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Résumé étendu

Introduction générale

Le probleme traité dans cette these consiste a commander un processus basé sur un
asservissement affecté par des retards. L’approche utilisée repose sur des méthodes
ensemblistes. La plus grande partie de cette these est consacrée a une conception de
commande active pour la compensation des retards qui apparaissent dans des canaux
de communication entre le capteur et correcteur. Ce probleme est considéré dans une
perspective générale du cadre de commande tolérante aux défauts ou des retards variés
sont vus comme un mode particulier de dégradation du capteur. Le cas de la transmission
de signaux mesurés avec retard pour des systémes avec des capteurs redondants est
également examiné. Par conséquent, un cadre unifié est fourni afin de traiter le probleme
de commande basé sur la transmission des mesures avec retard qui peut également étre

fournie par des capteurs qui sont affectés par des défauts abrupts.

En général, les approches pour la conception de commande tolérante aux défauts sont
regroupées dans les méthodes passives et les méthodes actives. Les méthodes passives
considérent la conception de la commande qui est robuste par rapport aux défauts. De
l'autre c6té, un systeme actif réagit a un défaut détecté et reconfigure de la commande
de telle sorte que la stabilité et les performances peuvent étre vérifiées. Nous pouvons
penser de la méme maniere de la conception de lois de commande pour 'atténuation
du retard. A savoir, la conception d’un correcteur robuste pour faire face a des retards
est un probléeme classique dans I'automatique. En outre, la conception d’une commande
active tolérante aux retards existe aussi et elle emploie des prédicteurs. Toutefois, en
présence d’une perturbation exogene et non mesurée, ’approche basée sur la prévision
ne peut pas correspondre aux spécifications de la commande. Ce type de probléme est

considéré tout au long de cette these.
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Dans la deuxieme partie de la these le concept d’invariance positive est exposé. Cepen-
dant, 'invariance positive est restée en quelque sorte incomplétement explorée pour les
systemes a retard. Notamment, en ce qui concerne les systémes linéaires a temps discret
affectés par des retards, il existe deux idées principales dans la littérature existante sur la
fagon d’aborder le probleme de I'invariance positive. La premiere approche repose sur la
réécriture d’un tel systeme dans ’espace d’état augmenté et de le considérer comme un
systeéme linéaire régulier. La seconde approche considere 'invariance dans ’espace d’état
initial. Cependant, la caractérisation d’un tel ensemble invariant est encore une question
ouverte, méme pour le cas linéaire. Par conséquent, ’objectif principal de cette these est
d’introduire une notion d’invariance générale positive pour les systémes linéaires a temps
discret affectés par des retards. En outre, certains nouveaux éclairages sur l’existence et
la construction pour les ensembles invariants positifs robustes sont détaillés. En outre,

les nouveaux concepts d’invariance alternative sont également décrits.

Objectif
Les objectifs de cette theése sont les suivants:

e Caractériser les ensembles D-invariants pour un systéeme linéaire avec une pertur-

bation additive et fournir une méthode numérique pour leur construction.

e Contribuer a la création des conditions nécessaires et suffisantes pour l'existance

de la D—invariance.

e Fournir un mécanisme de détection de retard basé sur la conception de gouverneur
de référence. En outre, afin de développer une méthode de commande active pour
la compensation des retards introduits par réseau et qui est robuste par rapport

aux perturbations exogeénes et bornées.

e Etablir un systeme avec plusieurs capteurs de commande tolérante aux défauts et

des retards en utilisant des caractéristiques des ensembles invariants.
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Structure de la theése

Chapitre 2

Une commande comprenant plusieurs modules interconnectés est souvent réalisée par un
réseau commun. Cette facon d’interconnexion entre des capteurs, des actionneurs et des
correcteurs apporte de nombreux avantages tels que la réduction du cablage du systéme,
la flexibilité et la baisse du cotit. Toutefois, le transfert d’informations en paquets, ce
qui est une particularité des systémes commandés par le réseau, présente quelques défis
qui ne sont généralement pas pris en compte dans la théorie de la commande classique.
Par exemple, en raison d’une contrainte de taille de paquets, des informations limitées
peuvent étre transférés par un seul paquet. Par conséquent, une grande quantité de
données doit étre brisée en plusieurs paquets afin d’étre transmise. Ces limitations
de bande passante représentent une différence majeure par rapport aux systémes de
données échantillonnées conventionnelles ot ’on suppose que les données sont transmises
en méme temps. Une autre question importante liée a la commande en réseau sont
les abandons de paquets (ou le rejet de données). A savoir, en raison de liens non
fiables, il peut arriver que certains paquets sont perdus lors de la transmission. De plus,
pour les applications de commande en temps réel, il est souvent avantageux d’utiliser
uniquement des informations qui sont mises a jour au cas ou elles sont disponibles.
La communication sur un réseau partagé peut étre source de retards. En particulier,
la principale source de retards dans les systémes commandés en réseau est le temps
nécessaire pour accéder au réseau par un noeud pour transmettre des données. Les
retards peuvent également étre générés par un temps qui est nécessaire pour le calcul
de la commande ou de la transmission de données a travers le réseau. Tous ces effets
introduits par le réseau doivent étre pris en considération avec précaution car ils peuvent
dégrader considérablement les performances de la dynamique en boucle fermée. Nous
considérons la modélisation d’un processus en temps continu qui est commandé par un

correcteur numérique en réseau partagé.

L’architecture souvent utilisée pour ’analyse de commande en réseau est réprésentée par
un systéme avec la boucle de rétroaction unique (Fig. 1). Afin de transmettre un signal
de temps continu sur le réseau, le signal doit étre échantillonné et codé dans un format
numérique. Des données obtenues sont ensuite transmises via le réseau au dispositif de

commande numérique, ou l'action de commande est générée. Le signal de commande
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FIGURE 1: Commande en réseau

est décodé au site de l'actionneur et transformé en un signal continu par un bloqueur

d’ordre zéro.

Prenons le cas ou la communication entre des sous-systemes est affectée par des retards.
A savoir, a t = t, k € Z,, chaque sous-systéme (capteur et correcteur) nécessite
l'autorisation d’accéder au réseau pour transmettre des données. En fonction de la
disponibilité du réseau, nous pouvons avoir la situation ot un noeud transmet des don-
nées, tandis que les autres doivent attendre jusqu’a ce que le réseau est inactif. Sans
perte de généralité, tous les retards introduits par le réseau sont considérés comme des

retards capteur-correcteur ou correcteur-actionneur.

Supposons que le capteur est déclenché par une horloge, c’est-a-dire, la sortie est mesurée
périodiquement & chaque impulsion de 1’horloge. Supposons aussi que le correcteur et
I’actionneur sont déclenchés par un événement, c’est-a-dire, tous les signaux sont mis en
oeuvre des qu'’ils sont recus. Pour une variation de retard aléatoire, le nombre possible
de changements de commande active pendant une période d’échantillonnage est une

variable qui dépend du retard (comme parameétre).

Quand le retard est variable dans le temps, I’analyse de la stabilité d’une telle dynamique
n’est pas simple et elle est basée sur la recherche d’une fonction de Lyapunov commune
pour toutes les représentations du systeme sur un ensemble infini de parametres. Afin
de déterminer pratiquement une fonction de Lyapunov commune pour un tel systéme,
on peut utiliser une grille finie de la plage de retards, ce qui conduit & un ensemble
fini d’inégalités matricielles linéaires. Il est également important de souligner ici que
I'existence d’une fonction de Lyapunov ne représentant qu’une condition suffisante de

stabilité, et donc, elle peut représenter un résultat limité.
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Une approche qui fournit une approximation finie est développée en utilisant un tampon
au niveau du correcteur qui est situé sur le site de I'actionneur. Le tampon est lu péri-
odiquement & une fréquence plus élevée que la fréquence d’échantillonnage du capteur.
Un modele NCS obtenu de cette facon a un nombre fini de configurations différentes,

c’est-a-dire, il est représenté par une dynamique de commutation.

En utilisant un tampon dans la boucle de régulation, la réaction du correcteur et de
I'actionneur est retardée par rapport au cas ou ces noeuds sont uniquement gérés par
des événements. En d’autres termes, toutes les mises & jour ne sont prises en consid-
ération que si le tampon est lu. Toutefois, en choisissant un échantillonage du tampon
sufisamment petit on obtient un correctuer et un actionneur qui réagissent plus vite.
D’un autre c6té, une période d’échantillonnage relativement faible va fournir un modele

du systéme en boucle fermée qui est plus simple.

En tenant compte des différences entre 7. et 7.4, nous pouvons discerner deux directions
principales afin de s’attaquer a des retards introduits par le réseau. La premieére direction
représente 'approche de commande robuste par rapport aux retards. L’objectif principal
selon cette approche serait de concevoir une action de la commande qui garantit la
stabilité du systeme en boucle fermée pour tout variation du retard. Cette approche
utilise typiquement la méthode de stabilité de Lyapunov et elle est largement traitée
dans la littérature. La deuxiéme direction, qui est moins examinée est de considérer
une stratégie active avec la détection de retard et de reconfiguration de commande afin
de réaliser la compensation du retard. Une telle approche peut étre considérée comme
la commande tolérante aux défauts avec la détection des défauts et avec un mécanisme
pour reconfigurer de la commande afin que la stabilité et les performances peuvent
étre vérifiées en présence des retards. On peut remarquer que de telles mesures de
la commande ne s’appliqueraient qu’aux retards capteur-correcteur. Une architecture
NCS spécifique qui correspond a ce cas est représentée dans la Fig. 2, ou le correcteur

colocalise avec ’actionneur.

Il a été démontré que la performance de la NCS dépend en grande partie du protocole de
réseau sous-jacent. Dans cette section, nous considérons la modélisation pour le NCS,
avec des dynamiques linéaires, en ce qui concerne les retards introduits par le réseau
et les abandons de paquets. Les modeéles obtenus sont basés sur I'hypothese que les
mesures obsolétes sont rejetées. Méme si la mise en oeuvre de cette approche exigerait

des protocoles réseau non standard, une telle approche serait plus appropriée pour les
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FIGURE 2: Le correcteur colocalise avec 1’actionneur

applications de la commande en temps réel. Ainsi, une charge supplémentaire du réseau

est évitée.

Nous avons considéré un parametre de retard qui est incertain et borné sur un intervalle.
Cette incertitude est incorporée dans un modele qui, par conséquent, a un nombre infini
de modes possibles. Afin d’obtenir un modeéle mathématique adapté a I'analyse de la
stabilité, deux approches ont été proposées. La premiere approche exploite la méthode
de surapproximation. A savoir, le parametre de retard dépendant est délimité par une
région convexe (voir Fig. 3a). Par conséquent, la stabilité a 1’égard de toutes les variations
du retard possibles est garantie par la stabilité des générateurs de cet ensemble convexe.
La qualité de I'approximation et le colit numérique sont des exigences contradictoires et
elles dépendent du nombre de générateurs. Le principal avantage de cette approche est
qu’elle prend en compte tous les retards possibles de l'intervalle & un cotlit numérique
relativement faible. De I'autre c6té, cette approche est plus rigoureuse en ce qui concerne
la qualité de I’approximation, car elle prend en considération la région large d’incertitude.
La seconde approche, basée sur la stratégie de ’sous-échantillonnage, ne nécessite aucune
surapproximation puisque les modeéles obtenus ont déja un nombre fini de différents
modes de commutation. Cependant, le nombre de ces modes peut étre plus grand
pour une qualité d’approximation acceptable comme c’est le cas pour la méthode de
surapproximation. Le principal avantage de cette approche est qu’elle correspond a la
configuration du systéme, car le tampon introduit permet seulement certains retards de
I'intervalle de retard, en particulier, ceux qui sont sur la grille déterminée par le nombre
d’sous-échantillons (Fig. 3b).
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FIGURE 3: Rapprochement du parameétre de retard incertain

Chapitre 3

L’invariance positive est un concept largement utilisé dans la commande et elle fournit
un moyen efficace pour aborder I'analyse de la commande avec des contraintes. Par
exemple, des contraintes physiques imposées sur un systeme dynamique peuvent étre
satisfaites en assurant ’existence d’un ensemble positivement invariant a 'intérieur de
la région admissible. De cette fagon, on définit directement un ensemble de conditions
initiales pour lesquelles la dynamique répond & des contraintes pour tous les instants
a venir. Cette propriété remarquable d’ensembles positivement invariants trouve des
applications dans de nombreux autres domaines de commande comme la commande
prédictive, la commande tolérante aux défauts, la synthese de générateur de référence,

etc.

En ce qui concerne les systéemes en temps discret avec des retards, il y a deux idées
principales dans la littérature existante sur la fagon d’aborder le probléme de 'invariance
positive. La premiére approche repose sur la réécriture d’'un systeme dans l'espace
d’état augmenté et de le considérer comme un systeme linéaire régulier. D’autre part,
la seconde approche appelée également D-invariance considére I'invariance directement
dans 'espace d’état initial. Cependant, la caractérisation des ensembles D-invariants
est encore un probleme ouvert, méme pour les systémes linéaires a temps discret. Nous
considérons le probleme de conception de la commande prédictive sur un modeéle du

systéme en réseau x[tyi1] = Alty] + Z;‘l:o Ba,,—jultitj—dn), © € Xz, u € &, avec des



Résumé étendu XV

retards constants et avec des contraintes sur 1’état et I’entrée. La séquence de commande

sur un horizon fini est obtenue en résolvant le probléme d’optimisation suivant:

k+N—-1
min Y (et ultel, - ultsa,]) + T (@lteen], ultken] o ultian—a,]), N > dm

s=k
(1)

sous les contraintes

dm
ltsp1] = Axfts] + > Bay—jultstj—dnls V5 € L prn-1]
=0
T 2
[:z;[ts]T u[ts_dm]T} EXp X ... X Xy, ults] € X, @
T
[:L’[tk+N]T U[tk+N—dm]T} e X,

ou I(-) > 0, T(-) > 0 sont les cotits dans la fonction objectif, tandis que X est un
ensemble de terminaux positivement invariant. Cet ensemble peut étre défini dans un
espace d’état augmenté : X C (]R”)dm+1 ouX=Yx...YC (R”)dm+1 et Y C R" est
un ensemble D-invariant. Cette formulation remplit I’'objectif initial: faire respecter le
confinement des trajectoires dans une structure invariante afin d’assurer la stabilité de

la loi de commande.

Il existe deux objectifs principaux de ce chapitre. Le premier consiste a fournir un ap-
pui en termes d’ensembles invariants pour un scénario de défaut et des algorithmes de
détection du retard qui sont considérés dans le Chapitre 5 et le Chapitre 6. Relatif a
ce sujet, les résultats nécessaires sont déja bien connus dans la littérature et ils com-
prennent l'invariance positive pour les systémes linéaires avec une perturbation additive.
Le deuxiéme objectif est d’introduire une notion d’invariance générale positive pour les
modeles NCS présentées dans le chapitre précédent. A cet effet, nous donnons un apergu
des différents concepts d’invariance pour les systemes en temps discret avec des retards.
En outre, nous détaillons quelques nouvelles idées sur ’existence et sur la construction
des ensemble D-invariants. En outre, certaines solutions d’invariance alternative sont

discutées aussi.

Pour la conception de la commande tolérante aux défauts, nous utilisons principalement
I’ensemble invariant positif robuste minimal. Le calcul d’une représentation exacte de
I’ensemble invariant positive robuste minimal n’est pas possible dans le cas général. Il

faut alors recourir a des approximations et des algorithmes différents pour la construction
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d’approximations. Quelques résultats récents offrent une approche itérative pour calculer

une approximation avec une précision arbitraire au prix d’ une complexité accrue.

Indépendamment de leur application générale dans la conception de commande avec des
contraintes, des ensembles positifs invariants robustes minimaux sont également utilisés
pour la caractérisation de I’effet du bruit de mesure sur la dynamique en boucle fermée.
Bien siir, au lieu de I’ensemble robuste positif invariante minimal, on peut aussi utiliser
des limites ultimes. Cependant, ’ensemble positif invariant robuste minimal détermine

la région invariante la plus petite possible dans I'espace de ’état que 'on peut avoir.

Dans la deuxieme partie de ce chapitre, 'analyse de la stabilité de 1’équation récurrente
linéaire en temps discret avec le retard est effectuée de la maniere la plus simple par
I'introduction d’un nouveau vecteur d’état qui est composé du vecteur d’état initial et de
tous les signaux d’entrée de la fenétre du retard. La représentation d’état augmentée ainsi
obtenue est linéaire et sa stabilité peut étre vérifié soit en utilisant la méthode directe
de Lyapunov, soit en vérifiant les valeurs propres de la matrice du systeme en boucle

fermée. La méme méthode peut étre appliquée pour la conception de la commande.

Nous avons montré que l'invariance positive sur ’espace d’état initial est une propriété
plus forte que la stabilité de la représentation d’état augmentées. Par conséquent, nous
nous référons a l'invariance positive dans ’espace d’état initial comme D—invariance.
Bien que le concept d’invariance positive pour les représentations d’état augmentées soit
déja bien établi dans la littérature, nous mettons 'accent sur la D—invariance dans ce

chapitre.

Malgré les progres vers la caractérisation de D-invariants, des résultats assez basiques
sont toujours manquants, par exemple I'existence de D-invariants n’est pas complete-
ment caractérisée. Dans ce travail, nous ne fournissons pas de réponse complete a
ce probléeme non plus. Mais dans reste de ce chapitre, nous abordons le probléme
de lexistence et de la construction de I’ensemble robuste D—invariant minimal pour
I’équation récurrente en temps discret avec retard affecté par des perturbations additives.
Nous fournissons également quelques nouveaux concepts d’invariance comme l'invariance

cyclique, la famille d’ensembles invariants et les ensembles invariants paramétrés.

Ce chapitre a été consacré a l'invariance positive pour les systémes en temps discret,
ou l'on a examiné cette notion en ce qui concerne l'espace d’état initial. S’il exist
un ensemble positivement invariant défini pour 'espace d’état initial, il est préférable

en raison de sa représentation simple. En guise de contribution & 1’égard de 1’état de
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I’art, nous avons fourni les résultats sur la caractérisation de ’ensemble positif invariant
robuste minimal. Dans la derniere section de ce chapitre un nouvel apercu est disponible
sur des solutions alternatives pour l'invariance par rapport a 1’équation récurrente en
temps discret avec le retard. En outre, il a été montré que la factorisation des ensembles
convexes est I'opération permettant la description d’ensembles invariants dans des espace
d’état de dimensions différentes. Cette flexibilité ouvre de nouvelles perspectives pour
une meilleure gestion de la complexité des contraintes décrivant les ensembles invariants.
Par la suite, les ensembles invariants de faible complexité ont des répercussions sur
la complexité de la syntese de la commande comme par exemple dans le cadre de la

commande prédictive.

Chapitre 4

L’objectif de ce chapitre est de caractériser ’existence d’ensembles invariants positifs
pour une équation récurrente linéaire en temps discret a retard variable (ADDE). L’angle
considéré dans ce chapitre est completement différent par rapport aux approches existant
dans la littérature. Afin de réduire le conservatisme des méthodes dans le domaine
temporel, dans cette étude nous utilisons le une approche dans le domaine fréquentiel.
En particulier, une notion forte de stabilité des équations récurrentes linéaires en temps
discret a retard variable, notée comme stabilité asymptotique robuste, et sa relation
avec la D-invariance est examinée. Cette notion est nommée “forte”, car elle définit
la stabilité a 1’égard de toutes les réalisations du retard. Nous nous tournons vers une

classe plus générale, celle qui est spécifiée dans le domaine en temps continu.

Les équations récurrentes linéaires en temps continu au retard variable (cDDE) sont
largement traitées dans la littérature, surtout dans le contexte de I’équation différen-
tielle fonctionnelle ou elles jouent un réle important dans 'analyse de la stabilité. Une
particularité de la cDDE est sa “sensibilité” pour une perturbation de retard arbitraire-
ment petite. Dans ce chapitre, le concept de stabilité forte est notée comme la stabilité
indépendante du retard. L’importance de la ¢cDDE est une nouvelle idée suggérant
que cette classe de systemes permet ’analyse de la stabilité asymptotique robuste et

lexistence de D-invariants.

Dans ce chapitre nous considérons la stabilité des équations récurrentes linéaires a retard

variable en temps discret. Le probleme de la stabilisation n’est pas traitée ici, donc nous
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allons analyser le modele suivant:

zlty] = zm: Aix(ty—q,), (3)
=1

avec x[tk_di] eR", A, e R"™" et d; € Z[l,oo} telle que 0 < d; < djy1, Vi € Z[l,dm]'

Tous les retards constituent un vecteur d = [dy ...dpn]" € (ZT)™ dans l'espace du

parametre d. Pour chaque d nous définissons un rayon discret

-

Tad) = {ad : aeZ*). (4)

Pour estimer la stabilité asymptotique de 1’équation (4.1) on peut augmenter ’espace
d’état en réécrivant tous les états en retard comme un vecteur colonne. Sans perte
de généralité, supposons que d = {1 2 ... m}. Ensuite, la représentation d’état

augmentée s’écrit:

Al Ame Am
= In o On><n 0n><n
Xltp) = A X[tea] = | . : | X, (5)
On)(n ... In On><n
T T T T
avee X[t 1] = [afteoa]” zltial” ... altim]”| -

—

Notons par z* toutes les valeurs propres de A(d). Supposons d’abord que les retards
dans (4.1) varient de telle manieére que le vecteur de retard reste toujours sur le méme
rayon, c’est a dire, d € Ty(d). La stabilité de (4.1) par rapport i cette variation de retard

est caractérisée par le spectre suivant :
. m
o(A(ad)) = {zz : det <Inm - ZAiz;i = 0) , a€ Z+} . (6)
i=1

On peut remarquer que z* = z. Par conséquent, si la solution nulle de ’équation (4.1)
est asymptotiquement stable pour un vecteur J; elle restera asymptotiquement stable

vd e 7:1,(0?). On note un rayon avec cette propriété comme stable.

Du point de vue d’invariance positive, nous nous sommes plus intéressés a la stabilité

qui concerne la variation du retard (variation sur tous les rayons).
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Lorsque la stabilité asymptotique robuste est examinée, on peut s’apercevoir que le do-
maine temporel discret est en quelque sorte “incomplet”. Notamment, on peut remarquer

que pour une petite perturbation d’un rayon stable, la dDDE (4.1) peut devenir instable.
Ezample 0.1. Compte tenu de la dDDE stable :

xlty] = 3/4xlty—a,] — 1/22[ty—a,]. (7)

Pour dy = 1 et dy = 2 toutes les valeurs propres sont a l'intérieur du cercle unité, c’est

a dire, |zmaz| = 0.7071, avec

3 1
[emacl = max{|z] : det(l— Tz~ 4 227},
1

Pour o = 10, c’est a dire, pour d; = 10 et dy = 20, le systéme est stable (retards du
méme rayon), mais avec la plus petite marge de stabilité. En effet, |zpq.| = 0.9659. La
méme chose vaut également pour di = 11 et dy = 22, avec |zmaz| = 0.9690. Toutefois,
une petite perturbation de la direction de ce rayon peut causer de l'instabilité. Par

exemple, pour d; = 10 et da = 21 nous obtenons |zyq,| = 1.0159.

L’exemple précédent affiche une sensibilité de la stabilité pour la dDDE par rapport a une
petite variation de retard. Il est clair qu’on ne peut pas gérer correctement ce phénomene
a l’aide de la représentation en temps discret. Pour cette raison, nous considérons la
classe générale des équations récurrentes linéaires en temps continu a retard variable

(cDDEs).

Considérons la ¢cDDE: .
x(t) = Z Ajx(t — 1), (8)
i=1

avect € Ry, A; € R™" r, e RT, i€ Zj1,m)- 1 est clair que (4.1) est obtenue comme
un cas particulier de (4.14) en limitant le temps continu variable ¢ pour les séquences en
temps discret t;. Pour chaque condition initiale ¢ € CD(R[_TWO],R"), une solution de

(4.14) sur Rj_,, o est définie de facon unique.

Pour organiser des retards dans un vecteur, nous définissons 7 = [r1...7r,]7 € (RT)™,

avec 1; < r;41. Pour chaque 7 il est possible de définir un rayon :

Te(f) ={p7 : BeR"}. (9)
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FIGURE 4: Les valeur propres sans et avec la perturbation du retard

De la méme maniere que pour l'equation en temps discret, si le cDDE (4.14) est asymp-
totiquement stable pour un vecteur 7 € 7.(7), il reste aussi asymptotiquement stable
V7" € To(7). Un tel rayon est noté comme stable. Cependant, la stabilité d’un rayon est

une “propriété sensible” pour les cDDEs.

Ezample 0.2. Compte tenu de la dDDE stable :
z(t) = 3/4x(t —r1) — 1/2z(t — ra). (10)

Pour r; = 1 et ry = 2, toutes les valeurs propres sont stables (voir Fig. 5.9a). Notez
que les pdles pour le cas temps discret et le cas continu sont liés par la transformation
e = z. Ainsi, pour chaque valeur propre dans le z—domaine complexe il existe un
nombre infini de la valeur propre dans le A—domaine complexe avec la méme partie
réelle et des arguments avec une périodicité de 2.

De lautre coté, pour r1 = 0.99 et ro = 2 le spectre de (4.20) est représenté dans la

Fig. 5.9b.

Par la suite, la corrélation entre la stabilité asymptotique robuste et l'existence des
ensembles D-invariants est adressée. Le lien entre le temps discret et la dynamique
en temps continu devient naturel si la notion de D-invariance est définie par rapport

a la dynamique en temps continu. Nous avons également montré que, a coté de leur
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application pratique, des ensembles D-invariants peuvent également apporter un nou-
vel éclairage sur la corrélation entre la robustesse et la stabilité asymptotique qui est

indépendante du retard.

Chapitre 5

Connaissant la valeur d’un retard introduit dans la communication entre le capteur et le
correcteur, un modele suffisamment précis de ce processus nous permet de concevoir une
action de commande qui est capable de compenser ce retard. Une approche classique
utilise une commande basée sur un modele, qui effectue 'estimation d’un vecteur d’état
basée sur des mesures passés et des entrées de commandes précédentes. Toutefois, si
le processus n’est pas déterministe (il est soumis a des perturbations additives ou des
incertitudes paramétriques), cette approche peut fournir des performances médiocres,
ou méme conduire a un comportement instable. D’autre part, un retard qui pourrait
apparaitre dans la communication entre les correcteurs et les actionneurs a une nature
completement différente. Sauf au cas ot il peut étre estimé a ’avance et pris en compte
dans la conception de la commande, un tel retard ne peut pas étre compensé par des
moyens de commande en réseau. Dans cette situation, il faut compter sur la robustesse

de la commande (par rapport au parametre de retard).

Ce chapitre examine une commande des systémes en réseau avec un seul canal de commu-
nication capteur- correcteur. Les retards aléatoires et variables, ce qui peut se produire
lors de la transmission de données a travers ce canal, sont considérés comme des défauts.
En outre, nous supposons que le processus est affecté par une entrée de perturbation
bornée.

Afin de fournir des informations sur les retards plus faibles que la période d’échantillonnage,
nous concevons un mécanisme de détection basé sur des ensembles invariants. Un avan-
tage du mécanisme proposé est sa mise en oeuvre simple car il utilise des tests en-
semblistes pour discerner une information “saines” d’une information “retardées”. Afin
d’éviter intersection entre des régions “saine” et “retardé” un générateur de référence est
congu en utilisant le cadre de la commande prédictive. Une fois que les informations sont
fournies par le mécanisme de détection, le correcteur calcule une mesure de commande
fondée sur la prévision. Toutefois, si le systeme est affecté par la perturbation, le signal
de commande ainsi obtenu peut présenter une erreur de suivi qui s’accorde a chaque
nouvelle variation de retard. Pour cette raison, nous avons congu une commande basée

sur un modele avec un bloc de compensation qui est capable de corriger 'erreur induite
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FIGURE 5: Commande en réseau avec le correcteur qui est colocalisé avec I’actionneur

de suivi. Une condition suffisante qui garantit I’existence d’un signal de compensation

est également prévue.

Le modele du systéeme de commande en réseau qui est considéré dans cette section a un

correcteur colocalisé avec I'actionneur (voir Fig. 5).

Idéalement, a chaque période d’échantillonnage I'action de la commande doit étre mise a
jour en fonction des dernieéres mesures acquises par le capteur. Cependant, parce qu’il est
partagée par plusieurs noeuds, le réseau de communication peut ne pas étre disponible
au moment ou il est requis par le capteur. Quand cela arrive, les paquets de données
sont mis en attente jusqu’a ce que le protocole de réseau accorde la permission pour leur
transmission. Pour la plupart les protocoles des retards induits sont aléatoires et vari-
ables. Les données transmises sont stockées dans un tampon de réception qui est lu par
le dispositif de commande a une fréquence plus élevée que la fréquence d’échantillonnage

du capteur.

La méme dynamique peut avoir des réponses différentes pour les différentes variations de
retard. A titre d’exemple nous pouvons remarquer quelques résultats d’une simulation

représentée dans la Fig. 6 et dans la Fig. 7.

