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Abstract of the Dissertation

José Lezama

On grouping theory in dot patterns, with applications to

perception theory and D inverse geometry

Under the direction of:

Rafael Grompone von Gioi, Jean-Michel Morel and Gregory Randall

This thesis studies two mathematical models for an elementary visual task: the per-

ceptual grouping of dot patterns. The first model handles the detection of perceptu-

ally relevant arrangements of collinear dots. The second model extends this frame-

work to the more general case of good continuation of dots. In both cases, the pro-

posed models are scale invariant and unsupervised. They are designed to be robust

to noise, up to the point where the structures to detect become mathematically in-

distinguishable from noise. The experiments presented show a good match of our

detection theory with the unmasking processes observed by gestaltists in human per-

ception, supporting their perceptual plausibility.

The proposed models are based on the a contrario framework, a formalization of the

non-accidentalness principle in perception theory. This thesis makes two contribu-

tions to the a contrario methodology. One is the introduction of adaptive detection

thresholds that are conditional to the structure’s local surroundings. The second is a

new refined strategy for resolving the redundancy of multiple meaningful detections.

Finally, the usefulness of the collinear point detector as a general pattern analysis tool

is demonstrated by its application to a classic problem in computer vision: the detec-

tion of vanishing points. The proposed dot alignment detector, used in conjunction

with standard tools, produces improved results over the state-of-the-art methods in

the literature.

Aiming at reproducible research, all methods are submitted to the IPOL journal, in-

cluding detailed descriptions of the algorithms, commented reference source codes,

and online demonstrations for each one.





Résumé de la Thèse

José Lezama

Sur la théorie du regroupement de points en D avec applications

à la théorie de la perception et à la géométrie D inverse:

Sous la direction de:

Rafael Grompone von Gioi, Jean-Michel Morel et Gregory Randall

Cette thèse porte sur l’étude de deux modèles mathématiques pour une tâche visuelle

élémentaire: le regroupement perceptuel de points D. Le premier modèle traite la

détection d’alignements de points. Le deuxième modèle étend ce cadre au cas plus

général de la bonne continuation de points. Dans les deux cas, les modèles pro-

posés sont invariants au changement d’échelle, et non supervisés. Ils sont conçus

pour être robustes au bruit, jusqu’au point où les structures à détecter deviennent

mathématiquement impossibles à distinguer du bruit. Les expériences présentées

montrent une cohérence entre notre théorie de détection et les processus de dé-

masquage observés par les gestaltistes dans la perception humaine.

Les modèles proposés sont basés sur la méthodologie a contrario, une formalisa-

tion du principe de non fortuité (non-accidentalness principle) dans la théorie de la

perception. Cette thèse fait deux contributions au méthodes a contrario. L’une est

l’introduction de seuils de détection adaptatifs qui sont conditionnels au voisinage

des structures évaluées. La deuxième contribution est une nouvelle stratégie raffinée

pour résoudre la redondance de plusieurs détections significatives.

Finalement, l’utilité du détecteur d’alignements de points comme outil général d’ana-

lyse de données est démontrée avec son application a un problème classique en vision

par ordinateur: la détection de points de fuite. Le détecteur d’alignements de points

proposé, utilisé avec des outils standards, produit des résultats améliorant l’état de

l’art.

Visant à la recherche reproductible, toutes les méthodes sont soumises au journal

IPOL, en incluant descriptions détaillées des algorithmes, du code source commenté

et démonstrations en ligne pour chaque méthode.





Resumen de la Tesis

José Lezama

Sobre teorı́a de agrupamiento en patrones de puntos, con aplicaciones

en teorı́a de la percepción y en geometrı́a D inversa

Bajo la dirección de:

Rafael Grompone von Gioi, Jean-Michel Morel y Gregory Randall

Esta tesis estudia dos modelos matemáticos para una tarea visual elemental: el agru-

pamiento perceptual de patrones de puntos. El primer modelo trata la detección de

arreglos colineales de puntos perceptualmente relevantes. El segundo modelo ex-

tiende este marco al caso más general de buena continuación de puntos. En ambos

casos, los modelos propuestos son invariantes a cambios de escala y no supervisados.

Estos modelos son diseñados para ser robustos al ruido, hasta el punto en que las

estructuras para detectadar se vuelvan matemáticamente indistinguibles del ruido.

Los experimentos presentados muestran una buena coherencia entre nuestra teorı́a

de detección y los procesos de desenmascaramiento observados por gestaltistas en la

percepción humana.

Los modelos propuestos son basados en la metodologı́a a contrario, una formal-

ización del principio de no-accidentalidad en teorı́a de la percepción. Esta tesis hace

dos contribuciones a esta metodologı́a. Una es la introducción de umbrales de de-

tección adaptativos que son condicionales al entorno de las estructuras evaluadas. La

segunda contribución es una nueva y refinada estrategia para resolver la redundancia

de múltiples detecciones significativas.

Finalmente, la utilidad del detector de puntos alineados como herramienta general

de análisis de patrones es demostrada con su aplicación a un problema clásico en

vision por ordenador: la detección de puntos de fuga. El detector de puntos alinea-

dos propuesto, utilizado en conjunto con herramientas estándar, produce resultados

mejores que el estado del arte en la literatura.

Con el objetivo de hacer investigación reproducible, todos los métodos son submi-

tidos al journal IPOL, incluyendo descripciones detalladas de los algoritmos, código

fuente comentado y demostraciones en lı́nea para cada uno de ellos.
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1 Introduction

Motivation

Alan Turing advanced a controversial proposal in  that is now known as the Turing Test [Tur-

ing ]. Turing’s aim was to discuss the problem of machine intelligence and, instead of giving a

premature definition of thinking, he framed the problem in what he called the Imitation Game: A

human interrogator interacts with another human and a machine, but only in typewritten form;

the task of the interrogator is to ask questions in order to determine which of its two interlocutors

is the human. Turing proposed that a machine that eventually could not be distinguished from hu-

mans by its answers should be considered intelligent. This influential suggestion sparked a fruitful

debate that continues to this day [Pinar Saygin et al. ].

Our concern here is however slightly different. We are studying perception and Turing pre-

cluded in his test any machine interaction with the environment other that the communication

through the teletype; he concentrated on the pure problem of thinking and to that aim avoided

fancy computer interactions, that anyway did not exist at his time. Yet, machine perception is

still a hard problem for which current solutions are far from the capacities of humans or animals.

Our purpose is to discuss a variety of gestaltic perceptual imitation games as a research methodol-

ogy to develop machine vision algorithms on the one hand, and to open the way to quantitative

psychophysical protocols on the other.

The Gestalt school, Wertheimer []; Köhler []; Ellis [ (originally )]; Metzger

[]; Kanizsa [] among others, developed from the twenties to the eighties an original modus

operandi, based on the invention and display to subjects of clever geometric figures [Wagemans

et al. a,b]. A considerable mass of experimental evidence was gathered, leading to the con-

clusion that the first steps of visual perception are based on a reduced set of geometrical grouping

laws. Unfortunately these Gestalt laws, relevant though they were, remained mainly qualitative and

led to no direct machine perception approach.

Since the emergence of the field of Computer Vision [Marr ] about fifty years ago – initially

as a branch of the Artificial Intelligence working with robots and its artificial senses – there have

been many attempts at formalizing vision theories and especially Gestalt theory [Sarkar and Boyer

]. Nevertheless, only a small fraction of these proposals has been accompanied by systematic

efforts to compare machine and human vision. An important exception is the Bayesian theory of

perception [Mumford ] that has attracted considerable attention in cognitive sciences, leading

to several experimental evaluations [Feldman ; Kersten et al. ].

Such experiments stress the relevance of computer vision as a research program in vision,

in addition to a purely technological pursuit. Its role should be complementary to explanatory

sciences of natural vision by providing, not only descriptive laws, but actual implementations of





Figure 1.1: Illustration of the complexity of the point alignment problem: Exactly the same set of aligned

dots is present in the three images, but it is only perceived as such in the first one. The second one is

a classic “masking by texture” case and the third shows a “masking by structure”, often called “Gestalt

conflict”.

mechanisms of operation. With that aim, perceptual versions of the imitation game should be the

Leitmotiv in the field, guiding the conception, evaluation and success of theories.

One of the procedures used by Gestalt psychology practitioners was to create clever geometric

figures that would reveal a particular aspect of perception when used in controlled experiments

with human subjects. They pointed out the grouping mechanisms, but also the striking fact that

geometric structures objectively present in the figure are not necessarily part of the final gestalt in-

terpretation. These figures are in fact counterexamples against simplistic perception mechanisms.

Each one represents a challenge to a theory of vision that should be able to cope with all of them.

The methodology we followed in order to design and improve automatic geometric gestalt

detectors is in a way similar to that of the gestaltist. One starts with a primitive method that works

correctly in very simple examples. The task is then to produce data sets where humans clearly see a

particular gestalt while the rudimentary method produces a different interpretation. Analyzing the

errors of the first method gives hints to improve the procedure in order to create a second one that

produces better results with the whole data set produced until that point. The same procedure is

applied to the second method to produce a third one, and successive iterations refine the methods

step by step. The methodology used by the Gestalt psychologist to study human perception is used

here to push algorithms to be similar to their natural counterpart. Finding counterexamples is less

and less trivial after some iterations and the counter-examples become, like gestaltic figures, more

and more clever. Each detection game will only stop when it eventually passes the Turing test, the

algorithm’s detection capability becoming indistinguishable from that of a human.

In this thesis we will attempt at modeling simple tasks of human perception with algorithms

based on the non-accidentalness principle introduced by Witkin, Tenenbaum and Lowe [Lowe ;

Witkin and Tenenbaum a,b] as a general grouping law. This principle states that spatial rela-

tions are perceptually relevant only when their accidental occurrence is unlikely. We shall use the

a contrario framework, a particular formalization of the principle due to Desolneux, Moisan and

Morel [Desolneux et al. , ] as part of an attempt to provide a mathematical foundation to

Gestalt Theory.

We will start with the study of a very basic visual task: the grouping of collinear dots in dot pat-

terns. We will build increasingly complex versions of the algorithm that can handle masking situa-

tions, up to the point where other gestalts are required to explain a grouping. Next, we will attempt

at modeling a more general case, the grouping of dots by good continuation. Through qualitative

and quantitative experimentation, we will show the perceptual plausibility of our methods, and

successfully compare it to other methods in the literature. Finally, to demonstrate the applicability


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Figure 1.2: Representation of the candidate rectangle of the point alignment detector. In this case, the

candidate rectangle r is divided into c = 6 boxes, 5 of which are occupied. The local density estimation

window is R.

of these pattern analysis algorithms to practical problems, we use the dot alignment detector for

the problem of vanishing point detection, obtaining results that improve the state-of-the-art.

. Point Alignments Detection

From a gestaltic point of view, a point alignment is a group of points sharing the property of being

aligned in one direction. While it may seem a simple gestalt, Figure . shows how complex the

alignment event is. From a purely factual point of view, the same alignment of points is present

in the three figures. It is however only perceived as such in the first figure by most viewers. The

second the third figures illustrate two types of masking: the masking by texture, which occurs when

a gestalt is surrounded by a clutter of randomly distributed distractors, and the masking by struc-

ture, which happens when the alignment is masked by other perceptually more relevant gestalts,

a phenomenon also called perceptual conflict by gestaltists [Metzger ,  (originally );

Kanizsa ]. The magic disappearance of the alignment in the second and third figures can be

accounted for in two very different ways. As for the first one, we shall see that a probabilistic a

contrario model [Desolneux et al. ] is relevant and can lead to a quantitative prediction. As for

the second disappearance, it requires the intervention of another more powerful grouping law, the

good continuation [Kanizsa ], which will be addressed in Chapter .

These examples show that a mathematical definition of dot alignments is required before even

starting to discuss how to detect them. A purely geometric-physical description is clearly not suf-

ficient. Indeed, an objective observer making use of a ruler would be able to state the existence of

the very same alignment on all three figures. But this statement contradicts our perception, as it

would contradict any reasonable computational perceptual theory.

This experiment also shows that the detection of an alignment is highly dependent on the

context of the alignment. It is therefore a complex question, and must be decided by building

mathematical definitions and detection algorithms, and confronting them to perception. As the

patterns of Figure . already suggest, simple computational definitions with increasing complexity

will nevertheless find perceptual counterexamples. In Chapter  of this thesis we present a series of

algorithms with incrementing sophistication for detecting alignments of points in a point pattern.





Figure 1.3: Results of the alignment detector in the examples of Figure 1.1. The first and second exam­

ples are correctly solved. The third, however requires the intervention of more powerful grouping laws,

namely the good continuation and closure laws.

The two key aspects of the alignment will be shown to be its local density and its regularity. Our

final method combines both criteria into a single coherent detector.

Our model is based on using a template consisting of a thin rectangle inside a larger one (see

Figure .). The inner rectangle is divided into equal boxes and the number of boxes occupied by

at least one point is counted. The number of occupied boxes is then compared to its expectation

under a null hypothesis of random and independently distributed points. This constitutes the

Number of False Alarms (NFA), the fundamental quantity in the a contrario theory. The NFA in

this case is expressed as

NFA(r,R, c,x) = Ntests · P
[

b(r, c,X) ≥ b(r, c,x)
∣

∣n(R,X) = n(R,x)
]

.

(.)

Here, P denotes a probability, b is the number of occupied boxes out of a total of c boxes, r and R
are the inner and outer rectangles respectively, and x and X are the observed points and a random

set of N points following the null hypothesis, respectively. The number n counts the points inside

the outer rectangle. Ntests is the total number of tests computed (i.e. the number of templates

tried). It will be obtained by considering rectangles formed by every pair of points and a given set

of widths for the inner and outer rectangle, and a given set of number of boxes. In Chapter  we

will prove that the NFA is a bound on the expectation of occurrence of the event under the null hy-

pothesis. We will set a detectability threshold for the NFA of , meaning that under the background

model, less than one false alarm would be obtained in average. We propose two contributions to

the a contrario framework. One is the use of sophisticated conditional events on random point

sets, for which expectation we nevertheless find easy bounds. Second is a new formulation of the

exclusion principle to avoid redundant detections, based on comparing meaningful detections in

a one to one basis.

Results of the final alignment detector are shown in Figures . and .. In Figure ., the

detector correctly solves the first two figures, finding the trivial alignment in the first one and

determining that there is visual masking in the second one. In the third figure however, the result

of the algorithm is not the most natural explanation on the figure. Here there are clearly other

gestalts involved, which produce a more relevant percept, for example the Gestalt laws of good

continuation and closure. The law of good continuation will be treated in Chapter . In Figure .

the surrounding rectangle and small boxes are also shown, as well as the logarithm of the NFA for

each detection (best viewed in electronic format). In Chapter  we will use this alignment detector

as a general pattern analysis tool to find vanishing points in urban scenes.





-7.48666

-
4
.
9
4
1
4

-
1
.
8
5
9
5

Figure 1.4: Result of the point alignment detector. Note how it correctly finds perceivable alignments

while not being fooled by clusters and background noise.

This work has led to the publications of the following articles: Lezama et al. [c], Lezama

et al. [d] and Lezama et al. [e].

. Good Continuation Detection

A more general visual task is the grouping of dots by good continuation. The good continuation

law was one of the first to be enunciated by gestaltists [Wertheimer ] and can be stated as

“All else being equal, elements that can be seen as smooth continuations of each other tend to be

grouped together” [Palmer ]. This phenomena is exemplified in Figure ., where (despite

the familiar shape of the letters) human perception easily finds the structures forming smooth

and regularly spaced curves of dots. Besides receiving great interest in psychophysics [Uttal ;

Prinzmetal and Banks ; Caelli et al. ; van Oeffelen and Vos ; Smits et al. ; Feldman

b; Pizlo et al. ], there have also been several proposals for formalizing this law since the

early days of computer vision [Grossberg and Mingolla ; Sha’asua and Ullman ; Parent

and Zucker ; Gigus and Malik ; Guy and Medioni ; Williams and Thornber ].

In Chapter  we will propose a model for the grouping of dots by good continuation, inspired

by the findings of the grouping of aligned dots. Our good continuation model is based on local

symmetries and, as before, the non-accidentalness principle to determine perceptually relevant

configurations of good continuation of dots. We will also derive a grouping algorithm based on

this model, an example result of which can be seen in Figure . (right).

Given three points, our model will consider the distance of the third point to the symmetric of

the first with respect to the second (see Figure .(b)). In this case, the probabilistic event is defined

as the probability of the event defined as: “Given n points observed inside the big circle of radius

R, the closest point to the ideal symmetric X is closer than r”. This is expressed as

p = P(rNN ≤ r) = 1−
(

1− r2

R2

)n

. (.)

Next, we will consider chains formed by triplets of points, where each subsequent triplet shares
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Figure 1.5: Illustration of perceptual grouping by the good continuation law. A human observer tends

to group elements among smooth and long curves. Experimental results for the good continuation de­

tector. Left: original points. Right: most meaningful good continuation groupings obtained by our al­

gorithm. Note that as a general clustering method, the algorithm automatically determines the number

of structures, and is able to distinguish structure from noise.

two points with the previous one. Assuming independence of the points location, the probability

of occurrence of a chain under the random model will be computed as the multiplication of each

triplet probability. Finally, the NFA of a good continuation event of K points will be stated as

NFA = Ntests · pK−2
max . (.)

Here, pmax represents the worst observed precision, so the event is expressed as “observing a chain

of points where all triplets have a precision at least as good as pmax”. The number Ntests is again

the number of all chains evaluated, and it will be obtained by considering triplets formed by points

and their nearest neighbors. Again, in Chapter  we will prove that this NFA effectively bounds the

expected number of occurrences of such an event under the background model of random, inde-

pendent and uniformly distributed points. As in Chapter , we will set the detectability threshold

of the NFA at , which means that on average less than one false detection would occur by chance.

We will also propose an efficient algorithm for detecting good continuation configurations

in dot patterns. Candidate curves will be obtained by computing possible triplets using nearest

neighbors, then building a graph representation of the triplets, where adjacencies are given by the

sharing of two points, and edge costs by the sum of the triplets precisions. On this graph we will

use a shortest path method (the Floyd-Warshall algorithm) as an heuristic to obtain candidates

chains of triplets. To each candidate chain we will compute the NFA and we will keep only the

most meaningful ones, applying a masking principle similar to the one introduced in Chapter .

We will demonstrate the perceptual relevance of our model with experiments on datasets taken

from classical psychophysics articles, such as the work of Uttal [Uttal ]. Finally, we will com-

pare the results of our algorithm in a structure/noise segmentation task with a well-established

method in computer vision, the Tensor Voting approach [Guy and Medioni , ; Mordohai

and Medioni ]. The comparison yields that our method addresses three main drawbacks of

Tensor Voting: scale invariance, robustness to noise and the lack of a principled criterion to extract

final curves.
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Figure 1.6: Definition of the good continuation event. (a) A candidate chain is defined by an ordered

sequence of points. (b) Three consecutive points in a chain define a triplet, (a, b, c) in this case. Ideally,

the triplet should be symmetric. The symmetry precision of a triplet is measured by the distance r from

the ideal point X to its nearest point. When evaluated relative to a local window L of radius R, this

precision can also be expressed as the probability that, among the n points in the local window, the

nearest point to X be at most at a distance r.

Figure . shows the result of the good continuation detector for the three examples of Fig-

ure .. The result for the first and second examples is perceptually correct. The result for the

third example is better than the one of the point alignment detector, in the sense that it determines

that the whole structure is perceptually relevant. The explanation of the figure is however not the

most plausible one, as a human observer tends to see the three closed curves. To obtain that result

we would need to incorporate other gestalts such as closure and convexity. It would also require a

comparison of the meaningfulness as a global interpretation, between the combination of the three

curves and a single long curve going through all points. This kind of comparison is not addressed

in this thesis but it is clearly a necessary line of future research in computational Gestalt theory.

This work has led to the publications of the following articles: Lezama et al. [b] and

Lezama et al. [a].

Figure 1.7: Results of the good continuation detector in the examples of Figure 1.1. The first and second

examples are again correctly solved. In the third example, the result is successful in terms of finding the

best curve. However, most viewers describe this figure as a set of three convex closed curves. In this case

a comparison in meaningfulness of the combined three curves versus the long curve would be required.
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. Vanishing Points Detection

In the third part of this thesis, we will demonstrate the utility of the framework on practical prob-

lems. In particular, we will use the point alignment detector as a general, unsupervised and robust

clustering technique for the classical computer vision problem of vanishing point detection. Our

results improve the state-of-the-art [Xu et al. ] on two public and widely used datasets [Denis

et al. ; Barinova et al. ].

The vanishing point detection problem can be briefly described as follows. Under the pinhole

camera model, D lines in the space are transformed into D lines in the image. Moreover, par-

allel lines in D are projected into lines that converge on a point (perhaps at infinity) known as a

vanishing point (see Figure .). In the presence of parallel lines, as is common in human-made

environments, vanishing points provide crucial information about the D structure of the scene

(a) (b)
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Figure 1.8: Brief representation of the steps involved in our vanishing point detection method. (a) Orig­

inal image. (b) Detected line segments (black) and alignments of line segment endpoints (blue). (c)

Mapping of the line segments using the PClines transform [Dubská et al. 2011], where converging lines

become aligned points. Detected alignments are represented with two black lines. Colored dashed

lines represent the ground truth vanishing points. (d) Resulting vanishing directions. Each line segment

converging to one of the vanishing points is colored accordingly.
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and have applications in camera calibration, single-view D scene reconstruction, autonomous

navigation, and semantic scene parsing, to mention a few.

We will pose the vanishing point detection problem as a problem of finding clusters of aligned

points. In order to do this, we use the recently introduced PClines transformation [Dubská et al.

], a line-to-point mapping that maps converging lines into aligned points. In fact, this is a

perfect setting to apply the point alignment detector. Line segments in the image that do not cor-

respond to a group of converging lines will become noise points surrounding the clusters. On the

other hand, an image can have an arbitrary number of vanishing points. The unsupervised nature

of the point alignment detection algorithm allows it to detect the number of clusters automatically.

We will also see that a second application of the alignment detector is possible in this problem.

By finding alignments of line segment endpoints, we will introduce new cues for the vanishing

directions. Imagine for example an image where only the vertical borders of a row of windows have

been detected. By joining the endpoints of the line segments, new horizontal cues are obtained.

Figure . shows an example of the vanishing point detection procedure. In Figure .(b), we

show in blue the alignments of line segment endpoints found by the point alignment detector.

In fact, thanks to the line segment endpoints alignments the method finds horizontal lines in the

building in the back, which were missed by the line segment detector. In Figure .(c), we show the

dual space with the points resulting of the transformation of the line segments using the PClines

transform. The colored dashed lines in the dual space represent points in the image corresponding

to the ground truth vanishing points. As it can be seen, the converging segments in the image

form elongated clusters in the dual space. These elongated clusters are correctly detected by our

algorithm (the detections are represented by two black bars). Figure .(d) shows in a different

color the line segments corresponding to each vanishing point.

