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Détection de Vulrérabilit és Web par Frelatage Evolutionniste et
Inférence de Moctle

Résune: Le test est une approche ef cace po@tecter des bogues d'ingghen-
tation ayant un impact sur l&surig, c.a-d. des vulérabilitts. Lorsque le code
source n'est pas disponible, il estgessaire d'utiliser des techniques de test en
bote noire. Nous nous iBtessons au prafiine de étection automatique d'une
classe de vulerabilits (Cross Site Scripting alias XSS) dans les applications
web dans un contexte de test eritbaoire. Nous proposons une approche pour
inféerer des moeles de telles applications et frelatons déguences d'enges
géréréesa partir de ces magles et d'une grammaire d'attaque. Nouséirns
des automates de codke et de teinte, dont nous extrayons des sousetesd

a n de réduire l'espace de recherche detéipe de frelatage. Nous utilisons des
algorithmes @nrétiques pour guider la production d'edés malicieuses envegs

a l'application. Nous produisons un verdict de testaga une double iréfrence de
teinte sur l'arbre d'analyse grammaticale d'un navigateua Btilisation de mo-

tifs de vulrérabilits comportant des annotations de teinte. Nosémphtations
LigRE et KameleonFuzz obtiennent de meilleuésultats que les scanneurs
bote noire open-source. Nous avonscduvert des XSS “0O-day” (@-d. des
vulnérabilitts jusque lors inconnues publiquement) dans des applications web
utilisées par des millions d'utilisateurs.

Keywords: Séecurig, Frelatage, XSS, Algorithme Evolutionniste,édrénce,
Intelligence Arti cielle, Applications Web




Detection of Web Vulnerabilities via Model Inference assisted
Evolutionary Fuzzing

Abstract: Testing is a viable approach for detecting implementation bugs
which have a security impact, a.k.a. vulnerabilities. When the source code is
not available, it is necessary to use black-box testing techniques. We address
the problem of automatically detecting a certain class of vulnerabilities (Cross
Site Scripting a.k.a. XSS) in web applications in a black-box test context. We
propose an approach for inferring models of web applications and fuzzing from
such models and an attack grammar. We infer control plus taint ow automata,
from which we produce slices, which narrow the fuzzing search space. Genetic
algorithms are then used to schedule the malicious inputs which are sent to the
application. We incorporate a test verdict by performing a double taint inference
on the browser parse tree and combining this with taint aware vulnerability
patterns. Our implementations LIgRE and KameleonFuzz outperform current
open-source black-box scanners. We discovered 0-day XSS (i.e., previously
unknown vulnerabilities) in web applications used by millions of users.

Keywords: Security, Fuzzing, XSS, Evolutionary Algorithm, Inference,
Arti cial Intelligence, Web Applications
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CHAPTER1

Introduction

Why did | rob banks? Because | enjoyed it. | loved it.
Go where the money is...and go there often.

[Sutton & Linn 2004]

The world is a dangerous place to live ; not because of those who do evil, but because
of those of the people who don't do anything about it.

[Einstein 1955]

Computer security is the cancer of the software industry. There is no money to
prevent it. Only sick persons care about it, but it is generally already too late.
However, everybody will have to face it someday.

[Ruff 2013b]

Do not underestimate the importance of cyber-attack capabilities.
| do not know how to defend a system if you are unaware of how to attack it.

[Filiol 2013b]

1.1 Context

Actors and Threats The Internet is a connected network of billions of devices.
For the simplicity of administrating them, we plugged into this network of net-
works devices having an impact on the physical world: traf ¢ control, power plants,
gas stations, etc. Corporations and governments have data-stores connected to the
Internet [Duwell 2013]. Banks and trading systems offer an interface with the In-
ternet. If not secured, those systems make the Internet a playground for hack-
ers with varying motivations (e.g., enemy governments, army, individuals paid by
Ma a, etc.).

As security researchers, it is our duty to develop new techniques to protect bet-
ter national assets such as: energy, money, communication and information. More

11



1.1. CONTEXT CHAPTER 1. INTRODUCTION

speci cally, in this cyber war, we want to protect computer assets from attacks
exploiting vulnerabilities( aws in the system). A way to achieve such goal is to
detect vulnerabilities, and more precisely to detect them as soon as possible. If they
are present in our systems, we need to patch them to prevent exploitation (defen-
sive security). If they are present in enemy systems, attackers may want to exploit
them to gain additional privileges (offensive security). The source code of appli-
cations may not be available (e.g., when testing integrated or remote components).
In such cases, we need to rely on black-box testing techniques. This thesis focuses
on detecting certain classes of vulnerabilities in a black-box test context.

Security and Vulnerabilities Figure 1.1 shows a dependability tree according to
the [Avizieniset al. 2004] taxonomy. We mark ibold our focus for this thesis.
We detect errors and failures that affagtilability (readiness for correct service),

Availability
Con dentiality
Integrity
Attributes
Maintainability
Reliability
Safety

Faults
Dependability & Securit
Threats Errors
Failures
Prevention
Tolerance
Means
Removal
Forecasting

Figure 1.1: Dependability & Security Tree [Triveeli al. 2009] and ouFocus

integrity (absence of improper system alteratiagn dentiality (absence of unau-
thorized disclosure of information). More speci cally, we search for vulnerabilities

in black-box test context. We address the automatic detection of Cross-Site Script-
ing (XSS).

12



CHAPTER 1. INTRODUCTION 1.2. VULNERABILITIES

1.2 \ulnerabilities

1.2.1 Panorama

A vulnerability is an application fault which ultimately will lead to a failure violat-
ing a security property that was supposed to always hold.
Afterwards we list a non-exhaustive panorama of vulnerabilities:

» Code execution permit an attacker to force an application to execute code
he created, because of a confusion between code and data. In such cases,
the integrity of the executed code is violated. It generally means that the
con dentiality and the integrity of the data processed by the application is
also violated. It may also mean a violation of the availability property for
the application. Code injection vulnerabilities include:

— memory corruption (e.g., Buffer Over ow),
— web command injection (e.g., Cross Site Scripting),
— cross-format interpretation (e.g., GIFAR [Magazinaisl. 2013]).

 Logical: for example, in an authentication protocol, a parameter is lacking
a security property (e.g., encryption, freshness, etc.), this makes the whole
scheme vulnerable to a particular kind of attacks:

— con dentiality: a credential is transmitted over an unencrypted chan-
nel, e.g., not over an SSL encrypted connection;

— integrity: an unsigned authentication token permits a user to imperson-
ate another one, e.gession _id ;

— freshness: an action vulnerable to replay attack e.g., Cross-Site Request
Forgery (CSRF)[Liret al. 2009], [Armandcet al. 2008].

» User interface: techniques trick the user to perform an action, whereas he
believes performing another one, e.g., click-jacking [Rydsé¢add. 2010].
Such techniques violate the integrity of the user interface, thus of his actions.

» Flawed access control depending on the path used to access an object,
there may be a discrepancy in the way the access control is enforced. Such a
situation frequently occurs when developers introduce new features in Web
Browsers (e.g., [Heiderich 2012a, Heiderital. 2010, Heiderich 2013b]).
Such vulnerabilities generally result in the violation of the integrity of ob-
jects. In the case of a Same-Origin Policy Bypass [Huetra). 2010], the
con dentiality of documents belonging to other security domains is also vi-
olated.

» Flawed or weak cryptography: e.g., sensitive information is sent in clear-
text [Soltani 2013] or the implementation of a cryptographic algorithm is
awed [Thomas 2013]. Either the integrity, or the con dentiality are gener-
ally targeted.

13



1.2. VULNERABILITIES CHAPTER 1. INTRODUCTION

In this thesis, we will search for code execution vulnerabilities.

1.2.2 About Code Execution Vulnerabilities

Code execution vulnerabilities arise because of the way an application is processing
data, it may interpret part of it as code. Examples of code execution vulnerabili-
ties includeBuffer Over ow— amemory corruptiorvulnerability — andCross Site
Scripting(XSS) — aWeb Command Injectiovulnerability.

A former black-hat used to make money with cardihgnd botnets He used
to rely on XSS 55% of the time to take control of a website [Hansen 2013]. In
order to gain access to a web application, he used XSS more frequently than mem-
ory corruption vulnerabilities. In terms of frequency, SQL injection was the third
most common vulnerability category he used. All those three kinds of low-level
vulnerabilities permit attacker controlled code execution. XSS and SQL injection
belong to the family of Web Command Injection. SQL injection ranks rst in the
OWASP top 10 of 2013, and XSS ranks third [OWASP 2013b]. Whereas years
ago, the focus was on desktop web application development, there is an increase
in customized versions of web applications for mobile devices (e.g., Android, IOS
applications). In this domain, developers seem to make similar mistakes. As a
result, numerous mobile applications are sensitive to Web Command Injection vul-
nerabilities [Moulu 2013].

1.2.3 Web Command Injection

Web Command Injection (WCI) belongs to the code execution vulnerabilities.
WClI is a family of vulnerabilities that affects applications interpreting a script-

ing language (e.g., HTML, SQL, Shell, PHP etc.) interpreters. WCI vulnerabilities
are characterized by the possibility to escapsoa nementwithin a grammati-

cal structure. Example of Web Command Injection include Cross Site Scripting
(XSS), SQL injection, PHP Code injection, etc.

Cross-Site Scripting (XSS) is one of the currently most dangerous web
based attacks: it ranks third in the [OWASP 2013b] Top 10 vulnerabilities.
[Zalewski 2011b] describes them as “one of the most signi cant and pervasive
threats to the security of web applications.” Criminals use XSS to spam social
networks, spread malwares and steal money [kual. 2009]. In 2013, XSS
were found in Paypal, Facebook, and eBay [Kugler 2013, Nirgoldshlager 2013]
[ZentrixPlus 2013]. We shall present XSS in Chapter 2.

lUnauthorized hacker having malicious intentions; of course, the notion of maliciousness is de-
pendent on the entity which assesses it.

2The process of cloning credit cards.

3Network of bots, computer nodes controlled by an attacker.

14
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Consequences of XSS an XSS vulnerability is activated by a maliciously crafted
HTTP request, or a maliciously crafted Ajax request. Its exploitation provides to
an attacker the capability of injecting arbitrary HTML code within portions of the
web application. Thus, the victim web interpreter will execute a sub-interpreter
code, which is controlled by the attacker. This permits:

1.3

ex ltrating data (e.g., emails [Krebs 2012], authentication tokens
[Naraine 2010], bank account password, contacts [Acunetix 2010],
etc.);

using the victim computer as a proxy or a node of a malicious net-
work (e.g., spam relay, DDoS, exploiting websites, malware propagation
[Faghani & Saidi 2009], mining bitcoin for the attacker, etc.);

de-anonymizing a target: a browser can be uniquely tracked — up to a cer-
tain precision — via HTTP headers, available plugins and version, subset of
interpreted codes [Nikiforakis & Vigna 2013] [Abgragt al.2012];

exploiting a memory corruption vulnerability in a browser sub-interpreter
to execute attacker controlled assembly code (e.g., [CVE-2008-1380 2008,
CVE-2006-4565 2006] target JavaScript interpreters in browser and email
client), to gain additional privileges (e.g., escape the browser process, obtain
additional security tokens, etc.).

Objectives

Our main problem is:

How to improve the ef ciency and precision of black-box security testing

for automatically detecting XSS?

In order to address it, we face several sub-problems:

1.4

sourceson which parts of the input® act for an ef cient security testing?
input sequencediow to drivethe system into a desired state?
maliciousnesshow to createparts of inputs likely to exhibit a failure?

test verdict:howandwhereto observe the effect of an input?

con dence:which criteriacharacterize a precision in security testing?

Contributions

Our contributions are:

an inference and slicing approach of particular control and taint ows for
guiding XSS search;

15



1.5. DISSERTATION STRUCTURE CHAPTER 1. INTRODUCTION

« a combination of model inference and fuzzing for detecting Type-1 (re-
ected) & Type-2 (stored) XSS;

¢ an implementation of these approaches and their evaluation,

« which led to the discovery and responsible disclo$wepreviously un-
known vulnerabilities: four stored XSS (CVE-2013-7297[Deck 2013a],
[Duchene 2014d], [Duckne 2014c]), and of forty re ected XSS (CVE-
2014-1599 [Duchkne 2014a], [Duokne 2014c]), some of them impacting
millions of users.

1.5 Dissertation Structure

We introduce the addressed problems in Chapter 2. We present the high level
architecture of our approach in Chapter 3. Our approach for black-box XSS detec-
tion combines a particular control+taint ow inference (Chapter 4) and evolution-
ary fuzzing (Chapter 5). We evaluate this approach in Chapter 6. We provide an
overview of related techniques in Chapter 7. We conclude and provide directions
for future work in Chapter 8.

“In the responsible disclosure vulnerability model, vendors having a vulnerability in their product
are allowed a period of grace before the security researcher who discovered this vulnerability makes
it public.

16



CHAPTER 2

Problem Statement

The only acronyms that matter: RCE (Remote Code Execution), LPE (Local
Privilege Escalation), COE (Continuation of Execution)

[Grugqg 2013]

The importance of XSS may overstep that of memory corruption vulnerabilities.

[Heiderich 2013a]

Due to their wide existence and their high impact when exploited (an attacker
is able to remotely execute arbitrary code in the victim's interpreter), we focus in
this thesis on a particular case of web command injection: XSS. We de ne XSS
in Section 2.1, and the problem of automatically detecting XSS in black-box in
Section 2.5.

Web Command Injection (WCI) is a family of vulnerabilities that affects ap-
plications interpreting languages at run-time (e.g., HTML, SQL, Shell, PHP etc.).
Since they compile and execute instructions at run-time, those are referreidio as
terpreters Command injection vulnerabilities are characterized by the possibility
to escape aon nementwithin a structure.

Each WCI subfamily has a name dependent on the context (i.e., the output
grammar: database interpreter, browser interpreter, shell...). e.g., for the HTML
grammar, WCI is named XSS.

-
HTTP Request <?php
—l code
Input 7>
HTTP Response
Output
Web Client Web Server
(e.g., Firefox) (e.g. Apache httpd)

| |1 |
Black-Box  White/Grey-Box

Figure 2.1: Black-Box Web Command Injection Detection
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2.1. CROSS SITE SCRIPTING (XSS) CHAPTER 2. PROBLEM STATEMENT

2.1 Cross Site Scripting (XSS)

The detection of XSS involvestaint- ow analysis on @ontrol- ow graph.

Example A: an XSS involves a control- ow POwnMe is a voluntarily vulnera-

ble web application containing several XSS. Once authenticated, a user Peach can
save a new message, view the saved ones, or logout. We illustrate several function-
alities of the POwnMe application in Figure 2.2, Figure 2.3 and Figure 2.4.

e —————
'\1 1> | (8 | | @ tocathost [0 me 0.3/

Vuln web app

e T
\\! ) > | \E| | \u(a\hu;t,-pow n_me_0.3/7action=auth

« Domepage login:
« auth password:
Submit Query

Figure 2.2: Screenshots of POwnMe v0.3: login

{} hutpy/ /localhos...2/pOwn_me_0.3/ » | 4\ localhost /13 @ O O Live HTTP head
\u(a\hust-s;:Dw-‘j‘ejl},‘_ !! ! Generator c
+ new home HTTP Headers
Save message

« display saved messages
posT [N -0 vn_me_0.3/ HTTP/1.1

Host: localhost

User-Agent: Mozilla/5.0 (Macintosh: Intel Mac O X 10.9: rv:28.0) Ge
message2: test2 Submit Query Accept: text/html,application/xhtml+xml,application/xml:q=0.9,*/*
Accept-Language: en-US,eng=0.5

lype your message:

Accept-Encoding: gzip, deflate

DNT: 1

Logout Referer: http:/ flocathos NG 0w _me_0.3/
Cookie: PHPSESSID=5d672da95c¢077b78100d91c37daf7c06
Connection: keep-alive

Content-Type: agplication/x-www-form-urlencoded
Content-Length: 14

| £} hupe/flocalhos...2/pown_me_03/ | + | _|®oo Live HTTP Replay

tocalhost | N -0_me_o.
— POST v hllp.‘H\ocalhosl-pownimeio.ﬂ

HTTP Headers

« new home Accept: text/ html,application/xhtmi+xml,application/xmiq=0.9
Accept-Language: en-US,en;q=0.5

. ss_wc message Accept-Enceding: gzip, deflate

 display saved messages DNT: 1

Referer: htep:/ /localhos | 0+n_me_0.3/
Cookie: PHPSESSID=5d672da95c077b78100d91c37daf7c06
Type your message: Connection: keep-alive

— Content-Type: application /x-www-form-urlencoded
mcssagcz: XS5 attempt!! Submit Query | Content-Length: 39

Logout ¥ Send POST Content ?

message2 =%¥22%20onmouseover¥3D%22alert(1337)

Figure 2.3: Screenshots of POwnMe v0.3: Filtered Type-1 (re ected) Taint Flow
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P —

J L} hupiflocalho...a=save_message | & |

(> [3] / YR =
\! 18] Iocamos(.-m _me_0.3/7action=save_message

'\1' > \ |E| ‘Thost."_p\:w‘_r'e_-J.3"?aclion75.\ve_nessage

+ new home
 save message
o display saved messages

+ new home
o save message
+ display saved messages

message saved!

buenosdias| savel

Logout
Logout

J:: http:/ /localhos...saved_messages " + |

(4 )» localhost RN »0vn_me_0.3/7action=display_saved_messages
(4 REEN pOwn_me_ play_saved_messag

+ new home
+ save message
« display saved messages

saved messages

buenosdias[X]

Logout

Figure 2.4: Screenshots of POwnMe v0.3: Type-2 Taint Flow

Peach saves a note, e.g., buenosdias, by Illing and sub-
mitting  the  form, ie., sending the abstract inputPOST
[?action=save  _message&msg= buenosdias ! (transiton7 ! 17
in the control ow model shown in Figure 2.5) to the application. We describe in
Chapter 4 how to construct such control ow models, where nodes represent pages
and transitions HTTP requests. Such Control Flow Models (CFM) are different of
assembly control ow graphs that most security engineers are used to work with,
but CFM capture similar information at a higher level of abstraction. Later on, she
lists the saved notes, by sendi@dET /?action=get _messages (transition
18! 21). An extract of corresponding output is shown in Listing 2.1.