Un défaut est défini comme une déviation de la structure du systéme ou des parametres
du systeme a partir de la spécification nominale. Suivant la méme idée, on peut con-
sidérer un retard introduit par le réseau comme une déviation dans les canaux de com-
munication a I’égard de la transmission de données. Cette derniére voie représente la

principale approche que nous examinons dans ce chapitre.

Afin de calculer le signal de commande, nous considérons l’asservissement d’état et
I’asservissement d’état estimé. Les deux cas seront souvent considérés simultanément en
utilisant une notation commune. Cependant, certaines notions ne sont pas totalement
compatibles et pour ces cas, le retour d’état et le mecanisme d’estimation doivent étre

examinés séparément.
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(A) Réponse en boucle fermée (B) La variation de retard

FIGURE 6: Réponse en boucle fermée stable
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Fi1GURE 8: Correcteur basé sur un modele du systéme

Pour faire face aux retards introduits dans la communication entre le capteur et le
correcteur, une approche classique utilise une commande basée sur la prédiction. Un
tel correcteur utilise le modele mathématique du processus afin d’estimer le vecteur
d’état courant a partir des mesures obsoletes disponibles. Dans cette section, nous

considérons un correcteur numérique de commutation avec deux boucles de régulation
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FIGURE 9: Réponse en boucle fermée quand w =0
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FIGURE 10: Réponse en boucle fermée quand ||w||oco < 0.004

(voir Fig. 8.). Si le correcteur est fourni avec les mesures obsoletes, la commande est
générée en fonction des informations fournies par le prédicteur (boucle de commande en
haut dans la Fig. 8.). D’un autre cdté, lorsque les mesures mises & jour sont disponibles,

le dispositif de commande est commuté sur la deuxiéme boucle de régulation.

Une éventuelle limitation de cette approche pourrait étre originé par les deux hypotheses
suivantes. Le modele suffisamment précis du processus est connu; si cette hypothése ne
tient pas, le fonctionnement global de la stratégie de commande peut étre affecté. Ici,
nous examinons principalement les questions liées aux incertitudes du processus. Par
conséquent, dans cette section, nous supposons que tous les retards entre le capteur
et le correcteur sont connus. En conséquence, la méme dynamique en boucle fermée,
controlée par un correcteur basé sur un modele, peut avoir des réponses différentes en

présence de perturbations (voir Fig. 9 et Fig. 10)
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FiGURE 11: Correcteur basé sur modele avec compensation active du retard

La conception du compensateur de retard exploite I'idée qu'une occurrence du retard
peut étre considérée comme une faute a I’égard de la dynamique nominale. Afin de ré-
duire I’écart de suivi dans ce cas, nous concevons un mécanisme FDI et la reconfiguration

de la commande. Le schéma bloc de cette stratégie est présenté dans la Fig. 11.

Chapitre 6

L’utilisation de capteurs redondants dans la boucle de commande est inévitable dans
les applications critiques pour la sécurité. Par exemple, afin d’améliorer la sécurité
dans l'aéronautique, les avions sont équipés avec plusieurs systemes pour mesurer la
vitesse, le nombre de Mach et l'altitude. Alors qu’initialement des systémes avec des
composantes redondantes ont été limités par la hausse des cofits, de nos jours, avec une
baisse continue des cotits de production et d’exploitation la redondance des capteurs est
devenue accesible dans de nombreux autres domaines. A titre d’exemple, on peut citer
le régulateur automatique de la vitesse dans les voitures, qui est basé sur des mesures
multi- capteurs. L’objectif principal de la redondance des capteurs dans ces applications
est de fournir la résilience du systeme contrélé par rapport a un dysfonctionnement du
capteur éventuel. Alors que la fusion de capteurs atténue les bruits de mesure et certains
événements de type défaut, il est également possible qu'un choix inapproprié a ce stade

critique peut affecter considérablement la performance de 'usine.

La réalisation du systeme multi-capteurs via le réseau de communication partagé peut
rendre la stratégie de commande tolérante aux défauts encore plus compliquée en raison
des effets introduits par le réseau. Il est déja indiqué dans les chapitres précédents que les
retards introduits par le réseau sont tres variables (sauf pour certains protocoles réseau

avec des retards constants).
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FIGURE 12: Systéme de commande multi-capteur (asservisement d’état)

Dans cette étude, nous considérons un NCS multi-capteur actif qui fournit une tolérance
aux défauts en ce qui concerne les défauts de capteurs. L’objectif principal de ce chapitre
est de concevoir un mécanisme qui est capable d’identifier les données, parmi les mesures
redondantes disponibles, qui sont fournies par un capteur qui est affecté par un défaut.

Ceci est réalisé par un mécanisme détection des défauts (FDI).

Considérons le systeme de commande représenté dans la Fig. 12, ou le systéeme est con-
trolé par M capteurs redondants. La communication entre les capteurs et le correcteur
est réalisée par un réseau partagé tandis que le correcteur colocalise avec ’actionneur.
En raison des retards introduits par le réseau, il est possible que les capteurs aient un
taux différent de transmission de données. En outre, il est supposé que les capteurs sont

également soumis a des défauts occasionnels ou permanents.

Le processus est supposé étre decrit en temps continu, modélisé par une équation dif-

férentielle linéaire de la forme suivante:
z(t) = Acx(t) + Beu(t) + Ecw(t), (11)

avec x € R"™ vecteur d’état, u € R™ signal de commande et w € RP est un bruit de
moyenne nulle. Le bruit de traitement est délimité par l’ensemble W C RP tel que
w € W. Les matrices A, € R"*", B, € R"™"™ et E. € R"*P sont constantes.
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Sans perte de généralité et en raison des notations simples, nous examinons le cas ou

tous les capteurs sont capables de mesurer le vecteur d’état complet.

Les mesures qui sont acquises par les capteurs sont transmises au dispositif de commande
et mémorisées dans les tampons de réception. Chaque canal de ’asservisement est
suivi par un tampon de réception qui est supposé étre assez grand pour stocker les
informations qui correspondent a une période d’échantillonnage, c’est-a-dire, le rejet de
données a cause d'un débordement de tampon n’est pas traité. Tous les tampons sont
échantillonnés périodiquement avec la période T = %, ol N € Z* est suffisamment
grand. Le correcteur est muni d’un mécanisme de commutation qui sélectionne un
tampon pour le calcul du signal de commande a chaque instant entre les échantillonnages.
Selon les informations disponibles, la décision qui sera utilisée par le tampon est faite par
un mécanisme FDI qui supprime les informations en provenance des capteurs défectueux.
En outre, le mécanisme de FDI signale également lorsque les mesures employées sont
dépassées si le correcteur est capable de s’adapter a ’action de la commande en fonction

des informations disponibles.

Un défaut peut officiellement étre décrit comme une transition instantanée entre le mode
de fonctionnement défectueux et le mode sain de fonctionnement. Pour la simplicité de

la présentation nous considérons ci-apres seulement les pannes totales des capteurs :

FAULT

yilte] = x[te] + n;lte] yjltr] = 0 - [ty] +nj [ti]- (12)

-—
RECOVERY

Conclusions et perspectives

Deux méthodes basées sur des ensembles invariants pour la commande d’un systeme en
temps discret avec des retards ont été examinées. La premiére s’appuie sur les ensembles
invariants positifs, en particulier, les ensembles D—invariants qui sont robustes par rap-
port aux retards. Ce probléme a également été abordé dans cette theése par de notions de
stabilité pour les équations de récurrence a retard a temps continu et a temps discret. Il
a été montré que, a part leur application pratique, les ensembles D—invariants peuvent
également apporter un nouvel éclairage sur la corrélation entre la stabilité asymptotique
robuste qui est indépendante des retards. Par ailleurs, une solution alternative basée sur
la factorisation est considérée et ’'on peut représenter une direction de recherche possible

afin d’obtenir la caractérisation d’un consigne plus souple. Cette idée ouvre également
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de nouvelles perspectives pour une meilleure gestion de la complexité des contraintes

décrivant les ensembles invariants.

L’autre cadre considére une architecture avec plusieurs capteurs, éventuellement soumis
aux défauts et aux retards. L’ approche envisagée dans cette theése repose sur des en-
sembles invariants robustes qui sont définis pour la dynamique nominale. Les retards et
les défauts sont abordés par le correctuer qui est aussi robuste par rapport a la pertur-
bation exogene. En ce qui concerne la partie d’atténuation de retard, nous soulignons
qu’une telle action simple de commande est calculée et elle exploite la stratégie d’sous-
échantillonnage. L’efficacité de la commande dépendra toutefois largement sur les con-
traintes imposées. En d’autres termes, comte tenu des informations de rétroaction mises
a jour dans l'intervalle de temps admissible, on peut calculer des mesures de correction
en cas d’erreur de prediction. Mais dans des applications réelles, la possibilité de corriger
certaines erreurs de prévision dépendra largement des contraintes imposées au signal de
commande. De lautre c6té, une unité de commande qui est capable de fournir des sig-
naux de commande d’'une amplitude importante permet également la compensation des
retards plus grands. L’avantage le plus important d’une telle commande en comparaison
avec les correcteurs robustes, c’est qu’elle peut assurer la stabilité d’un systéme, méme
en cas des systemes qui peuvent étre instables en présence d’'une commande classique

robuste.
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Chapter 1

Introduction

THe problem treated in this thesis includes process regulation based on the feedback
information affected by delay. This problem can be regarded in a general perspec-
tive of the fault tolerant control (FTC) design where delays are considered as a particular
mode of performance degradation. The same problem can be also considered other way
around. Namely, each FTC scheme requires some degree of redundancy in the installed
components or subsystems (sensors, actuators, controllers). Larger number of nodes
implies increased usage of communication resources in order to operate such a system.
Due to bandwidth limitations and network congestion, data transmission between nodes
may be compromised by delay or packet dropouts. This suggests that the analysis and
control design for time-delay systems and the FTC design often appear together due to
their interdependences.

Problems of the analysis and control design for time-delay systems and fault tolerant
control (FTC) are largely treated in the literature, to mention only a few: Niculescu
[2001], Richard [2003], Sipahi et al. [2011] (for a general overview on time-delay systems)
and Blanke [2003], Zhang and Jiang [2008] (for a general overview on FTC design). In
this study we provide an unified control framework in order to address the problem of
delays appearing in a process regulation. For this purpose, we use networked control
systems (NCS) as a modeling class. This particular class of dynamics provides general
models that fit our objectives. Moreover, NCS as a popular research area nowadays (see
Hespanha et al. [2007], Murray et al. [2003]), can also benefits from the results contained
in this manuscript.

In general, FTC design approaches can be grouped into the passive and active methods.
The passive methods considers control design that is robust with respect to a set of
predefined faults. On the other side, an active scheme reacts to a detected fault and
reconfigures the control actions so that the stability and the performances can be verified
(see Stoican and Olaru [2013]). We can think in the same way the control design for
delay attenuation. Namely, designing a robust controller in order to deal with delays is

1
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a classical problem in the control area (see Niculescu [2001]). Also, designing an active
“delay tolerant control” also exists and the results are mainly relied on the predictor-
based controllers (see e.g. Witrant et al. [2007]). In order to make these concepts clearer
to the reader propose an analogy with the simple example of a cyclist. Imagine a road
which consists of the fast lane in the middle and the slow and the emergency lanes from
both sides. The objective of the cyclist is to keep his bicycle on the fast lane. Imagine
that the cyclist closes his eyes periodically for a certain time interval. When cycling with
his eyes shut, the cyclist can either hold the same direction as at the moment when he
closed the eyes or he can estimate the trajectory on a finite horizon (based on the last
available information) and keep performing some control action. The first scenario can
be considered as the robust approach, while the second incorporates some active delay
management. However, in the presence of disturbances (going back from a celebration
for instance) no matter which “cycling approach” he employs, there is a big chance
that he will (fortunately) find himself in the slow or the emergency lane, depending
on the how long he kept his eyes closed. From this simple example we can notice an
analogy with the FTC that is: the active fault (delay) management may provide better
control performance and it can handle a wider range of faults (delays). However, in the
presence of exogenous and unmeasured disturbance, prediction-based approach may not
respond properly to the control requirements. We consider this and the similar problems
throughout this thesis.

1.1 Objective of the thesis

There are two main directions followed in the thesis. The first one is to design an active
control strategy, which is robust to the exogenous disturbance, in order to handle con-
straints and time-varying delays appearing in the control loop. The obtained control al-
gorithm is also applied in a multi-sensor configuration. Thus control realization provides
a general framework for dealing with sensor abrupt faults and network-induced delays
in the sensor-to-controller communication channels. These results are implemented by
using the set-theoretic framework, in particular positively invariant sets. The concept of
positive invariance brings us to the second research direction considered the thesis where
a strong invariance notion for discrete-time systems with delays is examined. This no-
tion is known as the D-invariance and it is particularly useful in the model predictive
control design for systems with large delays.

The objectives of this thesis are:

e To characterize D—invariance sets for the linear systems with additive disturbance
and to provide a numerical method for their construction.

e To contribute to the establishment of necessary and sufficient conditions for D—inva-
riance. There is a need in this sense because the existing conditions are not con-
structive, while the ones that are constructive are either necessary or sufficient.
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e To provide a delay detection mechanism based on the reference governor design.
Furthermore, to develop an active control method for compensation of network-
induced delays which is robust with respect to bounded exogenous disturbance.

e To establish a multi-sensor control scheme with joint abrupt fault and delay tol-
erance capabilities thus generalizing the fault scenarious in the set-theoretic FTC
methods.

1.2 Outline of the thesis and publications

The contents of the thesis are as follows:

Chapter 2: Networked control systems: Preliminaries and prerequisites In
this chapter we consider the modeling for a continuous-time process which is controlled
by a digital controller over a shared network. We start the discussion by a brief overview
on various network protocols and their particularities with respect to delays and packet
dropouts. Then, we regard discrete-time representation of a NCS which takes into
consideration random, time-varying delays and packet dropouts. We also outline some
theoretical results, along with the most recent developments in the analysis and the
control design concerning NCS.

Chapter 3: Positive invariance for delay difference equations

The main objective of this chapter is to provide a support in terms of positively invari-
ance sets for fault and delay detection algorithms. The second objective is to induce
a general positive invariance notion for the NCS models. For this purpose, we provide
an overview of different concepts of invariance for discrete-time systems with delays.
Moreover, we detail some new insights on the existence and construction, in particu-
lar for D—invariant sets related to the linear delay-difference equations with additive
disturbance. Furthermore, some alternative invariance solutions are discussed as well.

The results of this chapter can be found in:

e Stankovié, N., Olaru, S. and Niculescu, S.-I. (2011): “Further Remarks on In-
variance Properties of Time-Delay Systems.” In Proceedings of the ASME IDETC
/ MSNDC, Washington DC.

e Stankovié, N., Olaru, S. and Niculescu, S.-I. (2011): “Further Remarks on In-
variance Properties of Time-Delay and Switching Systems.” In Proceedings of the
ICINCO, Noordwijkerhout.

e Olaru, S., Stankovié, N., Bitsoris, G. and Niculescu, S.-I. (2013): “Low Complex-
ity Invariant Sets for Time-Delay Systems. A Set Factorization Approach.” In the
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edited volume dedicated to Low Complexity Controllers for Time-Delay Systems,
to appear in Springer 2014.

Chapter 4: Delay-difference equations. Stability and positive invariance

In this chapter the concept of strong stability for discrete-time and continuous-time
delay-difference equations is considered. The importance of continuous-time delay-
difference equations is the new insight that this class of system provides in analyzing the
robust asymptotic stability and the existence of D—invariant sets.

The results of this chapter can be found in:

e Stankovié, N., Olaru, S. and Niculescu, S.-I. (2013): “Further Remarks on
Asymptotic Stability and Set Invariance for Discrete-Time Delay-Difference Equa-
tions.” Submitted to Automatica.

e Stankovié, N., Olaru, S. and Niculescu, S.-I. (2013): “On Stability of Discrete-
Time Delay-Difference Equations for Arbitrary Delay Variations.” In Proceedings
of the IFAC TDS, Grenoble.

Chapter 5: Sensor-to-controller delays in NCS. Detection and control design

This chapter examines a control design for networked control systems with single sensor-
to-controller communication channel. Random and time-varying delays, which can occur
during data transmission through this channel, are regarded as faults. We design a set-
based delay detection mechanism, which in general can be regarded as a fault detection
and identification mechanism. Furthermore, a model-based controller with a compensa-
tion block which is capable to correct the induced tracking error is designed as well.

The results of this chapter can be found in:

e Stankovié, N., Stoican, F., Olaru, S. and Niculescu, S.-I. (2012): “Reference
governor design with guarantees of detection for delay variation.” In Proceedings
of the IFAC TDS, Boston.

e Stankovié, N., Olaru, S. and Niculescu, S.-I. (2012): “Set-based detection and
isolation of inter-sampled delays and packet dropouts in networked control.” Lec-
ture Notes in Artificial Intelligence, Springer.

Chapter 6: Multi-sensor NCS with tolerance to abrupt sensor faults

The main objective in this chapter is to design a mechanism which is capable to identify
data, among available redundant measurements, which are provided by a sensor that is
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affected by an abrupt fault. Beside the abrupt faults, performance of the closed-loop
dynamics can also be degraded by delayed data transmission. Therefore, we combine
the model-based controller with active delay compensation in view of a fault detection
and identification mechanism.

The results of this chapter can be found in:
e Stankovié, N., Olaru, S. and Niculescu, S.-I. (2013): “Multi-sensor networked

control system with fault tolerance guarantees.” Submitted to International Jour-
nal of Adaptive Control and Signal Processing.

e Stankovié, N., Olaru, S. and Niculescu, S.-I. (2014): “A fault and delay tolerant
multi-sensor control scheme.” Submitted to IFAC World Congress.

Chapter 7: Conclusions and further directions In the last chapter conclusions are
presented. Extensions and open problems are also discussed.






Chapter 2

Networked control systems:
Preliminaries and prerequisites

AControl system realization that is supposed to include several (possibly many) nodes
(interconnected subsystems) is often carried out in practice via shared network.
This way of inter-connection between sensors, actuators and controllers brings numer-
ous benefits such as reduced system wiring, increased flexibility and lower maintenance
cost. However, transferring information in packets, which is a particularity of the NCSs,
introduces some challenges that are usually not considered in the classical control the-
ory. For instance, due to a packet size constraints, only limited information can be
transferred by a single packet. Hence, a larger amount of data needs to be broken into
multiple packets in order to be transmitted. Such bandwidth limitations represent a
major difference from the conventional sampled-data systems where it is assumed that
data are delivered at the same time. Another important issue related to the NCSs are
the packet dropouts (or data rejection). Namely, due to unreliable links (typical for the
wireless networks), it may happen that some packet are lost during the transmission.
Moreover, for the real time control applications it is often advantageous to use only
up-to-date information if and when they are available. Therefore, packet dropouts can
also occur due to rejection of outdated information when up-to-date data become avail-
able. Communication over shared network can be source of delays too. In particular,
the main source of delays in networked control systems represents time it takes for a
node to access the network in order to transmit data. Delays can also be initiated by
a time that is needed for the control computation or the data transmission through the
network. All these network-induced effect need to be taken into consideration carefully
because they can significantly degrade performance of the closed-loop dynamics.

In this chapter we consider the modeling for a continuous-time process which is controlled
by a digital controller over a shared network. We start the discussion by a brief overview
on various network protocols and their particularities with respect to delays and packet
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dropouts. In Section 2.2 we regard discrete-time representation of a NCS which takes into
consideration random, time-varying delays and packet dropouts. Section 2.3 outlines the
most relevant classical theoretical results, along with the most recent developments in the
analysis and the control design concerning NCS. The chapter ends with a recapitulation
of the presented notions and a reference overview of the related results.

2.1 A brief introduction to control networks

Depending on the different communication layers in a complex system, we may differ data
networks and control networks. Data networks are characterized by large data packets
and relatively infrequent transmission. On the other side, control networks are required
to meet more strict specifications, imposed by time-critical applications (see Koren et al.
[1996]) such as: frequent exchange of small data packets, guaranteed transmission or
bounded time-delays. Some networks such as Ethernet, may be used as data and control
network. However, in this study we consider only the control networks and their induced
effects with respect to closed-loop system performance.

With distributed control systems, control functions can be moved out of central units
into controllers located near the controlled devices (see Koren et al. [1996]). Moreover,
such an architecture provides modularity in design, flexibility with respect to additional
functionality to the system and better fault diagnostics and maintenance. The key
component that facilitates implementation of the distributed control systems is a shared
network. Moreover, networks can also decrease the wiring in the complex dynamical
systems such as airplanes (see Eccles [1998]) and thus reduce the overall cost. This
way of communication between different nodes or sub-systems obviously brings in many
advantages when compared to the classical, point-to-point communication architecture.

Control implementation via network may also have a negative impact on performance
of a closed loop system due to access delay, transmission time, response time, mes-
sage delay, message collisions (percentage of collisions), message throughput (percentage
of discarded packets), packet size, network congestion and determinism boundaries (see
Lian et al. [2001]). Moreover, these network-induced effects are mutually dependent. For
instance, relatively large data packets or a high frequency sampling require increased net-
work utilization. Consequently, the network is subject to larger delays due to increased
message collisions. This may also cause increased data queuing in the output buffers
and packets dropout. Such a degraded network functioning may deteriorate response of
the closed-loop dynamics, even lead to instability. Therefore, one of the most important
tasks in NCS design is to choose suitable control network that is capable to meet a
control performance specification.

Some control networks are deterministic in the sense that they induce constant or pre-
dictable delays. On the other hand, there are also networks that cause random and
varying delay that, for example, depends on the network congestion. This is a direct
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consequence of the Medium Access Control (MAC) sublayer protocol. Namely, MAC
protocol regulates access to the network for each node. Such decision can be taken
based on data priority assignment, scheduling or it can be stochastic. Consequently, the
corresponding closed-loop dynamics model is constant or time-variant. From this fact,
one can conclude that complexity of the analysis and the control design are considerably
affected by a chosen control network. In this study, we consider three popular industrial
network standards: Ethernet, ControlNet and Control Area Network (CAN) and their
specifications regarding time-delay and packet dropout.

2.1.1 Timing analysis and network-induced delays

Analysis of network-induced delays is particularly important for processes which are
characterized by very fast dynamics such as, for instance, flight control (see Ray [1987]),
while these delays often are considered to be insignificant in relatively slow processes,
such as those encountered in manufacturing (see Ray [1989]).

NCSs lies at the intersection of control and communication theories (see Hespanha et al.
[2007]). For this reason it may be appropriate to clarify the notion of time-delays with
respect to both fields. Namely, communication theory considers only delays with respect
to successfully transmitted data. Those delays are primarily caused by queuing and
serial transmission of bits, while the corrupted or deleted messages are not taken into
account. However, in control theory, delays are related to the question: How old are the
data that are currently used (see Ray [1989])7 One can notice that these two notions
are significantly different if some packets are rejected. In order to better understand
delay appearance in a network, a general timing diagram is outlined and detailed in this
subsection. A schematic representation, which is outlined in Lian et al. [2001], is shown
on Fig. 2.1.

Absolute time-delay for a message transmission, Tgejqy, is defined as the time it takes
for a node to transmit (deliver) the entire message to its destination. This delay can be
determined by:

Tdelay = Tpre + Twait + j}rans + Tpost7 (21)

where T, is the preprocessing delay, Tyqis is the waiting delay, Tirqns is the transmission
delay and T} is the post-processing delay.

The preprocessing delay is determined as Tpre = Tscom + Trod, Where Tseom is the compu-
tation time of the source node and T,,q is the encoding time of the message that should
be sent. After the preprocessing period, the message is transferred to the corresponding
output buffer, from where it should be sent to the destination node. However, if there
are already other messages that are waiting to be transmitted, the data will queue until
all previous messages are transmitted. The queuing time of a message is denoted by
Tyueue- Moreover, the queuing time can be also zero, since some protocols send only
the last acquired data while all unsent outdated measurements are discarded. When the
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Task Task
initialization end

l Enter queue Leave queue Send first bit Send last bit l
Tscom Tcod Tqueue Tblock Tfpmp
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Source ‘ Network channel ‘ Receiver
e e
» Time

FIGURE 2.1: A timing diagram in NCS

message is ready to be transmitted, the corresponding node requires permission from the
MAC protocol to access the network. If the network is occupied, then the transmission
is blocked until the network is idle. The delay, which is induced by blocking the message
transmission due to network utilization, is denoted by Tyock. Twait = Tyueue + Thiock
determines the waiting delay. The transmitted first bit of the message is delivered to
its destination after T}, where T, determines the propagation time for one bit
and it depends on the physical length of the network. Time it takes to transmit the
entire message T'¢prop, determines the propagation time for the entire message (frame),
where Tirans = Toprop + Tiprop- The delivered message is decoded and post-processed.
The corresponding delays in this case are denoted by Tije. and T}comp, respectively, while
Tpost = Tec + Trcom-

For a specific control network, Tpre, Thost and Tirqns can be considered constant compared
to the waiting delay (see Lian et al. [2001]), i.e., Tyejqy can be regarded only with respect
to Tywait- This delay, also denoted by access-time delay, has been identified as the main
source of delay in NCS (see Lin and Antsaklis [2005]) and it differs with respect to
different MAC protocols. In order to provide better insight in network-induced delay
with respect to a specific MAC protocol, in the subsequent subsections we consider basic
functioning of three popular industrial control networks.

2.1.2 Ethernet (CSMA/CD)

Ethernet with Carrier Sense Multiple Access / Collision Detection (CSMA/CD) is an
industrial control network specified in the IEEE 802.3 standard. CSMA/CD is the
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mechanism for resolving contentions on the communication medium. Namely, before it
transmits a message, each node listens to the network. If the network is idle, the node
transmits bit by bit until the whole message is delivered to its destination. If however,
the network is busy, the message transmission is blocked and put on hold. Sometimes
it may happen that two or more nodes listen to the network in order to gain access, so
they can start transmission simultaneously. The messages of these nodes collide, and the
transmitted information gets corrupted. When such a collision is detected, concerned
nodes stop their transmissions and wait random time before retrying the transmission.
This random time is determined by the binary exponential algorithm (for more details
see Lian et al. [2001]). After certain numbers of collisions, node stops attempting to
transmit data and reports failure.

The Ethernet with CSMA /CD utilizes a simple algorithm for network access which does
not additionally exploit the available network resources. This protocol can carry larger
data packets, so it is equally used in control and data networks. The main advantage of
this network access algorithm is that it has almost no delays at low network loads (see
Wheels [1993]). However, Ethernet is a non-deterministic protocol in the sense that it
induces random time-delays. Moreover, it does not support any message prioritization.
At high network loads, message collisions become a major issue since they significantly
increase delays, data rejections and the overall performance of the network and, conse-
quently, the controlled system. Another characteristic of the Ethernet protocol is that it
uses relatively larger data packets to transmit even small amount of information. This
is due to the minimal data packets requirements by the standard.

2.1.3 ControlNet

ControlNet is a Token-passing bus, specified in the IEEE 802.4 standard. It is a de-
terministic network protocol since the transmission time of a message is bounded and
determined by the token rotation. All nodes at the network are arranged into a logical
ring. Each node posses also the address of its logical predecessor and successor. The
transmission is guaranteed for a node that holds the token. Each node transmits the
data either until the whole message is transmitted or the time it held the token reaches a
limit (see Lian et al. [2001]). At the end of its transmission, the node passes the token to
its logical successor. Since only one node is allowed to transmit data at a given moment,
there is no message collision and the protocol guarantees the maximum time between
network access for each node.

ControlNet protocol is a deterministic protocol, i.e., it guarantees constant time delays.
It also provides good efficiency at high network loads. In contrast to the token passing
networks where the nodes are arranged in a physical ring, ControlNet can dynamically
add or remove nodes from the bus. However, despite good performance at lower network
loads, ControlNet cannot achieve performance of contention networks such as Ethernet.
Moreover, in the case where there are many nodes connected to the token passing bus,
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a significant network resource is used in passing the token between the nodes, i.e., addi-
tional communication bandwidth is required to gain access to the network.

2.1.4 DeviceNet (CSMA/AMP)

DeviceNet is a controller area network (CAN) with Carrier Sense Multiple Access / Ar-
bitration on Message Priority (CSMA/AMP) medium access protocol. CAN protocol is
defined by the 1SO11898 — 1 international standard. It was primarily developed for the
automotive industry, while today it can be found in a broad area of applications. The
network is optimized for short messages and it is primarily used in device-level man-
ufacturing applications. The medium access of simultaneous transmissions is resolved
by message priority assignment. Namely, each node transmits a bit stream which is
synchronized at the starting bit. The arbitration is performed bit-wise in the way that
a node which transmits the logic zero is dominant over a node which transmits the logic
one. When two or several nodes attempt to transmit data simultaneously, they first
continue to send messages and then listen to the network. If one of them receives a
different bit from the one it sends out, it loses the right to continue transmission and it
switches into the receiving mode (see Lian et al. [2001]). Therefore, the ongoing trans-
mission is never corrupted. DeviceNet, as other CAN networks, can work in broadcast
or in multicast mode of operation. Namely, in broadcast mode, transmitter sends out a
message that is received by all nodes. The decision is on each node whether it accept
the received message or not. In the multicast mode, messages are only transmitted to a
pre-defined group of nodes, but not all of them.

