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Abstract

Abstract (in English): This thesis addresses the problem of the stabilization of an (un-
manned) airlaunch system. Air launching consists in bringing a satellite and its launcher
(rocket) to a certain height using an aircraft, and then launching it from the air (often
by dropping the rocket), in a similar way of launching a missile from a fighter. The main
difference is that the envisaged mass ratio is much closer to one (heavy rocket compared
to aircraft mass). It is then composed of two stages: the first stage called carrier aircraft
consists of an <unmanned> aerial vehicle that carries the launcher which constitutes
the second stage (rocket). This thesis starts by introducing the problem and objectives,
continues by presenting several approaches to model the airlaunch system, and ends by

developing different advanced control methods to stabilize it after the launching phase.

In the modeling part we propose a firstly approach called the initial condition model
which assumes that the separation phase is instantaneous, and then the airlaunch system
is composed of an aircraft model after the launching phase but with large initial conditions
on its state variables, caused by a non-perfect split phase. A second approach assumes
that the separation phase itself is modeled by a disturbance on aerodynamic forces and

moments (from a worst case) during a time interval.

In the control part a modified conditional integrator controller for a class of non-
linear multi-input multi-output systems is first developed starting from the conditional
integrator theory developed by Khalil and co-workers. It is then extended to a modified
conditional servocompensator control for a class of nonlinear multi-input multi-output
systems. Both control strategies were then applied to stabilize the airlaunch system after
the separation phase. They have the advantage of being very robust, and they don’t
depend so much on reliable models. Even if these control strategies gave good results, it
was investigated in this thesis another control approach much more dependent on detailed
and reliable models. This approach was based on dynamic feedback linearization theory,

and the main idea is to obtain better performance in trade off better models.

Finally, all proposed control methods (plus some standard ones) were compared and
illustrated by simulations under Matlab/Simulink on a nonlinear F-16 model. These

simulations have shown that the results were as expected, and that each control strategy



Abstract

was well fit for a particular situation.
Keywords: airlaunch system modeling and stabilization, nonlinear control, nonlinear

analysis, dynamic feedback linearization, aircraft control.

Abstract (en frangais): Cette these traite du probleme de la stabilisation d’un
systeme de lancement aéroporté (éventuellement non habité) pour satellites. Le lancement
aéroporté consiste a ramener, a l'aide d’un avion, un satellite et son lanceur (fusée) a
une certaine hauteur, et d’exécuter son lancement dans les airs (souvent en larguant la
fusée). Ceci est similaire au lancement d’un missile par un avion chasseur. La plus grande
différence réside dans le rapport de masse entre ’avion et le lanceur qui est beaucoup plus
proche de I'unité (fusée lourde comparée a la masse de ’avion). Le systéme est composé de
deux étages: le premier étage est dit avion porteur qui est un véhicule aérien automatisé.
Il porte le lanceur qui constitue le deuxieme étage (la fusée).

Dans la premiere partie, sont proposées des approches de modélisation pour le systeme
de largage pendant et apres le largage. La premiere approche considere que la phase de
séparation est instantanée, mais imparfaite. Par conséquent le systeme est vu comme
un modele d’aéroplane dont les variables d’état sont avec des larges conditions initiales
dues a la séparation imparfaite. Une deuxieme approche considere la séparation elle-
méme, représentée par une forte perturbation (un extréme cas) sur les forces et couples
aérodynamiques du modele au cours d’un intervalle de temps.

Dans la deuxieme partie, afin de stabiliser le systeme de largage apres la séparation, la
commande a intégrateur conditionnel modifié est développée dans un premier temps pour
une classe des systemes non-linéaires multi-entrées multi-sorties, avec comme point de
départ la théorie introduite par Khalil et co-auteurs pour des systemes mono entrée mono
sortie. Cette commande a été ensuite étendue pour la commande a servo-compensateur
conditionnel modifié pour une classe de systemes non-linéaires multi-entrées multi-sorties.
Les deux stratégies ont été appliquées pour stabiliser le systeme de largage pendant et
apres la phase de séparation. Ces techniques ont 'avantage d’étre robustes et de pouvoir
utiliser des modeles approximatifs. D’un autre coté, il était important d’examiner la
possibilité d’obtenir de meilleures performances en utilisant de meilleurs modeles. Pour
cette raison, la commande de linéarisation par bouclage dynamique a été étudiée.

Finalement, les performances de toutes ces méthodes de commande (ainsi que cer-
taines commandes de base additionnelles) ont été illustrées par des simulations sous Mat-
lab/Simulink sur un modele non-linéaire de F-16.

Mots clés: modélisation et commande d’un systeme aéroporté de lancement de satel-
lites, commande non-linéaire, analyse non-linéaire, linéarisation par bouclage dynamique,

commande de véhicules aériens.



Résumé des contributions (in french)

Contexte

Depuis que le premier Spoutnik a été lancé avec succes sur sa trajectoire elliptique autour
de la Terre en octobre 1958, une ere spatiale et une course spatiale ont été ouvertes entre
les Etats-Unis et 1’'Union soviétique. Aujourd’hui, de nombreux satellites ont été lancés sur
des orbites autour de la Terre, de la Lune et de Mars pour de différents objectifs tels que
la communication, la recherche météorologique, la science de la Terre,etc. La plupart de
ces satellites ont été lancés a partir de bases de lancement au sol comme le Center Spatial
Kennedy, le Centre Spatial Guyanais, etc. Toutefois, le lancement des satellites depuis le
sol nécessite une force de poussée importante pour plusieurs tonnes de matériel et d’étres
humains, comme pour établir des bases satellites autour de la Terre ou de la Lune et Mars.
Avec la technologie actuelle, les cotits de lancement sont de 1'ordre de $6000 a $20000/kg.
Un développement des structures de matériaux ultra légeres et fiables pour le systeme
de lancement et leurs charges ne peut pas réduire signicativement les cotits de lancement
des satellites. Par conséquent, ces cotits de lancement élevés ne permettent pas aux
gouvernements des pays a budgets limités de marquer leur présence sur l'orbite terrestre
avec leurs satellites. Pour la méme raison, ils ne permettent pas aux organisations ayant
des restrictions budgétaires de réaliser leurs objectifs de recherche. Une solution possible
consiste a utiliser de petits satellites et méme de tres petits satellites. Malheureusement,
ces solutions sont encore cheres, car il existe des cotits de lancement fixes indépendants de
la taille et du poids des dispositifs lancés. Une solution tout a fait logique dans ce cas serait
d’embarquer plusieurs petits appareils et de les lancer en méme temps. Malheureusement,
cela implique beaucoup de risques supplémentaires dans la phase de séparation et n’est
pas envisagé.

Une autre solution a ce probleme est le largage. Le largage signifie lancer un étage
contenant un satellite, a partir d'un objet volant, vers l'orbite terrestre. Le largage four-
nit de nombreux avantages par rapport au lancement au sol. Tout d’abord, le systeme

de largage peut voler vers un océan ouvert, évitant les zones peuplées ou les avions de
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ligne. Il y a aussi une minimisation des contraintes climatiques, car le systeme de largage
peut voler au dessus ou autour des turbulences météologiques qui génent le lancement.
En conséquence, le retard de lancement est beaucoup plus faible qu'un lancement au sol
qui nécessite toujours une météo acceptable ainsi qu'un point de lancement convenable.
Le largage produit aussi beaucoup moins d’énergie acoustique a partir du moteur d'un
véhicule de lancement, car il n’y a pas de réflexion acoustique vers le sol, et la densité
de lair est plus faible. Le largage réduit également le changement de vitesse (appelée
delta V) qu’un véhicule de lancement doit fournir pour atteindre 'orbite avec une vitesse
désirée. L’utilisation d’un systeme de largage réutilisable permet une grande flexibilité
pour déployer de petits satellites congus pour des taches spécifiques telles que la commu-
nication ou la collection de données en temps réel pour les situations d’urgence. Toutefois,
le systeme de largage limite la taille de la charge lancée.

Dans cette these, nous considérons un systeme de largage qui utilise un véhicule aérien
sans pilote (UAV) au lieu d’'un avion standard avec pilote & bord, et s’intéresse en partic-
ulier a la phase de largage. Ce systeme de largage peut étre tres difficile, car le deuxieme
étage (lanceur) peut étre aussi lourd que le premier étage. Par conséquence, la tache de
stabilisation du systeme de largage est complexe pendant et apres la phase de largage.
Nous développons par la suite une série de systemes de commande comme la commande
a intégrateur conditionnel, la commande a servo-compensateur conditionnel ou la com-
mande de linéarisation par bouclage dynamique. Nous examinons également si elles peu-
vent stabiliser ’avion porteur apres la phase de largage, en évitant toute possibilité de
collision entre le porteur d’avion et le lanceur. Méme si cette these est consacrée a étudier
le cas d’un systeme de largage automatisé, ses résultats sont également valables pour le
cas d'un systeme de largage avec pilote a bord. Dans la suite nous résumons les problemes

liés au systeme de largage.