Once the vertical and horizontal vanishing points have been determined, one can estimate the

position of the horizon line. In the case where there are multiple horizontal vanishing points, this

estimation is done with a weighted average. In our method, we use the NFA of each detection as

the weights. The error in the estimation of the horizon line is a quantitative performance measure

widely used in the literature [Barinova et al. ; Wildenauer and Hanbury ; Vedaldi and

Zisserman ; Xu et al. ]. Using this error measure, our method outperforms the state-
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Figure 1.9: Cumulative histograms of the horizon detection error for our method and competing meth­

ods. The horizontal axis represents the horizon line error. The vertical axis represents the ratio of images

with horizon line error lower than the corresponding abscissa.
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of-the-art [Xu et al. ] in two standard datasets of a hundred images each, the York Urban

Dataset [Denis et al. ] and the Eurasian Cities Dataset [Barinova et al. ]. Figure . shows

precision-recall curves for our method and competitors for both datasets.

This work has led to the publications of the following articles: Lezama et al. [a] and Lezama

et al. [b].
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2 On Point Alignments Detection

In spite of many interesting attempts, the problem of automatically finding align-

ments in a D set of points seems to be still open. In this chapter, we shall first

illustrate the difficulty of the problem by elementary examples and then propose an

elaborate solution. We show that a correct alignment detection depends on not less

than four interlaced criteria, namely the amount of masking in texture, the relative

bilateral local density of the alignment, its internal regularity, and finally a redun-

dancy reduction step. Extending tools of the a contrario detection theory, we show

that all of these detection criteria can be naturally embedded in a single probabilis-

tic a contrario model with a single user parameter, the number of false alarms. Our

contribution to the a contrario theory is the use of sophisticated conditional events

on random point sets, for which expectation we nevertheless find easy bounds. By

these bounds the mathematical consistency of our detection model receives a simple

proof. Our final algorithm also includes a new formulation of the exclusion principle

in Gestalt theory to avoid redundant detections. The method is carefully compared to

three state-of-the-art algorithms. Limitations of the final method are also illustrated

and explained. In Chapter , this method will be successfully applied to real data in

the classic problem of vanishing point detection.

The detection algorithm produced in this chapter can be tested online on any dot

pattern at

http://dev.ipol.im/~jirafa/ipol_demo/point_alignment_detection/

(user: demo, password: demo)

. Introduction

We will consider the problem of finding collinear subsets within a planar set of points. This prob-

lem arises in many contexts of data analysis: Alignments are among the simplest structures ob-

servable in a point set and D alignments are viewpoint-invariant structures. They constitute a

classic example in statistical shape analysis [Small ]. Alignment detection is relevant in geol-

ogy, where the alignment of features, for example earthquake epicenters, reflects underlying faults

and joints [Lutz ; Hall et al. ; Hammer ]. In archaeology, geometric configurations

of post holes, in particular alignments, often reveal the disposition of buildings even in presence

of overlaps from different time periods [Small ; Litton and Restorick ; Broadbent ].

The computer vision applications include the detection of grids [Dubská et al. ], calibration


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Figure 2.1: Illustration of the complexity of the point alignment problem: Exactly the same set of aligned

dots is present in the three images, but it is only perceived as such in the first one. The second one is

a classic “masking by texture” case and the third shows a “masking by structure”, often called “Gestalt

conflict”.

patterns [Escalera and Armingol ] or vanishing points [Havel et al. ; Zhao et al. ], and

the interpretation of high resolution remote sensing images [Vanegas et al. ].

Dot patterns are often used in the study of visual perception. Several psychophysical studies led

by Uttal have investigated the effect of direction, quantity and spacing in dot alignment perception

[Uttal et al. ; Uttal , , ]. The detection of collinear dots in noise was the target of

other studies attempting to assess quantitatively the masking effect of the background noise [Smits

et al. ; Kiryati et al. ; Tripathy et al. ; Mussap and Levi ]. The recent work of Preiss

[] analyzes various perceptual tasks on dot patterns from a psychophysical and computational

perspective. An interesting computational approach to detect gestalts in dot patterns is presented

in Ahuja and Tuceryan [], although the study is limited to very regularly sampled patterns.

While it may seem that point alignments are simple structures, Figure . shows how complex

an alignment event can be. From a purely factual point of view, the same alignment is present

in the three figures. However, it is only perceived as such by most viewers in the first one. The

second and the third figures illustrate two occurrences of the masking phenomenon discovered by

gestaltists [Kanizsa ]: the masking by texture, which occurs when a geometric structure is sur-

rounded by a clutter of randomly distributed similar objects or distractors, and the masking by

structure, which happens when the structure is masked by other perceptually more relevant struc-

tures, a phenomenon also called perceptual conflict by gestaltists [Metzger ,  (originally

); Kanizsa ]. The magic disappearance of the alignment in the second and third figures

can be accounted for in two very different ways. For the first one, a probabilistic a contrario model

[Desolneux et al. ] can lead to a quantitative prediction. The second one is explained by the

winning intervention of three more powerful grouping laws, good continuation, convexity and clo-

sure in the perceptual conflict [Kanizsa ].

These examples show that a mathematical definition of point alignment perception is required

before even starting to discuss how to detect them. A purely geometric-physical description is

clearly not sufficient to account for the masking phenomenon. Indeed, an objective observer mak-

ing use of a ruler would be able to state the existence of the very same alignment at the same

precision on all three figures. But this statement would contradict our perception, as well as any

reasonable computational (definition and) theory of alignment detection.

A classic approach to this problem uses the Hough transform [Hough Dec. , ; Duda and

Hart ], first used for the detection of subatomic particles in bubble chamber pictures [Hough

]. To compute the Hough transform, each point votes in a parameter space for the lines that

pass through it. After accumulation of the votes of all points, the lines that correspond to local





maxima in the parameter space are selected as detections. Several variations of the basic method

were proposed; in particular, the methods proposed in Thrift and Dunn []; Kiryati and M.

[, ] are robust to errors in the point positions. When the Hough transform is applied to a

random set of points, it will still find a local maximum which does not correspond to a significant

collinear subset. A threshold on the number of votes is usually imposed to cope with this problem.

Even if the Hough transform methods provide successful solutions in many applications [Wadge

and Cross ], a sound criterion for setting this threshold is missing.

Other approaches use point clustering methods especially adapted to elongated clusters [Murtagh

and Raftery ]. Using a particular distance between points and clusters [Davé ], gen-

eral clustering algorithms can be used to detect collinear subsets [Frigui and Krishnapuram ;

Figueiredo and Jain ]. The same problem can be approached using a parametric model fitting

[Danuser and Stricker ; Fischler and Bolles ]. Given a parametric model, a criterion for

point compatibility with the model, and a final validation criterion for the model, RANSAC [Fis-

chler and Bolles ] is an efficient heuristic for fitting the searched model to the data. RANSAC,

however, provides no solution on how to choose these criteria for a given model or application.

We are particularly interested in methods that provide an evaluation of the statistical signifi-

cance of the detected aligned structures. An example in astronomy may illustrate the importance

of such evaluation: In  the discovery of several very precise alignments of quasars in the sky

raised the question of a theory explaining this presence [Arp and Hazard ]. These alignments,

however, were later dismissed by a statistical analysis, first by simulations [Edmunds and H. ]

and then analytically [Zuiderwijk ], showing that alignments of such precision could easily

occur just by chance.

The expected number of events where k among n random points are to be found in some

rectangle of a given shape was already computed in  using a Poisson random model [Mack

]. This could be the origin of the strip method for defining alignments as a large number of

points covered by a thin rectangle (the thinner, the more precise). The same random model was

used in Broadbent [], now explicitly used for detecting point alignments. But the alignment

was defined differently: three points are considered aligned when the triangle formed by them is

flat enough. Alignments of more points are evaluated by all the possible triangles observed among

the points. Various theoretical results about the flat triangles methods are described in Kendall and

Kendall [], where Poisson as well as Gaussian distributions are considered in different domain

shapes.

Since then, many different algorithms have been proposed, most of them variations of the strip

method. Monte Carlo simulations of random points provide the estimate of the significance in

Zhang and Lutz [] while a binomial model is used in Amorese et al. []. A set of heuristics

are added in Arcasoya et al. []. The method in Hall et al. [] also applies the strip method

with a Poisson model, but the density is estimated locally. A refined statistical test, including

angular statistics, is proposed in Hammer []. Another approach combines a concatenation of

center-surround operators with a meaningfulness evaluation [Lowe and Binford ].

Here we develop a method derived from the a contrario methodology proposed by Desol-

neux, Moisan and Morel [Desolneux et al. , ]. It is a mathematical formalization of the

non-accidentalness principle proposed for perception [Witkin and Tenenbaum b; Albert and

Hoffman ; Wagemans ] (sometimes called Helmholtz principle). In a nutshell, an observed

structure is relevant if it would rarely occur by chance. This scheme has been repeatedly used in the

past. In the words of David Lowe, “we need to determine the probability that each relation in the

image could have arisen by accident, P (a). Naturally, the smaller that this value is, the more likely

the relation is to have a causal interpretation” [Lowe , p.]. The difference in the a contrario
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Figure 2.2: A schematic representation of the evaluated rectangle. In a domain with N points, there are
N(N−1)

2 W possible rectangles. In this example, N = 47 and k(r,x) = 8 among them are inside the

rectangle r.

methodology is that the expectation of the number of false detections is controlled instead of the

probability of observing a false detection. The resulting statistical framework provides estimates of

significance similar in spirit to the methods mentioned before.

As a simple example to introduce the methodology, Desolneux et al. showed a point alignment

detector using a simple strip method with a Poisson model [Desolneux et al. , Section .].

Even before, Kiryati et al. [] used a similar idea for setting thresholds in the voting space of

the Hough transform. More recently, Tepper and Sapiro [a] proposed a novel approach for

consensus problems based on combining bi-clustering and a contrario methods; one of their ap-

plications is in point alignment detection. Our goal in this work is to extend these initial methods

into a working algorithm that can be used to successfully solve real image processing problems

[Lezama et al. a]. To cope with obvious objections and counterexamples, we shall prove that

three new features are necessary to handle the variety of alignments. We shall show that a reliable

algorithm requires: a) a local Poisson density estimation, b) an evaluation of the regularity of the

spacing of the points in the alignment, and c) a criterion to select the best interpretation among

redundant detections. This work concentrates on the criteria for obtaining the best possible result

with an unsupervised algorithm, neglecting the efficiency concerns, which remains as a future line

of research.

The rest of this chapter is organized as follows: Section . introduces the basic concepts and

techniques used in the state-of-the-art point alignment detectors, and describes the classic strip

method. Sections ., . and . improve this basic method by incorporating local point density

estimation, lateral estimation, and measurements of the regularity of the point spacing. Section .

discusses how to cope with the redundancy of detections. Section . analyses the complexity

of the final algorithm, and a possible acceleration is proposed in Section .. Section . shows

experiments and comparisons. Section . concludes the study.

. Basic Point Alignment Detector

Consider a set of N points defined in a domain D with area SD, see Figure .. We are inter-

ested in detecting groups of points that are well aligned. A reasonable a contrario hypothesis H0

for this problem is to suppose that the N points are the result of a random process where points

are independent and uniformly distributed in the domain. Recently, a technique for relaxing the

independence assumption in the a contrario framework has been presented [Myaskouvskey et al.
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], showing more accurate predictions of the false detections rate. In this work however, since

the basic elements are not computed from image pixels we will keep the independence assumption.

Citing Lowe again, “One of the most general and obvious assumptions we can make is to assume

a background of independently positioned objects in three-space, which in turn implies indepen-

dently positioned projections of the objects in the image.” [Lowe , p.] This does not mean

that the method will only work when the background points follow exactly this hypothesis. What

is important is that this is a good model for isotropic elements where any alignment is accidental.

As we will see in practice, the method discriminates well between accidental alignments and causal

ones. The question is then to evaluate whether the presence of aligned points contradicts the a

contrario model or not.

Given an observed set of N points x = {xi}i=1...N and a rectangle r (a candidate for align-

ment), we will denote by k(r,x) the number of those points observed inside r. The decision

of whether to keep this candidate or not is based on two principles: a good candidate should

be non-accidental, and any equivalent or better candidate should be kept as well. The degree

of non-accidentalness of a rectangle r can therefore be measured by how small the probabil-

ity P
[

k(r,X) ≥ k(r,x)
]

is, where X denotes a random set of N points following H0. In

the same vein, a rectangle r′ will be considered at least as good as r given the observation x, if

P
[

k(r′,X) ≥ k(r′,x)
]

≤ P
[

k(r,X) ≥ k(r,x)
]

.

The question is how to control the expected number of accidental detections [Desolneux et al.

]. Given that Ntests candidates will be tested, the expected number of rectangles which are as

good as r under H0 is less than

Ntests · P
[

k(r,X) ≥ k(r,x)
]

. (.)

The H0 stochastic model fixes the probability law of the random number of points in the rectangle,

k(r,X). The discrete nature of this law implies that (.) is not actually the expected value but an

upper bound of it [Desolneux et al. ; Grompone von Gioi and Jakubowicz ]. Let us now

analyze the two factors in (.).

Under the a contrario hypothesis H0 (a planar Poisson process [Miles ]), the probability

that one point falls into the rectangle r is p = Sr

SD
, where Sr is the area of the rectangle and SD the

area of the domain. As a consequence of the independence of the random points, k(r,X) follows

a binomial distribution. Thus, the probability term P
[

k(r,X) ≥ k(r,x)
]

is given by

P

[

k(r,X) ≥ k(r,x)
]

= B
(

N, k(r,x), p
)

(.)

where B(n, k, p) is the tail of the binomial distribution

B(n, k, p) =
n
∑

j=k

(

n

j

)

pj(1− p)n−j . (.)

The number of tests Ntests corresponds to the total number of rectangles that could contain an

alignment, which in turn is proportional to the number of pairs of points defining such rectangles.

With a set of N points this gives
N(N−1)

2 different pairs of points. The set of rectangle widths to

be tested must be specified a priori as well. In the a contrario approach, a compromise must be

found between the number of tests and the precision of the structures that are being sought for.

The larger the number of tests, the lower the statistical relevance of detections, but also the more

precise. However, if the set of tests is chosen wisely, structures fitting accurately the tests will have

a very low probability of occurrence under H0 and will therefore be more significant.
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Algorithm : Basic point alignment detector

input : A set x of N points [W = 8, ε = 1]

output: A list out of point alignments

 for i = 1 to N do

 for j = 1 to i− 1 do

 l ← distance(xi, xj)
 w ← l/10
 for 1 to W do

 r ← rect(xi, xj, w)
 Compute NFA1(r,x) [Eq. ()]

 if NFA1(r,x) ≤ ε then

 out← r

 w ← w/
√
2

For a particular problem, one may have reasons to restrict the shape of rectangles. Neverthe-

less, this inquiry is not aimed at any particular application. Thus, we will rely on the following

general criteria. An alignment should be an elongated structure, so a minimal ratio between the

length and the width of the rectangle must be fixed. Then, a fixed number of widths must be

tested, decreasing geometrically from the maximal width. (The choice of a geometric series is

justified by the obvious scale invariance of the detection problem.) Our implementation uses a

length/widthmax ratio of  and a geometric series of  width values with a factor 1/
√
2. The to-

tal number of widths to be tested will be denoted by W . Then the total number of tested rectangles

is

Ntests =
N(N − 1)

2
W. (.)

The fundamental quantity of an a contrario approach is the Number of False Alarms (NFA) asso-

ciated with a rectangle r and a set of points x,

NFA1(r,x) = Ntests · P
[

k(r,X) ≥ k(r,x)
]

(.)

=
N(N − 1)

2
W · B

(

N, k(r,x), p
)

.

This quantity gives a precise meaning to Eq. (.). It will be interpreted as a bound of the expected

number of rectangles containing enough points to be as rare as r under H0. When the NFA associ-

ated with a rectangle is large, this means that such an event is to be expected under the a contrario

model and therefore is not relevant. On the other hand, when the NFA is small, the event is rare

and probably meaningful. A rarity threshold ε must nevertheless be fixed for each application.

Rectangles with NFA1(r,x) ≤ ε will be called ε-meaningful rectangles [Desolneux et al. ],

constituting the detection result of the algorithm. A pseudo-code of this method is described in

Algorithm .

Theorem  (Desolneux et al. []).

E

[

∑

r∈R
1NFA1(r,X)≤ε

]

≤ ε
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where E is the expectation operator, 1 is the indicator function,R is the set of test rectangles, and X is

a random set of points under H0.

The theorem states that the average number of ε-meaningful rectangles under the a contrario

model H0 is bounded by ε. Thus, the number of detections in noise is controlled by ε and it can be

made as small as desired. In other words, this detector satisfies the non-accidentalness principle.

Proof. We define k̂(r) as

k̂(r) = min

{

κ ∈ N, P
[

k(r,X) ≥ κ
]

≤ ε
N(N−1)

2 W

}

.

Then, NFA1(r,X) ≤ ε is equivalent to k(r,X) ≥ k̂(r). Now,

E

[

∑

r∈R
1NFA1(r,X)≤ε

]

=
∑

r∈R
P
[

NFA1(r,X) ≤ ε
]

=
∑

r∈R
P

[

k(r,X) ≥ k̂(r)
]

.

But, by definition of k̂(r) we know that

P

[

k(r,X) ≥ k̂(r)
]

≤ ε
N(N−1)

2 W
.

and using that #R = N(N−1)
2 W we get

E

[

∑

r∈R
1NFA1(r,X)≤ε

]

≤
∑

r∈R

ε
N(N−1)

2 W
= ε

which concludes the proof.

As shown in Desolneux et al. [], the detection result is not very sensitive to the value of

ε. Following Desolneux et al. [, ], we shall therefore fix ε = 1 for our experiments. This

corresponds to accepting on average at most one false detection per data set in the a contrario

model.

Figure . shows the results of the basic algorithm in two simple cases. The results are as

expected: the visible alignment in the first example is detected, while no detection is produced in

the second. Actually, the points in the first example are also present in the second one, but the

addition of random points masks the alignment to our perception. The first example produces

many redundant detections; this issue will be addressed in Section ..

. Local Density Estimation

The basic point alignment detector of section . takes as a contrario assumption a uniform point

density in the whole domain and evaluates alignments as a local excess with respect to this global

density. This comparison is nevertheless too restrictive, because these alignments have been de-

tected as local violations of a global uniformity. Consider instead a configuration of points with

two zones of different point density, like in Figure . (a). Applying the basic alignment detector
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(a) (b)

(c) (d)

Figure 2.3: Results from the basic point alignment detector (Algorithm 1). (a) and (c) are the input data,

and (b) and (d) are the corresponding results. Each detection is represented by a rectangle. In (b) the

algorithm correctly detects the obvious alignment. Notice that multiple and redundant rectangles were

detected; this issue will be dealt with in Section 2.6. The data set (c) contains the same set of points in

(a) plus added noise points. The aligned points are still present but hardly perceptible. The algorithm

handles correctly this masking phenomenon and produces no detection.

(a) (b) (c) (d)

Figure 2.4: Local vs. global density estimation. (a) The set of points. (b) Alignments found using global

density estimation (Algorithm 1). The many detected rectangles indeed have a high point density com­

pared to the average image density used as background model. (c) Alignments found using local den­

sity estimation (Algorithm 2). The local density is lower on the border, hence the deceptive detection.

(d) No alignment is found when the local density is estimated by the maximum density on both sides of

the alignment (Algorithm 3).
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Figure 2.5: Left: The point density is estimated in the local window R surrounding the alignment r.

Right: In a refined version of the algorithm, the density of points is measured on each side of the eval­

uated rectangle. The maximum of the densities in R1 and R3 is taken as an estimation of the point

density in both R1 and R3.

yields an unexpected detection shown in Figure . (b). Each of the detected rectangles certainly

has a non-accidental excess of points in the rectangles with respect to the global density, but this

is definitely not what we are looking for. This example shows that we are actually interested in

non-accidental events with an excess of points conditioned to the observation of a local density

(which may well be lower or higher than the global density). Such local density estimations for the

random point models have been used in Amorese et al. []; Hall et al. []; Hammer [].

In the interpretation proposed here, a more sophisticated definition of the alignment event should

not measure the non-accidentalness by an unusually small probability, but by an unusually small

conditional probability.

The local density is estimated by counting the points in a rectangular local window, with the

same length as the alignment and a given width. To account for the scale invariance of the de-

tection, the width of the local window is proportional to the length of the alignment. For every

alignment, a number of proportion ratios or scales are tried. The largest window is square of side

equal to the length of the alignment. Then a fixed number L = 8 of widths in geometric series are

tried. The choice for a geometric series with factor 1/
√
2 is again justified by the scale invariance

of the detection problem. The number of tests Ntests corresponds to the total number of obser-

vations performed, which in turn is related to the number of rectangles and the different local

windows evaluated for each rectangle. For N points and L different sizes of local windows, this

gives
N(N−1)

2 WL different tests.

When the rectangle to be tested lies near the border of the domain, the local window may be

partly outside it, where no point information is available, leading to a wrong density estimation.

This also happens when the rectangle covers the diagonal of the domain. A symmetric extension of

the point set across the domain boundary is used to estimate the point density in windows meeting

the outside. The candidates are still selected among the original points.

Let R be the local window surrounding the alignment r, as shown in Figure . (left). The

probability of one point in R falling in r is p = Sr

SR
where Sr and SR are the areas of r and R re-

spectively. The degree of non-accidentalness of an observation will be measured by the probability

that a rectangle has a higher density than its surroundings, conditioned by the observation of the
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surrounding density. The NFA for the new detector is accordingly defined as

NFA2(r,R,x) = Ntests · P
[

k(r,X) ≥ k(r,x)
∣

∣

∣
n(R,X) = n(R,x)

]

=
N(N − 1)

2
WL · B

(

n(R,x), k(r,x), p
)

, (.)

where n(R,x) is the number of points observed in x inside R. The pseudo-code for this method

is described in Algorithm .

Theorem .

E





∑

r∈R

∑

R∈R′(r)

1NFA2(r,R,X)≤ε



 ≤ ε

where E is the expectation operator, 1 is the indicator function, R is the set of rectangles considered,

R′(r) is the set of surrounding local windows for each rectangle r, and X is a random set of points on

H0.

Proof. We define k̂(r,R,M) as

k̂(r,R,M) = min

{

κ ∈ N,P
[

k(r,X) ≥ κ
∣

∣n(R,X) = M
]

≤ ε
N(N−1)

2 WΩ

}

.

Here, R determines the domain of the local window and M the number of points in it. Notice

that the probabilistic model inside R conditioned to the fact that the number of observed points is

M , is still uniform and independent. Thus, the conditional law of the number of points inside any

subset of R still follows a binomial law. Thus, given that the number of points observed in R is M ,

NFA2(r,R,X) ≤ ε is equivalent to k(r,X) ≥ k̂(r,R,M). Now,

E





∑

r∈R

∑

R∈R′(r)

1NFA2(r,R,X)≤ε



 =
∑

r∈R

∑

R∈R′(r)

P
[

NFA2(r,R,X) ≤ ε
]

=

∑

r∈R

∑

R∈R′(r)

N
∑

M=0

P
[

NFA2(r,R,X) ≤ ε
∣

∣n(R,X) = M
]

· P
[

n(R,X) = M
]

=

∑

r∈R

∑

R∈R′(r)

N
∑

M=0

P

[

k(r,X) ≥ k̂(r,R,M)
∣

∣n(R,X) = M
]

· P
[

n(R,X) = M
]

.