<H2>list of saved messages</ H2>
buenosdias <A href ="./?action=delete&id=1">[X]</ A>

Listing 2.1: Excerpt of POwnMe Output for the Transitib8'! 21

The value of the input parametersg, sent in the transitiottg,c = 7! 17, is
re ectedin 18! 21: we observe it into the output. Thie ection is not Itered:
the exact value sentin! 17is copied into the output dfiss= 18! 21.

we highlight text to indicate that it is part of a taint ow (partial string copy).
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POST /?{' login': 'yoda,
‘password': ‘DoOrDoNot'}

POST /?
{' message2':
'2_e_g_a_s_set)

' action': 'save message
'msg': 'buenosdiag

GET /?action=delett
_message&id=1

Figure 2.5: Extract of a Control Flow Model of the POwnMe Web Application

Moreover, in this application, notes are shared between users. Thus,
an attacker Koopa Troopa would attempt to send a maliciosg value
to escape thecon nement (in Listing 2.1, a re ection is constrained in a
speci c context: outside tags, before theA> tag). An example of mali-
cious input istge = 7 ! 17 (POST /?action=save _message&msg=
buenosdias <script> alert(1337)</script> ).

An excerpt of the corresponding output for the  subse-
quent transition tgst = 18 ! 21 is ...of saved
messages</h2> buenosdias <script>alert(1337)</script> <a
href="./?action=delete... .
When Peach's browser (the victim) parses this output, it executesdde
introduced by the attacker, and a messagebox is displayed, as shown in Figure 2.6.
In order to detect XSS, we need to navigate in the web application. Thus, we
need information about theontrol ow of the application. The problem is that
most deployed web applications lack formal documentation: a formal behavioral
model is rarely available. However, such models improve the ability to perform a
pertinent security testing campaign for an application [Takariexh. 2008], espe-
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Figure 2.6: Successful exploitation of an XSS in the POwnMe application

cially if they combine control and taint information [Bekrar 2013b]. Thus the rst
sub-problem to address is:

XSS.1 Navigating in the Application
I How to obtain a model of the application? What kind of models are
appropriate for detecting XSS?

Example B: an XSS involves a taint ow A ctive website
http://lyoshi.jp suffers from an XSS vulnerability. A necessary con-
dition for an XSS is a re ection, i.e., taint- ow i.e., a partial input copy from

an attacker controlled input parameter to a sink, part of an output of the web
application, as illustrated in Figure 2.7. Our notion of taint ow is different to
the traditional taint propagation rules for each assembly instruction in grey-box
contexts [Newsome & Song 2005, Xt al. 2006]. We de ne our taint notion in
web applications in black-box more precisely in De nition 3.

Client! Server:

GET /nice.html?name= birdo HTTP/1.1
Host : yoshi.jp

Client Server:

Hello  birdo !

Figure 2.7: The Input Parameter name re ected into the output of the web
application

Koopa Troopa wants the victim Peach to execute a code that he controls. He
observes that the re ection is located in a structure “text node, outside a tag”.
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He wants to “escape” this text node, and includes additional interpreter nodes
such as JavaScript (JS) ones. Thus he crafts the paranseter with the value

lakitu<script>alert(‘evil');</script> . To achieve exploitation,

he creates a page hostedkaopatroopa.fr , Which will force the user browser

to perform this malicious request to the vulnerable website (hence the cross-
domain), once the code &bopatroppa.fr is interpreted (see Figure 2.8).

Client! Attacker:

GET / HTTP/1.1
Host : koopatroopa.fr

Client Attacker:

<iframe src ="http://yoshi.jp/nice.html?name=
lakitu<script>alert(‘evil!");</script> ">

Client! Server:

GET /nice.html?name= lakitu<script>alert(‘evil!');</script> HTTP

/1.1
Host : yoshi.jp

Client Server:

Hello lakitu<script>alert(‘evil!);</script> !

Figure 2.8: Successful exploit of an XSS

Thus, in order to detect XSS, we need to address the sub-problem:

XSS.2 Achieving a Test Verdict
I How to infer the taint?
I XSS.2.Whereare the potential sinks (re ections)?

2.2 De nitions

We abstract an actual Web site a¥Veab Application The Web Application re-
ceives aspiderlinkand replies with gpage model As illustrated in Figure 2.9,
spiderlinks represent the HTTP requests sent to the concrete Web site, and page
models abstract the HTTP responses.
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abstract Ievel[ spiderlinki ] [ page modep ]

concretize abstract
concrete Ievel{ HTTPirequest} L HTTI:)repIy J
S, /

Figure 2.9: Abstraction and Concretization Functions for Web Applications

2.2.1 Spiderlink and Page Model

We de ne abstract(o) which abstracts an HTTP reptyinto apage modep.

As illustrated in Figure 2.10, a page model is a pre x tree containing several spi-
derlinks (i.e., abstract links fromA> tags or abstract forms frosform> tags).

We also de neconcretize(i) which produces an HTTP requestg from a
spiderlinki.

Input, concretize (Spiderlink i) Let be an alphabet. Each spiderlink is
built from a link or a form.

De nition 1 Spiderlink
A spiderlinkis a couple composed of:

» oneactiont the substring before the of an Hypertext Transfer Protocol
(HTTP) Uniform Resource Locator (URL)

« alist of input parameters
(namevalue method 2 f 92 fGET, POST, COOKIE, HEADER)

Output, abstraction to Page Modelp A page model is an abstraction of a con-
crete output of a web application. It contains spiderlinks.
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De nition 2 Page Model

Let 0 2 O be an output of a web application. LE{o) be the set of links and
formsino. A page modep = abstracto) is a pre x tree which is built from the set
of spiderlinks and dompaths obtained fréi(o). It has at least six levels including
the root node.

For each spiderlinkf 2 F(0), a set of nodes is added to the tree. Each set
consist of the following nodes or groups of nodes, ordered from the immediate
children of the root node to the deepest ones:

» dompathis a node, child of the root node. Its value is a stihigH[a 7] [
f=0 g, the shortest path in the Document Object Model (DOM) from the root
to the<A> or <FORM>ag.

 actionis a tree of nodes, of depth1. Its root is a child of a dompath node.
Each node of an action subtree has a string value contains a part of an HTTP
URL before the? split by /

e paramsis a node, child of an action node. Its value is a list of strings: the
list of parameter names.

« valuesis a node, child of a params node. Its value is a list of strings: the list
of parameter values.

* methodss a node, child of a values node. Its value is a list of parameter
methods, each elemeRAfGET, POST, COOKIE, HEADER)

Consider the HTML ouput in Listing 2.2. The corresponding page model is
shown in Figure 2.10. The left side shows the browser rendering, while the right
side represents the page model. It contains four spiderlinks. The pre x tree rep-
resentation makes easier the identi cation of similarities between spiderlinks and
between page models.

<html| >

<body >
<div class =' menu>
<span id =" menuleft'>

<a href ='/>Home</ a>

</ span >
<span id =' menu-right>
<a href ='Ylogin'>Sign in</ a>
| <a href =/newaccount.gtl’>Sign up</ a>
</ span >
</ div >
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page
/\
r— /html/body/div/span/a /html/body/div/form

Sign in | Sign up

/\ ‘
. / /llogin /newaccount /login
Gruyere: Login o | |

(uid,pw,submit)

User name: ‘ ‘ ‘ ‘
(?,?,'Login’)

| \ \
Login| 0 0 0 (GET,GET,GET)

Password:

Figure 2.10: Abstraction: graphical representation of the output and corresponding
Page Model.

<div >
<h2>Gruyere: Login</
</ div >

h2>

<div class ='content '>
<form method ='get' action
<table ><tr ><td >
User name:
</ td ><td >
<input type ='text '
</ td ></ tr ><tr ><td >
Password:
</ td ><td >
<input type ='password' name='pw'>
</td ></ tr ><tr ><td ></td ><td align ='right>
<input type ='submit' name='submit’
</td ></ tr ></ table >
</ form >
</ div >
</ body >
</ html >

='llogin">

name='uid">

value ='Login">

Listing 2.2: The outpub (extract)

2.2.2 Taint

The taint is a metadata information between inputs and data handled by the ap-
plication [Livshits 2012]. It designates the possibility of an input to explicitly in-
uence such data. The taint is a dynamic notion which ows between data. It is
generally a dynamic white-box (assume the availability of the application source
code) or grey-box (assume the availability of the application code) notion, as in
[Rawat & Mounier 2010, Bekraet al. 2012], although in our case we will perform
taint inference dynamically in black-box (see Section 4.3).
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When considering taint propagation in grey-box or white-box, three sub-
problems arise:

 Taint Sources When is an objedtirectly in uencedby inputs? In Table 2.1
we list examples of taint sources.

 Taint Propagation rules: When is an objedandirectly in uencedby inputs?
¢ Taint Removal: When is an objeatot in uencedby inputs?

Taint tracking is widely used in white-box/grey-box test context for vulnerabil-
ity runtime detection, e.g., for XSS [Voet al. 2007] and for Memory Corruption
Vulnerabilities [Bosmaret al. 2011].

Practical data tainting on important sized applications may only consider ex-
plicit value in uence (e.g., assignments) in taint propagation rules, and not con-
sidering indirect value in uence (e.g., resulting from a conditional check). Indeed,
such taint tracking systems aim at avoiding too numerous objects to be tainted, in
order to reduce the number of false positives in the test verdicts [HxliEr2013].

In black-box test context, as we cannot track the taint ow from a source to
a sink, we have to infer it, if possible. In Section 4.3, we provide information on
taint inference for XSS.

In Table 2.1, we list examples of code execution vulnerabilities, their taint
source, the code at server side, and sometimes how to infer knowledge in black-
box.

Vulnerability Taint Source Sink & Tainted Argument Inference

(white-box) (black-box)
File read(han, buf ,nb)
Memory
Corruption Network read  recv(sock, buff ,len,flag)
Keyboard input scanf("%d",  &num)
XSS GET/POST pa- print( input copied to
rameters values $_POST['email’] ) the output
SQL injec- Cookie param- sqgl _query( error message
tion eter values $_COOKIE['sess .id] )

Shell Injec- Parameter val- shell _exec( $_POST[ error message

tion ues action )

Table 2.1: Examples of Vulnerabilities a Taint Markers

In black-box test context, XSS vulnerabilities arise whe tainted data (re-
sulting of a partial copy of an input parameter value, a string of characters) appears
in at least one substring of one output (HTML code), and gets executed by the
browser azode
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De nition 3 Taint
Let Xgrc andogst be two stringsXsre{ 04st denotesg taintsogs. Our notion of

taint measures the similarity between two strings. It uses string distance functions.
We de ne more precisely our notions of taint in De nition 5 and Section 5.2.

2.2.3 \Vulnerability and Exploit

A vulnerability is a fault leading to an error. If a fault is traversed by a taint ow,
which is used to stimulate the fault, this will lead to a failure. Thus the problem of
searching vulnerabilities can be addressed by searching for sinks, and then search-
ing for inputs activating those sinks in a way prone to exhibit failures.

We are interested in vulnerabilities which violate teale integrity property
Such vulnerabilities arise due to confusion between data and code: the interpreter
will consider attacker controlled data as code and thus execute it.

Cross Site Scripting (XSS) is a Web Command Injection vulnerability within
the HTML grammar. An XSS permits attacker controlled code execution at client
side. An example of sink for XSS is the PHyANt() function:
<?php print( $_GET['message] ); ?> .

For some malicious messages, once the client browser renders the webpage, the
property stating that the content of the message variable should not be executed by
the browser is violated.

An exploitis an input activating a vulnerability s.t. the application will violate
a security property (in our case the integrity of the code executed at browser side,
as it will execute gayloadresulting of the input).

Within a given class, some vulnerabilities are mooeplexto nd than oth-

ers. The complexity of a vulnerability is an increasing metric w.r.t. the minimum
number of traversed states of the control ow model to violate a security property.
When searching for Web Command Injection, the lIter (sanitizer) and the num-
ber of distinct traversed nodes in the control ow models are factors in uencing
the complexity of a vulnerability. When searching for Memory Corruption, the
number of traversed jump instructions affects the dif culty in nding such vulner-
abilities.

2.2.4 Web Application, Re ection, Syntactic Con nement, XSS

Figure 2.7 illustrates Re ection(i.e., a taint ow from an input parameter value to
an output). A re ection can be tracked (e.qg., in white-box test context), or inferred
(e.g., in black-box test context). We formally de ne a re ection in De nition 5.
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De nition 4 Web Application (WA)

Let P be a set of page models, ahble a set of spiderlinks.
A Web Application (WA)W = (N;no; T; I; P, ), is a graph:

* Nis a set of nodesy 2 N is the initial node of the application.
e Each transitiort = (ng;i;n,) 2T (N | N).

« :N! Pisamapping which to each nodeassociates a page moqel

In Section 2.5.2, we elaborate on the reasons why we consider that a re ection
only involves one taint source parameter. In Chapter 8, we provide insights on how
to extend our work in the case of several taint sources.

De nition 5 Re ection

Let be an alphabet. L&V = (N;ng; T;1; P, ) be a Web Application (De -
nition 4). LetS, = [io; ::jisrc(Xsro); :5iigs] be a sequence of spiderlinka (*) and
So = [00; ::;0src; :2;0dsd (2 1) the corresponding sequence of concrete outputs
(trace). When submitting the inpiis;, the obtained concrete outputdgs; 2 *.
Let 2 N be a threshold. Lekg be an input parameter value received in the
inputigrc of the source transitioty.. The execution o5, on W terminates with
tast = (nﬁst; Idst, nﬁst)-

(Xsrc: tsre: tdst; Odst) iS @ -re ection if:

* Xgrc taints ogg, there is a partial copy of length  of Xgr¢c into Oggt i.€.,

9y2 *
-
— (Y V Xerd » (Y V Ods), Wherexy v xo ) 9 Xgixe 2 St
X2 = X3X1X4

(n§4) = abstractogsy

We denote it asfXsrc; tsre){  (Odst; tdsy)-

A sanitizer/ Iter is a mechanism at server-side which validates and even-
tually modies (mutates) a fuzzed value before it is reected. Sanitiz-
ers may modify the input parameter values, e.g., by removing some char-
acters having a special meaning in the considered grammar (€;4;>
;<) in the HTML grammar for XSS vulnerabilities). A common mis-
take when building such lters is to overlook theontext of the re ection
[Weinbergeret al.2011a] (for instance always applying a given string transfor-
mation regardless of where the re ection happens a.k.a. “Context-Insensitive
Auto-Sanitization”. This may result in a false sense of security, in which the
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developer believes to be protected from XSS, whereas the sanitizer is awed
[Weinbergeret al.2011a]. We illustrate an example of awed sanitizer in List-
ing 2.3.

<?php function webapp_filter($str) {
(eregi("|'[>|<[;|/",$str)) {
$filtered_str = "XSS attempt!";

} {
$filtered_str = str_replace(" ","",$str);
}
return S$filtered_str;
} 2>

Listing 2.3: A vulnerable sanitizer in POwnMe

Since lter/sanitizer may change signi cantly the fuzzed value before it gets
re ected, we need to address the sub-problem:

XSS.2 Achieving a Test Verdict
I XSS.2.2 Can wexploit a potential sinki.e., nd an input which
bypasses the Iter) How to infer the taint in the presence of Iter?

