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récurrente, � est-ce que tu as une date de soutenance ? �, bien qu’angoissante en
période de doutes, m’ont permis de ne jamais dévier de mon objectif final. Enfin,
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Abstract

We propose a model for describing the dynamics in polymer blends or polymer-solvent blends
close to the glass transition. In the case of polymer blends, we focus on situations where at
least one of the species corresponds to molecular weight below the entanglement threshold. Our
model incorporates the strong heterogeneous nature of the dynamics close to Tg on a scale of
dynamical heterogeneities of size ξ of order 3-5 nm. Dynamical heterogeneities are enhanced in
blends as compared to pure polymers. We assume that spatial distributions of relaxation times
are the consequence of concentration fluctuations. We apply this model to study interdiffusion
of both components close to and below Tg.
We have proposed a Gibbs free energy model (which is an extension of the Flory-Huggins model)
for compressible blends, which allows for calculating the driving forces. The spatial dynamics
follows then from an Onsager like description. The evolution of concentrations is calculated by
Langevin equations on the scale of dynamical heterogeneities. This model takes into account a
”facilitation mechanism” which describes the relaxation of slow dynamic heterogeneities when
surrounded by faster subunits as due to free volume diffusion or diffusion of different compo-
nents. This model is solved on a 2D lattice.
In case of polymer blends, we apply this model to study phase separation close to and below
Tg. During phase separation e.g. after cooling the system, we observe the formation of complex
morphologies where slow domains are in coexistence with faster ones. At early stages of the
process, the size of the domains grows regularly like the logarithm of time. At later stages,
domains evolution is observed to be much more irregular (on a logarithmic scale though) due
to the huge difference in dynamics of fast domains and slow ones: the fast fluid phase melts
partially the slow domains. We compare the phase separation dynamics to the reverse process,
when the temperature is increased again in the totally miscible range. This process is analo-
gous to the rejuvenating process described by Kovacs in pure polymers. In this situation, we
observe a temporal asymmetry between the aging and the rejuvenation dynamics: the slow
domains melt much faster than the elapsed time required to built them during the separation
process and total miscibility is recovered after a much shorter time. The melting of slow glassy
structures during the rejuvenation process is the consequence of interpenetration mechanisms
of the very mobile component and free volume diffusion inside them.
For studying solvent diffusion, we consider the case of polymer solvent systems in contact with
a reservoir of pure solvent. We consider situations where the activity of the solvent reservoir is
varied in order to describe either thin films drying, or swelling of a glassy polymer matrix by a
penetrating solvent. Our model allows for explaining case-II diffusion -i.e. solvent propagation
at constant velocity with a well defined front- in glassy polymers during swelling. It allows
e.g. for calculating the front velocity as a function of the plasticizing power of the solvent
and the dynamical state of the glassy matrix. The mechanism is the following: the solvent
penetrates first through fast path within the glassy matrix, and then melts the polymer under
the osmotic pressure it exerts. Regarding the process of film drying, we show that films up to
a few thousands of nanometer thick can be almost completely dried in an accessible experi-
mental time, even at temperatures well below the polymer glass transition temperature. This
is a consequence: 1- of the presence of the fast path through which the solvent evaporates 2-
the separation of time scales between solvent evaporation (fast path) and the subsequent film
contraction (controlled by the α-relaxation process). When drying a thicker film, we show that
a glassy crust appears on the free surface, as shown experimentally.

Keywords: glass transition, polymer blends, polymer-solvent systems, diffusion
heterogeneous dynamics





Résumé

Dans ce travail, nous proposons un modèle mesoscopique permettant de décrire la dy-
namique dans les mélanges de polymères et polymère-solvant proche de la température de
transition vitreuse (Tg). Ce modèle incorpore l’aspect hétérogène de la dynamique à l’échelle
d’une hétérogénéité dynamique (3-5 nm) ce qui permet de décrire la diffusion rapide de pe-
tites molécules dans l’état vitreux. De plus, nous proposons un modèle thermodynamique qui
rend compte de la compressibilité des mélanges binaires afin d’implémenter les forces physiques
nécessaires qui pilotent la dynamique dans ces mélanges. Enfin, le modèle dynamique prend en
compte le mécanisme de facilitation qui permet de décrire la relaxation d’hétérogénéités lentes
par la diffusion de volume libre et l’inter-diffusion des différentes composantes en leur sein.
Nous appliquons ce notre modèle dans le cas des mélanges de polymères, dont au moins une
des composantes est sous le seuil d’enchevêtrement, dans le but d’étudier les phénomènes de
séparation de phase proche et en dessous de Tg. Nous observons dans ce cas, après avoir
refroidi le système, l’apparition de morphologies vitreuses se formant lentement (processus
logarithmique) en coexistence avec des morphologies rapides. Nous montrons qu’il est ainsi
possible d’obtenir des matériaux polymériques composites très stables dans le temps, dont les
morphologies vitreuses peuvent atteindre la taille de quelques dizaines de nanomètres. Nous
avons également comparé la cinétique de séparation de phase proche de Tg avec la cinétique
de rajeunissement du matériau e.g. après avoir réchauffé le système. Nous observons -1- que
les morphologies vitreuses fondent plus rapidement que le temps nécessaire pour les former lors
du processus de séparation de phase et -2- que la fusion de ces morphologies est pilotée par le
mécanisme de facilitation. Dans le cas des systèmes de polymère-solvant, nous avons étudié les
mécanismes de séchage et gonflement lorsque que le système est sous la Tg du polymère pur
et en contact avec un réservoir de solvant. Nous montrons que le séchage –i.e. évaporation du
solvant après avoir baissé le potentiel chimique du réservoir est la conséquence -1- de la présence
de zones rapides au sein du matériau dans lesquelles le solvant diffuse et -2- d’une séparation
d’échelles de temps entre la diffusion du solvant et la relaxation mécanique du matériau. Nous
observons aussi qu’il est possible de sécher entièrement des films d’une épaisseur allant jusqu’à
quelques centaines de nanomètres dans le cas de séchages à atmosphère sèche. Pour des films
de taille micrométrique en revanche, on observe l’apparition d’une croûte vitreuse qui se forme
au niveau de la surface du matériau empêchant ainsi la fuite du solvant dans les régions plus
profondes. Notre modèle permet également d’expliquer la diffusion � cas II � -i.e. pénétration
du solvant sous la forme d’un front invariant se propageant à vitesse constante lors du gonfle-
ment d’une matrice de polymère-solvant vitreuse par pénétration de solvant. Enfin, il permet
de calculer la vitesse du front de diffusion � cas II � en fonction du pouvoir de plastification
du solvant ou de l’état dynamique de la matrice.

Mots-clé: transition vitreuse, mélanges de polymères, systèmes polymère-solvant
diffusion, dynamique hétérogène
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1.1 Résumé en français . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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homogènes (”Situation Standard”) . . . . . . . . . . . . . . . . . . . . . . . . . 95

Appendix 2.B Aging and rejuvenation in symmetrical polymer blends . . . . . . . . 99

Appendix 2.C Violation de la loi de Stockes-Einstein . . . . . . . . . . . . . . . . . . 101

Appendix 2.D Mélanges de polymères non symétriques: séparation de phase proche
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State of the art

Basics on polymers

In every day life, polymers are everywhere and play an important role. From chemical point

of view, they are macromolecules composed of identical repeated units called monomers (From

the greek, pollus=several and meros=parts). They are either present in nature: DNA, proteins,

cellulose or again elastomers, or they can be manufactured by human technologies, like carbon-

based polymers. From the material physics point of view, polymers are very interesting because

of their viscoelastic properties. The behaviour of such materials is correlated to dynamical

processes and structural properties occurring at the microscopic scale, and one of the most

active field in polymer physics nowadays, is to develop a multi-scale approach to make progress

in the understanding of macroscopic behaviour by microscopic considerations. Polymers are

complex systems which are characterized by a broad range of different time scales and associated

length scales due to their chain conformation. Intrinsically, their dynamics is slow and most of

polymeric materials undergo a glass transition at a given temperature called the glass transition

temperature (Tg). The glass transition is a phenomenon characterized by a sharp increase of

the viscosity and very long dominant α-relaxation times (macroscopic time scales). Above Tg

the polymer is in a molten state and below it is glassy, which is a solid-like state where there

is no apparent order at the microscopic level. The glass transition is still not fully understood

so far, and solving such a problem represents one of the most important challenge of modern

physics.

Diffusion

Diffusion process of particles in a material environment tend to make the composition of its

constituent homogeneous. The description of diffusion was first attempted by Brown and

Einstein. From a phenomenological point of view diffusion responds to the Fick’s laws. The

first of them stipulates that the flux (J) of matter through a unit area is controlled by the local

gradient of concentration (c) in the media and the diffusion kinetics is controlled by a diffusion

constant D. This law reads (in 1D):

J = −D ∂c

∂x
.

12
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In the Fick’s description of diffusion, the diffusion coefficient does not depend on local concen-

tration. Moreover, the time variation of the local concentration, following Fick description, is

given by:
∂c

∂t
= −∂J

∂x
= D

∂2c

∂x2

This is the second Fick’s law.

The Fick’s law are nowadays the most commonly used description for diffusive phenomena.

However, it appears that the diffusion is multi faceted and Fickian theory breaks down in many

situations. Indeed, the diffusion in a large number of material environment, depends on local

concentration of species, and in this case, diffusion is described by the following equation:

∂c

∂t
=

∂

∂x
D(c)

∂c

∂x

where the diffusion constant is, a priori, a non trivial function of local concentration, and is

also a function of system’s history. It is for instance the case in the context of small penetrant

molecules (sorption) within a hard polymeric matrix (glassy). Theoretical studies performed

by Crank in the 50’s [1] were among the first to describe the dependance of species’ diffusion in

term of local concentration. This approach describes non linear effects in the diffusion process

by taking formally into account molecular rearrangements due to the diffusion of penetrant

molecules within the material. In these systems, a common experimental technics consists

in measuring the mass intake (M) of penetrant molecules within the media. In its general

formulation, the time variation of the mass intake can be expressed as follows:

M ∼ tn

When n = 1/2, small molecules sorption mechanisms follows a pure Fickian diffusion process,

but it is rarely observed. However, in many other cases [2], observed regimes correspond to:

-0 < n < 1/2 and 1/2 < n < 1: Anomalous diffusion (Non Fickian)

-n = 1: case II diffusion (non Fickian)

Case II diffusion is a particular diffusive phenomenon which has been extensively [3, 4, 5, 6]

studied experimentally. Notably, Kramer et al. [7, 8, 9, 10, 11] performed experiments in order

to study solvent penetration front in glassy polymer films by using Rutherford Backscattering

technics. The latter can give dynamical information as well as time evolution of concentration

profiles as a function of film depth. Case II diffusion is characterised by the presence of an in-

variant solvent front moving at constant velocity which separates the system between a highly

swollen region from a hard glassy dried one (See Figure 0.0.1). In addition, a strong gradient

of solvent concentration is observed between both regions. This corresponds to a Fickian front

precursor which propagates in the dried region ahead of the case II front. Thomas and Windle

made a major advance in the understanding of the case II diffusion of solvent in a polymeric
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Figure 0.0.1: Iodohexane (solvent) penetration in glassy PolyStyrene(PS) at T= 295,5K from
reference [11]. The system is far the pure PS glass transition temperature which is equal to
368K. An invariant case II diffusion frontmoving at constant velocity is observed. It is preceded
by an exponential like Fickian front. The front takes place at time tind = 4× 105s to establish.
Time tind corresponds to the induction time.

matrix [12, 13]. They introduced the osmotic effect induced by solvent molecules on contracted

glassy polymer chains at the origin of the polymer deformation during the swelling process. The

Thomas and Windle model also predicts the existence of an induction times as observed exper-

imentally by Kramer et al.. Following the authors, case II diffusion results from the coupling

between an osmotic pressure driven viscous response of the polymer (polymer chain relaxation)

and a Fickian diffusion process. Nevertheless the major limitation of this model lies in the fact

that it considers the induction times and the front velocity as adjustable parameters and are

inputs of the model to fit experimental data. Moreover, this model is unable to predict effect

of system’s history on case II diffusion , which has been observed experimentally. Experiments

dealing with the revers process (drying of polymer-solvent systems) [14, 15, 16, 17] show that

it is possible to dry completely a thin polymer films ( a few hundred of nanometers thick), even

at temperatures much below the pure polymer glass transition temperature. It is observed that

the film ages during drying, and that the aging process depends on the way the film was dried.

This supports the idea that solvent diffusion depends strongly on the history of the system like

for case II diffusion. Molecular dynamics have also been performed [18] regarding freestanding

and supported thin films drying above Tg and close to Tg. Above Tg, the solvent is found

to evaporate from the film with a constant diffusion coefficient. Close to Tg, in contrast, the

diffusion of solvent ”far” from the interface is found to drop due to the dynamics slowing down

induced by the decreasing solvent concentration. Moreover, according to the authors, solvent

evaporation rate is very important at early stages, and the system contracts a little. At later

stages, on the other hand, the film thickness decreases strongly converging slowly toward the

final dried state. This suggests that solvent evaporation and the mechanical response of the

system are both strongly connected to each other. Experiments on micrometric film drying
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was performed by Macosko et al. [19] using ”spin coating” technics . The authors observed

a glassy crust forming at the film/reservoir interface with a low solvent concentration while a

large quantity of solvent is trapped deeper in the film. Results presented here highlight the

existence of complex diffusive phenomenon of solvent molecules within a glassy matrix (either

in solvent penetration mechanisms or in drying conditions) which have been only partially un-

derstood so far, and for which Fickian description for diffusion breaks down.

In polymeric media, because of chains conformations, geometrical aspectsmust be taken into

account in diffusion and rheological process. There exist models dealing with polymer chains

dynamics at the microscopic level: the Rouse and the Reptation model [20, 21]. The Rouse

model describes the visco-elastic behavior of relatively small gaussian chains. It thus does not

take into account entanglement effect, unlike the reptation model which describes long chain

diffusion process. These models tell us that diffusion at the scale of a polymer chain is highly

affected by its molecular mass. In this work, we are mainly focused on relaxation dynamics

at the monomeric scale at which it exists a continuum spectrum of relaxation times [29]. The

Rouse/Reptation models however consider the dynamics of chains segments, and they assume

that the relaxation time at the scale of a monomer is unique. These models would then require

further development so they can take into account the spectrum of monomeric relaxation times,

which has not been done so far. In this work, effect of molecular mass on diffusion is reproduced

through a phenomenological adjustable parameter. Finally, spinodal decomposition in molten

polymer blends has been extensively studied. It is observed that domains size R grow like

R ∼ t1/3 [22, 23, 24, 26, 25]). This growth law is recovered from a semi quantitative point of

view by assuming that diffusion coefficient is constant and does not depend on concentration.

Heterogeneous dynamics in polymer liquids close to Tg

The WLF (William-Landel-Ferry) law is known to reproduce the time-temperature equivalence

in case of glass forming systems. This law reads:

log
(τα(T )

τ

)
= − C1(T − T0)

C2 + (T − T0)
(0.0.1)

where C1 and C2 are constants and T0 is a reference temperature. The time τα is called the

α-relaxation time, and is referred to a ”global” relaxation process related to the viscosity of

the system. This law is known to be correct for temperature close to the glass transition up

to 100K above Tg. Far above Tg , typical relaxation times are 10−9s and becomes much larger

as the temperature decreases close to Tg. At Tg, characteristic times is equal to 100s and the

viscosity is equal to 1012 Pa.s [27]. Many years ago, it has been evidenced experimentally that

the dynamics of a glass forming system is not governed by a unique relaxation time, but by a

whole spectrum of relaxation times at the monomeric scale [28, 29, 30, 31, 33, 32, 34, 35]. The

presence of a distribution of relaxation times has been evidenced experimentally by dielectric

measurements. Other studies using NMR or probe molecules translational diffusion gives a
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spatial aspect to the relaxation time distribution, and these experiments highlight the presence

of dynamic heterogeneities of a typical size of 3-5 nm. Probes experiments were performed from

temperature comprised between Tg + 100K down to Tg − 10K in a glass forming liquids. The

diameter of the probe molecules is smaller than 2 nm. The well known Stokes-Einstein relation

which relates the diffusion constant D of a diffusing object of size R, and the viscosity (η) of

the system at temperature T is:
Dη

T
=

kB
6πR

(0.0.2)

where kB is the Boltzmann constant. Down to Tg + 50K typically, the Stokes-Einstein relation

is verified by probes diffusion experiments. However, it was observed that this law is violated

for lower temperature and the amplitude of the violation is typically of 2 to 3 decades at Tg

in the context of pure polymeric super cooled liquids: the diffusion coefficient of probes D is

observed to be 100 times larger than that predicted by the Stockes Einstein DSE relation, i.e.

(log
(
D/DSE

)
∼ 2. The violation amplitude of the Stokes-Einstein relation is reduced when

the probe size increases. This is another proof of the spatial nature of heterogeneous dynamics.

Indeed, in the heterogeneous dynamic picture, there are fast dynamic heterogeneities of size 3-5

nm in coexistence with much slower ones. If the probe is smaller than a dynamic heterogeneity,

it would preferentially diffuse through faster dynamic heterogeneities and much faster than

the macroscopic time (α-relaxation time) obtained from the measured viscosity (see Figure

0.0.2). Thus, in this context, probes translational diffusion is not related to α-relaxation, but

is driven by faster relaxation times in the system. Nevertheless, if the probe is larger than a

dynamic heterogeneity, the latter interacts with slower regions and its diffusion is controlled

by α-relaxation times: the Stokes relation is recovered. From all this, in case of small diffusive

probes, the fact that quantity log
(
D/DSE

)
increases when approaching Tg, means that the

relative difference between α-relaxation times and fast relaxation times is large in these sys-

tems. Moreover, the Stokes-Einstein violation proves that the relaxation times spectrum widens

when approaching Tg (see Figure 0.0.2). Finally, even if the viscous response is driven by long

times close to the glass transition temperature, heterogeneous dynamics makes the system not

”frozen” and allows for diffusion. This is a very important feature of glass forming liquids. In

the context of binary mixtures such as polymer-solvent systems, it has been observed that the

stokes law is violated by up to 6 decades which means that relaxation times distributions are

much larger than in pure polymeric glass forming liquids. Indeed, it has been observed [14]

that solvent diffusion constant is equal to 10−15m2.s−1 [14] at Tg, which gives a fast relaxation

time responsible for diffusion are equal to 10−4s at the scale of a monomer, whereas at Tg the

α relaxation monomeric relaxation time is equal to τα = 100s. From a theoretical point of

view, the model developed by Long and Lequeux [36, 37] gives a phenomenological approach

to the glass transition phenomenon in polymeric liquids. This model assumes the existence of

a spatial distribution of relaxation times which widens when approaching Tg. This assumption

is justified by experimental results described above. The presence of dynamic heterogeneities

are explained by density fluctuations within the material and are controlled by the bulk mod-

ulus (Kbulk ∼ 109Pa) in case of pure polymeric liquids. In this idea, a dynamic heterogeneity,
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Figure 0.0.2: (Left) Probe (white square) diffusion in a heterogeneous media. Light gray sub-
units represent fast dynamics heterogeneity, while dark gray subunits represent slow ones. The
size of the probe is smaller than a dynamic heterogeneity and diffuse through path composed
of fast dynamic heterogeneities. (Right) Distribution of relaxation times in Polystyrene at
Tg + 20K, Tg and Tg − 10K. The lower the temperature, the larger the distribution and the
longer the relaxation times.

whose internal relaxation times is related to the average free volume accessible for monomers

to move, is slow when the dynamics heterogeneity is dense and fast when it is less dense. Hence

a relaxation time is associated to a density fluctuation by means of the WLF relation which

is assumed to be correct at the monomeric level. At the scale of the whole system, a density

fluctuation distribution gives rise to a spatial relaxation time distribution. In binary systems,

when a fast component is mixed with a slow one, relaxation times distribution are related to

composition fluctuations which are controlled by the osmotic modulus Kosm ∼ 107 Pa. As it is

much smaller than the bulk modulus, relaxation times distribution are larger in case of binary

system in a glassy state than in pure polymeric glass forming liquids.

• Facilitation mechanisms

Spatial distribution of dynamics heterogeneities allows for describing melting process of slow

subunits of size ξ (with internal relaxation time τslow) by the presence of fast surrounding ones

(with internal relaxation time τfast) [38]. This process is illustrated by diffusion mechanisms

of monomers at the interface between the slow subunit and fast surrounding ones, and the life

time of such density fluctuation is

τlife = N2/3τfast

where N = ξ3 × ρ0 is the dimensionless size of a dynamic heterogeneity in term of number of

monomers, and ρ0 the close packing density (See Figure 0.0.3). More recently, this mechanism

has been referred to as facilitation mechanism in the literature [39]. In binary systems, when

a slow dynamic heterogeneity, dense and highly composed of slow monomers, is surrounded

by fast ones composed of fast monomers, facilitation mechanism is the consequence of diffu-

sion of slow monomers out of the slow domains while in the same time fast monomers diffuse
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Figure 0.0.3: Representation of a spatial density fluctuation on a typical size ξ ∼ 3 − 5nm
(dynamic heterogeneity): The cell in the center is denser than surrounding ones: the relaxation
time of the central cell, noted τslow, is much longer than that of surrounding cells. Relaxation
time of surrounding cells is noted τfast. Monomers which belong to the dense cell diffuse
toward fast cells through their common interface. The life time , noted τlife, of such a density
fluctuation is τlife = N2/3τfast. N is the dimensionless volume of a cell: ξ3 = N/ρ0 with ρ0 the
close packing density. Hence a slow dynamic heterogeneity can melt in a time τlife, and this
internal melting process is driven by fast dynamic heterogeneities.

Figure 0.0.4: Representation of the facilitation mechanism in case of binary a systems. The
central (dark) slow dynamic heterogeneity, with a relaxation time τslow, is mainly composed
of slow monomers and is dense. Surrounding dynamic heterogeneities are less dense and are
mainly composed of fast component: they have fast relaxation times τfast. The relaxation of
the central slow subunit is the consequence of inter diffusion of slow and fast monomer from
its interface. The diffusion of fast monomers inside the slow domain is also accompanied by
the diffusion of free volume which accelerates the dynamics at the monomeric level. Finally,
like in case of pure simple liquids, the life time τlife of such composition fluctuation is given by
τlife = N2/3τfast.
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inside from the interface. The diffusion of fast monomers is also accompanied with a diffu-

sion of vacuum which tends to accelerate the dynamics at the monomeric level. See 0.0.4 for

an illustration of this. As in case of pure polymeric liquids, facilitation mechanisms are ki-

netically controlled by relaxation times of fast surrounding subunits, and the diffusion scaling

factor N2/3τfast is still relevant here. We will see that such mechanisms are fundamental for de-

scribing the melting of slow glassy structures during rejuvenation mechanism in polymer blends.

Figure 0.0.5: Schematic representation for the evolution of the internal monomeric relaxation
time (full line) and the time τlife (dotted-dashed line) as a function of the volume N at which
we consider density fluctuations. The intersection of these curves gives the scale of a dynamic
heterogeneity Nc.

For determining Nc, the procedure is the following. Let us note N the dimensionless vol-

ume of a dynamic heterogeneity. When N is small, the slow density fluctuation relaxes mainly

by exchanging monomers in the fast surrounding domains (short-live density fluctuation). On

the other hand, for large N, slow subunits relaxes mostly with the internal relaxation process

associated to monomeric jumps process (long-live density fluctuation).

As it shown in Figure 0.0.5, the competition between internal relaxation process and facilitation

mechanisms gives rise to the relevant size Nc for a dynamical heterogeneity (dimensionless). At

size Nc, τlife = N
2/3
c τfast corresponds to the longest density fluctuation relaxation time in the

system. This can also be seen as the competition between local free volume rearrangement so

that monomers can move at fixed density in a dynamic heterogeneity, and density fluctuation

relaxation by free volume exchange with nearest neighbors heterogeneities.

α-relaxation process in glass forming systems are associated to mechanical relaxation process of

the material, though its precise origin is still under debate nowadays. In reference [36], authors

interpret the mechanical behavior of a glass forming sample as the following. Close to Tg and

on certain observation time scale tobs related to macroscopic time scales, some dynamic hetero-

geneities have time to relax because their relaxation time is smaller than tobs: they are fluid-like.

On the other hand, much slower dynamic heterogeneities with relaxation times longer than tobs

do not have time to relax (see Figure 0.0.6): they are solid-like. The mechanical behaviour
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Figure 0.0.6: Typical relaxation time distribution at temperature above Tg. Distribution shifts
towards long times when the temperature decreases. Dynamic heterogeneities of relaxation
times longer than tobs are solid like. Sub-units with lower relaxation times are fluid like.

of the sample is then conditioned by the proportion of fluid and solid-like heterogeneities on

the time scale tobs (see Figure 0.0.7): the system is fluid if the proportion of solid-like hetero-

geneities is low, whereas it is solid as a whole when the proportion of solid-like heterogeneities is

high enough so that they percolate. Finally, the transition between the fluid and the solid-like

behaviour of the sample takes place when the proportion of solid-like heterogeneities reaches a

certain percolation threshold pc. Following this interpretation, α-relaxation process is related

to the percolation of a small fraction (pc ∼ 10%) of most rigid subunits and the α relaxation

time is defined as the following: ∫ +∞

τα

P (τ)dτ = pc

where P is the relaxation times distribution. Note that the value pc ∼ 10% is taken following

the bond percolation criterion and allows to recover very satisfying Tg shifts in thin polymer

films [40]. At equilibrium, parameter Nc satisfies to the following equation:

τα = N2/3
c τfast (0.0.3)

Size Nc is thus the smallest scale for which the density fluctuation relaxation process is at least

equal to τα at equilibrium. Nc is typically equal to 100− 500 at Tg [38].

In reference [41] authors study the case of aging in out of equilibrium conditions after a temper-

ature quench down to or below Tg. They show that, in these conditions, the relaxation times

distribution changes permanently and that the dynamical state of the system depends on its

history. It has been observed notably that during aging, relaxation times distributions widen

and relax toward longer relaxation times.
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Figure 0.0.7: Representation of spatial dynamic heterogeneities in the system at a certain tem-
perature. Left: On the observation duration, slow dynamic heterogeneities (dark green) behave
like solids and form clusters. These clusters are surrounded by fast (fluid) dynamic hetero-
geneities because the proportion of slow (solid-like) heterogeneities is below the percolation
threshold. The system behaves as a viscous fluid. Right: On much shorter times than the
observation duration, a more important proportion of dynamic heterogeneities behave as rigid
like units and a clusters begin to percolate. On this time scale, the whole system behaves like
a solid.

Objectives

The main objectives of this work is to study inter diffusion mechanisms of small molecules in

the glassy state, either at equilibrium or in out of equilibrium conditions. We consider two

kinds of systems:

• Polymer blends with components of different Tg’s, for which at least one of the two

polymers has a mass smaller than entanglement threshold.

• Polymer-solvent systems in contact with a solvent reservoir at temperatures far below

the pure polymer glass transition temperature. In these systems, the total number of

solvent molecules can vary when changing the solvent reservoir chemical potential.

A model is designed for describing dynamics of these systems. It incorporates the heterogeneous

nature of the dynamics on a scale of 3-5nm and takes into account the evolution of the dynamical

state of the systems with respect to the history they have followed. In polymer blends, we are

particularly interested in describing phase decomposition process close to Tg occurring during

aging. We also consider rejuvenation process of phase separated polymer blends close to Tg

after increasing the temperature. In polymer solvent systems, we are first interested in drying

phenomenons of polymeric materials maintained far below the pure polymer glass transition

temperature. We also study swelling phenomenons in order to understand how a hard (glassy)

polymer film can be diluted by solvent molecules.
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This manuscript is organized as follow:

• In chapter 1, we describe the spatial model and methods followed to solve it and to imple-

ment dynamics in polymer blends and polymer-solvent systems. Important ingredients of

the model are exposed, as well as the dynamical model by introducing diffusion equations

and equations responsible for dilatation and contraction of the system. The mapping

from physical equations to equations solved numerically is also made. Finally, we discuss

about the implementation of facilitation mechanisms.

• In chapter 2, we apply the spatial model described in chapter 1 to the case of polymer

blends, and especially in the context of phase separation close to and below Tg. In a first

step, we look at phase separation process close to or below Tg in case where composition

fluctuations are coupled to the blend glass transition temperature. After that, we study

rejuvenation mechanisms, which occur when the temperature is increased again. Effect

of the history of the system on rejuvenation kinetics are also studied.

• In chapter 3 we study the drying and swelling of polymer solvent system in contact with

a solvent reservoir, and the same spatial model used for polymer blends is adapted in this

sense. Whether it is in case of drying or swelling, we consider films of size varying from

ten nanometers up to a few micrometers, and at temperatures much lower than the pure

polymer glass transition temperature. For drying processes, we consider situations where

the system is drying at non zero and at very low activity. Finally, the influence of the

history of the system on swelling kinetics is also studied.
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Etat de l’art

Notion générales sur les polymères

Dans la vie de tous les jours, les polymères nous entourent partout et jouent un rôle fondamen-

tal. D’un point de vue chimique, ce sont des macromolécules composés de sous unités identiques

appelés monomères. Ils sont soit naturellement présents dans la nature (ADN, protéines, cel-

lulose ou encore les caoutchoucs), ou ils peuvent être conçues par des technologies humaines

comme les polymères à base carbonée. Du point de vue de la physique des matériaux, les

polymères possèdent de bonnes propriétés viscoélastiques, et un des domaines les plus actifs

dans la physique des polymères actuellement est le développement d’une approche multi échelle

afin de comprendre le comportement macroscopique des matériaux polymériques en considérant

l’aspect microscopique. Les polymères sont des systèmes complexes caractérisés par un large

spectre d’échelles de temps et de longueurs associés du fait de leurs conformations. Leur dy-

namique est lente et la plupart des polymères subissent une transition vitreuse à partir d’une

certaine température appelée la température de transition vitreuse (Tg). La transition vitreuse

est un phénomène qui se traduit par une augmentation brutale de la viscosité du matériau

proche de Tg. Les temps de relaxation dominants appelés temps de relaxation α, qui car-

actérisent les échelles de temps macroscopiques du matériau, sont très longs. Au-dessus de Tg,

le polymère est dans un état dit fondu, et en dessous, il est vitreux. Dans l’état vitreux le

matériau est solide et fragile, et il n’y a pas d’ordre apparent à l’échelle microscopique. Enfin,

la transition vitreuse est un phénomène toujours incompris, et résoudre ce problème représente

un des challenges les plus importants de la physique moderne.