DeviceNet is a relatively low cost network and it is a deterministic protocol optimized
for short messages. Moreover, it can alway guarantee the transmission time for high
priority messages. On the other side, DeviceNet has a slow data rate due to the bit-
wise arbitration, i.e., an additional network resource is utilized in order to decide which
one of the conflicting nodes has priority for transmission. Also, the bit synchronization
requirement limits the maximum length of a DeviceNet network. DeviceNet is not
designed for large data transmission.

For more details on experimental results on network-induced delays for the presented
protocols, we refer to Lian et al. [2001] and Nilsson [1998].

2.2 Modeling of NCS

In general, networked control systems are represented by several control loops effectuated
over the same communication network (see Hespanha et al. [2007]). However, an often
used architecture for the theoretical consideration is the single feedback loop which is
depicted on the Fig. 2.2. Even though this scheme is considerably simpler than the
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FIGURE 2.2: Single feedback loop networked control system

general NCS architecture, it still captures the main important issues initiated by shared
network which are of the main interest in this work.

Briefly, in order to control a continuous-time plant via shared network the output signal
must be sampled and encoded into a digital format. Obtained data are transmitted
via network to the digital controller. Digital control, transmitted to the actuator also
via network, is decoded and transformed into a continuous-time signal by a hold unit.
Furthermore, the process and the measured output are usually affected by disturbances
(notice w and 7 on Fig. 2.2).

Let us consider a continuous-time plant which is represented by the following linear,
time-invariant differential equation:

z(t) = Acx(t) + Beu(t) + Ecw(t), (2.2)

where x € R” is the state vector, u € R™ is the control input and w € R? is the process
additive disturbance. It is assumed that w € W C RP, where W is a compact and convex
set!. Matrices A. € R™*", B, € R™™ and E, € R™*P are constant.

Let assume that all network-induced delays between the sensor and the actuator can
be neglected, i.e., measurements and control signals are instantaneously transmitted
through the network. For the constant Ts = t;,1 — t; and by using the zero-order hold
sampling, the discrete-time representation of (2.2) is given as:

2[ti1] = Ax[ty] + Bulty] + Ew[ty]?, (2.3)
Ts Ts
A=Al B= / eACd¢B,, E = [ e*CdCE,. (2.4)
0 0

'For the definitions on compactness and convexity see Section 3.1
2The square brackets are used in order to point out the discrete-time nature of the variables.
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In this study, the matrix exponential (2.4) is approximated by using series expansion
such that:
A=1,+AV, B=VB., FE=VE,

where
&ﬁ+Aﬁ§ %ﬂ“+
2! 3! G+

Ts
wz/ﬁﬁxzhn+
0

Even though is not the most reliable way of computing the matrix exponential, this
method meets most of our requirements for simple examples that are considered through-
out this thesis. Other ways of computing the matrix exponential can be found in the
survey paper of Moler and Van Loan [2003].

If there are no delays induced by the network, one can notice that the control action u[ty]
is constant over the entire sampling interval, i.e., Vt € Ry, ;, . ). Moreover, in (2.3) it is
assumed that the exogenous disturbance signal w is constant between two consecutive
samplings. This assumption will be relaxed later.

Hypothesis 2.1. All internal clocks are synchronized.

Regarding the discrete-time model (2.3), digital control signal v : R™ — R™ is given
by the following piecewise-constant function:

u(t) = ulty), VteER (2.5)

troths1)”

Consider the case when communication between nodes is affected by delays. Namely,
at t = tx, k € Z4, each node (sensor and controller) requires permission to access the
network in order to transmit data. Depending on network congestion at the moment and
specific MAC sublayer protocol, we may have that either one node transmits data while
the others have to wait until the network is idle (see ControlNet or DeviceNet in the
previous section), or both nodes have to back off and wait random time (see Ethernet in
the previous section). Without loss of generality, all particular network-induced delays,
that have been outlined in Subsection 2.1.1, are considered as sensor-to-controller and
controller-to-actuator delays (see Ts. and 7., on Fig. 2.2, respectively).

Introduce the following piecewise-constant delay function:
T Ry =Ry, 7(t) =7[te], YtERy, 4,0 (2.6)

where 7 = 7y + 7., denotes a total delay such that 7[tx] € Ry ,...;, Yk € Z4, with
Timaz < 00.

In the real time control applications, it is often advantageous to transmit only the most
recent data if and when they are available (see Zhang et al. [2001]). In other words,
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FIGURE 2.3: Timing diagram for data queue and data rejection

there is no cumulation of messages in the output buffer of a node (see Tjyeue in Subsec-
tion 2.1.1). Instead, only the most recent information is transmitted, while the unsent
messages are rejected. In this way, receiving nodes are provided by an up-to-date in-
formation when it is available. Moreover, an additional network loading is avoided. A
schematic comparison is provided on Fig. 2.3.

Hypothesis 2.2. Each node transmits only the most recent data.

Remark 2.1. For network-induced delays that are larger than a sampling period Hy-
pothesis 2.2 does not correspond to any of the previously discussed control networks.
However, it will be often use throughout this study. It is therefore important to stress
that eventual practical implementation of the results that are provided in this work may
require a control network with some non-standard MAC sublayer protocol for delays
larger than a sampling period. Hypothesis 2.2 obviously holds if network-induced delays
are smaller than a sampling period.

Let assume that the sensor is time-driven® while the controller and the actuator are
event-driven? nodes. For a random delay variation, the possible number of active control
inputs during one sampling period is a variable that depends on delay parameter. As
an example of the timing behavior in NCS, we refer to Fig. 2.4 where the controller is
assumed to be an identity map.

Taking into consideration packet dropouts due to data rejection, a discrete-time model
of (2.2) which is controlled via network is provided by Cloosterman et al. [2009].

Proposition 2.1 (Cloosterman et al. [2009]). Let T[tktj—d,] € Rio.7n0a]s VI € Zj0,d,n]-
The control action on the sampling interval Ry, 4, .y is given by

u(t) = ulthrj—dnl, V€ Riyps ] tntsmaltnl)s (2.7)

3The output is measured periodically with each pulse of the clock.
4All signals are implemented as soon as they are received.
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FIGURE 2.4: Signal propagation through the control loop affected by delays

where d,, = [T’j’fﬂ and

sjlte] = min{ max{0, 7[tx1j-a,,] + (j — dn)Ts},
max{0, 7[titj—dn+1] + (J — dm + )T}, ..., (2.8)
max{0, 7[tx]}, Ts},
with Sj [tk] < Sj+1[tk], j € Z[O,dm] and So[tk] =0, Sdm+1[tk] =Ts.

The corresponding state vector is determined according to the following difference equa-
tion:

dm
wlti] = Az[t] + ) Bay—j (M) ultirj—d,] + Ewlty] (2.9)
=0
Ts—s;[tx]
Aol T
where Bdmfj(Tk) = e*>d(B. and T = [T[tk] T[tkfl] T[tk,dm]} .
Ts—sj+1[t]
Proof. See Cloosterman et al. [2009]. O

Remark 2.2. In this thesis, discrete-time models with delays (as for instance (2.9)) are
used to analyze the behavior of the closed-loop systems controlled over the network.
However, problem of network-induced delays can be also regarded in the context of
delay-differential equations with piecewise control and delay at the input (see Rasvan
and Popescu [2001]).

Since T[tktj—dm] € Riormaels J € Zjo,d,]> ON€ can notice that (2.9) is a time-variant
dynamics. Stability analysis of such dynamics is not simple and it is usually based
on finding a common Lyapunov function for all system representations defined over an
infinite set (for V7[tk1j-d,,] € Riornae]s J € Z[0,d,))- In order to practically determine a
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common Lyapunov function for such a system, one can use a finite grid of the delay range,
which leads to a finite set of linear matrix inequalities (see Zhang et al. [2001]). It is also
important to stress here that, if there exists, a common Lyapunov function represents
only a sufficient stability condition, and as such it may represent a conservative result.
An overview of the most relevant theoretical results concerning stability analysis of time-
variant linear systems is outlined in the subsequent section.

An approach that provides a finite approximation of (2.9) is proposed by Lin and Antsak-
lis [2005]. In this work, the authors proposed a NCS scheme with receiving buffers at the
controller’s and at the actuator’s site which are read periodically at a higher frequency
then the sensor’s sampling frequency 7. Namely, buffers are assumed to be sampled
with the period T, such that T, = NT, with sufficiently large N € Z*°>. A NCS model
obtained in this way has a finite number of different configurations, i.e., it is represented
by a switching dynamics. This is formally outlined in the following proposition.

Proposition 2.2. Let 7 = 75 + Teq € Ry. Denote by T = Tse + Tea, where

N N
Foo = FT WT, Fou = Fz{ WT, T, = NT.
S S

For T[tktj—dm] € Rommae]s VI € Zjo,d,n]» m = [T’ﬁ”—‘, the control action on the sampling
interval Ry, 4, ) is given by

u(t) = U[tkﬂ'*dm]a vt € R[tk+§j[tk],tk+§j+1[tk])7 (2.10)
where

5;[te] = min{ max{0, 7[tk4j-da,.] + (J — dm)Ts},
max{0, 7[titj—dn+1) + (7 — dm + )T}, ..., (2.11)
max{0, 7[tx]}, Ts},

with §j [tk] < §j+1[tk], j & Z[O,dm] and §0[tk] = 0, gdm+1[tk] = TS.
The corresponding state vector is determined according to the following difference equa-

tion:
dm

wlti1] = Ax[t] + D Bay—j (T ulthtj—dy) + Ewlty] (2.12)
=0
Ts—gj[tk} T
where By, _;(74) = / eACdCB, and 7 = [7lte] Fltia] oo Flteean]] -
Ts—5541(tk]

Proof. Results provided in this proposition are obtained based on Proposition 2.1. For
more details we refer to Cloosterman et al. [2009]. O

5This smaller sampling period will be often referred to as the inter-sampling period.
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Remark 2.3. Using buffers in the control loop results in retarded controller’s and ac-
tuator’s reaction with respect to the case when these nodes are solely event-driven. In
other words, all updates are taken into consideration only when the buffers are read.
However, by choosing a sufficiently large N (N is a design parameter), buffers are read
with a higher frequency, which causes faster controller’s and actuators reaction. On the
other side, a relatively smaller N is a trade-off associated with a simpler model (2.12)
which consequently has less possible configurations.

The main benefit of introducing buffers in the control loop is that we obtain dynamics
with a finite number of different modes. In other words, time-variant model (2.9) is
replaced by the linear switching dynamics (2.12). This brings in several advantages from
the stability analysis point of view as well. The first one is that the model (2.12) already
represents an approximation of the linear time-variant dynamics (2.9) on a finite grid,
thus no further approximations are required in order to numerically compute a common
Lyapunov function. There also exists a necessary and sufficient stability condition which
is based on the joint spectral radius computation. However, verifying such a condition
remains a numerically complex problem. More details on these well-known theoretical
results are provided in the subsequent section and the references therein.

Regarding sensor-to-controller and controller-to-actuator delays, it can be noticed that
their ‘nature’ could be significantly different from the control design point of view.
Namely, since sensor-to-controller delays precede the control action, one can conclude
that it is possible to design a controller such that these delays are compensated (see
Zhang et al. [2001]). On the other side, compensation of the controller-to-actuator de-
lays is only possible if such delays are known in advance to the controller. Even though it
is possible to know delays in advance for some network protocols (the one with constant
delays), in general, such an assumption would be conservative.

Taking into consideration differences between 7. and 7.4, we can discern two main
directions in order to tackle network-induced delays. The first direction represents the
robust control approach with respect to delay parameter. The main objective according
to this approach would be to design a control action which guarantees stability of the
closed-loop system for any 7[tyy;_q,.] € Ri0,7mae]s J € Z{0,d,]- Such an approach typi-
cally utilizes Lyapunov stability method and it is largely treated in literature (see e.g.
Cloosterman et al. [2009], Lombardi et al. [2010] and Lin and Antsaklis [2005]). The sec-
ond direction, which is less examined in the literature, is to consider an active strategy
with delay detection and control reconfiguration in order to achieve delay compensation.
Such an approach can be regarded as a fault tolerant control-type strategy with the fault
detection and the control reconfiguration mechanisms so that the stability and the per-
formances can be verified when a fault (in this case delay) occurs. One can notice that
such a control action would only apply to sensor-to-controller delays. A specific NCS
architecture that corresponds to this case is depicted on Fig. 2.5 where the controller is
collocated with the actuator.
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The fact that the controller is collocated with the actuator results in a simpler discrete-
time representation than the general one outlined in Proposition 2.1. Since 7 = 7,
state vector of the NCS depicted on Fig. 2.5 is determined according to the following
proposition.

Proposition 2.3. Let 7[ty] € Ry ;.- Then, T[tg] = (d[tr] — 1)Ts + 7is[tr] where

Tis € Ry, d= H] . (2.13)

The corresponding state vector is determined according to the following difference equa-
tion:

w[tpr1] = Azfty] + Bo(7is)ulty] + Ba(Tis)ultp—ap,)] + Ewlte], (2.14)
Ts—Tis[tk] Ts
where By(Tis) = / eACd¢B, and By(mis) = / eACCdCBC.
0 Ts—Tis[ty]

The proof of the proposition is straightforward and it is ommited here. We refer to 7;s
as the inter-sampling delay while d[t;] — 1 determines the number of dropouts (rejected
packets) since the last control update.

Remark 2.4. Since there is one node in the control loop that transmits data over to the
network, there are mostly two active control inputs per sampling period (see Fig. 2.6).

Difference equation (2.14) can be simplified in the same manner as that was done in
Proposition 2.2 for the general NCS model. Namely, introducing a receiving buffer at
the controller’s input which is sampled periodically with the interval T, the state vector
can be determined according to the following proposition which is reported without
proof.

Proposition 2.4. Let 7[ty] € Rg ,,..]- Denote by T[ty] = (d[ty] — 1)Ts + Tis[tr]T, where

(r=(@-1T)N
T

_ _ T
Tis € Ljo,N-1], Tis = , d= [w , Ts=NT. (2.15)
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Then, the corresponding state vector is determined according to the following difference

equation:

Tltpy1] = Azfty] + Bo(Tis)ultr] + Ba(Tis)ultp—aje,)] + Ewlte] (2.16)
Ts—Tis[te)T Ts
where By(Tis) = / eAccalQBc and Bgy(Tis) = / eACCdCBC.
0 Ts—Tis[tr]T

Let us consider continuous-time dynamics (2.2). Using inter-sampling period 7', the
corresponding difference equation is given as:

z(ty + T = Az[ty] + Bulty] + Ew|ty], (2.17)
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where the state and the input matrices are determined according to (2.4). Propagating
(2.17) during the whole sampling period, one obtains

N-— N-—
cltis] = Aol + 3" A Baft] + 3" A Bul
i=0 i=0
under the assumption that wlty + iT] = const., Vi € Zjg y_1). Regarding (2.3), it is
N-1 N-1
obvious that A = AN, B = Z A'B and E = Z A'E.
i=0 i=0

In order to consider more general disturbance excitation, we can use the inter-sampling
architecture in order to take into account the process disturbance variation between
two consecutive samplings. Such a discrete-time model is obtain by propagating (2.17)
during the whole sampling period and considering varying process noise between two
consecutive samplings:

N—
T[tpy1] = Azfty] + Bultg] + Z A'Ewlty + (N — 1 —i)T). (2.18)
=0

The exogenous disturbance signal in the previous model approximates more acurately
the continuous process noise w(t). Moreover, the accuracy of the approximation is de-
termined by the number of inter-sampling instants, N, which is a design parameter. A
more detailed discussion on discrete-time representation for additive disturbance term
will be provided in Chapter 3, where we consider set-theoretic methods.

Remark 2.5. In Lin and Antsaklis [2005] authors provided a similar discrete-time repre-
sentation to (2.16), where they assumed that the control input is uniformly distributed
over the whole interval between two consecutive samplings. However, according to the
previous discussion, we can notice that the continuous-time dynamics (2.2) is approxi-
mated more accurately by (2.18).

Let us compare (2.18) with the following regular sampled-data system with respect to
the sampling period T

N— N—
Ttpp1] = Axty] + Z 'Bulty, + (N —1—i)T ZA’E [t + (N —1—49)T]. (2.19)
i=0 1=0

Notice that the control signal is updated every T instant. Consequently, the network
is more loaded, resulting in larger induced delays (for contention control networks for
instance).
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2.3 Stability analysis of NCS

In this section we provide some existing results for the stability analysis of NCS. The
outlined results involve solely the discrete-time dynamics.

2.3.1 Second Lyapunov method

Let consider the following discrete-time dynamics:

k1] = f(@[tr], w[tk]), (2.20)

where z[ty] € R" and wltx] € RP are the system state and the exogenous input at t = ¢,
respectively. Variables x and w represent sequences such that w € W, with W C RP.
Difference equation (2.20) can be regarded as a result of the closed-loop with a finite
dimensional state-feedback controller.

Using the second Lyapunov method, stability of (2.20) can be verified without knowing
its exact solution. Namely, if there exists a function with particular properties, such
that it is decreasing along the system trajectory, then one can affirm stability of that
system. This function is denoted as Lyapunov function (LF).

Disturbance attenuation analysis for the systems affected by bounded process noise re-
quires some set-theoretic notions such as robust invariant sets.

Definition 2.1. A set X C R™ with 0 € int(X) is called robustly positively invariant
(RPI) set with respect to W C RP for system (2.20) if for all x € X, it holds that
flz,w) € X Yw e W. Ifwlty]) =0 Vk € Zy and x € X implies f(x) € X, then X is
referred to as positively invariant for system (2.20).

The positive invariant notions are introduced here for the sake of input-to-state stability
condition which is reported in the sequel. We consider positive invariance for linear
dynamical systems in more details in Chapter 3.

Definition 2.2. Let X C R" such that 0 € int(X). The system (2.20) with wlty] =
0 Vk € Z, is said to be asymptotically stable in X if there exists a KL function 8 such
that, for each x[tg] € X, it holds that |z[tg]|| < B(||x[to]||,tx) VEk € Zy. If X =R™ the
system (2.20) is globally asymptotically stable.

Definition 2.3. Let @y, = {w[ti] : i € Zyy}, X € R" and W C RP such that
0 € int(X). The system (2.20) is said to be input-to-state stable in X for inputs in W
if there exists a KL function 8 and a K function v such that, for each z[ty] € X and
all wlty] € W, k € Zy, it holds that ||z[t]|| < B(llx[to]ll, tr) + Y(|0p, _ll) Yk € Zy. If
X =R"™ and W = RP, the system (2.20) is globally input-to-state stable.
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The following sufficient input-to-state stability condition holds (Jiang and Wang [2001],
Lazar et al. [2009]).

Theorem 2.1. Let aj,a2,a3 € Koo, ¥ € K and W C RP. Let X is a RPI set with
respect to W such that 0 € int(X). Let V. : X — Ry be a function with V(0) = 0.
Consider the following inequalities:

ar([[z]) < V(z) < aa(llz]]), (2.21)
<

V(f(z,w)) = V(z) < —as(l|lz]]) + y(llwl)-
If the inequalities (2.21) hold Vx € X and Yw € W, then the system (2.20) is input-to-
state stable. If X = R™ and W = RP, then the system is globally input-to-state stable.

The function V that satisfies the Theorem 2.1 is called an input-to-state Lyapunov func-
tion.

2.3.2 Unperturbed NCS with constant delays

In this section we consider the stability analysis of NCS, with linear dynamics, under
the assumption that the exogenous perturbation signal is zero. This assumption will be
relaxed after we introduce necessary set-theoretic notions in Chapter 3.

Let us consider (2.9) such that 7ty ;] € Rjo r,...], T[tk—;] = const., Vj € Zjg q,,- Assume
that wlty] =0, Vk € Z4. Then, (2.9) can be reformulated as

§ltrt1] = ALltw] + Bulty], (2.22)
T
where &[t] = {mT[tk] ullt,_1] ... uT[tk_dm]} and
A By, ... Bg,-1 DB, By
Oan Ome e Ome Ome Im
A= Omxn I, cor Omxm Omxm , B= Omxm
0m><n Ome e Im Ome Ome
For the linear state feedback control u = —Kx, (2.22) can be reformulated as an au-
tonomuos LTT system:
& [thrl] = A&, [tk]v (2-23)
T
where & [ty] = [xT[tk] e Y $T[tk—dmﬂ :

Analyzing stability of the augmented NCS model with constant delays, (2.23), can be
preformed in several ways. The simplest approach consists in studying the eigenvalues of
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the transition matrix A (Schur method). This classical result is outlined in the following
theorem (see e.g. Astrom and Wittenmark [1997]).

Theorem 2.2. System (2.23) is Schur-stable (globally asymptotically stable) if and only
if p(A) < 1.

Using Lyapunov stability method for the linear discrete-time systems, stability (2.23)
can be also verified by solving a Linear Matrix Inequality (LMI).

Theorem 2.3. System (2.23) is:

e stable (globally) if and only if there exists a positive definite matriz P such that

ATPA - P =<0.

e Schur-stable (globally asymptotically stable) if and only if there exists a positive
definite matriz P such that
ATPA-P <0.

The outlined stability analysis also applies to the models provided by Proposition 2.2,
Proposition 2.3 and Proposition 2.4 if the network-induced delays are constant.

2.3.3 Unperturbed NCS with time-varying delays

In most NCS realizations, network-induced delays are time-varying. Delay variation
by itself can deteriorate system performance, even when it takes place among constant
delays which independently do not cause instability of the closed-loop. This is shown by
the following example.

Example 2.1. Consider the following sampled-data system:

o=, Jeoef]
ult] = — [~2.8962  —0.3785| x[ts],

with the sampling period Ts =1 s.

If the closed-loop dynamics is affected by a constant delay, one can evaluate a delay
margin, 7° € R ..}, i-€., the maximal allowable constant delay such that the closed-
loop system is stable (see Fig. 2.7a). However, the delay margin is not relevant anymore
for the stability analysis when the induced delays are varying, where even much smaller
delays than 7* can degrade performance of the closed-loop system. Namely, let assume
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(A) Root locus for 7 € Ryo 1] (B) Stability region (in blue) with re-

spect to delay variation 71 — T2

FIGURE 2.7: Example 2.1

that 7[ty] = 71 € R, and 7[ty11] = 72 € Ry r,). The discrete-time closed-loop
realization for the two consecutive steps is:

Eeltera] = A(m2) A(T1)Ee k],

T
where &, = {xT [te] ot [tk,l]} and A(71) and A(72) are the transition matrices deter-

mined according to:
Ar) = lA - I;O(T)K —Bi (1)K

O’I’LXTL

For 71 = 0.5 s and 79 = 0.1 s, A(71) and A(72) are Schur-stable, while A(72)A(71) is not.
This is explained by the fact that, in general case, multiplication of two Schur-stable
matrices is not a Schur-stable matrix (see Liberzon [2003]). Stability region in delay-
parameter space with respect to 71 and 7 and for two consecutive sampling instants
is shown in Fig. 2.7b. Notice that stability can be even more compromised for more
sampling instants and different combinations of the two matrices.

Let us consider the general NCS model (2.9) with time-varying delay 7[tpyj—q,.] €
R0, 7mae]s VI € Zjo,4,,) and wlty] = 0, Vk € Z. Equivalent representation in the aug-
mented state-space is given as:

Eltr1] = A(me)€ltr] + B(re)ulte], (2.24)
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T
where &[t] = {xT[tk] ul'lty_1] ... uT[tk,dm]} and
A By(mg) ... Ba,-1(m:) Ba, (k) Bo(Tx)
Oan Ome e Ome Ome Im
A(Tk) = 0m><n Im v 0m><m 0m><m , B(Tk) = 0m><m
Oan Ome e Im Ome Ome
For the linear state-feedback control u = — Kz, (2.24) can be reformulated as:
Eelthi1] = A(Te) e [tr], (2.25)
T T T T
where &,[te] = [o7[t] @Tlte] . 2T[tkoa]] -

To guarantee the stability of (2.25), it is sufficient to prove that this system admits a
common quadratic Lyapunov function, V (&;[tx]) = €L [tx] P€,[ts] such that
A(me)'PA(T,) = P <0, Y7 € RImT! (2.26)

[Ovaaa:] :

Since the delay parameter is defined on an interval, the transition matrix A(7) can have
an infinite number of realizations. Consequently, condition (2.26) involves an infinite
number of LMIs. The same holds for (2.14) with 7;s € Rjg7,). By using convex-
embedding approach, one can reduce these conditions down to a finite number. The
idea is to embed A(7y) in the following polytope:

/_X _ {ZQzAz . AZ € Rn(dm—i-l)xn(dm-i-l)’ qu — 1}
i=1 i=1

such that -
A(Tk) S A, V1 € (R[O,Tmaz})dm+1'

Matrices A; are the generators (vertices) for the convex set A. Consequently, the stability
of (2.25) is determined by a finite number of these generators.

On the other side, discrete-time representations (2.12) and (2.16) are switched dynamics,
i.e., they are already determined by a finite number of modes because 7y is defined on a
finite grid of delay parameter space R?&g}lﬂz] (determined by N) and 7;5 € Zip,N—1] Te-
spectively. Moreover, dynamics (2.12) and (2.16) do not involve any over-approximations

but represent the exact closed-loop dynamics.

There have been proposed different convex over-approximation methods in the literature
so far. For instance, over-approximation based on Jordan decomposition (see Olaru and
Niculescu [2008], Cloosterman et al. [2009], Van de Wouw et al. [2010] and Lombardi
[2011]), over-approximation based on Taylor series expansion (see Hetel et al. [2006]),



Networked control systems: Preliminaries and prerequisites 27

over-approximation based on Cayley-Hamilton theorem (see Gielen et al. [2010]) etc.
For an overview and comparison of available convex over-approximation methods, we
refer to Heemels et al. [2010].

Stability analysis can be verified according to the following theorem (see e.g. Liberzon
[2003]).

Theorem 2.4. Given a finite set of square matrices {A1, Ao, ..., Ay}, the correspond-
ing discrete-time representation is stable if A;, Vi € Zjy ) share a common Lyapunov
function, equivalently, if there exists a positive definite P such that

AJPA;—P <0, Vi€Zy,. (2.27)

The class of quadratic Lyapunov function is sufficient to prove stability of (2.25). How-
ever, by using a different class of Lyapunov functions, it is possible to obtain necessary
and sufficient condition (see Blanchini [1995]). Further details on this subject will be
presented in the subsequent chapter where the set-theoretic notions are considered.

Apart from Lyapunov theory, one can consider another, non-conservative, stability anal-
ysis approach for a NCS determined by a finite set of transition matrices. This approach
is based on the joint spectral radius of all possible products of generating matrices. Let
Ty, = {(i1,i2,...,ik) : 4j € Zj1,)} represent the set of all possible choices of k indices
from the set Z; ). Denote by Cy = (i1,12,...,1k) € Iy, one such a choice which admits
the following matrix product:

e, = Ay Ay .. Ay,

The following notion was introduced in Rota and Strang [1960].

Definition 2.4. Given a finite set of square matrices {A1,Ag,...,A,}, the quantity

p(A1, Ao, ..., A)) =limsup max p(HCk)%
k>0 Cr€Zy

1s said to be the joint spectral radius of that set.

Theorem 2.5. A switched linear system [ty 1] = Ayi)§[te], where Mgy € {A1, Agy ..., Ay}
s globally asymptotically stable under arbitrary switching if and only if there exists a
finite s such that

p(AilAig Azs) <1, VA” S {Al,AQ ...,AV}

forj=1,...s.

It is worth pointing out that Theorem 2.5, although provides necessary and sufficient
condition, is not easy to verify numerically since it is an NP-hard problem (see Blondel
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and Tsitsiklis [1997]) to compute or to approximate. In addition, the result does not
give any clue on how large the integer s needs to be.

In the following example, which was proposed by Olaru and Niculescu [2008], we consider
the difference in stability analysis between models obtained by the convex embedding
and the inter-sampling method ((2.9), (2.14) and (2.12), (2.16), respectively).

Ezxample 2.2. Consider the following continuous-time plant

x(t) = Acx(t) + Bou(t — 1)
1.1 —-0.1 1
Where Ac: [ 1 O ]’ Bc: [0],T3201 sandTGR[QTS].

Polytopic over-approximation is determined for the following augmented state-space rep-
resentation of the system:

x eAeTs — T x T
] i - [l ] [Ty,
where
Ts—tk] T,
A(r) = / eA<Cd¢B,, B= / eA<Cd¢B,.