Generating an input which is able to partially bypass the Iter by partially being
copied into the output is not a suf cient condition for a successful XSS exploit.
Indeed, the re ected value has to “escape” the structure in which itcwased
We name this objectiveon syntactic con nement

Figure 2.11 illustrates two re ections. The rst one is syntactically con ned
according to the grammar (see the production rules in Figure 2.12), and the second
one is not. Graphically, the rst re ection is syntactically con ned because there
exists one non-terminalEXT ) s.t. the whole produced sub-tree tainted. This
is not the case for the second re ection: the rst common parent non-terminal of
TEXT andSCRIPT is START, and its sub-tree is not full tainted.

[Su & Wassermann 2006, Wassermann 2008] formalized the problem of web
command injection with the notion @yntactic Con nementDe nition 6). We
use the following notations: L& = (V; ;S;R) be a context-free grammar with
nonterminalsV, terminals , a start symbolS, and production®R. Let *) g”
denote “derives in one step”’ s.tA ) g if Al 2R andlet) g” denote
the re exive transitive closure of)* " If S) ¢ ,then is a “sentential form”.

De nition 6 Syntactic Con nement
Given an unambiguous gramm@r = (V; ;S;R) (V non terminals, is an
alphabet of terminalss a start symbolR production rules), aworl =! ;! 5! 32
;1 2 is syntactically con ned in iff there exists a sentential forin; X! 3 such
thatX2(V[ )andS) G!1X!3) cg! 1l oa.

29



2.2. DEFINITIONS

CHAPTER 2. PROBLEM STATEMENT

Output and Taint Parse Tree Syntactically
Con ned?
START
\
H1_TITLE TEXT BR
<hl>saved v
messages</h1>
buenosdias  <br /> TEXT X
saved |<m1>| | buenosdias | | <br /> |
messages
START
<h1>saved \
messages</h1> H1_TITLE TEXT SCRIPT BR
buenosdias <script> v ! { 7
TEXT JS_CODE
alert(1337) </script>

<br />

‘ buenosdias H <script> H alert(1337) H</script> H <br /> ‘

Figure 2.11: Syntactic Con nement of two Re ections@G=HTML

START!

H1_TITLE!
"t " ...

TEXT!

[0:20](HLTITLE j TEXT j BRj SCRIPT)

"<h1>" TEXT "</h1>"

BR! "<br />"

SCRIPT!

"<script>" JS CODE"</script>"

Figure 2.12: Extract of the HTML Grammar Production Rules

In De nition 7, we give a restrictive de nition of the notion of Web Command

Injection (WCI).

De nition 7 Web Command Injection (WCI)

Let M be a Web Application (De nition 4)Re(M) be a set of re ections
(De nition 5) in M, andG be a grammar. Let 2 N be a threshold. Let =
(Xsre; tsre; tdst; Ods) 2 Refi(M) be a -re ection (De nition 5), where for a given
trace,Xgrc IS @ concrete input parameter value of the transitigi) andogys; is the
concrete output value of the transitig. LetZ = taintedsulfXsrc; 04st) be the set

of substrings of length

in ogst Which are tainted bygrc.

risa Web Command Injection (WCI) w.r.t. @ if 9 z 2 Z; s.t. zis not syntactically

con ned inoggt W.r.t. G.

A WCI permits to violate the code integrity property at the leveGof

Type-1 (re ected) and Type-2 (stored) XSS exist since applications handle dy-
namic data (i.e., since the rst cgi-bin scripts appeared in web applications). As
of today, this problem is still unsolved: no scanner detects 100% of the XSS in all
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De nition 8 Cross Site Scripting (XSS) Vulnerability

We de ne a Cross-Site Scripting (XSS) as a Web Command Injection (De ni-
tion 7) in which the output grammas is HTML (and the interpreted grammars:
e.g., JavaScript, CSS, etc.).

De nition 9 XSS Types

XSS Type Transition Characteristic

(request)
“Pure” Type-0/ Ajax In a re ected DOM-XSS, the taint ow
DOM XSS does not involve an HTTP request.

Nodes are DOM states and transitions
are Javascript function or event calls.

Type-1 / Re- HTTP The source and destination transitions

ected XSS are the sametgc = tyst. At least one
HTTP request is involved.

Type-2 / Stored HTTP The source and destination transition are

XSS different: tgrc , tgst. Atleasttwo HTTP

requests are involved.
Stored DOM- Ajax+ HTTP Atleast one Ajax request and one HTTP
XSS request are involved.

web applications. Type-0/DOM XSS exist since web application execute dynamic
code at client side (e.g., JavaScript Ajax transitions, such as Facebook). DOM XSS
involve Ajax transitionsin this thesis, we only focus on Type-1 (re ected) XSS

and Type-2 (stored) XSS.

[Heiderichet al. 2013] browser parser quirks induces transformations conform
to the de nition of the categories mentioned in De nition 9.

2.3 Fuzzing

Fuzzing is the automatic generation and evaluation of abnormal inputs in order
to trigger the targeted vulnerability family(ies). Fuzzing is sometimes named as
“act of software torture” [Vuagnoux 2005]. The term was coined by Barton Miller
[Bartonet al. 1989, Forrester & Miller 2000].

When searching for XSS in black-box, we will create fuzzed inputs from con-
trol and taint ows knowledge in order to escape the syntactic con nement of re-
ections. Thus we need to answer the following sub-questions:
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XSS.3 Creating Fuzzed Inputs

* XSS.3.Whereto fuzz inputs?Which inputs to select? On which
parts of those inputs to act?

» XSS.3.How to fuzz inputs?How to act on speci ¢ parts of those
inputs?

» XSS.3.3 How tgrioritize inputs fuzzing? Which potential sinks
should we test rst?

2.4 Other Web Command Injection Vulnerabilities

XSS is one vulnerability in the Web Command Injection family. We list other
sub-categories in Table 2.2, such as SQL injection, Shell Command Injection, PHP
Code Injection etc.We believe that the work applicable to XSS can also be applied
to those types of WCI.

Vulnerability Grammar Sink Similar Vuln. in
Cross Site Script- HTML (& print, echo

ing (XSS) sub-grammars)

SQL Injection SQL sqglquery, etc.  LDAP, NoSQL, etc.
(SQL)

Shell Command bash, sh, zsh exec

Injection etc.

XML External XML XML processor

Entity (XXE)

PHP Code Injec- PHP eval Ruby, Python, etc.
tion

Table 2.2: Sub-Categories of the Web Command Injection Vulnerability Family

2.5 Summary of Addressed Problems

Automatically detecting XSS is an open problem. In the case of access to the
source code, white-box techniques range from static analysis to dynamic monitor-
ing of instrumented code. If the code or the binary are inaccessible, black-box
approaches generate inputs and observe responses. Such approaches are indepen-
dent of the language used to create the application, and permit a generic harness
setup. As they mimic the behaviors of external attackers, they are useful for offen-
sive security purposes, and may test defenses such as web application rewalls.
Automated black-box security testing tools for web applications have long been
around. However, even in 2012, the fault detection capability of such tools is
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low: the best ones only detect 40% of non- Itered Type-2 XSS, and 1/3 do not
detect any [Bawet al. 2010, Bawet al.2012]. This is due to an imprecise learned
knowledge [Doup et al.2012], imprecise test verdicts, and limited sets of attack
values [Ducleneet al. 2013b].

Thus there is a need for methods which detect Type-2 XSS (and server-side
Itered Type-1 XSS) using a black-box test context.

Problem:
I How to automatically detect Type-1 and Type-2 XSS in web
applications, with a black-box test context?

2.5.1 Problems

According to the previous discussion, in order to effectively address XSS detection,
the following sub-problems must be addressed:

« XSS.1 Navigating in the Application In order to detect XSS in web appli-
cation, we need to navigate in the application. Thus, we need information
about thecontrol ow of the application. The problem is that most deployed
web applications lack formal documentation: a formal behavioral model,
such as an FS (De nition 5), is rarely available. However, such models im-
prove the ability to fuzz an application.

I How to obtain a model of the application? What kind of models are ap-
propriate for detecting XSS?

* XSS.2 Achieving a Test Verdict

Server-side sanitizers may perform signi cant string transformations be-
tween the fuzzed value and the re ection. Since such re ections are hard
to observe, there is a risk of false negative in the taint inference, thus in the
test verdict.

I How to perform a test verdict in the case of Itered re ections?

— XSS.2.MWhereare the potential sinks?
— XS8S.2.2 Can wexploit a potential sink?How to infer the taint in the

presence of lter?

» XSS.3 Creating Fuzzed Inputs When creating fuzzed inputs, we need to
answer the following sub-questions:

— XSS.3.Whereto fuzz inputs?Vhich inputs to select? On which parts
of those inputs to act?

— XSS.3.2How to fuzz inputs? How to act on speci c parts of those
inputs?
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— XSS.3.3 How tprioritize inputs fuzzing2Which potential sinks should
we test rst?

The core of this thesis is the automatic black-box detection of vulnerabilities
that permit attacker controlled code execution. Those include cross-site scripting.

2.5.2 Hypotheses on the Web application

* Reset as we want to replay some input sequences, we assume the ability to
reset the application in its initial state. Candidate solutions include applying
a virtual machine snapshot, but also killing the application, restoring the
database in its initial state and starting it again.

« Defensive Mechanisms Since we are interested in nding XSS vulnera-
bilities with a black-box test context, and since the deployment of many
counter-measures is very low as of today (for more details, see Table 8.1 in
Chapter 8), we assume that the only counter-measure which may be present
in the tested web application is server side sanitizer. We believe that our ap-
proach for addressing this problem (see Chapter 4 and Chapter 5) could also
address situations when a Web Application Firewall (WAF) is present.
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CHAPTER 3

Our Proposal

Nobody ever defended anything successfully, there is only attack, attack and attack
some more.

Gen. George S. Patton ; 1885-1945

Glad to see more and more companies/researchers selling 0Ds to Govs. Software
vendors are losing the game but they are not yet aware of that.

[Bekrar 2013a]

As you've probably noticed, I'm basically lazy which is why | like fuzzing.

[Miller 2010]

The automatic detection of software vulnerabilities involve numerous combina-
torial problems [Filiol 2013a]. This also holds for the automatic detection of XSS
in a black-box test context. Due to these numerous problems and to the lack of
formal knowledge, we propose domain-based engineering [Czareeak?2000]
approaches which use heuristics guided by the practical experience of penetration
testers. Such approaches may not be sound, but still are safe to be used in practice.

In this chapter, we brie y justify our reasoning for addressing the aforemen-
tioned sub-problems.

Our approach for automatically detecting XSS in a black-box test context con-
sists of two steps: “crawling” infers theontrol ow and thetaint ows of the
application, then “fuzzing” generates malicious inputs to exhibit vulnerabilities.

3.1 Control and Taint Flow Model Inference

Our rst step constructs a model of the web application. This is achieved by a com-
bination of crawling and taint analysis. In order to do this, we need to address the
challenges XSS.1, XSS.2.1, and XSS.3.1, among those expressed in Section 2.5.1
(page 33).

» XSS.1 Navigating in the Application [Doupéet al.2012] showed that
black-box WCI security scanners perform poorly due to a lack of precise
knowledge about the applications they are testing. How to learn knowledge
for driving the application?
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« XSS.2 Achieving a Test Verdict XSS are characterized by the fact that
once an input has been sent, its effect cannot always be observed right away
(e.g., we may need to drive the application in another state). By answering
to the questiorXSS.2. Whereare the potential sinks?ve can prioritize the
locations where to invest more efforts in computing the test verdict.

* XSS.3 Creating Fuzzed Inputs a naive fuzzing (e.g., mutating all input
parameters) may spend too much testing resources when focusing on non-
promising parts of the application. Therefore, we need to address the sub-
problem:XSS.3.Whereto fuzz inputs?Ve also partly address the subprob-
lem XSS.3.3 How tprioritize inputs fuzzing?

To answer these sub-problems, we propose a reverse engineering approach.
Reverse Engineering is “the process of analyzing a subject system to identify the
system’'s components and their interrelationships and create representations of the
system in another form or at a higher level of abstraction” [Chikofstkgl. 1990].

Since we are in a black-box test context, reverse-engineering can be achieved by
means of inference.

In order to address XSS.1, we propose an extension of
[Doupe et al.2012] for inferring the control ow of the application. Then,
in order to addresXSS.3.1we propose to extend the previously obtained control
ow model with a taint ow inference for indicating the re ections. The outcome
is a hybrid control+taint ow model. Lastly, from this hybrid model, we generate
input sequences fuzzing on a speci ¢ point and directing toward another point to
observe, thus providing an answerX&S.2.1 We summarize these choices in
Figure 3.1, and develop it in Chapter 4.

>
A. B. Control C. ReRection
Control | Control | Approximate | * @t | Chopping: | Aware
—_— PP — A NG
Application | Flow Fow | Taint Flow Flow Inputs Non
+ Inference | Model Inference Model | Generation |malicious
Credentials Inputs

Figure 3.1: LigRE: Control+Taint Flow Model Inference

Example Most of considered open-source black box web scanners (Skip sh and
Wapiti) fail at detecting the POwnMe XSS presented in Section 2.1. The main rea-
sons are imprecise application behavior awareness (some scanners do not navigate
properly, and do not observe the re ections), imprecise test verdict (e.g., Skip sh
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considers a page model change to be a suf cient condition for XSS), and limited
set of fuzzed values (unaware of the output structure or the lters). Our approach
overcomes the rst limitation using a combination of control ow inference, taint
ow inference and a guided fuzzing.

In step A in Figure 3.1, our tool called LigRE infers a Control Flow Model (
Control Flow Model (CFM)) in the form of a colored automaton (hodes and contin-
uous arrows of Figure 3.2, where nodes represent webpages/outputs and transitions
represent inputs/HTTP requests), up to a tester de ned precision. Then in step B,
LigRE walks through the model by generating HTTP requests and submitting them
to the application. The corresponding responses (HTTP replies) are recorded. Taint
ows of sent input parameter values are inferred on the outputs, and annotated on
the model (blue dashed lines on Figure 3.2).

2 DPOST 2t}

POST /?{'login': 'yoda!,
‘password': '‘DoOrDoNot'}

POST /?
{ messge2':

GET /?action=
iew_mess@es

GET/

GET /?action= | GET /?action=
view_messaes& \view_messa@es

21

GET /?action=delete
_messge&id=1

e 7action=
i ew_messges

Figure 3.2: Extract of the CTFM for the POwnMe application

In order to addresX¥SS.3.3 How tprioritize inputs fuzzingthe chopping step
computes model slices (see Figure 3.3), and prioritizes them. Each slice is com-
posed of a pre x and a suf x. For instance, the prd&! 2;2! 7]and the sufx
[7! 17;17!" 18;18! 21]. LigRE sends the pre x to the application, then pass
the authentication credentials (e.g., cookie) to a fuzzer (e.g., w3af [Riancho 2011]
or KameleonFuzz) and limits its scope to the suf x. Those slices permit to drive
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the tested application toward the originating transition of an inferred re ettjgn
and to constrain the fuzzing towards the transitignto observe the re ection.

GET /?

@ POST /2 {'message2': '/
POST /?
ET/ ‘action': 'save_message'
'msg': 'egassem_'}
0 ET/
<° -
ET /?action=auth&
ET /?
2 OST/? {}
DP 18 DGET I?

‘password': 'DoOrDoNo GET /?action=

POST /? {'login": 'yoda'
iew_messages

GET /?

POST /? {'messa 21

Figure 3.3: A chopping slice produced by LigRE, during the step C, for the
POwnMe application (pre x on the left part, and suf x on the right)

3.2 Evolutionary XSS Fuzzing

Once we have a model, we use it for generating fuzzed input sequences. In the cur-
rent section, we illustrate this fuzzing process. We address the challenges XSS.3.2,
XSS.3.3 and XSS.2 (Section 2.5.1, page 33).

e XSS.3 Creating Fuzzed InputsFor addressing the questi®sS.3.How
to fuzz inputs?we propose to reuse the hybrid control+taint ow model.
Indeed such models notably provide information about the re ection con-
text (e.g., the HTML structure of the re ection: outside a tg>Hello
Lakitu </b>). Fuzzing exists with various avors: random, anomaly
operators, grammar-based. Since successful XSS exploits need to respect
some HTML constraints, we choose to generate fuzzed values with an attack
grammar. Thus the search space is composed of the re ections and the attack
grammar.