Diffusion

Les processus de diffusion de particules dans un environnement matériel tendent à rendre

homogène la composition de ses constituants. Brown et Einstein ont été les premiers à décrire la

diffusion. D’un point de vue phénoménologique, au premier ordre, la diffusion répond aux lois

de Fick. La première d’entre elles que le flux (J) de matière à travers une surface est contrôlé

par le gradient local de concentration (c) dans le milieu, et que la cinétique de diffusion est

pilotée par la constant de diffusion D:

J = −D ∂c

∂x
.

24
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De plus, la variation temporelle de la concentration locale, dans une description Fickienne suit

la loi suivante
∂c

∂t
= −∂J

∂x
= D

∂2c

∂x2

C’est la seconde loi de Fick.

Les lois de Fick sont les plus utilisées encore actuellement et elles supposent que le coefficient

D ne dépend pas de la concentration locale. Cependant, il semble que la diffusion dans un

cadre plus global a plusieurs facettes, et que la théorie de Fick n’est plus valable dans un grand

nombre de cas où notamment elle dépend de la concentration locale, i.e.

∂c

∂t
=

∂

∂x
D(c)

∂c

∂x

La constante de diffusion ici est à priori une fonction complexe de la concentration locale, et

dépend de l’histoire du système. C’est par exemple le cas lorsque de petites molécules pénètrent

(phénomène de sorption) au sein d’une matrice vitreuse. Des études théoriques effectuées par

Cranks dans les années 50 [1] ont été les premières à décrire la dépendance de la concentration

locale dans les processus de diffusion. Cette approche décrit la diffusion par des effets non

linéaires en prenant en compte les réarrangements moléculaires à l’échelle locale du fait de

la pénétration des petites molécules au sein du matériau. Dans ces systèmes, une technique

expérimentale communément utilisée consiste à mesurer la prise en masse (M) du matériau.

De façon générale, la variation temporelle de la prise en masse du matériau peut être exprimée

comme suit:

M ∼ tn

Lorsque n = 1/2, les mécanismes de sorption des molécules suivent une loi de Fick. Dans

plusieurs autres cas [2], les régimes observés sont:

-0 < n < 1/2 and 1/2 < n < 1 diffusion anormale (Non Fickien)

-n = 1: diffusion cas II (non Fickien)

La diffusion cas II est un processus de diffusion assez particulier qui a beaucoup été étudié

expérimentalement [3, 4, 5, 6]. Notamment Kramer et al. [7, 8, 9, 10, 11] ont effectués

des expériences dans le but d’étudier la pénétration d’espèces de solvant dans des films de

polymères vitreux en utilisant la technique de la rétro diffusion Rutherford. Cette dernière per-

met d’obtenir des informations dynamiques sur le déplacement du front de solvant, ainsi que

l’évolution temporelle des profils de concentrations en fonction de la profondeur dans le film.

La diffusion cas II est caractérisée par la présence d’un front de solvant invariant se propageant

à vitesse constante qui sépare le système en une région gonflée en solvant située en amont, et

une région dure et vitreuse située en aval. Voir la Figure 0.0.8. De plus, on observe la présence

d’un gradient de concentration entre les deux régions. Ceci correspond à un pied Fickien qui se

propage dans la région vitreuse. Thomas and Windle ont effectués une avancée majeure dans

la compréhension de ce phénomène [12, 13]. Ils ont notamment introduit les effets osmotiques
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Figure 0.0.8: Pénétration d’Iodohexane (solvant) dans du PolyStyrène(PS) vitreux à T= 295,5K
(issue de la référence [11]). Le system est en dessous de la Tg du polymère pure qui vaut 368K.
On observe un front de diffusion cas II précédé par un front Fickian qui décroit exponentielle-
ment. Le front cas II s’établit à l’instant tind = 4× 105s qui correspond au temps d’induction.

induits par les molécules de solvant sur les châınes de polymères comme étant à l’origine de

la déformation de la matrice. Le modèle de Thomas et Windle prédit aussi l’existence d’un

temps d’induction comme il a été observé par Kramer et al.. Cependant, il est limité dans le

sens qu’il considère le temps d’induction et la vitesse du front comme étant des paramètres

ajustables. De plus ce modèle ne permet pas de prédire l’effet de l’histoire du système sur la

diffusion cas II. Des expériences portant sur les phénomènes de séchage (évaporation du solvant)

[14, 15, 16, 17] ont montré qu’il est possible de sécher complétement un film mince de polymères

de quelque centaines de nanomètres d’épaisseur, même si ce dernier est bien en dessous de la Tg

du polymère pur. Il est observé notamment que le séchage induit un vieillissement du film, et

que le processus de vieillissement dépend de la façon dont le film a été séché. Ceci suggère donc

que la diffusion du solvant est fonction de l’histoire du système comme c’est le cas pour la diffu-

sion cas II. Des simulations de dynamique moléculaire de séchage on été effectuées [18] dans le

cas de films très mince supportés et non supportés au-dessus et proche de Tg. Au-dessus de Tg,

il est observé que le solvant s’évapore du film avec un coefficient de diffusion constant. Proche

de Tg au contraire, la diffusion du solvant loin de l’interface est réduite du fait du ralentissement

de la dynamique. De plus, aux premiers instants, le taux d’évaporation du solvant est très im-

portant, et le système se contracte un peu. Bien après, en revanche, l’épaisseur du film décrôıt

et le système converge lentement vers l’état séché final. Ceci suggère donc que l’évaporation

du solvant et la réponse mécanique du système sont liés l’un l’autre. Enfin, des expériences

de séchage sur des films de taille micrométrique [19] montrent qu’une croûte vitreuse se forme

proche de l’interface sèche, alors qu’une grande quantité de solvant reste piégée dans le fond du

film. Tous les résultats décrits ici, mettent en lumières l’existence de phénomènes de diffusion

complexes dans le cadre de la sorption et l’évaporation de petite molécules dans des matrices

de polymères vitreux. Ce sont des phénomènes qui n’ont pas encore été pleinement compris et
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pour lesquels la diffusion de Fick ne permet pas de donner une interprétation convenable.

Dans les matériaux de polymères, du fait de la conformation des châınes, des aspects

géométriques doivent d’être pris en compte pour décrire les processus de diffusion et rhéologiques.

Il éxiste des modèles traitants de ces questions en considérant la dynamique des châınes au

niveau microscopique: les modèle dits de ”Rouse” et de ”reptation” [20, 21]. Le modèle de

Rouse décrit le comportement viscoélastique de matériaux composés de petites châınes de

polymères gaussiennes. Il ne prend donc pas en compte d’effet d’enchevêtrement comme c’est

le cas pour le modèle de reptation qui lui décrit les processus de diffusion des longues châınes.

En conséquence, ces modèle prédisent que la diffusion à l’échelle du chaine de polymère est

fortement affectée par sa masse moléculaire. Dans le cadre de notre travail, on se focalise

principalement sur la dynamique de relaxation à l’échelle du monomère à laquelle il existe un

spectre continu de temps de relaxation [29]. Or les modèles de Rouse/Reptation consièrent

la dynamique de segments de châınes, et ils supposent que le temps de relaxation à l’échelle

d’un monomère est unique. Il serait donc nécessaire de développer ces modèles de sorte à ce

qu’ils tiennent compte du spectre des temps de relaxation monomèriques, ce qui n’a pas été

encore fait. Dans ce travail, l’effet de la masse moléculaire des châınes sur la diffusion est pris

en compte par le biais d’un paramètre ajustable phénoménologique. Enfin, la décomposition

spinodale dans les mélanges de polymères fondus a été largement étudié. Il est en particulier

observé dans ce contexte que les tailles R des domaines qui se forment croissent comme R ∼ t1/3

[22, 23, 24, 26]). Cette loi de croissance, décrite par le modèle de Ostwald [25], est retrouvée

d’un point de vue semi quantitatif en supposant que la diffusion est Fickienne.

Dynamique hétérogène

La loi WLF (William-Landel-Ferry) permet de reproduire l’équivalence temps-températures

dans le cas des systèmes devenant vitreux. Elles s’exprime comme:

log
(τα(T )

τ

)
= − C1(T − T0)

C2 + (T − T0)
(0.0.4)

où C1 et C2 sont des constantes et T0 est une température de référence. Le temps τα est le temps

de relaxation α. Le domaine de validité de cette loi s’étend entre des températures proches et

en dessous de Tg jusqu’à 100K au dessus de Tg. A haute température, le temps de relaxation

est de 10−9s typiquement et de 1 à 100 s proche de Tg. Enfin, la viscosité à Tg est égale à 1012

Pa.s [27]. Il y a un certain nombre d’années, il a été montré que la dynamique dans les système

devenant vitreux n’est pas gouvernée par un temps de relaxation unique, mais par un spectre

entier de temps de relaxation à l’échelle du monomère [28, 29, 30, 31, 33, 32, 34, 35]. La présence

d’une distribution de temps de relaxations a été observée par de mesures diélectriques. D’autres

études utilisant la RMN où la diffusion demolécules sondes ont permis de décrire l’aspect spatial

des distribution de temps de relaxation, et ces résultats montrent la présence d’hétérogénéités

dynamiques de 3-5 nm dans les polymères. La loi de Stokes-Einstein qui relie le coefficient de
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Figure 0.0.9: (Gauche) Diffusion d’une molécules sonde (carré blanc) dans unmilieu hétérogène.
Les sous unités en gris clair représentent les hétérogénéités rapides, alors que celle en noir
représentent les lentes. La taille de la sonde est plus petite qu’une hétérogénéité et diffuse
à travers les zones rapides (flèche). (Droite) Distributions de temps de relaxation dans le
Polystyrène à Tg +20K, Tg et Tg − 10K. Plus la température est basse, plus la distribution est
large et les temps de relaxation sont longs.

diffusion D d’une molécules sonde de taille R et la viscosité η du milieu à la température T est:

Dη

T
=

kB
6πR

(0.0.5)

avec kB la constante de Boltzmann. Jusqu’à Tg + 50K environ, la loi de Stokes-Einstein est

retrouvée par l’expérience de diffusion de petites sondes. En dessous en revanche, il a été ob-

servé qu’elle était violée. L’amplitude de la violation est typiquement de 2-3 décades proche de

Tg dans les matériaux de polymères simples, i.e. log
(
D/DSE

)
∼ 2−3 où DSE est le coefficient

de diffusion prédit par la loi de Stokes-Einstein. Malgré cela, l’amplitude de violation de la loi

est moins prononcée lorsque la taille de la sonde augmente ce qui prouve l’aspect spatial des

hétérogéneités dynamiques. En effet, dans un milieu hétérogène, il y a des sous unités lentes en

coexistence avec des sous unités rapides. Si la sonde est plus petite que ces sous unités, elle dif-

fusera principalement au sein des sous unités rapides, et son temps de diffusion sera plus rapide

que le temps α obtenue par des mesures de viscosité (see Figure 0.0.9). Donc, dans ce contexte,

ces processus de diffusion ne sont pas reliés au temps α. Si au contraire, la sonde est plus large

qu’une sous unité, elle interagira avec les sous unités lentes et sa diffusion sera contrôlée par

les temps α qui contrôlent la viscosité du milieu. Dans ce cas la relation de Stokes-Einstein est

retrouvée. En conséquence, dans le cas de petites sondes, le fait que la quantité log
(
D/DSE

)
augmente lorsqu’on approche Tg signifie que la distribution des temps de relaxation s’élargie

(Cf. Figure 0.0.9). Enfin, même si la réponse visqueuse du système est pilotée par les temps

longs, la dynamique hétérogène fait que le système n’est pas ”gelé” et rend possible la diffusion

de molécules dans l’état vitreux. Dans le contexte des systèmes binaires tels que les systèmes

polymères-solvant, il a été observé que la loi de Stokes-Einstein est violée de 6 décades aumoins,

ce qui signifie que les distributions de temps de relaxation sont bien plus large dans ces systèmes

que dans les systèmes vitreux de polymères purs. En effet, des observations éxpérimantales [14]

montrent que la constante de diffusion du solvant à Tg est égale à 10−15m2.s−1 [14] ce qui fait
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Figure 0.0.10: Représentation d’une fluctuation de densité à l’échelle ξ ∼ 3 − 5nm: la cellule
centrale, avec un temps de relaxation noté τslow, is plus dense que ces voisines ayant un temps
de relaxation noté τfast. Les monomères qui appartiennent à la cellule centrale peuvent diffuser
vers les cellules rapides par leur interface commune. Le temps de vie, noté τlife d’une telle
fluctuation de densité vaut τlife = N2/3τfast. N is le volume adimensionné d’une cellule tel que
ξ3 = N/ρ0 avec ρ0 la densité de close packing. En conséquence, une hétérogénéité lente peut
fondre en un temps τlife, et ce processus de fusion est piloté par la cellules rapides.

que les temps de relaxation responsables de la diffusion valent 10−4s à l’échelle d’un monomère.

En considérant que τα = 100s, on obtient une distribution large de 6 décades proche de Tg.

D’un point de vue théorique, le modèle de Long et Lequeux [36, 37] donne une interprétation

phénoménologique de la transition vitreuse. Il suppose l’existence d’une distribution spatiale

des temps de relaxation, ce qui est justifié par les résultats expérimentaux décrits plus haut.

La présence d’hétérogénéités dynamiques sont expliqués par les fluctuations de densité qui sont

contrôlés par le module du bulk (Kbulk ∼ 109Pa) dans le cas des matériaux de polymères purs.

Selon cette interprétation, une hétérogénéité dynamique, dont le temps de relaxation interne est

relié au volume libre moyen accessible aux monomères, est lente quand la densité est grande, et

rapide quand la densité est basse. En conséquence, on peut associer un temps à une fluctuation

de densité par le biai de la relation WLF qui est supposée valide à l’échelle des monomères.

Enfin, à l’échelle du matériau, la distribution des fluctuations de densité donne naissance à

une distribution spatiale des temps de relaxation. Dans les systèmes binaires, lorsqu’une com-

posante rapide est mélangé à une composante lente, la distribution de temps de relaxation sont

reliées aux fluctuations de composition qui sont contrôlées par le module osmotique Kosm ∼ 107

Pa.

• Mécanismes de facilitation

La distribution spatiales des hétérogénéités dynamiques permettent de décrire des processus

de fusion de sous unités lentes de taille ξ (temps de relaxation τslow) par la présence des sous

unités rapides (temps de relaxation τfast)[38]. Dans le cas des systèmes pures, ce processus

s’illustre par des mécanismes de diffusion à l’interface entre les sous unités rapides et lentes, et
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Figure 0.0.11: Représentation du mécanisme de facilitation dans le cas d’un système binaire. La
sous unité centrale lente et dense (noir), avec un temps de relaxation τslow, est principalement
composée de monomères lents. Les sous unités voisines sont elles rapides, avec un temps
de relaxation τfast, et composées en majorité de monomères rapides. Grâce au mécanisme
de facilitation, la relaxation de la sous unité lente est la conséquence de l’inter diffusion de
monomères rapides et lents à l’interface. La diffusion des monomères rapides au sein de la
cellule centrale est aussi accompagné de la diffusion de volume libre qui tend à accélérer la
dynamique des monomères. Enfin, comme dans le cas des liquides de polymères purs, le temps
de vie τlife d’une telle fluctuation de composition vaut τlife = N2/3τfast.

le temps de vie d’une telle fluctuation de densité vaut

τlife = N2/3τfast

où N = ξ3 × ρ0 est le volume adimensionné d’une hétérogénéité dynamique et ρ0 la densité de

close packing (Cf. Figure 0.0.10). Dans le cas des systèmes binaires, quand une hétérogénéité

lente, dense et composée en majorité de monomères lents, est entourée de sous unités rapides

composées de monomères rapides, le mécanisme de facilitation est la conséquence de la diffusion

de monomères lents vers les sous unités rapides, et de la diffusion de monomères rapides qui

diffusent au sein de la sous unité lente. La diffusion de monomères rapides est aussi accom-

pagnée de la diffusion de volume libre. Ce dernier tend à accélérer la dynamique et donc à

faciliter l’inter-diffusion des monomères. Comme dans le cas des liquides simples, le temps de

vie de cette fluctuation de composition est τlife = N2/3τfast (Cf. Figure 0.0.11). Comme nous

le verrons, ces mécanismes sont fondamentaux pour décrire la fusion de structures vitreuses

lentes au cours de phénomène de rajeunissement dans le mélange de polymères.

Les temps de relaxation α sont associés au processus de relaxation mécanique des matériaux

vitreux, mais son origine précise n’est pas encore comprise. Il est dit dans la référence [36] que les

temps α sont reliés à la percolation d’une petite fraction (10% typiquement) des sous unités les

plus lentes et rigides. Enfin, le couplage entre les processus de relaxation α et le mécanisme de

facilitation permet de donner une interprétation de la taille d’une hétérogénéité dynamique Nc.
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Proche de Tg, Nc est estimé à quelques centaines demonomères ce qui donne ξ = 3−5nm comme

il est montré expérimentalement. Dans la référence [41] les auteurs étudient le vieillissement

après une trempe en température proche de Tg. Il a été observé que la distribution des temps

de relaxation change de façon permanente, et l’état dynamique du système à un instant précis

dépend de son histoire.

Objectifs

L’objectif principal de ce travail est d’étudier lesmécanismes d’inter-diffusion de petitesmolécules

dans l’état vitreux que ce soit à l’équilibre ou hors d’équilibre. Nous allons considérer deux

sortes de systèmes:

• Mélanges de polymères avec des composantes ayant des Tgs différentes, pour lesquelles

au moins une d’elles est en dessous du seuil d’enchevêtrement.

• Systèmes polymères-solvant en contact avec un réservoir de solvant. Le système sera

sous la Tg du polymère pur et le nombre total de particules de solvant pourra changer en

modifiant le potentiel chimique du réservoir.

Un modèle est construit pour décrire la dynamique de ces systèmes. Il incorpore la nature

hétérogène de la dynamique à l’échelle de 3-5 nm, et prend en compte l’évolution de l’état

dynamique des systèmes par rapport à leur histoire suivie. Dans les mélanges de polymères,

nous serons particulièrement intéressé au processus de décomposition de phase proche ou sous

la Tg du mélange pendant le vieillissement du système. Nous considèrerons aussi les processus

de rajeunissement en réchauffant le système après qu’il ait été séparé de phase proche de Tg.

Dans les systèmes polymère-solvant, nous étudierons les phénomènes de séchage et de gonfle-

ment.
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Ce mémoire est composé des chapitres suivants

• Dans le chapitre 1, nous introduisons le modèle utilisé pour décrire la dynamique dans

les mélanges de polymères et les mélanges polymères-solvant. Les ingrédients impor-

tants du modèle sont exposés ainsi que le modèle dynamique. Le passage entre les

équations physiques et celles qui seront résoluent numériquement est aussi traité. En-

fin, nous présentons la méthode suivie pour implémenter le mécanisme de facilitations

numériquement.

• Dans le chapitre 2, nous appliquons le modèle introduit dans le chapitre 1 au cas des

mélanges de polymères se séparant de phase proche ou en dessous de Tg. Nous discutons

également du processus inverse lorsque le système se réchauffe et se remélange.

• Dans le chapitre 3, nous appliquons le modèle introduit dans le chapitre 1 afin d’étudier

le séchage et le gonflement de films de polymères solvant sous la Tg du polymère pur en

contact avec un réservoir de solvant.
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Chapter 1

Modelling of binary mixtures close to

and below Tg

1.1 Résumé en français

Dans ce chapitre, nous proposons l’implémentation d’un model spatiale adapté pour les deux

systèmes: mélanges de polymères et systèmes polymères-solvant. Ce modèle coarse grainé

est résolu sur un réseau carré et intègre le caractère hétérogène de la dynamique à l’échelle

d’une hétérogénéité dynamique. Cette dernière correspond à la résolution spatiale du système

(3-5nm). Un modèle thermodynamique décrivant les mélanges compressibles est conçu pour

calculer les forces permettant de piloter la dynamique du système. Ces dernières sont égales

au gradient de potentiel chimique entre deux site voisins. Comme une composante lente est

mélangé avec une composante rapide la température de transition de la solution dépend ex-

plicitement de la composition. Ainsi par le biais de la loi WLF, nous calculons les temps de

relaxation monomérique qui dépendent également de la composition. En conclusion, en cou-

plant les fluctuations de composition et la température de transition vitreuses, on obtient une

distribution spatiale des temps de relaxation à l’échelle d’une hétérogénéité dynamique. Ainsi

les temps de relaxation sur un site riche en composante lente (resp rapide) est long (resp.

court). Il faut noter que les temps de relaxation prennent en compte le volume libre présent

dans chaque sites afin de traiter les situations hors d’équilibre. Enfin, afin de prendre en compte

le mécanisme de facilitation, le coefficient cinétiques qui contrôle les échanges de matière entre

un site et un de ses proches voisins est pris comme le plus court des deux . Enfin, nous prenons

en compte également la relaxation mécanique du système en plus de la diffusion. En conclusion,

suivant ce modèle, la relaxation d’un site est la conséquence de mécanismes de diffusion non

linéaires entre le site lui-même et ses proches voisins, et de la relaxation mécanique du système.

1.2 Introduction

A theoretical work performed by Souche and Long [42] was aimed at studying the diffusion of

solvent in glassy polymer films after the system is experiencing an arbitrary activity change.

34
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This work shows notably that heterogeneous nature of the dynamics is very important for de-

scribing the solvent diffusion in glassy media. Indeed, in this scheme and as it is represented

in Figure 0.0.2, solvent molecules could diffuse through fast dynamic heterogeneities in much

shorter time than the mechanical relaxation driven by α-like relaxation times. However, this

model proposed by Souche and Long does not incorporate any spatial aspects for solvent diffu-

sion. We thus propose to extend it and to design a spatial diffusion model which incorporates

the heterogeneous nature of the dynamics at the scale of a dynamic heterogeneity. Non linear

constitutive equations for polymer and solvent diffusion are then solved at this scale on a 2D

square lattice. Finally, we integrate explicitly the mechanical relaxation of the system in this

model.

1.3 Physical model

• Thermodynamics of pure polymer melts

The diffusion of molecules is a relaxation process toward a state representing a minimum of free

enthalpy. A free enthalpy model is then required to define such a state, and also to describe

the composition fluctuations statistics in order to create dynamical heterogeneities.

We first consider a mean field thermodynamical model describing pure polymer melts. Quan-

tities of interest are calculated based on the mean state of the system. In this context, the

most relevant distance to consider between two neighboring particles of radius d is the mean

intermolecular distance σ. The interaction energy is a Lennard-Jones potential: the attractive

part is a potential that decreases with the distance r between the center of mass of particles

like −1/r6. To this potential, a repulsive part which varies like 1/r12 is added (see Figure 1.3.1

(b)). In our model we consider the same 1/r6 part that accounts for van der Waals attractive

interactions, but in contrast, we only consider a pure Hard-Core (HC) repulsive potential (See

Figure 1.3.1 (a)).

The attractive energy between two monomers i, j at a distance ri,j from each other reads:

U(i, j) =
−C
r6i,j

where C is the Hamaker constant of the considered monomers and is typically of order 10−77 J

m6 [63]. The attractive interaction per monomer can be written as

W =
1

2

∑
j �=i

U(i, j)

In the mean field picture, this sum has to be calculated by assuming that the particles are

located at a typical distance σ from each other, which is directly related to the density of the



page 36

Figure 1.3.1: (a)Schematic of the potential that we use in our model. It has a 1/r6 attractive
part and a Hard-Core (HC) part that accounts for the repulsive interactions. (b) Representation
of the 6-12 Lennard-Jones potential used in the Cell Model by Prigogine et al [54, 55, 56, 57].
This model considers the same attractive potential than ours. Nevertheless, it considers a 1/r12

part at small distances for modelling repulsive interactions between particles.

Figure 1.3.2: Schematic representation of a liquid in a mean field picture. The interaction
energy has to be calculated assuming an average distance σ between particles. Similarly, the
confinement entropy has to be calculated assuming an average volume in which the molecules
can move. This volume, per molecule, is (V − V0)/NA, where NA is the number of molecules,
V is the total volume, V0 = NAv0 is the total excluded volume due to the hard-core repulsion
between the molecules. v0 is the volume of one molecule.
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sample. As a function of the number of monomers per unit volume ρ, one obtains

W = −ΦCρ2 (1.3.1)

with Φ ≈ 4. The quadratic dependence of the attractive energy is similar to that of the

Prigogine model [55]. This dependence results from the r−6 decay of the interaction, and from

the mean field picture.

Let us consider a molecular liquid constituted by small molecules of radius d for which we

assume a hard-core repulsion. In the mean field picture, the entropy is the logarithm of the

volume in which the molecules can move. The total volume of the liquid is V . Let us denote by

V0 the total volume of the molecules themselves. The available volume for motion per molecule

is v − v0 where v = V/NA and v0 = V0/NA and NA is the number of molecules. The entropy

per molecule reads then S = ln(v − v0) [64]. The entropy may be written as

S = ln(1− v0/v) + ln v (1.3.2)

The second term of the right hand side of Eq. (1.3.2) is the translational entropy per molecule

when no restriction due to hard core or repulsive potentials are present. That corresponds to

the perfect gas entropy. The first term is the contribution of confinement to the entropy. In

the context of polymers, the translational entropy must be calculated per chain, whereas the

confinement contribution is not modified. One obtains thus

S = ln(1− v0/v) +
1

XA
ln v (1.3.3)

where XA is the degree of polymerization of the chains. In the dense state limit (at low

temperature), ln v is a slowly varying function, close to ln v0. The second term of the right

hand side of Eq.(1.3.3) can thus be considered as an irrelevant constant in this regime. This is

all the more true for large molecular weight polymers. However, the term 1
XA

ln v must be kept

when dealing with more diluted cases (molecular liquids at high temperature) or when dealing

with blends as will be discussed in the next section. In the context of large molecular weight

polymers in the dense molten state, the entropy (1.3.3) can be written

S = ln(ρ0 − ρ) (1.3.4)

where ρ0 = 1/v0 and ρ = 1/v, where we have omitted an irrelevant constant ln v0. This

expression was used in reference [36] for describing the thermodynamics of large molecular

weight polymers in the dense molten state. Note that the entropy term introduced by Prigogine

et al [55], and Flory-Orvoll and Vrij [51, 59, 60, 61, 62] is similar to that of Equation (1.3.2).

For dense polymer melts, the equilibrium density ρeq corresponds to a local minimum of the

free energy F0 = W − TS:

F0(ρ) = −ΦCρ2 − T ln(ρ0 − ρ) (1.3.5)
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A metastable solution is obtained with the equation ∂F0

∂ρ
= 0 and with the condition ∂2F0

∂ρ2
> 0.

That results in a quadratic equation which can be solved exactly. We define a temperature

noted Tc for which one finds a solution corresponding to a metastable equilibrium state for the

melt when T < Tc, whereas above Tc no such state exists :

Tc =
Φ

2
ρ20C (1.3.6)

The corresponding density is equal to ρ0/2. This temperature sets the temperature scale below

which the liquid may be considered as a dense liquid. The regime of dense polymer liquids

corresponds thus to T � Tc. For usual polymers, Tc is typically of order 1000 K [36, 58].

• Thermodynamics of the compressible binary mixture

For calculating the free energy for a compressible binary mixtures, we extend the model pro-

posed in [36]. In case of NA and NB particles in a volume N at temperature T and pressure P,

we define the free energy as :

G(N,NA, NB, P, T ) =a
(NA +NB)N

2
A

N2
+ b

(NA +NB)N
2
B

N2
+ 2c

(NA +NB)NANB

N2
(I)

+ T

(
NA

XA
ln
(NA

N

)
+
NB

XB
ln
(NA

N

))
(II)

− T (NA +NB) ln
(
1− NA

N
− NB

N

)
+
PN

ρ0
(III)

(1.3.7)

where term (I) corresponds to the internal energy with a, b, c ∼ −10−20J ; the term (II) is

a translation entropy term with XA and XB the polymerisation degrees of molecular species

A and B; term (III) is a confinement entropy plus the external pressure term. The term

ρ0 = 1/a3 ∼ 1028m−3 is the close packing density with a the size of a monomer. The volume

N is dimensionless and is related to physical volume V thanks to relation V [m3] = N/ρ0. This

model can also describe polymer-solvent blends by putting XA = 1 andXB > 1. It is also usable

in case of pure solvent systems. At equilibrium, the volume N adapts itself to the number of

particles NA and NB contained in this volume. Formally, at equilibrium, the system satisfies

equation: (
∂G

∂N

)
NA,NB ,P,T

= 0 (1.3.8)
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with N � NA + NB. We can define the Gibbs free energy per unit volume, G = G/N . We

obtain

G =
G

N
=a(φA + φB)φ

2
A + b(φA + φB)φ

2
B + 2c(φA + φB)φAφB

+ T

(
φA

XA

ln
(
φA

)
+
φB

XB

ln
(
φB

))

− T (φA + φB) ln
(
1− φA − φB

)
+
P

ρ0

(1.3.9)

Volume fractions φA = NA/N and φB = NB/N are two independent variables which verify

φA + φB < 1

and the free volume fraction φv is such that φv = 1 − φA − φB where φv ∼ 0, 1 typically. For

models such as the Flory-Huggins model describing incompressible systems, we have φv = 0.

In reference [70], where this model is published, it is shown that equation of state obtained by

the free energy written in Equation 1.3.7 is very close from a quantitative point of view, to

that of the Cell Model by Prigogine[54, 55, 56, 57] or again of the FOV model[44, 45, 46, 47].

It has also the advantage to be easily treatable analytically. This free energy model is used

to compute thermodynamical forces FA/B which drive the dynamics at a scale of a dynamical

heterogeneity in out equilibrium situations by considering φA and φB as independent degrees

of freedom. As we will see later on, thermodynamical forces depend on the local gradient of

chemical potential μA/B in the material which we define as:

μA =

(
∂G

∂NA

)
NB,N,P,T

=

(
∂G

∂φA

)
φB,P,T

=a
(
3(φA)

2 + 2φAφB

)
+ b(φB)

2 + 2c
(
2φAφB + (φB)

2
)

+ T

(
1

XA
ln(φA)− ln(1− φA − φB) +

1

XA
+

φA + φB

1− φA − φB

) (1.3.10)

and

μB =

(
∂G

∂NB

)
NA,N,P,T

=

(
∂G

∂φB

)
φA,P,T

=b
(
3(φB)

2 + 2φAφB

)
+ a(φA)

2 + 2c
(
2φBφA + (φA)

2
)

+ T

(
1

XB

ln(φB)− ln(1− φA − φB) +
1

XB

+
φA + φB

1− φA − φB

) (1.3.11)

where G = G/N .