Probleme de largage

Larguer en l'air un étage a partir d’'un avion porteur provoque une modification de
parametres du systeme de largage telle que la masse, la matrice d’inertie, le centre de
gravité et les caractéristiques aérodynamiques du systeme de largage apres la phase de
séparation. En conséquence, il change le point d’équilibre du systeme de largage apres
cet instant. Plus le lanceur est lourd comparé a ’avion porteur, plus son impact est im-
portant que nous avons sur la dynamique de ’avion porteur apres la phase de séparation.
Un B52 qui porterait de petits missiles air-air, aurait un tres petit rapport entre leurs

masses, ainsi le largage d'un de ces missiles a partir du B52 n’entraine quasiment aucun
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effet sur la stabilité du B52 apres la phase de lancement. Des projets qui utilisent un B52
ou un Boeing 747 qui larguent un petit module de lancement vers 'orbite de la Terre, ont
un faible rapport de poids lanceur/avion porteur,et par conséquent, la séparation n’a pas

d’impact sur la stabilité du systeme de largage.

Figure 1: Bilan de forces d’un avion

L’objet de cette these est d’étudier un systeme de largage avec un avion porteur
automatisé aussi lourd que le lanceur. Le rapport de masse lanceur/avion porteur est
beaucoup plus grand que celle d'un systeme de largage avec pilote a bord. Il est alors
nécessaire d’étudier le probleme de la stabilisation du systeme de largage apres la phase
de lancement.

Prenons la phase de lancement parfaite (infiniment rapide) a U'instant ¢y. A l'instant
ty, le systeme de largage (le porteur + le lanceur) est en équilibre, nous avons donc la

force de gravité du (porteur + lanceur) égale a la force de portance, ce qui signifie:

W_ = (me+my)gcosh = L
{ L=1/2pV2SCy(")

ol W_ est la projection de la force de gravité du systeme de largage sur 'axe OZg, m,
est la masse de I'avion porteur, m; est la masse du lanceur, S est la surface de lail, V' est
la vitesse du systeme de largage, L est la force de portance, p la densité de l'air, et Ci(+)
est le coefficient aérodynamique de la force de portance en fonction de la pression et des
états du systeme de largage, et # est 'angle de tangage.

A Dinstant td, qui suit la phase de lancement, la force de portance sera la méme

que celle a l'instant ¢,. Par contre, la force de gravité est maintenant seulement celle
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correspondante a la masse de I’avion porteur:

{Wy =megcost # L (1)

En raison de cette réduction de masse, I’avion porteur gagnera en altitude et changera
son point d’équilibre (en particulier 'angle d’attaque). L’avion porteur sera peut-étre
dans une situation dangereuse, et méme possiblement instable. De plus 'effet de la phase
de séparation peut produire une force et un couple de rotation sur ’avion porteur, ce
couple pourrait déstabiliser le porteur avec de nombreux résultats imprévisibles. Enfin,

tous ces phénomenes peuvent provoquer une collision entre I'avion porteur et le lanceur.

Méthodes de modélisation

La modélisation du systeme de largage lors de la séparation des étages est un probleme
difficile en raison de la complexité du systeme, les interactions entre deux phases et le
manque de disponibilité de données aérodynamiques du systeme de largage. Puisque le
rapport de poids entre le lanceur/porteur est grand, les caractéristiques nonlinéaires du
systeme de largage sont également un point difficile et non négligeable.

Il existe une méthode pour modéliser et simuler la séparation des étages en utilisant
I'outil de simulation ConSep appliqué a un véhicule en deux étapes vers 'orbite appelé
véhicule jumeau puisque la géométrie de ces deux étapes sont identiques. Cette méthode
utilise les coefficients aérodynamiques a partir de données d’essai du véhicule dans une
soufflerie avec la technique d’interpolation pendant la phase de séparation (voir dans la
série des documents [2] et [3]). La référence [4] utilise un autre outil pour modéliser et
simuler la phase de séparation des étages, I'outil Constraint Force Equation/ Optimite
Simulated Trajectories II (CFE/POST II). Ces méthodes nécessitent un outil spécifique
disponible seulement dans certains laboratoires et centres de recherche tels que la NASA,
etc.

Dans l'objectif de modéliser le systeme de largage et d’étudier la stabilité du systeme
pendant et apres la phase de lancement, une autre méthode est proposée dans notre
these qui consiste en deux modeles avec trois phases pendant la procédure de largage.
Le premier modele correspond au systeme de largage avant la phase de séparation (c’est
a dire que le lanceur reste attachée au 'avion porteur), le second modele correspond au
systeme de largage, apres la phase de séparation(c’est a dire le porteur). Les trois phases
correspondent a: des phases avant, pendant et apres la séparation. Cette méthode est
mise en oeuvre pour des simulations sur un modele mathématique du systeme de largage

sous Simulink/Matlab avec les données aérodynamiques obtenues a partir des essais dans
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une soufflerie. Cette procédure simple procure déja plusieurs caractéristiques difficiles a

évaluer lors du largage, et n’a pas besoin d'un outil spécifique.

Probléme de commande

Le probleme de commande d'un avion a été traité dans la littérature par beaucoup
d’approches au cours des dernieres décennies. La premiere et la plus simple méthode
consiste en un régulateur simple PI (proportionnel plus intégrateur). Cette commande
est appliquée a un modele d’avion linéarisé sur plusieurs points de fonctionnement. Cette
structure de commande a besoin d'un planning de gains pour chacun des points de fonc-
tionnement de l'avion. Une autre approche étudiée pour améliorer les performances
de commande de I'avion utilise la synthese Hy/p (voir [5]), elle est également congue
pour le modele nominal sur un certain nombre de points de fonctionnement de 1’avion.
Le parametre p améliore la performance de la commande en dépit de la variation des
parametres de I'avion. Ces approches ont contribué a la solution du probleme de com-
mande d’avion, mais ont besoin d’une linéarisation du modele ainsi qu’'un planning de
gains pour chaque point de fonctionnement. Cela limite les performances du controleur,
en particulier dans le cas de vol sous des conditions extrémes telles qu'un angle d’attaque
important, etc

Plusieurs autres approches ont été développées pour la commande de I’avion dans des
conditions de vol extrémes tels que Dynamic and Time Scale Separation ([6]), Nonlinear
Inverse Dynamics ([7]), Backstepping Control ([8]), Plus récemment, la commande par
retour d’état avec le réseau de neurones a également été proposée par [9] pour la commande
d’avion.

Cependant, et d’apres nos connaissances actuelles, une conception de commande pour
le systeme de largage en se concentrant sur la phase de lancement n’a jamais été étudiée
jusqu’a présent. Dans [3], [2] et [4], un simple contrdleur PI est appliqué sur les deux étapes
du systeme de largage, mais les auteurs n’ont pas envisagé 1'utilisation de ce controleur
dans la phase de séparation.

En résumé, les problemes posés par le systeme de largage pendant la phase de sépa-

ration sont:

e Une stratégie de commande ou les non-linéarités du systeme de largage sont prises

en compte

e Des systemes multi-entrées multi-sorties
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e Une stabilisation du systeme de largage formellement assurée apres la phase de

séparation

e La contrainte sur la limitation physique des surfaces de commande (aileron, pro-

fondeur et gouvernail)

En outre, concernant le point de vue de la stratégie de commande, les conditions

suivantes lors de la conception des commandes sont également importantes:

e Caractéristiques des données de 'avion (coefficients des forces et des couples aéro-

dynamiques sous forme de tables)
e Besoin d'une adaptativité pour diverses conditions de vol
e [’évitement de collision entre le lanceur et ’avion porteur

Dans ce qui suit, nous présenterons les approches de commande utilisées dans cette
these. Les deux premieres techniques de commande sont robustes, et donc relativement
indépendantes du modele du systeme. La troisieme est plus fortement basée sur le modele
du systeme, et nécessite une meilleure connaissance du systeme, par contre elle permet

une meilleure performance de vol. Ces trois théories du controle sont les suivantes:
e Commande a intégrateur conditionnel modifié
e Commande a servo-compensateur conditionnel modifié

e Commande de linéarisation par bouclage dynamique

Modele du systeme de largage

La phase de largage du systeme de largage peut étre décrite par des variations de la masse,
de I'inertie et des coefficients aérodynamiques du systeme avant et apres la phase de lance-
ment. La modélisation de cette phase nécessite une grande disponibilité de données et de
connaissances préalables sur le systeme réel, qui n’existent pas encore dans le cas de cette
étude. Cependant, ce systeme peut étre représenté comme un systeme hybride composé
par deux (ou trois) modeles continus qui sont commutés. ces modeles représentent le sys-
teme avant, (éventuellement pendant) et apres la phase de séparation. Dans cette étude,

nous adoptons cette stratégie, nous examinerons trois phases:

1. avant la séparation = le premier modele du systeme de largage (représentant ’avion

porteur et la fusée) est stable a un point de fonctionnement
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2. pendant la séparation = le deuxieme modele du systeme ne représente que 'avion
porteur qui part du point de fonctionnement du modele de la premiere phase, et
est perturbé par des impulsions sur les forces et les couples aérodynamiques. Ces
perturbations durent pendant un intervalle de temps 7;,; et représentent une sépa-
ration imparfaite. En outre, les conditions initiales héritées de la premiere phase ne

sont pas un point d’équilibre du second modele.

