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Introduction

Approximating, optimizing, and more generally studying multivariate func-
tions under very limited evaluation budget are non-trivial problems that have
to be tackled in a number of practical situations. A notable example is the
case where a parametric complex system is modelled by a set of equations,
and where the evaluation of the system response for any given instance of the
input parameter is done by time-consuming numerical simulations. In math-
ematical terms, how to analyse a function f : D ⊂ Rd → R relying on a finite
number of evaluation results {(xi, f(xi)), 1 ≤ i ≤ n}? Obviously, the prob-
lem is ill-posed without further hypotheses on f . While this problem is of
deterministic nature, and there exist deterministic approaches to treat it, we
are focusing here on stochastic approaches, where prior hypotheses on f are
done trough probabilistic assumptions. Stochastic concepts are introduced
to model epistemic uncertainty, namely that we do not know the values of f
outside of X := {x1, . . . ,xn}. The work presented in this habilitation thesis
essentially deals with Gaussian random field models, and to a lesser extent
with their deterministic counterpart, reproducing kernel Hilbert spaces.

The document is structured around three chapters, each of them referring
to selected publications included in appendix.

Chapter 1 mainly focuses on contributions related to (positive definite)
kernels, and to the way “structural” prior information on f may be incor-
porated in Gaussian field modelling through the covariance kernel. Four
accompanying papers (3 journal articles and a proceedings article) are sent
in Appendix A:

• “Argumentwise invariant kernels for the approximation of invariant
functions” Ginsbourger et al. (2012) (published in 2012 in Annales
de la Faculté de Sciences de Toulouse)

• “Additive covariance kernels for high-dimensional Gaussian process

7
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modeling” Durrande et al. (2012) (published in 2012 in Annales de
la Faculté de Sciences de Toulouse)

• “ANOVA kernels and RKHS of zero mean functions for model-based
sensitivity analysis” Durrande et al. (2013) (published in 2013 in Jour-
nal of Multivariate Analysis)

• “Kernels and designs for modelling invariant functions: From group in-
variance to additivity” Ginsbourger et al. (2013b) (published in 2013 in
mODa 10 Advances in Model-Oriented Design and Analysis)

The second and third articles are contributions realized in the framework of
Nicolas Durrande’s Ph.D. thesis (Ecole Nationale Supérieure des Mines de
Saint-Etienne, 2008-2011), which I had the pleasure of officially co-advising
from 2009 to 2011. While the first paper deals with the incorporation of
invariances under group actions into Gaussian field modelling and related
function approximation approaches (including kriging and conditional sim-
ulations), the second one deals with the incorporation of a prior hypothesis
of additivity into them, and is intended to make a connection between an
approach that has been successful in high-dimensional modelling (general-
ized additive models) and kriging. The third paper is about another kernel
class that we have studied for “high-dimensional” Gaussian field modelling
(which in this context means of the order of 10 to 100, i.e. would be moder-
ate for scientists dealing with genomic data for instance), with an emphasis
on model-based sensitivity analysis. The fourth paper is a conference article
(presented in mODa 10) about ongoing work on invariant kernels (resumed
in the recent preprint Ginsbourger et al. (2013e)), that makes a synthesis
between results obtained in the first and second papers.

Chapter 2 focuses on contributions related to sequential evaluation strate-
gies (also known as adaptive design) relying on Gaussian random field models,
with applications in finite time optimization, noisy optimization, probabil-
ity of failure estimation, and excursion set estimation. Four accompanying
papers (two journal articles and two proceedings articles) are sent to Ap-
pendix B:

• “Towards Gaussian process-based optimization with finite time hori-
zon” Ginsbourger and Le Riche (2010) (published in 2010 in mODa 9
Advances in Model-Oriented Design and Analysis)
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• “Quantile-based optimization of noisy computer experiments with tun-
able precision (with discussion)” Picheny et al. (2013a) (published in
2013 in Technometrics)

• “Fast kriging-based stepwise uncertainty reduction with application to
the identification of an excursion set” Chevalier et al. (2014a) (accepted
to Technometrics)

• “Estimating and quantifying uncertainties on level sets using the Vorob’ev
expectation and deviation with Gaussian process models” Chevalier
et al. (2013a) (published in 2013 in mODa 10 Advances in Model-
Oriented Design and Analysis)

The first article deals with finite time optimization based on Gaussian ran-
dom field models, and discusses some limitations of the most popular infill
sampling criterion, the so-called Expected Improvement criterion. It pre-
pares the ground for the following papers, where we consider the future dis-
tribution of a Gaussian random field if a point is added. The second article
is the fruit of a long-standing collaboration with Victor Picheny (now at
INRA) and colleagues from the French Nuclear Safety and Radioprotection
Institute (Yann Richet and Grégory Caplin, IRSN) on strategies to optimize
costly-to-evaluate functions relying on noisy evaluations, in cases where the
noise variance is tunable and the computational budget is limited. The third
and fourth articles are contributions realized in the framework of Clément
Chevalier’s Ph.D. thesis, which I had the pleasure of supervising at the Uni-
versity of Bern from 2010 to 2013 (Ph.D. project funded by IRSN and the
ReDICE Consortium). The third publication aims at providing fast and rig-
orous approaches for the Sequential Uncertainty Reduction (SUR) strategies
proposed in Bect et al. (2012). The fourth one emphasizes on the use of the
Vorob’ev expectation and deviation to quantify uncertainty in the context of
Bayesian set estimation with Gaussian field models.

Chapter 3 focuses on contributions related to applications and software
implementation, with a special focus on a new inversion method proposed
in aquifer modelling, and on R packages developed along the years on Gaus-
sian field regression and related sequential strategies. The chapter also con-
tains some informal thoughts about interdisciplinary projects, as well as a
number of references to application (and more theoretical) papers by other
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researchers, that are meant to provide the reader with a few selected per-
spectives beyond the work of the author. Two accompanying papers (two
journal articles) are sent to Appendix C:

• “Distance-based kriging relying on proxy simulations for inverse con-
ditioning” Ginsbourger et al. (2013d) (published in 2013 in Advances
in Water Resources)

• “DiceKriging, DiceOptim: Two R packages for the analysis of com-
puter experiments by kriging-based metamodelling and optimization”
Roustant et al. (2012) (published in 2012 in Journal of Statistical
Software)

A global conclusion closes the main body of the article. Appendix E gives
some complementary proofs regarding a piece of ongoing work mentioned at
the end of Chapter 1 (Section 1.3). Besides, proofs of some properties given
in Chapter 1 are recalled in Appendix D, where the notations of Ginsbourger
et al. (2012) are slightly revisited in order to keep some homogeneity through-
out the present document.

Finally, as required in attachment to any habilitation dossier at the Uni-
versity of Bern, a recent CV with copy of the Ph.D. diploma, a publication
list, and a teaching statement are given in Appendix F.



Nomenclature

(Ω,F ,P) Probability triplet

D Index set (typically a compact subset of Rd here)

x,x1, . . . ,xn Points in D

(Zx)x∈D, or simply Z Random field indexed byD (defined over (Ω,F ,P))

Zx or Z(x) Value of Z at the point x

Zx(ω) or Z(x;ω) Realization of Zx corresponding to the outcome
ω ∈ Ω

Z·(ω) or Z(·;ω) Path (also known as trajectory or realization) of Z
corresponding to the outcome ω ∈ Ω

f(·) or z(·) Objective function D → R (the notation z is often
used when f is assumed to be some realization of
a random field Z)

GPR Gaussian Process Regression

GRF Gaussian Random Field

RKHS Reproducing Kernel Hilbert Space

k(·, ·) Positive (semi)-definite kernel on D ×D

kn(x) or k(x) Covariance vector (k(x,x1), . . . , k(x,xn))′

K Covariance matrix (k(xi,xj))i,j∈{1,...,n}

z Response vector (z1, . . . , zn)′ ∈ Rn

11
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m(·) or mn(·) Kriging mean function D → R (n denotes the step
in case of a sequential strategy)

s2(·) or s2
n(·) Kriging variance function D → R (n denotes the

step in case of a sequential strategy)

(G, ∗) or simply G A group (typically assumed finite here)

Φ(·, ·) A measurable group action G×D → D

g.x Alternative notation for Φ(g,x) (g ∈ G,x ∈ D)

T A linear operator (function spaces and properties
such as boundedness precised upon usage)

Tv Composition operator (RD → RD) with symbol
v : D → D

ν, νi Measures on D, Di

ν1 ⊗ · · · ⊗ νd Tensor product measure over D1 × · · · ×Dd

L2(D, ν) Space of equivalence classes of square-integrable
functions on the measured space (D, ν)

FANOVA Functional ANalysis Of VAriance

L2
1(Di, νi)

⊥
⊕ L2

0(Di, νi) Direct orthogonal sum of L2
1(Di, νi) and L2

0(Di, νi)

I Set of indices (Typically, I ⊂ {1, . . . , n})

D−I , ν−I
∏

i/∈I Di,
⊗

i/∈I νi

Hk or simply H RKHS with kernel k⊙
i∈I vi or

⊙
i∈I Γi Term-wise product between vectors or matrices

B A Banach space (typically, continuous functions
D → R equipped with the sup-norm)

B∗ Topological dual of B

µ, η Gaussian measures on B
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Cµ Covariance operator of µ (B∗×B∗ → R or B∗ → B∗
depending on the context)

µ̂ Fourier transform of the measure µ

`∗µ, T∗µ Pushforward measures of µ by `, T

T ∗ Adjoint of the operator T

E Expectation symbol

EI(·) Expected Improvement function

An Event, such as {Z(x1) = z1, . . . , Z(xn) = zn},
summarizing the n first evaluation results in a se-
quential strategy

In(·) Improvement field at step n (of a sequential strat-
egy)

EIn(·) Expected Improvement criterion at step n

QIn(·) Quantile Improvement field at step n

EQIn(·) Expected Quantile Improvement criterion at step
n

1{Z(x)≥t} Characteristic function of the event {Z(x) ≥ t}

J
(α)
n , J

(Γ)
n Two SUR sampling criteria related to the variance

of the excursion volume
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Chapter 1

Some new classes of kernels for
spatial interpolation and
Gaussian field regression

Positive definite1 (p.d.) kernels play a central role in several contemporary
functional approximation methods, ranging from regularization techniques
within the theory of Reproducing Kernel Hilbert Spaces (RKHS, cf. Berlinet
and Thomas-Agnan (2004)) to Gaussian Process Regression (GPR) in ma-
chine learning Rasmussen and Williams (2006). One of the reason for that
is presumably the following particularly elegant predictor, common solution
to approximation problems in both frameworks. Indeed, if scalar responses
z := (z1, . . . , zn) ∈ Rn are observed for n instances x1, . . . ,xn ∈ D of a d-
dimensional input variable (D is here assumed to be a compact subset of
Rd), the function

m : x ∈ D −→ m(x) = k(x)′K−1z, (1.1)

is at the same time the best approximation of any function f in the RKHS
of kernel k subject to f(xi) = zi (1 ≤ i ≤ n), and the GPR (“simple
kriging”) predictor of any squared-integrable centred random field (Zx)x∈D
of covariance kernel k subject to Zxi = zi (1 ≤ i ≤ n). Here k : D×D −→ R
stands for an arbitrary p.d. kernel, with k(x) := (k(x,x1), . . . , k(x,xn)) and
K := (k(xi,xj))1,i≤j≤n (assumed invertible here and in the sequel).

1Following Stein (1999), we use here the term p.d. for what some authors also call
“non-negative definite” or “positive semi-definite”.
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16 Kernels inducing structural priors

In practical situations (e.g., when the zi’s stem from the output of an expensive-
to-evaluate deterministic function, say f : D → R), the choice of k is gen-
erally far from being trivial. Unless there is a strong prior in favour of a
specific kernel or parametric family of kernels, the usual modus operandi to
choose k in GPR (when d is too high and/or n too low for a geostatistical
variogram estimation Cressie (1993)) is to rely on well-known families of ker-
nels, and to perform classical Maximum Likelihood Sweeting (1980); Mardia
and Marshall (1984), cross-validation Dubrule (1983), or Bayesian inference
of the underlying parameters based on data Omre (1987); Handcock and
Stein (1993). For example, most GPR or kriging softwares offer various op-
tions for the underlying kernel, often restricted to stationary but anisotropic
correlations like the generalized exponential or Matérn kernels, allowing the
user to choose between different levels of regularity. This is in fact based on
mathematical results concerning the link between the regularity of covari-
ance kernels and the mean square properties of squared integrable random
fields (or even a.s. properties, both in the case of Gaussian random fields
and in more general settings, see for instance Cramér and Leadbetter (1967)
or Scheuerer (2009, 2010) to get an overview).