But, by definition of k̂(r,R,M) we know that

P

[

k(r,X) ≥ k̂(r,R,M)
∣

∣n(R,X) = M
]

≤ ε
N(N−1)

2 WΩ
,

and using that #R = N(N−1)
2 W , #R′(r) = Ω and

∑N
M=0P

[

n(R,X) = M
]

= 1 we get

E





∑

r∈R

∑

R∈R′(r)

1NFA2(r,R,X)≤ε



 ≤
∑

r∈R

∑

R∈R′(r)

ε
N(N−1)

2 WΩ

N
∑

M=0

P
[

n(R,X) = M
]

= ε

which concludes the proof.
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Algorithm : Local density alignment detector

input : A set x of N points [W = 8, L = 8, ε = 1]

output: A list out of point alignments

 for i = 1 to N do

 for j = 1 to i− 1 do

 l ← distance(xi, xj)
 w ← l/10
 for 1 to W do

 r ← rect(xi, xj, w)
 wL ← l
 for 1 to L do

 R← rect(xi, xj, wL)
 Compute NFA2(r, R,x) [Eq. ()]

 if NFA2(r, R,x) ≤ ε then

 out← r

 wL ← wL/
√
2

 w ← w/
√
2

. Lateral Density Estimation

While the local density estimation can provide a more adjusted background model, it can also

introduce new problems such as a “border effect”, as shown in Figure . (c). Indeed, the density

estimation is lower on the border of the left half of the image than inside it. Thus, the previous

algorithm (Algorithm ) detects alignments on the border with non-accidental, meaningful excess

with respect to the local density.

In order to avoid this effect, the more sophisticated Algorithm  used in Figure . (d) takes, as a

conservative estimation of the background density, the maximum of the densities measured on both

sides of the alignment. In short, to be detected, an alignment must show a higher point density than

in both regions immediately on its left and right. This local alignment detector is therefore similar

to a classic second order Gabor filter where an elongated expiatory region is surrounded by two

inhibitory regions. The local density estimation is calculated as illustrated in Figure . (right): The

local window is divided in three parts. R1 is the rectangle formed by the area of the local window

on the left of the alignment. R3 is the area of the local window on the right of the alignment, and

R2 is the rectangle which forms the candidate alignment. Next, the algorithm counts the numbers

of points M1, M2, and M3 in R1, R2 and R3, respectively, and defines the conservative estimate

of the local number of points as

n∗(R,x) = 2max(M1,M3) +M2. (.)

We then define the NFA of the event “the density in R2 has a significant excess with respect to the
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density estimated in R” by

NFA3(r,R,x) = Ntests · P
[

k(r,X) ≥ k(r,x)
∣

∣n(R,X) = n∗(R,x)
]

=
N(N − 1)

2
WL · B

(

n∗(R,x), k(r,x), p
)

. (.)

Indeed, conditioned to the fact that we assume n(R,X) = n∗(R,x) under the model H0, the

n∗(R,x) points in R are still uniformly and independently distributed. The pseudo-code for this

method is described in Algorithm .

Theorem .

E





∑

r∈R

∑

R∈R′(r)

1NFA3(r,R,X)≤ε



 ≤ ε

where E is the expectation operator, 1 is the indicator function, R is the set of rectangles considered,

R′(r) is the set of surrounding local windows for each rectangle r, and X is a random set of points on

H0.

Proof. First define k̂(r,R,M) by

k̂(r,R,M) = min

{

κ ∈ N,P
[

k(r,X) ≥ κ
∣

∣n(R,X) = M
]

≤ ε
N(N−1)

2 WΩ

}

.

When n(R,X) = M , we have that NFA3(r,R,X) ≤ ε is equivalent to k(r,X) ≥ k̂(r,R,M). In

consequence,

E





∑

r∈R

∑

R∈R′(r)

1NFA3(r,R,X)≤ε



 =
∑

r∈R

∑

R∈R′(r)

P
[

NFA3(r,R,X) ≤ ε
]

=

∑

r∈R

∑

R∈R′(r)

2N
∑

M=0

P
[

NFA3(r,R,X) ≤ ε
∣

∣n(R,X) = M
]

· P
[

n(R,X) = M
]

=

∑

r∈R

∑

R∈R′(r)

2N
∑

M=0

P

[

k(r,X) ≥ k̂(r,R,M)
∣

∣n(R,X) = M
]

· P
[

n(R,X) = M
]

.

Note that, because of the maximum density estimation, the “estimated” number of points inside a

rectangle can theoretically be as large as 2N . But, by definition of k̂(r,R,M),

P

[

k(r,X) ≥ k̂(r,R,M)
∣

∣n(R,X) = M
]

≤ ε
N(N−1)

2 WΩ
,

and using that #R = N(N−1)
2 W , #R′(r) = Ω and

∑2N
M=0P

[

n(R,X) = M
]

= 1 we get

E





∑

r∈R

∑

R∈R′(r)

1NFA3(r,R,X)≤ε



 ≤
∑

r∈R

∑

R∈R′(r)

ε
N(N−1)

2 WΩ

2N
∑

M=0

P
[

n(R,X) = M
]

= ε,

which concludes the proof.
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Algorithm : Lateral local alignment detector

input : A set x of N points [W = 8, L = 8, ε = 1]

output: A list out of point alignments

 for i = 1 to N do

 for j = 1 to i− 1 do

 l ← distance(xi, xj)
 w ← l/10
 for 1 to W do

 r ← rect(xi, xj, w)
 wL ← l
 for 1 to L do

 R1 ← local-win-left(xi, xj, wL)
 R3 ← local-win-right(xi, xj, wL)
 Compute NFA3(r, R,x) [Eq. ()]

 if NFA3(r, R,x) ≤ ε then

 out← r

 wL ← wL/
√
2

 w ← w/
√
2

. Alignment Regularity

There is still an objection to Algorithm : One can stir wrong detections by introducing small point

clusters as shown in Figure . (left). The detected alignment in Figure . (center) seems clearly

wrong. It is nevertheless explainable in the setting of Algorithm : there is indeed a meaningful

point density excess inside the red rectangle. But this excess is caused by the clusters, not by what

could be termed an alignment. While the algorithm counted every point, human perception seems

to group the small clusters into a single entity, and to count them only once. This unwanted result

is a consequence of the fact that Algorithm  is searching for elongated clusters of higher density

without any cluster regularity requirement. As suggested in other studies [Preiss ; Tripathy

et al. ; Uttal ], the density is not the only property that makes an alignment perceptually

meaningful; another characteristic to consider is the uniform spacing or regularity of the points

in it, which the gestaltists call the law of constant spacing. To cope with both issues (avoiding

small clusters and favoring regular spacing) a more advanced version of the alignment detector

divides each candidate rectangle into equal boxes. Instead of counting the total number of points,

the algorithm counts the number of boxes that are occupied by at least one point. We call them

occupied boxes. In this way, the minimal NFA is attained when the points are perfectly distributed

along the alignment. In addition, a concentrated cluster in the alignment has no more influence

on the alignment detection than a single point in the same position.

We want to estimate the expected number of occupied boxes in the background model H0.

The probability of one point falling in one of the boxes is p0 =
SB

SL
, where SB and SL are the areas

of the boxes and the local window respectively. Then, the probability of having one box occupied
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Figure 2.6: Left: Dot pattern with two point clusters but no alignment. Center: A thin rectangle with

a high point density was found, but it would constitute a false detection. Right: The algorithm divides

the rectangle into boxes and counts the occupied ones, avoiding this misleading cluster effect. The

occupied boxes are marked in red. In this case, no alignment is detected.

by at least one of the n∗(R,x) points (i.e., of an occupied box) is

p1(R, c) = 1− (1− p0)
n∗(R,x). (.)

We will denote by b(r, c,x) the observed number of occupied boxes in the rectangle r when divided

into c boxes. Finally, the probability of having at least b(r, c,x) of the c boxes occupied is

B
(

c, b(r, c,x), p1(R, c)
)

. (.)

A set C of different values are tried for the number of boxes c into which the rectangle is divided,

and the one producing the lowest NFA is taken. Thus, the number of tests must be multiplied by

its cardinality #C = C . In practice we set C =
√
N and that leads to

Ntests =
N(N − 1)

2
WLC =

N(N − 1)

2
WL
√
N. (.)

The NFA of the new event definition is then

NFA4(r,R, c,x) = Ntests · P
[

b(r, c,X) ≥ b(r, c,x)
∣

∣n(R,X) = n∗(R,x)
]

=
N(N − 1)

2
WLC · B

(

c, b(r, c,x), p1(R, c)
)

. (.)

Figure . (right) shows an example of the resulting algorithm and we will show more in section

.. Algorithm  presents the pseudo-code for this final refined version of the alignment detector.

Theorem .

E





∑

r∈R

∑

R∈R′(r)

∑

c∈C
1NFA4(r,R,c,X)≤ε



 ≤ ε

where E is the expectation operator, 1 is the indicator function, R is the set of rectangles considered,

R′(r) is the set of surrounding local windows for each rectangle r, C is the set of number of boxes tested,

and X is a random set of points under H0.
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Proof. We define b̂(r,R, c,M) as

b̂(r,R, c,M) = min

{

β ∈ N,P
[

b(r, c,X) ≥ β
∣

∣n(R,X) = M
]

≤ ε
N(N−1)

2 WLC

}

.

R determines the domain of the local window and M the number of points in it. The probabilistic

model inside R, conditioned to the fact that the number of observed points is M , is still uniform

and independent, and the conditional law of the number of points inside any subset of R follows

a binomial law. Then, NFA4(r,R, c,X) ≤ ε is equivalent to b(r, c,X) ≥ b̂(r,R, c,M) when

M = n∗(R,X). Now,

E





∑

r∈R

∑

R∈R′(r)

∑

c∈C
1NFA4(r,R,c,X)≤ε



 =
∑

r∈R

∑

R∈R′(r)

∑

c∈C
P
[

NFA4(r,R, c,X) ≤ ε
]

=

∑

r∈R

∑

R∈R′(r)

∑

c∈C

2N
∑

M=0

P
[

NFA4(r,R, c,X) ≤ ε
∣

∣n(R,X) = M
]

· P
[

n(R,X) = M
]

=

∑

r∈R

∑

R∈R′(r)

∑

c∈C

2N
∑

M=0

P
[

b(r, c,X) ≥ b̂(r,R, c,M)
∣

∣n(R,X) = M
]

· P
[

n(R,X) = M
]

. (.)

Note that, because of the maximum density estimation n∗(R,x), the estimated number of points

inside a rectangle can theoretically be as large as 2N , and thus the range for M . By definition of

b̂(r,R, c,M),

P

[

b(r, c,X) ≥ b̂(r,R, c,M)
∣

∣n(R,X) = M
]

≤ ε
N(N−1)

2 WLC
,

and using #R = N(N−1)
2 W , #R′(r) = L, #C = C and

∑2N
M=0P

[

n(R,X) = M
]

= 1,

we get

E





∑

r∈R

∑

R∈R′(r)

∑

c∈C
1NFA4(r,R,c,X)≤ε



 ≤
∑

r∈R

∑

R∈R′(r)

∑

c∈C

ε
N(N−1)

2 WLC

2N
∑

M=0

P
[

n(R,X) = M
]

= ε,

which concludes the proof.

. Redundancy

As was observed in Figure ., all the described alignment detectors may produce redundant detec-

tions. Given a very meaningful alignment, many smaller or larger rectangles overlapping the main

alignment are also meaningful. This redundancy phenomenon can involve points that belong to

the real alignment as well as background points near the alignment, as illustrated in Figure ..

The question is how to detect the best rectangle, both explaining and masking the redundant de-

tections.

A classic redundancy elimination method is Canny’s non-maximal suppression Canny [],

where maximal edge points inhibits their neighbors. A non-maximal suppression is also needed

when using the Hough transform [Duda and Hart ]. Gerig and Klein [] and Gerig []
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Algorithm : Point alignment detector with boxes

input : A set x of N points [W = 8, L = 8, ε = 1]

output: A list out of point alignments

 for i = 1 to N do

 for j = 1 to i− 1 do

 l ← distance(xi, xj)
 w ← l/10
 for 1 to W do

 r ← rect(xi, xj, w)
 wL ← l
 for 1 to L do

 R1 ← local-win-left(xi, xj, wL)
 R3 ← local-win-right(xi, xj, wL)
 for c ∈ C do

 Compute NFA4(r, R, c,x) [eq..]

 if NFA4(r, R, c,x) ≤ ε then

 out← r

 wL ← wL/
√
2

 w ← w/
√
2

introduced a variation where a maximum in the Hough accumulator does not prevent its neighbors

from generating detections; instead, the votes of the elements of the detected structure are removed

from the accumulator before looking for a new maximum. Thus, each element can only belong

to a single structure. A similar idea was proposed by Desolneux et al. [] under the name of

“exclusion principle”: The most meaningful observed structure (the one with smallest NFA) is

kept as a valid detection. Then, all the basic elements (the points in our case) that were part of

that validated group are assigned to it and the remaining candidate structures cannot use them

anymore. The NFA of the remaining candidates is re-computed without counting the excluded

elements. In that way, redundant structures lose most of their supporting elements and are no

longer meaningful. Inversely, a candidate that corresponds to a different structure keeps most or

all of its supporting elements and remains meaningful. The most meaningful candidate among

the remaining ones is then validated and the process is iterated until there are no more meaningful

candidates.

This formulation of the masking process often leads to good results, removing redundant de-

tections while keeping the good ones. But it may also lead to unsatisfactory results as illustrated

in Figure .. The problem arises when various valid alignments have many elements in common.

As one alignment is evaluated after the other, it may happen that all of its elements have been re-

moved, even if the alignment is in fact not redundant with any of the other ones. In the example of

Figure ., individual horizontal and vertical alignments are not redundant, but if all the vertical

ones have been detected first, the remaining horizontal ones will be (incorrectly) masked. This

example shows a fundamental flaw of the exclusion principle: it is not sound to impose that a ba-

sic element belongs to a single perceptually valid structure. This leads us to formulate a relaxed
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Figure 2.7: Redundant detections. Left: point pattern. Center: alignments found by Algorithm 4. Red

means the most meaningful and blue the least meaningful detections. Right: Result of the masking

process.

Figure 2.8: Examples of two alternative formulations of the masking process. Left: Set of points. Center:

The Exclusion Principle as defined in Desolneux et al. [2008], a validated gestalt prevents others from us­

ing its points. The vertical alignments (evaluated first) mask the horizontal ones. Right: The Masking

Principle, described in the text, which solves the ambiguities without forbidding basic elements to par­

ticipate of two different structures.

version of the exclusion principle:

Definition  (Building Elements). We call building element any atomic component that can be a

constituent element of several structures. An example of building elements are points that can be

recursively grouped in alignments.

Definition  (Masking Principle). A meaningful structure B will be said “masked by a structure A”

if B is no longer meaningful when evaluated without counting its building elements belonging to A.

In such a situation, the structure B is not retained as detected.

In short, a meaningful structure will be detected if it is not masked by any other detected

structure. The difference with the former exclusion principle is that here a structure can only be

masked by another individual structure and not by the union of several structures. A procedural

way to attain this result is to validate alignments one by one, starting by the one with smallest NFA.
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Before accepting a new alignment, it is checked that it is not masked by any one of the previously

detected alignments.

Figure . and . show some point alignment detection results when combining Algorithm 

with the masking principle. The results obtained in these examples are as expected and this mask-

ing procedure was applied to all experiments below. For simplicity, we shall still refer to it as

“Algorithm ”.

. Computational Complexity

The aim of this work was to produce an unsupervised algorithm that gives a good solution to the

problem, while neglecting at this stage the efficiency considerations. Nevertheless our complex-

ity analysis here gives an upper bound for the existing algorithm. We will also point out several

possible accelerations.

The proposed method consists of an exhaustive search for candidates and the validation, in-

cluding the subsequent redundancy elimination. Algorithm  describes the exhaustive search. The

number of tests performed is the theoretical number in eq. .. To obtain the total complexity, this

number must be multiplied by the complexity of a single test. To compute the NFA we need to

evaluate whether each of the N points belongs to a box or not. Thus, the complexity of a single test

is proportional to the number of points N . Finally, the total complexity of the exhaustive search

is O(
√
NN3), where the

√
N comes from the set of number of boxes tested (C). In the final re-

dundancy reduction step, the validated candidates (nval) need to be compared to those already

selected as final detections (nout). This final step has a complexity of O(nvalnoutN), typically

much smaller than the complexity of the exhaustive search.

All in all, the proposed method has a complexity of O(
√
NN3). This polynomial time limits

the number of points that can be handled in practice. With current computers a few thousands

points can be processed.

Several approaches may lead to an effective acceleration of the exploration of candidates, which

is the most time consuming step. First, this exploration is highly parallel, leading to an almost

linear improvement when using a multiprocessor platform. Our current implementation uses

OpenMP, resulting indeed in a near-linear acceleration. Second, there is plenty of room for im-

provement in the routines for counting the points inside a rectangle; two possible techniques are

the use of buckets [Black] or integral images [Crow ; Viola and Jones ]. Finally, the ex-

haustive search can be replaced by a smart heuristic such as RANSAC [Fischler and Bolles ].

An approach using accelerated versions of the Hough transform [Kiryati et al. , ] may be

particularly important when the number of points grows. In the next section, we show how the

finite mixture algorithm of Figueiredo and Jain [] can also be used as an efficient heuristic to

propose candidates.

. Acceleration of the algorithm

One way to accelerate the method is to use a fast algorithm to propose alignment candidates, in-

stead of evaluating every pair of points in the dataset. To this end, we propose to use the unsu-

pervised Gaussian Mixtures algorithm of Figueiredo and Jain [], exploiting the fact that an

elongated cluster can be approximated by a thin Gaussian. This algorithm detects Gaussians of

any shape and can automatically discover the number of Gaussian clusters in the dataset (see Fig-

ure . for example results. The clusters found by this algorithm can be considered as potential
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alignment candidates and then be evaluated using the NFA.

The computational complexity of Figueiredo’s algorithm is similar to the EM algorithm in D,

which is approximatelyO(nk), where k is the number of iterations. Since the algorithm converges

in at most a few hundreds of iterations, this is usually much smaller thanO(n3). To cope with the

non-deterministic nature of the algorithm (given by its random initialization), the algorithm can

be run multiple times to obtain different lists of candidates.

Algorithm  presents the pseudo code for the accelerated version. For each Gaussian detected

by Figueiredo’s algorithm, we consider a line segment along the longest axis of the Gaussian, cen-

tered at the mean and with length twice the square-root of the largest eigenvalue of the co-variance

matrix of the Gaussian (lines  and ). The set of endpoints of all such segments are then passed to

the alignment detector algorithm, which will compute candidate alignments using only those end-

points (line ). The GMM procedure in line  uses the original code of Figueiredo and Jain [],

obtained in the Author’s web page.

The detect alignments with candidate endpoints procedure in line  of Algorithm 

implements the alignment detector, except that instead of going through each pair of points to form

candidate alignments, it only considers pairs of candidate endpoints obtained with the Gaussian

mixtures algorithm.

In Chapter , Section .. we will use the accelerated version of the algorithm to perform a

fast detection of vanishing points in an image.

. Experiments

This section illustrates the proposed algorithm with synthetic data experiments. All the experi-

ments in this section were done with the non-accelerated version of the algorithm. For experi-

ments using the accelerated version please refer to Chapter , Section ... The reader is invited to

perform further experiments using the online demo and source code.

http://www.lx.it.pt/~mtf/
http://dev.ipol.im/~jirafa/ipol_demo/point_alignment_detection/ (user: demo, pass-

word: demo)

Algorithm : Use Figueiredo et al. Gaussian Mixtures algorithm to generate align-

ment candidates.
input : A list of points X. The number of times the GMM algorithm is run, k.

output: A list A of alignment detections.

 Xc ← ∅
 for i = 1 : k do

 (µj,Σj)j=1...n ← GMM(X)

 for j = 1 : n do

 (u, σ,v)1,2 ← SVD(Σj)
 x1 ← µj + u1 · 2 ·

√
σ1

 x2 ← µj − u1 · 2 ·
√
σ1

 Append x1 and x2 to Xc

 A← detect alignments with candidate endpoints(X,Xc)



http://www.lx.it.pt/~mtf/
http://dev.ipol.im/~jirafa/ipol_demo/point_alignment_detection/


Figure 2.9: Result of Hall et al. [2006] on a set of 100 uniform and independent random points. Each

detection is represented by a thin rectangle, surrounded by the local window. Left: The same parame­

ters as in [Hall et al. 2006, Section 3.1] were used: 10 × 10 grid, 5 degree angle step, a = 0.1, b = 0.6,

c = 0.01, u = 6 v = 2. As in Hall et al. [2006], about 3 alignments were detected (2 in this example).

Right: Result with a slightly different candidate set: 20× 20 grid and b = 0.3, producing 47 detections.

A similar behavior is observed with sets of 1000 random points.

We will first compare the proposed algorithm with two point alignment detection methods

[Hall et al. ; Hammer ]. These two methods were selected because they were introduced

recently and include statistical significance tests. Hall et al. [] proposed an approach based

on similar measurements to Algorithm : the alignment is evaluated as a thin strip and two lateral

rectangles are used to estimate the point density; the set of candidates and the statistical test are

different. The results presented here were computed using our own implementation of the method;

we reproduced the experiments in the original publication to verify the correctness of our code.

The statistical test of the method by Hall et al. is designed to reject alignments in a uniform

Poisson random point model. The method works well when the intensity of the point process is

high. Indeed, the authors showed that the method approaches optimality as the intensity increases

[Hall et al. ]. The method is less efficient when the density of points is low relative to the size

of the operator; in such conditions the sampling is not suitable, the point density estimation is

poor, and the statistical test is not able to reject random configurations. The test depends on two

parameters, u and v, to be set manually. The first parameter controls the statistical significance

level. In extreme cases of wrong density estimation (e.g. no point is observed in the local window),

the statistical test fails. The second parameter, v, is a threshold imposed on the number of points

in the strip. It is necessary to cope with cases of density under-sampling. The method assumes that

the domain is the unit square and tests candidates centered in an n×n grid, at regular orientations

with an angle step θ; three parameters define the strip: the length b, the strip width c, and the local

window width a. Thus seven parameters must be provided by the user: n, θ, a, b, c, u, and v.

Figure . shows two detection results in a set of  points generated according to a Poisson

model. The first result (left) uses the same parameters as in [Hall et al. , Section .]; in ac-

cordance with the results of the original article, in these conditions is observed an average of 

detections per data set ( in the example shown). However, when the shape parameters are mod-
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(a) (b) (c) (d)

Figure 2.10: Result of Hall et al. [2006]. Each detection is represented by a thin rectangle, surrounded by

the local window. In the following results a 20 × 20 candidate center grid was used, a 5 degree angle

step, u = 7 and v = 3. (a) Input set of 186 points. (b) Result of the method for a = 0.2, b = 0.4, and

c = 0.02. (c) Result of the method for a = 0.3, b = 0.6, and c = 0.02. (d) Result of the method for

a = 0.05, b = 0.6, and c = 0.005.

ified, the statistical test is no longer able to control the number of false detections, see Figure .