For addressing<SS.3.3 How t@rioritize inputs fuzzing?we can use met-
rics such as the rarity of a re ection, and the “injection power” of a re ec-
tion (e.g., how many differergrammar meaningfuHTML constructs are

re ected?). We integrate such metrics in the tness function of a genetic al-
gorithm which captures characteristics of the best inputs and evolves them.
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e XSS.2 Achieving a Test VerdicfThe input sequence includes point(s) where
to observe the effect of a fuzzed input. Those are outputs of the web
application. Several Black-box scanners, e.g., [Zalewski & Heinen 2009,
Riancho 2011], only search for a verbatim re ection (exact string recopy)
in the HTML code present in the body of an HTTP Reply. As this does
not provide enough information about the ability to execute attacker con-
trolled code, these scanners are likely to obtain fuzzy test verdicts. Indeed,
server-side sanitizers may signi cantly transform fuzzed inputs when re ect-
ing them. Thus, in order to achieve a test verdict, it is necessary to obtain
the taint information associated with “how the browser parsed the output”.
A candidate solution is to obtain taint information up to the browser parse
tree. However, since we are in a black-box context and want to nd XSS ex-
ploits for real-world browsers, we cannot propagate the taint as [Sekar 2009]
did with his home-written browser. Thus we propose to use taint inference
techniques to obtain this information.

We illustrate these choices in Figure 3.4, and develop this second part of our
approach in Chapter 5.

-->
sAgack Input -* + Inputs Evolved
! rammar by Genetic Algo.
ReRection; D.1. ) .
: L D.2. Precise |
Aware 4 | Malicious : :
EE— Inputs —VF . Taint Flow -—>F0und
Non : uzze Inference |: o
Malicious + | Generation Inputs +Vulnerabilities
Inputs .

Figure 3.4: KameleonFuzz: Evolutionary XSS Fuzzing

Example We describe the execution of LigRE+KameleonFuzz on POwnMe
(page 18). We here focus on KameleonFuzz, once LigRE has inferred the con-
trol+taint ow models and generated input sequences.

Figure 3.2 contains a re ection for the val@ee _g_a_s_sem of the parameter
messagesent in the transitiod ! 33, An extract of the outpuDyg; is:
<input name="message2" value=' 2. e g.as.sem'/> where we

highlight the re ection. Here, the re ectiorcontextis inside a tag attribute

value. The context in uences how an attacker generates fuzzed values. Listing 3.1
shows the server sanitizer for this re ection. It blocks simple attacks. Attackers
search a fuzzed value s.t. if passed through the sanitizer, then its re ection is not
syntactically con ned in the context [Su & Wassermann 2006] i.e., it spans over
different levels in the parse tree.
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<?php function webapp_filter($str) {
(eregi("|'[>|<[;|/",$str)) {
$filtered_str = "XSS attempt!";
} {

Sfiltered_str

return $filtered_str;
} 2>

str_replace(" ","",$str);

Listing 3.1: A vulnerable sanitizer in POwnMe

Table 3.1 shows fuzzed values sent by w3af [Riancho 2011], a black-box open
source scanner, when testing POwnMe . W3af iterates over a list of fuzzed values.

It does not learn from previous requests, nor

considers the re ection context. As a

result, all fuzzed values in Table 3.1 were affected by the Iter described in List-
ing 3.1, and w3af considered this re ection not to be dangerous (false negative in
vulnerability detection). Only the input value composed of characters having no
special meaning in HyperText Markup Language (HTML) or JS (Resa Ze)

were not Itered. We illustrate in the following table the only re ection that w3af

obtained.
Fuzzed Value(Xsrc) Re ection
SySiw SySlw

ul<hf>hf"hFhf(hful

</A/style="xss:exp/
fake _alert('XSS"))">

** [ression(

XSS attempt!

"l--"<klgn>=& fO) g

<IFRAME SRC="javascript:fake
_alert(‘’klgn');"></IFRAME>

Table 3.1: w3af fuzzed values (extract)

The chopping (step C of LigRE, illustrated in Figure 3.3) produces input se-

guences containing at least one re ection.
In step D.1, KameleonFuzz generates

individuals, i.e., input sequences in

which it fuzzes the re ected value by replacing the input parameter value by a
word generated from the Attack Input Grammar (AlIG). For each individual, the
corresponding outputs are recorded and the taint is inferred between the fuzzed

input value and the concrete output, but also
concrete output and the nodes of the browse

between the tainted substrings of the
r parse tree. This taint aware tree is an

input for the test verdict (did this individual trigger an XSS?) and the tness score
(how close is this individual to triggering an XSS?). The best individuals are genet-
ically recombined while still conforming to the AIG to create the next generation:
e.g., the individuals 3 and 4 of generation 1 produce the individual 1 of generation

2. This process is iterated until a tester de ne

d stopping condition is satis ed (e.g.,

one XSS is found). Table 3.2 illustrates this evolution.
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Fuzzed Value(Xsrc) Re ection XSS FEit Gen.
TInj1'><script>alert |
(18138)</script> XSS Attempt! 31 1

oHleqglL' _onload="
document.body.inner

HTML+='<div _id=90480> XSS Attempt 32 1
</div>"  _fakeattr='

Zula2' _onload Zula2'onload 133 1
=alert(94478) =alert(94478) '
WUKkp'ntLgpRa WUKp' ntLgpRa 91 1
WUkp'nt _onload="' WUKp'ntonload X 185 2
alert(94478) ='alert(94478) '

Table 3.2: KameleonFuzz fuzzed values (extract) of the re ecfior =
7! 33)(message (tgsi= 7' 33)

The sanitizer in Listing 3.1 removes the spagéut notnt,nr or nn. An extract
of the outputpyg; for the last individual is
<input name="message2" value=' WUKp'nt

onload="alert(94478) ‘>

Using string edit distance and a threshold, the taint is inferred between the
tainted substrings adys; and each node of the parse tree obtained from a browser.
This produces a Taint-Aware Tree (TAT), as illustrated in Figure 3.5.

name

message2

WUkp

input attributes value

onload - alert(94478)
Figure 3.5: A Taint-Aware Tree (TAT)T Tyg; (extract). The payload is a message

box that displays 94478 (harmless).

.+ ——— attributes (onerror konload k.. )-.* .+ .=

Figure 3.6: One Taint-Aware Patterns (TAP), represented in a Linear Syntax (a
tainted event handler attribute)

The TAT are ltered, using a set of Taint Aware Patterns (TAP) (Figure 3.6).
Each TAP is characterized by a non-con nement of a tainted value. TAP are pro-
vided by the tester, who can use a very generic TAP, or, for example, use ones
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which only detect XSS exploits triggering the JS interpreter. Since the TAP in Fig-
ure 3.6 matches the TAT in Figure 3.5, the syntactic con nement o re ection
of Xgrc is violated and the individual is a successful XSS exploit.

This example illustrates how evolutionary input generation can adapt to sani-
tizers.
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CHAPTER4
Web Application Model Inference
for Black-Box XSS Detection

We think too small, like the frog at the bottom of the well.
He thinks the sky is only as big as the top of the well.
If he surfaced, he would have an entirely different view.

Mao Zedong

XSS involve both control and taint ows, as they rely on an input value being
partly copied to a transition output. Thus, our approach for automatically detecting
XSS in black-box consists of two steps: “crawling” infers tiomtrol and taint ow
of the application, then “fuzzing” generates malicious inputs to exhibit vulnerabil-
ities. In the current chapter, we focus on the rst step, components A, B and C
of Figure 4.1. This chapter addresses the problems of Section 2.5.1 (see page 33):
XSS.1 How to navigate in the Application? XSS.2.1 Where are the potential sinks?
XSS.3.1 Where to fuzz inputs? XSS.3.3 How to prioritize inputs fuzzing?

4.1 Our Approach

4.1.1 High Level Overview

We propose LigRE, a reverse-engineering tool which produces a model used to
guide the fuzzing towards detecting XSS vulnerabilities. As illustrated in Fig-
ure 4.1, it rst learns a control plus taint ow model, and then generates slices of
this model to guide the fuzzing.

During step A of Figure 4.1, LigRE learns tleentrol ow of the application,
using a state aware crawler, to maximize coverage. During step B, LigRE anno-
tates the inferred model with observaldént ows of input values into outputs to
produce acontrol plus taint ow model Annotations ow from a sourcég. to
a potential sinkys;. We use an heuristic driven substring matching algorithm for
its ef ciency and as Iters impact is generally low on re ections on non malicious
input parameters values.

After step B, we prioritize the most promising annotations. For each of them,
step C produces a slice of the model. Slices are chopped models. They permit to
drive the application to the origin df,., for sending a malicious valuey;, and
then to produce inputs guiding a fuzzer to navigate towgygsfor observing the
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! Control :Control | .
Web . Flow +Taint ] C. ) Vulnera-
APP._; A Mode] B + Flow ! Slicing slices D. | bilities
—| Control Flow —— Taint Flow (== (Chopping) [ Fuzzing f—»
Inference Annotation |: ;
Y B waaf
LigRE or

KameleonFuzz

Figure 4.1: High Level View of our Approach

effects ofxgre. The fuzzing, step D, consists in creating and prioritizing vakugs
depending of their effect. The fuzzing step will be described in Chapter 5.

4.2 Control Flow Inference

Step A in Figure 4.1 takes as input the description of a remote web application
(e.g., interface, authentication credentials), interact with it, and outpcisizol

ow model (CFM). A CFM formalizes the observable behavior of a web appli-
cation in a black-box test context. Nodes (states) represent webpages and transi-
tions represent requests and associated responses. However, storing only the afore-
mentioned information is not suf cient for constructing a precise model since the
web application may have internalacro-statege.g., new user created, logged-in,
logged-out, etc.). We capture this notion of macro-states by adding colors to nodes,
as in [Douge et al. 2012].

The control ow inference step uses heuristics to identify which request
changed the macro-state (Section 4.2.3), chooses the next request to be performed
(Section 4.2.4), and assess the degree of certainty in the model (Section 4.2.5.1).
The model is iteratively built.

Non-Deterministic Values (NDV) In the process odbstraction , Some pa-
rameters are omitted: NDV a.k.a. nonces [Wikipedia 2006], i.e., output parame-
ters whose values differ when sending twice a given input sequence (and resetting
the system in between) and which may be used in subsequent inputs. Examples
of NDV include: anti-CSRF tokens [OWASP 2013a], sessibistored in cook-
ies [Barth 2011], viewstates [Microsoft 2004]. In the presence of NDV, crawlers
achieve a limited coverage. More important, since we are interested in building a
Control Flow Model of the tested application, the presence of NDV may change
the abstracted output, thus resulting in a state explosion, whereas the execution
reached a previously encountered state.

We address this problem by requiring the human tester to identify NDV. In
order to do so, the tester has to observe which parameter values in a page model
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SFR Webmail: Graphical User Interface

Execution> 0

Execution 1

HTTP
Reply
(ex-
tract)
page page
\ \
/html/body/div/form /html/body/div/form
\ \
Page /cas/login [cas/login
Model ) N
(ex- (domaln‘,...,lt,...) (domaln‘,...,lt,...)
tract)

(‘webmessagerie-pub’,. . cEA2E9AQ7-.......)

|
(GET,...,POST,...)

(‘webmessagerie-pub’,. . cA3686786-.... ..

|
(GET,...,POST,...)

Figure 4.2: Visually Spotting a Nonce for the Paraméitémn SFR WebMail
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are constantly changing when executing the exact same input sequence after an
application reset.

For instance in Figure 4.2, when the tester submits twice the same@ipLt
!/, while resetting the application in between, the part of the page model corre-
sponding to the paramet#r has a different value the second time, thiusis a
nonce. Thus, for each NDV name, the tester has to execute twice at least one given
transition.t

For one given transition, detecting NDV may seem easy according to the pre-
vious example, assuming the knowledge of a complete control ow model. How-
ever, during the control ow inference, the complete model is not yet available
and is being inferred. Determining both the control ow model and the NDV are
two connected problems: not identifying NDV may lead to parts of the model be-
ing duplicated, and identifying NDV requires the ability to navigate to a transition
which contains one. However, our inference algorithm is not able to solve them
both simultaneously. Thus we require the tester to identify NDV.

Tester Provided Values The tester may also provide values for extending the
page models and thus generating new spiderlinks (e.g., a special login value for a
eld nameduid in a speci c DOM path).

4.2.1 Overview

Algorithm 4.1 shows the inference of a control ow model from a web application.
The control ow inference step infers partial control ow models (not necessarily
completely speci ed for each input).

Until a tester de ned multi-criterion stopping condition is met (e.g., number of
requests, duration, number of different pages seen, number of macro-states, etc.),
LigRE iterates the following process (line 8).

LigRE resets the web application to its initial state using a tester written script.
The rst spiderlink to be chosen is the start input (gener@iT /). LigRE sends
the concretization of the current spiderlink to the web application, and abstracts the
corresponding application output (HTTP reply) to a page model.

LigRE then consults the history plus the current spiderlink and page to deter-
mine if the macro-state has changed since the last time the same spiderlink was
sent (line 15). If this is the case, LIgRE determines which spiderlink in the history
changed the state (line 17), thanks to the score heuristic (see Section 4.2.3). The
identi ers of each history entry are updated, and the colors of the macro-states are
computed (line 21 consists in merging identical macro-states).

LigRE updates the history by storing the spiderlink and the page model. LigRE
then updates the control ow model w.r.t. the new information in the history (line
25).

1In this example, the form submission method is POST, and the url to submit the form contains
parameters which will be sent using the GET method.
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A new spiderlink is chosen in the ones available in the current page model. If
none is available, or if the current input sequence is longer than the maximal length
allowed by the tester, LigRE resets the web application, and builds a new sequence
following the aforementioned process by choosing the start spiderlink. The explo-
ration is thus a Depth First Search (DFS), until a contradiction is detected, or a
sequence of maximal length has been produced.

Similarly, when a contradiction is detected for a given macro-state, and the
con dence of the color not already chosen for the macro-state is higher than the
one in the control ow model, then we backtrack, undoing the latest macro-state
change, and reset the application and start a new input sequence.

LigRE makes use of heuristics, because the problem of determining macro-
state is addressed on the y during the navigation problem.

Algorithm 4.1: Control Flow Inference

# IN: nonces, webapp, stoppingriterion
# OUT: cfm
history=[]
webapp.reset ()
curr _sequence_length = 0
curr _identifier = 0
spiderlink = config.start _spiderlink
while(not stopping _criterion):
if(curr _sequence_length >MAXSEQUENCIEENGTH):
webapp.reset ()
curr _sequence_length = 0
spiderlink = config.start _spiderlink
output = webapp.send(spiderlink.concretize(nonces))
page = output.abstract(nonces)
if(cfm.macro _state _changed(spiderlink,page,history)):
curr _identifier += 1
k = cfm.index .changed_.macro_state (spiderlink,page,history)
for i in range(k,len(history)):
history[i].identifier = curr _identifier
page.identifier = curr _identifier
cfm. compute_colors (cfm.identifiers,cfm.pages)
else:
page.identifier = curr _identifier
cfm.history.append( f spiderlink,page 0)
cfm.update _hist(history)
spiderlink = page. pick _spiderlink ()
curr _sequence_length += 1
return cfm
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4.2.2 Control Flow Notions

The history of inputs and outputs serves to buildaaigation tree which is used
to build aCFM. Both are colored. Their coloration evolves to characterize the
macro-states
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4.2.2.1 Macro-State

Macro-stateis an important notion for understanding the control ow of a web ap-
plication. It designates “anything that in uences the executed code at server side”
[Doupe et al.2012]. Both nodes and macro-states represent the current execution
context of the web application. They differ in their granularity. A node is charac-
terized by a page (i.e., the last output). Whereas a macro-state is a set of nodes,
i.e., at a higher level of abstraction, and is characterized by a common behavior of
these nodes. De nition 10 formalizes this notion.

De nition 10 Macro-State

LetW = (N;ng;T;1;P, ) be aWeb Application (De nition 4).

A macro-state is a set of nodes which is coherent w.r.t. its successor nodes.

LetC N be a setof colors. Latol : N! C be a coloring function which
associates a color to each node. We say tbhis a valid macro-state coloring
iff, for any ng;ny 2 N, col(ng) , col(ny) whenever any of the following conditions
hold:

* 9i 21;9(nc; ng) 2 N2 s.t. (NN 2TA (Np;isng) 2T~ (ne),  (ng)
o £ (Wj9 21;(nai;u) 2 Tg\f (U)j9i 2 1; (np;i;u) 2 Tg= ?

If colis such a coloring, for eaah2 C, the set of nodebl. = fn 2 N;col(n) = cg
is a macro-state.

4.2.2.2 Control Flow Model (CFM) (model )

A CFM is a Web Application with colors (i.e., macro-states). It is de ned in De -
nition 11. The nodes and continuous arrows of Figure 3.2 are an example of CFM.
The inferred CFM are not necessarily completely speci ed for each pair of node
and input.