0 0

Inter-sampling model is obtained as:

AcTs T x Ti
i e | 0 R e O

where T;s € Zjg,y—1]- Result of the polytopic over-approximation is shown in Fig. 2.8a,
which is obtained according to the method proposed by Olaru and Niculescu [2008].
According to this approach, matrix A(7) is embedded into a simplex, thus providing
the simplest possible result from numerical efficiency point of view. Obviously, in this
example, the existence of a common Lyapunov function should be examined only with
respect to three transition matrices with parameters on the vertices of the polytope
depicted on Fig. 2.8a. Using inter-sampling approach, the same region of uncertainty
is discretized (instead of the convex embedding) and shown on Fig. 2.8b. It is obvious
that the convex embedding approach involves less different modes, but on the other
hand, it is more conservative with respect to the considered region of uncertainty. We
know that if two quadratic matrices share a quadratic common Lyapunov function, then
any convex combination of these matrices is Schur. Therefore, if there exist common
Lyapunov functions with respect to (2.28) and (2.29), they would guarantee stability
also for the regions depicted on Fig. 2.8b. From this analysis, we can conclude that the
inter-sampling approach provides less conservative results at the cost of more complex
numerical calculation.



Networked control systems: Preliminaries and prerequisites 29

-3
x 10 10

o V3

B, M)

0 002 004 8 0.1 0.12 0 002 004 8 o1 012

0.06 0.0 00600
B,(0)(1) B,(D)(1)

(A) Convex embedding (B) Inter-sampling
FIGURE 2.8: Approximation of the uncertain delay parameter
2.4 Concluding remarks

It has been shown that the performance of the NCSs greatly depends on the underlaying
network protocol, i.e., on network-induced delays (constant or time-varying), bandwidth
limitation or packet dropouts. In this section we considered modeling for the NCSs, with
linear dynamics, with respect to network-induced delays and packet dropouts. Obtained
models are based on assumption that outdated measurements and control inputs are
rejected. Even though the implementation of this approach would require non-standard
network protocols, in the author’s opinion, such an approach would be more suitable for
the real-time control applications. Namely, by rejecting outdated information, network
resources are used only for the transmission of up-to-date messages when this is permitted
by the network. Thus, an additional network load is avoided.

We considered a delay parameter which is uncertain and bounded on an interval. This
uncertainty is incorporated in a model, which, consequently, has an infinite number
of possible modes. In order to obtain a suitable mathematical model for the stability
analysis, two approaches have been proposed. The first approach exploits the over-
approximation method. Namely, the delay-dependent parameter is bounded by a convex
region. Therefore, the stability with respect to all possible delay variations is guaranteed
by the stability of generators for that convex set. Quality of the approximation and
numerical cost are conflicting requirements and they depend on the number of generators.
The main advantage of this approach is that it takes into consideration all possible
delays from the interval at a relatively low numerical cost. On the other side, it is more
conservative with respect to the quality of approximation since it takes into consideration
larger uncertainty region. The second approach, based on the inter-sampling strategy,
does not require any over-approximation since the obtained models already have a finite
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number of different switching modes. However, number of these modes can be larger
for an acceptable approximation quality than it is the case for the over-approximation
method. The main advantage of this approach is that it corresponds to the system
configuration, since the introduced buffers allow only certain delays from the the delay
interval, in particular, those that are on the grid determined by the number of inter-
samplings.

One of the goals of the thesis is to propose a FTC®-like scheme for delay detection and
compensation in NCS. This approach, proposed for the single sensor (Chapter 5) and the
multi-sensor (Chapter 6) architectures, greatly exploits the inter-sampling configuration.
Hence the model introduced by Proposition 2.4 will be widely used throughout this
study.

SFault tolerant control



Chapter 3

Set-theoretic methods for NCS

POSITIVE invariance is a widely used concept in control and it provides an effective

way to address constrained control analysis and design problems. For instance,
hard physical constraints imposed to a dynamical system can be satisfied by ensuring
the existence of a positively invariant set inside the admissible region. In this way one
directly defines a set of initial conditions for which the dynamics satisfies constraints
for all future instants (for an overview on set-theoretic methods in control we refer to
Blanchini [1999]). This remarkable property of positively invariant sets found application
in many other control areas such as model predictive control (see e.g. Kothare et al.
[1996], Mayne et al. [2000], Blanchini and Miani [2008]), fault tolerant control (see
e.g. Seron et al. [2008], Martiez et al. [2008], Olaru et al. [2010], Ocampo-Martinez
et al. [2010], Gaspar et al. [2012]), reference governor design (see Stoican et al. [2012],
Stankovi¢ et al. [2012]).

Concerning discrete-time systems with delays, there are two main ideas in the existing
literature on how to address the problem of positive invariance. The first approach relies
on rewriting such a system in the augmented state space (see Section 2.3) and to consider
it as a regular linear system (with or without uncertainties). On the other hand, the
second approach, also referred to as D-invariance, considers invariance directly in the
initial state-space. A pioneering work on D-invariance was published by Dambrine et al.
[1995a] and Dambrine et al. [1995b], where the authors considered stabilizing control de-
sign for constrained continuous-time systems with delays. These results were followed by
Hennet and Tarbouriech [1998] for the continuous-time delay-difference equations. The
indicated initial works reported an interest to extend some already existing constrained
control notions to systems with delays. This interest is still actual today and it is re-
flected in several recent works by Gielen et al. [2012b], Lombardi et al. [2011b], Rakovic
et al. [2012], Stankovié¢ et al. [2011]. However, characterization of D-invariant sets is
still an open problem in control, even for linear discrete-time systems. As an example
where D-invariant sets are useful, let us consider the following MPC design problem for

31
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a NCS model z[ti11] = Altg] + 2?20 Ba,,—jultitj—dn), v € X, u € X, with constant
delays and with state and input constraints (see e.g. Mayne et al. [2000]). The control
sequence on a finite horizon is obtained by solving the following optimization problem:

k+N-1
muin Z l (a:[ts],u[tk], - ,’U,[ts,dm]) +T (a:[thrN], ’U,[tk+N] . ,u[thrN,dm]) , N>d,
s=k
(3.1)
subject to
dm
zlter1] = Az[ts) + > Ba—jultsij-dan), V5 € L psn—1]
§=0
T 3.2
|2t ulte )T € X x o x Xyt € Xy (3:2)
T
[m[thrN]T R u[thrN,dm]T] € X,

where [(-) > 0, T'(-) > 0 are the stage and the terminal cost in the objective function,
while X is a positively invariant terminal set. This set can be defined either in the
augmented state-space as X C (R™)%*l or as X = Y x ...Y C (R")9*! where
Y C R™ is a D-invariant set. Both formulations fulfill the original objective: enforcing
the containment of the trajectories in a terminal invariant structure in order to ensure
the stability of the control law. However, they present different characteristics, the
D-invariance being preferable from the complexity point of view, while the positively
invariant set for the augmented representation describes generally a larger domain in
the extended state space.

There are two main objectives of this chapter. One is to provide a support in terms
of invariant! sets for fault and delay detection algorithms that will be be considered
in the Chapter 5 and Chapter 6. Related to this subject, required results are already
well-known in the literature and they include positive invariance for linear systems with
additive disturbance. The second objective is to induce a general positive invariance
notion for the NCS models presented in the previous chapter. For this purpose, we
provide an overview of different concepts of invariance for discrete-time systems with
delays®. Moreover, we detail some new insights on the existence and construction, in
particular for D—invariant sets related to the linear delay-difference equations with ad-
ditive disturbance. Furthermore, some alternative invariance solutions are discussed as
well.

In this work we are strictly interested in the concept of “positive invariance” which refers to the
forward evolution of a system. However, notation “invariance” is sometimes used for brevity.

2The class of discrete-time systems with delays is considered as the general class of discrete-time NCS
models
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3.1 Basic set theoretic notions

The following standard definitions from the theory of sets are introduced. For further
details on the set-related notions we refer to Kolmogorov and Fomin [1999], Boyd and
Vandenberghe [2004].

Definition 3.1. A set X C R" is bounded if ||x1 — x2]|, < 00, Va1,20 € X.
Definition 3.2. A set X C R" is closed if Vo ¢ X Je € R such that BE(z) ¢ X.
Definition 3.3. A set X C R™ is compact if is bounded and closed.

Definition 3.4. A set X C R" is convex if V1,90 € X the convex combination satisfies
Oxq + (1 — 9)132 eX, Vhe R[O,l]'
Definition 3.5. A set X C R" is a (proper) C-set if is convex, compact and includes

the origin in its strict interior.

Definition 3.6. The convex hull of the set X C R"™ is defined as:

k
C’oanull(X):{01x1+...+0kxk rr e X, 0, >0, Z@izl},
i=1

Definition 3.7. The support function of a set X C R™ at z € R" is defined as:

bx(z) = sup 2l
reX

Regarding the class of convex sets, basic set-operations are defined by the following
definitions (see e.g. Schneider [1993]).

Definition 3.8. Given two convexr set X C R™ and Y C R", their intersection is defined
as
xXNY={z : z€ X, x €}

Definition 3.9. Given two convex sets X C R" and Y C R", the Minkowski (geometric)
sum is defined as

XoY={z=z+y : Yz e X, Vyec YV}

Definition 3.10. Given two convex sets X C R™ and Y C R", the Pontryagin difference
of X and Y is defined as

XeY={z : z+yck, Vyel}.

Definition 3.11. Given a convex set X C R™ and an affine map M : R™ — R™, the
set image under the map M is defined as

MX)={y : y=M(z), Vo € X}.
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The following properties of the Minkowski sum will be used throughout this study.

Lemma 3.1. Let ¥ CR",Y C R" and Z C R" are C—sets, @ € R(g o), 8 € Rg,00) sSuch
that« > B and M € R™*™ N € R"™"™. Then, X®Y =YX, (XBY)DZ =XD(VDZ),
aX ®BX = (a+ )X, M(X®Y)=MX & MY. Furthermore, X ® Z C Y ® Z if and
only if X CY and MX @ NX C MY ® NY if and only if X C ).

The most exploited classes of convex sets in control are ellipsoids and polyhedral sets.
Ellipsoids are preferred due to their simpler representation. They are also associated
with quadratic Lyapunov functions and LMIs, which allows an efficient numerical ma-
nipulation. However, when compared with polyhedral sets, ellipsoids may admit more
conservative representations, for instance when an approximation of a convex region is
required. Furthermore, ellipsoids do not form a closed family with most of the elemen-
tary set operators such as Minkowski sum, Pontryagin difference or affine set image.
On the other side, implementation of these operators is simpler for polyhedral sets (see
Kvasnica et al. [2004]). Their dual representation (see Ziegler [1995]) also allows choosing
the most suitable form for a particular problem. The main disadvantage of polyhedral
sets comes from possible complexity of their representations but it can be handled via
specific subclasses as for instance zonotopes.

In this work we utilized polyhedral sets, even though most of the presented results (in
particular those outlined in Chapter 5 and Chapter 6) are independent on the utilized
set representation.

Definition 3.12. A hyperplane H C R" is a set of the form
H={zeR" : flz=ygs},

where f; € R™ is a column vector.

Definition 3.13. A closed half-space H C R™ is a set of the form
H={zeR" : flz<g},

where f; € R™ is a column vector.

Definition 3.14. A convez set P(F,g) C R™ is a set of the form

P(Fg)={z €R" : flo<g, icZyg},

where f; € R™ is the it" column of FT € R™ 9 and g; is the i*" element of g € RY.

Definition 3.14 specifies a half-space representation of a polyhedral set. Each polyhedral
set can also be defined by the vertex representation.
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Definition 3.15. For a given V € R"*%  a convex set P(V') C R™ is defined as a set of
the form

PV)={zeR" : x:ZHivi, v, €R™, 0<6; <1, Zﬁizl},
=1 i=1

where v; € R™ represents the it column of V.
Definition 3.16. A polytope is a bounded polyhedral set.

Proposition 3.1. A polyhedral set P(V') is a polytope.

Dual representation of polyhedral sets is an important feature that provides flexible and
efficient implementation of basic set-operations. Thus, for instance, some set-operations
can be more efficiently implemented by using one representation while, at the same time,
their realization can be cumbersome by using the other one. We define in the sequel
(by using the most appropriate set representation) some set operators that are used
throughout this study.

Let M denote a linear map and a € Ryp . As we highlighted before, polyhedral sets
form a closed family for the following set operations.

For X = P(V), the image M (X) is a polyhedral set determined by

M(X)=P(MV),

e For X = P(F,g), the pre-image M ~!(X) is a polyhedral set determined by

M7HX) = P(FM, g);

For X = P(F,, g,) and Y = P(Fy, gy), the intersection X N Y is a polyhedral set

determined by
Fy gz
xXNy=~r ; ;

e For X = P(V), the scaled set aX is a polyhedral set determined by

F
aX =P(aV), VA € Ry o) and aX =P (a,g> , Vo € R ooy;
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o For X = P(V;) and Y = P(V,), the Minkowski sum & @ Y is a polyhedral set
determined by

XOY =) Owei+ ) Djuy =D > 0ibivai+ )Y 0itljuy
i J i i
=Y 095 (vai + vyy),
(]

where Zz Zj 9119] =1, 0119] S R[O,l] since Zz 0;=1,0; R[O,l} and Zj 19]‘ =1, 19]‘ S
R[O,l}‘

e For X = P(F,,g,) and Y = P(F,,gy), the Pontryagin difference X © ) is a
polyhedral set determined by

where g = g, — max Fy;
I=0 T yepFra) Y
e For X =P(V,) and Y = P(V,), the convex hull ConvHull (X UY) is a polyhedral
set determined by

ConvHull (X UY) =P ([V. V).

In order to verify the inclusion between polyhedral sets, we employ the following propo-
sition which is reported without proof (see Kolmanovsky and Gilbert [1998]).

Proposition 3.2. Let X = P(Fy,9:) = {x : Fupv < gui, @ € Zp g} Then Y C X if
and only if
¢y(fm) < Gzi, Vi€ Z[1,q]-

The main drawback of the polyhedral sets is their increased complexity in representation.
Hence, it is important to provide as simple as possible representation of a polyhedral set
before running an algorithm. Such a representation, which is unique, is denoted as the
minimal representation of a polyhedral set and it is stated by the following definition.

Definition 3.17. A half-space or vertex representation is minimal if there is no other
representation of the same set involving F' € R1*™ or V. € R™ 51 such that ¢1 < q or
s1 < s, respectively.

In general, the algorithms which involve polytopes are very demanding in terms of com-
putational complexity. Therefore, it is often mandatory to work with the minimal rep-
resentation to keep the complexity as low as possible Blanchini and Miani [2008].

For a polytope which is determined by intersections of half-spaces, the minimal repre-
sentation is reported in a more specific way through a normalized representation.
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Definition 3.18. A polytope X (F,g) is in a normalized representation if it has the
following property:
EF =1, Vi€ Zp .

A normalized representation is a unique minimal representation of a polytope.

In spite of their complexity, it was already mentioned that the polyhedral sets are more
flexible when compared to the ellipsoidal sets. This is noticeable from the fact that a
compact and convex set can be arbitrarily closely approximated by a polyhedral set. Re-
garding the approximation, we will particularly use outer approximations of a polytope.
Namely, if J is a C-set, then Ve € R(q ) there exists a polytope X" such that

YCXC(l+¢€),

where X is an outer approximation of ).

3.2 Positive invariance for LTI systems. Prerequisites and
preliminaries

In this section we address the problem of the existence and the construction of positively
invariant sets for LTI systems with additive disturbance. This is a well-known problem in
the control theory, therefore most of the results are reported without entering too much
into details. Notions considered in this section will be used in Chapter 5 and Chapter 6
for designing a fault and delay tolerant control algorithm for NCSs with network-induced
sensor-to-controller delay.

Consider the following discrete-time LTT system with additive disturbance:
2ltsr) = Awlte] + Bulty] + Bulti], (3.3)

where A € R"™" B € R™™ E € R™P? and w[ty] € W, with W as a bounded C—set.
Notice that (3.3) corresponds to a NCS model with constant delay (see Section 2.3.2).

A stabilizing control signal for (3.3) is determined by u[ty] = wpef[tn] — K (x[tg] —Tref[tr]),
where
:L'ref[tk_H] = A:L‘ref[tk] + Buref, (3.4)

defines the reference dynamics that needs to be followed as close as possible by (3.3).
The control performances are determined by the tracking error z = x — x,..y which yields
the following dynamics:

2lter] = (A — BE)z[ty] + Bwlty)]. (3.5)
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Assume that there exists a set Z C R™ such that z[ty11] € Z, Vz[ty] € Z and Yw[t] € W.
Then, the tracking error dynamics stays within Z for any initial condition from that set,
ie., Y[ty € {l“ref[tk” bz

x[tps1] € {xref[tk—&-l]} @ Z, Ywlt] eW. (3.6)
For more details we refer to Mayne et al. [2005].

The set Z is referred to as robust positively invariant set for (3.5) and it is formally
defined by the following definition.

Definition 3.19. The C—set Z C R" is said to be robustly positively invariant (RPI)
with respect to (3.5) if Vz[ty] € Z and Ywlty] € W, z[tpy1] € AZ, where X € Ry ), i.e.,
if (A= BK)Z®W C AZ. For A € Ry, Z is referred to as A\—contractive.

Discrete-time model (3.5) assumes constant process noise between two consecutive sam-
plings. This assumption, however, may provide poor discrete-time approximation of the
continuous-time plant when a chosen sampling period does not correspond to rate of
the process noise variation. By exploiting the inter-sampling architecture for NCS (see
Section 2.2), this phenomenon is taken into account by the following discrete-time model
(see (2.18)):

N—
2[tgr1] = (A — BK)z ZA'E wlty + (N — 1 —4)T], (3.7)
=0

where A € R™ " is the state matrix with respect to the sampling period T, € RT,
while A € R™" E € R™P are the matrices with respect to the inter-sampling period
T eR", Ty = NT, N € Z* (for further details see Chapter 2). The additive disturbance
wlty +iT] € W, Vi € Zp n—1), where W C RP is a bounded C-set. Notice that if
wlty] =wlty + T] = ... = w[tx, + (N — 1)T], then (3.7) can be rewritten as the standard
discrete-time state equation (3.5).

In order to define the robust positive invariance notion with respect to dynamics (3.7),
one has to take into consideration variation of the process noise signal between two
consecutive samplings (but constant between two consecutive inter-samplings).

Definition 3.20. The C—set Z C R"™ is said to be robustly positively invariant (RPI)
with respect to (3.7) if z[ter1] € AZ,N € Ry, for any 2[ty] € Z and wty +iT] €

W, VZ € Z[O,N—1]7 .€., ’Lf (A BK)Z@ { @ AZEW} g NZ. For A € R[O,l)) Z is
referred to as A— contractive.

The problem of existence for invariant set with respect to (3.5) and (3.7) is determined
by stability of the matrix A — BK. This well-known result from the control theory is
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reported without proof by the following lemma (for more details see e.g. Kolmanovsky

and Gilbert [1998], Rakovi¢ [2007]).

Lemma 3.2. Let w[ty] € W, where W is a C-set. The system (3.5) admits a non-trivial
RPI set if p(A— BK) < 1.

N—1 _ .
Remark 3.1. For a C'—set W, @ A'EW is also a C—set. Hence, the previous lemma

1=
is applicable to (3.7) as well. The same holds for most of the results outlined in the
sequel. Therefore, whenever we consider (3.5), unless it is suggested differently, same
results apply also to (3.7).

The following result was proposed by Kofman et al. [2007] and it represents an effective
method for computation of an invariant region with respect to (3.5) with diagonalizable
and Schur matrix A—BK. An advantage of this result is that it provides a low complexity
invariant region.

Theorem 3.1 (Kofman et al. [2007]). Consider system (3.5) and let A— BK = VAV ™!
be the Jordan decomposition of the Schur matrix A— BK with diagonal A and invertible
V. Consider also a nonnegative vector w such that |Ew| < &, Yw € W. For e € Rﬁ),oo),
define

S(e) {z eR" : ‘V_lz’ < (I, —|A) o+ 6} . (3.8)

Then:

o Forany e € Ry ), the set S(e) is RPI

0,00

e Given e € Ry ) and z[ty] € R, there exists k™ € Zjj, o) such that z[tx] € S(e)
vk € Z[k*,oo)'

Remark 3.2. For € € R ) the set S(e) is contractive. If, however, ¢ = 0, the set
is invariant, while the contractivity is not assured. Moreover, the shape of (3.8) is
determined by the eigenvalues of A — BK. Namely, if \; € R Vi € Zp ,, where \; €
o(A — BK), then (3.8) is a polytope. On the other side, if 3i € Z; ;, such that ); € C,
then the resulting set is an intersection of ellipsoids or ellipsoids and parallel hyperplanes
(see Kofman et al. [2007]).

For some applications, the RPI sets of the form (3.8) can be conservative. For instance,
for performance analysis and synthesis of controllers for uncertain system (see Mayne
et al. [2005]) or in the fault tolerant control design (see Olaru et al. [2010]), it is advan-
tageous to use a RPI set which is as small as possible.

Definition 3.21. The minimal robust positively invariant (mRPI) set with respect to
(3.5) is defined as the RPI set contained in any closed RPI set. The mRPI set is unique,
compact and contains the origin if W contains the origin.



Set-theoretic methods for NCS 40

In order to elaborate a numerical method for construction of the mRPI set, we need to
define first the reachability set.

Definition 3.22. Given the set X C R"™ and the dynamics (3.5), the reachability set
R, (X) from X at the instance k € Zip,0) s the set of all vectors x for which there exist
x[to] € X and Wy, ) such that x[ty] = =.

Regarding (3.5), its 0—reachable set at t = tj, is determined according to

k

R, ({0}) = Ry, = {z =Y (A= BK)'Ewlty—] : VYwltp—i] € W} : (3.9)
=0

This relation can be also written in the space of sets as

k
Ri, = (A - BK)'EW, (3.10)
1=0

where Ry, | C ’RtkS. Sets Ry, are nested for each k € Zj0,00)- Clearly, if W is a C'—set,
then Ry, are also C-sets.

The mRPI set is defined by the following limit set:
k—o0

Even though R, are C'—sets for a finite £, this is not always true for the mRPI sets
because they may not be closed (for an example see Blanchini and Miani [2008]). No-
tice that R4, is an inner approximation of the set R; . However, such an internal
approximation is not particularly useful because, in general, it is not an invariant set.

Computation of an exact representation of the mRPI set is not possible in the general
case, but only under restrictive assumptions such as when the matrix A is nilpotent
Mayne and Schroeder [1997]. One then needs to resort to approximations, and different
algorithms for the construction of RPI approximations can be found in the literature.
Result in Rakovié et al. [2005] provides iterative approach which provides an approxi-
mation with arbitrary precision at the cost of an increased complexity. This result is
outlined without proof in the following theorem.

Theorem 3.2 (Rakovié¢ et al. [2005]). If 0 € W, then there exist a finite integer s €
Zo,00) and a scalar 8 € Ryg 1) that satisfy

(A— BEK)*W C SW. (3.12)

Moreover,

R(s,8) = (1-B)" 'Ry, (3.13)

3This inclusion holds if and only if 0 € W.
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is a convex and compact RPI set with respect to (3.5) and it includes the origin in its
interior. Furthermore, Ry C R(s, ).

The quality of an invariant approximation of the mRPI set is determined by s and
according to:

R(s(8), B) = Ri, as B — 0;

R(S,é(s)) — Rtoo as s — 00, (3.14)

where
s(B) =min{s € Z o) : (A— BK)*W C W},
Q(S) = mln{ﬁ S R[O,l) . (A — BK)SW Q BW}

For more details we refer to Rakovi¢ et al. [2005]. An alternative method for compu-
tation of the mRPI set was proposed by Olaru et al. [2010] and it gives comparative
result with the previous theorem regarding numerical complexity and precision of the
approximations.

Apart from their general application in constrained control design, mRPI sets are also
used for the characterization of the process and measurement noise effects on the closed-
loop dynamics. Of course, instead of the mRPI sets, one may also use ultimate bounds
computed according to Theorem 3.1. However, mRPI sets determine (by definition), the
smallest possible invariant region in the state-space that one can possibly have. This
is important because fault and delay detection mechanisms provided in Chapter 5 and
Chapter 6 are based on separation of invariant sets which are obtained if one would use
“healthy” or “faulty” feedback information for control. Therefore, by accepting certain
degree of numerical complexity, mRPI sets yield the detection mechanism which is more
sensitive to fault and delay occurrences. This is elaborated in more details in Chapter 5
and Chapter 6.

Regarding the dynamics (3.5) and (3.7), the corresponding mRPI sets are linked by the
following result.

Proposition 3.3. Let X and Y be the mRPI sets for (3.5) and (3.7), respectively. Then
X CY.

Proof. Denote by Rf and R}, 0-—reachable sets for (3.5) and (3.7) respectively. Since
(M +N)S CMS@& NS for any M € R"™" N € R"™ and S C R" (see e.g. Ziegler
[1995]), one can notice that
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Here we used the fact that £ = Zﬁif)l A'E (see Section 2.2). Furthermore, this inclusion
implies

k ) k S N-1 L
where Rf = @ (A — BK)'EW and R?{k =@ (A-BK) { ) AJEW}.
i=0 i=0 §=0
The proof is completed by observing that X = R{_ and Y = wa. 0

For control systems with multi-sensor configurations, where each sensor is possibly af-
fected by measurement noise from a different bounded range, the closed-loop model is
defined by:

Z[tk+1] = (A — BK)Z[tk;] + Ewi[tk], 1€ Z[LM}‘ (3.15)

In (3.15) M denotes a number of sensors and w; € W;, where W; are possibly different
C'—sets.

Invariant sets related to system (3.15) belong to the class of star shaped sets (see Rubinov
and Yagubov [1986]).

Definition 3.23. A star shaped set Z C R™ is a (connected and generally nonconvezx)
set for which exists a nonempty kernel:

kern(Z2)={z€ 2 : Z+v(z—2)€ 2, Vz€ Z, vy € Ry }- (3.16)

A set is star shaped set at 0 if 0 € kern(Z) (see Fig. 3.1a).

In order to characterize effects of switched disturbance sets on system (3.15), one has
to consider union with respect to these sets. Therefore, system (3.15) admits a star
shaped mRPI invariant set (see Olaru et al. [2010]). This stems from the fact that
union of convex sets is a star shaped set. These non-convexity issues can be avoided by
using the convex-hull of the noise bounding sets, i.e., we consider dynamics (3.5) where
w € ConvHull(W;) Vi € Zjy pp- This keeps the sets in a convex setting at the price of
an increased conservatism (as illustrated in Fig. 3.1). With these tools and by using the
boundedness assumptions for the process noises w, it is possible to compute A-contractive
sets characterizing dynamics (3.5) according to one of the previously reported results.

For constrained control problem, i.e., for (3.3) such that z € X and u € U, where X
and U are C'—sets as hard linear constraints on the state and control signal, instead of
0—reachable sets, one can use a backward in time invariant set construction with respect
to a given bounded region (see Glover and Schweppe [1971], Bertsekas and Rhodes [1971],
Gilbert and Tan [1991]). This construction is briefly outlined in the sequel.
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FIGURE 3.1: Illustration of set-theoretic notions.

Let us consider (3.3) with the linear state-feedback controller u[ty] = ures(tr] + v[ts],
where v = —K (z — x,¢f). Constraints on the state and the control action are given as

x € {Tyef} @ Z, Z=P(F,g.)={2€R" : F,z<g.},
v (3.17)

v € {Upes} BV, P(Fyp,gv) ={v eR™ : Fu<g,}.

For the considered control action, these constraints can be expressed as a function of z
as

n FZ z
Zy=P(Fo,90) ={z € R" : Fox < go}, Fp= [—F K] y go= [g ] . (3.18)
v v

Assume that z[ty,1] € Zo. Then,

. F,
21 = {Z R lFo(A —OBK)] ‘= lgo - wmea%O{FoEw}] } ’ (3.19)

defines the set of one step admissible states, i.e., the set of all z[ty] € Z such that
z[tk+1] € Zo. Similarly, further set iterations determine sets of admissible states with
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respect to k € Z[Qm] steps. These sets are computed in an iterative way as

B n . Fk,1 9k—1
Z = {ZGR : [Fk_l(A—BK)‘| z < [gkl_glEaWX{Fkle}]}‘ (320)

Notice that Z;, C Z,_; Vk € ZT.

The following definition is important in specifying the limit set, i.e., when number of
iterations k — oo.

Definition 3.24. Given a bounded region X C R"™, the maximal robust positively in-
variant (MRPI) set with respect to (3.5) is defined as the RPI set that contains all the
RPI sets contained in X .

If there exists a finite k € ZT such that Z, = Z;_;, then Z, = Z,, where Z,, denotes
the maximal robust positively invariant (MRPI) set in Z. However, there is still one
important question regarding the MRPI set that requires the answer: for a given dy-
namics, when the MRPI set is determined in a finite number of iterations. For dynamics
(3.5), the answer to this question is provided by Kolmanovsky and Gilbert [1998].

Theorem 3.3. Consider z[tp4+1] = (A — BK)z[ty] + Ew(tg], w[ty] € W Yk € Z, where
W is a C—set. Let p(A—BK) < 1 and R, is the corresponding mRPI set. If Ry C 2o
then there exists a finite k € Z™ such that 2, = Zi_1 = 2.

We refer to Gilbert and Tan [1991], Kolmanovsky and Gilbert [1998], Nguyen [2012] for
more information on backward computation of invariant sets.