(right). In the second experiment, the number of candidates is larger, (the grid is 20×20 instead of

10×10), and the density estimation is worse because the candidates are half as long (thus the local

window is half as big). Under the new conditions, the same u and v values lead to  detections in

the same point set. This experiment shows the need to set manually the statistical significance pa-

rameters (u, v) to produce reliable results. This behavior was also observed for sets of  random

points.

We will see now how the method handles data sets that do contain point alignments. Fig-

ure .(a) shows a set of  points; perceptually one can see three alignments, three clusters, and

random points. We first adjusted the statistical test parameters u and v so as to obtain very few

detections with the same number of random points. The candidate shape parameters (a, b, c) were

then adjusted to obtain the best result, see Figure .(b). As one can see, the three alignments

were detected. Nevertheless, all detections only partially cover the perceived alignment; this is of

course due to the selected length (b = 0.4), but longer candidates produced less complete results.

Also, there is some redundancy in the detections; no redundancy reduction step is included in

Hall et al.’s method. Finally, one can observe that one of the clusters led to a false detection. When

the shape parameters are changed to less optimal values, Figs. .(c) and (d), we obtains less use-

ful results: some alignments or parts of them are missing, and many spurious detections were

produced. Some are due indeed to deviations from the random model as is the case of the clusters,

and this shows the need for a more complex event definition. Others, as in Figure .(d), reveal

a failure of the statistical test. This experiment shows that the shape parameters need a careful

adjustment to produce good results.

The second point alignment detection method we used for comparison was introduced by

Hammer []. This method requires an alignment length parameter (defined as a radius). Each

point of the input set defines a candidate. The distribution of angles from the center point to each

of the points inside the radius is evaluated. When the circular-uniform distribution is rejected,

using a Rayleigh test, the candidate produces a detection. The last decision requires a significance

level α.

The experiments presented here were done using the author implementation of the algorithm,

included in the software package PAST [Hammer et al. ]. Figure . shows the results for the

three data sets considered in this comparison and for four parameter sets (no detection was pro-
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Figure 2.11: Result of Hammer Hammer [2009] for three point sets in a normalized unit square domain.

Two length values were tested: 0.3 (radius 0.15) and 0.6 (r. 0.3); and two significance levels: α = 0.1 and

α = 0.00001. No detection was produced with l = 0.6 and α = 0.00001. Left: The same set of 100

random points used in Figure 2.9. Middle: 1000 points drawn independently with uniform distribution

in a unit square. Right: The same point set as in Figure 2.10.

duced for l = 0.6 and α = 0.00001). As one can see in the first row, the default significance level

used in PAST is not satisfactory: it produces many detections on random sets of points (left and

middle). Using this significance level one gets some of the expected alignments in the data set con-

taining alignments (right). But, as in the previous method, redundancy is observed and many false

detections, mainly caused by the presence of the clusters. When the significance level is changed

to α = 0.00001 (second row), the number of false detections in noise is reduced significantly; un-

fortunately, the true alignments also disappear, leaving only two detections due to a cluster. Using

a longer alignment length (third row) produced no better results. Increasing the significance level

for long alignments led to no detection.
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Figure 2.12: Unsupervised clustering by the Figueiredo and Jain [2002] method. Ellipses represent de­

tected clusters. (a), (b), (c) The sets of points in Figures 2.9, 2.10, 2.11. (d) Dataset from a vanishing point

detection problem, see Chapter 4.
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Figure 2.13: Result of the proposed algorithm for the sets of points in Figures 2.9, 2.10, 2.11 and 2.12.

Each detection is represented by a thin rectangle divided into boxes, and surrounded by the local win­

dow.

As discussed in Section ., general clustering methods can provide point alignments when a

criterion is added to select elongated clusters. We will show results of this approach using the well-

known algorithm by Figueiredo and Jain []. This algorithm adds an important aspect to our

comparison: like our algorithm it is unsupervised. Figure . shows the results for the same point

sets used before. Being a randomized algorithm, the best results obtained in our tests are presented.

The method was used in its standard form, fitting Gaussian mixtures. Each ellipse in the figure

corresponds to a Gaussian cluster. The results obtained for the structured points are surprisingly

good: each one of the perceived alignments and clusters is well represented. The middle result

on random points is far less satisfactory as it includes many elongated clusters interpretable as

alignment detections.

Figure . shows the results of the proposed algorithm for the same data sets. As one can see,

no detection is produced in the random points, and the three alignments were found. Two of the

detections are however shorter than expected and the top vertex of the “A” is missing. Note how

the method correctly handled the redundant detections. Some further results of our method, with

increasing difficulty, are shown in Figure ., where the figures are correctly solved. Notice how

the very low relative density alignment in Figure . (right) was correctly detected.

To conclude this experimental section, we present and comment some example figures that

show the limitations of our algorithm, see Figure .. Again, we will use synthetic datasets that
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Figure 2.14: Additional results of the proposed algorithm. The local window and the boxes are not

drawn.

show clearly each condition, but similar effects can be observed in real data. All the alignments in

Figure .(a) were found; however, the redundancy reduction step did not select the candidates

covering the complete alignments. Also, a global interpretation of the figure is lacking but requires

other detection tools. The set of points in Figure .(b) is the same already shown in Figure .; the

alignment found by the algorithm is correct, but as discussed before, does not correspond to the

most common interpretation by a human observer. A natural way of handling this problem would

be to detect the “curves” by good continuation and then forcing a global interpretation by meth-

(a) (b) (c) (d)

Figure 2.15: Examples imperfectly solved by the proposed algorithm. The local window and the boxes

are not drawn.
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(a) (b) (c)

Figure 2.16: Results of the alignment detector in the examples of Figure 2.1.

ods similar to our masking methodology, that would discard the detected alignment as “masked”

by the curves. In Figure .(c) the presence of a large cluster masks an alignment: it increases

artificially the number of tests and short segments are no longer detected. Handling this example

probably implies a round cluster detector but also a recursive approach: once a cluster is detected

and removed, our algorithm would easily detect both alignments. Finally, two of the structures in

Figure .(d) are slightly curved, rendering them inaccurate as alignments. Again, the detection

of good continuation may provide a solution. In short, no alignment detection algorithm can be

fully satisfactory per se; it requires the interaction (and conflicts) with other feature detectors.

. Conclusion

In this chapter we have presented a series of algorithms with incrementing sophistication for de-

tecting alignments of points in a point pattern. The two key aspects of the alignment have been

shown to be its local density and its regularity. Our final method combines both criteria into a sin-

gle coherent detector. We have also introduced a new procedure to resolve the problem of redun-

dant detections. Finally, we have presented successful results on both synthetic and real datasets.

The main limitation of the method is its high computational cost, for which we propose an im-

provement using an auxiliary algorithm to compute alignment candidates. In Chapter  we will

apply the method to a classic problem, the detection of vanishing points. When a gestalt conflict

occurs, as in Figure . (right), the method fails to give the correct interpretation. In an attempt

to solve this problem, the same methodology will be used to handle the detection of the Good

Continuation gestalt in Chapter .
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3 On Good Continuation Detection

In this chapter we propose a model for a more general visual task: the grouping of

dots by good continuation. Naturally, this model is inspired by the findings of Chap-

ter , taking into consideration points regularity and local density. Our model for

good continuation is based on local symmetries, and as before, the non-accidentalness

principle to determine perceptually relevant configurations. A robust, scale-invariant

and unsupervised algorithm for the detection of good continuation of points is de-

rived. The method is supported by experimentation on traditional Gestalt figures,

as well as in dot pattern datasets existing in the literature. The application of our

method to the detection of dotted lines on scanned documents is also illustrated.

Finally, we compare our method to the successful Tensor Voting approach in figure-

ground segmentation tasks. We note three drawbacks of Tensor Voting that are cor-

rected in our method: scale-invariance, robustness to noise, and a principled heuris-

tic to extract final curves.

The detection algorithm produced in this chapter can be tested online on any dot

pattern at

http://dev.ipol.im/~jlezama/ipol_demo/lgrm_good_continuation_matlab/

(user: demo, password: demo)

. Introduction

The Gestalt school of psychology [Wertheimer ; Metzger ; Kanizsa ; Wagemans et al.

a,b] assumes the existence of a short list of grouping laws governing visual perception. Among

them, the law of good continuation can be stated as “All else being equal, elements that can be seen as

smooth continuations of each other tend to be grouped together” [Palmer ]. Figure . exem-

plifies this law; a perceptual organization of this image would result in a three part configuration:

a line, an arc of circle, and a zigzag, all formed by dots. Unfortunately, this law, as the other Gestalt

laws, was enunciated only qualitatively, without a formalization into a predictive framework.

Since it was first enunciated by Wertheimer [], the Gestalt law of good continuation has

been one of the most extensively studied perceptual phenomena. Various aspects of this law have

been examined, including amodal completion and contour integration of basic oriented and un-

oriented elements. In this work we concentrate in the case of unoriented elements.

The advantage of working with unoriented elements (such as dots), is that the grouping and

masking processes are isolated from the appearance of the basic elements. Experiments using dot

patterns have been explored by many works in psychophysics. Notably by the early works of French
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Figure 3.1: Good Continuation law: human perception tends to group elements on a smooth, continuous

order. Image extracted from Kanizsa [1979].

[], Uttal et al. [], and Uttal [] but also in more recent works [Mussap and Levi ].

Uttal studied the influence of length, dot spacing, curvature and outlier noise in the perceptual

grouping of dot structures. Regularity in dot patterns was analyzed by Feldman [a]; Kubovy

et al. []. In the famous work of Glass et al. [], superposed random dot patterns were used

to show the importance of local interactions for the building of global percepts.

The particular case of perceptual grouping by good continuation in dot patterns is also cov-

ered in a vast literature. Prinzmetal and Banks [] use dot patterns to prove the existence of

the good continuation phenomenon. Early algorithmic proposals for modeling the phenomenon

[Caelli et al. ; van Oeffelen and Vos ; Smits et al. ; Smits and Vos ] consisted in

convolving the dot patterns with a Gaussian kernel to find groupings by thresholding the result

of this convolution. This idea, formalized in the CODE algorithm of van Oeffelen and Vos [],

had a relative success and was further extended in psychophysics [Compton and Logan ; Logan

] as well as in computer vision, as will be discussed below. More recent approaches analyze the

curvature of the curves generated by successive dots. In Feldman [b] the probabilistic proper-

ties of successive angles in a perceived chain of dots is studied. Pizlo et al. [] proposed a clever

pyramidal system to account for local-global interactivity.

Another approach to the study of the good continuation law is through the following simple

experiment: dots are arranged along a virtual circular contour that produces a linear interpolation

when the number of points is small and a curvilinear interpolation when the number is large [van

Assen and Vos ]. The exact number of dots needed to pass from one type of interpolation

to the other is studied with psychophysical experiments. In a similar line, Gori and Spillmann

[] take a collinear arrangement of dots, and modify the spacing between given pairs, study-

ing the boundary between the perception of an irregular alignment and its splitting into multiple

segments.

The law of good continuation applied to oriented elements has also been extensively studied

in psychophysics, notably in Field et al. [], who use Gabor patterns [Machilsen and Wagemans

; Demeyer and Machilsen ] or line segments [Feldman ] as the oriented elements.

Strongly related to the good continuation gestalt is the closure gestalt. Many works by Elder and

Zucker state the importance of contour closure for the perception of structures, see for example

Elder and Zucker [, ]. A quantitative measure of closure and an algorithmic approach are

proposed in Elder and Zucker [, ].

In the computational domain, many algorithms inspired by the good continuation law have

been developed. Early proposals tried to define a global vision mechanism detecting multiple
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gestalts [Grossberg and Mingolla ; Carpenter and Grossberg ]. Sha’asua and Ullman []

applied in a remarkable early algorithm the good continuation law to identify salient image fea-

tures. A saliency map is obtained by iterative local computations on the image edge elements that

minimize an energy favouring smooth and long curves. Parent and Zucker [] proposed a rigor-

ous and clever approach to inferring curves as a labeling problem, based on local interactions that

favor co-circularity (which is a form of local symmetry, a notion that our method also exploits).

The image elements are convolved with oriented filters formed with Gaussians, to determine ten-

tative tangent orientations. In Gigus and Malik [], the convolution with oriented Gaussians

is also exploited, simply taking the maximum filter responses. This has the algorithmic advantage

of being non-iterative, although detection performance may be affected. In Herault and Horaud

[] the problem of figure-ground segmentation is posed from a combinatorial optimization

perspective, and it is solved with simulated annealing. Another groundbreaking work is the Tensor

Voting approach introduced by Guy and Medioni [, ], which proposes a saliency mea-

sure that involves the summation of vector votes emitted by each element. The votes encourage

co-circularity and proximity of the elements. Unlike the other approaches, this framework specif-

ically incorporates the detection of curves of unoriented elements, so we will expressly compare

our method to theirs in Section .. This approach was continued in various works [Mordohai and

Medioni ; Loss et al. , ; Gong and Medioni ]. Perona and Freeman [] pose

the figure/ground segmentation as a factorization of a matrix representing the affinity between

elements. Williams and Thornber [] provide a very good review of existing approaches and

introduce a new one, where the saliency measure is given by the number of times a random walk

passes by an edge, and where the transition probability matrix is also given by the affinity matrix.

Dubuc and Zucker [a,b] presented a principled framework for curve characterization based

on differential geometry. In general, all these methods are based on finding combinations of local

interactions that favor curve smoothness, length and elements proximity.

In this work, we propose a new model and algorithm for the grouping by good continuation

(restricted to unoriented elements), using a simple model that favors local symmetries, and with a

detection control based on the non-accidentalness principle. This allows the method to be general

in the sense that it can capture curves of any shape and scale, and is robust to the presence of

outliers. It is also unsupervised because detections are given by their statistical significance, which

requires only a single parameter, namely the number of false detections that would be allowed in

an image of random noise.

The proposed algorithm consists of two main steps: building candidate chains of points, and

validating them. Candidate chains of points are built by considering triplets of points formed

by joining nearest neighbors. Once valid triplets have been obtained, a graph representation is

produced where each node corresponds to a triplet. A classical path finding algorithm is run on

this graph to obtain paths between all pairs of triplets. Finally, the paths found are validated or

rejected using thresholds obtained with the a contrario approach [Desolneux et al. ].

This chapter is organized as follows: Section . presents our proposed mathematical model of

good continuation chains. Section . describes an efficient algorithm for detecting good continua-

tion configurations in dot patterns. The mathematical model and the algorithm are then evaluated

in Section . and compared to the Tensor Voting approach in Section .. Section . presents the

conclusions of this study.
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. Mathematical Model

Let us consider a set of N planar points. The aim is to find a mathematical model that can predict

when an ordered subset of points lie on a smooth curve that is salient relative to the background

of the other points, see Figure .(a). Each ordered subset of points (a sequence of points) will be

called a chain; each set of three consecutive points in a chain will be called a triplet. The proposed

model is based on the idea that the better the symmetry of the triplets, the better the saliency of the

sequence. Ideally, the third point in a triplet should be symmetric to the first, relative to the middle

point, in the position marked with an X on Figure .(b). The better the symmetry of the triplets,

the better the smoothness of the chain. Symmetric triplets also enforce a second Gestalt grouping

law: proximity [Wagemans et al. a]. A regular spacing of the points along the curve favors their

perceptual grouping; inversely, an irregular spacing [Wertheimer ; Gori and Spillmann ]

would tend to stop the curve at larger gaps.

The precision of a triplet will be measured by the distance between the observed third point

and its ideal symmetric position X , see Figure . (c). A whole chain will be characterized by

the number of triplets in it and their worst precision. The considered event is then: a chain of k
triplets, each one with precision rmax or better.

To obtain a perceptually plausible model, the evaluation of a chain will be again based on the

a contrario methodology, as was done in Chapter . This a contrario methodology has already

been applied at detecting good continuations of image edges [Cao ]. Even if related, the main

source of information for this detector was the orientation of the edges, while no orientation is

associated to points in our case. The method of Cao was successfully extended to encode shapes

for performing a contrario shape matching and recognition [Musé et al. ; Cao et al. ].

We will evaluate the probability of observing a triplet of a given precision under a random

hypothesis. To enforce scale-invariance, this probability will be evaluated relatively to the context

contained in a circular local window L with radius R, where R is proportional to the triplet size,

see Figure .(c). Given that n points were observed in L (not counting the first two of the triplet,

a

b
c

L

R=   |a-b|λ r

a

b
c

(a) (b) (c)

Figure 3.2: Definition of the good continuation event. (a) A candidate chain is defined by an ordered

sequence of points. (b) Three consecutive points in a chain define a triplet, (a, b, c) in this case. Ideally,

the triplet should be symmetric. That is, the third point c should be symmetric to the first a relative to

the middle point b. The ideal third point is represented by X . (c) The symmetry precision of a triplet

is measured by the distance r from the ideal point X to its nearest point. When evaluated relative to a

local window L of radius R, this precision can also be expressed as the probability that, among the n
points in the local window, the nearest point to X be at most at a distance r.
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because they define the local window), our random or a contrario model H0, used to evaluate

accidentalness, is that these points are independent and uniformly distributed inL. In other words,

our a contrario model assumes that the n points result from a spatial uniform Poisson process in L.

This a contrario model H0 is not intended to model the statistics of the sought structure; quite the

opposite, it models random data where the sought structure is not present, and is used to calibrate

rejection thresholds.

Under these assumptions, we would like to translate the precision of each triplet into proba-

bilistic terms. Let us call ρ the distance between the ideal point X and its nearest point in L. We

will evaluate the precision of a triplet by the probability P(ρ ≤ r), for the observed radius r. It is

simpler to compute its complement, P(ρ > r), which implies that all the n points in L fall outside

the disk of radius r; given that L is a disk of radius R, P(ρ > r) =
(

1− πr2

πR2

)n

. Finally, a triplet

is associated a probability

p = P(ρ ≤ r) = 1−
(

1− r2

R2

)n

. (.)

On what follows we shall interchangeably use the words precision and probability of a triplet to

refer to p.

Consider a chain C of k points a1, a2, . . . , ak. The precision pi of each of the k − 2 triplets

(ai, ai+1, ai+2) will be evaluated, and the worst case value, pmax = max{p1, p2, . . . , pk−2}, is

associated to the whole chain. Recall that the event we are considering is a chain C of k−2 triplets,

each with precision pmax or better. To compute the probability of this event we will use the fact

that, under the a contrario Poisson assumption, the precision of each triplet is independent from

the previous ones. Finally, the probability of observing the k − 2 triplet with precision pmax is:

P(C) = pk−2
max. (.)

The NFA for a chain of points in good continuation is computed as:

NFA(C) = Ntests · P(C). (.)

We kindly remind the reader that the NFA is an upper bound to the expected number of events

as good as C to be observed by chance in the a contrario model H0. A large NFA means that such

an event was to be expected under the a contrario model and therefore is irrelevant. On the other

hand, small NFAs correspond to rare events and therefore arguably meaningful.

The number of tests Ntests is the number of chains considered as potential good continuations.

The proposed method will generate candidates starting at each of the N points and using each of

the b nearest neighbors as a second point. Using these two points, the ideal point X is constructed

(see Figure .(b)) and the closest point to it is selected as the third point. Using the last two points

we construct the new symmetric point and we repeat this process until a maximal chain length of√
N is reached. Here we assume that a smooth D subset of a D set of N points would be typically

limited to
√
N points. Each of the intermediate chains is evaluated and counted as a test. Thus,

the number of tests is bN
√
N . Finally, the NFA of the event “having k points in good continuation

configuration up to a precision pmax” is defined by:

NFA5 = bN
√
N · pk−2

max. (.)

Let us call CKi,j the chain that starts at point i, continues at the jth nearest neighbor of i, and

has K points. Note that this chain, defined by i, j and K, is unique because each successive point
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in a chain is the closest point to the ideal symmetric point defined by the last two points. Let us

consider X, a random set of points under H0. We will refer to NFA5

(

CKi,j ,X
)

, as the expected

number of occurrences in X of an event with the characteristics of the observed chain CKi,j . These

characteristics are determined by the worst precision triplet in the chain and they consist of the

local window size R, the number of points in it n, and the distance between the ideal point and the

closest point to it, r.

Theorem .

E





N
∑

i=1

b
∑

j=1

⌈
√
N⌉+2
∑

K=3

1NFA5(CK
i,j ,X)≤ε



 ≤ ε

where E is the expectation operator and 1 is the indicator.

Proof. We define r̂(R,n,K) as

r̂(R,n,K) = max

{

r ∈ N,P
[

ρ(X) ≤ r|R,n
]

≤
(

ε

bN
√
N

) 1
K−2

}

. (.)

Here, R is the radius of the local window and n is the number of points in it. The radius ρ is the

distance between the ideal symmetric position and its closest point. The probabilistic model inside

the local window, conditioned to the fact that the number of observed points is n is still uniform

and independent, and the conditional law of the number of points inside any subset of R follows a

binomial law. Then, NFA5

(

CKi,j ,X
)

≤ ε is equivalent to ρ(X) ≤ r̂(R,n,K) for all triplets in the

chain. Now,

E





N
∑

i=1

b
∑

j=1

⌈
√
N⌉+2
∑

K=3

1NFA5(CK
i,j ,X)≤ε



 =

N
∑

i=1

b
∑

j=1

⌈
√
N⌉+2
∑

K=3

P
[

NFA5

(

CKi,j ,X
)

≤ ε
]

=

N
∑

i=1

b
∑

j=1

⌈
√
N⌉+2
∑

K=3

N
∑

n1=1

...
N
∑

nK−2=1

∫ inf

R1=0
...

∫ inf

RK−2=0
P[ρ1(X) ≤ r̂(R1, n1,K), ...

..., ρK−2(X) ≤ r̂(RK−2, nK−2,K)|R1, n1, ..., RK−2, nK−2] · P(R1, n1, ..., RK−2, nK−2) =

N
∑

i=1

b
∑

j=1

⌈
√
N⌉+2
∑

K=3

N
∑

n1=1

...
N
∑

nk−2=1

∫ inf

R1=0
...

∫ inf

RK−2=0
P [ρ1(X) ≤ r̂(R1, n1,K)|R1, n1] · ...

... · P[ρK−2(X) ≤ r̂(RK−2, nK−2,K)|RK−2, nK−2] · P(R1, n1, ..., RK−2, nK−2). (.)

In the last step we have used the independence of the triplets. By definition of r̂(R,n,K)

P
[

ρ(X) ≤ r̂|R,n
]

≤
(

ε

bN
√
N

) 1
K−2

.