A weak point of such an approach, however, is that not all phenomena can
reasonably be approximated by stationary random fields, even with a well-
chosen level of regularity and a successful estimation of the kernel parameters.
In order to circumvent that limitation, several non-stationary approaches
have been proposed in the recent literature, including convolution kernels
(see Paciorek (2003) or Lee et al. (2005)), kernels incorporating non-linear
transformations of the input space (Guttorp and Sampson, 1992; Anderes,
2005; Xiong et al., 2007), or treed Gaussian processes (Gramacy and Lee,
2008), to cite an excerpt of some of the most popular approaches.

In this chapter, we present classes of covariance kernels that allow incorpo-
rating so-called “structural” priors withing GPR and RKHS function approx-
imation techniques, encompassing priors of invariance under group actions
and priors of additivity (Cf. Section 1.1), a prior of centredness leading to a
convenient type of ANOVA kernels for sensitivity analysis (cf. Section 1.2),
and perspectives about further kinds of priors that may be embedded in GPR
through the covariance kernel (cf. Section 1.3).
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1.1 On group-invariant and additive kernels

Our intent here is to address a specific question related to the choice of k:
assuming a known geometric or algebraic invariance of the phenomenon under
study, is it possible to incorporate it directly in a kernel-based approximation
method like GPR or RKHS regularization? More precisely, given a function
z invariant under a measurable action Φ of some finite group G on D, is it
possible to construct a metamodel of z respecting that invariance?

Here we investigate classes of kernels leading to a (meta)model2 of f inher-
iting known invariances. In the particular case of a GRF interpretation, the
proposed kernels enable a deeper embedding of the prescribed invariance in
the metamodel since the obtained random fields have invariant paths (up to
a modification). Note that the proposed approach is complementary to the
non-stationary kernels evocated above, rather than in competition with them.
Our main goals are indeed to understand to what extent kernel methods are
compatible with invariance assumptions, what kind of kernels are suitable
to model invariant functions, and how to construct such kernels based on
existing (stationary or already non-stationary) kernels.

1.1.1 Argumentwise group-invariant kernels

Various classical properties of kernels such as stationarity or isotropy can in
fact be seen as particular cases (with natural actions of groups of translations
or isometries, respectively) of the following definition of invariance given in
Parthasarathy and Schmidt (1972):

Definition 1.1.1. k is said invariant under the action of G on D when

∀g ∈ G,∀x,x′ ∈ D, k(g.x, g.x′) = k(x,x′) (1.2)

Here we consider a different notion of invariance:

Definition 1.1.2. A kernel k is said argumentwise Φ-invariant when

∀g, g′ ∈ G,∀x,x′ ∈ D, k(g.x, g′.x′) = k(x,x′) (1.3)

2i.e., an approximation of f . Depending on the context (deterministic or stochastic
modelling), the word metamodel may refer to m only or to the whole conditional distri-
bution of the GRF Z knowing the observations Zxi = zi (1 ≤ i ≤ n).
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One can notice that Eq. (1.2) corresponds to the particular case of Eq. (1.3)
where g = g′. As discussed next, this second kind of kernels corresponds to
much stronger invariance properties of the associated random fields.

Proposition 1.1.3. (Kernels characterizing invariant fields) Let G be
a finite group acting measurably on D via Φ, and Z be a centred squared-
integrable random field over D. Then Z has Φ-invariant paths (up to a
modification) if and only if its covariance kernel is argumentwise Φ-invariant.

See Ginsbourger et al. (2012) (In Appendix A) or Appendix D for a proof
with notations adapted to those of the present document. The same holds
for the two following propositions.

Assuming that we dispose of n noiseless observations Zxi = zi (1 ≤ i ≤ n) of
a square-integrable centred random field (Zx)x∈D with covariance kernel k,
we get furthermore:

Proposition 1.1.4. If k is argumentwise Φ-invariant, then the kriging
mean m and the kriging variance s2 are Φ-invariant. In particular, ∀g ∈
G, m(g.xi) = zi and s2(g.xi) = 0 (1 ≤ i ≤ n).

In order to generalize to the conditional distribution of Z knowing Zxi =
zi (1 ≤ i ≤ n), we start by looking at its conditional covariance:

Cov(Zx, Zx′|ZX = z) = k(x,x′)− k(x)′K−1k(x′). (1.4)

In the case where Z is assumed Gaussian, the simple kriging mean and vari-
ance at x coincide respectively with the conditional expectation and variance
of Zx knowing the observations. In addition, the Gaussian assumption makes
it possible to get conditional simulations of Z, relying only on the conditional
mean function and covariance kernel.

Proposition 1.1.5. (Properties of the conditional distribution of a Gaus-
sian Random Field with argumentwise Φ-invariant kernel)

1. The conditional covariance is argumentwise Φ-invariant

2. Conditional simulations are Φ-invariant
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Figure 1.1: Symmetrization of the OU process relying on the kernels respec-
tively defined by Eqs. 1.6 and 1.8. Left: by projection on a fundamental
domain (Eq. 1.6). Right: by averaging over the orbits (Eq. 1.8).

Example 1.1.6. Let us consider an Orstein-Uhlenbeck (OU) process (Yx)x∈D
restricted to D := [0, 1], and s : x ∈ D −→ 1 − x ∈ D the symmetry with
respect to 1

2
. A first symmetrized OU process is obtained as follows

Z(1)
x = Ymin(x,s(x)) = Ymin(x,1−x) (1.5)

This centred Gaussian process is then characterized by the kernel

kZ(1)(x, x′) := Cov(Ymin(x,1−x), Ymin(x′,1−x′))

= exp (−|min(x, 1− x)−min(x′, 1− x′)|)
(1.6)

On the other hand, a second symmetrized OU process is obtained by averaging
over the orbits of the considered group action:

Z(2)
x =

1

2
(Yx + Ys(x)) =

1

2
(Yx + Y1−x), (1.7)

and possesses the following covariance kernel:

kZ(2)(x, x′) =
1

4
Cov(Yx + Y1−x, Yx′ + Y1−x′)

=
1

2
exp (−|x− x′|) +

1

2
exp (−|1− x− x′|)

(1.8)
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Simulated paths of centred Gaussian processes with argumentwise invariant
kernels respectively defined by Eqs 1.6 and 1.8 are represented on figure 1.1.

Figure 1.2: Conditional simulations of the symmetrized OU process with the
kernel of Eq. 1.8. The black points stand for the conditioning data.

We now assume that the invariant process Z(2) was observed at the three
points x1 = 0.6, x2 = 0.8, x3 = 1, with response values z1 = −0.8, z2 =
0.5, z3 = 0.9. The covariance kernel of Eq. 1.8 is used for performing simu-
lations of Z(2) conditionally on the latter observations. Twenty such condi-
tional simulations are represented on Figure 1.2. As can be seen on Figure
1.2, all paths are simultaneously Φ-invariant and interpolating the condition-
ing data, hence illustrating Property 1.1.5 on the conditional distribution of
Gaussian random fields with argumentwise invariant kernel.
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1.1.2 Additive kernels

After the work on Φ-invariant kernels presented in the previous section, I
have been involved in research on additive kriging. This collaborative work
was part of Nicolas Durrande’s Ph.D. Durrande (2011) (co-advised in 2010−
2012). Nicolas Durrande, Olivier Roustant (Co-author and also co-advisor
of Nicolas), and I published this work (Durrande et al., 2012) in the same
issue of the Annales Scientifiques de la Faculté de Toulouse where appeared
(Ginsbourger et al., 2012).

The main motivation for studying additive kernels stemmed from the lack
of suitability of usual kriging models (often relying on so-called separable or
product kernels) for problems involving a relatively large number of variables
(exceeding ten or so), and with a linear budget in the dimension. Having
read about generalized additive models Hastie and Tibshirani (1995) and
their success in high-dimensional smoothing (provided the phenomenon un-
der study or a simple transformation of it is close to additive), it seemed
sensible to us to investigate variants of kriging where usual kernels would be
replaced by additive kernels such as defined below and in Durrande et al.
(2012).

Before tackling the notion of additivity for kernels, let us define what we
mean by additive in the setting of functions. For all i ∈ {1, . . . , d} (d ≥ 2),
let Di ⊂ R and D := D1 × · · · ×Dd.

Definition 1.1.7. A function f : D → R is additive whenever there exist
d univariate functions fi : Di ⊂ R→ R (1 ≤ i ≤ d) such that

∀x = (x1, . . . , xd) ∈ D, f(x) =
d∑
i=1

fi(xi). (1.9)

What we called additive kernels in Durrande et al. (2012) can be seen as
a direct extension of Definition 1.1.7 to p.d. kernels:

Definition 1.1.8. A p.d. kernel k : D×D → R is said additive whenever
there exist d p.d. kernels ki : Di ×Di → R (1 ≤ i ≤ d) such that

∀x,x′ ∈ D, k(x) =
d∑
i=1

ki(xi, x
′
i). (1.10)
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Although not commonly encountered in practice, it is easily seen that such
non-negative combination of p.d. kernels (p.d. kernels on Di×Di can always
be seen as p.d. kernels on D ×D – in the wide but not in the strict sense)
is also a p.d. kernel Rasmussen and Williams (2006); Gaetan and Guyon
(2009). Note that a sum of uncorrelated processes on the Di’s with respective
covariance kernels ki’s admits such an additive kernel as covariance. We
claim in Durrande et al. (2012) that for centred random fields, possessing an
additive kernel reciprocally implies some kind of pathwise additivity:

Proposition 1.1.9. Any centred square-integrable random field with ad-
ditive kernel is a modification of a random field with additive paths. In other
words, for such a random field Z, there exists a random field A with additive
paths such that ∀x ∈ D, P(Zx = Ax) = 1.

A direct proof of this property is given in appendix of Durrande et al.
(2012) in the bi-dimensional case. For illustration, two realizations of a
centred Gaussian random field with additive kernel considered in Nicolas
Durrande’s Ph.D. thesis are represented on Fig. 1.3 below.
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Figure 1.3: Two realizations of a centred Gaussian random field with additive
kernel (in the sense of Def. 1.1.8).

We generalize Prop. 1.1.9 in the next section, where a necessary and
sufficient condition on the covariance kernel is given for a centred square-
integrable random field to have additive paths up to a modification.
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Coming back to Durrande et al. (2012), let us finally remark that kriging
with an additive kernel leads to an additive kriging mean. For example, we
obtain in dimension two:

m(x) = k1(x1)′(K1 + K2)−1z + k2(x2)′(K1 + K2)−1z (1.11)

More will be said in the next sections on properties that can be shared
between random field paths, covariance kernels, and kriging models.

1.1.3 A unifying framework: kernels invariant under a
finite combination of composition operators

Following the characterizations of centred square-integrable random fields
with group invariant or additive paths obtained respectively in Ginsbourger
et al. (2012) and Durrande et al. (2012) (See Propositions 1.1.9 and 1.1.3
above), I felt that there should exist a more general framework in which group
invariance and additivity would appear as particular cases. This framework
turned out to be the one of combinations of composition operators, as sum-
marized below. For more detail and proofs, see Ginsbourger et al. (2013b)
(Appended in Chapter A).

Definition 1.1.10. Let us consider an arbitrary function v : x ∈ D −→
v(x) ∈ D. The composition operator Tv with symbol v is defined as follows:

Tv : f ∈ RD −→ Tv(f) := f ◦ v ∈ RD.

Definition 1.1.11. We call combination of composition operators with
symbols vi ∈ DD and weights αi ∈ R (1 ≤ i ≤ q) the operator

T :=

q∑
i=1

αiTvi .

Proposition 1.1.12. Let Z be a centred RF with kernel k. Then k is
T-invariant, i.e.

∀x′ ∈ D, T (k(.,x′)) = k(.,x′) (1.12)

if and only if Z equals T (Z) up to a modification, i.e.

∀x ∈ D, P (Zx = T (Z)x) = 1.
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As pointed out by the following example, group invariances (under the
action of a finite group) such as considered previously boil down to an in-
variance under a specific combination of composition operators. Prop. 1.1.3
hence appears as a particular case of Prop.1.1.12.

Example 1.1.13 (Case of group-invariance). T (f)(x) =
∑#G

i=1
1

#G
f(vi(x))

with vi(x) := gi.x (1 ≤ i ≤ #G) leads to Z Φ-invariant if and only if k is
argumentwise invariant.

Similarly, additivity can be characterized by a property of invariance un-
der some combination of composition operators, as detailed below.

Proposition 1.1.14. Assuming a ∈ D, a function f : D → R is additive
if and only if f is invariant under the following operator:

∀x ∈ D, T (f)(x) =
d∑
i=1

f(vi(x))− (d− 1)f(vd+1(x)), (1.13)

where vi(x) := (a1, . . . , ai−1, xi︸︷︷︸
ith coordinate

, ai+1, . . . , ad), and vd+1(x) := a.

