barkai, 2008), and the noise was decreased by 

mutating the TATA box, i.e. by reducing the burst size (see paragraph D ) (Hornung et al., 2012; Raser 

and τ’Shea, β004). 
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In E. coli, a genome-wide analysis of noise based on a plasmid library showed that promoters can 

confer different levels of noise for the same level of expression (Silander et al., 2012). It was found 

that promoters associated with essential genes had a lower level of noise, while genes involved in 

energy metabolism of carbon sources and in adaptation to stress exhibited a higher level of noise. 

Taniguchi et al. analyzed the variation of protein and mRNA expression in a fluorescent protein fusion 

library with single-molecule precision (Taniguchi et al., 2010). They found, as a general behavior, that 

noise for low abundant proteins is mainly due to intrinsic noise and is inversely proportional to the 

mean protein number, while for highly expressed genes the noise was independent on the mean and 

flattened out to a plateau due to the extrinsic noise (see Figure A4). This result was similar to what 

was observed by Elowitz et al (see paragraph B).  

 

  

Figure A4 Figure from (Taniguchi et al., 2010) showing the linear scaling of noise in lowly expressed genes, 

whose expression is mainly governed by intrinsic noise, and the plateau of noise for highly expressed genes, 

whose variation of expression is due to the fluctuation of global cell condition.  

In summary, two different kind of noise exist in the cell, one connected with the stochasticity of the 

events happening at the promoter level and leading to protein synthesis, and the other connected with 

the variation of global parameters such as free RNAP or ribosome concentration. The stronger 

influence of one component or on the other on the noise in gene expression depends on the level of 

gene expression itself: highly abundant proteins are distributed according to extrinsic noise, while the 

distribution of proteins present in low amount in the cell is governed by intrinsic noise. Beyond this 

global behavior, some differences in noise at the same protein expression were characterized for 

promoters involved in stress response (higher noise) or in essential genes (lower noise). However, 
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contrary to the clear effect detected in yeast, it is still not clear whether in E. coli the architecture of the 

promoter can influence the variation of gene expression in the population.  

 

D. NOISE IN THE PROCESS OF PROTEIN SYNTHESIS 

i. Noise at the transcription level 

In a non-regulated (constitutive) gene, mRNA is produced at a constant rate Kr and destroyed with rate 

Ȗr, with transcript production and degradation occurring in an uncorrelated fashion. If the number m of 

mRNA is large, the dynamics of the number of mRNA can be described by 

ݐ݀/݉݀ = �� �ߛ − ∗ ݉ 

At the steady state, the mRNA molecules equilibrate, i.e. the probability of having m molecules of 

mRNA and producing another one is the same as having m+1 molecules and degrading one. 

�� ∗ ܲሺ݉ሻ = �ߛ   ∗ ሺ݉ + ͳሻ ∗ ܲሺ݉ + ͳሻ 

that is possible if P(m) is a Poissonian distribution  

ܲሺ݉ሻ = ݁−� ��௠!    with <m>=Kr/ Ȗr 

and the waiting time Ĳ between two events is exponentially distributed (Thattai and van Oudenaarden, 

2001). One would thus expect that a deviation from the Poisson behavior indicates that the gene is 

thus not constitutive, i.e. it is regulated. The time between two events in this case is then no longer 

exponentially distributed. The distribution is defined as ‘bursty’ if it has a higher frequency of short and 

long events compared to the poissonian distribution (the dotted line in Figure A5), while it is ‘anti-

bursty’ (regular) if the frequency of interval of average length is higher than in the poissonian 

distribution.  
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Figure A5  1) Figure adapted from (Goh and Barabàsi, 2006). Temporal pattern of events leading to a poissonian 

distribution (a) a bursty distribution (b) and an anti-bursty distribution (c). The temporal spacing between events in 

the three cases is shown below: a bursty distribution, in white in (f), is enriched in long and short interevent times 

and depleted in middle-length times with respect to a poissonian distribution (in gray). In (g), an anti-bursty 

distribution is enriched in middle-length interevent times with respect to a poissonian. 2) the difference in noise for 

a poissonian process and for a two-state bursty system, with the noise in the former being less than in the latter 

(Raj and van Oudenaarden, 2008). 

 

Burstiness has been shown to exist so far in yeast (Zenklusen et al., 2008), mammalian cells (Ross et 

al., 1994) and in bacteria (Golding et al., 2005; Yu et al., 2006). The parameter that measures 

burstiness is the Fano factor, defined as the ratio between the variance and the mean of the 

distribution 

ܾ = �ଶ/µ 

In case of a poissonian distribution, b=1. In E. coli, the mRNA distribution showed a  higher Fano 

factor than a poissonian distribution (Taniguchi et al., 2010). 