So

K−2
∏

t=1

P [ρt(X) ≤ r̂(Rt, nt,K)|nt, Rt] ≤
ε

bN
√
N

.
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Noting that
∑N

n1=1 ...
∑N

nK−2=1

∫

R1=0 ...
∫ inf
RK−2=0P(R1, n1, ..., RK−2, nK−2) = 1:

E





N
∑

i=1

b
∑

j=1

⌈
√
N⌉+2
∑

K=3

1NFA5(CK
i,j ,X)≤ε



 ≤
N
∑

i=1

b
∑

j=1

⌈
√
N⌉+2
∑

K=3

ε

bN
√
N

= ε

which concludes the proof.

Given an observed set of N points and a candidate chain of k points, we will consider the latter

event as an ε-meaningful good continuation when the corresponding NFA is lower than ε. It can be

shown [Desolneux et al. ] that the expected number of events with NFA ≤ ε is bounded by ε
in the a contrario model H0. As in Chapter , we will always fix ε = 1 to ensure an unsupervised

detection.

. Algorithm

This section describes an efficient algorithm for searching meaningful chains of dots using the

model presented in the previous section. Given an input of N D points, the candidate chains are

obtained by exploring the b nearest neighbors of each point to construct candidate triplets and then

by connecting paths between every two triplets. To find the paths, a graph representation of the

triplets is constructed and the Floyd-Warshall algorithm is used. Each path found is a candidate

chain that is finally evaluated using the NFA measure (.), and the most significant chains are

kept using a redundancy reduction step, described below. This process is described in Algorithm .

Note that the candidate search is not performed exactly as the theoretical exploration described

in the previous section to obtain the number of tests, so the value in (.) is an approximation.

However, this approximation proves to work well in practice.

The algorithm requires two parameters: the number of nearest neighbors b, used for explo-

ration and λ, the proportion of the local window size to a triplet’s size (see Section .). Lines  to

 of Algorithm  build the list T of triplets to be considered. Note that each triplet is stored with

its precision.

A pair of triplets will be called adjacent when they share two points in such a way that they can

form a chain of four points. (Triplets that share two points but form a “Y” shape are not adjacent.)

We define a graph where triplets are the vertices and adjacent triplets s and r share an edge with

value ps+pr, the sum of their precisions. Lines  to  compute the distance matrixD that defines

this graph.

Once the adjacencies are determined, the algorithm uses the Floyd-Warshall algorithm to com-

pute the path with shortest distances between every two vertices. (Notice that this “distance” is not

Euclidean, but is a sum of triplet precisions; thus the classic bias toward small objects is not present

here.) This will provide the best chain joining every pair of triplets, in the sense of the smallest sum
∑

i pi along the path. This yields a redundant set of candidate paths, among which to select the

paths with lowest NFA. Note that there is no theoretical guarantee that paths with minimal NFA

are all contained in a minimal path for the Floyd-Warshall algorithm. However experimental re-

sults show that this approximation is acceptable. A similar procedure was proposed in Elder and

Zucker [] for the application of detecting closed contours, where a graph representation of

edge elements is used, and shortest paths are searched for to compute closed contours.

All the results shown in this chapter use b = 5 and λ = 4.





Algorithm : Good Continuation detection

Input: A list of N D points, b the number of NN used for exploration and λ the

proportion of the local window radius w.r.t. the triplet size.

Output: A list of good continuation chains GC
 T ← [ ]
 for point i = 1 to N do

 for point j ∈ NearestNeighborsb(i) do

 Count n, nbr. of points in the local window L centered in j with radius

R = λ · dist(i, j)
 Compute sij , the symmetric of i w.r.t. j

 for point k ∈ NearestNeighborsb(j) do

 Compute Pi,j,k = P(ρ < dist(sij, k)|R, n), using (.)

 T ←
(

i, j, k; Pi,j,k

)

 D ← a |T | × |T |matrix of∞
 for triplet r ∈ T do

 for triplet s ∈ T do

 if r is adjacent to s then

 Dr,s ← T p
r + T p

s

 P ← Floyd-Warshall(D)
 for path p ∈ P do

 if NFA(p) ≤ ε then

 GC ← p

The computational complexity of the Floyd-Warshall algorithm is O(|V |3), where |V | is the

number of vertices in the graph, i.e., the number of triplets. In terms of computation time, this is

the bottleneck of the proposed algorithm. The result is a non-linear algorithm, but fast enough in

practice. Finally, all the candidate chains provided by Floyd-Warshall will be evaluated for signifi-

cance using (.) and the ones with NFA ≤ ε will be kept (lines  to ).

Once all the good continuation events are found, we are interested in keeping only the maximal

meaningful events. Note that one good continuation event might mask another smaller event con-

tained in itself. For simplicity, we say that an event A masks an event B, if NFAA < NFAB and

the chains share at least two points. The latter is a simple criterion to allow crossing chains, which

share one point. This trivial solution has been found empirically. Obtaining a list of only the most

meaningful events, which are not masked by any other event, can be done by following the simple

steps described next. First, the meaningful chains are ordered by their NFA (lowest first). A second

list is created which in the beginning contains only the most meaningful chain. Then, the first list

is traversed, checking if each chain is masked with any of the chains in the second list. If a chain is

not masked, it is added to the second list.





− − −−

Figure 3.3: Result of the algorithm using dot patterns adapted from the “yellow apple”, “banana” and

“tamarillo” edge patterns from Williams and Thornber [1999]. The first row shows three figures from

the original dataset, where the orientation information has been dropped and the figures have been

rescaled and displaced. In the second and third row 100 and 1000 random points are added, respec­

tively. The resulting detections are consistent with the interpretation a human observer may do of the

figure.

. Experiments

Figure . presents examples of detection results obtained with the algorithm described in Sec-

tion .. We took three images from the fruit and vegetables dataset of Williams and Thornber

[]: and kept only the position of the oriented elements, discarding the orientation informa-

tion. The examples are taken from silhouettes of an apple, banana and a tamarillo. To demonstrate

the scale invariance of our approach, we scaled each image, so they are at / and / scales respec-

tively. Next, we added  random points to the figure, to test the robustness of our approach in

differentiating perceptually relevant structure from noise. Finally, we added  random points,

which visually mask the two largest figures. In this case, only the contour of the tamarillo is still
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detected by the algorithm, because of its higher dot density. One may argue that the borders of the

banana are still slightly perceived, but in this case the observer might be influenced by the previous

knowledge of the target or by other gestalts such as closure.

In the rest of this section we will perform a detailed analysis of the NFA obtained with our

model through multiple examples, showing its applicability as a quantitative perceptual measure.

Next, we will present the algorithm result for dot pattern figures taken from the good continuation

literature. In the next section we will compare the algorithm to the Tensor Voting approach.

The reader is invited to try the online demo of this algorithm to further extend this experi-

mental section.

.. Analysis of the NFA

To analyze the effect of curvature, dot density and dot regularity in the NFA of a chain, we consid-

ered the dot pattern examples of Uttal [] (Figure ). We analyzed the NFA obtained for each

curve using equation (.). To demonstrate the perceptual plausibility of the NFA, we added two

types of noise: a surrounding outlier noise and inlier noise implemented as a random jitter on the

position of the points.

Figure . shows the original figures scanned from Uttal [] in the left column. To save space,

we have removed the fourth line of the experiments from the original article. To recover the posi-

tion of the dots we used a Harris corner detector [Harris and Stephens ] on the scanned images.

On the right, we show the NFA obtained for each of the curves. Note how the NFA decreases as

the curvature increases or as the dot density of the curves decreases. If we set the meaningfulness

threshold to ε = 1 (one false alarm in average in noise) curves # and # of experiment , are no

longer meaningful. This is because the angle in the middle, which will determine the precision of

the event, is too closed. In this case, our model would prefer to split the curve into two straight

segments. This can be seen in the actual result of the algorithm in Figure ., which shows the most

significant curves. Still, for a human observer, it is possible that a higher-level grouping process

produces the junction of both segments.

Figure . shows the same curves of Figure . with  random points added to each one.

The aim of this experiment is to show how the NFA correctly models the masking/unmasking

perception process. The NFA of the curves is less meaningful in the presence of noise, but it is

still meaningful where the structure can still be perceived. On the other hand, when the noise is

sufficient to mask the structure, (notably in experiments  and  where the structure has fewer

points), the structure becomes statistically as well as perceptually indistinguishable from noise,

and the NFA goes above . This observation is in line with the original conclusions of Uttal [],

although the experiment setup is by no means the same.

The experiments of Figure . aim at showing the effect in the NFA of the irregular placement

of dots. Starting with the original curves of Figure ., we added isotropic random displacements

to each dot. The random displacements are Gaussian distributed, centered at each dot and with a 

pixels standard deviation (as a reference, inter-dot distance is approx.  pixels). The results show

a degradation of the NFA with respect to the original curves. This was to be expected because

the local symmetry is strongly violated. In particular, the results of the experiment , curve #

and experiment , curves # and # have an NFA above the meaningfulness threshold of . When

looking at those curves, a human observer might find it easier to interpret them as two separate

pieces of curves instead of a single one.

http://dev.ipol.im/~jlezama/ipol_demo/lgrm_good_continuation_matlab/
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Figure 3.4: NFAs for the curves used in Uttal [1973]. The points have been obtained by scanning the

figure and running a Harris corner detector [Harris and Stephens 1988]. On the left column, the NFA

obtained for each curve is shown.

7e−10 5e−8 1e−5 4e−4 2e−2 2e+0

6e−7 3e−3 4e−18e−1 1e+1 4e+1

1e−5 1e−1 2e+1 1e+2 1e+2 2e+2

Figure 3.5: NFAs for the curves of Figure 3.4 plus 20 outliers. Note how the NFA decreases in the presence

of noise, sometimes above the meaningfulness threshold. The NFA as a quantitative predictive measure

is consistent with the perception of the curves in the left figures.

2e−32e−3 5e−3 7e−2 6e−1 1e+0

2e−4 4e−3 3e−23e−2 3e+05e+0

5e−47e−43e−1 4e−1 1e+0 3e+1

Figure 3.6: NFAs for the curves of Figure 3.4 with Gaussian jitter (σ = 4px) on the points position. The

NFA is degraded because the local symmetries are deteriorated. In some cases a human observer might

prefer to split the curve in two. In general, for those cases the NFA is above the meaningfulness thresh­

old.

.. Results of the algorithm

Figure . shows the result of the good continuation detection algorithm described in section .

for the dot patterns of Figures ., . and .. The figure is divided in three groups according to

the type of noise: no noise, outlier noise, and inlier noise.
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Figure 3.7: Result of the algorithm for the images of Figures 3.4, 3.5 and 3.6. The experiments are

grouped by the type of noise: none, outlier and inlier noise.
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(a) (b) (c)

Figure 3.8: Results of the good continuation detector in the examples of Figure 2.1. The first and second

examples are correctly solved by the algorithm. In the third example, the result is successful in terms of

finding the best good continuation curve. However, most viewers describe this figure as a set of three

convex closed curves. The incorporation of other gestalts such as closure and convexity seems to be

required.

In the noise-free experiments, the algorithm finds the original curve in most cases. One excep-

tion is experiment , curve #, where the algorithm prefers the curve that is formed by leaving out

the last dot. Note that not all triplets along the curve are exactly equal because of position noise

due to the scanning and Harris detector. What is happening is that the precision of the last triplet

is such that the NFA would increase rather than decrease if it were included, so the most significant

curve leaves that dot out. Indeed, the detection algorithm only keeps the most significant curve

among all candidates. In experiment , when the angle is too strong, the separate segments to each

side are more significant than the entire curve. In the second group of experiments, where outlier

noise is present, the algorithm tends to find the curve where it is still perceived. Otherwise, there

are two reasons for a curve not to be detected. The first trivial reason is when the NFA is simply

too large and therefore not meaningful, because the triplet’s probabilities increase as more points

are present in the local window (see Figure .(c)). The second reason is that due to the algorithm’s

heuristic of searching among the nearest neighbors, the curve may never be considered as a can-

didate, and never be evaluated. This is why for some curves the NFA as it would be calculated by

an ideal observer is meaningful, but they are not detected by the algorithm. Examples of this case

can be found in experiment , curves # and #. This effect is actually perceptually plausible: when

there are many points in the image, the complexity of evaluating every possible combination is

arguably intractable for human perception.

In the third group of experiments, where random jitter is added to the points positions, the

algorithm produces splits where a triplet precision is too coarse. In those cases, separate segments

of the curve are individually more meaningful than the whole curve. One can observe that those

splits are also perceptually plausible. Another interesting case is experiment , curve #, where

the algorithm prefers to leave one point out of the curve. Again, looking at the input dots this
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interpretation seems natural.

Figure . shows the result of the good continuation detector for the examples of Figure .. The

result for the first and second examples is perceptually plausible. The result for the third example

is correct in the sense that all points participate in a meaningful curve. However, this global inter-

pretation of the figure is different from what a human observer would probably perceive, which is

three distinct closed curves. The incorporation of the closure and convexity gestalts, seems to be

required. Modeling and implementing these gestalts remains as future work.

Figure . shows further results of the algorithm in dot patterns obtained from scanning figures

from popular articles in the literature. The input points to the algorithm were once again the points

obtained by running a Harris corner detector. Note that spurious corner detections are also part

of the input, which causes reasonable detections where text is present. In (a), the algorithm would

rather split the inner spiral in two. Although this is a possible explanation, human perception

tends to see the complete curve. In this case, incorporating convexity could improve the result.

Finally, in Figure . we show a possible computational application of the method: the automatic

processing of graphs from scanned documents.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3.9: Result of the good continuation detection algorithm for images scanned from the following

articles: (a) & (b) van Oeffelen and Vos [1983]. (c) Pizlo et al. [1997]. (d) & (e) Caelli et al. [1978]. (f ) Kanizsa

[1991]. (g) Kanizsa [1980]. (h) Metzger [1975]. On each scanned image in the left column, a Harris corner

detector was run to find the dots. The right column shows the Harris detections in blue, and the good

continuation configuration found by our method in red.
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Figure 3.10: A possible application for the method is the processing of scanned documents. In the left

column we show graphs scanned from real documents. In the right column, Harris corner detections

are represented by blue dots and curve detections in red.

. Comparison to Tensor Voting

In this section we compare our method to a well established method in the literature for finding

salient configurations of points, the Tensor Voting approach.

There exists a varied literature of algorithmic approaches to good continuation perceptual

grouping, as discussed in Section .. However, all of the aforecited methods work with oriented

elements, which provide a fundamental cue on the direction of the good continuation. Since the

method presented in this chapter concentrates on the perceptual grouping of unoriented elements,

a comparison with methods using oriented elements would require a non-trivial adaptation of

them to make the comparison fair. Such adaptation would also require further supervision.

Robust, unsupervised clustering of points is a long standing problem [Jain ]. In the family

of non-parametric clustering methods, spectral clustering is a successful technique [Ng et al. ;

Von Luxburg ] that could in some cases resolve the grouping by good continuation (see for

an example Figure  of Ng et al. []). However, the method requires the number of clusters to

be known in advance, and is not able to distinguish structure from noise since it is based on local

interactions. Most clustering methods require the number of clusters to be known (e.g. k-means)

or a scale parameter (e.g. mean-shift [Comaniciu and Meer ]). Unsupervised methods that

try to automatically discover the number of clusters also exist, [Figueiredo and Jain ; Dy and

Brodley ]. The work of Figueiredo and Jain [] in particular is very successful in finding

the number of clusters, and it could assign background noisy samples to a big spread Gaussian.

However, as most methods of this kind, it is only applied on a given parametric distribution of the

points (for example Gaussian mixtures) so we also excluded it from our comparison.
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The detection of non-parametric curves formed by points can also be seen from a manifold

learning perspective: curves are D manifolds embedded in a D space. Most multiple manifold

learning techniques can only handle the assumption that the manifolds are linear or affine sub-

spaces [Elhamifar and Vidal ; Yan and Pollefeys ]. The multiple, non-linear case is treated

in Souvenir and Pless []; Goh and Vidal []; Wang et al. [], but without the presence of

outliers. In Gong et al. [], the problem of multiple manifold learning with outliers is elegantly

addressed. However, contrarily to our method, the number of manifolds (curves in this case) is

required.

Tensor Voting (TV) [Guy and Medioni ; Mordohai and Medioni ] is a successful algo-

rithmic approach for perceptual grouping that provides a principled way of working with unori-

ented elements. The TV algorithm can be applied to point patterns, yielding a saliency map where

configurations of points in good continuation are given a high intensity. Moreover, for each point

in the map, it provides the direction of the tangent to the salient curve. Recently, the TV approach

has been extended to account for inlier noise in the Probabilistic Tensor Voting work of Gong and

Medioni []. Since our dataset does not include inlier noise, we only compared to standard TV.

In the following we shall briefly describe the TV approach. We kindly refer the reader to Guy and

Medioni []; Mordohai and Medioni [] for a gentle introduction to the method.

In TV, the D input elements are represented as structure tensors or x matrices. The largest

axis of the tensor is aligned with the tangent of the curve structure to which an element belongs.

The input elements communicate with each other in order to derive the most preferred orientation

information (or refine the initial orientation if given) for each of them. The communication is

done in the form of a voting field cast by each point, whose magnitude decays with distance and

curvature according to a scale parameter σ. Then, vote accumulation is performed by tensor (or

matrix) addition, and the saliency map is obtained as the difference between the tensor eigenvalues

λ1−λ2. When the ellipsoid represented by the tensor is elongated ( λ1 ≫ λ2), this means that the

voting produced a favorable orientation in the major direction of the tensor. When the ellipsoid

approaches a disk (λ1 ≃ λ2) or when both eigenvectors are small, the orientation at that point

is not well defined and thus not considered part of a salient structure. Note that a non-maximal

suppression step is required to extract the salient structures.

In this section we shall only compare to the TV algorithm, since it is the most successful

method proposing a formal solution to the perceptual grouping of unoriented elements. We ob-

tained one implementation of this algorithm online. To obtain the most salient curves, we per-

formed hysteresis thresholding in the saliency map, along the direction of the tangent vectors. The

obtained curves that pass through less than three points were discarded. We selected thresholds

that gave the best results in all datasets in average, for each scale.

In our analysis, we found that the TV method has three main drawbacks: The need to set the

scale parameter, the harmful effect of surrounding noise and the lack of a principled method to

extract the final curves in a figure. The method proposed in this work deals with these drawbacks.

First, scale invariance is obtained by using a local window proportional in size to the point triplet.

Second, robustness to noise is guaranteed by setting the detection threshold a contrario. Third, the

extracted final curves have a statistical meaning, formalizing the “non-accidentalness” principle.

.. Datasets

In order to quantitatively evaluate our method, we used point patterns from three publicly avail-

able point pattern datasets. We also extended two of them by transforming the data and adding

http://www.mathworks.com/matlabcentral/fileexchange/21051-tensor-voting-framework


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Name No. of figs. Description

FV  original points from Williams and Thornber []

FV  FV + % outlier noise

FV  FV + % outlier noise

FV 
three different figures from FV,

rescaled and translated

FV  FV + % outlier noise

FV  FV + % outlier noise

HS  original points from Al-Maadeed et al. []

HS  HS + % outlier noise

HS  HS + % outlier noise

CR  “Chinese character” points from Chui and Rangarajan []

CR  “fish” points from Chui and Rangarajan []

RN   random points

RN   random points

RN   random points

Table 3.1: Description of the dot pattern datasets used to quantitatively compare our good continuation

detector with Tensor Voting.

noise, and we considered a fourth dataset, containing only random points. The performance of

the grouping algorithms was evaluated by their ability to distinguish noise from structure.

The first dataset was formed using the edge images of the fruit and vegetable edges dataset

of Williams and Thornber []. It includes  different edge figures of fruits and vegetables ob-

tained from real photos. This dataset has been previously used in perceptual grouping benchmarks

[Williams and Thornber ; Loss et al. , ]. Since this work concentrates on grouping

unoriented elements, the edge directions were discarded and only the location of the edge elements

were kept. We have extended this dataset in two ways: First by adding % and % outlier noise

(by this we mean % and % more points, randomly distributed). Second, by taking three

different figures from the original set, changing their scale so that the first figure is at scale , the

second at scale / and the third at scale / and displacing them to different locations in a new

image. Finally, we created two more datasets by adding % and % outlier noise to the sets of

multiple figures. Example figures from this dataset are shown in the top two rows of Figure .

and in the top row of Figure ..

The second dataset was created from the handwritten signature data of Al-Maadeed et al.

[]. This dataset has been proposed for a signature trajectory prediction challenge in Kaggle. It

consists of sets of D points marking the trajectory of handwritten signatures captured by a draw-

ing tablet. Although the signature trajectory prediction is a possible extension of our algorithm,

this work concentrates only on recovering perceptually salient structures. Thus, we just interpret

the signatures as perceptually salient curves. From the  images available in the Kaggle challenge,

we selected  images that were not heavily affected by quantization. We extended this dataset by

adding % and % outlier noise. Example figures from this dataset are shown in the third and

fourth rows of Figure ..

http://www.kaggle.com/c/icdar2013-stroke-recovery-from-offline-data


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The third dataset uses the point patterns introduced in the context of point matching with

outliers by Chui and Rangarajan []. In Chui and Rangarajan [], two point patterns are

used: “Chinese character” and “fish”. In the original work, the point patterns are corrupted with

deformations and outlier noise. We took the part of the dataset that contains deformations and

% outliers. This makes in total  figures for the “Chinese character” and  figures for the

“fish” pattern. One example figure for the fish pattern can be seen in the bottom row of Figure ..

Finally, we produced a fourth dataset that contains only random points, consisting of  images

with ,  and  random points ( images for each number of points). The intent of this

dataset is to show how our detector correctly determines that there is no structure in noise.

In each dataset, we labeled each point as “structure” or “noise”. The error was calculated as

the proportion of misclassified points. Table . summarizes the datasets used for quantitative

evaluation. Figures. . and . show example figures.

.. Results

Table . shows the average error results obtained for our method and TV with three different

scale parameters. The error measure is the rate of misclassified points. For TV, we tried multiple

scales, and multiple threshold values. We have selected the threshold values that worked best for

all datasets in average. Note that the performance of TV is sensitive to the scale parameter, which

means that a given value for the scale parameter performs better or worse depending on the dataset.

For example, without the presence of outliers, choosing a scale too big and a saliency threshold too

low is not a problem, since all points are salient. In the presence of noise however, a scale too big

and a threshold too low would create false saliency detections, whilst a small value for the scale and

Dataset TV TV TV Ours

σ = 0.04 σ = 0.08 σ = 0.12
FV .% .% .% . %

FV .% .% .% . %

FV .% .% .% .%

FV .% .% .% . %

FV .% .% .% .%

FV .% .% .% .%

HS .% .% .% .%

HS .% .% .% .%

HS .% .% .% .%

CR .% .% .% .%

CR .% .% .% .%

RN .% .% .% .%

RN .% .% .% .%

RN .% .% .% .%

Table 3.2: Average rate of misclassified points over all the figures in each dataset. For TV at each scale,

we have selected the thresholding values of the saliency map that give the best average result across

datasets.
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a high value for the saliency threshold could miss relevant structures.

Our algorithm does not require parameter tuning and was run unsupervised for all datasets.