Applying Prop.1.1.12 in the case of the operator given in Prop. 1.1.14, we
finally obtain a characterization of kernels leading to centred random fields
with additive paths (up to a modification):

Corollary 1.1.15. A centred squared-integrable random field Z with co-
variance kernel k has additive paths if and only if k is of the form

k(x,x′) =
d∑
i=1

d∑
j=1

kij(xi, x
′
j). (1.14)

Hence, the kernels given by Def. 1.1.8 appear as a special case. The gen-
eral model of covariance kernels leading to additive paths do in fact coincide
with kernels of (tensor) sums of correlated univariate processes.

1.2 A new class of ANOVA kernels for kriging-

based sensitivity analysis

In this section, we consider again some work done in the framework of Nicolas
Durrande’s Ph.D., that follow the previously presented results on additive
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kernels. Instead of imposing a strong structural prior such as additivity, we
considered a very flexible class of kernels referred to as “ANOVA kernels”.
The main goal was to construct a special class of ANOVA kernels for kriging-
based global sensitivity analysis. The resulting class of so-called K?

ANOVA

kernels is presented at the end of this section (See also Durrande et al. (2013)
for more detail).

In a nutshell, the purpose of global sensitivity analysis is to quantify the
influence of each variable or group of variables on a function f Saltelli et al.
(2008). In case f ∈ L2(D, ν), where D = D1 × · · · ×Dd and ν = ν1 ⊗ · · · ⊗
νd is a tensor product of probability measures over Di (corresponding to a
hypothesis of independent inputs), a traditional approach in global sensitivity
analysis is to calculate and study the following objects:

1. The FANOVA decomposition of f with respect to ν

2. The corresponding Sobol’ indices

The first point leads to a decomposition of f as a sum of 2d functions. Of
course, attention may be restricted to those of the terms judged the most
important. Sobol’ indices precisely quantify the relative importance of each
variable of group of variables on the response. In both cases, an analytical
knowledge of f or a very large number of evaluations are necessary. Before
explaining how K?

ANOVA can help estimating FANOVA decompositions and
Sobol’ indices, let us recall some basics about these notions.

1.2.1 FANOVA decompositions and Sobol’ indices

The starting point of FANOVA are the one-dimensional decompositions

L2(Di, νi) = L2
1(Di, νi)

⊥
⊕ L2

0(Di, νi), (1.15)

where the L2
0(Di, νi)’s are the subspaces of zero mean elements of the L2(Di, νi)’s,

i.e. L2
0(Di, νi) = {g ∈ L2(Di, νi),

∫
Di
g(s)dνi(s) = 0}, and the L2

1(Di, νi)’s are
corresponding subspaces of almost everywhere constant elements. Using the
tensor product structureof L2(D, ν) =

⊗d
i=1 L

2(Di, νi), we then get

L2(D, ν) =
d⊗
i=1

(
L2

1(Di, νi)
⊥
⊕ L2

0(Di, νi)

)
=

⊥⊕
B∈{0,1}d

L2
B(D, ν) (1.16)
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where L2
B(D, ν) :=

⊗d
i=1 L

2
Bi

(Di, νi) for any B ∈ {0, 1}d. Given an arbitrary
element f ∈ L2(D, ν), the orthogonal projections of f onto those subspaces
(See Durrande et al. (2013) for details) lead to the functional ANOVA repre-
sentation Hoeffding (1948); Efron and Stein (1981); Antoniadis (1984); Sobol
(2001) (or Hoeffding-Sobol decomposition) of f into main effects and interac-
tions:

f(x) = f0 +
d∑
i=1

fi(xi) +
∑
i<j

fi,j(xi, xj) + · · ·+ f1,...,d(x). (1.17)

This decomposition gives an insight on the influence of each set of variables
xI = {xi, i ∈ I} on f . For the constant term, the main effects, and the
two-factor interactions, one gets the classical expressions (Gu, 2002):

f0 =

∫
D

f(x)dν(x),

fi(xi) =

∫
D−i

f(x)dν−i(x−i)− f0,

fi,j(xi, xj) =

∫
D−{i,j}

f(x)dν−{i,j}(x−{i,j})− fi(xi)− fj(xj)− f0,

(1.18)

with the notations D−I =
∏

i/∈I Di and ν−I =
⊗

i/∈I νi.
Considering now a random vector V with distribution ν, the L2(D, ν)

orthogonality between any two terms of the decomposition implies that the
variance of the random variable f(V ) can be decomposed as

Var(f(V )) =
d∑
i=1

Var(fi(Vi)) +
∑
i<j

Var(fi,j(Vi,j)) + · · ·+ Var(f1,...,d(V )).

(1.19)
The global sensitivity indices (also known as Sobol’ indices) SI are then
defined as

SI =
Var(fI(VI))

Var(f(V ))
(I ⊂ {1, . . . , d}) (1.20)

For any subset of indices I, SI represents the proportion of variance of f(V )
explained by the interaction between the variables indexed by I. The knowl-
edge of the indices SI is very helpful for understanding the influence of the
inputs on f , but the computation of the fI ’s is cumbersome when the eval-
uation of f is costly since they rely on the computation of the integrals of
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Eq. 1.18. Following Marrel et al. (2009), it can then be advantageous to
perform the sensitivity analysis on a surrogate model m approximating f .

Let us now discuss some links between the FANOVA decompositions of
f and m for the general case and some special case of ANOVA kernel.

1.2.2 ANOVA kernels

ANOVA kernels have been introduced in the literature of machine learning
by Stitson et al. (1997) in the late 1990’s. These kernels allow to control the
order of interaction in a model and to enhance their interpretability Gunn and
Kandola (2002); Berlinet and Thomas-Agnan (2004). For D = D1×· · ·×Dd,
they are constructed as a product of univariate kernels 1+ki, where 1 stands
for a bias term and the ki’s are arbitrary p.d. kernels on Di×Di (1 ≤ i ≤ d):

KANOV A(x,y) =
d∏
i=1

(1 + ki(xi, yi)) = 1 +
∑

I⊂{1,...,d}

∏
i∈I

ki(xi, yi). (1.21)

As it appears on the right hand side of Eq. 1.21, ANOVA kernels can also be
seen as a sum of separable kernels with increasing interaction orders Duve-
naud et al. (2011).

Denoting by 1i and Hi the Reproducing Kernel Hilbert Space (RKHS)
of functions defined over Di with respective kernels 1 and ki, KANOVA is
the reproducing kernel of the space Aronszajn (1950); Berlinet and Thomas-
Agnan (2004)

HANOV A =
d⊗
i=1

(1i +Hi) = 1+
∑

I⊂{1,...,d}

HI , (1.22)

with HI =
⊗

i∈I Hi ⊗
⊗

i/∈I 1
i.

Now, back to Eq. 1.21, the particular structure of KANOVA allows us to
develop the covariance vector k(x) as k(x) = 1 +

∑
I⊂{1,...,d}

⊙
i∈I ki(xi),

where � denotes a term-wise product (i.e.
(⊙

i∈I ki(xi)
)
j

=
∏

i∈I k
i(xi, xj)).

From this relation, we can get the decomposition of the kriging mean m onto
the subspaces HI :

m(x) = 1tK−1F +
∑

I⊂{1,...,d}

(⊙
i∈I

ki(xi)

)′
K−1F (1.23)
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Noting m0 = 1tK−1F and mI(x) =
(⊙

i∈I ki(xi)
)t

K−1F, we obtain an
expression for m which looks similar to its FANOVA representation:

m(x) = m0 +
d∑
i=1

mi(xi) +
∑
i<j

mi,j(xi,j) + · · ·+m1,...,d(x1,...,d). (1.24)

In this expression, the mI ’s have the nice feature of not requiring any re-
cursive computation of integrals. However, Eq. 1.24 differs from the ANOVA
decomposition of m since the properties of Eq. 1.17 are not respected. In-
deed, the mI ’s of Eq. 1.24 are not necessarily zero-mean functions and any
two terms of the decomposition are generally not orthogonal in L2(D, ν).

1.2.3 K∗ANOVA kernels: construction and properties

An alternative to get round the previous issue is to consider RKHS such that
for all i, Hi is L2-orthogonal to the space of constant functions 1i (i.e. the Hi

are spaces of zero mean functions for νi). This construction ensures that the
decomposition of Eq. 1.23 has the properties required in Eq. 1.17, so that we
benefit from the advantages of the two equations: the meaning of Eq. 1.17
for the analysis of variance and the easiness of computation of the mI ’s from
Eq. 1.23.

Let H be a RKHS of functions defined over a set D ⊂ R and ν a finite
Borel measure over D. Furthermore, we consider the hypothesis:

H 1.
(i) k : D ×D → R is ν ⊗ ν-measurable,

(ii)

∫
D

√
k(s, s)dν(s) <∞.

Proposition 1.2.1. Under H1, H can be decomposed as a sum of two

orthogonal sub-RKHS, H = H0

⊥
⊕ H1, where H0 is a RKHS of zero-mean

functions for ν, and its orthogonal H1 is at most 1-dimensional.

The reproducing kernels k0, k1 of H0 and H1 satisfy k = k0 + k1. Let π
denote the orthogonal projection onto H1. Following Berlinet and Thomas-
Agnan (2004) (theorem 11),

k0(x, y) = k(x, y)−

∫
D

k(x, s)dν(s)

∫
D

k(y, s)dν(s)∫∫
D×D

k(s, t)dν(s)dν(t)
(1.25)
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The K?
ANOVA class is obtained by combining Eqs. 1.21 and 1.25:

K?
ANOVA(x,y) =

d∏
i=1

(1 + ki0(xi, yi)) = 1 +
∑

I⊂{1,...,d}

∏
i∈I

ki0(xi, yi). (1.26)

Let us finally give two properties of K?
ANOVA summarizing the computational

benefits of using of such kernels for the FANOVA decomposition of the kriging
mean and for the computation of global sensitivity indices.

Proposition 1.2.2. If m is a best predictor based on K∗ANOVA,

mI =

(⊙
i∈I

ki0(xi)
t

)
K−1F (1.27)

is the term of the functional ANOVA representation of m indexed by I.
Hence, the decomposition of m given by Eq. 1.24 coincides with its func-
tional ANOVA representation (Eq. 1.17).

Proposition 1.2.3. The sensitivity indices SI of m are given by:

SI =
Var(mI(VI))

Var(m(V ))
=

FtK−1
(⊙

i∈I Γi
)

K−1F

FtK−1
(⊙d

i=1(1n×n + Γi)− 1n×n

)
K−1F

, (1.28)

where Γi is the n × n matrix Γi =
∫
Di

ki0(xi)k
i
0(xi)

tdνi(xi) and 1k×l is the
k × l matrix of ones.

1.3 Ongoing work and outlook

Current research directions include the extension of the invariance results ob-
tained in Section 1.1.3 to a broader class of operators in the case of Gaussian
random fields (GRF).

Let me briefly present a few unpublished ideas and intermediate results,
that range from characterization of pathwise invariance through the Loève
isometry to Gaussian measure interpretations and applications to the design
of kernels leading to sparse GRF paths.
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1.3.1 Further invariances in the GRF case

In the framework of a collaboration with Olivier Roustant and Nicolas Dur-
rande, we have recently proposed an approach relying on the Loève isometry
Berlinet and Thomas-Agnan (2004) in order to extend the invariance results
to operators beyond the combinations of compositions. A first important
point is to notice that given a linear operator T : RD → RD and a second-
order random-field Z such that T (Z) is second order, it is still possible to
characterize pathwise invariances of Z by T relying on second-order proper-
ties of the joint process (Zx, T (Z)x)x∈D, without any additional assumption
concerning Z’s probability distribution:

Proposition 1.3.1. Z = T (Z) up to a modification if and only if

k(x,x) = 2 cov(T (Z)x, Zx)− var(T (Z)x) (x ∈ D). (1.29)

In the case of a combination of composition operators, we already saw that
cov(T (Z)x, Zx) simplifies to T (k(·,x))(x). In more general cases, however, it
is not straightforward how to deal with this term.
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Figure 1.4: GRF Simulation and kriging relying on a bi-harmonic kernel.

The route followed in the preprint Ginsbourger et al. (2013e) is to re-
strict the scope to operators T such that T (Z)x ∈ L(Z) (the Hilbert space
generated by the GRF Z), so that cov(T (Z)x, Z

′
x) turns out to coincide with

T (k(·,x′))(x) where T : H → RD is an restriction of T to the RKHS H.
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In such settings, the T -invariance of Z up to a modification may be charac-
terized in terms of T being the identity of H. Examples in Gaussian pro-
cess regression are provided in (Ginsbourger et al., 2013e, Section 4), where
Gaussian random field models with paths solution to ordinary equations are
considered. An ongoing example of a GRF model with harmonic paths (re-
lying on a bi-harmonic kernel recently introduced in Schaback (2009)) and
its incoporation in kriging are illustrated on Fig. 1.4.

1.3.2 A Gaussian measure perspective

Following a question asked to me by Prof. Ilya Molchanov during an institute
seminar, another theoretical set-up I am currently considering for extending
the invariance results is the one of Gaussian measures on (separable) Banach
spaces Kuo (1975); Ledoux and Talagrand (1991); Bogachev (1998).

