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Abstract

Our goal is to assist users in understanding SPARQL query performance, query

results, and derivations on Linked Data.

To help users in understanding query performance, we provide query perfor-

mance predictions based on the query execution history. We present a machine

learning approach to predict query performances. We do not use statistics about

the underlying data for our predictions. This makes our approach suitable for the

Linked Data scenario where statistics about the underlying data is often missing

such as when the data is controlled by external parties.

To help users in understanding query results, we provide provenance-based query

result explanations. We present a non-annotation-based approach to generate why-

provenance for SPARQL query results. Our approach does not require any re-

engineering of the query processor, the data model, or the query language. We use

the existing SPARQL 1.1 constructs to generate provenance by querying the data.

This makes our approach suitable for Linked Data. We also present a user study to

examine the impact of query result explanations.

Finally to help users in understanding derivations on Linked Data, we introduce

the concept of Linked Explanations. We publish explanation metadata as Linked

Data. This allows explaining derived data in Linked Data by following the links of

the data used in the derivation and the links of their explanation metadata. We

present an extension of the W3C PROV ontology to describe explanation meta-

data. We also present an approach to summarize these explanations to help users

filter information in the explanation, and have an understanding of what important

information was used in the derivation.
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Introduction
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1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Context

The Web is evolving from a Web of Documents to a Web of Data. Thanks to the

W3C Linking Open Data initiative, in the recent years we have seen a sharp growth

of publishing Linked Data from community driven efforts, governmental bodies, so-

cial networking sites, scientific communities, and corporate bodies [Bonatti 2011].

Data publishers from these different domains publish their data in an interlinked

fashion using the RDF data model and provide SPARQL endpoints to enable query-

ing their data, which enables creating a global data space. This presents tremendous

potential for integrating disparate data to support a new generation of intelligent

applications [Schwarte 2011]. Integrating Linked Data by means of querying may

include complex workloads with resource intensive queries. Managing these work-

loads is vital for effective integration of Linked Data. To this end, understanding

query behavior prior to query execution can help users such as knowledge base ad-
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ministrators or application developers in workload management tasks such as con-

figuration, organization, inspection, and optimization [Mateen 2014]. Furthermore,

in the open environment of the Web where heterogeneous Linked Data is exchanged,

integrated, and materialized in distributed repositories behind SPARQL endpoints,

understanding query result derivations is essential to make trust judgments, to val-

idate or invalidate results [Theoharis 2011, Wylot 2014]. Query result explanations

enable this understanding by providing information such as which source triples

contributed to results, how these source triples were combined, and which data sets

these source triples came from. In addition, applications can consume Linked Data,

some of which can be derived by other applications, and reason on their consumed

data to produce results or even produce more Linked Data. In this setting, it is

essential to explain not only the reasoning by the applications but also the deriva-

tions of the consumed data, to help users to understand how results or new Linked

Data were derived. This kind of explanations can become very large when appli-

cations consume a large amount of data or the consumed data has a long chain

of derivations. In this context, providing explanations with details about all the

derivations may overwhelm users with too much information. They may want to

have the ability to focus on specific parts of an explanation, filter information from

an explanation, or get short explanations with important information.

In the next section, we discuss the issues considering the context we provided so

far and identify the research questions.

1.2 Research Questions

The overall research question we address in this thesis is:

RQ. How to assist users in understanding query behavior and results in

the context of consuming Linked Data?
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We break down this question into several sub-questions. First, we address the

problem of understanding query behavior in the context of Linked Data. To enable

query behavior understanding, we aim at providing predicted query performance

metrics to the users. Users such as knowledge base administrators can use this

understanding in use-cases such as effective workload management to meet specific

Quality of Service (QoS) requirements. The research question in this context is as

follows:

RQ1. How to predict query performance metrics on SPARQL endpoints

that provide Linked Data querying services?

Second, we address the problem of providing result explanations to assist users in

understanding result derivations. This improved understanding may lead to better

trust on the system that produces the result. There are two cases for understanding

results in the context of consuming Linked Data: SPARQL query results and results

produced by applications.

For SPARQL query results, the main challenge is to provide explanations for

queries on SPARQL endpoints which are administrated and controlled by external

parties. Hence, re-engineering the underlying data model, the query language, or

the query processor to generate explanation related metadata during the query

processing is not possible in this scenario. In addition, we investigate the impact of

query result explanations in the context of consuming Linked Data. The research

questions concerning these issues are as follows:

RQ2. How to provide explanations for SPARQL query results on

SPARQL endpoints that provide Linked Data querying services?

RQ3. What are the impacts of query result explanations?

For results produced by applications, the main challenge is to provide explana-

tion facilities considering the distributed and decentralized architecture of the Web.

Applications can consume data that are distributed across the Web. The consumed
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data in this context can be also some derived data. We investigate how to provide

explanation in such a scenario – explaining not only the reasoning by the applica-

tions but also the derivations of consumed data. Furthermore, providing detailed

explanations may overwhelm users with too much information – specially the non-

expert users. In this context, the challenge is to summarize explanations to provide

short explanations. Considering these issues, the research questions are as follows:

RQ4. How to provide explanations for results produced by applications

that consume Linked Data?

RQ5. How to summarize explanations for results produced by applica-

tions that consume Linked Data?

1.3 Contributions

We have five major contributions:

• To address the research question RQ1, we present an approach to predict

SPARQL query performance without using statistics about the underlying

data. We learn query performance from previously executed queries using ma-

chine learning techniques. We discuss how to model SPARQL query features

as feature vectors for machine learning algorithms such as k-nearest neighbors

algorithm (k-NN) and support vector machine (SVM). In our experimental

setting, we predict query execution time as a query performance metric with

high accuracy.

• To address the research question RQ2, we present a non-annotation approach

to generate why-provenance for SPARQL query results. We show the feasibility

of our approach by an experiment to generate why-provenance for common

Linked Data queries. We generate SPARQL query result explanations from

the why-provenance of query results.
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• To address the research question RQ3, we present a user study to evaluate

the impact of query result explanations. We conduct the study in a federated

query processing setting for Linked Data. Our study shows that query result

explanations improve users’ user experience – where user experience is defined

as understanding and trust.

• To address the research question RQ4, we present an approach to explain

Linked Data – i.e. explaining distributed reasoning in decentralized fashion.

We present the Ratio4TA1 vocabulary and introduce the notion of Linked

Explanations.

• To address the research question RQ5, we present an approach to summarize

explanations for Linked Data. We presented five measures to summarize ex-

planations and evaluate different combinations of these measures. The evalua-

tion shows that our approach produces high quality rankings for summarizing

explanation statements.

1.4 Thesis Outline

This thesis contains a background and state of the art of the related literature, an ap-

proach to SPARQL query performance prediction, an approach to explain SPARQL

query results, a user study to evaluate the impact of query result explanations, an

approach to explain results produced by Linked Data applications, and an approach

to summarize explanations for Linked Data applications. The chapters in the rest

of this thesis are organized as follows:

> Chapter 2 provides a background of the related topics, and the state of the

art on user assistance in querying and user assistance in result understanding.

We identify the research trends in the areas of user assistance in querying and

user assistance in result understanding, and outline the focus of this thesis.
1http://ns.inria.fr/ratio4ta/
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> Chapter 3 describes our approach to query performance prediction to assist

users in understanding query behavior on SPARQL endpoints that provide

Linked Data querying services. We present a machine learning approach to

predict SPARQL query performance metrics prior to query execution. We

discuss how to model SPARQL query features as feature vectors for machine

learning algorithms such as k-nearest neighbors algorithm (k-NN) and support

vector machine (SVM). We present an experiment with common Linked Data

queries and discuss our results.

> Chapter 4 describes our approach to explain SPARQL query results. We

present a non-annotation approach to generate why-provenance for SPARQL

query result. We present an experiment with common Linked Data queries

to show the feasibility of our algorithm. We present an explanation-aware

federated query processor prototype and use our why-provenance algorithm to

generate explanations for its query results.

> Chapter 5 describes our user study to evaluate the impact of query result

explanations in the Linked Data federated query processing scenario.

> Chapter 6 describes our approach to explain results produced by applications

that consume Linked Data. We introduce an ontology to describe explana-

tion metadata and introduce the notion of Linked Explanations – publishing

explanation metadata as Linked Data.

> Chapter 7 describes our approach to summarize explanations produced by

applications that consume Linked Data. We discuss our summarization mea-

sures and present an evaluation of our summarization approach.

> Chapter 8 summarizes our contributions and describes our perspectives.
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2.1 Introduction

In this chapter, we review the topics required for the background knowledge for

this thesis and provide a state of the art review of the related literature. We first

provide a brief history of the evolution of the Web. Second, we discuss the Linked

Data principles with a focus on publishing and consuming Linked Data. Third,

we review the literature on user assistance in querying. Furthermore, we review

the literature on user assistance in understanding results. Finally, we discuss the

research trends and challenges, and the focus of this thesis.

2.1.1 Publication

We published the result of this chapter as a full research (survey) pa-

per [Hasan 2012b] in the Explanation-aware Computing Workshop 2012 (ExaCt

2012) at European Conference on Artificial Intelligence 2012 (ECAI 2012).

2.2 From the Web of Document to the Web of Data

The Web has evolved from its early days of the Web of Documents to the modern

Web of Data. Tim Berners-Lee in his original proposal of the “World Wide Web”

(WWW) [Berners-Lee 1990] introduced WWW as a hypertext application to cross-

link documents all over the world using the Internet. The basic idea of the WWW

is that a client application called the Web browser can access a document in another

computer by sending a message over the Internet to a Web server application. In

response to a client’s access request message, the Web server sends back a repre-

sentation of the document – written in the Hypertext Markup Language (HTML).

HTML allows adding hyperlinks to other documents at different locations on the

Web. The location of a Web document (Web page) is named using a Universal

Resource Locator (URL). When a user clicks on a hyperlink, the Web browser sends

a message to the Web server at the IP address associated with the URL, requesting
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a representation of the HTML document at the given location from the Web server.

The Web server sends back the HTML source code of the requested document and

the browser displays it to the user. A turning point for the WWW was the in-

troduction of the Mosaic web browser1 in 1993. It could display both textual and

graphical contents. This lead to a rapid growth of the usage of the WWW. In the

core of the notion of the WWW is the idea of an open community: anyone can

say anything about any topic (known as the AAA slogan). This openness led to

the wider adaption and development of the Web with a comprehensive coverage of

topics. However, during the early phases of the WWW, most Web documents were

static – with no option for the users to contribute to the content of the documents.

As Simperl et al [Simperl 2013] describe, the second phase of WWW develop-

ment began around 2000 with the introduction of technologies for allowing users to

interact with the Web pages and contribute to their contents. This lead to the de-

velopment and adaptation of a wide range of social websites including blogs, wikis,

product reviews, and crowdsourcing. The Web users, previously consumers of the

Web contents, became prosumers capable of contributing to the contents of the Web.

With this, the AAA slogan became even more prevalent.

In 2001, Berners-Lee et al. [Berners-Lee 2001] proposed a further development

of the Web called the Semantic Web. They pointed out that the existing Web was

not usable by computer applications the same way they are usable by people. For

example, a person can look at different Web pages providing textual information

on flight schedules, hotels, weather, and so on, and plan a trip. However, reliably

extracting such information from text-based Web pages is hard for computer appli-

cations. The main aim of the Semantic Web is to support a distributed Web of data

rather than a distributed Web of documents. This means that instead of having

one Web document link to another Web document, one data item can link to an-

other data item using different types of relations. This enables content providers to

publish human-readable Web documents along with machine-readable description
1http://www.livinginternet.com/w/wi_mosaic.htm

http://www.livinginternet.com/w/wi_mosaic.htm
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of the data. With this vision, the Semantic Web initiative resulted in standards for

publishing data on the Web and consuming those data to allow computer applica-

tions to combine data from different sources the same way a person can combine

information from different textual Web pages to perform a task.

In 2006 Berners-Lee proposed a set principles [Berners-Lee 2006a] – known as

the Linked Data principles – for publishing data on the Semantic Web. This resulted

in a sharp growth of published data on the Semantic Web following the Linked Data

principles – from 2 billion triples in 2007 to over 30 billion triples in 2011.

2.3 Linked Data

The term Linked Data refers to a set of best practices – proposed by Berners-Lee

in his Web architecture note Linked Data [Berners-Lee 2006a] – for publishing and

interlinking data on the Web [Heath 2011]. The basic idea of Linked Data is to use

the Web architecture to share Semantic Web data. Before discussing the Linked

Data principles, we briefly introduce the RDF data model for representing data on

the Semantic Web and the SPARQL query language to query data on the Semantic

Web. For a more detailed introduction to RDF and SPARQL, we refer the readers

to the cited W3C specification documents [RDF 2014a, SPA 2013b].

2.3.1 RDF

The Resource Description Framework (RDF) data model is a W3C recom-

mended standard for representing information about resources on the World Wide

Web [RDF 2014a]. RDF is a graph-based data model where vertices represent enti-

ties and edges represent relationships between entities.

Definition 1 (RDF graph) Let I be the set of IRIs, L be the set of literals, and

B be the set of blank nodes. An RDF triple (s,p,o) is a member of the set (I ∪B)×

I × (I ∪L∪B). An RDF graph is a set of RDF triples. For an RDF triple (s,p,o),
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the element s is called subject, the element p is called predicate, and the element o

is called object.

2.3.2 SPARQL

SPARQL is the W3C recommended query language for RDF. As the SPARQL 1.1

specification describes [SPA 2013b], SPARQL query solving is based on graph pat-

tern matching. SPARQL queries allow specifying sets of triple patterns known as

basic graph patterns. Triple patterns are similar to RDF triples but the subject,

predicate, and object can be variables. A basic graph pattern may match a sub-

graph from the RDF data and substitute the variables by RDF terms from the

matched subgraph. The native SPARQL query engines perform a series of steps to

execute a query [SPA 2013b]. First, parsing the query string into an abstract syntax

form. Next, transforming the abstract syntax to SPARQL abstract query. Finally,

optimizing and evaluating the SPARQL abstract query on an RDF data set.

Definition 2 (SPARQL abstract query) A SPARQL abstract query is a tuple

(E, DS, QF) where E is a SPARQL algebra expression, DS is an RDF data set, QF

is a query form.

The algebra expression E is evaluated against RDF graphs in the RDF data set

DS. The query form QF (SELECT, CONSTRUCT, ASK, DESCRIBE ) uses the

solutions from pattern matching to provide result sets or RDF graphs. The alge-

bra expression E includes graph patterns and operators such as FILTER, JOIN,

and ORDER BY 2. SPARQL allows forming graph patterns by combining smaller

patterns: basic graph patterns, group graph patterns, optional graph patterns, al-

ternative graph patterns, and patterns on named graphs. A basic graph pattern

contains a set of triple patterns.

Definition 3 (Triple pattern) A triple pattern is a member of the set: (T ∪V )×

(I ∪ V )× (T ∪ V ). The set of RDF terms T is the set I ∪ L ∪B. The set V is the
2Algebra operators: http://www.w3.org/TR/sparql11-query/#sparqlAlgebra

http://www.w3.org/TR/sparql11-query/
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set of query variables where V is infinite and disjoint from T .

A group graph pattern combines all other types of graph patterns. An optional graph

pattern contains a graph pattern which is optional to match for a query solution.

Alternative graph patterns provide a means to take union of the solutions of two or

more graph patterns. Patterns on named graphs provide a means to match patterns

against selected graphs when querying a collection of graphs. The outer-most graph

pattern in a SPARQL query is known as the query pattern. A query pattern is a

group graph pattern.

2.3.3 The Linked Data Principles

The Linked Data principles were proposed by Berners-Lee in his Web architecture

note Linked Data [Berners-Lee 2006a]. The principles are the following:

1. Use URIs as names for things.

2. Use HTTP URIs, so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL).

4. Include links to other URIs, so that they can discover more things.

The first principle advocates using URIs to identify real world objects (e.g. peo-

ple, places, and cars) and abstract concepts (e.g. relationships between objects, the

set of all red cars, and the color red). The second Linked Data principle advocates

combining the use of HTTP – the universal access mechanism of the Web – and

URIs to enable dereferencing the URIs of objects and abstract concepts over the

HTTP protocol to retrieve descriptions of the objects and abstract concepts. The

third Linked Data principle advocates the use of a single data model (RDF) for pub-

lishing data to enable different applications to process the data. In addition, data

providers may provide access to their data via SPARQL endpoints. This enables
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providing search APIs over their data sets. The fourth principle advocates linking

any type of things using their URIs. For example, a link may be created between

a person and a place. This is analogous to hyperlinks in the Web of documents.

However, the links are typed relationships in Linked Data. This enables creating a

global data space as the URIs may refer to descriptions of things hosted in different

Web servers distributed across the Web.

Indeed, many data publishers have adopted these principles to publish their data

on the Web. An important development in this context is the W3C Linking Open

Data (LOD) initiative3 which promotes publishing open data sets as Linked Data

– known as the LOD cloud. Figure 2.1 shows the LOD cloud diagram4. It shows

the data sets that have been published as Linked Data by the contributors of the

Linking Open Data project and other individuals and organizations, as of September

2011. A node in this diagram represents a distinct data set. An arc from a data

set to another data set indicates that there are RDF links from the data set to

the other data set. A bidirectional arc between two data sets indicates that there

are outward links between both data sets. Larger nodes correspond to a greater

number of triples. Heavier arcs represent a greater number of links between two

data sets. As of September 2011, the LOD cloud contains 295 data sets classified

into 7 domains totaling 31,634,213,770 triples altogether5.

2.3.4 Publishing Linked Data

Publishing Linked Data requires adopting the Linked Data principles we discussed

in Section 2.3.3. Heath and Bizer [Heath 2011] discuss the design considerations

for preparing data to publish them as Linked Data and serving Linked Data for

consumers. We outline them in this section.

3http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
4Attribution: “Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.

http://lod-cloud.net/”
5http://lod-cloud.net/state/

http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://lod-cloud.net/
http://lod-cloud.net/state/
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Figure 2.1: Linking Open Data cloud diagram.
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2.3.4.1 Design Considerations

Heath and Bizer break down the design considerations for preparing data to publish

as Linked Data into three areas: naming things with URIs; describing things with

RDF; and making links to other data sets.

Naming Things with URIs. The first Linked Data principle advocates using

URIs as names for things. These things can be real-world objects such as

a person, a place, a building, or more abstract concepts such as a scientific

concept. Names for these things make it possible to refer to each of them. The

second Linked Data principle advocates using HTTP URIs to enable names to

be looked up by any HTTP client. Using HTTP URIs as names means that

a data publisher chooses part of an http:// namesapce that he/she controls –

possibly by owning the domain name, running a Web server for the domain

name, and minting URIs in this namespace for naming things. To promote

linking to a data set, data publishers follow some simple rules for minting sta-

ble and persistent URIs. First, a data publisher should not use a namespace

on which he/she does not have control – to enable URI dereferencing. Second,

URIs should not include implementation details that may change over time.

Finally, creating URIs based on keys that are meaningful in the domain of a

data set – e.g. using the ISBN as part of the URI for a book rather than using

its internal database key.

Describing Things with RDF. The third Linked Data principle advocates pro-

viding useful information when someone looks up a URI. RDF provides an

abstract data model for describing resources using triples in a data set. RDF

does not provide domain specific terms for describing real world objects

and their relationships. For this, taxonomies, vocabularies, and ontologies

are used. These taxonomies, vocabularies, and ontologies are expressed in

SKOS (Simple Knowledge Organization System) [SKO 2009], RDFS (RDF
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Schema) [RDF 2014c], and OWL (Web Ontology Language) [OWL 2014].

SKOS allow expressing conceptual hierarchies, known as taxonomies. RDFS

and OWL allows describing conceptual models using classes and properties.

Furthermore, it is desirable to reuse terms from existing vocabularies. This

makes it easier for applications – which are tuned to well known vocabularies

– to consume data. When someone dereference the URI for a resource, the

related triples for that resource are provided in the response.

Making Links to Other Data Sets. It is essential to create links within and be-

tween data sets to ensure every resource in a data set is discoverable, and that

it is well integrated with the Web. It is important that external data sets

link to the resources in a new data set published as Linked Data. This allows

crawlers and applications to discover newly published data sets. However,

third parties owning the external data sets may need convincing about the

value of linking to a new data set. DBpedia6 can be considered as an example

of this which allows third parties to include triples with links to their data

sets. It is equally important that a new data set links to resources in external

data sets. This enables discovering additional data about resources in external

data sets by dereferencing their URIs. In addition, those external data sets

may include links to some resources in other external data sets, which leads

to discovering even more data.

2.3.4.2 Serving Linked Data

The primary mechanism to serve Linked Data is by making URIs defererenceable.

In addition, a large number of Linked Data publishers provide SPARQL endpoints

for directly querying the data.

Making URIs Defererenceable. HTTP URIs are naturally dereferenceable.

HTTP clients can look up a HTTP URI and retrieve the description of the
6http://dbpedia.org/
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resource that the URI identifies. This mechanism applies to HTTP URIs that

identify classical HTML documents, as well as HTTP URIs that identify real-

world objects and abstract concepts in the Linked Data context. Resource de-

scriptions are embodied in the form of Web documents. The common practice

is to represent the descriptions for human consumption as HTML and the de-

scriptions for machine consumption as RDF data. In fact, data publishers use

different URIs to identify a real-word object and the document that describes

it, to eliminate ambiguity. This allows making separate statements about an

object and about the document that describes it. Different representations of

resources are achieved using HTTP content negotiation [Fielding 1999]. The

basic idea of content negotiation is that HTTP clients indicate the types of

documents they prefer in HTTP headers of each request. Servers select the ap-

propriate representation for the response of a request by inspecting the HTTP

header of the request.

SPARQL Endpoints. A SPARQL endpoint is a SPARQL query service via HTTP

that implements the SPARQL Protocol [SPA 2013a]. The SPARQL Protocol

defines how to send SPARQL queries and update operations to a SPARQL

service via HTTP. It also specifies the HTTP responses for a SPARQL query

and an update operation. Public SPARQL endpoints serving Linked Data

usually do not support the SPARQL update operation. A large fragment

of Linked Data is served using SPARQL endpoints. As of September 2011,

68.14% of the data sets (201 out of 295 data sets) in the LOD cloud7 provide

SPARQL endpoints.

2.3.5 Consuming Linked Data

In this section, we outline the aspects related to consuming Linked Data discussed

by Heath and Bizer [Heath 2011]. Data published as Linked Data becomes part of

7http://lod-cloud.net/state/#access

http://lod-cloud.net/state/#access
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a global data space. In general, applications use Linked Data from this global data

space exploiting the following properties:

Standardized Data Representation and Access. Linked Data is published in

a self-descriptive manner, using a standardized data model and standardized

data access mechanisms. In comparison to Web 2.0 APIs, data integration

becomes easier for Linked Data.

Openness of the Web of Data. The inherently open architecture of Linked

Data enables new data source discovery at runtime – automatically discov-

ering new data sources as they become available.

2.3.5.1 Linked Data Applications

Heath and Bizer classifies the current generation of Linked Data applications into

two categories: generic applications and domain-specific applications.

Generic Linked Data applications. Generic Linked Data applications process

data from any domain. Examples of generic Linked Data applications are:

Linked Data browsers and Linked Data search engines. Traditional Web

browsers allow users to navigate between HTML Web pages by following hy-

perlinks. Similarly, Linked Data browsers allow users to navigate between

data sources by following links of RDF resources. In this way, a user can begin

navigation in one data source and may progressively traverse the Web of Data

by following links of RDF resources. Examples of Linked Data browsers in-

clude Disco8, Tabulator9 [Berners-Lee 2006b], and LinkSailor10. Linked Data

search engines crawl Linked Data from the Web, and provide query inter-

faces over the aggregated data. Examples of Linked Data search engines in-

clude Sig.ma11 [Tummarello 2010], Falcons12 [Cheng 2009], and Semantic Web
8http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/disco/
9http://mes.github.io/marbles/

10http://linksailor.com/nav
11http://sig.ma/
12http://iws.seu.edu.cn/services/falcons/documentsearch/

http://wifo5-03.informatik.uni-mannheim.de/bizer/ng4j/disco/
http://mes.github.io/marbles/
http://linksailor.com/nav
http://sig.ma/
http://iws.seu.edu.cn/services/falcons/documentsearch/
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Search Engine (SWSE)13 [Harth 2008]. The aim of these services is to pro-

vide crawling and indexing infrastructure for Linked Data applications – so

that each application does not have to implement them. Services with slightly

different emphases include Sindice14 [Tummarello 2007] which provides access

to documents containing instance data; and Swoogle15 and Watson16 which

provide query interfaces to find ontologies.

Domain-specific applications. There are various Linked Data applications cov-

ering specific user communities. The websites data.gov17 and data.gov.uk18

provide lists of Linked Data applications which combine and visualize govern-

ment data to increase government transparency. dayta.me19 and paggr20 are

examples of Linked Data applications for personal information management

and recommendation. Talis Aspire21 [Clarke 2009] is an example of Linked

Data application for education domain which helps users to create and manage

learning materials. Other examples of domain-specific Linked Data applica-

tions include DBpedia Mobile22 [Becker 2009] for tourism domain; NCBO Re-

source Index23 and Diseasome Map24 for Life Science domain; and Researcher

Map25 for social networks domain.

2.3.5.2 Architecture of Linked Data Applications

Heath and Bizer discuss three architectural patterns for Linked Data applications:

the crawling pattern, the on-the-fly dereferencing pattern, and the query federation

13http://www.swse.org/
14http://sindice.com/
15http://swoogle.umbc.edu/
16http://kmi-web05.open.ac.uk/Overview.html
17http://www.data.gov/communities/node/116/apps
18http://data.gov.uk/apps
19http://dayta.me/
20http://paggr.com/
21http://www.w3.org/2001/sw/sweo/public/UseCases/Talis/
22http://wiki.dbpedia.org/DBpediaMobile
23http://bioportal.bioontology.org/resources
24http://diseasome.eu/map.html
25http://researchersmap.informatik.hu-berlin.de/

http://www.swse.org/
http://sindice.com/
http://swoogle.umbc.edu/
http://kmi-web05.open.ac.uk/Overview.html
http://www.data.gov/communities/node/116/apps
http://data.gov.uk/apps
http://dayta.me/
http://paggr.com/
http://www.w3.org/2001/sw/sweo/public/UseCases/Talis/
http://wiki.dbpedia.org/DBpediaMobile
http://bioportal.bioontology.org/resources
http://diseasome.eu/map.html
http://researchersmap.informatik.hu-berlin.de/
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pattern.

The Crawling Pattern. This pattern mimics the crawling pattern of classical

Web search engines. Applications first crawl the Web of Data by traversing

links of RDF resources, then they integrate and cleanse the crawled data, and

provide and integrated view of the crawled data. The advantages of the crawl-

ing pattern is twofold: new data is discovered at run-time and complex queries

over the large amount of integrated data can be executed with a reasonable

performance. The disadvantage of the crawling pattern is that applications

need to replicate the data locally and they often work with stale data.

The On-The-Fly Dereferencing Pattern. A typical use-case for this pattern is

implementing a Linked Data browser application. The applications that im-

plement this pattern dereference URIs and follows RDF resource links the

moment they require the data. The advantage of this pattern is that appli-

cations always process fresh data. The disadvantage of this pattern is that

complex operations might require dereferencing a large number of URIs and

hence they are slow.

The Query Federation Pattern. The applications that implement this pattern

directly send queries (or parts of queries) to a fixed set of SPARQL endpoints

– therefore this pattern can be only implemented if the data sources provide

SPARQL endpoints in addition to dereferenceable URIs. The advantage of

this pattern is that applications do not need to replicate the data locally and

hence they always process fresh data. A major problem in this pattern is

that finding efficient query execution plans over large number of SPARQL

endpoints is difficult – causing significant downgrade in performance when the

number of SPARQL endpoints grows. Therefore, this pattern is suitable for

scenarios where the number of data sources – SPARQL endpoints – is small.
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2.4 User Assistance in Querying

Assisting users in querying has been studied from different point of views. Stojanovic

et al. [Stojanovic 2004] propose a query refinement approach to help users refine

queries according to their needs in a step-by-step fashion. The authors argue that

this approach is suitable for modeling information retrieval tasks on ontology based

systems. Nandi et al. [Nandi 2007] present an automatic query completion approach

for relational and XML databases to help users construct queries without prior

knowledge of the underlying schema. This approach helps the users to construct

queries, while they type, by suggesting schema level parameters and text fragments

from the data. Zenz et al. [Zenz 2009] introduce the QUICK system to help users

construct semantic queries from keywords. It enables a user to start with arbitrary

keywords and incrementally constructs the intended query. These approaches help

users to formulate and refine queries.

Another line of work on assisting users in querying focuses on helping users in

understanding query behaviors prior to query execution. Generally speaking, these

works provide query performance predictions based on the query execution history.

In the database literature, Duggan et al. [Duggan 2011], Akdere et al. [Akdere 2012],

Ganapathi et al. [Ganapathi 2009], and Gupta et al. [Gupta 2008] study query per-

formance prediction to support database users in tasks such as Quality of Service

(QoS) management and effective resource allocation. For example, database admin-

istrators can use query performance prediction to effectively allocate workloads such

that specific QoS targets are met. System architects can use query performance pre-

diction to estimate system configurations for supporting some specific kind of work-

load requirements. Application programmers can use query performance prediction

to choose among alternative queries based on performance requirements. These ap-

proaches in the database literature study how to accurately predict performance

metrics for relational database queries – in human understandable units (e.g. time

units for latency) in contrast to some abstract numbers in query cost estimation ap-
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proaches for query optimization. Such approaches for query performance prediction

to support users have not been studied for Semantic Web queries.

2.5 User Assistance in Understanding Results

Expert systems were among the first software systems that provided features – expla-

nation facilities – for assisting users in understanding how and why the systems pro-

duce their results or reach a conclusion [Haynes 2001, Moore 1988, Swartout 1991].

Explanation facilities in expert systems have evolved from reasoning trace oriented

explanations, primarily useful for developers and knowledge engineers, to more user

oriented interactive explanations justifying why a system behavior is correct, to

casual explanations generated in a decoupled way from the line of reasoning. Ex-

planation facilities in expert systems were motivated by enabling transparency in

problem solving, imparting an understanding of why and how a given conclusion was

reached, and hence enabling trust in the reasoning capabilities of expert systems.

These developments motivated adaptation and development of explanation facilities

in other fields such as machine learning [Glass 2011, Stumpf 2007], case-based rea-

soning [Doyle 2003, Roth-Berghofer 2004], recommender systems [Tintarev 2007],

databases [Cheney 2009], and Semantic Web. Here we first briefly discuss the gen-

eral explanation approaches in the Semantic Web context. Then we briefly discuss

explanation for query results.

2.5.1 Explanation in the Semantic Web

Generally speaking, the main goal of providing explanations for Semantic Web appli-

cations is to improve users’ understanding of the process of deriving new information

and the flow of information involved in the process. This improved understanding

may lead to better user acceptance, and hence improved trust in the Semantic Web

applications. The previous work on explanations in the Semantic Web literature

can be categorized into two categories: (a) representing explanation metadata, (b)
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generating and presenting explanations.

2.5.1.1 Representing Explanation Metadata

A large body of previous work [McGuinness 2004, McGuinness 2006,

Pinheiro da Silva 2006, Pinheiro da Silva 2008, Kagal 2011, Bizer 2007,

Forcher 2010] has used Semantic Web standards to represent machine pro-

cessable explanation metadata. Typically explanation metadata include details

on information manipulation steps and their dependencies. McGuinness et al.

termed these kind of metadata as justifications: a justification can be a logical

reasoning step, or any kind of computation process, or a factual assertion or as-

sumption [McGuinness 2006, McGuinness 2008, McGuinness 2004] . An important

previous work for representing explanation metadata is Proof Markup Language

(PML) [Pinheiro da Silva 2006]26. PML is an explanation interlingua consisting

of three OWL ontologies: PML provenance ontology (PML-P), PML justification

ontology (PML-J), and PML trust ontology (PML-T). PML-P provides primitives

for representing real world things (e.g. information, documents, people) and

their properties (e.g. name, creation date-time, description, owners and authors).

PML-J provides primitives for encoding justifications for derivations of conclusions.