It is worth considering the excess of free energy ΔG induced by a composition fluctuation
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δφ =

(
δφA

δφB

)
. We consider a composition fluctuation taking place in a volume N immersed in

a bigger system which can be seen as a reservoir of particles. We write

ΔG = N ×
[
G(φA + δφA, φB + δφB)−G(φA, φB)

]
∼= N

2
δφt∂2Gδφ

(1.3.12)

with

∂2G =

(
∂2
φ2

A
G ∂2φAφB

G

∂2φBφA
G ∂2

φ2

B
G

)
=

(
a11 a12

a21 a22

)
(1.3.13)

a dimensionless matrix with coefficients taken at equilibrium. In the approximated relation

1.3.12, linear terms have been omitted as due to the closeness of chemical potentials between

both systems.

Eigenvalues λ1 and λ2 of matrix 1.3.13 read:

λ1 =
Tr(∂2G)+

√
Δ

2

λ2 =
Tr(∂2G)−

√
Δ

2
(1.3.14)

with Δ the discriminant of the characteristic polynomial of ∂2G which reads:

Δ =
(
Tr(∂2G)

)2

− 4 det(∂2G)

where Tr(∂2G) and det(∂2G) are the trace and the determinant of the matrix respectively. In

the low temperature regime of interest, which corresponds to dense polymer melts or blends

(i.e. when the temperature is far below the critical temperature of each of the components

T � TA
c , T

B
c ), terms a11, a12, a21 et a22 are very closed to each other. We hence have det(∂2G) �(

Tr(∂2G)
)2

which implies that λ1 � λ2 because

λ1 ≈ Tr(∂2G)
(
1− det(∂2G)(

Tr(∂2G)
)2) ≈ Tr(∂2G)

λ2 ≈ det(∂2G)

Tr(∂2G)

In can be shown [70] that λ1 and λ2 are related to the bulk (Kbulk) and the osmotic (Kosm)

modulus respectively up to a factor ρ0 , i.e.:

Kbulk ∼ 1

2
ρ0λ1

Kosm ∼ 2ρ0λ2
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with Kbulk ∼ 109Pa and Kosm ∼ 107Pa. The expression of the osmotic modulus which controls

composition fluctuations at the scale N is:

Kosm =ρ0

(
2(a+ b)(φs + φp)− 4c(φs + φp)

+ T
( 1

φs
+

1

Xφp

)) (1.3.15)

The definition for the bulk modulus Kbulk is:

Kbulk = ρ0N

(
∂2G

∂N2

)
NA,NB

which gives by using equation 1.3.7:

Kbulk =+ ρ0

(
6a(φA + φB)φ

2
s + 6b(φA + φB)φ

2
p + 12c(φA + φB)φAφB

)

+ ρ0T

(
φA

XA

+
φB

XB

+
(φA + φB)

2

(1− φA − φB)2
(2− φA − φB)

) (1.3.16)

We observe that unlike the bulk modulus, the expression of the osmotic modulus does not

contain any diverging term: (1 − φA − φB)
−1 which holds in the incompressible limit i .e.

φA + φB → 1. Moreover, one can note that by taking φA + φB = 1, one obtains:

Kosm = ρ0

(
2(a+ b)− 4c+ T

( 1

XAφA
+

1

XBφB

))
, (1.3.17)

which corresponds to the standard expression of the osmotic modulus in the Flory-Huggins

theory [21]

The total composition fluctuations (δφ) distribution P in a system of volume N is given by;

P (δφ) ∝ exp

(
− NΔG

T

)
(1.3.18)

where δφ =

(
δφA

δφB

)
with δφA/B = φA/B− < φA/B > where < φA/B > is the average volume

fraction of species A/B in the volume N. By using equation(1.3.12)one finds:

P (δφA, δφB) ∝ exp

(
− N

2T

(
δφA, δφB

)
∂2G

(
δφA

δφB

) )
(1.3.19)

We show in Appendix 1.A.2 that the fluctuations distribution P̃ for one species k in the volume

N reads

P̃ (δφk

) ∝ exp

(
− N

2T

[(
∂2φ2

k
G
) −

(
∂2φkφk′

G
)2

∂2
φ2

k′
G

]
δφ2

k

)
(1.3.20)
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where (k, k′) = (A,B). We show as well in Appendix 1.A.2 that P̃ can be expressed as

P̃ (δφA/B

) ∝ exp
(− N

T
λ2δφ

2
A/B

)
(1.3.21)

Let us now discuss the metastability conditions for blends. A multi-components blend is

metastable if its Gibbs free energy is a convex function of the set of its independent variables.

For the two components compressible blends considered here, G is a function of two independent

variables φA and φB. The condition for metastability is thus that both eigen-values satisfy to

the conditions λ1 > 0 and λ2 > 0 [66, 69]. As λ1 is always positive, the relevant condition for

metastability is thus λ2 < 0, i.e. det(∂2G) < 0. The spinodal line is given by the equations(
∂G

∂N

)
NA,NB ,P,T

= 0 (1.3.22)

and

λ2 = 0 (1.3.23)

As it is shown in appendix1.A.1, this model has been confronted to experiment regarding phase

behaviors in PS/PB and PS/PVME blends at non zero pressure. We show that this model

reproduce well in a semi quantitative way experimental results. Finally, this model can be also

applied to the case of pure solvent systems when reduced to one component for obtaining an

expression of the chemical potential of the solvent reservoir. This aims to define equilibrium

conditions between the reservoir and the polymer-solvent system as we will see in section 1.A

of Chapter 3.

• Glass transition temperature and relaxation times

In Figure 1.3.3(a)(Black curve), we give the variation of equilibrium α-relaxation times at

T = 298K as a function of polymer volume fraction (φp) in PMMA(Polymethyl Methacrylate

/ polymer) / DEP(Diethyl phthalate / solvent) mixtures. We see in Figure 1.3.3(a) that the

system is glassy for φp � φp
g ≈ 0.75 (τα(φ

p
g) = 100s) whereas it is molten for φp < φp

g: the

presence of solvent tends to accelerate the dynamics of the system. Wether it is in case of

thermodynamically miscible polymer blends or polymer solvent systems [74, 76, 77, 78], the

equilibrium blend glass transition temperature is a function of the average composition of the

system. In our model, wether for polymer blends or polymer solvent systems, we consider the

following expression for the blend Tg:

T blend
g (φA, φB)

TA
g

= α + βφA + γφB (1.3.24)
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Figure 1.3.3: (a)Evolution of equilibrium α-relaxation times (black curve) in
PMMA(Polymethyl Methacrylate: polymer)/DEP(Diethyl phthalate: solvent) system at
T = 298K. Pure PMMA glass transition temperature is equal to 400K. At fixed temperature,
we see that the lower the polymer volume fraction, the faster the dynamics: the presence of
solvent tends to accelerate the dynamics. Moreover, φp

g is the equilibrium PMMA volume
fraction from which the system becomes glassy. The corresponding equilibrium solvent volume
fraction is noted φg

s = φs(φ
p
g). (b) We schematize, in the phase space (φp, φs), the equilibrium

curve(black curve) as well as two curves representing out of equilibrium situations (dashed
red and blue curves). The Blue one corresponds to the situation where the solvent volume
fraction is higher than its equilibrium value equilibrium (φs > φg

s) at fixed polymer volume
fraction φp

g. In contrast, the red curve corresponds to the situation where the solvent volume
fraction is lower than its equilibrium value (φs < φg

s) at fixed polymer volume fraction φp
g.

In the first case, T blend
g increases due to the free volume reduction (See Figure 1.3.4) and the

dynamics slows down -i.e. τ(φg
p, φ

1
s) > τ(φg

p, φ
g
s) as it is represented in Figure(a) and (b)-. In

the second case though, T blend
g decreases due to the free volume increase (See Figure 1.3.4) and

the dynamics accelerates -i.e. τ(φg
p, φ

2
s) < τ(φg

p, φ
g
s) as it is represented in Figure(a) and (b)-.
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Figure 1.3.4: (UP-Left) Evolution of equilibrium blend glass transition temperature as a func-
tion of the fast component volume fraction in case of polymer blends. The Tg of the blend
follows equation T blend

g (φA, φB)/T
A
g = α+βφA+γφB with TA

g = 320K and TB
g = 220K. A and

B are referred to the slow and fast component respectively and parameter are α = −1.27247,
β = 2.5467 and γ = 1.9823. (UP-Right) Evolution of the T blend

g at fixed slow component volume
fraction: 0,4; 0,5; 0,6 and 0,7 in case of polymer blends. Red cross correspond to the equilibrium
fast component volume fraction given the fixed slow component volume fraction. (BOTTOM-
Left) Evolution of the blend glass transition temperature as a function of the solvent component
volume fraction in case of polymer-solvent systems. Parameters are TA

g = 352.5K (pure poly-
mer Tg), α = −0.4184, γ = 1.6531 and β = 0.3. (BOTTOM-Right) Evolution of the glass
transition temperature versus solvent volume fraction at fixed slow component volume fraction
in case of polymer blends and polymer-solvent systems. Either it is in case of polymer blends
or polymer-solvent systems in Figure (UP-Right) or (BOTTOM-Right), T blend

g decreases when
the free volume fraction increases. This represent the plasticising effect of the free volume at
the monomeric level.
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where TA
g is the Tg of the slow component and β (resp γ) is related to the plasticising effect

of species A (resp B). Parameters α, β, γ are chosen such that α + βφA(φB = 0) = 1 and

α + γφB(φA = 0) = TB
g /T

A
g where TB

g is the Tg of the fast component. Note that the quantity

T blend
g (φA, φB)/T

A
g is an input of the model. Thus, the expression 1.3.24 has been chosen for

simplicity and the latter represents the reference Tg for thermodynamically miscible mixtures

(See Figure 1.3.4). We reformulate the WLF law written in equation0.0.1 as:

ln

(
τ(T )

τ0

)
=

C1C2

T − T0 + C2
(1.3.25)

where T0 is a reference temperature. We chose T0 = Tg here, and τ(T0) = 100sec. Finally, we

have τ0 = 10−C1τ(T0). By making use of relation 1.3.24 one obtains relaxation times which

depends on composition -i.e.

τ(φA, φB) = τWLF (T − T blend
g (φA, φB)) (1.3.26)

As we consider compressible mixtures, the relation 1.3.26 depends also on the free volume

fraction. We see in Figure 1.3.4 that T blend
g decreases (resp. increases) when the free volume

fraction increases (resp. decreases). Hence, in out of equilibrium situations, as it is represented

by the blue and red dashed curves in Figure 1.3.3(a) and (b), the dynamics may either accelerate

or slow down when the free volume fraction increases or decreases respectively.

We can say from all this that the necessity of considering a compressible model lies essentially

in the fact that: -1- both species volume fractions can fluctuate independently from each other

which influences the out of equilibrium dynamics as it has just been discussed and -2- the

compressibility of the material affects its global dynamics. Finally, we argued that composition

fluctuations determine the width of the relaxation time spectrum [75]. Note that as Kosm is

two orders of magnitudes smaller than Kbulk, the dynamics is more heterogeneous in binary

systems than in a pure (simple or polymeric) glass forming liquid.

• Equation of dynamics

The total free energy in the system reads

G = ρ0

∫
G(φA, φB;P, T )d

3x (1.3.27)

at pressure P and temperature T. Here we have [d3x] = m3. For local variations of the concen-

tration in A and B polymers δφA et δφB, the variation of G reads

δG = ρ0

∫ [( ∂G
∂φA

)
φB ,P,T

δφA +
( ∂G
∂φB

)
φA,P,T

δφB

]
d3x (1.3.28)
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By using the above definition for chemical potential and the conservation equations which read

∂φA

δt
= −�∇ ·�jA ⇒ δφA = −δt�∇ ·�jA

∂φB

δt
= −�∇ ·�jB ⇒ δφB = −δt�∇ ·�jB (1.3.29)

we obtain

∂G

∂t
=− ρ0

∫
μA(φA, φB, P, T ) �∇ ·�jA d3x

− ρ0

∫
μB(φA, φB, P, T ) �∇ ·�jB d3x

(1.3.30)

which yields

∂G

∂t
=ρ0

∫
�∇μA(φA, φB, P, T ) · �jA d3x

+ ρ0

∫
�∇μB(φA, φB, P, T ) · �jB d3x

(1.3.31)

The general expression reads

∂G

∂t
= −ρ0

∫ [
�FA ·�jA + �FB ·�jB

]
d3x (1.3.32)

�FA and �FB are the thermodynamic forces which drive the relaxation of the system in the frame

of Onsager’s formalism. Within this formalism, the fluxes are proportional to the forces. We

assume:

�jA = λA(φA, φB)�FA = −λB(φA, φB)

T
�∇μA(φA, φB, P, T )

�jB = λB(φA, φB)�FB = −λB(φA, φB)

T
�∇μB(φA, φB, P, T )

(1.3.33)

Evolution equations finally read

∂φA

∂t
= �∇ ·

(λA(φA, φB)

T
�∇μA(φA, φB, P, T )

)
∂φB

∂t
= �∇ ·

(λB(φA, φB)

T
�∇μB(φA, φB, P, T )

) (1.3.34)

where the temperature T and the chemical potential are in Joules. Furthermore quantity

λA/B are diffusion coefficients ([λ] = m2.s−1) which depend on local relaxation times τ : λ ∼
a2/τWLF where a corresponds to the size of a monomer. We conclude from this that driving

forces are given by chemical potential gradient (�FA/B = −�∇μA(φA, φB, P, T )) and currents

are along chemical potential gradients, which is usual in diffusion theory. However, in our

case, relaxation times are explicit functions of local composition, hence, diffusion coefficients
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depend also on local composition and are not constant. This is a very important specificity of

this diffusion model, which makes it different from the Fick model which assumes a constant

diffusion coefficient. Finally, a derivation of Ficks laws from our model has been performed in

appendix 1.B.

1.4 Solving the model

We give a representation in Figure 1.4.1 of the 2D square lattice on which the physical model

described above is solved. The spatial resolution of the system is equal to the size of a dynamic

heterogeneity ξ ∼ 3− 5nm which reads:

ξ =
(Nc

ρ0

)1/3

(1.4.1)

where Nc is a input parameter of the model which is put equal to 500 in this work. Each

site composed of both component volume volume fraction φA(i) and φB(i), exchange with

its next neighbors, and driving forces which control the matter exchanges between sites is

computed by means of the thermodynamical model described in previous section. The coupling

between relaxation times and sites composition gives rise to a spatial distribution of relaxation

times in the whole system. In case of polymer solvent system, the film is in contact with a

solvent reservoir at one side and the opposite side is solid like. In other directions, we apply

periodic boundary conditions. By changing the solvent reservoir activity(chemical potential

equivalently), solvent molecules are allowed to penetrate or evaporate the system, but the

polymer is not allowed to exchange with the reservoir. In case of polymer blends, we consider

periodic boundary conditions in both directions. Note that in this case, the system will be

always 30×30 cells large. According to the 2D-lattice model proposed above, we solve the

discretized form of equations (1.3.34). We have at a site i:

∂φA(i)

∂t
=

∑
<j>

γ
(i,j)
A

[(
μ
(j)
A − μ

(i)
A

)]
(1.4.2)

∂φB(i)

∂t
=

∑
<j>

γ
(i,j)
B

[(
μ
(j)
B − μ

(i)
B

)]
(1.4.3)

where < j > accounts for next neighboring sites. Following transformations have been per-

formed to write equations 1.4.2 and 1.4.3:

μi
A/B

T
→ μi

A/B

λ
(i,j)
A/B

ξ2
→ γ

(i,j)
A/B = 1/τWLF

t/N2/3
c → t
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Figure 1.4.1: Schematic representation of the 2D-spatial model in case of polymer blends (Left)
and polymer-solvent systems (Right). In both systems, every sites are of the size of a dynamic
heterogeneity (ξ ∼ 3−5nm) and exchange matter with their next neighbors. In case of polymer
blends, we consider boundary conditions in both direction. In case of polymer-solvent systems,
the left hand side is in contact with a pure solvent reservoir, and the right hand side is solid-like.
We consider boundary condition in the other direction. The number of solvent molecules in
the film depends on the activity of the reservoir (as). The latter can be changed arbitrarily in
time, which makes that the quantity of solvent within the system can vary.

Note that dimensionless chemical potential μi
A/B are of order unity.

We will specify quantity γ later on. Moreover, α is a dimensionless parameter, smaller than

one, which incorporates the difference of molecular weights between both species. We note:

γi,jA = γi,j

γi,jB = αγi,j
(1.4.4)

• Composition fluctuations: Langevin formalism

The aim now is to include fluctuations in equations (1.4.2) and (1.4.3). To do so, let us

consider a very simple system, constituted only by one subunit i of volume Nc in contact with

a reservoir denoted i+1. We consider the statistics and the dynamics of the fluctuations between

the reservoir and the subunit. Note that in this discussion, we consider the dimensionless free

energy -i.e. G/T → G - and dimensionless chemical potentials -i.e. μi
A/B/T → μi

A/B-.

The evolution equations given in equations 1.4.2 and 1.4.3 for this simple system are

∂φi
A

∂t
= γi,i+1(μi+1

A − μi
A)

∂φi
B

∂t
= αγi,i+1(μi+1

B − μi
B)

(1.4.5)
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One can then calculate the chemical potentials of both species in subunit i by the following

approximation:

μi
A = μi+1

A +
∂μi+1

A

∂φA

(
φi
A − φi+1

A

)
+
∂μi+1

A

∂φB

(
φi
B − φi+1

B

)
μi
B = μi+1

B +
∂μi+1

B

∂φA

(
φi
A − φi+1

A

)
+
∂μi+1

B

∂φB

(
φi
B − φi+1

B

) (1.4.6)

where μi+1
A and μi+1

B are the chemical potentials of species A and B in the reservoir. One has

then

∂φi
A

∂t
= −γi,i+1

(∂μi+1
A

∂φA
δφi

A +
∂μi+1

A

∂φB
δφi

B

)
∂φi

B

∂t
= −αγi,i+1

(∂μi+1
B

∂φA

δφi
A +

∂μi+1
B

∂φB

δφi
B

) (1.4.7)

with δφi
A = φi

A − φi+1
A and δφi

B = φi
B − φi+1

B . Above equation reads

∂

∂t

(
δφi

A

δφi
B

)
= −γi,i+1

(
1 0

0 α

)
∂2G

(
δφi

A

δφi
B

)
(1.4.8)

where ∂2G is the dimensionless version of the matrix given in equation 1.3.13 calculated with

the concentrations φi+1
A and φi+1

B of the reservoir. The equation (1.4.8) is a relaxation equation

without thermal fluctuations. δφi
A and δφi

B relax to zero which corresponds to the equality

of concentrations between the subunit i and the reservoir i + 1. Let us add here the effect of

thermal noise (δψA, δψB) regarding the evolution of the quantities δφi
A and δφi

B. Let us write

∂

∂t

(
δφi

A

δφi
B

)
= −

(
γi,j 0

0 αγi,j

) [
∂2G

(
δφi

A

δφi
B

)
−

(
δψA

δψB

) ]
(1.4.9)

which we write as
∂

∂t

(
δφi

A

δφi
B

)
= L

[
−∂2G

(
δφi

A

δφi
B

)
+ δψ

]
(1.4.10)

with

L =

(
γi,j 0

0 αγi,j

)
(1.4.11)

δψ =

(
δψA

δψB

)
is the contribution of thermal noise. The thermal noise is introduced as a white

noise. The statistics of δψ is chosen such that the distribution of concentration fluctuations in

subunit i satisfies to the relation :

P (δφi
A, δφ

i
B) ∝ exp

(
−Nc

2
(δφi

A, δφ
i
B)∂

2G

(
δφi

A

δφi
B

))
(1.4.12)
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Then, the correlation must satisfy to the relation [20]

< δψα(t)δψβ(t
′) >=

2(L−1)α,β
Nc

δ(t− t′) (1.4.13)

where δ(t− t′) is the Dirac δ function. α and β design A or B. One obtains

< δψA(t)δψA(t
′) >=

2(γi,j)−1

Nc
δ(t− t′)

< δψB(t)δψB(t
′) >=

2(αγi,j)−1

Nc
δ(t− t′)

< δψA(t)δψB(t) >=< δψB(t)δψA(t) >= 0

(1.4.14)

The equations we have just written describe the dynamics of the fluctuations between one

isolated subunit in contact with a single reservoir. Let us come back now to the spatial problem.

A given subunit is in contact with several reservoirs, which are the neighboring subunits, those

number we denote by p. In 3D, one must consider p = 6 such neighbors on a cubic lattice,

or p = 4 in 2D on a square lattice. Each neighbor exchanges monomers with the considered

subunit and these fluctuations contribute to the total concentration fluctuation of the considered

subunit i. These are random and independent contributions.

∂

∂t

(
δφi

A

δφi
B

)
=

−
∑
<j>

(
γi,j 0

0 αγi,j

) [
∂2G

(
δφi,j

A

δφi,j
B

)
−

(
δψi,j

A

δψi,j
B

) ] (1.4.15)

where δφi,j
A = φi

A − φj
A and δφi,j

B = φi
B − φj

B and δψi,j
A andδψi,j

B are respectively the species A

and B fluctuations from site j to site i. Close to equilibrium and on average, the concentration

of sites j is the average concentration φA and φB. The evolution equations become

∂

∂t

(
δφi

A

δφi
B

)
= pL

[
−∂2G

(
δφi

A

δφi
B

)
+

1

p

∑
<j>

δψi,j

]
(1.4.16)

The thermal fluctuations δψi,j are random variables independent from each other. We deduce

that each of them satisfy the same correlations as those obtained when a single neighbor was

present. Indeed, by writing

δψα =
1

p

∑
<j>

δψi,j
α (1.4.17)

where α=A or B, and by using equations 1.4.13 we deduce

< δψα(t)δψβ(t
′) > =

1

p2

∑
<j>

< δψi,j
α (t)δψi,j

β (t′) >

=
2(pL)−1

αβ

Nc
δ(t− t′)

(1.4.18)
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and we obtain the correlation functions for the fluctuations:

< δψi,j
A (t)δψi,j

A (t′) >=
2(γi,j)−1

Nc
δ(t− t′)

< δψi,j
B (t)δψi,j

B (t′) >=
2α(γi,j)−1

Nc
δ(t− t′)

< δψi,j
A (t)δψi,j

B (t′) >= 0

(1.4.19)

We take these fluctuations into account now in the evolution equations (1.4.2) and (1.4.3). The

evolution equations for the concentration of monomers A and B at site i are then

∂φA(i)

∂t
=

∑
<j>

γ(i,j)
(
μ
(j)
A − μ

(i)
A + δψi,j

A

)
∂φB(i)

∂t
=

∑
<j>

γ(i,j)
(
α(μ

(j)
B − μ

(i)
B ) + δψi,j

B

) (1.4.20)

In order to perform numerical integration, equations 1.4.20 in the introduction are des-

critized ie.:
ΔφA(i)

δt
=

∑
<j>

γ(i,j)
[(
μ
(j)
A − μ

(i)
A

)
+ δi,jA

]
(1.4.21)

ΔφB(i)

δt
=

∑
<j>

γ(i,j)
[
α
(
μ
(j)
B − μ

(i)
B

)
+ δi,jB

]
(1.4.22)

where δt is a time step and Δφα(i) = φα(i)(t + δt) − φα(i)(t). The discretized thermal noise

is a random variable which we write δi,jA = β
√

2
Ncγi,jδt

and δi,jB = β
√

2α
Ncγi,jδt

where β a random

variable that follows Gaussian distribution of variance unity. Note that the method followed

for determining the time step is presented in Appendix 1.D.

In case of polymer solvent system, solvent is treated as a simple molecule, i.e. XA = 1 and

according to equations 1.4.20, solvent is the A species and the polymer the B species.

Sites located at the film/reservoir interface interact with the reservoir which imposes a chemical

potential on the system μres
s = ln(as) where as is the reservoir activity and μres

s the dimensionless

reservoir chemical potential. We consider the following driving force F
film/res
s for driving the

matter exchange between the system and the reservoir:

F film/res
s = (ln(as)− μs(i)) (1.4.23)

The kinetic coefficient is taken equal to the relaxation time of the considered site i. Hence the

flux of solvent molecules j
film/res
s is:

jfilm/res
s = γ(i)(ln(as)− μs(i)) (1.4.24)
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By inserting this term in equations 1.4.20 we obtain for sites i at the film/reservoir interface:

∂φs(i)

∂t
=
∑
<j>

γ(i,j)
[(
μ(j)
s − μ(i)

s

)
+ δi,js

]
+ γ(i)(ln(as)− μs(i))

(1.4.25)

∂φp(i)

∂t
=

∑
<j>

γ(i,j)
[
α
(
μ(j)
p − μ(i)

p

)
+ δi,jp

]
(1.4.26)

• Implementation of the facilitation mechanism

Let us now discuss about kinetic coefficients γi,j ∼ 1/τ i,j . According to facilitation mechanism,

we assume that the exchange kinetics between two sites is controlled by the faster

relaxation time, i.e.

γi,j = max
(
γ(i) ; γ(j)

)
(1.4.27)

where γ(i) and γ(j) are calculated as function of the local concentration in site i and j. As an

example, in Figure 1.4.2, we schematise two sites i and j, both having a certain composition

in Slow species and Fast species. The site i have a faster internal relaxation time than site j

according to the difference of composition between both sites. Hence, in this example, kinetic

coefficient is γi,j = γi thanks to 1.4.27 and the slow domain j would melt in time scales given

by the relaxation times of site i: τfast. Note that the diffusion scale factor N
2/3
c τfast is included

in kinetics coefficient γ(i). Through this example, we show that taking the faster relaxation

time to control the exchange between two sites is coherent with the facilitation mechanism.

• Contraction and dilation of the system

In order to integrate the mechanical relaxation in the system, one should define an evolution

equation for the stress tensor σi,j coupled to the diffusion equations. This has not been done

here because it is too complicated at this stage of the development of the model. In the view of

the chosen geometry, we integrate the mechanical interaction at long distance by considering the

system’s deformation layer by layer. Since, physically, the stress tends to make the deformation

homogeneous, layers deform homogeneously as schematized in Figure 1.4.3. In case of polymer

blends, layers can deform in both directions, whereas in case of polymer solvent, we consider

the deformation of layers parallel to the film/reservoir interface.

We write N(l) the volume of a site on a given layer l. The evolution equation for N(l) reads:

dN(l)

dt
= −N(l)

τ layerα

1

nlayer

∑
layer

∂G

∂N
(1.4.28)

where nlayer is the number of sites on the layer, and the term

1

nlayer

×
∑
layer

∂G

∂N
= 〈 ∂G

∂N
〉layer
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Figure 1.4.2: Schema representing two sites i and j which both have a certain composition in
Slow and Fast component. Black arrow indicates the Slow component flux direction and the
brown one the Fast componeent flux direction. Flux direction is determined by the difference
Δμfast/slow = μi

fast/slow − μj
fast/slow of chemical potential between both sites:

Δμfast > 0 ⇒ flux : i→ j
Δμslow < 0 ⇒ flux : j → i

Following 1.4.27, the exchange kinetics between site i and j is controlled by the relax-
ation time τ i ∼ 1/γi

This is coherent regarding the facilitation mechanism.

is the driving force which controls the volume evolution. This term is statistically zero at

thermodynamic equilibrium. Following equation 1.4.28, the deformation kinetics of a given

layer, is controlled by α-relaxation times: τ layerα . The definition of τ layerα is given below.

The time derivative of φk(i) =
Nk(i)
N(i)

gives:

dφk(i)

dt
=

d

dt

(Nk(i)

N(i)

)
= −φk(i)

N(i)

dN(i)

dt
(1.4.29)

where Nk(i) is the number of monomer k at site i which is assumed to be conserved. One then

obtains for species A and B:

dφA(i)

dt
= φA(i)

1

τ layerα nlayer

∑
layer

∂G

∂N

dφB(i)

dt
= φB(i)

1

τ layerα nlayer

∑
layer

∂G

∂N

(1.4.30)
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Figure 1.4.3: Schematic representation of the 2D-square lattice in case of polymer blends (Left)
and polymer-solvent systems (Right). The total volume of the system can change by taking into
account the contraction/dilatation of layers. Each of them can deform independently from each
other, and the deformation of a given layer is homogeneous: the volume N(l) of a all sites on a
layer l change the same way. In case of polymer blends, we consider the contraction/dilatation
of layer in both directions, where as in the other case, only layers parallel to the film/resservoir
interface can contract or dilate. Finally, the deformation kinetics is driven by the layer α-like
relaxation times (τ layerα ).

By adding such a contribution in equations 1.4.20, one finally has:

∂φA(i)

∂t
=

∑
<j>

γ(i,j)
[(
μ
(j)
A − μ

(i)
A

)
+ δi,jA

]
+ φA(i)

N
2/3
c

τ layerα nlayer

∑
layer

∂G

∂N
(1.4.31)

∂φB(i)

∂t
=

∑
<j>

γ(i,j)
[
α
(
μ
(j)
B − μ

(i)
B

)
+ δi,jB

]
+ φB(i)

N
2/3
c

τ layerα nlayer

∑
layer

∂G

∂N
(1.4.32)

The tensorial expression for the osmotic stress reads:

σ̃ = −P.Id

where Id is the identity matrix. The average osmotic stress in the layer is given by:

〈σ〉layers ≡ 1

nlayer

∑
layer

∂G

∂N
× Tρ0

Nc
(1.4.33)

This quantity has the dimension of a pressure and is zero at thermodynamic equilibrium.