De nition 11 Control Flow Model (CFM)

A CFMis a 8-upleM = (N;ng; T;1; P, ;C;col) whereW = (N;ng; T;I;P, )
is a Web Application (De nition 4) andol : N! C N is a coloring ofW s.t.
the macro-states partitidd:

« for each colorc 2 C, let N be the set of nodes iN having this color. Either
Nc is empty, o\ is a macro-state (De nition 10)

4.2.2.3 Navigation Tree listory )

The Navigation Treeh(istory  in Algorithm 4.1) is a set of traces. Itis a pre x
tree which contains the sequences of abstract inputs (spiderlinks) and outputs (page
models). This navigation tree is an auxiliary structure for building the CFM.
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lGET llogin l
10 10
10! 20\GET /saveprofile?dction=new&is _author=Trueé&...

20! 21\ GET /login

After After
20" request 21t request

Figure 4.3: Evolution of the Navigation Tree when the Macro-State Changes

4.2.3 Macro-State Change Detection

As the stopping criterion will halt exploration before the Web Application is fully
explored, our inferred model is not completely speci ed. This holds for the step A
(control ow inference), but also for the step B (taint ow inference).

We build the CFM iteratively in step A, using a DFS exploration, so we need to
characterize the current macro-state after each request. In order to do it, we need to
address four sub-problems: Did the macro-state change? Which request changed
the macro-state? What is the current macro-state? Which link to pick next?

In order to alleviate the computational complexity, we address these sub-
problems using heuristics, inspired from [D@usgt al.2012]. We added param-
eters in Table 4.1 and Table 4.2, and adjusted their weights using results from
experimentation by observing which combinations increased the ef ciency of the
control ow inference. ?? details the dimensions and the rationale behind each
dimension.

4.2.3.1 Example

Figure 4.3 shows the evolution of an extract of the navigation tnesafy )
when a macro-state change occurs. In this example, the spid&tiik /login
permits detecting the macro-state change, because the page model obtdined in
10 is different from the one obtained 20! 21, and the same spiderlinRET
/login  was executedindex _changed _macro _state selectsl0! 20as

the cause of the state-change, because it has the higtwst (see Table 4.1)
value among! 10;10! 20;20! 21].
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+or- id dimension name
weight
++ 1 number of input parameters
+ 2 distance between page modetg &y i pi)
+ 3 HTTP method
4 number of times performed (total)
5 number of times it changed the state
6 number of requests betweeandigetect
7 number of potential contradictions (approx))
Table 4.1: Dimensions of thecore(spiderlink i) heuristic

4.2.3.2 Did the macro-state change#r{acro _state _changed )

If a spiderlink i is sent twice to the application during the requests
prev and detect and the obtained page models are different (i.e.,
(oprev = ipre.concretize().send()).abstract() , (Odetect =
ideteciconcretize().send()).abstract() ), then the macro-state
changed. This is the case for the spiderlinkg,~=GET /login (! 10) and
idetecEGET /login (20! 21) in the navigation tree extract shown in Figure 4.3.

4.2.3.3 Which request changed the macro-statetnflex _changed _macro
_state , score heuristic)

If a macro-state change is detected betwggg and igetecs then the question
“which request in the history between those changed the macro-state?” arises.
To answer it, the heuristic functicstore represents the likelihood of a request

value ofscore(i) , the more likelyi changed the macro-state. The dimensions
of score are listed in Table 4.1. If there isig resp. , in front of the dimension,
thenscore is increasing, resp. decreasing, w.r.t. this dimenssmore is used
inindex _changed _macro _state in Algorithm 4.1.

The following dimensions compose the heuristic of Table 4.1.:

» 1. Number of input parameters. the more inputs parameters for a given
spiderlink, the more likely it will change the macro-state (e.g., when creating
a new user in an application).

» 2. Distance between page modelshe more distinct are the page models
of i andiprey, the more likely they correspond to nodes in different macro-
states. Due to its effectiveness, we use the PQ-gram distance for measuring
the similarity between page models [Augstdral. 2005].
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3. HTTP method: a POST method is more likely to change the macro-state
than a GET method, thus it will have a higher score.

4. Number of times performed (total) number of times that this spiderlink

has already been sent. Our navigation strategy prefers request that permit
determining a macro-state change, but not request that actually do change
the macro-state. Thus a frequently sent spiderlink is not very likely of having
changed the state.

5. Number of times this spiderlink changed the state since we are using
heuristic functions, we want to be error tolerant, that is if once we determined
that a given spiderlink changed the macro-state, we want to decrease the
likelihood of repeating this error.

6. Number of requests between and igeteg SiNce our navigation strategy
prefers requests that help determining a macro-state change, it is likely that
we detected a macro-state change early, that isighat:is probably close

of the spiderlink that changed the macro-state.

7. Number of potential contradictions (approximative). if we hypothe-

size thai changed the macro-state, how many potential contradictions would
we have? It is likely that choosing a wrong spiderlink as the reason for a
macro-state change would increase the number of contradictions.

The nal score is a weighted linear sum of each dimension.

4.2.3.4 What is the macro-state of the current node?cbmpute _colors )

The current node is the result of the submission of the spider-links since the last
reset. In order to know if the current node is one previously encountered, it is
necessary to merge macro-states.

For this purpose, aidenti er is associated to each node. If the macro-state
changes, then the current identi er is updated to a one different of the preceding
node, it is unchanged otherwise (see Algorithm 4.1). [Ceoetmal. 2012] reduced
this macro-state collapsing problem to the coloring of an undirected graph of iden-
ti ers [Doupé et al.2012]. If there is an edge between two identi ers (eAand
B), then they will have different colors, otherwise they will be merged (8gnd
D identi ers are merged in the same coBr D in Figure 4.4).
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Figure 4.4: Identi ers Merge: B and D denote the same Macro-State (extract of the
Google Gruyere Macro-State Coloring Process)

There are four rules to add an edge between two identi ers / macro-states
and :

* Rulel: there is a macro-state change fronh or ! (e.q0.,Al' B,
B! C,C! Detc.)

* Rule2: they have no common paggs@es )\ page¢ ) = ?) (e.g.,Aand
C)

* Rule3: if9 a spiderlinki, and identi ers; , s.t.

— by executingi when the application is in the macro-statelor( )
drives it to the macro-stamlor( ): (i)!

— and by executingjwhen in the macro-statmlor( ) it leads to a macro-
statecolor( ): (i) !
— and the reached macro-states are differeolfor( ), color( )

— ... then it means thatand should not be mapped to the same macro-
state:color( ), color( )
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* Rule4: adding an edge reduces the number of potential contradictions
Backtracking may occur during coloring (see Section 4.2.5.3).

Algorithm 4.2: Compute Colors

# IN: history, cfm, identifiers
# OUT: cfm, identifiers

def compute_colors ():

cfm.compute_rules _1_and.2() # R1: same input, different
page model
# R2: no common page model
cfm.compute_rule _4() # R4: contradictions
identifiers.greedy _coloring()

while(cfm.compute _rule .3() > 0 ): # R3: same input leads to
different macrostates
identifiers.greedy _coloring()

class CFM:
def compute_rules _1_and_2():
for a in identifiers:
for b in identifiers:
next _node_b = false
if(a '= b):
at _least _.one_.commonpage_-model=false
for t _a in a.transitions:
for t _b in b.transitions:
if(t _a['input']==t  _b['input']):
# rule 1. same input, different page model
if(t _a['node']['page _model'l!=t _b['node'][
'page _-model']):
identifiers.edges.append([a,b])
next _node_b = true
break
if(t _a['node']['page _model']==t _b['node']['
page_-model']):
at _least _one_.commonpage_model=true
if(next _node_b):
break
# rule 2: no common page model
if(not at _least _.one_.commonpage_model):
identifiers.edges.append([a,b])
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Algorithm 4.3: Compute Colors (cont.)

# R4: contradictions
def compute_rules _4():
for a in identifiers:
for b in a.contradiction _observed:
identifiers.edges.append([a,b])
# R3: same input leads to different macstates
def compute_rule _3():
numof _added.edges=0
for a in identifiers:
for b in identifiers:
if((a !'= b) and ([a,b] not in identifiers.edges)
] not in identifiers.edges)):
for t _a in a.transitions:
next _b = false
for t _b in b.transitions:
if(t _a['input']==t  _b['input']):

and ([b,a

if(t _a['node'].identifier.color = t _b['

node'].identifier.color):

identifiers.edges.append([a,b])

numof _added._edges +=1
next_b = true
break
if(next _b):
break
return num _of _added_edges

class Identifier:
def greedy _coloring():
curr _color = 1
for a in identifiers:
neighbors _colors=[]
for b in a.get _identifiers _edges():
if(b.color != 1):
neighbors _colors.append(b.color)
neighbors _colors.sort()
# use the most recent available color
for j in range(curr _color, 1, 1):
if((found _color== 1) and (j not in neighbors
found _color = j
break
if(found _color== 1):
current _color +=1
found _color = current _color
a.color = found _color 55

_colors)):
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4.2.4 Navigation Strategy

Each time LigRE receives an output of the web application, it abstracts this con-
crete output to a page model and update the macro-states colors. Since we perform
a DFS exploration, LigRE chooses the next spiderlink to explore. Depending on
the tester parameters, it may generate additional spiderlinks — than the ones present
in the page model — for facilitating future taint ow inference.

4.2.4.1 Choosing the Next Spiderlink to Exploreggick _spiderlink )

After obtaining a page modgd, LigRE must decide what is the next spiderlink

in spiderlinkgp) to explore. The heuristic functiomavigating  represents the
likelihood of a spiderlink to be chosen as the next one to be executed on the ap-
plication. For a given spiderlink the higher the value afavigating(i) , the

more likelyi will be picked. Table 4.2 lists its dimensiongick _spiderlink

in Algorithm 4.1 uses it.

+or- id dimension name
weight
+++ 1 request never executed
++ 2 (1+consecutiveeontradictions)*numnstatechange
++ 3 num recently sent
++ 4 number of arti cially generated parameter values
+ 5 number of times sent
6 spiderlink methodweight
7 number of times it changed the macro-state
Table 4.2: Dimensions of theavigating(spiderlink i) heuristic

The dimensions of Table 4.2 model the several intuitions:

* 1. Request Never Executedwe want to increase the knowledge of the
application.

e Some spiderlinks may be more likely to be picked up,
as they permit detecting a state chang@. (  (1+consecu-
tive_contradictions)*num _detect state. changg. However, we do not
want that only those are choosen, thus we temporarily introduce a penalty if
they have been recently picke8l Number of Times Recently Sent

« 5. Number of Times Sent we want to favor less explored spiderlinks.

« 4. number of articially generated parameter values, 6. spider-
link _method weight and7. number of times it changed the macro-state
we want to explore as much as possible of the current macro-state before ex-
ploring the next one. Thus, since POST requests are statistically more likely
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to change the macro-state than GET requests (e.g., user creation, user login),
navigating is a decreasing metric w.r.t. this dimension.

As illustrated in Algorithm 4.4, either the current node contains unexplored
spiderlinks and one of them is chosen according to thauigating  score, or
the shortest path in the model to nodes containing non explored spiderlinks is com-
puted using [Dijkstra 1959]'s algorithm.

Algorithm 4.4: Pick Spiderlink

# IN: cfm, page, history
# OUT: spiderlink

def pick _spiderlink (cfm, page, history):
chosen=None
never _explored = []
for sp in page.spiderlinks:
if(sp not in history):
never _explored.append(sp)
if(len(never _explored) >0):
never_explored.sort(key= lambda i: navigating(i),reversed=true)
sp.-set = never _explored
else:
explored _n_times = []
n=1
while((len(explored _n_times)==0) and (n<config.stop.
N.MIN.LINKS)):
explored _n_times = cfm.
get _all _transitions _explored _n_times(n)
if(len(explored _n_times)==0):
raise Exception(‘cfm built')
explored _n_times.sort(key= lambda i: dijkstra(page.
current _spiderlink,i))
sp_set = explored _n_times

chosen = sp_set[0]
return chosen

The stopping criterion evaluates to true when for each node of the CFM, the
outgoing transitions have been explored a tester de ned number of times. The
tester can limit the number of requests and the execution time. In our experiments,
we limit the number of sent requests. We adjust this metric by iteratively, browsing
manually the application, setting a limit, inferring a control ow model, observing

57



4.2. CONTROL FLOW INFERENCE CHAPTER 4. INFERENCE FOR XSS

the obtained CFM, and eventually adjusting the number of requests. We adjusted
this metric depending on the tested web application (e.g., for POwnMe , we limit
to 60 requests, whereas for Gruyere, we limit200). Adjusting this metric is a

trial and error process, which converged around 25 iterations for the rst tested
applications to around 8 for the most recently tested ones.

4.2.4.2 Pruning

Testers may want to prune the model for readability, speed, or desire to concentrate
the testing effort in one part of the application. This process is known to reverse en-
gineers of binary executables [Guilfanov 2008]. LigRE permits to specify pruning
patterns in order not to explore matching spiderlinks.

In Figure 4.5, we illustrate one pruning pattern. A pruning pattern matches
DOM tree nodes, in order to prevent LigRE to build spiderlinks for ¢i#e> or
<FORM>DOM nodes containing in the subtrees matched by this pattern.

In Figure 4.6 we illustrate the impact that pruning has on the obtained CFM,
speci cally for WebGoat [OWASP ], a deliberately vulnerable JSP web application
(see Table 6.1 in page 91). We want to focus the testing on one particular WebGoat
“lesson”: “Stored XSS”.

We de ne pruning patterns manually speci cally for each web application we
want to test.

Figure 4.5: Nine Examples of Pruning Patterns for Spiderlinks

4.2.4.3 Atrti cial Spiderlink Creation

Depending on tester de ned con guration, LigRE may create spiderlinks that con-
tain arti cially generated values (i.e., which are not present in the page models).
This value creation aims at limiting the risks of collisions and false positives during
the later taint ow inference.

We want a functiorartif that receives an input parameteame(e.g.,msgin
Figure 3.2) and produces a value s.t. the following properties hold for “most” input
parameter names:

« itis easy to computartif(name)

58



CHAPTER 4. INFERENCE FOR XSS 4.2. CONTROL FLOW INFERENCE

First LIgRE Run: Initially Produced CFM after 60 requests: only one macro-state
is detected, because only the very rst transitions from the root node are explored.

Second LigRE Run: Produced CFM with pruning after 60 requests. As LigRE
explore deeper parts of the application, it discovers a new (red) macro-state.

Figure 4.6: Result of Application of Spiderlink Pruning

» modifying an input parameteramesigni cantly changesrtif(name)

Those are two of the four properties of ideal cryptographic hash functions. Some
web fuzzers use hash functions [epsylon 2012].

In our implementation, we use our own function which creates parameter val-
ues by reversing the parameter name and by alternating characters from the re-
versed input parameter name and an extension string (may be tester provided, we
hardcoded default ones ; should not contain “special” HTML characters such as
>/ 0, as illustrated in Table 4.3. This has the advantage of permitting a
human tester to visually identify the tainted parameter source. For two given input
parameters having the same name, our technique voluntarily generates the same
value, even if they originate from different transitions in the CFM.

Param. Name Extension String Generated Param. Value
pw 1245780 wlp2wpdwsp

Table 4.3: Automatic Value Generation for Helping Taint Flow Inference
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4.2.5 Backtracking

Backtracking consists of undoing parts of the model and recomputing them with
an additional constraint. It occurs when eithepaential contradictionDe ni-

tion 12) is observed on part of the model with a loan dence or when executing

a spiderlink on the CFM leads to a different page model than the one observed in
the Web Application. Backtracking is a part of theodel.update() process
(Algorithm 4.1).

4.25.1 Condence

The Con denceexpresses the level of trust in a part of the model. This metric is
applicable to a node or a transition. The higher its value, the more con dent we
are in the coloring of the element. Table 4.4 contains the dimensions used in this
function.

weight| dimension name

number of nodes in the shortest path from root
number of unexplored spiderlinks in the page mogdel
ofn
... that have same hash as one which permit deter-
mining a macro-state change

Table 4.4: Dimensions of theonfidence(node n) heuristic

4.2.5.2 Potential Contradiction

A potential contradiction indicate that we may have assigned a page model to the
wrong macro-state coloring. It is de ned in De nition 12. Let us assume that the

De nition 12 Potential Contradiction
Let ny andn, be two node2 N. A potential contradiction betwean, andny

is de ned as follows:

True if ((confidencény), confidencény))
A (pagemode(ny) == pagemode(ny))
A (color(ng) , color(ny)))

- False otherwise

contradictior{na; np) =

0K/ /AXRK/ OO

nodeb is the current state. If there exists a n@jes.t. contradictior(a; b) is True,
then wemayhave missed detecting a state change. Thus contradictions are inputs
for navigating  (see Table 4.2) anscore (see Table 4.1).
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4.2.5.3 Backtracking

We hypothesize that the web application is deterministic at the abstract level: if
an input sequence of spiderlinks from the start node is executed several times, the
sequences of obtained page models are the same.

