F. Mézière, M. Muller, E. Bossy, and A. , Derode, « Étude de la propagation des ondes ultrasonores dans l'os trabéculaire à l'aide d'échantillons synthétiques : mises en oeuvre numérique et expérimentale, 2014.

F. Njeh, « The role of ultrasound in the assessment of osteoporosis : a review. », Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, pp.7-22, 1997.

B. Tavakoli and J. A. Evans, The effect of bone structure on ultrasonic attenuation and velocity, Ultrasonics, vol.30, issue.6, pp.389-95, 1992.
DOI : 10.1016/0041-624X(92)90095-4

. Ström, Osteoporosis: burden, health care provision and opportunities in the EU, Archives of Osteoporosis, vol.6, issue.1-2, pp.59-155, 2011.
DOI : 10.1007/s11657-011-0060-1

. Lakes, Slow compressional wave propagation in wet human and bovine cortical bone, Science, vol.220, issue.4596, pp.513-515, 1983.
DOI : 10.1126/science.6836296

. Forest, Biot's theory of acoustic propagation in porous media applied to aerogels and alcogels, Journal of Non-Crystalline Solids, vol.225, pp.287-292, 1998.
DOI : 10.1016/S0022-3093(98)00325-1

T. Hosokawa and . Otani, Acoustic anisotropy in bovine cancellous bone, Acoustic anisotropy in bovine cancellous bone, pp.2718-2740, 1998.
DOI : 10.1121/1.422790

. Pakula, Influence of the filling fluid on frequency-dependent velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz, The Journal of the Acoustical Society of America, vol.126, issue.6, pp.3301-3311, 2009.
DOI : 10.1121/1.3257233

T. Hosokawa and . Otani, Ultrasonic wave propagation in bovine cancellous bone, The Journal of the Acoustical Society of America, vol.101, issue.1, pp.558-62, 1997.
DOI : 10.1121/1.418118

A. Biot, Theory of Propagation of Elastic Waves in a Fluid???Saturated Porous Solid. I. Low???Frequency Range, The Journal of the Acoustical Society of America, vol.28, issue.2, pp.168-193, 1956.
DOI : 10.1121/1.1908239

URL : https://hal.archives-ouvertes.fr/hal-01368668

A. Biot, Theory of Propagation of Elastic Waves in a Fluid???Saturated Porous Solid. II. Higher Frequency Range, The Journal of the Acoustical Society of America, vol.28, issue.2, p.17, 1956.
DOI : 10.1121/1.1908241

URL : https://hal.archives-ouvertes.fr/hal-01368668

J. Plona, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Applied Physics Letters, vol.36, issue.4, pp.259-276, 1980.
DOI : 10.1063/1.91445

A. Biot, Theory of Elasticity and Consolidation for a Porous Anisotropic Solid, Journal of Applied Physics, vol.26, issue.2, 1955.
DOI : 10.1063/1.1721956

URL : https://hal.archives-ouvertes.fr/hal-01368659

M. Carcione, Wave fields in real media : wave propagation in anisotropic, anelastic and porous media, sous la dir, p.17

L. Johnson and T. J. Plona, Acoustic slow waves and the consolidation transition, Acoustic slow waves and the consolidation transition, pp.556-565, 1982.
DOI : 10.1121/1.388036

R. Hughes, Ultrasonic propagation in cancellous bone: a new stratified model, Ultrasound in Medicine & Biology, vol.25, issue.5, pp.811-821, 1999.
DOI : 10.1016/S0301-5629(99)00034-4

A. Biot and D. G. Willis, « The elastic coefficients of the theory of consolidation, Journal of Applied Mechanics, vol.24, pp.594-601, 1957.

. Gommes, Practical methods for measuring the tortuosity of porous materials from binary or gray-tone tomographic reconstructions, AIChE Journal, vol.34, issue.8, p.22, 2000.
DOI : 10.1002/aic.11812

Z. Matyka and . Koza, How to calculate tortuosity easily?
DOI : 10.1063/1.4711147

URL : http://arxiv.org/abs/1203.5646

L. Johnson, Tortuosity and Acoustic Slow Waves, Tortuosity and Acoustic Slow Waves, pp.1840-1844, 1982.
DOI : 10.1103/PhysRevLett.49.1840

L. Johnson, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics, vol.24, issue.-1, pp.379-402, 1987.
DOI : 10.1121/1.388036

«. Schoenberg, Wave propagation in alternating solid and fluid layers », Wave motion 6, pp.303-320, 1984.

L. Mckelvie and S. B. Palmer, « The interaction of ultrasound with cancellous bone. », Physics in medicine and biology 36, pp.1331-1371, 1991.

C. Cowin and L. Cardoso, « Fabric dependence of bone ultrasound. », Acta of bioengineering and biomechanics, Wroc?aw University of Technology, vol.12, pp.3-23, 2010.