The scale invariance comes from the fact that the local window for density estimation is propor-

tional to the spacing of the dots along the curve. The extraction of final curves is done by thresh-

olding the NFA of the curves at ε = 1, which means that in average, only one false detection is

obtained in noise. Our approach attempts to formalize the “non-accidentalness” principle: mean-

ingful curves in terms of the NFA tend to be perceptually relevant.

Figure . shows example results of our method and TV in the FV, FV, HS and HS datasets.

The leftmost column shows the input image. The second column is the result of our method. The

third column is the saliency map result of TV. One can see that TV produces a very good quality

saliency map. However, it can be affected by noisy input if the scale parameter is not set properly.

Also, figures with different spacing between points obtain different saliency intensities, whereas

in our method the NFA is invariant to the spacing. Finally, the fourth column presents the final

curves extracted by hysteresis thresholding in the saliency map. Here again, setting a unique set of

values for the high and low threshold that works well with and without the presence of noise is not

trivial.

Figure . shows further examples. The order of the columns is the same as in Figure ..

The top two rows of Figure . show a masking by texture phenomenon. Our detector correctly

determines that there is no salient structure in the second image. In the bottom row of Figure .,

our algorithm is able to find exactly the number of curves in the images. However, it prefers to split

some of the curves in places where there are too strong changes in curvature. In fact, the triplet

model described in Section . imposes a penalty on strong curvatures. In this case an iterative

approach would possibly help finding the remaining pieces of curves. Exploring this issue remains

as future work.

. Conclusion

The work discussed in this chapter is an attempt to find a quantitative model for the grouping

of dots under the good continuation gestalt. Our approach is, as in Chapter , a formalization

of the non-accidentalness principle, based on a very simple model that favors local symmetries.

This makes the model prefer smooth and long curves, where the dots are equally spaced. The

model also accounts for the masking effect produced by surrounding noise points. We present an

algorithm for the detection of good continuation groupings under this model. In the experimental

section we presented through extensive examples the theoretical limits of the model as well as

the results obtained with the algorithm. These informal experiments show a strong correlation

between the quantitative measure introduced and human perception. Furthermore, we showed

the superiority of the method with respect to the successful Tensor Voting approach in the figure-

ground segmentation problem, constrained to dot patterns.

We envision three different lines of future work. One is the incorporation of the closure gestalt

to the model [Elder and Zucker , ]. The second is the utilization of more complex models

for the local interactions, in line with local interaction fields studied in the literature [Field et al.

] and studying the particular case of junctions [Xia et al. ]. Third, the formulation of a

coarse-to-fine version of the algorithm that would model a hierarchical process of perception and

reduce the required computations [Pizlo et al. ].
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Figure 3.11: Results in example figures from the datasets described in Table 3.1. Left column: input

points. From top to bottom: example extracted from dataset FV4, FV6, HS1 and HS3. 2nd column:

salient curves obtained with our method. 3rd column: saliency map obtained by TV (σ = 0.05). Right

column: points belonging to salient curves, extracted by thresholding with hysteresis the saliency map

of TV. Note the difficulty of finding a set of parameters for TV that can distinguish structure from noise,

but at the same time find structures at any scale.
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Figure 3.12: Additional results. Left column: input points. 2nd column: result of our method. 3rd

column: saliency map obtained by TV (σ = 0.05). Right column: points belonging to salient curves,

extracted by thresholding with hysteresis the saliency map of TV. Top row: example image from FV1.

2nd row: the same image masked by 300 random points. Note how our method correctly determines

that there are no perceptually relevant structures. TV is also able to resolve this case, although not

without some spurious detections. Because the voting vectors are coming from many random locations,

no distinct salient directions are obtained. Bottom row: image containing 21 curves at different scales.

Our method correctly discovers the number of curves. However, one limitation of the method is shown:

strong curvatures are penalized by the triplet model.
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4 On Vanishing Points Detection

In this chapter we present a novel method for automatic vanishing point detection

based on primal and dual point alignment detection. The point alignment detec-

tion algorithm described in Chapter  is used twice: First in the image domain to

group line segment endpoints into more precise lines. Second, it is used in the dual

domain where converging lines become aligned points. The use of the recently in-

troduced PClines dual spaces and a robust point alignment detector leads to a very

accurate algorithm. Experimental results on two public standard datasets show that

our method significantly advances the state-of-the-art in the Manhattan world sce-

nario, while producing state-of-the-art performances in non-Manhattan scenes.

The detection algorithm produced in this chapter can be tested online on any image at

http://dev.ipol.im/~jlezama/ipol_demo/vanishing_points/

(user: demo, password: demo)

. Introduction

Under the pinhole camera model, D lines are transformed into D lines. Moreover, parallel lines

in D are projected into lines that converge on a point (perhaps at infinity) known as a vanishing

point (VP). In the presence of parallel lines, as is common in human-made environments, VPs

provide crucial information about the D structure of the scene and have applications in cam-

era calibration, single-view D scene reconstruction, autonomous navigation, and semantic scene

parsing, to mention a few.

There is a vast literature on the problem of VP detection, starting with the seminal work by

Barnard [] and leading to high-precision algorithms in recent works [Wildenauer and Hanbury

; Xu et al. ]. Typically, a method starts by the identification of oriented elements, which are

then clustered into groups of concurrent directions, and finally refined to get the corresponding VP.

Most proposed methods use image line segments as oriented elements [Barnard ; Collins and

Weiss ; Almansa et al. ; Xu et al. ], but oriented edge points are also used [Coughlan

and Yuille ; Denis et al. ; Barinova et al. ], or even the alignment of similar structures

[Vedaldi and Zisserman ]. The clustering is often performed in the image plane, by identifying

points or zones of concurrence of the elements [Rother ; Almansa et al. ]; other methods,

however, rely on the Gaussian sphere of world directions [Barnard ; Collins and Weiss ],

which requires camera calibration information. Less common is the use of a dual space in which

points become lines and converging lines become aligned points [Ballard and Brown ; Zhao

et al. ]. Various validation methods are used, from simple thresholds to statistical methods


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[Collins and Weiss ; Almansa et al. ] or Bayesian inference [Coughlan and Yuille ;

Denis et al. ]. Early methods used the Hough transform in the Gaussian sphere [Barnard ;

Quan and Mohr ]. More recent methods rely on variations of RANSAC [Mirzaei and Roume-

liotis ; Wildenauer and Hanbury ] or EM [Denis et al. ], which was successfully used

to solve the uncalibrated case by Kosecká and Zhang []. Some algorithms start with a clus-

tering step that is obtained non-iteratively, and perform iterations to improve the result [Tardif

; Xu et al. ]. To simplify the often ill-posed problem, some methods make assumptions

about the scene contents. The most common one is the so-called “Manhattan world”, implying

the existence of only three orthogonal VPs [Coughlan and Yuille ], which is sometimes inher-

ently enforced during clustering [Mirzaei and Roumeliotis ; Bazin et al. ; Wildenauer and

Hanbury ]. When valid, this assumption helps improving the results. Barinova et al. [],

however, claim that a better balance between generality and robustness is provided by a relaxed

assumption where one vertical VP and multiple horizontal ones (not necessarily orthogonal) are

considered [Schindler and Dellaert ; Barinova et al. ]. Similar to Almansa et al. [],

Tepper and Sapiro [b] is based on an a contrario model on the intersection of two lines in a

region, except that instead of performing a convenient tiling of the image plane, the regions are

given by solving an inverse pulley and belt problem. Recent works made progress by defining vari-

ous consistency measures between VPs and line segments [Wildenauer and Hanbury ; Antunes

and Barreto ; Xu et al. ], while Barinova et al. [] performs a joint optimization of line,

VP and camera parameters.

In this work we build on the advances of various previous works to obtain a novel and more

accurate VP detection algorithm. The oriented elements are the line segments detected with the

LSD algorithm [Grompone von Gioi et al. ]. The clustering step is done in the dual space

[Zhao et al. ], but takes advantage of the PClines point-to-line mappings described recently by

Dubská et al. []. The unsupervised point alignment detector of Chapter  is used to compute

sets of collinear points, which correspond to converging lines and thus to VPs. The very same point

alignment detector is used to group aligned line segments into longer and more precise ones. After

the clustering is done and the candidate VPs are obtained, the NFA of the alignments is used to

find the final triplet of VPs, when the Manhattan world assumption is applicable, or the horizon

line when it is not. The method is deterministic and non-iterative and has an accuracy comparable

or better than state-of-the-art algorithms.
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Figure 4.1: Main steps of our method. Top-Left: Input image. Top-Right: Line segments (black) and

alignments of line segments endpoints (blue). nd Row: Lines as points in straight (left) and twisted

(right) PClines spaces. rd Row: Aligned points detections (parallel black lines) and the ground truth

(dashed lines). Some alignments are more visible in one of the spaces than in the other. Bottom-Left:

Final VP associations by enforcing orthogonality. Bottom-Right: Horizon line estimation (yellow­orange:

ground truth, cyan­magenta: ours).
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. Method Description

The proposed algorithm works in six steps, illustrated in Figure . and described in detail in the

following subsections:

. Detect line segments in the image using LSD [Grompone von Gioi et al. ].

. Find and group aligned line segment endpoints using the unsupervised point alignment

detector of Chapter *.

. Transform line segments in the image into points in the PClines straight and twisted dual

spaces Dubská et al. []. In the PClines dual spaces, converging lines become aligned

points. Two different dual spaces are used to cope with the unbounded nature of the map-

ping.

. Detect point alignments in both dual spaces using the unsupervised point alignment detec-

tor of Chapter *. Detected point alignments, which correspond to converging line segments

in the image, are considered as VP candidates.

. Identify redundant detections (VPs detected in both dual spaces) and refine the position of

the candidate VPs.

. Identify relevant VPs and estimate the horizon line based on one of two hypothesis: Man-

hattan or non-Manhattan world.

* An optional accelerated version of this procedure is described in Section ..

.. Point alignment detection

The proposed method uses the point alignment detector described in Chapter . In the VP detec-

tion procedure, this method will be used twice. First, to find alignments of segment endpoints,

that can contribute to discover extra cues on vanishing directions. Second, to find alignments of

points in the dual space, that correspond to converging line segments in the image. Note that the

alignment detector does not require the number of clusters to be known in advance, so it can work

with images with any number of VPs.

.. Segment endpoint alignments

The aim of this step is to exploit the alignment of features that a line segment detector alone cannot

capture. For example, a regular arrangement of equally sized vertical poles along a road reveals

a vanishing direction that would be unnoticed by the line segment detector, which would only

discover the individual poles. A similar behavior with the vertical borders of windows can be seen

in Figure .. To exploit this type of cue, the point alignment detector of Chapter  is used to find

alignments among the endpoints of the line segments detected by LSD [Grompone von Gioi et al.

]. In addition, this step increases the direction accuracy of short line segments by grouping

them and brings an improvement to the VP detection performance.

First, line segments are grouped by length and orientation. The idea is that joinable line seg-

ments should be similar in length and orientation. This also allows to pass to the alignment de-

tector small sets of points instead of the set of all the endpoints in the image, which significantly

On average % with the metric used in Section ..
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Figure 4.2: Examples of detected alignments of line segment endpoints. Best viewed in electronic for­

mat. Left: original line segments, highlighting in blue one group of length and orientation. Center:

line segment endpoints and the detected alignments for that group (parallel black lines). Right: addi­

tional oriented features obtained by the method (blue lines). In the top two rows, parallel line segment

endpoints are connected to recover structural directions that were not captured by the line segment de­

tector alone. In the bottom rows, short, inaccurate line segments are joined into larger, more accurate

ones.

reduces computation time. A single threshold τ is used on the length, and angular steps of ◦

are used to group by orientation (with a ◦ overlap between groups). The objective is to connect

line segments that share the same orientation – e.g. the borders of the windows of a building – or

endpoints of parallel line segments – e.g. an array of vertical structures. For each group of line seg-

ments, the point alignment detector is run over the line segment endpoints. This produces a new

set of line segments. At the end of this stage, short (and therefore inaccurate) line segments are

discarded. The final list of segments is composed of the long line segments and the line segments

from the alignment of endpoints found among both the short and long ones. Figure . shows

some examples of the grouping by length and orientation and the resulting detections. It can be

seen that grouping the borders of windows creates long line segments that follow the direction of





Figure 4.3: Schematic of the straight PClines transform. Left: three points and a line in the image (x, y)
space. Right: their representation in the PClines (u, v) straight dual space. This figure was taken from

Dubská et al. [2011].

the building structure. It is worth noting that some false or redundant detections are not harmful

to the overall method, since they will only contribute to a few extra points in the dual space.

.. PClines parameterization

The problem of finding converging lines in the image can be posed as a point alignment detection

problem by parameterizing the lines as points in a suitable dual space, where converging lines are

mapped to aligned points. In such a space, the problem of VP detection has a simple interpretation:

the detection of elongated clusters of points. Our method uses the PClines parameterization of

Dubská et al. [], see Figure .. The straight version uses a parallel coordinate system, where

the horizontal x axis in the image is represented as the vertical v axis in the dual space, and the

vertical y axis in the image is represented as a vertical line passing through u = d in the dual

space. Thus, a point A = (Ax, Ay) in the image is represented in the dual space by a line passing

by (0, Ax) and (d,Ay). A line joining multiple points in the image is represented in the dual

space as a point that lies at the intersection of the lines representing those points. Note that points

in dual space can be arbitrarily far away from the origin Dubská et al. []. To overcome this

unboundedness problem, the twisted version of the PClines transform is also used, where the x
axis stays in the ordinates axis but the −y axis is transformed into a vertical line at u = −d. The

second row of Figure . shows example results of the transformation for real data. The detailed

algorithm is presented in Section B..

By using both the straight and twisted transforms, it is guaranteed that all VPs in the image are

represented as a bounded set of points in at least one of the two spaces. The value of d is set to

 and the limits of the dual domains where the point alignment detector will be executed are set

to [−1, 2] × [−1, 2] for the straight transform and [−2, 1] × [−2, 1] for the twisted transform.

Points that fall outside each domain are discarded.

Once the alignment detector is run in each dual space, each alignment found determines a

candidate VP vi in the image, with an associated meaningfulness NFAi (Section ..). In the next

step, VPs that were detected in both spaces are identified with a simple distance threshold δ and

only the one with the best NFA is kept.
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.. Refinement

Each rectangle candidate of the point alignment detector (Section ..) is defined by a pair of

points. Thus, the direction it defines represents in the image the intersection of two lines, which

forms an initial candidate VP, that needs to be refined. The refinement is done in the following

way. Given a line segment l and a VP candidate vi, the consistency between l and vi is considered

as the angle between the direction of l and the ideal line passing through vi and the midpoint

of l (see Figure .). This consistency measure is often used in the literature [Rother ; Denis

et al. ]. The subset of line segments consistent with vi is obtained by setting a threshold θ
on this angle. Finally, the function for updating the VP estimate of Antunes and Barreto [] is

used on this subset, which minimizes the weighted sum of the square of perpendicular distances

from the VPs to the lines defined by the line segments. The weights are given by the segments

lengths. Due to the good quality of the initial clusters, a single refinement iteration is enough. The

implementation details of the candidates refinement is presented in Section B..

0

X

Y

v

l

Figure 4.4: The angular error between a line segment l and a VP v is computed as the angle between

the line segment direction and the line formed by the line segment midpoint and the VP.

.. Identifying relevant vanishing points

Once the refined candidate VPs are obtained, relevant detections must be discriminated from spu-

rious ones. Some prior information on the relative positioning of the VPs can facilitate this task.

We will consider two possible hypothesis.

The first one is the “Manhattan-world” hypothesis, which assumes that the image is domi-

nated by three orthogonal VPs: one vertical and two horizontal. This assumption greatly simplifies

the search for valid VPs, since it allows to discard VPs that do not comply with the orthogonal-

ity constraint and also to produce a third VP by imposing orthogonality when only two VPs are

available.

The second, more relaxed hypothesis consists of considering one vertical VP and an unknown

quantity of horizontal ones, that are not necessarily mutually orthogonal. In that case, the al-

gorithm proceeds by identifying the vertical VP and based on the vertical VP it determines the

horizontal ones. The procedure followed by the method under these two cases is detailed on the

rest of this section.

In each case, using the obtained VPs, the method will estimate the horizon line in the image.
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Manhattan world

When the camera parameters are known or have been correctly estimated, the candidate VPs can

be represented in the Gaussian sphere. The Gaussian sphere is a unit sphere whose center is located

at the center of the camera. A vanishing point in the image corresponds to a point in the Gaussian

sphere (a D unitary vector), which is the intersection between the ray joining the camera center

and the VP, and the surface of the sphere. To perform this conversion, the geometry of the camera

needs to be known, in particular the principal point and the focal length in pixel units. The simple

operations involved in this conversion are explained in detail in Section B.. On what follows, when

we refer to orthogonal VPs or to the angle between VPs, we will be referring to their representation

in the Gaussian sphere. The representation space we are referring to will be clear in each context.

The “Manhattan-world” hypothesis assumes that the image contains three orthogonal VPs. To

identify orthogonal triplets of VPs, the candidate vanishing points are converted to vectors in the

Gaussian sphere, and orthogonality is determined based on a threshold on the angles between the

vectors. Once the orthogonal triplets of VPs have been found, the one with the lowest sum of NFAs

of the detections is selected as the valid VP triplet. When no orthogonal triplet is found, the most

significant orthogonal pair is taken (in terms of summed NFA) and the third VP is obtained by the

cross product of the two orthogonal vectors.

To compute the horizon line, the vertical VP is identified as the one with the largest absolute

vertical coordinate. The remaining two VPs are the horizontal ones. The horizon line is simply the

line passing through the horizontal VPs. Of course, this trivial solution requires the camera to be

not far from horizontal with respect to the captured urban scene.

Non-Manhattan world

The Manhattan-world hypothesis is in general valid for simple urban scenes. However, for more

complex scenes, this assumption is too strong and must be relaxed. A more relaxed hypothesis is

the existence of one vertical and an unknown quantity of horizontal VPs, not necessarily mutually-

orthogonal. We shall refer to this hypothesis as “non-Manhattan world”. It is important to note

that the unsupervised alignment detector used to compute candidate VPs in section .. does not

require the number of clusters to be known a priori, it is automatically computed. Thanks to this,

the method can manage images with any number of VPs.

The procedure followed by the algorithm under this assumption is described next. It starts by

identifying which of the candidate VPs is the vertical VP. Then, based on the estimated vertical VP

and a set of constraints, it identifies the horizontal VPs.

To determine the vertical VP, the first step is to compute a set of vertical VP candidates, among

all VPs. The vertical distance from a VP to the center of the image, and the angle with respect to

the vertical axis of the image are evaluated to form the subset of possible vertical VPs. Among this

subset, the most meaningful VP (with lowest NFA) is kept as the zenith or vertical VP. Here again,

in order for this heuristic to work the target scene is expected not to be heavily rotated with respect

to the D horizontal plane.

The rest of the VPs are considered as candidates for horizontal VPs. To compute the final set of

relevant horizontal VPs, these are filtered out based on two criteria: First, the VPs are converted to

the Gaussian sphere and the VPs that are far from being orthogonal to the vertical VP are discarded.

Note that to do this the focal length in pixel units f and the principal point must be known.

However, these are used only to discard non-horizontal VPs, so an approximate value is generally

We refer to the vertical axis as a vertical line passing through the image center.
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sufficient. Second, the horizontal VPs that are obtained from clusters of parallel lines in the image

– for which the problem of setting the horizon line height is undetermined – are also discarded,

based on a distance threshold.

Because the horizon line is perpendicular to the line connecting the principal point and the

vertical VP, the problem of estimating the horizon line from a set of candidate horizontal VPs is

one-dimensional. The horizon line is obtained by a weighted vote, where each horizontal VP casts

a vote and the weights are based on the NFA (Section ..) of each VP detection. The weight wi

for the VP vi is:

wi =

(

(− log10NFAi)
∑

j(− log10NFAj)

)2

. (.)

The implementation details of this procedure are described in Section B..

. Experiments

In this experimental section we present example results of the method, as well a systematic perfor-

mance evaluation on two standard public datasets for vanishing points detection.

.. Example results

For the experiments presented in this section, we used a C implementation of the point alignment

detector and the C code of Grompone von Gioi et al. [] for line segment detection. The rest

of the algorithm was implemented in MATLAB. Processing a x image takes an average of 

seconds in a . Ghz Intel Core i laptop with  GB of RAM. The bottleneck of the method is the

computation of point alignments in straight and twisted dual domains, which accounts for more

than % of the processing time. This can be accelerated as explained in section ..

Figures ., . and . show example results of the method. The resulting image shows, on

the top-right corner, the grouping of line segments in the image corresponding to each VP and the

estimated horizon line. On the bottom rows, the PClines straight and twisted spaces are shown,

with the point alignments that have been detected, and the representation of the final VPs. Figures

. and . show urban scenes with a regular layout that adjusts well to the Manhattan-world

hypothesis. In both cases, this hypothesis has been assumed. On Figure ., the buildings are not

arranged in a regular grid, and multiple horizontal VPs exist. By imposing the “non-Manhattan”

world hypothesis, the algorithm finds multiple horizontal VPs. For further experimentation, the

reader is invited to try the online demo of the method.

 http://dev.ipol.im/~jlezama/ipol_demo/vanishing_points/



http://dev.ipol.im/~jlezama/ipol_demo/vanishing_points/


−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

Figure 4.5: Example result of the method. Best viewed in electronic format. Top left: Original image.

Top right: Algorithm result, line segments corresponding to each final VP detection and horizon line.

Bottom: PClines straight (left) and twisted (right) dual spaces. Alignments (shadowed rectangles) and

final VPs (colored dashed lines). In this case, the leftmost VP, represented by the blue dashed line and

the blue segments in the result, was not found by the alignment detector in any of the dual spaces.

However, it has been determined by applying the Manhattan­world hypothesis, which implies that the

third VP must be orthogonal to the two VPs detected. For this example f was set to 0.9.
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Figure 4.6: Example result of the method. Best viewed in electronic format. Top left: Original image.

Top right: Algorithm result, line segments corresponding to each final VP detection and horizon line.

Bottom: PClines straight (left) and twisted (right) dual spaces. Alignments (shadowed rectangles) and

final VPs (colored dashed lines). In this case, the alignment detections corresponding to all VPs have

been detected by the alignment detector. The difference in direction between the detections rectangles

and the dashed lines shows that the refinement step has fine­tuned the final VP locations. For this

example f was set to 0.95.
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Figure 4.7: Example result of the method when the Manhattan­world hypothesis is not applicable. Best

viewed in electronic format. Top left: Original image. Top right: Algorithm result, line segments corre­

sponding to each final VP detection and horizon line. Bottom: PClines straight (left) and twisted (right)

dual space. Alignments (shadowed rectangles) and final VPs (colored dashed lines). In this example

multiple horizontal VPs have been found. On the dual space, one can see that the lines corresponding

to the multiple horizontal VPs intersect close to a point which represents the horizon line in the image.