PML-T provides primitives for representing trust assertions concerning sources

and belief assertions concerning information. There are also variants of PML:

PML-Lite27 and Accountability In RDF (AIR) [Kagal 2011]. PML-Lite is a

simplified subset of three PML modules to represent provenance of data flows and

data manipulations. AIR rule language includes the AIR Justification Ontology

(AIRJ) – an extension of PML-Lite – to represent justifications that the AIR

reasoner produces. AIRJ extends the PML-Lite event-based approach. WIQA -

Web Information Quality Assessment Framework [Bizer 2007] provides explanations

in natural language for human consumption and explanations in RDF for further

26http://inference-web.org/2007/primer/
27http://tw.rpi.edu/web/project/TAMI/PML-Lite

http://inference-web.org/2007/primer/
http://tw.rpi.edu/web/project/TAMI/PML-Lite
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processing by software applications. WIQA describes the explanation trees (parts

and subparts of an explanation) using the Explanation (EXPL) Vocabulary28. The

KOIOS [Forcher 2010] keyword-based semantic search engine provides its search

results with explanations about how it computes the search results. KOIOS uses

three ontologies to describe its explanations in RDF: KOIOS Process Language

(KPL), Mathematical Graph Language (MGL), and Graph Visualization Language

(VGL). KPL provides primitives to describe the behavior of the problem solving

process. MGL provides primitives to describe the graph based view of the process

model. VGL provides primitives to describe visualization parameter related

information.

2.5.1.2 Generating and Presenting Explanations

We categorize the previous work on generating and presenting explanations into two

categories: explanation-aware applications and justifications.

Explanation-Aware Applications. Inference Web [McGuinness 2003,

McGuinness 2004, McGuinness 2008] provides an explanation infrastructure which

addresses explanation requirements for web services discovery, policy engines, first

order logic theorem provers, task execution, and text analytics. It generates the

explanation metadata during the reasoning process and encodes them using PML.

Inference Web provides a set of software tools and services for building, present-

ing, maintaining, and manipulating PML proofs. It proposes a centralized reg-

istry based solution for publishing explanation metadata from distributed reasoners.

OntoNova [Angele 2003] is an ontology-based question answering system which pro-

vides explanations in natural language with its answers. It generates explanations

in a meta-inferencing step. The OntoNova inference engine produces log files which

represent proof trees for answers. These files are given as an input to a second meta-

inference step. This second meta-inference step explains the proof trees in natural

language with the description of how answers were derived. WIQA [Bizer 2007]
28http://www4.wiwiss.fu-berlin.de/bizer/triqlp/

http://www4.wiwiss.fu-berlin.de/bizer/triqlp/
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generates its explanation metadata in RDF during the reasoning process along with

natural language annotations using explanation templates to provide the final nat-

ural language-based explanation. Antoniou et al. [Antoniou 2007, Bassiliades 2007]

present a nonmonotonic rule system based on defeasible logic which is able to answer

queries and provide proof explanations. The traces of the underlying logic engine

are transformed to defeasible logic proofs. The authors introduce an extension to

RuleML29, a unifying family of Web rule languages, to enable formal representation

– not in RDF however – of explanations of defeasible logic reasoning. In addition,

the authors present graphical user interfaces to visualize the proofs and interact with

them. The Knowledge in a Wiki (KiWi) [Kotowski 2010] project30 provides expla-

nations to support users’ trust and determine main causes of inconsistencies in the

knowledge base. KiWi generates and stores the justifications of all the derivations

during the reasoning process, and uses them for providing explanations and reason

maintenance. KiWi provides natural language and proof tree-based explanations

highlighting the derivation paths. KOIOS [Forcher 2010] explanations justify how

search keywords are mapped to concepts in the underlying RDF data and how the

concepts are connected. KOIOS generates the explanation metadata in RDF during

the query solving process and presents them as graphical and textual explanations.

AIR reasoner [Kagal 2011] generates AIR justifications during its reasoning process.

It then converts the AIR justifications in RDF to natural language explanations us-

ing user specified translation rules. AIR provides features to selectively control the

degree of details in its explanations.

Justifications. Ontology editors such as Protégé31 and SWOOP32 provide

justification-based explanations for entailments in ontologies. Intuitively, a jus-

tification for an entailment is “a minimal subset of the ontology that is suffi-

cient for the entailment to hold” [Horridge 2008]. Horridge [Horridge 2011] pro-

29http://ruleml.org
30http://www.kiwi-project.eu/
31http://protege.stanford.edu/
32https://code.google.com/p/swoop/

http://ruleml.org
http://www.kiwi-project.eu/
http://protege.stanford.edu/
https://code.google.com/p/swoop/
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vides an overview of the justification computation approaches for ontologies. Hor-

ridge describes the algorithms for computing justifications using two axes: single-

all-axis and reasoner-coupling-axis. The single-all-axis concerns the algorithms

to compute a single justification and all justifications for an entailment. Algo-

rithms for computing all justifications generally depend on algorithms for com-

puting single justifications. Single justifications are useful in application scenarios

where human users use the explanations for ontology debugging. The reasoner-

coupling-axis concerns the explanation generation methods: black-box and glass-

box. Black-box [Kalyanpur 2007, Horridge 2009, Wang 2005] methods are reasoner

independent. They use the reasoner only to check if an entailment holds. Glass-

box [Kalyanpur 2005, Meyer 2006, Schlobach 2003, Lam 2008] methods compute

justifications as a direct consequence of reasoning. Glass-box algorithms usually

require modifications of the procedures inside the reasoner in order to generate

justifications as a direct consequence of reasoning. There are also hybrid meth-

ods [Moodley 2010, Kalyanpur 2005] that combine black-box and glass-box meth-

ods. For example, Kalyanpur et al. use a preprocessing glass-box algorithm which

extracts a small subset of the ontology that entails the entailment, in a black-box

algorithm to generate the actual justification.

2.5.2 Explaining Query Results

Previous work in the relational database literature suggests explaining query results

by providing query result provenance [Cheney 2009]. The general idea of query

result provenance is to determine what data or transformations led to result tu-

ples [Herschel 2010]. Data provenance for query results has been widely studied in

relational database literature. Recent work (e.g. [Theoharis 2011, Wylot 2014]) in

the Semantic Web literature has also studied data provenance for SPARQL query

results. In this section we provide an overview of related work on provenance for

query results in the database literature and in the Semantic Web literature.
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2.5.2.1 Provenance for Query Results in Relational Databases

Cheney et al. [Cheney 2009] describe the research trends of provenance in relational

database literature. Provenance information explains the origins and the history of

data. With the emergence of data on the Internet, where there is no centralized

control over the integrity of the data, providing provenance information became

increasingly important to help users judge whether query results are trustworthy.

Common forms of database provenance describe the relationship between the output

and the data in the source. Examples of such provenance information are why, how,

and where provenance. Why-provenance [Buneman 2001, Cui 2000b] explains why

an output was produced. How-provenance [Green 2007a] explains how an output

was produced. Where-provenance [Buneman 2001, Wang 1990] explains where the

data in input came from.

Why-provenance. For each tuple t in the output of a query, Cui et al. [Cui 2000b]

associate a set of tuples in the input – called lineage of t. Intuitively, the

lineage of an output tuple t for a query Q is the input data that contribute

to producing t. The lineage of an output tuple acts as the witness for the

existence of the output tuple. However, not every tuple in the lineage is

necessary for the output tuple – there can be multiple witnesses in the lineage

for an output tuple. Buneman et al. [Buneman 2001] formalize this notion

by introducing why-provenance that captures different witnesses. For a query

Q and output tuple t, a witness is a sufficient subset of the database records

which ensures that the tuple t is in the output. Buneman et al. show that

the number of witnesses can be exponential in the size of input database and

describe why provenance as witness basis which restricts to a smaller number

of witnesses. Witness basis of an output tuple t for a query Q on a database

D is a particular set of witnesses which can be calculated efficiently and every

witness contains an element of the witness basis.
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How-provenance. Why-provenance describes the source tuples that witness the

existence of an output tuple for a query. But it does not explain the structure of

the proof of the derivation process – e.g. how many times a tuple contributes to

the output tuple. Therefore, why-provenance does not explain how an output

tuple is derived for a query. Green et al. [Green 2007a] formalize a notion

of how-provenance by representing the provenance of an output tuple as a

polynomial – known as provenance semirings – which describes the structure

of the proof by which the output tuple is derived. Interestingly, it is possible to

derive why-provenance of an output tuple from its how-provenance. However,

the converse is not always possible.

Where-provenance. Buneman et al. [Buneman 2001] also introduce where-

provenance which describes the relationship between source and output lo-

cations – a location is the column of a tuple in relational databases. The

where-provenance of a value in a location l in the result of a query Q on

database D consists of the locations of D from which the value in location l

was copied according to Q. Buneman et al. show that the where-provenance of

a value v of an output tuple t consists of locations found in the why-provenance

of t. An interesting application of where-provenance is the study of annotation

propagation [Buneman 2001, Wang 1990]. We can view a notion of provenance

as a method to propagate annotations from the input to the output. Simi-

larly, we can view a notion of annotation propagation as a form of provenance

by annotating each part of the input with distinct annotations and observing

where the annotations end up in the output.

Concerning computing provenance in databases, there are two approaches: the

eager approach (also known as the bookkeeping or annotation approach) and the lazy

approach (also known as the non-annotation approach). In the eager approach, the

original query or the transformation process is re-engineered to carry over extra

annotations in the output. The provenance information is derived by examining
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the extra annotations and the output. The eager approach has a performance

overhead and a storage overhead as extra work is done for generating and storing

additional annotations. The advantage of the eager approach is that provenance

can be directly derived for the output and the extra annotations, without exam-

ining the source database. Notable examples of eager approach implementations

are the ORCHESTRA [Green 2009, Green 2007b] and Trio [Agrawal 2006] systems

for how-provenance, and DBNotes [Bhagwat 2005] for where-provenance. In the

lazy approach, provenance is computed when it is needed, by examining the output

and the source data. Therefore, the lazy approach can be deployed on an existing

database system without having to re-engineer the system. The lazy approach does

not have performance or storage overheads. However, it is not possible to use the

lazy approach in scenarios where the source data becomes unavailable. Notable ex-

amples of the lazy approach are WHIPS [Cui 2000a, Cui 2000b] for why-provenance

and SPIDER [Alexe 2006, Chiticariu 2006] for how-provenance.

In addition to the types of provenance mentioned above, recent work has fo-

cused on explaining missing answers – also known as why-not provenance. These

approaches explain why a tuple is not in the result. Huang et al. [Huang 2008]

provide provenance for potential answers and never answers by examining if tuple

insertions or modifications can yield the desired result. Tran et al. [Tran 2010] focus

on what modification in the query would yield including the missing tuple in the

result. Meliou et al. [Meliou 2009] present why-not provenance based on causality

which combines both tuple modification and query modification approaches.

2.5.2.2 Provenance for Query Results in the Semantic Web

Recent W3C standardization activity on provenance has led to the W3C PROV On-

tology [Moreau 2013] recommendation for interchanging provenance information,

which considers the overlap in the previous work on representing provenance. A

large body of work on provenance in the Semantic Web community has focused on
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designing models to represent provenance information [Wylot 2014]. Some previ-

ous works (e.g. [Buneman 2010, Flouris 2009]) have focused on extracting prove-

nance for RDF(S) entailed triples, but do not support extracting provenance for

SPARQL query results. Some recent works have focused on extracting provenance

for SPARQL query results. We overview these recent approaches below.

Theoharis et al. [Theoharis 2011] investigate how relational provenance ap-

proaches can be applied for SPARQL query result explanations. Theoharis et al.

represent RDF triples as a relational table with (subject, predicate, object) columns,

then store the triples in a relational database, and finally query them using a subset

of relational algebra called positive relational algebra (RA+) – this subset excludes

the relational algebra difference operator. This transformation allows the authors

to use provenance models for relational databases that we discuss in section 2.5.2.1.

The authors show that there is an analogy of the SPARQL algebra projection, filter,

join, and union operators with the corresponding RA+ operators. The authors de-

fine this fragment of SPARQL algebra operators as positive SPARQL (SPARQL+)

and support why-provenance and how-provenance for SPARQL+. The authors also

discuss the limitations of the provenance models for relational databases in captur-

ing the semantics of SPARQL OPTIONAL operator, which implicitly introduces a

notion of negation.

Similar to the approach of Theoharis et al., Damásio et al. [Damásio 2012] adapt

the seminal works on provenance for relational databases. The approach of Damásio

et al. is based on translating SPARQL queries into relational queries and translat-

ing the input RDF graph to a ternary relation with annotation to provide how-

provenance for SPARQL query results. In contrast to the work of Theoharis et

al., the authors consider a significant fragment of SPARQL 1.1 operators, including

non-monotonic constructs (OPTIONAL, MINUS, and NOT EXISTS). The authors

refute the claim of Theoharis et al. that the existing provenance models for relational

databases cannot capture the semantics of SPARQL OPTIONAL operator.
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Wylot et al. [Wylot 2014] present an RDF store called TripleProv which can

process provenance-enabled SPARQL queries. The authors work with the notion

of provenance polynomial. This work presents storage models for compact repre-

sentation of provenance data in native RDF stores. The authors also discuss query

processing strategies to derive provenance polynomials while processing the query.

However, it is not clear which fragment of SPARQL query operators this work sup-

ports.

Corese/KGRAM33 [Corby 2012] SPARQL query engine keeps track of the

matched triples for basic graph patterns for a query as part of the query solving pro-

cess. This way Corese/KGRAM provides provenance information for query results.

The provenance feature supports a significant fragment of SPARQL 1.1 operators,

including OPTIONAL and property paths, and excluding subqueries, minus and

exists filters.

Other notable work on provenance for SPARQL include [Dividino 2009,

Zimmermann 2012]. Dividino et al. [Dividino 2009] present an extension of RDF

to represent meta information, focusing on provenance and uncertainty. The au-

thors use named graphs to store the meta information and provide an exten-

sion of SPARQL that enables querying the meta information. Zimmermann et

al. [Zimmermann 2012] present a framework for annotated RDF. The authors discuss

how provenance information can be modeled as annotations using their framework.

The authors provide an extension of SPARQL to query RDF with annotations. The

query language exposes annotations at query level using annotation variables.

2.6 Discussion

In this section, we discuss the research trends and challenges related to the works

we have discussed so far.

33http://wimmics.inria.fr/corese

http://wimmics.inria.fr/corese
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2.6.1 User Assistance in Querying

As we discuss in Section 2.3.4, a large amount of Linked Data is accessible by

SPARQL endpoints. In this context, the challenge is to understand how to as-

sist users in querying Linked Data. The reviewed work intends to assist users in

querying in three aspects: query refinement, query construction, and query behavior

understanding.

2.6.1.1 Query Refinement

Stojanovic et al. [Stojanovic 2004] present an approach for query refinement in

ontology-based systems. The authors focus on conjunctive queries for ontology-

based information retrieval systems. The main goal of this work is to support users

to navigate through information contents incrementally and interactively. The main

challenge in this line of work is to find the refinements for a query. Stojanovic et al.

consider the query refinement problem as the problem of inferring all the subsumed

queries for a given query. Another challenge is to rank the query refinements. Sto-

janovic et al. rank query refinements according to user’s needs and behaviors. In this

direction, modeling and analyzing user’s needs and behaviors is another challenge.

2.6.1.2 Query Construction

Nandi et al. [Nandi 2007] present an approach which helps users to incrementally

and instantaneously formulate conjunctive attribute-value queries for relational and

XML databases. Zenz et al. [Zenz 2009] present a similar approach which helps users

to construct queries from keywords for ontology bases systems. These approaches

allow users to start with an arbitrary key/keyword and guide users to incrementally

construct the intended query by providing them suggestions in the involved steps.

The main research problem in this context is to infer what users expect while writing

a query. In addition, ranking and presenting the suggestions effectively is also

crucial.



2.6. Discussion 35

2.6.1.3 Query Behavior Understanding

Previous work in the database literature [Duggan 2011, Akdere 2012,

Ganapathi 2009, Gupta 2008] presents approaches for predicting query per-

formance metrics for relational databases to help users prior to query execution

in understanding how queries behave. The aim of these works is to help users in

workload management to meet specific QoS requirements by providing predicted

query performance metrics. The main challenge in this line of work is to predict

query performance before executing the queries. Previous work uses machine

learning techniques to learn query performance (e.g. latency). In the context of

Linked Data, the challenge is to predict query performance from the querying

side – without using any statistics about the underlying data as they are often

missing [Tsialiamanis 2012]. An effective solution to this problem is to learn query

performance from query logs of already executed queries, which we discuss in

Chapter 3.

2.6.2 User Assistance in Understanding Results

As we discuss in Section 2.5, there is a large literature on helping users to under-

stand results by providing explanations. These explanations may include informa-

tion manipulation steps by algorithms, proof trees of derivations, justifications for

entailments, and provenance for query results.

2.6.2.1 Explanation-Aware Semantic Web Applications

Table 2.1 shows a comparison of explanation-aware Semantic Web applications based

on the following criteria.

Metadata Representation. Exposing explanation metadata as RDF enables ex-

ternal software applications to process and make sense of the explanations.

This is especially important in the Linked Data scenario where data consumers

can also consume explanation metadata if they are published as Linked Data.
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What is Explained. The reviewed research discusses explaining the reasoning

process (information manipulation steps and operations) and explaining

derivations of results.

Explanation Content. Reflects what type of contents are included in an explana-

tion. The reviewed research discuss providing explanations with information

about reasoning processes and proof trees of derivations.

Generation. Reflects how explanations are generated.

Presentation. Reflects what kind of user interface presentations are provided. The

reviewed research discuss natural language based explanations and graphical

explanations.

Summarization. Reflects whether the work supports summarizing explanations.

Explanations often can be overwhelming. It is important to provide features

to filter information in explanations and summarize important information in

explanations to deal with the overwhelming scenarios.

Evaluation. Reflects whether the work evaluates the impact of explanation on

users.

Table 2.1 shows that not all the reviewed approaches expose explanation meta-

data using RDF. This is an undesirable situation in the context of Linked Data.

Inference Web, WIQA, and KOIOS explain steps in their reasoning processes and

why their results were derived. They provide information about the steps of their

reasoning processes and show proof trees of derivations. AIR, OntoNova, Antoniou

et al., Bassiliades et al., and KiWi only explain why their results were derived by

providing proof trees of derivations. All the reviewed works generate explanations

from the reasoning traces. This means these applications are engineered to gen-

erate traces of their reasoning steps. Inference Web, KOIOS, and KiWi provide

both natural language and graphical presentations in their explanations. AIR and
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Metadata Representation
√ √ √ √

What is Explained R, D D R, D R, D D D D
Explanation Content R, P P R, P R, P P P P
Generation T T T T T T T
Presentation NL, G NL NL NL, G G G NL, G
Summarization

√

Evaluation
√

Table 2.1: Comparison of explanation-aware Semantic Web application approaches.
R denotes reasoning processes, D derivations, P denotes proof trees, T denotes
reasoning traces, NL denotes natural language, G denotes graphical,

√
denotes full

support, and empty cell denotes no support
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Metadata Representation
Generation B, G B G B, G G G
Summarization

√

Table 2.2: Comparison of justification based approaches. B denotes black-box, G
denotes glass-box,

√
denotes full support, and empty cell denotes no support

WIQA provide only graphical presentation, whereas OntoNova, Antoniou et al., and

Bassiliades et al. provide only graphical explanations. Only Inference Web provides

a summarization feature in their graphical explanations by means of zooming in for

more details in the proof trees and zooming out for less details. Only Inference Web

provides evaluations for their explanations for geospacial domain. Inference Web

provides a user study to verify whether explanations play a role for scientists to

understand uncertainties related to geospatial information.

2.6.2.2 Justifications

Table 2.2 shows a comparison of approaches to generate justifications for entailments

using three criteria: metadata representation, generation, and summarization.

None of the reviewed works on justification exposes explanation metadata using

RDF. There are two approaches to generate justifications: black-box and glass-box.
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Metadata Representation
Types of Provenance W, H H H W H H
Generation A A A A A

Table 2.3: Comparison of approaches for SPARQL query result provenance. W de-
notes why-provenance, H denotes how-provenance, A denotes annotation approach,
and empty cell denotes no support

Black-box approaches are independent of the underlying reasoner. Justifications

are computed when they are needed. Black-box approaches can be deployed with-

out having to re-engineer the underlying system. Glass-box approaches require re-

engineering the underlying system. Glass-box approaches are harder to implement,

but the justifications are computed as a direct consequence of reasoning. Horridge

presents laconic and precise justifications which are fine-grained justifications con-

sisting of axioms with no superfluous part. These fine-grained justifications can be

seen as summarized justifications. The authors present an optimized algorithm to

compute laconic justifications showing the feasibility of computing laconic justifica-

tions and precise justifications in practice.

2.6.2.3 Query Result Provenance

Table shows a comparison of approaches for SPARQL query result provenance using

three criteria: metadata representation, types of provenance, and generation. The

“types of provenance” criterion reflects what type of provenance is supported.

None of the reviewed works on justification exposes explanation metadata using

RDF. Only Theoharis et al. and Corby et al. support why-provenance. All the

works except the work of Corby et al. support how-provenance. It is noticeable that

SPARQL provenance related works do not define where-provenance. This is due to



40 Chapter 2. Background and State of the Art

the difference between the rational data model and RDF data model. The notion of

columns does not exist in RDF, which is the key concept of where-provenance. As we

discuss in Section 2.5.2.1, there are two approaches to generate justifications: anno-

tation approach (also known as eager approach), and non-annotation approach (also

known as lazy approach). Theoharis et al. do not discuss generation of provenance.

Their work is on the theoretical aspects of SPARQL query result provenance. All

the other reviewed works support annotation approaches for generating provenance.

2.6.3 The Focus of this Thesis

The focus of this thesis is twofold:

i. Assisting users in understanding query behavior on Linked Data prior to query

execution.

ii. Assisting users in understanding query results on Linked Data and results pro-

duced by Linked Data applications.

Concerning query behavior understanding, the goal is to assist users in tasks such

as workload management to meet specific QoS requirements by providing predicted

query performance metrics. The main challenge in this regard is to predict query

performance metrics prior to query execution for queries on SPARQL endpoints.

Traditional SPARQL query cost estimation techniques such as [Stocker 2008] are

based on statistics about the underlying data. However, statistics about the under-

lying data are often missing in Linked Data [Tsialiamanis 2012]. As of September

2011, only 32.2% of the data sets in the LOD cloud provide basic statistics about

their underlying RDF data34. In addition, these statistics are often not detailed

enough for query cost estimation models. We investigate how to predict SPARQL

query performance metrics for queries on SPARQL endpoints without using under-

lying data statistics.

34http://lod-cloud.net/state/
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Concerning result understanding, the goal is to provide users information about

the process of result derivation to enable them make better trust judgments. We

investigate how to provide explanations for SPARQL query results in the context

of Linked Data. These query result explanations are based on query result prove-

nance. As we discuss in this chapter, existing SPARQL query result provenance

computation techniques are based on annotation approaches. These approaches re-

quire re-engineering the underlying data model, the query language, and the query

processing engine to compute provenance during the query processing. However, re-

engineering the underlying data model, the query language, or the query processor

is not an option in the Linked Data scenario. Data is hosted, served, and controlled

by external parties in the Linked Data scenario. We investigate how to compute

SPARQL query result provenance without re-engineering the underlying data model,

the query language, or the query processor – the non-annotation approach.

Furthermore, very little has been done in the previous work in the Semantic

Web literature to evaluate the validity of assumptions such as explanations would

improve users’ understanding and trust. We investigate how SPARQL query result

explanations impact users in the context of Linked Data.

In addition, much of the previous work on explanations for the Semantic Web

does not address explanation in a distributed environment. We investigate how to

provide explanations for the scenario of Linked Data. In this context, the challenge

is to provide explanations for distributed data produced by Linked Data applications

distributed across the Web.

Finally, very few of the existing approaches address the problem of summarizing

explanations. We investigate how to provide summarized explanations to provide

short explanations and the ability to filter important information in explanations.





Chapter 3

Predicting Query Performance
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In this chapter we address the problem of predicting SPARQL query perfor-

mance. We provide the predicted performance metrics to enable users understand

query behavior prior to query execution. Accurately predicting query execution

time enables effective workload management ( e.g. organization, inspection, and
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optimization). We use machine learning techniques to learn SPARQL query per-

formance from previously executed queries. Traditional approaches for estimating

SPARQL query cost are based on statistics about the underlying data. However,

in many use-cases involving querying Linked Data, statistics about the underlying

data are missing. Our approach does not require any statistics about the underly-

ing RDF data, which makes it ideal for the Linked Data scenario. We show how to

model SPARQL queries as feature vectors, and use k -nearest neighbors regression

and Support Vector Machine with the nu-SVR kernel to accurately predict SPARQL

query execution time.

3.1 Introduction

The global data space of Linked Data presents tremendous potential for large-scale

data integration over cross domain data to support a new generation of intelligent

applications [Schwarte 2011]. In this context, it is increasingly important to de-

velop efficient ways of querying Linked Data [Huang 2011]. Central to this problem

is knowing how a query would behave prior to executing the query [Hartig 2007].

This enables us to adjust our queries accordingly. We present an approach to predict

SPARQL query performance with the aim of assisting users (e.g. knowledge base

administrators or application developers) in workload management related tasks.

Knowledge base administrators can use predicted performance metrics to effectively

manage workloads such that specific Quality of Service (QoS) targets are met. Sys-

tem architects can use query performance prediction to estimate system configura-

tions for supporting some specific kind of workload requirements. Application de-

velopers can use query performance prediction to choose among alternative queries

based on performance requirements.

Current generation of SPARQL query cost estimation approaches are based on

data statistics and heuristics. Statistics-based approaches have two major draw-

backs in the context of Linked Data [Tsialiamanis 2012]. First, the statistics (e.g.
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histograms) about the data are often missing in the Linked Data scenario because

they are expensive to generate and maintain. Second, due to the graph-based data

model and schema-less nature of RDF data, what makes effective statistics for query

cost estimation is unclear. Heuristics-based approaches generally do not require any

knowledge of underlying data statistics. However, they are based on strong assump-

tions such as considering queries of certain structure less expensive than others.

These assumptions may hold for some RDF data sets and may not hold for others.

We take a rather pragmatic approach to SPARQL query cost estimation. We

learn SPARQL query performance metrics from already executed queries. In relation

to the research questions in Section 1.2, we address the research questionRQ1: “How

to predict query performance metrics on SPARQL endpoints that provide Linked

Data querying services”? Recent work [Ganapathi 2009, Gupta 2008, Akdere 2012]

in database research shows that database query performance metrics can be ac-

curately predicted without any knowledge of data statistics by applying machine

learning techniques on the query logs of already executed queries. Similarly, we ap-

ply machine learning techniques to learn SPARQL query performance metrics from

already executed queries. We consider query execution time as the query perfor-

mance metric.

3.1.1 Publications

We published the work resulting from this chapter in the IEEE/WIC/ACM

International Conference on Web Intelligence 2014 (WI 2014) as a full re-

search paper [Hasan 2014c]; and in the Extended Semantic Web Conference

2014 (ESWC2014) as a poster [Hasan 2014d] and in a doctoral symposium pa-

per [Hasan 2014b].
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3.2 Query Performance Prediction

Recent work on predicting database query performance [Akdere 2012,

Ganapathi 2009, Gupta 2008] has argued that the cost models used by the

current generation query optimizers are good for comparing alternative query

plans, but ineffective for predicting actual query performance metrics such as

query execution time. These cost models are unable to capture the complexities

of modern database systems [Akdere 2012]. To address this, database researchers

have experimented with machine learning techniques to learn query performance

metrics. Ganapathi et al. [Ganapathi 2009] use Kernel Canonical Correlation

Analysis (KCCA) to predict a set of performance metrics. For the individual query

elapsed time performance metric, they were able to predict within 20% of the

actual query elapsed time for 85% of the test queries. Gupta et al. [Gupta 2008] use

machine learning for predicting query execution time ranges on a data warehouse

and achieve an accuracy of 80%. Akdere et al. [Akdere 2012] study the effectiveness

of machine learning techniques for predicting query latency of static and dynamic

workload scenarios. They argue that query performance prediction using machine

learning is both feasible and effective.

Related to the Semantic Web query processing, SPARQL query engines

can be categorized into two categories: SQL-based and RDF native query en-

gines [Tsialiamanis 2012]. SQL-based query engines rely on relational database

systems storage and query optimization techniques to efficiently evaluate SPARQL

queries. They suffer from the same problems as mentioned above. Furthermore,

due to the absence of schematic structure in RDF, cost-based approaches – suc-

cessful in relational database systems – do not perform well in SPARQL query pro-

cessing [Tsialiamanis 2012]. RDF native query engines typically use heuristics and

statistics about the data for selecting efficient query execution plans [Stocker 2008].

Heuristics-based optimization techniques include exploiting syntactic and struc-

tural variations of triple patterns in a query [Stocker 2008], and rewriting a
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query using algebraic optimization techniques [Frasincar 2004] and transformation

rules [Hartig 2007]. Heuristics-based optimization techniques generally work with-

out any knowledge of the underlying data. Stocker et al. [Stocker 2008] present opti-

mization techniques with pre-computed statistics for reordering triple patterns in a

SPARQL query for efficient query processing. However, in many use-cases involving

querying Linked Data, statistics are missing [Tsialiamanis 2012]. This makes these

statistics-based approaches ineffective in the Linked Data scenario. Furthermore,

as in the case of relation database systems, these existing approaches are unable to

predict actual query performance metrics such as query execution time for a given

configuration.

3.3 Learning SPARQL Query Performance

We predict SPARQL query performance metrics by applying machine learning tech-

niques on previously executed queries. We treat the SPARQL engine as a black

box and learn query performance metrics from already executed queries. This ap-

proach does not require any statistics of the underlying RDF data, which makes it

ideal for the Linked Data scenario. As in the common machine learning approaches,

our query performance prediction approach includes two main phases: training and

testing. In the training phase, we derive a prediction model from a training data set

containing previously executed queries and the observed performance metric values

(execution times) for those queries. We represent the queries as feature vectors.

The goal of the training phase is to create an accurate model that maps the feature

vectors to the performance metric data points. We use regression for this purpose.

We define a feature vector as x = (x1, x2, ...xn), where x ∈ Rn and each xi is a

SPARQL query feature. The performance metric, query execution time, is the vari-

able y. We learn a function f(x) = y, i.e. the function maps a feature vector x

to y, using regression. We provide more details on the types of regression we use

in section 3.5.3. In the testing phase, we use the trained model to predict query
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performance metric values for unforeseen queries. Additionally, we tune our model

parameters using cross-validation.

3.4 Modeling SPARQL Query Features

We use two types of query features: SPARQL algebra features and graph pattern

features.

3.4.1 SPARQL Algebra Features

We use the frequencies of all the SPARQL algebra operators except the SLICE

operator as query features. The SLICE operator is the combination of OFFSET and

LIMIT SPARQL keywords. We use the sum of all the SLICE operator cardinalities

appearing in the algebra expression as the feature representing the SLICE operator.

In addition, we use two more features: the depth of the algebra expression tree

and the number of triple patterns. Figure 3.1 shows an example of extracting the

SPARQL algebra features vector from a SPARQL query. First we transform a

query into an algebra expression tree. Then we extract the features and represent

the query as a feature vector. We use the Jena ARQ SPARQL parser1 to transform

query strings to SPARQL algebra expressions.

3.4.2 Graph Pattern Features

The SPARQL algebra features do not represent graph patterns appearing in

SPARQL queries. Transforming graph patterns to vectors is not trivial because

the vector space is infinite. To address this, we create a query pattern vector rep-

resentation relative to the query patterns appearing in the training data. First, we

cluster the structurally similar query patterns in the training data into Kgp number

of clusters. The query pattern in the center of a cluster is the representative of query

patterns in that cluster. Second, we represent a query pattern as a Kgp dimensional

1https://jena.apache.org/documentation/query/algebra.html
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distinct

project (?name ?nick)

leftjoin

bgp bgp

triple 
?x 
foaf:mbox 
<mailto:person@server.com>

triple 
?x 
foaf:name 
?name

triple 
?x 
foaf:nick
?nick

triple bgp join leftjoin . . . . project distinct . . . . depth
  3     2   0      1     . . . .    1       1     . . . .   4

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT DISTINCT ?name ?nick WHERE { 
   ?x foaf:mbox <mailto:person@server.com> . 
   ?x foaf:name ?name  
   OPTIONAL { ?x foaf:nick ?nick }
}

Figure 3.1: Extracting SPARQL algebra features from a SPARQL query.

vector where the value of a dimension is the structural similarity between that query

pattern and the corresponding cluster center query pattern.

3.4.2.1 Structural Similarity Between Query Patterns

To compute the structural similarity between two query patterns, we first con-

struct two graphs from the two query patterns, then compute the graph edit dis-

tance [Bunke 1994, Riesen 2009] between these two graphs. We compute the struc-

tural similarity by inverting the edit distance. To introduce the notion of graph

edit distance, we paraphrase the definitions of a graph and the graph edit distance

from [Riesen 2009].