E. A. Fellah, Application of the Biot model to ultrasound in bone: Direct problem, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.55, issue.7, pp.1508-1523, 2008.
DOI : 10.1109/TUFFC.2008.826

URL : https://hal.archives-ouvertes.fr/hal-00326025

. Sebaa, Application of the Biot model to ultrasound in bone: Inverse problem, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.55, issue.7, pp.1516-1539, 2008.
DOI : 10.1109/TUFFC.2008.827

URL : https://hal.archives-ouvertes.fr/hal-00326008

G. Laugier and . Haïat, Bone quantitative ultrasound, sous la dir, p.27, 2011.

M. Langton, The Measurement of Broadband Ultrasonic Attenuation in Cancellous Bone, Engineering in Medicine, vol.52, issue.2, p.27, 1984.
DOI : 10.1243/EMED_JOUR_1984_013_022_02

. Alves, Influence of marrow on ultrasonic velocity and attenuation in bovine trabecular bone », Calcified tissue international, pp.362-367, 1996.

A. Wear, Ultrasonic scattering from cancellous bone: A review, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.55, issue.7, pp.1432-1473, 2008.
DOI : 10.1109/TUFFC.2008.818

. Rytov, Principles of Statistical Radiophysics 4 : Wave Propagation Through Random Media, pp.29-43, 1989.

. Derode, Influence of correlations between scatterers on the attenuation of the coherent wave in a random medium, Physical Review E, vol.74, issue.3, pp.36606-36641, 2006.
DOI : 10.1103/PhysRevE.74.036606

. Derode, Dynamic coherent backscattering in a heterogeneous absorbing medium: Application to human trabecular bone characterization, Applied Physics Letters, vol.87, issue.11, pp.39-114, 2005.
DOI : 10.1063/1.2043240

G. Akkermans and . Montambaux, Mesoscopic Physics of Electrons and Photons, p.43, 2007.
DOI : 10.1017/CBO9780511618833

«. Foldy, The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers, Physical Review, vol.67, issue.3-4, pp.107-119, 1945.
DOI : 10.1103/PhysRev.67.107

. Cowan, Ultrasonic wave transport in a system of disordered resonant scatterers: Propagating resonant modes and hybridization gaps, Physical Review B, vol.84, issue.9, p.45, 2011.
DOI : 10.1103/PhysRevB.84.094305

T. Diperna and . Stanton, Sound scattering by cylinders of noncircular cross section: A conformal mapping approach, The Journal of the Acoustical Society of America, vol.96, issue.5, pp.3064-3079, 1994.
DOI : 10.1121/1.411243

. Lakhtakia, Iterative extended boundary condition method for scattering by objects of high aspect ratios, The Journal of the Acoustical Society of America, vol.76, issue.3, pp.906-912, 1984.
DOI : 10.1121/1.391316

«. Chardon, On the numerical stability of the least-squares method for the planar scattering by obstacles », arXiv (2014) (cf, pp.47-66

«. Faran and . Sound, Sound Scattering by Solid Cylinders and Spheres, The Journal of the Acoustical Society of America, vol.23, issue.4, pp.405-418, 1951.
DOI : 10.1121/1.1906780

-. Minonzio, « Décomposition de l'Opérateur de Retournement Temporel appliquée à l'imagerie et à la caractérisation ultrasonore », thèse de doct, p.48, 2006.

«. Burke and . Low, Low???Frequency Approximations for Scattering by Penetrable Elliptic Cylinders, The Journal of the Acoustical Society of America, vol.36, issue.11, pp.2059-2070, 1964.
DOI : 10.1121/1.1919323

V. Varadan, Scattering matrix for elastic waves. II. Application to elliptic cylinders, The Journal of the Acoustical Society of America, vol.63, issue.4, pp.1014-1024, 1978.
DOI : 10.1121/1.381832

M. Simon and R. P. Radlinski, Elastic wave scattering from elliptical shells, Elastic wave scattering from elliptical shells, pp.273-281, 1982.
DOI : 10.1121/1.387451

. Liu, Conformal mapping for the Helmholtz equation: Acoustic wave scattering by a two dimensional inclusion with irregular shape in an ideal fluid, The Journal of the Acoustical Society of America, vol.131, issue.2, pp.1055-65, 2012.
DOI : 10.1121/1.3675947

A. Martin, Two-dimensional acoustic scattering, conformal mapping, and the Rayleigh hypothesis, The Journal of the Acoustical Society of America, vol.132, issue.4, pp.2184-2192
DOI : 10.1121/1.4747004

«. Waterman and . New, New Formulation of Acoustic Scattering, The Journal of the Acoustical Society of America, vol.45, issue.6, pp.1417-1429, 1969.
DOI : 10.1121/1.1911619

A. K. Pillai, Sound scattering by rigid and elastic infinite elliptical cylinders in water, The Journal of the Acoustical Society of America, vol.72, issue.3, p.50, 1982.
DOI : 10.1121/1.388234

. Léon, Modal theory applied to the acoustic scattering by elastic cylinders of arbitrary cross section, The Journal of the Acoustical Society of America, vol.116, issue.2, 2004.
DOI : 10.1121/1.1771592

. Ancey, Acoustic scattering by elastic cylinders of elliptical cross-section and splitting up of resonances, Journal of Applied Physics, vol.115, issue.19, p.50, 2014.
DOI : 10.1063/1.4876678

URL : https://hal.archives-ouvertes.fr/hal-01150381

«. Waterman and . Symmetry, unitarity, and geometry in electromagnetic scattering », Physical review D 19, pp.101-104, 1971.

