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Résumé

Dans cette thèse on s'intéresse à la modélisation et la commande d'un sys-
tème micro-mécatronique à base de matériau actif appelé Alliage à Mémoire
de Forme Magnétique (AMFM). La principale propriété de ce matériau est sa
déformation sous l'action d'un champ magnétique ou d'une contrainte, avec
des plages importantes de déformation le rendant intéressant d'un point de
vue applicatif par rapport à ses homologues tels que les actionneurs pié-
zoélectriques. Le matériau étant fortement dissipatif et hystérétique, une
fois déformé par une stimulation externe, il ne revient pas à sa position ini-
tiale. C'est la raison pour laquelle il est principalement utilisé dans des con-
�gurations de type push-pull. Comme pour tout matériau actif, les champs
d'application des AMFM sont très divers et on peut en particulier les utiliser
comme actionneurs pour des déplacements à l'échelle millimétrique. Comme
ils réagissent à la fois à une contrainte et à une déformation, ils peuvent être
utilisés comme capteur de force, capteur de position et pour mesurer des
champs magnétiques. Etant fortement dissipatifs, ils peuvent aussi être util-
isés comme amortisseur pour le contrôle de vibrations. En�n il peuvent être
utilisés comme transformateurs d'énergie dans le cadre de problématiques de
récupération d'énergie. Pour toutes ces applications, il est nécessaire d'avoir
un modèle précis du comportement dynamique du matériau pour pouvoir
l'utiliser de manière optimale.

Etant donnés leur aspect multiphysique, leur structure cristalline com-
plexe, leur caractère irréversible et non linéaire, la modélisation de ces matéri-
aux reste un sujet de recherche ouvert. Dans la littérature, des modèles basés
sur la thermodynamique irréversibles sont proposés. Ces modèles arrivent à
prédire le comportement du matériau en mode quasi-statique. Malheureuse-
ment pour être précis et �able comme actionneur il faut prendre en compte
la dynamique. C'est dans ce domaine que cette thèse apporte toute sa con-
tribution.

Une première partie de la thèse porte sur l'amélioration d'un modèle
préexistant du MSMA et de l'actionneur. Ce modèle inspiré d'une ap-
proche mécanicienne, repose sur un choix exhaustif des variables d'état et
l'utilisation de contraintes algébriques associées à l'utilisation de multiplica-
teurs de Lagrange. L'approche Hamiltonienne généralisé proposé dans cette
thèse a permis de réduire le nombre d'état et un changement approprié de

iii



variables a permis de projeter la solution sur un espace réduit aboutissant à
un modèle sans contrainte algébrique et de dimension réduite. La cohérence
thermodynamique et des problèmes de causalité liés au choix des variables
manipulées (manipulables) et à l'aspect électro-magnéto-mécanique du sys-
tème nous ont poussé à reprendre entièrement le modèle proposé.

La deuxième partie du travail a donc consisté à utiliser le formalisme de
Hamiltonien à ports basé sur la thermodynamique pour proposer un mod-
èle thermodynamiquement cohérent liant la dynamique du matériau et son
énergie interne, en incluant les problématiques d'hystérésis par l'ajout de
variables internes. Ce modèle est ensuite connecté au circuit électrique de
l'actionneur par le biais des variables de port d'interaction, et ce de manière
naturelle dans le cadre des systèmes Hamiltonien à ports, la partie électrique
de l'actionneur étant modélisé de manière minimale. Ce modèle a été validé
en simulation et confronté aux résultats expérimentaux issus de l'actionneur
mis en oeuvre dans le cadre de la thèse.

La troisième partie de la thèse porte sur une première approche de com-
mande de l'actionneur par le biais de techniques de type IDA-PBC. Pour cela
nous nous sommes inspirés de la commande des systèmes de type lévitation
magnétique qui présentent un couplage électro-magnétique assez similaire
aux MSMA. L'originalité consiste en la prise en compte l'hystérésis lors de
la commande par passivation. Une première loi de commande est proposée
et ouvre de nombreuses perspectives pour la commande des matériaux actifs
hystérétiques.
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1.1 Introduction

Advances in technology has reached such a level that previously unimaginable
tasks are becoming possible. Manipulation of DNA, manufacturing of 3-D
transistors, targeted delivered of drugs to infected cells and monitoring of
health with lab-on-chip technology among others are fast becoming standards
largely due to miniaturisation. Miniaturisation has played a considerable role
in improving technology and almost everyday new products are introduced
in the market. From medicine to household equipments and cosmetics, there
is some measure of micro- and nanotechnology in our everyday life. As these
sizes are very unintuitive, Figure 1.1 helps to show how the micro world and
the nano world scale in relation to things that we perceive.

At the nanoscale, nanotechnology is helping to considerably improve
many technology and industry sectors such as information technology, en-
ergy, environmental science, medicine, food safety and transportation among
others. It has been developing at an astounding pace since the last 20 years.
At such a scale, scientists are able to tailor the structure and properties of
materials to make them stronger, lighter, more reactive, and more conductive
among many other traits. Furthermore, the electrical and magnetic charac-
teristics are fundamentally di�erent than their bulk counterpart. This has
given rise to a number of applications such as nanoscale transistors which are

1



2 CHAPTER 1. INTRODUCTION

Red blood cells
(~7-8 Pm) 

Things NaturalThings Natural Things ManmadeThings Manmade

Fly ash
~ 10-20 Pm

Head of a pin
1-2 mm

Quantum corral of 48 iron atoms on copper surface
positioned one at a time with an STM tip

Corral diameter 14 nm

Human hair
~ 60-120 Pm wide

Ant
~ 5 mm

Dust mite

200 Pm

ATP synthase

~10 nm diameter
Nanotube electrode

Carbon nanotube
~1.3 nm diameter

O O

O

OO

O OO O OO OO

O

S

O

S

O

S

O

S

O

S

O

S

O

S

O

S

P
O

O

The Challenge

Fabricate and combine 
nanoscale building 
blocks to make useful 
devices, e.g., a 
photosynthetic reaction 
center with integral 
semiconductor storage.

M
ic
ro
w
or
ld

0.1 nm

1 nanometer (nm)

0.01 Pm
10 nm

0.1 Pm
100 nm

1 micrometer (Pm)

0.01 mm
10 Pm

0.1 mm
100 Pm

1 millimeter (mm)

1 cm
10 mm

10-2 m

10-3 m

10-4 m

10-5 m

10-6 m

10-7 m

10-8 m

10-9 m

10-10 m

Vi
si

bl
e

N
an
ow
or
ld

1,000 nanometers = 

In
fra

re
d

Ul
tra

vi
ol

et
M

ic
ro

wa
ve

So
ft 

x-
ra

y

1,000,000 nanometers = 

Zone plate x-ray “lens”
Outer ring spacing ~35 nm

Office of Basic Energy Sciences
Office of Science, U.S. DOE

Version 05-26-06, pmd

The Scale of Things The Scale of Things –– Nanometers and MoreNanometers and More

MicroElectroMechanical
(MEMS) devices
10 -100 Pm wide

Red blood cells
Pollen grain

Carbon 
buckyball

~1 nm 
diameter

Self-assembled,
Nature-inspired structure
Many 10s of nm

Atoms of silicon
spacing 0.078 nm

DNA
~2-1/2 nm diameter

Figure 1.1: The Scale of Things (Image: US Department of Energy).

faster, more powerful and increasingly energy e�cient. Displays for TVs, lap-
tops, phones and digital cameras now include nanostructured polymer �lms
known as organic light-emitting diodes, or OLEDS, which have consider-
ably improved the viewing angles, the weight as well as the energy e�ciency
and the lifetimes. A host of other applications are being engineered and
researched everyday.

Just a few orders of magnitude of above the nanoscale lies the microscale.
Unlike the nanoscale, characteristics at this scale are not fundamentally dif-
ferent from those in the macro world. Nonetheless due to devices of this
size being lighter, faster, more energy e�cient, easier to integrate into sys-
tems and cost less to produce, they are also having an astounding success.
The range of applications for such devices are numerous. Micro-electro-
mechanical-systems (MEMS) which in a single package contains the neces-
sary mechanical and electronic components to make transducers have found
their uses in a variety of �elds. In the automotive industry, it is used in the
airbag systems, vehicle security and active suspensions to name a few. In
the consumer domain, video projectors, phones, cameras or ink-jet printers
all embark one or two MEMS such as accelerometers, gyroscopes or DLP
(Digital Light Projector).

Apart from MEMS, in the micro world there is lots of application which
involve micro assembly and micro manipulation. Microrobotics [1], a term
used to de�ne micro manipulation of objects with characteristic dimensions
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in the millimetre to the micrometer range as well as the design and fabri-
cation of robotic structures in a similar size range (micro robots), has been
gaining momentum these last few years.

Examples of micro manipulation are the characterisation of biological
cells and/or organic tissue. This is important in the domain of genetics where
new DNA material has to be inserted in the cell. Mechanical characterisation
to measure forces on cells is also done through micro manipulation. This is
important in the development of tools for robotic surgery as forces requires
to open a tissue, or carry out a microinjection are mostly in the micro newton
range. Other uses of micro manipulation is to assemble parts called micro
assembly.

Microassembly circumvents the limitations of the traditional way MEMS
are built. To build MEMS, usually a silicon wafer is used on which lithog-
raphy and etching are applied to create the appropriate parts. The major
limitation is that as the micro fabrication process is planar, 3-D structures
are impossible to achieve. With micro assembly this limitation can be cir-
cumvented and a whole new lot of applications can be developed.

To this end, sensors and actuators which can work at these scales are
needed. Unfortunately to manipulate the small or micro, we need actuators
of that size and who can work in that range.

Smart Materials, materials who reacts to a stimulus by either changing
shape, colour, permittivity or permeability can be used for such purposes.

These materials are used in a variety of diverse �elds ranging from auto-
mobile to sports. They are used as sensors and actuators. Often, they have
the ability to 'self-sense', i.e the material in addition to being an actuator, it
performs as a sensor as well. This is due to the strong coupling between the
transduction mechanism. For example, a material which produces a strain
when a voltage is applied can also produce a voltage when an external factor
changes its shape. These e�ects are usually called the direct e�ect and, its
opposite the converse e�ect. Being able to sense and actuate at the same
time, obviously gives smart materials an added advantage over traditional
actuators and sensors[71]. There are a varieties of these smart materials and
they work on di�erent transduction principles. Some of the most common
are

• Piezomaterials[10] are very popular smart materials used as sensor
and actuators. A mechanical change such as an elongation is observed
when a voltage is applied to it. And when the material is compressed
or extended, a voltage is developed across it.

• Magnetostrictive materials [11] will produce an induced mechanical
strain when subjected to a magnetic �eld. The property that changes is
the permeability of the material. Hence on application of a mechanical
deformation, the material will change its permeability which can be
measured with a coil.
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• Ionic Polymers or Electroactive polymers [21] will deform on applica-
tion of a voltage. They are able to develop a large deformation while
sustaining a large force.

• Shape Memory Alloys [70] reacts to temperature. It will undergo phase
transformations which will change its shape. It deforms to its 'marten-
sitic' condition at low temperature and regains its original shape in its
'austenite' condition when heated (high temperature).

• Magnetic Shape Memory Alloys (MSMA) [7] is also one such very
promising material akin in some ways to Shape Memory Alloys (SMA).
It also deforms on application of heat but has the added advantage that
it deforms under the action of a magnetic �eld.

1.2 Overview of Magnetic Shape Memory Alloys

Magnetic Shape Memory Alloys (MSMA) are a relatively new class of mate-
rial. Like Shape Memory Alloys, they deform under the action of a stress and
in addition they are also responsive to a magnetic �eld. The most common
magnetic shape memory material that has been intensively investigated is an
alloy of Ni-Mn-Ga. A great amount of research interest has been generated
by this material due to its ability to produce large strains-upto 10%.

Compared to other other materials (see Fig. 1.2), MSMA work at a lower
frequency than piezoelectric or magnetostrictive devices but have a higher
deformation. Conversely, they have a higher operating frequency than clas-
sical Shape Memory Alloys but a lower deformation. Being placed roughly
in the middle of the table, opens up a large amount of potential applications
for MSMA such as sensors, actuators, energy harvesting, motion/vibration
control etc. In Fig. 1.3, the material is shown along with a sensor and an
actuator commercialised by a Finnish company named Adaptamat Ltd.

Each of the aforementioned application require that the MSMA operate
either in the actuation or sensing mode. In actuation mode, on application
of a magnetic �eld, an elongation occurs which can be used to do work.
Conversely in sensing mode, on compression/elongation of the material, a
change in magnetization is observed. By measuring the change in magneti-
sation, the change in length can be deduced. The coil in the sensor of Fig.
1.3 is used for such a purpose.

Apart from Adaptamat, a very basic actuator has been developed in
Gauthier et al. [17] whereas a sensing device is described in Sarawate [63].
An example of the actuator built by Gauthier et al. [17] during his PhD
thesis is shown in Fig. 1.4. It is a push-pull actuator which uses two MSM
elements in an antagonistic manner to move a positioning stage. A detail
description and the workings of this actuator as well as its design can be
found in Gauthier et al. [17].
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Figure 1.2: Energy Density of MSMA compared to other active materials

Figure 1.3: Sensor (left), Material (middle) and Actuator (right) from Adap-
tamat.

MSMA are able to exhibit such large deformation due to a change in
crystallographic arrangement of the martensitic variant. The material exists
in 2 main phases-the high temperature phase which is called austenite and
the low temperature phase which is called martensite. Figure 1.5 shows the
di�erent conditions under which the phases exist and within the martensitic
phase how the di�erent variants occur. The �gure shows that all variants
have 2 axis, a long axis ,a, and a short axis, c. These axis point in di�erent
directions for each variant. Depending on the external inputs such as stress
or magnetic �eld, a sample of the material can entirely consist of one variant
only or a mixture of variants. This changing of con�guration due to an
external stimulus is the process responsible for the macroscopic change.

Unfortunately this macroscopic change is quite complex in nature. This
limits the development and the widespread use of this material. The material
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(a) Lab Prototype.

(b) CAD Image.

MSMA

Coil

Positioning
Stage

(1.) Two MSMA elements working in
tandem to create a push-pull actuator

(2.) Application of a magnetic �eld deforms
the MSMA and the positioning stage moves.

(3.) Removing the magnetic �eld, the posi-
tioning stage stays in its current position.

(c) Workings of Push-Pull Actuator.

Figure 1.4: Push-Pull Actuator built in 2008 based on paper by Gauthier
et al. [17].

has a non-linear hysteretic behaviour. Furthermore for an actuator to be able
to operate with precision, the deformation of material needs to be controlled.

Since its discovery by Ullakko [75] most of the research carried on Mag-
netic Shape Memory alloys has been centered around its modelling. Irre-
versible thermodynamics has been extensively used to predict the behaviour
of the material [28, 37, 41, 36]. A variational approach has been used in Wang
and Steinmann [78] which is very similar to the thermodynamics approach.
Unfortunately, these subsequent models have not been used to design the
associated control system.

In the few works that have attempted [61, 62] to design a control law for
the material, the physics of the material has not been taken into considera-
tion. Notably most of them use a linear dynamics model in series with a non
linear hysteretic behaviour. The hysteresis is modelled and then inverted
to linearise the plant. Then control strategies such as PI, PID or adaptive
control [60]. are applied to them. The linear model identi�ed can either be
a �rst or a second order model. Usually, a second order model is used as
the material is pre-stressed by a load. The thermodynamics or variational
model usually developed are almost never used to control the material.
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To be able to take into account the physics of the material for the design
of control law, a uni�ed energy modelling seems most appropriate as the
MSMA and any actuator based on it is highly multi physics. Since energy
is a common denominator in all domains, an energetic approach has many
advantages. Firstly physical system can be viewed as simpler subsystems
which exchange energy among themselves and the environment [31]. Sec-
ondly energy being a scalar, di�erent energies from di�erent domains can be
combined by simply adding them up. Lastly, the role of energy and intercon-
nections between subsystems provide the basis for various control strategies
[49, 5]. And �nally they obey the laws of thermodynamics which is not the
case for phenomenological models.

1.3 Uni�ed Energy Modelling

To harness the full power of Magnetic Shape Memory alloys as actuator,
control of the deformation is essential. Furthermore using a black box model
or a linear model of the system does not allow us to use the full potential
of the material as the physics of the material is obscured by approximations
and linearization.

One way to overcome such limitations is to an energy framework as they
are neither restricted by the domain of application nor by linearity. The
port-Hamiltonian framework is an energy framework which has been rapidly
developing and is an ongoing subject of research since many years now. The
port-Hamiltonian framework combines Hamilton's equations of motion from
analytical mechanics with network theory prevalent in electrical engineering
[64].

The port-Hamiltonian framework �rst and foremost models a system in



8 CHAPTER 1. INTRODUCTION

a particular fashion i.e in terms of energy and co-energy variables. Energy is
the ability to do work while co-energy is its complement. For example, in a
spring with a linear constitutive equation (the relation between the force, F ,
and its displacement, x, is linear), we have, taking the sti�ness of the spring
to be k:

F = kx

The energy Es is then given by

Es(x) =

∫
F dx =

∫ x

0
kx dx =

1

2
kx2

whereas its co-energy E′s is

E∗s (F ) =

∫
x dF =

∫ F

0

F

k
dF =

1

2

F 2

k

We see that the the energy Es(x) is in terms of x, the energy variable and
E∗s (F ) in terms of F -the co-energy variable.

After formulating a port Hamiltonian model we then have a host of tech-
niques such as IDA-PBC and energy shaping [51] at our disposal to control
it. Since thermodynamics which is the science of energy is extensively used to
model MSMA, it is natural that control strategies based on port Hamiltonian
framework is a natural extension.

The main advantage of port-Hamiltonian systems as compared to the
classic state space model is the appearance of the structure matrix (how
elements are connected to each other-the topology or network structure of
the system) explicitly.

Classical dynamical systems are usually written in the form

ẋ = f(x, u)

or in the linear case

ẋ =Ax+Bu

y =Cx+Du

where x is the state variable matrix and u the input. In the port-Hamiltonian
framework, the system is of the form

ẋ =(J −R)
∂H
∂x

+ gu

y =gTu (1.1)

where

• J is the interconnection matrix (skew-symmetric matrix, J = −JT ).
It represents the connections between the elements of the system and
de�nes its structure.
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• R is the dissipation matrix (diagonal matrix, symmetric and, in phys-
ical systems semi-positive de�nite R = RT ≥ 0).

• g the port connection of the system to the outside world. It transmits
energy to/from the system through the port variables u and y.

• H(x) is the Hamiltonian of the system (usually the total stored energy
of the system).

Also, J , R and g can be functions of the state variables where they are repre-
sented as J(x), R(x) and g(x). From (1.1), rate of change of the Hamiltonian
which gives the power of the system is given by

dH
dt

= −∂
TH
∂x
R∂H
∂x

+ uT y ≤ uT y (1.2)

which yields a passive system if R ≥ 0. J disappears in the power balance
equation above due to its skew-symmetric nature.

We will now illustrate by means of an example, the port-Hamiltonian
representation.

Example

Consider a mass-spring system as in Figure 1.6 in which a mass m is inter-
connected with a spring of sti�ness k. Choosing as state variables x, the

k
m F

x

(a) Mass-Spring System.

∑m ∑s

v = ẋ

F

(b) Network Representation of
Mass-Spring System.

Figure 1.6: Mass-Spring and its network structure.

spring deformation, and p, the momentum of the mass, we can model the
two elements-mass and spring separately as follows:

∑
m :

{
ṗ = F

y =
p

m
(= v)

∑
s :

{
ẋ = v

y = −kx (= F )
(1.3)
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in which
∑

m is the mass model and
∑

s is the spring model. In (1.3), F is
the force applied to the mass by the spring and it is the output of subsystem∑

s while v is the mass speed, the output of system
∑

m.
As shown in Figure 1.6b, the interconnection is in feedback. The mass

integrates the force F to determine its speed while the speed v is integrated
by the spring to calculate its deformation. This kind of behaviour is very
general in dealing with physics of the systems. The only way systems can
be connected is through feedback i.e there is a mutual in�uence between
interacting systems and this interaction can be revealed by analysing the
kind of information exchanged.

As will be seen in the chapter on Bond Graphs, this exchange of infor-
mation occurs through e�ort and �ow variables. In this example, the e�ort
is the force F while the �ow is the velocity v. Their product is power F.v.
What happens is that one system takes in the e�ort F , in this case the mass
and imposes the velocity v while the converse occurs in the spring-it takes
in the velocity v and imposes the force F . Hence interconnection results in
an exchange of power between the subsystems through ports. This become
more obvious if the energy of the subsystems is considered.

The kinetic energy Ek of the mass and the potential energy of the spring
Ep is given by

Ek(p) =
p2

2m
Ep(x) =

1

2
kx2 (1.4)

The variables p and x which are called state variables in classical system
theory are in the port-Hamiltonian framework called energy variables. The
time rate of change of the energies is then given by:

dEk
dt

=
p

m
· ṗ = v.F = P

dEp
dt

= (kx).ẋ = −F.v = −P (1.5)

where P is the power. The 2 relations in (1.5) expresses the well-known
physical property of spring-mass system, a continuous conversion between
kinetic and potential energy which results in the oscillatory behaviour of
the system. This interaction is succinctly captured by the port-Hamiltonian
framework in its structure matrix J . The port-Hamiltonian formulation for
the mass-spring system is:

d

dt

[
x
p

]

︸︷︷︸
Energy Variables

=

[
0 1
−1 0

]

︸ ︷︷ ︸
J

(
∂H
∂x = kx = F

∂H
∂p = v

)

︸ ︷︷ ︸
Co-Energy Variables

+

[
0
1

]

︸︷︷︸
input

F

y =
[
1 0

]
(
∂H
∂x

∂H
∂p

)
(1.6)

where H is the total stored energy of the system:

H(p, x) =
1

2

p2

m
+

1

2
kx2 (1.7)
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From (1.10) and (1.7), it is seen that to write the port Hamiltonian formula-
tion, H need not be necessarily quadratic in the energy variables. For other
energy functions which yield non-linear constitutive equations between ef-
fort and integrated �ow or integrated �ow and e�ort, it can just be as easily
integrated into the formulation.

As for the power balance equation it is given by:

dH
dt

= −∂
TH
∂x
R∂H
∂x

+ uT y = uT y (1.8)

Eq. 1.8 veri�es that energy is conserved. No loss occurs in the system. The
rate of change of the Hamiltonian, H(x, p) is equal to the power injected into
the system through the power port (u, y). If the input u is brought to and
kept at 0, the system will continue to oscillate inde�nitely.

The above development is still not su�cient to model systems since the
mass-spring is a conservative system. We also need to be able to take care
of dissipation which occurs in all systems. In the mass-spring-damper shown
in Figure 1.7, energy is dissipated (lost) in the damper. The constitutive
equation for the damper is taken to be linear i.e

Fd = bẋ = bv (1.9)

b

k
m F

x

Figure 1.7: Mass Spring Damper System.

In the port-Hamiltonian formulation, dissipation is taken care by the
R matrix. The Hamiltonian H stays the same while the formulation now
includes R as follows

[
ẋ
ṗ

]
=

([
0 1
−1 0

]

︸ ︷︷ ︸
J

−
[
0 0
0 b

]

︸ ︷︷ ︸
R

)(∂H
∂x = kx

∂H
∂p = v

)
+

[
0
1

]
F

y =
[
1 0

]
(
∂H
∂x

∂H
∂p

)
(1.10)

In this case, power balance is given by:

dH
dt

= −∂
TH
∂x
R∂H
∂x

+ uT y = uT y − bv (1.11)
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And from 1.11, we infer that the system energy decreases. If input u is
brought to and kept at 0 from some initial value, the system will stop after
some time.

For simple systems, it is easy to �nd the interconnection matrix J , but
for large systems consisting of many elements such as inductors, capacitors,
masses, springs and/or resistances, systematic approaches exist to �nd the
topology of the system. Two approaches are the bond-graph [56] and the

Se : F 1

R : b

I : m

C : k

F

v

Fb vb

Fm

vm

Fk vk

(a) Bond Graph of Mass-Spring Damper.
The "1" junction indicates that all the bonds
share the same velocity.

v0 = 0

v1 = vk = vb = vm

F m k b

(b) Linear Graph of Mass-
Spring Damper. The top
node indicates equal veloci-
ties.

Figure 1.8: Bond Graph and Linear Graph of spring damper system.

linear graph [39]. More details about these 2 techniques will be given in
subsequent chapters.

As a brief overview, both approaches are graphical in nature and they
both make use of simple ideal elements such as generalised inductances or
generalised capacitances to model elements. Bond graph makes use of junc-
tions to connect elements whereas linear graph makes use of nodes as shown
in Figure 1.8. The little vertical bars at the end of the bonds (half arrows)
in Figure 1.8a indicate causality i.e which elements imposes the force and
which elements impose the velocity. This information, although not missing
from linear graph, is not so evident. It has to do with trees (solid lines rep-
resenting a causal tree) and co-trees (dashed lines) in Figure 1.8b. On the
other hand, linear graphs is more akin to give the topology directly without
regards to what type of element is connected between the nodes whereas a
little manipulation is required in bond graphs to get the J −R interconnec-
tion matrix.

These 2 approaches can be used to �nd the interconnection matrix J for
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any domain, electrical circuits for example or a mixture of domains. Since
MSMAs are multi physics in nature, these 2 techniques are used to model
the pathway of energy in the material.

The port Hamiltonian framework therefore seems well-adapted to model
MSMA as there is a conversion of energy from electrical to mechanical. One
further consideration regarding MSMAs and/or smart materials in general
is their hysteretic behaviour [70].

1.4 Hysteresis

Hysteresis is a non-linear e�ect that arises in diverse disciplines ranging from
physics to biology, from material science to mechanics, and from electronics
to economics [73]. Ferromagnetism, illustrated in Figure 1.9, is a classical ex-
ample of hysteresis in electrical engineering while in mechanical engineering,
backslash and friction are the main source of hysteresis.

The physical causes of hysteresis are the existence of multiple metastable
states of a free energy functional and energy dissipation [29]. In the micro
magnetic theory of ferromagnetism, crystalline symmetry results in multiple
minima for the thermodynamic free energy giving rise to multiple metastable
states. These explanations are due to Landau and Lifshitz [43] who devel-
oped a qualitative theory of phase transitions which explains various kind of
hysteretic behaviour.