Definition 4 (Graph) A graph g is a tuple g(V,E, µ, ν) where

• V is the finite set of nodes.

• E ⊆ V × V is the set of edges.
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• L is the finite or infinite set of labels for nodes and edges.

• µ : V → L is the node labeling function.

• ν : E → L is the node labeling function.

Figure 3.2: A possible edit path to transform graph g1 to graph g2.

The graph edit distance between two graphs is the minimum amount of distortion

needed to transform one graph to another. The amount of distortion is the cost of a

sequence of edit operations. Standard edit operations include deletions, insertions,

and substitutions of nodes and edges. The example from [Riesen 2009] in figure 3.2

shows a possible edit path to transform graph g1 to graph g2. The edit operations in

this path are three edge deletions, one node deletion, one node insertion, two edge

insertions, and finally two node substitutions. For a pair of graphs (gs, gt), there can

be number of edit paths to transform gs to gt. Let Υ(gs, gt) be the set of all such

edit paths. To find the suitable edit path out of all the edit paths in Υ(gs, gt), a

cost function for each edit operation is introduced. There should be an inexpensive

edit path for two similar graphs, which represents low cost edit operations, while an

edit path with high cost is required for two dissimilar graphs. Therefore, the edit

distance of two graphs is defined by edit path with minimum cost between the two

graphs.

Definition 5 (Graph Edit Distance) Let gs(Vs, Es, µs, νs) be the source and

gt(Vt, Et, µt, νt) the target graph. The graph edit distance between gs and gt is defined

as:

d(gs, gt) = min
(e1...ek)∈Υ(gs,gt)

k∑
i=1

c(ei)
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where Υ(gs, gt) denotes the set of edit paths for transforming gs to gt, and c denotes

the cost function which measures the strength c(ei) of edit operation ei.

A well known method for computing graph edit distance is using the A* search al-

gorithm to explore the state space of possible mappings of the nodes and edges of the

source graph to the nodes and edges of the target graph. However, the computational

complexity of this edit distance algorithm is exponential in the number of nodes of

the involved graphs, irrespective of using A* search with a heuristic function to

govern the tree traversal process. Therefore we use the polynomial time suboptimal

solution of graph edit distance that Riesen and Bunke [Riesen 2009, Riesen 2013]

propose. The computational complexity of this polynomial time suboptimal solu-

tion is O
(
n3
)
, where n is the number of nodes of the involved graphs. To construct

a graph from a query pattern, we take all the triple patterns in the query pattern

and construct a graph from these triple patterns. As in RDF graphs, the subject

and the object of a triple pattern represent nodes of the graph and the predicate

represents an edge of the graph. After constructing such a graph, we replace the

labels of nodes and edges representing variables by a fixed symbol - the symbol

‘?’. This ensures that the graph has separate nodes and edges for each variable

appearing in the query but a unified labeling. We call such a graph a query graph.

Figure 3.3 shows an example of extracting graph pattern features for a query. First

step (the upper part) shows the constructed query graph. For the sample query in

Figure 3.3, three nodes are created for variables and one node is created for the

resource <mailto:person@server.com>. In addition, the labels of the edges in the

query graph are taken from the predicates of the triple patterns. Please note that

the nodes representing a variable is always a separate note with the label ‘?’. For

example, if there are two variables in the triple patterns, there will be two nodes

with the label ‘?’ for both of them (i.e. we do not merge all the nodes representing

variables into one node). This notion is similar to the notion of blank nodes in RDF

data model. The rationale behind this design choice is to keep the original struc-
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 c1   c2   c3   c4   
0.6   0.8  0.2 0.5    

Query graph

? <mailto:person@server.com>foaf:mbox

?

foaf:name

?

foaf:nick

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT DISTINCT ?name ?nick WHERE { 
   ?x foaf:mbox <mailto:person@server.com> . 
   ?x foaf:name ?name  
   OPTIONAL { ?x foaf:nick ?nick }
}

Similarity

Clustered
training
queries

Figure 3.3: Example of extracting graph pattern features.

tures of query graphs, to enable us compare them, while having a unified labeling

for variables. The clustered queries box in Figure 3.3 shows the clusters of training

queries where each circle is a cluster of query graphs with their cluster centers shown

in blue color.

3.4.2.2 Clustering the Training Queries

We use the k -medoids [Kaufman 1987] clustering algorithm to cluster the query

graphs of training data. We use k -medoids because it chooses data points as cluster

centers and allows using an arbitrary distance function. As we mention before,

we use the suboptimal graph edit distance algorithm as the distance function for

k -medoids. For the Kgp dimensional vector representation of query pattern, we

compute the structural similarity between a query graph pi and the kth cluster
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center query graph C(k) as below:

sim(pi, C(k)) =
1

1 + d(pi, C(k))
(3.1)

The term d(pi, C(k)) is the graph edit distance between query graphs pi and C(k).

This formulation gives us a similarity score within the range of 0 to 1. A similarity

score of 0 being the least similar and a score of 1 being the most similar. The

extracted feature vector in figure 3.3 shows the computed similarity values using

equation 3.1 for the example query.

3.5 Experiments and Results

We use the DBPSB benchmark [Morsey 2011] queries on a Jena-TDB triple

store [Owens 2008] to evaluate our approach. DBPSB includes 25 query templates

which cover most commonly used SPARQL query features in the queries sent to

DBPedia2. We generate our training, validation, and test queries from these query

templates. We use query execution time as the query performance metric. The

details of our experimental setup is described below.

3.5.1 Triple Store and Hardware

We use Jena-TDB 1.0.0 as a triple store. We allow Jena-TDB to use 16 GB of

memory. We execute all the queries in a commodity server machine with a 4 core

Intel Xeon 2.53 GHz CPU, 48 GB system RAM, and Linux 2.6.32 operating system.

3.5.2 Data Sets

As the RDF data set, we use the DBpedia 3.5.1 data set with 100% scaling factor

– provided by the DBPSB benchmark framework. We generate our training, vali-

dation, and test queries from the 25 DBPSB query templates. To generate queries,

2http://dbpedia.org
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we assign randomly selected RDF terms from the RDF data set to the placeholders

in the query templates. We generate 205 queries for each template and then ex-

ecute them to build our training, validation, and test data sets. Before executing

the queries, we restart the triple store to clear the caches. Then we execute total

125 queries in our warm-up phase to measure query performance under normal op-

erational conditions. Our warm-up queries include the first 5 queries from each of

the 25 templates. To generate the training queries, we execute the next 120 queries

from each template and take the first 60 queries for each template which return

at least 1 result and finish executing within a reasonable time. We specify a 300

second timeout for a query execution. We follow the same process to generate 20

validation queries from the next 40 queries for each template and 20 test queries

from the last 40 queries for each template. In this setting, none of the queries from

template 2, 16, and 21 returned any result. All the queries from template 20 were

interrupted because of timeout. This process resulted 1260 training queries, 420 val-

idation queries, and 420 test queries. We execute each of these training, validation,

and test queries 5 times and record the average execution time in milliseconds (ms)

for each query. Figure 3.4 shows the average, minimum, and maximum execution

times for the queries from our test data set. As the figure shows, we have a mix of

long and short running queries. Queries belonging to templates 4, 10, and 24 have

more than 1000 ms of average execution time. The queries from the other query

templates have less than 1000 ms of average execution time.

3.5.3 Prediction Models

To predict query execution time, we experiment with two regression models. We

first experiment with Weka’s [Hall 2009] implementation of k -nearest neighbors (k -

NN) regression [Aha 1991, Altman 1992]. The k -NN algorithm predicts based on the

closest training data points. It uses a distance function to compute these closest data

points. We use Euclidean distance as the distance function in our experiments. For
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Figure 3.4: Average, minimum, and maximum execution times for the queries be-
longing to different query templates in the test data set.

predictions, we use the weighted average of the k nearest neighbors - weighted by the

inverse of the distance from the querying data point. This ensures that the nearby

neighbors contribute more to the prediction than the faraway neighbors. We use the

k -dimensional tree (k -d tree) [Friedman 1977] data structure to compute the nearest

neighbors. For N training samples, k -d tree can find the nearest neighbor of a data

point with O (log N) operations. We also experiment with the libsvm [Chang 2011]

implementation of Support Vector Machine (SVM) using the nu-SVR kernel for

regression [Shevade 2000]. The approach in SVM regression is to map the features to

a higher dimensional space and perform a regression in that space. The predictions

in SVM are based on a subset of data points known as support vectors.

3.5.4 Evaluation Metrics

We use the coefficient of determination, denoted as R2, to evaluate our models. R2

is a widely used evaluation measure for regression. R2 measures how well future
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samples are likely to be predicted. We compute R2 as:

R2(y, ŷ) = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2

The vectors y and ŷ represent the actual values and predicted values respectively

for n queries. ȳ is the mean of actual values. An R2 score close to 1 indicates

near perfect prediction. R2 scores however can be misleading in many cases. As R2

depends on the scale and statistical characteristics of the whole data set, it can have

low errors even if the predictions have high errors [Akdere 2012]. Therefore we use

another evaluation metric, root mean squared error (RMSE), as our error metric:

RMSE(y, ŷ) =

√√√√√ n∑
i=1

(yi − ŷi)2

n

3.5.5 Predicting Query Execution Time

We show the results of our experiments in Figure 3.5 and Figure 3.7. The results

include R2 and RMSE values using k -NN and SVM with SPARQL algebra features

and graph pattern features. Below we discuss these results.

3.5.5.1 Predicting with SPARQL Algebra Features

For k -NN with SPARQL algebra features, we select k, the number of neighbors, by

cross-validation. As Table 3.1 shows, different values of k do not have any effect on

RMSE and R2 on our validation data set. Therefore we select k = 2. We achieve

an R2 value of 0.96645 and an RMSE value of 395.5125 on the test data set using

k -NN with SPARQL algebra features. Figure 3.5(a) shows the comparison between

predicted and actual execution times using k -NN with SPARQL algebra features.

Figure 3.5(b) shows that the queries from template 15 has the highest RMSE. The

execution time for queries from template 15 range from 2 ms to 382.4 ms with an
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average of 69.09 ms. Because of the high error for queries from template 15, there

are overestimated data points in this interval in Figure 3.5(a).

k=2 k=3 k=4 k=5
RMSE 588.2004 588.2004 588.2004 588.2004
R2 0.9286 0.9286 0.9286 0.9286

Table 3.1: RMSE and R2 values for different k for k -NN on the validation data set.
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(a) k−NN using algebra features (R2=0.96645)
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(c) SVM using algebra features (R2=0.98142)
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(d) RMSE for SVM using algebra features
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Figure 3.5: Query execution time predictions with SPARQL algebra features using
k -NN (with k = 2) and SVM models.

We achieve an improved R2 value of 0.98142 and a lower RMSE value of 294.3532

on the test data set using SVM with SPARQL algebra features. Figure 3.5(c)

shows the comparison between predicted and actual execution times using SVM

with SPARQL algebra features. Figure 3.5(d) shows the RMSE values by query

template for this model. As the figures show, the error for queries from template 15



58 Chapter 3. Predicting Query Performance

decreases. Therefore the overestimated data points in the interval 2 ms to 382.4 ms

move towards the perfect prediction line. However, the error for template 8 and 24

slightly increases.

3.5.5.2 Predicting with SPARQL Algebra and Graph Pattern Features

For k -NN with SPARQL algebra features and graph pattern features, we have two

parameters: the number of clusters Kgp and the number of neighbors k. Again

we select them by cross-validation. Figure 3.6(a) shows the RMSE values on the

validation data set for different Kgp and k, and Figure 3.6(b) shows the R2 values

on the validation data set for different Kgp and k. The Figure 3.6 shows, k again

does not have any impact. We get lowest Kgp and highest R2 values at Kgp = 10

and Kgp = 20 for all k values. Therefore we select Kgp = 10 and k = 2 for our

predictions with k -NN on the test data set. Figure 3.7(a) and Figure 3.7(b) shows

Figure 3.6: RMSE and R2 values on the validation data set for different Kgp and k.

the prediction results on the test data set using k -NN with Kgp = 10 and k = 2.

We get a slightly less R2 value for this model than k -NN with SPARQL algebra

features. This is because of the increase in RMSE values for queries from template

9, 17, and 24.

For SVM with SPARQL algebra features and graph pattern features, we select
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the value of Kgp by cross-validation. Table 3.2 shows RMSE and R2 values on the

validation data set for different Kgp using SVM. We select Kgp = 25 because it gives

us the lowest RMSE value 528.9321 and highest R2 value 0.9422 on the validation

data set. Figure 3.7(c) and Figure 3.7(d) shows the prediction results on the test

data set using SVM with Kgp = 25. We get the overall best R2 value 0.98526 and

Kgp=5 Kgp=10 Kgp=15 Kgp=20 Kgp=25
RMSE 530.9169 546.7406 547.6764 547.4219 528.9321
R2 0.9418 0.9383 0.9381 0.9381 0.9422

Table 3.2: RMSE and R2 values on the validation data set for different Kgp using
SVM.
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(a) k−NN using algebra and graph pattern features (R2=0.9654)
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(b) RMSE for k−NN using algebra and graph pattern features
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(c) SVM using algebra and graph pattern features (R2=0.98526)
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(d) RMSE for SVM using algebra and graph pattern features
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Figure 3.7: Query execution time predictions with SPARQL algebra features and
graph pattern features using k -NN (Kgp = 10 and k = 2) and SVM (Kgp = 25).

the overall lowest RMSE value 262.1869 with this model. This is an improvement

from the SVM with SPARQL algebra features model. The main reason for this is
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the decrease in RMSE for queries from template 12 and 24.

3.5.6 Required Time for Training and Prediction

Table 3.3 shows the total training time and average prediction time per query for

the models we experimented with. Models with SPARQL algebra features take very

low prediction time per query. Training time is also low. Models with graph pat-

tern features take longer time to train. This is because the training time includes

generating the distance matrix using approximated graph edit distance. This pro-

cess itself takes 3293 seconds on average for 1260 queries. Also it includes the time

required to cluster the training queries. However the average prediction time per

query using models with graph pattern features is within 100 milliseconds, which

is reasonable especially for query solving over Linked Data. The average prediction

Model Training time Avg. prediction time per
query

k -NN + algebra 7.14 sec 3.42 ms
SVM+ algebra 26.26 sec 3.53 ms
k -NN + algebra + graph
pattern

3300.33 sec 47.25 ms

SVM + algebra + graph
pattern

3390.71 sec 98.1 ms

Table 3.3: Required time for training and predictions.

time per query using models with graph pattern features increase from the models

with only algebra features because of the similarity computations using approxi-

mated edit distance. It is important to note that the training phase is an offline

process and hence it does not influence query prediction time.

3.6 Summary

In this chapter, we discussed assisting users in understanding query behavior. We

presented a machine learning approach to SPARQL query performance prediction.

We learn query execution times from already executed queries. This approach can
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be useful where statistics about the underlying data are unavailable – the Linked

Data scenario. We discuss how to model SPARQL queries as feature vectors, and

show highly accurate predictions. Users such as knowledge base administrators or

application developers, in the Linked Data scenario, can use the predicted perfor-

mance metrics using our approach to effectively manage workloads such that specific

Quality of Service (QoS) targets are met.

In the next chapter, we discuss assisting users in understanding query results in

the context of Linked Data.
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In the previous chapter, we discussed assisting users in understanding query

behavior. In this chapter, we discuss assisting users in understanding query re-

sults. We present an approach to explain SPARQL query results. We generate the

explanation for a query result tuple from its why-provenance. We present a non-

annotation approach to generate why-provenance and show its feasibility for Linked

Data. We present an explanation-aware federated query processor prototype and

show the presentation of our explanations.
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4.1 Introduction

As argued in [Theoharis 2011, Wylot 2014], it is essential to provide additional ex-

planations about which source data were used in providing results, how the source

data were combined, to enable users understand the result derivations, and validate

or invalidate the results.

Within the Semantic Web community, explanations have been studied for Se-

mantic Web applications and OWL entailments. Explanation for SPARQL query

results has not been independently studied by the community. However, there have

been several works on tracing the origin of query results – e.g. why-provenance.

These attempts are based on what is known as the annotation approach (the eager

approach) where the underlying data model, the query language, and the query pro-

cessing engine are re-engineered to compute provenance during the query processing.

This is undesirable for the Linked Data scenario as re-engineering the underlying

data model, the query language, or the query processor is often not possible from

the querying side.

In this chapter, we address the research question RQ2: “How to provide ex-

planations for SPARQL query results on SPARQL endpoints that provide Linked

Data querying services”? We propose a non-annotation approach to generate why-

provenance for SPARQL query results. We generate the explanation for a query

result tuple from its why-provenance. We generate why-provenance of SPARQL

query results without modifying the RDF data model, the query language, or the

query processor. Our approach is suitable for scenarios where querying clients are

required to generate provenance from the querying side and are not allowed to mod-

ify the query processor or the underlying data model – the Linked Data scenario.

Additionally, provenance metadata is generated only when it is needed – commonly

known as the lazy approach. Therefore, our approach does not have any query exe-

cution time overhead or provenance metadata storage overhead. Finally, we present

an explanation-aware federated query processor prototype to show the presentation
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of our explanations.

4.1.1 Publication

We published the results of this chapter in a full research paper [Hasan 2014e] in

the Semantic Web Collaborative Spaces Workshop 2014 (SWCS 2014) at the 13th

International Semantic Web Conference (ISWC 2014).

4.2 Explanation and Provenance

As we discuss in Chapter 2, previous work on explanation in the Seman-

tic Web literature addresses the problems of representing explanation meta-

data [Pinheiro da Silva 2006], and generating explanations for Semantic Web ap-

plications [McGuinness 2008] and entailments [Horridge 2008]. SPARQL query re-

sult explanation has not be independently studied in the previous work. However,

query result provenance has been studied in the database community [Cheney 2009]

and the Semantic Web community. Table 4.1 shows a comparison of query result

provenance approaches in the Semantic Web literature.
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Annotation/eager
√ √ √ √ √ √

Non-annotation/lazy
Data model transformation

√ √ √ √

Query language transformation
√ √

Table 4.1: Comparison of query result provenance approaches in the Semantic Web.

The previous works on provenance for SPARQL query results are based on trans-

forming the RDF data model and SPARQL query language to relational data model

and relational database query language respectively and then applying relational
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database approaches [Theoharis 2011, Damásio 2012]; transforming the original

data model to annotated RDF or named graphs [Dividino 2009, Zimmermann 2012];

or generation of provenance metadata during the query processing (annota-

tion or eager approach) [Theoharis 2011, Damásio 2012, Wylot 2014, Corby 2012,

Dividino 2009, Zimmermann 2012]. However, we do not have any control over the

underlying data model or the query processor in the Linked Data scenario. There-

fore, re-engineering the underlying data model or query processor is often not possi-

ble in the Linked Data scenario. In this context, we need an approach which can be

deployed without re-engineering the underlying system. This is a perfectly suitable

scenario for the non-annotation approach. The non-annotation approaches for rela-

tional databasesare not applicable in this scenario because one has to first transform

the RDF data to relational data and the queries to relational database queries to

use those non-annotation approaches.

4.3 Explaining SPARQL Query Results

We provide SPARQL query result provenance as query result explanations. More

precisely, for a SPARQL query result tuple, we provide its why-provenance as its

explanation. Buneman et al. [Buneman 2001] first introduced the notion of why-

provenance for relational databases. Why-provenance captures all the different wit-

nesses for a tuple in the query result. For a query Q and output tuple t, a witness

is the sufficient subset of the database records which ensures that the tuple t is

in the output. Each witness is a derivation for the output tuple. Theoharis et

al. [Theoharis 2011] later adapted why-provenance for RDF and SPARQL. Similar

to the relational setting, why-provenance for RDF and SPARQL captures all the

different derivations of a tuple in the query result. To illustrate, we use a simple

example, containing RDF data about professors and the courses they teach, shown

in Figure 4.1. We use identifiers for each triple for presentation purpose in this

chapter. Consider the SPARQL query Q1 shown in Listing 4.1, which asks for all
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Figure 4.1: Example RDF triples.

the professors who teach undergraduate level courses and their corresponding email

addresses. The first triple pattern ?course :courseType :underGrad (line 3) selects

the undergraduate level courses.

Listing 4.1: SPARQL query Q1

1 SELECT DISTINCT ?name ?email

2 WHERE

3 { ?course :courseType :underGrad .

4 ?prof :course ?course .

5 ?prof :email ?email .

6 ?prof :name ?name

7 }

Result of Q1:

?name ?email

Prof. A a@email.edu

Prof. B b@email.edu

The second triple pattern ?prof :course ?course (line 4) selects the professors for

those undergraduate level courses. The next two triple patterns ?prof :email ?email

(line 5) and ?prof :name ?name (line 6) selects the email addresses and names of the

corresponding professors matched by the two previous triple patterns. The result

of the query Q1 (under set semantics) executed on the RDF data containing the

triples in Figure 4.1 is shown on the right in Listing 4.1. The why-provenance for

the result tuple (Prof. A, a@email.edu) is {{t14, t5, t2, t3}, {t13, t4, t2, t3}}. Each

inner set in why-provenance represents a derivation involving the triples in the inner

set. This means that the result tuple (Prof. A, a@email.edu) can be derived in two

different ways according to Q1. The first one by using the triples t14, t5, t2, and t3.
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The second one by using the triples t13, t4, t2, and t3. The why-provenance for the

result tuple (Prof. B, b@email.edu) on the other hand has one derivation: {{t15,

t11, t10, t9}}. Please note that we are using the triple identifiers only for presenta-

tion purpose. The original data model containing the triples shown in Figure 4.1 is

not changed – i.e. we do not annotate the RDF triples. We use the RDF triples as

they are in the original data source.

4.3.1 Algorithm for Generating Why-Provenance

In this section, we present our non-annotation approach to generate why-provenance

for SPARQL query results. We currently do not support SPARQL queries with sub-

queries, FILTER (NOT) EXISTS, MINUS, property paths, and aggregates. The

GenerateWhyProvenace procedure shown in Algorithm 1 generates why-provenance

for an RDF model M, a SPARQL query Q, and a result tuple t. The RDF model

M can be an RDF data set or a SPARQL endpoint on which the SPARQL query

Q is solved and the result tuple t is produced. At line 2 of Algorithm 1, we first

Algorithm 1 Why-provenance algorithm.
1: procedure GenerateWhyProvenace(M,Q,t)
2: Q′ ← ProvenanceQuery(Q, t)
3: I ← Q′(M)
4: E ← AlgebraicExpression(Q)
5: W ← DerivationsFromQuery(M,E, I)
6: return W

re-write the original query to a provenance query by adding the tuple t as a so-

lution binding using the SPARQL 1.1 VALUES construct, and projecting all the

variables. The result set of the provenance query provides us with all the variable

bindings on the RDF data for the solution tuple t. Each tuple (row) in the result

set of the provenance query represents a derivation for the solution tuple t. The

main idea behind our algorithm is to extract why-provenance triples from the triple

patterns in the original query by replacing the variables in the triple patterns by

the corresponding values from each tuple (row) of result of the provenance query.
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At line 3 of Algorithm 1, we execute the re-written query. At line 4, we convert the

original SPARQL query Q to SPARQL algebraic expression for ease of query pars-

ing and manipulation. At line 5, the DerivationsFromQuery procedure extracts the

derivations by iterating through all the tuples of the provenance query result and

replacing the variables of triple patterns in the original query by the corresponding

values in a tuple of the provenance query result.

Listing 4.2: Provenance query Q2

1 SELECT *

2 WHERE

3 { ?course :courseType :underGrad .

4 ?prof :course ?course .

5 ?prof :email ?email .

6 ?prof :name ?name

7 }

8 VALUES ( ?email ?name ) {

9 ( "a@email.edu" "Prof. A" )

10 }

Result of Q2:

?course ?prof ?email ?name

:CS103 :ProfA a@email.edu Prof. A

:CS101 :ProfA a@email.edu Prof. A

For example, query Q1 shown in Listing 4.1 for the result tuple (Prof. A,

a@email.edu), is re-written to query Q2 shown in Listing 4.2. The result of Q2,

shown in the bottom of Listing 4.2, provides us with all the variable bindings on

the RDF data for the solution tuple (Prof. A, a@email.edu). Each tuple (row) in

this result set represents a derivation for the solution tuple.

Algorithm 2 shows the ProvenanceQuery procedure to re-write the original query

to a provenance query. Line 2 adds the result tuple t as a solution binding using

the SPARQL 1.1 VALUES construct. Line 3 modifies the query to projects all the
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Algorithm 2 Procedure for creating the provenance query.
1: procedure ProvenanceQuery(Q,t)
2: Q′ ← AddV alueBindings(Q′, t)
3: Q′′ ← ProjectAllV ariables(Q′)
4: return Q′′

variables in the query.

Algorithm 3 Procedure for extracting derivations from a query.
1: procedure DerivationsFromQuery(M,E,I )
2: D ← ∅
3: for each tuple in I do
4: for each bgp in E do
5: BP [bgp]← False

6: T ← ∅
7: if hasUnion(E) or hasJoin(E) or hasLeftJoin(E) then
8: for each operator in E do
9: T1← TriplesForOperator(M, operator, tuple, BP )

10: if T1 6= ∅ then
11: T ← T ∪ T1
12: else
13: bgp← GetTheBGP (E)
14: T ← TriplesFromBGP (M, bgp, tuple, BP )

15: D ← D ∪ {T}
16: return D

Algorithm 3 shows the DerivationsFromQuery procedure to extract the deriva-

tions given the RDF model M, the SPARQL algebraic expression E, and the prove-

nance query results I. Lines 3–15 iterate through all the tuples of I, extract prove-

nance triples corresponding to each tuple, and store them in a set of a sets D. We

assume that no basic graph pattern (BGP) is repeated in the SPARQL query. We

use a hash table, BP, to flag which BGP is examined for a tuple in I to extract

provenance triples. Lines 4–5 initialize the hash table by setting the value of each

BPG to False, meaning none of the basic graph patterns is examined for the current

tuple in I at this point. If a query has just one BGP, we extract the provenance

triples from that BGP (lines 13–14) for a tuple in I and store the provenance triples

in set T. If a query has more than one BGP, i.e. if the algebraic expression has
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the union operator or the join operator or the left-join operator, we extract the

provenance triples from the operand BGPs of each of the operators and store the

provenance triples in set T (lines 8–11) for a tuple in I. We only extract provenance

triples for a BGP once at this stage – using the hash table BP as flags for BGPs to

keep trace of which BGP has been used so far to extract provenance triples. Finally

line 15 does a union of the triples extracted for a tuple in I, stored in set T, as an

element (shown by braces around T at line 15) with the set of sets D and assigns

the result of the union to D. When we exit the loop started at line 3, D contains all

the derivations we extracted. We return the set of sets D at line 16. Each element

in D is a set representing a derivation for the result tuple.

Algorithm 4 Procedure for extracting triples from operands of an operator.
1: procedure TriplesForOperator(M,Op,Tup,BP)
2: P ← ∅
3: L← GetLeftBGP (Op)
4: R← GetRightBGP (Op)
5: if BP [L] = False then
6: P ← TriplesFromBGP (M,L, Tup,BP )

7: if BP [R] = False then
8: T ← TriplesFromBGP (M,R, Tup,BP )
9: P ← P ∪ T

10: return P

Algorithm 4 shows the TriplesForOperator procedure which extracts provenance

triples from the operands of an operator. Lines 3–4 get the left and the right BGPs

for the operator Op. As we are restricted to SPARQL queries without sub-queries,

the operands are always BGPs. Lines 5–6 extract provenance triples from the left

BGP L if provenance triples have not been extracted from L yet, and assigns them

to the set P. Lines 7–9 extract provenance triples from the right BGP R, stored in

the set T, if provenance triples have not been extracted from R yet, and assigns

the union of P and T to P. At line 10, we return the set P which contains all

the provenance triples extracted from the left and the right BGPs of the operator

Op. The TriplesFromBGP procedure calls at line 6 and line 8 check if all the
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triples extracted from the BGPs exist in the RDF model M by sending SPARQL

ASK queries with each extracted triples. This means that a BGP which was an

operand of a SPARQL UNION or OPTIONAL operator would contribute to the

provenance triples only if it matches against the RDF model M. Algorithm 5 shows

the TriplesFromBGP procedure which does this. Lines 3–9 iterate through the triple

Algorithm 5 Procedure for extracting triples from a basic graph patter.
1: procedure TriplesFromBGP(M,BGP,Tup,BP)
2: T ← ∅
3: for each triplePattern in BGP do
4: triple← ReplaceV ariablesByV alues(triplePattern, Tup)
5: if Ask(M, triple) = True then
6: T ← T ∪ triple
7: else
8: BP [BGP ]← True
9: return ∅

10: BP [BGP ]← True
11: return T

patterns in the BGP and extracts the triples. At line 4 we replace the variables of

a triple pattern by the corresponding values in the tuple Tup, where Tup is a tuple

from the result of the re-written provenance query. Lines 5–6 first check if the

extracted triple is valid by sending an ASK query with this triple to the RDF model

M, then if it’s a valid triple we take the triple and store it in the set T. If the triple

is not valid (does not exist in M ), we set the flag for the BGP to true and return an

empty set (lines 7–9). At line 10, we exit the loop started at line 3, and set the flag

for the BGP to true. Finally at line 11 we return the set of extracted provenance

triples.
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4.4 Performance Evaluation of the Why-Provenance Al-

gorithm

We implemented our why-provenance algorithm using Jena-ARQ API1. We evalu-

ated our algorithm using the DBPSB benchmark [Morsey 2011] queries on a Jena-

TDB (version 1.0.0) triple store [Owens 2008]. DBPSB includes 25 query templates

which cover most commonly used SPARQL query features in the queries sent to

DBPedia2. We generated our benchmark queries from these query templates. We

allowed Jena-TDB to use 16 GB of memory. We executed all the queries in a com-

modity server machine with a 4 core Intel Xeon 2.53 GHz CPU, 48 GB system RAM,

and Linux 2.6.32 operating system. As for the RDF data set, we used the DBpedia

3.5.1 data set with 100% scaling factor – provided by the DBPSB benchmark frame-

work. To generate benchmark queries, we assigned randomly selected RDF terms

from the RDF data set to the placeholders in the DBPSB query templates. We gen-

erated 1 query for each template resulting in a total 25 queries. Before executing the

queries, we restarted the triple store to clear the caches. Then we executed the 25

queries along with the why-provenance algorithm for all the result tuples once in the

warm-up phase. Then we executed each query and the why-provenance algorithm

for all the result tuples of each query 5 times. We report the average execution time

and average provenance generation time for all result tuples (PGT) for each query,

both in milliseconds (ms). We specify a 300 second timeout for a query execution.

Queries belonging to templates 2, 16, 20, and 21 did not finish executing within the

300 seconds time limit, and hence we do not report them.

4.4.1 Query Execution and Provenance Generation

Table 4.2 shows the number of results (#RES), query executing time (QET), prove-

nance generation time for all result tuples (PGT), provenance generation overhead

1http://jena.apache.org/
2http://dbpedia.org
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in percentage for all results (PGO), and provenance generation time per result tu-

ple (PGTPR) for DBPSB queries. PGTs for queries with long execution times and

large number of results (queries 6, 8, 10, 14, 22, 24, and 25) are very high. This

is not surprising because for each result tuple of a query, we execute the original

query with the result tuple as a variable-value binding. Database literature already

discusses this issue [Cheney 2009]. Generally speaking, non-annotation approaches

compute provenance only when it is needed, by examining the source data and the

output data. This requires sophisticated computations involving the source data

and the output data. This means each individual tuple in the output data has

to be examined separately to compute its provenance, and hence time required for

generating provenance for all the result tuples for a query is high. Therefore the

overhead of tracking provenance for all result tuples (PGO) in our experiment is as

high as 61587.16% (query 25). Non-annotation approaches are effective in scenarios

where provenance is required for a selected number of result tuples of an already

solved query. Hence considering the original query execution time or the provenance

generation time for all result tuples is not required. In contrast to the annotation

approaches (as in [Wylot 2014]), non-annotation approaches (such as our approach)

do not affect the query processing time. Our scenario of providing query result

explanations is suitable for the non-annotation approach. We only need provenance

for the result tuple for which the explanation is asked. Therefore, provenance gener-

ation time per result tuple (PGTPR) is the interesting measure for us. PGTPR for

all the queries are low, ranging from 0.001 ms to 85.8 ms. Even for the long running

queries, PGTPR values are low. This is because we add the variable-value binding

to the original query to compute provenance, which makes the query simpler to

solve for the query processor. This experiment shows that our algorithm is suitable

for practical queries on Linked Data to generate why-provenance for single result

tuples.