3. apres la séparation = l'arrét des perturbations (I’avion porteur et la fusée n’ont
plus aucun contact physique). Nous pouvons montrer que leffet du largage de la
fusée a partir du porteur influence surtout les forces de portance et de trainée, ainsi

que les couples de roulis et de tangage seulement.

A partir de ce point de vue nous avons deux approches pour modéliser la phase de

largage que nous présentons dans la suite:

Approche des conditions initiales

Comme avec la premiere approche pour modéliser le systéeme de largage, nous adoptons
une technique hybride qui considere que le systeme de largage est considéré comme un
commutateur entre deux modeles continus, un modele précédant la phase de largage et un
modele suivant celle-ci. La séparation elle-méme est considérée comme instantanée, mais
imparfaite. Dans ce sens les impulsions sur les forces et les couples affectent le systeme
de largage de maniere instantanée, ce qui se traduit par de larges conditions initiales sur
le second modele, qui est un modele de F-16 dans cette these. 1’objectif est donc de
concevoir une commande pour stabiliser le deuxieme modele (apres la commutation) avec

éventuellement de larges conditions initiales.

Approche des perturbations sur forces et couples aérodynamiques

Pour la deuxieme approche afin de modéliser notre systeme, nous examinons également

le largage comme un commutateur entre deux modeles continus:

1. avant la séparation = le premier modele est sur un point de fonctionnement stable

2. pendant la séparation = la phase de largage déroule pendant un intervalle Tj,;
pendant lequel le second modele est utilisé, mais perturbé par des forces et couples
aérodynamiques constants représentant I'imperfection du largage de la fusée a partir

du porteur.
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3. apres la séparation = arrét des perturbations, et le porteur continue a étre représenté

par le second modele

Afin de rendre notre étude aussi générale que possible, le premier modele est considéré
comme un F-16 avec deux fois sa masse standard, tandis que le second modele est considéré
comme celui d’un F-16.

Il faut noter que l'effet du largage de la fusée a partir de 'avion porteur perturbe
surtout les forces de portance et de trainée, ainsi que les couples de tangage et de roulis
seulement. Nous supposons que ces forces et ces couples perturbateurs sont constants
pendant I'intervalle Tj,;. Nous appelons respectivement F,, , I, , et L,, M, les perturba-
tions sur la force de portance, sur la force de trainée, sur le couple de tangage et sur le

couple de roulis.

Avion porteur

P=mg

Wp

Figure 2: Le lanceur accroché a I’avion porteur dans le défavorable cas

Nous avons pris un "cas extréme” qui correspondrait au cas ou le lanceur reste accroché

au porteur par une seule accroche pendant un court intervalle de temps:

e la perturbation sur la force de portance pendant un intervalle de temps T;,,; est égale

a la force de gravité de la fusée, ce qui signifie F,,, = mg cos 0.

e la perturbation sur la force de trainée est de F,,, = —Psinfy = —mgsin 6y ou 0 est

I’angle de tangage initial du premier modele avant la phase de largage.
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e la perturbation sur le couple de tangage pendant T;,,; est le pire cas représenté par la
fusée qui reste attaché au porteur sur une extrémité pendant Tj,;, ce qui se traduit
par un couple de rotation sur le porteur, dont la valeur est de M, = mgl, cosf/2

ol [, est la longueur de fusée.

e la perturbation sur le moment de roulis pendant Tj},; est faible en raison de la forme

de la fusée (longue et mince).

e le modele apres la phase de largage est celui du F-16 dont la condition initiale est
I’état sur le point d’équilibre du modele précédent la phase de largage, qui est le

modele du F-16 avec deux fois sa masse normale.

Modele du systeme

La dynamique de 'avion porteur se décrit dans le repere local (voir [10], [11], [12]):

& = wcos cos b + v(cos ) sin O sin ¢ — sin 1) cos @) + w(cos Y sinf cos g + sinsing)  (2a)
¥ = usin cos 0 + v(sin v sin O sin ¢ + cos 1) cos @) + w(sin sinf cos p — cosPsing)  (2b)
Z = —usinf + vcosfsin ¢ + w cos b cos ¢ (2c)
1
U=rv—qw—gsind+ —(F,+17) (2d)
m
1
U =pw —ru+ gsingpcosh + —F, (2e)
m
1
W =qu—pv+gcospcost + —F, (2f)
m
¢ = p + tan O(gsin ¢ + 7 cos p) (2g)
0 = qcos ¢ — rsin¢ (2h)
. gsing 4+ rcoso .
= 2
v cosd (20)
. 1 .
p= 72[(1111/[22 - Izzz - I%Z)rq — Ios(Ipo + Loz — Lyy)pg + 1L — Iy N| (2)
Imchz - I:pz
. 1
q= T[(Izz — Lg)pr + I:cz(p2 - T2) + M] (2k)
vy
. 1
P= o [(~Laalyy + 12, + I2)Pq + Loz(Iog + Loz — Lyy)rq + Lo N — Iy L] (21)
Ixxlzz - Izz

En outre, nous préférons représenter les variables d’état dans le repere aérodynamique
(laxe OXy du repeére aérodynamique OXy Yy Zy dans la Fig. 3 qui s’oriente sur le
vecteur de vitesse du systeme V') au lieu d’utiliser des variables dans le repere local en

raison de la mesurabilité de ces variables, nous réécrivons alors la dynamique du systeme:
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Figure 3: Le repere local et le repere aérodynamque

& = —cosatan fp + g — sinatan fr — m‘s/i.rzgsﬁ(T + Fu) + ovesss Fo

v 5lsinacosd 4 cos acos ¢ cos b

3 = sinap — cos ar — %[T + F,)+ C;S‘;BFU - Si“;?}nﬁFw + &[cos asin B sin ¢
+ cos [ cos @ sin ¢ — sin asin 3 cos ¢ cos 0]

V= —COS‘:Tfosﬂ[T + F,) + %Fv + —Sina"fosﬁFw + g[cos accos [ sin 6

+ sin 3 sin ¢ cos @ + sin a cos 3 cos ¢ cos 0]

p= i [y L = 12 = 2)rq = Lu(Lop + L. — L, )pg + L.L — L.N]

q= ﬁ[([zz — Loo)pr + [zz(p2 - T2) + M]

P = e [(— Loy + 12+ 12)pg + Lo Ly + Lz — Ly )rq + LN — L. L]
db=p+ tar'llﬁ(q sin ¢ + r cos ¢)

g = qcos ¢ — rsin ¢

1/'} __ gsin¢+rcos o
\ - cos 6

(3)
ou Iy, Iy, 1.2, I, sont les composants de la matrice d’inertie, m est la masse du systeme
(kg) et g la constante de gravité. w,v,w sont les vitesses linéaires du systeme dans le
repere local en m/s. «, 8, V. p,q,r, ¢,0,1 sont les variables d’état du porteur, c’est a dire
I’angle d’attaque, I'angle de dérapage, la vitesse du systeme, la vitesse angulaire de roulis,
la vitesse angulaire de tangage, la vitesse angulaire de lacet, 'angle de roulis, I'angle de
tangage et I'angle de lacet, respectivement. «, (3, ¢, 0,1 s’expriment en rad, p,q,r dans

rad/s etV dansm/s. F,, F,, F,, et L, M, N sont des forces et des couples aérodynamiques
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respectivement. Toutes les forces et les couples sont exprimés en N et Nm.

Ces forces et couples aérodynamiques sont fonction de tous les états considérés. Dans
ce modele, les forces et couples aérodynamiques sont sous forme de tableau de valeurs a
partir de données mesurées dans une soufflerie. Ces données peuvent étre trouvées dans
[13]. Enfin, les entrées de commande sont respectivement ’aileron (4,), le gouvernail (4,)

et I’élévateur (4.), ainsi que T la force de poussée.

Les contributions de la theése

Contribution 1: La commande a intégrateur conditionnel modifié

pour une classe des systemes nonlinéaires multi-entrées multi-
sorties (MEMS)

La commande a intégrateur conditionnel pour la régulation d’un systeme nonlinéaire a
une entrée-une sortie a phase minimale dans les cas de références asymptotiquement con-
stantes est étudiée dans [14], [15], et a été étendu a une classe de systemes non-linéaires
multi-entrées multi-sorties dans cette these, et dans [16]. Cette commande & intégrateur
conditionnel fonctionne comme une commande en mode glissant a ’extérieur d’une couche
limite, et comme un intégrateur conditionnel a 'intérieur de cette couche limite. Les pre-
miers résultats ont étudié le cas d’un systeme SISO (single input single output) avec une
surface de glissement scalaire, et ont demontré la stabilité asymptotique du systeme a
I'intérieur de la couche limite. Ces résultats ont été étendus dans [17] mais n’étaient pas
adaptés au cas étudié dans cette these. Notre travail s’est consacré a étendre encore plus
ce résultat dans le but de stabiliser le systeme de largage.

Considérons le systeme:

€1 = €9 (4)
éa = fler,e2) +gler, ea)u
ou e1(t) € R" est le vecteur d’erreur, e5 = é1, u € R" est lentrée de la commande et

fle1,e2) € R | g(eq,ea) € R™™ sont des fonctions continues.