This non-linear behaviour typically undermines our ability to control or
perceive relations in physical, biological, and engineering systems. It is most
of time seen as a detrimental and undesirable e�ect. Nonetheless it has been
exploited successfully in some applications such as magnetic data storage
and some emerging computer technology, such as ferroelectric nonvolatile
thin-�lm memories. In power electronics, thermostats and digital circuits,
hysteretic switching prevents chattering and its associated consequences.

−HC

Hs

H

B

BR

Figure 1.9: Typical hyster B-H curve which occurs in ferromagnetic materi-
als.
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Conversely for the purpose of precision positioning or micro assembly the
e�ect of hysteresis has to be addressed. In smart materials, the constitutive
coupling between mechanical and electrical/magnetic/thermal properties of
these materials enables their inherent sensing and actuation capabilities. At
the same time, their microstructure have multiple stable equilibria for one
given external input. When hysteresis is present along with the electro-
magneto-mechano-chemical dynamics of the material, the overall behaviour
of smart sensors and actuators become very complex.

To mitigate and understand hysteresis, various models have been pro-
posed. Hysteresis model can be roughly classi�ed as physics-based or phe-
nomenology based. An example of physics based model is the Jiles and
Atherton [32] model for ferromagnetic hysteresis. Formulated in terms of
switched di�erential equations, this theory characterises reversible and irre-
versible domain wall losses relative to the equilibrium anhysteretic magneti-
sation. This theory motivated the development of domain wall theory.

Phenomenological model on the other hand are independent of physical
systems. One of the most common model is the Preisach model which was
originally developed to physically explain ferromagnetic hysteresis[57, 46] but
was later given a mathematical description and has since been mostly used
as a phenomenological model. In brief, an elementary unit called a "relay"
is used to construct the hysteresis operator. In its most basic form, the relay
can switch between 2 states and a collection of such relays each switching at
di�erent values gives the hysteresis map. In the preisach model, a hysteron is
totally de�ned by its values α and β. Or, it can be de�ned by its half width r
and its centre s. Figure 1.10 shows the elementary Preisach hysteron (�gure
1.10a) and a summation of these hysterics make up the hysteresis operators.

+1

−1

α βs
r

(a) Elementary Unit,
a hysteron. α and β
are the thresholds for
switching.

Rα1,β1

Rα2,β2

· · ·

· · ·

Rαn,βn

u(t)
∑

y(t)

µ1

µ2

µ3

µ4

µn

(b) A collection of hysterons whose outputs are summed to
create the hysteresis operator. Each hysteron is multiplied
by a weight µ. Rαβ are the di�erent relays (hysterons) who
switches at di�erent values of α and β.

Figure 1.10: Elementary hysteron and the hysteresis operator.

Other elementary units derived from the preisach are the play and stop
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operator which make up the Prandtl Ishlinskii operator [77]. Their advantage
over the Preisach is that they are more easily invertible. Such a property is
very important as in many control design involving plant with hysteresis, an
inverse model of the hysteresis is used with a linear model of the plant.

1.5 Objective of thesis and Outline of Manuscript

The main objective of the thesis is to build an actuator capable of controlled
displacement. Magnetic Shape Memory will be employed as the transducer.
It shall convert the electrical energy input to a mechanical energy output
which can be used to do work. The port Hamiltonian framework which is
energy based will be used to model and control the actuator. The outline of
the thesis is as follows:

Chapter 2 presents a general actuator based on Magnetic Shape Mem-
ory Alloys. This actuator and its associated modeling was developed in a
previous thesis by Gauthier [16] and from which this thesis is inspired. We
present his dynamic model of the actuator and improve it using the port
Hamiltonian formulation.

These improvements still being insu�cient for a proper port-Hamiltonian
control, we give in Chapter 3 the necessary theory for understanding MSMA.
This chapter also shows how the constitutive equations for the MSMA is
derived mainly the total strain and the thermodynamic driving force. Fur-
thermore, we extend the distributed parameter modelling present to lumped
parameter model more understandable and better suited for control.

Chapter 4 is then devoted to the Bond Graph Modeling of the actuator.
The advantage of using Bond Graphs is �rst to have a systematic way of
modeling the interconnection. Secondly being graphical in nature, it quickly
gives an overview of the di�erent elements and their relationship with each
other. Thirdly, being power based, it naturally �ts the port-Hamiltonian
framework and �nally we show that it is a powerful tool to incorporate
hysteresis into an energetic framework.

Finally in chapter 5 we give some �rst ideas about possible control strate-
gies for the actuator and some basic experimental results. And �nally we
conclude the thesis by giving some improvements and some future perspec-
tives.
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A naive model
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2.1 Introduction

In this chapter we extend the work performed by Gauthier [16] during his
PhD. We start from his model of the MSMA, reported in [19], and cast it
into a port-Hamiltonian model. We then discuss its merits and discrepancies
from a Port-Hamiltonian point of view.

In Gauthier et al. [19], a classical Hamiltonian model [42] was built which
contained 13 state equations and 3 Lagrange multipliers for a simple MSMA
actuator shown in �gure 2.1. Using the port-Hamiltonian framework, we
were able to reduce the number of states from 13 to 8 with 3 equations of
constraints. This reduction changes the set of di�erential-algebro equations
(DAE) into a set of oridnary di�erential equations (ODE) best suited for

17
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Figure 2.1: MSMA Actuator
.

simulation. These results, reported in Calchand et al. [8], will be presented
in this chapter. We start by detailing the actuator and then proceed to
derive the Port-Hamiltonian model.

2.2 Description of actuator

The actuator shown in Figure 2.1 consists of a piece of ferromagnetic core
around which a piece of wire is wound to make a coil. Located in the core is an
air gap in which the Magnetic Shape Memory Alloy (MSMA) is placed. Fixed
on the top of the MSMA is a load, m, which applies a stress on the material.
The purpose of the actuator is to convert electrical energy into mechanical
energy. It can be divided into 3 subsystems namely the electrical subsystem,
the MSMA, and the mechanical subsystem. The electrical subsystem is
responsible for the generation of the magnetic �eld. When a voltage, u(t),
is applied at its terminals, a current �ows in the wire which produces a
magnetic �eld inside the core and in the air gap. The magnetic �eld in the
air gap is converted by the second subsytem- the MSMA- into mechanical
energy to lift the load which makes up the third system.

This transduction mechanism i.e the conversion of electrical energy to
mechanical energy by the MSMA is possible due to the existence of two
stable variants of the material, M1 and M2. As shown in �gure 2.2a, these
2 variants co-exist together in the material. Application of a stress favours
variantM1 while application of a magnetic �eld favours variantM2. Due to
the di�erent crystallographic arrangement of these variants, a macroscopic
deformation is observed. Figure 2.2b shows a simpli�ed structure of a unit
cell of the MSMA. It has a long axis, a, and a short axis, c. An applied
stress favours the M1 variant which has its c-axis parallel to it wheras a
magnetic �eld favours the M2 variant which again has its c-axis parallel to
it. A maximum macroscopic strain of the order of 6% has been observed in
this material [45].
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Figure 2.2: Actuation Mechanism.

For the actuator to be useful in a range of applications, the displacement,
x, of the material need to be controlled. For such purposes, appropriate
models are needed to design the control systems. In Gauthier et al. [19], a
classical Hamiltonian approach had been taken and in this work, we adopt
the Port-Hamiltonian framework.

2.3 Modeling-Classical Hamiltonian Approach

In the classical Hamiltonian approach, a set of generalised coordinates de-
noted by qi and a set of generalised momentums denoted pi are used to
describe a physical system [24, 44]. For a conservative system without ex-
ternal inputs, the time evolution of the system is then given by

dqi
dt

= +
∂H
∂pi

dpi
dt

=− ∂H
∂qi

where H is the Hamiltonian and corresponds to the total energy of the sys-
tem. To take into account constraints, external inputs and dissipation, the
extended formulation is used. In Gauthier et al. [19], it was described as

[
q̇
ṗ

]
=

[
0 I
−I −R

] [∂H
∂q
∂H
∂p

]
+

[
0

AT (q) · q

]
λ+

[
0
B

]
u(t) (2.1)

where λ represents the lagrange multipliers, A the matrix of constraints
where A(q).q̇ = 0, u(t) the external forces or inputs and R the dissipation
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while H is the total stored energy of the system. For the actuator shown in
Fig. 2.1, the di�erent energies of the system is given in Fig. 2.3. There is
transformation of energy which occurs along the energy path. The MSMA
block shown in the �gure is particularly interesting as it shows that the
transformation of energy between magnetic and mechanical allowing for loss
in the hysteresis. Now we will describe the model proposed by [19] in the
next subsections.

Coil

Iron magnetic
energy WFe

Leak energy
WL

Air-gap 
energy Wa-g 

Magnetic
energy

VMSMA Fmag

Mechanical
energy

VMSMA Fmech

Kinetic
energy Tload

Gravity
potential

energy Vload

Magnetic circuit MSMA Load

QJoule

Wext

Qhyst Qviscous

Figure 2.3: Energy repartition

2.3.1 The electrical subsystem

The electrical subsystem consist of an electrical part and a magnetic part.
The electrical part generates a current in the coil which in turn produces
a magnetic �eld in the core. As the magnetic part is non ideal, there are
parasitic e�ects which occur along it. These are the leakage �ux and the
fringing e�ect. The leakage �ux is due to some magnetic �eld lines not being
con�ned to the core and the fringing e�ect is due to the distortion of the
�eld lines near the air gap. After accounting for these e�ects, the magnetic
�eld in the air gap depends on the inductance of the core and the inductance
of the air gap. The core, air-gap, leakage �ux and fringing e�ect have been
modeled by inductances as shown in Figure 2.4 The inductances considered

0

u(t)

1
r

I 2
LL2 LL

4

La−g

0

3

LFE

0

4

MSMA

0

Figure 2.4: MSMA electrical subsystem
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Table 2.1: Generalized Coordinates and Momentum for electrical part

i qi q̇i pi
Coil 1 charge,qc I φ

Fe-Si core 2 DFE HFE .lFE BFE .SFE
Fringing E�ect 3 DL HL.lL BL.SL

Air-Gap 4 Da−g Ha−g.la−g Ba−g.Sa−g

Table 2.2: Generalized Coordinates and Momentum for MSMA

i qi q̇i pi
MSMA 5 �eld, D H.l B.S

MSMA 6 Fraction, z ż pz
MSMA 7 Strain, ε ε̇ pε

are the leakage �ux, LL2, the inductance of the ferromagnetic core, LFE , the
fringe e�ect, LL, and the inductance of the air gap, La−g. The generalised
coordinates, qi, and the generalised momentum for the electric part is given
in Table 2.1.

For the coil, global1 quantities are used where the generalised coordinate
is the charge qc, the generalized velocity is the current, I, and the generalized
momentum is the �ux linkage, φ. For the rest of the circuit, the local2

form is used. The path integral of Hili over the path li is taken to be
the generalized velocities and the �uxes Bi.Si through a surface Si as the
generalised momentum.

2.3.2 The MSMA subsystem

The MSMA itself only converts the electrical/magnetic energy into mechan-
ical energy. The model used to quantify this conversion relies heavily on
thermodynamics [9, 6]. Furthermore, the Coleman-Noll procedure [12] has
been employed to introduce an internal variable, z, which models the mate-
rial's dissipative nature and the memory e�ect of the material. Associated
with this variable, there is a thermodynamic force which dictates the evo-
lution of z. Physically, z, is the volume fraction of M2-the �eld preferred
variant, in the material. Table 2.2 shows the generalised coordinates associ-
ated with the material. The magnetic �eld applied produces an elongation
which, through the z variable, produces a strain, ε.

1Global quantities are variables integrated into subsystem to give lumped parameters.
2Local quantities are density variables which gives distributed parameters
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Table 2.3: Generalized Coordinates and Momentum for Load

i qi q̇i pi
Load 8 displacement, x ẋ px

2.3.3 The mechanical subsystem

The mechanical subsystem consists of the load, m, being moved by the
MSMA. Table 2.3 shows the generalised coordinate and momentum asso-
ciated with the load. The mechanical subsystem consists of the kinetic and
potential energy.

2.3.4 Energy of the Actuator

The total energy at play in the actuator is the sum of the energies of the
di�erent parts. For the electrical part, we have the energy associated with the
air-gap, the energy stored in the ferromagnetic core, the energy associated
with leakage �ux and the enegy associated with the coil. These can be
written as

He =
φ2

2LL2
+ VFE

∫ BFE

0
HFE(b)db+ VL

1

2µ0
B2
L + Va−g

1

2µ0
B2
a−g (2.2)

where Vi is the considered volume. For the material, it is the volume of
the material . For the MSMA, the energy conversion process was quanti�ed
using irreversible thermodynamics [28] and is reported in [18] . It is given
by

Hmsma = Vmsma

(
E

2
(ε− γz)2 +K12.z.(1− z) +

∫ B

0
H(b)db

)
+

p2
z

2mz
+

p2
ε

2mε

(2.3)
where E

2 (ε − γz)2 is the strain energy in the material, K12.z.(1 − z) is an

enegy interaction between the variants,
∫ B

0 H(b)db is the part of magnetic

energy stored in the material p2z
2mz

is the kinetic energy associated with the

movement of z and �nally p2ε
2mε

which is the kinetic energy associated with the
total strain of the material. Finally, the mechanical energy of the actuator
is made up of the potential and kinetic energy which is given as

Hmec =
1

2m
p2
x +mgx (2.4)

2.3.5 Hamilton Equations

The total Hamiltonian is then given by

H(q, p) = He +Hmsma +Hmec (2.5)
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The vector of generalized coordinates, q, generalized momentum, p and λ
which takes into account the Lagrange multipliers are given in (2.6), (2.7)
and (2.8).

qT = [qc, DFe, DL, Da−g, D, z, ε, x] (2.6)

pT = [φ,BFeSFe, BLSL, Ba−gSa−g, BS, pz, pε, px] (2.7)

λT = (λ1, λ2, λ3) (2.8)

From equation (2.5), the equations of motions for the system can then be ob-
tained. For each generalised coordinate and each generalised momentum, an
equation can be written which gives 16 equations. The 8 equations relating
to the coordinates are obtained as follows

• the �rst Hamilton equation is the de�nition of inductance LL2:

LL2q̇c = φ (2.9)

• the next four equation can be obtained from the de�nition of the mag-
netic �eld Hi for i ∈ {Fe, L, a− g, ∅}

Ḋi = liHi (2.10)

where ∅ (absence of index) represents the magnetic �eld in the MSMA.

• The next set of three equations relates the momentum pi to the veloc-
ities qi for qi ∈ {z, ε, x} and i ∈ {z, ε, x}.

pi = miq̇i (2.11)

The 8 equations relating the momentum are given by the one Kircho�'s volt-
age law, two magnetic conservation laws, one Newton' s law, one constitutive
equation for the MSMA and �nally by the 3 Lagrange multipliers.

• the dynamic electrical equation (Kircho�'s voltage law):

u = rI +N ˙BFeSFe (2.12)

• the two equations for the conservation of magnetic �uxes in the mag-
netic circuit:

ḂLSL = ḂFeSFe − Ḃa−gSa−g (2.13)

ḂS = Ḃa−gSa−g (2.14)

• the two dynamic equation for the load (Newton's Law):

mẍ = −mg − fẋ− Smsmaσ (2.15)
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• the quasi-static behaviour of the MSMA (constitutive equation)

πf (z, ż) = −σγ +K12(1− 2z) +
∂
∫ B

0 H(b)db

∂z
(2.16)

• the values of the three Lagrange multipliers:

λ1 =ḂFeSFe

λ2 =Ḃa−gSa−g
λ3 =Sσ

related to the following 3 constraints:

N.I =HFE .lFE +HL.iL

HL.lL =Ha−g.la−g +H.l

x =l0.ε

The �rst two constraints pertain to the electrical circuit and the last
to the mechanical side. Integrating the constraints yield the following
3 equations

c1(q) =DFE +Dl −N.qc = 0

c2(q) =DL −Da−g −D = 0

c3(q) =x− l0.ε = 0

Furthermore we need to de�ne the dissipation matrix, R. The actuator dissi-
pates energy in the resistance, r, of the wire making up the coil and through
the hysteretic behaviour of the material. The variable, z, was introduced to
model such a dissipation. The thermodynamic force, πf , is related to the
variable, z through the second law of thermodynamics and should obey the
Clausius Duhem inequality which is

d̄D = πf d̄z ≥ 0 (2.17)

In Gauthier et al. [18], to describe the hysteretic nature of the material, an
expression of the form

πf (z, ż) = λC
[
z +

sign(ż)

2
− 1

2

]
+ πcr.sign(ż) (2.18)

is used and it is depicted in �gure 2.5. Then from 2.18 the power dissipated
due to hysteresis is given as

Physt = VMSMA.Ḋ (2.19)

= VMSMA.
(
λC
[
z +

sign(ż)

2
− 1

2

]
+ πcr.sign(ż)

)
.ż (2.20)
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Figure 2.5: Expression for hysteresis. πz is same as πf

This power can be incorporated in the dissipation matrix by adding the
following term (

∂Physt
∂ż

)
/ż (2.21)

.
Thus the dissipation matrix, R, becomes

R =




r 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0

(
∂Physt
∂ż

)
/ż 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




(2.22)

The last 2 matrices that are needed to complete the model are the constraint
matrix ,A, and the input matrix, B. From the equations above, they are
given by

AT =



−N 1 1 0 0 0 0 0

0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 −l0 1


 (2.23)

and
BT =

(
1 0 0 0 0 0 0 0

)
(2.24)

2.4 The Port-Hamiltonian Approach

The previous section described the model as done by [19]. Though done
with the Hamiltonian formalism, his model is not properly port-Hamiltonian.
There are variables which are in excess. As described in [13], for lumped
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electric circuits either (p) or (q) should be used. Using both results in re-
dundancy. To cast that model in a proper port-Hamiltonian model, we will
use linear graphs [39] to model the electric circuit in Figure 2.4. Then the
MSMA element will be connected to the electrical circuit through its elec-
trical port while the load will be connected at its mechanical port.

The advantage of using the port-Hamiltonian approach allows to sep-
arate the interconnection of the elements and the constitutive laws. The
subsystem has been divided into two parts, the �rst part consists of the
electrical subsystem and the second part consists of the MSMA element and
the load. The electrical subsystem is modelled using linear graphs and then
interconnected with the second subsystem.

2.4.1 The electrical subsystem

Figure 2.6 depicts the electrical subsystem of the actuator. It is made up of
a network of inductances, the power supply and a resistor. The inductances
considered are the leakage �ux, LL2, the inductance of the ferromagnetic
core, LFE , the fringe e�ect, LL, and the inductance of the air gap, La−g. To

0

u(t)

1
r

I 2
LL2 LL

4

La−g

0

3

LFE

0

4

MSMA

0

Figure 2.6: MSMA electrical subsystem

model this circuit, we make use of linear graph theory-a brief introduction
is given in appendix A. This approach gives us the topology of our system
i.e how the elements in the circuits are interconnected to each other.

Linear graph theory tend to translate the graphical representation of cir-
cuits into a mathematical form. It uses nodes and branches to represent
voltages and current in elements. A node is similar to a potential whereas
a branch is a connection between 2 nodes. Hence each branch represent an
element (resistor, capacitor or inductor) in which a current �ows whereas
the nodes at the ends of the branch represent the voltage di�erence in that
element. A tree is then de�ned as a subgraph which contains all tree nodes
and the maximum number of branches without making a loop. A co-tree
is then de�ned as the subgraph made up of the remaining branches. These
branches are also called links and they are not present in the tree. To then
derive the equations of the circuits, Kircho�'s Current Law (KCL) and Kir-
cho�'s Voltage Law (KVL) are applied. Figure 2.7 shows the linear graph
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of the electrical subsystem where ui has been used to denote the potential
di�erence across each branch.
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Figure 2.7: Linear graph of MSMA actuator
.

If all elements in a circuit were resistances and sources, the above con-
cepts would have been enough to completely characterize circuits. But for
circuits containing energy storage elements such as capacitors and inductors,
a more systematic method is needed. Inductances should be put in the links
while capacitors should be in tree [39]. Resistances can either be in the tree
or co-tree. This makes deriving the equations easier and assures a minimal
number of equations. Such a process is carried out because of the fundamen-
tal di�erence in the type of energy they store. Furthermore if the concept of
linear graph were extended to the other domains such as mechanical, thermal
or �uids, the concept of across and through variable should be used. Further
details can be found in appendix A and [66].

Furthermore, loop-sets are loops which contains only one link. This link
voltage can then be expressed in terms of the tree branch voltages. Cut sets
are those subgraphs which when the graph is divided(cut) into 2 separate
parts contain only 1 tree branch. Hence this tree branch current can be
expressed in terms of link currents. KVL is then applied to the loop set and
KCL to the cut set. To understand why inductance should be in the link,
we need to look at the constitutive equation for an inductor which is

vL =
dφ

dt
= L

di

dt
(2.25)

Hence φ̇ should be expressed in terms of all other voltages which is exactly
what loop set does. As the inductor is the link, it expresses the voltage across
it as a sum of all other voltages present in the loop set. Naturally since loop
sets contain only 1 link, no other independent inductor is present. The same
argument goes for why capacitors should be in the tree and therefore their
equations are obtained using cut sets.

Keeping in mind that inductances are the links, the tree and links (co-
tree) can be shown to be as in Figure 2.8.
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Figure 2.8: Tree and Co-Tree of Actuator. uLFE
is the dependent inductor as it is part of the tree.

A closer inspection reveals that one of the inductances is not independent.
No tree can be found without adding at least an inductor . This problem can
be resolved by either re�ning the model by incorporating eddy current losses
in the core or if the actual model is to be kept, adding a constraint between
the dependent and independent variable making the former independent.
This is the Lagrange multiplier technique. The latter course is taken.
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Figure 2.9: Addition of Lagrange Multiplier. Loop sets should contain only
one link (dashed) and cut sets should have only one tree branch.

Figure 2.9 shows that the addition of the lagrange multiplier now makes
the tree consistent. It also illustrates one loop set and one cut set. Fol-
lowing the discussion above, we pick our state variables to be the �uxes
φL2, φLFe , φLL , φLa−g . We need the 4 loop set equations as they give the link
voltages (state variable for inductor) and one cut set equation to express the
resistor current in terms of a state variable.
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The 4 loop set equations are



uL2

uLFe
uLL
uLa−g


 =




1 −1 0 −1
0 0 0 1
0 0 −1 1
0 0 1 0







u
ur

umsma
uλ


 (2.26)

and the 1 cutset equation is
iL2 = ir (2.27)

Taking u and umsma as inputs and uλ as constraint, the Port-Hamiltonian
formulation becomes:



φ̇L2

φ̇LFe
φ̇LL
φ̇La−g


 =




−R 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







iL2

iLFe
iLL
iLa−g


+




1 0
0 0
0 −1
0 1



[

u
umsma

]
+




−1
1
1
0


uλ

(2.28)

2.4.2 The MSMA+Load Subsystem

The second subsystem consists of MSMA and the mechanical load. For this
subsystem, as it was written in the thesis of [16], the input consisted of an
input voltage (the voltage across the MSMA in 2.6), uext3, two thermody-
namic variables z and pz, the strain ε and �nally the momentum of the mass
pload. pε shown in Table 2.2 is omitted. The energy, co-energy and input
variables are given as

xII =
(
φmsma z pz ε pload

)T
,

ocII =
∂HII
∂xII

=
(
imsma

∂HII
∂z

∂HII
∂pz

∂HII
∂ε

∂HII
∂pload

)T
,

oextII = uext3 = uMSMA (voltage applied to msma).

where HII is the total stored energy of second subsystem.The resulting Port-
Hamiltonian equation is

dxII
dt

=




0 0 0 0 0
0 0 1 0 0
0 −1 ? 0 0
0 0 0 0 1
0 0 0 −1 0




︸ ︷︷ ︸
JII−RII

·∂HII
∂xII

+




1
0
0
0
0




︸︷︷︸
GII

·uext3 (2.29)

with ? =
(∂Physt/∂ż)

ż where Physt is the dissipated power due to the irre-
versibility of msma (see [16]). It can be shown, from the 2nd law of ther-

modynamics (Clausius-Duhem Inequality), that ∂HII
∂xII

T ·RII · ∂HII∂xII
≥ 0 and

hence subsystem II is passive.
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2.4.3 Interconnection of system I and system II

The two subsystems are then interconnected where

uLa−g = uext3 = umsma

This interconnection causes a second causality problem as the MSMA and
air-gap modelling both have an inductive behaviour and since they connected
in parallel: one of them is necessarily dependent on the other. In a similar
way to subsystem I, a Lagrange multiplier is added with a constraint de-
�ned by a second leakage current iλ2 parallel to the air gap and the MSMA
branch/edge:

iλ2 = −iLl + iLa−g + iMSMA = 0

Finally the Port-Hamiltonian equation for interconnection of subsystems I
and II is:

d

dt

(
xI
xII

)

︸ ︷︷ ︸
x

=

(
JI −RI 0

0 JII −RII

)

︸ ︷︷ ︸
J−R

·
(

∂HI
∂xI
∂HII
∂xII

)

︸ ︷︷ ︸
∂H
∂x

+




−1
0
0
0
0
0
0
0
0




︸ ︷︷ ︸
G

· uext︸︷︷︸
u

+




−1 0
1 0
1 −1
0 1
0 1
0 0
0 0
0 0
0 0




︸ ︷︷ ︸
A

·
(
uλ1

uλ2

)

︸ ︷︷ ︸
uλ

(2.30)

With two constraint equations:
{
iλ1 = iL2 − iLFe − iLl = 0

iλ2 = −iLl + iLa−g + imsma = 0

These two constraint equations can be assigned in the Port-Hamiltonian
formalism:

(
iλ1

iλ2

)

︸ ︷︷ ︸
yλ=iλ

=

(
−1 1 1 0 0 0 0 0 0
0 0 −1 1 1 0 0 0 0

)

︸ ︷︷ ︸
AT

·
(

∂HI
∂xI
∂HII
∂xII

)

︸ ︷︷ ︸
∂H
∂x

= 0 (2.31)

For quadratic dissipative systems, a Port-Hamiltonian output y power-conjugated
with the external input u may be de�ned such as Schaft [64]

dH
dt

= −∂H
∂x

T

·R · ∂H
∂x

+ yT · u ≤ yT · u (2.32)
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For the device considered in this paper, the computation gives:

dH
dt

=
∂H
∂x

T

· dx
dt

=
∂H
∂x

T

·
[
(J −R) · ∂H

∂x
+ G · u + A · uλ

]

=
∂H
∂x

T

· J · ∂H
∂x
− ∂H
∂x

T

·R · ∂H
∂x

+

(
GT · ∂H

∂x

)T
· u +

(
AT · ∂H

∂x

)T
· uλ

Because J = −J T (antisymmetric in accordance with Tellegen principle
[74]) and AT · ∂H∂x = 0 (constraints), the �rst and the last parts of the second
hands are nul and we obtain:

dH
dt

= −∂H
∂x

T

·R · ∂H
∂x

+

(
GT · ∂H

∂x

)T
· u (2.33)

The output y of this Port-Hamiltonian system is then de�ned as:

y = GT · ∂H
∂x

= iL2 (2.34)

The number of state variables is 9 in this Port-Hamiltonian modeling
whereas it was 16 in the �canonical� Hamiltonian modeling. This system-
oriented modeling procedure already allows to reduce the size of the dynami-
cal problem by keeping only state variables instead of generalized coordinates
and momenta. We also obtain a minimal realization of the system.