Each sent spiderlink is executed on the application, and on the currently in-
ferred CFM. It may happen that the CFM execution leads to a different page model
than the application one. This is a non-determinism: either the application is not
deterministic (and the tester missed a nonce in the abstraction process), or the cur-
rent CFM is not correct. We assume it is the second case.

In such a situation, our heuristic assumes that the ultimate macro-state change
was not correct: we considered the identi erand to map to the same macro-
state, but this turned out to be wrong. Thus, we add an edge betwash (such
edges are used in tlewmpute _rule _4() of Algorithm 4.2), redo the coloring
and update of the model, reset the application, and start a new sequence from the
initial node.

4.3 Taint Flow Model Annotations

Figure 4.7: Step B: Taint Flow Inference

The taint ow model annotation corresponds to step B in Figure 4.1. It consumes
a Control Flow Model (CFM), to which it adds inferred taint ows, thus producing

a hybrid Control plus Taint Flow Model (CTFM), such as the one represented in
Figure 3.2. In such a model, the bold text represents the source of a re égtion
and the blue/dotted arrow edges designate the re ection destirtation

This step consists of rst generating walks in the CFM, and then actively sub-
mitting those walks to the web application while inferring observable taint ows.

During this step, only taint ows are added to the CFM, no transitions are
added or removed, even though a precise analysis may discover new macro-states.
This is a choice of our implementation.

We compute the control ow inference (step A) and the taint ow inference
(step B) separately. The reason is that until step A (control ow inference) is
nished, we are unsure whether the execution context of the application leads to
a node for which we already inferred the taint. Thus performing control and taint
ow inference separately permits to only compute the taint when necessary. This
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is important, as on the tested applications, the taint ow is inferred signi cantly
more often than the control ow inference.

4.3.1 De nitions

Re ection Context and CTFM are de ned respectively in De nition 13 and De -
nition 14. The taint- ow computation is explained in Section 4.3.3.

A re ection context is the output structure in which a re ected input value is
supposed to be con ned (De nition 6) during the processing of a non-malicious
input. We list several re ection contexts in Table 4.5, and formally de ne this
notion in De nition 13.

outside an HTML tag <hl>

inside an HTML src/href at{ <a href=" ">

tribute value o

inside a non src/href HTML att <input value=" ">

tribute value o

inside an HTML textarea <textarea> </textarea>

inside a CSS value body f background-image:
url(images/ png); g

inside a JS value var zipcode = " "

Table 4.5: List of Considered Re ection Contex&T X) for Go =HTML

De nition 13 Re ection Context

Let G be a grammar (e.g., HTMLJCT X be a set of re ection contexts (Ta-
ble 4.5),04st2 be aconcrete output and a word@fandv2  be a non-empty
substring ofogs;.

The re ection contextctx(v) 2 CT X is the narrowest structure i@ (non-
terminal production rule) in which the re ected value is con ned when sending
non fuzzed values. & is context-free, thentx(v) is the smallest word & con-
tainingv and derived from one unique terminal.

4.3.2 Generating Walks

Random walk and Breadth First Search (BFS) are the implemented strategies for
generating inputs from a CFM. The submission of those inputs is performed in a
DFS manner. Since we generate identical values if the same parameter is present
in several transitions, we want to reset the application frequently enough to avoid
over-tainting. Our input sequence creation strategies limit the length of the input
sequences, and the number of times the sequences traverse each node. If a sequence
is a pre x of another one, then we only keep the latter. We analyzed XSS on
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De nition 14 Control and Taint Flow Model (CTFM)
Let be an alphabet, arn@d be a grammar. A Control and Taint Flow Model
(CTFM) is composed of:

* a CFM (De nition 11)

e a taint-ow functiondf: (* T T) ! CTX, s.t. for a re ection
refl = (Xsrc;tsre; tast; Ogs) Of the valuexgc of a parametename 2
df(nametg.; tgs) produces the list of Re ection Contexts (De nition 13)

Of Xgrc INtO Ogst W.r.t. G

fteen applications of various complexity, and observed that the longest shortest
path betweens;c andtys, both included, is 4 transitions, and the shortest path to
reach the deepegjs; was 8, thus we arbitrarily limit the length of the generated
sequences to 8 (pre x+suf x).

4.3.3 Computing Taint Flows

For each sequende= (ty; ::;;tx), for each concrete outpuaf, j 2 [1:K], for each
previously sent input parameter valkg, m 2 [1::j], a distance betweexy, ando;
is computed.

Speci cally, the taint ow inference consists in rst searching in the outpyt
for exact substrings ok, of a minimal length, marking those found substrings,
clustering them, and then computing the edit distance [Levenshtein 1966kffom
to the clusters. If this distance is lower than an empirically determined threshold,
then a taint ow is annotated on the CTFM.

Algorithm 4.5: Compute Taint

# IN: cfm, webapp
# OUT: ctfm

def from _cfm_to _ctfm(cfm,webapp,config):
# generate input sequences

reg_exp=[]
# submit each input sequence
for inp _seq in sequences:
for k in range(0,len(inp _seq)):
try :
reg _expl[k]
catch IndexException:
reg_exp[k] = []
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Algorithm 4.6: Compute Taint (cont.)

15 i .k = inp_seql[k]

16 o_k = webapp.submit(i _k.concretize(config.nonces))

17 taint _flow = []

18 for j in range(k, 1, 1):

19 for 1 in range(0,len(inp _seq[j].params)):

20 if(k not in taint  _flow[j][I]):

21 # search for exact substrings

22 inp _param = inp_seq]j].params[l]

23 try :

24 reg -exp[jlll]

25 catch IndexException:

26 reg-exp[jlll] = [
build _reg_exp_of _min_length(inp _param]|
'value']l, config.min _taint _length),
build _reg_exp_of _min_length(inp _param]|
'value'], config.min _taint _cluster)]

27 if(reg _exp[j][][0].search(o _k)):

28 taint _flow[j][l] += [K]

29 continue

30 # filters may be in place

31 if(matches = reg _expl[jl[l][1].search(o _k)):

32 # see next page

33 def from _cfm_to _ctfm(cfm,webapp,config):

34 # ...

35 # indexed here for readability

36 if(matches):

37 clusters = []

38 # cluster them

39 curr _clust = 0

40 for ¢ in range(0,len(o  _k)):

41 if(matches.char _c_is _tainted()):

42 if(num _of _-misses > config.max _chars _inside _clus):

43 curr _clust += 1

44 clusters[curr _clust] += o _k[c]

45 numof _misses = 0

46 else:

47 numof _misses += 1

48 # is any cluster sufficiently close? (servsize filter)

49 for clust in clusters:

50 if(edit _distance(in=inp _param]['value'],out=clust) <=

config.max _edit _distance):

51 taint _flow[j][l] += [K]

52 break

53 ctfim = f'cfm':cfm,‘taint ,fl%ﬁs':taint _flow g

54 return ctfm
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Algorithm 4.7: Compute Taint (cont.)

def build _reg_exp_of _min_length(my _str,my _len):
to _compile=val.substr(0O,my _len)
for k in range(1,len(val)):
to _.compile = " j"+va|.substr(k,my _len)
return re.compile(to  _compile)

4.4 Flow-aware Non Malicious Input Generation

Figure 4.8: Step C and D: Chopping and Flow aware Fuzzing

441 Overview

Control+Taint Flow Aware Fuzzing encompasses steps C and D in Figure 4.1:
rst prioritizing the considered taint ows (Section 4.4.2), producing slices (Sec-
tion 4.4.3), and then using those slices to guide a fuzzer. Its pseudo-code is in
Algorithm 4.8. get _reflections returns the observed re ections by decreas-
ing priority. It uses theorioritization(reflection) heuristic function
whose dimensions are described in Table 4.6. The higher the valsiemfthe

more likely this re ection will be tested rst. For each re ection, LigRE positions
the application in the node from whidl. originates by sending prefix  se-
quence. Then LigRE feeds the fuzzer an authentication context (e.g., cookie) and
a suf x obtained from the chopped mod& K(tsc; tysy), see Section 4.4.3) for the
fuzzer to navigate fromy to tyss

4.4.2 Re ection Prioritization

Table 4.7 is an extract of the prioritization table in its initial statbmy corre-
sponds to the dimensiok of Table 4.6. Each tuple of cellésrc; Xsrc;tdst) line

of Table 4.7 designates a re ection. Thus we have re ectiani; c;d. Ini-
tially, chosen _reflections , the list of already chosen re ections, is empty.
Sincea has the highest prioritization value (see colusumin Table 4.7 and
line 20 of Algorithm 4.8),a is the rst re ection chosen. a is added to
chosen _reflections . The dimensions o4 are updateddimys(a)+=1. Then
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Algorithm 4.8: Control+Taint Flow-aware Fuzzing

#IN: webapp, ctfm, fuzzer
#OUT: vulns

def control _data_aware_fuzzing(webapp, ctfm, fuzzer):

vulns = ]

for refl in ctfm. get _reflections ():
webapp.reset ()
prefix =shortest _path(from=root,to=refl.src)
webapp.execute( prefix )
fuzzer.config.auth = webapp.context
suffix = shortest _path(refl.src,refl.dst)
fuzzer.config.urls = suffix
vulns += fuzzer.do()

return vulns

class CTFM(Object):
reflections=[]
def get_reflections (self ):
chosen_reflections=[]
prioritization _table .init()

while(len(chosen _reflections) < maxinput _to _fuzz):

chosen_index= 1

prioritization _table .sort(key= lambda refl:(
refl. times _chosen))

index _having _.samesum=0

for i in range(1,len(prioritisation _table)):
if( prioritization _table [0]. times _chosen <
prioritization _table [i]. times _chosen):
break

index _having _samesum=i 1

chosen_index = random.randint(0,index _having _samesum)

chosen_reflections.append(reflections[chosen
prioritization _table .update _.dimensions()
return chosen _reflections
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b is chosen, similarlydimu;5(b)+=1. Later on, eithec or d will be chosen. Let us
assumael is chosen rst. Themimu:5(d)+ = 1 anddimy(c)+ = 1 are updated, since
¢ andd have the sameg,.

dim weight| dimension name

1 number of re ections having the same pa-
rameter names,c

2 number of re ections having the same
(tsrc; tasy)

3 number of macro-states frotg to tqst

4 number ofalready chosene ections hav-
ing the sameg¢

5 number ofalready chosene ections hav-
ing the samétgc; tqs)

Table 4.6: Dimensions gfrioritization(reflection,chosen)

4.4.3 Chopping, a particular form of Slicing

Slicing permits to limit the state space exploration. This technique focuses on
parts of the applications w.r.t. slicing criterion The notion of slicing has
been extended to model-based languages. Various techniques are proposed in the
literature [Androutsopoulost al.2013]. In LigRE, we are interested in nding
paths between a sourtg; and a destinatiotys; on the model. Thus we use a
compressed form of slicing callethopping[Jackson & Rollins 1994], which cap-
tures this relation.Our chopping consists in a shortest sequence of transitions (also
called path) starting withs,c and ending on the originating node ;. We use
[Dijkstra 1959]'s algorithm for computing such paths on CTFM.

Figure 3.2 illustrates a CTFM produced by step B. If the targeted re ection
istgst = (7 (msQ@! 17)) andtys = (18 21), then an example of slice for this
re ection is illustrated in Figure 3.3.

4.5 Implementation

The approach is implemented as a tool LigRE containing approximately 8000
SLOC of Python3.2. Figure 4.9 represents its architecture. KameleonFuzz (Chap-
ter 5) extends LigRE by incorporating a new fuzzer. During the control ow in-
ference, the parse tree (approximated by a subset of the Document Object Model
(DOM)) is obtained using the selenium library [Huggetsal. ] which instruments

the Google Chrome browser to parse HTTP replies. During the taint ow inference,
requests are performed directly to the web application. During the fuzzing, LigRE
drives the application in the source via the pre x slice ; it then parameterizes the
suf x slice for a fuzzer (w3af [Riancho 2011] or KameleonFuzz Chapter 5).

67



4.5. IMPLEMENTATION CHAPTER 4. INFERENCE FOR XSS
Re ection
id tsrc Xsrc tyst dimy dinp dimg dimy dims sum chos
a| 7! 33 message2 7! 3|1 1 O O O0|-2]|0
b | 7! 17 msg 8! 2212 1 1 0O O |-3]|0
c| 33! 9 action 33 915 1 0 0O 0|60
d| 18! 21 action 22! 915 1 0 O 0 |-6]0
(initial state)
id tsrc Xsrc tyst dimy dinp dimg dimy dims sum chos
a| 7! 33 message2 7! 3|1 1 O 1 0 |-3]|1
b | 7! 17 msg 8! 2212 1 1 0O O |-3]|0
c| 33! 9 action 33 915 1 0 0O 0|60
d| 18! 21 action 22! 915 1 0 O 0 |-6]0
(after the rst iterationa has been chosen)
id tsrc Xsrc tyst dimy dinp dimg dimy dims sum chos
b | 7! 17 msg 18! 221112 1 1 1 0 |41
c| 33! 9 action 33 9|5 1 0 0 0|60
d | 18! 21  action 21 915 1 0 O 0|60
a| 7! 33 message2 7! 33 |1 1 0 1 0 |-3]|1
(after the second iteratiob,has been chosen)
id tsre Xsrc tyst dimy dimp dimg dimy dims sum chos
c| 33! 9 action 33! 9/5 1 0 1 0 [(-7]0
d| 18! 21 action 21 915 1 0 1 o0 |-7 |1
a| 7! 33 message2 7! 3|1 1 O 1 O0|-3]|1
b | 7! 17 msg 8! 2112 1 1 1 O |41

(after the third iterationg has been chosen, it could have beeaso, see lines
21-26 in Algorithm 4.8)

Table 4.7: Prioritization of Re ections

In order to con gure LigRE for an application, the tester has to write a

config.xml

le (an extract of such a le is illustrated in Listing A.2 in
page 142) which contains informations about the interface (e.g., Domain Name

System (DNS) Fully Quali ed Domain Name (FQDN), Transmission Control Pro-

tocol (TCP) port, baseHREF, etc.), a link to the tester written reset script, the stop-
ping condition, the nonces in the web application, and eventually some pruning
patterns if the tester wants the efforts to be concentrated in speci c parts of the ap-
plication. The tester can also adapt the weight of the dimensions in our heuristics,
altough it should not be necessary to them for applications similar to the ones on

which we experimented.
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Figure 4.9: Architecture of LigRE

Figure 4.10: The Liger Hercules (10 feet long and 922 pounds weight), the LigRE
Logo

4.6 Related Work

4.6.1 Control Flow Inference (CFM)

Based on [Angluin 1987]'s L*, [Shahbaz & Groz 2009] designed an algorithm
for iteratively inferring the control ow of an I/O system. [Chat al.2010] in-

fer a botnet protocol by adding a prediction heuristic to [Shahbaz & Groz 2009].
[Hossenret al. 2013] automatically generate test drivers for non-Ajax web applica-
tions.

[Doupé et al.2012] showed that improving control ow inference increases
vulnerability detection. LigRE shares similarities with their macro-state-aware-
crawler. Differences lay in the heuristics, the introduction of con dence, contradic-
tions, backtracking, and taint ow inference. [Dagipt al. 2012] run experiments
on a local cloud, whereas we run ours on a laptop.

[Dessiatnikoffet al. 2011] cluster pages according a specially crafted distance
for SQL injections [Dessiatnikofét al.2011]. [Marchettcet al.2012a] dynam-
ically infer the control ow of Ajax web applications [Marchettt al.2012a].
They wrote abstraction functions for common Ajax primitives.
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[Tonellaet al.2012] use genetic algorithm for nding the right balance be-
tween over and under-approximations of CFM[Tonelial. 2012].

LigRE does not make use of L* (because of the NDV, the macro-states which
leads to enormous state machines) and is driven by heuristics. It clusters pages
according to the notion of macro-state. The current implementation supports non-
Ajax applications or Ajax applications which downgrade gracefully.

4.6.2 Taint Flow Inference

Wa3af [Riancho 2011] and XSSAuditor [Batesal.2010](Chrome XSS lIter) as-
sume the fuzzed input value to be re ected without modi cation, and thus rely on
exact string matching. This may lead to false negatives when input values are trans-
formed [Heiderichet al. 2010, Ducleneet al.2013b]. Skip sh generates three
variants for a spiderlink, and assumes there is a taint ow if the response varies
[Zalewski & Heinen 2009, Dessiatnikodft al. 2011, Douget al.2012].

This may lead to false positives, if the scanner is not aware of
a macro-state change. [Sahal.2009] compute a string edit dis-
tance [Levenshtein 1966]. [Sekar 2009] proposed a Itering algo-
rithm inspired from bioinformatics for improving the efciency of
[Levenshtein 1966]'s distance. LigRE relies on a lter-tolerant substring
matching of a minimal length, and computes the edit distance on a smaller output.
LigRE relies on the fuzzer test verdict.