The line in cyan is however a misdetection: it does not correspond to a true horizontal VP and is far away

from the horizon line. For this example f was set to 1.
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(a) York Urban Dataset (b) Eurasian Cities Dataset

Figure 4.8: Cumulative histograms of the horizon detection error. The horizontal axis represents the

horizon line error [Barinova et al. 2010]. The vertical axis represents the ratio of images with horizon

line error lower than the corresponding abscissa. Results for the competing methods have been kindly

provided by Yiliang Xu.

.. Quantitative evaluation

A commonly used measure to assess the performance of VPs detection is the horizon line estima-

tion error. This measure is defined as the maximum distance in the image domain between the

estimated horizon line and the ground truth, divided by the image height. In this section, we use

this measure to establish the performance of the method in two standard and widely used datasets.

The first dataset is the York Urban Dataset (YUD) [Denis et al. ]. It includes  images of

outdoor and indoor scenes, the camera parameters, and the ground truth VPs. All the images sat-

isfy the Manhattan world assumption, so the ground truth consists of  orthogonal VPs. Example

results for this dataset are shown in Figure ..

The second dataset is the Eurasian Cities Dataset (ECD) [Barinova et al. ], which presents

a much more challenging dataset of  urban scenes that do not satisfy the Manhattan world as-

sumption in general. They depict different architectural and urban styles and are taken by different

cameras. Under these conditions, the method described in Section .. is used. Example results

for this dataset are shown in Figure ..

Following the protocol of Barinova et al. [] and other recent works [Wildenauer and Han-

Manhattan-world assumption No Manhattan-world assumption

YUD train YUD test YUD train YUD test ECD train ECD test

.% .% .% .% .% .%

Table 4.1: Quantitative results of the algorithm as the area under the curve (AUC) of the horizon line es­

timation error. Train indicates the set of the first 25 images used to adjust the parameters. Test indicates

the remaining images in the dataset. The third and fourth columns present the result of the algorithm

when not applying the Manhattan­world on YUD (applying the exact same method as for ECD). At the

moment of publication these results were state­of­the­art [Lezama et al. 2014a].
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Figure 4.9: Top: Result of four different runs of the GMM routine in the PClines straight space for the image

shown in Figure 4.10. Ellipses represent the obtained Gaussians. Each run of the GMM algorithm produces

a different result, because of the random initialization. Bottom: Shadowed rectangles represent the

alignments detections found using as candidate endpoints the extremes of the ellipses in the top row.

Dashed lines represent the obtained VPs.

bury ; Vedaldi and Zisserman ; Xu et al. ], the first  images of each dataset are used

to adjust the parameters of the method and the evaluation is performed on the remaining images.

The performance score is measured as the area under the curve (AUC) of the cumulative histogram

of the horizon line detection error. The performance scores obtained in both training and testing

subsets for both datasets are reported in table .. It also includes the result of applying the non-

Manhattan version of the algorithm on YUD. Figure . shows the comparison of our results to

those of Kosecká and Zhang [], Tardif [], Barinova et al. [], Vedaldi and Zisserman

[], Wildenauer and Hanbury [] and Xu et al. []. Table B. presents the values for the

parameters, optimized by grid search on the first  images of each dataset.

.. Accelerated version

In this subsection we present an experimental analysis of the effects of using the accelerated version

of the point alignment detector of Chapter  instead of the one based on exhaustive search. As

pointed out in Section ., the Gaussian mixtures algorithm of Figueiredo and Jain [] (which

we will refer to as GMM) has a random initialization, which makes its result stochastic. Thus, the

result of the accelerated VP detector, which depends on the result of the GMM procedure, will also

be stochastic. This behavior is illustrated in Figure .. Each run of GMM produces a different result.

However, the most important clusters are usually captured, albeit with minor deviations. Once the

ellipses shown in the top row of Figure . have been obtained, the alignment detector algorithm

is run considering as possible endpoints for alignments, only the extremes of these ellipses. The

bottom row of Figure . shows the detections thus obtained. One can see that the endpoints of

the alignments correspond to extremes of the ellipses. Figure . shows the effect of the random

result of GMM in the final estimation of the horizon line for an example image from YUD.

To obtain a more precise result, one may run the GMM procedure many times, producing a

bigger list of ellipses and thus more candidates for point alignments. Naturally, as the algorithm

is run more times, the probability of finding the good clusters increases, as does the computation

time. An analysis of the cost in both performance and computation time of running multiple

instances of the GMM procedure to generate alignment candidates is presented in Table . and

.. In Table ., the same measure of performance used in Section .., namely the horizon line





Figure 4.10: Example results of the accelerated version of the VP detection algorithm. Best viewed in

electronic format. Left: Original image. Center: In red: Ground Truth horizon line. In blue: horizon

lines obtained in each of the runs shown in Figure 4.9, superposed. Each run of the Gaussian Mixtures

algorithm produces a different but similar result, because of the random initialization. Right: Detail of

the green rectangle in the middle image.

estimation error, is used. The parameter k indicates the number of times the GMM procedure is

run to produce candidate alignment endpoints. Since the algorithm is non-deterministic, it is run

 times for each value of k, and the performance results are averaged. As expected, the more

instances are run, the better the performance of the algorithm at a higher computation time cost.

Table . presents the average computation time of the accelerated algorithm for one image, for

each value of k.

Dataset k = 3 k = 6 k = 9 k = 12 no acceleration

ECD 82.32± 1% 82.71± 1% 84.33± 1% 85.69± 1% 89.61%
YUD 93.30± 0.99% 94.29± 0.32% 94.31± 0.40% 94.59± 0.35% 95.71%

Table 4.2: Evaluation of the acceleration of the point alignment detection using the algorithm of

Figueiredo and Jain [2002] to generate candidate alignments. The parameter k is the number of times

the algorithm is run to create a list of possible clusters of aligned points. The performance shown is the

AUC score as described in section 4.3.2 averaged on 10 runs.

Dataset k = 3 k = 6 k = 9 k = 12 no acceleration

ECD 11.3± 4.1 s 23.0± 10.0 s 41.8± 20.0 s 65.4± 32.4 s 130.2± 105.6 s
YUD 5.0± 1.1 s 8.5± 3.3 s 13.5± 6.6 s 19.8± 10.9 s 23.7± 23.6 s

Table 4.3: Evaluation of the acceleration of the point alignment detection using the algorithm of

Figueiredo and Jain [2002] to generate candidate alignments. k is the number of times the algorithm

is run to create a list of possible clusters of aligned points. The time shown is the average computation

time, evaluated on the whole dataset and divided by the number of images in it, averaged on 10 runs.

. Conclusion

In this chapter we have presented a method for vanishing point detection based on four key ideas:

First, the use of the robust point alignment detector described in Chapter , used in the image





domain as well as in dual space, without any modification or parameter tuning. Second, finding

alignments of line segment endpoints, using again the point alignment detector, which enhances

the accuracy of short line segments and produces new oriented elements as extra cues to the van-

ishing directions. Third, the use of the PClines parameterization in its two variants, straight and

twisted, to improve the discriminability of vanishing points. Finally, exploiting the measure of

meaningfulness provided by the alignment detector to estimate the horizon line. Our experimen-

tal results show that our method performs, in general, as well as state-of-the-art methods, and

achieves significantly better accuracy when the Manhattan world assumption is applicable. We

have also shown that an accelerated version of the method can be implemented, although at some

cost in performance.
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Figure 4.11: Example results of the method on selected images from YUD. Top Row: Original image. nd

Row: Line segments (black) and alignments of line segments endpoints (blue). rd Row: PClines straight

and twisted dual spaces and point alignment detections (parallel black lines). The ground truth is rep­

resented with colored dashed lines. Bottom Row: Line segments corresponding to each final vanishing

point detection and horizon line (yellow­orange: ground truth, magenta­cyan: ours). In the last row,

line segments from endpoint alignments have been removed for clarity. Note that the refinement and

redundancy steps are not represented in this figure.
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Figure 4.12: Example results of the method on selected images from ECD. Top Row: Original image. nd

Row: Line segments (black) and alignments of line segments endpoints (blue). rd Row: PClines straight

and twisted dual spaces and point alignment detections (parallel black lines). The ground truth is rep­

resented with colored dashed lines. Bottom Row: Line segments corresponding to each final vanishing

point detection and horizon line (yellow­orange: ground truth, magenta­cyan: ours). In the last row,

line segments from endpoint alignments have been removed for clarity. Note that the refinement and

redundancy steps are not represented in this figure.
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5 Conclusions and Perspectives

This dissertation concerns the quest for:

(i) mathematical models that describe the grouping principles of human perception

(ii) efficient algorithms based on such models that can also be applied to practical computer

vision problems.

Our attempt to find mathematical models for perceptual grouping starts in a fairly constrained

setting, the perception of structures in dot patterns. Although limited in complexity with respect

to real images, dot patterns allow for rich visual interactions and trigger non-trivial mechanisms

of human perception, most of which still remain uncharted territory for science.

Under this setting, we studied two types of structures. First, as a very basic case, we considered

perceptually relevant alignments of dots. Secondly, we studied the more general case of grouping

of dots by good continuation. In each case we observed the importance of dot density, regularity

of spacing, length of the structure and the visual masking by the presence of random elements or

other more perceptually relevant structures.

Based on these observations, we proposed for each of these two tasks a mathematical model

and an algorithm whose quantitative prediction ability shows in general a strong correlation with

human perception. Both models are based on evaluating the expectation of occurrence, under a

random hypothesis, of dots falling in certain positions, given conveniently computed local estima-

tions of density. The second model, naturally, uses a more flexible and general template that allows

the search of long and smooth curves.

In this study we only advanced models for each partial gestalt but we did not address the

competition between multiple different gestalts, or the problem of finding a global explanation

of a figure, namely the prägnanz gestalt. The competition and collaboration of multiple gestalts

remains a very important and extremely challenging open problem and a possible line of work for

continuing this study. Figure . shows the limitations of using only partial gestalt detectors and

the necessity of solving the competition and collaborations between them. Very recently, Tepper

and Sapiro [a] presented a framework for finding multiple groupings by consensus, opening a

very interesting perspective for this problem.

The study in the a contrario setting of other partial gestalts such as closure (which collaborates

with good continuation)[Elder and Zucker , ], symmetry and proximity (as generic clus-

tering [Tepper et al. ]), to name a few, also remain widely open. It goes without saying that the

partial gestalt algorithms presented in this dissertation leave room for refinement. In particular,

improving their computation time is an important issue. To this end, a hierarchical or pyramidal

analysis of the figure could be the key. It is natural to think that human perception does not com-

pute the millions of possible combinations of the elements in a single pass, and some coarse to fine

reasoning is likely to occur.
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(a) (b) (c)

Figure 5.1: This figure shows the limitations of the partial gestalt detectors presented in this thesis. (a)

input points. (b) result of the point alignment detector. (c) result of the good continuation detector.

Finding a perceptually plausible global interpretation of this figure probably requires the competition

of multiple gestalts: alignments, good continuation, closure and convexity. Modeling mathematically

such a competition between grouping laws remains an open problem.

Human perception is able to quickly detect structures in dot patterns. Algorithms that are able

to mimic human perception should be able to solve practical problems when these are presented

in such a way that the solution is easily perceived by humans. We show such an example in the case

of vanishing points detection, where the clustering solution in the dual space is easy to identify

for a human observer. By using our perception inspired algorithm for this clustering problem

we obtained state-of-the-art results, outperforming existing complex models of inference in the

literature. Finding other practical problems where the solution can be perceived as a particular

grouping of dots, and partial gestalt algorithms can be applied is also an interesting line of future

work. Of course, with this we are not saying that the vanishing point detection problem is solved.

There is room for improvement in our method as well.
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A Detailed implementation of the point

alignment detector

A. Main Algorithm

• Line : The purpose of this line is to create a data structure containing a symmetric reflection

of the points in the input domain. This will be used when the local density estimation

window falls outside the input domain. In that case, the points in the extension will be used

for density estimation. Note that they will not be used to create candidate alignments.

• Line : Described in Algorithm 

• Line : Described in Algorithm 

A. Point Alignment Detector

Algorithm  describes the pseudo-code for the search and validation procedure. Following are

some additional comments:

• Line : r is a rectangle whose main axis is the segment xixj and whose width is w.

• Lines  and : R1 and R3 are depicted in Figure . (right).

• Line : The two points defining the statistical test must not be counted. In the present

implementation, the counting of points inside the rectangles is based on the horizontal and

vertical distances of each point to the segment xixj . A symmetric extension of the points

is used when the local window falls outside the input domain. As a reference, the point

counting procedure is done in the following way:

Algorithm : Main body of the algorithm

input : A set X of N points [W = 8, L = 8, C = {1...
√
N} , ε = 1]

output: A list m of non-redundant point alignments

 Create a symmetric extension of X;

 l = detect alignments(X);
 m = redundancy reduction(l);
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Algorithm : Point alignment detector

input : A set X of N points [W = 8, L = 8, C = {1...
√
N} , ε = 1]

output: A list l of point alignments

 for i = 1 to N do

 for j = 1 to i− 1 do

 l ← distance(xi,xj);
 w ← l/10;

 for 1 to W do

 r ← rect(xi,xj, w);
 wL ← l; // width of the local window

 for 1 to L do

 R1 ← local-win-left(xi,xj, wL);
 R3 ← local-win-right(xi,xj, wL);
 Count M1, M2, M3 the number of points in R1, r and R3

respectively;

 Compute n∗(R,X) [eq..];

 for c ∈ C do

 Divide r into c equal boxes;

 Compute p1(r, R, c) [eq..];

 Count b(r, c,X), the number of occupied boxes;

 Compute NFA(r, R, c,X) [eq..];

 if NFA(r, R, c,X) ≤ ε then

 l← r;

 wL ← wL/
√
2;

 w ← w/
√
2;

m1 = 0;

m2 = 0;

m3 = 0;

dx = xj-xi;

dy = yj-yi;

len = sqrt(dx*dx+dy*dy);

for(m=0; m<N; m++)

{

if( m==i || m==j ) continue; /* do not count i and j */

/* compute coordinates relative to alignments */

x = dx * (points [2*m]-x1) + dy * (points [2*m+1]-y1);

y = -dy * (points [2*m]-x1) + dx * (points [2*m+1]-y1);

/* count local window points */
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if( x < 0.0 || x >= len ) continue; // hor. outside R

if( y < -l/2.0 || y > l/2.0 ) continue; // ver. outside R

if( y < -w/2.0 ) ++m1; //R_1 count

else if( y > w/2.0 ) ++m3; // R_3 count

else ++m2;

}

Where (xi,yi) and (xj,yj) are the coordinates of the pair of points xi and xj forming

the alignment, N is the total number of points, w and l are the widths of the rectangle and lo-

cal window respectively. points is an array of length 2N containing all points coordinates,

such that points[2*m] and points[2*m+1] are the horizontal and vertical coordinates

of the mth point respectively. Please note that this code is a simplified version of the source

code, so variable names in the source code might differ.

• Line : Recall that C contains numbers from 1 to
√
N . However, in the present implemen-

tation, once the number of points inside the alignment is known, the algorithm starts from

c = n/2, where n is the number of points inside the alignment and goes up to c = 2n. This

is only an acceleration heuristic and does not affect the detector performance.

• Line : Note that n∗, the conservative estimation of points in R, is required to compute p0.

• Line : When the rectangle is divided into c boxes, two half-boxes are left at each extreme

of the alignment, so that c full boxes remain in the middle (see Figure A.). There are two

reasons for this. One is that the points defining the statistical test must not be counted in

the test. The second reason is that if there are c points perfectly spaced inside the alignment,

then these would fall exactly in the center of each of the c boxes. As a reference, the present

implementation counts the number of occupied boxes in the following way:

box = len / (c+1); // takes into account

// one half -box at each extreme

for(m=0; m<n_alignment; m++)

{

b = floor( (x[m] - box /2.0) / box );

if( b>=0 && b<c ) ++ occupied[b];

}

Where len is the length of the alignment, n alignment is the number of points inside the

alignment, x is an array of length n alignment containing horizontal distances inside the

alignment and occupied is an array of length c initialized with zeros that will contain a

positive integer where a box is occupied or zero otherwise. Please note that this code is a

simplified version of the source code, so variable names in the source code might differ.

• Line : To simplify the computation of the NFA, eq. ., our implementation computes a

bound to the tail of the binomial distribution instead of its actual value. Given n indepen-

dent Bernoulli random variables with parameter p, its sum S = X1 + · · ·+Xn follows the

binomial distribution. It is easy to obtain Desolneux et al. [] an upper bound to the tail

of this distribution using Hoeffding’s inequality Hoeffding []:

B(n, k, p) = P(S ≥ k) ≤
(

p

k/n

)k ( 1− p

1− k/n

)n−k

.
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Figure A.1: A detail of the counting of occupied boxes. Two half boxes are placed at the extremes of

the rectangle, and only the full boxes in the middle count. This is because the two points forming the

alignment must not be counted in the statistical test since they are the ones that define the test.

Algorithm : Redundancy reduction (Masking Principle)

input : A list l of all significant alignments

output: A list m of maximally significant alignments

 l← sort(l); // by NFA, lowest to highest

 m[0]← l[0];
 for i = 1→ length(l)− 1 do

 B = l[i] ;

 masked = false;

 for j = 0→ length(m)− 1 do

 A = m[j];
 X′ = {x | x /∈ rA} ;

 if NFA(rB, RB, cB,X
′) > ε [eq..] then

 masked = true ;

 break;

 if masked == false then

 m⇐ l[i];

The following code computes the previous approximation and returns the logarithm with

base  of the result:

static double log_bin(int n, int k, double p)

{

double r = (double) k / (double) n;

if( r <= p ) return 0.0;

else if( n == k) return k * log10(p);

else return k * log10(p/r) + (n-k) * log10( (1-p)/(1-r) );

}

A. Redundancy Reduction

Algorithm  presents the pseudo-code for the redundancy reduction procedure. Following are

some additional comments:

• Lines  and : Event A is defined by the rectangle rA, local window RA and the number
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of boxes cA. Event B is defined by the rectangle rB , local window RB and the number of

boxes cB .

• Line : A new set of points X′ is considered, by removing all points belonging to alignment

A (all points in rA).

• Line : The NFA of B is re-evaluated using the set of points X′. If the new NFA is greater

than ε, then B is no longer significant when the points from A are removed: A masks B.

• Line : This condition means that the current alignment was not masked by any event in

the current output list (all of which are more significant than itself). If the condition is

satisfied, the current alignment is appended to the output list.









B Detailed implementation of the van­

ishing point detector

B. Main Algorithm

Algorithm  presents the pseudo code for the main vanishing point (VP) detection procedure.

Each subroutine is detailed and explained in the rest of this section. Parameters are detailed in

each subroutine and in table B.. The following notation will be used:

• bold lowercase letters for vectors (e.g. v)

• bold uppercase letters for lists (e.g. L)

• uppercase letters for matrices (e.g. Q).

• xv and yv for the horizontal and vertical coordinates of a point v in the image, respectively.

The input to the algorithm is the image I . The output is a list V of relevant VPs locations, and

the estimated horizon line lhor. The method has ten parameters. Parameters f and p are given

by the geometry of the camera. The threshold τ is applied on the length of line segments, and is

relative to the image size. Thresholds θ, δ and ζ are used to refine the position of the candidate VPs

and remove redundant detections. Parameters γS and γR are angular parameters that are used to

determine orthogonality or non-orthogonality in the Gaussian sphere. The parameters ω and λ
are thresholds used to discard or validate candidate VPs. The use of each parameter will be detailed

in the section corresponding to each subroutine.

Lines  and  perform the line segment detection and denoising (grouping and discarding

short line segments). Lines  to  perform the mapping of the line segments into points in the dual

spaces, and the detection of alignments in them. Lines  to  convert the alignments found in the

dual space to points in the image, which are the candidate VPs. The procedure in line  refines the

position in the image of each candidate VP. In line , the algorithm is divided into two possible

paths: assuming the Manhattan-world hypothesis or not.

B. Line Segment Detection

The LSD method in line  of Algorithm  runs the Line Segment Detector of Grompone von Gioi

et al. [] on the image I . The output is a list of line segments identified by their endpoints

((x1, y1), (x2, y2)).
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Algorithm : Main body of the algorithm

input : An image I . Parameters f , p, τ , θ, ζ , δ, γS , γR, ω, λ (see table B.).

output: A list V of detected VPs and l, the estimated horizon line.

 L← LSD(I)
 L← denoise lines(L, τ) // Algorithm 11

 Xstraight,Xtwisted ← pclines transform(L) // Algorithm 12

 Astraight ← detect alignments(Xstraight) // Algorithm 14

 Atwisted ← detect alignments(Xtwisted)
 Vstraight ← inverse pclines transform(Astraight) // Algorithm 13

 Vtwisted ← inverse pclines transform(Atwisted)
 V← Vstraight

⋃

Vtwisted

 V← refine detections(V, θ, δ, ζ) // Algorithm 15

 if Manhattan-world then

 V, lhor ← manhattan constraints(V, f,p, γS) // Algorithm 18

 else

 V, lhor ← non-manhattan constraints(V, f,p, γR, ω, λ) // Algorithm

23

B. Line Segment Denoising

The aim of this step is to remove short, noisy line segments, and to capture the direction of higher

level structures formed by groupings of line segment endpoints. Algorithm  presents the pseudo

code for this procedure. To achieve its goal, this procedure uses the alignment detector of Chap-

ter  to find alignments of line segment endpoints. The line segments are grouped by length and

orientation. First, they are divided into “short” and “long” segments using a threshold τ . Then,

they are subdivided by orientation in angular slots of ◦ with ◦ overlap.

The alignment detection algorithm is run on the endpoints of the line segments contained in

each slot (lines  to  and lines  to ). The list of final line segments is composed by the long

segments and the segments found as endpoint alignments (lines ,  and ). The benefits of this

stage are twofold: First, noisy short segments are removed. Second, additional cues on vanishing

directions are obtained when parallel line segments are grouped.

B. Dual space transformation

To map lines in the image into points in a dual space, the method uses the PCLines transforma-

tion Dubská et al. []. The fundamentals of this transformation are presented in Dubská et al.

[], Section . The simple operations required to compute the mapping into the straight and

twisted spaces are described in Algorithm  for the direct transform (image to dual space) and in

Algorithm  for its inverse (dual space to image). Note that in the direct transform, an output

domain is fixed, and points falling outside it are discarded (Algorithm , lines , ). This is

because the output points will be passed to the alignment detector, which can only operate on a

restricted domain (Section B.). The domains are fixed to [−1, 2] × [−1, 2] in the straight space

and [−2, 1]× [−2, 1] in the twisted space.

By using both straight and twisted spaces, it is guaranteed that each group of converging line
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Algorithm : denoise lines: Line segments denoising

input : A list of line segments L. A length threshold τ .

output: A list L′ of denoised line segments.