• Distribution of relaxation times and α-relaxation times

As already mentioned in the general introduction, distributions of relaxation times in binary

systems are estimated to be spanning 6 decades. Numerically, dealing with such large distri-

butions might be time consuming. In our model we get round this issue by computing sharper
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Figure 1.4.4: Schematic representation of a relaxation times distribution as it is obtained by
experimental measurements (full black curve) and as it is obtained by numerical simulation
(dashed black curve). Numerical distributions are typically 4 decades large whereas experi-
mental distributions are estimated to be 6 decades large. We thus define the α-relaxation time
(τα) as τα = κ× τ 10%slow with κ = 100− 1000 a numerical constant. In this work we take κ = 500
in order to obtain 6 decades large effective distributions to match physical situations.

distribution (3-4 decades typically) as compared to real ones as it is schematised in Figure

1.4.4. Distributions as they are computed numerically represent the fastest part of the real dis-

tribution which drives the diffusion of molecular species. In addition we define the α-relaxation

times as

τα = κ× τ 10%slow

with κ a numerical constant of order 100-1000 and τ 10%slow the 10% slowest relaxation times of

the numerical distribution. We thus obtain 6 decades large effective distributions in order to

match physical situations. In this work, we take κ = 500 as an intermediate value between 100

and 1000.

• Interfacial energy

When studying phase separating systems, one needs to a include a non local spatial term in

the total free energy to take into account the surface tension which drives the coarsening of

domains which are forming. To do so, we make use of the ”square gradient” model [89]. By

considering such a non local contribution, the total free energy in the system reads

G =ρ0

∫ (
G(φA, φB, P, T )

+ ã
∥∥∥�∇φA

∥∥∥2

+ b̃
∥∥∥�∇φB

∥∥∥2

+ 2c̃�∇φA · �∇φB

)
d3x

(1.4.34)

where G is given by 1.3.7 and positive coefficients ã, b̃ and c̃ are in Joules times square meter

for homogeneity reasons.
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We define μ̃i as the following:

μ̃A =
δG

δφA
= μA − 2ãΔφA − 2c̃ΔφB

μ̃B =
δG

δφB
= μB − 2b̃ΔφB − 2c̃ΔφA

(1.4.35)

where μA/B are defined in equations 1.3.10 and 1.3.11. The quantity μA/B appearing in equa-

tions 1.4.20 is replaced by μ̃A/B when considering polymer blends. In this case, when performing

numerical integrations of equations 1.4.20, quantities μ̃A/B are expressed in unit of T , the Lapla-

cian operator appearing in expression 1.4.35 is descritized at the scale of the spatial resolution

of the 2D square lattice, and we redefined ã, b̃ and c̃ as dimensionless quantities:

ã = − a

T
× l2

ξ2

b̃ = − b

T
× l2

ξ2

c̃ = − c

T
× l2

ξ2

(1.4.36)

with l the typical size of a monomer. By using the relation 1.4.1 one finally obtains

ã = − a

T
× 1

N
2/3
c

= − a

T
× 1

L

b̃ = − b

T
× 1

N
2/3
c

= − b

T
× 1

L

c̃ = − c

T
× 1

N
2/3
c

= − c

T
× 1

L

(1.4.37)

where L is a parameter of order ten. Finally, a derivation from our model of some standard

results of surface theory is performed in appendix 1.C.
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1.5 Equilibrium in polymer blend and polymer solvent

systems

In this section we illustrate our model by studying thermodynamic equilibrium in polymer

blends and polymer solvent system using the spatial model described in previous sections. We

also compare results provided from numerical resolution of the spatial model and the theory.

Let us first consider the case where relaxation times are fixed. Distributions of polymer

and solvent composition are given in Figure 1.5.1. We observe a perfect fit between distri-

butions obtained from the simulation and the ones obtain from theory. The system follows

then a Boltzmann distribution at equilibrium when dynamics is homogeneous. Let us now

consider the second situation where composition fluctuations are coupled with the glass tran-

sition temperature of the system. We observe that (see Figure 1.5.2) the distribution given

by numerical simulation and theory match quite well, though numerical distributions are a

little sharper than theoretical ones. Regarding equilibrium relaxation times distributions we

observe in Figure 1.5.3 that the distribution of relaxations times at equilibrium widens and

translates toward longer times when approaching Tg. Snapshots of the system in term of the

logarithm of relaxation times and solvent composition at equilibrium given in Figure 1.5.4 show

that relaxation times on a given are long if it contains an excess of slow components, while in

contrast they are fast if the site contains an excess of fast components. Finally, the coupling

between composition fluctuations and the blend Tg gives rise to a wide spatial distribution of

relaxation times in the whole system where slowest subunits are forming a rigid network inside

which solvent molecules diffuse through fastest subunits.
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Figure 1.5.1: Distribution of solvent and polymer volume fraction for a system at equilibrium.
Nc = 500 here, and relaxation times are equal to one second. Blue curve is the theoretical
curve obtained from equation 1.A.8 in appendix 1.A.2. The red one is given when solving the
spatial model. Accordance between theory and numerical results is very good.
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Figure 1.5.2: (Left) Distributions of polymer and solvent volume fraction fluctuations at equi-
librium in polymer solvent system (Red curves). The system is at equilibrium with the solvent
reservoir. (Right) Distributions of fast and slow polymer volume fraction in a polymer blend
with symmetric composition. The system is in a homogeneous molten state 10K above the
blend critical temperature. The phase diagram and the glass transition temperature of the
blend are given in Figure 2.2.1. The numerical curves are compared to theoretical ones. The-
oretical distributions are given by Equation 1.3.20. Wether it is for polymer-solvent system
or for polymer blends, equilibrium composition fluctuations distributions obtained numerically
and theoretically match in a satisfying way.
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Figure 1.5.3: Distribution of relaxation times at different temperatures for a polymer solvent
system equilibrated at activity 0.21. For this activity, T blend

g = 325.5K.

Figure 1.5.4: Snapshots in term the logarithm of relaxation times (Left panel) and solvent
composition (Right panel) in a polymer solvent system at equilibrium at Tg−10K. Parameters
of the system are that given in Figure 1.5.2. We see that at equilibrium, internal relaxation
times on every sites of the system depend on their composition: the higher the solvent (resp.
polymer) composition, the lower (resp. higher) the relaxation times.
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1.6 Conclusion

In this section we have introduced the spatial model for describing diffusion in polymer blends

or polymer-solvent systems close to or below Tg.

The 2-D spatial model incorporates the heterogeneous nature of the dynamics on the scale of

a dynamic heterogeneity (spatial resolution of the model 3-5 nm) by coupling dynamics and

composition fluctuations which allows for obtaining spatial distribution of relaxation times.

Diffusion equations are explicitly solved on a scale of a dynamic heterogeneity (ξ ∼ 3− 5nm),

and this diffusion model does not follow a Fick model which assumes that diffusion coefficients

(related to relaxation times) are independent of composition.

We consider that matter exchanges, between a given site and its next neighbors, are driven

by chemical potential gradient. Equation of dynamics follow an Onsager principle and the

fluctuating term which controls spatial composition fluctuations in the system is written in a

Langevin scheme. The fluctuating term is defined such that Boltzmann statistics is recovered

at equilibrium. Finally we have seen that composition fluctuations gives rise to a very heteroge-

neous spatial distribution of relaxation times where slowest subunits form a rigid network inside

which molecules diffuse through fastest subunits. In this model, contraction and the dilation

of the system happens layers by layers and we consider that the deformation is homogeneous

at this scale. Moreover, the deformation kinetics of a layer is controlled the α-relaxation times

of a layer.

This spatial model and this formalism, which combines the diffusion of molecules and the

mechanical relaxation of the system, allows for studying dynamics and relaxation mechanisms

in polymer blends or polymer solvent systems on a scale of few nanometer and more. Thanks to

this coarse-grained model, we describe diffusive process which depends on system’s history. Fi-

nally such a coarse-grained approach is important to reduce the number of physical parameters

we have to deal with.



Appendix

1.A Thermodynamics

1.A.1 Comparisons with experimental results: semi-quantitative agree-

ment

Polymer blend c (10−20J) XPS XPVME or PB Tc (K) T exp
c (K)

PS-PVME (1) −1.85327(0.15%) 89 886 482.1 482
PS-PVME (2) −1.85519(0.25%) 200 886 423.1 424

PS-PVME (3) −1.85611(0.30%) 515 886 390.5 391
PS-PVME (4) −1.85645(0.32%) 1160 886 372.1 373

PS-PVME (5) −1.85668(0.33%) 1990 886 370.1 370
PS-PB (1b) −1.86795(1.32%) 23 49 426.1 427

PS-PB (2b) −1.86772(1.33%) 34 49 492.6 494

Table 1.1: Values of the parameters we used for calculating the binodal and spinodal lines displayed in Figures
1.A.1, 1.A.2 and 1.A.3 at pressure P = 1bar. The interaction energies are−1.9635×10−20J (PS);−1.744×10−20J
(PVME) and −1.825× 10−20J (PB). c is slightly adjusted to fit the data. In the second column, we indicate in
bracket the difference (in %) between the adjusted value c for each blends and the theoretical value c = −

√
ab.

T exp
c

is the critical temperature obtained experimentally, while Tc is the one obtained from the model. The
data regarding the polymer molecular weights are given in Table 1.2

Polymer blend M
(a)
w (PDI ) M

(b)
w (PDI )

PS-PVME (1) 1, 0× 104(1.06) 5.15× 104(NC)
PS-PVME (2) 2.04× 104(1.06) 5.15× 104(NC)

PS-PVME (3) 5.1× 104(1.06) 5.15× 104(NC)
PS-PVME (4) 1.1× 105(1.06) 5.15× 104(NC)

PS-PVME (5) 2× 105(1.06) 5.15× 104(NC)
PS-PB (1b) 2.4× 103(NC) 2.6× 103(1.13)

PS-PB (2b) 3.5× 103(1.06) 2.6× 103(1.13)

Table 1.2: Experimental molecular weight M
(a)
w of the PS and experimental molecular weights M

(b)
w of the

PB or the PVME used to compare the experimental binodal curves and the ones obtained from our model (see
Table 1.1 and Figures 1.A.1,1.A.2 and 1.A.3). The Polydispersity index (PDI) is also given unless it was not
given in the original reference (NC).

We consider two different blends: Polystyrene (PS)/poly(vinyl methyl ether) (PVME) and

Polystyrene/Polybutadiene (PB) blends studied in [67] and [68] respectively. Experimental data

that we consider for comparing our model to experiments are cloud point curves. If a state of

61
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Figure 1.A.1: Spinodal and binodal curves of different PS/PVME blends as studied in refer-
ence [67], at pressure P = 1 bar. We take ρ0 = (ρPS

0 + ρPVME
0 )/2 = 1.6525 × 1028m−3 where

ρPS
0 and ρPVME

0 are pure PS and PVME close packing density obtained form PVT fits [70].
The solid lines represent the theoretical spinodal curve, the dotted lines represent the theoreti-
cal binodal curves while the point lines with the same color represent the experimental curves.
The parameters are given in Tables 1.1 and 1.2. The parameter c is slightly adjusted in order
to provide a better fit to the experimental data of the critical temperatures. For all curves, the
molecular weight of PVME is XPVME = 886. green curve (blend (2) in Tables 1.1 and 1.2):
XPS = 200; Tc = 423.1 K, experimental Tc ≈ 424 K; magenta curve (blend (4) in Tables 1.1
and 1.2): XPS = 1160, Tc = 372.1K, experimental value Tc ≈ 373 K
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Figure 1.A.2: Spinodal and binodal curves of different PS/PVME blends at pressure P = 1bar
as studied in reference [67]. We take ρ0 = (ρPS

0 + ρPVME
0 )/2 = 1.6525 × 1028m−3 where

ρPS
0 and ρPVME

0 are pure PS and PVME close packing density obtained from PVT fits [70].
The solid lines represent the theoretical spinodal curve, the dotted lines represent the theoretical
binodal curves while the point lines with the same color represent the experimental curves. For
all curves, the molecular weight of PVME is XPVME = 886. red curve (blend (1) in Tables 1.1
and 1.2): XPS = 89, Tc = 482.1 K, experimental Tc ≈ 482 K; blue curve (blend (3) in
Tables 1.1 and 1.2 ): XPS = 515, Tc = 390.5 K, experimental Tc ≈ 391 K; black curve (blend
(5) in Tables 1.1 and 1.2): XPS = 1990, Tc = 370.1 K (black), experimental value Tc ≈ 370 K.
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Figure 1.A.3: Spinodal and binodal curves of two different PS/PB blends at pressure P = 1bar
as studied in reference [68].We take ρ0 = (ρPS

0 +ρPB
0 )/2 = 1.604×1028m−3 where ρPS

0 and ρPB
0

are pure PS and PB close packing density obtained form PVT fits [70]. The parameters are
given in Tables 1.1 and 1.2. The black curves correspond to the theoretical spinodals and red
ones represent theoretical binodals. The squares and circles correspond to the experimental
data. dashed line (blend (2b) in Tables 1.1 and 1.2): XPS = 34, XPB = 49 Tc = 492.6 K,
experimental Tc ≈ 494 K. solid line (blend (1b) in Tables 1.1 and 1.2): XPS = 23, XPB = 49,
Tc = 426.1 K, experimental Tc ≈ 427 K).

quasi-static equilibrium was reached, the experimental curve would correspond to binodal ones.

We plotted in Figures 1.A.1, 1.A.2 and 1.A.3 both spinodal and binodal curves for PS/PVME

and PS/PB blends. For computing binodal curves, we consider two sets of volume fractions

(φ̃1
A, φ̃

1
B(φ̃

1
A)) and (φ̃2

A, φ̃
2
B(φ̃

2
A)) that correspond to the composition of both phase 1 and 2 in

polymer A and B at temperature T . φ̃k
B(φ̃

k
A) are solutions of Eq.(1.3.8). These two sets are

chosen such as the following equations are satisfied:

( ∂G
∂φA

(φ̃1
A, φ̃

1
B(φ̃

1
A))

)
T,P

=
( ∂G
∂φA

(φ̃2
A, φ̃

2
B(φ̃

2
A))

)
T,P( ∂G

∂φB

(φ̃1
B, φ̃

1
A(φ̃

1
B))

)
T,P

=
( ∂G
∂φB

(φ̃2
B, φ̃

2
A(φ̃

2
B))

)
T,P

(1.A.1)

The parameters and the critical temperatures obtained with the model and the experimental

Tc are given in Table 1.1. These results depend only on the parameters a, b and ρ0 which

have been obtained by PVT fits [70]. The close packing density ρ0 is taken as the average of

the corresponding parameters of each component. We just consider polymers for which this

parameter is found to be close from each other from PVT data. The curves are calculated

under an applied pressure P = 1 bar. The parameter c has been slightly adjusted for each

blends in order to obtain the right critical temperature. We could obtain a semi-quantitative

agreement regarding the dependence of the critical temperature as a function of the molecular

weight of polystyrene, which was varied between about 104 g/mole and 2 × 105 g/mole (see

Table 1.1). We observe in Figure 1.A.1 and 1.A.2 that binodal curves reproduce experimental

data satisfactorily. We note however, for all sets, a slight divergence between our model and

experiments for high PS concentration part of the phase diagram, whereas matching regarding

high PVME concentration part is much better. In Figure 1.A.3, we see that binodal curve
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fits quite well the experimental data for the lower Tc curve. We observe that the fit with

experimental data is especially accurate for high molecular weight polymers. The fit for the

lower molecular weight polymers is not as good, though we have no interpretation for this.

1.A.2 Composition fluctuations distribution

By definition, we know that total composition fluctuations (δφ) distribution P in a system of

volume N is given by;

P (δφ) ∝ exp

(
− NΔG

T

)
(1.A.2)

where δφ =

(
δφA

δφB

)
with δφA/B =

δNA/B

N
. By using equation 1.3.12 of section 1.3 one finds:

P (δφA, δφB) ∝ exp

(
− N

2T

(
δφA, δφB

)
∂2G

(
δφA

δφB

) )
(1.A.3)

It is worth considering the expression of composition fluctuations distribution P (δA/B) for each

component A and B. We define the former as:

P̃
(
δφk

) ∝ ∫
d(δφk′)P (δφk, δφk′) (1.A.4)

where k and k′ refer to both polymeric species.

An exact expression of P̃ can be obtained analytically. Indeed, with β = N
2T
, one has:

P̃ (δφk

) ∝ exp
(− β∂2φ2

k
Gδφ2

k

) ∫
d(δφk′)e

−β
(
∂2

φ2
k′
G
)
δφ2

k′
−2β

(
∂2

φkφ
k′
G
)
δφkδφk′

∝ exp
(− β∂2φ2

k
Gδφ2

k

) ∫
d(δφk′)e

− 1

2α
δφ2

k′
−iyδφk′

(1.A.5)

with 1/(2α) = β
(
∂2φkφk′

G
)
and y = −2iβ

(
∂2φkφk′

G
)
δφk. By making use of a ”Hubbard-

Stratonovitch” transformation one obtains:

P̃ (δφk

) ∝ exp
(− β∂2φ2

k
Gδφ2

k

) 1√
2πa

e−
α
2
y2 (1.A.6)

which yields for polymer k = A/B:

P̃ (δφk

) ∝ exp

(
− N

2

[(
∂2φ2

k
G
) −

(
∂2φkφk′

G
)2

∂2
φ2

k′
G

]
δφ2

k

)
(1.A.7)

We write

Lk/k′ =
(
∂2φ2

k
G
) −

(
∂2φkφk′

G
)2

∂2
φ2

k′
G
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and we thus finally obtain:

P̃ (δφA/B

)
=

(√
2Tπ

NLA/B

)−1

exp

(
− N

2T
LA/Bδφ

2
A/B

)
(1.A.8)

By using notations introduced for matrix ∂2G in equation(1.3.13), quantity LA/B reads:

LA/B = a11 − a212
a22

. (1.A.9)

As it mentioned above, in the low temperature limit of interest, matrix coefficients aij are very

close numerically, so a11 ≈ a22. By using this assumption, we get:

LA/B = LB/A ≈ 2
det(∂2G)

Tr(∂2G)
≈ 2 λ2 . (1.A.10)

and finally, equation(1.A.8) becomes

P̃ (δφA/B

) ∝ exp
(− N

T
λ2δφ

2
A/B

)
(1.A.11)

1.A.3 Small angle neutron scattering in polymer blends

In a neutron scattering experiment an incident beam arrives on the studied sample and the

same beam is scattered afterward. We assume that the sample is composed of two polymers 1

and 2. The amplitude of the diffused beam is expressed in the Fourier space as:

A(q) =

NA∑
i=1

b1 exp(iq.Ri) +

NB∑
j=1

b2 exp(iqRj)

The quantity b1 and b2 are called diffusion length and can be positive or negative following the

considered polymeric species. By definition, the scattered intensity is given by:

I(q) =< |A(q)|2 > (1.A.12)

Let’s introduce the following quantity which correspond to a number of monomer per unit of

volume [m−3] at a point R in space:

nA(R) =

NA∑
i=1

δ(R−Ri) = ρ0φA(R)
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with ρ0 the close-packing density. With such a quantity, the amplitude of the scattered beam

reads:

A(q) =

∫
V

d3R exp(iq.R)(b1nA(R) + b2nB(R)) (1.A.13)

In terms of fluctuations:Δni(R) = ni(R)− < ni > (i = A,B), A reads:

A(q) =

∫
V

d3R exp(iq.R)(b1ΔnA(R) + b2ΔnB(R)) (1.A.14)

which gives:

I(q) = <

∫
V

d3Rd3R′ exp
(
iq.(R −R′)

)(
b21ΔnA(R)ΔnA(R

′)+

2b1b2ΔnA(R)ΔnB(R
′) + b22ΔnB(R)ΔnB(R)

)
>

(1.A.15)

In the zero wave length limit (q = 0), one obtains:

I(0) = ρ20 <

∫
V

d3Rd3R′(b21ΔφA(R)ΔφA(R
′)

+ 2b21b
2
2ΔφA(R)ΔφB(R

′)

+ b22ΔφB(R)ΔφB(R
′)
)
>

(1.A.16)

where Δφi(R) = φi(R)− < φi >. In the case where both polymers have similar diffusion

length, i .e. b1 = b2, one finds at temperature T:

I(0) ≈ 2

λ1
NTb21 ≈

ρ0T

Kbulk
Nb21

which corresponds to the expression of the scattered intensity by a pure sample of dimensionless

volume N and of bulk modulus Kbulk. We see that following this relation, the SANS intensity is

directly proportional to the volume of the sample. One can refer to [71] for more details about

calculations. The q dependance of the scattered intensity is also discussed in this reference.

Some results in the literature are given in term of an effective Flory Huggins interaction pa-

rameter χeff (P, T ) and experimentally, most of the investigations regarding phase separation

in polymer blends are performed thanks to neutron scattering in the small wave length limit.

The relation

χeff(T, P ) =
1

2

(
1

φAXA
+

1

φBXB
− N(b1 − b2)

2

I(0)

)
(1.A.17)

allows for obtaining an effective Flory interaction parameter with I(0). One can show that in

the low temperature limit, the scattered intensity reads:

I(0) ≈ NT (b1 − b2)
2

2λ2
=≈ Tρ0N(b1 − b2)

2

Kosm

(1.A.18)
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By using equations 1.A.17 and 1.3.17, we obtain:

χeff(T, P ) ≈ (φA + φB)

(
2c− (a+ b)

T

)
(1.A.19)

By taking φA + φB = 1, which is valid in the low temperature or infinite pressure limit, we

obtain the standard expression for the Flory-Huggins parameter [21].

1.B Derivation of Fick laws for diffusion

We propose here to derive Fick laws from our model.

In Equations 1.3.33, we have seen that flux are along chemical potential gradient. These

equations can be formulated in a different way, e.i:

�jA(�r) = −λA
T
�∇μA = − λ̃A

T
φA
�∇μA

�jB(�r) = −λB
T
�∇μB = − λ̃B

T
φB

�∇μB

(1.B.1)

where λ̃k = λk/φk, and let us remind that λ̃k is constant and do not depends on composition.

The expression of the chemical potential for the species A is given in equation 1.B.2.

μA =

(
∂G

∂φA

)
T,φB,P

=a
(
3(φA)

2 + 2φAφB

)
+ b(φB)

2 + 2c
(
2φAφB + (φB)

2
)

+ T

(
1

XA

ln(φA)− ln(1− φA − φB) +
1

XA

+
φA + φB

1− φA − φB

) (1.B.2)

We take XA = XB = 1 and a = b = c for simplicity and we note φA + φB = α where quantity

φA + φB does not vary and α is smaller than one. By using such a notation, one can find that

above equation 1.B.2 for μA reads:

μA(φA) = Θ + T ln(φ) (1.B.3)

where

Θ = 3aα2 + ln(1− α) +
α

1− α
+ 1

One hence obtains for current

�jA(�r) = −λ̃A�∇φA (1.B.4)

Following the same procedure, one has equivalently for species B:

�jB(�r) = −λ̃B �∇φB (1.B.5)
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These expressions for currents correspond to first Fick law which says that current follows com-

position gradients. If inserting these expressions in equations dealing species volume fraction

time evolution, one finds

∂φA

∂t
= −�∇ ·�jA = λ̃AΔφA

∂φB

∂t
= −�∇ ·�jB = λ̃BΔφB

(1.B.6)

which is the second Fick law.

1.C Derivation of some basics for interface theory

We present calculations which allow for obtaining well known basics of surface theory [80]. We

are particularly interested in giving an exact solution, in a mean field picture, of concentration

profiles at interface between two coexisting phases.

In last section we have seen that total free energy in the system is given by

G = ρ0

∫ [
G(φA, φB, P, T ) + ã

∥∥∥�∇φA

∥∥∥2

+ b̃
∥∥∥�∇φB

∥∥∥2

+ 2c̃ �∇φA · �∇φB

]
d3x (1.C.1)

where

G =
G

N
=a(φA + φB)φ

2
A + b(φA + φB)φ

2
B + 2c(φA + φB)φAφB

+ T

(
φA

XA
ln
(
φA

)
+
φB

XB
ln
(
φB

))

− T (φA + φB) ln
(
1− φA − φB

)
+
P

ρ0

(1.C.2)

For simplicity we take XA = XB = 1 and by using φA + φB = α we obtain G, at P = 0,

depending on one degree of freedom (φA = φ) only:

G = ρ0

∫ [
G(φ) + η

∥∥∥�∇φ∥∥∥2
]
d3x (1.C.3)

with η = ã+ b̃+ c̃, and

G =aαφ2 + bα(α− φ)2 + 2cαφ(α− φ) (I)

+ T

(
φ ln

(
φ
)
+ φ ln

(
α− φ

))
(II)

− Tα ln
(
1− α

) (1.C.4)

To perform calculations, we consider that volume fraction is very close to the critical one(φc)

i.e. φ � φc = α/2. This allows to define the field Ψ = φ− φc. By inserting field Ψ in term (I)
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Equation 1.C.4, one finds

(I) = aα(Ψ + φc)2 + bα(φc −Ψ)2 + 2cα(φc +Ψ)(φc −Ψ)

= A1Ψ
2 +B1Ψ+ C1

(1.C.5)

with

A1 = α(a+ b− 2c)

B1 = 2αφc(a− b)

C1 = α(a+ b+ 2c)

(1.C.6)

By developing term (II) in the vicinity of Ψ � 0 at fourth order, one finds:

(II) = T

(
φ ln

(
φ
)
+
(
α− φ

)
ln
(
α− φ

))

= T

((
Ψ+ φc

)
ln
(
Ψ+ φc

)
+
(
φc −Ψ

)
ln
(
φc −Ψ

))

� T

(
A2Ψ

2 +B2Ψ
4 + αln(α)− ln(2)

)
+O(

Ψ5
)

(1.C.7)

where

A2 = 1/φc

B2 = 1/6φc3
(1.C.8)

And finally, Equation 1.C.3 becomes

G = ρ0

∫ [
−A
2
Ψ2 +

B

4
Ψ4 +

η

2

∥∥∥�∇Ψ
∥∥∥2
]
d2x (1.C.9)

where constant term have been removed and A = 2(−A1 − TA2), B = 4B2T and η = 2η.

Moreover, we can omit the linear term because
∫
φd3x is fixed. By taking the second order

term at zero, which vanishes at the blend critical temperature Tc, this yields to

Tc = −A1/A2

We now aim at finding Ψ = Ψ(�r) which minimizes 1.C.9, i.e. which satisfies:

δG

δΨ
= 0

This equation is equivalent to equation:

−AΨ+BΨ3 − ηΔΨ = 0 (1.C.10)
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whose solution, in one dimension (y), is

Ψ(y) =

√
A

B
tanh

(y
ξ

)
(1.C.11)

with ξ =
√

2η/A. This solution is valid only if one considers that dΨ/dz = 0 for y = ±∞.

Quantity ξ is the width of the interfacial length or again bulk correlation length and behaves

like

ξ ∼ 1/
√
T − Tc

and so diverges when approaching Tc. Far from the interface, at equilibrium, phase composition,

in the approximation Ψ = φ− φc is Ψ0 = ±
√
A/B

In this part, we derived standard mean field results of surfaces theory from our model. At

interface, the concentration gradient is smooth, and the typical distance on which the profile

decreases is a function of the temperature. This distance is related to the bulk correlation

length, and the latter diverges when approaching the blend critical temperature. Furthermore,

these results can be mapped to the case of incompressible blends in the low temperature or

infinite pressure limit (α = 1). In this limit, standard results obtained with the Flory-Huggins

model are recovered.

1.D Method for determining the time steps

In this Appendix we discuss the method used for determining the time step δt when solving

dynamical equations of the model.

In order to determine δt, we consider the following. We note δφ a total density fluctuation

with φ = φA + φB. The probability density P to observe such a fluctuation on a scale ξ at

temperature T is given by:

P (δφ) ∼ exp

(
− 1

2

Kbulkξ
3

T
δφ2

)
(1.D.1)

We know that:

- Kbulk ∼ 1
2
Tρ0λ1

- ξ3 = Nc

ρ0

hence we can deduce from previous distribution(Dissipation-Fluctuation theorem) that:

< δφ >∼
√

T

Kbulkξ3
∼

√
2

Ncλ1
(1.D.2)
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Thanks to equation 1.4.20, the variation of a composition fluctuation for species k on a time

step δt is given by:

δφk ∼ δtγ

√
γ−1

Ncδt
(1.D.3)

Moreover we have δφ ∼ √
2δφk. We thus obtain:

δtγ

√
γ−1

Ncδt
=

1√
Ncλ1

(1.D.4)

which gives:

δt = θ
γ−1

λ1
(1.D.5)

with θ a coefficient smaller than 1 equal to 0, 1 typically . In our case, we chose γ−1 = τ fast10% as

the shortest time scales on which species diffuse in the material.

Following this method, the time step can adapt itself to the changes of dynamics in out of

equilibrium conditions. Furthermore, time step is a function of λ1 which depends on the

studied system (interaction parameters, chain sizes, temperature, pressure....). As already seen

previously, Kbulk ∼ 109Pa in polymeric liquids, one hence obtain:

λ1 ∼ 102

with ρ0 ∼ 1028m−3, T ∼ 4× 10−21J . The time step value is thus typically

δt ∼ 10−3 × τ fast10%

.

1.E Paires correlation function: size of morphologies

A pair correlation function, whose expression is given by Equation 1.E.1, is used here to compute

the evolution of the typical size of domains forming. This function is:

g(r; t) =< (φB(0)− φB)(φB(r)− φB) >t (1.E.1)

where the averaging is performing all over the film and φB is the average volume fraction of the

B species. A discretised version of this function on a 2D square lattice in the direction y reads:

gy(y; t) =
1

nx

nx∑
i

gyi(y; t) (1.E.2)

where:

gyi(y; t) =
1

ny

ny∑
j

(φB(i, j)− φB)(φB(i, j + y)− φB) . (1.E.3)
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Of course an equivalent function can be defined in the other direction by replacing y to x. You

can see in Figure 1.E.1 the typical shape of the normalized pair correlation function at three

different stages during a phase separation in a dynamically homogeneous polymer blends. The

value of the first zero, which corresponds to the typical size of domains, moves toward longer

distances when the time increases.

Figure 1.E.1: Normalized pair correlation functions at different stages of a phase separation
(blue: t=102s, yellow; t=103s and green: t=6.103s) at fixed relaxation (1 s) in a polymer blend
with symmetric composition. The first zero of the pair correlation function gives the average
size of domains.