Nous définissons une mesure des erreurs, semblable a une surface de glissement:
s = koo+ Kieq + ey (5)
ou o € R" est la sortie de I'intégrateur conditionnel
o = —koo+ psat(s/p) (6)
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dans laquelle p est la couche limite, ky est un parametre positif, K; € R™™" est choisie
telle que Ky + sl,, soit Hurwitzienne.

La fonction de saturation est déterminée:
s/lsll si[[s]] > p
sat(s/p) = _ (7)
sfp st sl < p

Nous définissons O, comme un voisinage de (eq,e3) = (0,0) avec un rayon R, pour
que ||s|| < p
Op = {e=(e1,e2) €R" x B" | | < Ry} (5)

Avant de présenter le théoreme de la commande a intégrateur conditionnel modifié,

nous considérons les hypotheses suivantes sur les fonctions f(eq, e2) et g(eq, es).

Hypotheése 0.0.1 f(e1,es) est bornée par une fonction y(||le1]| + |le2||) (0w v(-) est une

fonction de la classe KC) plus une constante positive Aq :

1f(exs e) [| < v(llexll + lleall) + Ag

et par conséquence,
[f(er =0,e2 = 0)[] = [[£(0,0)] < Ag

pour (e1,e2) € R" x R™.
A lintérieur de la couche limite, la fonction f(e1,es) doit étre Lipschitzienne pour

(e1,e2) € Oy, par conséquence

1/ (ex, €2) = £(0,0)[ < Lalea]| + Lallez]l

v(|ler]] + |le2l|]) doit étre Lipschitzienne pour (e1,e2) € O,:

Yllexll + lleall) < mlleall +2lleall

Hypotheése 0.0.2 La fonction g(ei,es) est continue et inversible pour tout (e1,e3) €
R™ x R™.

Nous indiquons le résultat développé sur la commande a intégrateur conditionnel mod-

ifié dans cette these par le théoreme:

Théoréme 0.0.1 Une classe des systemes non linéaires multi-entrées multi-sorties décrits
par (4) qui satisfait les hypothéses 0.0.1 et 0.0.2, peut étre globalement stabilisée vers leur

référence constante par le controleur:
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u = —II(ey, e2)sat(s/u) 9)

dans laquelle nous définissons:
I1(-) = (0 + () + Kopr + Do)g ™' () (10)

ot Ty est un paramétre positif, les paramétres a régler my, ko, p, Ky et une fonction ~y(-)
convenable.

En outre, la stabilité est exponentielle a l'intérieur d’une région définie en (8).
o

La stabilité de la commande (9 et 10) pour le systeme (4) est démontrée dans la
section 3.2. Il est important de remarquer que cette commande n’est pas équivalente
a une commande en modes glissants avec une continuité autour de l'origine. En effet
la commande n’est pas bornée, voir terme (10).Elle correspond plutét au produit de
deux termes, un saturé et 'autre illimité. Dans une région le premier terme domine la

commande alors que dans une autre région c’est le deuxieme terme qui domine.

Contribution 2: La commande a servo-compensateur condition-

nel modifié pour une classe des systemes nonlinéaires multi-entrées
multi-sorties (MEMS)

La précédente contribution concerne 1’'étude de la commande a intégrateur condition-

nel modifié pour une classe de systémes nonlinéaires MEMS. La commande définie par

les parametres ko et my scalaires. Cette définition simplifie I’étude de la commande

au prix de sa généralité et de sa performance. La deuxiéme contribution vise alors a

améliorer la précédente commande en développant une théorie appelée la commande a

servo-compensateur conditionnel modifié pour un systeme nonlinéaire MEMS.

Nous définissons de nouveau la mesure des erreurs:
s = K(]O' + K161 + €9 (11)
ou o € R" est la sortie du servo-compensateur conditionnel
0 = —Kyo+ usat(s/p) (12)

ou 4 est la couche limite, Ky est une matrice définie positive, K; € R™" est choisie telle

que K + sl, soit Hurwitzienne.
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Le précédent travail [16] a montré que le systeme (4) est exponentiellement stabilisé par
la commande appelée intégrateur conditionnel modifié dans le cas ou Ky est un scalaire.
Nous développons le résultat pour le cas ou K| est une matrice, qu’on appelera dans ce cas
la commande a servo-compensateur conditionnel modifié et que nous décrivons ci-dessous

par le théoreme:

Théoreme 0.0.2 Une classe de systemes nonlinéaires multi-entrées multi-sorties décrits
par (4) qui satisfait les hypotheses (0.0.1 et 0.0.2), peut étre exponentiellement stabilisée

vers une référence constante par le controleur:

(13)

{ u = —Il(ey, e9)sat(s/p)
I(-) = g~ () (o + pho + (7(-) + Do) )

[Ty est une matrice définie positive, i est la couche limite et Ky est une matrice définie
positive. (Ily, Ko, p et Ky) sont les parametres a régler et la fonction ~(-) choisi de
maniére convenable.

En outre, la stabilité est exponentielle a ['intérieur de la couche limite .

Il est important de remarquer que, méme si le développement de la premiere commande
vers la deuxiéme semble moins compliqué (I'une étant la version scalaire et l'autre la
version matricielle), la différence entre les deux est équivalente a celle entre une commande
proportionnelle et une commande par retour d’état.

La démonstration que le systeme (4) est exponentiellement stabilisé par la commande
(13) se trouve dans la section 3.3 du chapitre 3.

Une application de ces commandes pour stabiliser le systeme de largage est faite en-
suite. Dans le premier temps, la commande a intégrateur conditionnel modifié est ap-
pliquée au systeme décomposé en deux modes de mouvement, le longitudinal, et le latéral.
Ces deux modes sont transformés sous forme canonique avant une application de la com-
mande a intégrateur conditionnel modifié et ce apres avoir démontré au’ils satisfassent
les hypotheses mentionnées (voir le chapitre 4). Dans un deuxiéme temps on présente
I’application de la commande a servo-compensateur conditionnel modifié pour le systeme
de largage complet apres une transformation similaire de ce systeme vers la forme canon-
ique. Les résultats de simulation illustrent une bonne stabilisation du systeme de largage
pendant et apres le moment de largage sans aucune collision entre les deux étages (voir

le chapitre 4).
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Contribution 3: La commande de linéarisation par bouclage dy-

namique

Les travaux ([18]), ([19] et [20]) sur la théorie de la commande de linéarisation par bouclage
dynamique ont prouvé que le systeme composé des neuf premieres équations différentielles
(2a & 2i) du systeme (2) peut étre dynamiquement linéarisable par les variables de com-
mande (p,q,r), ainsi qu'un premier ordre d’intégration de la force de poussée. Nous
cherchons a démontrer la "linéarisabilité” dynamique du systéeme de I’avion complet de
12¢ ordre avec le second ordre d’intégration de la force de poussée. Nous développons
ensuite un algorithme de la commande de linéarisation par bouclage dynamique pour

stabiliser notre systeme de largage pendant la phase de largage.

Hypothese 0.0.3 Les variables de commande ne produisent que des couples aérody-
namiques, et pas de forces aérodynamiques. En outre, leur dynamique est supposée suff-
isamment rapide pour étre négligée.

Les forces aérodynamiques ne dépendent que des vitesses linéaires et pas de vitesses

angulaires.

Sachant que les variables (p, ¢, ) dans (2) peuvent étre commandées par (d,, e, ;) qui
interviennent au sein des couples (L, M, N), on peut simplifier le mouvement angulaire

de ces trois dernieres équations (2):

P = Po
q=14qo (14)
7 =Ty
ou Py, go, 7o sont les entrées de commande.
Le systeme (2) est alors du type:
Ee=1:(&) + Pogi(&s) + doga(&s) + foga(&s) + nga(&s) (15)

ou fs, g1, g, g3, g4 sont obtenus a partir de (14) et n = T/m,

g1 = (0,0,0,0,0,0,0,0,0,1,0,0)T
g = (0,0,0,0,0,0,0,0,0,0,1,0)T
g5 = (0,0,0,0,0,0,0,0,0,0,0,1)T
g1 = (0,0,0,1,0,0,0,0,0,0,0,0)7

Théoréme 0.0.3 Le systéme (2) avec l’hypothése 0.0.3 n’est pas statiquement linéaris-
able par retour d’état, mais il est dynamiquement linéarisable avec un seconde ordre

d’intégration de la force de poussée.
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Résumé des contributions (in french)

Preuve:

Systeme non statiquement linéarisable
Afin de démontrer la non linéarisabilité statique du systeme, nous calculons les crochets

de Lie ady,g; pour 1 <14,j < 4 et vérifions facilement que:

e span(gi, g2, g3, g4) est involutive

o span(gi, g2, g3, 91, adsg1, adsgs, adrgs, adrgs) n'est pas involutive

Ce résultat implique donc que le systéme (2) n’est pas statiquement linéarisable (voir
[21]).