3.3 Positive invariance for dDDE

Having a process modeled by LTI differential equation and controlled over a network,
the closed-loop system can be described by linear discrete-time delay-difference equation
(dDDE) with time-varying parameters:

dm

ltga) = Axltr] + Y Bayp—j(Te)ulterj—d, ] + Ewlty].
=0

In the special case when the network induces constant delays, the same system admits
a representation with constant parameters:

dm

wlti] = Az[t] + ) Bay—julticrj—dn] + Bwlts]-
=0
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For more details see Section 2.2.

Stability analysis of the discrete-time delay difference equations is performed in the
simplest way by introducing a new state vector which consists of the initial state vector
and all input signals on the delay window (see e.g. Astrom and Wittenmark [1997],
Hetel et al. [2008]). Thus the obtained augmented state-space representation is linear
and its stability can be (conceivably) assessed either by using Lyapunov direct method
or by verifying (joint) spectral radius of the closed-loop system matrix (see Section 2.3.2
and Section 2.3.3). The same methodology can be applied for control design (see e.g.
Chae et al. [2010]).

For the sake of simplicity, let us consider the following closed-loop dynamics for a state-
feedback controller with neglected parametric uncertainties:

dim

Tltpa] =Y Aixte—i] + Ewlty]. (3.21)
=0

When it comes to positive invariance, one may have tendency to apply the same logic
(augmenting the state-space) as for the stability analysis and control design. As it was
already mentioned in Chapter 2, for any finite delay realization, an extended state-space

T
representation can be constructed by taking X[tx] = {x[tk]T x[tk_dm]T] . Then,
(3.21) can be rewritten as:

Ao oo Ae. . Aa E
I coo Onxn Onxn Onxp

X[thrl] = AX[tk] + Ew[tk] = : . : : X[tk] + : w[tk], (3.22)
Onxn - I, Onxn Onxp

where the dimension and the structure of A depends on delay value. With an appropriate
re-ordering of the indices, and by introducing A; = 0 where necessary, we can obtain an
extended state-space representation of (3.21) for any delay realization.

Definition 3.25. The C—set X C R™d+1) s said to be robustly positively invariant
with respect to the augmented state-space representation (3.22) if X[tg41] € AX, X €
Ry 1), for any X[tg] € AX andw € W, i.e., AX OEW C AX. For AR(g ), X is referred
to as \—contractive with respect to (3.22).

This invariance notion is often referred to as augmented invariance or invariance based
on Lyapunov-Krasovskii approach (see Gielen [2013]).

It is worth mentioning that the fixed points and the periodic orbits are natural (and
trivial) invariant sets. As such, for the linear dDDEs, the invariant sets contain the
origin, and often the construction of non-trivial invariant sets starts from the assumption
of having the origin as an interior point. For A—contractiveness, the origin needs to be
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an interior point of X in order to have a proper set construction with an inclusion
relationship.

However, positive invariance as outlined in Definition 3.25 needs to be taken into account
carefully because it leads to a non-standard definition of positive invariance for time-
delay systems. For this reason, it will be probably useful here to wonder: what is the
definition of positive invariance for delay-difference equations? The standard invariance
definition for systems without aftereffects states “..for any initial condition from the
set...”. Following the same logic, we may come out with the equivalent statement.

Definition 3.26. The C'—set X C R" is said to be robustly positively invariant set with
respect to (3.21) if x[ty 1] € AX, X € Ryg ) for any initial condition from X, i.e., for any

dm

rltp—i) € X, i € Zyq,,) and for any w € W, i.e., @ AiX @ EW C AX. For A € Rygyy,
i=0

X is defined as A—contractive.

In order to have better insight into this definition, let us consider the following simple
scalar system:
1‘[tk+1] = J}[tk] — 0.8x[tk,1]. (3.23)

According to Definition 3.26, invariant set for this system, say X', would be defined as:
x[tps1] € X, Vzltg) € X, Vz[tp_1] € X. (3.24)

Regarding the augmented state-space representation, condition (3.24) can be rewritten
as:
x[tri1] x[tx) 1 -0.8
=A , A= , 3.25
l olty] 2lte 1] 0 1 (3.25)

AX? C X2 (3.26)

i.e., as

Despite the fact that A is Schur, there does not exist a set X that satisfies the condition
(3.26). This is easy to observe since ||A||~ > 1. However, dynamics (3.25) do admit an
invariant set (see Fig. 3.2) defined according to Definition 3.25. By analyzing (3.23) and
the invariant set shown in Fig. 3.2, one can notice that this set engenders new constraints
on initial conditions, i.e., the initial conditions became coupled. This loss of “one degree
of freedom” is compensated by the existence of invariant region which prohibits certain
realizations of initial conditions.

From this consideration, it should be clear that positive invariance as proposed in Defini-
tion 3.26 is a stronger property than stability of (3.23), even though for (3.25) these no-
tions are equivalent. Therefore, we refer to positive invariance defined in Definition 3.26
as D—invariance (see Lombardi et al. [2011a]). While the concept of positive invariance
for the augmented state-space representations, i.e., for LTI systems with parametric
uncertainties is already well-established in the literature (see e.g. Blanchini and Miani
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FIGURE 3.2: Positively invariant set with respect to (3.23)

[2008],Blanchini [1999] for backward in time computation and Barmish and Sankaran
[1979] for the forward in time propagation for uncertain linear systems), in the rest of
this chapter, we put the accent on D—invariance.

First results on D-invariance appeared in the work of Dambrine et al. [1995a] and
Dambrine et al. [1995b]. The authors defined the D—invariant sets motivated by con-
strained control design problem for systems with delays. Several years later, the same
sets were used by Hennet and Tarbouriech [1997] and Hennet and Tarbouriech [1998]
to establish robust (with respect to delay parameter) stability condition for delay-
differential and delay-difference equations, respectively. Recently, D-invariant sets re-
gained attention in the works of Lombardi [2011], for dDDE, and Gielen [2013], for
discrete-time delay difference inclusions (DDI).

Despite great advancements toward characterization of D—invariant sets, some fairly
basic results are still missing, for instance the existence of D—invariant sets is not fully
characterized. In this work we do not provide a complete answer to this problem either,
but we do make some important steps ahead (see Chapter 4). In the remaining of this
chapter we address the problem of existence and construction of the minimal robust
D—invariant (mRDI) set for dDDEs affected by additive disturbance. We also provide
some new concepts of positive invariance for delay-difference equations such as cyclic
invariance, invariant families of sets and parametrized invariant sets. Consideration on
D—invariance notion for delay-difference inclusions is not considered here and for more
details an interested reader is referred to Gielen et al. [2012a], Gielen [2013].
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3.4 Minimal robust D-invariant set

Consider the following closed-loop dynamics:

d‘rn

x[tk+1] = Z AiI[tk_Z‘] + w[tk}, (327)
=0

where w € W, with W C R™ as a C'—set.

Lemma 3.3. Denote by Z ={0,1,...,dy} and let a symmetric C—set X C R™ satisfy
the following inclusion:

P Aax cAx, XeRpy.

1€

For any C—set W and Ve € RY, ds € L1 ,50) such that

P mwcew, I, =AA,... Ay, ij€L, j€Lyy (3.28)
cs€LS

Proof. Assume that the statement of the lemma holds true. Consider the set map

R(X) = @ A;X. The subsequent iterate of the map for R(X) is determined as:
1€T

R(R(X)) =R*(X) =P ARX) = P IL,xX.
i€l co€Z?

Since R(X) C AX, by using Lemma 3.1 one can show that

R*(X) = P AR(X) C P AidX C N°X.
€T €L

Assume that RF(X) C \A*X. Then
RN X) = P ARF(X) C P AN C A x,
i€T €T
Since o @ A; X C alX, then for any C—set W and Ve € R, there Jay,as € RT such

€L
that a1 X C eW C asX. This implies that there 3s € ZT, \as < aj such that:

P He,aoX € N X Car X CeW.
cs€LS

O]

Remark 3.3. For the previous results we assumed the existence of a A—contractive set
X with respect to the nominal (without additive disturbance) part of the system (3.27).
The existence of such a contractive set is an open problem in the literature. However, in
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the following chapter we provide some important discussion that concerns the existence
of these sets for a given dynamics.

The following well-known result (see e.g. Khamsi and Kirk [2011]) will be used later to
prove the existence of the mRDI set.

Lemma 3.4. Let (X,d(-,-)) be a complete metric space and let f(-) : X — X be a
contractive function with contraction factor A € [0,1) that is

d(f(x), f(y)) < Ad(z,y), A e[0,1)

holds for all xz,y € X. If X is a compact set, then there exists a unique fixed point T € X
such that f(Z) = .

Equivalent formulation of the Banach contraction principle can be also applied to sets.
As a measure of distance between two sets, we use the Hausdorf distance which is given
as:
Hy(V,Z)=min{a : YCZdaX, ZCYDaX, acR,}, (3.29)
[0

where X is a symmetric C'—set.

Consider (3.27) and let define the set-valued map R,(Y) = @ A;Y & W. The following
€L

theorem, which uses the Banach contraction principle, provides the basic result in stating

the sufficient condition for the existence of the mRDI set. This theorem is similar with

the theorem proposed by Rakovié [2007] on the existence of the mRPI set for discrete-

time linear systems.

Theorem 3.4. Let there exist a symmetric C—set X C R™ such that

P Aax CAxX, AeRpy.

€T

Then, Hy (Rw(Y), Rw(Z)) < AHx (Y, Z) holds for any C—sets ) C R™ and Z C R™.

Proof. Let denote by ) and Z two arbitrary C-sets and Hy(Y,Z) = a. From the
definition of the Hausdorff distance we have that:

YV CZdpak, ZCYDaX.

By multiplying both sides of the previous inclusions by A;, i € Z and by summing them
up (see Lemma 3.1) we have

PaycPhazeaPax

1€l 1€l i€l

1€l i€l i€l
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From the statement of the theorem and by adding to the both sides W, it follows that

Ruw(Y) CRu(Z) B arX,

Ru(Z) C Ru(Y) ® o)X, (3:30)

which is equal to Hx (Rw()), Rw(Z)) < Aa that is Hy (Ry(Y), Rw(Z)) < AHx (Y, 2).
O

Corollary 3.1. Denote by Ry({0}) = Rw = W and let RE is the k'™ iterate of the
set-valued map with respect to (3.27) (0O—reachable set in k steps). Since the previous
theorem showed that the map R (V) is a contraction for any compact set YR™, the
iterates RE (V) converge to R as k — 0o, where R is an attractor with basin of
attraction being the whole space, i.e., R5y is the minimal robust D-invariant set.

For smaller delays and small number of states, it is possible to construct an invariant
approximation of the mRDI set by using 0—reachable sets. In order to show this con-
struction, let us introduce the following sets of indices: 7' = {—1}, where A_1 = I,
and IF = {ZF 7K1 ... 79}, with T = {0,1,...,d,,}. By using these notations, we can
represent the O—reachable set for the k¥ step as:

Ry = € d, W. (3.31)

Ck E]Ik

Invariant approximations of the mRDI set are constructed according to the following
theorem.

Theorem 3.5. Let assume that for each e € RY, 3s € ZT such that

P Aw Ccew. (3.32)
ieZstl
Then
Ru(s,e) = (1 —¢e) RS (3.33)

is an invariant approximation of the mRDI set such that Ry C Ry (s,e) which is a
C—set.

Proof. The property of invariant approximations of the mRDI set being C'—sets follows
from the fact that Minkowski sum and scaling of a C'—set is also a C'—set. When (3.32)
holds, we aim to show that R, (s, ) is a D-invariant set, with the same arguments as in
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the LTT case (see Rakovi¢ et al. [2005]).

@Aﬂzw(s,e) EW=(1-¢)"}

i€ i€l
= (1_5)_1 @Az @ HCSW oW
1€ cs€ls

(1—¢)” {@HCSW} w(8,€).

cs €IS

By definition, the mRDI set is included in any RDI set. Thus, R(s,€) is an outer
invariant approximation of the mRDI set. O

Quality of an approximation is determined in the same way as in (3.14).

Direct application of the exposed theorems via Minkowski sum requires high computa-
tional effort and therefore is only applicable to systems with small number of states and
small delays. This can be mitigated using an approach based on the half-space represen-
tation of polyhedral sets. For further details on this approach we refer to Rakovi¢ et al.
[2005].

3.5 Positive invariance for dDDE. Alternatives and further
advancements

The section establishes a new perspective on the positively invariant sets construction
for discrete-time delay-difference equations and their structural properties via set fac-
torization.
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For the sake of simplicity, let us consider the following closed-loop dynamics by neglecting
parametric uncertainties and additive disturbance:

dm
x[tk+1] = ZAla:[tk,l] (334)
1=0

In analogy with the invariance notions introduced in Section 3.2, the following concept
of cyclic invariance (see Lombardi et al. [2012]) can offer a certain degree of flexibility
by proposing a family of invariant sets instead of a rigid object in (R™)%" or R™ as
introduced in Definition 3.25 and Definition 3.26.

Definition 3.27. A family of (d,, + 1 tuples of) sets {Xy,...,Xa,,} is called cyclic
D-invariant with respect to (3.34) if:

Ao A1 X - Adedm - de;

AoXyg,, @ A1y @ - - @ Ag,, Xd,—1 € Xa,—1;
(3.35)

ApX1 @ A1 X & - B Ay, Xo C Ap.

Another definition of the positive invariance which generalizes the cyclic invariance to a
invariant family of sets, was proposed by Rakovic et al. [2012].

Definition 3.28. A family of (d,, + 1 tuples) of sets F C (R™)¥+1 js an invariant
family with respect to (3.34) if for all {Xo, X1,..., Xy, } € F, there exists a set X C R"
such that {X, Xy ..., Xy, 1} € F and

Ao A1 X1 - B Adedm CcCX. (336)

In the subsequent part, we present several geometrical notions related to set factorization
which allow establishing a novel connection between extended and D-invariance and even
to propose new invariant set structures.

l
Given a set of indices I C Z ,,, a partition of I is described as I = |J = I with

k=1
I; N I; = 0. Given a subset I; C Z1,m) and a set P € R™, we denote P, the projection

of the set P on the subset of R™ with indices of Cartesian coordinates in I;.

!
Definition 3.29. Let a set X € R™ and a partition Zy p,) = 'U = 1.

=1
!
1. The X can be factored according to the partition Zy ) = U = I; if:
i=1

X:XJ,IlX"‘XX¢IZ (3.37)



Set-theoretic methods for NCS 53

2. A set factorization (3.37) is balanced if card{l,} = --- = card{[;}.
!
3. An ordered factorization is defined by an ordered partition I = |J = I which
k=1
satisfies
maz {I;} <min{l;}, Vi < j; (3.38)

4. A regular factorization is characterized by the equivalence of the factors

Xpn=-=X5,=P (3.39)
and leads to a relationship:
X=PxPx---xP (3.40)
[ times

Several remarks can be done with respect to the previous definitions:

The set factorization is a non-commutative set operation (a Cartesian product
inherited property). The regular factorization is one of the special cases where
such commutativity property holds inside the given partition.

Any regular factorization is balanced.

The regularity of a factorization does not imply the ordering of the partition.

A balanced and ordered factorization is not necessarily regular.

3.5.1 Polyhedral set factorization

The general definitions of factorization do not build on specific geometry of the set X.
Most of the properties are related to the Cartesian product operation. However, it is
worth to be mentioned that the geometry of the factors can be related to the geometry of
the set X. For example, the convexity of the set X implies the convexity of the factors
and the polyhedral structure of factors implies a polyhedral structure for the set X.
Noteworthy, even if the projection of ellipsoidal set is ellipsoidal, one cannot expect to
obtain factorizations of ellipsoidal set as long as the Cartesian product of ellipsoids is
not an ellipsoid.

From these remarks it becomes clear that the polyhedral sets represent a particularly
interesting class which can be used as a framework for the developments in relationship
with set factorization. We point the reader to the references Halbwachs et al. [2003],
Halbwachs et al. [2006] and recall here a property of the polyhedral factorization:
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Proposition 3.4. The ordered factorization of a polyhedral set described in its (non-
redundant) half-space representation

X ={z e R"|Fzx <w} (3.41)

is related to a block diagonalization of the matriz F' according to a column permutation

l
given by the partition of indices Zyy ) = ‘Ul I;.
1=

Before continuing to the relationship between set factorization and positive invariance,
we note that the minimal/maximal factorization for any polyhedron P is defined in terms
of the number of factors. The minimal factorization is defined by the trivial partition
Il - Z[l TL]

3.5.2 Invariance in augmented state-space and D—invariance

Starting from the definitions of the invariance in the extended state space and the D-
invariance we can observe that the dimension of the respective state space allows a
regular factorization type of relationship. This relationship is formally stated in the
next theorem.

Theorem 3.6. The system (3.34) admits a non-trivial* D-invariant set if and only if
there exists an invariant set for

Ao . Aag, , A,
In P OnXTL Oan

Xitead= | 0 T X, (3.42)
Oan . e In 0n><n

which admits a reqular ordered factorization.

Proof. The necessity can be proved by observing that the existence of a D—invariant
set P with respect to (3.34) implies that for z[t;_;] € P, i € Zjy4,,) then x[ty] € P.

T
Consequently, for any extended vector X [t;] = {x[tk]T . .m[tk,dm]T} contained in X' =

PxPx---xP = P%¥lit holds that X[t;,1] € X, which ensures the positive invariance
of X with respect to (3.42).

Proving the sufficiency is slightly more involved. The regular order factorization implies

the existence of a set P = X¢Z[1,n] = Xﬂ[n+1,2n] =... = XiZ[nde,n(de)]' In order to

4A nontrivial invariant set is understood as being non-degenerate, compact, convex and containing
the origin in its interior.
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prove its D—invariance we write the first line of the extended dynamics (3.42) as:
olten] = [0 oo Agur Aa,| X[, (3.43)

T
By expressing the vector in the extended form X|tx] = [az[tk]T o xtp_q,,]T| and
exploiting the factorization, we get a series of relations starting from the invariance

property:

X[tk] eP — x[tkﬂ] S X\LZ[l,n] (3.44)
is equivalent with:
[AO oo Ag,—1 Adm} X[tk_l] S X¢Z[1,n]’ VX[tk] eX (3.45)
or set-wise:
Ao - Agp1 Ag,| X C Xz, (3.46)

Replacing the extended set by its factorized formulation we get:

(40 Adper Agy] (Kiz < X Xz i) © Xz (3.47)

which is equivalent to a Minkowski sum:

d

@ AiXiz[mH,(iﬂ)n] < XJ/Z[I,n] =P (3.48)
=0

and leads to the D-invariance conditions for the set P

dm
darcrp (3.49)
=0

thus completing the proof. a

Theorem 3.7. The system (3.34) admits a family of cyclic D-invariant sets in R™ if
and only if there exists a family of cyclic invariant sets {Xp, ..., Xy, } C {R”}dm+1 with
respect to (3.42) such that

e cach set X;,i € Zjyq,,) admits a balanced ordered factorization with the same par-
tition of indices;
o these factorizations share the same family of d,, + 1 factors, their order inside the

Cartesian product being obtained via a circular shift.

Proof. Analogous to Theorem 3.6. O
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A similar result can be stated for the invariant family of sets with respect to (3.34). In
this case the balanced ordered factorizations will be done on a larger family of factors,
the circular shift condition being relaxed.

3.5.3 The generalization of the set factorization

From the elements provided in the previous section, it becomes clear that:

e The extended state space invariance corresponds to a minimal factorization. This
is obvious by the fact that, in this particular case, there exists a single factor in
the factorization, the set itself.

e Under the constraints imposed by the dimension of the original delay difference
equation (3.34), the D-invariance represents the mazimal regular (ordered) factor-
ization. In order to establish an invariance related result, under the assumption
that the state space model (3.34) is minimal, the dimension of the factors in the
factorization process is lower bounded by n. Taken into account that the extended
state space (3.42) has dimension (R")4m*1 the number of factors cannot be in-
creased above d,, + 1.

The regular ordered polyhedral set factorization passes by a block organisation of the
set of constraints in the half space description as detailed in Proposition 3.4. A natural
way of transforming the structure of a given polyhedral set X € (R?)%+1 in view
of factorization is based on linear similarity state transformations. The next result
summarizes the degrees of freedom in this respect and its proof is a direct consequence
of Proposition 3.4.

Proposition 3.5. Let an extended invariant set X = {X c (R")4m|FX < w} with

respect to the time-delay system (3.42). A regular ordered factorization with dimension-
n factors exists if there exists a transformation matriz T € R™dm+1)xnldm+1) gych that:

Fp 0 ... 0
prio |0 fo 0 (3.50)
0 ... 0 Iy,

Corollary 3.2. Let a delay-difference equation described by (3.34). There exists a D-
tnvariant set for this dynamical system in R™ if the following conditions are fulfiled:
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o There exists a similarity transformation T such that

BO e Bdm—l Bdm AO e Adm—l Adm
I ... 0 0 I ... 0 0

=T . , |t (3.51)
0 I 0 0 I 0

e There exists an invariant set with respect to

By ... Bq,_1 Ba,

i I ... 0 0| .

Xthpl=1| . . : | Xt (3.52)
0 ... I 0

which admits a regular ordered factorization.

Sketch of proof: The first condition introduce the similarity transformation in the
construction of D-invariant sets all by preserving the dynamical model in the form of
a delay difference equation in R™. Following the results of the Proposition 3.5, such a
similarity transformation represents a parametrization of the conditions for the existence
of a regular ordered factorization. The second condition of the Corollary recalls the
necessary and sufficient conditions in Theorem 3.6.

With linear algebra manipulations, it can be shown that the constraint imposed on the
similarity transformation (3.51) is very restrictive® and can allow only simple change of
coordinates on the original delay difference equation, without a major impact on the
regular ordered factorization. However the result has an interesting consequence as it
opens the way for factorizations which are in between the minimal (extended state space
invariant set) and the mazimal (the D-invariant set). The idea is to find a similarity
transformation

By ... B,—1 B, Ag Adm,1 Adm
I ... 0 0 AR 0 0

7t ‘ T (3.53)
0 ... I 0 0 ... I 0

which corresponds to a non-minimal state space equation (3.34) as long as r < d,,. A
simple numerical example will illustrate in the next section the fact that there might
exist set-factorizations leading to invariant structures with an intermediate complexity
in between R and (R")4m+1,

5Tt practically holds for block diagonal matrices T.
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Ezample 3.1. Consider the delay difference equation:
Z[tpa1] = x[tg] — 0.52[tg_o] (3.54)

which does not allow a D—invariant set. Its extended state realization:

Tha1 1 0 —-05 x[ty]
., | =11 0 0 x[tr—1] (3.55)
Th_1 01 0 x[ty—2]

has a strictly stable transition matrix and by consequence allows the construction of
invariant sets in R3. However these invariant sets are not factorisable in R and following
Theorem 3.6 cannot lead to D-invariant sets with respect to (3.54).

Interestingly, there exists a nonminimal state delay difference equation equivalent with

(3.54):
Tht1 105 0.5 Tp 0 0.5 Th_1
Lckﬂ - xk] - l 0 O] |zp— 21 1205 05 Tho1 — Th_2 (3.56)

for which a D—invariant set P C R? exists, an example being depicted in Fig. 3.3.

0.4

[ 0.7071 —0.7071] [0.2571] |
0 —1.0000 0.1970
—1.0000 0 0.3030 |
—0.7071  0.7071 0.2571 g o ]
P=0 104472 08944 [ = [0.2439 T |
0.4472  —0.8944 0.2439 ’
0.0000  1.0000 0.1970 1
| 1.0000  0.0000 | 10.3030 |

I | | I I I I
—0.4 —0.3 —0.2 —0.1 0 0.1 0.2 0.3 0.4

FIGURE 3.3: D-invariant set for
the non-minimal state-space rep-
resentation
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This will represent the factor of an invariant set in R* with respect to the dynamics in
a non-minimal state space:

[trsn] 05 05 0 05 [te]
x[tps1] — x[tk] |0 0 -0.5 0.5 x[ty] — x[tr_1]

Yl 1Tl 0 o0 o olts 1] (3.:57)
x[tr] — x[tk—1] 0 1 0 0 | |x[tk—1] — x[tr—2]

3.6 Concluding remarks

This chapter was dedicated to the positive invariance for discrete time-delay systems,
where we considered this notion with respect to augmented and initial state-space. If it
exists for a given dynamics, positively invariant set defined for the initial state-space is
preferable because of its simpler representation. However, it is not certain when such a
set might exist. This problem will be addressed in the subsequent chapter. As a contri-
bution with respect to the state of the art, we provided results on the characterization of
the mRDI set. In the last section of this chapter a novel insight is provided on alterna-
tive solutions for invariance for dDDE. Moreover, it was shown that a set-factorization
is the key operation allowing the description of invariant sets in state-spaces of different
dimensions. This flexibility opens new perspectives for a better complexity management
of the constraints describing the invariant sets. Subsequently, low complexity invariant
sets have implications in the complexity of the control design as for example in the MPC
framework.






Chapter 4

Delay-difference equations.
Stability and positive invariance

THE objective of this chapter is to characterize the existence of positively invariant sets
for the linear discrete-time delay-difference equations. The angle considered in this
chapter is completely different with respect to the existing approaches in the literature.
In order to decrease the conservativeness of the time-domain methods (see Gielen et al.
[2012b], Lombardi et al. [2011a]), in this study we use the frequency-domain framework.
In particular, a strong stability of dDDE, denoted by robust asymptotic stability, and its
relation with the D-invariance is examined. This notion is referred to as “strong” because
it defines stability with respect to all delay realizations. However, characterization of
the robust asymptotic stability is not simple mainly because of “incompleteness” of
the discrete-time representation. Hence we turn to a more general class of difference
equations, the ones that are specified in the continuous-time domain.

Linear continuous-time delay-difference equations (cDDE) are largely treated in the lit-
erature, mainly in the context of neutral functional differential equations (see e.g. Hale
and Lunel [1993]) where they play an important role in the stability analysis. One par-
ticularity of the cDDE is their “sensitivity” to (arbitrarily small) delay perturbation (see
Michiels et al. [2002]). Hence strong necessary and sufficient stability conditions were
proposed (Silkowski [1976]). In this chapter the concept of strong stability is denoted
by delay-independent stability' and it is regarded as the continuous-time counterpart to
the robust asymptotic stability. The importance of cDDE is the new insight that this
class of system provides in analyzing the robust asymptotic stability and the existence of
D—invariant sets. The last statement represents the main research path in this chapter.

!This notion is also known as stability in the delays (see Hale and Lunel [1993], Carvalho [1996])

61
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4.1 Discrete-time delay-difference equations

In this section we consider stability of the linear discrete-time delay-difference equations.
Problem of stabilization is not treated here, thus we will be analyzing the following

model:
m

Tty = Z Aix[tk—di]v (4.1)
=1

where x[tk,di] € R™, A; € R™ "™ and d; € Z[l,oo} such that 0 < d; < di+1, Vi € Z[l,dm}-
System (4.1) can be regarded as a closed-loop discrete-time delay difference equation
with respect to a linear controller.

The following definitions are used throughout this discussion.

Definition 4.1. The trivial solution of (4.1), x[ty_q,] = 0, where i € Z ,y,), is stable
if Ve € R(go0) 30(€) € Rg,0) such that sup ||z[tk—q,lll, < 6 implies [|x[te]ll, < €, Yk €

Definition 4.2. The trivial solution of (4.1), x[ty—q,] = 0, wherei € Zy ), is attractive
if |lz[tr]llp — O when k — oo, for any x[t_q,] € R", i€ Zp 4,

Definition 4.3. The linear dDDE (4.1) is asymptotically stable if its trivial solution is
stable and attractive.

Remark 4.1. Due to linearity, if (4.1) is asymptotically stable then it is globally asymp-
totically stable.

Delays form a vector d = [dy . .. dp]T € (ZT)™ in the delay-parameter space (notice the
red dots on Fig. 4.1). For each d we define a discrete ray

Ta(d) = {ad : aeZ*). (4.2)

To estimate asymptotic stability of (4.1), one can augment the state space by rewrit-
ing all delayed states as a column vector. Without loss of generality, assume that

- T
d=11 2 ... m} . Then, the corresponding augmented state-space representation is
written as:
Ay ... An1 Ap
— In e OTLXTL OTZXTL
X[tr] = A(d) X [tg—1] = : . : : X[tg-1], (4.3)
On)(n ... In Oan
T
where X[ty_1] = [m[tk,l]T zt_o)T ... J;[tk,m]T] . This reformulation has been

already vastly used in the previous discussion so it will not be detailed again. We will
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dz A
k=d2/d1
3 T ) °
2 + ™
11
1 2 3 dy

FIGURE 4.1: Delay-parameter space for dDDE when m = 2

only stress that, regardless of delay values in (4.1), it is always possible to obtain such
a representation, where A is a function of d.

The following results are well-known and they are reported without proofs (see e.g.
Astrom and Wittenmark [1997]).

Lemma 4.1. The following statements hold:
i. System (4.1) is asymptotically stable if and only if

det (I — ZAZ-z_Z) #0, Vzeext(D)U oD (4.4)
i=1

it. System (4.3) is asymptotically stable if and only if the spectral radius of the matrix
A(d) satisfies

-

p(A(d)) < 1. (4.5)

The following theorem links the two stability conditions from the previous lemma.

