Impurity and boundary modes in the honeycomb lattice - Archive ouverte HAL Accéder directement au contenu
Thèse Année : 2014

Impurity and boundary modes in the honeycomb lattice

Impuretés et états de bord sur le réseau hexagonal

Clément Dutreix

Résumé

Two fields of research define the framework in which the present thesis can be apprehended. The first one deals with impurity and boundary modes in the hexagonal lattice. The second one concerns a spin accumulation in an out-Of-Equilibrium superconductor.Two fields of research define the framework in which the present thesis can be apprehended. The first one deals with impurity and boundary modes in the hexagonal lattice. The second one concerns a spin accumulation in an out-Of-Equilibrium superconductor.Graphene is the main motivation of the first part. From a crystallographic perspective, the carbon atoms in graphene, a graphite layer, design a triangular Bravais lattice with a diatomic pattern. This gives rise to an extra degree of freedom in the electronic band structure that crucially reveals chiral massless Dirac electrons at low-Energy. First of all, it is possible to make these chiral fermions annihilate when a uniaxial strain stretches the graphene layer. For a critical value of the strain, all the fermions become massive and nonrelativistic, which defines a Lifshitz transition. We study the impurity scattering as a function of the strain magnitude. A localised impurity yields quantum interferences in the local density of states that are known as Friedel oscillations. Because they are affected by the chiral nature of the electrons, we show that the decaying laws of these oscillations are specific to the phase the system belongs to. Thus, the impurity scattering offers the possibility to fully characterise the transition.Second, the diatomic pattern of the graphene lattice can also be considered as an invitation to the world of topological insulators and superconductors. The existence of edge states in such systems relies on the topological characterization of the band structure. Here we especially introduce a model of topological superconductor based on the honeycomb lattice with induces spin-Singlet superconductivity. When a Zeeman field breaks the time-Reversal invariance, and in the presence of Rashba spin-Orbit interactions, we give a prescription to describe the topological phases of the system and predict the emergence of Majorana modes (edge states) in strained and doped nanoribbons.The second part discusses the study of a spin accumulation in an out-Of-Equilibrium s-Wave superconductor. At the equilibrium, the superconductor is made of particles coupled by a s-Wave pairing, as well as unpaired quasiparticles. Injecting spin-Polarised electrons into the superconductor induces charge and spin imbalances. When the injection stops, it may happen that charge and spin do not relax over the same time-Scale. The first experiment that points out such a spin-Charge decoupling has recently been realised. In order to confirm this chargeless spin-Relaxation time, a new experiment has been developed [96], based on measurements in the frequency domain. Here, we address a model that fits the experimental data and thus enables the extraction of this characteristic time that is of the order of a few nanoseconds.
La présente thèse s’articule autour de deux sujets. Le premier concerne la localisation des électrons en présence d’impuretés ou d’interfaces dans le réseau hexagonal. Le deuxième, en revanche, traite de l’accumulation de spin dans un supraconducteur hors-Équilibre de type s.Le graphène est la principale motivation de la première partie. Ce matériau bidimensionnel consiste en un feuillet d’atomes de carbones et peut être décrit comme un réseau hexagonal, c’est-à-dire un réseau de Bravais triangulaire avec un motif diatomique. La structure de bande électronique révèle alors l’existence d’électrons de Dirac sans masse et chiraux à basse énergie.D’une part, il est possible d’annihiler ces fermions chiraux en étirant de façon uni-Axiale le matériau. Pour une valeur seuil de l’étirement, les électrons deviennent massiques et non-Relativistes, ce qui définit une transition de phase dite de Lifshitz. Afin de caractériser cette transition, nous étudions la diffusion des électrons sur des impuretés en fonction de l’étirement. Une impureté localisée induit des interférences quantiques dans la densité électronique, connues sous le nom d’oscillations de Friedel. Etant sensibles à la nature chirale des électrons, nous montrons que ces oscillations décroissent selon des lois de puissances qui permettent de caractériser chacune des phases de la transition. La même étude est réalisée dans le cas limite où le diffuseur est une lacune.D’autre part, le motif diatomique du réseau hexagonal propose aussi une incursion dans le monde des isolants et supraconducteurs topologiques. Pour ces systèmes, la caractérisation topologique de la structure de bande électronique permet de prédire l’existence d’états de bord aux interfaces. Nous développons notamment un modèle de supraconducteur topologique basé sur le réseau hexagonal du graphène, en présence de supraconductivité de type singulet (s ou d). Lorsque la symétrie par renversement du temps est brisée par un champ Zeeman, et en présence de couplage spin-Orbit Rashba, nous donnons une prescription qui permet de caractériser les différentes phases topologiques possibles et de prédire l’apparition d’états de bord (états de Majorana) dans des nano-Rubans de graphène.La seconde partie discute l’accumulation de spin dans un supraconducteur hors-Équilibre, joint à un ferromagnétique. Lorsqu’il est à l’équilibre, le supraconducteur est composé de quasiparticules et d’un condensat. L’injection de particules polarisées en charge et en spin, à savoir des électrons polarisés en spin, induit une accumulation de spin et de charge à l’intérieur du supraconducteur. Si l’injection cesse, les populations de spin et de charge vont relaxer vers l’équilibre, mais pas nécessairement sur des échelles de temps identiques. Récemment, la réalisation d’une expérience a mis en évidence que le la charge pouvait relaxer bien plus rapidement que le spin. Afin de confirmer cet effet, une nouvelle expérience a été réalisée grâce à des mesures établies dans le domaine fréquentiel. Ici, nous adressons un model relatif à cette dernière expérience, dans le but d’extraire le temps caractéristique de relaxation du spin qui s’avère être de l’ordre de quelques nanosecondes.
Fichier principal
Vignette du fichier
2014PA112217.pdf (9.09 Mo) Télécharger le fichier
2014PA112217_annexe.pdf (460.02 Ko) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Format : Autre
Loading...

Dates et versions

tel-01126856 , version 1 (06-03-2015)

Identifiants

  • HAL Id : tel-01126856 , version 1

Citer

Clément Dutreix. Impurity and boundary modes in the honeycomb lattice. Quantum Physics [quant-ph]. Université Paris Sud - Paris XI, 2014. English. ⟨NNT : 2014PA112217⟩. ⟨tel-01126856⟩
374 Consultations
781 Téléchargements

Partager

Gmail Facebook X LinkedIn More