Systeme dynamiquement linéarisable

Puisque g4, qui se situe sur la direction de la force de poussée, joue un role important
dans la dynamique de I’avion, nous choisissons d’appliquer un second ordre d’intégration
sur la poussée (n, 7 et 7j), et de vérifier I'état de la linéarisabilité dynamique du systeme

étendu:

Ap = span(g1, g2, g3)

Ay = Ao+ adp, Ay + span{gs}
Ay = Ay +ads, Ay + span{gs}
Az = Ay +ads, Ay = R

(16)

Il est facile de vérifier que le systeme (16) satisfait & toutes les conditions suffisantes
de la théorie présentée dans [20] et [22]. Le systeme (2) avec les équations simplifiées
(14) et le second ordre d’intégration de la poussée est dynamiquement linéarisable. Cela
peut physiquement s’expliquer par le fait que la dynamique de la force de poussée est du
second ordre comme mentionné dans [7].

Nous définissons d’abord (; = x, (; = y, (3 = z, 01 = 1. Ensuite, un changement de co-
ordonnées de X = (z,v, z,u, v, w, ¢, 0,1, 1) vers ¢ = (z, Lz, L?;x, Yy L titdesy, Lf;y, z, Lz, L%z, o)
rend les neuf premieres équations différentielles du systeme (2) dynamiquement linéaris-
able par rapport aux variables de controle (p,q,r, 7). Ces neuf premieres équations dif-
férentielles avec vy =1 = T/ m peuvent étre réécrites sous la forme )~( = f + gu.

D’une maniére autre que celle utilisée dans [22], nous définissons oy différemment afin
d’éviter une singularité de la matrice v;(-) que nous allons présenter plus tard. Pour cette
raison, les neuf premieres équations différentielles et le premier ordre d’intégration sur la

poussée peuvent étre transformés sous forme:
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Cl G =

Cz—Cs—
G = 46:
(=G =
(=G =
§=C9=

(= D1+Dp+Dq+D3r+D4v4
Cg D2 + Dip+ D3q + D3r + Djv,
(9 D} + Dip+ D3q + D3r + Div,

o1 = Dg + Dip+ D3q+ Dir + Djv,

\

(17)

ol vy = 1 et Dj- pour ¢ = 1.4, j = 1..3 sont fonction de X et peuvent étre facilement

calculés (voir le chapitre 5).

(Ci=uche) + v(cshsg — cosip) + w(sbepey + sosi))

Gs=uchs) 4+ v(sshsd + copc) + w(sbehps — spcr)

(e=—s0u + vclsp + wcbhep

CGr=chc)(—gst + F, +n) + (cps0sdp — cpsip)(gclsp + F,)
(sBepes + sés) (geged + F)

Cs=cOstp(—gsb + F, +n) + (s¢shsp + cocy)(gelsg + F,)
+(sOcopsip — spcp)(gepcld + F,)

C(o=—50(—gs0 + F, + 1)
+clsp(gcbso + F,) + ccop(gepcd + F,)

\

A partir de (17), nous définissons quatre nouvelles variables ;g = Cry G

et ngdl.
Cio p
(i1
= x1(X) + n(X)
Ci2 r
09 V4
ou
D Dy D} D} Dy
~ D? D! D? D3 Di
xai(X)=1 "5 [imO=| 57 5 %
Dj D3 D3 Dg Ds
Dy D; D Di Dj
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Résumé des contributions (in french)

Di pour i = 1..4 sont fonction de X et dépendent du choix de la variable o; pour
éviter la singularité de 7 (-).

La dynamique angulaire dans I’équation (2) peut étre réécrite comme:

p s
q - XT(UJ /U7w7p7 Q7 r) +’Y7'(u7/u7w) 56 (21>
5,

oit x,(u, v, w,p,q,7) € R ~.(u,v,w) € R**3. I est important de noter que la matrice
v (u, v, w) est inversible dans 1’enveloppe de vol désirée.

Les dérivées de (19) peuvent étre trouvées facilement en utilisant (21):

élO O

C:n . S > %(U,U,w)o de

i —XT(X,p,q,an%(X)[ 0 1] 5, (22)

0"2 @4

ou

p

(%) = () +300) || () [X“O(')] (23)
V4

En définissant v, = 7 comme une variable d’état, u; = ¥4 comme ’entrée, nous avons
un systeme dynamiquement linéarisable (17 et 22) avec 14 états par le changement de coor-
données de (r,y, 2, u,v,w,¢,0,%,p,q,7,1,7) a (C1, G2, (3, Ca G5, G5 C75 C85 Co, G105 G115 G125 01,5 O2).-

Dans le systeme (17 et 22), nous avons 12 états physiques de 'avion, et 2 états de

I'intégration de la poussée. Nous avons besoin maintenant de la non singularité de la

matrice:
- | w(u,v,w) 0
vr() =1 (X) (24)
0 1
Maintenant, nous définissons o1 = ¢, dont la dynamique est:
b=p+ gtanfs¢ + rtanfco
La matrice 7 (-) devient
Dy Di Df Di
Di D2 D3 D3
NG =17 ; . (25)
Dy Dj Dj Dy

1 tanfs¢ tanfco 0O

20



La non singularité de la matrice v, (-) dans ce cas est garantie pour I’enveloppe de vol
désiré. Ceci peut s’expliquer par le fait que trois variables de commande sont utilisées pour
commander la trajectoire de ’avion, et la derniére variable de commande est affectée pour
le mouvement de roulis. La loi de commande de linéarisation par bouclage dynamique est

sous forme:

6a élOr _k11<Cl - Clr)
Oe | aive o oy [Cur| | Re(G— Gr)
67' o ( )( XT( ) " él?r - _k31 (<3 - C3T)
ur Oop 0

(26)
—k‘12(C4 - <47’) _k13 C? - C?r) _k14(C10 - ClOr)

(
_k22(C5 - CS'/‘) _k23<C8 - C8T) _k24(C11 - CllT)
—ks2(C6 — Cor) —k33(Co — Cor) —k4(Cr2 — Crar)

0 —ks3(o1 — o1) —kas(o2 — 02r)

)

ou k;; pour 1 <14,5 <4 sont des parametres positifs a régler, les références de sortie sont

définies comme suit:

(

(Trs Yr, Zr) = (Cirs Gors CSr)T

(T, U, Zr) = (Car, G CGr)T

(%; yr, Zra ¢r) = (Crry Csr Cors U1r)T (27)
(2 7y7“ ,Zr ,¢r) = (Cior, Ci1rs Cr2rs 020) T

(91;5 ), Yr ,Zr ,¢r) (élOra éllra Cwn er)T

L’application de la commande de linéarisation par bouclage dynamique au systeme de

largage dans la phase de séparation est décrite et illustrée par les résultats de simulation
dans le chapitre 5. Une bonne stabilisation du systeme apres le largage est montrée pour
un large intervalle de temps T;,; pendant lequel la perturbation se produit sur les forces

et les couples aérodynamiques (voir le chapitre 5).

Conclusion et perspectives

Conclusion

Dans cette these, nous avons étudié le modele du systeme de largage pendant et apres
la phase de lancement. Nous avons développé la commande de 'intégrateur conditionnel
modifié, la commande a servo-compensateur conditionnel modifié et la commande de
linéarisation par bouclage dynamique pour stabiliser le systeme de largage sans aucune

collision entre ’avion porteur et le lanceur apres le largage.
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Les résultats de ce travail sont présentés dans les chapitres 3, 4, 5, et 6 de cette these.

Pour finir, les principales contributions de cette these sont:

En terme de modélisation:

e Une modélisation du systeme de largage pendant et apres la phase de lancement en

utilisant deux approches (voir le chapitre 2):

— l'approche des conditions initiales

— l'approche de la perturbation sur les forces et les couples aérodynamiques

En terme de méthodologie de commande:

e Une commande simple LQR comme premiere approche pour stabiliser notre systeme
de largage apres la phase de lancement. Le controleur nous a permis d’avoir un

premier point de vue sur la stabilisation du systeme.

e Un développement de la commande a intégrateur conditionnel modifié pour une
classe de systemes nonlinéaires multi-entrées multi-sorties (MEMS) a partir de la
théorie de la commande a intégrateur conditionnel modifié inventée par Khalil et

ses collegues.

e Une commande a servo-compensateur conditionnel modifié étendue par la com-
mande a intégrateur conditionnel modifié développée pour la méme classe de sys-
temes nonlinéaires MEMS. Ces commandes montrent une meilleure performance
par rapport a la commande LQR, la commande en modes glissants, ainsi que la
commande a intégrateur conditionnel modifié pour le systeme de largage linéarisé

autour de son point d’équilibre.

e La démonstration de la possibilité d'un avion dynamiquement linéarisable (voir le
chapitre 5). Une commande de linéarisation par bouclage dynamique est ensuite
congue pour le systeme de largage. L’intérét de cette technique est qu’elle est capable

de stabiliser un systeme de largage d’'une maniere globale.