2.4.4 Model Reduction

The �canonical� Hamiltonian modeling procedure gives 2n+ nc DAE in the
case of n generalized coordinates constraint by nc interconnections. The
Port-Hamiltonian modeling procedure gives nx + ncx DAE in the case of nx
conservative components constraint by ncx equations. As previously noticed,
it is still necessary to reduce them to gain insight into the design and control
issues and especially to transform the DAE system into an ODE system

This section presents the reduction of DAE Port-Hamiltonian equations
into a set of ODE Port-Hamiltonian equations by using changes of variables
and state space projection according to Schaft [65]. The �rst step consists in
decoupling the ncx Lagrange multipliers to nx−ncx states of the system. It is
done by the following change of coordinates: x̃ = TA ·x with TA =

(
S A

)T
s.t. AT · S = 0. S being a real matrix of size (nx, nx − ncx). In our case the
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following matrix presents the required characteristics:

ST =




1 1 0 0 0 0 0 0 0
0 −1 1 1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




(2.35)

Because of the dissipative term R this �rst coordinate transformation is
not su�cient. Indeed after this change of variables the Lagrange multipli-
ers only act on the two last states of the system but these states remain
connected to the other ones through TA (J −R)TT

A due to the dissipa-
tive term R. Furthermore the input is still coupled to the constraints as:
TA ·G =

(
−1 0 0 0 0 0 0 1 0

)T
. Hence, after the �rst coordinate

transformation TA a second transformation TG is applied to remove this
residual coupling coming from the dissipation term:

˜̃x = TG · x̃ = TG ·TA︸ ︷︷ ︸
T

·x (2.36)

with the following matrix transformations:

TG =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




, T =




1 1 0 0 0 0 0 0 0
0 −1 1 1 0 0 0 0 0
0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 2 1 0 0 0 0 0 0
0 0 −1 1 1 0 0 0 0




The change of states x 7→ ˜̃x gives the following Port-Hamiltonian equations:





d˜̃x

dt
= T · (J −R) ·TT · ∂

˜̃H
∂ ˜̃x

+ T ·G · u + T ·A · uλ

y = (T ·G)T · ∂
˜̃H

∂ ˜̃x

yλ = (T ·A)T · ∂
˜̃H

∂ ˜̃x
= 0

(2.37)
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With the following state vectors and matrix:

˜̃x =




φL2 + φLFe
−φLFe + φLl + φLa−g

φLa−g − φmsma
z
pz
ε

pload
2φLFe + φLl

−φLl + φLa−g + φmsma




, T ·A =




0 0
0 0
0 0
0 0
0 0
0 0
0 0
3 −1
−1 3




T · (J −R) ·TT =




−R 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 −1 ∗ 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




, T ·G =




−1
0
0
0
0
0
0
0
0




This model reduction procedure allows �nally to isolate the two constraint
equations (algebraic) from the rest of the other equations (ordinary di�eren-
tial) as it can be seen in the last two rows of T ·(J −R) ·TT , T ·G and T ·A:
the corresponding 7 ODE can be solved independently of the 2 AE. The �nal
7 order model usable for control can be derived by using projection.

This reduced model has been a very important milestone in this thesis.

2.5 Discussion

The model as described in Section 2.3 was developed in [18, 19]. This model
as regards to port-Hamiltonian control is unsuitable. Firstly, in his approach,
there is a mixture of local and global form. Either everything should be in
local or everything should be global else the model becomes intractable.
Secondly, for the description of electric circuits, we have two choices. Either
the circuit can be described in terms of charges and current or the system
can be described in terms of voltages and �ux linkages as explained in [13].
Then instead of having 2 equations for one conservative circuit element, only
one is required. Considering the the �rst line in Table 2.1, ∂H

∂φ = q̇c exists

but ∂H
∂qc

does not. Also, it is not seen how the MSMA converts the electrical
energy to the mechanical energy. Though present, it has been drowned
within equations.

Also, 3 Lagrange multipliers had to be used in both models. The �rst
one is used as the inductances modelled are not independent. The second
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because the MSMA also presents an inductive nature and the third was used
because the MSMA was considered an e�ort source when in fact it is a �ow
source acting by means of variable z. The term e�ort and �ow will be dealt
with in later chapters.

And �nally in treating hysteresis, no explicit expression for ż is given. In
the static case, the dynamics of ż is not essential whereas for control purposes
this dynamics becomes very important. An ad-hoc solution has been used
to include hysteresis. The term ∂Physt

∂ż is inconsistent with either the energy
framework or state-space formulation in general.

The port-Hamiltonian model in this section, only solves the problem
partially. It has reduced the number of states but the Lagrange multipliers
and the hysteresis problem are still here. In the remaining of this thesis, we
propose solutions to resolve these problems and give explicit dynamics on z.
We will also propose a model and a graphical view of the energy conversion
process throughout the material.

The next chapter is the �rst step towards resolving the problems. It
details the physics of the MSMA as well as the derivation of the lumped
parameters for the actuator.
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3.1 Introduction

The purpose of this chapter is to explain the detailed working of the MSMA.
We start from the thermodynamics model done by Gauthier [16] and extend
it for our purposes. The �rst aim is to understand how energies function-
als proper to thermodynamics such as Gibbs free energy and/or Helmholtz
free energies relates to energy functional as de�ned in the port Hamilto-
nian framework. Then, using constitutive equations for magnetization and
strain, we derive the thermodynamic force which govern the evolution of the
z variable. This model only takes into consideration the material but for
the actuator, we need to also take into account the associated part such as
the electromagnet and the load. In a second step therefore, we convert our
model of the material to a lumped parameter model then extends it taking
into account the associated parts. We will di�erentiate between energy den-
sities which will be written using the symbol W and lumped energy which
will be written using W . We start by giving a brief overview of magnetism
which will be used throughout this chapter.

3.2 Magnetism

In MSMA, magnetism plays a dominant role as it is this kind of energy that is
converted to mechanical work. More speci�cally, the material magnetization
changes when there is an elongation and vice-versa. Hence, we de�ne some
basics of magnetism to understand the terminology used in this chapter (see
Appendix B for a brief treatment of magnetism).

The Magnetic Flux Density in free space

The magnetic �ux density, B, produced by a current carrying conductor is
given by the Biot-Savart law which states that

B(p) =
µ0

4π

∫
Ī × r̂
r2

=
µ0I

4π

∫
dl̄ × r̂
r2

(3.1)

where I is the current �owing through the conductor, r̂ is the vector between
an element dl̄ of the conductor and the point at which B is measured. I can
be taken out of the integral since dl̄ is in the same direction as the current I.
µ0 is called the permeability of free space and has a value of 4π× 10−7N/A2

[25, 82].
Two results which will be stated without proof are the curl and divergence

of B. The proof of these resu lts can be found in any standard textbook such
as Gri�ths [25] and Zahn [82]. The divergence of B is

∇ ·B = 0 (3.2)
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which states that no magnetic monopoles exist. And the curl in free space
is given by

∇×B = µ0J (3.3)

where J is the current density. Apart from current, another source of the
magnetic �ux density are permanent magnets. They can produce a magnetic
�eld due to their magnetisation.

3.2.1 Magnetization

MSMA are ferromagnetic materials which gets magnetized in a magnetic
�eld. All magnetic phenomena are due to electric charges moving. In a
material, there are electrons moving around orbits which produce a magnetic
�eld. These orbiting electrons can be considered to be magnetic dipoles.
Usually this magnetic �eld cancel each other so that no net �eld is observed.
The e�ect of applying an external magnetic �eld to a material gives rise to
three main types of magnetism. They are diamagnetism, paramagnetism
and ferromagnetism.

In media where the induced dipole moment produces a �eld which op-
poses B, is called "diamagnetic" medium. Some media contain permanent
dipoles which are oriented at random even when there is no magnetic �eld.
But under the action of a magnetic �eld, the dipoles becomes oriented re-
sulting in a dipole moment which is proportional to the external �eld. These
are called "paramagnetic" medium [68, 25].

The last type of magnetism which is ferromagnetism is an extreme case
of paramagnetism. If the permanent dipoles are very close to each other in
the medium, there proves to be an e�ect only, explainable only by quantum
theory [25], and called "exchange", which results in the strong tendency
for the spins (direction of orbit of rotation of electron) of adjacent atoms
or molecules to line up parallel to each other even in the absence of any
�eld. Such a parallel orientation can extend, in an unmagnetized body over
volumes of a considerable scale on an atomic order, though a very small
volume by ordinary standards. Such a volume is called a "domain", and an
ordinary ferromagnetic body contains many such domains, each with a strong
permanent moment, but oriented in di�erent directions. In the presence of
a magnetic �eld, such domains change their orientation and align with the
external �eld until �nally at very large �eld all moments are aligned and
the further increasing the �eld has no e�ect. This is called saturation of the
material. Reversing the �eld reverses the moments, but there is an e�ect
similar to friction, hindering this reorientation, so that, by the time the
external �eld is zero, there can still be a considerable moment. The e�ect of
the moment lagging behind the �eld is what gives rises to the phenomenon
of hysteresis in ferromagnetic materials [68].

It has been shown that a magnetized [25] body produces a magnetic
�eld outside it. Also, the magnetization can be attributed to surface and
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volume currents �owing in the material. And these bounded currents can
be calculated knowing the magnetization, M of the material. The bounded
currents, Jb, is given by

Jb = ∇×M (3.4)

The Magnetic �eld intensity

Now since the magnetic �eld, B, derives from currents, we can rewrite it as
a sum of free currents (those produced by a battery or a circuit), Jf and
bounded currents, Jb.

∇×B = µ0(Jf + Jb) (3.5)

which is equal to

∇×B = µ0(Jf +∇×M) (3.6)

from which we can deduce

∇×
(
B

µ0
−M

)
= Jf (3.7)

The quantity B
µ0
−M is so important in engineering that it has been given a

special name and symbol. Usually it is called the "magnetic �eld intensity"
and is denoted by H. Its importance lies in the fact that it gives the free
current directly or can be calculated directly from free currents. The �eld
produced by a coil of wire is usually calculated using H instead of B. And in
laboratory setting, it is the magnetic �eld intensity H that we can control by
varying the current passing in a circuit. The constitutive equation relating
B, H and M is

B = µ0(H +M) (3.8)

It has already been stated that in diamagnetic and paramagnetic materials,
M is proportional to B and hence proportional to H we can therefore write

B = µrµ0H (3.9)

where µr is called the relative permeability of the material. Then the ratio
of magnetization to magnetic �eld intensity becomes

M = χmH, µr = 1 + χm (3.10)

where χm is the susceptibility of the material.
It will be seen later that MSMA exhibit nonlinear magnetization when

subjected to a �eld H0. Its relative permeability µr and susceptibility χ
varies with elongation of the material.
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3.3 Physics of the MSMA

MSMA exhibit a deformation under the action of a magnetic �eld. This
magnetic induced deformation depends on the stress applied. The property
which changes and can be exploited for sensor and actuator application is
the permeability of the material. Figure 3.1 shows the deformation curve
under di�erent loading conditions [36]. The stress dependent deformation is
clearly visible as well as the highly hysteretic nature of the material.

Figure 3.1: Deformation with di�erent applies stress [38].

In MSMA, the macroscopic response is driven by 3 mechanisms

1. The motion of magnetic wall domains,

2. The local rotation of magnetization vectors,

3. The �eld induced variant orientation

The �rst two are common to ferromagnetic material whereas the last one
is proper to Magnetic Shape Memory alloys. Nevertheless all of them con-
tribute to the magnetization of the material. On cooling down from the
austenite phase, all three martensite variants exists. Applying a stress in
one direction say x[100], favours one particular variant, in �gure 1.5 it would
be variant M2, which has its short axis, c, parallel to the stress.

This stress can be further increased until only one variant is present.
Then if this stress is lower than the blocking stress, martensitic variant ori-
entation can still take place on applying a magnetic �eld in the z[001] direc-
tion. Such a magnetic �eld, would promote the appearance of variant M1.
At the blocking stress, σb, this third mechanism will not take place hence no
deformation will be observed.

Magnetic domains form in order to reduce the magnetization of the mate-
rial and is termed the magnetostatic energy. They are separated by magnetic
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Variant 1

Variant 1+ Variant 2

Variant 2

Figure 3.2: Crystallographic Change

domain walls. In these walls, the magnetization vectors (magnetic dipole mo-
ments) are rotated over short distances to accommodate the magnetization
direction of their neighboring domain. (Hence near positively directed do-
mains, negatively directed domains will be formed as such a con�guration is
energetically more favorable.)

MSMA also behave in an anisotropic way. Such a behavior is characteris-
tic of materials which have di�erent magnetization along di�erent crystallo-
graphic direction. Hence more energy is required to magnetize one direction
than the other. The easy magnetization direction is called the easy axis
whereas the hard axis is where more energy is required to magnetize.

3.3.1 Motion of Magnetic Wall

Before the application of a magnetic �eld, the magnetization vectors are
distributed in a positive and negative direction evenly in the material such
that they cancel each other and there is no net magnetization. On application
of a magnetic �eld which coincides with the easy axis of magnetization, one
of domain will grow at the expense of the other until all the magnetization
vectors are in the same direction as the applied �eld.
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3.3.2 Rotation of Magnetization vector

When the applied �eld is not in the direction of easy axis ,c, the magneti-
zation has to rotate in order to align itself with the magnetic �eld. Since
in both domains, it is equally unfavorable, no domain wall motion is avail-
able to accommodate the magnetization. Energy has to be expended against
the magnetocrystalline anisotropy energy. The amount of energy required
is higher than that for domain wall motion. This therefore becomes the
hard axis of magnetization. Figure 3.3 shows the normalized response to
an applied magnetic �eld for the hard and easy axis. It is clear that the
magnetization energy which is de�ned as

Um = µ0

∫ Msat

0
H(M)dM (3.11)

is greater for the hard axis.

Figure 3.3: Relative Magnetization Response as reported by Heczko et al.
[27].

3.3.3 Strain Mechanism

When under no magnetic �eld, there exists equal proportions of 3 variants.
Since we are interested only in motion in the xy plane we will consider only 2
of them. The 2 variants called M1 and M2 are separated by a twin boundary.
Also, within each variants, magnetic domains exist which are seperated by
180◦ walls. If no stress is applied to the material, the twin boundary will start
to move, the �eld preferred variant will grow at the expense of the stress-
preferred variant. If a stress, greater than the blocking stress is applied, no
deformation can take place. Hence the strain is governed by an interplay
between the magnetic �eld applied and the stress on the material.
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3.4 Distributed Parameter Modelling of MSMA

In this section, we show how thermodynamics is applied to give the constitu-
tive equation on the evolution of the volume fraction z. We use a continuum
media description of the material. All the variables used in this section are
densities.

In literature, numerous models have been developed for the character-
ization of the twinning rearrangement. Most of the models are based on
the construction of a free energy function to �nd equilibrium con�guration
for mechanical, magnetic and thermal load conditions. A model by James
and Wutting [30] relies on the theory of constrained micromagnetics. The
terms contributing to the free energy are the Zeeman energy, the magneto-
static energy and the elastic energy. The magnetization is assumed to be
�xed to the magnetic easy axis of each martensitic variant because of high
magnetic anisotropy. The microstructural deformations and the resulting
macroscopic strain and magnetization response are predicted by detecting
low-energy paths between initial and �nal con�gurations. They conclude
that the typical strains observed in martensite, together with the typical
easy axes observed in ferromagnetic materials lead to layered domain struc-
tures that are simultaneously mechanically and magnetically compatible.

O'Handley [48] proposed a 2-D model in which two variants are sepa-
rated by a single twin boundary and each variant itself consists of a single
magnetic domain. The local magnetization is not necessarily constrained to
the crystallographic easy axis. Depending on the magnitude of the mag-
netic anisotropy, either the magnetic anisotropy di�erence (low magnetic
anisotropy case) or the Zeeman energy (high magnetic anisotropy case) are
identi�ed as the driving force for twin boundary motion. For the interme-
diate case a parametric study is conducted showing the in�uence of varying
elastic and magnetic anisotropy energies. All cases assume an initial variant
distribution that implies a remnant magnetization.

Likhachev and Ullakko [45] presented a model which identi�es the mag-
netic anisotropy energy di�erence in the two variant twinned-martensite mi-
crostructure as the main driving force for the reorientation process. The
e�ect of magnetic domains is taken into account in an average sense through
the incorporation of curve �tted magnetization data, corresponding to the
magnetization along di�erent crystallographic directions, into their model.
They argue that, regardless of the physical nature of the driving force, twin
boundary motion should be initiated at equivalent load levels. With this
assumption experimentally obtained detwinning-under-stress data in addi-
tion to the magnetization data of magnetic shape memory alloy martensite
can be used to predict the constitutive behavior associated with the variant
reorientation process under the application of external magnetic �elds.

Hirsinger and Lexcellent [28] introduced the outline of a non-equilibrium
thermodynamics based model. The free energy contains chemical, mechan-
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ical, magnetic and thermal contributions. The magnetic term is given by
the Zeeman energy. Two internal state variables, the martensitic variant
volume fraction and the magnetic domain volume fraction, are introduced
to represent the in�uence of the microstructure. The rate independent na-
ture of their approach motivates the de�nition of driving forces for the twin
boundary motion and the domain wall motion.

Mogylnyy et al. [47] proposed a constitutive model for the martensitic
twin rearrangement based on a statistical approach, in which the magnetic-
�eld-induced strains are related to the relaxation of the internal stresses
in martensite due to magnetoelastic interactions. It should be mentioned
that several other groups have contributed to the literature on modeling of
MSMAs, which can not all be mentioned in this brief overview.

3.4.1 Representative Volume

To model our material, we will consider a small representative volume of
the material which is transforming from M2 to M1 as shown in �gure 3.4.
Internal variables as proposed in [28] are used to describe the micro-macro
behaviour of the material. These variables are α, θ and z. When the ma-
terial cools down from the austenite phase, equal amounts of variants M1
and M2 exist. Parameter α represents the fraction of domain wall which
is aligned in the same direction as the �eld whereas θ represents the angle
between the applied magnetic �eld and the natural orientation of the mag-
netization vector in M1. As discussed previously, on increasing the magnetic
�eld, domains walls in the same direction as the �eld tends to grow whereas
those not aligned disappear. Similarly for su�ciently high stress, when re-
arrangement is not possible, rotation of the magnetization vector occurs to
align itself with the plane of the magnetic �eld.

Figure 3.5 shows the evolution of other wall domain and the magnetiza-
tion vector under di�erent loading conditions.

Domain wall motion represented by α saturates at quite low applied �eld
value. If then, the external magnetic �eld is increased, two situations may
occur. If no stress is applied, the �eld preferred variant grows at the expense
of the stress preferred variant until there is only 1 variant in the sample. If
there is an applied stress, the magnetization vector starts to rotate and there
in an increase in the �eld preferred variant. These processes are thought to
occur simultaneously such that for some low stresses, complete reorientation
does occcur while for stresses above a certain value, the magnetization vector
saturates before complete reorientation and hence a mixture of both variants
is present.
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Figure 3.4: Representative volume. The direction of the magnetization vec-
tor in α is in the same direction as H0.

3.4.2 Thermodynamics of MSMA

Thermodynamics has proven a very useful tool to model this material as
shown in Likhachev and Ullakko [45], Kiefer and Lagoudas [38] and Sarawate
[63]. There are two types of variables used in thermodynamics namley exten-
sive and intensive. Extensive variables are those variables which depend on
size of the system such as volume, mass, strain etc. whereas intensive vari-
ables are those variables which are energetically dual of extensive variables.
They are temperature, pressure, stress etc.

For the MSMA, the extensive variables are the magnetization, M , the
strain of the material, ε and entropy S. The associated conjugate variable
which is intensive in nature associated with each of the previous extensive
variables are the magnetic �eld, H0, the stress, σ and the temperature, T .
The extensive variables are the generalised coordinates whereas the intensive
variables are the generalised forces. The internal energy U(M, ε, S) which
depends on the extensive variables then completely characterises the state of
the system at thermodynamic equilibrium. Futhermore, in our case we need
3 more variables, the internal variables, α, θ and z to complete the state
during irreversible behaviour. The internal energy is then given by

U = U(M, ε, S, α, θ, z) (3.12)

In (3.12), the extensive variables are the independent variables i.e vari-
ables which can be varied independently by some external means. Unfor-
tunately in our case, we cannot vary the magnetization or the strain. It is
the applied magnetic �eld, H0, which can be varied by changing the current.
And instead of the strain, we can control the stress by changing the load ap-
plied. Also, it is easier to work with the temperature, T , instead of entropy,
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Figure 3.5: Twinning mechanism. Formation of domain walls and rotation
of magnetization vector.
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S for isothermal processes. For such purposes, instead of internal energy, U ,
we must make use of the Gibbs free energy, G, which is given by a Legendre
transform as follows

G = U −
n∑

i

Xiqi (3.13)

where Xi is the generalised force and qi the generalised coordinate.
Taking the independent variables as the stress, σ, the magnetic �eld

H0, the temperature, T , and the internal state variables α, θ and z, the
constitutive dependencies are

G =G(σ,H0, T, α, θ, z)

ε =ε(σ,H0, T, α, θ, z)

M =M(σ,H0, T, θ, z)

And �nally the main purpose of using thermodynamics is to derive a ther-
modynamic driving force, πz(H0, σ, T, α, θ, z) which gives the evolution of
internal variable z. The driving force for α and θ are taken to be 0 as they
are assumed to be reversible i.e purely magnetic hysteresis is negligible. On
removal of the magnetic �eld, α and θ return to their original position. To
arrive at πz, a total Gibbs free energy, G, is derived and then di�erentiated
to obtain the driving force:

πz = −∂G
∂z

(3.14)

These constitutive dependencies, will follow in the following subsections.

3.4.3 Magnetization of MSMA

To quantify the magnetization, M , of the material in a �eld of intensity,
H0, all 3 internal variables α, θ, z are needed. In other words, M =
f(α(H0), θ(H0), z). Variables α and θ take care of the saturation whereas z
gives the proportion of magnetization that each variant contribute. As pro-
posed in Gauthier et al. [18] and Hirsinger and Lexcellent [28], α, a function
of H0, is taken to be

α =
M

2Ms
+

1

2
=
χaH0

2Ms
+

1

2
, α ∈ [0, 1] (3.15)

which gives
M = Ms(2α− 1) (3.16)

for the �eld preferred variant M2 and θ, also a function of H0, is taken to
be

sin θ =
M

Ms
=
χtH0

Ms
, θ ∈ [−π

2
,
π

2
] (3.17)
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which gives for variant M1

M = Ms sin(θ) (3.18)

Ms is the saturation magnetization, χt and χa are the domain susceptibilities.
Then again from Gauthier et al. [18], Hirsinger and Lexcellent [28], it is
proposed that the total magnetization is the sum of the magnetization for
each variant (refer to �gure 4.19 for a pictorial representation of α and θ).

M = Ms

(
(2α− 1)z + (sin θ)(1− z)

)
(3.19)

Figure 3.6 shows the variation of α and θ where it can be seen that α saturates
at a much lower value than θ.
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Figure 3.6: Variation of α, θ with applied H0

Similarly, �gure 3.7 shows the magnetization for di�erent values of z.
Both curves were simulated using values from the Adaptamat's datasheet
which speci�es an Ms = 0.65T

µ0
, χa = 40 and χt = 1.

3.4.4 Magnetic Energy

The magnetic energy stored or converted by the material can be found out
from the constitutive (H0,M) relationship. The work done by a battery is to
establish the magnetic �eld in the air gap as well as to increase the magne-
tization of the material (see Appendix B). Considering only the di�erential
work dWmag we require to magnetize the material, we have

dWmag(M) = µ0H0.dM (3.20)
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Figure 3.7: Magnetization for di�erent values of z. Dotted line shows a
possible magnetization curve of the material as z changes. Solid lines show
magnetization at constant z.

The energy density Wmag is then obtained as follows

Wmag(M) =

∫ M

0
µ0H0dM (3.21)

Due to the complicated nature of (3.19), no attempt has been made to invert
it. In such cases, it is easier to work with the co-energy density. Figure 3.8
shows the co-energy (density) and energy (density) for the magnetization of
the material. The energy is the area under the y-axis whereas co-energy is
the area under the x-axis. It also depicts where α and θ get saturated.

From �gure 3.8, we have

Wmag + W ∗
mag = µ0H0.M (3.22)

Di�erentiating, we obtain

dWmag + dW ∗
mag = µ0H0dM + µ0MdH0 (3.23)

And �nally replacing dWmag = µ0H0dM , results in

dW ∗
mag = µ0MdH0 (3.24)

The above steps is called a Legendre transformation, i.e we pass from an
energy representation to a co-energy representation.
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Figure 3.8: Energy and Co-energy for Magnetic part of MSMA.

Applying thermodynamics principles, we can now derive the magnetic
Gibbs free energy, Gmag. Starting from the internal energy (assuming it
depends on M and T only) we have

dU(M,S) = µ0H0dM + TdS

We can then apply a Legendre transformation to makeH0 and T independent
variables.

Gmag(H0, T ) = U − TS − µ0HM

Then

dGmag =dU − TdS − SdT − µ0H0dM − µ0MdH0

=µ0H0dM + TdS − TdS − SdT − µ0H0dM − µ0MdH0

=− µ0MdH0 − SdT

Since we are working at isothermal conditions, dT = 0. Then

dGmag = −µ0MdH0 = −dW ∗
mag (3.25)

The magnetic Gibbs free energy can then be calculated from the following
equation

Gmag = −W ∗
mag(H0) = −

∫ H0

0
µ0MdH

= −
∫ H0

0
µ0Ms

(
(2α− 1)z + (sin θ)(1− z)

)
dH0 (3.26)
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To be able to integrate (3.26), it has to be expressed in terms of H0. For
this purpose, the saturation of α and θ has to be taken into consideration.