 Lshort ← {l : l ∈ L, length(l) ≤ τ}
 Llong ← {l : l ∈ L, length(l) > τ}
 L′ ← Llong

 for α ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦} do

 Lα
short ← {l : l ∈ Lshort, α− 20◦ ≤ ang(l) < α + 20◦}

 xα
short ← endpoints(Lα

short)
 Aα

short ← detect alignments(xα
short) // Algorithm 14

 append Aα
short to L′

 Lα
long ← {l : l ∈ Llong, α− 20◦ ≤ ang(l) < α + 20◦}

 xα
long ← endpoints(Lα

long)

 Aα
long ← detect alignments(xα

long) // Algorithm 14

 append Aα
long to L′

segments in the image will appear in at least one of the dual spaces as a bounded set of points. A

simple analysis of the transformation shows that lines with an orientation close to ◦ are mapped

into points close to infinity in the straight transform, but are bounded for the twisted version. On

the contrary, lines with an orientation of -◦ are mapped to infinity in the twisted transform, but

not in the straight one.

B. Alignment detection in dual space

To find clusters of aligned points in the dual space, the method uses the unsupervised alignment

detector of Chapter . A relaxed threshold of ε = 10 in the number of false alarms is always

used (it allows in theory some  false alarms per image). Since future steps in the algorithm

will refine relevant detections and remove spurious ones, false positives are not a serious prob-

lem. Furthermore, the relaxed detection threshold can help by finding alignments at the limit of

detection. The exact same version of the algorithm and its parameters is used in Algorithm ,

lines  and  and in Algorithm , lines  and . Algorithm  presents a short pseudo code for

this procedure. Note that the domain of the input points must be defined and passed to the al-

gorithm. When working in the image, as in Algorithm , the domain is the same as the image

domain ([0,W ]× [0, H]). When working in the straight and twisted dual spaces, the domains are

[−1, 2]× [−1, 2] and [−2, 1]× [−2, 1] respectively, as explained in Section B.. For clarity, this has

not been explicited in the calls to detect alignments in Algorithms  and .

Lines corresponding to alignments detected in the dual space are converted to points in the

image space by using the inverse PCLines transform described in Algorithm .

B. Vanishing point detections refinement

The point alignments detections in both PCLines dual spaces constitute the first candidates for VPs

(recall that lines in the dual space correspond to points in the image). Because of the nature of the
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Algorithm : pclines transform: PCLines transformation of line segments in

the image into points in dual space.

input : A list of line segments L, d = 1. Height and width of the image, H and W .

output: Two lists Xstraight and Xtwisted of points in the dual space.

 Xstraight ← ∅
 Xtwisted ← ∅
 for l ∈ L do

 (x1, y1), (x2, y2)← endpoints(l)

 x1 ← x1

W
, y1 ← y1

H
, x2 ← x2

W
, y2 ← y2

H

 dy ← y2 − y1
 dx ← x2 − x1

 m← dy
dx

 b← (y1·x2−y2·x1)
dx

 ustraight ← d
(1−m)

 vstraight ← b
(1−m)

 utwisted ← −d
(1+m)

 vtwisted ← −b
(1+m)

 if (ustraight, vstraight) ∈ [−1, 2]× [−1, 2] then

 Append (ustraight, vstraight) to Xstraight

 if (utwisted, vtwisted) ∈ [−2, 1]× [−2, 1] then

 Append (utwisted, vtwisted) to Xtwisted

point alignment detector, the direction of the detected alignments is given by the two points at the

extremes. This direction is of course biased and needs to be refined. The refinement procedure

consists of two parts, as described in Algorithm . First, the candidate VPs are refined using the

line segment information in the image domain. This process is described in Algorithm . Second,

the set of candidate VPs is searched for redundant detections. This process is detailed in Algorithm

.

To refine a candidate VP the following two steps are taken. First, the group of line segments

converging to the candidate VP is searched for. This search is done only among the line segments

detected by LSD (not the ones obtained as alignments of endpoints in Section B.). The angle be-

tween a line segment and the line passing by the midpoint of the line segment and the candidate

VP is considered (see Figure .). Thresholding this angle, the list of line segments converging to

the candidate VP is obtained (Algorithm , lines  to ). Considering this subset of line segments,

the position of the candidate VP is refined by using the VP update rule of Antunes and Barreto

[]. This update rule finds the point in the image minimizing the weighted sum of the geo-

metric distances between the VP and the line segments. We kindly refer the reader to Antunes

and Barreto [] for the detailed development of the minimization problem and only give the

resulting formula here. The update process is described in lines  to  of Algorithm .

Given N segments li = [ai, bi, ci]
T , the following x matrix Q, which is derived from the
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Algorithm : inverse pclines transform: Inverse transformation of lines in

PCLines space to points in the image

input : A list of lines L = {l : v = m · u+ b}. The PCLines space identifier

(straight or twisted). Parameter d = 1. Height and width of the image, H
and W .

output: A list of points X = {(x, y)} in the image domain.

 X← ∅
 for l : v = m · u+ b ∈ L do

 x← b
 if straight then

 y ← d ·m+ b
 else if twisted then

 y ← −(−d ·m+ b)

 Append (x ·W, y ·H) to X

Algorithm : detect alignments: Point alignments detection.

input : A list of points X, a rectangular domain D, the Number of False Alarms

threshold ε = 10.

output: A list A of alignment detection.

 A← detect alignments(X, D, ε)

formula of the orthogonal distance is computed,

Q =
N
∑

i=1

w2
i

lili
T

li
T Isli

(B.)

where Is =





1 0 0
0 1 0
0 0 0



 and wi are the normalized lengths of the line segments, so the longest

line segment has length . The estimated vanishing point v is given, in homogeneous coordinates,

by the solution of the right nullspace problem:

[2Q, −p]
(

v

λ

)

= 0, (B.)

where p = (0 0 1)T (Algorithm , line ). Note that [2Q, −p] is a x matrix and

(

v

λ

)

is a

x vector, because v is in homogeneous coordinates. In MATLAB, the function null() is used to

obtain the result.

It could happen that the matrix Q is ill conditioned, for example when the line segments in the

group are mostly parallel. The method detects ill conditioned cases by measuring the normalized

distance between the original VP and the refined VP. If it is above a certain threshold ζ , the original

VP is kept (Algorithm , lines  to ).
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Algorithm : refine detections: Post-processing of alignment detections.

input : A list of candidate VPs V. An angle threshold θ and distance thresholds δ
and ζ

output: A list V′ of refined candidate VPs.

 V′ ← refine vps(V,L, θ, ζ) ; // Algorithm 16

 V′ ← remove redundancy(V′, δ); // Algorithm 17

The second step in the refinement is the removal of the redundant detections, described in

Algorithm . These redundancies can have two causes. One type is caused by detections corre-

sponding to the same VP found both in the straight and twisted spaces. The alignment detection

algorithm can also produce some redundant detections when a noisy cluster of aligned points

triggers multiple thin detections. The identification of redundant detections is done by running

single-link agglomerative clustering on the VP candidates in the image (Algorithm , line ). The

single-link agglomerative clustering is a common clustering procedure and we shall only briefly

describe it. In the single-link agglomerative clustering, each VP starts in a cluster of its own. The

clusters are then sequentially combined into larger clusters. At each step, the two clusters separated

by the shortest distance are combined. The shortest distance is the minimum distance between two

elements (one in each cluster). The algorithm stops when the shortest distance is above a threshold

δ. For the detection of redundant VPs, the distances used are normalized, so that

d(vi,vj) =
||vi − vj ||

max(||vi,vj ||)
. (B.)

For each cluster found, only the VP with lowest NFA (most significant) is kept (line ).
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Algorithm : refine vps: Refine VP detections.

input : A list V of candidate VPs. A list L of line segments. An angle threshold θ
and a distance threshold ζ .

output: A list V′ of refined candidate VPs.

 V′ ← ∅
 for v ∈ V do

 L′ ← ∅
 for l ∈ L do

 m← mid point(l)
 l′ ←mv

 if angle(l, l′) < θ then

 Append l to L′

 Q← 3× 3 matrix with all zeroes

 I ← 3× 3 identity matrix

 M ← max(lengths(L′))
 for l ∈ L′ do

 w ← length(l)/M

 Q← Q+ w2 · llT

lT Il

 p← [0, 0, 1]T

 A← [2Q, −p]
 v′ ← null space(A)

 if
||v−v′||
||v|| < ζ then

 Append v′ to V′

 else

 Append v to V′ ; // Reject ill-conditioned case.

Algorithm : remove redundancy: Remove redundant VP detections.

input : A lists of VP candidates, V. A distance threshold δ
output: A single list V of non-redundant VP candidates.

 V← Vstraight

⋃

Vtwisted

 V′ ← ∅
 C ← single link agglomerative clustering(V, δ)
 for C ∈ C do

 v′ ← argmin
v∈C

NFA(v)

 Append v′ to V′





B. Orthogonality Constraints and Horizon Line estima-

tion

Once a list of refined candidate VPs is obtained, the last part of the VP detection algorithm consists

in selecting the subset of VPs that best correspond to the real VPs in the image. To relax this prob-

lem, two possible hypothesis are introduced. One is the “Manhattan-world” hypothesis, which

implies that only three orthogonal VPs are present in the image. The second one, which we will

refer to as “non-Manhattan-world” is the existence of one vertical and multiple, non necessarily

mutually-orthogonal horizontal VPs. The final step of the algorithm has two variants, one for each

hypothesis. The two variants are described in the rest of this section.

Manhattan World

Algorithm  presents the pseudo code for the procedure followed by the method when the Manhattan-

world hypothesis can be assumed. The procedure starts by converting the candidate VPs in the

image to unit vectors in the Gaussian sphere using the image to gaussian sphere routine de-

scribed in Algorithm . To do this, it is necessary to know or estimate the focal length in pixel

units and the position of the principal point or image center. After this conversion, triplets of or-

thogonal VPs are searched for using the orthogonal triplets routine described in Algorithm

 and the triplet with the lowest combined NFA is selected as the final result (Algorithm , line

). (Recall that each candidate VP has an NFA associated which is the NFA of the corresponding

alignment detected in the dual space). When no orthogonal triplets are found (lines  to ), the

most significant orthogonal pair is taken using the procedure in Algorithm , and the third vector

is obtained by the cross product, and then refined using the refine vps procedure of Algorithm

.

In line , the VPs are be converted back to image coordinates using the

gaussian sphere to image procedure described in Algorithm . In lines  to  the vertical

VP is identified as the one with the largest vertical coordinate and the remaining two horizontal

VPs are used to trace the horizon line.

Non-Manhattan World

We refer to a “non-Manhattan” world scenario as a particular relaxation of the simple “Manhat-

tan” world model. This relaxed hypothesis assumes the image has one vertical VP and multiple

horizontal VPs, which are orthogonal to the vertical VP, but not necessarily orthogonal between

them. Examples of these scenes can be seen in Figure .. Under this assumption, the method

starts by estimating which of the candidate VPs is the vertical one, and then selecting a possible set

of horizontal VPs. This procedure is detailed in Algorithm .

In line  of Algorithm , the vertical vp candidates routine, detailed in Algorithm , is

used to select a subset of the VPs that are candidates for the vertical VP. This routine is based on two

thresholds on the image coordinates of the VPs. Given a candidate VP v, its vertical coordinate

yv must be outside the image domain (larger than H), and a threshold ω is used for the angle

between a vertical line passing through the image center, (lver in line  of Algorithm ) and the

line connecting the image center with the candidate VP (lv in line  of Algorithm ). If both

conditions are met the VP is added to the list of candidates for the vertical VP (line  of Algorithm

). Of course, this is a trivial procedure and it would fail if the image is heavily rotated, but it

works well for approximately horizontal urban scenes, for which the algorithm is intended. Finally,
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among all the vertical VP candidates, the one with the lowest NFA is chosen (Algorithm , line ).

Once the vertical VP has been determined the rest of the VPs are considered as horizontal VP

candidates (line ). Then, two lists are created. The first one, Vortho
hor (line ), will contain the

horizontal VP candidates that are orthogonal to the vertical VP. The second list, V
finite
hor (line )

will contain the horizontal candidate VPs that do not lie at “infinity”.

The computation of the list of VPs orthogonal to the vertical VP, Vortho
hor , is described in lines 

to  of Algorithm . The VPs are converted to the Gaussian sphere, based on known or estimated

values for the focal length in pixel units, and the principal point. Using a threshold γR on the angle

between vectors in the Gaussian sphere, the VPs that are far from being orthogonal to the vertical

VP are discarded (lines  to ).

The computation of the list of non-infinite VPs, V
finite
hor , is described in lines  to . The aim

is to identify VPs caused by sets of parallel lines, whose vertical position is undetermined. This is

done with a threshold λ on the distance between the VP and the image center p (lines  to ).

This threshold is proportional to the image size (see table B.). Note that it could happen that no

VP is finite under this criterion. In that case the result is given by taking the VP closest to the image

center (lines  to ).

The list of final horizontal VPs is the intersection of the two aforementioned lists, namely

those VPs that are both orthogonal to the vertical VP and finite. In the extreme case that the lists

are disjoint, only one horizontal VP is considered, the one with the lowest NFA. This is described

in lines  to .

Once the final subset of horizontal VP candidates is determined, the horizon line is obtained by

a weighted average: each candidate horizontal VP casts a vote for the horizon line. This procedure

is detailed in Algorithm . For each VP, its proposed horizon line is the line passing by itself,

perpendicular to the line formed by the image center and the vertical VP (line ). Since all lines are

parallel, this problem is actually one-dimensional: what is being determined is the height of the

horizon line, hhor (line ). The weight of each vote is given by the NFA associated to the VP, more

precisely as−log10(NFA), normalized over the sum of this value for all remaining VPs (line ).
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Algorithm : manhattan constraints: Final VP and horizon line estimation un-

der the Manhattan-world hypothesis.

input : A list of candidate VPs in image domain V. A threshold γS . f , the focal

length in pixel units. p, the principal point.

output: A list V of candidate VPs in image domain. The horizon line lhor.

 Vu ← ∅
 for v ∈ V do

 vu ← image to gaussian sphere(v, f,p) // Algorithm 21

 Append vu to Vu

 T← orthogonal triplets(Vu, γS) // Algorithm 19

 P← orthogonal pairs(Vu, γS) // Algorithm 20

 if T 6= ∅ then

 {v(1)
u ,v

(2)
u ,v

(3)
u } ← argmin

t∈T

(

score(t)
)

 else

// No orthogonal triplet found, use pairs

 {v(1)
u ,v

(2)
u } ← argmin

p∈P

(

score(p)
)

 v
(3)
u ← v

(1)
u × v

(2)
u

 v
(3)
img ← gaussian sphere to image(v

(3)
u , f,p) // Algorithm 22

 v
(3)
img ← refine vps(v

(3)
img) // Algorithm 16

 v
(3)
u ← image to gaussian sphere(v

(3)
img, f,p)

 V← ∅
 for i ∈ {1, 2, 3} do

 v
(i)
img ← gaussian sphere to image(v

(1)
u , f,p)

 Append v
(i)
img to V

 vver ← argmax
v∈V

(yv)

 {vhor1,vhor2} ← V \ vver

 lhor ← vhor1vhor2
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Algorithm : orthogonal triplets

input : A list of unit norm vectors Vu (with associated NFAs). A threshold γS .

output: A list T of orthogonal triplets of vectors.

 T← ∅
 for v

(i)
u ∈ Vu do

 for v
(j)
u ∈ Vu \ v(i)

u do

 for v
(k)
u ∈ Vu \ v(i)

u ,v
(j)
u do

 if max(|v(i)
u · v(j)

u |, |v(i)
u · v(k)

u |, |v(j)
u · v(k)

u |) < γS then

 t(i,j,k) ←
(

v
(i)
u ,v

(j)
u ,v

(k)
u

)

 score(t(i,j,k)) = NFA(v
(i)
u ) + NFA(v

(j)
u ) + NFA(v

(k)
u )

 Append t(i,j,k) to T

Algorithm : orthogonal pairs

input : A list of unit norm vectors Vu (with associated NFAs). A threshold γS .

output: A list P of orthogonal pairs of vectors.

 T← ∅
 for v

(i)
u ∈ Vu do

 for v
(j)
u ∈ Vu \ v(i)

u do

 if |v(i)
u · v(j)

u | < γS then

 p(i,j) ←
(

v
(i)
u ,v

(j)
u

)

 score(p(i,j)) = NFA(v
(i)
u ) + NFA(v

(j)
u )

 Append p(i,j) to P

Algorithm : image to gaussian sphere : Convert VP candidates in the image

to unit vectors in the Gaussian sphere

input : A VP in image coordinates (xv, yv). The focal ratio f in pixel units and the

principal point p.

output: The corresponding unit-norm vector vu in the Gaussian sphere.

 vu ←
(

xv − xp, yv − yp, f
)T

 vu ← vu

||vu||
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Algorithm : gaussian sphere to image :Convert VP candidates as unit vectors

in the Gaussian sphere to points in the image.

input : A unit-length vector vu in the Gaussian sphere. The focal ratio f in pixel

units and the principal point p.

output: The corresponding VP in image coordinates vimg

 vimg ←
(

f · vu(1)
vu(3)

+ xp, f · vu(2)
vu(3)

+ yp
)T

Algorithm : non-manhattan constraints: Final VP and horizon line estima-

tion without the Manhattan-world hypothesis.

input : A list of candidate VPs in image domain V. f , the focal length in pixel

units. p, the principal point. Thresholds γR, ω, λ
output: A list V of candidate VPs. The horizon line lhor.

 Vver ← vertical vp candidates(v) // Algorithm 24

 v(v) ← argmin
v∈Vver

(

NFA(v)
)

 Vhor ← V \Vver

 v
(v)
u ← image to gaussian sphere(v(v), f,p) // Algorithm 21

 Vortho
hor ← ∅

 for v(h) ∈ Vhor do

 v
(h)
u ← image to gaussian sphere(v(h), f,p)

 if |v(v)
u · v(h)

u | < γR then

 Append v(h) to Vortho
hor

 V
finite
hor ← ∅

 for v(h) ∈ Vhor do

 if ||v(h) − p|| < λ then

 Append v(h) to V
finite
hor

 if Vfinite
hor == ∅ then

 V
finite
hor ← argmin

v(h)∈Vhor

(

||v(h) − p||
)

 if Vortho
hor

⋂

V
finite
hor 6= ∅ then

 V← Vortho
hor

⋂

V
finite
hor

 else

 V← argmin
v∈Vhor

(

NFA(v)
)

 Append v(v) to V

 lhor ← horizon line voting(V) // Algorithm 25





Algorithm : Obtain vertical vanishing point candidates.

input : A list of candidate VPs in image domain V. An angular threshold ω. The

principal point p.

output: A list Vver of candidate vertical VPs.

 Vver ← ∅
 lver ← vertical line passing trough p

 for v ∈ V do

 vcentered ← v − p

 lv ← pvcentered

 if angle(lv, lver) < ω AND |yv| > H then

 Append v to Vver

Algorithm : horizon line voting: Obtain horizon line by votes.

input : A list of horizontal VPs Vhor, a vertical VP vver and their associated NFAs.

The image center p.

output: A line lhor representing the horizon

 lver ← pvver

 hhor ← 0

 for v(i) ∈ Vhor do

 w(i) = −log10(NFAi)∑
j −log10(NFAj)

 l
(i)
hor = line through v(i) perpendicular to lver

 hhor ← hhor + w(i) · height(l(i)hor)

 lhor ← line perpendicular to lver with height hhor
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Name Description Algorithm Value

τ Line segments length threshold 
√
W+H

1.7
θ VP to line segment angle threshold ,  1◦

ζ Variation threshold to detect ill-conditioned problem ,  0.2
δ Distance threshold to identify redundant VP detections ,  0.02
f Focal length in pixel units , , ,  max(W,H)
p Principal point or image center , ,  (H/2,W/2)
γS Strict angle threshold to determine orthogonality , ,  85◦

γR Relaxed angle threshold to determine non-orthogonality  75◦

ω Angle threshold in image space to determine vertical VPs ,  75◦

λ Distance threshold to determine infinite VPs  5 ·W

Table B.1: Parameters of the proposed method, with suggested values for general images. W and H are

the image width and height.

B. Analysis of the method’s parameters

There are ten parameters in the VP detection method. Table B. provides the description and

values for general images, found empirically. Table B. presents the values optimized by grid search

for York Urban Dataset and Eurasian Cities Dataset as explained in Section ... The alignment

detector is always used as described in Chapter , without modification or adjustment.

The most sensible parameter of the method is the focal length f . This value can sometimes be

obtained if the camera model is known, or from the information included in the EXIF header for

some type of image formats. The EXIF header can provide the focal length in mm, the CCD size in

mm and the CCD resolution in pixels, which can be used to compute the focal length in pixel units.

If the camera is available but its characteristics unknown, f can be estimated by camera calibration

Hartley and Zisserman []. Otherwise, a general rule of thumb is to choose f ∈ [0.3W, 3W ],
supposing W is the largest size of the image.

Also needed to compute the VP in the Gaussian sphere, the principal point of the camera, p,

can be safely assumed to be at the image center [W/2, H/2].

The threshold τ for the length of line segments can have a big impact in the final result, if there

happens to be a significant group of structures in the image whose length is close to the threshold.

This threshold should vary with the image size. The chosen value of
√
W+H
1.7 is not strictly scale

invariant, but, as most of the parameters in Table B., it has been found empirically using the

benchmarking datasets of Section ...

The refinement angle threshold θ is set to a very small angle, so that the segments chosen for

refining a candidate VP do not largely differ from the points forming the alignment found by the

alignment detector. This threshold can have a sensible impact in the final location of the refined VP.

The threshold ζ is used to determine when the refinement has gone too far, although its sensibility

is limited, since ill conditioned cases are a minority.

The angular threshold γS is used to determine whether a pair of unit vectors are close to or-

thogonal, in the case where orthogonality is searched for. On the other hand, γR is a more re-

laxed threshold, used to determine that two vectors are far from being orthogonal. The sensibility

of these two parameters is in some way related to f . When f is known or correctly estimated,

the mapping of vectors into the Gaussian sphere should be correct, so orthogonality and non-

http://en.wikipedia.org/wiki/Exchangeable_image_file_format


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Name Algorithm Value for YUD value for ECD

τ 
√
W+H

1.7

√
W+H

1.7
θ ,  1.6◦ 0.375◦

ζ ,  0.15 0.3
δ ,  0.004 0.02
f , , ,  1.05W 1.05W
p , ,  (307, 251) (W/2, H/2)
γS , ,  0.06 N/A
γR  N/A 0.23
ω ,  N/A 1.26◦

λ  N/A 3.6W

Table B.2: Parameters of the proposed method trained for YUD and ECD datasets. H and W are the

height and width of the image. A brief description of the parameters can be found in Table B.1.

orthogonality between vectors should be clearly determined. The values presented in table B.

have been found empirically using the benchmarking datasets of Section ...

The angular parameter ω is used to determine if a candidate VP could possibly be the vertical

VP of the image. The idea is that a vertical VP should be in a close angle with respect to the

vertical direction. Of course, in order for this trivial heuristic to work properly the image has to be

approximately horizontal.

Finally, λ is a simple distance threshold used to determine if a point lies at “infinity”. Naturally,

this value needs to be proportional to the image size. This parameter can be sensible in the case

where all the cues for horizontal VPs in the image come from parallel structures (the intersection

of the lines lies at infinity). For example, when a building facade is photographed very closely, and

no perspective is produced.
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