1.F Time correlation functions: composition fluctuations

and relaxation times

Time auto correlation function of spatial composition fluctuations can be very useful to under-

stand diffusion mechanisms of different molecular species. By making use of such a function, we

can calculate the average terminal correlation time < τc > of composition fluctuations in the

whole system. This quantity is related to the time that one has to wait for composition fluctu-

ations to become uncorrelated. If a slow domain is surrounded by fast ones at a certain point

in space, the decorelation of the composition fluctuation is fast because diffusion of monomers

is driven by fast relaxation times. In contrast, if the slow dynamic heterogeneity is in contact

with slow ones, which is also very probable, the decorelation of the composition fluctuation is

slow. Thus < τc > is dominated by long relaxation times. The time correlation function in

term of spatial composition fluctuation reads:

SφB
1 (t0; t0 + t) =< (φB(r; t0)− φ̄B(t0))(φB(r; t0 + t)− φ̄B(t0 + t)) > (1.F.1)
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where < · > corresponds to the spatial averaging all over the film and φ̄B is the film average

volume fraction of B species. Time t0 represents the specific time from which we compute

function S
φp

1 = S
φp

1 (t0; t0+t), and time t, the elapsed time from tw. Average terminal correlation

time is defined as:

< τc >t0=

∫ +∞

0

SφB
1 (t0; t0 + t)dt (1.F.2)

By fitting the function SφB
1 with a stretched exponential

[
f(t) ∼ exp

(
− ( t

τ
)β
)]

one finds:

< τc >t0=
τ

β
Γ
( 1

β

)
(1.F.3)

where Γ(z) is the gamma function.

Since monomeric relaxation times of a dynamic heterogeneity is related to its internal com-

position, it may be useful to compute the correlation function in term relaxation times. This

function reads:

Sτ
1 (t0; t0 + t) =< (τ(r; t0)− τ̄ (t0))(τ(r; t0 + t)− τ̄(t0 + t)) > (1.F.4)

where τ̄ is the average relaxation time of the system.
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Chapter 2

Dynamics in polymer blends close to

and below the glass transition

temperature: phase separation and

rejuvenation

2.1 Résumé en français

Dans ce chapitre, nous étudions la dynamique dans les mélanges de polymères proche ou

en dessous de Tg dont au moins une des composantes du mélange est en dessous du seuil

d’enchevêtrement. Dans un premier temps, nous sommes intéressé au processus de séparation

de phase dans le cas où le système est équilibré dans un état fondu homogène avant d’être

trempé proche de Tg à des températures où il est immiscible : des domaines lents se forment

en coexistence avec des domaines rapides. Nous montrons dans ce cas que la dynamique ne se

ralentie pas instantanément, ce qui permet la formation rapide de petits noyaux de nucléation

autour desquels les domaines se forment par la suite. Les domaines lents, riches en polymère

haute Tg, vieillissent et grossissent au cours de la décomposition de phase, et en conséquent le

temps de diffusion et de coalescence de ces domaines augmente au cours du processus. Nous

montrons de façon semi quantitative qu’aux temps courts, la taille de ces domaines crôıt comme

le logarithme du temps ce qui montre que nous avons à faire à un processus très lent. Aux temps

longs, les domaines grandissent tout aussi lentement mais de façon chaotique. Nous attribuons

ce comportement au fait de la différence importante de mobilité entre les deux phases et à la

fusion partielle des domaines lents par la phase rapide.

Nous nous sommes intéressés dans un second temps au processus de rajeunissement de ces

systèmes –i.e. la température est augmentée dans un régime où le système est fondu et ho-

mogène. Nousmontrons dans ce cas que les domaines lents fondent plus vite que le temps écoulé

pendant le processus de vieillissement pour les former. Ceci met en évidence une asymétrie tem-

porelle entre les processus de vieillissement et de réchauffe. Nous montrons également de façon

phénoménologique que la fusion des domaines lents résulte de mécanismes de facilitation qui

75
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sont la conséquence de -1- la diffusion du polymère rapide en leur sein par l’interface -2- et de

la diffusion du vide induit par des effets de pression osmotique.

2.2 Introduction

In this chapter, we apply the spatial model to the case of polymer blends. We are first interested

in phase separation process close to or below the glass transition temperature of the blend. In

a second step, we study the rejuvenation process after the system has been phase separated

and aged close to or below Tg.

This section is organised as follow. We first present results of phase separation close to Tg, and

rejuvenation in case of symmetrical blends composed of polymers with low molecular weight. At

the end of this section, we study phase separation and rejuvenation in case of non-symmetric

blends where one of the components is below the entanglement threshold. Finally, results

regarding phase separation in dynamically homogeneous polymer blends are given in appendix

2.A.
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Figure 2.2.1: UCST phase diagram of a XA = XB = 50 blend as a function of the low Tg
polymer volume fraction. Interaction parameters are a = −2, 32 × 10−20J , b = −1, 595 ×
10−20J and c = −√

ab. The critical temperature is Tc = 320K. Low Tg polymer has a pure
component glass transition temperature equal to 255K and the high Tg polymer has a pure
component glass transition temperature equal to 355K. Dashed line represents the blend Tg
variation as a function of the low Tg polymer volume fraction. After cooling the system from
a homogeneous molten state (Blue arrow) down to temperature close to or below Tg, it phase
separates and fast domains (rich in low Tg polymer) appear in coexistence with a slow ones (rich
in high Tg polymer). By increasing again the temperature, the system remixes and rejuvenates
(rejuvenation).

2.3 Phase separation and aging in polymer blends close

to and below Tg

In case of polymer blends where components of different Tg’s are mixed together, we first study

phase separation processes close to the blend glass transition temperature. For that, we consider

a blend composed of small chains having similar mass. At a given composition, the system is

quenched from an homogeneous molten state down to Tg or below where it is unstable (See

Figure 2.2.1). Hence a slow phase rich in high Tg polymer can be formed in coexistence with

a fast one rich in low Tg component. We observe in Figure 2.3.1 and 2.3.3 that the dynamics

is fast at the beginning of the process. At longer times however, relaxation time distribution

widens and translates toward longer times and α-relaxation times increases with the aging time:

the system follows the so-called Struik -i.e.

τα ∼ tμ (2.3.1)

with μ ∼ 1 as it has already been observed in the past in the context of pure polymeric glass

forming liquids either by simulation technics or experimentally ([90, 41]). Finally, the slow

contraction of the system is at the origin of the slowing down of the dynamics because of the

reduction of the average free volume fraction in the system. Since dynamics is fast at the

beginning of the process, small nucleating seeds appear quickly as it can be observed in Figure

2.3.2 and 2.3.4. Relaxation times of the phase rich in slow polymer correspond to longer times of

the distribution, and dynamics of this phase slows down when the aging time increases. Hence,
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Figure 2.3.1: Distribution of relaxation times at different times tw = 103s; 105s; 107s during a
phase separation at Tg−10K. The system is initially equilibrated at Tg+30K and is composed
of 30% of high Tg polymer and of 70% of low Tg polymer. Equilibrium distribution of relaxation
times at Tg + 30K is also displayed in the figure (blue curve).
During the phase separation, the distribution of relaxation times widens when tw increases and
translates toward longer times, it contracts at short times though. At the end of the process,
the distribution spans many decades and is split in two parts: a first one at short relaxation
times which is related to the phase rich in low Tg polymer and a second one at longer relaxation
times related to the phase rich in high Tg polymer.
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Figure 2.3.2: Distribution of low(Left) and high(Right) Tg polymer composition at different
times tw = 103s; 105s; 107s during a phase separation at Tg − 10K. Thermal history of the
system is that given in Figure 2.3.1. The system is composed of 30% of high Tg polymer and
of 70% of low Tg polymer. Equilibrium distribution of relaxation times at Tg + 30K is also
displayed in the figure (blue curve).
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Figure 2.3.3: Evolution of α-relaxation times (Left) and volume (Right) after the temperature
quench at Tg − 10K. Thermal history of the system is that given in Figure 2.3.1.
α-relaxation times increases linearly with the aging time tw: τα ∼ tw. We see that the contrac-
tion of the sample is slow: the total volume decreases of 5% in 107s with respect to the initial
equilibrium volume Veq at Tg + 30K.

as it is visible in Figure 2.3.5 and Figure 2.3.4, domains rich in slow components are aging in

the same time they are forming, which makes their diffusion and coalescence times very long.

One can distinguish two distinct regimes in the slow growth process of forming morphologies.

a) Steady and logarithmic growth of domains at early stages

Growth of domains at short time scales is reported in Figure 2.3.5. Let us extract a growth

law for domains size evolution. As it is shown in appendix 2.A the average size R of domains

reads:

R2dR

dt
∼ 2

λ

T
× ηa3 (2.3.2)

with λ a diffusion coefficient in Joules per surface unit, η the surface tension in Joules per

meter, a the size of a monomer in meters and T the temperature in Joules. In the case of aging

systems close to the glass transition, local diffusion coefficient λ depends on the history of the

system and can be written as: λ ∼ a2/τ where τ is a monomeric relaxation time. We have seen

that relaxation times grow linearly with time: τ ∼ t. Hence this leads to:

1

a3
× dR3

dt
∼ 2

η

T
× a2

τ
∼ 2

a2η

T
× 1

t
(2.3.3)

By integrating this equation, one finds:

1

a3
× R3(t) ∼ 1

a3
×R3(t0) + 2

a2η

T
× log(t/t0) (2.3.4)

where t0 is a reference time. From this, we conclude that domains grow like the power 1/3 of

the logarithm of the time. In Figure 2.3.5 we give the evolution of domains size between times

t = 104s and t = 106s. We see that the numerical results match well the scaling law given in

equation 2.3.4. Moreover, we superpose a linear curve (exponent 1) to the power law curve
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Log(τ / s) φfast

Figure 2.3.4: Snapshots of a phase separating system composed of 70% of low Tg polymer and of
30% of high Tg at three different stages during aging at Tg−10K: (a) tw = 105s, (b) tw = 106s
and (c) tw = 107s. The system initially equilibrated at Tg + 30K before aging. On the left
column we give the relaxation times (log(τ / s)) and on the right one the fast polymer volume
fraction (φfast). We see that domains rich in high Tg polymer grow slowly and age during the
process. They are in coexistence with a fast fluid phase rich in fast polymer.
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Figure 2.3.5: (UP) Average domains size evolution during the phase separation process at
Tg − 10K for a system composed of 70% of low Tg polymer and of 30% of high Tg. Thermal
history of the system is that given in Figure 2.3.1.
We observe two regimes during the domains growth process: at the beginning of the process,
domains grow in a regular way. At longer times scales, domains size grow in a rather chaotic
way. (BOTTOM) Average domains size evolution at relatively short times scales during the
phase separation process. The green curve represent data given by the simulation. The red
curve represents a linear fit of simulation data, and the blue one a power law fit (exponent 1/3).
Fits in the form of (Log(t))α with α = 1 and 1/3 are very close from each other: domains
grow like logarithm of the time.
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Figure 2.3.6: Snapshots representing a 15nm×15nm large area of the system represented on
Fig.(2.3.4) at t = 106s (a), t = 1.2 × 106s (b) and t = 1.45 × 106s (c). For pictures (a), (b)
and (c) we give relaxation times (log(τ /s))[left column] and the fast polymer volume fraction
(φfast)[Right column]. We see that slow domains melt partially due to the fast phase which
surround them. The size of slow domains can be reduced of a few nanometer because of melting
mechanisms.

( exponent 1/3). As variable log(t) increases only by a factor 2 here, the power law and the

linear curve are very close from each other. Though, one would see a significant divergence

between them if variable log(t) varies by several decades, which is not the case here. Hence, on

this time interval, growth regime can be assimilated to a purely logarithmic one.

b) Chaotic evolution of domains a late stage of the phase separation

At late stages (for t > 106s), we observe the existence of a chaotic regime during which

the size of domains fluctuate on relatively small time scales. We attribute this effect to the

partial melting of very slow domains by fast ones. For a sake of simplicity, let us call A the

polymer with high Tg and B the polymer with the low one. Thermodynamically, at the inter-

face between a slow and a fast domain, there is a flux of B polymer which goes out of the slow

domain, while a flux of A polymer goes in. Since matter exchanges between two close regions

are controlled by shortest relaxation times, the flux of B polymer at the interface is fast. As a

consequence, fast monomers diffuse out in a much shorter time than the typical relaxation time
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Figure 2.3.7: Evolution of the composition fluctuation auto-correlation function for the system
represented in Figure 2.3.4 This function is calculated at time t0 = 106s. We observe that
40% of composition fluctuations become uncorrelated 4000 seconds after t0 = 106s in the whole
system.

of the slow domains. Finally melting mechanisms are enhanced at late stage as compared to

the early stage due to the large difference of mobility between the slow phase and the fast one.

In order to give an example about melting process of slow domains by the fast fluid phase, we

present three 15 nm large snapshots in Figure 2.3.6. The first of them is at time t = 106 s, the

other one at time t = 1.002 × 106 s and the last one at time t = 1.0045 × 106 s. During the

elapsed 4500 seconds between the first and the last snapshot, we do observe a local morphology

changing on a shorter time scale than the relaxation time of the slow domains. As dynamics is

conservative, the matter which was extracted from the slow domains which undergo the melt-

ing process moves apart until finding an other domains in the close environment. As shown in

Figure 2.3.7 the rate of morphology changing at short time scales due to melting mechanisms

is important in the whole system. Finally, the rather complex shape of obtained morphologies

is also the consequence of melting mechanisms.

We have considered only systems composed in majority of fast polymer so far. It is worth

considering phase separation in case of a system with opposite composition. Results regarding

aging in these systems are given in appendix 2.B. As dynamics is fast at the beginning and

also because dynamics slowing down is not instantaneous, phase separation occurs relatively

quickly as one can see on composition distributions. However, the majority phase is composed

of slow polymer and fast domains forming are trapped in the dominant phase which is aging.

As a consequence, the diffusion time of fast domains is extremely long, and their size increase

very slowly. This is the main difference between this situation and the previous one where the

fluid phase is dominant. Indeed in the previous situation, the typical size of domains was about

50 nm after 107s while it is twice smaller in average in this present case.
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2.4 Rejuvenation and high temperature remixing dy-

namics for aged and phase separated blends close

to Tg

Figure 2.4.1: Distributions of relaxation times at different times during rejuvenation at Tg +
30K. The system has a symmetric composition and has been aged and phase separated for
tw = 109s at Tg − 20K before rejuvenation. Rejuvenation occurs at times t > tw. Black curve
represents the dynamical state of the system at the end of aging. Faster relaxation times of the
distribution become almost 100 times faster in the first 500 seconds of the process, then the
proportion of slow relaxation times decreases. The relaxation time distribution matches the
equilibrium distribution at Tg + 30K in 1, 25× 104s.

After studying aging and phase separation in polymer blends close to Tg, we study the

reverse process during which the temperature is increased again in a miscible range far above

Tg. We see in Figure 2.4.3 that during rejuvenation the volume reaches its initial equilibrium

value in slightly more than 104s after rejuvenation, while it takes 109 s to contract by 6% during

aging (black curve). We can do the same statement about the evolution of the α-relaxation

times. Hence, the system remixes and recovers its initial homogeneous molten state much faster

than the time required to phase separate below Tg as one can see in Figure 2.4.1 and 2.4.2:

there is a strong temporal asymmetry between the aging and the rejuvenation process. Note

that such a temporal asymmetry had already been observed experimentally many years ago in

pure polymeric liquids [90, 91, 92] and more recently by numerical simulations in pure Van der

Waals glass forming liquids [41]. Spatial representations of the system (see Figure 2.4.4) and

distribution of relaxation times during rejuvenation show us that the fast fluid phase accelerates

significantly on short times scales as due to the temperature increase. In addition, small and

slow isolated domains immersed in the fast fluid phase melt really quickly due to their small

contact surface. As it can be seen in Figure 2.4.7 and Figure 2.4.5, themelting of bigger domains

takes more times and is the consequence of inter penetration mechanisms of the very mobile

polymer inside them from the interface (see Figure 2.4.7). Inter penetration mechanisms at the

interface induce an increase of free volume in this region by osmotic effects. However, these

effects take a certain time to take place, which explains why composition fluctuations become
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Figure 2.4.2: Distributions of low Tg polymer volume fraction during rejuvenation at Tg+30K.
The system has a symmetric composition and its thermal history is that given in Figure 2.4.1.
Black curve represents the phase separated state of the system at the end of aging. The
low Tg polymer volume fraction distribution shows that the system remixes and recovers the
equilibrium state at Tg+30K in only 1, 25×104 seconds during rejuvenation, while the system
has been aged for 109 seconds before rejuvenation.

uncorrelated faster than relaxation times as it is shown in Figure 2.4.6. Since the free volume

fraction is a good plasticizer for the system, the dynamics accelerates, which makes the inter

penetration of monomers easier. In addition, the free volume diffuses toward the central region

of the glassy structure which facilitates the their melting. As a conclusion, the combination

of both interpenetration and free volume diffusion mechanisms makes that the melting glassy

morphologies is a non linear self accelerating process driven by the dynamics of the mobile

polymer they are in contact with. The mobility of the fast fluid phase is enhanced when the

rejuvenation temperature Trej increases. Hence, the subsequent melting of slow morphologies

is faster when Trej increases as it is plotted in Figure 2.4.8. Moreover, it can be observed in

this Figure that the lower the aging temperature, the longer the rejuvenation time at fixed

rejuvenation temperature. The rejuvenation kinetics depends also on the time during which

the system has been aged before being reheated. Indeed on can see in Figure 2.4.8 that the

shorter the aging time, the shorter trej. This essentially results from the fact that the dynamics

of the slow domains forming during aging slows down with the time, which makes them longer

to melt.

Finally, evolution of domains size and SANS scattered intensity during aging and rejuve-

nation are displayed in Figure 2.4.9 for a system mainly composed of fast polymer. During

rejuvenation, we observe that the domains size reduction takes places in 40 second and that

SANS scattered intensity drops by several order of magnitudes in the same time. As a reminder,

at equilibrium, SANS scattered intensity I(0) reads (for a homogeneous blend):

I(0)

N(b1 − b2)2
�

Tρ0
Kosm
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Figure 2.4.3: Evolution of the volume (UP) and the α-relaxation times (BOTTOM) during
aging and rejuvenation for the system described in Figure(2.4.1) and Figure(2.4.2). The volume
evolution is compared to the equilibrium volume (Veq) at Tg + 30K. We observe a strong
temporal asymmetry between aging and rejuvenation.

with T ∼ 4 × 1021J , ρ0 ∼ 1028m−3 , Kosm ∼ 107Pa, one finds that I(0)
N(b1−b2)2

is a quantity of

order unity. N is the dimensionless volume of the sample (V [m3] = N/ρ0).

It is worth mentioning the case of systems composed of a majority of slow component as

described in appendix 2.B. Like in previous case, a temporal asymmetry is observed between

aging and rejuvenation. It is also observed in this case that faster domains acquire a high

mobility very quickly at short time scales during the rejuvenation process. After that, high

mobility domains begin to grow and to melt the lower mobility phase at interfaces. At longer

times, highmobility domains are large enough so that they create a continuous path surrounding

slower domains. This makes them easier to melt and the system recovers a complete miscibility

as fast as the previous situation where the fast phase was in majority. Since both systems

were aged and rejuvenated in equivalent conditions, although the way slow morphologies melt

is different, we can conclude that rejuvenation kinetics does not depend on the macroscopic

composition of the blend.
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Figure 2.4.4: 120nm×120nm large Snapshots of the system described in Figure(2.4.1) and
Figure(2.4.2) at times: (a)t = tw; (b)t = tw + 500s; (c)t = tw + 2500s and (d)t =
tw+1, 25 × 104s during rejuvenation at Tg + 30K. The system has a symmetric composi-
tion and has been aged and phase separated for tw = 109s at Tg − 20K before rejuvenation.
Rejuvenation occurs at times t > tw. On each snapshot, the left column represents the loga-
rithm of relaxation times (log(τ/s)), and the right one, the fast polymer volume fraction (φfast).
Snapshot (a) represents the system before rejuvenation. A very large glassy morphology has
been formed during the aging process at Tg − 20K, and the former takes 1, 25× 104 second to
melt. At time t = tw + 1, 25× 104s, the system recovers a complete miscibility and is fluid.
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Figure 2.4.5: Profiles of fast polymer, slow polymer and vacuum volume fraction as well as
relaxation times on a system’s layer rejuvenating at Tg +30K at times (a)t = 1s, (b)t = 1000s,
(c)t = 2500s, (d)t = 4000s and (e)t = 5000s. The system is composed 70% of fast polymer and
30% of slow polymer and has been aged and phase separated for tw = 107s at Tg − 10K before
rejuvenation. Rejuvenation occurs at times t > tw. The layer intersects a slow domain between
position 18 and 22. During rejuvenation, we see that fast monomers penetrate the slow domain
and that slow monomers are leaving the domains through the interface. At short times, free
volume fraction is low and the domain remains contracted. At longer times the free volume
fraction increases at the interface of the domain due to osmotic pressure effects. Afterward,
free volume diffuses into the domain and the later begins to plasticise. The central region of
the domain melts at last.
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Figure 2.4.6: Evolution of composition (black curve) and relaxation times (red curve) fluctu-
ations auto-correlation functions during rejuvenation computed at three different times: (a)
0s, (b) 2500s and 5000s after rejuvenation. The system is the same than the one described in
Figure 2.4.5. We see that after 103s, 50% of composition fluctuations have become uncorrelated
while relaxation times are still correlated.
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Figure 2.4.7: Snapshots of the system described in Figure 2.4.5 at different times (t = tw +
0s(a); t = tw + 1000s(b); t = tw + 2500s(c); t = tw + 7500s(d)) during rejuvenation. left
column corresponds to relaxation times log(τ/s) and the right column corresponds to the fast
polymer composition (φfast).
In the first 1000s after rejuvenation, size of domains in term of composition decrease: the
fast polymer interpenetrate slow domains. 1000 seconds after rejuvenation however, glassy
structures melt from the interface. The central regions of glassy domains melt at last, and 7000
s after rejuvenation, the system is molten and miscible.
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Figure 2.4.8: (Left) Evolution of the rejuvenation time trej as a function of the rejuvenation
temperature. We consider a system with symmetric composition equilibrated at Tg+30K before
aging. Then systems age for tw = 5× 107s at three different temperatures:TgK, Tg − 10K and
Tg − 20K. The rejuvenation temperature varies between Tg + 20K and Tg + 60K.(Right)
Evolution of the rejuvenating time (trej) as a function drying time in a polymer blend with a
symmetric composition. The system was quenched from Tg + 30K down to Tg − 10K where
it has been aged for various times tw = 102s; 103s; 104s; and 105s. Then the system
rejuvenates at Tg + 30K. Furthermore, we see on this log-log plot that the rejuvenating time
behaves like trej ∼ t0.70w . This is relevant with what has already been observed by Merabia et
al. [88] in the case of pure polymer melts.
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Figure 2.4.9: (Left) Evolution of typical domains size during aging and rejuvenation for the
system studied in 2.4.7
Domainsmelt faster than the elapsed time required to form then during aging. (Right)Evolution
of SANS intensity during aging and rejuvenation for the system studied in 2.4.7. Diffusion
length b1 for the low Tg polymer is b1 = 3, 305 · 10−15m and diffusion length b2 for the high Tg
polymer is b2 = 1, 066 · 10−13m. These values are from reference [87].
Evolution of SANS intensity matches with the domains growth during aging, and the domains
melting during rejuvenation. During rejuvenation, the SANS intensity decreases by several
decades in 7000 seconds.
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2.5 Conclusion

In this chapter, we have studied dynamics in polymer blends close to and below the glass tran-

sition temperature. First, we have considered the situation during which a phase separation

takes place when the system is close to the glass transition temperature. As components of

different Tg’s are mixed together, domains of very different dynamics are forming during the

phase separation. This is accompanied by a linear increase of α-relaxation times with the aging

time and a slow mechanical contraction. Furthermore, relaxation times distribution translates

towards longer times and widens when the time increases. Moreover, the Stokes Einstein law

has been observed to be violated as a consequence of the widening of relaxation time distri-

butions as discussed in appendix 2.C. The system is not frozen and the diffusion of polymeric

species is possible on time scales shorter than α-relaxation times. At early stages of the phase

separation process, we have observed that morphologies grow like the logarithm of the time in

a steady way. At later stages however, a rather chaotic growth regime takes place which we

attribute to the partial melting of slow domains by fast ones. In the chaotic regime, average

domains size can be reduced by a few nanometers, and the shape of morphologies changes

constantly in a random way. Finally, all these observations indicate that even if the system is

aging close to Tg, we observe that morphologies grow, although the process is very slow (log-

arithmic). Moreover, heterogeneous dynamics allows for diffusive process to appear thanks to

faster dynamic heterogeneities which makes the diffusion of polymer chains possible on short

times scales: a glassy system is not ”frozen”.

The reverse process corresponding to rejuvenation has also been studied. During this pro-

cess, the system recovers a homogeneous molten state after the temperature is increased again

in a miscible range. We observe a strong temporal asymmetry between aging and rejuvenation

i .e. the domains melt and the system recovers a complete miscibility in a much shorter time

than the elapsed time to build them during aging. This is coherent with what has already been

observed in the past in the context of pure polymeric system [90, 91, 92] [41]. The plasticization

of large glassy domains results from a non linear cascade of events which are the consequence

of an important acceleration of the fast fluid phase and the swelling of slow domains by fa-

cilitation mechanisms: -1- slow domains are quickly inter-penetrated by the fast component

from the interface. This induces osmotic pressure effects which results in an increase of the free

volume fraction in this region; -2- the free volume diffuses toward the center of the domains

and the latter plasticise subsequently. We have seen that the rejuvenation kinetics depends

strongly on the history of the system. Indeed, the longer the aging time, the longer the re-

juvenation time and the higher the rejuvenation temperature, the shorter the rejuvenation time.

The case of blends with polymers of different chain sizes has been also studied (see appendix

2.D). We considered a polymer blend where long chains of 1000 monomers are mixed with small

polymer chains of 50 monomers. Two situations have been considered: a first one where the

small polymer chain is the fast component and a second one where the small chain is the slow
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Figure 2.5.1: Schematic representation of the melting of a glassy nanostructure (Red) during
rejuvenation. At very first times of the process (step I), fast monomers penetrate the slow
structure from the interface (blue dotted arrow), and simultaneously, slow monomers, of which
it is mainly composed, diffuse out of it (green dotted arrow). This engenders osmotic pressure
effects which induce an increase of the free volume at the interface. Then, the free volume
diffuses from the interface toward the center (step II) and the slow structure plasticises pro-
gressively. Plasticisation resulting from the free volume diffusion facilitates the penetration
process of species inside the slow structure, and finally, at step III, the latter is completely
melted and the system is miscible.

component. In both cases, the system is composed of 80% of small polymer chains, and it has

been observed that the first system rejuvenates 100 times faster than the second one.



Appendix

2.A Phase separation in dynamically homogeneous poly-

mer blends (”Standard case”)

Phase separation takes place when a system is quenched from a single homogeneous phase into

regions where the system is metastable.

During the phase decomposition process in molten polymer blends, domains are seen to be

forming following several regimes [81]. One of them is the Ostwald rippening [89, 82, 83,

84, 85, 86]. In this regime, which is driven by the surface tension, average domain size R(t)

increases like R(t) ∼ t1/3. Ostwald ripening was confirmed by many experimental technics

such as light or neutron scattering [22, 23, 24, 26, 25]. From a theoretical point of view, it is

recovered by assuming that polymer mobility is independent of composition (homogeneous) and

does not depend on the system’s history. Here, we consider phase separation in dynamically

homogeneous polymer blends i.e. at fixed relaxation times.

The ”Ostwald ripening”

We consider a blends of polymers having the same degree of polymerisation: XA = XB =

50. We give in Figure 2.A.1 the UCST phase diagram that we consider here. The critical

temperature is of the blend is Tc = 320K. Relaxation times τ = 1s are fixed in the whole

system. The system is initially prepared at thermodynamic equilibrium at T = 330K and it

has symmetric composition. After equilibration, the system is quenched at T = 270K inside

the spinodal decomposition region. We give in Figure 2.A.2 the polymer B volume fraction

distribution at times tw = 1s; 102s; 103s after the system was quenched. We observe that for

times shorter than 1 second there is no phase separation in the system. At much longer times

two peaks on both side of the distribution meaning that the system phase separates. Moreover,

when the time increases, peaks representing rich phases in polymer A and B shift toward richer

concentrations. Phases forming during the process are represented in Figure 2.A.4 where we

give snapshots of the system at four different times tw: (a) tw = 1s, (b)tw = 102s, (c)tw = 103s

and (d)tw = 104s during the phase separation. In the first 1 seconds, system has not demixed

yet as it is confirmed by polymer volume fraction distribution in Figure 2.A.2. Surface tension

imposes that the domains acquire a circular shape on short distances. When time increases, the

system tends to maximize the curvature radius of domains (increasing the radius of domains) in

95
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Figure 2.A.1: UCST phase diagram of a XA = XB = 50 blend. Interaction parameters are
a = −2, 32 × 10−20J , b = −1, 595 × 10−20J and c = −√

ab. The critical temperature is
Tc = 320K. We consider such a phase diagram to study spinodal decomposition when the
dynamics is homogeneous in the blend.

order to minimize the excess of free energy due to domains forming. The size R of the domains

increases during the process and their shape becomes much more circular. It is found that R

grows like t0.30 between time tw = 102s and time tw = 104s. One can refer to Figure 2.A.3.

This result is very satisfying regarding the Ostwald ripening which predicts an exponent 1/3.

Let us now introduce a simple semi quantitative method which allows for obtaining the Ostwald

ripening exponent. During a spinodal decomposition process, when the radius R of an existing

sphere increases of δR, the change of energy, related to the surface tension η ([η] = J ×m−1),

is δE ∼ 8πηRδR, and the quantity δN of penetrating monomers is δN ∼ a−34πR2δR. Hence,

the chemical potential Δμ (per monomers) reads:

Δμ =
δE

δN
∼ 2

ηa3

R
(2.A.1)

We have seen that the flux j reads j = λ
T
∇μ where μ is the chemical potential (per monomers)

in Joules, T the temperature in Joules and λ is the diffusion coefficient where [λ] = m2 · s−1.

Hence we have [j] = m · .s−1. By using the above equation 2.A.1, we obtain:

j =
λ

T
× Δμ

R

= 2λ̃
ηa3

R2

(2.A.2)

where λ̃ = λ/T .

One can write:
dR

dt
∼ j (2.A.3)

we straightforwardly obtain
dR

dt
∼ 2λ̃

ηa3

R2
(2.A.4)
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Figure 2.A.2: Distribution of B polymer volume fraction during a phase separation occurring
in a polymer blend at T = 270K. We consider distributions at times tw = 1s; 102s; 103s.
Relaxation times are equal to one second and the blend composition is symmetric. Before
phase separation, the system was initially prepared at T = 330K in a miscible regime.