4.4. Performance Evaluation of the Why-Provenance Algorithm 75

Query #RES QET (ms) PGT (ms) PGO (%) PGTPR (ms)
1 4 25 12.2 48.8 3.05
3 1 75 65.6 87.47 65.6
4 2 8495.6 8.4 0.099 4.2
5 13 78 102.6 131.54 7.89
6 3238 785 428.2 54.55 0.13
7 21 4.2 57.8 1376.2 2.75
8 60447 7392.4 1035.4 14.01 0.017
9 4 1156.2 341.2 29.51 85.3
10 2933 6506.8 164828 2533.17 56.2
11 1 0.4 0.01 2.5 0.01
12 1 18.4 43.8 238.043 43.8
13 2 0.4 0.4 100 0.2
14 4137 604.6 7999.6 1323.123 1.93
15 38 925.6 0.2 0.022 0.005
17 82 20.6 0.6 2.913 0.007
18 34 0.6 0.2 33.333 0.006
19 2 0.4 0.002 0.5 0.001
22 82298 7424.4 405456.4 5461.134 4.927
23 1 16.6 17.8 107.229 17.8
24 134968 5729 1700.4 29.681 0.013
25 47696 1683.4 1036758.2 61587.157 21.737

Table 4.2: Query execution and provenance generation times for DBPSB queries.
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4.5 An Explanation-Aware Federated Query Processor

Prototype

So far we have discussed generating why-provenance for SPARQL query results.

In this section we discuss how we use why-provenance to provide explanations in

the context of querying and data integration over Linked Data. As we discuss

in Section 2.3, a large number of Linked Data publishers provide SPARQL end-

points for directly querying the data. Query federation is a prominent approach to

consume, process, and integrate Linked Data. We present a prototype system for

federated query processing with explanation features. Users can ask for explanation

for each query result tuple in our system. We implement a virtual integration-

based federated query processor. The first step for our federated query processing

is selecting the data sources by sending SPARQL ASK queries with each triple pat-

tern. Next, we split the original query to sub-queries, sequentially send them to

the relevant data sources (nested loop join), and combine the result in the local

federator. Each sub-query is a CONSTRUCT SPARQL query which returns a set

of matched triples for its triple patterns. We create a local virtual graph com-

bining the resulted triples from all the sub-queries, then locally solve the original

query on this virtual graph using Jena-ARQ. We borrow the idea of CONSTRUCT

sub-queries from Corese-DQP [Gaignard 2013]. We also implement the common

federated query processing concepts of exclusive triple pattern groups and bound

join proposed in [Schwarte 2011]. The objective of exclusive grouping is to group

together triple patterns which can be solved in the same data source, so that sub-

queries with a group of triple patterns can be sent to the data sources instead of

sending sub-queries of each individual triple pattern. Bound join replaces the vari-

ables in the sub-queries by corresponding values from previously solved sub-queries

in the nested loop join. This reduces the amount of results for sub-queries.

We provide a user interface to enable users to configure SPARQL endpoints

as data sources, and submit queries. Figure 4.2 shows the querying user interface
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Figure 4.2: User interface for submitting queries. Users can write a SPARQL query
in this user interfaces (as show in the upper part of the user interface), then click
the “Query” button to solve the query. After the query is solved, each result tuple
appears with a “Explain” button. Users can click the “Explain” button of a result
tuple to ask for its explanation.

of our prototype. Users can ask for explanation for each query result tuple from

this user interface. We provide three types of information in an explanation. We

show the triples for the first derivation from the why-provenance, which data source

each triple in the derivation comes from, and which triple pattern of the original

query each triple in the derivation matches. Figure 4.3 shows an example of a query

result explanation. We generate the why-provenance triples using the algorithm we

presented in section 4.3.1 on the local virtual RDF graph. We keep two additional

indexes in the federated query processor to keep tack of which data source each

triple comes from, and which triple pattern each triple matches. These two indexes

allow us to provide the information on data sources and matched triple patterns in

the explanations.
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Figure 4.3: Example of a query result explanation. First we present the result tuple
that the explanation user interface is explaining. Each of the oval shaped nodes
presents the URL of a SPARQL endpoint. Each oval shaped node is connected to
two box shapes (shown in yellow). The first box presents the triple pattern(s) which
are matched in the corresponding SPARQL endpoint. The second box presents
the triple(s) which are matched in the corresponding SPARQL endpoint – the first
derivation of the why-provenance for the result tuple.
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4.6 Summary

In this chapter, we discussed assisting users in understanding query results in the

context of Linked Data. We provide SPARQL query result explanations to help users

in understanding query result derivations. We generate query result explanations

from why-provenance for query results. We presented a non-annotation approach to

generate SPARQL query result provenance. Our non-annotation approach allows to

generate why provenance without the RDF data model, the query language, or the

query processor – which is the case in querying Linked Data. We show the feasibility

of our approach for common Linked Data queries. Finally, we discuss how we use

our why-provenance approach to provide query result explanations in the scenario

of federated query processing over Linked Data.

In the next chapter, we present a user study to investigate how the query result

explanations impact users.
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In the previous chapter we discussed how we provide SPARQL query result

explanations in a federated query processing scenario. In this chapter we present

a user study to evaluate the impact of the query result explanations. Our study

shows that our query result explanations are helpful for users to understand the

result derivations and make trust judgments on the results.
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5.1 Introduction

Much of the previous work on explanations in the Semantic Web literature has

focused on representation and generation of explanations. As McGuinness et

al. [McGuinness 2003, McGuinness 2004] discuss, explanations are provided to help

users improve their understanding of the process of deriving results and the flow of

information involved in the process. The improved understanding may lead to bet-

ter user acceptance, and hence improved trust on the Semantic Web applications.

These values of explanations have however not been evaluated in the Semantic Web

literature.

In this chapter, we present a user study which evaluates the impact of query

result explanations in the scenario of federated query processing over Linked Data.

This relates to the research question RQ3: “what are the impacts of query result

explanations”? In particular, we study whether providing explanations for federated

query results improve users’ understanding of the query solving process, and help

them make trust judgments on the results. Federated query processors first split

a query into sub-queries, then solve the sub-queries in the relevant data sources

(SPARQL endpoints), and finally integrate the results of the sub-queries to provide

the results for the original query. In this scenario, a user may want to know which

data sources contributed to the results or which part of the original query was solved

with which data source. We provide explanations to help users understand these

aspects of a query solution – using our explanation-aware federated query processor

prototype presented in Chapter 4 – and evaluate whether the explanations help

users to understand the query solving process, and to make trust judgments on the

query results.

5.1.1 Publication

We published the results of this chapter in a full research paper [Hasan 2014e] in

the Semantic Web Collaborative Spaces Workshop 2014 (SWCS 2014) at the 13th
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International Semantic Web Conference (ISWC 2014).

5.2 Evaluating Explanations

Very little has been done to evaluate how explanations impact the users of Seman-

tic Web applications. Silva et al. [Pinheiro da Silva 2008] present a user study to

verify if explanations play a role for scientists to understand uncertainties related

to geospatial information. Their study shows that the accuracy and the confidence

in determining the quality of geospatial information (maps) significantly improved

when the scientists were provided with explanations.

In other fields, Tintarev and Masthoff [Tintarev 2012] studied the effectiveness

of explanations for recommender systems. The authors present user studies in two

domains investigating the impact of personalization and feature-based explanations

on effectiveness (helping users to make good decisions) and satisfaction (the ease of

use or enjoyment). The authors found that personalization increased satisfaction,

but it was harmful for effectiveness. Lim et al. [Lim 2009] studied the impact of

explanations on end-users for context-aware applications. The authors present a

controlled study comparing four different types of explanations: why, why not, how

to, and what if. The authors found that providing explanations for context-aware

applications to novice users – in particular Why explanations – improves users’

understanding and trust in the system. Our work is in the same line as the work of

Lim et al.. We also investigate users’ understanding and trust, but for the scenario

of federated query processing over Linked Data.

5.3 Impact of Query Result Explanations

Based on the requirements and the assumptions presented in the previous work on

explanations for the Semantic Web (presented in Chapter 2), we hypothesize that

explanations would improve user experience, where we define user experience as



84 Chapter 5. Impact of Query Result Explanations

the users’ understanding of the system and their perception of trust on the results.

Therefore we expect:

H1. Query result explanations improve user experience over having no explanations.

To test this hypothesis, we conducted a user study that investigates the impact of

query result explanations. Our study is similar to the user study conducted by Lim

et al. [Lim 2009] to examine the impact of explanations for context-aware intelligent

systems. We describe our user study next.

5.3.1 Method

The questionnaire for our study consists of three sections: learning section, reasoning

section, and survey section. Furthermore, we have two cases: with explanation and

without explanation. A participant is randomly assigned to one of those two cases.

In the learning section, participants were given a high-level overview of our query

processor and an example SPARQL query with a result tuple to help them learn

how the federated query processor works. Participants for the “with explanation"

case additionally received the explanation of the result tuple for the example query

(as shown in Figure 4.3).

In the reasoning section, participants were given the same SPARQL query as

in the learning section, but a different result tuple along with the some triples

contained in two data sources (DBpedia1 and LinkedMDB2). Then we first asked

the participants to select the relevant data sources for each triple pattern in the

query. Next, we asked the participants to select the source triples (why-provenance

triples) from the two data sources which contributed to the result tuple. Then we

asked the participants to rate their confidence on their answer choices for the data

source selection and the source triple selection questions. The choices for confidence

rating were very low, low, medium, high, and very high. The questions in the

1http://dbpedia.org/
2http://linkedmdb.org/

http://dbpedia.org/
http://linkedmdb.org/


5.3. Impact of Query Result Explanations 85

reasoning section help us analyze how the users understand the result derivation

process and if the explanation provided in the learning section had any impact on

their understanding.

In the survey section of our study, we asked the participants if explanations help

users to understand the result derivation and to make trust judgments on the results.

Furthermore, we asked them which types of information they think are helpful in an

explanation for understanding and making trust judgments. The questions in the

survey section help us understand how the participants feel about the system and

its explanation features.

5.3.2 Setup and Participants

The query we used is a query to find the British movies with American actors, shown

in Listing 5.1. Part of the query is solved in LinkedMDB (lines 4–6: finding the

British movies) and part of it is solved in DBpedia (line 7: finding birth places of

the actors).

Listing 5.1: SPARQL query for finding British Movies with American Actors

1 SELECT ?film ?actor

2 WHERE

3 {

4 ?film mdb -movie:country mdb -country:GB.

5 ?film mdb -movie:actor ?actor.

6 ?actor owl:sameAs ?sameActor.

7 ?sameActor dbpedia -owl:birthPlace dbpedia:United_States

8 }

A result tuple we provide to participants includes URIs for a film and an actor.

We intentionally do not provide natural language descriptions in a result tuple.

Instead we provide URIs from LinkedMDB – which are numeric resource URIs –

for an actor and a film. This is to make sure that participants are not using their

background knowledge about movies and actors in their answers. For the data
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source selection and source triple selection questions, we provide small subsets of

DBpedia triples (11 triples) and LinkedMDB triples (13 triples). We used Google

Forms3 for the questionnaires and Google App Engine4 to randomize the selection

of two cases – “with explanation" or “without explanation".

We invited the members of our laboratory5 (via our mailing list), the members of

Semantic Web Interest Group6 (via their mailing list), and the followers of Twitter

hashtags #SemanticWeb, #RDF, and #SPARQL. 11 participants took part in the

study. There were 6 participants for the “with explanation" case and 5 participants

for the “without explanation" case. There were 8 male participants and 3 female

participants. The ages of the participants range from 22 to 65. All the participants

had knowledge of RDF and SPARQL. The questionnaire and the responses of the

participants are available online7.

5.3.3 Results of the Study

We analyze the ability of the participants to apply their understanding of the system

by computing the number of fully correct, partially correct, and incorrect answers

for the data source selection and the source triple selection questions in the reason-

ing section. If a participant selects all the correct choices for an answer, we consider

it as fully correct. If a participant selects all the correct choices but also selects

some extraneous choices, we consider the answer as partially correct. If a partici-

pant’s choices for an answer do not contain all the correct choices, we consider it as

incorrect. In addition, if a participant selected all choices given for the source triple

selection question, we consider the answer as incorrect to avoid guessing. For the

data source selection question, we had 4 questions for 4 triple patterns in the query.

We count the number of participants who provided fully correct answers, partially

correct answers, and incorrect answers for each of these 4 questions. Then we take
3http://www.google.com/google-d-s/createforms.html
4https://appengine.google.com/
5http://wimmics.inria.fr/, https://glc.i3s.unice.fr/
6http://www.w3.org/2001/sw/interest/
7http://ns.inria.fr/ratio4ta/sqe/

http://www.google.com/google-d-s/createforms.html
https://appengine.google.com/
http://wimmics.inria.fr/
https://glc.i3s.unice.fr/
http://www.w3.org/2001/sw/interest/
http://ns.inria.fr/ratio4ta/sqe/


5.3. Impact of Query Result Explanations 87

the average of the counts for the fully correct answers, the average of the counts

for the partially correct answers, and the average of the counts for the incorrect an-

swers. These averages represent the average number of participants into the three

answer categories categories – fully correct, partially correct, and incorrect – for the

data source selection question as a whole. We compute these averages separately

for both the “with explanation" and “without explanation" cases and compute the

percentages of participants in the three answer categories for the two cases from

these average.

(a) Data source selection (b) Source triple selection

Figure 5.1: Participants’ response about data source selection and source triple
selection.

5.3.3.1 Users’ Understanding and Trust

Figure 5.1(a) shows the percentage of participants with fully correct, partially cor-

rect, and incorrect answers when the explanation is given and when the explanation

is not given for the data source selection question. The results are very similar for

both “with explanation" and “without explanation" cases. 79.17% of participants

provided fully correct answers when the explanation was given. 80.0% of partici-

pants provided fully correct answers when the explanation was not given. 20% of

the participants provided partially correct answers and 4.17% provided incorrect

answers when the explanation was given. 16.67% of participants provided partially

correct answers and 0% provided incorrect answers when the explanation was not
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given. The majority of the participants understood how data source selection works

for our federated query processor system when the explanation was given (79.17%)

and also when the explanation was not given (80.0%). Therefore the impact of

explanations for source selection understanding is not clear from our study.

For the source triple selection question, we had two questions for the two data

sources we used. We compute the percentages of participants in the fully correct,

partially correct, and incorrect answer categories for the “with explanation" and

“without explanation" cases using the same method as the data source selection

question. Figure 5.1(b) shows the percentage of participants with fully correct, par-

tially correct, and incorrect answers when the explanation is given and when the

explanation is not given for the source triple selection question. More participants

provided correct answers when the explanation was given (75% for “with explana-

tion", 20% for “without explanation"). Furthermore, more participants provided

incorrect answers when the explanation was not given (16.67% for “with explana-

tion", 60% for “without explanation"). This clearly shows that participants who

were given explanations understood better which triples contributed to the result

from the two data sources.

The final question in the reasoning section asks participants to rate their confi-

dence level about the answers for the data source selection question and the source

triple selection question. Figure 5.2 shows the confidence level of the participants

about their answers. 50.0% of participants with explanation rate their confidence as

very high whereas none of participants without explanation rate very high. 33.33%

of participants with explanation rate their confidence as high whereas 80% of partici-

pants without explanation rate high. This shows that participants with explanation

are more confident in their answers – as many of them answered “very high" or

“high".
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Figure 5.2: Participants’ confidence level about their answers.

(a) Understanding (b) Making trust judgments

Figure 5.3: Percentage of participants who answered that explanations are helpful
(“yes”) or unhelpful (“no”).

5.3.3.2 How Users Feel About the System

For the survey section, we asked the participants if explanations are helpful to un-

derstand the query result derivation, and if explanations are helpful to make trust

judgments on the query result. If a participant answered “yes", he/she was also asked

what kind of information he/she found helpful. Figure 5.3(a) shows the percent-

age of participants who answered that explanations are helpful (“yes”) or unhelpful

(“no”) for understanding the query result derivation. 54.55% of the participants who

answered “yes" were provided with the explanation and 27.27% of them were not

provided with the explanation. This clearly shows that there is a positive impact

of explanations for understanding the query result derivation. Note that none of



90 Chapter 5. Impact of Query Result Explanations

(a) Understanding (b) Making trust judgments

Figure 5.4: Participants who found different types of information in the explanation
helpful.

the participants answered explanations are unhelpful (“no”) when they were pro-

vided with the explanation. 18.18% of the participants who answered “no” were not

provided with the explanation. This means that the majority of the participants

(yes: 81.82%, no:18.18%) – irrespective of whether they were provided with the

explanation or not – feel are explanations helpful for understanding the query re-

sult derivation. Figure 5.3(b) shows the percentage of participants who answered if

explanations are helpful make trust judgments on the query result. 45.455% of the

participants who answered “yes" were provided with the explanation and 36.36%

of them were not provided with the explanation. 9.09% of the participants who

answered “no" were provided with the explanation and 9.09% of them were not pro-

vided with the explanation. Again, the majority of the participants (yes: 81.82%,

no:18.18%) feel that explanations are helpful to make trust judgments on the query

result irrespective of whether they were provided with the explanation or not. The

9.095% higher value for the cases of “with explanation” for the “yes” answer shows

that there was indeed a positive impact of explanations for making trust judgments

on the query result.

Figure 5.4(a) shows the participants who found the information about data

sources, triple patterns, and why-provenance triples helpful for understanding the
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query result derivation. Note that only the answers from participants who answered

“yes" for the question shown in Figure 5.3(a) are considered. Out of 9 partici-

pants who answered “yes", a total of 77.78% responded that the data source related

information was helpful, 55.56% were provided with the explanation and 22.22%

were not provided with the explanation; 77.78% responded that the triple pattern

related information was helpful, 55.56% were provided with the explanation and

22.22% were not provided with the explanation; and 55.55% responded that the

provenance triple related information was helpful, 22.22% were provided with the

explanation and 33.33% were not provided with the explanation. This shows that

providing information about data sources and triple patterns had a positive impact

for understanding. However, only 22.22% with explanation responded that provid-

ing information about provenance triples were helpful for understanding. Though,

our analysis on source selection question responses (Figure 5.1(b)) shows that the

explanation helped participants significantly improve their correctness on selecting

the provenance triples. Therefore, it is hard to explain why only 22.22% with expla-

nation responded that the provenance triple related information was helpful. One

possible reason could be that when they were not given the explanation, they felt

the need for explanations with provenance triple (hence 33.33% for without expla-

nation). But when they were given the explanation, they were not aware that the

provenance triple related information helped them to have a better understanding.

Figure 5.4(b) shows the participants who found the information about data sources,

triple patterns, and why-provenance triples helpful to make trust judgments. Again

only the answers from participants who answered “yes" for the question shown in

Figure 5.3(b) are considered. Out of 9 participants who answered “yes", a total of

55.55% responded that the data source related information was helpful, 33.33% were

provided with the explanation and 22.22% were not provided with the explanation;

44.44% responded that the triple pattern related information was helpful, 22.22%

were provided with the explanation and 22.22% were not provided with the expla-
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nation; and 55.55% responded that the provenance triple related information was

helpful, 11.11% were provided with the explanation and 44.44% were not provided

with the explanation. This shows that the data source related information had a

positive impact for making trust judgment. But the impact of triple pattern related

information for making trust judgment is not clear. Again, it is interesting to notice

that participants who were not given the explanation felt the need for provenance

triples related information. This analysis in Figure 5.4 shows that the participants

found data source and triple pattern related information helpful for understanding

the query result derivation, but have less strong feeling about provenance triples

related information for understanding query result derivations. For making trust

judgments, participants do not have as strong opinions, but the majority of them

feel that data source and provenance triple related information are helpful.

5.3.4 Discussion and Implications

Although the impact of explanations for data source selection was not clear from

our study, percentage of correct answers for both cases is high and their difference

is low (explanation: 79.17%, without explanation: 80.0%). Participants who were

given explanations understood better which triples contributed to the result from

the two data sources. This means that participants with explanation apply their

understanding of the system they learned from the explanations. In other words,

the participants who were given explanations understood the system better than the

participants without explanation. The majority of the participants feel that expla-

nations are helpful to understand query result derivations and to make trust judg-

ments on query results. Also the participants with explanation were more confident

on their answers. Therefore, we can say the explanations helped the participants to

better understand the system and helped them make better trust judgments on the

results. This validates our hypothesis (H1) that query result explanations improve

user experience over having no explanations – where user experience is defined as
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understanding and trust.

5.4 Summary

In this chapter, we presented a user study to evaluate the impact of query result ex-

planations in a federated query processing scenario for Linked Data . Our user study

shows that our query result explanations are helpful for end users to understand the

result derivations and make trust judgments on the results.

In the next chapter, we present an approach to explain results produced by

applications that consume Linked Data. The consumed data in this context can be

also some derived data by other applications. Therefore we discuss explaining not

only the reasoning by the applications but also the derivations of consumed data.
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In Chapter 4 and Chapter 5, we discussed explanations for query results. In this

chapter, we discuss explanations for results produced by applications that consume

Linked Data. The consumed data by Linked Data applications can be also some

derived data by other applications. We discuss explaining not only the reasoning by

the applications but also the derivations of consumed data. We discuss how pub-

lishing explanation metadata enables a decentralized approach to explanations for

distributed reasoning. We introduce a vocabulary to describe explanation metadata

and provide guidelines to publish explanation metadata as Linked Data.
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6.1 Introduction

Applications can consume Linked Data, some of which can be derived by other

applications, and reason on their consumed data to produce results or even produce

more Linked Data. In this distributed scenario of Linked Data, it is essential to

explain not only the reasoning by the applications but also the derivations of the

consumed data, to help users – such as knowledge engineers or end-users of Linked

Data applications – to understand how results or new Linked Data were derived.

Much of the previous work on explanations for the Semantic Web does not address

explanation in a distributed environment. The Inference Web [McGuinness 2003]

approach proposes a centralized registry based solution for publishing explanation

metadata from distributed reasoners. We propose a decentralized solution to this

problem. In relation to the research questions in Section 1.2, we address the research

question RQ4: “How to provide explanations for results produced by applications

that consume Linked Data”?

To enable explanations for results produced by Linked Data data applications

in a decentralized fashion, we publish explanation related metadata as Linked Data

which we call Linked Explanations. In this approach, we are not constrained to

publish the explanation metadata in a centralized location as in the Inference Web

approach. To generate explanations, we retrieve the metatada by following their

dereferenceable URIs and present them in a human understandable form. For pub-

lishing explanation related metadata, we present a vocabulary to describe explana-

tion metadata and guidelines to publish these metadata as Linked Data. In contrast

to explanations for SPARQL query result derivations that we discussed in Chap-

ter 4 and Chapter 5, in this chapter we provide explanations for results produced

by generic rule-based Linked Data applications. This means that we provide expla-

nations for result derivations showing the triples used in a derivation. Furthermore,

if those used triples were also derived, we provide explanations for them.
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6.1.1 Publications

We published the results of this chapter in a full research paper [Hasan 2014a] and in

a doctoral symposium paper [Hasan 2014b] at the Extended Semantic Web Confer-

ence 2014 (ESWC2014); and in a full research paper [Hasan 2012a] in the Semantic

Web Collaborative Spaces Workshop 2012 (SWCS 2012) at the 21st International

World Wide Web Conference 2012 (WWW 2012).

6.2 Explanation Approaches for the Semantic Web

As we discuss in Chapter 2, there have been a number of previous works on ex-

plaining reasoning in the Semantic Web literature. Table 6.1 shows a comparison of

important previous works considering the criteria below:

Domain Independence. Indicates if a work is designed to support domain inde-

pendent scenarios or application specific scenarios.

Linked Data Support. Indicates if a work supports explaining data published as

Linked Data.

Distributed Reasoning. Indicates if a work supports explaining distributed rea-

soning. For example, chains of applications can use data which was derived

by other applications distributed across the Web, and the produce new de-

rived data and publish them. This criterion indicates if the work supports

explanation in such scenarios.

Decentralization. Indicates if the explanation infrastructure is decentralized or

centralized.

Standard Languages. Indicates if explanation metadata is represented using

standard languages such as RDF or XML.

Inference Web [McGuinness 2003, McGuinness 2008, McGuinness 2004] pro-

poses a centralized registry based solution for publishing explanation metadata
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Domain Independence
√ √ √ √

Linked Data Support
Distributed Reasoning

√

Decentralization
Standard Languages

√ √ √

Table 6.1: Comparison of works on explanation for the Semantic Web.

from distributed reasoners. In fact, none of previous works support decen-

tralized approach to explanation. In contrast, we propose a decentralized

solution to address explanations in the distributed setting of Linked Data.

Both WIQA [Bizer 2007] and KOIOS [Forcher 2010] provide application spe-

cific explanations which include process descriptions of specific algorithms.

In contrast, our explanations are suitable for generic Linked Data scenarios.

Justification related works [Horridge 2008, Horridge 2011, Kalyanpur 2007,

Horridge 2009, Wang 2005, Kalyanpur 2005, Meyer 2006, Schlobach 2003,

Lam 2008, Moodley 2010, Buneman 2010, Flouris 2009], OntoNova [Angele 2003] ,

and Knowledge in a Wiki (KiWi) [Kotowski 2010] do not represent their explanation

metadata using standard data formats. This is an undesirable situation for Linked

Data scenarios because data consumers would not be able to process such non

standard explanation metadata. None of these previous works support explanation

for Linked Data.

6.3 Explanations for Linked Data

To enable explanations for Linked Data, we publish the explanation metadata (along

with the data) as Linked Data. We describe the explanation metadata using our
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proposed vocabulary Ratio4TA1. We generate explanations by retrieving the expla-

nation metatada by following their dereferenceable URIs and presenting them in a

human understandable form.

6.3.1 Representing Explanation Metadata

Proof Markup Language (PML) [Pinheiro da Silva 2006] and the AIR Justification

Ontology (AIRJ) [Kagal 2011] are important previous works on representing ex-

planation metadata. PML allows describing provenance metadata, justifications

for derivations of conclusions, and trust related metadata. Additionally, a light

weight variant of PML known as PML-Lite [Pinheiro da Silva 2008] presents a sim-

ple subset of PML. AIRJ extends PML-Lite and provides primitives to represent

the different events and the operations performed by reasoners. PML and AIRJ use

RDF container concepts. RDF containers use blank nodes to connect a sequence

of items [RDF 2014b]. However, as a common practice, blank nodes are avoided

while publishing Linked Data [Heath 2011]. It is not possible to make statements

about blank nodes as they do not have identifiers. Therefore, blank nodes make data

integration harder in the global dataspace of Linked Data. Additionally, the exist-

ing ontologies do not use any common data interchanging standard such as W3C

PROV-O. This makes it hard for applications across the Web to make sense of the

explanation metadata. VoID [Alexander 2009] is vocabulary for describing meta-

data about RDF data sets. These metadata can include access metadata (metadata

about methods to access the actual triples in a data set) and structural metadata

(e.g. vocabularies used, statistics about the size of the data set). The Dataset con-

cept is the core concept of VoID. It represents a RDF data set containing a set of

triples. The Dataset concept is used to make statements about an entire RDF data

set. In contrast to VoID, our goal is to associate explanation related metadata for

data with different levels of granularity. To address these issues, we introduce a new

vocabulary to describe explanation metadata next.
1http://ns.inria.fr/ratio4ta/

http://ns.inria.fr/ratio4ta/


100 Chapter 6. Linked Explanations

6.3.1.1 Ratio4TA Vocabulary

Ratio4TA (inter linked explanations for triple assertions) is an OWL ontology for

describing explanation metadata. Ratio4TA extends the W3C PROV Ontology2.

This promotes interoperability by enabling data consumers to process explanation

metadata according to W3C PROV standards. We use the named graph3 mecha-

nism [Carroll 2005] to make statements about RDF triples – the notion of named

graphs is also adapted in the specification of RDF 1.1 [RDF 2014a]. Using named

graphs allows us to associate explanation metadata for data with different levels of

granularity – explanation metadata for a triple or a graph containing more than

one triple. Furthermore, we use named graphs to group together explanation meta-

data and make the metadata for an explanation referenceable by a single URI.

Applications can expose their explanation metadata using Ratio4TA to enable other

applications to consume machine processable explanations. Consumers of the expla-

nation metadata can use their preferred tools to present and visualize explanations.

Figure 6.1 shows the core concepts and relations of Ratio4TA. They allow describing

data, reasoning processes, results, data derivations, rules, and software applications.

Ratio4TA includes the following core classes:

Data: A Data is a set of RDF statements. The Data class is a sub-class of the

prov:Entity class and the rdfg:Graph.

InputData: An InputData represents an input data (a set of RDF statements)

used by a reasoning process. InputData is a sub-class of Data.

OutputData: An OutputData represents an output data (a set of RDF statements)

by a reasoning process. OutputData is a sub-class of Data.

ReasoningProcess: A ReasoningProcess represents a reasoning process of a soft-

2W3C PROVOntology: http://www.w3.org/TR/prov-o/. We use the prefix prov for the classes
and the properties of PROV.

3We use the prefix rdfg for the classes and the properties of the named graph vocabulary
(http://www.w3.org/2004/03/trix/rdfg-1/).

http://www.w3.org/TR/prov-o/
http://www.w3.org/2004/03/trix/rdfg-1/
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hasExplanation

explains

summarizationOf 

usedData

ReasoningProcess 

Result 

computed contains belongsTo

Data 

rdfs:subClassOf

produced

SoftwareApplication 

performedBy

resultReasoner

derivedFrom

DataDerivation

derivedBy
wasInvolvedInComputing

performedAsPartOf

derivationReasoner

rdfs:subClassOf

Figure 6.1: The core classes and properties of Ratio4TA.
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ware application. A reasoning process uses InputData and computes results.

Each of these computed results includes OutputData. More specifically, a

ReasoningProcess produces OutputData. ReasoningProcess is a sub-class of

prov:Activity.

Result: A Result represents a result computed by a reasoning process. A Result

contains OutputData. An OutputData belongs to a Result. Result is a sub-class

of prov:Association and prov:Generation.

DataDerivation: A DataDerivation represents a data derivation that is performed

as part of a ReasoningProcess. DataDerivation may use a rule and may be in-

volved in computing a Result. DataDerivation is a sub-class of prov:Derivation

and prov:Association.

SoftwareApplication: A SoftwareApplication consumes and produces data. A

SoftwareApplication can perform reasoning processes. A ReasoningProcess

can have data derivations as it’s parts. Therefore, the reasoner for a

DataDerivation is a SoftwareApplication. SoftwareApplication is a sub-class

of prov:SoftwareAgent.

Rule: A Rule represents a rule that a ReasoningProcess uses for a DataDerivation.

Rule is a sub-class of prov:Plan. The encoding of rules is out of the scope of

our work. However, for rules implemented using SPARQL, our proposal is to

use SPIN4 for representing them in RDF.

ExplanationBundle: An ExplanationBundle is a set of RDF statements which

represent the explanation metadata for a Data. ExplanationBundle is a sub-

class of rdfg:Graph and prov:Bundle.

Figure 6.2 shows the relationships between the classes of Ratio4TA and the

classes of PROV. The white boxes show the classes of PROV and the black boxes
4http://spinrdf.org/
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show the classes of Ratio4TA. All the classes of Ratio4TA are defined as sub-classes

of the classes of PROV.

The properties of Ratio4TA are defined as sub-properties of the properties of

PROV ontology. Table 6.2 shows the descriptions of the properties of Ratio4TA.

Table 6.2: Properties of Ratio4TA.

Property Description

belongsTo A reasoning process uses input data and computes re-

sults. Each of these computed results includes output

data. The belongsTo property specifies that an output

data belongs to a result. belongsTo is a sub-property of

prov:qualifiedGeneration. The domain of belongsTo is Out-

putData and the range of belongsTo is Result. belongsTo is

defined as the inverse property of the contains property.

computed A reasoning process computes results. The computed prop-

erty specifies that a reasoning process computes a result.

computed is a sub-property of prov:qualifiedAssociation. The

domain of computed is ReasoningProcess and the range of

computed is Result.

contains A reasoning process uses input data and computes results.

Each of these computed results includes output data. The

contains property specifies that a result contains an output

data. contains is defined as the inverse property of the be-

longsTo property.
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Table 6.2: Properties of Ratio4TA.