Bridges between GRFs and Gaussian measures on function spaces have
been studied at least since Rajput and Cambanis (1972), and it is known
in particular that GRFs with continuous paths defined on a compact set D
define Gaussian measures on the Banach space of continuous functions from
D to R equipped with the uniform norm.

Starting from this, studying pathwise properties of Gaussian random
fields (under technical conditions ensuring that the paths live in a prescribed
Banach space, notably discussed in Scheuerer (2009)) may be done through
measure-theoretic notions such as Fourier transforms and covariance opera-
tors of measures.

Compared to the approach of Section 1.1, where the obtained results
were “up to a modification”, working with covariance operators of Gaussian
measures enables to directly get “almost sure” results. A result of that
kind is given in Section E, where the argumentwise invariance (under the
adjoint of T ) of a centred Gaussian measure’s covariance operator is shown
to imply that the measure in question puts full mass on invariant elements
(the reciprocal being immediate).

The proof scheme is certainly not the fastest, but I found it worth being
displayed in appendix as it tackles the invariance by considering the product
of the considered measure with its push-forward by T . Note that working
directly with (I − T )∗µ would lead to a faster proof, as it is known that it is
equivalent for a centred Gaussian measure to put full mass on null elements or
to have a null covariance operator Tarieladze and Vakhania (2007). A paper
summarizing these results and studying the link to Cameron-Martin spaces
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(See Hairer (2009) for a tutorial, but also Van der Vaart and Van Zanten
(2008) for a discussion on their relation to RKHS) is in preparation.

Besides, from a more applied point of view, relations between the FANOVA
decomposition of GRF paths and the covariance operator are considered in
current work. Preliminary results on the subject have been obtained in Nico-
las Lenz’s master thesis (Lenz, 2013, jointly advised with Dominic Schuh-
macher), including in particular the explicit calculation of covariance struc-
tures leading to GRFs with paths orthogonal to additive functions (w.r.t.
the usual L2 scalar product). Perspectives include the extension of these
preliminary results to the whole FANOVA decomposition, in the spirit of
Kuo et al. (2010).



Chapter 2

Contributions to adaptive
design strategies relying on
random field models

2.1 Bayesian global optimization

Bayesian global optimization refers to algorithms and methods for optimiz-
ing expensive-to-evaluate functions using a Bayesian approach. The objective
function is modelled relying on a prior distribution in some function space
and on available evaluation results. Often, the function space and the cor-
responding prior distribution are implicitly defined by a Gaussian Random
Field (GRF) assumption on f . In other words, f : D → R is assumed to be
one path of a GRF (Zx)x∈D, where Z is typically assumed to have a mean lin-
ear with respect to fixed basis functions, and a known covariance kernel. Of
course, in applications, some covariance (hyper-)parameters are usually con-
sidered as unknown, and have to be estimated, e.g., by Maximum Likelihood,
or inferred in a fully Bayesian way. Bayesian global optimization dates back
to Kushner (1964); Mockus et al. (1978); Mockus (1989); Zilinskas (1992),
but seems to have been strongly popularized in the last 15 years following
the Efficient Global Algorithm (EGO) Jones et al. (1998), even though the
Bayesian nature of approach is not much emphasized in the latter paper,
where the constant mean and the parameters of a generalized exponential
covariance kernel are estimated by Maximum Likelihood. Later on, Jones
et al. (1998) has been revisited in many ways Forrester et al. (2006); Fra-

33



34 Contributions to adaptive design

zier et al. (2008); Gramacy and Lee (2008); Osborne et al. (2009), and now
appears as a seminal paper, especially concerning the use of the Expected
Improvement (EI) criterion, the basic brick of EGO.

In this chapter, we first present some work related to the EI criterion
(in Section 2.1.1) and a proposed extension for the case where observations
are corrupted by a Gaussian noise with tunable variance (in Section 2.1.2).
Then, Section 2.2 deals with criteria, originally inspired by EI but substan-
tially departing from it, that aim at estimating a probability of failure, learn-
ing contour lines, and estimating excursion sets of a function above a fixed
threshold, based on a random field prior. Finally, ongoing work and perspec-
tives following Sections 2.1 and 2.2 are discussed in Section 2.3.

2.1.1 Variations on the Expected Improvement

In Bayesian optimization, it is common to sequentially enrich the current
Design of Experiments (DoE) Xn = {x1, . . . ,xn} ∈ Dn (n ∈ N∗) (n = n0

denotes the initial state and Xn0 the initial DoE) by evaluating the objec-
tive function at a point maximizing some so-called infill sampling criterion,
update the GRF model, and iterate. EI is now one of the most popular infill
sampling criteria in Bayesian optimization, and is defined (in minimization)
as:

EIn(x) = E
[
(min(Z(Xn))− Z(x))+ |Z(Xn) = z(Xn)

]
= E [In(x)|An] (2.1)

where min(Z(Xn)) := min1≤i≤n(Z(xi)) is the best (i.e. minimal) response
observed so far, In(x) := max (0,min(Z(Xn))− Z(x)) is the improvement
(which is itself a random field) beyond min(Z(Xn)), and the event An :=
{(Z(x1), . . . , Z(xn)) = (z(x1), . . . , z(xn))} sums up all available observations
at step n. EI is appreciated for trading off sampling intensification in promis-
ing regions (exploitation) and exploration of unvisited search space areas.
Furthermore, EI is known in closed form Jones et al. (1998), which allows
fast evaluations, and calculation of its derivatives (see calculations in Rous-
tant et al. (2012), appended to the present document). Such a criterion,
though updated by integrating new data, is typically considered at each it-
eration without structural change (with exception of Schonlau et al. (1998),
where a generalized EI criterion with a varying exponent is considered). In
fact, in EI algorithms, the point visited at the jth iteration is determined
by maximizing a conditional expectation (cf. Alg. 1, where unicity of EI’s
global maximizer at each step is assumed for simplicity).
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Algorithm 1 EI algorithm with known parameters and r ∈ N∗ iterations

1: for j ← 1, . . . , r do
2: Set An0+j−1 = {Z(x1) = z(x1), . . . , Z(xn0+j−1) = z(xn0+j−1)}
3: Find xn0+j ∈ arg maxx∈D {E [In0+j−1(x)|An0+j−1]}
4: Evaluate z at xn0+j

5: end for

In Ginsbourger and Le Riche (2010), we call deterministic strategy with
horizon r (r ∈ N∗) any finite sequence S = (sj)j∈[1,r] of measurable1 functions
sj(.) : (D × R)n0+j−1 −→ D (j ∈ {1, . . . , r}), and denote by Sr the space
of such strategies. For example, in Algorithm 1, the s′js are implicitly taken
as arg maxx∈D E[In0+j−1(x)|Z(Xj−1)] for all j ∈ {2, . . . , r}, where Xj−1 =
Xn0 ∪ {xn0+1, . . . ,xn0+j−1} denotes the augmented DoE.

The purpose of this contribution is to consider more general strategies,
where the s′js may be subject to structural changes at each iteration, and
to show and illustrate that under the hypothesis of known finite horizon
such strategies can beat Algorithm 1 in expectation (cf. the example on the
decomposition of the EI of a horizon-2 strategy Ginsbourger and Le Riche
(2010), and the main results given by Theorem 1 and Corollary 1). Corol-
lary 1 is now recalled, with slightly adapted notations:

The optimal finite-time strategy satisfies the following recursion:

s∗r(Xn0+r−1,Zr−1) ∈ arg max
x∈D

E[In0+r−1(x)|An0+r−1]

s∗r−1(Xn0+r−2,Zn0+r−2)

∈ arg max
x∈D

E[In0+r−2(x, s∗r(Xn0+r−1(x),Zn0+r−1(x)))|An0+r−2],

. . . ,

s∗1(Xn0 ,Zn0)

∈ arg max
x∈D

E[In0(x, s∗2(X1(x),Z1(x)), . . . , s∗r(Xn0+r−1(x),Zn0+r−1(x)))|An0 ]

The finite time solution to the “strategic” EI maximization turns out to be
recursive as recalled above, and as such with rather limited potential for
applications (Benassi, 2013, Section 2.2.2). However, some of the modelling
involved in this work prepared the ground for infill sampling criteria dedicated
to further research questions, as detailed in the forthcoming sections.

1The source and goal spaces being equipped with their respective Borel σ-fields
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2.1.2 Extensions to noisy optimization

In subsequent research articles such as Picheny et al. (2013a,b); Picheny and
Ginsbourger (2014), a focus has been put on kriging-based strategies for
noisy optimization problems. Such methods are needed when searching for
the minimum of a function that can be only evaluated in noise, such as PDE
solvers for neutronics based on Monte-Carlo Fernex et al. (2005). In a long-
standing collaboration with a number of co-authors (See notably Picheny
and Ginsbourger (2010); Ginsbourger et al. (2013c); Picheny et al. (2013a,b);
Picheny and Ginsbourger (2014)), we have mainly considered the case where
each evaluation is corrupted by a centred additive noise with variance known
up to a constant, the variances being depending on the computational effort
invested at each evaluation point. Typical assumptions write

∀i ∈ {1, . . . , n}, z̃i = z(xi) + εi (εi ∼ N (0, τ 2
i ) independently)

z̃n := (z̃1, . . . , z̃n) ∆n := diag(τ 2
1 , . . . , τ

2
n) (τ 2

i ’s controllable)

Although adaptation of kriging to such framework turned out to be easily
done (cf. for instance Picheny et al., 2013a), adapting the EI lead to less
straightforward questions and developments. Here we put a tilde on events
to stress the presence of noise:

Ãn := {(Z(x1) + ε1, . . . , Z(xn) + εn) = z̃n} .

Ãn represents the information at step n in a noisy optimization context, i.e.
summarizes the set of noisy evaluation results that have been collected so
far. Contrarily to what happened in the noiseless case, the distribution of
Z(xi) (1 ≤ i ≤ n) conditionally on Ãn is not necessarily a Dirac (provided for
instance that τi 6= 0). We sketch below how the introduction of noise makes
it necessary to revisit the EI criterion. Plainly applying EI’s definition, we
find indeed in the noisy case

EIn(x) = E

min(Z(Xn))︸ ︷︷ ︸
unknown

− Z(x)︸ ︷︷ ︸
unreachable

+ ∣∣∣∣∣Ãn
 (2.2)

As indicated in the equation above, two major issues arise 2:

2Assuming that the τi’s are not all zero and the noise variance at x is positive
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1. minx∈Xn(Z(x)) is not known conditional on Ãn,

2. Z(x) will remain non-exactly known after an evaluation at x.

The first point prevents one from using the closed form formula known for
EI in the noiseless case. Note that plugging in the minimum of noisy obser-
vations is only reasonable in cases where the noise variances are kept very
small, as larger fluctuations caused by noise may lead to severe changes in
the EI landscape. While EI may be estimated by conditional simulations
(i.e. sampling from the joint distribution of (min(Z(Xn)), Z(x)), this option
is not really practical when it comes to optimizing the criterion (even though
some clever approach relying on a stochastic gradient algorithm has recently
been proposed for a similar issue in parallel optimization Frazier (2012)).

Besides (point 2), another difficulty in the noisy case is that the outcome
of an evaluation at x will not be the value z(x), as in the noiseless case,
but rather z(x) + ε with ε a realization of a noise variable with variance
τ 2. Now, EI as defined above does not take into account the fact that a
noisy observation is being performed; in particular, it does not depend on
τ 2. In the context of Monte Carlo simulations, where the number of draws
is controllable, it would seem more sensible to have an infill sampling crite-
rion depending on the computational effort invested at x. In Picheny and
Ginsbourger (2010); Picheny et al. (2013a), we approached the problem by
trying to transpose the notion of current minimum (and hence of improve-
ment, which is a difference between minima before and after one or several
evaluations) to the noisy case, as illustrated in Fig. 2.1.