As λ̃ is a constant, we have:

R3 ∼ 2λ̃ηa3 × t (2.A.5)

Thanks to this simple semi-quantitative development, one finds the exponent 1/3 predicted by

the Ostwald ripening in 3D. This exponent holds also in 2D [99].
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Figure 2.A.3: Evolution of the typical size R of domains during a phase separation in a dy-
namically homogeneous polymer blend. The system is initially prepared at T = 330K at
thermodynamic equilibrium and quenched from T = 330K down to T = 270K. At this tem-
perature, the system is unstable and spinodal decomposition occurs. Size R is found to grow
like R ∼ t0.30 which is very closed to what is predicted by the Ostwald ripening.

(a) (b)

(c) (d)

Figure 2.A.4: 300nm×300nm snapshots of the system during a phase separation at fixed re-
laxation times (τ = 1s) at different times tw: (a) tw = 1s, (b)tw = 102s, (c)tw = 103s and
(d)tw = 104s. The system is composed in equal proportion in polymer A and B and snapshots
are given in term B polymer volume fraction. The system is initially equilibrated at T = 330K
in a miscible state. It is then quenched down to T = 270K.
One second after quenching the system, the blend has not phase separated yet. At longer times
however, the phase separation occurs and domains grow until forming two clusters rich in A
polymer (poor in B polymer). Between times tw = 102s and tw = 104s, domains size R grow
like R ∼ t0.30 (Cf Figure 2.A.3).
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2.B Aging and rejuvenation in symmetrical polymer blends

In this appendix, we give results regarding aging and rejuvenation in polymer blends composed

in majority of slow component.
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Figure 2.B.1: Distribution of relaxation times (Left) and fast polymer volume fraction (Right)
at different times during aging and rejuvenation at Tg+30K for a system composed of 30% and
70% of fast and slow polymer respectively. The system was initially prepared 30K above Tg
before aging. Then the system ages for taging = 1× 107s at Tg − 10K. Finally it is rejuvenated
by increasing the temperature at Tg + 30K at t > taging. During aging, the majority phase is
rich in slow polymer, and a few fast domains build up. After aging, the system rejuvenates in
a few thousands of seconds as one can see in Figure 2.B.2.
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Figure 2.B.2: Evolution of average domains size during aging and rejuvenation for the system
described in Figure 2.B.1. We see that growth process of morphologies is very slow: domains
size is of 4-5 dynamic heterogeneities at taging = 1× 107s. Domains melt in a few thousands of
seconds during rejuvenation after the temperature was increased: there is a temporal asymme-
try between aging and rejuvenation.
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2.C Violation of the Stokes-Einstein relation for diffu-

sion

Stokes-Einstein relation gives the diffusion coefficient D of a probe of size a as a function of

the viscosity η and the temperature T of the material environment this probe diffuses in. This

relation reads:
Dη

T
=

kB
6πa

(2.C.1)

Let us write:

Log
(Dη
T

)
= Log

(
< γ > τα

)
+ κ (2.C.2)

where κ is a numeric constant which depends on the probes size. Quantity < γ > is the average

relaxation frequency and represents the average diffusion coefficient of polymer chains which

diffuse through fast dynamic heterogeneities, i.e. D ∼ 〈1/τ〉 ≈ 1/τfast.

We propose here to calculate quantity Log
(
< γ > τα

)
during a phase separation close to or

below Tg. For that, we consider the same system as the one studied in part 2.3.

One observes in Figure 2.C.1 that the time evolution of the quantity Log
(
< γ > τα

)
is not

constant meaning that the Stokes-Einstein law is not satisfied.

We see that quantity Log
(
< γ > τα

)
decreases first because of the sharpening of relaxation

times distributions. Afterward, the same quantity increases because of widening of relaxation

times distribution which translate toward longer times. Finally, evolution of quantity < γ > τα,

which can be calculated experimentally, is a proof that dynamics becomes more and more

heterogeneous as time increases during the aging process.
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Figure 2.C.1: Evolution of < γ >, τα and < γ > τα in a phase separating polymer blends at
Tg − 10K. Blend composition is: 70% of low Tg polymer and 30% high Tg polymer and chains
size are XA = XB = 50.
We observe that quantity < γ > τα is not constant: the Stokes-Einstein relation is not satisfied.
Quantity < γ > τα first decreases at short times and it increases at long times. The increase of
quantity < γ > τα is a signature of the heterogeneous dynamics and the widening of relaxation
times distribution. Diffusion of polymeric species is driven by fast relaxation times.

2.D Non symmetric phase diagrams: phase separation

close to Tg and rejuvenation

We consider a non symmetric blends where the small polymer chain is either the fast (case I)

or the slow component (case II). Small and large chains have a polymerisation degree of 50 and

1000 respectively. The phase diagram and the Tg of the blend are given in Figure 2.D.1. We

study aging and rejuvenation in this system when it is composed of 80% of small chain. For

this composition, equilibrium Tg is 260K, whether it is in case I or II. In both cases the system

is aged at Tg for 1.5×106s and is rejuvenated at Tg+40K. Systems are prepared at equilibrium

at Tg + 40K before aging.

Small polymer chain: fast component

Snapshots of the system in terms of relaxation times and slow polymer volume fraction (small

chains) at times t = 103s; 5 × 104s and106s during aging are given in Figure 2.D.3. We

observe the presence of a few domains essentially composed of large chains. However, as the

slow phase is in minority, the melting of slow domains by the fast fluid phase competes with

the growth process. Hence, their does not increase much and fluctuates a lot. Evolution of

α-relaxation times and volume during aging and rejuvenating are given in Figure 2.D.2. A

temporal asymmetry is clearly observed. Indeed, the system rejuvenates in two seconds which

is very fast as compared to the aging time. Snapshots during rejuvenation are given in Figure

2.D.4 at four different times. Domains composed of small chains accelerate very quickly and

slower domains begin to melt. Two seconds after rejuvenation, the whole system has melted

except for one isolated slow domain which is still in the process of melting.
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Figure 2.D.1: Phase diagram in case of an non symmetric polymer blend. Long chain length
is XA = 1000 and small chain length is XB = 50 monomers. The blend critical temperature is
Tc = 300K. Parameters are a = −5.1426e×10−20J , a = −7.2e×10−20J , b = −4.8855e×10−20J ,
c = −√

ab and ρ = 1028m−3. The left and the right hand side of the diagram corresponds
respectively to the semi-dilute and the dilute phase and dotted lines represents the equilibrium
glass transition of the blend when the small chain is the low Tg polymer (red dotted curve)
and the when small chain is the high Tg polymer (blue dotted curve). Pure polymer Tg’s are
reported in the Figure for each considered situations.
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Figure 2.D.2: Evolution of α-relaxation times (left) and volume (right) during aging (green
dotted curve) and rejuvenation (green full curve) for a system composed of 80% of low Tg
polymer (small chain) volume fraction. During aging the system phase separates at Tg for 10

6s,
and temperature is increased at Tg + 40K during rejuvenation. The system is equilibrated
at Tg + 40K before rejuvenation. We see that relaxation times increase with the aging time.
During this process, volume contracts slowly by almost 1% and the system rejuvenates in 100s:
we observe a strong temporal asymmetry between aging and rejuvenation.
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Figure 2.D.3: Snapshots in term of the logarithm of relaxation times(Left column) and small
polymer chain volume fraction (Right column) at the three different times t = 103s(a); t =
5 × 104s(b); t = 106s(c) of a phase separating non symmetric blends composed at 80% of
small polymer chain. The large chain length is X = 1000 and the small chain length is X = 50.
The system is aging for 106s at Tg and the small chain is the fast component. The left column
represents the logarithm of relaxation times and the right one the small chain polymer volume
fraction (φsmall). We observe some domains rich in long chain which appear during the phase
separation process, However, their size does not increase much. Moreover relaxation times of
these small domains are long.
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Figure 2.D.4: Snapshots of the system represented in Figure 2.D.3 during rejuvenation at
Tg + 40K after it has been aged at Tg for ∼ 106s. Times are t = 30s(a); t = 100s(b); t =
123s(c) and t = 200s(d) after rejuvenation. The left column represents the logarithm of
relaxation times and the right one the small chain polymer volume fraction (φsmall). Fastest
domains are rich in small polymer chains and melt quickly the slow domains composed mainly
of slow components. The system rejuvenates in 200 seconds.
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Small polymer chain: slow component

Snapshots of the system in term of relaxation times and slow polymer volume fraction (small

chains) at times t = 103s; 5×104s and 106s during aging are given in Figure 2.D.6. Like in

previous situations, domains composed of large chains do not grow much during the aging pro-

cess. They are immersed in a large slow phase composed of small chains with relaxation times

longer than 100 s. Evolution of α-relaxation times and volume during aging and rejuvenating

are given in Figure 2.D.5. Like in the previous situation, a temporal asymmetry is observed

between aging and rejuvenation, however, rejuvenation kinetics is 100 time slower here. This

comes from the fact: -1- when small chains are the fast ones, they penetrate easily and melt

slow domains -2- the rejuvenating time is large when the majority phase is in a glassy state

before rejuvenation.
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Figure 2.D.5: Evolution of α-relaxation times (left) and volume (right) during aging (green
curve) and rejuvenation (black) for a system composed of 80% of small chain. The small
polymer chain is the slow component. During aging the system phase separates at Tg for 104s,
and temperature is increased at Tg + 40K during rejuvenation . The system is equilibrated at
Tg + 40K before aging. We see that relaxation times increase with the drying time. During
this process, volume contracts slowly by 1% and the system rejuvenates in 104s. These curves
show that the system rejuvenates in longer times than in Figure 2.D.2 where the small polymer
chain corresponds to the fast component.
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Figure 2.D.6: Snapshots at the three different times t = 103s(a); t = 5×104s(b); t = 106s(c)
of a phase separating non symmetric blends composed at 80% of small polymer chain. Chain
length are X = 1000 regarding the large polymer chain and X = 50 regarding the small
polymer chain. The left column represents the logarithm of relaxation times and the right one
the small chain polymer volume fraction (φsmall). Unlike Figure 2.D.3, the small polymer chain
corresponds to the slow component. Mobility of the large chain is reduced of a factor 10. We
see the appearance of small isolated domains rich in large polymer chains. However their size
remain small during the phase separation process.
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Figure 2.D.7: Snapshots of the system represented in Figure 2.D.6 during rejuvenation at
Tg + 40K after it has been aged at Tg for ∼ 106s. Times are t = 100s(a); t = 800s(b); t =
1, 2 × 103s(c); and t = 5, 0 × 103s(d) after rejuvenation. The left column represents the
logarithm of relaxation times and the right one the small chain polymer volume fraction (φsmall).
Fastest domains are rich in long polymer chains which corresponds to the fast component. The
melting of slow domains by long fast chains is longer than in the situation where the small
chain is the fast component. The rejuvenating time of this system is longer as compared to
previous situation because the majority phase is glassy before rejuvenation here.



Chapter 3

Dynamics in polymer-solvent systems

close to and below the glass transition

temperature

3.1 Résumé en français

Dans ce chapitre nous étudions la dynamique dans les systèmes polymère solvant lorsque le

système se trouve bien en dessous de la Tg du polymère pur. Nous nous sommes plus précisément

intéressés aux phénomènes de séchage et de gonflement dans les films polymère solvant dits

minces (de taille inférieur à 500 nanomètres-1 micron) et épais (de taille supérieur à 1 micron).

Le système est initialement équilibré avec un réservoir de solvant ayant une activité donnée. Du-

rant le séchage, l’activité est baissée ce qui fera évaporer le solvant. Dans le cas des films minces,

nous observons que l’évaporation du solvant est la conséquence de -1- une diffusion rapide du

solvant via les zones à dynamique rapide au temps courts et -2- d’une séparation d’échelle de

temps entre la diffusion du solvant et la contraction du système au temps longs. Nous observons

une accélération de la dynamique globale du système résultant de l’augmentation du volume

libre lors de la diffusion rapide du solvant. Pendant la contraction du système en revanche, le

système vieillit du fait de la réduction du volume libre. Nous montrons également que des films

séchés à très basse activité (atmosphère sèche) peuvent être séchés completement. En revanche,

dans certaines conditions, ils peuvent être le siège de cavités grandes de quelques nanomètres

qui se forment pendant le processus de vieillissement du film. Dans le cas de films épais nous

observons plus de séparation d’échelles de temps ce qui fait que le mécanisme de diffusion du

solvant et de contraction du système se superposent. En conséquent une croûte lente sèché

se forme proche de l’interface avec le réservoir, alors qu’une grande quantité de solvant reste

piégée dans le fond du système. Durant le gonflement, l’activité du réservoir est augmentée

après séchage, ce qui impose la pénétration du solvant dans le système. Nous montrons dans ce

cas que le solvant diffuse tout d’abord de façon fickienne par les zones rapides dans le film. Ce

processus est accompagné d’un ralentissement de la dynamique globale du système du fait de

la réduction du volume libre. Au temps longs, nous observons que le solvant diffuse de par un

110



page 111

processus cas II. Ce dernier est la conséquence de la dilatation progressive du système résultant

d’effets de pression osmotique exercés par les molécules de solvant au sein de la matrice. Enfin,

à la fin du processus de gonflement, le système est fluide et à l’équilibre avec le réservoir.

3.2 Introduction

In this Chapter, we consider the drying and the swelling of polymer-solvent films at tempera-

tures far below the pure polymer glass transition temperature. For that, we apply the spatial

model described in the introduction to the case of polymer solvent films in contact with a sol-

vent reservoir . In what follows, parameter α introduces in equation 1.4.4 of the introduction

is equal to 10−3. This is for modelling the relatively low mobility of the polymer chain as

compared to solvent molecules. In Figure 3.2.1 we give a schematic representation of applied

transformations in term of activity during drying and swelling at constant temperature. The

Tg of the solution is also displayed (red curve). Initially the system can either be in a molten

or a glassy state before drying. As solvent volume fraction decreases during drying, the sys-

tem goes below its glass transition temperature and ages. After drying, the activity can be

increased again and the system swells subsequently due to solvent penetration. We first discuss

the thermodynamics of compressible polymer-solvent system in contact with a solvent reservoir

in section 1.A. We then present in section 3.4 results regarding solvent diffusion in dynamically

homogeneous systems. In section 3.5, we present results regarding thin/thick films drying. The

specific situation of drying at very low activity will be also studied in section 3.6. Finally, we

study thin/thick films swelling in section 3.7.
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Figure 3.2.1: Representation of transformations experienced by the system during drying or
swelling in our model. A schematic representation of the evolution of the glass transition
temperature evolution as a function of reservoir activity is also given (red curve). Blue and green
arrows represent instantaneous activity variation during drying (blue) from activity a1s down to
a2s and swelling from activity a2s up to a1s(green) at fixed temperature. The system can either
be prepared in a molten or a glassy state before drying (above Tg or at Tg). The activity drop
makes that the solvent quantity diminishes in the film and consequently the system undergoes
the glass transition temperature (aging). During the revers process, molecules penetrate the
system.

3.3 Thermodynamics of polymer-solvent systems in con-

tact with a pure solvent reservoir

The equilibrium, at pressure P and temperature T , between the reservoir of pure solvent and

the polymer-solvent mixture is given by( ∂G
∂N

)
(Ns,Np,P,T )

= 0( ∂G
∂Ns

)
(N,Np,P,T )

= μres
s (P, T )

(3.3.1)

where G is the free energy given by relation 1.3.7 where the molecular mass for the solvent

Xs is put equal to one. The first expression gives the volume of the polymer-solvent mixtures

while the second one, describes the equilibrium between the chemical potential of the solvent

in the reservoir μres
s (P, T ) and in the polymer-solvent mixture. By solving this set of equations

we obtain φeq
s = Ns/N and φeq

p = Np/N as a function of pressure P and temperature T . Let

us now discuss the chemical potential of the solvent in the reservoir μres
s (P, T ). μres

s (P, T ) is

obtained from G when reduced to one component by imposing Np = 0, and by writing:(
∂G

∂N

)
(Ns,Np=0,P,T )

= 0

G(N,Np = 0, Ns, P, T ) = Nsμ
res
s (P, T )

(3.3.2)
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If we impose Ns = 1, which has no consequence on the physics since the latter depends only

on the ratio Ns/N , relations (3.3.2) become

x4 − x3 − T + P/ρ0
2a

+
P

2aρ0
= 0

G(1/x,Np = 0, Ns = 1, P, T ) = μres
s (P, T )

(3.3.3)

where x = 1/N . Thus, the chemical potential μres
s (P, T ) is obtained as follow : we plot

G(1/x,Np = 0, Ns = 1, P, T ) as a function of x. The obtained curves are characterized by

1 or 2 minimums whose the values G(1/x,Np = 0, Ns = 1, P, T ) give the chemical potential

μres
s (P, T ) since they are solutions of the second equation of (3.3.3). In figure (3.3.1), we plot

such curves for different pressures at fixed temperature. The minimums can be obtained either

for small x which corresponds to a gas phase noted xg, or for large x related to a liquid phase and

noted xl. The more stable phase is that having the lower chemical potential and the reservoir

chemical potential μres
s is given by this minimum. When the two minimums are equal -i.e. when

G(1/xl, Np = 0, Ns = 1, P, T ) = G(1/xg, Np = 0, Ns = 1, P, T )- both phases are in coexistence:

the system is at the equilibrium saturation pressure Psat(T ). We note μres
s (Psat(T )), T ) the

corresponding solvent chemical potential. In order to express the evolution of μres
s (P, T ) we can

use the activity as(P, T ), defined by

μres
s (P, T ) = μres

s

(
Psat(T ), T

)
+ T ln

(
as(P, T )

)
(3.3.4)

By using the following for the chemical potential potential: μres
s (P, T ) = C + T lnP , valid in

the gas state, and the standard perfect gas equation of state, one obtains

as(P, T ) =
P

Psat(T )
(3.3.5)

where the saturated state has been taken as the reference state. In figure (3.3.2) we plot

the evolution of as(P, T ) using relation 3.3.4 as a function of P/Psat at fixed temperature.

This figure shows that the expression (3.3.5) is a good approximation of the evolution of the

activity as(P, T ). Thus if as = 0 which is equivalent to P = 0 the thermodynamic equilibrium

corresponds to the pure polymer while if as = 1 the thermodynamic equilibrium corresponds

to the pure solvent.
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Figure 3.3.1: Evolution of G(N,Ns = 1, Np = 0, P, T ) = μres(P, T ) as a function of x = 1/N for
different pressures P at fixed temperature T = 300K. The energy parameter a solvent-solvent
is equal to −2.5 × 10−20J and ρ0 = 1028m−3. We have plotted in red P = 105Pa, in green
P = 5 × 105Pa, in blue P = Psat = 1.04 × 106Pa, in purple P = 5 × 106Pa and in black
P = 107Pa.
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Figure 3.3.2: Evolution of the activity as(P, T ) calculated from Eq. (3.3.4) as a function
of P/Psat for T = 300K. The energy parameter a (solvent-solvent interaction) is equal to
−2.5 × 10−20J and ρ0 = 2× 1028m−3.
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3.4 Standard Fickian diffusion in polymer-solvent sys-

tems

In this section, we study solvent diffusion during drying and swelling in case of dynamically

homogeneous polymer-solvent system: there is no coupling between composition fluctuations

and the glass transition temperature (constant diffusion coefficient independent of composition).

In Figure 3.4.2, we plot the evolution of film average solvent volume fraction as a function of the

square root of time in case of drying and swelling. At the beginning of the drying and swelling

process, the evolution is clearly linear: the diffusion process is Fickian, i.e. during drying:

< φs >drying (t) ∼< φs > (0)− αdry

√
t (3.4.1)

and during swelling:

< φs >swelling (t) ∼< φs > (0) + αswell

√
t (3.4.2)

Here, αdry/swell is a positive parameter with [αdry/swell] = s−1/2. These are given in Table

3.1. Regarding drying curves, final average solvent volume fraction value, corresponding to

equilibrium, diminishes when decreasing the activity. During drying and swelling, we see that

all systems are converging toward equilibrium in the same time: the diffusion process does not

depend on the history of the system. Diffusion time is equal to a few hundred of seconds here.

For a given history, evaporating (for drying) and penetrating (for swelling) rates are the same.

They are given in Table 3.1 . We see that the lower the activity during drying, the higher the

solvent evaporation rate. During swelling on the other hand, the penetrating rate is higher for

the system which has been dried at activity as = 0.25 than for the one which has been dried

at activity as = 0.35.
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Figure 3.4.1: Schema illustrating transformation imposed to the system during drying and
swelling at constant temperature. There is no coupling between the system glass transition
temperature and the thermodynamic: dynamics is homogeneous. The systems dries following
an activity drop from a1s down to a2s. By applying the opposite transformation, the system
swells.
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Figure 3.4.2: Fickian diffusion during drying(LEFT) and swelling(RIGHT) of a 15 × 15 cells
film. Dynamics is homogeneous and relaxation times are equal to 1s. The system is prepared
at activity as = 0.42 and T = 330K and systems are dried at three different activity as =
0.35; 0.30and 0.25. For all systems, after drying, the activity is increased again at initial
activity as = 0.42. Whether it is during drying or swelling, all systems relax to equilibrium
in the same time scales: the solvent diffusion does not depend on the history of the system.
Finally, for a given history, evaporation or penetration rates of solvent molecules are equals,
and are higher when the gap between the initial and the final state is large. Parameters of the
system are a = −2.5× 10−20J , b = −2× 10−20J and c = −2.5× 10−20J . Polymer chain size is
X = 100 and ρ0 = 1028m−3
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Drying

ainits → adrys αdry(s
−1/2)

0.42 → 0.25 4.10× 10−3

0.42 → 0.30 3.06× 10−3

0.42 → 0.35 1.66× 10−3

Swelling

adrys → ainits αswell(s
−1/2)

0.25 → 0.42 4.12× 10−3

0.30 → 0.42 3.02× 10−3

0.35 → 0.42 1.64× 10−3

Table 3.1: Table resuming the values of the solvent molecules evaporation or penetration rate
in case of Drying or Swelling in a 15× 15 cells film. Relaxation times equal to 1s. The systems
are equilibrated at at activity ainits = 0.42 and at temperature T = 330K. they are then dried
at activity adrys = 0.35; 0.30and 0.25. FInally, they are swelled at activity as = 0.42. As
diffusion is independent of the system’s history, solvent molecules evaporation or penetration
rate for every systems are equals for a given transformation. Parameters of the system are
a = −2.5 × 10−20J , b = −2 × 10−20J and c = −2.5 × 10−20J . Polymer chain size is X = 100
and ρ0 = 1028m−3
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3.5 Drying of polymer-solvent films close to Tg at non

zero activity

In the course of thin films drying, the solvent volume fraction drops rapidly by 3% as one can

see in Figure 3.5.1. During this process, solvent molecules diffuse through path all over the

film. This process is faster than α-relaxation times, thus the polymer does not contract and

average polymer volume fraction keeps a constant value < φp >∼ 0.749. As a consequence, the

free volume fraction increases by almost 2%, and since it is a good plasticiser for the system,

the dynamics accelerates slightly as it can be observed in Figure 3.5.2. At the end of the

fast evaporation process the solvent volume fraction is homogeneous in the whole film and is

solution of equation:

( ∂G
∂φs

)
T,P,φinit

p ≈0.749
= T ln(as = 0.15)

⇒ φs(φp ≈ 0.744, as = 0.15) = 0.119

(3.5.1)

This corresponds to an intermediate thermodynamical state during which the solvent volume

fraction adapts itself to the initial polymer volume fraction (< φp >∼ 0.749), given the drying

activity as = 0.15. At times of the same order of α-relaxation times, the system begins to

contract in a homogeneous way in order to reduce the excess of free energy resulting from fast

evaporation process. The slow contraction of the system drives the solvent evaporation, and

the subsequent free volume reduction makes results in the slowing down of the dynamics. Note

that during the aging process, α-relaxation times increase linearly with the drying time, which

is equivalent with what has been observed in polymer blends. However, the evolution of α-

relaxation times does not necessarily follows the struick Law, but can increase more slowly than

the drying time in some circumstances as shown in Figure 3.A.1 of appendix 3.A. The reason

is that the Struick law is only valid when the difference between the initial and the final state

is large, which is not the case for a system drying at relatively high activity as compared to

the initial one. A spatial representation at different stages of a thin film drying given in Figure

3.5.4 shows us in particular that the solvent volume fraction is homogeneous in the whole film

during the process of contraction. Finally, during this regime, the system tries to converge

towards a final equilibrium state not accessible on experimental time scales: the system is still

out of equilibrium even after a long drying time. Despite this, as one can see in Figure 3.5.3,

the drying of thin films is more efficient when the drying activity decreases.

During the fast evaporation process, solvent diffusion coefficient is Dfast ∼ 1/τfast. Thus,

the required time tdiff so that molecules diffuse on distance L is

tdiff ∼ L2 ×Dfast

As long as the thickness of the film (L) is small enough so that tdiff < τα, there is a separation
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Figure 3.5.1: Evolution of the average solvent(UP),polymer (MIDDLE) and vac-
uum(BOTTOM) volume fraction during drying. The averaging is performed over the whole
film. All systems were initially prepared at equilibrium at as = 0.35 and T = 310K. Then
the system dries following a drop of activity at as = 0.15. The width of the film is maintained
constant here (50 cells) but we vary its depth N :N = 2; 10; 30; 50 (black, red, green and orange
curves respectively).
We observe a net separation of times scales between the fast evaporation process and the con-
traction of the system. Separation of time scales is more pronounced when considering very
thin films.
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Figure 3.5.2: (UP) Distribution of relaxation times at different times: t = 1s, t = 103s and
t = 104s and evolution of (BOTTOM)α-relaxation times during drying at activity as = 0.15
and T = 310K. Equilibrium distribution at activity as = 0.35 is also displayed (red curve). For
the first 102s of the drying process, solvent diffuse by means of fastest relaxation times and the
free volume increases by almost 2% which slightly accelerates the dynamics. At much longer
times however, as a consequence of the free volume reduction during the film contraction, the
system is aging: the distribution translates towards longer relaxation times and widens, and
α-relaxation times increase.
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Figure 3.5.3: Evolution of the final average solvent volume fraction as a function of drying
activity. Red horizontal curve represents the initial equilibrium value before drying. All systems
have been prepared at activity as = 0.42 and at temperature T = 330K after being dried for
107s at activity adrys .
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of time scales between the solvent diffusion and the film contraction. For much thicker films

however, the time scales separation observed in Figure 3.5.1 is no longer present. Indeed in this

case, both the solvent diffusion and the mechanical relaxation mechanisms overlap, which gives

rise to a large gradient of solvent concentration with respect to the films thickness, as well as

an inhomogeneous contraction of the system as shown in Figure 3.5.5. As a consequence of the

breaking down of the time scales separation, at long times the film is much more contracted

close to the free surface and the dynamics of layers in this region is much slower than those

deeper in the film: a 500-1000 nm thick (from the interface) glassy crust build up close to

the free surface as it is visible in Figure 3.5.6 and Figure 3.5.5. The evaporation of solvent

molecules is then considerably slowed down due to the glassy crust, and a large part of them

remain trapped in the bottom of the film, though the solvent volume fraction decreases slightly

in this region at long times. Note that waiting for much longer times does not allow to dry a

larger number of layers. Finally, there is a critical thickness above which the system cannot be

dried completely. We estimate this critical thickness to be about 500 dynamic heterogeneities

large. Note that this is the case for unentangled polymers as studied here.
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(a)

(b)
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Figure 3.5.4: Snapshots of a 50×50 film drying activity as = 0.15 at different times: t = 80s s
(a), t = 4× 103 (b) and t = 106s (c). Initially the system is prepared at activity as = 0.35 and
temperature T = 310K. The left column represents the logarithm of relaxation times and the
right one the solvent volume fraction φs. The reservoir is located at the bottom of each picture.
At the very first time of the process, the solvent evaporates quickly the matrix through fast
subunits. We see that layers at the film/reservoir interface are the first to dry. Layers deeper
in the film takes a longer time to dry because the distance over which the solvent has to diffuse
before reaching the film/reservoir interface is larger. At longer times, the system contracts
homogeneously and ages. Finally, during this process, the solvent evaporation, which is driven
by the contraction of the system, is slow.
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Figure 3.5.5: (Left) Evolution of a solvent(top) and polymer average volume fraction (bottom)
in a 2μm thick film drying at activity as = 0.08. Curves correspond to times (red) t = 102s,
(green) t = 103s, (orange) t = 104s,(purple) t = 105s,(black) t = 5, 5× 105s and (blue) t = 106s
during the drying process. Even after a long drying time, a large quantity of solvent molecules
remains trapped in the bottom of the film while layers at the film/reservoir interface are dried.
Moreover, layers close to the film/reservoir interface are more contracted as compared to layers
in the bottom of the film: as a consequence of the break down of time scales separation, the
contraction of the system is inhomogeneous and a glassy crust appears at the film/reservoir
interface. (Right): Evolution of α-relaxation times for layers number 1,100,300 and 500. The
dynamics remains relatively fast in the bottom of the film as compared to the region close to
the reservoir.
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Figure 3.5.6: Snapshot of a 1μm× 100nm (Depth×Widht) film drying at activity as = 0.08 at
times: (A) t = 102s , (B) t = 4, 4×104 and (C) t = 106s. The left column represents relaxation
times [log(τ/s] and the right column represents solvent volume fraction φs. The reservoir is
located at the bottom of each pictures (A) , (B) and (C) and is not represented here. At time
106 s, a large quantity of solvent remains trapped in the bottom of the system while the region
close to the film/reservoir interface is dried. The matrix contracts in this region, bringing to
the formation of a very slow crust (see FIG 3.5.5).
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3.5.1 Conclusion on film drying close to Tg at non zero activity

We have studied thin and thick films drying close to the glass transition temperature at non zero

activity. Drying at zero activity (dry solvent atmosphere) will be discussed later on. Regarding

thin films situation, as it represented in Figure 3.5.7, we have first noted a separation of time

scales during the process of drying. At short times scales, solvent diffuses through fast path

with dynamics much faster than α-relaxation times: the system does not contract. At the end

of this fast evaporation process, the system reaches an intermediate homogeneous state in which

the solvent quantity adapts to the initial polymer volume fraction given the drying activity. At

longer times, the solvent evaporation is driven by the homogeneous contraction of the system

which is kinetically controlled by α-relaxation times. Finally, the system ages because of the

free volume reduction during the matrix contraction.