Property Description

derivationReasoner A software application performs derivations. The derivation-

Reasoner property specifies that a data derivation is per-

formed by a software application. derivationReasoner is a

sub-property of prov:agent. The domain of derivationRea-

soner is DataDerivation and the range of derivationReasoner

is SoftwareApplication.

derivedBy A data derivation uses rules and derives output data. The

derivedBy property specifies that an output data is de-

rived by a data derivation. derivedBy is a sub-property of

prov:qualifiedDerivation. The domain of derivedBy is Out-

putData and the range of derivedBy is DataDerivation.

derivedFrom A data derivation transforms a data into another, constructs

a data into another, or updates a data, resulting in a new

one. Note that by data we mean an instance of the Data

class. The derivedFrom property specifies that a data is

derived from a data. derivedFrom is a sub-property of

prov:wasDerivedFrom. The domain of derivedFrom is Data

and the range of derivedFrom is Data.

hasExplanation An explanation bundle contains statements about how an

instance of data was derived. The hasExplanation property

specifies that a data is explained by an explanation bundle.

hasExplanation is a sub-property of prov:has_provenance.

The domain of hasExplanation is Data and the range of ha-

sExplanation is ExplanationBundle. hasExplanation is de-

fined as the inverse property of the explains property.
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Table 6.2: Properties of Ratio4TA.

Property Description

explains An explanation bundle contains statements about how an

instance of data was derived. The explains property speci-

fies that an explanation bundle explains a data. explains is

defined as the inverse property of the hasExplanation prop-

erty.

performedAsPartOf A reasoning process performs data derivations. The per-

formedAsPartOf specifies that a data derivation is per-

formed as part of a reasoning process. performedAsPartOf

is a sub-property of prov:hadActivity. The domain of per-

formedAsPartOf is DataDerivation and the range of per-

formedAsPartOf is ReasoningProcess.

performedBy A software application performs a reasoning process. The

performedBy property specifies that a reasoning process is

performed by a software application. performedBy is a sub-

property of prov:wasAssociatedWith. The domain of per-

formedBy is ReasoningProcess and the range of performedBy

is SoftwareApplication.

produced A reasoning process computes results and a computed result

contains output data. The produced property specifies that

a reasoning process produced an instance of output data.

produced is a sub-property of prov:generated. The domain of

produced is ReasoningProcess and the range of produced is

OutputData.
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Table 6.2: Properties of Ratio4TA.

Property Description

resultReasoner resultReasoner is a sub-property of prov:agent. The domain

of resultReasoner is Result and the range of resultReasoner

is SoftwareApplication.

summarizationOf A summarized explanation bundle can contain the most im-

portant information from an explanation bundle. The sum-

marizationOf property specifies an explanation bundle is a

summarization of a explanation bundle. summarizationOf is

a sub-property of prov:generalizationOf. The domain of sum-

marizationOf is ExplanationBundle and the range of sum-

marizationOf is ExplanationBundle.

usedData A reasoning process uses input data to compute its results.

The usedData property specifies a reasoning process used

an instance of input data. usedData is a sub-property of

prov:used. The domain of usedData is ReasoningProcess and

the range of usedData is InputData.

usedRule Data derivations use rules to perform derivations. The use-

dRule property specifies that a data derivation used a rule.

usedRule is a sub-property of prov:hadPlan. The domain

of usedRule is DataDerivation and the range of usedRule is

Rule.
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Table 6.2: Properties of Ratio4TA.

Property Description

wasInvolvedComputing A reasoning process performs data derivations to compute

results. The wasInvolvedComputing property specifies that

a data derivation was involved in computing a result. was-

InvolvedComputing is a sub-property of prov:hadGeneration.

The domain of wasInvolvedComputing isDataDerivation and

the range of wasInvolvedComputing is Result.

Figure 6.3 shows the relationships between the properties of Ratio4TA and the

properties of PROV. All the properties except explains and contains and defined as

direct sub-properties of PROV properties. explains is defined as an inverse property

of hasExplanation and contains is defined as an inverse property of belongsTo.
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owl:inverseOf
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Figure 6.3: The properties of Ratio4TA and their relationships with the properties
of PROV.

We provide the source code of Ratio4TA in Appendix A. The source code can

be also downloaded from the online specification document of Ratio4TA located at

http://ns.inria.fr/ratio4ta/.

http://ns.inria.fr/ratio4ta/
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6.3.1.2 Example of Encoding using Ratio4TA

Listing 6.1 shows an extract of an explanation described using Ratio4TA in

TriG [Bizer 2014, Carroll 2005] notation. The example in this listing shows the

explanation metadata for the derived triple lodapp:data1. The named graph lo-

dapp:explanation1 contains the explanation metadata. The metadata include links

to the reasoning process, the input data, the rule, the software application, and

the result to which the derivation contributes. Lines 29–31 show the named graph

lodapp:data1 which contains the derived triple (line 30). Lines 2–27 show the named

graph lodapp:explanation1 which contains the explanation metadata for the deriva-

tion. Line 3 specifies that lodapp:explanation1 explains lodapp:data1. Lines 5–8 in

lodapp:explanation1 show the related type declarations – we do not show all the

type declarations in this example for the purpose of simplification. Lines 10–14

show the encoding of the reasoning process lodapp:reasoningProcess1 that produced

lodapp:data1. Line 10 specifies that the reasoning process lodapp:reasoningProcess1

was performed by the software application lodapp:corese. Lines 11–12 specify that

the reasoning process lodapp:reasoningProcess1 used lodapp:inputData1 and lo-

dapp:inputData2. Line 13 specifies that the lodapp:reasoningProcess1 computed the

result lodapp:result1. Line 14 specifies that the lodapp:reasoningProcess1 produced

the data lodapp:data1. The encodings of lodapp:inputData1 and lodapp:inputData2

are shown in lines 33–35 and lines 37–39 respectively. Line 16 specifies that the

reasoner for the result lodapp:result1 is lodapp:corese. Lines 18–19 specify that the

data lodapp:data1 was derived from lodapp:inputData1 and lodapp:inputData2. Line

20 specifies that the data lodapp:data1 belongs to the result lodapp:result1. Line 21

specifies that the data lodapp:data1 was derived by the derivation lodapp:derivation1.

Lines 23–27 show the encoding of the derivation lodapp:derivation1. Line 23 spec-

ifies that the derivation lodapp:derivation1 used the rule lodapp:geoFeatureRule.

Line 24 specifies that the derivation lodapp:derivation1 was involved in comput-

ing the result lodapp:result1. Line 25 specifies that the reasoner for the derivation
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lodapp:derivation1 is the software application lodapp:corese. Line 26 specifies that

the derivation lodapp:derivation1 was performed as a part of the reasoning process

lodapp:reasoningProcess1.

Listing 6.1: Extract from the explanation metadata for a derivation

1 # Explanation Metadata

2 lodapp:explanation1 {

3 lodapp:data1 r4ta:hasExplanation lodapp:explanation1.

4 # Type declarations

5 lodapp:explanation1 rdf:type r4ta:ExplanationBundle.

6 lodapp:corese rdf:type r4ta:SoftwareApplication.

7 ....

8 ....

9 # Reasoning process

10 lodapp:reasoningProcess1 r4ta:performedBy lodapp:corese;

11 r4ta:usedData lodapp:inputData1;

12 r4ta:usedData lodapp:inputData2;

13 r4ta:computed lodapp:result1;

14 r4ta:produced lodapp:data1.

15 # Computed result

16 lodapp:result1 r4ta:resultReasoner lodapp:corese .

17 # Output data

18 lodapp:data1 r4ta:derivedFrom lodapp:inputData1;

19 r4ta:derivedFrom lodapp:inputData2;

20 r4ta:belongsTo lodapp:result1;

21 r4ta:derivedBy lodapp:derivation1.

22 # Data derivation

23 lodapp:derivation1 r4ta:usedRule lodapp:geoFeatureRule;

24 r4ta:wasInvolvedInComputing lodapp:result1;

25 r4ta:derivationReasoner lodapp:corese;

26 r4ta:performedAsPartOf lodapp:reasoningProcess1.

27 }

28 # Derived data

29 lodapp:data1 {

30 dbpedia:Philadelphia gn:parentFeature geonames:5205788.
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31 }

32 # Dbpedia data

33 lodapp:inputData1 {

34 dbpedia:Philadelphia owl:sameAs geonames:4560349 .

35 }

36 # GeoNames data

37 lodapp:inputData2 {

38 geonames:4560349 gn:parentFeature geonames:5205788.

39 }

Figure 6.4 shows the visualization of the example shown in Listing 6.1. The rect-

angles with dashed lines represent named graphs, the oval shapes represent resources,

and the arrows represent properties. We omit the type declarations for the purpose

of simplicity. As the figure shows, the reasoning process lodapp:reasoningProcess1 is

modeled inside the named graph lodapp:explanation1, which is an instance of the Ex-

planationBundle class, specifying its relationships with the software application lo-

dapp:corese, the derivation lodapp:derivation1, the used rule lodapp:geoFeatureRule,

the used input data lodapp:inputData1 and lodapp:inputData2, the computed result

lodapp:result1, and the produced output data lodapp:data1.
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6.3.2 Publishing Explanation Metadata: Linked Explanations

We publish the explanation metadata as Linked Data. This means that all the

resources in our explanation metadata have dereferenceable HTTP URIs. This re-

lates to the first and the second Linked Data principles (presented in Section 2.3.3).

We avoid using blank nodes to keep the resources globally dereferenceable. It is

important to note that our approach is dependent on named graphs for reification.

The data triple(s) must be reifiable to specify explanation metadata for them. Also

we group together triples for an explanation in a named graph. This ensures ref-

erencing to the metadata for an explanation using a single URI. When a URI for

a named graph is dereferenced, we return all the triples inside that named graph,

and all the triple that have the named graph URI as subject and as object. This

ensures that we return the content of the named graph and the related contents

of the named graph URI. When a URI for an RDF resource, that is not a named

graph, is dereferenced, we return the triples that have the URI as subject and as

object. This relates to the third and the fourth Linked Data principles, as we link

related URIs (e.g. data is linked to explanations, explanations are linked to input

data) and return them when some looks up a URI.

6.3.2.1 Principles for Linked Explanations

Considering above mentioned issues, we outline four principles for Linked Explana-

tions, which are analogous to the Linked Data principles.

1. Use URIs as names of things, reified statements, and named graphs (RDF

resources, reified data triples, and explanation metadata named graphs).

2. Use HTTP URIs, so that people can look up those names.

3. When a URI for a named graph (or a reified statement) is dereferenced, provide

the statements inside that named graph, and all the statements that have the

named graph URI as subject and as object. When a URI for an RDF resource,
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that is not a named graph, is dereferenced, provide statements that have the

URI as subject and as object.

4. Include links to other URIs (e.g. linking input and output data statements,

and explanations metadata).

Using the Linked Explanations approach ensures that applications that are dis-

tributed across the Web can publish explanation metadata for their derived data. In

addition, explanation metadata can be hosted anywhere in the Web and retrieved

by URIs. Linked Data applications can consume data published using this approach

with their explanation metadata to generate explanations. In essence, publishing

explanation metadata following this approach enables a decentralized approach to

explanations for distributed reasoning.

6.3.3 Accessing and Presenting Linked Explanations

We generate explanations from the published explanation metadata by recursively

following the links between the involved explanation metadata and the data they

describe. For a derived RDF statement dst, we crawl through the related metadata

(by dereferencing their URIs) with a maximum depth limit and collect the set of

explanation meta statements, and the set of RDF statements from which the derived

RDF statement dst is derived. Our explanations are based on the notion of proof

tree [Ferrand 2006]. Proof trees are abstract notions which are used in various

domains in logic and computer science. Figure 6.5 shows an example of a proof tree.

a

b c d

e f g

Figure 6.5: Example of a proof tree.
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The proof tree in this example shows that a was directly derived from b, c, and

d; b was directly derived from e and f ; and d was directly derived from g. As c, e,

f, and g are not derived from others, they are direct assertions. From an intuitive

point of view {b, c, d} is an immediate explanation of a. The whole tree is a full

explanation of a. In our proof tree-based explanations, each RDF statement is a

node in the proof tree. A tree is well founded if it has no infinite branch. We use the

maximum depth limit in our crawling process to keep our explanation proof trees

well founded.

In the remainder of this thesis, we refer to the derived RDF statement (the initial

dst) that we are explaining as the root statement rs. We refer to the set of all the

RDF statements from which rs is derived (all the statements in the proof tree for

rs) as knowledge statements KST . The RDF knowledge graph KG is the graph

formed by union of KST and the root statement: KG = RDFGraph(KST ∪ rs).

We generate natural language descriptions from the RDF statements in KG (using

rdfs:label property values) and present them as explanations for human end-users.

Figure 6.6: Example of a generated explanation.

Figure 6.6 shows an example of a generated explanation for a derived statement

that “Bob is a British Scientist”. Each derivation contains a link to the natural

language representation of the used rule. As we mentioned before, the encoding
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of rules are out of the scope of our work. However, our proposal is to encode

rules in RDF and publishing them as Linked Data. This will allow to write the

rules once, then enforcing them for derivations; linking them from the explanation

metadata as they are also RDF resources with identifiers; and finally providing

human understandable abstraction of them for explanation.

We illustrate the distributed and decentralized aspects of our approach using

the same derivation “Bob is a British Scientist” in the scenario shown in Fig-

ure 6.7. We omit the namesapce prefixes in the figure for simplicity. Data Source

1 publishes Linked Data about geographical locations. It contains two directly

asserted triples: :England :isPartOf :UnitedKingdom and :London :isPartOf

:England. It also contains the derived triple :London :isPartOf :UnitedKingdom

(shown by the dashed arrow), which is derived from the other two triples in this

data source. Data Source 2 publishes Linked Data about people. It contains 3

directly asserted triples and 1 derived triple. The derived triple :Bob rdf:type

:Scientist (shown by the dashed arrow) is derived from the triples :Bob rdf:type

:ComputerScientist and :ComputerScientist rdfs:subClassOf :Scientist in

this data source. The Linked Data Application consumes data from Data Source 1

and Data Source 2 and derives 3 new triples (shown by green and red dashed arrows).

The derived triple :Bob :birthPlace :England is derived from :Bob :birthPlace

:London and :London :isPartOf :England; same way the derived triple :Bob

:birthPlace :UnitedKingdom is derived from :Bob :birthPlace :London and

:London :isPartOf :UnitedKingdom (originally a derived triple in Data Source

1 ). The application produces :Bob rdf:type :BritishScientist as the result

triple, which is derived from :Bob :birthPlace :UnitedKingdom (originally a de-

rived triple in Linked Data Application) and :Bob rdf:type :Scientist (originally

a derived triple in Data Source 2 ). This example shows how a Linked Data appli-

cation can consume distributed data, which can be derived data, and derive its

results.
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Figure 6.8 shows how we can explain the result triple of the Linked Data Appli-

cation using the Linked Explanations approach. The data sources can add the

explanation metadata of their derived triples by following the Linked Explana-

tions principles. This allows theLinked Data Application to follow the available

r4ta:hasExplanation links of their consumed triples and discover the explanation

metadata of those consumed triples.
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The Linked Data Application can also publish its result triple and explanation meta-

data by following the Linked Explanations principles. This scenario shows an ex-

ample of explaining distributed reasoning. Furthermore, the explanation metadata

is not published in centralized location. Each data source publishes its own expla-

nation metadata – hence enables decentralization of explanation metadata.

6.4 Summary

In this chapter we discuss how to provide explanations for results produced by

applications that consume Linked Data. We present the Ratio4TA vocabulary to

describe explanation metadata. We introduce the notion of Linked Explanations

and discuss how it enables explanations in distribute scenarios in a decentralized

fashion. Finally, we discuss how to present Linked Explanations as proof tree-based

explanations.

The proof tree-based full explanations generated from Linked Explanations can

become very large which can overwhelm users. In the next chapter, we present a

summarization approach for Linked Explanations.
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In the previous chapter, we discussed how to provide proof tree-based full ex-

planations for results produced by applications that consume Linked Data. These

explanations generated from Linked Explanations can become very large which can

overwhelm users with too much information. Users may need the possibility to

transform long explanations into more understandable short explanations. Users

may want to filter information in an explanation and focus on some specific kind

of information in an explanation. In this chapter we present an approach to sum-
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marize explanations and filter information in an explanation based on user specified

explanation filtering criteria.

7.1 Introduction

Although explanations with the details of all the derivation steps may be useful

for expert users, they may overwhelm non-expert users with too much informa-

tion [Angele 2003, McGuinness 2004]. In addition, an expert user such as a knowl-

edge engineer may want to focus on a specific part of a detailed explanation. A

knowledge engineer may also want a short explanation to have an overview of the

reasoning. We provide summarized explanations to address these problems. In rela-

tion to the research questions in Section 1.2, we address the research question RQ5:

“How to summarize explanations for results produced by applications that consume

Linked Data”? We define five summarization measures: (i) salience of RDF state-

ments, (ii) similarity of RDF statements with respect to users’ filtering criteria, (iii)

abstractness of RDF statements with respect to the proof tree, (iv) subtree weight in

the proof tree - weight of a node in the proof tree, (v) coherence of RDF statements

with respect to the proof tree.

Recall that we generate explanations from the explanation metadata, published

as Linked Explanations, by recursively following the links between the involved

explanation metadata and the data they describe. For a RDF statement dst, we

crawl through the related metadata with a maximum depth limit and collect the

set of explanation meta statements, and the set of RDF statements from which

the derived RDF statement dst is derived, which we refer to as the root statement

rs. We refer to the set of RDF statements from which rs is derived as knowledge

statements KST . The RDF knowledge graph KG is the graph formed by union of

KST and the root statement: KG = RDFGraph(KST ∪ rs). Figure 7.1(a) shows

an example of an explanation for a derived statement “Bob is a British Scientist”.

Figure 7.1(b) shows an example of a summarized explanation for “Bob is a British
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(a) Full explanation. (b) Summarized explanation.

Figure 7.1: Examples of a full explanation and a summarized explanation.

Scientist”. Users can switch to the full explanation by clicking on the “more details”

link. In this chapter, we discuss how we provide such summarized explanations.

7.1.1 Publications

We published the results of this chapter in a full research paper [Hasan 2014a]

and in a doctoral symposium paper [Hasan 2014b] at the Extended Semantic Web

Conference 2014 (ESWC2014).

7.2 Explanation and Summarization

Only Inference Web [McGuinness 2003, McGuinness 2004, McGuinness 2008] pro-

vides a summarization feature in their explanations. Inference Web allows zooming

in for more details in the graphical explanation proof trees and zooming out for less

details. But researchers have studied ontology summarization. RDF Sentence graph

based summarization [Zhang 2007] extracts RDF sentences based on centrality mea-

sures. Our work has a similar approach to sentence graph summarization approach

in the sense that we rank RDF statements based on some measures. However, we de-

fine new measures for summarizing explanations. Peroni et al. [Peroni 2008] discuss

how to identify key concepts in an ontology. They draw summarization criteria from

cognitive science (natural categories), network topology (density and coverage), and
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lexical statistics (term popularity). Alani et al. [Alani 2006] discuss shrinking an

ontology by analyzing the usage of the ontology. Alani et al. analyze the query log

against an ontology to understand the important parts of the ontology. Peroni et al.

and Alani et al. focus on a concept level summarization of ontologies. In contrast,

our focus is on statement level summarization.

In [Angele 2003, McGuinness 2004], researchers discuss the importance of pro-

viding short explanations rather than overwhelming the end-users with too much

information. The authors of [Angele 2003] also discuss filtering information in ex-

planations in order to provide more relevant explanations.

7.3 Summarizing Explanations

We propose an approach to summarizing explanations taking into account user

specified filtering criteria. More formally, let KG = (R, T ) be an RDF knowledge

graph, where R is the set of resources and literals and T is the set of RDF statements.

Let rs be the root statement (therefore the knowledge statements KST = T \ rs).

We provide summarized explanations by summarizing RDF statements from KST .

We use the term “oriented graph” to refer to KG throughout this chapter. Our

summarization approach includes first a ranking step and then a re-ranking step. We

rank the statements in an explanation based on their salience, similarity with respect

to the user specified filtering criteria, and abstractness with respect to the proof tree.

Then we refine this ranking by re-ranking the statements based on their subtree

weight in the proof tree - weight of a node in the proof tree, and their coherence with

respect to the proof tree. It is important to note that our summarized explanations

may not always conform to the correctness of deductions from a logical point of view.

Our summarized explanations are not aimed at explaining the correct deduction

steps. Rather the aim is to provide a short overview of the background information

used in a deduction. We describe below the measures we use for summarizing

explanations.
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7.3.1 Measures for Ranking

We rank the statements inKST based on their scores we compute using our summa-

rization measures. The scores are normalized and range from 0.0 to 1.0. A higher

score for a statement means that the statement is more suitable for a summary.

Taking n statements, where n <| KST |, with scores greater than a threshold value

gives a summarized list of statements which can explain rs. For the ranking step,

we compute the scores by using three measures: salience (SSL), similarity (SSM ),

and abstractness (SAB)

7.3.1.1 Salient RDF Statements

The salience of an RDF statement indicates the importance of the RDF statements

in the oriented graph. We use normalized degree centrality, CDN (v), to compute

salience of RDF statements. Degree centrality of a vertex in a graph is the number

of links the vertex has. We compute the salience SSL(i) of an RDF statement i

using (7.1).

SSL(i) = θ1 × CDN (subjectOf(i)) + θ2 × CDN (objectOf(i)) (7.1)

In (7.1),
∑

i θi = 1 and ∀i : θi ≥ 0 i.e. we take the weighted average of the

normalized degree centrality of the subject and the object of the RDF statement

i. The subjectOf(i) and the objectOf(i) functions return respectively the subject

resource and the object resource of the RDF statement i. We did not use the

centrality of the predicate of statement while computing SSL because we wanted an

importance score representing the importance of the information in a statement but

not the importance of the relation between the information. The centrality values

of predicates in a RDF graph often do not change as they are directly used from

the schemata. In contrast, every new RDF statement changes the centrality values

of its subject and object.
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7.3.1.2 Similar RDF Statements

The consumers of our explanations can specify a set of classes, FL, as their filtering

criteria, where FL ⊆ SC and SC is the set of all classes in the schemata used to

describe KG. We rank the more similar statements to the concepts given in filter-

ing criteria higher. We use the approximate query solving feature [Corby 2006] of

Corese1 to compute similarity. The approximate query solving feature is a seman-

tic distance-based similarity feature to compute conceptual similarity between two

classes in a schema. For a statement i and a set of classes as filtering criteria FL,

we compute similarity SSM (i, FL) using (7.2).

SSM (i, FL) = θ1 × similaritynode(subjectOf(i), FL)

+ θ2 × similaritynode(predicateOf(i), FL)

+ θ3 × similaritynode(objectOf(i), FL)

(7.2)

The function predicateOf(i) returns the predicate of the statement i. We compute

similaritynode(j, FL) where j ∈ R ∪ SC as following:

similaritynode(j, FL) =


similaritytype({j}, FL) if j ∈ SC

similaritytype(typesOf(j), FL) if j /∈ SC
(7.3)

In (7.3), for the case j ∈ SC, we compute the similarity between the class j

and the set of classes in FL. For the case j /∈ SC, we compute the similarity

between the set of classes of which j is an instance and the set of classes in FL. The

similaritytype function takes as arguments a set of classes TP ⊆ SC and the set of

filtering criteria FL, and returns the similarity value between them. The typesOf(j)

function for a resource j ∈ R returns the set of classes of which j is an instance.

The similaritytype function in (7.4a) computes its value by taking the average of

all the values of maxSimilaritytype(m,TP ) where m ∈ FL and TP ⊆ SC. The

1http://wimmics.inria.fr/corese
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maxSimilaritytype function in (7.4b) returns the maximum similarity value between

a class m and all the classes in TP . This is to ensure that when a resource is an

instance of multiple classes, we filter it by the class which is more similar to the

filtering criteria. The similaritytype function calculates a combined similarity score

of TP with respect to all the classes in FL. Again, we consider the weighted average,

and therefore
∑

i θi = 1 and ∀i : θi ≥ 0 in (7.2).

similaritytype(TP, FL) =

∑
m∈FL

maxSimilaritytype(m,TP )

| FL |
(7.4a)

maxSimilaritytype(m,TP ) = max
n∈TP

(similaritycorese(m,n)) : (7.4b)

For a class m ∈ FL and a class n ∈ TP , similaritycorese(m,n) computes the

similarity score between class m and n ranging from 0.0 to 1.0 using SPARQL

similarity extension of Corese. A value of 1.0 represent exact match and a value of

0.0 represents completely not similar. The SSM score for a statement indicates the

similarity of the information in the statement to the information specified in FL.

7.3.1.3 Abstract Statements

We consider a statement that is close to the root, rs, in corresponding proof tree is

more abstract than a statement that is far from the root rs. We define the distance

of a node in the proof tree from the root node as the level of the tree to which the

node belongs. The root node belongs to level one in the proof tree. The root node

is derived from the nodes in level two. A node in level two is derived from the nodes

in level three, and so on. For a statement i ∈ KST , we compute the abstraction

score SAB(i) using (7.5).

SAB(i) =
1

level(i)
(7.5)

The function level(i) returns the proof tree level to which the statement i belongs.

We recursively define the function level as follows:
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• level(rs) = 1

• for every other node i in the proof tree, level(i) = level(parent(i)) + 1 where

the function parent(i) returns the parent node of i

The SAB(i) measure gives a value greater than 0.0 and less than or equal to 1.0,

where a smaller value means less abstract and a larger value means more abstract.

7.3.2 Measures for Re-Ranking

At this point, we can rank the statements of an explanation by combinations of the

measures (7.1), (7.2), and (7.5). These measures however do not consider coherence

of the information we include in the summaries. Furthermore, they do not consider

the importance of the information with respect to their positions in the proof tree.

We use two more measures to improve the rankings produced by the combinations

of three measures we presented so far. First, we consider the importance of the

RDF statements in KST with respect to their proof tree positions. We compute

the subtree weight score for a statement i by combining the already computed scores

(using combinations of (7.1), (7.2), and (7.5)) of all the statements of the subtree

where the statement i is the root. Second, we re-rank already ranked statements by

coherence. "Coherence" here means that the ranking of the RDF statements in a

summarized explanation should be consistent with respect to their derivations. Our

approach is similar to the approach of Zhang et al. [Zhang 2007] where they re-rank

the RDF statements in an ontology summary after the initial extraction process to

satisfy their coherence requirement. Below we describe how we compute the two

measures for re-ranking.

7.3.2.1 Subtree Weight in Proof Tree

The salience measure (7.1) indicates the importance of the RDF statements in KST

with respect to the oriented graph. But it does not consider the importance of the

RDF statements in KST with respect to the proof tree. The idea is to consider a
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statement in the proof tree as important if the statements in its subtree are also

important. For a subtree of the proof tree with root i, we compute the subtree

weight of the statement i by taking the average score of all the statements in that

subtree.

scoreST (i) =

∑
j∈subtree(i)

score(j)

| subtree(i) |
(7.6)

The subtree(i) function returns the RDF statements from the subtree of proof tree

with root i. The score(j) for a statement j here can be computed by combinations

of the measures we present in section 7.3.1. We discuss more about how to combine

the different measures in section 7.4.

7.3.2.2 Coherence

Previous works in text summarization [Eduard 2005] and ontology summariza-

tion [Zhang 2007] have shown that coherent information are desirable in summaries.

We consider an RDF statement x to be coherent to an RDF statement y if x is di-

rectly derived from y. Let RL be a ranked list of RDF statements; S be a list of

already selected RDF statements in the summary; i be the next RDF statement

to be selected in S. We re-rank RL by repeatedly selecting next i with | RL |

repetitions using (7.7).

i = arg max
j∈RL\S

(λ1 × score(j) + λ2 × reward(j, S)) (7.7)

Again, the score(j) for a statement j here can be computed by combinations of

the measures we presented before. We take the weighted average of score(j) and

reward(j, S) in (7.7), therefore
∑

i λi = 1 and ∀i : λi ≥ 0.

reward(j, S) = 1− coherent(S)

coherent(S ∪ j)
(7.8)
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As (7.8) shows, the reward score of a statement j is the amount of potential con-

tribution value – ranging from 0.0 to 1.0 – to the total coherence of the summary if

j is added to S. The function coherent(S) in (7.8) returns the number of coherent

statements in the summary S. We determine coherence as follows:

• The RDF statement x is coherent to y

– if parent(y) = x

The function parent(i) returns the parent node of i in the proof tree - a node in

the prof tree represents an RDF statement.

Note that the starting RDF statement for (7.7) is always the first statement in

the ranked list RL in our approach. However, if a different starting RDF statement

is selected, then the result of re-ranking by coherence will be different. An interesting

idea to explore in future would be to compute different re-ranked list by selecting

different starting RDF statements, then from those different re-ranked lists, selecting

the best re-ranked list. For this, a cost function to compute the cumulative value of

a ranked list would be required.

7.4 Evaluation

Ontology summarization [Li 2010] and text summarization [Eduard 2005,

Steinberger 2009] technologies are evaluated by measuring agreements between

human-generated summaries – known as “ground truths” – and automatically gen-

erated summaries. We obtained our ground truths by surveying 24 people: 17

computer scientists, 1 chemist, 1 social scientist, 1 mathematician, 1 journalist, 1

psychologist, 1 biologist, and 1 business administrator. 18 participants in our survey

had knowledge of RDF and 6 participants did not have any knowledge of RDF. The

ages of the participants range from 22 to 59. 20 participants were male and 4 were

female. The explanations, the questionnaires, the responses, and the results of the



7.4. Evaluation 133

evaluation are publicly available online2. We selected a subset of geographical loca-

tions from GeoNames3 and a subset of artists, events, and places from DBPedia4,

then derived new information from these selected subsets. Our ad-hoc reasoner in-

fers new RDF statements with respect to RDFS type propagation; and owl:sameAs

and transitivity of the parentFeature property of GeoNames schema. In addition,

the reasoner generates explanations for each derivation it performs. We used three

test cases – three queries with their results along with the explanations for the re-

sults. Each query result is an inferred statement by our reasoner. Each test case has

two scenarios: without filtering criteria FL, and with filtering criteria FL. Each

participant answered questions for one test case. We randomly assigned a test case

to a participant. We asked the participants to rate, from a scale of 1 to 5, the need

for each of the statements in the explanation. For, the scenario with filtering criteria

FL, we gave the query, the answer, and the explanation but with a user’s filtering

criteria class taken from the schemata used in the reasoning process. The ratings of

the explanation statements are our ground truths. We compute the ground truth

rankings of explanation statements by ordering them by their rating values.

7.4.1 Comparing Summarization Measures

We evaluate different combinations of the summarization measures we define. In

equation (7.9), we compute scoreSSL(i) for a statement i considering salience of the

statement. We always include SSL in our measure combinations. The motivation

is to first include the salient statements in a summary and then find the state-

ments with other measure combination scores (e.g. SAB or SSM or SAB + SSM )

in those salient statements. Equations (7.10), (7.11), and (7.12) show three more

measures combinations that we consider for our evaluation. In (7.10), we com-

pute scoreSL+AB(i) for a statement i considering salience and abstractness of the

statement. In (7.11), we compute the scoreSL+SM (i) for a statement i considering
2http://ns.inria.fr/ratio4ta/sm/
3http://www.geonames.org/
4http://dbpedia.org/
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the salience (SSL), and the similarity (SSM ) with respect to user’s filtering criteria

FL. In (7.12), we compute scoreSL+AB+SM (i) for a statement i considering the

salience (SSL), the abstractness (SAB), and the similarity (SSM ) with respect to

user’s filtering criteria FL.

scoreSL(i) = SSL(i) (7.9)

scoreSL+AB(i) = λ1 × SSL(i) + λ2 × SAB(i) (7.10)

scoreSL+SM (i) = λ1 × SSL(i) + λ2 × SSM (i, FL) (7.11)

scoreSL+AB+SM (i) = λ1 × SSL(i) + λ2 × SAB(i)

+ λ3 × SSM (i, FL)

(7.12)

These combinations are combinations of ranking measures we present in

section 7.3.1. For re-ranking, we first compute the score using any

of (7.9), (7.10), (7.11), and (7.12), then we re-rank using (7.6), or (7.7). In re-

maining of this chapter, we denote subtree weight measure as SST , and coherence

measure as SCO. For the scenario without FL, we compare our summaries to

sentence graph summarization [Zhang 2007] – denoted as SSG. As the authors of

sentence graph summarization approach suggest, we use 0.8 as the navigational pref-

erence p parameter value. Zhang et al. use navigational preference to determine

the weight of links between RDF sentences during the summarization process. We

implemented sentence graph summarization using degree centrality as the authors

found degree centrality performs better than other centrality measures in general,

and for its simplicity. We do not consider sentence graph summarization for sce-

narios with FL because sentence graph summarization does not have a feature for

filtering information using ontology concepts as filtering criteria.