A first question to be addressed to do so is of decision-theoretic nature:
what does the term “improvement” mean when comparing two sets of noisy
observations? What criterion should be used to judge that a set of noisy
observations, or the associated kriging model, is better (in terms of mini-
mization) after the (n + 1)th measurement than before it? Relying only on
the noisy observations z̃n and z̃n+1 is risky, as noise may introduce errors
in the ranking. In Picheny and Ginsbourger (2010); Picheny et al. (2013a),
we proposed to use the β-quantiles given by the kriging conditional distri-
bution, for a given level β ∈ [0.5, 1): a point is declared “best” over a set of
candidates Xn whenever it has the lowest kriging β-quantile:

x∗ ∈ arg min
x∈Xn

[qn (x)] = arg min
x∈Xn

[
mn (x) + Φ−1(β)sn (x)

]
, (2.3)
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Figure 2.1: What does “improvement” mean when starting from a noisy krig-
ing model and finishing with another one? Here a deterministic function (in
black) is approximated using a Gaussian process regression model (mean in
blue, pointwise prediction intervals in gray) based on noisy observations (blue
stars, with uncertainty bars in red). On the right panel, a new noisy mea-
surement is incorporated. Several options are possible to quantify to what
extent the model of the right panel, containing more information, improves
our knowledge about the objective function’s global minimum/minimizer.

where Φ stands for the cumulative distribution function of the standard Gaus-
sian distribution. From this, we defined a notion of quantile improvement3

that is consistent with our decision criterion: Denoting by Qi(x) the kriging
quantile qi(x) (i ≤ n + 1) where the measurements are still in their ran-
dom form, we define QIn to be the decrease of the lowest kriging β-quantile
between the present step n and the forthcoming step n+ 1:

QIn(xn+1) = (min (Qn (Xn))−Qn+1 (xn+1))+ (2.4)

Of course, like in the noiseless case, this quantile improvement cannot be
known in advance, because Qn+1 (xn+1) depends on the future observation
Z(xn+1) + εn+1. However, thanks to the linearity of the kriging predictor
with respect to the observations, the future kriging β-quantile Qn+1 turns

3Note that QI is denoted by I and called improvement in Picheny et al. (2013a).
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out to be a GRF (seen from step n), and its expectation and covariance can
be analytically calculated based on the GRF model at step n.

Note that in our quantile improvement (2.4), we restrict attention to
the observed points (Xn and xn+1), even though a similar criterion could
be defined over the entire design space. However, such a restriction allows
simplification, yielding a criterion in closed form.

The Expected Quantile Improvement (EQI) is defined as the following
function of xn+1 and τ 2

n+1:

EQIn(xn+1, τ
2
n+1) := E

[(
min
i≤n

(Qn(xi))−Qn+1(xn+1)

)+
∣∣∣∣∣Ãn
]
, (2.5)

where the dependence on the future noise τ 2
n+1 appears through Qn+1(x)’s

distribution. The randomness of Qn+1(x) conditional on Ãn is a consequence

of Z̃n+1 := Z(xn+1) + εn+1 having not been observed yet at step n. However,

following the fact that Z̃n+1|Ãn is Gaussian with known mean and variance,

one can show that Qn+1(·) is a GRF conditional on Ãn (see proof and details
in the appendix of Picheny et al. (2013a), itself appended to the present

document). Furthermore, mini≤n(Qn(xi)) is known conditional on Ãn. As a
result, the EQI criterion is analytically tractable, with a closed form formula
given in (Picheny et al., 2013a, Eq. 10).

An original feature of EQI is that it allows defining strategies where both
the evaluation point and the computational effort vary at each iteration. In
Picheny et al. (2013a), such strategies are referred to as online allocation
algorithms, and a heuristic is proposed for dynamically choosing the com-
putational resource allocated to every successive noisy “measurement” (or
function evaluation). The whole procedure is made practical by appealing to
update formulas and aggregation of noisy measurements at the same point
using so-called equivalent measurements (cf. Section 4.3 and Supplementary
material of Picheny et al. (2013a) for details). Another interesting point,
discussed in (Picheny et al., 2013a, Section 5), is that EQI gives a surprising
and elegant way to address the finite time (or “finite computational budget”)
issue, by letting the parameter τ 2

n+1 increase along a sequence of measure-
ments (as the budget decreases), leading to a strategy being relatively more
exploratory at the beginning and spending the last iterations locally refining
the search in the vicinity of the “best” points found so far.
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Experimental results reported in (Picheny et al., 2013a, Section 7) suggest
good overall performances of the criterion and the proposed approaches, and
show its applicability to a realistic test-case from nuclear criticality safety.
Further results and comparisons in the “constant allocation” set up Picheny
et al. (2013b) revealed that EQI is not always the best criterion (especially
when compared to AEI Huang et al. (2006) or AKG Frazier et al. (2008)).
However, the “online allocation” feature enabled by EQI makes it so far
an unchallenged criterion in its category, to the best of our knowledge. A
natural perspective for improving over existing approaches in noisy kriging-
based optimization with constant and online allocation would be to follow the
“Stepwise Uncertainty Reduction” approach (discussed in the next section),
extending works such as Villemonteix et al. (2009) and working towards an
enhanced applicability of this class of algorithms. From a more theoretical
point of view, convergence properties and rates of convergence of kriging-
based noisy optimization strategies owe to be studied, which may require
new proof schemes compared to the results available in the noiseless case
Vazquez and Bect (2010); Bull (2011); Srinivas et al. (2012).

2.2 On contour lines, probability of failure,

and excursion set estimation

2.2.1 Contributions to the definition and the analysis
of new infill sampling criteria

In recent research on kriging for computer experiments, several approaches
have been proposed about adaptively sampling f for learning a contour line
{x ∈ D : f(x) = t}, estimating a “volume of exceedance over t” (in both
cases t ∈ R is a prescribed threshold) given some measure on D, and for
related problems such as excursion set estimation.

The approach of Ranjan et al. (2008) for contour line estimation consists
in sequentially evaluating f at points maximizing a variant of the expected
improvement criterion, EI(x) = E[(α2s2

n(x)− (Z(x)− t)2)
+ ∣∣An], where α >

0 is a tunable parameter. An alternative approach for tackling this problem,
suggested in Picheny et al. (2010), consists in introducing a weight inside of
the IMSE criterion (Integrated Mean Squared Error, cf. Sacks et al. (1989)),
in order to favour regions with responses likely to be close to t. The obtained
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”targeted IMSE” criterion, parametrized by ε > 0, writes

IMSEt,ε = E

[∫
D

1Z(x)∈(t−ε,t+ε)s
2
n+1(x)dx

∣∣∣∣∣An
]

=

∫
D

P(Z(x) ∈ (t− ε, t+ ε)|An)s2
n+1(x)dx.

(2.6)

The criterion obtained in the limit case where ε → 0 was also studied in
Picheny et al. (2010). In Bect et al. (2012), we have summarized the strategies
above and some other variants from the point of view of excursion volume
estimation, and proposed a unified Sequential Uncertainty Reduction (SUR)
framework for this specific problem. The principle of SUR strategies is to
define an index of uncertainty on the quantity to estimate, and to iteratively
evaluate Z (i.e. f , in practice) at a well-chosen point such that the expected
uncertainty after evaluating Z at that point be minimized. The main index of
variability considered in the latter article being the variance of the excursion
volume, Var(Lebd(Γ)) (where Γ := {x ∈ D : Z(x) ≥ t} and Lebd is the
Lebesgue measure on R2), the criterion for which several surrogate quantities
are proposed is

J (α)
n (x) := E [Varn+1(Lebd(Γ); xn+1 = x)|An] , (2.7)

where Varn+1(Lebd(Γ); xn+1 = x) is the variance of Lebd(S) at ”step n+ 1”,
assuming that xn+1 = x but that Zxn+1 has not been observed yet (so that
Varn+1(Lebd(Γ); xn+1 = x) is a Zxn+1-measurable random variable). The
letter α in exponent symbolizes the fact that this criterion focuses on the
volume of excursion, denoted by α in Bect et al. (2012).

As the criterion defined in Eq. 2.7 was considered intractable, an effort
has been paid to find a similar criterion that would be computable. It turned
out that the alternative criterion J

(Γ)
n (taken from Bect et al. (2012) as well)

recalled below is an upper bound of J
(α)
n , so that a convergence of J

(Γ)
n to

zero guarantees that J
(α)
n converges to zero as well (both quantities being

non-negative). The basic brick underlying J
(Γ)
n is the binary field 1{Z(x)≥t}

together with the associated conditional mean and variance functions. In
particular, the conditional expectation of 1{Z(x)≥t} is the probability of ex-
cursion

pn(x) := E
[
1{Z(x)≥t}|An

]
= P(Z(x) ≥ t|An) = Φ

(
mn(x)− t
sn(x)

)
.
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Furthermore, 1{Z(x)≥t} has conditional variance pn(x)(1 − pn(x)), so that∫
D
pn(1−pn)dν can serve as a measure of global uncertainty about the target

excursion volume, where ν is a finite measure (a probability, say) on D. The
corresponding SUR sampling criterion writes

J (Γ)
n (xn+1) := En

[∫
D

pn+1(1− pn+1)dν
∣∣ Xn+1 = xn+1

]
, (2.8)

where En refers to the conditional expectation knowing An and “
∣∣ Xn+1 =

xn+1” is not really a probabilistic conditioning but rather means that the
(n+ 1)th point in pn+1 is xn+1. This criterion has proven efficient on the test
cases covered in (Bect et al., 2012, Sections 5.2 and 5.3), with comparable
or better performances (in terms of excursion volume estimation) than the
best performers among those taken from Picheny et al. (2010); Ranjan et al.
(2008); Bichon et al. (2008); Echard et al. (2010). However, the considered
SUR criteria appear to be more cumbersome than the other considered ones
as they require integrating both over the input space and the range of the
response value at the candidate point, while the targeted IMSE requires only
a spatial integral, and the other criteria are “point-wise”, so that they can
be calculated based on explicit formulas involving solely the kriging mean
and variance at the candidate point (see Bect et al. (2012), Appendix B for
more detail). Besides, of all the considered criteria, none enables a batch-
sequential approach, i.e. choosing points r by r (r > 1) instead of one
by one. Both limitations have been tackled during the Ph.D. of Clément
Chevalier, resulting in novel formulas for SUR criteria and parallelizations
thereof, presented in Chevalier et al. (2014a) and summarized in the next
section.

2.2.2 Efficient calculations of SUR criteria

In Chevalier et al. (2014a) (appended to the present document), we have

simultaneously speeded up the computation of J
(Γ)
n (thanks to a decrease in

computational complexity enabled by kriging update formulas presented in
Emery (2009) and Chevalier et al. (2013b)) and produced a so-called “par-
allel” version of this criterion for distributed computing. The main result is
recalled below:

Proposition 2.2.1.

J (Γ)
n (xn+1, . . . ,xn+r) =

∫
D

Φ2

([
a(x)
−a(x)

]
,

[
c(x) 1− c(x)

1− c(x) c(x)

])
ν(dx),
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where:

• Φ2(·,M) is the cumulative distribution function of the centred bivariate
Gaussian with covariance matrix M

• a(x) := (mn(x)− t)/sn+r(x),

• b(x) := 1
sn+r(x)

Σ−1 (kn(x,xn+1), . . . , kn(x,xn+r))
′ where kn is the krig-

ing covariance kernel at step n (See Chevalier et al. (2014a) for detail),

• c(x) := 1 + b(x)′Σb(x) = s2
n(x)/s2

n+r(x),

• Σ is the covariance matrix of (Zxn+1 , . . . , Zxn+r)
′ conditional on An.

Proposition 2.2.1 lead to significant computational speed-ups, as dis-
cussed in Chevalier et al. (2014a). Additionally, numerical experiments pre-
sented in Section 4 of the latter article even suggested that there is almost no
loss in parallelizing runs four by four compared to the purely sequential ap-
proach; In other terms, parallelizing leads to dividing the “wall-clock time”
by a factor of almost four, at the cost of running four Central Processing
Units (CPUs) instead of one. Future tests are needed to study whether such
impressive speed-up continues to hold in further experimental conditions.
However, it is already clear that the approach makes sense for a number of
application settings where diminishing wall-clock time is more crucial than
saving computational resource (e.g., in engineering applications where stud-
ies need to be handed in at a fixed date while computing units can always
more easily be rented –e.g., through clouds– when necessary).

Another nice by-product of the calculations done in Chevalier et al.
(2014a) is that the J

(α)
n criterion (considered so far intractable) finally turned

out to be tractable. We obtained indeed the following formula, directly in
the parallel set up:

Proposition 2.2.2.

J (α)
n (xn+1, . . . ,xn+r) =

γn −
∫
D×D

Φ2

([
a(x)
a(x′)

]
,

[
c(x) d(x,x′)

d(x,x′) c(x′)

])
ν(dx)ν(dx′),

where

• Φ2, a,b, c and Σ are defined as in Proposition 2.2.1,
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• d(x,x′) := b(x)′Σb(x′),

• γn is a constant, in the sense that it does not depend on (xn+1, . . . ,xn+r).

While the integrand (perhaps surprisingly) has the same complexity as
the one of Proposition 2.2.1, it is noticeable that the integration domain
now is a tensor product of the input domain by itself, hence making it more
cumbersome to compute J

(α)
n . Numerical results obtained in Chevalier et al.

(2014a), Section 4.1 suggest that selecting points based on J
(α)
n instead of J

(Γ)
n

does indeed slightly improve performances in terms of volume of excursion
estimation. Let us finally remark that both criteria are available in the
KrigInv R package Chevalier et al. (2012, 2014b).