In the case of mRNA not produced with a constant probability per unit of time, the burstiness of the 

system can be explained by a two state model, in which the promoter switches stochastically between 

‘on’ and ‘off’ states, where transcription can or cannot occur respectively (Raj et al., 2006; Raser and 

τ’Shea, β004). With a single copy of the gene, a random period of inactivity (OFF) is followed by a 

random period of activity (ON). If long OFF periods are followed by intense ON periods that produce a 

significant number of transcripts, transcription is said to occur in “bursts.”(Golding et al., 2005) 

 

1 2 
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Figure A6 Figure from (So et al., 2011) illustrating how different series of expression events originated by a 

change in Kon, Koff or Ktx can result in the same value of  mRNA per cell but are characterized by different Fano 

factor and noise. 

 

The parameters of the two state model are Kon, the rate of promoter switching to the ‘on’ state, which 

determines the frequency of transcriptional burst; Koff, the rate of switching back to the ‘off’ state, which 

implies the duration of the bursts, and Ktx, the rate of mRNA production, which determines how many 

mRNA molecules are produced during the burst (So et al., 2011). The same mRNA level in the cell 

can be the result of different transcriptional time series (see Figure A6) and different modulations of 

the parameters involved (Munsky et al., 2012). These differences are quantified by the Fano factor. 

Increasing burst duration will increase mean expression without changing the noise, while increasing 

burst frequency will increase mean expression and decrease noise (Hornung et al., 2012).  

So et al. measured the distribution of mRNA copy number at single-cell level for different promoters in 

different growth conditions, and calculated noise and Fano factor. Interestingly, they found a clear 

trend of noise and Fano factor as a function of the mean number of mRNA molecules that was the 

same for all the promoters and the growth conditions, in contrast with the promoter-dependence of 

noise that was shown in yeast (Hornung et al., 2012). This gene-independent behavior can be 

explained with a modulation of the Koff parameter, thus suggesting that the cell changes gene 

expression level by changing the duration of transcription bursts (see Figure A7). The observation that 

the noise in mRσA distribution at high mRσA number doesn’t reach the plateau that would be 

expected in the presence of extrinsic noise, as it is in Figure A4, supports the idea that extrinsic noise 
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is more important at the protein level than at transcription level (Elowitz et al., 2002; Taniguchi et al., 

2010).  

 

Figure A7 Figure from (So et al., 2011) illustrating the Fano factor (a) and the noise (b) for different promoters as 

a function of mRNA per cell. The trend of the Fano factor is compatible with the behavior predicted for the cell 

modulating the Koff in gene expression in order to vary the expression level. 

 

ii. Noise at the translation level 

Ozbudak et al. studied how in B. Subtilis the noise in gene expression was dependent on transcription 

and translation (Ozbudak et al., 2002). By using an inducible promoter driving gfp expression they 

were able to vary the transcriptional efficiency, while by mutating the ribosome binding site and 

initiation codon of gfp gene they were able to modulate the rate of translation. They found that high 

translation efficiency coupled with low transcription rate results in high noise, while low translation 

rates reduce fluctuations in protein concentration (see Figure A8). This result was compatible with a 

model in which proteins are produced in random bursts (Thattai and van Oudenaarden, 2001). They 

thus suggested that one of the mechanisms that the cell uses in order to lower the noise in gene 

expression is a low translation rate, like in the case of the important regulator cya (gene coding for 

cAMP).   
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Figure A8 Figure from (Raj and van Oudenaarden, 2008) illustrating the amplitude of protein level variation in the 

population for a gene frequently transcribed but infrequently translated (A) and for a gene infrequently transcribed 

and frequently translated (B). In the second case the variation in the population is higher. 

Cai et al. studied the real-time expression of ȕ-Galactosidase in E. coli at single-cell level (Cai et al., 

2006). They showed that protein production occurs in bursts, with the number of protein per burst 

following an exponential distribution. Since mRNA lifetime has been shown to be exponentially 

distributed (Kennell and Riezman, 1977), the exponential scaling of proteins per burst is seen as the 

effect of competition between translation and mRNA degradation. Swain et al. showed that in the case 

of efficient translation, i.e. number of proteins made per mRNA larger than 2, the intrinsic noise mainly 

depends on transcription (Swain et al., 2002). On the contrary, in the case of a less efficient translation 

the intrinsic noise is also dependent on translation. Therefore the coupling between transcription and 

translation rates influence the sensitivity of the gene expression to extrinsic and intrinsic noise, and 

therefore the variation of gene expression in the population.  

iii. Noise propagation in networks 

It is interesting to study whether the noise in a regulator can affect the noise in the target gene. By 

using multiple fluorescent reporters in synthetic genetic networks, it was shown that variability in the 

regulator was transmitted to the regulated gene (Pedraza and van Oudenaarden, 2005; Rosenfeld et 

al., 2005). In the case of a negative feedback loop, where the fluctuations in protein concentration  are 

pushed back to the mean value, it was shown that the noise was reduced with respect to a 

constitutively expressed gene  (Becskei and Serrano, 2000; Thattai and van Oudenaarden, 2001), as 
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shown in Figure A9. On the contrary, in the presence of positive feedback a small difference in the 

protein level can lead to a further activation of the gene, therefore increasing the variability in the 

population and eventually leading to bistable expression profiles (Acar et al., 2005; Becskei et al., 

2001).  