In (7.10), (7.11), and (7.12),
∑

i λi = 1 and ∀i : λi ≥ 0. Thus we take the

weighted averages of the measure combinations. For this evaluation, we use equal

weights in (7.10), (7.11), (7.12), (7.1), (7.2), and (7.7). Therefore, we set ∀i : λi = 1
Nλ

in (7.10), (7.11), (7.12), and (7.7) where Nλ = number of λ parameters in the
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avg. std.
dev.

Without FL 0.836 0.048
With FL 0.835 0.065

Table 7.1: Average agreements between ratings measured by cosine similarity.

corresponding equations; and ∀i : θi = 1
Nθ

in (7.1), and (7.2) where Nθ = number

of θ parameters in the corresponding equations. However, one can use parameter

estimation techniques for finding the optimal parameter values.

7.4.2 Analysis of Ground Truths

We use cosine similarity to measure the agreements between rating vectors. Cosine

similarity values in positive space are in the interval 0 to 1. Table 7.1 shows the

total average agreement measured by cosine similarity and standard deviations for

two scenarios – without filtering criteria FL and with filtering criteria FL. The

average agreements for both the scenarios are more than 0.8 which is considerably

high. However, the standard deviation is higher for the scenario with FL. The

reason for this higher standard deviation is that the participants had to consider

the highly subjective [Araújo 2007] factor of similarity and therefore their ratings

had more variance for the scenario with FL.

7.4.3 Evaluating the Rankings

We use normalized discounted cumulative gain to evaluate ranking quality. Dis-

counted cumulative gain (DCG) [Järvelin 2002, McSherry 2008] measures the qual-

ity of results of an information retrieval system in a ranked list. DCG assumes that

judges have graded each item in a list of results. Using these grades, DCG measures

the usefulness, or gain, of a ranked list of results. DCG penalizes high quality results

appearing lower in a ranked list of results. Normalized discounted cumulative Gain

(nDCG) allows to calculate and compare this measure across multiple lists of results

where each of the lists might have different length. nDCG values are in the interval
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0.0 to 1.0. An nDCGp value of 1.0 means that the ranking is perfect at position

p with respect to the ideal ranking – ranking based on grades. The nDCGp value

0.0 means that the ranking is completely imperfect at position p with respect to the

ideal ranking. In our study, the average of ratings by all the survey participants for

a statement s is the grade for the statement s. Figure 7.2 shows the average nDCG

values of the three test cases for different rankings by different measure combina-

tions. The x-axis represents ranks and the y-axis represents nDCG. We plot 21

ranks in the x-axis because the shortest explanation among the three test cases had

21 statements. For the scenario without FL (the figure on the left), the measure

combinations SSL + SAB + SCO, SSL + SAB + SST , and SSL + SAB + SST + SCO

produce closer rankings to the ground truth rankings. For the scenario with FL

(the figure on the right), the same three measure combinations with added SSM

measure have the best nDCG values. This means that the participants consider

central (with respect to the oriented graph and the proof tree), abstract, and coher-

ent information as necessary information in explanation summaries for the scenario

without FL. This also holds for the scenario with FL with the added observation

that the participants also consider similar information as necessary information. The

nDCG values for these measure combinations are higher than 0.9 for all ranks. This

means that the rankings by these measure combinations are highly similar to the

ground truth rankings. In contrast, the sentence graph summarization ranking has

low nDCG values compared to all the other rankings for the scenario without FL.

This shows that our explanation summarization algorithms produce much higher

quality rankings than sentence graph summarization algorithm.

7.4.4 Evaluating the Summaries

We evaluate the summaries using Recall and Precision composite scores as in text

summarization [Eduard 2005]. Recall and Precision quantify how closely the algo-

rithm generated summaries correspond to the human produced summaries. Recall
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Figure 7.2: Comparison of rankings.

reflects how many good statements the algorithm missed, and Precision reflects

how many of the algorithm’s selected statements are good. F-score is the composite

measure of Recall and Precision. We use the basic F-score as in [Steinberger 2009]:

F-score = 2×Precision×Recall
Precision+Recall . We measure F-score for summarized explanations with

different compression ratios, CR, to evaluate summaries of different sizes. Compres-

sion ratio CR is the ratio of the size of the summarized explanation to the size of

original explanation. We evaluate the summarized explanations produced by differ-

ent measure combinations by comparing them to human generated summarized ex-

planations (i.e. ground truth summarized explanations) using F-score. To generate

the ground truth summarized explanation for an explanation, we include a statement

in the ground truth summarized explanation if its rating is greater than or equal

to the average rating of all the statements in the original explanation. F-scores re-

flects the accuracy of automatically generated summaries with respect to the ground

truth summary. A desirable situation would be a summarized explanation with high

F-score and low CR. Figure 7.3 shows the average F-scores for different measure

combinations for summaries with different sizes for the three test cases. The x-axis

represents compression ratio CR. The y-axis represents F-scores. For the scenario

without FL (the figure on the left), the best F-score is 0.72 when CR value is 0.33

by the measure combinations SSL+SAB +SST and SSL+SAB +SST +SCO. This is

a desirable situation with a high F-score and low CR. The sentence graph summa-
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Figure 7.3: Compression ratio (CR) vs F-score.

rization performs poorly with a best F-score value of 0.34 in the CR interval 0.05

to 0.3. This shows that our summarized explanations are more accurate than the

summarized explanations generated by sentence graph summarization algorithm.

For the scenario with FL (the figure on the right), the best F-score is 0.66 at CR

values 0.53 and 0.55 by the measure combinationSSL + SSM . However, the F-score

0.6 at CR value 0.3 by the measure combination SSL + SAB + SSM + SCO is more

desirable because the size of the summary is smaller. As expected, our summariza-

tion approach perform worse in the scenario with FL where we use SSM . This is

due to the fact that the survey participants had to consider the highly subjective

factor of similarity.

7.5 Summary

In this chapter, we presented five measures to summarize Linked Explanations. We

evaluate different combinations of these measures. The evaluation shows that our

approach produces high quality rankings for summarizing explanation statements.

Our summarized explanations are also highly accurate with F-score values ranging

from 0.6 to 0.72 for small summaries. Our approach outperforms the sentence graph

based ontology summarization approach.



Chapter 8

Conclusion and Perspectives

Contents

8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 139

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2.1 Query Performance Prediction . . . . . . . . . . . . . . . . . 141

8.2.2 Query Result Explanation . . . . . . . . . . . . . . . . . . . . 142

8.2.3 Linked Explanations and Summarization . . . . . . . . . . . 143

8.1 Summary of Contributions

In this thesis, we aim at assisting users in understanding query behavior and results

in the context of consuming Linked Data. We have contributions in five areas:

query performance prediction, query result provenance, evaluating explanations,

explanation for Linked Data, and summarizing explanations for Linked Data.

Query Performance Prediction. Existing approaches for SPARQL query cost

estimation are based on statistics about the underlying data. However, statis-

tics about the underlying data are often missing in Linked Data. We present

a machine learning approach to predict query performance metrics. We learn

query execution times from already executed queries – without using statistics

about the underlying RDF data. We discuss how to model SPARQL queries as

feature vectors, and show highly accurate predictions. Predicted query perfor-

mance metrics using our approach can be used to assist users to understand



140 Chapter 8. Conclusion and Perspectives

query performance for workload management related tasks to meet specific

QoS targets in the context of querying Linked Data.

Query Result Provence. Previous works on generating why-provenance for

SPARQL query results are based on what is know as the annotation approach

(the eager approach) where the underlying data model, the query language,

and the query processing engine are re-engineered to compute provenance

during the query processing. However, re-engineering the underlying data

model, the query language, or the query processor is often not possible in

the Linked Data scenario. We present a non-annotation approach to generate

why-provenance for SPARQL query results and show its feasibility for common

Linked Data queries. We generate the explanation for a SPARQL query result

tuple from its why-provenance. We present an explanation-aware federated

query processor prototype and show the presentations of our explanations.

Evaluating Explanations. Previous works on explanations in the Semantic Web

literature work on the assumptions that explanations would improve users’

understanding and trust. However, previous works do not evaluate such as-

sumptions. We present a user study to evaluate the impact of query result

explanations in a federated query processing scenario for Linked Data. Our

user study shows that our query result explanations are helpful for end users

to understand the result derivations and make trust judgments on the results.

Explanations for Linked Data. Much of the previous work on explanations for

the Semantic Web do not address explanation in a distributed environment.

The Inference Web [McGuinness 2003] approach proposes a centralized reg-

istry based solution for publishing explanation metadata from distributed rea-

soners. In contrast, we propose a decentralized solution to this problem. We

discuss how to represent and generate explanations for Linked Data. We

present the Ratio4TA vocabulary to describe explanation metadata and in-
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troduce the notion of Linked Explanations – publishing explanation metadata

as Linked Data. This enables explaining distributed data in a decentralized

fashion. Ratio4TA extends the W3C PROV Ontology to enable data con-

sumers to process explanation metadata according to W3C PROV standards.

We also show how to generate natural language based explanations from these

explanation metadata.

Summarizing Explanations for Linked Data. Although explanations with the

details of all the derivation steps may be useful for expert users, they may over-

whelm non-expert users with too much information. In addition, an expert

user such as a knowledge engineer may want to focus on a specific part of a

detailed explanation. A knowledge engineer may also want a short explanation

to have an overview of the reasoning. We presented five measures to summa-

rize explanations. We evaluate different combinations of these measures. The

evaluation shows that our approach produces high quality rankings for sum-

marizing explanation statements. Our summarized explanations are highly

accurate with F-score values ranging from 0.6 to 0.72 for small summaries.

Our approach outperforms the sentence graph based ontology summarization

approach.

8.2 Perspectives

We have several perspectives for our query performance prediction, query result

explanation, and Linked Explanations approaches.

8.2.1 Query Performance Prediction

In future, firstly we would like to use our approach in query optimization and com-

pare it to traditional query cost estimation techniques in the Linked Data scenario

– e.g. join order optimization in federated query processing. State of the art Linked

Data query processing approach FedX [Schwarte 2011] uses variable count selectivity
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estimation [Stocker 2008] optimization for efficient join ordering of grouped triple

pattern execution. We would like to compare our approach to such approaches.

Second, we plan to systematically generate training queries for two scenarios: (a)

given query logs of real queries (b) given a small set of sample queries. We plan

to apply query log mining techniques to systematically generate training queries.

Recent work [Arias 2011] on query log mining shows that the majority of SPARQL

queries share some common characteristics. We plan to consider those statistically

significant common characteristics in refining training queries from massive query

logs and generating training queries from a small set of sample queries. We would

also explore how these common characteristics can be used as query features. Third,

we would like to investigate online machine learning techniques for our models. Our

goal would be to refine our prediction models based on the new predictions and

their actual values. Finally, we would like to include load and availability related

features. In this direction, we plan to execute the training queries every hour and in-

clude features such as time, day, and month. This would help us to model workload

patterns for public SPARQL endpoints.

8.2.2 Query Result Explanation

In the future work, we would like to extend our algorithm to generate how-

provenance, which explain how a result tuple was derived with the details of the

operations performed in the derivation. The performed SPARQL operations can

be extracted from the query patterns of SPARQL queries the same way we extract

the why-provenance triples. In fact, the algebraic expression tree we generate dur-

ing the why-provenance extraction process already contains these operations. For

how-provenance, we would have to associate these operators to the extracted why-

provenance triples. Furthermore, currently we present the first derivation in a why-

provenance as explanation in our explanation user interface. It would be interesting

to explore how we can effectively present information from why-provenance as ex-
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planations to users. In this direction, one approach could be to rank the derivations

of why-provenance, which would require us to define ranking criteria for derivations

of why-provenance. Finally, our user study to evaluate the impact of query result

explanations had only 11 participants. The participants needed to have some no-

tions of RDF and SPARQL, and be motivated to simulate a simple federated query

solution process. Although we went through the prominent communication chan-

nels (mailing lists and twitter hastags), it was difficult to find a large number of

participants. In addition, as the participants were anonymized, we could not go

back to the participants and ask why a given participant has provided a given an-

swer to re-evaluate their choices. A controlled user study with a large number of

participants would provide us more conclusive results and re-evaluate the choices

of the participants. One approach to conduct such a controlled user study would

to use a crowdsourcing infrastructure such as Amazon’s Mechanical Turk1 where

participants would be provided financial incentives for their participations.

8.2.3 Linked Explanations and Summarization

As we discuss in Chapter 6, our Linked Explanations approach requires the data

triples to be reifiable. We use named graphs for reifying data triples and group

together explanation metadata triples. Currently the best practices for publishing

named data as Linked Data has not been universally agreed upon by the Semantic

Web community [Shinavier 2010]. However, following the adoption of named graphs

in RDF 1.1, it is expected that there would be a community consensus on best prac-

tices for publishing named graphs as Linked Data. Furthermore, the amount of

explanation related metadata in our approach can become very large. Therefore,

efficient and scalable storage and querying techniques would be required to use our

approach in practice. In this direction, there is a large literature on scalable storage,

indexing, and querying for RDF [Hose 2011]. These existing approaches can be used

to store and serve the large amount of explanation related metadata. Finally, we
1https://www.mturk.com/
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would like to explore how we can effectively present explanations and summarized

explanations using different kinds of user interfaces and user interactions. We would

like to explore how we can effectively use the summarization rankings while present-

ing information – e.g not expanding a proof tree branch which contains statements

with low ranking scores.
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Ratio4TA Vocabulary

We present the source code of Ratio4TA vocabulary below using Turtle notation.

1 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

2 @prefix owl: <http://www.w3.org/2002/07/owl#> .

3 @prefix prov: <http://www.w3.org/ns/prov#> .

4 @prefix rdfg: <http://www.w3.org/2004/03/trix/rdfg-1/> .

5 @prefix ns: <http://www.w3.org/ns/> .

6 @prefix : <http://ns.inria.fr/ratio4ta/v3#> .

7 @prefix xml: <http://www.w3.org/XML/1998/namespace> .

8 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

9 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

10 @base <http://ns.inria.fr/ratio4ta/v3> .

11

12 <http://ns.inria.fr/ratio4ta/v3> rdf:type owl:Ontology ;

13 rdfs:comment "Ratio4TA (interlinked justifications for triple assertions) is a lightweight

vocabulary for encoding justifications using named graphs."@en .

14

15 ##################################

16 # Annotation properties

17 ##################################

18 prov:unqualifiedForm rdf:type owl:AnnotationProperty .

19 prov:aq rdf:type owl:AnnotationProperty .

20 prov:prov-n rdf:type owl:AnnotationProperty .

21 prov:sharesDefinitionWith rdf:type owl:AnnotationProperty .

22 prov:prov-dm rdf:type owl:AnnotationProperty .

23 prov:definition rdf:type owl:AnnotationProperty .

24 prov:editorialNote rdf:type owl:AnnotationProperty .

25 prov:inverse rdf:type owl:AnnotationProperty .

26 prov:constraints rdf:type owl:AnnotationProperty .

27 prov:dm rdf:type owl:AnnotationProperty .

28 prov:category rdf:type owl:AnnotationProperty .

29 prov:prov-dm-constraints rdf:type owl:AnnotationProperty .

30 prov:editorsDefinition rdf:type owl:AnnotationProperty .

31 prov:component rdf:type owl:AnnotationProperty .

32 prov:agent rdf:type owl:AnnotationProperty ;

33 rdfs:label "agent" ;

34 prov:component "alternate" ;

35 prov:inverse "agentOfInfluence" ;

36 prov:editorialNote "This property behaves in spirit like rdf:object; it references the object of a prov:involved

triple." ;

37 rdfs:comment "The property used by a prov:AgentInvolvement to cite the Agent that was prov:involved with either an

Activity or Entity. It can be used to express the agent involved in being responsible for an activity,
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being attributed to an entity, starting or ending an activity, or being responsible for another subordinate

agent in an activity."@en ;

38 prov:editorsDefinition "The prov:agent property references an prov:Agent which influenced a resource. This

property applies to an prov:AgentInfluence, which is given by a subproperty of prov:qualifiedInfluence from

the influenced prov:Entity, prov:Activity or prov:Agent."@en ;

39 prov:inverse "agentInvolvement" ;

40 prov:editorialNote "This property behaves in spirit like rdf:object; it references the object of a prov:

wasInfluencedBy triple."@en ;

41 prov:category "qualified" ;

42 rdfs:isDefinedBy ns:prov-o# .

43 prov:qualifiedForm rdf:type owl:AnnotationProperty .

44 prov:n rdf:type owl:AnnotationProperty .

45

46 ##################################

47 # Object Properties

48 ##################################

49 ### http://ns.inria.fr/ratio4ta/v3#belongsTo

50 :belongsTo rdf:type owl:ObjectProperty ;

51 rdfs:label "belongs to"@en ;

52 prov:definition "A reasoning process uses input data and computes results. Each of these computed results includes

output data. The belongsTo property specifies an output data belongs to a result."@en ;

53 rdfs:domain :OutputData ;

54 rdfs:range :Result ;

55 owl:inverseOf :contains ;

56 rdfs:subPropertyOf prov:qualifiedGeneration .

57

58 ### http://ns.inria.fr/ratio4ta/v3#computed

59 :computed rdf:type owl:ObjectProperty ;

60 rdfs:label "computed"@en ;

61 prov:definition "A reasoning process uses input data and computes results. Each of these computed results includes

output data. The contains property specifies a result contains an output data."@en ;

62 rdfs:domain :ReasoningProcess ;

63 rdfs:range :Result ;

64 rdfs:subPropertyOf prov:qualifiedAssociation .

65

66 ### http://ns.inria.fr/ratio4ta/v3#contains

67 :contains rdf:type owl:ObjectProperty ;

68 rdfs:label "contains"@en ;

69 prov:definition "Specifies the output data contained in a result."@en .

70

71 ### http://ns.inria.fr/ratio4ta/v3#derivationReasoner

72 :derivationReasoner rdf:type owl:ObjectProperty ;

73 rdfs:label "has derivation reasoner"@en ;

74 prov:definition "A software application performs data derivations. The derivationReasoner property

specifies a data derivation performed by a software application."@en ;

75 rdfs:domain :DataDerivation ;

76 rdfs:range :SoftwareApplication ;

77 rdfs:subPropertyOf prov:agent .

78

79 ### http://ns.inria.fr/ratio4ta/v3#derivedBy

80 :derivedBy rdf:type owl:ObjectProperty ;

81 rdfs:label "derived by"@en ;

82 prov:definition "A derivation uses rules and derives output data. The derivedBy property specifies an output data

derived by a derivation."@en ;

83 rdfs:range :DataDerivation ;
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84 rdfs:domain :OutputData ;

85 rdfs:subPropertyOf prov:qualifiedDerivation .

86

87 ### http://ns.inria.fr/ratio4ta/v3#derivedFrom

88 :derivedFrom rdf:type owl:ObjectProperty ;

89 rdfs:label "derived from"@en ;

90 prov:definition "A derivation transforms a data into another, constructs a data into another, or updates a data,

resulting in a new one. Note that by data we mean an instance of the Data class. The derivedFrom property

specifies a data derived from a data."@en ;

91 rdfs:domain :Data ;

92 rdfs:range :Data ;

93 rdfs:subPropertyOf prov:wasDerivedFrom .

94

95 ### http://ns.inria.fr/ratio4ta/v3#explains

96 :explains rdf:type owl:ObjectProperty ;

97 rdfs:label "explains"@en ;

98 prov:definition "An ExplanationBundle contains explanation statements for a Data. The explains property specifies

an ExplanationBundle that explains a data."@en ;

99 rdfs:range :Data ;

100 rdfs:domain :ExplanationBundle .

101

102 ### http://ns.inria.fr/ratio4ta/v3#hasExplanation

103 :hasExplanation rdf:type owl:ObjectProperty ;

104 rdfs:label "has explanation"@en ;

105 prov:definition "An ExplanationBundle contains explanation statements for a Data. The hasExplanation property

specifies a data explained by an ExplanationBundle."@en ;

106 rdfs:domain :Data ;

107 rdfs:range :ExplanationBundle ;

108 owl:inverseOf :explains ;

109 rdfs:subPropertyOf prov:has_provenance .

110

111 ### http://ns.inria.fr/ratio4ta/v3#performedAsPartOf

112 :performedAsPartOf rdf:type owl:ObjectProperty ;

113 rdfs:label "performed as part of"@en ;

114 prov:definition "A reasoning process performs data derivations. The performedAsPartOf specifies a data

derivation is performed as part of a reasoning process."@en ;

115 rdfs:domain :DataDerivation ;

116 rdfs:range :ReasoningProcess ;

117 rdfs:subPropertyOf prov:hadActivity .

118

119 ### http://ns.inria.fr/ratio4ta/v3#performedBy

120 :performedBy rdf:type owl:ObjectProperty ;

121 rdfs:label "performed by"@en ;

122 prov:definition "A software application performs a reasoning process. The performedBy property specifies a

reasoning process is performed by a software application."@en ;

123 rdfs:domain :ReasoningProcess ;

124 rdfs:range :SoftwareApplication ;

125 rdfs:subPropertyOf prov:wasAssociatedWith .

126

127 ### http://ns.inria.fr/ratio4ta/v3#produced

128 :produced rdf:type owl:ObjectProperty ;

129 rdfs:label "produced"@en ;

130 prov:definition "A reasoning process computes results and a computed result contains output data. The produced

property specifies a reasoning process produced an instance of data."@en ;

131 rdfs:range :OutputData ;
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132 rdfs:domain :ReasoningProcess ;

133 rdfs:subPropertyOf prov:generated .

134

135 ### http://ns.inria.fr/ratio4ta/v3#resultReasoner

136 :resultReasoner rdf:type owl:ObjectProperty ;

137 rdfs:label "has result reasoner"@en ;

138 prov:definition "A software application performs reasoning to computes results. The resultReasoner property

specifies result has an associated software application."@en ;

139 rdfs:domain :Result ;

140 rdfs:range :SoftwareApplication ;

141 rdfs:subPropertyOf prov:agent .

142

143 ### http://ns.inria.fr/ratio4ta/v3#summarizationOf

144 :summarizationOf rdf:type owl:ObjectProperty ;

145 rdfs:label "summarization of"@en ;

146 prov:definition "A summarized justification can contain the most important information from several

justifications. The summarizationOf property specifies a justification account is a summarization of a

justification account. Since a summarized justification account is a summary of multiple

justification accounts, there will be multiple statements describing the links between a summarized

justification account and its original justification accounts using this property."@en ;

147 rdfs:range :ExplanationBundle ;

148 rdfs:domain :ExplanationBundle ;

149 rdfs:subPropertyOf prov:generalizationOf .

150

151 ### http://ns.inria.fr/ratio4ta/v3#usedData

152 :usedData rdf:type owl:ObjectProperty ;

153 rdfs:label "used data"@en ;

154 prov:definition "A reasoning process uses input data to compute its results. The usedData property specifies a

reasoning process used an instance of input data."@en ;

155 rdfs:range :InputData ;

156 rdfs:domain :ReasoningProcess ;

157 rdfs:subPropertyOf prov:used .

158

159 ### http://ns.inria.fr/ratio4ta/v3#usedRule

160 :usedRule rdf:type owl:ObjectProperty ;

161 rdfs:label "used rule"@en ;

162 prov:definition "Data derivations use rules to perform derivations. The usedRule property specifies a data

derivation used a rule."@en ;

163 rdfs:domain :DataDerivation ;

164 rdfs:range :Rule ;

165 rdfs:subPropertyOf prov:hadPlan .

166

167 ### http://ns.inria.fr/ratio4ta/v3#wasInvolvedComputing

168 :wasInvolvedComputing rdf:type owl:ObjectProperty ;

169 rdfs:label "was involved in computing"@en ;

170 prov:definition "A reasoning process performs data derivations to compute results. The

wasInvolvedComputing property specifies a data derivation was involved in computing a result."@en

;

171 rdfs:domain :DataDerivation ;

172 rdfs:range :Result ;

173 rdfs:subPropertyOf prov:hadGeneration .

174

175 ### http://www.w3.org/ns/prov#activity

176 prov:activity rdf:type owl:ObjectProperty ;

177 rdfs:label "activity" ;
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178 prov:editorsDefinition "The prov:activity property references an prov:Activity which influenced a resource.

This property applies to an prov:ActivityInfluence, which is given by a subproperty of prov:

qualifiedInfluence from the influenced prov:Entity, prov:Activity or prov:Agent." ;

179 prov:inverse "activityOfInfluence" ;

180 prov:editorialNote "This property behaves in spirit like rdf:object; it references the object of a prov:

wasInfluencedBy triple."@en ;

181 prov:category "qualified" ;

182 rdfs:range prov:Activity ;

183 rdfs:domain prov:ActivityInfluence ;

184 rdfs:subPropertyOf prov:influencer ;

185 rdfs:isDefinedBy ns:prov-o# .

186

187 ### http://www.w3.org/ns/prov#agent

188 prov:agent rdf:type owl:ObjectProperty ;

189 rdfs:label "agent" ;

190 prov:editorialNote "This property behaves in spirit like rdf:object; it references the object of a prov:involved

triple." ;

191 rdfs:comment "The property used by a prov:AgentInvolvement to cite the Agent that was prov:involved with either an

Activity or Entity. It can be used to express the agent involved in being responsible for an activity,

being attributed to an entity, starting or ending an activity, or being responsible for another subordinate

agent in an activity."@en ;

192 prov:category "qualified" ;

193 prov:component "alternate" ;

194 prov:editorsDefinition "The prov:agent property references an prov:Agent which influenced a resource. This

property applies to an prov:AgentInfluence, which is given by a subproperty of prov:qualifiedInfluence from

the influenced prov:Entity, prov:Activity or prov:Agent."@en ;

195 prov:inverse "agentOfInfluence" ,

196 "agentInvolvement" ;

197 prov:editorialNote "This property behaves in spirit like rdf:object; it references the object of a prov:

wasInfluencedBy triple."@en ;

198 rdfs:range prov:Agent ;

199 rdfs:domain prov:AgentInfluence ;

200 rdfs:subPropertyOf prov:influencer ;

201 rdfs:isDefinedBy ns:prov-o# .

202

203 ### http://www.w3.org/ns/prov#alternateOf

204 prov:alternateOf rdf:type owl:ObjectProperty ;

205 rdfs:label "alternateOf" ;

206 prov:constraints "http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#prov-dm-constraints-fig"^^xsd:

anyURI ;

207 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-alternate"^^xsd:anyURI ;

208 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-alternate"^^xsd:anyURI ;

209 prov:definition "Two alternate entities present aspects of the same thing. These aspects may be the same or

different, and the alternate entities may or may not overlap in time."@en ;

210 prov:category "expanded" ;

211 prov:component "alternate" ;

212 prov:inverse "alternateOf" ;

213 rdfs:isDefinedBy prov: ;

214 rdfs:domain prov:Entity ;

215 rdfs:range prov:Entity ;

216 owl:inverseOf prov:alternateOf ;

217 rdfs:seeAlso prov:specializationOf ;

218 rdfs:isDefinedBy ns:prov-o# .

219

220 ### http://www.w3.org/ns/prov#entity
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221 prov:entity rdf:type owl:ObjectProperty ;

222 rdfs:label "entity" ;

223 prov:editorsDefinition "The prov:entity property references an prov:Entity which influenced a resource. This

property applies to an prov:EntityInfluence, which is given by a subproperty of prov:qualifiedInfluence

from the influenced prov:Entity, prov:Activity or prov:Agent." ;

224 prov:inverse "entityOfInfluence" ;

225 prov:editorialNote "This property behaves in spirit like rdf:object; it references the object of a prov:

wasInfluencedBy triple."@en ;

226 prov:category "qualified" ;

227 rdfs:range prov:Entity ;

228 rdfs:domain prov:EntityInfluence ;

229 rdfs:subPropertyOf prov:influencer ;

230 rdfs:isDefinedBy ns:prov-o# .

231

232 ### http://www.w3.org/ns/prov#generalizationOf

233 prov:generalizationOf rdf:type owl:ObjectProperty ;

234 rdfs:label "generalizationOf" ;

235 rdfs:isDefinedBy prov: ;

236 owl:inverseOf prov:specializationOf .

237

238 ### http://www.w3.org/ns/prov#generated

239 prov:generated rdf:type owl:ObjectProperty ;

240 rdfs:label "generated" ;

241 prov:component "entities-activities" ;

242 prov:inverse "wasGeneratedBy" ;

243 prov:category "expanded" ;

244 prov:editorialNote "prov:generated is one of few inverse property defined, to allow Activity-oriented

assertions in addition to Entity-oriented assertions."@en ;

245 rdfs:isDefinedBy prov: ;

246 rdfs:domain prov:Activity ;

247 rdfs:range prov:Entity ;

248 prov:sharesDefinitionWith prov:Generation ;

249 rdfs:subPropertyOf prov:influenced ;

250 rdfs:isDefinedBy ns:prov-o# .

251

252 ### http://www.w3.org/ns/prov#hadActivity

253 prov:hadActivity rdf:type owl:ObjectProperty ;

254 rdfs:label "hadActivity" ;

255 rdfs:comment "This property has multiple RDFS domains to suit multiple OWL Profiles. See <a href=\"#owl-

profile\">PROV-O OWL Profile</a>." ,

256 "The _optional_ Activity of an Influence, which used, generated, invalidated, or was the

responsibility of some Entity. This property is _not_ used by ActivityInfluence (use prov:

activity instead)."@en ;

257 prov:editorialNote "The multiple rdfs:domain assertions are intended. One is simpler and works for OWL-RL,

the union is more specific but is not recognized by OWL-RL."@en ;

258 prov:component "derivations" ;

259 prov:category "qualified" ;

260 prov:inverse "wasActivityOfInfluence" ;

261 rdfs:range prov:Activity ;

262 prov:sharesDefinitionWith prov:Activity ;

263 rdfs:domain prov:Influence ;

264 rdfs:isDefinedBy ns:prov-o# ;

265 rdfs:domain [ rdf:type owl:Class ;

266 owl:unionOf ( prov:Delegation

267 prov:Derivation



151

268 prov:End

269 prov:Start

270 )

271 ] .

272

273 ### http://www.w3.org/ns/prov#hadGeneration

274 prov:hadGeneration rdf:type owl:ObjectProperty ;

275 rdfs:label "hadGeneration" ;

276 prov:inverse "generatedAsDerivation" ;

277 prov:category "qualified" ;

278 rdfs:comment "The _optional_ Generation involved in an Entity’s Derivation."@en ;

279 prov:component "derivations" ;

280 rdfs:domain prov:Derivation ;

281 prov:sharesDefinitionWith prov:Generation ;

282 rdfs:range prov:Generation ;

283 rdfs:isDefinedBy ns:prov-o# .

284

285 ### http://www.w3.org/ns/prov#hadPlan

286 prov:hadPlan rdf:type owl:ObjectProperty ;

287 rdfs:label "hadPlan" ;

288 prov:category "qualified" ;

289 prov:component "agents-responsibility" ;

290 prov:inverse "wasPlanOf" ;

291 rdfs:comment "The _optional_ Plan adopted by an Agent in Association with some Activity. Plan specifications are

out of the scope of this specification."@en ;

292 rdfs:domain prov:Association ;

293 prov:sharesDefinitionWith prov:Plan ;

294 rdfs:range prov:Plan ;

295 rdfs:isDefinedBy ns:prov-o# .

296

297 ### http://www.w3.org/ns/prov#has_provenance

298 prov:has_provenance rdf:type owl:ObjectProperty ;

299 rdfs:label "has_provenance" ;

300 prov:aq "http://www.w3.org/TR/2013/NOTE-prov-aq-20130430/#resource-represented-as-html"^^xsd:anyURI ;

301 prov:inverse "provenanceOf" ;

302 rdfs:comment "Indicates a provenance-URI for a resource; the resource identified by this property

presents a provenance record about its subject or anchor resource."@en ;

303 prov:category "access-and-query" ;

304 rdfs:isDefinedBy prov: .

305

306 ### http://www.w3.org/ns/prov#influenced

307 prov:influenced rdf:type owl:ObjectProperty ;

308 rdfs:label "influenced" ;

309 prov:inverse "wasInfluencedBy" ;

310 prov:component "agents-responsibility" ;

311 prov:category "expanded" ;

312 rdfs:isDefinedBy prov: ;

313 prov:sharesDefinitionWith prov:Influence ;

314 rdfs:isDefinedBy ns:prov-o# .