Note that we have 3 cases

1. α < 1 and θ < π
2 . H0 <

Ms
χa

.

2. α = 1 and θ < π
2 .

Ms
χa
≤ H0 <

Ms
χt
.

3. α = 1 and θ = π
2 . H0 ≥ Ms

χt
.

For the �rst case, the integral becomes

Gmag = −µ0Ms

∫ H0

0

χaH0

Ms
z +

χtH0

Ms
(1− z) dH0

= −µ0

(
χaH

2
0

2
z +

χtH
2
0

2
(1− z)

)
(3.27)

For the second case we have

Gmag = −µ0Ms

(∫ Ms
χa

0

χaH0

Ms
z dH0 +

∫ H0

Ms
χa

1.z dH0 +

∫ H0

0

χtH0

Ms
(1− z) dH0

)

= −
(
µ0H0Ms −

µ0M
2
s

2χa

)
z − µ0

χtH
2
0

2
(1− z) (3.28)

and �nally for the last case

Gmag = −µ0Ms

(∫ Ms
χa

0

χaH0

Ms
z dH0 +

∫ H0

Ms
χa

1.z dH0

+

∫ Ms
χt

0

χtH0

Ms
(1− z) dH0 +

∫ H0

Ms
χt

(1− z)
)

= −µ0Ms

(
H0 −

Msz

2χa
− Ms(1− z)

2χt

)
(3.29)

Equations (3.27), (3.28) and (3.29) will take part in the �nal Gibbs free
energy.

3.4.5 Mechanical Energy

The mechanical work done by or on the material consists of 2 parts. The
�rst part is the work done on the material to compress it elastically and the
second part is the work done by the twinning strain in moving against the
stress. If εe is the elastic strain, γz the twinning strain, σ the applied and
E the young modulus of the material, we have for in�nitesimal work

dWmech = −σ dεe + γ dz (3.30)
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If the constitutive equation between stress and elastic strain is linear i.e
σ = Eεe, we have as the mechanical energy density

Wmech(εe, z) = −
∫ εe

0
σdεe +

∫ z

0
σγdz

= −1

2
Eε2

e + σγz (3.31)

The �rst term on the right of (3.31) represents the elastic deformation of
the material while the second term is the work done by the rearrangement
of the martensite (twinning). σ is the stress applied to the material. γ
is the maximum deformation which can occur due to rearrangement of the
martensite. It is typically taken as 0.06. Note that the elastic deformation
is in opposition to the twinning rearrangement.

Since the elastic constant of the material is taken to be constant, the
energy Wmech is equal to the co energy W ∗

mech.

W ∗
mech(σ, z) = − σ

2

2E
+ σγz (3.32)

This is the expression that will take part in constructing the Gibbs energy
where Gmech = −W ∗

mech.

3.4.6 Gibbs Free Energy

The total Gibbs free energy can now be written

G(H0, σ, z) = Gmag + Gmech +K12z(1− z) (3.33)

The last term in the left hand side of (3.33) is a term, called interaction
energy, which has been added to account for the interaction between the
variants. This term was taken from previous work [16]. In later chapters, we
will see how this term arises and give a proper explanation for its inclusion.
Explicitly, the Gibbs free energy can now be written as

G(H0, z, σ) = σγz − σ2

2E
+K12z(1− z)

−µ0Ms

[
z

(
(2α− 1)H0 −

Ms

2χa
(2α− 1)2

)

+(1− z)
(

(sin(θ)H0 −
Ms

2χt
sin2(θ)

)]
(3.34)
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From (3.34), the thermodynamic potential appropritate to z can then be
found

πz = −∂G
∂z

=

σγ−K12(1−2z)+µ0Ms

[
(2α−1)H0−

Ms

2χa
(2α−1)2−H0 sin θ+

Ms

2χt
sin2 θ

]

(3.35)

which can be reduced to

πz = σγ−K12(1− 2z)−µ0M
2
s

[
(1− 2α) sin θ

χt
+

(2α− 1)2

2χa
+

sin2 θ

2χt

]
(3.36)

πz is the thermodynamic potential that dictates the evolution of z and
carries the dissipation of the material.

3.5 Lumped Parameters Modelling of MSMA

The purpose of this section is to write the model in terms of lumped-
parameter variables. Lumped-parameters are de�ned as follows: the elec-
tromagnetic �elds are quasi-static and electrical terminal properties can be
described as functions of a �nite number of electrical variables [81].

In the last section, we derived the model of the MSMA element only in
terms of �eld parameters such as M and H0. For our purposes, we need
to relate those parameters to lumped parameters such as current, i, and
voltage, v as in a laboratory settings, these are the variables that can be
measured. More speci�cally we need to study the e�ect of induced emf due
to the element's change in length on the circuit parameters of the actuator.

From the MSMA constitutive relations derived above, we will �nd their
lumped equivalent. Furthermore, instead of Gibbs free energy (G), we will
use energy (W ) and co-energy(W ∗) since we are assuming that our actuator
will be working at constant temperature.

3.5.1 Terminal Variables

The lumped parameters of interest when magnetism is involved is the �ux
linkage, λ , the current, i and the induced emf, vind when the magnetic
�eld changes. Consider the arrangement shown in �gure 3.9. On application
of a voltage to the terminals a and b, a magnetic �ux Φ appears in the
ferromagnetic core and the air-gap. From Faraday's Law it can be shown
that the closed integral around the contour a′ − b′ gives the induced emf
[25, 82], vind as follows

vind =

∮

L
E.dl = −N dΦ

dt
= −N d

dt

∫

St

B.dSt (3.37)
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Figure 3.9

where E is the electric �eld and L is the contour a′ − b′, St is the area
spanned by 1 turn of the coil and B is the magnetic �ux density produced
by the current in the wire. Furthermore the total �ux through any closed,
Sc, is zero ∮

Sc

B.dSc = 0 (3.38)

Therefore, all the �ux leaving the core, enters the air gap if we neglect leakage
�ux and fringing e�ect. Note in this case we have St = S and thus we have
Φ = SB.

To calculate B, we need to �nd the magnetic �eld intensities Hc and Hl

and then use the relationship B = µ0Hg for the air gap and B = µ0µrHc for
the core. This can be achieved by using Ampere circuital law [25, 82] which
is no more than ∇×H = Jf in integral form

∮

lc

H.dl = Hc.(lc − lg) +Hg.lg = Itotal enclosed = Ni

The permeability µr of the core is usually very high for a ferromagnetic
material and can be approximated by an in�nite permeability. Then to keep
the �ux and the coil voltage constant, B has to be �nite and Hc should be
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zero.

lim
µr→∞

= µ0µrHc =⇒
{
Hc = 0
B finite

(3.39)

Then we have all the magnetic �eld intensity which appears across the air-
gap and is given by

Hg =
Ni

lg
(3.40)

The magnetic �ux density B is then given by

B = µ0Hg = µ0
Ni

lg
(3.41)

from which we can deduce Φ

Φ = S.B =
µ0SNi

lg
(3.42)

As Φ which is the �ux for one loop cuts the coil N times, λ the magnetic
�ux linkage becomes

λ = NΦ =
µ0SN

2i

lg
(3.43)

from which the inductance, L, of the circuit is found to be

L =
λ

i
=
µ0SN

2

lg
(3.44)

As seen from equation (3.44), the inductance depends only on the geometry
of the circuit and in this case is a constant. In the case that µr is not in�nity,
we have

λ =
µ0SN

2i

lg(1− 1
µr

) + lc
µr

= Li (3.45)

where L = µ0SN2

lg(1− 1
µr

)+ lc
µr

. The dynamics of the system can then be written as

L
di

dt
= v − iR (3.46)

where R is the resistance of the coil. The above development has shown how
the �eld variables can be related to the lumped parameters. Furthermore,
it has been seen that inductance is a property of the whole circuit and we
cannot subdivide a magnetic circuit into separate inductances as was done
in Chapter 2. Although in theory, the latter is a very valid way of modeling,
physically calculating individual inductances is not possible. To palliate this
shortcoming, instead of inductances, reluctances should be used.
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Figure 3.10: Magnetic Circuit with 2 di�erent magnetic materials embedded
in the core. The cross-sectional length is D.

3.5.2 Reluctances

Magnetic circuits can be taken as analogous to resistive electronic circuit
if we de�ne the magnetomotive force (MMF) F analogous to the voltage
(EMF) as

F = Ni (3.47)

The �ux then becomes analogous to the current of electronic circuits so that
the magnetic analog of resistance is reluctance, R de�ned as

R =
F

Φ
=
N2

L
(3.48)

The advantage of reluctances is that the rules of adding reluctances in series
and parallel are the same as for a resistances in electric circuits. Figure 3.10
illustrates the concepts. For the iron core with in�nite permeability with 2
�nitely permeable material, the reluctance of each gap is given by

R1 =
s1

µ1a1D
, R2 =

s2

µ2a2D
(3.49)
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Figure 3.11: Reluctance model of the MSMA Actuator

so that the �ux is

Φ =
F

R1 + R2
=

Ni

R1 + R2
=⇒ L =

NΦ

i
=

N2

R1 + R2
(3.50)

Again we see that the inductance, L, depends on the whole circuit whereas
the reluctances characterize the individual element.

We will later see that reluctances are more equivalent to capacitors when
bond graph modeling is introduced. In the static case, reluctances can be
treated as equivalent resistances without any major problems but this cannot
be so in the dynamic case. The main reason is that reluctances are energy
storing element (an air gap stores magnetic energy) whereas resistances dis-
sipate energy. The more appropriate electronic circuit element analogous to
reluctance is the capacitor or more precisely 1

(Capacitor) .
Figure 3.11 shows the reluctance circuit of the MSMA. The electric cir-

cuit consist of the battery and the resistance of the coil, then between the
electric circuit and the magnetic circuit there is a gyrator which transforms
the current into an equivalent magnetomotive force and the voltage into an
equivalent �ux φ.

The reluctance of the air-gap, Rfer, Rgap, Rmsma can be calculated
knowing their geometries whereas Rleak should be measured.

Now having the necessary tool to model electric and magnetic circuit, we
proceed to �nd the MSMA lumped parameters.

3.5.3 MSMA Actuator lumped Parameters

In this section, we will use the theory developed previously to write the
lumped parameters of the MSMA actuator. Consider a MSMA sample in a
magnetic �eld H0 as in Fig 3.12. The sample length is l, its width is a and its
depth is d. It is located in air gap of same width and depth but of di�erent
length w. In deriving the constitutive equations, as a �rst approximation we
will consider that the change in length of the MSMA is negligible i.e the air
gap remains constant. We will use the magnetization M and the equation
B = µ0(H0 + M) to �nd the �ux ,Φ. Then we will write the energy and
co-energy of the magnetic part of the actuator. This will be useful for the
port-Hamiltonian model.
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Figure 3.12: MSMA in Air Gap

Magnetization to Flux

From (3.19), the magnetisation of the material is given as :

∂G
∂H0

= µ0M = µ0Ms

(
(2α− 1)z + sin(θ)(1− z)

)
(3.51)

where α = χaH0

2Ms + 1
2 and sin(θ) = χtH0

Ms are the internal variables representing
weiss domain and z is the volume fraction of variant M2.

The three cases to be considered are (α < 1, θ < π
2 ), (α = 1, θ < π

2 ) and
(α = 1, θ = π

2 ). The magnetisation equation (3.51) then becomes:

M =





Ms

(
(2α− 1)z + sin(θ)(1− z)

)
, if (α < 1, θ < π

2 )
Ms

(
z + sin(θ)(1− z)

)
, if (α = 1, θ < π

2 )
Ms, if (α = 1, θ = π

2 )
(3.52)

Also from electromagnetic theory,

B = µ0(M +H0) (3.53)

Hence in terms of B, (3.52) becomes :

B =





µ0

(
χaH0z + χtH0(1− z)

)
+ µ0H0, if (α < 1, θ < π

2 )
µ0Msz + µ0H0(χt(1− z) + 1), if (α = 1, θ < π

2 )
µ0Ms + µ0H0, if (α = 1, θ = π

2 )
(3.54)

Since we are assuming that the permeability of the core generating the �eld
in the air gap is in�nite, all the magnetic �eld appears in the air gap. And
if it is generated from a solenoid containing N turns and in which a current
of i amperes is �owing, then it is given as:

H0 =
Ni

a
(3.55)

where a is the width of the air gap (see Fig 3.12).
Substituting (3.55) into (3.54), we obtain:

B =





µ0

(
χaz + χt(1− z) + 1

)
Ni
a , if (α < 1, θ < π

2 )

µ0Msz + µ0
Ni
a (χt(1− z) + 1), if (α = 1, θ < π

2 )

µ0Ms + µ0
Ni
a , if (α = 1, θ = π

2 )

(3.56)
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Having B we can relate it to the �ux, φmsma, which passes through the
MSMA.

φmsma = AB = ldB (3.57)

where , A = l× d is the cross sectional area of the MSMA. Hence (3.57) can
be writted as:

φmsma =





Niµ0ld
a

(
χaz + χt(1− z) + 1

)
, if (α < 1, θ < π

2 )

µ0Mszld+ Nildµ0
a (χt(1− z) + 1), if (α = 1, θ < π

2 )

µ0Msld+ Nildµ0
a , if (α = 1, θ = π

2 )

(3.58)

Constitutive Relations

Relations in the electrical domain can be derived as follows. The electrical
part and magnetic part should be treated as a whole. Since the current i
across the MSMA does not quite have a meaning, to derive the equations,
we need to consider the whole circuit generating the H �eld. Then only we
can relate the current i �owing in the solenoid to λ, the total �ux linkage.

The net �ux �owing in the circuit is given by

φ =φair + φmsma

=
Ni(w − l)dµ0

a
+
Niµ0ld

a

(
χaz + χt(1− z) + 1

)

(3.59)

We know from electric circuits that

λ = Nφ (3.60)

Therefore our 3 piecewise continous equations (3.61) becomes:

λ =





N2i(w−l)dµ0
a + N2iµ0ld

a

(
χaz + χt(1− z) + 1

)
, if (α < 1, θ < π

2 )
N2i(w−l)dµ0

a +Nµ0Mszld+ N2ildµ0
a (χt(1− z) + 1), if (α = 1, θ < π

2 )
N2i(w−l)dµ0

a +Nµ0Msld+ N2ildµ0
a , if (α = 1, θ = π

2 )
(3.61)

which can be reduced to

λ =





N2i(w)dµ0
a + N2iµ0ld

a

(
χaz + χt(1− z)

)
, if (α < 1, θ < π

2 )
N2i(w)dµ0

a +Nµ0Mszld+ N2ildµ0
a (χt(1− z)), if (α = 1, θ < π

2 )
N2i(w)dµ0

a +Nµ0Msld, if (α = 1, θ = π
2 )
(3.62)

Taking K0 = N2(w)dµ0
a , K1 = N2(l)dµ0

a and K2 = Nµ0Msld further simpli�-
cation is possible.

λ =





K0i+K1i
(
χaz + χt(1− z)

)
, if (α < 1, θ < π

2 )
K0i+K2z +K1i(χt(1− z)), if (α = 1, θ < π

2 )
K0i+K2, if (α = 1, θ = π

2 )
(3.63)
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Table 3.1: Values used for simulation

N w l a d χa χt
1200 25 mm 20mm 3mm 5mm 4 0.82

Equation (3.63) being invertible, we can now write the current, i, in terms
of the λ. This will prove useful in writing the energy equation.

i =





λ
K0+K1(χaz+χtz(1−z)) , if (α < 1, θ < π

2 )

λ−K2z
K0+K1(χt(1−z)) , if (α = 1, θ < π

2 )

λ−K2
K0

, if (α = 1, θ = π
2 )

(3.64)

Figure 3.13 shows the graph of the constitutive equations for di�erent
values of z. The �gure was obtained using values shown in Table 3.1. These
values are very close to the circuit values. The two saturation values α = 1
and θ = pi

2 are clearly seen. One di�erence to be noted with the magne-
tization curve of �gure 3.7 is that no plateau of saturation exists. This is
because of the air-gap present which never saturates. Finally, in deriving
the equation, it was assumed that the air-gap is not a�ected by the change
in length of the MSMA. This proved to be a valid assumption as seen from
Figure 3.14. It is seen that very little change occurs due to this change in
length. The deformation of the MSMA is related to z. At z = 1, the de-
formation is around 6%. This has been taken into consideration to produce
these results.

3.5.4 Energy Considerations

As has been done for the case of the local parameters, we derived a ther-
modynamics force, πz, which gives the evolution of z, we will in this section
derive the same driving force in terms of the lumped parameters. For such a
purpose we will apply energy relations which is common for systems where
there is a coupling between di�erent domains.

It has been shown that the electrical terminal relations are in the form
expressed by

λ = λ(i, z) (3.65)

Applying a force on the MSMA results in a change in "inductance" and hence
in the magnetic energy stored. We can now make an assumption that the
lumped driving force, fmag of magnetic origin which does work also depends
on

fmag = fmag(i, z) (3.66)

Then if the total magnetic energy stored by the system is denoted by Wmag,
we can write

idλ = dWmag + fmagdz (3.67)
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Figure 3.13: Constitutive Equations between total magnetic �ux λ and i for
the actuator. The curves are shown for the di�erent values of z.

Equation (3.67) states that the work done by the electric circuit is either
stored as magnetic energy (in case the MSMA is blocked) or can be used
to do work. The evaluation of the change in Wmag when λ or z is varied
is given by the integration of (3.67). This is a line integration through the
variable space (λ, z). These two variables are the independent variables i.e
they can be varied independently of each other. Suppose we want to �nd the
change in stored energy when the independent variables change from (λa, za)
to (λb, zb). Figure 3.15 shows the possible paths in the variable space. Thus
using path C, we have

Wmag(λb, zb)−Wmag(λa, za) = −
∫ zb

za

fmag(λa, z)dz +

∫ λb

λa

i(λ, zb) (3.68)

One property of conservative systems is that the energy does not depend on
the path taken. It is a state function. Our system though being dissipative
in nature, we can divide it in a conservative part and a dissipative part. The
dissipative part will be added later. Hence if we take the conservative part,
we can choose any path which makes the integration easier. One commonly
used method [81] is to assemble the system mechanically keeping dλ = 0,
then no force is required to overcome forces of magnetic origin hence fmag =
0. Then, we put the energy through the electrical ports by keeping the
geometry �xed (dz = 0). We then have all the energy accounted for only by
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Figure 3.14: Comparaison of constitutive equations taking into account
change in length of air-gap, w, as well as change in length of MSMA, l.
Dashed lines show the constitutive equations when the changes in length
are taken into consideration while Solid lines show the equations when the
changes are assumed negligible.

the electrical part. So Wmag is then given by

Wmag =

∫ λ

0
i(λ, z)dλ (3.69)

As Wmag is a function of the two independent variables λ and z

Wmag = Wmag(λ, z) (3.70)

its total di�erential is

dWmag =
∂Wmag

∂λ
dλ+

∂Wmag

∂z
dz (3.71)

From (3.67) and (3.71) we have

0 =
(
i− ∂Wmag

∂λ

)
dλ−

(
fmag +

∂Wmag

∂z

)
dz (3.72)

This from (3.72), we have

i =
∂Wmag

∂λ

fmag =− ∂Wmag

∂z
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Sometimes instead of the energy, it is easier to work with the co-energy,
W ∗mag(i, z). One of the reason is because the constitutive relationships are
easier in one sense than the other. For our case, the λ(i) relationship is
easier to work with rather than the i(λ). Another reason is that the co-energy
variables in a particular system are the independent variables rather than the
energy variables. Such transformations are very common in thermodynamics
where the co-energies are given di�erent names such as Gibbs, Helmholtz
etc.. The co-energy is obtained from a Legendre transformation such as

W ∗mag(i, z) = iλ−Wmag(λ, z) (3.73)

Using the co-energy, then the force of magnetic origin is given by

fmag =
∂W ∗mag
∂z

(3.74)

To construct the energy and co-energy using a path where the system
is assembled mechanically �rst i.e all the energy input to the system is ac-
counted by the electrical part only, we have to integrate the constitutive
equations (3.64) and (3.63) taking into account the piecewise continuous na-
ture of these equations. We will now derive in detail the co-energy functional
and then for the energy functional and the associated driving force for z, the
reader is referred to Table 3.2.

Taking into account the saturation, the corresponding current, iα for
α = 1, using equations (3.15) and (3.54), becomes

iα =
Msa

Nχa
(3.75)

and for θ = π
2 , the corresponding saturation current, iθ is

iθ =
Msa

Nχt
(3.76)
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The co-energy W ∗mag(i, z) is given by

W ∗mag(i, z) =

∫ i

0
λdi (3.77)

Then for i < Msa
Nχa

W ∗mag =

∫ i

0
(K0i+K1i

(
χaz + χt(1− z)

)
)di (3.78)

=
1

2
(K1χaz +K1χt (1− z) +K0) i2 (3.79)

for Msa
Nχa

< i < Msa
Nχt

W ∗mag =

∫ Msa
χa

0
(K1χazi)di+

∫ i

Msa
Nχa

(K2z) +

∫ i

0
(K0i+K1iχt(1− z))di

=
1

2

K1zMs
2a2

χaN2
+K2z

(
i− Msa

Nχa

)
+

1

2
(K1χt (1− z) + k0) i2

(3.80)

and �nally for i > Msa
Nχt

W ∗mag =

∫ Msa
χa

0
(K1χazi) di+

∫ i

Msa
Nχa

(K2z) di

+

∫ Msa
Nχt

0
(K1iχt(1− z)) di+

∫ i

Msa
Nχt

(K2(1− z)) di+

∫ i

0
K0i di

=
1

2

K1zMs
2a2

χaN2
+K2z

(
i− Msa

Nχa

)
(3.81)

+
1

2

K1 (1− z)Ms
2a2

χtN2
+K2 (1− z)

(
i− Msa

χtN

)
+

1

2
K0i

2

The above development is also carried out for the energy functionWmag(λ, z)
and then the driving force,fmag is given by

fmag = −∂Wmag

∂z
=
∂W ∗mag
∂z

(3.82)

The resulting equations are presented in Table 3.2 which shows that fmag

depends only on the current but is a function of both λ and z. Using the
values from Table 3.1 and the driving force equations from Table 3.2, Fig.
3.16 shows how fmag varies with current and Fig. 3.17 shows the same
dependance on λ and z. In both cases, the same driving force is observed
for whatever values of z as expected.
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Figure 3.16: Driving force fmag derived from co-energy, W ∗mag.

The other mechanism which drives the reorientation of martensite in
MSMA is the stress applied to the material. And when subjected to both a
magnetic �eld and a stress, the thermodynamic driving force, f tot, is given
by

f tot = fmag + fmech (3.83)

where fmech is the driving force due to the mechanical stress.
The in�nitesimal lumped parameter mechanical work consists of the work

done by the twinning displacement γzl and the elastic displacement xe = εel.
If the force acting on the material is Fext (in the case of our actuator its mg)
and the material spring constant (lumped Young modulus) is k, then the
in�nitesimal work is

dWmec =

∫ xe

0
Fext dxe +

∫ z

0
Fextγl dz (3.84)

Integrating yields

Wmec =
1

2
kx2

e + Fextγlz (3.85)

and the mechanical co-energy is given by

W ∗mec =
1

2

F 2
ext

k
+ Fγlz (3.86)

The total strain xt is then given by

xt =
∂W ∗mec
∂Fext

=
Fext
k

+ γlz = xe + γzl (3.87)

while fmech, the thermodynamics driving force due to the mechanical energy
is

fmech =
∂W ∗mec
∂z

= Fextγl (3.88)
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Figure 3.17: Driving force fmag derived from energy, Wmag.

Finally as in the thermodynamics case, the total energy is given by

W (xe, z, λ) = Wmag +Wmec (3.89)

and the driving force, fz is given by

f totz =
∂Wmag

∂z
+
∂Wmech

∂z
(3.90)

And �nally if to be coherent with the thesis of Gauthier [16], we add the
term called interaction energy which gives

f totz =
∂Wmag

∂z
+
∂Wmech

∂z
+K12(1− 2z) (3.91)

3.6 Discussion

In this chapter, we used thermodynamics to model the material. Thermo-
dynamics being quite universal, from its premises we were able to derive two
very important constitutive relations. The �rst is the driving force which
dictates the evolution of the internal variable z and the second was to obtain
the relation between the total strain xt from the elastic and twinning strain.

In the distributed parameter section, we used thermodynamics free en-
ergies (Gibbs) to get to the driving force while in the lumped parameter
section, we employed a more classical view. What we have called energy
and denoted W in the lumped parameter part is actually the Helmholtz free
energy, F . The Helmholtz free energy is actually F = U − TS and it gives
the available energy at constant temperature.

Hence in the port Hamiltonian modelling for electric circuits, mechanical
circuits where temperature and entropy are neglected, we are actually using
the Helmholtz free energy.
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Truly speaking if a strict view of energy is to be adopted as the ability
to produce heat and/or work, we should always include entropy as it is a
natural variable for internal energy.

Secondly we have shown that employing co-energies sometimes result in
easier derivation of relationship between generalised forces and generalised
coordinates. In any energetic framework, both energy and co-energy should
be employed consistently as one representation may give better insight or
simpler results than the other.

Furthermore, this chapter has given an explicit form of the magnetic and
mechanical energy and their derivation in terms of the lumped parameters,
something that was missing in [16] and in general literature. Thus we can
now embark to derive the port Hamiltonian equation of the actuator where
these energies will play a central part. We will also give an explanation in the
next chapter as to where the term K12(1 − 2z) associated with interaction
energy comes from.
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4.1 Introduction

In the last chapter, we have used thermodynamics to derive the constitutive
equation regarding the internal variable z. Unfortunately though powerful,
thermodynamics has its limitations. It deals only with initial and �nal states
of a system. It provides no information about the dynamical behaviour
between these 2 states. As stated by Oster et al. [54]: Thermodynamics tells
us where we have been and where we are, but not how we got there.

69
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To be able to control the MSMA actuator, it is important to know the
entire dynamical trajectory. The bond graph approach provides a very sys-
tematic way to derive the mathematical model. Not only does it provide
to derive the equations but it also helps visualise the �ow of power in the
system. The energy conversions and di�erent couplings that exist between
domains is easily discernible much unlike the 2 models in chapter 2 where it
was impossible to see how the electrical energy of the actuator was converted
to mechanical energy. Finally, it reveals one other very important feature of
the actuator-its topology. Topology of a circuit refers to the way di�erent
elements are connected. The interconnection of these elements impose a set
of constraints on the system which further determines the system behaviour.