En terme d’application des résultats

e [’application de la commande LQR est la premiere approche qui nous a donné
une stabilisation du systeme de largage, mais seulement pour de petites conditions
initiales dans la premiere approche de modélisation du systeme de largage, et dans la

deuxieme méthode de modélisation, seulement pour un petit intervalle de temps Tj,,;
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pendant lequel la perturbation se produit sur la force et le couple aérodynamiques,

comme on peut voir dans le chapitre 2 .

e La commande a intégrateur conditionnel modifié, en particulier la commande a
servocompensateur conditionnel modifié, a montré une meilleure performance pour
stabiliser le systeme de largage apres la phase de séparation, ce qui se traduit par
I'obtention d’un intervalle de temps Tj},; supérieur. Parce que la commande a in-
tégrateur conditionnel modifié et la commande a servo-compensateur conditionnel
modifié sont développées pour un systeme nonlinéaire MEMS, elles seront alors non
seulement appliquées pour stabiliser le systeme de largage, mais aussi pour com-
mander une classe de systemes non linéaires MEMS comme nous 'avons montré

dans le chapitre 3.

e La commande de linéarisation par bouclage dynamique est la plus efficace pour sta-
biliser notre systéeme comme indiqué dans le chapitre 5, elle a stabilisé le systeme de
largage complet a partir d’angles d’Euler, les vitesses linéaires ainsi que les vitesses

angulaires.

e Les trois commandes étudiées sont capables d’éviter la collision entre le systeme de

largage et la fusée pendant et apres le moment de la séparation.

Perspectives

Bien que de bons résultats ont été obtenus, les résultats de cette these pourront étre

améliorés au cours de futures recherches dans ces quelques directions:

e La modélisation du systeme de largage pendant et apres la phase de lancement
est un point clé de la these. En raison de l'indisponibilité du modele réel dans la
littérature, nous avons utilisé I’approche ou la phase de lancement est perturbée par
les effets de la séparation au cours d’un intervalle de temps. En cas de disponibilité
du modele réel, 'approche de deux modeles avec trois phases améliorera la précision
du probleme. Le passage du premier modele au second modele peut étre modélisé

par une approche linéaire ou non linéaire en fonction des besoins spécifiques.

e La commande a intégrateur conditionnel modifié et la commande a servocompen-
sateur conditionnel modifié ont été développées pour une classe de systemes non
linéaires MEMS. Dans cette these, elles ont servi a stabiliser le systeme de largage
apres la phase de lancement, mais aussi elles peuvent étre utilisées pour commander

un systeme non linéaire MEMS satisfaisant les hypotheses montrées dans la section

23



Résumé des contributions (in french)

3.4 du chapitre 3. Cette classe est en effet assez large, et inclu en particulier les

avions.

e Dans la conception de ces commandes, nous avons supposé que la sortie du systeme
et ses dérivées sont mesurables. En fait, nous avons parfois besoin dans la pratique
d’un observateur qui construit et fournit ces composants pour la conception du
controle. La technique d’estimation du type nonlinéaire ou linéaire peut étre trouvée

dans la littérature, et leur couplage aux systemes de commande doit étre évalué.

e La commande de linéarisation par bouclage dynamique nous a permis d’obtenir un
meilleur résultat par rapport a la commande a intégrateur conditionel ou la com-
mande a servocompensateur conditionnel modifié. Elle stabilise completement le
systeme de largage apres la séparation. Toutefois, ce controle dépend d’une bonne
précision du modele analytique et des coefficients aérodynamiques qui sont sous
la forme de tables obtenues depuis des tests dans une soufflerie. La précision des
modeles analytiques et leurs dérivées n’est pas assurée. Par conséquent, une nou-
velle technique qui profite de la performance de cette méthode et corrige des points
négatifs pourrait étre proposée, nous prenons pour exemple la commande de linéari-
sation par bouclage dynamique avec réseau de neurones. Ce serait une commande

adaptative et robuste.

e Pour toutes les commandes, nous avons supposé que toutes les variables d’état du
systeme sont mesurables, mais parfois ce n’est pas le cas. Il nous faut donc un
observateur qui permet de construire et de fournir I'estimation de ces variables pour
la procédure de la conception des commandes. Le choix des types d’observateur
dépend de la performance exigée et peut étre trouvé dans la littérature (voir par
exemple [23] et [24]).

e [’amélioration des résultats de simulation des chapitres 4 et 5 est nécessaire. Par
ailleurs, une comparaison avec d’autres méthodes de commande serait importante
pour démontrer la performance des méthodes proposées: la commande a intégrateur
conditionnel modifié, la commande a servocompensateur conditionnel modifié et la

commande de linéarisation par bouclage dynamique.

e Un test de ces commandes sur le modele réel reste toutefois nécessaire.
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General Introduction

THIS thesis is devoted to study and design a control system for stabilizing an air launch
system which is used to launch small satellites to the low earth orbit. This system is
composed of two stages: the first stage called carrier aircraft consists of an <unmanned>
aerial vehicle that carries the launcher which constitutes the second stage (rocket). We
focus particularly on the stabilization of the air launch system during and after separating
the launcher from the unmanned carrier aircraft at the desired drop point. The fact that
the carrier aircraft is a kind of unmanned aerial vehicle and that the launcher/carrier
weight ratio is large, results in many advantages for the satellites launch industry. However
it also causes the problem of instability of the air launch system after the separation phase.
The objective of the thesis is to model the air launch system and develop a control system

which the proof of stability is demonstrated formally.

The work of this thesis is inspired by the PERSEUS project (Projet Etudiant de
Recherche Spatiale Européen Universitaire et Scientifique) initiated by the CNES French
Space Agency (Centre National d’Etudes Spatiales) in which it intends to design an air
launch system for the purpose of launching small and even very small satellites called
nano-satellites to the low earth orbit. This system has a unmanned aerial vehicle as a
carrier aircraft to fly a launcher to the desired drop point instead of a standard or modified
aircraft with human pilot in board in the existing air launch system. It is clear that the
unmanned carrier aircraft is reusable. The proposed air launch system has the advantages
of a classical air launch system in respect to the surface for launching, in terms of flexibility,
weather constraints and launch costs. It also has advantages of a unmanned aerial vehicle
as carrier aircraft in terms of no life supporting kit and no human restrictions as tiredness
and safety. The air launch system is then a really ambitious and promising project in the
field of small satellites launching. Nevertheless there are still many problems of air launch

systems to be solved.

Automatic launching the launcher from the carrier aircraft at the desired drop point

requires not only an absolute guarantee of stability of the aircraft after this separation
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General Introduction

phase, but also the collision avoidance between two stages when the launcher mounts to
the desired orbit and the aircraft stabilizes to return to the base site. Moreover the high
weight ratio between airlaunch vehicle/carrier aircraft implies a high variation in mass,
inertia matrix and center of gravity beside the change in aerodynamic characteristics of the
air launch system after the separation phase. As a consequence a possibility of instability

of air launch system after this launching phase is really a big problem.

In the literature many authors have studied and proposed several approaches about
the control and stabilization system for the aviation field in general and for flight in
particular. As an example, NASA and her partners have worked on air launch system
through a number of projects with success. These air launch system projects where
the carrier aircraft is a standard or modified aircraft with human pilot in board, have
improved the launching technique for a class of small and very small satellites. Even
the recent air launch project named Stratolaunch initiated by Paul G. Allen has a new
carrier aircraft but with human pilot crew. In fact the air launch system without human
pilot in board is an interesting and difficult topic and the object of our work, but still
completely open at the moment. As a consequence the work in this thesis has studied
firstly how to mathematically model the air launch system during and after the launch
phase. Because of non availability of the real model in practice and in literature, we used
the approach of splitting the launching phase into three phases: before the separation,
during the separation and after the separation, with two models used for before and
after phases. An F-16 model is used after the separation because it was already used
for air-launch, and for the accessibility of its data and its aerodynamic characteristics
(which are under look up table) from wind tunnel test data. The thesis is followed by
studying a control system for the modeled air launch system. Since the modeled system
is nonlinear and has data under look up table, the first control strategy to be considered
is rather robust to the system model and is based on conditional integrator control. This
theory was developed by Khalil and co-workers for single input single output nonlinear
systems, and is extended for a class of multi-input multi-output nonlinear systems in
this thesis. The thesis has also developed the control of a conditional servo-compensator
control for a class of multi-input multi-output nonlinear systems. These controllers get
knowledge on a saturation (natural or not) on the control signal, and takes advantage on
that to behave, under some conditions, as an sliding mode controller (SMC). On other
conditions, when not saturated, the controller behaves as a dynamical feedback with an
important integral (servo-compensator) term. In this way the control scheme assures
the good properties of robustness and performance of sliding mode controllers for large

errors, while allowing a smooth behavior given by its continuity what avoids chattering
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The thesis has demonstrated formally the proof of stability of the air launch system by
these control techniques. Application of these controllers to the studied system results
in a good convergence of air launch system’s states to their equilibrium point through

numerical simulation results.

We continued the work by another control strategy that is based on the system model,
called Nonlinear Dynamic Feedback Linearization Control. It is shown that the flight
dynamics can be transformed into a linear form by the dynamic feedback linearization with
assumptions on the effects of moments and control surfaces on aerodynamic forces and on
thrust dynamics. A controller is then designed for the linear system by pole placement. A
proof of stability of air launch system’s states is realized for the general case considering
the effects neglected of moments and control surfaces on aerodynamic forces. Application
of this control to the studied system is also done and obtained a convergence of the system
through simulation results under Matlab/Simulink environment. The simulation results
also show a better results of Dynamic Feedback Linearization Control compared with the

results of conditional integrator and servo - compensator controls.