315

316 ### http://www.w3.org/ns/prov#influencer

317 prov:influencer rdf:type owl:ObjectProperty ;

318 rdfs:label "influencer" ;

319 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-influence"^^xsd:anyURI ;

320 prov:category "qualified" ;
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321 prov:inverse "hadInfluence" ;

322 rdfs:comment "Subproperties of prov:influencer are used to cite the object of an unqualified PROV-O triple

whose predicate is a subproperty of prov:wasInfluencedBy (e.g. prov:used, prov:wasGeneratedBy). prov:

influencer is used much like rdf:object is used."@en ;

323 prov:editorialNote "This property and its subproperties are used in the same way as the rdf:object property,

i.e. to reference the object of an unqualified prov:wasInfluencedBy or prov:influenced triple."@en ;

324 prov:editorsDefinition "This property is used as part of the qualified influence pattern. Subclasses of prov:

Influence use these subproperties to reference the resource (Entity, Agent, or Activity) whose

influence is being qualified."@en ;

325 rdfs:range owl:Thing ;

326 rdfs:domain prov:Influence ;

327 rdfs:isDefinedBy ns:prov-o# .

328

329 ### http://www.w3.org/ns/prov#qualifiedAssociation

330 prov:qualifiedAssociation rdf:type owl:ObjectProperty ;

331 rdfs:label "qualifiedAssociation" ;

332 prov:inverse "qualifiedAssociationOf" ;

333 rdfs:comment "If this Activity prov:wasAssociatedWith Agent :ag, then it can qualify the Association

using prov:qualifiedAssociation [ a prov:Association; prov:agent :ag; :foo :bar ]."@en ;

334 prov:component "agents-responsibility" ;

335 prov:category "qualified" ;

336 rdfs:domain prov:Activity ;

337 rdfs:range prov:Association ;

338 prov:sharesDefinitionWith prov:Association ;

339 rdfs:subPropertyOf prov:qualifiedInfluence ;

340 prov:unqualifiedForm prov:wasAssociatedWith ;

341 rdfs:isDefinedBy ns:prov-o# .

342

343 ### http://www.w3.org/ns/prov#qualifiedDerivation

344 prov:qualifiedDerivation rdf:type owl:ObjectProperty ;

345 rdfs:label "qualifiedDerivation" ;

346 prov:component "derivations" ;

347 prov:category "qualified" ;

348 rdfs:comment "If this Entity prov:wasDerivedFrom Entity :e, then it can qualify how it was derived

using prov:qualifiedDerivation [ a prov:Derivation; prov:entity :e; :foo :bar ]."@en ;

349 prov:inverse "qualifiedDerivationOf" ;

350 prov:sharesDefinitionWith prov:Derivation ;

351 rdfs:range prov:Derivation ;

352 rdfs:domain prov:Entity ;

353 rdfs:subPropertyOf prov:qualifiedInfluence ;

354 prov:unqualifiedForm prov:wasDerivedFrom ;

355 rdfs:isDefinedBy ns:prov-o# .

356

357 ### http://www.w3.org/ns/prov#qualifiedGeneration

358 prov:qualifiedGeneration rdf:type owl:ObjectProperty ;

359 rdfs:label "qualifiedGeneration" ;

360 prov:inverse "qualifiedGenerationOf" ;

361 prov:component "entities-activities" ;

362 prov:category "qualified" ;

363 rdfs:comment "If this Activity prov:generated Entity :e, then it can qualify how it performed the

Generation using prov:qualifiedGeneration [ a prov:Generation; prov:entity :e; :foo :bar ]."@en

;

364 rdfs:domain prov:Entity ;

365 rdfs:range prov:Generation ;

366 prov:sharesDefinitionWith prov:Generation ;
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367 rdfs:subPropertyOf prov:qualifiedInfluence ;

368 prov:unqualifiedForm prov:wasGeneratedBy ;

369 rdfs:isDefinedBy ns:prov-o# .

370

371 ### http://www.w3.org/ns/prov#qualifiedInfluence

372 prov:qualifiedInfluence rdf:type owl:ObjectProperty ;

373 rdfs:label "qualifiedInfluence" ;

374 rdfs:comment "Because prov:qualifiedInfluence is a broad relation, the more specific relations (

qualifiedCommunication, qualifiedDelegation, qualifiedEnd, etc.) should be used when applicable.

"@en ;

375 prov:category "qualified" ;

376 prov:inverse "qualifiedInfluenceOf" ;

377 prov:component "derivations" ;

378 rdfs:range prov:Influence ;

379 prov:sharesDefinitionWith prov:Influence ;

380 prov:unqualifiedForm prov:wasInfluencedBy ;

381 rdfs:isDefinedBy ns:prov-o# ;

382 rdfs:domain [ rdf:type owl:Class ;

383 owl:unionOf ( prov:Activity

384 prov:Agent

385 prov:Entity

386 )

387 ] .

388

389 ### http://www.w3.org/ns/prov#qualifiedUsage

390 prov:qualifiedUsage rdf:type owl:ObjectProperty ;

391 rdfs:label "qualifiedUsage" ;

392 prov:category "qualified" ;

393 prov:inverse "qualifiedUsingActivity" ;

394 prov:component "entities-activities" ;

395 rdfs:comment "If this Activity prov:used Entity :e, then it can qualify how it used it using prov:

qualifiedUsage [ a prov:Usage; prov:entity :e; :foo :bar ]."@en ;

396 rdfs:domain prov:Activity ;

397 prov:sharesDefinitionWith prov:Usage ;

398 rdfs:range prov:Usage ;

399 rdfs:subPropertyOf prov:qualifiedInfluence ;

400 prov:unqualifiedForm prov:used ;

401 rdfs:isDefinedBy ns:prov-o# .

402

403 ### http://www.w3.org/ns/prov#specializationOf

404 prov:specializationOf rdf:type owl:ObjectProperty ;

405 rdfs:label "specializationOf" ;

406 prov:constraints "http://www.w3.org/TR/2012/WD-prov-dm-20120703/prov-constraints.html#prov-dm-

constraints-fig"^^xsd:anyURI ;

407 prov:dm "http://www.w3.org/TR/2012/WD-prov-dm-20120703/prov-dm.html#term-specialization"^^xsd:anyURI ;

408 prov:n "http://www.w3.org/TR/2012/WD-prov-dm-20120703/prov-n.html#expression-specialization"^^xsd:anyURI

;

409 prov:constraints "http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#prov-dm-constraints-fig"^^xsd

:anyURI ;

410 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-specialization"^^xsd:anyURI ;

411 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-specialization"^^xsd:anyURI ;

412 prov:component "alternate" ;

413 prov:category "expanded" ;

414 prov:inverse "generalizationOf" ;

415 prov:definition "An entity that is a specialization of another shares all aspects of the latter, and
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additionally presents more specific aspects of the same thing as the latter. In particular, the

lifetime of the entity being specialized contains that of any specialization. Examples of aspects

include a time period, an abstraction, and a context associated with the entity."@en ;

416 rdfs:subPropertyOf owl:topObjectProperty ;

417 rdfs:isDefinedBy prov: ;

418 rdfs:domain prov:Entity ;

419 rdfs:range prov:Entity ;

420 rdfs:seeAlso prov:alternateOf ;

421 rdfs:subPropertyOf prov:alternateOf ;

422 rdfs:isDefinedBy ns:prov-o# .

423

424 ### http://www.w3.org/ns/prov#used

425 prov:used rdf:type owl:ObjectProperty ;

426 rdfs:label "used" ;

427 prov:inverse "wasUsedBy" ;

428 rdfs:comment "A prov:Entity that was used by this prov:Activity. For example, :baking prov:used :spoon, :egg, :

oven ."@en ;

429 prov:category "starting-point" ;

430 prov:component "entities-activities" ;

431 rdfs:domain prov:Activity ;

432 rdfs:range prov:Entity ;

433 prov:qualifiedForm prov:Usage ,

434 prov:qualifiedUsage ;

435 rdfs:subPropertyOf prov:wasInfluencedBy ;

436 rdfs:isDefinedBy ns:prov-o# ;

437 owl:propertyChainAxiom ( prov:qualifiedUsage

438 prov:entity

439 ) .

440

441 ### http://www.w3.org/ns/prov#wasAssociatedWith

442 prov:wasAssociatedWith rdf:type owl:ObjectProperty ;

443 rdfs:label "wasAssociatedWith" ;

444 prov:component "agents-responsibility" ;

445 prov:inverse "wasAssociateFor" ;

446 rdfs:comment "An prov:Agent that had some (unspecified) responsibility for the occurrence of this prov:

Activity."@en ;

447 prov:category "starting-point" ;

448 rdfs:domain prov:Activity ;

449 rdfs:range prov:Agent ;

450 prov:qualifiedForm prov:Association ,

451 prov:qualifiedAssociation ;

452 rdfs:subPropertyOf prov:wasInfluencedBy ;

453 rdfs:isDefinedBy ns:prov-o# ;

454 owl:propertyChainAxiom ( prov:qualifiedAssociation

455 prov:agent

456 ) .

457

458 ### http://www.w3.org/ns/prov#wasDerivedFrom

459 prov:wasDerivedFrom rdf:type owl:ObjectProperty ;

460 rdfs:label "wasDerivedFrom" ;

461 prov:inverse "hadDerivation" ;

462 prov:definition "A derivation is a transformation of an entity into another, an update of an entity

resulting in a new one, or the construction of a new entity based on a pre-existing entity."@en ;

463 prov:category "starting-point" ;

464 rdfs:comment "The more specific subproperties of prov:wasDerivedFrom (i.e., prov:wasQuotedFrom, prov:
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wasRevisionOf, prov:hadPrimarySource) should be used when applicable."@en ;

465 prov:component "derivations" ;

466 prov:qualifiedForm prov:Derivation ;

467 rdfs:range prov:Entity ;

468 rdfs:domain prov:Entity ;

469 prov:qualifiedForm prov:qualifiedDerivation ;

470 rdfs:subPropertyOf prov:wasInfluencedBy ;

471 rdfs:isDefinedBy ns:prov-o# ;

472 owl:propertyChainAxiom ( prov:qualifiedDerivation

473 prov:entity

474 ) .

475 [ rdf:type owl:Axiom ;

476 rdfs:comment "Derivation is a particular case of trace (see http://www.w3.org/TR/prov-dm/#term-trace), since it links an

entity to another entity that contributed to its existence." ;

477 owl:annotatedProperty rdfs:subPropertyOf ;

478 owl:annotatedSource prov:wasDerivedFrom ;

479 owl:annotatedTarget prov:wasInfluencedBy

480 ] .

481

482 ### http://www.w3.org/ns/prov#wasGeneratedBy

483 prov:wasGeneratedBy rdf:type owl:ObjectProperty ;

484 rdfs:label "wasGeneratedBy" ;

485 prov:inverse "generated" ;

486 prov:category "starting-point" ;

487 prov:component "entities-activities" ;

488 rdfs:isDefinedBy prov: ;

489 rdfs:range prov:Activity ;

490 rdfs:domain prov:Entity ;

491 prov:qualifiedForm prov:Generation ;

492 owl:inverseOf prov:generated ;

493 prov:qualifiedForm prov:qualifiedGeneration ;

494 rdfs:subPropertyOf prov:wasInfluencedBy ;

495 rdfs:isDefinedBy ns:prov-o# ;

496 owl:propertyChainAxiom ( prov:qualifiedGeneration

497 prov:activity

498 ) .

499

500 ### http://www.w3.org/ns/prov#wasInfluencedBy

501 prov:wasInfluencedBy rdf:type owl:ObjectProperty ;

502 rdfs:label "wasInfluencedBy" ;

503 rdfs:comment "Because prov:wasInfluencedBy is a broad relation, its more specific subproperties (e.g.

prov:wasInformedBy, prov:actedOnBehalfOf, prov:wasEndedBy, etc.) should be used when applicable."@

en ;

504 prov:editorialNote """The sub-properties of prov:wasInfluencedBy can be elaborated in more detail using

the Qualification Pattern. For example, the binary relation :baking prov:used :spoon can be

qualified by asserting :baking prov:qualifiedUsage [ a prov:Usage; prov:entity :spoon; prov:

atLocation :kitchen ] .

505 Subproperties of prov:wasInfluencedBy may also be asserted directly without being qualified.

506 prov:wasInfluencedBy should not be used without also using one of its subproperties.

507 """@en ;

508 rdfs:comment "This property has multiple RDFS domains to suit multiple OWL Profiles. See <a href=\"#owl-

profile\">PROV-O OWL Profile</a>." ;

509 prov:category "qualified" ;

510 prov:inverse "influenced" ;

511 prov:component "agents-responsibility" ;
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512 rdfs:isDefinedBy prov: ;

513 prov:qualifiedForm prov:Influence ;

514 prov:sharesDefinitionWith prov:Influence ;

515 owl:inverseOf prov:influenced ;

516 prov:qualifiedForm prov:qualifiedInfluence ;

517 rdfs:isDefinedBy ns:prov-o# ;

518 rdfs:domain [ rdf:type owl:Class ;

519 owl:unionOf ( prov:Activity

520 prov:Agent

521 prov:Entity

522 )

523 ] ;

524 rdfs:range [ rdf:type owl:Class ;

525 owl:unionOf ( prov:Activity

526 prov:Agent

527 prov:Entity

528 )

529 ] .

530 [ rdf:type owl:Axiom ;

531 prov:definition "influencer: an identifier (o1) for an ancestor entity, activity, or agent that the former depends on;" ;

532 owl:annotatedProperty rdfs:range ;

533 owl:annotatedSource prov:wasInfluencedBy ;

534 owl:annotatedTarget [ rdf:type owl:Class ;

535 owl:unionOf ( prov:Activity

536 prov:Agent

537 prov:Entity

538 )

539 ]

540 ] .

541 [ rdf:type owl:Axiom ;

542 prov:definition "influencee: an identifier (o2) for an entity, activity, or agent; " ;

543 owl:annotatedProperty rdfs:domain ;

544 owl:annotatedSource prov:wasInfluencedBy ;

545 owl:annotatedTarget [ rdf:type owl:Class ;

546 owl:unionOf ( prov:Activity

547 prov:Agent

548 prov:Entity

549 )

550 ]

551 ] .

552

553 ##############################

554 # Classes

555 ##############################

556 ### http://ns.inria.fr/ratio4ta/v3#Data

557 :Data rdf:type owl:Class ;

558 rdfs:label "Data"@en ;

559 rdfs:subClassOf rdfg:Graph ,

560 prov:Entity ;

561 prov:definition "A data is a set of RDF statements."@en .

562

563 ### http://ns.inria.fr/ratio4ta/v3#DataDerivation

564 :DataDerivation rdf:type owl:Class ;

565 rdfs:label "DataDerivation"@en ;

566 rdfs:subClassOf prov:Association ,
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567 prov:Derivation ;

568 prov:definition "A data derivation represents a derivation that is performed as part of a reasoning process."

@en .

569

570 ### http://ns.inria.fr/ratio4ta/v3#ExplanationBundle

571 :ExplanationBundle rdf:type owl:Class ;

572 rdfs:label "ExplanationBundle"@en ;

573 rdfs:subClassOf rdfg:Graph ,

574 prov:Bundle ;

575 prov:definition "An explanation bundle is a set of RDF statements which explain how a data was derived."@

en .

576

577 ### http://ns.inria.fr/ratio4ta/v3#InputData

578 :InputData rdf:type owl:Class ;

579 rdfs:label "InputData"@en ;

580 rdfs:subClassOf :Data ;

581 prov:definition "An input data represents an input data (a set of RDF statements) used by a reasoning process."@en

.

582

583 ### http://ns.inria.fr/ratio4ta/v3#OutputData

584 :OutputData rdf:type owl:Class ;

585 rdfs:label "OutputData"@en ;

586 rdfs:subClassOf :Data ;

587 prov:definition "An output data represents an output data by a reasoning process."@en .

588

589 ### http://ns.inria.fr/ratio4ta/v3#ReasoningProcess

590 :ReasoningProcess rdf:type owl:Class ;

591 rdfs:label "ReasoningProcess"@en ;

592 rdfs:subClassOf prov:Activity ;

593 prov:definition "A reasoning process represents a reasoning process of a software application. A reasoning

process uses input data and computes results. Each of these computed results includes output data.

Data derivations may be performed as part of a reasoning process which may lead to producing new data

that were not explicitly given in the input data."@en .

594

595 ### http://ns.inria.fr/ratio4ta/v3#Result

596 :Result rdf:type owl:Class ;

597 rdfs:label "Result"@en ;

598 rdfs:subClassOf prov:Association ,

599 prov:Generation ;

600 prov:definition "A result represents a result computed by a reasoning proces. "@en .

601

602 ### http://ns.inria.fr/ratio4ta/v3#Rule

603 :Rule rdf:type owl:Class ;

604 rdfs:label "Rule"@en ;

605 rdfs:subClassOf prov:Plan ;

606 prov:definition "A rule represents a rule that a reasoning process uses for a data derivation."@en .

607

608 ### http://ns.inria.fr/ratio4ta/v3#SoftwareApplication

609 :SoftwareApplication rdf:type owl:Class ;

610 rdfs:label "SoftwareApplication"@en ;

611 rdfs:subClassOf prov:SoftwareAgent ;

612 prov:definition "A software application consumes and produces data."@en .

613

614 ### http://www.w3.org/2004/03/trix/rdfg-1/Graph

615 rdfg:Graph rdf:type owl:Class ;
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616 rdfs:label "Graph" ;

617 rdfs:comment "An RDF graph (with intensional semantics)." .

618

619 ### http://www.w3.org/ns/prov#Activity

620 prov:Activity rdf:type owl:Class ;

621 rdfs:label "Activity" ;

622 owl:disjointWith prov:Entity ;

623 prov:constraints "http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#prov-dm-constraints-fig"^^xsd:anyURI

;

624 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Activity"^^xsd:anyURI ;

625 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-Activity"^^xsd:anyURI ;

626 prov:component "entities-activities" ;

627 prov:category "starting-point" ;

628 prov:definition "An activity is something that occurs over a period of time and acts upon or with entities; it

may include consuming, processing, transforming, modifying, relocating, using, or generating entities." ;

629 rdfs:isDefinedBy ns:prov-o# .

630

631 ### http://www.w3.org/ns/prov#ActivityInfluence

632 prov:ActivityInfluence rdf:type owl:Class ;

633 rdfs:label "ActivityInfluence" ;

634 rdfs:subClassOf prov:Influence ,

635 [ rdf:type owl:Restriction ;

636 owl:onProperty prov:hadActivity ;

637 owl:maxCardinality "0"^^xsd:nonNegativeInteger

638 ] ;

639 owl:disjointWith prov:EntityInfluence ;

640 prov:editorsDefinition "ActivitiyInfluence is the capacity of an activity to have an effect on the

character, development, or behavior of another by means of generation, invalidation,

communication, or other."@en ;

641 rdfs:comment "ActivityInfluence provides additional descriptions of an Activity’s binary influence upon

any other kind of resource. Instances of ActivityInfluence use the prov:activity property to

cite the influencing Activity."@en ,

642 "It is not recommended that the type ActivityInfluence be asserted without also asserting

one of its more specific subclasses."@en ;

643 prov:category "qualified" ;

644 rdfs:seeAlso prov:activity ;

645 rdfs:isDefinedBy ns:prov-o# .

646

647 ### http://www.w3.org/ns/prov#Agent

648 prov:Agent rdf:type owl:Class ;

649 rdfs:label "Agent" ;

650 owl:disjointWith prov:InstantaneousEvent ;

651 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-agent"^^xsd:anyURI ;

652 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-Agent"^^xsd:anyURI ;

653 prov:definition "An agent is something that bears some form of responsibility for an activity taking place, for

the existence of an entity, or for another agent’s activity. "@en ;

654 prov:category "starting-point" ;

655 prov:component "agents-responsibility" ;

656 rdfs:isDefinedBy ns:prov-o# .

657

658 ### http://www.w3.org/ns/prov#AgentInfluence

659 prov:AgentInfluence rdf:type owl:Class ;

660 rdfs:label "AgentInfluence" ;

661 rdfs:subClassOf prov:Influence ;

662 prov:editorsDefinition "AgentInfluence is the capacity of an agent to have an effect on the character,
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development, or behavior of another by means of attribution, association, delegation, or other."@en

;

663 rdfs:comment "AgentInfluence provides additional descriptions of an Agent’s binary influence upon any

other kind of resource. Instances of AgentInfluence use the prov:agent property to cite the

influencing Agent."@en ;

664 prov:category "qualified" ;

665 rdfs:comment "It is not recommended that the type AgentInfluence be asserted without also asserting one

of its more specific subclasses."@en ;

666 rdfs:seeAlso prov:agent ;

667 rdfs:isDefinedBy ns:prov-o# .

668

669 ### http://www.w3.org/ns/prov#Association

670 prov:Association rdf:type owl:Class ;

671 rdfs:label "Association" ;

672 rdfs:subClassOf prov:AgentInfluence ;

673 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Association"^^xsd:anyURI ;

674 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-Association"^^xsd:anyURI ;

675 prov:component "agents-responsibility" ;

676 rdfs:comment "An instance of prov:Association provides additional descriptions about the binary prov:

wasAssociatedWith relation from an prov:Activity to some prov:Agent that had some responsiblity for it

. For example, :baking prov:wasAssociatedWith :baker; prov:qualifiedAssociation [ a prov:Association;

prov:agent :baker; :foo :bar ]."@en ;

677 prov:category "qualified" ;

678 prov:definition "An activity association is an assignment of responsibility to an agent for an activity,

indicating that the agent had a role in the activity. It further allows for a plan to be specified,

which is the plan intended by the agent to achieve some goals in the context of this activity."@en ;

679 prov:unqualifiedForm prov:wasAssociatedWith ;

680 rdfs:isDefinedBy ns:prov-o# .

681

682 ### http://www.w3.org/ns/prov#Bundle

683 prov:Bundle rdf:type owl:Class ;

684 rdfs:label "Bundle" ;

685 rdfs:subClassOf prov:Entity ;

686 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-bundle-entity"^^xsd:anyURI ;

687 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-bundle-declaration"^^xsd:anyURI ;

688 prov:category "expanded" ;

689 prov:definition "A bundle is a named set of provenance descriptions, and is itself an Entity, so allowing

provenance of provenance to be expressed."@en ;

690 rdfs:comment "Note that there are kinds of bundles (e.g. handwritten letters, audio recordings, etc.) that are

not expressed in PROV-O, but can be still be described by PROV-O."@en ;

691 rdfs:isDefinedBy ns:prov-o# .

692

693 ### http://www.w3.org/ns/prov#Delegation

694 prov:Delegation rdf:type owl:Class ;

695 rdfs:label "Delegation" ;

696 rdfs:subClassOf prov:AgentInfluence ;

697 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-delegation"^^xsd:anyURI ;

698 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-delegation"^^xsd:anyURI ;

699 prov:category "qualified" ;

700 rdfs:comment "An instance of prov:Delegation provides additional descriptions about the binary prov:

actedOnBehalfOf relation from a performing prov:Agent to some prov:Agent for whom it was performed. For

example, :mixing prov:wasAssociatedWith :toddler . :toddler prov:actedOnBehalfOf :mother; prov:

qualifiedDelegation [ a prov:Delegation; prov:entity :mother; :foo :bar ]."@en ;

701 prov:definition """Delegation is the assignment of authority and responsibility to an agent (by itself or by

another agent) to carry out a specific activity as a delegate or representative, while the agent it
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acts on behalf of retains some responsibility for the outcome of the delegated work.

702 For example, a student acted on behalf of his supervisor, who acted on behalf of the department chair, who acted on behalf

of the university; all those agents are responsible in some way for the activity that took place but we do not say

explicitly who bears responsibility and to what degree."""@en ;

703 prov:component "agents-responsibility" ;

704 prov:unqualifiedForm prov:actedOnBehalfOf ;

705 rdfs:isDefinedBy ns:prov-o# .

706

707 ### http://www.w3.org/ns/prov#Derivation

708 prov:Derivation rdf:type owl:Class ;

709 rdfs:label "Derivation" ;

710 rdfs:subClassOf prov:EntityInfluence ;

711 prov:constraints "http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#prov-dm-constraints-fig"^^xsd:

anyURI ;

712 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Derivation"^^xsd:anyURI ;

713 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#Derivation-Relation"^^xsd:anyURI ;

714 prov:definition "A derivation is a transformation of an entity into another, an update of an entity resulting

in a new one, or the construction of a new entity based on a pre-existing entity."@en ;

715 prov:component "derivations" ;

716 rdfs:comment "An instance of prov:Derivation provides additional descriptions about the binary prov:

wasDerivedFrom relation from some derived prov:Entity to another prov:Entity from which it was derived.

For example, :chewed_bubble_gum prov:wasDerivedFrom :unwrapped_bubble_gum; prov:qualifiedDerivation [

a prov:Derivation; prov:entity :unwrapped_bubble_gum; :foo :bar ]."@en ,

717 "The more specific forms of prov:Derivation (i.e., prov:Revision, prov:Quotation, prov:

PrimarySource) should be asserted if they apply."@en ;

718 prov:category "qualified" ;

719 prov:unqualifiedForm prov:wasDerivedFrom ;

720 rdfs:isDefinedBy ns:prov-o# .

721

722 ### http://www.w3.org/ns/prov#End

723 prov:End rdf:type owl:Class ;

724 rdfs:label "End" ;

725 rdfs:subClassOf prov:EntityInfluence ,

726 prov:InstantaneousEvent ;

727 prov:constraints "http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#prov-dm-constraints-fig"^^xsd:anyURI ;

728 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-End"^^xsd:anyURI ;

729 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-End"^^xsd:anyURI ;

730 rdfs:comment "An instance of prov:End provides additional descriptions about the binary prov:wasEndedBy relation

from some ended prov:Activity to an prov:Entity that ended it. For example, :ball_game prov:wasEndedBy :

buzzer; prov:qualifiedEnd [ a prov:End; prov:entity :buzzer; :foo :bar; prov:atTime ’2012-03-09T08

:05:08-05:00’^^xsd:dateTime ]."@en ;

731 prov:category "qualified" ;

732 prov:definition "End is when an activity is deemed to have been ended by an entity, known as trigger. The activity

no longer exists after its end. Any usage, generation, or invalidation involving an activity precedes the

activity’s end. An end may refer to a trigger entity that terminated the activity, or to an activity, known

as ender that generated the trigger."@en ;

733 prov:component "entities-activities" ;

734 prov:unqualifiedForm prov:wasEndedBy ;

735 rdfs:isDefinedBy ns:prov-o# .

736

737 ### http://www.w3.org/ns/prov#Entity

738 prov:Entity rdf:type owl:Class ;

739 rdfs:label "Entity" ;

740 owl:disjointWith prov:InstantaneousEvent ;

741 prov:constraints "http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#prov-dm-constraints-fig"^^xsd:anyURI ;
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742 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-entity"^^xsd:anyURI ;

743 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-Entity"^^xsd:anyURI ;

744 prov:component "entities-activities" ;

745 prov:definition "An entity is a physical, digital, conceptual, or other kind of thing with some fixed aspects;

entities may be real or imaginary. "@en ;

746 prov:category "starting-point" ;

747 rdfs:isDefinedBy ns:prov-o# .

748

749 ### http://www.w3.org/ns/prov#EntityInfluence

750 prov:EntityInfluence rdf:type owl:Class ;

751 rdfs:label "EntityInfluence" ;

752 rdfs:subClassOf prov:Influence ;

753 prov:editorsDefinition "EntityInfluence is the capacity of an entity to have an effect on the character,

development, or behavior of another by means of usage, start, end, derivation, or other. "@en ;

754 rdfs:comment "EntityInfluence provides additional descriptions of an Entity’s binary influence upon any

other kind of resource. Instances of EntityInfluence use the prov:entity property to cite the

influencing Entity."@en ,

755 "It is not recommended that the type EntityInfluence be asserted without also asserting one

of its more specific subclasses."@en ;

756 prov:category "qualified" ;

757 rdfs:seeAlso prov:entity ;

758 rdfs:isDefinedBy ns:prov-o# .

759

760 ### http://www.w3.org/ns/prov#Generation

761 prov:Generation rdf:type owl:Class ;

762 rdfs:label "Generation" ;

763 rdfs:subClassOf prov:ActivityInfluence ,

764 prov:InstantaneousEvent ;

765 prov:constraints "http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#prov-dm-constraints-fig"^^xsd:

anyURI ;

766 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Generation"^^xsd:anyURI ;

767 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-Generation"^^xsd:anyURI ;

768 rdfs:comment "An instance of prov:Generation provides additional descriptions about the binary prov:

wasGeneratedBy relation from a generated prov:Entity to the prov:Activity that generated it. For

example, :cake prov:wasGeneratedBy :baking; prov:qualifiedGeneration [ a prov:Generation; prov:activity

:baking; :foo :bar ]."@en ;

769 prov:category "qualified" ;

770 prov:component "entities-activities" ;

771 prov:definition "Generation is the completion of production of a new entity by an activity. This entity did

not exist before generation and becomes available for usage after this generation."@en ;

772 prov:unqualifiedForm prov:wasGeneratedBy ;

773 rdfs:isDefinedBy ns:prov-o# .

774

775 ### http://www.w3.org/ns/prov#Influence

776 prov:Influence rdf:type owl:Class ;

777 rdfs:label "Influence" ;

778 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-influence"^^xsd:anyURI ;

779 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-influence"^^xsd:anyURI ;

780 prov:component "derivations" ;

781 rdfs:comment "An instance of prov:Influence provides additional descriptions about the binary prov:

wasInfluencedBy relation from some influenced Activity, Entity, or Agent to the influencing Activity,

Entity, or Agent. For example, :stomach_ache prov:wasInfluencedBy :spoon; prov:qualifiedInfluence [ a

prov:Influence; prov:entity :spoon; :foo :bar ] . Because prov:Influence is a broad relation, the more

specific relations (Communication, Delegation, End, etc.) should be used when applicable."@en ,

782 "Because prov:Influence is a broad relation, its most specific subclasses (e.g. prov:Communication
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, prov:Delegation, prov:End, prov:Revision, etc.) should be used when applicable."@en ;

783 prov:category "qualified" ;

784 prov:definition "Influence is the capacity of an entity, activity, or agent to have an effect on the character

, development, or behavior of another by means of usage, start, end, generation, invalidation,

communication, derivation, attribution, association, or delegation."@en ;

785 prov:unqualifiedForm prov:wasInfluencedBy ;

786 rdfs:isDefinedBy ns:prov-o# .

787

788 ### http://www.w3.org/ns/prov#InstantaneousEvent

789 prov:InstantaneousEvent rdf:type owl:Class ;

790 rdfs:label "InstantaneousEvent" ;

791 prov:constraints "http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#dfn-event"^^xsd:anyURI ;

792 prov:component "entities-activities" ;

793 rdfs:comment "An instantaneous event, or event for short, happens in the world and marks a change in

the world, in its activities and in its entities. The term ’event’ is commonly used in process

algebra with a similar meaning. Events represent communications or interactions; they are

assumed to be atomic and instantaneous."@en ;

794 prov:definition "The PROV data model is implicitly based on a notion of instantaneous events (or just

events), that mark transitions in the world. Events include generation, usage, or invalidation

of entities, as well as starting or ending of activities. This notion of event is not first-

class in the data model, but it is useful for explaining its other concepts and its semantics."@

en ;

795 prov:category "qualified" ;

796 rdfs:isDefinedBy ns:prov-o# .

797

798 ### http://www.w3.org/ns/prov#Invalidation

799 prov:Invalidation rdf:type owl:Class ;

800 rdfs:label "Invalidation" ;

801 rdfs:subClassOf prov:ActivityInfluence ,

802 prov:InstantaneousEvent ;

803 prov:constraints "http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#prov-dm-constraints-fig"^^xsd:

anyURI ;

804 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Invalidation"^^xsd:anyURI ;

805 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-Invalidation"^^xsd:anyURI ;

806 prov:component "entities-activities" ;

807 prov:definition "Invalidation is the start of the destruction, cessation, or expiry of an existing entity

by an activity. The entity is no longer available for use (or further invalidation) after

invalidation. Any generation or usage of an entity precedes its invalidation." ;

808 prov:category "qualified" ;

809 rdfs:comment "An instance of prov:Invalidation provides additional descriptions about the binary prov:

wasInvalidatedBy relation from an invalidated prov:Entity to the prov:Activity that invalidated it.

For example, :uncracked_egg prov:wasInvalidatedBy :baking; prov:qualifiedInvalidation [ a prov:

Invalidation; prov:activity :baking; :foo :bar ]."@en ;

810 prov:unqualifiedForm prov:wasInvalidatedBy ;

811 rdfs:isDefinedBy ns:prov-o# .