Oster and Desoer [55] states that there are 2 underlying structures to
most physical models-one topological and one dynamic. The port Hamilto-
nian framework just employs such a representation. It separates the consti-
tutive equations ('dynamic') from the interconnection ('topological') and it
is very closely related to the bond graph methodology as both uses energy
as a central theme.

4.2 Network Modelling

To model simple systems consisting entirely of mechanical or electrical do-
main, it is su�cient to use the traditional methods such as Newton laws for
mechanical systems or Kirchho� current/voltage laws for electrical systems.
For more complicated systems, Lagrangian or Hamiltonian formalism can be
used and they usually yield very good results.

But unfortunately for systems consisting of a large number of such ele-
ments the amount of equations can rapidly grow very large.

Linear graph theory or network graphs has been widely used [39] in elec-
trical circuit analysis to analyze and establish their properties. This ap-
proach �rst models the topology of the circuit without regards to any par-
ticular element and then afterward only the circuit elements are taken into
consideration to derive the dynamical equations using through and across
variables.

Bond Graphs, invented by Paynter [56], is another systematic approach
widely used to derive system equations. Using e�ort and �ow variables, it
models in a graphical way the power exchange between elements in a systems.
While linear graphs has a sound mathematical basis, bond graph does not
possess such a rich mathematical background even though attempts have
been made in [3, 2, 4].

Other methods such as behavioral modeling proposed by Willems [80] is
a very powerful method but it is mathematically very demanding.

These methods have the advantage that unlike an input/output (i/o)
representation, the system description is viewed as a constraint on a set of
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variables and systems are connected without any i/o assignment beforehand.
State space description is derived from basic system representation only after
having decided on the inputs and the outputs.

The di�erent types of modelling described above relies in one way or the
other on Kircho�'s current law (KCL) and Kircho�'s voltage law. They ap-
ply very well to lumped systems. Using both Kircho�'s laws, implies Tellegen
theorem which is a purely topological results but applied to a physical sys-
tem, it means that energy is conserved. Furthermore KCL and KVL which
are proper to electric circuits also have their corresponding counterparts in
other domains. Any conservation law (conservation of charge, conservation
of momentum, conservation of matter or conservation of energy) is a KCL
statement more generally known as an equation of continuity whereas a KVL
statement more generally known as an equation of compatibility is a kind
of uniqueness condition or constraint such as geometrical constraint in me-
chanical systems (equal position and by extension velocities at same points)
or same electrical potential at same point etc [66].

A rapid review of bond graphs will follow in the following sections before
deriving the MSMA actuator dynamic model.

4.3 Energy �ow in Bond Graph

A set of primitive elements which form the building blocks for the construc-
tion of dynamic models for physical systems may be de�ned from energy
�ows within the system, and between the system and its environment. The
principle of conservation of energy provides a fundamental basis for charac-
terizing such elements.

Basically there are 4 types of elements, two energy storage elements, one
dissipative element and source elements.

Example of source elements in the electrical domain would be a current
source or a voltage source whereas in the mechanical domain it would be a
velocity source such as a cam or a force source.

The dissipative element in electrical domain would be a resistor whereas
in mechanical domain it would be a damper.

The 2 di�erent energy storage are related to the type of energy they
store. In mechanical domain, there exists the kinetic energy and the potential
energy whereas in the electrical domain we can distinguish between electric
energy (energy stored in a capacitor due to charges) and magnetic energy
(energy stored in an inductor).

From the law of conservation of energy, the change in energy, ∆E, is
equal to the work done ,∆W , by or on the system and the heat exchanged,
∆Q. Namely the power �ow in any branch is given by

P(t) = effort︸ ︷︷ ︸
e

× flow︸ ︷︷ ︸
f

= v × i︸ ︷︷ ︸
electrical

= F × v︸ ︷︷ ︸
mechanical

(4.1)
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Furthermore two additional useful variables can be de�ned called gen-
eralized momenta, p, which is the integral of the e�ort variable and, q, the
generalized displacement which is the integral of the �ow variable as shown
by equation (4.2).

p(t) =p(t0) +

∫ t

0
e(τ) dτ or dp = e dt

q(t) =q(t0) +

∫ t

0
f(τ) dτ or dq = f dt (4.2)

These 2 variables are called the energy variables. The relationship between
the energy variables and their power counterpart (e, f) is what gives and
dictates the dynamics of any system. Also, the change in internal energy of
a system in a time, dt can be written as

∆U = e(fdt) = edq ∆(Potential or Electrical Energy) = ∆W
∆U = f(edt) = fdp ∆(Kinetic or Magnetic Energy) = ∆W
∆U = (ef)dt = (fe)dt (Dissipation) = ∆Q

(4.3)
The �rst 2 equations of (4.3) are energy which can be stored and retrieved

later whereas the third one is energy loss as heat. Nonetheless, they suggest
that 3 types of elements are responsible for energy exchange or conversion.

4.3.1 The inductive element

The inductive element or "I"-element is an energy storing device which is
characterized by a static relationship between �ow f and generalized mo-
mentum p. The constitutive equation is given by

p = p(f) (4.4)

For an inductor, the �ux linkage (generalized momentum), λ, in the linear
case is given by

λ = Li (4.5)

The relationship between the �ow (current, i) and the e�ort (voltage, v)
variable is given by

dλ

dt
= L

di

dt

v = L
di

dt

and the energy stored in the inductor is

E =

∫ λ

0
idλ =

1

2L
λ2 (4.6)
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while the co-energy is given by

E∗ =

∫ i

0
λdi =

1

2
Li2 (4.7)

A clear distinction will always be made between energy and co-energy as
they are equal in the linear case but for the non-linear case, they are not.

4.3.2 The capacitive element

The capacitive element is one in which there is a static relationship between
the generalized displacement and the e�ort variable.

q = q(e) (4.8)

In a capacitor, the charge, q, is a generalized displacement variable and the
e�ort variable is the voltage v across the plates. In a linear capacitor,

q = Cv (4.9)

C is termed the capacitance.
In a similar fashion to the inductor, the energy and co-energy are given

by:

E =

∫ q

0
vdq =

1

2C
q2

E∗ =

∫ v

0
qdv =

1

2
Cv2

4.3.3 The resistive element

The resistive is an element in which power is dissipated. It relates the e�ort
variable to the �ow variable.

e(t) = e(f) (4.10)

In this case, the integration of

D =

∫ e

0
fde (4.11)

where D is called the content and the co-content is given by

D∗ =

∫ f

0
edf (4.12)

The sum D + D̄ is the total power supplied or extracted from the system.
Figure 4.1 gives the relationship between the four types of variables. The

diagonal gives the relationship between the e�ort or �ow variable and the
generalized displacement or generalized momentum variable. The edges gives
the relationship between the di�erent elements.
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Figure 4.1: The four-element quadrangle

4.4 Bond Graphs

The bond graph method [56, 34] is a graphical approach to modeling in which
component energy ports are connected by bonds that specify the transfer of
energy between system components. Power, the rate of energy transport
between components, is the universal currency of physical systems. The
graphical nature of bond graphs separates the system structure from the
equations, making bond graphs ideal for visualizing the essential character-
istics of a system [20].

In a bond graph a half arrow head is used to indicate the power �ow
between elements and junctions and they are called a bonds. The direction
of the arrow is the direction of power �ow and each arrow is labeled with an
e�ort, e, and a �ow variable, f . And these arrows connected to the elements
above, junctions, transformers and gyrators makes up a bond graph.

Finally, causality, which relates cause to e�ect, helps to gain insight into
the system. Due to the simplicity of the representation, causality appears
naturally and is much more evident in bond graphs. In linear graph, causal-
ity is determined by the tree and co-tree whereas in bond graph it is a casual
stroke (vertical line) added to the arrows. In this thesis, causality has been
fundamental in determining relationships and equations which will be dis-
cussed shortly.

4.4.1 Junctions

Central to the idea of bong graph are junctions. There are two kinds of
junctions the 0 -junction and the 1 -junction. These junctions are ideal in
the sense that they neither store or dissipate power and mathematically they
are just a simple graphical notation for a set of linear constraint equations
such as KVL and KCL. Figure 4.2 shows the 2 junctions and how they are
constructed.

Each junction contains a KVL(continuity), KCL(conservation) and con-
servation of energy statement, any two implying the third. A 0-junction is
e�ectively a point where �ows are distributed where a 1-junction is where
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(a) 0-junction where
n∑
i

fi = 0 and

e1 = e2 = .. = en.

1
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e2 f2
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(b) 1-junction where
n∑
i

ei = 0 and

f1 = f2 = .. = fn.

Figure 4.2: 0-junction and 1-junction. In both cases,
n∑
i
eifi = 0.
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(a) RLC circuit.

Se : u 1
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e4 f4

e5

f5

(b) Associated Bond Graph.

Figure 4.3: Bond Graph of RLC circuit.

e�orts are distributed. Figure 4.3 shows the example RLC circuit and its
associated bond graph.

The bond graph depicts the power �ow from the source, Se : u, called an
e�ort source, towards the elements. Parts having the same current are linked
by a 1-junction and those having same voltage are linked by a 0-junction.

Taking current to be �ows and voltages to be e�orts and assuming that
all causalities are respected, the equation for the system are dervived as
follows. Taking the inductor �ux p = λ and the capacitor charge q as state
variables, we have ṗ = e5 and q̇ = f4.

The junctions give the following relationship

f3 = f4 + f5 , e3 = e4 = e5 (0-junction).
f1 = f2 = f5 , e1 = e2 + e3 (1-junction).

(4.13)

while the constitutive relationships are

q̇ = f4 , e4 = 1
C q (Capacitor).

ṗ = e5 , f5 = 1
Lp (Inductor).

f2 = e2
R , (Resistor).

(4.14)
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From the above relationships, we see that e5 = e4 and hence

ṗ =
q

C
(4.15)

and

f4 =f3 − f5

f4 =f3 −
p

L

=
e2

R
− p

L

=
e1

R
− e3

R
− p

L

f4 =q̇ =
u

R
− q

RC
− p

L

which be can be written in port-Hamiltonian form. Since H(q, p) is

H =
q2

2C
+
p2

2L

the port Hamiltonian representation becomes:
[
q̇

ṗ

]
=

[
− 1
R −1

1 0

][ q
C = vC
p
L = iL

]
+

[
1
R

0

]
u (4.16)

y =
[

1
R 0

]
[ q
C

p
L

]
(4.17)

4.4.2 Transformers and Gyrators

In addition to elements such as E�ort Source (Se), Flow Source (Sf), I-
element, R-element, C-element, 0-junction and 1-junction, two other impor-
tant elements are the gyrator(GY ) and the transformer(TF ). The former
elements are called one-ports elements while gyrator and transformers are
called two-port elements.

These elements are power converting elements i.e they either convert
power within a single domain or from one domain to another. As in an
electrical transformer, in a bond graph transformer also, the ratio of e�orts
is equal to the inverse ratio of �ows whereas in a gyrator, the e�ort at one
end of the port depends on �ow at the other port and vice-versa. Exam-
ples of transformers are gear trains and electrical transformer among others
whereas an example of gyrator would be the conversion of electrical energy
to mechanical energy in DC motors or the voice coil transducer.

Figure 4.4 shows the graphical representation of a transformer and a
gyrator. The governing equations for these two-ports elements are, for a
transformer, [

e2

f2

]
=

[
1
n 0
0 n

] [
e1

f1

]
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TF:
n

e1

f1
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e1
n

f2 = n f1

(a) Transformer.

GY:
r

e1

f1

e2 = r f1

f2 =
e1
r

(b) Gyrator.

Figure 4.4: Two-port devices.

and for a gyrator: [
e2

f2

]
=

[
0 r
1
r 0

] [
e1

f1

]

4.4.3 Causality

Causality is an important feature of modeling. It dictates which bond sets
the e�ort and which bond set the �ow. It represents a constraint between
the �ow and e�ort variable. One immediate consequence is that the �ow
and e�ort cannot be speci�ed independently. For example if a mass is being
pulled with a certain velocity, then the force, F, experienced by the mass,
m, at velocity, v is given by:

F = m
dv

dt
(4.18)

On the other hand if the mass is subjected to a force then the velocit is given
by:

v(t) = v0 +

∫ t

0

F

m
dt (4.19)

Equation (4.18) is called derivative causality whereas equation (4.19)
is called integral causality. It can be shown that all independent energy
elements can be represented in integral causality. This also dictates the
input and output of such an element.

Once the bond graph has been obtained, it is acausal in nature. Once
the input has been decided, a state space model can be found. Furthermore,
for a state space model, integral causality is preferred as it does take into
consideration initial conditions. Causality is also important in simulations
as it reveals if algebraic loops are present in the systems. Systems in which
causality cannot be assigned are usually ill-posed.

In bond graph, causality is indicated by means of the casual stroke added
at the end or at the start of a bond. The element adjacent to the casual
stroke sets f whereas the other element sets e as shown in �gure 4.5.

In bond graph, e�orts and �ows sources always have �xed causality which
is natural. E�ort sources will set e whereas �ow sources will set f as shown
in �gure 4.6.

Storage elements i.e "I" and "C" elements are assigned their preferred
causality which is the integral causality as shown in �gure 4.7. If on propa-
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A B
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f

(a) A sets e and B sets
f .

A B
e
f

(b) A sets f and B sets
e.

Figure 4.5: Causal Stroke.

Se
e
f

(a) E�ort sources al-
ways sets e.

S f e
f

(b) Flow Sources al-
ways sets f .

Figure 4.6: E�ort and �ow Sources.

gating causalities, the integral form cannot be assigned, then there is either
a problem in the model or there are storage elements which are dependent.
This will give rise to algebraic loops in the simulation.

I : L

f = 1
L
∫

e dt

e
f

I : L

e = L d f
dt

e
f

(a) I-element

C : c

e = 1
c
∫

f dt

e
f

C : c

f = c de
dt

e
f

(b) C-element.

Figure 4.7: Integral (top) and Derivative Causality of "I" and "C" elements.

Transformers and gyrators can take one of their 2 �xed causalities as
shown in 4.8. This is also a consequence of how the elements were de�ned.
If any other causalities are assigned to those elements, then they no longer
work as intended.

And �nally, �gure 4.9 shows the resistive element. It can take both
causalities. Usually one causality is preferred over the other if the inverse of
constitutive law does not exist or it is di�cult to obtain such as in Coulomb
friction.
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Figure 4.8: Both can only take one of these allowed causalities.
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e = r f
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r e
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Figure 4.9: Resistive element can take both causalities.

Causalities are assigned only after having drawn the bond graph and the
inputs are known. Sources are assigned their causalities �rst, then storage
elements are put in their preferred causalities and then causality is propa-
gated throughout the bond graph for the other elements until every bond
has a casual stroke.

Se : u 1

R : R

0

C : C

L : L
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f1
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e4 f4
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(a) RLC with voltage input.
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C : C
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f3

e4 f4

e5

f5

(b) RLC with current input.

Figure 4.10: Causality assignment for voltage input and current input.

Figure 4.10 shows the causality assignment for our RLC circuit example.
It is to be noted that on a 0-junction there is only 1 causal stroke whereas
on a 1-junction, all but 1 bond has a casual stroke. This is due to the fact
that on a 0-junction only 1 bond sets the e�ort and on a 1-junction, only 1
bond sets the �ow.

In addition, for comparison, the voltage input was changed to a current
input and the bond graph is shown in 4.10a. This completely changes the
dynamics of the circuits. Firstly, the resistor is no longer the element which
sets the current as is shown by the causality change. This can also be seen
in the state space equation (4.20).

[
q̇
ṗ

]
=

[
0 −1
1 0

] [
vc
il

]
+

[
1
0

]
i (4.20)
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with velocity input
(cam).

Se : F

1 I : m

0 0 C : 1
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(b) Causal Bond Graph.

Figure 4.11: Mechanical System Bond Graph.

4.4.4 Bond Graph Examples

Till now, we have only seen an electrical example, all the power of bond
graphs shows up in modelling coupled domains. We will illustrate examples
which will help us understand the MSMA.

Mechanical Example

Figure 4.11 shows an example of a mechanical system and its corresponding
bond graph. The systems is a class mass-spring system but with an addi-
tional velocity input. For mechanical systems, force is taken as the e�ort
variable whereas velocity is taken as the �ow. The bond graph is then writ-
ten as follows, a "1" is written for each distinct velocities and then "0" added
where there is common force. Once the bond graph is obtained, the power
�ow as well as the causality are found and then the equations can be written
as described above. For this particular system, the state space equations are:

[
q̇
ṗ

]
=

[
0 1

m

−k − b
m

][
q

p

]
+

[
0 −1

1 −b

] [
F
ω

]
(4.21)

Taking the Hamiltonian H to be

H =
kq2

2
+

p2

2m
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the port Hamiltonian representation becomes:
[
q̇

ṗ

]
=

[
0 1

−1 −b

][
kq

p
m

]
+

[
0 −1

1 −b

] [
F
ω

]
(4.22)

y =

[
1 0
0 1

] [
kq

p
m

]
(4.23)

Electromechanical Example

The DC motor is a very popular electromechanical device. It converts elec-
trical energy to mechanical energy. As seen in the bond graph of �gure 4.12,
it is the gyrator which couples the electrical side and the mechanical side.
The back emf induced is proportional to the speed at which the motor is
turning wheras the torque is proportional to the current. This constant of
proportionality is K, found on the gyrator.

E =Kω

τ =Ki

The state space equation for this dc motor is given by:

LR

V ω Se : V 1

R : R

L : L

GY
: K 1 L : J

R : b

e1

f1

e2 f2

e3 f3

e4

f4

e5

f5

e6 f6

e7

f7

Figure 4.12: DC Motor and its Bond Graph.

[
ṗe

ṗm

]
=

[
−R
L −K

J
K
L − b

J

][
pe

pm

]
+

[
1

0

]
V (4.24)

A non-linear example: Magnetic Levitation

The magnetic levitation system is a good example of a non-linear system.
The system consists of a sphere of ferromagnetic material which is levitated
using a magnetic �eld. In this typical example, the inductance varies with
the position, q, of the ball. An approximate constitutive law can be given
by

L(q) =
k

a+ q
(4.25)
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(a) Magnetic Levi-
tation.
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(b) Causal Bond Graph.

Figure 4.13: Non-Linear Example.

where a and k are constants. The energy stored in the magnetic �eld is given
by

W =
λ2.(a+ q)

2k
(4.26)

This energy has been represented by an "IC" �eld. It is commonly used to
represent energy elements who depend on multiple set of coordinates. This
does not add any more complexity to our model except that our constitutive
equation now depends on more than one variable. In the maglev case, the
constitutive equations are

i(λ, q) =
∂W

∂λ
=
λ(a+ q)

k

F (λ, q) =
∂W

∂q
=
λ2

2k

The state equations are then found to be as follows:

e3 = λ̇

f3 =
∂W

∂λ
=
λ(a+ q)

k

λ̇ = e1 − e2

λ̇ = u−Rf2 = u−Rf3

λ̇ = u−Rλ(a+ q)

k

e4 =
∂W

∂q
=
λ2

2k

f4 = q̇ = f5

q̇ =
p

m

e5 = ṗ

f5 =
p

m
e5 = e6 − e4

ṗ = mg − λ2

2k

By taking x1 = λ, x2 = q and x3 = p, the Port Hamiltonian model can
be written as:

ẋ =







0 0 0
0 0 1
0 −1 0




︸ ︷︷ ︸
J

−



R 0 0
0 0 0
0 0 0




︸ ︷︷ ︸
R



∂H
∂x

+




1
0
0


u (4.27)



4.5. MSMA ACTUATOR BOND GRAPH 83

with H being the Hamiltonian of the system.

H =
x2

1.(a+ x2)

2k
−mgx2 +

x2
3

2m
(4.28)

4.5 MSMA Actuator Bond Graph

The purpose of this section is to derive the dynamic equations of the actuator.
In chapter 3, we only considered the actuator in a static case. We derived
all the necessary constitutive equations. Thermodynamics methods were
applied to derive the constitutive relation between z and the thermodynamic
driving force π (distributed parameter). As explained in the last chapter, this
parameter is integrated to give the lumped parameter, f . It is an intensive
parameter with its dual z the extensive parameter. It is an e�ort variable
just like voltage/force in electrical/mechanical domain.

Electric
Subsystem

Qelec

MSMA
Subsystem

Qhyst

Mechanical
Subsystem

Qmech

λ̇
i

Fint

żγl
v
i

Fext

ẋ

Environment at constant temperature.
MSMA Actuator.

Figure 4.14: Schematic diagram showing the subsystems of the actuator with
the arrows showing the power exchanging ports.

As stated before, the actuator consists of 3 parts. The electric/magnetic
part, the MSMA part and the mechanical part. Figure 4.14 depicts a
schematic diagram of the actuator. It exchanges energy with its environ-
ment through an electrical port and a mechanical port. Losses in the form
of heat is dissipated to its surroundings. Qelec is the joule heating which
occurs in the resistor of the electrical circuit, Qhyst is the losses due to hys-
teresis and Qmech is the heat generated by viscous friction on the mechanical
side.

Each part will be considered separately and they will be connected to-
gether. Also, hysteresis which has been treated sparsely will be detailed and
it will be shown how an energy consistent formulation can be made.

4.5.1 Electric/Magnetic Subsystem Bond Graph

For the electric/magnetic part, there are 2 possible representations depend-
ing on the level of detail that is required. We can adopt an inductance
representation or a reluctance representation.
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For an inductance representation, lets consider the electric circuit of the
actuator shown in Figure 4.15a. This circuit shows the resistance of the coil
as r as well as a non-linear inductor. This non-linear inductor represent the
relationship between λ, i and z. The relationship between these 3 variables
is given in (3.63). From an energetic point of view, it means that the energy
stored in the inductor is a�ected by both the electrical side and the MSMA
side. For a �xed current, this energy can be changed by applying a force
on the MSMA or for a �xed applied force, this energy can be modi�ed by
changing the current. As in the magnetic levitation model, when the energy
depends on more than one coordinate, an "IC" �eld as seen in �gure 4.15b
, is used to model such phenomena.

u(t)

r
i

λ= f (i,z)λ̇

(a) Electric circuit of MSMA Actu-
ator. f(i, z) denotes that the �ux
linkage λ is a function of i and z.

MSMA

Se : u 1

R : R

IC
e1 = u

f1 = i

e2 = vr f2 = i

e3 = λ̇
f3 = i

e4 = f mag

f4 = ż

(b) Bond Graph of Electric subsystem.

Figure 4.15: Electric susbsystem Bond Graph.

Using Wmag (from Table 3.2), as the energy stored in the "IC" �eld, the
equation for the electrical subsystem is derived as follows:

e3 = λ̇

f3 =
∂Wmag

∂λ
e3 = e1 − e2

λ̇ = u−Rf3

= u−R∂Wmag

∂λ

(4.29)

The port-Hamiltonian representation of this circuit, taking u as input
and i as output, given the Hamiltonian He = Wmag is

λ̇ = (0−R)︸ ︷︷ ︸
J−R

∂He
∂λ

+ u

yelec =
∂He
∂λ

= i

so that the product of input and output is power.
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Reluctance Model Bond Graph

Just for the sake of completeness, we show in Figure 4.16 the bond graph
of the reluctance circuit shown in Figure 3.11. The reluctances have been
modelled by capacitors as they are energy storing elements. Throughout
this thesis, we have assumed that all the magnetic �eld H0 produced by
the coil appears in the air gap. This assumption relies on the fact that we
have neglected parasitic e�ects, eddy current losses and we have taken the
permeability of the ferromagnetic core to be in�nite. Usually this is not the
case. The reluctance circuit is useful if we need a �ner model and it helps
to model each individual magnetic element separately. Also, it gives access
to one more measurement, the magnetic �eld in the air gap. Furthermore,
if any saturation is present in the ferromagnetic core, this can easily be
incorporated with this model.

The model shows that the MSMA and the air gap have been lumped
together. This has been done for 2 reasons. Firstly since they are in parallel
they are not independent (causality problem) and secondly it is easier to
incorporate it in the "IC" �eld in this manner. Our constitutive equations
for the "IC" thus remain the same else we would have to separate the air
gap part from the msma part.

Se : u 1

R : r

GY
: N 0

Cleak

1

C f erR f er

MSMA+Air
e1

f1

e2 f2

e3

f3

e4 = Ni

f4 = φ

e5 f5

e6

f6

e7

f7

e9

f9
e10

f10

Figure 4.16: Bond graph model of reluctance circuit

This model will not be further discussed, we will adopt its ideal cir-
cuit equivalent to keep things manageable else the number of equations will
quickly get unwieldy.

4.5.2 Mechanical subsystem Bond Graph

The MSMA mechanical model is shown in Figure 4.17a. The MSMA has a
Young's modulus E, a cross-sectional area, A and its longitudinal length is l.
The elastic part of the MSMA is modelled by a spring of sti�ness, k = AE

l .
The damper models the dissipation due to viscous friction experienced by
the load. The coe�cient of damping is taken to be b. And �nally when
the MSMA converts electrical energy to mechanical energy, it acts as a �ow
source by means of the variable z. The �gure also shows the forces acting
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b
k = AE

l

γ żl

m

Fext = mg

Fint = σAxt

Flow source

MSMA

(a) MSMA mechanical model with
load.

MSMA

T F 0

C : AE
l

1 Se : mg

R : b

I : m

e7 = σA

f7 = γ żl

e8 =
AE
l xe f8 = ẋe e10 = ṗt f10 =

pt
m

e9 = e7 = e8

f9 = ẋt

e12 = mg

f12 = ẋt

e11 = bẋt f11 = ẋt

e6 = f mech

f6 = ż

(b) Bond Graph of Mechanical Subsystem.

Figure 4.17: Mechanical subsystem and its Bond Graph.

on the system and the total displacement xt. The latter is made up of the
elastic displacement xe which in a uniformly deformed rod

xe =

∫ l

0
εe dl = εel (4.30)

and the displacement due to twinning strain γzl which is

xz =

∫ l

0
γz dl = γzl (4.31)

The variable γ is the maximum twinning strain achievable. Finally, the
momentum of the mass is denoted by pt.

The bond graph of the mechanical model in Figure 4.17b shows that
there exists a constraint between ẋe, γżl and ẋt. Notably only 2 of them are
independent.