4.6.3 Control and Taint Flow Inference (CTFM)

[Caselderet al.2013] use similar models, named Hybrid Control Flow Graph
(HI-CFG) on basic blocs, to automatically generate exploits for memory corrup-
tion vulnerabilities in binary programs with a grey-box test context. Netzob infers
protocols implementations using L*, and enhance it with taint ows w.r.t. equiv-
alence, size, or repetition relations. Its test driver, abstraction, and concretiza-
tion functions are written by an analyst [Bossert & Gan2013]. With PRISMA,
[Kruegeret al.2012b] infer control and taint ow Markov models of botnet proto-
cols from traf ¢ captures. LigRE targets XSS, a command injection vulnerability,
in web applications with a black-box test context, and produces CTFM to drive a
fuzzer.

4.6.4 Search for Parts of the Inputs where to Focus the Testing

[Halleretal.2013], [Rawat & Mounier 2012], [DeMott al.2012a], and
[Bekraret al.2012, Bekrar 2013b] statically search for potential sinks and then
dynamically generate inputs targeting those potential sinks.

[Stocket al.2013, Ducleneet al.2013a] dynamically propagate white-box
taint ows to prioritise DOM-XSS tests.
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[Cadaret al. 2008b] uses symbolic execution for generating inputs s.t. each
branch of an application is activated at least once by one input.

[Grégoire 2013] fuzzes third party code, and then generate inputs for applica-
tions which integrate such code (e.g., Acrobat Reader).

[Mulliner & Miller 2009] fuzzed the iIOS SMS service by sending messages
through the baseband and modifying them before they reach the iOS service.

4.6.5 Conclusion

LigRE automatically partially reverse-engineers web applications as a control and
taint ow model. It prioritizes model slices to guide the scope of the fuzzing.

Heuristics drive LigRE. Empirical experiments show that LigRE detects more
XSS than open source and control ow aware scanners (see Section 6.2).

In addition of being an input for human penetration testers, the obtained mod-
els can be the rst step for automated vulnerability detection: e.g., if provided to
a model checker or a fuzzer. For instance, our evolutionary smart fuzzer Kame-
leonFuzz [Duckneet al.2012, Ducleneet al.2013b] can use such models, and
improves the fuzzing step of LIgRE to detect more complex ltered XSS.

We observed there are two main reasons for false negatives: rst the fuzzers
neither adapt to the re ection context nor to the server sanitizers, and second they
have an imprecise test verdict. We address those issues in Chapter 5.
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CHAPTERDS
Evolutionary Fuzzing for
Black-Box XSS Detection

If no mistake have you made, yet losing you are ...
a different game you should play.

[Yoda 2001]

Fuzzing is normally limited to nding obvious symptoms like crashes, because it's
rare to be able to tell correct behavior from incorrect behavior when the input is
generated randomly.

[Ruderman 2014]

5.1 Introduction

5.1.1 Context

XSS detection is a problem involving control+taint ows, and input sanitization.

In presence of even basic sanitizers, many scanners have dif culties in creating ap-
propriate inputs, and thus produce false negatives. In Chapter 4, we addressed the
automatic reverse-engineering of control+taint ow models. In the current chapter,
we focus on how to generate malicious inputs targeting the potential sinks. We
address the following problems of Section 2.5.1 (page ¥3S.3.2 How to fuzz
inputs? How to act on speci c parts of those inputs? XSS.3.3 How to prioritize
inputs fuzzing? Which potential sinks should we test rst? XSS.2.2 Can we exploit
a potential sink?

In order to address these issues, we propose KameleonFuzz, a fuzzer which
mimics a human attacker by evolving and prioritizing the most promising malicious
inputs and taint ows obtained from LigRE. We incorporate in KameleonFuzz a
test verdict that relies on existing browser parsing and double taint inference.

5.1.2 The KameleonFuzz Approach

KameleonFuzz is a black-box fuzzer which targets Type-1 (re ected) and Type-2
(stored) XSS (see De nition 8) and can generate exploits targeting the discovered
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Figure 5.1: High Level Approach Overview

XSS. As illustrated in Figure 5.1, our approach consists of learning the model of
the application and generating malicious inputs. We reuse the LigRE components
A, B, Cfrom Chapter 4. The main contribution of this chapter is KameleonFuzz
which encompasses the blodRsl (malicious input generation) aridl.2 (precise

taint ow inference).

A Genetic Algorithm (GA), parameterized by Attack Input Grammar (AlG)
evolves individuals (malicious inputs). The AIG reduces the search space and mim-
ics the behavior of a human attacker by constraining the mutation and crossover
operators which generate next generation inputs. We de teeas functionthat
favors most suitable inputs for XSS attacks. Since server sanitizers may alter the
observed value at the re ection poifilys;, a naive substring match may not in-
fer the taint precisely enough, which could lead to false negatives. To overcome
such limitations, we perform a double taint inference. The GA iteratively evolves
the best individuals of the current generation, according to their tness score, and
recombines them to produce the next generation of individuals.

5.2 Evolutionary XSS Fuzzing

The fuzzing (step D in Figure 5.1) generategapulationof individuals (Genetic
Algorithm (GA) terminology). An individual is an input (sequence of HTTP re-
quests) generated by LigRE (line 7 of Algorithm 5.1) in which KameleonFuzz
generates a fuzzed valug according to an Attack Input Grammar (AIG) for the

re ected parameter (see line 15 of Algorithm 5.1). Inputs are concretized, sent to
the application, and the corresponding outputs are recorded. Then a precise taint
inference between the fuzzed value and the browser parse tree is performed in line
18. Each individual which did not nd a vulnerability (test verdict of line 19 eval-
uates to false) is evolved via the mutation and crossover operators (Section 5.2.6,
line 25 and 28 of Algorithm 5.1) w.r.t. the AIG (Section 5.2.1) and according to
the tness score (Section 5.2.5, line 22 of Algorithm 5.1).
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Algorithm 5.1: Genetic Algorithm (GA) pseudo-code

#IN: ctfm, attack grammar, webapp, config
H#OUT: vulins

# First Generation:individual S as Input Sequences

for | in range(1,config.popul _size):
# a reflection is choosen, and a slice produced from the CTHMV
popul[l] = Individual (ctfm.prio _get_slice(l))

vulns=[]
# Evolve the population
while(not(stopCondition())):
for indiv in popul:
webapp.reset ()
# generate a fuzzer value
x_src = attack _grammargenerate(indiv.reflection _ctx)
input _sequence = indiv.inputs.concretize(x _src)
o = webapp.send(input _sequence)
taint = precise _taint _infer (x_src,o,parser)
if(verdict(taint, patterns )):
vulns += [input _sequence]
popul[indiv] = Individual (ctfm.prio _get_slice(len(vulns)+
len(population)))
else:
indiv. fitness _compute(x_src,o,taint,M)

children = crossover (popul.fittest([0..math.ceil(config.cross *len(
popul))]), attack _gramma)
for ¢ in children:
if(random(0,1) <= config.mutationRate):
c. mutate (attack _grammay)
popul _new = children
for | in range(len(children),len(popul)):
popul _new[l] = popul.fittest(l len(children])

popul = popul _new

5.2.1 Attack Input Grammar (AIG)

Traditional fuzzing for memory corruption consists in the application of anomaly
operators on a set of bits (e.g., expanding a string, setting an integer to
INT32_.MAX, etc.). This does not work when fuzzing for Web Command Injec-
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tion, as rstthe risk of memory corruption is low on web applications, and secondly
when searching for XSS, the re ection must t a certain output structure (i.e., re-
ection context, De nition 13). Thus, in order to constrain the search space (i.e.,
avoid to search in the complete spacg, we use an Attack Input Grammar (AIG)
for generating fuzzed values. It represents parameter values an attacker would at-
tempt to the application. As compared to a list of payloads as in w3af and Skip sh,
an AIG can generate more values, and is easier to maintain thanks to its hierarchi-
cal structure. This AIG also constrains mutation and crossover operators (lines 13,
25, 22 of Algorithm 5.1).

The knowledge used to build an AIG consists of the HTML grammar
[W3C 2012b], re ection contexts (De nition 13), string transformations in the case
of context change [Weinberget al. 2011a], known attacks vectors [RSnake 2007,
Heyeset al. 2012].

Figure 5.2: Structure of an Attack Input Grammar (AIG) (extract)

We only give a taste of how to build an AIG, as it is yet manually written and its
automatic generation is a research direction. Figure 5.2 illustrates its structure. The
rst production rule consists of representation and context information. Example

of contexts (De nition 13) include<input value=" "/> ) and outside a tag
(<hl1> ). The representation consists of encoding, charset, and special string
transformation functions that we name anti- lter (e.g., PHP addslashes[PHP ]). In
our experiments it was suf cient to use UTF-8 encoding. However, variable length
encoding such as UTF-7 [Goldsmith & Davis 1997], Shift JIS [Microsoft b], etc.
may be of interest when the webpage does not specify any encoding to use.

We assume the availability of a representative set of vulnerable web applica-
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tions (different from the tested applications) and corresponding XSS exploits. For
each re ection context, the analyst writes a generalization of the XSS exploits in
the form of production rules with terminals and non-terminals.

We represent an AIG in an Extended Backus—Naur Form [Scowen 1993] with
bounded number of repetitions. We construct an AIG as an acyclic grammar. Thus
it unfolds to a nite number of possibilities. Listing 5.1 contains an excerpt of an
AIG we used during our experiments. The fuzzed value in Figure 5.3 was generated
using this grammar.

START = REPRESENTATION CONTEXT

REPRESENTATION= CHARSET ENCODING ANTI_FILTER

CHARSET= ( "utf8" | "iso-8859-1" | ... )

ENCODING= ( "plain" | "base64_encode" | ... )

ANTI_FILTER = ( "identity" | "php_addslashes" | ... )

CONTEXT= ( ATTRIBUTE_VALUE | OUTSIDE_TAG | ... )

ATTRIBUTE_VALUE = TEXT QUOTE SPACES HANDLER""QUOTE
JS_PAYLOAD QUOTE

HANDLER= ( "onload" | "onerror" | ... )

JS_PAYLOAD= ( JS_PO | JS_P1 | ...)

JS_P1 = "alert(" NUMS )"

NUMS= [5:10](NUM)

NUM= (0" | "1" | "2" | ... | "9")
QUOTE= (™ | "™ | ™ | "\ | ..)
SPACES= [1:3](SPACE)

SPACE= (" " | "\n" | "\t' | "\r")

TEXT = [0:9](LETTER)
LETTER = ("a" | "b" | ...)

Listing 5.1: Attack Input Grammar (AIG) (excerpt)

Generating a fuzzed valueconsists in performing a stepwise expansion
[Holler et al.2012] through the production rules of an AIG and, if applica-
ble, performing choices. Producing the corresponding string from a fuzzed
value consists in concatenating the strings obtained by a depth- rst explo-
ration of the context subtree, representing this string in a given charset, ap-
plying the anti- Iter function, and applying an encoding function. For in-
stance, the string that results from the fuzzed value of Figure 5/8U&p’_nt
onload="alert(94478) , on which theidentity function is applied as an
anti- Iter, and with no encoding change (nogkin ), and the resulting string in
UTF-8 charset.

In Algorithm 5.2, we illustrate the algorithm to transduce a production tree to
a concrete fuzzed value.
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Figure 5.3: The Production Tree of a Fuzzed Value

Algorithm 5.2: AlG: From Production Tree to Concrete Fuzzed Value

1 #IN: indiv_prod_tree
2 #OUT. x.src (as a string)

3

4 def from _aig -word_to _string(indiv  _prod _tree):
5 x_src=""

6 ipt = indiv _prod_tree

7 x_src = DFS.aggregate(ipt.context)

8

9 # anti filter

10 if(ipt.representation.antifilter=="identity"):

11 pass

12 elif (ipt.representation.antifilter=="addslashes"):
13 x_src = addslashes(x _src)

14 # ...

15

16 # encoding

17 if(ipt.encoding=="plain"):

18 pass

19 elif (ipt.encoding=="b64 _encode"):

20 x_src = base64_encode(x_src)

21 #...

22

23 # charset

24 if(ipt.charset=="utf8"):

25 pass

26 elif (ipt.charset=="EUC  CN"):

27 x_src = ltchinese.conversion.python _to _euc(x _src)
28 #... 78

29

30 return x _src
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Algorithm 5.3: AlIG: From Production Tree to Concrete Fuzzed Value (cont.)

def DFS.aggregate(node):

n = len(node.children)
if(n==0):

str = node.value
else:

str = "

for k in range(0,n):

str += DFS_aggregate(node.children[k])

return str

In our experiments, we used the same AIG for the tested web applications. Due
to a minor limitation of the current implementation, we sometimes pruned some
production rules, for the search space to be narrowed, and thus the fuzzing to be
faster (this can be automated easily, as it only consists of selecting the production
rules for a given re ection context). We think that one unique AIG can be used
when searching for Type-1 and Type-2 XSS and assuming a speci ¢ set of lters
and of re ection contexts (De nition 13).

5.2.2 Individual

An individual is an input sequence targeting a speci ¢ re ection. It is composed
of an input sequence as a walk in a LigRE chopped model (Section 4.4.3), and of a
fuzzed valuexs,c generated from an AIG. This input encompasses the originating
transitiontg,c of a taint ow, and the transition where to observe the re ectigi

We de ne an individual in De nition 15.

De nition 15 Individual
Let M be a CTFM (De nition 14), let(Xsrc; tsre; tdst, Odst) be a re ection (De -
nition 5) from the transitiong,. for the valuexgc of the parametemameéxs;c).

* 9j;k2[0:::n]; ] kandtseis activated by andtys; is activated by

+ the value of the input parameteameéxsc), sent as part ofj in tg, is pro-
duced by the AIG.

5.2.3 Precise Taint Flow Inference (D.2)

When fuzzing, server side sanitizers may lter fuzzed input parameter values. Thus
we have to infer the taint again, and cannot only rely on results from the taint
annotation in step B (Section 4.3). Moreover, we want to answer the questions
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XSS.2.2 Can we exploit a potential sinkthd XSS.3.3 How to prioritize inputs
fuzzing? So we need to track the taint up to the nodes of browser parse tree. Thus
we perform thigrecisetaint ow inference.

The precise taint ow inference permits obtaining information about the con-
text of a re ection. This later will serve for computing test verdict, and as an input
for the tness function.

Figure 5.4: Precise Taint Inferencey! 04stt T Tds)

The ow for producing a Taint Aware Tree (TAT) Tystis shown in Figure 5.4.
We illustrate a TAT in Figure 5.6 and de ne it in De nition 16. First, a string to
string taint-inference algorithm (e.qg., with the [Levenshtein 1966] edit distance) is
applied between the fuzzed valdg. and the outpubgys; in which it is re ected.
This rststep results in Figure 5.5. In parallel, a parser (e.g., from Google Chrome)
evaluates the application outpogs; and produces a parse tr@OMyg; (e.g., a
Document Object Model (DOM)). Then the taint is inferred between each tainted
substring obgstand each node @OMyg;to produce a TATT Tyt (See Figure 5.6),
as follows.
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<input name="message2"
value=" WUKp" onload="alert(94478) ">

Figure 5.5: Taint ed Substrings of the outpogs;

For each node of an output parse ti2®Mys, we compute a string distance
between each tainted substring and the node textual value. Then we only keep the
lowest distance score. If this score is lower than a tester de ned threshold, then this
node is marked as tainted. This taint condition may be slightly relaxed in the case
of a cluster of neighbors nodes has a distance “close to the threshold”. The inferred
TAT T Tyst (€.9., Figure 5.6) is an input for the tness function and test verdict.

The data ow from the sending of a fuzzed input parameter value to its re-
ection within a parse tree node involves at least two transformations (if omit-
ting the transformations due to the encoding): a lter / sanitizer at server side,
and the parsing by the browser of the concrete output During the server
side processing, the lter / sanitizer will induce string transformations. During
the parsing, the browser may induce transformations [Weinbetgdr2011a,
Heiderichet al. 2013]. Intuitively, performing this two-steps taint inference pro-
cess should increase our rate of true positive and decrease our rate of true negative,
as compared to a direct string to parse tree inference.

name

message2

WUkp

attributes value

input

onload - alert(94478)

Figure 5.6: A Taint-Aware Tree (TAT)T Tyst (extract). The payload is a message
box that displays 94478 (harmless).