Theorem 4.1. The following statements are equivalent:

i. The dDDE (4.1) is asymptotically stable;

ii. The linear equation (4.3) is asymptotically stable.
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Proof. Consider the characteristic equation of (4.3)

I, — Azt ‘ cee =Apg_1z7t —A27
. —I,==1 |... 0 0
det (Lun — 27" A(d)) = det " b e . (4.6)
Onxn U S I,

Define the following blocks for the previous conformably partitioned matrix (see Meyer
[2000)):

— AT T
Py =1,—A1z7!, Pp= : )
—A%z‘l
—I,z7 ! L .. Onsxn Onxn
Py = : , Pag = :
Opnxn Onxn ... —Iz7% I,

Block P»s is invertible for any 2= # 0 . Therefore, the characteristic equation (4.6) can
be rewritten as:
det(S) =0,

where S = Pj; — P12P2_21 P51 is the Schur complement where

In Oan e Oan

1 Z_ljn In e Oan
P22 = . . .
gmmAlp ymi2r I,

After multiplying matrices in the Schur complement expression, (4.6) is transformed into

det (I, — Ajz ™' — ... = Az ™) = det (In - ZA,»Z—Z'). (4.7)
=1

Assume that the statement ¢. of the theorem holds, i.e., det (In — Z Aizi> #0 Vz e
=1

ext(D) U OD. Then, according to (4.7), it follows that det (Inm —2z71A(d )) #0 Vz e
ext(D) U OD. The same holds for the éi. to i. implication of the proof. O]

Denote by z* all eigenvalues of A(cf) In the following lines we consider stability of
dDDEs by regarding the delay parameter space. First, assume that delays in (4.1) vary
in such a way that delay vector always stays on the same ray, i.e., d e Ta(d ) Stability
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of (4.1) with respect to this delay variation is characterized by the following spectrum:
o(A(ad)) = {zZ : det (Inm - ZAizZ = 0) , A€ Z+} . (4.8)
=1

One can notice that z* = z%. Hence, if the null solution of the dDDE (4.1) is asymptot-
ically stable for a vector d, it will remain asymptotically stable Vd € 7;(d). We denote
a ray with this property as stable.

From the positive invariance point of view, we are more interested in stability that
concerns general delay variation (variation over all rays). According to Verriest and
Ivanov [1995], we introduce the following definition of the robust (with respect to delay
uncertainty) stability.

Definition 4.4. The dDDE (4.1) is robustly asymptotically stable if its null solution is
asymptotically stable Vd € (Z1)™.

This notion was considered by several authors. For instance, in Verriest and Ivanov
[1995] several sufficient conditions were proposed by using Riccati-type equations. Also,
in Lombardi et al. [2011b] we can find the following simple sufficient condition which
was initially proposed by Kharitonov [1991] for the continuous-time delay-difference
equations.

S A < 1. (4.9)
=1

Note that (4.9) is a necessary and sufficient robust stability condition for the scalar case.
On the other side, in Gielen et al. [2012b] authors provided a necessary condition for
the robust stability via asymptotic stability of a family of linear systems. This result is
outlined in the following theorem.

Theorem 4.2 (Giclen et al. [2012b]). Let S = {~1,0,1} and A = [5(1) ... 3(m)].
Consider the following family of systems:
Z[tk41] = Zé(i)Aiz[tk], AeS™. (4.10)
i=1

Assume that (4.1) is robustly assymptotically stable. Then (4.10) is asymptotically stable
VA € S™.

Proof. See Gielen et al. [2012b]. O

m

Several other necessary conditions, such as p(A(d)) < 1 and p (Z Ai> < 1, can be
i=1

found in Lombardi et al. [2011b]. However none of the presented conditions is necessary
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and sufficient, and for each of them it is relatively simple to construct a counter example,
as illustrated at the end of this chapter.

4.1.1 Stability results in term of Lyapunov functions

For the sake of completeness, we also provide a Lyapunov-type stability conditions for

dDDE.

Theorem 4.3. Let a1, ag € Koo and € € Rjg 1y. The following statements are equivalent:

i. For all X[t;] € (R™)™ there exists a Lyapunov-Krasovskii function V' : (R™)™ —
Ro,00) with respect to the equation (4.3) such that:

ar([IXTte]ll) < V(XT[t]) < eo([[X[tRD,  VI(XT[E]) < eV (X [tr-1]);
ii. The linear difference equation (4.3) is globally asymptotically stable;

Namely, for infinite-dimensional systems Lyapunov-Krasovskii functional uses trajectory
segments and is strictly decreasing along all solutions for a given time-delay system
(see Niculescu [2001]). Analogously, in the discrete-time case trajectory segments are
represented by finite-dimensional state sequences.

Theorem 4.4. Consider the system represented by (4.1). Let V. : (R")™ — Ry ),
ai, az € K and € € Ry 1). Let

VX[ = s (Vi) (a.11)

If for allz € R", k € Zjp ) and X € (R™")™

(4.12)
then, the system is asymptotically stable.

Proof. See Gielen [2013]. O

Stability considered in Theorem 4.4 represents a stronger notion than stability based
on Lyapunov-Krasovksii approach from Theorem 4.3 and it is referred to as Lyapunov-
Razumikhin-based stability condition (see Lombardi et al. [2011a], Gielen et al. [2012D]).
Regarding these notions with respect to positive invariance, it is clear that for a given dy-
namics, Lyapunov-Krasovskii stability condition is necessary and sufficient for the exis-
tence of positively invariant sets in the augmented state-space. This observation is rather
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obvious since the augmented state-space representation is a LTI system. Analogously,
in Gielen et al. [2012a] it was shown that Theorem 4.4 provides necessary and sufficient
condition for the existence of D—invariant sets. Even though Lyapunov-Razumikhin
approach formally solves the problem of the existence for D-invariant sets, it still does
not provide a constructive result which would state whether such a function exists for
a system of interest. Therefore, defining a condition for the existence of D—invariant
sets would also mean solving the problem of the existence for Lyapunov-Razumikhin
functions for linear dDDE. In what follows we offer an answer to this problem for the
linear delay-difference equations with two delay parameters.

4.2 Continuous-time delay-difference equations

When the robust asymptotic stability is examined, one may perceive that the discrete-
time domain is somehow “incomplete” regarding delay parameters (see Fig. 4.1). Namely,
it can be noticed that for small perturbation of a stable ray, dDDE (4.1) can become
unstable. This trend is even more noticeable for larger o in (4.8). For instance, let us
consider the following example (see Michiels and Niculescu [2013]).

Ezample 4.1. Given the stable dDDE
xlty] = 3/4x[ty—a,] — 1/22[ts—a,)- (4.13)

For d; = 1 and dy = 2 all characteristic roots are inside the unit disk, i.e., |zmaz| =
0.7071, where

3 1
[emacl = max{|z] : det(l— Tz~ 4 227},
7

For oo = 10, i.e., for d; = 10 and dy = 20, and according to the discussion which follows
(4.8), the system is stable (delays from the same ray) but with the smaller stability
margin. Indeed, |zmqez| = 0.9659. The same holds also for d; = 11 and dy = 22, with
|Zmaz| = 0.9690. However, a small perturbation of the direction of this ray leads to
instability. For instance, for d; = 10 and ds = 21 we obtain |2y,4,| = 1.0159.

The previous example displayed sensitivity of the stability property for dDDE to a
small delay variation. It is clear that by using discrete-time representation one cannot
properly handle this phenomena. For this reason we regard the general class of difference
equations, the continuous-time delay-difference equations (cDDEs).

Consider the ¢cDDE:

m

x(t) = Z Ajx(t — 1), (4.14)

i=1
where t € R, A; € R r; € RT, i€ Zi1,m)- It is clear that (4.1) is obtained as a
special case of (4.14) by restricting the continuous time variable ¢ to the discrete-time
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" —e®
—(p),t >0

g
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5 0 g 0 7 d % B 0 E z s
t t

(A) ¢ € C(R—r,, 01, R™) (B) v € C(R—,, 0),R™)
FIGURE 4.2: Forward solution of cDDE

sequences ti. For every initial condition ¢ € CD(R[_TWO],R”), a forward solution of
(4.14) on R|_, o is uniquely defined. The space of initial functions is defined by:

m

Cp ={p € C(R,,, o R") 1 9(0) = Aip(ri)}. (4.15)
i=1

Notice that the algebraic constraint in (4.15) provides continuity of the solution. As
an example of solution with respect to continuous and discontinuous initial function
see Fig. 4.2a and Fig. 4.2b, respectively. In general, appropriate functional space for
the initial value problem is referred to as a phase space (see Carvalho [1996]) which is
a Banach space invariant with respect to the operator given by the right-hand-side of
(4.14).

m

Denote by z(¢) = {z(0) : z(0) = Z Aiz(0 — i), 0 € Ry}
i=1

Definition 4.5. Let ¢ € Cp. The trivial solution of the cDDE (4.14) is stable if Ve >0
30 > 0 such that whenever ||, <0, [|[z¢()|p <€, Vt € Ry

Definition 4.6. Let ¢ € Cp. The trivial solution of the cDDE (4.14) is attractive if
lze(o)|lp = 0 as t — oc.

Definition 4.7. The linear cDDE (4.14) is asymptotically stable if its trivial solution
is stable and attractive.

As for the discrete-time case, the global feature of the previous definitions is inherent
due to the linearity.
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Arranging delays into a vector we define ¥ = [ry ... rm]T € (RM)™, where r; < r;y1. For
each 7 it is possible to define a ray

Te(F) ={B7 : BeR"}. (4.16)

Stability of cDDE (4.14) is determined by the roots of exponential polynomial of the
form

PN =1-) Aje . (4.17)
=1

Namely, denote by
c(f) = sup{R(A) : P(\) =0} (4.18)

the spectral abcissa. Stability of (4.14) is determined according to the following theorem.

Theorem 4.5. Delay-difference equation (4.14) is stable if and only if ¢ < 0.
Proof. See Hale and Lunel [1993]. O

Likewise the discrete-time case, if the cDDE (4.14) is asymptotically stable for a vector
7 € T.(7), it also remains asymptotically stable Vi* € T.(¥). Such a ray is denoted
as stable. However, stability of a ray is a “sensitive” property for cDDEs. As for
the discrete-time case, arbitrarily small perturbations in the delay vector lead to the
occurrence of sequences of characteristic roots whose imaginary parts grow unbounded,
yet whose real parts have a finite limit. With increasing the modulus of these roots their
“sensitivity” to delay perturbation also grows and it can become unboundedly large (see
Michiels et al. [2002]). This phenomenon is also known as delay interference and it may
regularly appear in systems described by delay-differential equations (see Louisell [1995],
Michiels and Niculescu [2007]). Similarly to the discrete-time case, here we also define a
strong stability notion (with respect to delay variation) for cDDE (notice the region in
grey depicted on Fig. 4.3).

Definition 4.8. The ¢cDDE (4.14) is delay-independently stable if its null solution is
asymptotically stable V7 € (RT)™.

Remark 4.2. Even though the robust asymptotic stability is sometimes referred to as
delay-independent stability (see e.g. Boukas [2006]), in this study we a make distinction
between them and we relate them with dDDE and cDDE respectively. The reason
for this is that it is not clear whether the robust asymptotic stability approaches the
delay-independent stability when r,, — oco. This theoretical problem is still not solved.

It was shown in Avellar and Hale [1980] that the spectral abscissa is not continuous with
respect to delays. Therefore, when the delay-independent stability is considered, we are
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FIGURE 4.3: Delay-parameter space for cDDE when m = 2

interested in the robust spectral abscissa (see Michiels and Niculescu [2013]) which is
defined as:
c(r) = liI(I)1+ sup {c(F+ 7)) : [|6F]]2 < €}. (4.19)
e—

The robust spectral abscissa is a continuous function with respect to delays. This
property will be used later in proving the necessary and sufficient condition for delay-
independent stability.

By denoting 6 = [01...0,]7, the following classical result provides the necessary and
sufficient condition for the delay-independent stability (see Silkowski [1976]).

Theorem 4.6. The following statements are equivalent:

i. The equation (4.14) is delay-independently stable;

ii. The robust spectral abscissa satisfies ¢(7) < 0;

i1, sup {p(iAiejgi) A= [0,27r]m} < 1.
i=1

Example 4.1 illustrated how delay variation affects the stability of dDDE. In the following
example we show how delay variation may affect the cDDE. For this purpose we use the
same numerical values as in Example 4.1, but we focus on the continuous-time domain.

Ezample 4.2. Given the stable dDDE

x(t) = 3/4x(t —r1) — 1/2x(t — r2). (4.20)
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FIGURE 4.4: Characteristic roots

For 11 = 1 and ro = 2 all characteristic roots are in the left complex half space and the
system is stable (see Fig. 5.9a). Notice that the poles for the discrete-time case and the
continuous-time case are related via transformation e* = z. Hence for each pole in the
z—complex plane there exists an infinite number of poles in the A—complex plane with
the same real part and arguments with periodicity of 27.

On the other side, for r; = 0.99 and 2 = 2 the spectrum of (4.20) is shown in Fig. 5.9b.
Notice that the spectral abscissa is not continuous with respect to the delay variation
while the robust spectral abscissa is.

If the components of i are rationally dependent, then there always exists an integer
p < m, a vector with rationally independent components § = [s; .. .sp]T € RP and a
full column rank matrix H € Z™*P such that ¥ = HS. However, if p = 1, then delays
F1,...,rm are called commensurate i.e. there exists h € RT and d € (Z*T)™ such that
7 = hd (sce Hardy and Wright [1979]). For the vector 7 of commensurate delays, the
cDDE (4.14) can be rewritten as

m

2(t) = At — dih). (4.21)
=1

The last equation represents the continuous equivalent of the dDDE (4.1). This fact will
be used later when we state the robust stability results.

The following Lemma, originally proposed for two-dimensional systems (see Fu et al.
[2006] and Huang [1972]), provides an efficient numerical method to verify the statement
t14. from the Theorem 4.6 when m = 2. It is worth mentioning that the general extension
of this result (m > 2) is an open problem.
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Theorem 4.7. Consider the cDDE (4.14) with m = 2. Assume that there exists
7 € (RY)? for which the system (4.14) is asymptotically stable. Then, the following
statements are equivalent:

i. For0; € [0,2n], i = 1,2 the following condition holds:

p(Aleﬂ'91 + A2€j92> <1; (4.22)

. o(U,V)NoD =0, where

0 1 I 0
I .
B(]:A1®A%1, 31:A1®A?+A2®Ag—1, BQZA2®A?

Proof. Since there exists an 7 € R%o, 00) for which the system (4.14) is asymptotically
stable and continuity of ¢(7) (see (4.19)) holds, delay-independent stability can be con-
firmed if there are no poles crossing the imaginary axis (see Theorem 4.6). The condition
(iii.) from this theorem can be rewritten as

p(Ar+ Azel®e™1) < 1, for all 0; € Ryg . (4.24)

Using standard properties of the Kronecker product (see Graham [1981]), condition
(4.24) is equivalent to

O'((Al + Agzl) (= (Al + Agzl)*) 7§ 1 for all ’21‘ =1, (425)

where z; = e/%2¢79% is a complex variable on the unit circle.

Expression (4.25) is equivalent to

det (I — (Al + Agzl) X (Al + Agzl)*) 7é 0 for all ’21| =1. (4.26)

For all |z;| =1, (4.26) can be rewritten as
det (1 — A @ AT — Ay @ AT — N (A @ AD) — 21 (A ® AlT))
— det ( — By — 2By — leg) (4.27)

= det (2’131 + By + Z%BQ) #0 forall |z]=1.



Delay-difference equations. Stability and positive invariance 73

According to the Schur determinant formula, the previous statement can be rewritten
as
det (2V = U) #0 for all |z1] = 1, (4.28)

which is, by definition, equivalent to the generalized eigenvalues of the matrices U and

V.
o(U,V)ND = 0.

O]

The proposed algebraic condition will play the major role in the later examination of
the set-invariance property for the delay-difference equations.

4.3 Computational conditions for set invariance existence

Even though the system (4.21) is in the continuous-time domain, it is finite-dimensional
and, from the stability point of view, it is equivalent to the dDDE (4.1). This was shown
in the previous example where, by using the substitution z = €%, it was demonstrated
that for each pole z € D of the dDDE, there exists an infinite number of poles s € C~
of the cDDE with the same real part and the argument with periodicity of 27. Let us

introduce now Q(s,7) = det (I Z Aie=®"), o(F) = {s: Q(s,7) = 0} and the sets

w o= | @ (4.29)
Fe(R+)m

Vi, = U o(hd), for some h € Rt (4.30)
de(z+)m

Proposition 4.1. For all positive h € R™, V}, € W. Furthermore, |J Vi, C W.
heR+

Proof. Let R = {7 : #e (R")™} and R, = {7 : 7€ (RY)™, #=hd, h e R", d e
(Z*)™}. The proof of the proposition arises immediately from the fact that R, ¢ R. O

Corollary 4.1. If sup {p(ZAiej9i> 0 e [O,Zw]m} < 1 then o(A(d)) € D, Vd €
i=1
VAR

Remark 4.3. The Corollary 4.1 provides the sufficient condition for the robust asymptotic
stability of the dDDE (4.1). However, the following remains unclear: if a necessary and
sufficient condition for the robust asymptotic stability existed, would its fulfillment be
sufficient as well to guarantee the delay-independent stability? In what follows, we
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examine how the existence of the D-invariant sets can provide some new perspectives to
this question.

Subsequently, we address the correlation between the robust asymptotic stability and the
existence of the D-contractive sets via frequency-domain approach. The link between the
discrete-time (4.1) and the continuous-time dynamics (4.14) becomes natural if the D-
invariance notion is defined with respect to the continuous time dynamics. This definition
is introduced next through Minkowski sum construction and keeps the coherence with
the discrete version in Definition 3.26 (for w = 0).

Definition 4.9. Regarding the system (4.14) and 0 < e < 1, the set X C R", containing

m
the origin in its strict interior, is said to be D—invariant if @ A;X C eX.
i=1

With the remarks and definition above, an important property of the D—invariant sets
is characterized by the following proposition.

Proposition 4.2 (Stankovi¢ et al. [2013]). The set X is D—invariant with respect to
the dDDE (4.1) if and only if it is D-invariant with respect to the cDDE (4.14).

Proof. Regarding Definition 4.9, one can notice that the existence of a D-invariant set is
not related to the continuous or discrete-time domain of the delay-difference equations
but only to the linear mappings that define the dynamics in (4.1) and (4.14), which are
essentially the same. O

As a consequence of the Proposition 4.2, instead of using “incomplete” discrete-time rep-
resentation (4.1) for defining the conditions for the existence of the D—contractive sets,
we may equally employ general continuous-time model (4.14) and the related frequency-
domain techniques. Before stating the main constructive result, a useful intermediary
statement is needed.

Lemma 4.2 (Stankovi¢ et al. [2013]). If the cDDE (4.14) admits a D—contractive set
X including the origin, then for any initial condition given by a continuous function
@ [=rm,0) = X, the system’s trajectories stay inside X and converge to the origin.

Proof. The proof is based on an appropriate inductive argument. From the initial condi-
tion constraint, it follows that for all ¢ € [—rp,,0) the system trajectory z(t) € X'. Next,
from Definition 4.9, the same property holds on [0, r,,). Furthermore, for a contraction
factor € € Ryg 1) and due to the fact that 0 € X we have a strict inclusion eX C X
leading to z(t) € eX,Vt € [0,7,). The same argument can be used on [ry,,2r,,) with
the remark that the trajectory z(t) € e2X,Vt € [rpm, 2rm).

Suppose now that, for some k > 2, the trajectory satisfies 2(t) € X, vt € [(k —
1)7m, k7). Then similar to the previous remark x(t) € "XVt € [krp,, (k + 1)rpy,).
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FIGURE 4.5: Schematic overview of the presented results.

This final property completes the proof since when k& — oo we have € — 0 and subse-
quently the trajectory approaching the origin stays inside X and converges asymptoti-
cally to the origin. O

The D-contractivity is related to the matrices A; and it is independent on the delay
values in (4.14). Lemma 4.2 establishes a connection between the asymptotic stability
and the D—contractivity of a set with respect to the dynamics in (4.14) and furthermore
this result does not rely on the delay values.

Corollary 4.2. If the cDDE (4.14) admits a D—contractive set including the origin,
then the system is delay-independently stable.

Theorem 4.8. The system
2
alk] = Ak — dj (4.31)
i=1

admits the D-contractive sets only if o(U,V) N oD = (.

Proof. Since the Theorem 4.7 states the necessary and sufficient condition for the delay-
independent stability of the cDDE (4.14) with m = 2, according to the Corollary 4.8,
it is also necessary to guarantee the existence of the D-contractive sets for the ¢cDDE.
Finally, the equivalence between the continuous-time and the discrete-time dynamics is
resumed by the Proposition 4.2. O

Remark 4.4. Theorem 4.8 provides the necessary condition for the existence of the D-
contractive sets. Furthermore, from the author’s experience, a counterexample that
shows that this theorem is necessary but not sufficient has not been found yet.

For a schematic overview of the correlation between the notions presented in this note
we refer to the Fig. 4.5.
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FIGURE 4.6: Spectrum for cDDE and dDDE

For a given scalar discrete-time delay-difference equation, a D—invariant set can be
regarded as an oo-norm sphere of the dimension that depends on delay value. Therefore,

m
for the scalar dDDE z[k] = Z a;x[k — d;] the necessary and sufficient condition for the
i=1

m
robust asymptotic stability and for the existence of the D—invariant sets is Z la;| < 1.

i=1
This arises from the fact that p(A(d)) < ||A(d)|ee = 1 Vd € (Z+)™.
Example 4.3. Let us consider the following asymptotically stable cDDE
0.5 0.16 0.51 —0.01
z(t) = [0.21 0.45] =D+ 1002 051 ] z(t=9). (4.32)

The corresponding discrete-time representation (4.1), obtained for h = 1, d; = 1 and
dy = 9, is also asymptotically stable i.e. p(A(d)) = 0.9951. The necessary condition
for the existence of the D—contractive sets proposed by Gielen et al. [2012b] (see The-
orem 4.2) is fulfilled i.e. p(A;1) <1, p(A2) <1, p(A1 + A2) < 1 and p(—A; + A2) < 1.
However, the necessary condition from the Theorem 4.8 does not hold. Indeed, one
can verify that the system becomes unstable for the perturbed delay vector r; = 1 and
ro = 9.1 (spectra of the cDDE and the dDDE are depicted in Fig. 4.6a and Fig. 4.6b,
respectively). Consequently, there is no D—contractive (neither the D-invariant) set for
this example, thus confirming that the prior necessary condition is more restrictive than
the Theorem 4.8.
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FIGURE 4.7: D-contractive set for the dDDE (4.33).

According to Theorem 4.8, the system

0.51 —-0.01

0.03 0.51 1 wlk — dl, (4.33)

0.35 0.13
(k] = [0.51 —0.01

]x[k—dl] +

has a ¢cDDE counterpart which is delay-independently stable and implies the robust
asymptotic stability of (4.33). Such robust asymptotic stability of the dDDE represents
a necessary condition for the existence of a D-contractive set with respect to (4.33). In
fact, a D-contractive set exists as shown in Fig. 4.7. Finally, it is interesting to remark
that, for this example, the existing sufficient condition || A1 ||, + ||Az2]|, < 1 (see Lombardi
et al. [2011b]) does not hold.

4.4 Conclusion

In this chapter we examined conditions for the existence of the D—contractive sets
via strong stability notions for the ¢cDDE and the dDDE. A computationally efficient
numerical test, also known from the theory of two-dimensional systems, was therefore
employed. We showed that, beside their practical application, D—invariant sets can also
bring a new insight on the correlation between the robust asymptotic and the delay-
independent stability.






Chapter 5

Sensor-to-controller delays.
Detection and control design

KNowing the value of an induced delay in communication between sensor and con-
troller, along with sufficiently accurate model of the process, allows us to design
a control action which is capable to compensate for such a delay. A classical approach
employs a model-based controller, which performs estimation (prediction) of a state vec-
tor based on available outdated measurements and previous control inputs. However,
if the process is not deterministic (it is subject to additive disturbance or parametric
uncertainties), this approach may provide poor performance, or even lead to unstable
behavior. On the other hand, a lag that might appear in the communication between
controllers and actuators has completely different nature. Unless it can be estimated in
advance and taken into account in control design, such a delay cannot be compensated
by means of networked control. In this situation, one must rely on the robust (with
respect to delay parameter) stability analysis and the robust control design (see Chapter
2).

This chapter examines a control design for networked control systems with single sensor-
to-controller communication channel. Random and time-varying delays, which can occur
during data transmission through this channel, are regarded as faults. Furthermore, we
assume that the process is affected by a bounded additive disturbance.

In order to provide information on smaller!' delays, we design a set-based delay detection
mechanism, which in general can be regarded as a FDI. An advantage of the proposed
mechanism is its simple and numerically low cost implementation because it utilizes set-
membership testing to discern a ‘healthy’ from a ‘delayed’ information. In order to avoid
intersection between regions with ‘healthy’ and ‘delayed’ sensor’s measurements i.e. to
guarantee unique delay detection, a reference governor is designed using model-based
receding horizon optimization framework. Once information provided by the feedback

!The term ‘smaller’ will be precisely quantified in Section 5.3.
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is labeled as outdated, the controller computes a control action based on prediction.
However, if the plant is affected by disturbance, the control signal obtained in this
way may introduce a tracking error which grows with every new delay variation. For
this reason, we designed a model-based controller with a compensation block which is
capable to correct the induced tracking error. A sufficient condition that guarantees
the existence of the compensation signal is also provided. Simulations and numerical
examples follow the theoretical presentation throughout the chapter. Brief concluding
remarks are outlined in the last section.

5.1 Time-delay variation as a fault

Networked control system model that is considered in this section has controller collo-
cated with the actuator (see Fig. 5.1). Such configuration allows us to neglect controller-
to-actuator delays, which on the other side, can be tackled according to theoretical results
outlined in Chapter 2 and the references therein.

Let us evoke briefly the general functioning of the NCS scheme depicted on Fig. 5.1.
Ideally, at each sampling period control action should be updated based on the latest
measurements acquired by the sensor. However, because it is shared by several (possibly
many) nodes, the communication network may not be idle at the moment when it is
required by the sensor. When that happens, data packets are hold until the network
protocol grants permission for their transmission. For the most network protocols such
induced delays are random and time-varying. Transmitted data are stored in the re-
ceiving buffer which is read by the controller at a higher frequency than the sampling
frequency of the plant.

Control design becomes more involved with the presence of time-delays at the input.
For example, a stabilizing controller for delay-free dynamics may not stabilize the same
system affected by delay. The same holds for constant versus time-varying delay. For
instance, let 7[tg] = (d[tx] —1)Ts+Tis[tr]T and T[tx+1] = Tis[tk+1]T (see Chapter 2 for the
delay characterization) denote sensor-to-controller delays for two consecutive sampling
periods for the NCS scheme which is depicted on Fig. 5.1. Rewriting discrete-time
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models with respect to 7[tx] and T[tx4+1] in the augmented state-space (see Chapter 2),
we obtain the following dynamics:

[x[tmz” — AGalter A Fislta]) [xﬁf[tk] 1 '

z[try1 [tk—d]

It was shown in Chapter 2 that such dynamics can be unstable even for the stable matri-
ces A(Tis[tp+1]) and A(Tis[tr]). As an illustration how time-delay can affect a networked
control system we propose the following example.

Ezample 5.1. Mechanical system of a rolling ball and a tilting beam is shown on Fig. 5.2.
Mathematical model of the mechanism is given by the following linearized differential
equation (see Astrom and Wittenmark [1997]):

d2y(t) mgr? mgr?

V1 =TI sin(e(t) ~

where m, r and J stand for the mass, the radius and the moment of inertia of the ball
respectively, while the tilting angle of the beam ¢ is regarded as the input.

Dynamics of the system can be fully described by a relative position and velocity of the
ball, brought together in the form of a state vector z(t) = [x1(t) z2(t)]" = [y(t) y(¢)]*.
We assume that control of the tilting angle is implemented via network that induces

time-varying delays. Continuous-time state-space representation of this systems is given
by:

dx(t) 0 1
a lo 0] =) +

mO] ot~ 7(1)).

J

Torque motor

T, 1ls
m 0.4 kg
T 0.03 m
K | [0.0271 0.0543]
FIGURE 5.2: Mechanical system of a rolling ball TABLE 5.1: Numerical
and a beam values

In order to simplify the example, we assume that all states are measurable and that
control action is provided by a digital linear quadratic regulator o[ty = — Kz[t;], which
is designed to stabilize the plant when 7[t;] = 0, Vk € Z,..
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FIGURE 5.4: Stable closed-loop response

For varying delays, the simulation results are shown on Fig. 5.4 and Fig. 5.5. It is clear
that the closed-loop system may have significantly different behavior with respect to
delay variation.