ẋt = γżl − ẋe (4.32)

It should be emphasized that the direction of xe and γzl are opposite when
operating in actuation mode whereas in sensing mode, they would be in the
same direction. The bond (e8, e9) can take both directions. Hence it depends
really how power is �owing-i.e is the magnetic �eld increasing or decreasing
when the applied load is constant. The kinetic energy of the mechanical
system is given by

Wk(pt) =
1

2

p2
t

m
(4.33)

and the potential energy is

Wp(xt, z) =
1

2
kx2

e =
1

2
k(xt − γzl)2 (4.34)

Using (4.33) and (4.34) and the bond graph in Figure 4.17b and choosing
state variables as xt, pt, and z the following equation can be written

ẋt =
pt
m

=
∂Wk

∂pt
(4.35)
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and for pt
e10 = ṗt
e10 = e8 − e11 + e12

ṗt = −AE
l
xe − bẋt +mg

= −∂Wp

∂xt
− b∂Wk

∂pt
+mg

(4.36)

In the mechanical part, the state variables are xt and pt. The state vari-
able z is in the MSMA part. The port Hamiltonian representation for the
mechanical subsystem, taking the Hamiltonian Hm as

Hm =
1

2
k(xt − γzl)2 +

1

2

p2
t

m
(4.37)

is

[
ẋt
ṗt

] [
0 1
−1 −b

]

︸ ︷︷ ︸
J−R

(
∂Hm
∂xt

∂Hm
∂pt

)
+

[
0
1

]

︸︷︷︸
B

Fext︸︷︷︸
mg

(4.38)

with output

y =
[
1 0

]
(
∂Hm
∂xt

∂Hm
∂pt

)
= ẋt (4.39)

and again (Fext.ẋt) is a power.

4.5.3 MSMA subsystem Bond Graph

The bond graph of the MSMA is made up of two ports. The electric port
represented by the "IC" �eld and the mechanical port represented by the
transformer "TF" as shown in Figure 4.18. The 2 ports represents the energy
conversion process between the electrical subsystem to the MSMA subsystem
and then from the MSMA subsystem to the mechanical subsystem.

The "IC" �eld is used because of the non-linear energy function. In fact it
is just a non-linear capacitor coupled to a non-linear inductor through a non-
linear transformer. These kinds of energy storage element are very common
where the energy stored depends on one or more generalised coordinate and
one or more generalised momentum. A common example is the solenoid [81,
chap. 3] or the previously explained magnetic levitation system where the
energy stored depends both on the �ux and the position.

In the MSMA, thus, both types of conservative elements exists (I and C),
since z is the volume fraction, a change in its value directly related to the
change in the elongation of the material. Hence from a bond graph point of
view, on the mechanical side, it is a transformer.
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MSMA

Electric IC 1

R : hysteresis

T F :
γl Mechanical

e3 = λ̇
f3 = i

e4 = f mag

f4 = ż

e5 = f tot f5 = ż

e6 = f mech

f6 = ż

e7 = σA

f6 = γ żl

Figure 4.18: The Bond Graph of the MSMA. The "IC" �eld and the trans-
former "TF" act as energy converting ports.

On the electrical side on the other hand, the two internal variables α and
θ were taken to be reversible variables. Figure 4.19 shows the elementary
representative volume. The e�ect of the magnetic �eldH0 is to make domains
parallel to it align in the same direction i.e α grows and θ aligns with the
plane of the magnetic �eld as shown in �gure 4.19. Once the magnetic �eld
is removed they return to their original position if the pre-stress is su�cient
i.e the energy which can be recovered depends greatly on the value of z. This
is due to the hysteretic nature of z.

θ
(1− z) M2a

c

(z) M1
c
a

α

θ

(1−α)

H0

twinning boundary
domain wall

Figure 4.19: Energy is stored in the MSMA by the rotation of magnetisation
vector θ and the change in size of α.

The hysteretic part (e5, f5) in �gure 4.18 has as input the e�ort e5 (de-
duced from location of causal stroke) which is the total thermodynamics
driving force related to the mechanical part and the electrical part. As the
dynamics of z is related to these 2 competing forces, it is this force that
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Figure 4.20: Complete Bond Graph without hysteresis details.

moves the z. The mechanical thermodynamics driving force is given by

fmech =
∂Hm
∂z

whereas the electrical thermodynamics driving force is given by

fmag =
∂He
∂z

where Hm and He are the Hamiltonians of the electric and mechanical sub-
system. From the bond graph, it is seen that this total thermodynamics
driving force, f tot is

f tot = −fmag − fmech (4.40)

and that ż is common to all the bonds in the MSMA subsytem. Hence the
R : hysteresis part takes in the e�ort e5 = f total and gives ż to the system
hence

ż = g(.) (4.41)

where g(.) is a possibly non-linear operator which characterises hysteresis.
The latter will be made explicit in the next section.

As of now, our bond graph for the actuator is as shown in �gure 4.20.
Taking the Hamiltonian to be

H(λ, xt, pt, z) = He(λ, z) +Hm(xt, pt, z)

= Wmag(λ, z) +Wk(pt) +Wp(xt, z) (4.42)

Its port-Hamiltonian formulation is




λ̇

ż

ẋt

ṗt




=




−r 0 0 0

0 g(.) 0 0

0 0 0 1

0 0 −1 −b







∂H
∂λ

∂H
∂z

∂H
∂xt

∂H
∂pt




+




1 0

0 0

0 0

0 1





 u = uext

mg = Fext


 (4.43)
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with output

y =


1 0 0 0

0 0 0 1







∂H
∂λ

∂H
∂z

∂H
∂xt

∂H
∂pt




=


 i
ẋt


 (4.44)

where g(.) represents hysteresis. We now proceed to understand and detail
the hysteresis part and propose a way to include it in a port-Hamiltonian
framework.

4.5.4 Hysteresis in MSMA

Hysteretic behaviour is very problematic from a control point of view. Usu-
ally hysteresis is modelled as an input/output map. This view is not con-
sistent with energy formulation as discussed in Goldfarb and Celanovic [22]
and Karnopp [33]. In this section, an energy consistent formulation is made
which can then be incorporated in the port-Hamiltonian framework.

Figure 4.21 shows a typical hysteretic curve of the MSMA. For increasing
values of f and decreasing values of f , the path taken by the system is not
the same. Hence it is a multi-valued function and the actual value of the
output depends on the whole history of the material. Also the energy loss
of the system in 1 cycle is given by

Qhyst =

∮
fdz (4.45)

Therefore in the process of hysteresis, a part of energy is dissipated and
a part of energy is conserved. The dissipative part is modelled using an
R-element whereas the conservative part is modelled using a C-element.

The values of f+
cr and f−cr shown in �gure 4.21, usually called critical

values, for the Magnetic Shape Memory alloy are those values below which
determine whether reorientation can take place. These values depend on the
current, i, and the load (stress) applied to the material. Once f+

cr is exceeded
while the material is taking the ascending path, reorientation starts to take
place and elongation occurs. The reverse occurs when the material is taking
the descending path. Once the value of the thermodynamic force becomes
lower than f−cr, the material starts to shorten.

From these considerations, the R-element (damper) should be non-linear
with a dead zone between f+

cr and f
−
cr. The constitutive equation for the C-

element need not necessarily be non-linear, it can be linear. The particular
choice depends on the complexity required [33]. For our purposes, we choose
a simple linear law. These two elements are connected in parallel to make
one hysteron-a basic unit of hysteresis- because they experience the same
force. Figure 4.22a shows the schematic of the elements whereas �gure 4.22b
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Figure 4.21: A typical hysteresis curve for MSMA.

shows the associated bond graph when the hysteresis is model with only one
hysteron.

k
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(a) Schematic of R-element in paral-
lel with C-element. z=z1 when only
one hysteron is used.
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ż1
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(b) Bond Graph of basic hysteretic R-C
element.

Figure 4.22: Basic Hysteretic elements.

From the bond graph, looking at the causality strokes, we �nd that the
e�ort, f tot is the input to the system whereas ż1 is the output. On the other
hand, the C-element, takes as input ż1 and gives the e�ort, f int whereas the
R-element takes in an e�ort, fdis and gives back ż1. The R-element therefore
sets the ż1 of the element. The continuity equation gives

f tot = f int1 + fdis (4.46)

whereas all the element share the same ż.
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Taking the capacitive element as linear with a sti�ness coe�cient of kh1

we have the following constitutive equations

f int1 = kh1z1 , z1 is the input (4.47)

and for the R-element, we have

ż1 = g1(fdis1 ) (4.48)

where g1(.) is the relationship between ż and fdis similar to an electrical
resistance where v = Rq̇ for the linear case or v = f(q̇) for the non-linear
case. A very simple constitutive equation for the damper is given in �gure
4.23. It shows that ż does not start to change until the threshold critical

ż

f dis

f+crf−cr

Not allowed by
2nd law of thermodynamics

Not allowed by
2nd law of thermodynamics

Figure 4.23: Constitutive Equation for Damper (R-element).

values are reached. Also, according to the second law of thermodynamics,
Q̇hyst ≥ 0 which forbids the constitutive equation for the R-element to be in
the 2nd and 4th quadrant. The losses according to �gure 4.21 can be more
explicitly written as

Qhyst =

∮
f tot dz =

∮
f int1 dz

︸ ︷︷ ︸
=0 (conservative)

+

∮
fdis1 dz

︸ ︷︷ ︸
6=0 (dissipative)

(4.49)

Also, the slope of the line should be adjusted according to experimental
data. Being a constitutive relationship it is therefore rate-independent. Such
a formulation of hysteresis allows us to include it into the port-Hamiltonian
formulation. To calculate, ż1, we make use of the bond graph to obtain

ż1 = g1(fdis)

= g1(f tot − f int(z))
= g1(f tot − kh1z1)
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(b) Rough Simulation of one hysteretic Element. These curves
were obtained by just varying the critical values.

Figure 4.24: Simulation of one hysteron to show it has the same shape
(approximate) as experimental curves.

Using these relationship, a very basic simulation was performed where a
sinusoidal input was applied to one hysteron (f tot is the sine wave as it is the
input to a hysteron). Figure 4.24 shows a comparison between the shape of
experimental value (�gure 4.24a) obtained with our the experimental setup
and one the simulation (�gure 4.24b).

Though very crude, this �gure 4.24 gives us some insight into the work-
ings of the actuator. It tells us that the values f+

cr and f+
cr changes with

applied load. Also, as seen with one hysteretic element the simulation result
are not very smooth. To palliate this problem, just like in the Preisach case,
more than one of basic hysterons units should be used depending on the
accuracy needed.

This is done by taking a number of hysterons and joining them in series
as in Figure 4.25a. Each hysteron should be subjected to the same force
hence the series connection.

Depending on this force, they will all switch according to their constitu-
tive equations. All those hysterons (characterised by di�erent critical values
(f+
cr and f−cr) and di�erent spring sti�ness (khn)) depending on their state

will contribute to a fraction of z. The bond graph in �gure 4.25b also has the
advantage that any number of hysterons can be added and the bond graph
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ż1

R1

f dis
1

ż1
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Figure 4.25: Bond Graph for multiple hysterons.

will still be causal. And �nally, the dynamic equation for each hysteron is

ż1 = g1(fdis1 ) = g1(f total − f int1 (z1))

ż2 = g2(fdis2 ) = g2(f total − f int2 (z2))

...

żn = gn(fdisn ) = gn(f total − f intn (zn))

As each hysteron contribute to the �nal value of z as follows

z = z1 + z2 + · · ·+ zn (4.50)

The Hamiltonian of the whole system becomes

H(λ, xt, pt, z1, z2, · · · , zn) =Wmag(λ, z1, z2, · · · , zn) +Wk(pt)

+Wp(xt, z1, z2, · · · , zn)

+Wh1(z1) +Wh2(z2) + · · ·+Whn(zn) (4.51)

where Whn = 1
2khnz

2 is similar to the energy stored in a linear spring. The
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port-Hamiltonian model can then be written as:




λ̇

ż1

ż2

...

żn

ẋt

ṗt




=




−r 0 0 0 0 0 0

0 g1(.) 0 0 0 0 0

0 0 g2(.) 0 0 0 0

0 0 0
. . . 0 0 0

0 0 0 0 gn(.) 0 0

0 0 0 0 0 0 1

0 0 0 0 0 −1 −f







∂H
∂λ

∂H
∂z1

∂H
∂z2
...

∂H
∂zn

∂H
∂xt

∂H
∂pt




+




1 0

0 0

0 0
...

...

0 0

0 0

0 1





 u

mg




(4.52)
with output

y =


1 0 0 · · · 0 0 0

0 0 0 · · · 0 0 1







∂H
∂λ

∂H
∂z1

∂H
∂z2
...

∂H
∂zn

∂H
∂xt

∂H
∂pt




(4.53)

4.6 Discussion

In this chapter, using energy methods we have obtained a coherent port
Hamiltonian model of our system. Bond graph methodology was presented
and used to model the system. The dynamics on the ż variable which was
missing from [18] and [8] is seen to come from the dissipative nature of
hysteresis.

This model also has all its causality respected, therefore use of Lagrange
multipliers or di�erential causality has not been necessary. It has also allowed
us to view the energy �ow throughout the MSMA actuator.

Though this bond graph has been done for an actuator, it can be readily
extended to a sensor just by reversing the direction of power of a few arrows.
The push-pull actuator can also be represented by using this bond graph and
its mirror image and connecting them together through the external mechan-
ical port. Causality should be reassigned while doing so. Furthermore, this
actuator is actually voltage controlled. It would be interesting to replace the
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voltage input with a current input in the actuator's bond graph and see the
di�erences and di�culties that arise.

It has also been shown in this chapter that hysteresis can be included
into the port Hamiltonian framework in an energetically coherent manner.
This has many advantages as regards to the understanding and control of
the material. Also, many possibilities open up such as how much energy can
be recuperated in one hysteresis loop as well as how much is dissipated. This
quanti�cation can be really important in applications like energy harvesting.

On a �nal note, the interaction energy K12z(1− z) present in Chapter 3
can now be explained. This term was added to account for the hysteresis of
the material. As seen in this chapter, hysteresis stores energy in a C-element.
Hence there exists a constitutive relationship between f and z of the type
f = kz where f is an e�ort and z is an integrated �ow.

Having our model, we now turn to some basic experimental results we
performed on a test bed and the subsequent control of the actuator.



Chapter 5

Basic Experimental Validation

and Control Perspectives

5.1 Introduction

This chapter is divided into 2 parts. In the �rst part, we detail the experi-
mental setup to see the general behaviour of the material and the associated
problems which might arise. In the second part, we show the �rst steps in
designing a port Hamiltonian control law for the material. Both parts rep-
resent the �rst steps towards implementation of a working control law in a
real time testbed.

5.2 Experimental Setup

An experimental testbed has been designed and built to investigate the be-
havior of the material, the MSMA actuator, to validate proposed model,
to identify model parameters and �nally to test possible control laws. The
experimental setup consists of two main parts; an electrical part and a me-
chanical part. The electrical part is used to generate the high magnetic �elds
needed whereas the mechanical part is used to apply stress to the material
as well to measure the deformation of the material.

Figure 5.1 shows a block diagram representing schematically the di�erent
parts of the data acquisition procedure. A PC connected to a dSPACE 1104
R&D Controller board which contains the necessary ADC and DAC chan-
nels is used for signal acquisition and processing. It has a real time interface
which can easily be connected to Simulink. Programs/block diagrams made
in Simulink can then be downloaded to the dSPACE processor using the
provided dSPACE software. The lowest sample time which can be achieved
with this processor is around 0.05 ms. As shown in Figure 5.1, a signal be-

97
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PC DSPACE AMPLI COIL

MSMAPosition Sensor

0-10V 0-8A

0-800 KAt/m

0-1.5 mm

0-10 V

Figure 5.1: Block diagram of the experimental test bench.

tween 0−10V 1 is sent from the controller to the power ampli�er. This signal
is ampli�ed so as to provide a magnetic �eld which varies between 0 and a
maximum value which causes the magnetization of the MSMA to saturate.
This forms the electrical part of the experimental setup. On application of
the magnetic �eld, the deformation, which depends on the stress applied to
the material, is measured using a laser sensor. To measure the position and
to apply a stress, a movable mechanical structure has been designed.

The main purpose of the electrical part is to be able to generate a variable
magnetic �eld. The maximum value of the magnetic �eld should be enough
so as to saturate the MSMA. This value is around 0.65T . An electromagnet is
therefore required to generate such a high magnetic �eld. The electromagnet
consists of a ferromagnetic core with an air gap where the MSMA is inserted.
The constraints that should be taken into consideration are the size of the
MSMA which is 3mm×5mm×20mm. The built electromagnet, has a value
of ln = 350mm and le = 5mm. Its cross-sectional area is 30mm × 47mm.
Figure 5.2 shows a schematic of the electromagnet with related dimensions
as well as the built electromagnet. Furthermore, the electromagnet requires
a very high power supply as the coil shown in the �gure has a resistance of
around 8Ω, and a current of around 8A is required to saturate the material.

As for the mechanical part, its main purpose is to apply a stress as well
as to help measure the position. To achieve such a purpose, a structure as
shown in Figure 5.3 is constructed.

It consists of an MSMA holder and a movable platform. The holder �xes
the MSMA in an upright position. The movable platform �xed on rollers
then applies a stress on the material by means of dead weights placed on
top of it. In the presence of a magnetic �eld, the MSMA deforms which in
turns moves the platform. A laser displacement sensor then measures the
displacement of the platform from which the deformation of the MSMA is
deduced.

1We have only used the positive values 0-10V but the device can be used in the -10 to
+10V range



5.2. EXPERIMENTAL SETUP 99

I

ln

le

(a) Core+Solenoid+Air gap (b) Electromagnet used for experi-
ments.

Figure 5.2: Electromagnet used to generate magnetic �eld.

(a) Structure used to
apply stress and mea-
sure displacement.

Mass

Rollers

MSMA

MSMA Holder

x

(b) Schematic of the structure.

Figure 5.3: Mechanical structure.

Figure 5.4 shows the assembled setup to make a very basic actuator.
Various tests have been performed using this setup. To investigate the hys-
teretic nature of the material, a sinusoidal input has been applied to the
electromagnet and the position was recorded. This was done for di�erent
values of stress and the results are shown in �gure 5.5.

As seen in �gure 5.5b, for a value of 0.54 MPa the actuator does not return
back to any position even when the magnetic �eld is zero. This is typical of a
dissipative material. Also for a few other values of stress, the material starts
from a zero deformation goes to a certain maximum deformation but does
not return back to the zero value. It oscillates about some other position.
As expected from the theory, the weight (load) applied to the MSMA greatly
in�uences its response.

Furthermore, the magnetic �eld produced in the air gap (where the ma-
terial is located) is dependent on the current not the voltage (a certain
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Figure 5.4: Assembled electric circuit and mechanical structure to make a
crude actuator.

dynamics exists between the voltage and the current since in addition to
resistance of the coil, inductance of the electromagnet core also in�uences
it.). The relationship between current and position was therefore measured
and �gure 5.6 shows the hysteresis of the material only. An important in-
formation which can be inferred from the �gure is that there is a certain
critical value which must be reached before any positive or negative defor-
mation takes place in addition to di�erent paths taken while ascending and
descending.

A �rst model of hysteresis using preisach was formulated and the algo-
rithm implemented as discussed in [73]. It is seen that the preisach model
can model hysteresis very precisely but unfortunately it is usually an input-
output model. Without some kind of modi�cations, it cannot be used in our
energetic framework. But on the other hand, it gives us some ideas about
how to proceed with our hysteretic model.

The preisach plane Tan and Iyer [73], Iyer and Tan [29] which is a de-
scription of all possible hysterons in a plane also has some nice properties.
Figure 5.9 shows the preisach plane and how it moves. All the hysterons
used to model a system makes up the preisach plane. They are characterised
by their switching values r and s. The preisach boundary which is the line
seperating hysterons which are on and those which are o�. This boundary
has been shown to be passive in Gorbet et al. [23]. Passivity is very impor-
tant for the control of port Hamiltonian systems as will be seen later. This
area should be further investigated.
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Figure 5.5: Response of actuator to di�erent stresses with an applied sinu-
soidal input.
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Figure 5.6: Hysteresis of actuator between current and position.
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Figure 5.7: Preisach Model with di�erent number of hysterons to model
experimental curve. N is the number of hysterons.
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5.3 Control Perspectives

In an engineering context, to control means to make a system behave in a
desired manner. In a more precise engineering de�nition it may be de�ned
"to stabilise a system in a desired equilibrium point or trajectory". For linear
systems, many techniques are available. They are described in [15, 14, 40]
whereas the control of non-linear systems [76] revolves around Lyapunov's
methods [35] and its variants. Lyapunov technique was originally used as
an analysis tool but over time became useful technique for feedback control
design.

Stability in the sense of Lyapunov is concerned with trajectories of a
system when the initial state is near an equilibrium point. Roughly speak-
ing, there are 3 types basic concepts: local stability, asymptotic stability
and global stability. Local stability corresponds to the system trajectories
staying continuously near the initial state. Asymptotic stability corresponds
to trajectories starting su�ciently close to an equilibrium point actually
converging to an equilibrium state as t → ∞. Global asymptotic stability
corresponds to every trajectory approaching a unique equilibrium point as
t→∞.

Lyapunov-based control is a quite di�cult task which involves the con-
struction of a suitable Lyapunov function. The philosophy behind �nding
such a function derives from a physical observation: if the total energy of a
mechanical (or electrical) system is continuously dissipated, then the system,
whether linear or nonlinear, must eventually settle down to an equilibrium
position [69]. Hence, stability may be concluded by examining the varia-
tion of a single scalar like function. This function is alike to the energy (or
storage [79]) function. The main di�erence between many nonlinear control
techniques is the way in which the Lyapunov method is constructed. This has
given rise to many di�erent nonlinear control schemes such as backstepping,
adaptive [69] or Sliding Mode Control [35].

Passivity-based Control [49] is based on the fact that nonlinear systems
are described by a storage function (which is a proper Lyapunov func-
tion). The goal then is to reshape the original energy function by means
of a controller to achieve the control requirements (stability and/or track-
ing). The IDA-PBC (Interconnection and Damping Assignment-Passivity-
based Control technique), uses the passivity properties of port Hamitonian
systems,[49, 72] to modify the energy function such that it has a minimum
at the desired equilibrium position.

5.3.1 Passivity Based Control

In the linear domain, most control problems have been solved using a signal
processing point of view as for linear time-invariant systems, signals can be
discriminated via �ltering. The frequency domain can thus be used to design
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control laws as exempli�ed by the robust control framework[67, 15]. However
for nonlinear systems, frequency mixing makes this approach impossible as
computations are far from obvious and very complex controls using very high
gains are needed to minimise a large number of undesirable signals.

Most of the problem lies in the fact that no information about the struc-
ture is used. A shift in control paradigm is needed and this can be sum-
marised in the catch phrase "control as energy exchanging entities". A de-
tailed presentation of this energy-based approach is given in [52], [53] and
[72].

Passivity can be de�ned as follows:

De�nition 5.3.1. The map u→ y is passive if there exists a state functon
H(x), bounded from below, and a nonnegative function d(t) > 0 such that

∫ t

0
uT (s)y(s)ds

︸ ︷︷ ︸
energy supplied to system

= H(x(t))−H(x(0))︸ ︷︷ ︸
energy stored

+ d(t)︸︷︷︸
dissipated energy

(5.1)

A very good example of a passive system is the mass spring damper.
Consider such a system shown in Figure 5.10. It has an external force F
applied to it which results in a displacement given by x. It also has a mass
m, a spring constant, k and a coe�cient of damping b.

b

k
m F

x

Figure 5.10: Example of a mechanical passive system.

If the velocity is taken as v = ẋ, we have
∫ t

0
F (s)v(s)ds =

∫ t

0
(mv̇ + kx(s) + bv(s))v(s)ds

=

(
1

2
mv2(s) +

1

2
kx2(s)

)∣∣∣∣
t

0

+ b

∫ t

0
v2(s)ds

=H(x(t))−H(x(0)) + b

∫ t

0
v2(s)ds

Since d(t) > 0 and there exists a function H(x), the system is passive. Then
if x∗ is a global minimum of H(x)), with no input u = F , the system will
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reach x∗ asymptotically. This rate can be increased by setting the input u
to

u = −Kdiy (5.2)

with KT
di = Kdi > 0.

This is the key idea behind passivity based control: use feedback.

u(t) = β(x(t)) (5.3)

where β(x) is a function of the states, so that the closed loop system is again
a passive system with respect to the map β → y . The closed loop energy
H(d), is then a global minimum at the desired point.

With (5.3), Ha the energy supplied to the system (minus) is

Ha = −
∫ t

0
βT (x(s))y(s) (5.4)

then the closed loop energy is given by

Hd(x(t)) = H(x(t))−
∫ t

0
βT (x(s))y(s) = H(x(t)) +Ha(x(t)) (5.5)

Most control strategies in the port Hamiltonian framework tries to change
the original energy function H to a desired one Hd that has a minimum at
the desired equilibrium. These techniques have been called IDA-PBC.

5.3.2 IDA-PBC Technique

The main idea behind the IDA-PBC technique [52] is to change the matrices
J and R as well as the energy function H to achieve control objectives. Usu-
ally given a port Hamiltonian system, one aims at a closed loop Hamiltonian
system such as

ẋ = (Jd(x)−Rd(x))
∂Hd
∂x

(5.6)

where Jd = −JTd is the desired structure matrix, Rd = RTd is the desired
dissipation matrix and Hd is the desired Hamiltonian.

Propositioin 5.3.1. Consider the system

ẋ = f(x) + g(x)u (5.7)

Assume there are matrices Jd = −JTd , Rd = RTd > 0 and a smooth function
Hd that verify the so-called matching equation

f(x) + g(x)u = (Jd(x)−Rd(x))
∂Hd
∂x

(5.8)

Then the closed-loop with control u = β(x),

β(x) = (gT (x)g(x))−1gT (x)((Jd(x)−Rd(x))
∂Hd
∂x
− f(x)) (5.9)

is asymtotically stable.
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Most of IDA-PBC relies on solving the matching equation (5.9) in one
form or the other. The freedom in choosing Jd ,Rd and Hd has given rise to
many variations of IDA-PBC (see [50, 52, 72]) for more details). Some are
given below.

• In Non-Parametrized IDA, the structure and damping matrices are
�xed, the matching equation is pre-multiplied by a left annihilator of
g(x) and the resulting PDE in Hd is solved.

• In Algebraic IDA, the desired Hamiltonian function Hd is �rst se-
lected and then the resulting algebraic equations are solved for Jd and
Rd.

• In Parametrized IDA, applicable mainly to underactuated mechan-
ical systems, the knowledge of a priori structure of the desired Hamil-
tonian is used to obtain a more easy to solve PDE.