On the one hand, we have seen that drying is more efficient when the imposed drying activity

is low. On the other hand, in the case of relatively low activity drying, dynamics slightly

accelerates at short time scales. This is due to the free volume fractions which increases in a

significant way during the fast evaporation process, and which tends to plasticise the system.

Study on thick films drying shows that the film contraction overlaps the solvent evaporation

process: there are no longer time scales separation in the system as a whole. At long times, the

contraction of the system is inhomogeneous and a glassy crust of 400-500nm is forming close to

the free surface, while a large quantity of solvent remains trapped in the bottom of the films.

Note that waiting for much longer times does not allows to dry a larger number of layers. The

drying process is slowed down due to the presence of the glassy crust and we did not observe

significant solvent evaporation at long times. Finally, there is a critical thickness in between

thin and thick films situation from which the system cannot be dried completely. We estimate

this critical thickness to be about 500 dynamic heterogeneities large.



page 126

Figure 3.5.7: Schema of thin film drying after a drop of activity from ainits down to adrys < ainits

of the solvent reservoir. Before drying (a), a large quantity of solvent dilutes the polymer which
is swollen. At the first instants of drying(b), solvent molecules quicly evaporate. As the matrix
is not contracted yet, the free volume increases in the system. At longer times(c), the polymer
contracts and the solvent slowly evaporates the system.

3.6 Drying of polymer-solvent films close to Tg at very

low activity

3.6.1 Prediction of cavity formation

After discussing about non zero activity drying in section 3.5, we discuss the case of drying at

very low activity. We give in Figure 3.6.1 the phase space of the system in term of solvent and

polymer volume fraction. The phase space is a square triangle defined by 1 > φs ≥ 0; 1 > φp ≥
0;φs + φp < 1. In Figure 3.6.1, the red part corresponds to the unstable region with λ2 < 0

and Blue curve corresponds to the equilibrium line which satisfies:(
∂G

∂N

)
φs,φp,P,T

= 0 (3.6.1)

Finally, the white part of the phase space in between the red part and the equilibrium line

corresponds to the stable region with λ2 > 0. We propose to study the difference between

systems dried either at low activity or at non zero activity by looking at trajectories (φs(t), φp(t))

followed by these systems in the phase space.

We consider the situation where systems are prepared in equivalent conditions, and where

equilibrium solvent volume fraction is large before drying. Regarding the phase space given
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Figure 3.6.1: Trajectories (φs(t), φp(t)) in the phase space in term of polymer (φp) and solvent
(φs) volume fraction at T = 330K. Parameters of the system are a = −2.5 × 10−20J , b =
−2 × 10−20J and c = −2.25 × 10−20, X = 100 and ρ0 = 10−28m−3. Red part corresponds to
the unstable region (λ2 < 0) and the blue line corresponds to the equilibrium curve. The white
region in between the red part and the equilibrium line corresponds to the stable region (λ2 > 0).
Trajectories are for systems (10×10 film) drying at activity as = 0.15 (Black trajectory),
as = 0.045 (Magenta trajectory) and as = 0.01 (Green trajectory). All systems were first
equilibrated in equivalent equilibrium conditions (ainits = 0.42 and T=330K) before drying. We
see that trajectories of systems drying at activity higher than as = 0.045, remain always in
the stable region. In contrast, systems drying at lower activity undergo the unstable region:
thermodynamic instabilities appear in the system.

in Figure 3.6.1, we see that when the system is dried at activity higher than or equal to

as = 0.045, the trajectory (φs(t), φp(t)) remains always in the stable region. First, the solvent

volume fraction decreases while the polymer volume fraction remains constant. In a second

step, the system begins to contract and trajectory moves slowly toward higher polymer volume

fractions. At lower activities, in contrast, the trajectory of the system cross the unstable

region (Green trajectory). This suggests that for systems prepared in equivalent conditions at

equilibrium, thermodynamic instabilities may appear during drying if the activity is too low

(below as = 0.045 here). Let us describe Figure 3.6.2 in order to understand thermodynamic

instabilities which occur during drying at low activity. In this figure, polymer chemical potential

and polymer free energy are plotted at two different fixed solvent volume fraction: a first

one (situation I) where φs = 0.17 and a second one (situation II) where φs = 0.005. Initial

equilibrium polymer volume fraction (φp = 0.70) is also displayed in this Figure (Blue dotted

line). In situation I, the system is stable and at thermodynamic equilibrium. In situation

II, where the system is dried but not contracted, the derivative of the chemical potential is

negative and the free energy is such that ∂2G/∂φ2
p < 0 in the vicinity of φp = 0.70: the

system is unstable. In these conditions, phase separation takes place by creating domains rich

in polymer, in coexistence with domains poor in polymer. We assimilate a domain poor in
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Figure 3.6.2: Dimensionless polymer chemical potential μp (Left) and free energy G (Right)
per monomers at fixed solvent volume fraction φs. Blue line indicates the position of the initial
equilibrium volume fraction. At φs = 0.17 the system is at equilibrium at ainits = 0.42 and
T = 330K. However, for φs = 0.005 and φp = 0.70, the derivative of the polymer chemical
potential is negative and the free energy is such that ∂2G/∂φ2

p < 0 in the vicinity of φp = 0.70:
the system is unstable and a phase separation occurs.

polymer to a cavity.

Let us now discuss the kinetics of the formation of cavities. We have seen that the exchange

kinetics between two close sites is controlled by faster relaxation times. SInce the free volume

fraction inside the cavity is large, relaxation times are very fast, while, domains surrounding

the cavity are rich in polymer and are slow: according to our dynamics ansatz, the phase

separation kinetics is controlled by the relaxation times of the cavity. Hence, a cavity will

form in a few time steps, and the relaxation times of domains surrounding the cavity, which

fill up in polymer, will become very long in the same time (some of them have relaxation times

larger than 1011 − 1012s). As a consequence, cavities appear very quickly and they freeze the

system. As an illustration of this, we give a spatial representation in term of logarithm of

relaxation times and total composition of a cavity in Figure 3.6.3. In next section, we will

expose a new ansatz for calculating relaxation times in order to avoid such situations. We

will see that cavities usually appear in systems composed of a large quantity of solvent before

drying. Nevertheless, if the initial equilibrium solvent volume fraction is sufficiently low, the

trajectory of the system remains in the stable region: the system can be completely dried and

aged still remaining homogeneous.
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Figure 3.6.3: Representation of a cavity forming in term of the logarithm of relaxation times
and the total volume fraction φs + φp during drying at low activity as = 0.01 and temperature
T = 330K. The snapshot is 20×20 nm large. We see that the relaxation times within the cavity
(τ cavityfast ) are fast due to the high free volume fraction inside. Following the dynamics ansatz
discussed in Chapter I, the flux of polymer between the cavity and surrounding cells (Blue
arrow) is driven by τ cavityfast . Hence, polymer volume fraction of neighboring cells becomes very
large in a few time steps, and their relaxation times increase by many decades in the same time:
the system becomes frozen.

3.6.2 New ansatz for calculating kinetic coefficients

We expose here the algorithm used to calculate kinetic coefficients in case of drying at very low

activity during which cavities appear. The general formulation of this ansatz is the following.

if μs(j)− μs(i) > 0 → γi,js = γ(i) (3.6.2)

if μp(j)− μp(i) > 0 → γi,jp = αγ(i) (3.6.3)

where couple (i,j) refers to a site i in contact with a site j, and γk(m) = 1/τk(m). Following this

scheme, mater exchanges between two neighboring sites is controlled by the relaxation time of

the site having the lower chemical potential. Finally, when a cavity is forming, the polymer

chemical potential is lower outside the cavity than inside. Hence, the polymer flux is controlled

by long relaxation times of domains surrounding the cavity. Hence, this new ansatz guarantees

the stability of the system when a cavity appear during drying.
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Figure 3.6.4: Schematic representation of a cell i and j with different polymer and solvent
composition. For each species, kinetic coefficient driving the exchanges between both sites is
equal to the relaxation frequency of the cell having the lowest chemical potential. Both species
do not have equal kinetic coefficients following this ansatz.

3.6.3 Low activity drying without cavity formation

We consider a 10×10 cells large film. The systems are equilibrated at activity as = 0.21 and

temperature T = 325K. They are then dried at three different activities: as = 0.01; 0.005; 0.001.

Trajectories followed by these systems in the phase space are given in Figure 3.6.6. According to

initial equilibrium conditions, none of these trajectories (φs(t), φp(t)) cross the unstable region

of the phase space during the drying process: cavities will not appear.

Evolution of the film average solvent and polymer volume fraction as well as α-relaxation times

are given in Figure 3.6.5. We observe that solvent quantity drops by more than 8% in the first

ten milliseconds of the process. Then, the solvent volume fraction reaches a constant value

which decreases when the drying activity decreases. Solvent volume fraction slightly decreases

at long times though, but this is not significant. During the fast solvent evaporation process,

we observe that α-relaxation decrease by 4 decades and distribution of relaxation translates

towards faster relaxation times (see Figure 3.6.7). The softening of the material results from

the large free volume increase (6-7%) which accelerates the dynamics in a significant way. Note

that an equivalent phenomenon has already been observed in case of drying of thin films at

non zero activity, but in lower proportions. In Figure 3.6.5, we see that almost immediately

after the system has softened, the system contracts and ages as show in Figure 3.6.5. Finally,

a spatial representation of the system drying at adrys = 0.001 is given in 3.6.8.
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Figure 3.6.5: Evolution of the average solvent, free volume and polymer volume fraction and
α-relaxation times during a 10×10 film drying at activity adrys = 0, 01; 0.005 and 0, 001.
Systems were all first equilibrated at activity as = 0.22 and T=325K. Solvent volume fraction
drops rapidly to a low constant value which decreases with respect to the drying activity.
During the fast evaporation process, the free volume fraction increases in an important way
(6-7%) and dynamics accelerates by more than 4 decades: the system softens as due to the
large free volume increase. At longer times, the system contracts and the dynamics slows down
with drying time. Finally, the acceleration of the dynamics is more pronounced at low drying
activity.
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Figure 3.6.6: Trajectories (φs(t), φp(t)) in the phase space in term of polymer (φp) and solvent
(φs) volume fraction at T = 325K. Parameters of the system are a = −2.5 × 10−20J , b =
−2 × 10−20J and c = −2.25 × 10−20. X = 100 and ρ0 = 10−28m−3. Red part corresponds
to unstable region(λ2 < 0) and the green line is the equilibrium curve. Trajectories are for
systems (10×10 film) drying at activity as = 0.01 (blue trajectory), as = 0.005 (red trajectory)
and as = 0.001 (Black trajectory). All systems were first equilibrated in equivalent equilibrium
conditions (ainits = 0.22 and T=325K) before drying. We see that trajectories do not undergo
the unstable region: no cavity appear in the systems during drying.
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Figure 3.6.7: Distribution of relaxation times at different times during drying at activity as =
0.005. At shirt times scales, dynamics accelerates and distribution shift toward faster relaxation
times. At longer times, the system is dried and is aging due to matrix contraction: distribution
translates toward longer times.
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Figure 3.6.8: Snapshots at different times: t = 10−1s (a), t = 102s (b), t = 104s (c),t = 106s (d)
during the drying of a 10×10 film (40nm×40nm) at activity adrys = 0.001. On each picture, the
left column represents the logarithm of relaxation times and the right one, the total composition
φtot = φs+φp. At short times scales, total composition decreases due to fast solvent evaporation
and relaxation times decreases. At longer times scales, the system is almost empty of solvent and
the polymer contracts and ages. During the drying process, the system remains homogenous
in term of total composition in the whole film: no cavity appear.
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3.6.4 Low activity drying with cavity formation

We consider a 10×10 film equilibrated at activity 0.42 and at temperature T = 290K. The

system is then dried at activity as = 0.01. Here, the initial solvent fraction at equilibrium is

high enough so that the trajectory (φs(t), φp(t)) of the system cross the unstable region of the

phase space. Evolution of solvent, polymer and free volume fraction as well as α-relaxation

times are given in Figure 3.6.9. Equivalently to previous cases, solvent volume fraction drops

rapidly to a low constant value and the dynamics accelerates. Afterwards, the system contracts

and ages. Note that the acceleration of the dynamics during the fast evaporation process is

slightly more pronounced here than in previous case. Indeed, during this process, the free

volume fraction increases by more than 10% here instead of by 6 − 7% in the previous case.

After the solvent has completely evaporated, domains with low composition appear in the

system as shown in Figure 3.6.10. We assimilate these domains to cavities. Relaxation times of

a cavity are very fast due to the large free volume fraction inside. However, thanks to the new

dynamics ansatz described in previous section, the polymer diffusion between the inner and the

outer part of the cavity is controlled by the relaxation times of slow surrounding domains. As

a consequence, the cavity becomes empty on very long times which makes them stable in time.

Note that these cavities have the size of a dynamics heterogeneity (3-5 nm). Finally, one needs

to integrate a surface tension term in the free energy of the system to observe the nucleation

of cavities. This will be done in a further extension of the model.
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Figure 3.6.9: Evolution of the average solvent, free volume and polymer volume fraction and
α-relaxation times during a 10×10 film drying at activity adrys = 0, 01. The system was initially
equilibrated at activity as = 0.42 and T=290K. Solvent volume fraction drops rapidly to a
low constant value, though it decreases slightly at long times. At short times, the free volume
fraction increases in an important way (10%) and the dynamics accelerates by 5 decades.
Afterward, system contracts and the dynamics slows down.
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Figure 3.6.10: Snapshots at different times: t = 5× 100s (a), t = 102s (b), t = 104s (c),t = 106s
(d) during the drying of a 10×10 film (40nm×40nm at activity adrys = 0.01. On each snapshot,
the left column represents the log of relaxation times and the right one the total composition
φtot = φs + φp. At short times scales, total composition decreases due to the fast solvent
evaporation and the system softens. At longer times scales, the system is almost empty of
solvent and the polymer contracts and ages. After the fast solvent evaporation process, some
domains with low composition appear: cavities are forming. They become more and more
empty when the time increases and relaxation times within cavities are fast. Since a surface
tension term is not included in the free energy of the system, cavities can not grow and their
size is equal to a dynamic heterogeneity. Finally, according to the ansatz discussed in section
3.6.2, cavities are long lived.
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3.6.5 Conclusion on low activity drying

Drying of polymer-solvent films at very low activity may exhibit very interesting features.

Our model is able to predict that cavities may appear or not following the initial equilibrium

conditions before drying. Indeed, in the system we have considered, when the initial solvent

volume fraction is larger than 10%, such instability appear (situation I) during drying. However,

for lower solvent concentration, the system remains homogeneous (situation II). Wether it is in

case I or case II, the solvent evaporates strongly on very short time scales and the dynamics

accelerates significantly. This a consequence of a very large increase of the free volume fraction

which softens the systems considerably. Afterward, the solvent volume fraction reaches a final

constant value and the system start contracting: the free volume fraction decreases and the

systems ages. Hence, as a consequence of the softening of the material, and the very fast solvent

evaporation process taking place at short times, one can explain how a thin film can be dried

completely. Finally, after waiting for longer times, one obtains a completely dried and aged

system, almost pure of polymer. In situation I, the drying phenomenology is equivalent, except

that we observe some cavities forming after the fast evaporation process. These cavities long

lived, and become more and more empty when time increases. The cavity formation can be

avoided by considering the following process:

first the activity can be dropped instantaneously at as = 0.045 or higher. Afterward the

reservoir activitymust be decreased at relatively slow rate so that the system follows a trajectory

parallel to the unstable region, until reaching a solvent volume fraction lower than a few percent.

Finally, the reservoir activity can then be dropped again at very low values.
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3.7 Swelling of polymer-solvent films close to Tg

In this section, we study the thin and thick glassy polymeric films swelling. To do so, we start

from the situation where the system has been partially dried before swelling. The procedure is

the following: The system is equilibrated at certain activity and then dried at non zero activity.

Finally, during swelling, the activity of the reservoir is raised again and the solvent penetrate

the system. Note that at the initial stage of the swelling process, the system is in an out of

equilibrium situation: the value of the osmotic stress is positive which results from the process

of contraction during drying (see Figure 3.7.2).

As it is represented in Figure 3.7.1, solvent molecules diffuse first inside glassy matrix through

fast dynamic heterogeneities: the film average solvent volume fraction increases like

< φs >film (t) ∼ t1/2

This process is faster than α-relaxation times and consequently the matrix is still contracted. A

subsequent free volume reduction is then observed (See Figure 3.7.3) due to penetrating solvent

molecules which fill up empty spaces which results in a slowing down of the dynamics of the

system as one can see in Figure 3.7.4. At the end this process, the system reaches a plateau

regime at time tpI ∼ 2, 5 × 105s during which the solvent volume fraction is homogeneous in

the whole film (see Figure 3.7.5) and is solution of equation:

( ∂G
∂φs

)
T,P,φinit

p ≈0.766
= T ln(as = 0.35)

⇒ φs(φp ≈ 0.766, as = 0.35) = 0.117

(3.7.1)

Like for drying, this corresponds to an intermediate thermodynamical state where the solvent

adjust itself to the initial polymer volume fraction given the activity of the reservoir. In this

regime, solvent molecules exert an osmotic pressure in the sample as shown in Figure 3.7.2:

the osmotic stress is negative meaning that a positive pressure must be applied on the sys-

tem to keep its volume constant. At the induction time tind = 2.03 × 107s, solvent molecules

melt the polymer under the osmotic pressure it exerts as shown in Figures 3.7.3 and 3.7.5,

and we see that: -1- the solvent volume fraction < φs >film increases linearly with time, i.e.

< φs >film (t) ∼ t (See Figure 3.7.1), and -2- solvent molecules penetrate the matrix in the

form of an invariant front moving at constant velocity as it is shown in Figures 3.7.5. Hence,

the combination of observations -1- and -2- shows that the system swells by means of a case

II diffusion process. We can see as well that layers dilate on the passage of the case II front

and they accelerate due to the large solvent quantity which penetrates them (see Figure 3.7.4).

Finally, after the front has propagated all over the film at time tpII = 2, 08 × 107s, the whole

system is at equilibrium with the reservoir. This corresponds to the second plateau regime in

which the polymer is diluted, and the dynamics of the system as a whole is fast as shown in

Figure 3.7.4.

A clear separation of time scales between the first and the second plateau regime can be ob-
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Figure 3.7.1: Evolution of film (50×50 cells) average solvent volume fraction as a function of
time during swelling at activity 0.35. The system is that described in Figure 3.7.3. For clarity,
time axe has been cut off. At short times, before reaching the first plateau regime at time tpI ,
average solvent volume fraction increases like the square root of time (Black dashed curve fit),
meaning that the molecules of solvent diffuse in a Fickian way through fast path. Then, after
the first plateau regime, the average solvent volume fraction increases linearly with time which
is the signature of a case II diffusion process. At the end of the case II process at time tpII ,
the system is in the second plateau regime and film average solvent fraction admit a constant
value corresponding to that of the final equilibrium state.
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Figure 3.7.2: Evolution of the average osmotic stress on layers 1,15,25,35 and 50 during the
swelling of a 50x50 film at activity as = 0.35 and temperature T = 310K. The system was
dried at activity 0,15 for 106s before swelling. The black curve represents the evolution of the
film average osmotic stress. The swelling of layers results from osmotic pressure effect apply by
solvent molecules within the matrix. Finally, after swelling the osmotic stress relaxes to zero.

served in Figure 3.7.3. In particular, like it is the case during drying, the separation of time

scales is more pronounced when considering very thin films, whereas it is no longer observed in

the case of very thick films. Indeed, as it can be observed in Figure 3.7.7 the Fickian front which

first takes place does not have the time to reach the bottom of the films before the induction

time tind ∼ 2 × 105s, and consequently, the latter continues to propagate ahead of the case II

front. Note that a specific method presented in Appendix 3.C has been developed to obtain a

dried homogeneous thick film before swelling. A spatial representation (see Figure 3.7.9) of the

system shows us that the front moves in the direction normal to the film/reservoir. The system

is then shared in two parts: a highly swollen one at equilibrium with the reservoir, and a glassy

one in which the Fickian front propagates. The interface between both regions is called the

”Fickian foot”. Finally, it can be seen in Figure 3.7.8 that the osmotic stress in layers located

deeper in the glassy region is positive (< σ >∼ 30MPa) and remains constant at the beginning

of the swelling process: these layers are still equilibrating with the low solvent volume fraction

resulting from drying.

Let us now highlight the physical mechanisms responsible for the Fickian foot propaga-

tion. At the Fickian foot, solvent molecules quickly penetrate the glassy layers located beyond

through fastest subunits as given in Figure 3.7.10. In addition, thanks to the facilitation mech-

anism, fastest subunits can exchange their excess of solvent with long lived subunits which

undergo the melting process. This makes that α-relaxation times decrease and thus, the di-

latation of layers self accelerates in a catastrophic way. Finally, according to the dynamics

ansatz, the solvent flux propagation at the film/reservoir interface and at the Fickian foot are

mainly driven by relaxation times (noted τfast) of the swollen region behind the case II front.

Consequently, the quantity of solvent required so that the Fickian foot moves of a distance L

between two times t and t′ > t is exactly balanced by the reservoir: the solvent penetration

rate in the film is constant, and so is the front velocity. See Figure 3.7.16 as an illustration of
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Figure 3.7.3: Evolution of the average solvent(a), polymer(b) and vacuum(c) volume fraction
during swelling. The averaging is performed over the whole film. All systems were initially
prepared at equilibrium at as = 0.35 and T = 310K and then dried for 106s at activity
as = 0.15. We report the subsequent evolution of solvent polymer and vacuum volume fraction
after the reservoir activity was increased at as = 0.35. The width of the film is maintained
constant here (50 cells) but we vary its depth (N) from N = 2; 10; 30; 50 (black, red, green and
orange curves respectively).
We observe a net separation of times scales between the fast diffusion process of solvent though
fast path and the case II diffusion process. The times scales separation is more pronounced
when considering very thin films.
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Figure 3.7.4: (Left) Distribution of relaxation times at different times t = 104s, 106sand2, 2 ×
107s and (right) evolution of α-relaxation times during swelling at activity aswell

s = 0.35 at
T = 310K. The system was first dried at activity as = 0.15 for 106s. We observe that during
swelling, the distribution of relaxation times shifts slightly towards longer times, and that α-
relaxation times increases before the induction time. We attribute the slowing down of the
dynamics to the free volume reduction during the penetration of solvent molecules during the
Fickian diffusion process. After the induction time however, case II process takes place and the
matrix swells layers by layers: the dynamics accelerates. Finally, in the second plateau regime,
the system has completely swollen and the distribution of relaxation times superposes to the
equilibrium distribution (red curve) at activity as = 0.35: the system is in its final dynamical
state.

this.

This model, by its coarse grained nature, has been designed to take also into account the

history of the system regarding the solvent diffusion. We hence propose to look at the influence

of drying time and swelling activity on case II diffusion (front velocity and induction time). To

that purpose, considered systems have either been dried at different activities or for different

times and then swelled at various activities in both cases. We can see first in Figures 3.7.11

and 3.7.12 that the induction time depends on the way the system has been dried: the longer

the drying time, the longer the induction time, and the lower the drying activity, the longer the

drying time. Although the swelling activity range is rather small, one can also notice that the

induction time decreases when the swelling activity increases whatever the drying conditions.

We attribute this effect to the osmotic pressure which increases when the swelling activity

increases as it is explained in appendix 3.B. Regarding the front velocity, it can be observed

that the latter does not depends on drying conditions (drying time and drying activity), but

in contrast it depends strongly on swelling conditions. This is a consequence of the fact that

the Fickian foot propagation kinetics is mainly driven by the dynamics of the swollen region

behind the front at equilibrium with the reservoir as it has been explained above.

The influence of the plasticisation power of solvent molecules on case II diffusion has also been

studied. To that purpose, two different blend Tg’s has been considered where one of them



page 143

0,1

0,12

0,14

So
lv

en
t p

ro
fil

0 10 20 30 40 50
Position (units: 4 nm)

0,74
0,75
0,76
0,77

Po
ly

m
er

 p
ro

fil

0 1e+05 2e+05 3e+05
t -tind (/s)

0

10

20

30

40

50

Fr
on

t p
os

iti
on

 (u
ni

ts
: 4

 n
m

)

Figure 3.7.5: (Left) solvent and polymer average volume fraction profile at different times
during swelling at activity as = 0.35 and T = 310K. Red curves correspond to volume fraction
profiles before the induction time tind = 2, 03 × 107s: (�: log(t/s) = 0), (◦: log(t/s) = 2.45),
(�: log(t/s) = 5), (�: log(t/s) = log(tpI)). From the induction time, layers swell progressively
(blue curves) and solvent propagates as a front: (�: t = 1, 95 × 107s), (◦: t = 2, 038 × 107s),
(�: t = 2, 045×107s), (�: t = 2, 05×107s), (�: t = 2, 06×107s). The front is invariant and its
velocity is constant as one can see on the Right panel: the system is swelling thanks to a case
II diffusion process. Layers behind the front are at equilibrium with the reservoir, and at the
end of the front propagation, the homogeneous final equilibrium state is reached (black curve:
(�: t = tpII)): the whole system is equilibrated with the reservoir. Finally, the front velocity
Vfront is estimated to be Vfront ∼ 8, 0× 10−4nm.s−1.

decreases faster than the other with respect to the solvent volume fraction as given in Figure

3.7.13. We notably observe in Figure 3.7.14 that at fixed swelling activity, the case II front

propagates faster when the solvent is a good plasticiser as compared to the case where it is

a weak plasticiser. Moreover, one can notice a significant reduction of the induction time

when the solvent is a good plasticiser for the system. Hence, in addition to osmotic pressure

effects, the effect of the plasticisation power of penetrating solvent molecules and their ability

to accelerate polymer chains has an important influence on case II diffusion.
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Figure 3.7.6: (Left) Evolution of film average solvent volume fraction during swelling at as =
0.35 at T = 320K . The system has been frist dried at activity as = 0.10 for tdry = 5 ×
104s. Before the induction time tind = 2 × 105s, the solvent volume fraction increases like
the square root of time (black dashed curve):< φs >film (t) =< φs >film (0) + α

√
t with

α = 1, 23 × 10−4s1/2. From time tind, the solvent volume fraction increases in a linear way:
< φs >film (t) ∼ t (blue dashed curve): a case II diffusion process takes place in the system.
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Figure 3.7.7: (Left) Average solvent volume fraction profile at different times during the swelling
of a 1μm thick film at as = 0.35 and temperature T = 320K. The system has been first dried
at activity as = 0.10 for 5× 104 s at the same temperature. Red curves correspond to profiles
before the induction time: (◦: log(t/s) = 2.72), (�: log(t/s) = 3.90), (∗: log(t/s) = 4.77),
(�: log(t/s) = 5.11). Blue curves correspond to profiles after the induction time: (�: t =
2.202 × 105s), (×: t = 2.475 × 105s), (�: t = 2.899 × 105s), (+: t = 3.482 × 105s), (◦:
t = 4.0913× 105s) (�: t = 4.479× 105s) and (�: t = 4.866× 105s). Before the induction time,
solvent molecules penetrate the matrix in a Fickian way through fast path. At the induction
time, a case II solvent front takes place and the large Fickian front keeps to propagates ahead.
(Right) Position of the case II solvent front as a function of time. The intersection between the
time axis and the linear black curve corresponds to the induction time. The later is equal to
2.0 × 105s. From time the induction time, the front position increases linearly with time: the
case II front moves at constant velocity Vfront = 1.80× 10−3nm.s−1.
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Figure 3.7.8: Evolution of the average osmotic stress on layers 10,20,30,50,100,150,200 and
250 during the swelling of a 250 layers thick film (1μm) at activity as = 0.35 and temperature
T = 330K. Vertical red dashed line indicates the position of the induction time on the time axis.
Regarding layers near the free surface, the osmotic stress becomes negative before the induction
time: solvent molecules exert an osmotic pressure in layers. After the induction time, the case
II diffusion front appears and the osmotic stress relaxes to zero (mechanical relaxation of layers)
as the front propagates. Layers located deeper in the film keep on contracting (constant positive
value of the osmotic stress) during the first decades of the process. However, the osmotic stress
inside these layers decreases when the Fickian front reaches them.
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Figure 3.7.9: Snapshots at t = 6.10 × 103 s (a), t = 1.8 × 105s (b), t = 2.61 × 105s (c),
t = 4.51 × 105s (d) during the swelling of a 1μm × 80nm film at activity as = 0.35. The
system has been first dried at activity as = 0.10 and T = 320K for 5× 104 s. The left column
represents the logarithm of relaxation times and the right one the solvent volume fraction φs.
The reservoir is located at the bottom of each picture. In Figures (c) and (d), we observe the
case II solvent front moving at constant velocity Vfront = 1.80 × 10−3nm.s−1 in the direction
normal to the free surface. The induction time is tind = 2× 105s. Snapshot (b) represents the
system just before the induction time.
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Figure 3.7.10: Representation of a 1μm×80nm(Thickness×width) large film (left) at time tw =
3.1× 105s during swelling at activity aswell

s = 0.35 at T = 320K. A case II front Induction time
is 2× 105s. Figure on the right hand side represents a 400nm× 80nm(Thickness×width)large
zoom of the system ahead the case II front (black frame on the left picture). We observe that
the solvent molecules penetrate through fast dynamic heterogeneities in layers right ahead the
front.
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Figure 3.7.11: (Left )Evolution of the case II front velocity and (Right) the induction time as
a function of the reservoir swelling activity aswell

s for systems which were dried for 3× 104s at
temperature T=320K and at activity adrys = 0.25, adrys = 0.15 and adrys = 0.08.
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Figure 3.7.12: (Up) Evolution of the induction time as a function of drying time tdry for
systems swelling at different activities: aswell = 0.35(circles); aswell = 0.45(triangle); aswell =
0.55(diamond). (Bottom) Evolution of the front velocity during swelling as a function of the
swelling activity at different drying times.
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Figure 3.7.13: Evolution of two equilibrium solution glass transition temperatures T blend
g as a

function of solvent volume fraction. Regarding the curve with circle points, we have ΔTg =
T bulk
g − T blend

g = 37K, and regarding the curve with diamonds points we have ΔTg = T bulk
g −

T blends
g = 27K (diamonds) for φs = 10%: the curve with circle represents the blend Tg variation

in case where the solvent is a good plasticiser for the system and the other curve in case where
the solvent is a weak plasticiser for the system.
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Figure 3.7.14: Evolution of the front velocity (Left)and the induction (Right) as a function
of swelling activity when considering solvent molecules with different plasticisation power as
explained in Figure 3.7.13.
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3.7.1 Conclusion on thin and thick films swelling

In previous sections, we have studied the swelling of thin and thick polymer films. Before

swelling, films are dried at non zero activity. Regarding thick films swelling, a method has been

developed in order to obtained homogeneously dried films of a few microns thick.