. Mézière, Simulations of ultrasound propagation in random arrangements of elliptic scatterers: Occurrence of two longitudinal waves, The Journal of the Acoustical Society of America, vol.133, issue.2, pp.643-652, 2013.
DOI : 10.1121/1.4774276

. Mézière, Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot???s and multiple scattering models, Ultrasonics, vol.54, issue.5, pp.1146-54
DOI : 10.1016/j.ultras.2013.09.013

. Hosokawa, Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot???s finite-difference time-domain methods, The Journal of the Acoustical Society of America, vol.118, issue.3, pp.1782-70, 2005.
DOI : 10.1121/1.2000767

H. Nicholson, Do quantitative ultrasound measurements reflect structure independently of density in human vertebral cancellous bone?, Bone, vol.23, issue.5, pp.425-456, 1998.
DOI : 10.1016/S8756-3282(98)00128-8

R. Hoshen and . Kopelman, Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm, Physical Review B, vol.14, issue.8, pp.3438-3445, 1976.
DOI : 10.1103/PhysRevB.14.3438

N. J. Rasolofosaon, Importance of interface hydraulic condition on the generation of second bulk compressional wave in porous media, Applied Physics Letters, vol.52, issue.10, p.84, 1988.
DOI : 10.1063/1.99282

L. Bas and «. , Diffusion multiple par des cibles élastiques immergées. Propagation d'ondes cohérentes et interactions résonantes. », thèse de doct, p.86, 2004.

. Chaffaï, In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2 and 2 MHz, The Journal of the Acoustical Society of America, vol.108, issue.3, pp.1281-1290, 2000.
DOI : 10.1121/1.1288934

A. Wear and . Ultrasonic, Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.48, issue.2, pp.602-608, 2001.
DOI : 10.1109/58.911743

A. Wear, Anisotropy of ultrasonic backscatter and attenuation from human calcaneus: Implications for relative roles of absorption and scattering in determining attenuation, The Journal of the Acoustical Society of America, vol.107, issue.6, pp.3474-3479, 2000.
DOI : 10.1121/1.429417

C. Anderson, Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone, The Journal of the Acoustical Society of America, vol.124, issue.3, pp.1781-1790, 2008.
DOI : 10.1121/1.2953309

E. Royer and . Dieulesaint, Ondes élastiques dans les solides, Tome 1 : Propagation libre et guidée, sous la dir, pp.92-127, 1996.

L. Roque, « Tortuosity and Elasticity Study of Distal Radius Trabecular Bone, p.94

«. Turner, Elastic wave propagation and scattering in heterogeneous, anisotropic media: Textured polycrystalline materials, The Journal of the Acoustical Society of America, vol.105, issue.2, pp.541-552, 1999.
DOI : 10.1121/1.426168

M. Langton, Development of a cancellous bone structural model by stereolithography for ultrasound characterisation of the calcaneus, Medical Engineering & Physics, vol.19, issue.7, pp.599-604, 1997.
DOI : 10.1016/S1350-4533(97)00027-1

. Attenborough, Measurements of tortuosity in stereolithographical bone replicas using audiofrequency pulses, The Journal of the Acoustical Society of America, vol.118, issue.5, pp.2779-97, 2005.
DOI : 10.1121/1.2062688

A. Wear, Mechanisms for attenuation in cancellous-bone-mimicking phantoms, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol.55, issue.11, pp.2418-2443, 2008.
DOI : 10.1109/TUFFC.949

R. G. Wydra and . Maev, « A novel composite material specifically developed for ultrasound bone phantoms : cortical, trabecular and skull. », Physics in medicine and biology 58, pp.303-319

I. Lee, Dependences of quantitative ultrasound parameters on frequency and porosity in water-saturated nickel foams, The Journal of the Acoustical Society of America, vol.135, issue.2, pp.61-67
DOI : 10.1121/1.4862878

. Hodgskinson, « The non-linear relationship between BUA and porosity in cancellous bone. », Physics in medicine and biology 41, pp.2411-2420, 1996.

R. Marutyan, Bayesian estimation of the underlying bone properties from mixed fast and slow mode ultrasonic signals, The Journal of the Acoustical Society of America, vol.121, issue.1, pp.8-118, 2007.
DOI : 10.1121/1.2401198

. Bossy, Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models, The Journal of the Acoustical Society of America, vol.115, issue.5, pp.2314-2324, 2004.
DOI : 10.1121/1.1689960

URL : https://hal.archives-ouvertes.fr/hal-00109676