• In Interlaced Algebraic-Parametrized IDA, the PDE is evaluated
in some subspace (where solution can be easily computed) and then
matrices Jd, Rd are found to ensure valid solution of the matching
equation.

One of the way to solve the matching equation which belong to the class
of non-parametrized IDA is to introduce new matrices Ja, Ra and an energy
function Ha. Then the matching equation to solve is:

[J(x) + Ja(x)−R(x)−Ra(x)]
∂Ha
∂x

= −[Ja −Ra]
∂H
∂x

+ g(x)β(x) (5.10)

where

Ja(x) = Jd(x)− J(x) Ra = Rd(x)−R(x) (5.11)

and

Ha(x) = Hd(x)−H(x) (5.12)

The closed loop representation of the port-Hamiltonian is then given by:

ẋ = [Jd −Rd]
∂Hd
∂x

(5.13)

where Jd = −JTd and Rd = RTd ≥ 0 are the new interconnection and damping
matrices. Hd is the new energy function.

We will apply this technique to both a magnetic levitation system and
the MSMA actuator. Also, for the MSMA we will try an algebraic IDA.
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Table 5.1: Identi�ed Values

k 0.7107 Hm
a 0.5 m

5.3.3 Magnetic Levitation Example

Magnetic levitation presents a very interesting problem from the Port-Hamiltonian
control point of view as the constitutive laws are not linear and there is an
electro-mechanical coupling which should be taken into consideration while
designing the control law. This model has been extensively studied and the
results are published in [52, 72, 52]. We take this example here due to the
similarity between the model and our MSMA actuator as seen from their
bond graphs. They both contain magnetic circuit, a variable inductance and
an energy �eld with 2 constitutive equations. We �rst work out the control
law for this system using IDA-PBC techniques to get the basics right. This
allows us to draw some parallel between the 2 systems.

Figure 5.11: Magnetic Levitation System

Figure 5.11 shows the system we studied in bond graph. The position
q is measured position from a datum line and λ is the �ux linkage. The
latter changes when q changes-λ = L(q)i. Usually for such systems, the
inductance, L, varies with distance q. When q = 0 corresponds to the
postion where the ball is fully in contact with the magnetic core. Then the
inductance constitutive law can be taken as follows:

L =
k

a+ q
(5.14)

The identi�ed values are given in table 5.1: And hence, the constitutive law
relating i and λ is:

λ = L(q)i (5.15)
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For simulation purposes , we use the following values: the resistance of the
coil is taken to be R = 5Ω, the number of turns N = 40, gravitational
acceleration is taken as g = 9.81ms−2 , the mass of the ball is m = 0.05kg,
constants k = 0.7107Hm and �nally a = 0.5m.

Port Hamiltonian Model.

Using the model derived earlier, the equations of motion for the system are:

λ̇ = −Ri+ u

q̇ = v

mv̇ = F +mg

Taking x1 = λ, x2 = q and x3 = mv = p, the Port Hamiltonian model can
be written as:

ẋ =







0 0 0
0 0 1
0 −1 0




︸ ︷︷ ︸
J

−



R 0 0
0 0 0
0 0 0




︸ ︷︷ ︸
R



∂H
∂x

+




1
0
0


u

y =
[
1 0 0

] ∂H
∂x

(5.16)

with H being the Hamiltonian of the system.

H(λ, q, p) =
x2

1.(a+ x2)

2k
−mgx2 +

x2
3

2m
(5.17)

As a �rst design, we take Ja = 0 and Ra = 0, we see that equation (5.10)
reduces to

[J −R]K(x) = Gβ(x)





−RK1(x) = β(x)

K2(x) = 0

K3(x) = 0

(5.18)

and, consequently, Ha depends only on x1 with resulting energy function

Hd =
x2

1.(a+ x2)

2k
−mgx2 +

x2
3

2m
+Ha(x1) (5.19)

and Hessian 
a+x2
k

+ d2

dx12Ha (x1 ) x1
k

0

x1
k

0 0

0 0 1
m

 (5.20)

Using software like Maple c©, it can be shown that the hessian has at
least one negative eigenvalue (not positive de�nite) for whatever value of
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Ha. Hence though an equilibrium point x∗2 can be assigned, its asymptotic
stability cannot be guaranteed.

The problem lies in the lack of coupling between mechanical and electrical
domain. Therefore, we choose a Ja such that

Ja =




0 0 −α
0 0 0
α 0 0


 (5.21)

which adds the required coupling and Ra = 0 . Eq (5.10) then reduces to

−RK1 − αK3 =
αx3

m
+ β(x) (5.22)

K3 = 0 (5.23)

αK1 −K2 = −αx1(a+ x2)

k
(5.24)

which after solving (5.24) gives the required Ha

Ha = − x3
1

6kα
− x2

1(a+ x2)

2k
+ Φ(

x1

α
+ x2) (5.25)

where Φ is an arbitrary function which can be used for equilibrium assign-
ment and to assure stability of the closed loop Hamiltonian.

If x̃ = x− x∗, α and b > 0 then a possible choice for Φ is:

Φ(
x1

α
+ x2) = mg

[(
x̃2 +

x̃1

α

)
+
b

2

(
x̃2 +

x̃1

α

)2
]

(5.26)

where b is used to control the rate of convergence.
Then using (5.22), the control law is given by

β(x) = −R∂Ha

∂x1
− αx3

m
(5.27)

=
R

α

[
x2

1

2k
−mg

]
+
Rx1(a+ x2)

k
− Rmgb

α

(
x̃2 +

x̃1

α

)
− αx3

m
(5.28)

=
R

α

[
x2

1

2k
−mg

]
+
Rx1(a+ x2)

k
−Kp

(
x̃2 +

x̃1

α

)
− αx3

m
(5.29)

The new energy function Hd then becomes

Hd = − x3
1

6kα
−mgx2 +

p2

2m
+mg

[(
x̃2 +

x̃1

α

)
+
b

2

(
x̃2 +

x̃1

α

)2
]

(5.30)

With Hessian 

−x1
kα + mgb

α2
mgb
α 0

mgb
α mgb 0
0 0 1

m


 (5.31)
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its eigenvalues are




1
m

1
2

2mgk−x1+
√

4m2g2k2+x12

k

−1
2
−2mgk+x1+

√
4m2g2k2+x12

k


 (5.32)

which are all positive for x1 < 0 and α = 1. In fact for positive value of x1∗
the eigenvalues are 


20

0.688
−0.8622


 (5.33)

and for a negative value of x∗1, they are




20
1.84
0.31


 (5.34)

b was taken as 1. Hence asymtotic stability can be assured for x1 < 0. Since
x∗1 =

√
2kmg, we take the negative value of it.

Taking a look at the open loop energy and the closed loop energy in
�gure 5.12, we see clearly that the shape of the hamiltonian has changed to
have a minimum at the desired position.

Figure 5.13 show the result obtained when applying the control law above.
It can be seen that the response is very oscillatory in nature.

Damping

Although our system is stable and we do reach the equilibrium point, the
oscillatory response is very unsatisfactory. In practice, such large overshoots
will make the ball either stick to the electromagnet or fall.

To remedy this situation, damping should be added. This is done by
changing the structure of matrix Ra which was previously taken to be 0.
The Ja matrix remains the same. We remove the damping from the electrical
part (x1) and adds it to the position (x2) Our new Ja−Ra matrix therefore
becomes:

Ja −Ra =



R 0 −α
0 −Rα 0
α 0 0


 (5.35)

and

Jd −Rd =




0 0 −α
0 −Rα 1
α −1 0


 (5.36)

Using (5.10), the new set of PDEs to solve then are:
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(a) 3D plot of Open loop energy func-
tion.

(b) 3D plot of Closedloop energy func-
tion.

Open Loop Energy Function
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(c) Contour plot of Open Loop Energy
Function

Closed Loop Energy Function, Desired Position=0.05
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(d) Contour plot Closed loop Energy
Function

Figure 5.12: Open Loop and Closed loop of Hd.Desired Position=0.05
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(b) Control Voltage u.

Figure 5.13: Postion Control and Control voltage when the designed control
law is applied.



112 CHAPTER 5. EXPERIMENTAL VALIDATION AND CONTROL

0 2 4 6 8 10 12 14 16 18 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time(s)

P
o

s
it
io

n
(m

)

PH Controller for Position Control

 

 

Kp=2.45e−02

Kp=2.45e−01

Kp=2.45e+00

Kp=9.81e+00

(a) Position Control of ball with damp-
ing.
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(b) Control Voltage u with damping.

Figure 5.14: Postion Control and Control voltage when damping is added to
the sytem.

−αK3 =
−Rx1(a+ x2)

k
+
αx3

m
+ β(x) (5.37)

−RαK2 +K3 = Rα(
λ2

2k
−mg) (5.38)

αK1 −K2 = −αx1(a+ x2)

k
(5.39)

Resolving 5.39, we get the following control law:

β(x) =
Rx1(a+ x2)

k︸ ︷︷ ︸
i

−Kp
(
x̃1

α
+ x̃2

)
− αx3

m
− (

α

m
+KpRα)x3 (5.40)

which we apply to our simulation.
Figures 5.14 and shows we have drastically reduced the oscillations for

gain values above 3. The control voltage maximum also is comparable to the
our previous results. Also, disturbance rejection is also much improved.

This controller has the added advantage that instead of measuring the
�ux, we can use the current, i, directly.

Discussion

The control law seem to be working correctly in simulation. It should be
noted that with an increase in value of Kp, we have smaller overshoot but
unfortunately oscillation increases. Also, our open loop dynamics is given
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by

λ̇ =
−Rλ(a+ q)

k

q̇ =
p

m

ṗ = mg − λ2

2k

The equilibrim points (ẋ = 0) for λd = x∗1 =
√

2mgk whatever the value
of desired position qd = x∗2. In our simulation if we take a positive value for
λd, we do obtain a stable system but then x2 is not equal to x2∗. Only with
a negative value of λd do we obtain the required result. This point should
be further investigated. Having most of the basics we can now embark on
the design of a control law for the MSMA actuator.

5.3.4 Control of MSMA Actuator

In this section, we detail a control strategy for the MSMA actuator using
the previous concepts. It is assumed that all the parameters are known
precisely. We will use the non-parametrized IDA-PBC technique and the
algebraic IDA-PBC to give some possible ways of designing the control law
of the MSMA Actuator. For simplicity, we will use a model consisting of
one hysteron only therefore z = z1. We will use a slightly di�erent model as
we will lump the force due to gravity mg with the potential energy of the
material such that our matrix u depends only on the input voltage.

Wp(xt, z) =
1

2
k(xt − γzl)2 +mgxt (5.41)

Starting from the Hamiltonian

H(λ, xt, pt, z) = He(λ, z) +Hm(xt, pt, z)

= Wmag(λ, z) +Wk(pt) +Wp(xt, z) +Wh(z) (5.42)

where

• Wmag is the magnetic energy stored in the actuator.

• Wk is the kinetic energy of the mass.

• Wp is the potential energy of the mass.

• Wh is the energy stored in the equivalent capacitor of the hysteron.
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The port Hamiltonian model with state variables x =
[
λ z xt pt

]
is

then given by



λ̇

ż

ẋt

ṗt




=




−r 0 0 0

0 g(.) 0 0

0 0 0 1

0 0 −1 −b







∂H
∂λ

∂H
∂z

∂H
∂xt

∂H
∂pt




+




1

0

0

0




(
u
)

y =
[
1 0 0 0

]




∂H
∂λ

∂H
∂z

∂H
∂xt

∂H
∂pt




=
[
i
]

(5.43)

At equilibrium, ẋ = 0 we have:

u =r
∂H
∂λ

(5.44)

g

(
∂Wmag

∂z
+
∂Wp

∂z
− ∂Wh

∂z

)
=0 (5.45)

∂H
∂pt

=0 (5.46)

−∂H
∂xt
− b∂H

∂pt
= −k(xt − γzl)−mg =0 =⇒ z =

1

γl

(
xt +

mg

k

)
(5.47)

From (5.47), we see that setting a desired x∗t , a desired z∗ is automatically
set. Then (5.45) tells us that the expression within bracket should lie between
the critical values for the hysteron:

f−cr ≤ −
1

2

λ2K1(χa − χt)
(K0 +K1(χaz∗ + χt(1− z∗)))2

+ k(x∗t − γz∗l) +mg − khz∗ ≤ f+
cr

(5.48)
which in terms of current i = ∂H

∂λ is equivalent to

− f−cr ≤ −
1

2
K1i

2(χa − χt) + k(x∗t − γz∗l) +mg − khz∗ ≤ f+
cr (5.49)

From (5.49), we see that we have some liberty in choosing i∗ or λ∗. We can
set it to '0' (we know the range must necessarily include zero as the critical
values lies only in the �rst and third quadrant) to make calculations easier
or choose it such that i is minimum and hence the power delivered to the
actuator is minimised.

Using IDA-PBC technique as above we will try a simple feedback of the
type u = β(x) and we set Ja = 0 and Ra = 0. Applying equation 5.10, we
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have 


−r 0 0 0

0 g(.) 0 0

0 0 0 1

0 0 −1 −b







K1

K2

K3

K4




=




1

0

0

0



β(x) (5.50)

which gives

−rK1(x) =β(x) (5.51)

g(.) =0; (5.52)

K3(x) =0 (5.53)

−K3(x)− bK4(x) =0 (5.54)

The system of equation above, wont yield a proper control as it depends only
on λ

K1(x) =
∂Ha

∂λ
(5.55)

To remedy this problem we choose

Ja =




0 α 0 0

−α 0 0 β

0 0 0 0

0 −β 0 0




Ra =




0 0 0 0

0 Rz − g(.) 0 0

0 0 0 0

0 0 0 0




(5.56)

We thus add a coupling between z and λ as well as between z and pt. To
remove hysteresis and add a viscous damping to z, we add the term Rz−g(.)
to the dissipation matrix. The equation to resolve then become




−r α 0 0

−α −Rz 0 β

0 0 0 1

0 −β −1 −b







∂Ha
∂λ = K1

∂Ha
∂z = K2

∂Ha
∂xt

= K3

∂Ha
∂pt

= K4




=




0 α 0 0

−α −Rz + g(.) 0 β

0 0 0 0

0 −β 0 0







∂H
∂λ

∂H
∂z

∂H
∂xt

∂H
∂pt




+




1

0

0

0



u(x) (5.57)
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−rK1 + αK2 =α
∂H
∂z

+ u(x) (5.58)

−αK1 −RzK2 + βK4 =− α∂H
∂λ
−Rz

∂H
∂z

+ g(.) + β
pt
m

(5.59)

−βK1 −K3 =βk(xt − γzl) (5.60)

The above set of PDEs should be resolved to get Ha and then calculate the
resulting Hd = H+Ha. It will be one of the future works in this thesis. We
now use an easier method, the algebraic IDA to �nd a control law.

Algebraic IDA

To apply the algebraic IDA-PBC technique, we �x a desired Hamitonian, Hd
as follows

Hd =
1

2C1
(λ− λ∗)2 +

1

2
C2(z − z∗)2 +

1

2
C3(xt − x∗t )2 +

p2
t

2m
(5.61)

This function being quadratic in the terms will have a minimum at the
equilibrium values. The Cns' determine the rate of convergence towards the
minimum of the desired function. The desired interconnection matrix Jd
couples z and pt as well as λ and z. We also wish to remove hysteresis and
replace it with a dissipation of viscous type which is done by changing the
Rd matrix. The matching equation then becomes taking into account that

∂Hd
∂λ

= i− i∗ (5.62)

we have



−r α 0 0

−α −Rz 0 β

0 0 0 1

0 −β −1 −b







(i− i∗)
C2(z − z∗)
C3(xt − x∗t )

pt
m




=




−r 0 0 0

0 g(.) 0 0

0 0 0 1

0 0 −1 −b







∂H
∂λ

∂H
∂z

∂H
∂xt

∂H
∂pt




+




1

0

0

0



u(x) (5.63)

−r(i− i∗) + αC2(z − z∗) =− ri+ u(x) (5.64)

−αC1(i− i∗)−RzC2(z − z∗) + β
pt
m

=g
(∂Wmag

∂z
+
∂Wp

∂z
− ∂Wh

∂z

)
(5.65)

−βC2(z − z∗)− C3(xt − x∗t )− b
pt
m

=− k(xt − γzl)− b
pt
m

(5.66)
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In (5.66), if we set C3 = k, we have β = − γl
C2
. Substituting for β in

(5.65) we have,

α = − 1

(i− i∗)

(
g(.) +Rzk(z − z∗) +

γl

C2

pt
m

)
(5.67)

And �nally substituting for α in (5.64) we get for the control voltage u(x):

u(x) = ri∗ − k(z − z∗)
(i− i∗)

(
g(.) +Rzk(z − z∗) +

γl

C2

pt
m

)
(5.68)

Eq (5.68) is the control action which modi�es our enegy function such that
it is as desired. The parameter Rz is the amount of damping or dissipation
on z we can remove it all together which will result in a pure conversion of
energy between the electrical part and the mechanical part just by setting
Rz = 0.

5.4 Discussion

In this chapter, we detailed our experimental setup and gave some basic ex-
perimental results. This setup was used to test the behaviour of the material.
During our experiment, we discovered that we could not �nd any di�erence
in the value of magnetic �eld whether the material is present or no. This is
unusual as the material modi�es the reluctance of the circuit. The problem
lies in the fact that we built an air gap with an area which is approximately
5 times more than the area of the MSMA. As the permeability of the MSMA
is between 2 and 65, the changes it caused to the magnetic �eld in the air
were not discernible. This parameter is essential for the identi�cation of λ
and therefore we could not measure the inductance of the MSMA when its
length changes. One possible solution would be to follow the model and built
a setup which has an air gap just 2−3% bigger than the area of the MSMA.

In the control section, we saw that the port-Hamiltonian framework pro-
vides a way to incorporate knowledge and structure into the design of the
controller. Depending on how we want our system to behave we can modify
the interconnection matrix and the dissipation matrix. The resulting control
laws are very tedious to calculate but the magnetic levitation has shown that
the performances are very good. So if proper design of the control law is done
for the MSMA, we can expect similar results. Furthermore, we have seen a
way to exploit hysteresis in our controller, it has a degree of freedom in the
dead zone, where a range of values exist for which the dynamics on z is 0.
This can be exploited to either use a control input which minimises energy
or make calculations easier. Another interesting feature which appeared in
our control is that it seems we need not invert hysteresis. This needs more
investigation. And �nally this �rst control law need to be implemented to
validate its value.





Chapter 6

Conclusion

General Conclusions

Magnetic Shape Memory Alloys (MSMA) promises to enhance and add to
the di�erent types of smart materials already available. In doing so, it can
only further increase the number of applications of the smart material fam-
ily. MSMA present some advantages that can be exploited in new areas,
including actuation, energy harvesting or sensor applications. For example
and contrary to other smart materials, which needs an energy source to bias
them, MSMA only require a pair of magnets (magnetic �eld-'free of cost')
and some wires to make a coil around it. Then by Faraday's law, every time
the material is compressed or extended by an external mechanical force, a
voltage is induced in the coil which can be recuperated.

The characteristics and properties of MSMA are nevertheless unusual
and only a good understanding of their physics seems adequate to use them
smartly. From our point of view, simple control laws and linear models miss
out completely on their main possibilities and potential applications.

The objective of this thesis was to confront the true characteristics of
Magnetic Shape Memory Alloys without skipping its non-linear and hys-
teretic behaviour. As this thesis has shown a deep understanding of its
physics is needed for both its modelling and control. Understanding the ma-
terial is not only needed to design the actuator but also to design control
laws which can work in an optimum fashion. Moreover, such control laws
must be compatible with the thermodynamics of irreversible processes to
take advantages of non-linearity and hysteresis phenomena.

Several goals were targeted during in this thesis. The �rst one was to
continue the work of previous thesis conducted at the FEMTO-ST Institute
by J. Y. Gauthier. The perspectives outlined in his thesis were investigated
in Chapter 2. Simulation problems encountered in his thesis were pinned
down to the non-minimal dynamical systems, causality problems and kine-
matics constraints which gave rise to DAE (Di�erential-Algebro equations)

119
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which resulted in algebraic loops. We proposed a reduction method to obtain
a minimal dynamical system and to remove the constraints from the state
variables. The promising work of Gauthier on "canonical" Hamiltonian mod-
elling was also cast into the "true" port-Hamiltonian framework, that allows
an easy interconnection between subsystems. Chapter 2 also revealed some
inconsistencies in the way the hysteresis phenomena and dissipation in the
materials were taken into account.

Chapter 3 was devoted to the in depth understanding of the MSMA using
thermodynamics. From a distributed parameters system the modelling of the
actuator was transformed into a lumped parameter system. Energetic con-
sideration were studied and "piece wise" non-linear constitutive behaviour
laws were proposed. The construction of the lumped parameter model was
motivated by its subsequent use for control. The use of thermodynamic in-
ternal variables, such as z proposed by Gauthier, were used all around the
chapter. Two important things to retain from this chapter are the deriva-
tion of the thermodynamics driving force f for lumped parameter and π for
distributed parameter as well as the derivation of the total strain. Also, the
total magnetic energy and mechanical energy taking into account saturation
and non-linearities of the material were derived. This paved the way for a
more consistent energetic representation than was available until now.

From previous chapters, it was seen that thermodynamics was not su�-
cient to derive the dynamics of the systems. Notably that thermodynamics
is a static theory. So Chapter 4 was then devoted to derive the dynamics.
As a system always consists of 2 parts, the structure which is how its ele-
ments are connected and the physics (constitutive relation), a bond graph
approach was adopted which combines both in one theory. It has provided
great insight into how and where each element go and how they must be
related to each other. In addition to providing a better understanding of the
material and the actuator, it has been a great help in understanding where
hysteresis goes and how to approach it from an energetic point of view. As
we were already using an internal variable z which has a power conjugated
e�ort variable, it was only natural that the hysteresis resides in what we
call the 'MSMA' domain. And it has come to light that the dynamics on
the z variable is greatly governed by the hysteresis. We then formulated it
as having both a conservative and a dissipative part modelled with simple
elements-a generalised capacitor and a non linear generalised resistor. We
thus were able to formulate it energetically. From there on, it was simple
to put it into the port-Hamiltonian framework as both bond graphs and
port Hamiltonian employ the energy/co-energy variables. The correspond-
ing results are of great interest to the port-Hamiltonian community as it is
a theory proposed mainly for conservative systems. Very few works in this
community has been done regarding complex type dissipation. Most of time



121

simple dissipative phenomena were treated like viscous quadratic dissipative
potential. Furthermore, the bond graph representation is not limited to the
actuator. With some modi�cations it can be used for sensor applications,
for the push-pull actuator as well as for energy harvesters.

The goal of Chapter 5 was to set the basics for control and experimental
validation. We showed some experimental results and have discussed some
limitations of the setup. Furthermore some preliminary work on the preisach
operator was done. As the preisach has been studied extensively, we intended
to learn from it so as to propose our own hysteresis model. Our model of
hysteresis is seen to have the same form as the hysteresis present in the
material. Unlike the preisach which with one hysteron can model only 2
values, our model with one hysteron is continuous. But to approximate
the real hysteresis, we also need a number of hysterons but we believe it
will be lower than for a preisach model. For control purposes, we studied
a magnetic levitation actuator which is very common in port Hamiltonian
literature. Its structure and dynamics is similar to our MSMA actuator and
thus we derived some important understandting to design our control law.
An algebraic IDA method has yielded a �rst controller which needs to be
tested. One interesting feature has appeared while designing the controller.
Hysteresis can be positively used as it provides a dead zone where we have
a choice of values for our control input.

Perspectives and Future Works

The main perspective of this work should be in re�ning the model to take
into account the temperature. Hysteresis dissipates heat and from the ex-
perimental data we see that we have a hysteresis curve with a large width.
This implies that much heat is produced. Its e�ects should be taken into
account through thermodynamics.

Secondly, more detailed investigation both qualitative and quantitative
of the hysteresis is needed. One direction could be the identi�cation of
the critical values of our hysterons and their spring constants. In classic
hysteresis, it is a static curve that is identi�ed or �tted. In our case, the
identifcation need to be perfomed on a dynamic curve. A preisach-like plane
and boundary should be developed to characterise a distribution of hysterons.

Thirdly, the port Hamiltonian seems to be the appropriate framework
to deal with hysteresis. Since hysteresis involve the creation of entropy, a
perspective would be to reformulate it into the irreversible port-Hamiltonian
framework [58] and use thermodynamic availability as a Lyapunov function.

Also, a better experimental testbed should be used and nowadays better
MSMA material are on the market. The one we used in our experiments
required a very high magnetic �eld of around 0.65 T which is not trivial
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for the electronics involved. The material on the market now have a satu-
ration value of 0.3 T which greatly reduces the complexity and cost of the
electronics.

Finally for the control part, various forms of IDA-PBC should be tried
with di�erent energy function to yield the best results. One thing to consider
is the path dependence. In hysteretic material, many paths exists to reach
the same point. One control strategy could be to take the path which require
minimum energy or which maximises output.



Appendix A

Linear Graph Theory in Brief

A.1 Linear Graphs

To characterize any system, the topology as well as the constitutive equations
are required. In this section we present the graph theory approach and we
show how the topology of the circuit can be derived. We will adopt an
electrical terminology such as branch current and branch voltage and later
we will generalise to other domains. Figure A.1 shows a two terminal lumped
element and its associated linear graph. Usually, we associate a reference
direction for the branch voltage and the branch current. We usually take
a current as positive when it enters a branch through the positive terminal
and leaves the branch through the negative.

Figure A.2 shows the linear graph of an RLC circuit. The graph consists
of nodes (circles) and branches (lines). Branches originate and terminate at
nodes. Branches also have a direction associated with them and hence this
type of graph is called an oriented graph or digraph (directed graph).

- i

v

+

(a)

branch
current

branch
voltage

Branch

node

(b)

Figure A.1: Two terminal lumped element and its associated linear graph.
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Figure A.2: Linear graph example.
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Figure A.3: The tree is on the left whereas the remaining branches added to
the tree are called links are on the right.

A.2 Trees and links

To derive the topology, we introduce the concept of trees and links. A
tree is de�ned as the path through all nodes without making a loop and
the links are the remaining branches. Consider the graph in A.3, it has
nt = 3 nodes and b = 4 branches. Then the tree consists of n = nt −
1 = 2 branches known as tree branches and l = b − nt = 2 links. In [26],
it is shown that the link currents �x all the current values in the circuit
whereas the tree voltages �x all the voltages in the circuit. Hence by either
tree voltages or branch currents can be used to completely characterize the
network behaviour. Loop-sets and cut-sets are the tools for doing so.