2.3 Ongoing work and perspectives

2.3.1 On Expected Improvement criteria and beyond

Coming back to infill sampling criteria for Bayesian global optimization, the
idea of parallelizing EI has been considered and studied in Schonlau (1997),
Taddy et al. (2009), and Ginsbourger et al. (2010b) where the so-called Mul-
tipoint(s) Expected Improvement (q-EI) could be estimated by Monte-Carlo
but not calculated in closed form, making its maximization delicate. Re-
cently, an approach based on a stochastic gradient algorithm was proposed
in Frazier (2012), but to the best of the author’s knowledge, the potential
of this approach has not been investigated in practice yet. On the other
hand, following classical but not so well-known results from the literature
Tallis (1961) recently put to the fore by Da Veiga and Marrel (2012), we
have proposed in Chevalier and Ginsbourger (2013) a closed form formula
for q-EI relying on the Gaussian multivariate CDF, for which various effi-
cient evaluation algorithms are available Genz and Bretz (2009); Genz et al.
(2012).

In the continuation of parallel (also known as batch-sequential) kriging-
based optimization and the work on the q-EI criterion, another question I
have started to work on during my post-doctoral years (inspired by research
questions that arose in a long-standing collaboration with Rodolphe Le Riche
and his team) is the suitability of kriging to adapt to asynchronous parallel
optimization problems. In such framework, a number of processors (say q)
are available, but if calculations are run at q points, the responses are not
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coming back altogether but in sequence, potentially with long pauses between
successive results. Following an objective of wall-clock time reduction, it
then makes sense to re-allocate new calculations to the free processors while
the slowest ones are still running. The issue of choosing the new points
is then not trivial: indeed, at the busy nodes, evaluations are running at
known points but the corresponding responses are unknown. First attempts
to tackle this issue by adapting the EI and q-EI criteria have been presented
in project reports Ginsbourger et al. (2010a); Girdziusas et al. (2012) and in
a conference paper Janusevskis et al. (2012), but there is still room for more
in-depth research on the subject. While this may be a theme for future work,
the newest results obtained in Chevalier and Ginsbourger (2013) may bring
considerable simplifications, at least for cases where the number of CPUs (be
they available or busy) remains moderate.

Other perspectives concerning EI criteria and related work include new
approaches in multi-objective optimization , variants of EI for various spe-
cific problems such as curve (ridgelines, profile optima, filaments, etc.) esti-
mation, or inversion with distance-based kriging Ginsbourger et al. (2013d)
such as presented in Chapter 3. Concerning the two first points, let us fi-
nally mention two recent ongoing projects on the subject. On kriging-based
multi-objective optimization (where a number of variants of EI already exist,
see for example Emmerich et al. (2006)), let us mention the recent paper
Binois et al. (2013) where a new approach relying on GRF and Pareto front
simulations is proposed for monitoring the convergence of multi-objective EI
algorithms. To finish with EI criteria and strategies, let us briefly mention
Ginsbourger et al. (2013a), where a so-called “Profile-EI” is proposed for
sequentially estimating curves of profile optima, i.e. how the optimum of
a (say) bivariate function with respect to the second variable behaves as a
function of the first variable.

2.3.2 Estimating excursion sets

Another topic of ongoing work is the estimation of sets (such as excursion
sets) using GRF models and SUR strategies. This may seem redundant with
what was already covered in Section 2.2. Actually, in the SUR strategies
studied in Bect et al. (2012) and Chevalier et al. (2014a), the excursion set
appears only through its volume, which makes it possible to speak about a
variance in the proposed SUR criteria. However, even though the experimen-
tal results obtained on the test cases covered in these papers suggest that the



46 Contributions to adaptive design

proposed strategies perform well in excursion set estimation, nothing guaran-
tees a priori that reducing the variance of the volume of excursion will lead
to accurately estimate the excursion set itself (Consider the pathological case
of an excursion set with fixed volume but random position). This is the sub-
ject of Chevalier et al. (2013a) (appended to the present document), where
concepts from random set theory (namely the Vorob’ev expectation and de-
viation) are considered in the framework of excursion set estimation with
GRF priors. Ongoing work includes SUR strategies based on the Vorob’ev
deviation (a first implementation is available in Chevalier et al. (2012)), and
further comparisons of this new approach to existing ones.

Besides, the GRF approach to excursion set estimation may be enriched
by considering further notions of random set expectations and variability
Molchanov (2005). As most considered notions of expectations and variabil-
ity seem analytically intractable, estimating them relying on GRF (condi-
tional) simulations appears as a sensible option, which I am looking forward
to work on in the framework of an ongoing collaboration with Julien Bect,
Clément Chevalier, and Ilya Molchanov. In particular, original questions
will arise such as the optimal choice of simulation points (to be distinguished
from evaluation points) for an optimal estimation of candidate expectations
and uncertainty measures based on stochastic simulation.

Finally, let me mention that some more theoretical questions such as
consistency properties of the proposed approaches are considered as well
in the recently granted “Bayesian Set Estimation” Swiss National Science
Foundation project, notably through the work of Dario Azzimonti, who re-
cently started his Ph.D. within this project, under joint supervision with Ilya
Molchanov.



Chapter 3

Applications and software
implementation

3.1 An overview of some applications

3.1.1 On applications, theories, and project life

Without any ambition of generality, these few lines are more intended to be
taken as a personal story giving an insight on some phenomena going on at
the interface between targeted research and fundamental research. I found
being at the crossroad between two such worlds always exciting. Sometimes
rewarding, sometimes difficult to sustain, but never boring!

During my postdoctoral years so far, I have had indeed the true privi-
lege of sharing my time between a pure mathematics institute, a stochastic
hydrogeology team in a hydrology and geothermics department, and a mathe-
matical statistics institute. Besides, I have been actively involved in targeted
research projects with several industry partners from various horizons, in a
hybrid (targeted/fundamental) research project on aquifer modelling, and
more recently on a fundamental research project in mathematical statistics.

It is impossible for me to summarize in a few lines the numerous inter-
esting experiences that arose from this journey, but I would like to share a
bit of it through some selected thoughts.

A first point, that may seem trivial but took me years to understand, is
that a true diversity of profiles in research projects and institutions really
is an asset. Of course, some deep abstract works may be the result of long-
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standing individual research, and it is doubtlessly necessary that researchers
with adequate profiles be sponsored on the long run to tackle hard theoreti-
cal issues (be it in sciences or in other fields). But, on the other hand, there
are some kinds of achievements, especially when it comes to interface, inter-
disciplinary research, that can only be successfully addressed by a group of
people with different backgrounds and visions, and last but not least with the
ability to work together. This last point may sound easy but is actually not!
The more I see researchers involved in such projects, the more I understand
that interpersonal relations, informal brainstormings, and sharing knowledge
beyond disciplinary boundaries truly are key ingredients.

Obviously, preserving and cultivating a solid anchor in one’s home disci-
pline(s) seems also crucial in order to keep an equilibrium and not completely
scatter. I am very indebted to the institutes where I have been working dur-
ing these years, and especially to the IMSV where I hold a senior assistant
position (A kind of non-tenured assistant professor position with a main focus
on research) as I write these lines, for having enabled me to sustain a number
of external collaborations while benefiting from a home institute with strong
theoretical standards and an institute life with statistics seminars and collo-
quia, high-level visitors and graduate students, etc. I am really striving after
working in such a scientific environment, that enables me to keep making
progresses in science and hard core academic research. Regularly chatting
with experienced peers is a source of inspiration and challenges. Being con-
fronted to the curious and fresh minds of students through teaching activities
and master/PhD advising is another such source, of great quality.

To come back to project life and clichés, I would like to stress that if
theory is immensely useful for applications, applications should not be seen
only as a final product in the eco-system of research, but also as a chance
for theories to be stimulated and rejuvenated. To give a concrete example,
the theory of Reproducing Kernel Hilbert Spaces has started (to the best of
my knowledge) with Aronszajn (1950). After Schwartz (1964) and others in
the following years, the subject may have seemed to be already covered in
full from a theoretical point of view. But who could predict at that time
that so-called kernel methods would become central subject in statistics and
computer science (See, e.g., Schölkopf and Smola, 2002) with numerous ap-
plications ranging from spatial statistics to computational biology (Schölkopf
et al., 2004) and from engineering (Santner et al., 2003) to finance (Chalup
and Mitschele, 2008) a few decades later? And even better: that the rise of
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kernel methods would not only benefit from the foundations laid a generation
ago, but would also inspire a number of new problems that would call for
pure mathematics research, notably about positive definite kernels beyond
the standard context of Euclidean spaces. Research topics on which recent
advances have been done include (but are far from being limited to) isotropic
p.d. kernels on spheres (Ziegel, 2013), p.d. kernels on measure spaces (Cuturi
et al., 2005; Sriperumbudur, 2010), p.d. kernels on graphs (Espinasse, 2011),
and p.d. operator valued kernels (Kadri et al., 2012). Future applications
will call for further similarity measures between complicated objects, and it
seems predictable that new mathematical advances will be inspired by the
search for p.d. kernels on corresponding mathematical structures.

3.1.2 Distance-based kriging and the ProKSI algorithm

The ideas summarized now are the result of a long-standing collaboration
with water scientists and applied mathematicians. It all began with discus-
sions with Philippe Renard, when I realized that applying kriging-based opti-
mization techniques to problems involving very high-dimensional parameter
fields as input variables would not be straightforward. During the master’s
internship of Nicolas Durrande at Neuchâtel University (co-supervized by
Philippe Renard and me), we started looking at the distance methods devel-
oped at Stanford by Céline Scheidt and Jef Caers (Scheidt and Caers, 2009)
with the aim to apply them to a CO2 sequestration problem. Following Nico-
las’ internship, we started thinking about incorporating the distance/kernel
approach of Scheidt and Caers (2009) within a kriging model. By lack of
time, the idea was temporarily abandoned. It is only at the start of the EN-
SEMBLE project (and notably through the implementation work done by
Bastien Rosspopoff in summer 2011 during his master internship in Bern),
that we had a chance to dig deeper and propose an original inversion method
out of this distance-based kriging idea: the ProKSI algorithm (Ginsbourger
et al., 2013d).

The main idea, following the foundations laid by Scheidt and Caers (2009)
in the context of expensive flow simulations, is to endow a set of high-
dimensional parameter fields with a pseudo-distance obtained by taking (usual)
distances in the response space, by substituting the expensive code by quick-
to-evaluate simplified flow simulations (where the simplification can be done,
e.g., by neglecting diffusion/dispersion effects in the equations or by coarsen-
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Figure 3.1: 16 among 1000 parameter fields generated by multipoints simula-
tion, considered as candidates in the ProKSI algorithm of Ginsbourger et al.
(2013d) [Article appended to the present document]

ing the time discretisation – See the appended article for more detail). Then,
given N candidate parameter fields x1, . . . ,xN ∈ E (cf. Fig. 3.1) and the as-
sociated proxy responses (i.e. breakthrough curves obtained from simplified
flow simulations), a distance matrix can be formed, and transformed into
a valid covariance matrix by applying a suitable kernel function entry-wise.
Given a response of interest depending on the parameter field, the N × N
covariance matrix obtained from the proxy distances is all we need to create
a kriging model. In Ginsbourger et al. (2013d), the response of interest is the
(transformed) misfit between a reference curve and the expensive-to-evaluate
breakthrough curve fx(·) (cf. Fig. 3.2), and the kriging model is used to pre-
dict the misfit associated with N − n remaining parameter fields when the
actual misfit is known at n of them.

Two conditions are essential for the approach to be legitimate: That the pro-
posed covariance matrix is indeed positive definite, and that the hypothesis
that dissimilarities in the response of interest can be explained by dissimilar-
ities in the proxy responses is tenable. Concerning the first point, the kind
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Figure 3.2: 1000 accurate breakthrough curves corresponding to the candi-
dates parameter fields, one of them (in red) serving as reference. The goal of
the ProKSI algorithm is to find, in a small number of sequential evaluations
of the accurate solver, a subset of parameter fields leading to a breakthrough
curve with a good fit to the reference.

of kernel used in the ProKSI article turned out to be admissible as compo-
sition of a change of reference space (each parameter field x being labelled
by a discretized breakthrough curve px) with a p.d. kernel (chosen Gaussian
there, but it could have been any kernel from the D∞ class of Stein (1999,
p.44)) defined over the space of discretized breakthrough curves, as easily
proven in the appended article. A nugget effect (with respect to the original
space of parameter fields) was added, leading to a strictly p.d. kernel, and
reflecting the intuition that two parameter fields with the exact same proxy
response should not necessarily lead to identical misfits (calculated from the
accurate breakthrough curves, not from the proxy). For the second point, the
prediction results using this ad hoc kernel were surprisingly good, whether in
cross-validation or in external validation. Besides, the tested Expected Im-
provement algorithms lead to competitive results for the two different kinds
of proxy considered. Of course, the success of the method heavily relies on
the use of informative proxys. More than the fidelity of the proxy curves
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to the accurate curves, what seems important here is that dissimilarities in
the proxy curves reflect dissimilarities in the response of interest (here the
misfit). In particular, assuming that the dissimilarities in the accurate curves
account well for the dissimilarities in the misfit, adding a bias to a high fi-
delity proxy would not affect the method as it is solely based on pairwise
distance.