 

Figure A9 Figure from (Raser and τ’Shea, β005) describing the noise in protein level originated by a constitutive 

promoter, on the left, and by a gene negatively autoregulated. For the auto regulated promoter the variation in the 

population is lower.  

 

With our reporters we can observe whether the chromosomal position has an impact on the variability 

of gene expression. The study of noise as a function of chromosomal position for a gene regulated by 

lac repressor didn’t put in evidence any influence of the position on the noise (Block et al., 2012), but 

the promoters we are taking into account are different, therefore it is possible to have a different 

outcome. Moreover, by comparing P1 and P5 we can put in evidence whether the tight regulation on 

P1 expression lower the noise in gene expression with respect to a non-regulated promoter, and by 

analyzing the noise at different growth rates, i.e. with different gene copy number, we can detect 

whether the multiple copies of the gene are synchronized or not (Maheshri and τ’Shea, β007). We 

can also study if and to what extent the perturbation of supercoiling via nutritional upshift or via gyrase 

inhibition is transferred to the noise of P1 and P5 promoters.  

E. EFFECTS OF POSITION ON THE NOISE: A FIRST ATTEMPT 

As I described in the introduction, the complex structure of the chromosome could in principle affect 

the level of noise in gene expression due to a different accessibility of the promoter to transcription 

factors and RNA polymerase, due to the distance from a regulator, or due to neighbor genes effects 

(see chapter 1). 
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We measured the distribution of the GFP per cell in the population for P1 in three different positions 

(aidb, yedL and uspe) in exponential phase at different growth rates. Cultures were grown at 37°C 

shaking, and samples harvested in exponential phase were fixed with formaldehyde and analyzed by 

flow cytometry.  The average GFP per cell µ and the width ı of the distribution were calculated. The 

results obtained for noise, defined as ı2/ µ2, and for the Fano factor, defined as ı2/ µ, are shown in 

figure A10. 

Figure A10 Noise (A) and Fano factor (B) for P1 promoter inserted in aidb (black), uspe (red) and yedL (blue) 

positions in exponential phase in different growth media. The noise do not appear to depend on chromosomal 

position, but it depends on the amount of GFP per cell. The Fano factor increases at increasing GFP levels 

following the trend correspondent to a change in the translation rate (So et al., 2011).  

We can notice from the results that the noise follows the global trend that has been shown previously 

in the literature (Newman et al., 2006; Taniguchi et al., 2010), with noise decreasing at increasing 

promoter expression (intrinsic noise limit) and then reaching a plateau at high level of expression 

(extrinsic noise). The Fano factor can be calculated in order to decipher which parameter among Kon, 

Koff and Kt the cell is modulating in order to regulate the level of gene expression (So et al., 2011). 

From the comparison with the three different scenarios hypothesized in the So et al. paper, we can 

conclude that the cell changes GFP gene expression from the P1 promoter by changing the translation 

rate (see Figure A6). This is in agreement with the increase in the amount of ribosomes at fast growth 

(HANS BREMER, 1996), leading to higher translation rate. On the other hand, promoter activity for 

ribosomal promoters increases as well at fast growth (Klumpp and Hwa, 2008), involving a change in 

Kon and Koff. A comparison with P5 would be valuable in order to discriminate between modulations by 

the various parameters, and could also show whether the noise of this two differently regulated 

promoters at the same GFP level is different.  

A B 
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iv. Modulating noise for P1 and P5 promoters 

 

ܴ + ܲ ⇄  ܴܲ → ݋ܴܲ → ܴ݈ܲ݁  
 

Even if the detection of an influence of gene position on the noise in gene expression was not 

successful at the first attempt, we can think about out-of-equilibrium experiment and about mutations 

in the two promoters in order to create a system more sensitive. The formation of the RNAP-promoter 

complex at P1 is fast (Gourse, 1988), thanks to the presence of the UP element (Gourse et al., 2000), 

and unstable due to the presence of discriminator region, depending therefore on the level of ppGpp 

(Bartlett and Gourse, 1994; Zacharias et al., 1989) and of supercoiling (Chong et al., 2014). Once the 

RNAP is bound the transcription rate Ktx is fast (Jensen and Pedersen, 1990). For the P5 promoter on 

the other hand the binding of RNAP is fast, due to the UP element, and stable, due to the optimality of 

P5 promoter sequence (see paragraph 5.2 and 5.3). For the same reason, the transcription rate is 

slower than the one for P1. The translation rate for both P1 and P5 is fast due to the presence of a 

strong ribosome binding site (see Figure 22). A modulation of noise for the P1 promoter can be 

obtained by changing the level of ppGpp and of supercoiling, i.e.by affecting the Koff of P1 and the Ktx 

for P5 (see Figure 6), in addition by removing the UP element, and decreasing as a consequence the 

Kon of both promoters, or by adding the original FIS binding sites at P1 promoter, therefore stabilizing 

the complex RNAP-promoter, and finally by changing the sequence of the ribosome binding site, 

affecting in this way the translation rate. There is therefore a challenging and interesting path on the 

way to uncover the influence of gene position on gene expression. 

 

 

  

Kon 

Koff 

Ktx 
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