A fault is formally defined as a deviation of the system structure or the system parameters
from the nominal specification (see e.g. Blanke [2003]). Following the same idea, one
can consider a network-induced delay as a deviation in the communication channels with
respect to the nominal, delay-free data transmission. The last statement represents the
main approach that we examine in this chapter.



Sensor-to-controller delays in NCS. Detection and control design 83

:i ; EH 09

0.8F

0.7

0.61

05F

0.4r

0.3F

| L .
S S S S SR SR
T T T T T i

0.2r

01f

0 5 10 15 20 25 30 0 5 10 15 20 25 30
t[s] ts]

(A) Closed-loop response (B) Delay variation
FIGURE 5.5: Unstable closed-loop response
5.2 Nominal NCS description

Let us consider the following LTI plant:
z(t) = Acx(t) + Beu(t) + Ecw(t), (5.1)

controlled over a shared communication network. It is assumed that the control action
is provided by a controller which is collocated with the actuator. We denote by = € R"
the state vector, by u € R™ the control signal and by w € RP the bounded process noise.
It is assumed that w € W, where W C RP is a symmetric C-set and that the matrices
A, e R™" B, e R"™™ and E. € R" P are constant.

A NCS is said to be nominal if the data transmission between the sensor and the con-
troller is carried out without delays, i.e. if 7 = 0.

The plant (5.1) is controlled by a digital controller which is represented by the following
piecewise-constant function:

u(t) = ulty], Vte€ [ty tpt1), k€ Zy. (5.2)

Using zero-order hold sampling with the constant period T = tx41 — tx, the nominal
discrete-time representation of (5.1) is given as:

Tltp+1] = Axlty] + Bulty] + Ew(ty], (5.3)

where A € R™*"™ B € R™"™ and E € R"*P are constant discrete-time equivalents of A,
B. and E. (see Chapter 2 and (2.4)).
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The control objective is for the state of the plant (5.3) to track a reference signal x,.¢
that satisfies the reference dynamics

Tref [tk+1] = Awmf [tk] + Buref [tk] (5.4)

The nominal control signal is obtained according to the following equation:

u[tk] = Upef [tk] + U[tk]v (5.5)

where the reference control input wu,.; can represent for instance a stabilizing control
input when the reference dynamics (5.4) is not stable, while v represents a tracking
control law which ensures convergence of the tracking error z = & — x,.;.

In order to compute the control signal (5.5), we consider either state feedback or esti-
mation state feedback. Both cases will be often simultaneously considered by using a
common notation. However, some notions are not completely compatible and for those
cases the state feedback and the estimation feedback need to be examined separately.

5.2.1 State feedback and nominal control design

The state feedback architecture is depicted on Fig. 5.1.

The state vector is measured every T by a sensor which is assumed to be static (or with
very fast dynamics relatively to the plant dynamics) and which satisfies the observation
equation:

ylt] = Cafty], (5.6)

where y € R™ and C € R™ " such that rank(C) = n. Without loss of generality, we
assume that C = I, whenever we consider the state feedback.

Remark 5.1. In the observation equation (5.6) we may also consider an additive mea-
surement disturbance. Naturally, this disturbance would have to be bounded. Such
an extension would not require significant changes in the subsequent theoretical consid-
eration. Therefore, in order to simplify the presentation, we decided to consider only
this simplified case. However, since it requires a particular theoretical development,
measurement noise will be taken into account in the following chapter.

In order to design a controller which provides attenuation of negative effects caused
by sensor-to-controller delays, in this work we often rely on the set-theoretic methods.
Therefore, beside satisfying performance of the closed-loop system, it is also preferable
for control action to rely on reduced computational effort (for instance with respect to
invariant sets construction). Method that is presented here provides an active strategy?

2By active we assume the capability for taking an appropriate correcting action whenever a delay is
detected.
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to tackle random time-varying delays and it is independent on a chosen tracking control
law. Therefore, in order to simplify the presentation, we employ the LQR as a generic
LTI system stabilization method.

The following hypothesis holds throughout this chapter.
Hypothesis 5.1. The pair (A, B) is controllable.

Let us consider (5.5) and the following tracking control law:

ofty] = —K(x[tk] — rer[tr]). (5.7)

The gain K € R™*" is obtained by minimizing the following cost function :
J(z,0) = 27Qz + v Rv + (Az + Bv)" P(Az + Bv), (5.8)

where z = 2 — . is the tracking error while ) and R are positive definite cost matrices.
For a given @) and R, matrices P and K are computed from the following algebraic Riccati
equation:

K =(R+BT"PB)"'BTPA

5.9
P=ATPA+ Q- KT'(R+ BTPB)K. (5.9)

Using (5.9) the cost function (5.8) can be rewritten as:
J(z,v) = 2T Pz. (5.10)

From (5.7), (5.8) and (5.10), we obtain Lyapunov’s matrix equation:
(A— BK)'P(A—- BK)+ P =—(Q + K"RK).

It is well known that if and only if Hypothesis 5.1 holds, for any positive definite ) and
R there exists a unique positive definite matrix P and a control gain K such that all
poles of A — BK are inside the unit circle (see Kalman [1960]).

For (5.7), (5.3) and (5.4), the closed-loop performance of the nominal NCS is determined
by the following tracking error dynamics:

z[tk+1] = (A — BK) z[tg] + Ew]tk]. (5.11)

5.2.2 Estimated state feedback

The estimated state feedback architecture is depicted on Fig. 5.6.



Sensor-to-controller delays in NCS. Detection and control design 86

T T T,
. + e }' 7 s Digital 1 1 pecoder Actuator Plant ---1 Sensor |- State --7% -] Encoder |-

buffer controller observer

---------------------------------------------------- Network [ = s s mmmmmee et e

FIGURE 5.6: Single-channel networked control system

If the state vector is not completely measurable, we employ a state observer in order to
obtain its estimation. It is assumed that the state observer is collocated with the sensor.
Such a choice can be justified by an increased number of smart sensors with embedded
processing unit, capable to locally process the raw measurements and to transmit the
local estimates (see Xu and Hespanha [2005]).

It was already stated (see Chapter 2) that, in the presence of delay, control input is
subject to a variation within the sampling period Ts. In order to obtain proper estima-
tions of the state vector and to avoid using a remote estimator, we need to provide the
state observer with the same control input as the plant. Therefore, the state observer is
designed with respect to the inter-sampling dynamics of the process.
Let us assume that the output of the process is measured at a faster rate, say with the
period T', where Ty = NT for sufficiently large N € ZT, while the state estimate is still
transmitted to the controller each Ts. The sensor is assumed to be static (or a sensor
with very fast dynamics relatively to the plant dynamics) which satisfies the observation
equation:

yltp +iT) = Cxfty, +iT), i€ Z[O,(Nfl)b (5.12)

where y € R" and C' € R™"™ such that rank(C) < n.

Remark 5.2. Without loss of any generality, we decide to consider the simplified model
of the output (5.12), i.e., a noise-free sensor (see Remark 5.1). In the single feedback
case such an assumption does not pose any particular problem. However, this hypothesis
needs to be carefully addressed in the case of redundant sensor architecture that will be
consider in the subsequent chapter.

Using the constant inter-sampling period T', the corresponding nominal plant dynamics
(5.3) is given by:

alty + (i + 1)T) = Axlty +iT) + Bulty] + Ewlty), i € Zyn-1y, (5.13)

where A € R™" B € R"*™ and E € R"*P are constant matrices (see Chapter 2). Notice
that it has been assumed that w is constant between two consecutive samplings. Such
an assumption can be easily relaxed according to the discussion outlined in Section 3.2.

The following assumption holds.
Hypothesis 5.2. The pair (A, C) is observable.
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The observed state vector is represented by the following discrete-time dynamics:

Btk + (i + DT] = A2[ty, + iT] + Bulty] + L (y[te + iT] — C2[ty +iT]), i€ Zn-1j,
(5.14)
where L € R™" is the observer gain designed to guarantee the placement of the poles
of A — LC inside the unit disc (always possible by Hypothesis 5.2).

The relevance of the estimated state vector is evaluated by the estimation error (Z =
x — &) which is obtained from (5.13) and (5.14) as

Bltn + (i 4+ D) = (A= LCO) &ty +iT] + Bwlty], i € Zpy_) (5.15)

It is worth mentioning that (5.15) does not depend on delay value since (5.14) is always
provided by the same input as (5.13). Therefore, for a stable A — LC, the estimation
error (5.15) is bounded. Moreover, if w € W, (5.15) admits a robust positively invariant
set X (see Chapter 3) such that:

Bty + (i +1DT) € X, Vi[ty +iT) € X, Vuwltg] € W. (5.16)

Taking into account the separation principle (for the state and the estimation feedback),
the tracking control law from (5.5) can be rewritten for the estimated state feedback
case as:

U[tk] =-K (.@[tk] - a:mf[tk]) . (517)

Nominal dynamics of the state observer with respect to Ty is given by the following
discrete-time equation:

N—
E[tpy1] = AZ[tr] + Bulty] + Z 'LCE[ty + (N — 1 —4)T]. (5.18)

Replacing (5.15) in (5.18), one has:

Z[trp11] = Az[ty] + Bulty] + Fz[ty] + Gwlty], (5.19)
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where

F:[AN—lLC AN-lLo Lc} :
- (5.20)

G:[ANfch AN-1Lo Lc}

S N(A- LOYE

Since the tracking error z is not measurable, one needs to define the estimation tracking
error 2 = & — yef. By using (5.4), (5.5), (5.17) and (5.19), the estimation tracking error
is determined according to the following difference equation:

2[tes] = (A — BK) 2[ty] + Filty] + Gwlts], (5.21)

If A— BK is Schur and # € X, then (5.21) admits a robust positively invariant set
Z C R" such that:

2tre) € 2, VE[ti] € 2, Vi[ti] € X, Vw[ti] e W. (5.22)

Whenever the results are independent on explicit feedback information, we will use 6 as
the common notation in order to denote the controller’s input, i.e., § = x or 6 = z. For
the nominal NCS, 6 is a piecewise-constant function such that

0(t) = 0lte], Vt€ [tk,thr1), k€ Zy. (5.23)

5.3 Model-based controller

The following assumption holds throughout this chapter.
Hypothesis 5.3. The pair (A, B) is controllable.

In order to tackle network-induced sensor-to-controller delays, a classical approach em-
ploys a model-based controller (see Montestruque and Antsaklis [2003], Witrant et al.
[2007] and Zhang et al. [2001]). Such a controller utilizes mathematical model of the
process in order to estimate current state vector from available outdated measurements.

In this section, we consider a switching digital controller with two control loops (see
Fig. 5.7). If the controller is provided with the outdated measurements, the control
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FIGURE 5.7: Model-based controller

action is generated based on information provided by the predictor (upper control loop on
Fig. 5.7). On the other side, when up-to-date measurements are available, the controller
is switched to the second control loop.

Let us regard the time interval ¢ € [ty,tx+1) and denote by 6[t;_gy;,)] the most recently
delivered feedback information to the controller. Using 0[t;_qp, )], along with the math-
ematical model of the plant, model-based controller calculates the following prediction:

dltr]—1
d[t
Otkltnapy = A [k]e[tk—d[tkﬂ + 2 AqB“tk—q—lltk—d[th’ (5.24)
q=0
where
utqufl‘tkfd[tk] = uref[tqufl] - K (atquflltkfd[tk] - xref[tkfzfl]) .

We use the notation 0y, |, alty] in order to point out that this is a prediction of 0[t;] which

is obtained based on 0[t;,_gj,]]. Obviously, the one will have 6y, _ |, . = 0[t;—q]. Notice
that the reference input u,.y and the reference state vector . are always available for
the control signal computation.

In the presence of disturbance, it is clear that (5.24) may not provide sufficiently accurate
information on the real plant’s behavior as that would be the case with the sensor.

Let %[tk] = (d[tk] - 1) Ts + Tis [tk]T, where %is[tk] € Z[O,Nfl]- Thus,

Utglte_ape,) = uTef[tk] - K (‘9tk\tk_d[tk] - xref[tk]) ) (5.25)

determines the control signal on the interval ¢t € Ry, 1, 17, (1,]7)-

For the control signal (5.25), the state vector is obtained as:

ﬂs[tk]fl ﬂs[tk]fl
ity + Rl T) = A0l 4 S ABugy, , + S ARl (5.20)
=0 =0
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When 60[t] is delivered to the buffer (at t € R, 4 (7, [ta]=1)T tx+7:s[ts]7])> the control action
is updated at t = t; + T;s[tx]T. The control signal becomes u[ty], and it is constant on
the interval ¢ € Ry, 17, 1,]7,t,,,)- The corresponding state vector at ¢, is given as:

N-1 N—Tis[te]—1
tltea] = Aaltl + Y. ABuyy o+ Y. ABult] + Ewlt],  (5.27)
i:N—ﬂ's[tk] =0

where A = AN, E = Zi]i_ol AE.

A possible limitation of this approach could be the fact that two assumptions need to
be imposed: sufficiently accurate model of the plant is known and for each sensor-to-
controller delay, the corresponding interval where such a delay resides is identified. If
one of these assumptions does not hold, the overall functioning of the control strategy
may be compromised. While the problem of delay detection is considered in Section 5.5,
here we mainly examine issues with respect to process uncertainties. Therefore, in this
section we assume that all sensor-to-controller delays are known to the controller.

Since (5.24) does not provide information on the process noise, using this signal instead
of the corresponding measurements, may induce a tracking error that grows with every
subsequent control based on prediction. In order to define upper bounds on the tracking
error with respect to delay, let us define the following prediction error:

Etilty_apey) = Otx) — Otilty_aps,)- (5.28)
Using (5.28) in (5.25) the control signal becomes:
Uyt gy = ulty] + thk“k—d[tk]' (5.29)
For (5.29), the closed loop system (5.27) is written as:
N-1
x[tyy1) = Azx[ty] + Bulty] + Ew[ty] + Z AiBK5tk|tk,d[tk]> (5.30)
1=N—T;s[tx]

where B = Zi]\;l A'B.

5.3.1 Bounds on tracking error for the state feedback case

Let us first consider the state feedback case, i.e., # = z. Using (5.24) and (5.28), we
define the one-step prediction error as:

gtk‘tk—l = .’L‘[tk] — Al‘[tk,ﬂ — Bu[tk,l] = Ew[tkfl] S 51, (5.31)
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where & = EW. It is worth mentioning that e, ;. € & holds Vi, j € Z such that
i <jand j—i=1. Since W is a symmetric C-set, £ is a symmetric C-set as well (see
e.g. Ziegler [1995]). In the general case, prediction error is confined in a set which is
constructed according to the following recursive formula:

j—i—1 j—i—1
Etyilte, € Ejmi = { &b AqEW} ® { &P Aq—lBngiq} : (5.32)

q=0 q=1

with 4, j € Z such that ¢ < j and j—i > 2. The expression (5.32) is derived from (5.24)
and (5.28). Notice that the prediction error is bounded for 7 € Ry - . 1, Tmaz < 0.

For @ = = the nominal tracking error dynamics is obtained as in (5.11). If the matrix
A — BK is Schur, then there exists a robust positively invariant set Z (see Chapter 4)
such that

Z[tg+1) € Z, Vzltg) € Z, Vw[ti] € W. (5.33)

Such invariance property of the set Z does not hold anymore if the system in the closed-
loop is affected by delays (see (5.30)). However, under certain conditions, it is possible to
determine upper bounds for the tracking error dynamics with respect to delay parameter.

Proposition 5.1. Let 7 € Ry, ]-1)Tsdite]Ts]- Lf x[tk—d[tk]ﬂ] € {xref[tk—d[tk]-‘rl]} D Z,
then

d[tk]—Q N-—1
Tlte+1] € {Tref[tir]} © Z @ A{ ) AqBKgd[tk]—l—q} S { ) AzBKgd[tk]} :
q=0 iZN—?iS[tk}

(5.34)

P?”OOf. Ifre R((d[tk]—l)Ts7d[tk]Ts]7 then ?[tk] = ((d[tk] — 1)Ts + Tis [tk]T), Tis [tk] S Z[O,N—l]-

Using (5.25) and considering the state vector evolution backward in time, i.e., from
t = tg41 back to ¢ = t_gps,142, We have:

N-—1
:C[thrl] = Al’[tk] + Bu[tk] + Ew[tk] + Z AZBKEtk\tkfd[tk]’
i=N—Tis[tg]

lty] = Ax[ty_1] + Bultp—1] + Ewlty 1] + BKey 1t g0

2lth—dp vl = Axlty—ag)+1] + Bulte—ap)1] + Blti—ap 1] + BEey 0 it g,
(5.35)



Sensor-to-controller delays in NCS. Detection and control design 92

Substituting the previous series of equations backward, until we get to (5.35), the state
vector at ¢t = {1 is obtained as:

dltr]—1 djtr]—1
altpsr] = ANty g gn] + D0 A'Bultig] + Y ABwlti—]
q=0 q=0
dltr] -2 N-1 o (5-36)
+A Z AqBKEtk—q—l|tk—d[tk] + Z AZBthk“k—d[tk];
q=0 Z':N—ﬁs[tk]

If 2[tp_gpe,)+1] € {xref [tk_d[tk}ﬂ]} @ Z, where Z is an invariant set with respect to the
nominal dynamics, then, by using (5.32), one obtains (5.34). O

5.3.2 Bounds on tracking error for the estimated state feedback case

In this subsection we determine bounds on the tracking error when v = tyef—K (& — 2yef)
and 7 # 0.

Let us recall the nominal (7 = 0) closed-loop tracking error system for the estimated
state feedback case, which is obtained from (5.3), (5.4) and (5.17):

z[ti1] = (A — BK) 2[ty] + Ewlty] + BKZ[ty], (5.37)
where we used the fact that 2 = 2z — Z.

When 7 # 0 the process is controlled based on prediction. Therefore, prediction error
arises. By using (5.24), (5.28) and (5.14), one can define one-step prediction error as:

N—-1
Etpltny = Eltk] = Tupptp_, = Z A'LO%[ty + (N — 1 — )T
1=0
= FZlty_1] + Gwltg_1],

(5.38)

where F and G are obtained according to (5.20). Moreover, if Z[t;_,] € X and w[t;_1] €
W, then g, s, | € &1, where
£ =FX®GW. (5.39)

The same holds for each Et_iltn_ with¢ < jand j —¢=1.
If Z[ty_q) € X, then
joi=l j—i—1
it €EEi=13 D AX o P AT'BKE i gy, (5.40)
q=0 q=1

with 4,5 € Z4 such that ¢« < j and j —1¢ > 2.
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FI1GURE 5.8: Closed-loop response when w = 0

The nominal tracking error system (5.37) admits a robust positively invariant set, say
Z,if A— BK is Schur, Vw € W and V& € X, where W and X are C'—sets. However, one
can notice that, due to prediction error, positive invariance of Z may not hold. However,
as it was done in the state feedback case, it is possible to determine upper bounds for
the tracking error dynamics when the system is affected by delay.

Proposition 5.2. LetT # 0 and T € R((d[tk]—l)Ts,d[tk}Ts}z where d = [TLJ . If$[tk—d[tk]+1] c
{xref [tk—d[tk}—l-l]} D Z, then

dltg]—2 N—1
Ttgt1] € {Treflti1]} ® 2 @ A{ &P AqBKgd[tk]—l—q} @ { B AZBKgd[tk]} ,
q:0 Nf"_-is[tk]
(5.41)

where the sets £ are determined according to (5.38).

Proof. The proof is similar as the proof for Proposition 5.1, and therefore is omitted
here. O

Through the following example we clarify how model-based control strategy performs
in the presence of a random delay variation (delays are assumed to be smaller then the
sampling period) and the additive disturbance.

Example 5.2. We get back to the system of a rolling ball and a beam that was considered
before. Now it is assumed that state vector is affected by a bounded additive disturbance
w € W C R? such that ||w|/eo < 0.004.

dx(t) 0 1 0
a [0 o] () + mgr p(t —7(t) + w(t). (5.42)
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FIGURE 5.9: Closed-loop response when || w ||oo < 0.004

Let us first consider the case when w(t) = 0, Vt € R;. Using the previously discussed
model-based controller, the closed-loop response of the system is shown on Fig. 5.8.
Notice that this system was unstable for the same delay pattern and the LQR controller
(see Fig. 5.5)

For ||w|lec < 0.004, V¢ € R, response of the closed-loop dynamics controlled by the
model-based controller is shown on Fig. 5.9. Such a response confirms that, in general,
model-based controller cannot provide satisfying control performance in the presence of
disturbance.

Based on the previous example, one can conclude that performance of a system controlled
by a model-based controller can be significantly compromised in the presence of even
relatively small perturbations. Therefore we propose a strategy which employs a model-
based controller, accompanied by a delay compensator, which preserves tracking error
within pre-defined bounds.

5.4 Model-based controller with active delay compensa-
tion

Design of the delay compensator exploits the idea that a delay occurrence can be con-
sidered as a fault with regard to the nominal dynamics. In order to reduce the tracking
error in this case, we design a FDI mechanism (in Section 5.5) and the corresponding
control reconfiguration. This subsection deals with the control reconfiguration.

Block diagram of the considered control strategy is presented on Fig. 5.10.

Let 7[tg] = (d[ty] — 1) Ts+7is[tg|T. For Vt € Ry, 4, 17, 1,7 the control signal is generated
based on prediction (5.24). Hence, the state vector at t = t + 7;s[tx]T is the same as in
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FIGURE 5.10: Model-based controller with active delay compensation

(5.26). On the other side, for available 0[t;] the state vector at txq is given as:

N-—1 N-—1
I‘[thrl] = ANx[tk] + Z AlButkﬁkfd[tk] + Z A’Ew[tk]
i:N—FiS[tk] =0
N-Tisltn] -1
+ > A'B(uti] +olty + (N =1 —0)T))
i=0
N-1
=dsltil+ Y AB {upeslte] = K (O oy, — wreslte]) ) (5.43)
i:N—‘T'is[tk]
N—ﬂ's[tk]—l o
+Ewltr]+ Y. A'B{ureslte] — K (0[tr] — zres(t])}
=0
N—‘T’is[tk]—l o
+ > A'Bo[tp+ (N —1-i)T],
i=0
where _
oL = [O'[tk + %is[tk]T]T R O'[tk + (N — 1)T]T:| S R(ans[tk})m (544)

is a compensation vector which is designed in order to compensate for the tracking error
which is induced due to the prediction error (5.28).

Using (5.28) in (5.43) one can obtain

N-1
zlti1] = Az(ty] + Bulty] + Ewlty] + Z AZBthk\tk—d[tk]
i:N_‘T'is[tk] (545)
N*ﬂ's[tk}fl
+ Y. A'Boltp+ (N —1-i)T].
1=0
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5.4.1 State feedback compensation

In order to determine the proper compensation vector (5.44), we need to identify which
information is available to the controller at the moment when up-to-date data are de-
livered. Regarding the system (5.45), one can notice that for delays smaller than the
sampling period, such a compensation vector can be computed from the following linear
equation:

N—Tis[tg]—1 o N-1 s
> A'Boltp+ (N —1-i)T] = — > A'BEeyj, | - (5.46)
=0 i=N—‘7‘i5[tk]

For delays that are larger then the sampling period, we also need to take into account
the tracking error which is caused by delay propagation during several sampling periods.
This tracking error is incorporated in the current state vector. From the equation (5.45)
we can notice that &g, alty] becomes available with the receiving of the most recent
information from the plant. The same holds also for z[t;] and u[t;]. Hence, we can
determine the compensation vector (5.44) as:

N*ﬂs[tk}*l o N-1 ~ o~
> A'Bo[tpH(N—=1=i)T] = Zyefltpp]—Ax[ty]—Bult]— > A'BEey, iy,
i=0 i=N—7s[tg]

(5.47)
where we did not take into account additive disturbance since this information is not
available at the moment. Moreover, we set w = 0 due to the assumption that the
process noise is zero mean. If this assumption does not hold, then one should take into
consideration the mean value of w in (5.47). If there exists a solution to (5.47), then, by
using (5.47) in (5.45), one obtains:

k1] € {@resltir1]} & EW C {zres[tita]} @ 2. (5.48)

Sufficient condition for the existence of ¢ are discussed in Subsection 5.4.3.

5.4.2 Estimated state feedback compensation

Let 8 = Z. Differently from the state feedback case, here the controller does not have
information on the state vector, but on its estimation. From the assumption that the
process and the observer are provided by the same input signal, we have that the estima-
tion error (5.15) is confined in the robust positively invariant set X after some transition
period.
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For 7[tg] = (d[tx] — 1) Ts + Tis[tx)T, we have:

N—
B[tpy1] = AZ[ty] + Bultg] + Z 'LOZ[ty 4+ (N — 1 — )T
=0
Nominal dynamics (549)
N—-1 o N—ﬂ’s[tk]—l L
+ > ABKeyp .+ >, ABolty+ (N —1-0)T].
i:N—?is[tk} =0

At t = ty+7s[tx]T controller receives information on Z[t;] and consequently on &, |, - ditn)”
Using available information, one can compute the following compensation vector:

N_%is[tk}_l . N-1 o
> A'Bo[ty+H(N-1-i)T] = a:ref[tk+1]—Ai[tk]—Bu[tk]—( > AlBKsmtk_d[tk]) :
i=0 i=N—T;s[tk]
(5.50)
Combining (5.49) and (5.50) one obtains:
N-1
Bter] = > A'LCE[ty + (N — 1 —i)T] = Fi[ty] + Gu|ty]. (5.51)
=0

A

Therefore, 2[tp41] € Z, VE[ty] € X and Yw[ty] € W.

5.4.3 Stability analysis

It is clear that, in the general case, solutions of the linear equations (5.47) and (5.50) may
not be feasible. Therefore, we provide the following sufficient condition that guarantees
the existence of a compensation vector. This result holds for both closed-loop system
configurations, i.e., for state and estimated state feedback.

Let us introduce the following definition (see Datta [2004]).

Definition 5.1. Let A € R™™" and B € R™™ form a controllable pair (A, B). The
controllability index p is defined as the least integer such that

rank(C) = rank ({B AB ... A“*IBD =n

Theorem 5.1. Let p € Zt denote the controllability index of the pair (A, B). Then, the
linear equations (5.47) and (5.50) are consistent, i.e., they admit at least one solution
for any vector on the right-hand side, if T;s[tx] < N — p.



Sensor-to-controller delays in NCS. Detection and control design 98

— Xpominal
— X, p ] =2T+3T
X, p [t =2T¢+7T

— X, p [tke1]1 = 3T

— ult]

u — O, 3[4 ]=4T)
Gy, [t ]=7T)
u tent
 Hiltk3
I—| —1
L

F1GURE 5.11: Compensation of the error caused by time-delay

Proof. Let Hypothesis 5.3 hold. Then, rank(W) = n, where W is the following control-
lability matrix
w=[B AB ... A,

According to controllability index definition (see Appendix), p is the least integer such
that o ) .
rank(W) = rank([B AB ... A“_IB}) =n.
From (5.47) and (5.50) we have that
rank ([/IN_FZ'S[“@]_IB AN-Tislel=2p B]) =n,

i.e., (5.47) and (5.50) are consistent (see Meyer [2000]), if Tjs[tx] < N — p. O

The result which is outlined in the previous theorem is schematically presented on
Fig. 5.11 (notice the curve in light blue for 7;5[tx] < N — p and in orange for 7;s[tx] >
N —p).

Proposition 5.3. Let i denote the controllability index of the pair (A,B) and let

B = {7’ | T E R[O7Tmaz]7 T = (d — 1)Ts + 7_—iSTa Tis € Z[O,Nﬁu]} . (5.52)
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If 2[tg_ay)] € 2 (Eltg—apl € Z) and 7ty] € B, Vk € Z, then

Jop € RNTuslt™ syuch that 2[tj1] € Z (Eltps1] € £), respectively.

Proof. Let 7[ty] € B and z[ty_q,)] € Z (Zltg—ap,)] € Z). Then [tji1] (2[tp+1]) can
be written as in (5.45) ((5.49)), respectively. According to Theorem 5.1, there exists
o € RWV=Tisltelm - obtained from (5.47) ((5.50)), such that (5.48) ((5.51)) holds. O

Remark 5.3. For a chosen N, the Proposition 5.3 determines the set of all delays such
that there exists an appropriate compensation vector which governs the tracking error
(estimation tracking error) toward a pre-defined bounded region. Such a compensation
vector however, does not exist for all delays from the interval R Delays that are
not included are determined by 7;s > N — p.

Remark 5.4. If f[tk] = (d[tk] — 1)TS + fis[tk]T, %is[tk] > N — u, then Z[thrl] (ﬁ[tk+1])
may not be anymore inside Z (Z), respectively. But, if F[tps1] = Tis[trrr|T, Tisltos1] <
N —p, then the corresponding compensation oy will also take into account the previous
tracking (estimation tracking) error that could not be compensated with o;. As a
consequence, we will have z[ty o] € Z (Z[tp4o] € Z), respectively, for the price of a more
“aggressive” control action.

OaTmaac] ‘

Remark 5.5. Computation of the compensation vector o is carried out on-line, i.e., linear
equations (5.47) and (5.50) need to be solved each time when new measurements are
detected by the controller. Nevertheless, computational complexity of such a problem is
low since it requires solving a system of linear equations. On the other side, if additional
constraints are imposed on the control input (lower and upper bounds for instance),
equations (5.47) and (5.50) can be also solved by as a linear programming problem.