Perspectives include developing diagnostics for proxies (given a response of
interest) and investigating automatic methods (in the framework of distance-
based kriging) for extracting relevant dissimilarity measures from proxies.
Of course, the choice of the kernel is another issue of interest, but it seems
closer to classical statistical problems. An ideal approach would actually
treat both issues at once. Let us finally remark that if the pseudo-distance
matrix constructed in Ginsbourger et al. (2013d) is actually Euclidean (by
construction), the approach can be generalized to an arbitrary similarity
measure by first transforming the matrix into a Euclidean one, e.g., through
multi-dimensional scaling (MDS). A sensible research question would then be
to study how the prediction quality is affected by the non-Euclidean nature
of the matrix, and how it depends on the dimension chosen within MDS.

3.1.3 Further applications

External collaborations, and notably with industrial partners through the
ReDICE Consortium, have been a continuing source of inspiration for inves-
tigating statistical methods, adapting them to specific problems, and some-
times develop original approaches. Distance methods, for instance, have been
used for a number of applications in psychology, biology, and beyond Hastie
et al. (2001). Perhaps more surprisingly, such methods turned out to be
useful in a mechanical engineering application encountered through ReDICE
with colleagues from the French Nuclear Safety Institute (IRSN LIMAR,
Cadarache), where macroscopic mechanical properties of an heterogeneous
(two-phase) material are investigated in function of the position of inclusions
in a homogeneous matrix (details are omitted to avoid any confidentiality
issue). In that context, distances between materials are not straightforward
to define, and several candidate distances are currently being considered for
classifying materials. The ideal distance would reflect to what extent the me-
chanical behaviour of two materials will be similar, and would hence enable
reducing a large set of randomly generated materials to a small sample of
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representative ones. This is all very similar to the set up of the ProKSI algo-
rithm presented above, except that the distance is not given a priori. Current
work on this application includes the investigation of distances that respect
the invariance of the mechanical behaviour by some prescribed symmetries,
as well as the search of positive definite kernels based on such distances.

Other applications treated with ReDICE include car crash-test simulations.
A vehicle being parametrized by a set of design parameters, and the re-
sponses of interest being the mass of the vehicle and an index characterizing
the intrusion of the car body into the passenger compartment (both to be
minimized), the goal is to explore the Pareto set and the Pareto front corre-
sponding to this multi-objective problem. Kriging models (See also Bayarri
et al., 2009, for related works in the same application field) are used as a
base to sequential strategies using Expected Improvement criteria for model-
based multi-objective optimization (Wagner et al., 2011; Emmerich et al.,
2011; Parr, 2012). In ReDICE, this work is conducted in the framework of
Mickaël Binois’ Ph.D. thesis (funded by Renault).

A number of other ongoing applications with ReDICE partners, that are not
presented here for the sake of brevity, will appear on the longer term first
as project deliverables and then for some of them as peer-reviewed research
articles, as in the case of Richet et al. (2013), to take a recent example.

Beyond the projects I am involved in, the class of techniques covered in the
present document have been found useful in various application fields. To
give a quick overview of this diversity, let us mention that Gaussian processes
have been used for cosmic calibration (Habib et al., 2007) or exploring dark
energy dynamics (Nair et al., 2013), for designing an aircraft wing (Sóbester
et al., 2012), and for performing a functional analysis of variance analysis on
climate models (Kaufman and Sain, 2010).

Climate sciences offer a number of potential applications for ad hoc variants
of the methods discussed in the two last chapters. Following a first collabora-
tion (together with Clément Chevalier) with Olivia Romppainen-Martius and
Irina Mahlstein (Mahlstein et al., 2012), I am looking forward to contributing
more to this field.
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3.2 R packages

This section is about some R packages for kriging and kriging-based strategies
that have been produced in relation to the methods and research results pre-
sented in the previous chapters. These packages are the outcome of years of
collective work (not full time, of course!). They were originally created (first
within the DICE Consortium concerning the DiceKriging and DiceOptim
(Ginsbourger et al., 2013c) but also the DiceDesign (Franco et al., 2013),
DiceEval (Dupuy and Helbert, 2013), and DiceView (Richet et al., 2012)
packages) pursuing several overlapping goals:

• To dispose of a reasonably efficient prototype software gathering kriging
and further methods for computer experiment applications,

• To participate in open source and reproducible research,

• And to facilitate the transfer between new approaches developed in
research and practitioners from the industry or other

I have been mainly involved, together with Olivier Roustant and Yves Deville
in the design and the development of DiceKriging and DiceOptim (later Vic-
tor Picheny, Tobias Wagner, and Clément Chevalier have also contributed to
DiceOptim). The next section is dedicated to these packages and to a tutorial
paper (appended) that was published in Journal of Statistical Software.

3.2.1 A quick tour of DiceKriging and DiceOptim

As detailed in the introduction of Roustant et al. (2012), DiceKriging com-
plements existing R kriging programs as it allows kriging in arbitrary di-
mensions, offers universal kriging with arbitrary trend basis functions and
a standard formula system, conditional simulations, and an enhanced likeli-
hood maximization through a genetic algorithm (Mebane and Sekhon, 2011)
using analytically calculated gradients. For the time being, the covariance
kernels implemented in DiceKriging are anisotropic separable Matérn (with
ν = 3/2 or 5/2), Gaussian, Exponential, and Power-exponential (with tun-
able exponent). Besides, short after the writing of Roustant et al. (2012),
we have implemented a class of non-stationary kernels directly inspired from
Xiong et al. (2007), that bases on a non-linear coordinate-wise input trans-
formation (“scaling” option in km). Another option that has been recently
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added to DiceKriging is to specify an arbitrary covariance kernel (stationary
or not, that can be given as “kernel” functional input in km). Parameter
estimation for arbitrary kernels is not proposed yet but under development
for the newest (still at the experimental stage) DKlab package mentioned in
the next section.

The appended paper Roustant et al. (2012) also presents the DiceOptim
(Ginsbourger et al., 2013c) package, that was originally conceived as a satel-
lite of DiceKriging for EI functions (cf. previous chapter) and their maxi-
mization. Again, one of the strengths of this package is that the analytical
gradient of EI is coded (and intermediate calculations common to EI and
its gradient are passed from one calculation to the other), making EI’s max-
imization efficient (although some specific approaches potentially enabling
further computational savings mentioned in Jones et al. (1998) or Franey
et al. (2011) are not implemented at present). Since the version of DiceOp-
tim presented in Roustant et al. (2012) noisy kriging-based optimization
approaches have been added (thanks in particular to contributions of Victor
Picheny, who has been the driving force behind the “noisy.optimizer” func-
tion). The corresponding criteria and their implementation are presented in
the recent paper Picheny and Ginsbourger (2014). The code has notably
been used for a numerical benchmark of kriging-based noisy optimization
algorithms, resulting in Picheny et al. (2013b) (the collaboration with To-
bias Wagner being a follow-up to numerous discussions in Dortmund and to
the Noisy Kriging-based Optimization workshop –organized in Bern in 2010–
where we started designing the benchmark with Victor Picheny).

3.2.2 Ongoing developments and perspectives

Started within a collaboration with the French Nuclear Safety Institute (IRSN),
considerably extended with Victor Picheny, an finally revisited by Clément
Chevalier (who is now first author and maintainer) during his Ph.D., the
KrigInv package (Chevalier et al., 2012) is another satellite of DiceKriging
for kriging-based probability of excursion and excursion set estimation. All
the criteria, strategies, and methods presented in Chevalier et al. (2014a)
and Chevalier et al. (2013a) are implemented in KrigInv, and ongoing work
on kriging-based set estimation may be coded in R as well (within KrigInv
or other).

As for the DiceOptim package, future developments include the addition
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of a fast implementation of the multi-point EI criterion, such as proposed
in Chevalier and Ginsbourger (2013). Additional work is needed for the
efficient maximization of the multi-point EI criterion, with potential appli-
cations in synchronous and asynchronous parallel optimization (Janusevskis
et al., 2012; Girdziusas et al., 2012). Another very promising direction is the
use of Gaussian random field models for multi-objective optimization and
Pareto front learning (Binois et al., 2013), that is planned to be developed
in a separate dedicated package within the ReDICE Consortium.

Finally, a straightfoward perspective for extending the scope of kriging meth-
ods and surpassing what has been achieved with DiceKriging would be to
create a package gathering a number of basis kernels (in the spirit of what
has been done with the kernlab package (Karatzoglou et al., 2004)) and
accepting user-defined kernels, with the possibility to combine all those ker-
nels in different ways (tensor products and sums, weighted sums, block-wise
operations, “centering” kernels as in K?

ANOVA, symmetrizing and extracting
invariant parts of a kernel, etc.) and to estimate underlying structures and
parameters (as is already proposed, e.g., in the fanovaGraph approach of
Muehlenstaedt et al. (2012); Fruth et al. (2013, 2014)). With Yves Deville
and Olivier Roustant, we recently started to implement a new kriging pack-
age, simpler than DiceKriging in terms of functionalities, but with much more
freedom concerning the classes of covariance kernels used. For the moment,
the approach is to let the user enter a kernel (and optionally its gradient
with respect to related parameters) in R or in C/C++, and to perform both
Maximum Likelihood Estimation for the covariance parameters and krig-
ing prediction with this arbitrary kernel. The working version of this new
package is called DKlab, and medium term perspectives for it include the
implementation of kernel classes such as the additive ones of Durrande et al.
(2012) and the K?

ANOVA ones of Durrande et al. (2013). On the longer term,
it would be ideal to have a sufficiently versatile package so that it can be
used directly for research purposes, e.g. for testing new ideas of kernels on
the fly.
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Gaussian random field models have proven to be efficient for a number of
approximation, optimization, and further classes of problems related to the
study of real-valued functions (usually with moderate-dimensional source
space) under severely limited evaluation budget.

The contributions presented in this habilitation thesis are structured
around three complementary directions.

The first direction (Chapter 1) is the incorporation of “structural” prior
information into Gaussian field models through their covariance kernel. The
two first kinds of structural priors considered, namely the invariance under
the action of a finite group and the additivity property, turned out to be inter-
pretable as particular cases of invariances under combinations of composition
operators. While the characterization results obtained in that setting apply
in a general squared-integrable set-up, extensions to further operators in the
Gaussian case (notably to differential operators) open exciting perspectives
such as Gaussian field models incorporating, e.g., priors of divergence-freeness
of curl-freeness Scheuerer and Schlather (2012) (in the case of a Gaussian ran-
dom vector fields), of harmonicity Ginsbourger et al. (2013c), and beyond.

The second direction (Chapter 2) is the definition of new sequential poli-
cies and infill sampling criteria (still in the Gaussian field modelling set-up)
for a variety of goals including deterministic global optimization, contour
line estimation, noisy optimization, and excursion set estimation. Starting
from a study on the Expected Improvement criterion, which is shown to be
sub-optimal in finite time settings, other criteria such as the Expected Quan-
tile Improvement for noisy optimization and further criteria for probability
of excursion or set estimation are introduced and/or studied (notably those
given in Bect et al., 2012), and the efficiency of related evaluation strategies
is illustrated on toy functions and industrial test cases.

The third direction (Chapter 3) is the creation of generic tools for the
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implementation of those approaches in various contexts, and also their ap-
plication to large-scale problems, whether in terms of input (or output) di-
mensionality, or in terms of number of observations to handle, number of
computational nodes to manage, etc.

Perspectives of future research for pushing further the limits of Gaussian
field modelling and related sequential strategies abound, as the proposed
solutions open new questions, but also because the kind of problems tackled
here has already inspired contributions in a variety of neighbouring research
fields in the past few years.

First, much has been recently done in the machine learning community
that might be useful to transfer and adapt to other fields of applied statis-
tics (whether machine learning should be seen as a field of applied statistics,
computer science, or as an independent field is an open question left to the
reader!). This includes use-inspired work on handling a large number of ob-
servations (Snelson and Ghahramani, 2006, and following works), enhanced
hyper-parameter estimation techniques and McMC procedures for Bayesian
inference (de Baar et al., 2013; Wang and Neal, 2013), but also theoreti-
cal work on the convergence of “bandit” optimization algorithms relying on
pure random process and information theory (Srinivas et al., 2012; Contal
and Vayatis, 2013)

Second, considering that (centred) Gaussian field models are one-to-one
with positive definite kernels, investigating original families of p.d. ker-
nels and related efficient estimation techniques offer promising avenues of
research. On this question again, results from the machine learning commu-
nity owe to be considered. In particular, p.d. kernels have been intensively
studied in the framework of Support Vector Machines (cf. notably Genton,
2001; Schölkopf and Smola, 2002, and numerous more recent works bas-
ing on them), and Gaussian field modelling may benefit from a transfer of
ideas that seems not completely achieved yet (even though some connections
have already been made, e.g. in Archambeau and Bach (2011); Urtasun
(2011); Duvenaud et al. (2011); Durrande et al. (2013)). Note however that
on the subject of covariance kernels, the links to existing work is very far
from restricting to machine learning, as positive definite kernels have been a
broadly studied object across many fields of pure and applied mathematics
(See Schoenberg, 1938; Berg et al., 1984; Sriperumbudur, 2010; Fasshauer,
2011; Cohen and Lifshits, 2012). Modelling problems involving complicated
structures (not only arising from intellectual speculations but also from con-
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crete applications) may catalyse future investigations about p.d. kernels,
whether in terms of revisiting existing theories or in terms of posing new
challenges to the mathematicians!