A.3 Loop Set and Cut Set

A loop set is the set of loops obtained by adding one link at a time to a tree.
These loops are called fundamental loops. They are the minimum number of
loops required to express the dependent voltages (link voltages) in terms of
independent voltages (tree branch voltage). To each fundamental loop, KVL
is applied to obtain the necessary relationships. While traversing the loop,
the direction of the link voltage is taken as positive. A closer look at the
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Figure A.4: A loop set(left) contains only 1 link whereas a cut set(right)
cuts only 1 tree branch.

loop-set of �gure A.4 also reveals that the branch currents can be expressed
as the link currents.

The loop sets then give the following equations if taking the only link
current of a loop as the positive direction.

u vC vR vL

A1 A2 A3 A4

L1 -1 1 1 0

L2 0 -1 0 1

which reduced to


−1 1 1 0

0 −1 0 1




︸ ︷︷ ︸
B




u

vC

vR

vL




=




0

0

0

0




(A.1)

For the tree branch current, it is clearly seen that

iC = iR − iL
iu = −iR

which can be written as



iu

iC

iR

iL




︸ ︷︷ ︸
j

=




−1 0

1 −1

1 0

0 1




︸ ︷︷ ︸
BT


iR
iL




︸ ︷︷ ︸
i

(A.2)
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Hence in a loop set, we have Bv = 0 and j = BT i where j is the currents in
the circuit and i are the loop currents (same as link currents).

A cut set is a set obtained by splitting a graph into 2 separate graphs
by removing one of the tree branches. These cut sets are called fundamental
cut set. They are the minimum amount of cut set needed to express the de-
pendent current (tree branch) currents in terms of the independent currents
(link currents). To each cutset, KCL is then applied to obtain:

iu iC iR iL

A1 A2 A3 A4

C1 1 0 1 0

C2 0 1 -1 1


1 0 1 0

0 1 −1 1




︸ ︷︷ ︸
Q




iu

iC

iR

iL




= 0 (A.3)

Looking now at each cut-set, we notice that each voltage can be express as
a linear combination of tree-branch voltages.




u

vC

vR

vL




︸ ︷︷ ︸
v

=




1 0

0 1

1 −1

0 1




︸ ︷︷ ︸
QT


 u
vC




︸ ︷︷ ︸
e

(A.4)

Loop sets and cut sets can be used alone to establish circuit topology. To
give the topology in terms of currents, loop set is used whereas cut sets are
used to give the topology in terms of voltages.

As long as there is an algebraic relationship between the branch voltage
and the branch current, any one of them is suitable. But for networks,
containing inductors or capacitors where this relationship is a di�erential
equation usually of type

vL = L
diL
dt

(A.5)

iC = C
dvC
dt

(A.6)

using loop set alone or cut set alone is not su�cient. This is due to the
causality of these elements which will be discussed shortly. Hence a mixture
of cut set and loop set should be used to model the circuit.
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A.4 State-Space formulation of Linear Graph Net-

work

A state space formulation requires that the model be in the form

ẋ = f(x, u, t) (A.7)

Hence for capacitors, the state variable would be vc and for inductors it
would be iL. To evaluate C

dvC
dt , we will need the state variables and possibly

the inputs. Therefore, a cut-set equation will give the necessary equation.
Similarly, to �nd LdiLdt , a loop equation is needed.

Referring to �gure A.2, the cut-set equation is:

C
dvC
dt

+ iL − iR = 0 (A.8)

C
dvC
dt

+ iL −
u− vC
R

= 0 (A.9)

dvC
dt

= − iL
C
− vC
RC

+
u

RC
(A.10)

(A.11)

the loop-set equation becomes

L
diL
dt
− vC = 0

L
diL
dt

= vC

diL
dt

=
vC
L

And the state space equation is obtained as:



dvC
dt

diL
dt


 =



− 1
RC − 1

C

1
L 0






vC

iL


+




1
RC

0


u (A.12)

In [39], a systematic procedure is given to �nd the state space equations
which is as follows:

1. Find a tree with all voltage sources and capacitors and possibly resis-
tors.

2. Put all inductances in the links or co-tree and remaining resistors.

3. Use tree branch capacitor voltages and link inductor currents as state
variables.
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4. Write a fundamental cut set equation for each capacitor and a funda-
mental loop equation for each inductor and express everything in terms
of the state variables and inputs.

The choice of state variables is not �xed to inductor currents and capac-
itor voltages. Inductor �uxes and capacitor charges are also an appropriate
choice for state variables. In fact, from an energetic point of view, these
variables are much more signi�cant. Using φ(t) = Li(t) and q(t) = Cv(t) for
�uxes and charges respectively, the cut-set equation becomes

q̇ = −φ
L

+
u

R
− q

CR
(A.13)

and the loop-set equation becomes

φ̇ =
q

C
(A.14)

then the state space representation is given as:


q̇

φ̇


 =



− 1
CR − 1

L

1
C 0






q

φ


+




1
R

0


u (A.15)

which, if we choose q
C and φ

L as state variables, can be rewritten as



q̇

φ̇


 =



− 1
R −1

1 0






q
C = vC

φ
L = iL


+




1
R

0


u (A.16)

which is in fact the port-Hamiltonian [52] representation of the system if we
take the output to be the dual of the input 1

R · u = I(t), that is to say if we
take the output as y(t) = u(t).

In brief we see that any network consisting of b branches has 2b unknowns
of which b are branch currents (through variable) and b branch voltages
(across variables). If s branches are active sources, we are left with 2b −
s unknowns. b equations are given by either cut set or loop set and the
remaining b− s equations can be obtained by the elemental � constitutive �
equations relating the across variable to the through variable.



Appendix B

Magnetism theory in Brief

This section establishes the basics we will need to model complicated mag-
netic systems. Starting from Maxwell equations ("�eld equations"), we de-
rive the necessary equations needed to model lumped parameter systems.

∇ ·D = ρ (B.1)

∇ ·B = 0 (B.2)

∇×E = −∂B
∂t

(B.3)

∇×H = J +
∂D

∂t
(B.4)

We use a quasistatic version of these laws, i.e we neglect the coupling
terms between electric and magnetic �eld (∂D∂t ≈ 0). Such an assumption
allows us to determine electric and magnetic characteristics independently.

B.1 Magnetic Work

To study the magnetic properties of matter one requires the expression for
the work done in magnetizing a material. We should exert some care in
de�ning precisely the system under consideration since one can easily obtain
di�erent expressions for work. We will consider a process in which an ini-
tially unmagnetized sample of a material is magnetized. Such a change can
be brought about by application of a magnetic �eld. The magnetic �eld can
come from various sources such as solenoids, permanent magnets or electro-
magnets. In all such cases, the sample is situated in an externally applied
�eld.

B.1.1 Magnetics in vacuum

Here we will consider the case where the material is magnetized by a solenoid
as shown in �gure B.1. The solenoid has N turns and a cross-sectional area
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V
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N turns
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Figure B.1: Solenoid with and without material

A. n = N
l is the number of turns per unit length if l is the length of the

solenoid. A current in an in�nite length1 solenoid produces a magnetic �eld,
H0, parallel to the axis of the solenoid given by

H0 = ni =
N

l
i (B.5)

If B is the magnetic induction parallel to the axis of the solenoid the
total magnetic �ux through the solenoid is

φ = BA (B.6)

and the magnetic �ux linkage through the solenoid is

λ = Nφ = NBA = (nl)BA (B.7)

A change in �ux induces an E.M.F by Faraday law in the electrical circuit
equal to

vind = −N dφ

dt
= −dλ

dt
= −(nl)A

dB

dt
(B.8)

Hence for the battery V to keep the same current in the circuit, work has to
be done against this induced E.M.F. Therefore the battery in a time interval
of dt does work an amount of work equal to

dWb = vindi dt (B.9)

Replacing i and vind of (B.9) by (B.8) and (B.5), we get

dWb = V H0.dB (B.10)

where V = Al is the volume of the solenoid.
1The hypothesis of in�nite length is done here just to simplify the computation of the

forth Maxwell equation (B.4) but it does not restrict the main ideas of this section.
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B.1.2 Magnetization in matter

Now we consider the case where the material is inside the solenoid. Without
the material the magnetic induction is B = µ0H0, whereas with the material,
it becomes B = µ0µrH0 which in terms of magnetization can be written as
B = µ0(M +H0) where M is the magnetic moment per unit volume of the
matter or more simply the magnetization of the matter. Replacing the latter
relation in (B.10) we get

dWb =V H0µ0dH0 + V H0µ0dM

dWb =d(V
1

2
µ0H

2
0 ) + V µ0H0dM

dWb =d
(∫ 1

2
µ0H

2
0dV

)
+

∫
(µ0H0dM)dV

Now the total magnetic moment is m =
∫
M dV and hence the above

equation becomes

dWb = d
(∫ 1

2
µ0H

2
0dV

)
+ µ0H0dm (B.11)

The �rst term on the right hand side of (B.11) is the magnetic energy
stored in the empty solenoid and the second term is the work done on the
matter specimen in changing its magnetization. Wb is therefore the sum of
work done to create the magnetic �eld and to magnetize the material. Total
work done to magnetize the material only, Wm can be written as

dWm = µ0H0dm (B.12)

B.2 Magnetic Circuits

Another very useful way by which magnetic quantities may be quanti�ed
is by postulating the existence of magnetic monopoles. Though �ctitious
and hypothetical in nature, they are very useful and gives access to all the
machinery of electric �elds. Although not physical, calculation considering a
pair of magnetic monopoles producing the same e�ect as a magnetic dipole,
and then gives similar results. Hence just as in electrostatics, we will assume
that the force derives from a scalar potential.

B.2.1 MMF, reluctance and scalar magnetic potential

When a current �ows in the coil, a magnetic �ux is produced around the
circuit. In order to carry a unit magnetic pole around the circuit against
the magnetic �eld, a certain amount of work is required. Analogue to elec-
tromotive force in electrostatics, this quantity is called the magnetomotive
force (mmf).
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If l is the mean path of the magnetic circuit and a current i �ows into
the circuit then the force acting inside the winding is the magnetic �eld

H =
Ni

l
(B.13)

The mmf is therefore the work done, such that

Work done=Force × distance (B.14)

mmf = Hl =
Ni

l
l = Ni (B.15)

Making use of the forth Maxwell equation (B.4) in integral form, it corre-
sponds to:

mmf =

∫

A
∇×H dS =

∮

∂A=Γ
H.dl =

∫

A
JdS = Ni (B.16)

An equivalent to resistance called reluctance,R, can also be de�ned.
The total magnetic �ux, φ, is given by

φ = BA = µrµ0HA = µHA

= µ
Ni

l
A

=
Ni
l
A · 1

µ

=
mmf

R

with R = l
µA the reluctance of the magnetic circuit. As compared to elec-

tric circuits, we can say that φ is equivalent to current and reluctance is
equivalent to resistance while emf and mmf are analogous. These concepts
are very useful to design circuits in the static case.

From (B.16), we see that the integration of H around a closed contour is
equal to the net current crossing the surface enclosed by the contour. From
this de�nition, we can de�ne a scalar magnetic potential just as we de�ne a
scalar electric potential.

∫ b

a
E dl = ϕe(a)− ϕe(b) = ve ab, electric potential di�erence (B.17)

∫ b

a
H dl = ϕm(a)− ϕm(b) = vmab, magnetic potential di�erence (B.18)
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Figure B.2: Magnetic Circuit.

B.2.2 Application to a simple magnetic circuit

Consider the simple magnetic circuit of the �gure B.2: a coil supplied by a
cuurent i is wounded around a core made of magnetic material. The current
generates magnetic �eld lines perpendicular to the core's cross-sectional area.
These lines close on themselves as shown in �gure B.2. The �ux linkage,
λ, and the current, i, form an external port which usually provides good
results for simple cases (to design transducers or motors, a more detailed
representation using magnetic circuits is nevertheless needed). The physical
e�ects inside the core are completely ignored when everything is related
to the electrical side, i.e to λ and i. Through measurement, the function
relating λ to i can be retrieved and used. On the other hand, to get insight
into the physics of magnetic circuit and the related energy issues, the concept
of magnetic circuit, magnetomotive force (mmf) and reluctance should be
used.

When a current �ows into the circuit, magnetic �ux is induced in the
coil. This magnetic �ux, φ, measured in Webers, is equivalent to volt-second.
This magnetic �eld (the gray lines in Figure B.2a) can be described by the
magnetic �ux vector density B with units of teslas. It represents the amount
of �ux (number of lines) crossing a unit area perpendicular to the lines. As
seen before, the magnetic �ux linkage , λ, is related to the magnetic �ux, φ,
by the following equation

λ = Nφ (B.19)

where N is the number of turns of the solenoid. Usually, as seen in �gure
B.2a, not all �eld lines pass through the core, there are some �ux which leaks
out of the coil.

The "driving force" which sets up φ in the core was de�ned as the mag-
netomotive force mmf = Ni and the reluctance of the magnetic circuit was
de�ned as R = l

µ0µrA
where l is the mean magnetic path, A is the cross-

sectional area of the core, µ0 is the permeability of air and µr the relative
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permeability of the core. Then the magnetic �ux, φ, is given by

φ =
mmf

reluctance
=
Ni

R (B.20)

For the magnetic circuit with leakage given in �gure B.2b, the total
reluctance, Rt, is given by

Rt =
RlRc
Rl +Rc

(B.21)

where Rl is the reluctance of the leakage �ux and Rc is the reluctance of
the core. Therefore the magnetic �ux in the circuit is given by φ = Ni

Rt and
φ = φl + φc.

In this regard, magnetic circuits can be considered to be analogous to
electric circuit and reluctance is similar to electrical resistance. Unfortu-
nately this analogy works well only in the static case (magnetostatics). A
major di�erence is that a magnetic �eld stores energy whereas an electri-
cal resistance dissipates energy. In this regard, reluctance is more like a
non-linear capacitor which stores energy.

A more correct representation used in the Bond Graph analogy is to treat
the magnetomotive force as an e�ort variable and instead of the magnetic
�ux, φ, it is φ̇ which becomes the �ow variable. As there is a relationship
between the integrated �ow(φ) and the e�ort (mmf), magnetic circuit can
be represented as a bond graph "C" element, i.e a generalized capacitance.

Moreover, it should be noted that two main kind of losses occur in the
core. Firstly there are eddy current losses which are current induced in the
core. Being conducting, these current experiences a resistance and hence
heat dissipation occurs. Secondly the e�ects of hysteresis invariably leads to
a loss in energy.



Appendix C

Thermodynamic theory in brief

Thermodynamics can be described as the science, more importantly, as an
engineering tool used to describe processes that involve changes in tempera-
ture, transformation of energy, and the relationships between heat and work
[9, 6, 59]. It is a phenomenological theory based on two laws usually called
the The First Law of Thermodynamics and The Second Law of Thermody-
namics. Whereas the former is a statement of the conservation of energy, the
latter gives the direction of a process. In this sense, it is more an evolution
law. This will be made clear in the following sections.

C.1 The First law of Thermodynamics

The �rst law of thermodynamics states that there is a state function which
is extensive and conservative called internal energy and usually denoted by
U which can only be changed by work or heat. Mathematically it is written
as:

dU = d̄W + d̄Q (C.1)

where d̄W is the amount of work done by or on the system and d̄Q is the
amount of heat added or removed from the system.

To understand (C.1), three quantities need to be explained: namely ex-
tensive (intensive), conservative and state function.

In thermodynamics, we deal with two main types of variables intensive
and extensive. Intensive variables are those variables which do not depend on
size such as temperature and pressure. On the other hand, variables which
depend on size such as mass and volume are called extensive quantities.
We will exclusively talk of intensive and extensive quantities as duals in an
energy formulation. That is in an elastic deformation, the force f , is the
intensive quantity whereas the displacement l is extensive and their product
fdl is the in�nitesimal amount of work done. Similarly the work done by a
battery is vdq, the intensive variable being the voltage v and the extensive
being the charge q.
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Conservative systems are those systems whose energy stays constant over
time when left by themselves. A pendulum oscillating without damping will
continue to do so inde�nitely unless acted upon by an external force.

And �nally, a state function is a function whose values depend only on
the end-points, i.e initial and �nal values but not on the path taken. Suppose
we have the internal energy of system which is a function of entropy, S, and
generalized displacements, q, terms to be de�ned later. The internal energy
can then be completely de�ned knowing the entropy and the generalized
coordinates. If then the internal energy is changed by adding some heat
and performing some work on the system, the new internal energy is only
characterized by the values of entropy and generalized coordinates at the
new point. It does not matter how much heat or how much work has been
done provided their sum is the same. Hence this is called a state function
and its value depend only on end points. Hence, in equation (C.1) dU is a
state function whereas d̄W and d̄Q are not. Their value depend on the path
taken. In mathematics, dU is called an exact di�erential whereas the other
d̄W and d̄Q are called inexact di�erentials.

Most of the di�culty in thermodynamics lies in making the inexact dif-
ferentials exact.

C.2 The Second law of Thermodynamics

The second law of thermodynamics stipulates that there exists a state func-
tion, S, which is extensive and non-conservative called entropy such that, in
any reversible change,

dS =
d̄Q

T
(C.2)

Futhermore, if the change is irreversible, then

dS >
d̄Q

T
(C.3)

By reversible, we mean that the process after undergoing a change, is
able to return back to its original con�guration after the external agent
causing the change is removed. An example would be the elastic deformation
of a spring. A spring can be extended by application of a force and on
removing the force, the spring returns to its original position. Conversely,
in an irreversible process, after removal of the external agent, the process
does not return to its original con�guration. A compensating agent, which is
reverse of the original force should be used to return it to its original position
[6].

Furthermore, entropy can be broken down into two parts which are Se
and Si. We will call Se, exchange entropy and Si, irreversible entropy created
inside the system under consideration.

dS = d̄Se + d̄Si (C.4)



C.3. ENERGY AND WORK. 137

dU= ∂U
∂S dS+ ∂U

∂q dq

= T dS+ f intdq

d̄Qe = Td̄Se

d̄W = f extd̄q

System : U(S,q)

Environment

Figure C.1: Laws of Thermodynamics

Se, being the exchange entropy, is related to the exchange of heat with the
environment.

d̄Qe = T.d̄Se (C.5)

whereas Si is used to quantify the 'irreversibility' of the process and is
always positive.

d̄Si > 0 (C.6)

C.3 Energy and Work.

The total energy of a system can be considered to be the sum of kinetic
energy, potential energy (due to gravitational �eld) and internal energy.
Whereas internal energy of a system concerns itself with what is happening
inside the system, kinetic energy and potential energy on the hand consid-
ers the system as a bulk and its motion. Thus, magnetic energy, electrical
energy, heat energy etc. are considered part of internal energy while the po-
sition and motion of the system as a bulk dictates its potential and kinetic
energy respectively. Hence using ET for total energy and EK , EP and U for
kinetic, potential and internal energy respectively we have

ET = EK + EP + U (C.7)

Energy in whatever form can be thought of as the sum of in�nitesimal
work. The common terminology used for work are generalized forces and
generalized displacements. The latter are the extensive variable whereas the
former are intensive variables. In an elastic system, work can be de�ned as

W =

∫ q2

q1

fdq (C.8)

where f is the applied force and dq is the displacement. In electric system,
it takes the form of dW = vdq whereas in magnetic systems it is dW = idλ.
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Figure C.1 shows how the internal energy of system changes. Qe is the
heat added from outside. fext is the generalized external force. It is not
necessarily equal to f int except in equilibrium. Also as shown in the �gure,
dU , is an exact total di�erential.

C.4 Maximum Work

Suppose that a system is at rest and we can neglect the potential and kinetic
energies, then the internal energy dU can be written as

dU = d̄Qe︸︷︷︸
T d̄Se

+d̄W = TdS − T d̄Si + d̄W (C.9)

Now at constant entropy, we have dS = 0, then the equation above reduces
to

dU + T d̄Si = d̄W (C.10)

Now since T d̄Si > 0, we get
dU ≤ d̄W (C.11)

This equation shows that the maximum work is only obtained in a reversible
process otherwise it is not. If a system is described by (generalized) coordi-
nates qr and if the (generalized) force of external origin that tend to increase
qr is Pr, the rate of work done of these forces is Pr q̇r. The work by them in
a small displacement dqr is Prdqr.

U is the internal energy. The second law states that there is another
function S, the entropy, such that, in any change, by suitable de�nition of
the temperature (Kelvin) T ,

d̄Q ≤ TdS (C.12)

the equality holds in the ideal limiting case of reversible process; the inequal-
ity holds in all other cases. On eliminating d̄Q, we get

dU ≤ Prdqr + TdS (C.13)

Note how the inexact di�erential have been converted to state function. A
state function is one whose values do not depend on path. We can never say
that a body contains a quantity of heat or a quantity of work as they are
interchangeable but we can always say the amount of internal energy (to a
constant) or the amount of entropy.

C.5 Equilibrium and Stability

In an equilibrium reversible process, at each stage we have

dU = Prdqr + TdS (C.14)
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U therefore is not a function of qr alone, as in mechanics, but of S also and
perhaps of other parameters which remain constant during the changes being
considered. Knowing U as a function of qr and S we can �nd the generalised
forces Pr and the temperature by using the following relations

Pr =
∂U

∂qr
, T =

∂U

∂S
(C.15)

In particular, we seldom have such knowledge, we are most likely to know
the temperature rather than the entropy. Then we make use of the Legendre
transform, and write

F = U − TS (C.16)

then in any reversible change we have

dF = dU − TdS − SdT = Prdqr − SdT (C.17)

F is usually called the Helmholtz free energy. Then if we know F as a
function of qr and T , we can �nd Pr and S by using the following

Pr =
∂F

∂qr
, S = −∂F

∂T
(C.18)

Often also, we wish to use the Pr rather than the qr as independent variables.
For this case we let

G = F − Prqr (C.19)

then in any reversible change we have

dG = dF − Prdqr − qrdPr = −qrdPr − SdT (C.20)

and then again knowing G, the Gibbs free energy, as a function of Pr and
T , we can �nd qr and S as above.

Sometimes we also wish to use a combination of Pr and qr as independent
variables, we extend the sum only over those r's for which the independent
variable is Pr; thus for independent variables T , q1 and P2 the appropriate
function is F − P2q2, and its di�erential is P1dq1 − q2dP2 + TdS. Similarly,
if the independent variables are S, q1 and P2, we use the function U −P2q2.
By such Legendre transformation, we can get the proper thermodynamic
potential for any choice of independent variables; all the dependent variables
can be found by di�erentiation of this one function.

Equa tion (C.1) helps us to derive relations between independent and
dependent variables for a system in equilibrium but it does not say anything
about stability of the equilibrium. To derive conditions for stability, we
return to equation (C.13) which holds for most system i.e irreversible system

dU < Prdqr + TdS (C.21)



140 APPENDIX C. THERMODYNAMIC THEORY IN BRIEF

This equations tells us that if we hold the coordinates and the entropy con-
stant (dqr = 0 and dS = 0), the internal energy U can only decrease and if
we hold the energy and coordinates constant, the entropy can only increase.
The condition for stable equilibrium therefore is that the energy be as small
as possible the given coordinate and entropy, or that the entropy be already
as large as possible for the given coordinate and energy. It should be noted
in that in experiments only the second condition is possible by preventing
heat �ow and keeping the coordinates constant).

If instead we hold the coordinates constant as well as the temperature,
the conditions for equilibrium becomes

d(U−TS) < 0

dF < 0

Hence we see that F should be a minimum for stable equilibrium at given
coordinates and temperature. A similar reasoning for G also leads to a
minimum dG < 0 for stable equilibrium.

C.6 Irreversible thermodynamics

From the �rst law of thermodynamics, we see that work done and heat
both hold equal value in changing the internal energy. Hence mechanical
energy can be converted to heat energy and heat energy can be converted to
mechanical energy. But in practice one transformation is more feasible than
the other and this direction is given by the second law.

The subject of irreversible thermodynamics deals mainly with the rate of
production of entropy. And from such consideration, there is an inequality
called Clausius-Duhem inequality.
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Résumé :

Les matériaux actifs sont des matériaux qui réagissent quand on leur applique un champ
extérieur comme la température, la lumière, un champ magnétique ou un champ électrique. Ces
champs changent les propriétés du matériau comme la longueur, la susceptibilité magnétique ou
la permittivité électrique. Ces changements peuvent être utilisé pour faire du travail. Quelques
exemples sont les matériaux piézoélectriques, qui changent de longueur quand on applique un
champ électrique, les alliages à mémoire de forme qui changent leur longueur sous l’action de la
température. Un matériau plus recent qu’on appelle les alliages à mémoire de forme magnétique
se deforme sous l’action d’un champ magnétique. Dans cette thèse, on utilise ce matériau pour
confectionner un actionneur. Pour ce faire, on utilise la thermodynamique des procédés irréversibles
pour modéliser le matériau. La thermodynamique s’avère très versatile pour ce type de materiau
car il permet de quantifier l’échange et la transformation d’énergie dans le matériau. Aussi, étant
donné que le materiau se comporte d’une façon non-linéaire et hysteretique, le cadre énergetique
nous permets justement de prendre en compte ces non-linearités. Cette thèse utilise l’approche
énergétique notamment les Hamiltonien à ports pour modéliser un actionneur à base d’alliage à
memoire de forme. Cette méthode nous permets aussi de concevoir des lois de commande pour
contrôler le matériau.

Mots-clés : Modélisation, Hamitonien à ports, Thermodynamique, matériau actif

Abstract:

Active materials are a class of material which react to an external stimulus such as temperature,
photons, magnetic field or electric field. These stimuli cause some properties of the material to
change usually their length. Some examples are piezoelectric material which change their length
under the action of an electric field, Shape Memory alloys which alter their shape on application
of heat, and more recently Magnetic Shape Memory Alloys (MSMA) which undergo a deformation
on application of a magnetic field. Harnessing this property of MSMAs, we hereby present an
actuator using this novel material. We extensively make use of an energy framework, namely the
thermodynamics of irreversible processes to model the material. This framework has been proven
to be very versatile in modelling energy exchange and transformation as it occurs in the material
and also to incorporate hysteresis which arises naturally in such materials. Another advantage of this
method is its ability to give us constitutive laws based on simple assumptions. Furthermore, using
an energy framework allows us to apply some energy based control. Port Hamiltonian Control is one
such method and it is not limited only to linear models. This latter characteristic has proven very
useful since MSMAs are very non-linear in nature.

Keywords: Modeling, Hysteresis, Port-Hamiltonian, Thermodynamics, smart materials
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