In the case of thin films swelling, a time scales separation is observed during the swelling pro-

cess. The solvent molecules penetrate first the matrix in a Fickian way through fast dynamic

heterogeneities. During this process, the solvent volume fraction increases until reaching the

first plateau regime: thermodynamically, the solvent volume fraction adjust itself to the initial

polymer volume fraction given the swelling activity. In this plateau regime, which may last

for several decades, the solvent free volume fraction is homogeneous in the whole film, and

solvent molecules exert an osmotic pressure in the contracted sample. At the induction time,

closest layers from the free surface swell as a consequence of osmotic pressure effects, and a

case II front takes place: the fornt propagates at constant velocity in the direction normal

to the film/reservoir interface, and the film average solvent volume fraction increases linearly

with time. Behind the case II front, the solvent volume fraction is at equilibrium with the

reservoir and the system is plasticised in this region. Finally, at the end of the case II front

propagation, the whole system is at equilibrium with the reservoir: the system is in the second

plateau regime. We have seen that the higher the swelling activity, the shorter the elapsed time

to reach the second plateau regime. In thick films, the situation is slightly different from a

phenomenological point of view. Indeed, like for thin films situation, a Fickian front penetrates

first the system, and a case II front takes place at the induction time. However, the system

is thick enough so that the Fickian front keep to propagate ahead the case II front, and the

intermediate plateau regime is not longer observed: there is no time scales separation in the

system as a whole.

The induction time depends on drying conditions (drying activity and drying time), which

is not the case for the case II front velocity. Nevertheless, the latter increases strongly with

respect to the swelling activity and seems to depend mainly on the final thermodynamical state.

The influence of solvent plasticisation power on case II diffusion has also been studied. We have

seen that both the induction time and the front velocity depend on the plasticisation power of

the solvent: the stronger the solvent plasticisation power, the shorter the induction time and

the larger the front velocity. Schematization of thin films swelling is given in Figure 3.7.15.
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Figure 3.7.15: Schema of thin film swelling after an increase of activity from adrys up to aswell
s >

adrys of the solvent reservoir. Right after the increase of the activity(a), the matrix is contracted
and contains a few solvent molecules. At the first moment of the solvent penetration(b), solvent
molecules diffuse through empty spaces. At longer times(c), the matrix swells due to osmotic
pressure effects induced by solvent molecules. During the swelling process, a large quantity of
solvent penetrates the system and dilutes the polymer chains.
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Figure 3.7.16: Schema representing a case II solvent front at time t and t′ > t. Dashed area
corresponds to solvent quantity entering the system between both times t and t′. Upstream the
front, dynamics is fast and typical relaxation time is τfast while downstream the front the film
is glassy. Due to the dynamics ansatz, the propagation of the foot ahead the front is driven
by τfast. The solvent penetration kinetics at the film/reservoir interface is also driven by τfast.
Thus, the quantity of solvent required so that the invariant front moves of a distance L between
t and t′ is is exactly balanced by the reservoir: the solvent penetration rate in the system is
constant, and so is the front velocity.



Appendix

3.A Effect of activity on drying

In this section, we look at the effect of the activity in the drying process. Evolution of α-

relaxation times is given in Figure 3.A.1 for systems dried at activity adrys = 0.35 (magenta),

0.30 (purple), 0.25 (orange), 0.15 (green); 0.06 (black)). We note that dynamics accel-

erates significantly at short times regarding the system dried at activity adrys = 0.06. This

is caused by the relatively large increase of free volume fraction resulting from the fast evap-

oration process. Finally, the acceleration of the dynamics is more pronounced when drying

activity is low. The reason is that the increase of the free volume fraction during the fast

evaporation process is more important when the drying activity is low. Furthermore, at long

times, α-relaxation times increase linearly with time for the system drying at lower activity,

while dynamics slowing down is less pronounced for the system drying at higher activity. The

reason is that the difference between the initial and the final state is relatively small in this

case: the dynamics evolution does not follows the Struick law.
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Figure 3.A.1: Evolution of α-relaxation times in a 50 × 50 cells film drying at activity
adrys = 0.35(magenta); 0.30(purple); 0.25(orange); 0.15(green); 0.06(black)) for 105s. The sys-
tem is first equilibrated at activity as = 0.42 and T = 330K. We see that the dynamics
accelerates slightly at short times. This results form the increase of the free volume fraction
before the matrix contraction. The dynamics acceleration is less pronounced when drying ac-
tivity increases. It is no longer observed at the higher drying activity though. Finally, at long
times, the dynamics slows down. α-relaxation times increase more slowly than the waiting time
for the system drying at higher activity.

3.B Effect of activity on swelling

In this part, we look at the influence of swelling activity aswell
s on swelling kinetics.

We consider systems dried in strictly equivalent conditions (drying time: tdry = 106s and drying

activity: as = 0.10) and then swelled at different activities comprised between aswell = 0.35

and aswell = 0.55. Evolution of times tpI and tpII as a function of swelling activity is given

in Figure 3.B.1. First, we see that time tpI does not depend on the swelling activity. This is

explained by the fact that all systems follow the same history during drying: their dynamical

state at the end of drying is equivalent. Second, the time tpII increases by almost one decade

between aswell = 0.31 and aswell = 0.55. As seen in section 3.5, the film average osmotic stress

is negative before the induction time. It can be observed in Figure 3.B.1 that the higher the

swelling, the higher the osmotic pressure that solvent molecules exert in the sample before the

induction time. As a consequence, the induction time, and also the time tpII decreases with

the swelling activity .
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Figure 3.B.1: (UP) Evolution of tpI and tpII as a function the swelling activity. All 50×50 cells
systems were first dried for 106s at activity as = 0.1 at temperature T = 320K. The time tpI
does not depend on the imposed final activity. However, the time tpII varies significantly with
the swelling activity: the lower the swelling activity, the longer the total swelling time tpII .
(BOTTOM) Evolution of absolute value of the film average osmotic stress < σ >min before the
induction time. We see that the higher the swelling activity, the higher the osmotic pressure.
This explains why the system swells faster at higher swelling activity than at lower swelling
activity.
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3.C Numerical method for studying thick films swelling

We have seen that it is impossible to completely dry a film of a few micrometers thick on rea-

sonable observation times. Indeed a very slow crust is forming close to the free surface, which

prevents the solvent contained in the bottom of the film to evaporate. We have then developed

a method designed for obtaining homogeneous dried thick films.

• - Step 1: A 10×10 cells large film is equilibrated at activity ainits and at constant tem-

perature. It is then dried at activity adrys for a time tdry.

• - Step 2: We cut off the connection with the reservoir and we consider periodic boundary

conditions. The activity of the reservoir is maintained at adrys for a time tinter,1

• - Step 3: Thin films are stuck together in order to form a larger one of the desired size.

The activity of the reservoir is maintained at adrys for a time tinter,2. We consider periodic

boundary conditions.

• - Step 4: The reservoir is plugged again and activity is raised from adrys up to aswell
s .

This method is illustrated in Figure 3.C.1. Times tinter,1 and tinter,2 are taken equal to drying

times tdry so slower density fluctuations can relax. At the end of step 3, we obtain a dried thick

film and homogeneous in term of solvent volume fraction.
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Figure 3.C.1: Schematic representation of the method developed to obtain homogneous and
dried thick films. At last step, the reservoir activity is increased from adrys up to aswell

s . Thanks
to this method, one can study solvent penetration mechanisms in thick and glassy polymer
solvent systems.
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General conclusion

In this work, we consider molecular diffusion mechanisms in polymer blends or polymer-solvent

systems close to or below the glass transition temperature. In case of polymer blends, below

their entanglement threshold, we have studied phase separation mechanisms occurring close to

the blend glass transition, and also rejuvenation mechanisms during which the system mixes

again and recovers a homogeneous molten state. In case of polymer-solvent systems, we have

been interested in drying and swelling processes when the system is far below the glass transi-

tion temperature of the pure polymer.

Experiments have put in evidence that dynamics is extremely heterogeneous on a scale of

dynamic heterogeneities of a few nanometers (3-5nm). Moreover, probes diffusion experiments

have shown, in the context of pure glass forming liquids, that heterogeneous dynamics allows

for small probes (smaller than a dynamic heterogeneity) translational diffusion through fast

dynamic heterogeneities. In case of binary systems, we argued that heterogeneous dynamics

is the consequence of composition fluctuations, and we assumed the existence of a large spa-

tial distributions of relaxation times in these systems. In addition, we considered that the

α-relaxation time, which controls the macroscopic stiffness of the system, is the consequence of

the percolation of a small fraction of slower dynamic heterogeneities. Following these assump-

tions, the relaxation of the system takes place through the superposition of slowly relaxing

structural changes occurring at large scale which control the mechanics of the system, and fast

diffusion processes through very mobile dynamic heterogeneities. Finally, we describe a facili-

tation mechanisms which controls the relaxation process of slow composition fluctuations by a

diffusion process of monomers and free volume.

We have developed a spatial diffusion model which we apply to the case of polymer blends

in contact with a thermal bath, and polymer solvent system in contact with a thermal bath and

a solvent particles reservoir. In both situations, we solved a 2D coarse grained spatial model

which integrates the spatial nature of dynamical heterogeneities on a scale of 3-5nm. The

latter corresponds to the spatial resolution of the model. A thermodynamical model describing

binary systems, has been designed in order to implement the thermodynamical forces which

drives the evolution of the dynamics of the system. Driving forces are equal to the gradient

of chemical potential. This thermodynamical model has been confronted to experiment. It is

also able to describe equilibrium situations in polymer-solvent system in contact with a pure
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solvent reservoir. Finally, we have seen that this model can give results regarding the variation

of Small Angle Neutron Scattering (SANS) intensity as a function of pressure, and that the

Flory Huggins model can be recovered in the limit of the low temperatures or high pressures.

Dynamics follows from an Onsager principle and composition fluctuationsmodelling the thermal

noise are written in a Langevin scheme. The model is discretised Following and the evolution

of the composition on a given site i is governed by following equations:

∂φA(i)

∂t
=

∑
<j>

γ(i,j)
(
μ(j)
s − μ

(i)
A + δφi,j

A

)
∂φB(i)

∂t
=

∑
<j>

γ(i,j)
(
α(μ

(j)
B − μ

(i)
B ) + δφi,j

B

) (3.3.1)

with γ a relaxation frequency [γ] = s−1, δφA = β
√
2γ−1/Ncδt and δφB = β

√
2αγ−1/Ncδt

where β is a random number distributed following a gaussian distribution of variance unity.

This random term, which holds for the thermal noise, gives rise to composition fluctuations

in the system. μ is a dimensionless chemical potential per monomers and Nc ∼ 400 − 500 is

the dimensionless volume of a given site. Finally, < · > denotes the summation over all next

neighboring sites. Note that these are ”bulk” equations, and that a supplementary term γi ×
(ln(as)−μi), where as is the solvent reservoir activity (depending on reservoir chemical potential

μres (dimensionless): as = exp(μres)), must be added to take into account the interaction

between the reservoir and the film in case of polymer-solvent systems.

Since we mix a slow component A (of glass transition temperature T slow
g ) with a fast one B (of

glass transition temperature T fast
g ), the glass transition temperature of the solution depends

explicitly on system’s composition: T blend
g = T blend

g (φA, φB;T
slow
g , T fast

g ). Then, by means of a

WLF law, we compute the monomeric relaxation times which depend on the composition:

τ(φA, φB) = τWLF (T − T blend
g (φA, φB;T

slow
g , T fast

g ))

Hence, by coupling composition fluctuations and the glass transition, we obtain a large spatial

distribution of relaxation times at the scale of dynamical heterogeneities: a site which contains a

large quantity of slow (resp. fast) component is slow (resp. fast). Finally, the above expression

for WLF-like relaxation times takes into account the free volume fraction. Kinetic coefficients

which control the matter exchange between a given site and its next neighbor, is taken as the

shortest relaxation times between these two sites:

γi,j = max
(
γ(i) ; γ(j)

)
(3.3.2)

which is basic assumption of the model.

The volume of the system is also assumed to be changing layers by layers which contract or swell

homogeneously and independently from each other. The thermodynamical force which drives

the evolution of the volume N (dimensionless) of a site on a given layer composed of nlayer sites

reads: 1
nlayer

∑
layer

∂G
∂N

which is zero at equilibrium. The deformation kinetics of the entire layer
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is controlled by α-relaxation times (τ layerα ). By considering the additional contraction/dilation

term in dynamical equations, we obtain:

∂φA(i)

∂t
=

∑
<j>

γ
(i,j)
A

[(
μ
(j)
A − μ

(i)
A

)
+ δφi,j

A

]
+ φA(i)

N
2/3
c

τ layerα nlayer

∑
layer

∂G

∂N

∂φB(i)

∂t
=

∑
<j>

γ
(i,j)
B

[(
μ
(j)
B − μ

(i)
B

)
+ δφi,j

B

]
φB(i)

N
2/3
c

τ layerα nlayer

∑
layer

∂G

∂N

(3.3.3)

In conclusion, following this model, the relaxation of a given site is the consequence of non

linear diffusion mechanisms between itself and its next neighbors, and of the mechanical relax-

ation of the layer it belongs to.

Let us first discuss the case of polymer blends. We have considered symmetric blends com-

posed of low molecular weight polymers with two different Tg’s, and non-symmetric blends

composed of long chains and much shorter ones (below the entanglement threshold). In non

symmetric blends the small chain is either the fast or the slow component. For polymer blends

with symmetric and low molecular weight, it has been observed that during a phase separation

close to or below Tg, the α-relaxation time increases linearly with time, and that slow and

fast domains build up in the system. Hence, dynamics does not slow down instantaneously,

and formation of domains is possible. At early stages, domains’s size is found to grow like the

logarithm of the time. During this process, domains rich in slow component age and the growth

kinetics slows down. At later stages, the growth process is very slow but becomes chaotic. We

attribute this effect to the partial melting of slow domains by the fast fluid phase as due the

large difference of mobility between both phases. Finally, after sufficiently long times, one can

obtain morphologies of a few tens of nanometers in size. However, this depends on the relative

composition of the system in terms of slow and fast polymer. We have seen that in systems

composed mainly of the fast component, domains may become relatively large. Since the fluid

phase is in majority, the diffusion of domains is possible which allows the coalescence and for-

mation of larger ones. However, when the system is composed mainly of slow components,

diffusion of fast domains forming is not possible: the slow phase build continuous rigid network

which ages.

When studying the revers process -i.e. when the temperature is increased again into a homo-

geneous molten state- we have seen that the melting of glassy nano-morphologies takes place

in much shorter times than the elapsed time to form them during aging: there is a strong

temporal asymmetry between aging and rejuvenation. We have shown than the melting of slow

domains results from the facilitation mechanism due to the presence of the mobile polymer

which surround them. Regarding non-symmetrical blends, domains rich in long chains do not
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grow much and their size fluctuates a lot due to the presence of the fluid phase which tends to

melt them.

Let us now discuss the polymer-solvent systems, and first the process of drying of thin/thick

films

We considered a system initially equilibrated close to the solution Tg. Three different situations

of drying have been studied. We first discuss the situation where the system is initially com-

posed of a large fraction of solvent, and is drying a non zero activity (adrys ). In this case, the

system’s trajectory during drying remains always in the stable region of the phase space: no

thermodynamic instabilities appear. We have seen also in the case of thin films with different

thickness, that the drying process is decomposed in two distinct steps. A first one, during which

solvent molecules evaporate from the system by diffusing through fast path in times shorter

than α-relaxation times. During this process, the matrix does not contract (φp = φinit
p ) and

consequently, the free volume fraction increases in the system: a subsequent acceleration of

the dynamics is observed. At longer times, solvent molecules evaporation is driven by the slow

contraction of the system: as a consequence of the free volume reduction, the system ages and

imprison solvent. In the case of drying at very low activity however, the film can be dried

completely. This is the consequence of the large solvent evaporation and of the acceleration

of the dynamics. Finally, the polymer contracts and ages. At long times, one obtains a very

stiff and homogeneous matrix almost empty of solvent. In certain circumstances, cavities may

appear during films drying at very low activity. Cavities appear the fast evaporation process

as a consequence of thermodynamic instabilities. Wether it is in the case of drying at non

zero activity or very low activity, the separation of time scales between the fast evaporation

process and the contraction of the sample is more pronounced when considering very thin films.

Regarding films of more than 1μm thick, the time scales separation is no longer observed. A

glassy crust of a few hundreds of nanometer build up at the free surface and large quantity of

solvent remains trapped in the bottom of the film.

When considering swelling of thin polymer-solvent films, we have seen that the solvent pen-

etrates first the system through fast path in a Fickian way. During this process the matrix

remains contracted (φp = φinit
p ) and the free volume fraction decreases. A subsequent slowing

down of the dynamics is then observed. At longer times, the systems swell under the action of

the osmotic pressure that solvent molecules exert and the solvent penetrates following a case

II diffusion process.

We have seen, through these results, that the same general physical model is able to describe

the phase separation close to Tg and the rejuvenation mechanisms in case of polymer blends,

and also the drying and the swelling of polymer-solvent films. The physics which governs these

systems is the same, such as osmotic pressure effect or the plasticising effect of free volume.

These effects are the direct consequence of the compressibility. We have seen also that this non
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linear diffusion model takes also into account the history of the system. For instance, in case of

polymer blends we have seen that the rejuvenation time varies by several order of magnitude

depending on the conditions. It is also the case for polymer-solvent systems where the induction

time depends on the drying time or the drying activity before swelling.

This coarse grained model allows for recovering time scales comparable to experimental situ-

ations, and for studying systems, wether it is for polymer blends or polymer solvent system,

where the dynamics adapts itself to imposed physical conditions. Finally, it is able to cover a

large spectrum of dynamical quantities just by adapting the history of the system.

Regarding perspectives, a next step in the model’s development would be to define an

evolution equation for the stress tensor coupled to diffusion equations in order to take into

account the mechanical relaxation in a more realistic way than what has been done here. In

polymer blends, it is worth confronting our model to neutron scattering experiments in order

to validate mechanisms responsible for the dynamics close to and below Tg. The influence of

chains size on growth process of glassy morphologies could be also evidenced by this technic.

Finally, the obtained results regarding phase decomposition processes may pave the way for

creating nanostructured long lived polymer materials with desired morphologies. In polymer-

solvent systems, from a fundamental point of view, it could be interesting to investigate the

drying dynamics of polymer solvent films of various thickness for several solvent species. In

addition, the influence of chains size on drying processes may be a field which could be explore.

Indeed, when drying polymer films composed of very long entangled chains, the reorganisation

time of the latter by reptation processes is very long. Thus, the coupling between diffusion

and contraction processes may take place on much larger time scales than in case where the

film is composed of short chains or oligomers. Finally, the presence of cavities when drying a

polymer-solvent films in a dried atmosphere should be also investigated by neutron scattering

experiments.
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Conclusion générale

Dans ce travail, nous avons regardé les mécanismes de diffusion dans les mélanges de polymères

et polymères solvant proche de ou en dessous de Tg. Dans le case des mélanges de polymères,

sous le seuil d’enchevêtrement, nous avons étudions en particulier les mécanismes de séparation

de phase, et aussi les mécanismes de réchauffe durant lesquels le système se remélange au-dessus

de Tg. Dans le cas des mélanges polymère solvant, nous avons étudié les processus de séchage

dans le cas où le système est sous la Tg du polymère pure.

Nous avons développé un model spatiale adapté pour les deux systèmes. Ce modèle coarse

grainé est résolu sur un réseau carré et intègre le caractère hétérogène de la dynamique à

l’échelle d’une hétérogénéité dynamique. Cette dernière correspond à la résolution spatiale du

système (3-5nm). Un modèle thermodynamique a été conçue pour calculer les forces permettant

de piloter l’évolution de la dynamique du système. Ces dernières sont égales au gradient de

potentiel chimique. La dynamique suit le principe d’Onsager et les compositions de fluctuations

sont écrite dans un schéma de Langevin. Ce modèle est ensuite discrétisé. L’évolution de la

composition à un site i est donné par les équation suivantes:

∂φA(i)

∂t
=

∑
<j>

γ(i,j)
(
μ(j)
s − μ

(i)
A + δφi,j

A

)
∂φB(i)

∂t
=

∑
<j>

γ(i,j)
(
α(μ

(j)
B − μ

(i)
B ) + δφi,j

B

) (3.3.4)

avec γ une fréquance de relaxaiton [γ] = s−1, δφA = β
√
2γ−1/Ncδt et δφB = β

√
2αγ−1/Ncδt

où β est une nombre aléatoire qui suit une distribution gaussienne de variance unité. De plus

μ est un potentiel chimique par monomères sans dimension et Nc ∼ 400 − 500 est the volume

adimensionnée d’un site.

Comme nousmélangeons une composante lente A (T slow
g ) avec une composante rapide B (T fast

g ),

la température de transition de la solution dépend explicitement de la composition: T blend
g =

T blend
g (φA, φB;T

slow
g , T fast

g ). Ensuite par le biai de la loi WLF, nous calculons les temps de

relaxation monomérique:

τ(φA, φB) = τWLF (T − T blend
g (φA, φB;T

slow
g , T fast

g ))

En conclusion, en couplant les fluctuations de composition et la température de transition
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vitreuses, on obtient une distribution spatiale des temps de relaxation: les temps de relaxation

sur un site riche en composante lente (resp rapide) est long (resp. court). Enfin, l’expression

ci-dessus des temps WLF prend en compte le volume libre. Les coefficients cinétiques qui

contrôlent les échanges de matière entre un site et un de ses proches voisins dépendent donc de

la composition locale et est pris comme le plus court des deux:

γi,j ∼ 1/τWLF = max
(
γ(i) ; γ(j)

)
(3.3.5)

Ceci est une hypthèse de base du modèle.

Le volume du système peut également changer. La relaxation mécanique est calculée couche

par couche. La force thermodynamique qui pilote l’évolution du volume N (sans dimension)

d’un site sur une couche composée de nlayer sites est: 1
nlayer

∑
layer

∂G
∂N

qui est nulle à l’équilibre.

La cinétique de déformation est contrôlé elle par les temps de relaxation α de la couche (τ layerα ).

En insérant le terme de contraction/dilation dans l’équation dynamique, on obtient:

∂φA(i)

∂t
=

∑
<j>

γ
(i,j)
A

[(
μ
(j)
A − μ

(i)
A

)
+ δφi,j

A

]
+ φA(i)

N
2/3
c

τ layerα nlayer

∑
layer

∂G

∂N

∂φB(i)

∂t
=

∑
<j>

γ
(i,j)
B

[(
μ
(j)
B − μ

(i)
B

)
+ δφi,j

B

]
φB(i)

N
2/3
c

τ layerα nlayer

∑
layer

∂G

∂N

(3.3.6)

En conclusion, suivant ce modèle, la relaxation d’un site est la conséquence de mécanismes de

diffusion non linéaires entre le site lui même et ses proches voisins, et de la relaxation mécanique

de la couche à laquelle il appartient.

Nous avons considéré des mélange symétriques composés de polymères de mêmes masses

ayant deux Tg différentes, et des mélanges de polymères composés de longues chaines et de

chaines courtes (sous le seuil d’enchevêtrement). Dans ce dernier cas, la petite chaine est soit

la composante rapide ou la composante lente. Pour les mélanges symétriques, il a été observé

que les domaines lents se forment logarithmiquement . Pendant ce processus, les domaines riches

en composante lente vieillissent ce qui rend leur temps de diffusion et de coalescence très longs.

En conséquence le processus de croissance est lent. Aux temps longs, l’évolution de la taille des

domaines est chaotique. On explique ceci par des effets de fusion partielle des domaines lents

par la phase rapide du fait de la grande différence de mobilité entre les deux phases. Nous avons

vu également que si le système est principalement composé de composante rapide, les domaines

peuvent atteindre des tailles de quelques dizaines de nanomètres. Ceci provient du fait que

la phase majoritaire fluide facilite la coalescence des domaines. A l’inverse, lorsque la phase

majoritaire est la phase lente, la diffusion des domaines rapides qui se forment est bloquée à
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cause de la phase majoritaire qui vieillit et qui forme un réseau rigide et dur. En conclusion, on

peut dire qu’en considérant des mélanges symétriques composés de polymères de petite masses

ayant des Tg différentes, il est possible d’obtenir des matériaux polymérique nanostructures

très stables dans le temps. La croissance des morphologies obtenues correspondant à la phase

minoritaire sera plus rapide quand la phase majoritaire est rapide. Lorsque l’on étudie le

processus de réchauffe -i.e quand la température dans un domaine où le système est fondu

homogène- nous avons vu que les nano-morphologie fondent plus vite que le temps nécessaire

pour les former pendant le vieillissement. Nous avons montré que les domaines lents fondent

grâce au mécanisme de facilitation du fait de la présence du polymère rapide en leur contact.

En ce qui concerne les mélanges asymétriques, nous avons vu que les domaines riches en longues

chaines grandissent peu et leur tailles fluctue beaucoup du fait de la présence de la phase rapide

qui tend à les fondre. Dans le cas où la phase rapide est composée en la majorité de chaines

courtes, le system se ré-homogénéise plus rapidement que dans le cas opposé.

Lors du séchage de filmsminces et épais, trois situations différentes ont été étudiées. Lorsque

le système est initialement composé d’une relativement grande quantité de solvant, et sèche en-

suite à activité non nulle (adrys ), le système reste toujours dans la partie stable de l’espace des

phases: aucune donc aucune instabilité n’apparâıt. Dans ce cas, le séchage se produit en deux

étapes distinctes: une première durant laquelle le solvant s’évapore en diffusant par les zones

rapides en des temps plus courts que les temps de relaxation α. En conséquence, pendant ce

processus, le system ne se contracte pas et la fraction volumique de vide augmente. On observe

donc une accélération de la dynamique. Au temps long, l’évaporation des molécules de solvant

est piloté par la contraction lente du système. En conséquence de la réduction du volume libre,

le système vieilli et la dynamique se ralentie: du solvent reste emprisonné dans le système. Dans

le cas du séchage à très basse activité en revanche, le film peut être séché complétement. Ceci

s’explique par la combinaison de l’évaporation rapide du solvant et de l’accélération importante

de la dynamique aux temps courts. Enfin, comme dans le cas du séchage à activité non nulle,

après l’évaporation rapide du solvant, le polymère se contracte et vieillit, et au temps longs,

on obtient une matrice rigide et vide en solvant. Dans certaines circonstances, le système peut

être le siège de la formation de cavités lorsqu’on séche le film à très basse activité. Elles ap-

paraissent après le processus d’évaporation rapide du solvant dans le cas où la fraction initiale

de solvant est relativement importante. Elles résultent d’un phénomène de séparation de phase

qui tend à former des domaines vides en matières en coexistence avec des domaines très dense

en polymère. La séparation d’échelles de temps entre le processus d’évaporation rapide du

solvant et la contraction du système est plus prononcée pour des films de faible épaisseurs. En

ce qui concerne les films d’épaisseur supérieur à un micron, cette séparation d’échelles de temps

n’est plus observée. Une croûte vitreuse se forme proche à la surface du films. La diffusion des

molécules de solvant est donc très ralentie et une grande fraction du solvant reste piégée dans

le fond du film.

Dans le cas du gonflement de films minces, le solvant pénétre le film de façon Fickienne par

les zones rapides. Pendant ce processus qui est plus rapide que les temps de relaxation α, la
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matrice reste contractée et la fraction volumique de vide diminue. Ceci est à l’origine d’un

ralentissement de la dynamique pendant ce processus. Au temps longs, le système gonfle sous

l’effet de la pression osmotique que les molécules de solvant elle exercent au sein de la matrice.

Le solvant diffuse ensuite par un processus cas II.

Le même modèle physique permet de décrire la séparation de phase proche de Tg et les

mécanisme de réchauffe dans les mélanges de polymères, ainsi que le séchage et le gonflement

de films polymère solvant. La physique qui gouverne ces systèmes est la même et se traduit

de notamment dans les effets de pression osmotiques ou encore l’effet plastifiant du vide. Ces

effets sont des conséquences direct de la compressibilité. Ce modèle prend aussi en compte

l’histoire du système. Dans le cas des mélanges de polymères, la cinétique de rajeunissement

varie de plusieurs ordres de grandeurs suivant les conditions physiques imposées durant le vieil-

lissement ou la réchauffe. C’est également le cas pour les mélanges polymère solvant où le temps

d’induction dépend du temps de séchage avant gonflement. La vitesse du front ne dépend pas

de façon significative du temps de séchage, mais dépend fortement de l’activité de gonflement.

Enfin, cemodèle coarse grainé permet d’accéder à des échelles de temps comparable à l’expérience.

En termes de perspectives, une prochaines étape dans le développement du modèle serait

de de définir une équation d’évolution du tenseur des contraintes couplé aux équations de

la diffusion afin de prendre en compte la relaxation mécanique de façon plus réaliste. Dans

les mélanges de polymères, il serait intéressant de confronter notre modèle à des expérience

de diffusion de neutrons afin de valider notre approche microscopique de la dynamique à la

transition vitreuse. L’influence de la taille des châınes sur les processus de croissance des mor-

phologies vitreuses pourrait être mise en évidence par cette même technique. Enfin, les résultats

obtenus concernant la séparation de phase proche de Tg dans les mélanges de polymères ouvre

la voie pour créer des matériaux de polymères nanocomposites stables dans le temps. Dans

les systèmes polymères-solvant, d’un point de vue fondamental, il pourrait être intéressant

d’étudier la dynamique de séchage de films en fonction de leurs épaisseurs et du type de

solvant. De plus, l’influence de la taille des châınes sur le processus de séchage pourrait être un

champ d’exploration intéressant. En effet, lors du séchage de films composés de châınes longues

enchevêtrées, le temps de réorganisation de ces dernières par le mécanisme de reptation est très

long. En conséquence, le couplage entre la diffusion et la contraction du système se fera sur des

échelles de temps beaucoup plus grandes que lorsque que l’échantillon est composé de châınes

courtes ou d’oligomères. Enfin la présence de cavités lors du séchage de films à atmosphère

sèche pourrait être étudier par diffusion de neutron.
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