It is important to note that, instead of writing our own parser, as done in
[Sekar 2009], we rely on areal-world parser This has two advantages. First,
we are exible with respect to the parser (e.g., for XSS: Chrome, Firefox, IE ;
for other vulnerabilities such as SQL injections, we could rely on a SQL parser).
Secondly, we are certain about the real-world applicability of the detected vulnera-
bilities. This contrasts with writing a homemade parser which may introduce false
negative or false positive. However, we are aware that this potentially increases the
number of cases to be tested (number of applicatiomsmber of browsers num-
ber of versions), but the effort in searching for an XSS for a speci ¢ browser and
version in a given application can be weighted depending on the number of users
using that precise browser and version (which can directly relate to the allocation
of testing resources and to a risk analysis).
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De nition 16 A ; Taint Aware Tree (TAT)
Let M be a CTFM (De nition 14). Let(Xsrc; tsre; tasg Ods) be a -re ectionin M
(De nition 5).
Let 2Nand 2[0:1]. A ; Taint Aware Tree (TAT) consists of:

(ogst; G), the parse tree of the worgs w.r.t. the grammaé.
« d: 2 [0:1], a string distance function.

* Z (Xsrc; Ogst), the set of -tainted substrings ingst by Xgrc.

ataint function 4. :Z !'f true falseys.t. for each tainted substring
z2 Z and each parse tree node2
if:
— the set of -tainted substrings im
by !: valueis not empty
— ORd(!: value 2)
- False otherwise

¢; )=

L.
§

5.2.4 Test Verdict

The test verdict answers the question “Did this individual trigger an XSS vulner-
ability?”. The TAT T Tyst (Figure 5.6) is matched against a setaiht-aware tree
patterns(TAP) (e.g., Figure 5.8).

If at least one pattern matches, then the individual is an XSS exploit (i.e., the
test verdict will output “yes, vulnerability detected”). Our TAP are stable w.r.t.
the tested applications: we use the same TAP for all of them. A TAP is a tree
containing regular expressions on its nodes. Those regular expressions may contain
strings(e.g.script ), taint markers repetition operators(x ), or the match-all
character(). The tester can provide its own TAP. We incorporate in KameleonFuzz
default TAP for detecting successful XSS exploits. Those all violate the syntactic
con nement of tainted values.

Potential Vulnerability (Non Syntactic Con nement) If the TAP illustrated in
Figure 5.7 matches the TAT T4, then there is a non syntactic con nement of a
tainted value. This exhibits otential vulnerability

S+  + @@+

Figure 5.7: The generic TAP detecting non syntactic con nement of a tainted value
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weight id dimension

+++ 1 successfully injected character classes

+++ 2 tainted nodes i Tyt

++ 3 singularity

++ 4 transitions from SOurcesc to re ection ogst

++ 5 new page discovered
6
7
8
9

++ new macro-state discovered

+ unexpected page seen

+ page correctly formed w.r.t. output grammar
+ unique nodes from the start node

Table 5.1: Dimensions of thigness  function

Exploitability A second step is to match the TATTyg; with XSS speci ¢ TAP.

In order to write TAP, we observed the re ection contexts (see De nition 13 in
Section 4.3) and tainted parse tree nodes of outputs in various XSS attacks. Most
of them attempt to craft a handler in order to trigger code execution (e.g., Java-
Script) [Heyeset al. 2012]. From this set of attack vector, we generalize minimal
tainted parse trees, which are the TAP. We illustrate an example of TAP in Fig-
ure 5.8. The second TAP in that gure matches the TAT represented in Figure 5.6.
In Appendix B, we provide a detailed list of the TAP included in KameleonFuzz.

AP

script ~ — children

.+ —— attributes (onerror konload k.. )-.* .+ .=

Figure 5.8: Twc Taint -Aware tree Patterns (TAP), represented in a Linear Syntax
(resp. a tainted script tag content and a tainted event handler attribute)

5.2.5 Fitness

The tness function assesses “how close” is an individual to nding an XSS vul-
nerability. The higher its value, the more likely the GA evolution process will pick
the genes of this individual for creating the next generation. The inputs of the
tness function are the individudl, the concrete outpudys; in which the fuzzed
valueXxgrc, sent in the transitiomg,c, is re ected, Tys; = taint(pars€ogsy; Xsrc) the
taint-aware parse tree, and the application mddelThe tness dimensions are
related to properties we observed between the fuzzed value and the re ection in
the case of successful XSS attacks. Those dimensions are listed in Table 5.1.

Those dimensions model several intuitions that a human penetration tester may
have. The most signi cant ones are:

« 1. Percentage of Successfully Injected Character ClassesCharacters
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that compose leaves of individual fuzzed value tree (see Figure 5.3) are
categorized into classes depending on their meaning in the grammar (e.g.,
Ci =f<,>gCy =f" g, C3 =fm, nr, nt g, C4 =f; ,: g, etc.). This metric
expresses the “injection power” for the considered re ection.

« 2. Number of Tainted Nodes inT Tyst. Whereas injecting several character
classes is important, it is however not a suf cient condition for an attacker
to exert control on several parse tree nodes. Successful XSS injections are
generally characterised by at least two neighbours tainted nodes (one which
is supposed to con ne the re ection, and the other(s) that contain the payload
and a trigger for that payload). Thus, if an attacker is able to re ect on
several nodes, we expect that it increases its chances to exploit a potential
vulnerability.

¢ 3. Singularity of an individual w.r.t. its current generation . A problem
of GA is overspecialization that will limit the explored space and keep nd-
ing the same bugs [DeMott al. 2007]. To avoid this pitfall, we compute
“how singular” an individual is from its current generation. This dimension
uses the source transitiow,, the fuzzed valuegc, and the re ection con-
texts (i.e., the destination transitiags; and the tainted nodes Ty, See
De nition 13).

* 4. The higher theNumber of Transitions between the source transition
Xsrc and its Re ection 0g4s;, the more dif cult it is to detect that vulnerability,
because it expands the search tree.

« 5: aNew Page discovered) or 6: a new Macro-State @) discovered
increase application coverage.

5.2.6 Mutation and Crossover Operators

A probability distribution decides whether an individual will be mutated or not.
When a mutation will happen, an operator is applied either orfiureed valuer

on theinput sequenceéNe list the implemented fuzzed value mutation operators in
Table 5.2. We fuzzed while aiming at one re ection at a time.

The fuzzed valuemutation operator works on the production tree of the
fuzzed valuexs ¢ (see Figure 5.3). The amplitude of the mutation is a decreasing
function of the tness score: if an individual has a high tness score, the mutation
will target nodes in the production tree that are close to leafs. Similarly, in the case
of alow tness score, the operator is more likely to mutate nodes close to the root.
Figure 5.9 illustrates an example of application of the fuzzed value operator.
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Figure 5.9: An Example of Application of a Mutation Operator on a Fuzzed Value

The input sequencemutation operator works on the whole sequende It
consists in either taking another path in the model from the soufge the desti-
nationogs, Or targeting a different re ection.

Name ParamO_name param.O_values

fuzzed # of sub-tree to mutate [0:::2]

parameter value

mutation

path mutation max length of new input seN* (tester de ned)
guence

Table 5.2: The Mutation Operators

The crossover operator works at thefuzzed valudevel, i.e., on the production

tree. Its inputs are two individuals of high tness scores. It produces two children.
When a crossover operator is applied on two parents which share at least one pro-
duction rule at a suf ciently deep level, we exchange at most two pairs of sub-trees
between the parents, in accordance with an AIG. Figure 5.10 illustrates an appli-
cation of the crossover operator on the fuzzed values of pafeatsi B. In this

gure, we only represent one of two children: the chAdBl contains thelEXT,
QUOTEandSPACEproduction sub-trees &, the subtred 7 of B, the the subtree

100f B, and the subtredsSQUAL QUOTEaNdJS _PAYLOADf A.
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Figure 5.10: Crossover of Two IndividuafsandB in KameleonFuzz (only one of
two children is shown)

Name ParamO0_name param.O_values
sub-tree exchange  # of sub-tree exchange [[0:::2]

Table 5.3: The Crossover Operator

5.2.7 Stopping Condition

The stopping condition is a boolean function which evaluates to true when the
tester wants the fuzzing to be stopped. This function receives the number of dis-
tinct found XSS vulnerabilities, the number of founds XSS exploits, the number

of submitted fuzzed inputs, the duration of fuzzing, and the number of generations
evolved.

5.3 Implementation

5.3.1 Technical Details

KameleonFuzz is a python3 program which targets Type-1 and 2 XSS. It is com-
posed of 4500 lines of code. As shown in Figure 5.11, we instrument Google
Chrome [Google ] with the Selenium library [Huggiesal.]. It includes LigRE
(8.000 lines of code) (Section 4.5), as control+taint ow model inference tool and
slicer. The tester has to provide an attack grammar, and stopping conditions.
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Figure 5.11: Architecture of KameleonFuzz

Figure 5.12: Pascal, the KameleonFuzz Logo

5.3.2 A Potentially Iterative Process

In practise, the tester de nes its stopping conditions. At the end of the test cam-

paign, if no interesting results were found, the tester can increase the testing re-
sources (e.g., increasing the number of generations, the size of the population,
etc.). In such a situation, our current implementation may repeat some tests which
were made during the rst campaign. This can be avoided by storing the results of

the rst campaign. This is a limitation of the implementation, not of the approach.
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5.4 Related Work

5.4.1 XSS Test Verdict in a Black-Box Approach

Con nement Based Approaches assume that malicious inputs break the struc-
ture at a given level (lexical or syntactical). As in [Sekar 2009], we rely on non-
syntactical con nement and we use detection policies that are both syntax and taint
aware. A key difference is that [Sekar 2009] wrote his own parser to propagate the
taint, whereas we use the parser of a browser (e.g., Google Chrome). Thus we
infer the taint twice (see Figure 5.4). By doing so, we are sure about the real-
world applicability of the found XSS exploits, and our implementation is exible
w.r.t. the browser. [Su & Wassermann 2006] relies on non-lexical con nement as
a suf cient fault detection measure, which is more ef cient than [Sekar 2009], but
requires a correctly formed output (which is not an always valid assumption on
HTML webpages [Heiderickt al. 2010]) and is prone to false negatives.

Regular-Expressions Based Approachesassume that the fuzzed value is re-
ected “as such” in the application output i.e., that the sanitizer is the identity
function. In the case of sanitizers this may lead to false negatives [Riancho 2011].
Moreover, most do not consider the re ection context, which can lead to false pos-
itive. IE8 [Ross 2008] and NoScript [Maone 2006] rely on regular expressions on
fuzzed values. XSSAuditor (Chrome XSS lter) performs exact string matching
with JavaScriptDOM nodes [Bates al. 2010].

String Distance Based Approaches Sun[Suret al.2009] detects self-
replicating XSS worms by computing a string distance between DOM nodes
and requests performed at run-time by the browser.

IE8 [Ross 2008] and Chrome XSSAuditor [Battsal. 2010] Iters only work
on Type-1 XSS. Whereas NoScript [Maone 2006] is able to block some Type-2
XSS, but is only available as a Firefox plugin.

5.4.2 Learning and Security Testing

In its basic form,fuzzing is an undirected black-box active testing technique
[Bartonet al. 1989]. [Zalewski 2011a, Valotta 2013, Holleral.2012,
Ruderman 2007] mainly target memory corruption vulnerabilities.
[Stocket al. 2013]'s recent work fuzzes and detects Type-0 XSS in a white-box
test context. [Heiderickt al.2013] detects in black-box Mutation based Cross
Site Scripting (m-XSS) caused by browser parser quirks. LigRE+KameleonFuzz
is a black-box fuzzer which targets Type-1 and 2 XSS (De nition 8).

Genetic Algorithm (GA) for black-box secu-
rity testing has been applied to evolve malwares
[Noreenet al.2009] and attacker scripts [Budynekal.2005].
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[DeMott et al. 2007, Rawat & Mounier 2010, Bekrat al.2012] target memory
corruption vulnerabilities in a grey-box test context. Their tness function
contains the number of executed basic blocks and the singularity of inputs.
[DeMott et al.2007] performs random 1-point crossover and 2-points mutation.
[Rawat & Mounier 2010, Bekragt al.2012] perform offset aware mutations.
KameleonFuzis the rst application of GA to the problem of black-box XSS
search. Its tness dimensions model the intuition of human security penetration
testers.

An Attack Grammar (AIG) produces fuzzed values for XSS as a composition
of tokens. [Wanget al. 2010, Trippet al. 2013] and KameleonFuzz share this view.

In their recent work, [Tripget al. 2013] prune a grammar based on the test his-
tory to ef ciently determine a valid XSS attack vector for a re ection. It would

be interesting to compare KameleonFuzz to their approach, and to combine both.
[Wanget al.2010] use a hidden Markov model to build a grammar from XSS vec-
tors. [Kalset al.2006] uses attack vectors from a very large manually written li-
brary, without speci c criterion.

Learning for Security Testing Radamsa targets memory corruption vulnera-
bilities: it infers a grammar from known inputs then fuzzes to create new inputs
[Pietikainenet al. 2011]. [Shu & Lee 2007] passively infer a model from network
traces, and actively fuzz inputs.

For command injection vulnerabilities (XSS, SQL injection, ...),
[Dessiatnikoffet al.2011] cluster pages according a specially crafted dis-
tance for SQL injections. [Sotirov 2008] iterates between reverse-engineering of
XSS lters, local fuzzing, and remote fuzzing. [Do@pt al.2012] showed that
inferring macro-state aware control ow models increases vulnerability detection
capabilities.
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CHAPTER®G

Experiments for XSS Detection

You bruteforce all the moves in chess,are you playing? Mutate the code that plays
chess, you are learning and playing. The seed is the code.

[Heyes 2013]

One development team cannot fail 1000 times to develop a secure application, but
1000 teams can fail one time.

[Ruff 2013a]

| enjoy making things, breaking things, and making things that break things.
[Moore 2013]

Making the world a better place... One crash a time!

[Takanen 2012]

We evaluate our approach by applying our tools on different Web Applications,
listed in Table 6.1. We separately evaluate the LigRE inference (Section 6.2) and
the KameleonFuzz evolutionary fuzzer (Section 6.3) components. We discuss the
limitations of our tools in Section 6.4.

6.1 Evaluation methodology

We selected seveweb applicationsof various complexity (Table 6.1). The cri-
teria for choices are various (different server side languages: JSP, Python, PHP;
have shown to contain at least one XSS each; some are used at industrial scale).
KameleonFuzz detected at least one true XSS in all of them.

POwnMe v0.3is an intentionally vulnerable web application for evaluating
black-box XSS scanners. It contains XSS of various complexity (transitions, lters,
re ection structure).

WebGoat v5.4is an intentionally vulnerable web application for educating de-
velopers and testers. Its multiple XSS lessons range from message book to human
resources.
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Application , Description Version Plugins
POwnMe § Intentionally 0.3
WebGoat Vulnerable 5.4
Gruyere - 1.0
WordPress Blog 3.2.1 Count-Per-Day 3.2.3
Elgg Social Network 1.8.13
phpBB Forum 2.0
e-Health Medical 04/16/2013

Table 6.1: Tested Web Applications

Gruyere v1.0is an intentionally vulnerable web application for educating de-
velopers and testers. Users can update their pro le, post and modify “snippets”
and view public ones.

Elgg v1.8.13is a social network platform used by universities, governments.
Users can post messages, create groups, update their pro le. An XSS exists since
several versions.

WordPress v3is a blogging system: the blogger can create posts and tune
parameters. Visitors can post comments, and search. The count-per-day plugin is
known to contain XSS.

PhpBB v2is a forum platform. We include this version, as it is notorious for
containing several XSS[Baet al. 2010].

e-Health 04/16/2013s an extract of a medical platform used by patients and
practitioners, developed by a company.

XSS Uniqueness an XSS is uniquely characterized by its source transitign

its parameter name, its destination transitiya; and the tainted nodes in the parse

tree T(P(Ogs; Isrc). Hence if a fuzzed value is re ected twice @yg;, €.9., in

two different nodes in the parse tree, and for each node, the scanner generated an
exploitation sequence, then we count two distinct XSS. In our experiments, the
only time we had to distinguish two XSS using the nodes in the parse tree was in
the Gruyere application.

Experimental Platform We run the scanners on a Mac OS X 10.7.5 platform
with a 64 Bit Intel Quad-Core i7 at 2.66GHz processor, and 4GB of RAM DDR3
at 1067MHz.

6.2 LigRE evaluation

We aim at determining if control plus taint ow model aware XSS fuzzing is ef-
cient enough to search for vulnerabilities in typical web applications. We also
aim at comparing the fault detection capability of our prototype implementation
LigRE against existing state of the art black-box vulnerability scanners. Relevant

92



CHAPTER 6. XSS EXPERIMENTS 6.2. LIGRE EVALUATION

metrics include the number of distinct true XSS discovered, and the number only
found by a given scanner. To measure the ef ciency of the scanners, we compare
the number of sent requests and of found XSS. In our experiments, LigRE detected
XSS missed by other scanners, and most of the XSS found by those.

We consider the following open-source 