Remark 5.6. Since N is a design parameter, it is important to choose an appropriate
value for it in order to be able to detect greater range of delays. Theoretically, we can use
an arbitrarily high number of inter-sampling periods, but in that case the compensation
term for an inter-sampling delay which is arbitrarily close to Ts can have an arbitrarily
high magnitude as well. In practical control design however, it is important to find a
good compromise between maximal available magnitude of the control action and the
corresponding range of inter-sampling delays.

Ezample 5.3. In order to show how this algorithm performs in a simulation, we consider
the same mechanical system of a rolling ball and a beam. For all parameters, we utilize
the same values as in Table 5.1 and the same delay variation as shown on Fig. 5.5.
Let’s keep in mind that the such closed-loop dynamics is unstable for the model-based
controller outlined in Section 5.3 (see Fig.5.9).

For the same configuration and applied model-based controller with active delay com-
pensation, the response of the closed-loop system is presented on Fig. 5.12.

Let us consider the same control strategy with delay compensation but without the
model-based predictor, i.e., let us consider the same control strategy, computed for
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FI1GURE 5.12: Closed-loop response for prediction-based controller with compensation
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FI1GURE 5.13: Closed-loop response for nominal controller with compensation

measurements provided with delay of 7 = 1 s. The response is shown on Fig. 5.13.
Notice that in the second case the control action has much higher magnitude. Such a
result can be explained by the fact that in the first case, controller has to compensate
only the tracking error caused by the lack of information on additive disturbance which
is not taken into account by the predictor. In the second case, the tracking error is
larger, since the plant is regulated, based on outdated measurements.

5.5 Set-based delay detection and identification

It is common in networked control systems that data packets are time stamped. If in-
ternal clocks in sender and receiver are synchronized, receiver can estimate delay by
comparing time stamp with its internal time. Extra network load which is introduced in
this way is negligible in comparison to the load caused by transmitting plant’s measure-
ments (see Nilsson [1998]). Time stamping also has its negative side: it requires clocks
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F1GURE 5.14: Model-based controller with delay detection and compensation

synchronization, which is not always easy to achieve. Since clock synchronization repre-
sents a wide research area by itself, it will not be considered in this work. Therefore, we
assume that all clocks are synchronized (see Hypothesis 2.1).

As it was already stated in the previous section, the model-based controller with state
compensation requires information on delay (more precisely, on the time interval be-
tween two consecutive inter-samplings determined by 7;5) in order to generate proper
estimation and compensation. This information can be extracted when data packets
are time stamped. Such a delay detection strategy is also used in this study when the
networked control system is affected by delays such that 7 > Ty — pT. On the other
side, for 7 € Ryg 1,77, Wwe propose a novel method for delay detection which is based on
set-membership testing of the corresponding residual signals. The idea for such a delay
detection strategy comes from the fault tolerant control approach that was proposed by
Stoican et al. [2012] (see Fig. 5.14).

Let us consider a general NCS architecture with a controller that is collocated with the
actuator. Due to the fact that the receiving buffer may or may not store the current
information (from time t;), we can define the following residual signals:

Healthy residual: when information which is stored in the buffer is up-to-date;

Delayed residual: when information which is stored in the buffer is outdated.

Let 7 € Ryg 1,—,7) and denote by § a value of the buffer. Residual signal is defined as
rity +iT| = Bty +iT) — Trefltr] = 0 — Trefts], (5.53)
and it is examined whenever the buffer is read.

With regard to information which is stored in the buffer at a given moment, we may
have either healthy residual signal

T‘H[tk + iT] = ,B[tk + iT] — Tref [tk] = G[tk] — Tref [tk], (554)
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or delayed residual signal

rPlte +iT] = Blty +iT) — resltr] = O[te—1] — Tref[tr]. (5.55)

In order to have unique detection, healthy and delayed residual signals need to be “dif-
ferent enough” one from another. One can easily notice that such a requirement is not
necessarily true, for instance when 0[t;_1] = 6[ty]. Therefore, we design a reference
governor that will forge a closed-loop response in a way that any two consecutive state
vectors are different enough in order to provide delay detection. In the same time, such
a modified closed-loop response has to be as close as possible to the initial one.

5.5.1 State feedback residual signals

Let 0 =z and B[ty +iT] = z[ty], i € Zjp,n)- By using (5.54), the healthy residual signal
is determined as:
T‘H[tk + iT] = .’L‘[tk] — Tref [tk] = Z[tk] (5.56)

On the other side, if B[ty + 1T = x[ty 1], i € Z n_,), then the corresponding delayed
residual signal is given as:

TH[tk +iT] = z[tk—1] + xref[tkfl] — l'ref[tk]- (5.57)

Let 7[tx] € Ry 7,7 and assume that z[tx] € Z. Then, according to Proposition 5.3,
3o, € R =Tislte)™ guch that z[ty, 1] € Z. In other words, when z[ty] € Z, then, by using
model-based controller with state compensation, healthy residual signal will always stay
within Z for any delay value from the interval Ry 7, _,7). Therefore, using (5.56), we
can define the following healthy residual set:

RE =z (5.58)

In the similar way, the delayed residual set is determined from (5.57) as:

RD(xref) = {xref[tk,l] — :z:ref[tk]} D Z. (559)

By checking if r[ty + T, i € Zjp N, resides in one of these sets, we can affirm that the
residual signal is healthy or delayed at ¢ = ¢t 4+ ¢7". This provides an unequivocal delay
detection and isolation as long as the corresponding residual sets are disjoint:

R NRP (2,e5) = 0. (5.60)
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FIGURE 5.15: Reference admissible set

Taking into consideration (5.60), we can define the set of admissible reference states that
guarantee the separation between the healthy and delayed residual sets.

Dwref = {xTef[tkfl]a xref[tk] : xref[tkfl] - xref[tk] €EZ® {—Z}} . (561)

Since Z is a C-set, then D, _, is a non-convex region (see Fig. 5.15).

Tref

5.5.2 Estimated state feedback residual signals

Similarly, we define the healthy residual signal with respect to the estimation feedback,

P by, +iT) = 2[ty). (5.62)

On the other side, if B[ty + iT| = 2[tx—1], i € Zjg,n_y), then the corresponding delayed
residual signal is given as:

TH[tk + iT] = f[tkfl] + :L’Tef[tkfl] — a:ref[tk]. (563)

Let 7[tr] € Ry 7,7 and assume that 2[t;] € Z. Then, according to Proposition 5.3,
Jop € RNl such that 2[tgy ] € Z, ie., if 2[tx] € Z, then, by using model-based
controller with compensation, healthy residual signal will always stay within Z for any
delay value from the interval Ry, _,7). Therefore, using (5.62), we can define the

following healthy residual set: R
R = 2Z. (5.64)
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In the similar way, the delayed residual set is determined from (5.57) as:

RD(xref) = {xref[tk—l] — Tpef [tk]} @D 2 (565)

By checking if r[ty + 4T, i € Zy n], resides in one of these sets, we can affirm that
the residual signal is healthy or delayed at ¢t = ¢ + ¢1". This provides an unequivocal
delay detection and isolation as long as the corresponding residual sets are disjoint (see
(5.60)). Taking into consideration the separation condition, one can define the following
set of admissible reference states:

Dy,p = {@resltnrl Breglte] @ Trepltn 1] — wreslts] € 2@ {~2}}. (5.66)

5.5.3 Delay identification and reference governor design

If healthy and delayed residual sets are disjoint, by set membership testing, the con-
troller is able to differ up-to-date measurements from the outdated ones. However, this
treatment does not provide directly value of 7;5. In order to extract this information,
we assume that delay detection mechanism is equipped with a counter denoted by c.
Since all delays are assumed to be smaller than the sampling period, the counter is set
to 0 each t = tx, k € Z4. Functioning of the counter is described by the following
Algorithm 5.1.

Reference governor is designed by using model-based receding horizon optimization
framework. The objective of the optimization problem is to design a reference control
input u,.y which provides a minimal tracking mismatch between an ideal state refer-
ence trajectory to be followed, say x,, and the real reference state (5.4), under certain
constraints. The implementation of the reference governor is carried out through as an
optimization problem over a finite horizon as follows:

S s—1
w* = argmin(3" | @rltkrdl = Zresltnsa) I3 + 3 I (urltira] = tresltera)IB)  (5.67)
Uref g=1 q=0
subject to:
Treflthr1] = Aref[ts] + Burer[ty] (5.68)
-Tref[tk:] S Dﬂﬁref’ Vk € Z+, ’
where
xr[tk_H] = Amr[tk] + Bu, [tk], (5.69)

represents the ideal reference dynamics to be followed. In (5.67) s € Z* is a prediction
horizon while Q > 0 and P > 0 are weighting matrices. The reference control action is
then set to u,.f = uE‘O] which is the first component in the optimal sequence (5.67).
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Algorithm 5.1: Single sensor delay identification

Data: RY, RP

Input: r

Output: 7

Set ¢(0) = 0;

fori=0to N —1do

if 7[ty +iT] € R then

| e(i+1) =c(i) + L;

else if 7ty +iT] € R then
%is[tk] = C(i);
break;

end

end

| . I , , , ; ; s | . ; \ , , I \
%0 5 10 15 20 25 30 3 40 45 50 ) 5 10 15 20 25 30 3 40 45 50
tfs] tls]

(A) Closed-loop response (B) Control signal

FIGURE 5.16: Closed-loop response with reference governor engaged

Remark 5.7. Optimization problem (5.67) is defined over a non convex set of constraints
(5.68) which implies that one has to use mixed-integer techniques in order to solve it.
Such an optimization method could be numerically complex and inappropriate for an on-
line implementation. Luckily enough, if an initial reference input is known in advance
(leaving thus enough time for the optimization), this signal can be computed off-line
according to (5.67) subject to (5.68).

We end this section by implementing the reference governor in the mechanical system
of a rolling ball and a beam that was outlined in the previous examples.

Ezample 5.4. Consider the system outlined in Example 5.3, where we considered response
from initial condition, i.e., for u,.y = 0. Introducing the reference governor in the loop,
the closed-loop response is depicted on Fig. 5.16. One can notice that the input signal
provided by the reference governor causes a bigger tracking error with respect to the
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initial reference input. On the other side, such a tracking error provides the separation
between healthy and delayed residual sets, thus unequivocal delay detection.

Remark 5.8. Regarding the closed-loop system response provided in the previous ex-
ample, we can notice that network induced delays have the biggest impact on stability
during the transient response. At the same time, the impact on the tracking error pro-
duced by the reference governor is the least. One can use this property to ameliorate
the overall tracking performance of the system by temporarily switching off the refer-
ence governor while the system is in the steady state and tracking error is confined in a
certain region.

5.6 Concluding remarks

It was shown in this chapter that the network induced time-delays in sensor-to-controller
communication channel can drastically compromise performance of the closed-loop sys-
tem. Model-based controller can only partially handle this problem, i.e., only when plant
is deterministic i.e. without disturbance. If this is not the case, and the system is not
robust with respect to disturbances, then the model-based controller may not succeed
in plant stabilization.

To the best of the author’s knowledge, there are no proposed results in literature that
deal with the problem of communication delays while the process is affected by additive
disturbances. That makes the strategy proposed here a first result in this direction.
The idea behind this concept is rather simple and natural. First, while the most recent
measurements are unavailable, plant is controlled using prediction. At the moment, this
is the most relevant available information for generating control action. Then, when
appropriate measurements are delivered, controller updates the control input and, in
parallel, computes a compensation signal in order to compensate a deviation in state
vector caused by using inaccurate feedback information. Estimation obtained from the
model-based controller is usually ‘more accurate’ then delayed measurements. Therefore
the error that needs to be compensated is smaller, as consequently the magnitude of the
control action.

Another novelty that was brought in by this chapter is detection of “smaller” delays.
Namely, by introducing a certain perturbation in the dynamics, we provoke enough
difference between healthy and delayed residual signals. This difference, along with the
inter-sampling strategy, can indirectly provide information on delay value.

Needless to say that the control and the delay detection strategy are independent one
from another. What do they have in common is numerically low cost implementation.
Both ideas are also general and can be applied for different problem formulations, for
instance in constrained control design or in multi-sensor fault tolerant control design with
abrupt faults in sensor-to-controller communication. The second problem is actually
what we will consider in the following chapter.



Chapter 6

Multi-sensor NCS with tolerance
to abrupt sensor faults

Using redundant sensors in control is inevitable in safety-critical applications. For
instance, planes are equipped with several pitot-static systems for measuring air-
speed, Mach number and altitude (see, e.g., Eterno et al. [1985]). Nowadays, however,
systems with redundant sensors have become a mainstay in many engineering areas due
to lower production and operation costs. As examples we can mention cruise control in
cars (see Martinez et al. [2006]) or steering and maneuvering control in marine naviga-
tion (see Blanke [2006]). The main objective of sensor redundancy in these applications
is to provide resilience of the controlled system with respect to an eventual sensor mal-
function. Unfortunately, several tragic events (mainly in aeronautics) were initiated by
an improper dealing with conflicting measurements (see Flight safety fondation [1999],
BEA [2012]). Therefore it is of great importance to design a strategy with fault detec-
tion and isolation capabilities which, for instance, could serve as an advisory system (as
pointed out in Maciejowski and Jones [2003]).

A shared communication network in a system with redundant sensors can make FTC
control more complicated due to network-induced effects such as time-delays and packet
dropouts. It is stated in Chapter 2 that network-induced delay is often time-varying. One
of the reasons for the delay variability could be the network congestion (see Hespanha
et al. [2007]). Taking into account the redundant sensor architecture, one observes that
time-delay could be even larger due to an increased use of the network (see Nilsson [1998]
for experimental results).

In this study we consider an active multi-sensor NCS which guarantees fault tolerance
with respect to abrupt sensor faults. Fault and delay detection and isolation (FDDI) is
implemented through set membership testings of appropriate residual signals. Namely,
realization of the FDDI is achieved through the separation of residual sets which bound
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residual signals that correspond to healthy, delayed and faulty information. The sepa-
ration is enforced by a reference governor, which is designed using the receding horizon
optimization framework. The initial idea for this fault tolerant control approach can
be found in Seron et al. [2008]. In this chapter, however, we also take into account
effects induced by the shared communication network between the sensors and the con-
troller. Even though control realization based on a shared network reduces system
wiring, provides more flexibility and lower maintenance cost, network-induced delay can
significantly affect the functioning of the fault detection and isolation mechanism. Fur-
thermore, beside the abrupt faults, performance of the closed-loop dynamics can be
degraded by delayed data transmission (for more details see Chapter 5). Therefore, we
combine the model-based controller with active delay compensation (see Chapter 5) and
the fault detection and isolation mechanism that is provided in Stoican et al. [2012]. The
obtained results show that this approach can indeed provide tolerance for sensor abrupt
faults in the presence of network-induced effects.

6.1 Nominal multi-sensor NCS description

Consider the control system depicted in Fig. 6.1 where the plant is monitored by M
redundant sensors. Communication between the sensors and the controller is carried
out by a shared network while the controller is collocated with the actuator. Sensors
could have different data transmission rate due to network-induced delays. Moreover, it
is assumed that sensors are also subject to occasional or permanent abrupt faults.

The plant is assumed to be in the continuous-time domain, modeled by a LTI differential
equation of the following form:

#(t) = Aea(t) + Beu;(t) + Eow(t), (6.1)

where x € R" is the state vector, u; € R™ is the control signal based on information
provided by the j* sensor and w € RP is the additive disturbance. The disturbance
is bounded by a C-set W C RP, ie.,, w € W. Matrices A, € R™", B, € R™"™ and
E,. € R"*P are constant.

Due to simpler notations, we examine the case where all sensors are capable of measuring
complete state vector. Such an assumption, however, can be relaxed so one can consider
the estimated state feedback (for more details see Chapter 5).

State vector of the plant is measured periodically each Ty € R*, where Ty = tj1 — tg.
All sensors are assumed to be static (or with very fast dynamics relative to the plant
dynamics) and to satisfy, under nominal functioning, the following observation equation:

yilte] = o[te] +milte]. 7€ Zpan- (6.2)

Measurement noise 7; € R", is bounded by a C-set N}, i.e., n; € Nj, Vj € Z1,m)-
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FIGURE 6.1: Multi-sensor control scheme (state feedback architecture)

Measurements acquired by the sensors are transmitted to the controller where they
are stored in the receiving buffers. Each feedback channel is followed by a receiving
buffer which is assumed to be large enough to store information that corresponds to
one sampling period, i.e., data rejection due to buffer overflow is not treated here. All
buffers are sampled periodically with the period T' = %, where N € ZT is a sufficiently
large design parameter. Controller is equipped by a switching mechanism that selects
one buffer for computing the control signal each inter-sampling instant. According to
available information, the decision which buffer will be employed is made by the FDDI
mechanism which discards information coming from the faulty sensors. Moreover, the
FDDI mechanism also signalizes when available measurements are outdated so that the
controller can properly adapt the control action.

Let B[ty + T, j € Zj v, denote a value of the gt buffer at t = t, + iT, where
i € Zjp,n—1)- Regarding stored information at each inter-sampling instant, the buffers
can be classified into one of the following groups:

TPl +iT) = {5 € Zuan + Bilte +iT] = yslte]};

[ ]
—_— ——

TPty +iT) = {5 € Zpay + Biltw +T) =¥, nfef\/f};

IH[tk —|—iT] = {] S Z[l,M] : ,Bj[tk —l—iT] = yj[tk] A g QéIF[tk —I—ST], Vs € Z[O,i)}§

[ ]
—

Ity +iT) = {5 € Zpan = Biltr +iT) = yilta] A j € TF[ty + sT1, sezw)},
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where j\/jF C R" is a C-set. Sets of indices Z”, ZF and Z" correspond to buffers with
outdated, faulty and healthy measurements. On the other side, set Z corresponds to
sensors which are under recovery. Notice that if j € T [t +iT] and j € ZR[t), + iT),
then j € ZH [ty 4 sT] and j € ZR[t), + sT|, Vs € Zy;, N—1), Tespectively.

Hypothesis 6.1. Let j € TH[t; + sT], s € Zjg,n—1)- If the switching mechanism select f3;
at t =ty + sT', then the same buffer is also used at ¢t =t} + 1" Vi € Zjg ny_q).

Regarding Hypothesis 6.1 we say that the closed-loop dynamics is nominal if and only if
TH[ty] # 0. Using zero-order hold sampling with the period T the nominal discrete-time
representation of (6.1) is written as:

altp+1] = Azlty] + Bu[te] + Ewlt], (6.3)

In order to select one buffer among several buffers with healthy measurements, one can
use additional criterion such as:

f; = argmin (J(ﬁs) D s € IH> , (6.4)
S
where J is a cost function. The same criterion can be used when Z = ) and the FDDI
mechanism has to select one buffer (among several) with outdated measurements.

The control objective is, for the state of the plant (6.1), to track a reference signal @,y
that satisfies the reference dynamics

Treflthr1] = ATref[te] + Bures[tr], (6.5)
where u,.s is the reference control signal.
Let j € Z"[t;]. The nominal control law is represented by the following equation:
wjltr] = ureslte] — K (y5lte] — zreg(te]) - (6.6)

The reference control signal can represent a nominal stabilizing control input when the
reference dynamics (6.5) is not stable. In (6.6) we utilized the LQR with the gain K
(see Section 5.2.1) although in general one can use any other stabilizing controller.

In order to evaluate the control performance, the tracking error z = x — ..y is de-
fined. Taking into consideration (6.6), (6.5) and (6.3), the nominal dynamics admits the
following tracking error system:

Z[tk+1] = (A — BK)Z[tk] — BK?U [tk] + Ew[tk]. (67)

For a Schur matrix A — BK and bounded process disturbance and measurement noise
w € W and n; € Nj, respectively, the tracking error dynamics (6.7) admits a RPI set Z
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such that:
Z[thrl] € Z, Vz[tk] € Z, V77j € ./\/-j, Vw[tk] eWwW. (6.8)

Notice that if W and N are C-sets, then Z is a C-set as well. Construction of RPT sets
for linear discrete-time systems with additive disturbance is detailed in Chapter 3.

6.1.1 Fault scenario

Any sensor is prone to fault which can be either temporary (e.g. change in operating
conditions) or permanent (e.g. physical damage of the component). A fault can be
defined formally as an instantaneous transition between the healthy mode of functioning
(as given in (6.2)) and a faulty mode of functioning?:

FAULT r
yilte] = xlte] +nilte] ooy amy Yiltel = Wyz(te] + 0y [te]. (6.9)

The signature matrix II; € R™*" represents the loss of effectiveness in the output signal
for a given sensor. Moreover, the faulty noise njF [tk] € /\/jF C R™ can be used to model
nonlinear aberrations, stochastic parameter variations or biases. Arguably, everything
that may affect the sensor can be put “under the rug” by using the bounded noise n]F
(of course, as long as the fault induced phenomena are bounded). While having only
partial output failure through a given fault signature matrix covers many cases, for
the simplicity of the presentation we consider hereafter only total output outages (i.e.,
II; = 0):
FAULT
yilte] = 2t + 1) o poor pry Yilte] = 0 wlte] + 07 [te]. (6.10)

The fault scenario considered in this thesis is briefly outlined as follows:

e Sensors are prone to abrupt faults as defined as in (6.10).

e Data transmission from sensors to the controller is subject to random and time-
varying delay which is less than the sampling period.

o Sets ZP[t), +iT] # 0 Vi€ Zypyn_,y and TH[ty + (N — p)T] # 0, where p € ZT is
the controllability index of the pair (A, B).

Remark 6.1. The abruptness hypothesis can be discarded in favor of faults which describe
a gradual output decay. However, none of these elements are conceptually different from
the scenario described in (6.10) in the sense that, no new insight in the treatment of
the FTC mechanisms can be gained by using the more complex cases. As such, for the
brevity of the presentation, we keep with the basic case described by the scenario (6.10).

!Depending on the sense of the switch we have a failure or a recovery event.
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Remark 6.2. In Seron et al. [2008], Olaru et al. [2010], Stoican et al. [2012], the authors
imposed the assumption that there is always available at least one functional sensor.
Since an active fault tolerant control strategy is considered (not robust control design
with respect to faults occurrence), such an assumption is legitimate. However, in the
presence of delay, this assumption is not enough to guarantee that the controller will
always be supplied by an appropriate information. The term “appropriate”, can be
understood in the context of a feedback information that can be used safely (healthy
mode) or at least it can be corrected by means of the control input (see Chapter 5 and
model-based controller with delay compensation). Therefore, the proposed fault scenario
guarantees that the controller is always provided by an “appropriate” input.

The outlined fault scenario can be relaxed with respect to allowable delay range. Namely,
it is also possible to consider delays that are larger than the sampling period. The only
requirement is that those delays would have to be bounded. Since we already considered
the general case in Chapter 5, such an extension is not provided here and it can be
obtained by following the results outlined in that chapter.

6.2 Control design for a multi-sensor NCS

The main objective in this section is to design a control strategy that provides resilience of
the closed-loop system with respect to abrupt sensor faults and /or network-induced delay
in the sensor-to-controller loop. The main difference of the multi-sensor architecture
when compared with the single-sensor scheme from the previous chapter arises due to
the switching between feedback channels with different measurement noises. In other
words, the switching may introduce a tracking error which needs to be taken into account
when compensation vector is calculated.

As denoted before, let A € R™™ and E € R"P are state and input matrices with
respect to the inter-sampling period 1. The following assumption will hold throughout
this chapter:

Hypothesis 6.2. The pair (A, B) is controllable.

In the following lines we consider the case when all sensor-to-controller communication
channels are affected by (different) delays, i.e., Z[ty] = @ (for the nominal case see
Section 6.1). Assume that

7,[ts] = min {ﬂ'is tx] = i€ Z[l,M]}' (6.11)

Without having the up-to-date measurements available, the switching mechanism selects
one of the buffers with outdated information. Let i1 € Zj y_1j such that i; < 7 [tk]-
Assume that S, [ty + iT], where s; € ZP, is selected during the inter-sampling interval
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determined by i € Zg;,). Since SBs, [ty + T = ys, [tk—1] Vi € Zjg;,), the following state
prediction can be computed by using the available mathematical model of the plant:

9(51) = Ay51 [tkfl] + B(Uref [tkfl] - K (ys1 [tkfl] — Tref [tkfl]) ) . (6‘12)

thltk—1
By using (6.12) in control (6.6) one obtains:

i1 11
x[tk+(il+1)T] = Az1+1x[tk]+z AZB(%«@f[tk] - K (et(:llt)kfl — x,,ef[tk]) )+Z Ale[tk].
i=0 i=0
(6.13)
Notice that we assumed that w is constant between two consecutive samplings. This
assumption can be relaxed by considering the additive disturbance which is constant

within the inter-sampling period (see Section 3.2).

Next, assume the s{* buffer is updated at t = t, + (iy + 1)T, but the transmitted
measurements are provided by the faulty sensor, i.e., Sy [ty + (i1 + 1)T] = nf [t;].
Consequently, the switching mechanism selects another buffer, say (s,, where sy €
TPty +iT), Vi € Zy,, and iy < Ti[tg]. The corresponding discrete-time represen-
tation at t =t + (ip + 1)7T is:

elte + (ia + 1)T] = A= aty] + Z B (wrest] = K (001 = wresltal))

L telth—1
1=12—11
io—i1—1 o 12 o
+ Y AB(upeslte] = K (65— wresltal) ) + Y0 A Bwlty],
=0 =0

(6.14)

where 6(2) is computed in the similar way as (6.12).

Due to different measurement noises, switching among buffers with outdated data intro-
duces a switching error which we denote by ~:

Hores] = g2 gy (6.15)

thltk—1 telth—1
By using (6.15) in (6.14), one obtains:

12
olt + (o + V)T = A>T alty] + > A B (upesltn] = K (0172 = 2res[ta]) )
. = (6.16)
+3Y ABwlt] + Y ABEA2T)[g).

=0 1=12—11

In the similar way, the switching mechanism selects another buffer with the outdated
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measurements when the previously used buffer is updated by a faulty information. As-

sume that the st buffer is selected at ¢t = t3, + iT, Vi € Z . Therefore, one can

[ir—1+1,77,
get:
_ 7 [ty -1
_j T At D Sr
x[tk + Ti]s [tk]T] =A w[tk]x[tk] + Z A B(uref [tk] - K (0§k|t)k_1 — Tref [tk}) )
i=0
7 [ty -1 o 7 [te] -1 o
+ Y ABuwl]+ Y. ABEAYTTT IR+ (617
=0 =7 [ty]—1—ir_1
7 [t] -1
+ > ABEAE)[gy],
i=7) [tr]—1—i1
where A(sresr—1) A (sr—1¢sr—2) 4 (52¢51) are the switching errors computed according
to (6.15).

Since j € TH [tk+?i]:9T], the switching mechanism selects j3;[ty, —i—?{sT ] = y;[tx]. According
to Hypothesis 6.1, once the buffer with the healthy information is selected, it is employed
until the end of the sampling period. The corresponding state vector is given as:

N-1
Tltp] = Axte] + > A’B(uref [t] — K (Ht(:‘rt)k_l — Tpef [tk]) ) + Ewlty]
i=N—77 [tg]
N-1 N-1
+ Z AzBK,y(sﬁ—sr_ﬂ [tk] 4.+ Z AzBK,Y(sw—m) [tk]
i=N—1—i,_1 i=N—1—i
N—iijig [tk]—l
+ A B (upesltn] = K (yilte] = wres[ta]) + olti + (N = 1= 0)T]),
i=0

(6.18)

where o is the compensation term which is introduced with control signal computed for
the healthy information.

Let €; € R"™ denote the prediction error with respect to the 4t buffer which is defined
by the following difference: A
_ 9(])

trlte—1"

ejlte] = yjlte] (6.19)

This information becomes available immediately when the up-to-date information is
provided by one of the sensors. By using (6.19) and

Q(ST) _ g(j) _ ,y(jesr)[tk]

teltk—1 — “trltg—1
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in (6.18), one obtains:

N-1 N-1
2ltes1] = Azlty] + Bujlty] + Ewlty) + Y. A'BKej[ty]+ Y. ABEAUTT[
Nominal dynamics Z‘:N_i'js [tr] i:N—?fs [tx]
N—1 o N-1
+ > ABEATr Il 4+ > ABEART[g]
i=N—1—i,_1 i=N—1—i
N—7 [ty]-1
+ > A'B(ofty + (N — 1 —4)T]),
i=0
(6.20)
where :
; =J
ox = |ofte + TLITIT ... ofte + (N = DTIT| e RO=TlDm - (6.01)
is the compensation vector.
Regarding the discrete-time system(6.20), one can notice that yU<r)[t,], ... y52<50[t,]

and €[t;] become known parameters when up-to-date information is provided to the
controller. In order to be able to compute the compensation vector (6.21), it is crucial
to know value of ﬂjs This value can be assessed by the controller either by using time-
stamps (see e.g. Nilsson [1998]) or by the FDDI mechanism which is described in the
subsequent section.

In order to com