Because of the short duration of this thesis, these controllers which obtained a good
results on theory through simulations when applied to the air launch model, have still
not been used to practical experimentation in order to check the robustness of controllers

under the real environment.

In order to obtain the results previously presented, the thesis is structured and pre-

sented as the following.

The first chapter is devoted to present the advantages of air launching compared with
surface launching in small and very small satellites launch field. The different kinds of air
launch systems under projects of NASA and her partners are also introduced in this chap-
ter. These air launch systems based on carrier aircraft with human pilot crew, are simpler
(even if also considered in this thesis) from the air launch system serving as inspiration
for this thesis. For example PERSEUS/CNES student project uses an unmanned aerial
vehicle as a carrier aircraft and presents, as a consequence, several advantages compared
with the formers. However it also introduces several problems caused by the physical
changes of the air launch system when air launching. These problems are shown in the

end of the chapter.

The second chapter presents the model of air launch system. Several approaches
are proposed to model the air launch system in particular at the launching phase. The

chapter ends with a simple control technique called LQR control, that is applied to study
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the stabilization of the air launch system after the launching phase.

The third chapter develops the theory of conditional integrator control for a class of
multi-input multi-output (MIMO) nonlinear systems. The conditional integrator control
theory is extended for MIMO nonlinear systems from the existing control theory for single
input single output nonlinear systems in literature. In this case the control parameter is
considered under scalar form. An extension of the conditional integrator control called
servo - compensator is then developed in Chapter four. This control is built for MIMO
nonlinear systems with control parameters under matrix forms. These control systems
insure the globally exponential stability of a class of MIMO nonlinear systems under
several assumptions on system properties through a proof of stability for the case of
no saturation on control inputs. These control techniques which, are less based on the
system model, are then designed for and applied to our air launch system. Through several
simulation results under Matlab/Simulink, they guarantee a convergence of output states
of the studied system to their equilibrium values even in the case of saturation existence

on control inputs.

The fifth chapter aims to develop a control technique more strongly based on the
system model, called Dynamic Feedback Linearization Control. This technique allows
to describe the studied system dynamics with standard state vector given by position,
linear velocities, Euler’s angles and angular rates into a new linear model using a change
of variables. The new linear system can then be controlled by standard pole placement
techniques. The chapter ends with an illustration of convergence of all states after the

launching phase through simulation results.

The sixth chapter is used to compare the control strategies developed in the previous

chapters.

The chapter of conclusion resumes the main results of our works and opens perspectives

for possible future works.
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Chapter 1

Introduction

Contents
1.1 Categories of air launch systems . ... .. ........... 30
1.2 Air launch Problem . . . . . . .. .. ... ... 34
1.3 Modeling methods . . . .. ... ... ... ... 000 36
1.4 Control Problem . . . . . . . . . . i .. 37

Since the first Sputnik was launched successfully to orbit the Earth on its elliptical
path on October 1958, it was opened the space age and the U.S and Soviet Union space
race. Nowadays many satellites were launched around Earth, Moon and Mars for different
purposes such as communication, weather researches, Earth science. Most of these satel-
lites were launched from ground launch bases as Kennedy Space Center, Guiana Space
Center,etc. However, launching satellites requires a heavy lift for several tons of propel-
lant and hardware, and even humans to establish bases on Earth orbit or on Moon and
Mars. With the present heavy lift technology, launch costs are in the range of $6000
to $20000/kg. A development of reliable ultra light weight structures for launch system
and payloads can not reduce much more the launch costs of satellites. These high launch
costs don’t allow then every country’s government with budget limitations to mark their
presence on Earth orbit through their satellites. In the same way, it does not allow organi-
zations with budget limitations to realize their purposes of research objectives. A possible
solution is to use small and even very small satellites for these purposes. Unfortunately,
they are still expensive because of fix launch costs independent on the size and weight of
the launched devices. A quite logical solution in this case would be to pack several small
devices to be launched together. However this implies in many additional risks in the split

phase and is not envisaged.
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Chapter 1. Introduction

Another solution for this problem is: Air launch. Air launch means launching a
stage containing the satellite from a flying object to orbit Earth. Air launching provides
many advantages over ground launching. Firstly, air launch systems can fly to open
ocean, avoiding populated areas or ships and airplane paths. There is also a minimization
of weather constraints since the air launch systems can fly over or around the launch
constraint weather. As a consequence, the launching delay is much shorter than surface
launching that requires always a suitable launch weather as well as a suitable orbital
meeting. Air launch produces much less acoustic energy from the engine than a surface
launch vehicle since there is no reflection from the ground and air density. Air launch
reduces also the change of velocity (called delta V) that a launch vehicle must provide to
reach the orbit with a desired velocity. Using a reusable air launch system allows a great
flexibility and allows to deploy small satellites designed for specific tasks of communication
or data gathering in real time for urgent situations. However the air launch system limits

the size of air launch effective payloads.

1.1 Categories of air launch systems

Figure 1.1: Stratolaunch system credited (¢) Stratolaunch Systems, Inc.

An air launch system is a composition of two stages (see Fig. 1.1). The first stage
is a (unmanned or manned) carrier aircraft, which carries an air launch vehicle that
constitutes the second stage. The second stage may use specific nozzles and propellants
for the low outside atmospheric pressure altitude. The first stage is in most current air
launch projects taken from a standard or lightly modified airplane. We can classify air

launch systems into several categories according to the launch methods (see [25]):
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Captive on top: Spiral project, Saenger II project, Boeing Airlaunch

Captive on bottom: Pegasus, Yakovlev HAAL, Yakovlev Skylifter

Towed: Kelly Space’s Astroliner

Aerial Refueled: Pioneer Rocketplane, Andrews Space Alchemist

Internally Carried: BladeRunner, Vozdushny Start, SwiftLaunch RLV

Captive on top: This launch method has advantages in term of carrying heavy
payloads on the top of the carrier aircraft. But it needs a specific release system at
separation of the air launch vehicle from the carrier aircraft. We can take for example the
Spiral project or Saenger II project which use captive on top method (see [26]). However,

these projects are still not possible with our present technology.

Figure 1.2: Spiral Project 50-50 credited (¢)  Figure 1.3: Saenger II project credited (¢
Mark Wade Mark Lindroos

Another project named Boeing Airlaunch project ([27]) is feasible with present tech-
nology. It consists of a modified 747 Boeing and a space maneuver vehicle into the low

earth orbit or a conventional payload module on it.
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Figure 1.4: Boeing Airlaunch project credited (¢) Boeing

Captive on bottom: This launch method has advantages in term of easy separation
of launch vehicle from the carrier aircraft. But it limits the size of the air launch vehicle
under the carrier aircraft and it needs a high modification to the carrier aircraft. Typical
example of this launch method is the Pegasus project with over 40 launches. It consists
of a B52 or a L1011 airplane for the carrier aircraft and a launch vehicle with 3 stages.

Other projects like Yakovlev HAAL (High Altitude Aerial Launch) project and Yakovlev
Skylifter project are possible concepts with today’s technology ([25]).

Towed: The advantages of this launch method is low modification to the carrier
aircraft. However it has a problem of propellant boil-off and the air launch vehicle’s wings
sizing. An example of towed method is Astroliner project which is conceived by Kelly

Space and Technology from Nasa funding (see [28]). The project uses a Boeing 747 as
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tow airplane and expect to accelerate the air launch system to Mach 0.8 and then coast to

20000 ft. Although the Astroliner concept’s size is not possible with today’s technology.

Figure 1.6: Astroliner project credited (©) Kelly Space

Aerial Refueled: The advantage of this launch method is that it reduces the size of
carrier aircraft’s wings and landing gear. An example of this method is Pioneer Rocket
plane project from NASA funding and another project is Andrews Space Alchemist project
also funded by NASA for Andrews Space and Technology Alchemist.

Internally carried: The launch method provides many advantages compared with
previous methods. It needs little or no modification to carrier aircrafts since the air
launch vehicle is inside the carrier aircraft, failure problems on the air launch vehicle can
be detected and resolved directly inside the carrier aircraft. These concepts are able to
carry and release the air launch vehicle at higher altitudes compared with other methods.
A disadvantage of this method is that the air launch vehicle is sized and fixed inside the
carrier aircraft. There are many projects using this launch method in practice. Vozdushny
Start and BladeRunner projects are an example. But a typical example of this method is
the SwiftLaunch RLV project in which they use U.S Air Force C5 aircraft or a Ukrainian
An - 124 aircraft as carrier aircraft with no modification requirement.

In these projects, methods of captive on bottom and internally carried are more studied
for now. Other air launch methods can not be realized in the present instant and need an

advanced technology to develop the concept.

Recently, a new air launch project named Stratolaunch has developed by Paul Allen
and his colleagues (see Fig. 1.1 and [29]). This project aims to launch a payloads of 45360
kg to the low earth orbit. The project is ran in partnership with Scaled Composites for

carrier aircraft part, with Space X for the multi-stages booster part and with Dynetics
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for the mating and integration system part. The project started in 2010 and will do flight
tests in 2016.