Keeping in mind that they are potentially compatible with any of the
covariance kernels mentioned so far (and beyond), infill sampling criteria
and sequential evaluation strategies relying on Gaussian random field mod-
els seem to have a high potential for extension and further developments.
To take a first example, we have seen how to incorporate noise with tunable
fidelity in kriging-based global optimization, but the “unit” noise variance
was assumed constant over space. Finding realistic and efficient models to in-
coporate the estimation of a noise variance function into noisy kriging-based
optimizers seems a reasonable and useful research perspective. On a different
question, sequential strategies for Bayesian set estimation with a Gaussian
field prior are just in their infancy, and quantities such as the Vorob’ev de-
viation proposed in Chevalier et al. (2013b) may be considered as “measures
of uncertainty” in the Sequential Uncertainty Reduction framework of Bect
et al. (2012), in order to define and calculate new infill sampling criteria
for this specific problem. If the objective is reasonably ambitious, studying
theoretical properties of such criteria and strategies is more to be seen as
a long-term goal, culminating with sufficient conditions of consistency, and
also ideally with convergence rates (cf. Bull, 2011). From a more applied
point of view, tools are needed to describe and visualize distributions of sets
in dimension larger than three, that would summarize their variability and
help describing regions of high uncertainty.

In all, dimensionality and limitations on the number of observation points
appear as the main bottlenecks of Gaussian field models and their use for
optimization and related strategies. Approaches for solving one or both of
those issues are needed for extending the scope of the considered methods,
especially when it comes to the sequential framework. An original approach
for high-dimensional global optimization based on Gaussian field models was
recently proposed in Wang et al. (2013), which may open new research per-
spectives also for the other goals usually pursued with this class of models.

Efficient and versatile (and ideally open source) implementations of the
newest Gaussian field modelling techniques will in my view play a significant
role, not only for spreading such techniques to practitioners, but also for re-
search purposes. A promising perspective on that topic would be to dispose
of Gaussian random field software allowing the user to define new classes of
covariance kernels and yet to benefit from fast parameter estimation algo-
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rithms. Environments such as Rcpp (Eddelbuettel and Francois, 2011), an
R package for encapsulating C++ code into R codes and packages, may be
key to achieve such goals.

After so many perspectives concerning Gaussian random field models and
their use in applied functional analysis, it seems worth to stress that they
solely constitute one particular galaxy in a gigantic universe of models and
methods. A number of approaches from numerical analysis have been found
useful for function approximation, ranging from multi-resolution techniques
(Daubechies, 1992; Candès and Donoho, 1999), interpolating and smoothing
splines (Wahba, 1990; Friedman, 1991; Gu, 2002; Lin and Zhang, 2006), and
many others (see Hastie et al., 2001). In optimization, let us plainly mention
that derivative-free methods are well-represented in the evolutionary com-
munity (See for example Hansen (2006) on the CMA-ES algorithm, or Auger
et al. (2013) and the references therein for a global overview). Similarly,
problems such as probability of failure and excursion set estimation dispose
of their own literature across diverse research fields, and it would be overly
ambitious to try to summarize them here. The approaches considered in the
present work do have a limited scope (in terms of dimensionality, number of
evaluations, type of functions considered, etc.), and even if this scope might
slightly enlarge at the cost of additional research, they owe to be seen as part
of a class of methods among a myriad of other existing classes.

Another limitation of the kind of model considered here is the distribu-
tional assumption of Gaussianity, that constitutes a very special prior with
a number of potentially detrimental consequences for uncertainty quantifica-
tion. In particular, the Gaussianity of the associated conditional distributions
makes such models very rough when it comes to quantifying probabilities of
extreme events. Making it fully Bayesian is an option that enables to get
thicker tails on predictive distributions. Another possibility would be to work
directly with other kinds of random field models, e.g. with max-stable fields
Schlather (2002); Spodarev et al. (2013). Of course, this would be at the
price of loosing the computational simplicity of Gaussian random fields in
terms of prediction and conditional simulations. Future research may tell
if such alternative models are worth for the approximation of deterministic
functions, and also to what extent max-stable fields and results from ex-
treme value theory may lead to useful approaches in numerical optimization
(Huessler, 2010).
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Appendix D

Proofs of some properties of
Chapter 1

The proofs are similar to those given in Ginsbourger et al. (2012) but have
been adapted here to the notations used throughout the habilitation.

Proof of Prop. 1.1.3. Let us first assume that Z has Φ-invariant paths, up
to a modification. Then, there exists a field Z̃ with Φ-invariant paths and
such that ∀x ∈ D, P(Zx = Z̃x) = 1. This implies that kZ = kZ̃ since the

2-dimensional distributions of Z and Z̃ are the same. Now, by Φ-invariance
of Z̃’s paths, we have ∀x ∈ D ∀g ∈ G ∀ω ∈ Ω, Z̃x(ω) = Z̃g.x(ω), so that in
particular, ∀x ∈ D ∀g, g′ ∈ G

kZ̃(g.x, g′.x′) = Cov[Z̃g.x, Z̃g′.x′ ] = Cov[Z̃x, Z̃g′.x′ ] = Cov[Z̃x, Z̃x′ ] = kZ̃(x,x′).

Reciprocally, let us now assume that kZ is argumentwise invariant under Φ.
Let us denote by A ⊂ D a fundamental domain for Φ, and by πA : D −→ A
the projector mapping any x ∈ D to its representer πA(x) ∈ A, i.e. to the

point of A being in the same orbit. We then define the random field Z̃ by

Z̃x := ZπA(x) (x ∈ D )

By construction, Z̃ has paths invariant under Φ. Now, for any x ∈ D, there
exists g ∈ G such that πA(x) = g.x. Subsequently,

Var[Zx − Z̃x] = Var[Zx − Zg.x] = k(x,x) + k(g.x, g.x)− 2k(x, g.x) = 0,

so that P(Zx = Z̃x) = 1, and Z is indeed a modification of a random field
with Φ-invariant paths.
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Proof of Prop. 1.1.4. The covariance vector k(.) is Φ-invariant by argumen-
twise Φ-invariance of k. The results then follow by plugging in the equality
k(g.x) = k(x) in Eq. 1.1 and in the kriging variance equation (cf. (Gins-
bourger et al., 2012, Eq. 3.4)).

Proof of Prop. 1.1.5. (1) follows from the Φ-invariance of k(.) applied to
Eq.1.4. For (2), it is useful to recall that conditional simulations are paths
drawn from the conditional distribution of the considered field. Now, condi-
tionally on the observations, this field has a mean function (the kriging mean
m) known to be Φ-invariant according to Prop. 1.1.4. Since the comple-
ment to this mean function is a centred GRF with argumentwise Φ-invariant
kernel (from (1)), Prop. 1.1.3 implies that the conditional simulations are
Φ-invariant, as sums of a Φ-invariant function plus Φ-invariant paths.



Appendix E

Invariances in terms of
Gaussian measures

Let us consider here a Gaussian measure µ on a separable Banach space
(B, || · ||B). Let us denote by

Cµ : (`, `′) ∈ (B∗)2 → Cµ(`, `′) :=

∫
B
`(x)`′(x)dµ(x)

the covariance operator of µ, and by

µ̂ : ` ∈ B∗ → µ̂(`) :=

∫
B
ei`(x)dµ(x)

the Fourier transform of µ. In case of a separable B, it is well-known that µ
is completely characterized through the push-forward measures `∗µ (` ∈ B∗),
and consequently that any of Cµ or µ̂ characterizes µ. Let us also recall that

both notions are notably connected through the identity µ̂(`) = e−
1
2
Cµ(`,`).

As pointed in Hairer (2009), it follows from the definition of a Gaussian
measure and the expression for its Fourier transform that images of Gaussian
measures by bounded operators are Gaussian measures. More precisely,

Proposition E.0.1. If µ is a Gaussian measure on B and T : B → B2

is a bounded linear map for B2 some other Banach space, then η = T∗µ is a
Gaussian measure on B2, with

Cη(`, `
′) = Cµ(T ∗`, T ∗`′) (`, `′) ∈ (B∗2)2

where T ∗ : B∗2 → B∗ is the adjoint to T , i.e. the operator such that (T ∗`)(x) =
`(T (x)) for every x ∈ B and ` ∈ B∗2.
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In our context, B2 = B, and the link between path invariances and argu-
mentwise invariance of the covariance kernel can be reformulated as a conse-
quence of Proposition E.0.1, relying on the concepts of product and diagonal
measures. Before stating the main proposition, let us recall the definition of
the diagonal extension of a measure to a product space.

Definition E.0.2. Let µ be a measure on (B,A) (A being the Borel sigma-
algebra associated with B unless precised otherwise). The diagonal measure
µ∆ on (B2,A2) associated with µ is defined by

µ∆(S) := µ({x ∈ B : (x, x) ∈ S}) (S ∈ A2).

In other words, µ∆ is the push-forward of µ on B2 by the map (idB, idB) :
x ∈ B −→ (x, x) ∈ B2. Similarly, let us denote by (idB, T ) the function
mapping x ∈ B to (x, T (x)) ∈ B2. We now characterize the almost sure
invariance of Gaussian random elements by giving a necessary and sufficient
condition for the measures (idB, T )∗µ and µ∆ to coincide.

Proposition E.0.3. Let µ be a Gaussian measure on (B,A), T ∈ L(B)
be a bounded linear map from B to itself, and T ∗ ∈ L(B∗) denote its adjoint.
Then, (idB, T )∗µ = µ∆ if and only if Cµ is argumentwise invariant by T ∗,
i.e.

Cµ(T ∗`, `′) = Cµ(`, T ∗`′) = Cµ(`, `′) ((`, `′) ∈ B∗ × B∗).

Proof. Assume first that Cµ is argumentwise invariant by T ∗. Consider an
arbitrary bounded linear form ` ∈ (B×B)∗, and let `i = `◦πi ∈ B∗ (i = 1, 2),
where π1, π2 are maps on B defined by π1(x) = (x, 0) and π1(x) = (0, y) ∈
B × B, so that ` = (`1, `2). Then,

µ̂∆(`) =

∫
B×B

ei`((x,y))dµ∆((x, y))

=

∫
B
ei`((x,x))dµ(x) =

∫
B
ei(`1+`2)(x)dµ(x) = e−

1
2
Cµ(`1+`2,`1+`2),

(E.1)

whereof µ∆ is a Gaussian measure on B × B with covariance operator:

Cµ∆
: (`, `′) ∈ ((B × B)∗)2 → Cµ∆

(`, `′) = Cµ(`1 + `2, `
′
1 + `′2). (E.2)
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Now, using the assumption of argumentwise invariance, we get

Cµ∆
(`, `′) = Cµ(`1 + T ∗`2, `

′
1 + T ∗`′2)

=

∫
B
(`1(x) + `2(Tx))(`′1(x) + `′2(Tx))dµ(x)

=

∫
B
`((x, Tx))`′((x, Tx))dµ(x)

=

∫
B×B

`((x, y))`′((x, y))d((idB, T )∗µ)(x, y)

= C(idB,T )∗µ(`, `′),

(E.3)

and we conclude that µ∆ = (idB, T )∗µ. Reciprocally, assuming µ∆ = (idB, T )∗µ
implies (using Eq E.3) that for all `1, `2, `

′
1, `
′
2 ∈ B∗,

Cµ(`1, T
∗`′2)+Cµ(T ∗`2, `

′
1)+Cµ(T ∗`2, T

∗`′2) = Cµ(`1, `
′
2)+Cµ(`2, `

′
1)+Cµ(`2, `

′
2),

leading to Cµ(`1, `
′
2) = Cµ(`1, T∗`

′
2) for `2 = 0, which concludes the proof.

Corollary E.0.4. Under the conditions of Proposition E.0.3, i.e. if µ is
a Gaussian measure on (B,A) and T ∈ L(B) is a bounded linear map with
Cµ argumentwise invariant by T ∗, then we have

µ({x ∈ B : Tx = x}) = 1.

Proof. Using (idB, T )∗µ = µ∆, we directly obtain that

µ({x ∈ B : Tx = x}) = µ∆ ({(x, Tx), x ∈ B})
= µ∆ ((idB, T )(B))

= (idB, T )∗µ ((idB, T )(B))

= µ
(
(idB, T )−1(idB, T )(B)

)
= µ (B) = 1.
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