812

813 ### http://www.w3.org/ns/prov#Plan

814 prov:Plan rdf:type owl:Class ;

815 rdfs:label "Plan" ;

816 rdfs:subClassOf prov:Entity ;

817 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Association"^^xsd:anyURI ;

818 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-Association"^^xsd:anyURI ;

819 prov:definition "A plan is an entity that represents a set of actions or steps intended by one or more agents to

achieve some goals." ;

820 prov:category "expanded" ;
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821 rdfs:comment "There exist no prescriptive requirement on the nature of plans, their representation, the actions or

steps they consist of, or their intended goals. Since plans may evolve over time, it may become necessary

to track their provenance, so plans themselves are entities. Representing the plan explicitly in the

provenance can be useful for various tasks: for example, to validate the execution as represented in the

provenance record, to manage expectation failures, or to provide explanations."@en ;

822 prov:category "qualified" ;

823 prov:component "agents-responsibility" ;

824 rdfs:isDefinedBy ns:prov-o# .

825

826 ### http://www.w3.org/ns/prov#SoftwareAgent

827 prov:SoftwareAgent rdf:type owl:Class ;

828 rdfs:label "SoftwareAgent" ;

829 rdfs:subClassOf owl:Thing ,

830 prov:Agent ;

831 prov:dm "http://www.w3.org/TR/2012/WD-prov-dm-20120703/prov-dm.html#term-agent"^^xsd:anyURI ;

832 prov:n "http://www.w3.org/TR/2012/WD-prov-dm-20120703/prov-n.html#expression-types"^^xsd:anyURI ;

833 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-agent"^^xsd:anyURI ;

834 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-types"^^xsd:anyURI ;

835 prov:component "agents-responsibility" ;

836 prov:definition "A software agent is running software."@en ;

837 prov:category "expanded" ;

838 rdfs:isDefinedBy prov: ,

839 ns:prov-o# .

840

841 ### http://www.w3.org/ns/prov#Start

842 prov:Start rdf:type owl:Class ;

843 rdfs:label "Start" ;

844 rdfs:subClassOf prov:EntityInfluence ,

845 prov:InstantaneousEvent ;

846 prov:constraints "http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#prov-dm-constraints-fig"^^xsd:anyURI ;

847 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Start"^^xsd:anyURI ;

848 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-Start"^^xsd:anyURI ;

849 prov:component "entities-activities" ;

850 prov:category "qualified" ;

851 rdfs:comment "An instance of prov:Start provides additional descriptions about the binary prov:wasStartedBy

relation from some started prov:Activity to an prov:Entity that started it. For example, :foot_race prov:

wasStartedBy :bang; prov:qualifiedStart [ a prov:Start; prov:entity :bang; :foo :bar; prov:atTime

’2012-03-09T08:05:08-05:00’^^xsd:dateTime ] ."@en ;

852 prov:definition "Start is when an activity is deemed to have been started by an entity, known as trigger. The

activity did not exist before its start. Any usage, generation, or invalidation involving an activity

follows the activity’s start. A start may refer to a trigger entity that set off the activity, or to an

activity, known as starter, that generated the trigger."@en ;

853 prov:unqualifiedForm prov:wasStartedBy ;

854 rdfs:isDefinedBy ns:prov-o# .

855

856 ### http://www.w3.org/ns/prov#Usage

857 prov:Usage rdf:type owl:Class ;

858 rdfs:label "Usage" ;

859 rdfs:subClassOf prov:EntityInfluence ,

860 prov:InstantaneousEvent ;

861 prov:constraints "http://www.w3.org/TR/2013/REC-prov-constraints-20130430/#prov-dm-constraints-fig"^^xsd:anyURI ;

862 prov:dm "http://www.w3.org/TR/2013/REC-prov-dm-20130430/#term-Usage"^^xsd:anyURI ;

863 prov:n "http://www.w3.org/TR/2013/REC-prov-n-20130430/#expression-Usage"^^xsd:anyURI ;

864 rdfs:comment "An instance of prov:Usage provides additional descriptions about the binary prov:used relation from

some prov:Activity to an prov:Entity that it used. For example, :keynote prov:used :podium; prov:
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qualifiedUsage [ a prov:Usage; prov:entity :podium; :foo :bar ]."@en ;

865 prov:definition "Usage is the beginning of utilizing an entity by an activity. Before usage, the activity had not

begun to utilize this entity and could not have been affected by the entity."@en ;

866 prov:category "qualified" ;

867 prov:component "entities-activities" ;

868 prov:unqualifiedForm prov:used ;

869 rdfs:isDefinedBy ns:prov-o# .



Appendix B

Introduction, Résumé et

Conclusion en Français

B.1 Introduction

Le Web évolue, partant d’un Web de documents pour aller vers un web de don-

nées. Grace à l’initiative Linking Open Data du W3C, dans les dernières années,

nous avons assisté à une forte croissance de la publication de données liées. Ceci

est le résultat d’efforts communautaires, d’organismes gouvernementaux, de sites

de réseaux sociaux, de communautés scientifiques, etc. Les fournisseurs de don-

nées viennent donc de différents domaines et publient leurs données de façon in-

terconnectée à l’aide du modèle de données RDF et de points d’accès SPARQL

pour permettre l’interrogation de leurs données, ce qui permet de créer un graphe

mondial de données. Cela présente un énorme potentiel pour l’intégration de don-

nées disparates et pour soutenir une nouvelle génération d’applications intelligentes.

Mais l’intégration des données liées à l’aide d’interrogations distantes peut induire

des charges de calcul importantes avec des requêtes demandant énormément de

ressources. La gestion de ces charges de calcul est essentielle pour l’intégration effi-

cace des données liées. À cette fin, la compréhension du comportement de la requête

avant même son exécution peut aider des utilisateurs tels que les administrateurs

de la base de connaissances ou des développeurs d’applications dans leurs tâches

de gestion de la charge de travail, dans la configuration, l’organisation, l’inspection

et l’optimisation. Dans un second temps, dans l’environnement ouvert du Web où
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des données liées hétérogènes sont échangées, intégrées, et matérialisées dans des

référentiels distribués accessibles à travers des points d’accès SPARQL, comprendre

le résultat de la requête est essentiel pour en juger la valididté. Les explications

des résultats d’une requête permettent cette compréhension en fournissant des in-

formations telles que les triplets ayant contribué aux résultats, comment ces triplets

ont été combinés et qui a fourni ces triplets. En outre, les applications peuvent

consommer des données liées, dont certaines peuvent être obtenues en interrogeant

d’autres applications et par raisonnement sur les données consommées pour produire

des résultats qui peuvent eux-mêmes devenir de nouvelles données liées. Dans ce

contexte, il est essentiel d’expliquer non seulement les raisonnements faits par les

applications, mais aussi tout le cycle de vie des données consommées, pour aider les

utilisateurs à comprendre comment les résultats et les nouvelles données liées ont

été obtenus. Ce genre d’explications peut devenir très important lorsque les appli-

cations consomment une grande quantité de données ou les données consommées

proviennent d’une longue chaîne de dérivations. Dans ce contexte, fournir des ex-

plications avec des détails sur toutes les dérivations peut submerger les utilisateurs

avec trop d’informations. Ils voudront peut-être avoir la capacité de se concentrer

sur des parties spécifiques d’une explication, filtrer les informations d’une explica-

tion, ou obtenir des explications courtes avec des informations importantes. Dans la

section suivante, nous discutons chacun de ces problèmes identifiés en introduction

et identifions les questions de recherche correspondantes.

B.1.1 Questions de Recherche

La question de recherche globale que nous abordons dans cette thèse est:

RQ. Comment aider les utilisateurs à comprendre le comportement d’une requête

et les résultats obtenus dans le contexte de la consommation de données liées?

Nous décomposons cette question en plusieurs sous-questions. Tout d’abord,

nous abordons le problème de la compréhension du comportement de la requête
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dans le contexte des données liées. Pour aider la compréhension du comportement

d’une requête, nous visons à fournir des prévisions de performance aux utilisateurs.

Les utilisateurs tels que les administrateurs de la base de connaissances peuvent

utiliser ces prévisions pour permettre une gestion efficace de la charge de travail et

pour assurer une qualité de service (QoS) spécifique. La question de la recherche

dans ce contexte est la suivante:

RQ1. Comment prédire des indicateurs de performance des requêtes sur des points

d’accès SPARQL qui fournissent des services d’interrogation des données liées?

Deuxièmement, nous abordons le problème de la fourniture des explications pour

aider les utilisateurs à comprendre les résultats obtenus après l’exécution. Cette

meilleure compréhension peut conduire à une meilleure confiance dans le système

qui produit le résultat. Il existe deux cas pour la compréhension des résultats dans

le contexte de la consommation de données liées: les résultats de la résolution d’une

requête SPARQL et les résultats produits par les applications.

Pour les résultats des requêtes SPARQL, le principal défi est de fournir des

explications pour des requêtes SPARQL alors que les systèmes sont administrés et

contrôlés par des tiers. Par conséquent, la réingénierie du modèle sous-jacent aux

données, du langage de requête, ou du processeur de requêtes afin de les amener à

générer des métadonnées d’explications au cours du traitement de la requête ne sont

pas possibles dans ce scénario. En outre, nous étudions l’impact des explications

des résultats dans le contexte de la consommation de données liés. Les questions de

recherche concernant ces aspects sont les suivantes:

RQ2. Comment fournir des explications pour les résultats des requêtes SPARQL

sur les ponts d’accès SPARQL qui fournissent des services d’interrogation des

données liées?

RQ3. Quels sont les impacts de la génération des explications sur le calcul des

résultats à une requête?
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A partir des résultats générés par les applications, le principal défi est de fournir

des installations permettant la publication et l’échange des explications compte tenu

de l’architecture distribuée et décentralisée duWeb. Les applications peuvent utiliser

des données qui sont distribuées à travers le Web. Les données consommées dans ce

cadre peuvent être aussi des données dérivées. Nous étudions comment fournir des

explications dans un tel scénario - qui explique non seulement le raisonnement par

les applications, mais aussi les dérivations de données consommées. De plus, fournir

des explications détaillées peut submerger les utilisateurs avec trop d’informations -

particulièrement les utilisateurs non-experts. Dans ce contexte, le défi est de résumer

les explications à fournir et générer des explications courtes. Compte tenu de ces

problèmes, les questions de recherche sont les suivants:

RQ4. Comment fournir des explications pour les résultats produits par les appli-

cations qui consomment des données liées?

RQ5. Comment résumer les explications pour les résultats produits par les appli-

cations qui consomment des données liées?

B.2 Résumé de la Thèse

Cette thèse contient 8 chapitres:

1. Le chapitre 1 présente le contexte de la thèse, les questions de recherche, et

donne un aperçu des principales contributions de cette thèse. Les données

liées présentent un énorme potentiel pour l’intégration de quantités massives

de données disparates pour soutenir une nouvelle génération d’applications

intelligentes. L’intégration des données liées à l’aide d’interrogations peut in-

duire des charges de calcul importantes. La gestion de ces charges de travail

est essentielle pour l’intégration efficace de ces données. à cette fin, la com-

préhension du comportement des requêtes avant leur exécution peut aider les

utilisateurs tels que les administrateurs de la base de connaissances ou les
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développeurs d’applications à des tâches de gestion de la charge de travail. En

outre, la compréhension des résultats est essentielle pour juger leur validité.

Nous identifions cinq questions de recherche dans le but d’aider les utilisateurs

à comprendre le comportement de la requête et le résultat des dérivations.

2. Le chapitre 2 passe en revue les sujets nécessaires à la connaissance de fond

de cette thèse et fournit un état d’art des domaines connexes. Nous com-

mençons par discuter l’évolution du Web d’un Web de documents vers un

Web de données. Nous présentons ensuite les notions de RDF, SPARQL, et

des données liées sur le Web. Nous discutons les principes des données liées

en mettant l’accent sur l’édition et la consommation des données liées. Nous

passons ensuite en revue la littérature sur l’assistance aux utilisateurs dans

l’interrogation. Le travail examiné vise à aider les utilisateurs à l’interrogation

sur trois aspects: le raffinement d’une requête existante, la construction de la

requête, et la compréhension du comportement de la requête. Das cette thèse

nous nous concentrons uniquement sur la compréhension du comportement

des requêtes. Nous visons à aider les utilisateurs dans le comportement de

recherche de compréhension sur les données liées avant l’exécution de la re-

quête. Nous visons à aider les utilisateurs dans des tâches telles que la gestion

de la charge de travail pour répondre aux exigences de qualité de service spé-

cifiques et ceci en fournissant les prédictions des mesures de performance de

la requête. Le principal défi à cet égard est de prévoir des mesures de perfor-

mance de requête avant exécution de la requête à partir des caractéristiques

SPARQL de cette requête. Les techniques traditionnelles d’estimation des

coûts de requêtes SPARQL sont basées sur les statistiques et sur les don-

nées sous-jacentes. Cependant, les statistiques sur les données sous-jacentes

sont souvent absentes des données liées. Nous étudions donc comment prédire

les indicateurs de performance d’interrogation sans l’aide des statistiques sur

les données sous-jacentes. Nous passons ensuite en revue la littérature sur
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l’assistance aux utilisateurs dans la compréhension des résultats. Nous étu-

dions les contributions aidant les utilisateurs à comprendre les résultats en

fournissant des explications. Ces explications peuvent inclure la manipulation

de l’information étape par étape par les différents algorithmes, les arbres de

preuve de dérivations, les justifications des inférences, et la provenance des

données. Nous étudions comment fournir des explications pour les résultats

des requêtes SPARQL dans le contexte de données liées. Ces explications de

résultats de requêtes sont basées sur le résultat de requêtes de provenance.

Les techniques actuelles sont basées sur des approches d’annotation. Ces ap-

proches nécessitent la refonte du modèle de la base de données, du langage de

requête, et du moteur de traitement d’une requête pour calculer la provenance

lors du traitement de la requête. Cependant, ce type d’approche n’est pas

une option dans le scénario des données liées qui sont hébergées, servies, et

contrôlées par des tiers. Nous étudions comment calculer la provenance d’une

requête SPARQL sans une telle reconception. En outre, très peu a été fait dans

les travaux antérieurs dans la littérature du Web sémantique pour évaluer la

validité des hypothèses telles que des explications permettraient d’améliorer

la compréhension et la confiance des utilisateurs. Nous étudions l’impact des

explications des résultats de la requête sur des utilisateurs de données liées.

La plupart des travaux antérieurs sur les explications pour le Web séman-

tique ne traitent pas d’explications dans un environnement distribué. Nous

étudions comment fournir des explications pour le scénario de données liées.

Dans ce contexte, le défi consiste à fournir des explications pour des données

distribuées produites par les applications de données liées distribués à travers

le Web. Enfin, très peu d’approches existantes font face au problème de la

synthèse des explications. Nous étudions comment fournir des explications

résumées, des explications courtes et la possibilité de filtrer les informations

importantes dans les explications.
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3. Le chapitre 3 présente une approche pour prédire les performances des requêtes

SPARQL dans le but d’aider les utilisateurs (par exemple, les administrateurs

de la base de connaissances ou les développeurs d’applications) dans les tâches

liées à la gestion de la charge de travail. Les administrateurs de la base de con-

naissances peuvent utiliser des indicateurs de performance prévus pour gérer

efficacement les charges de travail telles que la qualité spécifique de service

(QoS) et vérifier que les objectifs sont atteints. Les architectes de systèmes

peuvent utiliser la prédiction des performances de requête pour estimer les con-

figurations de système pour soutenir un type spécifique de la charge de travail.

Les développeurs d’applications peuvent utiliser la prédiction des performances

de requête de choisir parmi les requêtes alternatives en fonction des exigences

de performance. La génération actuelle des méthodes d’estimation des coûts de

requêtes SPARQL est basée sur les statistiques de données et des heuristiques.

Les approches fondées sur les statistiques présentent deux inconvénients ma-

jeurs dans le contexte de données liées. Tout d’abord, les statistiques (par

exemple, histogrammes) sur les données font souvent absents des scénarios

de Linked Data parce qu’ils sont coûteux à produire et à entretenir. Deux-

ièmement, en raison du modèle de données basé sur les graphes et la liberté

de schéma des données RDF l’efficacité des statistiques pour l’estimation du

coût de requêtes n’est pas claire. Les approches basées sur des heuristiques ne

nécessitent généralement pas de connaissances de données statistiques sous-

jacentes. Cependant, elles sont fondées sur des hypothèses fortes telles que

l’examen des requêtes de certaines structures moins chères que d’autres. Ces

hypothèses peuvent tenir pour certains ensembles de données RDF et peuvent

ne pas tenir pour d’autres. Nous adoptons une approche plutôt pragmatique

d’estimation de coût de la requête SPARQL. Nous apprenons les performances

des requêtes SPARQL déjà exécutées. Des travaux récents dans la recherche

de base de données montrent que des indicateurs de performance peuvent
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être prédits avec précision, sans aucune connaissance des statistiques de don-

nées en appliquant des techniques d’apprentissage automatique sur les jour-

naux de requêtes déjà exécutées. De même, nous appliquons des techniques

d’apprentissage automatique pour apprendre des mesures de performances des

requêtes SPARQL à partir de requêtes déjà exécutées. Nous considérons temps

d’exécution comme la mesure de la performance des requêtes. Nous discu-

tons la façon de modéliser les caractéristiques de la requête SPARQL comme

vecteurs de caractéristiques pour les algorithmes d’apprentissage machine, tels

que les k plus proches voisins (k-NN) et les machines à support de vecteurs

(SVM). Nous présentons nos expériences avec les requêtes de données liées

communes et discutons nos résultats. Nous montrons des prédictions en temps

d’exécution des requêtes très précises à l’aide de k-NN et SVM.

4. Le chapitre 4 traite d’aider les utilisateurs à comprendre les résultats de la re-

quête. Nous présentons une approche pour expliquer les résultats de la requête

SPARQL. Au sein de la communauté du Web sémantique, des explications ont

été étudiées pour les applications du Web sémantique et les inférences OWL.

L’explication des résultats de requêtes SPARQL n’a pas été étudiée de façon

indépendante par la communauté. Cependant, il ya eu plusieurs travaux sur

le traçage de l’origine des résultats de la requête - par exemple, la provenance

(pourquoi). Ces tentatives sont basées sur ce qui est connu comme l’approche

d’annotation où le modèle sous-jacent de données, le langage de requête, et

le moteur de traitement des requêtes sont réorganisés pour calculer la prove-

nance au cours du traitement de la requête. Cela n’est pas souhaitable pour

le scénario de Linked Data car la refonte du modèle sous-jacent de données,

le langage de requête, ou le processeur de requêtes est souvent impossible du

côté de l’interrogation. Nous proposons une approche sans annotation pour

générer la provenance (pourquoi) des résultats de la requête SPARQL. Nous

générons l’explication avec une requête suplémentaire extrayant la provenance
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(pourquoi). Nous générons la provenance (pourquoi) des résultats de la requête

SPARQL sans modifier le modèle de données RDF, le langage de requête, ou

le processeur de requêtes. Notre approche est appropriée pour les scénarios où

les clients d’interrogation sont nécessaires pour générer provenance du côté de

l’interrogation et ne sont pas autorisés à modifier le processeur de requêtes ou

le modèle de données sous-jacente - le scénario Linked Data. En outre, les mé-

tadonnées de provenance sont générées uniquement lorsque cela est nécessaire

- communément appelée l’approche paresseux. Par conséquent, par défaut

notre approche n’ajoute pas de temps d’exécution de requêtes supplémentaire

ou de stockage des métadonnées de provenance. Nous montrons la faisabil-

ité de notre approche pour les requêtes de données liées classiques. Enfin,

nous présentons un prototype de processeur de requêtes fédérées générant des

explications.

5. Le chapitre 5 présente une étude sur les utilisateurs pour évaluer l’impact

des explications de résultats de la requête. Une grande partie des travaux

antérieurs sur les explications dans la littérature du Web sémantique a mis

l’accent sur la représentation et la production d’explications. Des explications

sont fournies pour aider les utilisateurs à améliorer leur compréhension du

processus des résultats découlant et la circulation de l’information impliquée

dans le processus. La compréhension améliorée peut conduire à une meilleure

acceptation par les utilisateurs, et donc une meilleure confiance sur les appli-

cations du Web sémantique. Ces valeurs d’explications n’ont cependant pas

été évaluées dans la littérature du Web sémantique. Dans ce chapitre, nous

présentons une étude sur les utilisateurs qui évalue l’impact des résultats de

requêtes d’explications dans le scénario de traitement des requêtes fédérées de

données liées. En particulier, nous étudions si en fournissant des explications

pour les résultats des requêtes fédérées on peut améliorer la compréhension des

utilisateurs du processus de résolution de la requête, et les aider à porter des
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jugements de confiance sur les résultats. Notre étude sur les utilisateurs mon-

tre que nos explications de résultats de requêtes sont utiles pour les utilisateurs

finaux à comprendre les dérivations de résultats et à porter des jugements de

confiance sur les résultats.

6. Le chapitre 6 décrit notre approche pour expliquer les résultats obtenus par les

applications qui consomment des données liées. Les applications peuvent con-

sommer des données liées, dont certaines peuvent être obtenues par d’autres

applications, et par le raisonnement sur les données consommées pour pro-

duire des résultats ou même produire plus de données liées. Dans ce scénario

distribué des données liées, il est essentiel d’expliquer non seulement le raison-

nement par les applications, mais aussi les dérivations des données consom-

mées, pour aider les utilisateurs (tels que les ingénieurs de la connaissance ou

les utilisateurs finaux des applications de données liées) à comprendre comment

les résultats ou de nouvelles données liées ont été tirées. Une grande partie

des travaux antérieurs sur les explications pour le Web sémantique ne traite

pas d’explication dans un environnement distribué. Une approche existante

propose une solution centralisée de registre sur la base de la publication des

métadonnées explication de raisonneurs distribués. Nous proposons une solu-

tion décentralisée à ce problème. Nous publions les métadonnées d’explication

comme des données liées que nous appelons des Explications Liées. Dans

cette approche, nous ne sommes pas contraints de publier les métadonnées

d’explication dans un endroit centralisé comme dans les approches précédentes.

Pour générer des explications, nous joingons aux données les URI dereference-

ables de leur métadonnées de provenance et qui peuvent en suite être traitées

pour être présentées sous une forme compréhensible. Pour publier les explica-

tions des métadonnées connexes, nous présentons un vocabulaire pour décrire

les métadonnées et les lignes directrices pour publier ces métadonnées comme

des données liées. Contrairement aux explications dont nous avons parlé dans
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les chapitres 4 et 5, dans ce chapitre, nous fournissons des explications pour

les résultats produits par les applications de données liées à base de règles

génériques. Cela signifie que nous fournissons des explications pour des ré-

sultats de dérivations montrant les triplets utilisés dans une dérivation. En

outre, si ces triplets utilisés ont également été calculés, nous fournissons des

explications pour eux.

7. Le chapitre 7 présente une approche pour résumer les explications et filtrer les

informations dans une explication basée sur des critères de filtrage spécifiés

par l’utilisateur. Bien que les explications détaillées de toutes les étapes de

dérivation puissent être utiles pour les utilisateurs expérimentés, elles peuvent

aussi submerger les utilisateurs non-experts avec trop d’informations. De plus,

un utilisateur expert comme un ingénieur de la connaissance peut vouloir se

concentrer sur une partie spécifique d’une explication détaillée. Un ingénieur

de la connaissance peut aussi vouloir une courte explication pour avoir un

aperçu du raisonnement. Dans le chapitre 6, nous avons discuté la façon de

fournir des explications complètes et des preuves fondées sur les arbres de

dérivation pour les résultats produits par les applications qui consomment des

données liées. Nous fournissons à partir de là des explications résumées. Nous

définissons cinq mesures de résumé: (i) la saillance des déclarations RDF, (ii)

la similitude des déclarations RDF en ce qui concerne les critères de filtrage

des utilisateurs, (iii) l’abstraction des déclarations RDF par rapport à l’arbre

de preuve, (iv) le poids de la sous-arborescence dans l’arbre de preuve - poids

d’un noeud dans l’arbre de preuve, (v) la cohérence des déclarations RDF

par rapport à l’arbre de preuve. Nous évaluons différentes combinaisons de

ces mesures. L’évaluation montre que notre approche produit classements de

haute qualité pour résumer les déclarations de l’explication. Les explications

sont résumées également très précise avec des valeurs F-pointage de 0,6 à 0,72

pour les petits résumés.
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8. Le chapitre 8 conclut la thèse avec un résumé de nos contributions et décrit

nos perspectives comme le fait la section suivante.

B.3 Conclusion et Perspectives

B.3.1 Résumé des Contributions

Dans cette thèse, nous visons à aider les utilisateurs dans la compréhension du traite-

ment de requêtes et des résultats dans le contexte de la consommation de données

liées. Nous avons contribué dans cinq domaines: la prévision de la performance de

requêtes, la provenance de résultats de requête, les explications pour les données

liées, la publication des explications et le résumé des explications.

Prédiction de performances des requêtes. Nous présentons une approche

d’apprentissage automatique pour prévoir des mesures de performance de re-

quêtes. Nous apprenons le temps d’exécution des requêtes à partir de requêtes

déjà exécutées - sans l’aide des statistiques sur les données RDF sous-jacents.

Nous discutons la façon de modéliser les requêtes SPARQL comme des vecteurs

de caractéristiques, et montrons des prédictions très précises. Les prévisions

des mesures de performance de requête à l’aide de notre approche peuvent

être utilisées pour aider les utilisateurs à comprendre les performances des re-

quêtes pour des tâches liées à la gestion de la charge de travail pour atteindre

les objectifs de qualité de service spécifiques dans le cadre de l’interrogation

de données liées.

Résultat de requête et provenance. Nous présentons une approche sans anno-

tation pour générer la provenance des résultats de la requête SPARQL et

montrons la faisabilité pour les requêtes de données liées classiques. Nous

présentons un prototype de processeur de requêtes fédérées générant de telles

explications et détaillons les présentations de nos explications.
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Évaluer les explications. Nous présentons une étude utilisateur pour évaluer

l’impact des explications dans un scénario fédéré de traitement de requête

pour les données liées. Notre étude sur les utilisateurs montre que nos expli-

cations de résultats de requête sont utiles pour aider les utilisateurs finaux à

comprendre les dérivations de résultats et porter des jugements de confiance

sur les résultats.

Explications pour les données liées. Nous discutons la façon de représenter et

de générer des explications de données liées. Nous présentons le vocabulaire

Ratio4TA pour décrire les métadonnées de l’explication et introduire la no-

tion des Explications liées. Ceci permet d’expliquer des données distribuées

de façon décentralisée. Ratio4TA étend l’ontologie standard PROV du W3C

pour permettre aux consommateurs de données de traiter les métadonnées

de l’explication selon les normes W3C PROV. Nous montrons aussi com-

ment générer des explications en langage naturel à partir de ces métadonnées

d’explication.

Résumer les explications pour les données liées. Bien que les explications

avec les détails de toutes les étapes de dérivation puissent être utiles pour

les utilisateurs expérimentés, elles peuvent submerger les utilisateurs non-

experts avec trop d’informations. Nous avons présenté cinq mesures pour ré-

sumer les explications. Nous évaluons différentes combinaisons de ces mesures.

L’évaluation montre que notre approche produit des classements de haute qual-

ité pour résumer les déclarations de l’explication. Nos explications résumées

sont très précises avec les valeurs F-scores allant de 0,6 à 0,72 pour de petits

résumés.

B.3.2 Perspectives

Nous avons plusieurs perspectives pour notre prédiction de la performance des re-

quêtes, pour l’explication de résultats de requêtes, et les explications liées.
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B.3.2.1 Prédiction de performances des requêtes

à l’avenir, d’une part, nous aimerions utiliser notre approche dans l’optimisation

des requêtes et la comparer aux techniques traditionnelles d’estimation de coût de

requêtes dans des scénarios de Linked Data - par exemple l’optimisation de l’ordre

dans le traitement de requêtes fédéré. Nous tenons à comparer notre approche à de

telles approches. Deuxièmement, nous prévoyons de générer systématiquement les

requêtes d’apprentissage pour deux scénarios: (a) les journaux de requêtes requêtes

réelles (b) à partir d’un petit ensemble de requêtes échantillon. Nous prévoyons

d’appliquer des techniques d’extraction de log de requêtes pour générer systéma-

tiquement les requêtes d’apprentissage. Des travaux récents sur la fouille de log de

requêtes montrent que la majorité des requêtes SPARQL partagent certaines car-

actéristiques communes. Nous prévoyons de tenir compte de ces caractéristiques

significatives statistiquement communes dans les requêtes d’apprentissage. Nous

souhaitons également explorer comment ces caractéristiques communes peuvent être

utilisées comme éléments descriptifs de la requête. Troisièmement, nous aimerions

explorer des techniques d’apprentissage automatique en ligne pour nos modèles.

Notre objectif serait d’affiner nos modèles de prévision basé sur les nouvelles prévi-

sions et de leurs valeurs réelles. Enfin, nous aimerions inclure des caractéristiques

de charge et de disponibilité des services d’interrogation. En ce sens, nous avons

l’intention d’exécuter les requêtes de formation toutes les heures et inclure des char-

actéristiques telles que le temps, le jour et le mois. Cela nous aidera à modéliser les

modèles de charge de travail pour les services SPARQL publics.

B.3.2.2 Explication de Résultats

Dans les travaux futurs, nous tenons à étendre notre algorithme pour générer la

provenance (comment) qui explique comment un tuple résultat a été obtenu avec

les détails des opérations effectuées dans le calcul. Les opérations SPARQL effec-

tuées peuvent être extraites des modèles de requêtes de la même manière que nous
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extrayons les triplets de la provenance (pourquoi). En fait, l’arbre d’expression al-

gébrique que nous générons au cours du processus d’extraction de la provenance

(pourquoi) contient déjà ces opérations. Pour la provenance (comment), il faudrait

associer ces opérateurs aux triplets de la provenance (pourquoi) qu’ils concernent.

Actuellement, nous présentons la première dérivation dans notre interface utilisateur

d’explication. Il serait intéressant d’explorer comment nous pouvons présenter effi-

cacement l’information de la provenance aux utilisateurs. En ce sens, une approche

pourrait consister à classer les dérivations de la provenance, ce qui nous obligerait à

définir des critères de classement pour les dérivations de la provenance. Enfin, notre

étude sur les utilisateurs pour évaluer l’impact des résultats de requête explications

ne comptait que 11 participants. Les participants devaient avoir quelques notions de

RDF et SPARQL, et être motivés pour simuler un processus simple de résolution de

requêtes fédérées. Il était difficile de trouver un grand nombre de participants. De

plus, les participants ont été rendus anonymes et nous ne pouvions pas revenir vers

les participants pour demander pourquoi un participant donné a fourni une réponse

donnée. Une étude contrÃťlée par l’utilisateur avec un plus grand nombre de par-

ticipants nous donnerait des résultats plus concluants et permettrait d’expliquer les

choix des participants. Une approche pour mener une telle étude contrÃťlée par

l’utilisateur serait d’utiliser une infrastructure de crowdsourcing comme Mechanical

Turk d’Amazon.

B.3.2.3 Explications Liées

Les explications liées nécessitent des triplets réifiables. Nous utilisons les graphes

nommés pour réifier triplets de données et regrouper explication. Actuellement, les

meilleures pratiques en matière de publication de graphes nommés de données liées

n’ont pas été finalisées. Cependant, suite à l’adoption de graphes nommés dans

RDF 1.1, il est possible qu’il y ait un jour un consensus de la communauté sur les

meilleures pratiques pour la publication des graphes nommés dans les données liées.
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Le coût de calcul et d’accès aux explications liées dans notre approche pourrait

devenir très grand. Par conséquent, les techniques de stockage et d’interrogation

efficaces et notamment sous forme de graphes nommés seraient utiles. En ce sens, il

existe une vaste littérature sur le stockage dynamique, l’indexation et l’interrogation

pour RDF. Ces approches existantes peuvent être utilisées pour stocker et servir

la grande quantité d’explication concernant les métadonnées. Nous aimerions ex-

plorer comment nous pouvons représenter et présenter efficacement les explications

et leurs résumés en utilisant différents types d’interfaces utilisateur et d’interactions

utilisateur. Nous aimerions explorer comment nous pouvons utiliser efficacement

les classements de résumé tout en présentant toutes les informations, par exemple

en chisissant l’expansion ou non d’une branche d’arbre de preuve qui contient des

déclarations.
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