It is important to remark that the carrier aircraft used in the previously presented
projects is an airplane with human pilot in board. Airplanes use the wing’s lift force to
fly. For this reason, higher (low altitude) air density benefit the flight while the aircraft
uses standard fuel to keep flying. A first stage (air launch vehicle) would use a much more
complex, dangerous and expensive fuel while in this higher air density. From a certain
altitude, air density is too low to be useful for an airplane, while not representing anymore
a drawback for air launch vehicle.

For all these reasons, some projects intend to use an unmanned aerial vehicle as a
carrier aircraft to carry the launch vehicle to a desired drop point. There are many
advantages in doing so. In the first place, safety of the pilot crew is assured because there
is no human lives involved during the delicate launching phase. In addition, since there
is no need for life supporting devices, weight of carrier aircraft is restricted to the strict
minimum or the carrier aircraft of the same weight can carries a heavier launch vehicle.
Finally, mission may take as long as necessary without human restriction as tiredness and
without human constraints required in other air launch system.

In this thesis, we consider an air launch system that uses an unmanned aerial vehicle
(UAV) instead of a standard aircraft with human pilot in board, and addresses in partic-
ular the launch phase. This air launch system may be very challenging since the second
stage (launch vehicle) may be almost as heavy as the first stage (UAV). As a consequence,
the stabilization task of the air launch system is complex during and after the launching
phase. So we develop a series of control systems like a Conditional Integrator Control,
a Conditional Servo-compensator control or a Dynamic Feedback Linearization Control
and investigate if they can globally stabilize the carrier aircraft after the launching phase
without any collision between the carrier aircraft (UAV) and the launch vehicle. Even if
this thesis is dedicated to the unmanned case, its results are also valid to the manned case,
where it will behave as a pilot assistance system. We will further introduce the problem

in the following section.

1.2 Air launch Problem

To air launch a stage from the carrier aircraft causes a modification to parameters of
the air launch system such as mass, inertia matrix, center of gravity and aerodynamic
characteristics after the separation phase. As a consequence it changes the equilibrium

point of air launch system. The larger the air launch vehicle’s mass compared with the
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carrier aircraft, the larger its impact on the carrier aircraft dynamics after the separation
phase. B52 aircraft and missiles on it have a small ratio between their masses, then the
release of missiles from B52 aircraft does not result in any effect on the stability of B52
aircraft after the launching phase. The previously mentioned projects using B52 and
Boeing 747 which release a conventional launch module to orbit, and have a small weight
ratio air launch vehicle/carrier aircraft, the separation phase does not have impacts on

the stability of air launch system after the separation phase.

Figure 1.7: Equilibrium of forces on an Aircraft

The object of the work in this thesis is an air launch system which has a unmanned
carrier aircraft (an UAV) as heavy as launcher. The ratio launch vehicle/UAV is much
larger than that of current air launch system with human pilot. It is then necessary to
study the stabilization problem of the UAV after the launching phase.

Let us consider a perfect air launch phase at instant ¢y,. At instant ¢, the air launch
system (UAV + launch vehicle) is in equilibrium, so we have gravity of (UAV + launch

vehicle) equal to the lift force, that means:

{ W_ = (m.+my)gcost = L (1.1)

where W_ the weight force of air launch system, m, is the UAV’s mass, m; is the launch
vehicle’s mass, S the wing area, V' the airspeed of the air launch system, L the lift force,
p the air density, and Cp(-) is the aerodynamic coefficient of the lift force depending on

pressure and states of air launch system. 6 is the pitch angle.
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At instant ¢§, that follows the launching phase, the lift force will be the same as instant
ty . The weight is now only that of UAV:

{W_ =mcgcosf # L (1.2)

Because of this reduction of mass, the carrier aircraft will gain altitude and will change
its equilibrium point (in particular the angle of attack). The carrier aircraft will possibly
be in a dangerous situation, and even be unstable. Moreover the impact of the sepa-
ration phase may produce a force and then a torque on the carrier aircraft, this torque
could destabilize the carrier aircraft with many unpredictable results. Finally, all these

phenomena may cause a collision between the carrier and the launcher.

1.3 Modeling methods

Modeling an air launch system during the stage separation is a challenging difficult prob-
lem because of the complexity of the system, the interactions between two stages and the
availability of aerodynamic data of air launch system. Since the ratio air launch vehi-
cle/carrier aircraft is large, the nonlinear air launch characteristics of air launch system
are also a difficult point.

There is a method to model and simulate the stage separation using ConSep simulation
tool applied to a Two Stages to Orbit (TSTO) vehicle called a bimese vehicle since the
geometry of both stages are identical. This method uses the aerodynamic coefficients from
wind tunnel test data of two stages with interpolation technique during the separation
phase (see in a series of papers [2] and [3]). Reference [4] uses other tool to model and
simulate the stage separation, which is Constraint Force Equation/ Optimite Simulated
Trajectories II (CFE/POST II) tool. These methods require a specific tool that is available
in certain specific laboratories and centers such as NASA, etc.

For the purpose of stability study and modeling of air launch system during the launch
phase, another method is proposed in my thesis that consists of two models for three phases
of launching procedure. The first model corresponding to the air launch system before the
launching phase (i.e. the carrier aircraft with the launcher still attached to it), the second
model corresponding to air launch system after the launching phase. The three phases
correspond to the system before, during and after the split. This method is implemented
for simulations on a mathematic model under Simulink/Matlab with aerodynamic data
from wind tunnel tests. This procedure is simpler and does not require a specific tool

anymaore.
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1.4 Control Problem

The flight control problem has been tackled with many approaches during the last decades.
The first and simplest approach consists of a simple PI controller. This type of controller
is applied to a linearized model of flight at several operating points. This control struc-
ture needs then a gain schedule for the whole operating points of the aircraft. Another
approach is studied to improve the flight control performance using H.,/p synthesis (see
[5]), it is also designed for the nominal model on a number of operating points of the
flight. Parameter p improves the performance of controller against parameter variations
of aircraft. These approaches have contributed solution of the the flight control problem,
but they need a linearization of flight model as long as a gain schedule for every operating
point. That limits the performance of the controller in particular for the case of flight
with extreme flight condition such as hight angle of attack, etc.

Several other approaches have been developed for the flight control in the extreme flight
conditions such as Dynamic and Time Scale Separation [6], Nonlinear Inverse Dynamics
[7], Backstepping Control [8], More recently, neural network mixed with backstepping was
also proposed by [9] for the flight control.

However to our best knowledges, a control design for air launch system focusing on
the launching phase was not studied until now. In [3], [2] and [4], a simple PI controller
is applied to the two stages of the air launch system but the authors did not investigate
the use of this control for the launch phase.

As a summary, the challenges raised by the air launch system during the separation

phase are:
e A control design where the nonlinearility of the air launch must be taken into account
e A multi-input multi-output system
e Stabilization of the air launch system after the separation phase must be assured

e Constrained Control because of physic limitations of control surfaces (aileron, ele-

vator and rudder surface)

Besides, concerning the point of view of control design, the following requirements,

when designing the control strategy, are important as well:

e Characteristics of the flight’s data (data of aerodynamic coefficients of force and

moment in tabular form)

e Adaptivity for various flight conditions
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e (ollision avoidance between the air launch vehicle and carrier aircraft

In the following, we present the control approaches used in this thesis. The first
two control techniques are very robust, and as a consequence are rather independent of
system’s model. The third one is more model based, and requires better knowledge of the

system, in exchange it allows better flight performance. These three control theories are:

e MIMO Conditional Integrator
e MIMO Conditional Servo-compensator

e Nonlinear Dynamic Feedback Linearization

Conclusion

The objective of this chapter was to present the existing categories of air launch systems
found in literature. An air launch system with unmanned carrier aircraft, that is the object
of this thesis, is introduced in this chapter. This air launch system has several advantages
compared with current air launch systems. However it results in linked specific problems
that are also detailed in this chapter. The problem of modeling the air launch system
is the object of Chapter 2. The air launch problems ask us to study and design a new
control system for this system in Chapter 3, Chapter 4 and Chapter 5. Chapter 6 is for

control comparisons and Chapter 7 for the conclusion and perspectives.
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System’s dynamics and Modeling
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2.1 Introduction

Satellites launching is a strategical activity today. Launchers are able to carry from micro-

satellites of some tens of kilograms up to 10 tons in the case of French Ariane 5 launcher.
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Recently new applications have called upon very small satellites mostly used in groups
(see [30]). These very small satellites need a new class of launchers to put them on orbit
since launching implies in many fixed costs that are independent of the size and weight

of the launched device.

A more efficient solution in this case is to use the procedure of airlaunch (see [31], [32]).
It consists of using a two stages launching system. The first stage is composed of an air
vehicle (manned or unmanned) that carries (inside, beneath or above) a launcher which
constitutes the second stage (see in Fig. 1.1 as an example). There are many advantages
in air launch as presented in Chapter 1, mainly because there is no need for specific large
non populated launching areas and it provides a great flexibility since instead of waiting
for specific launch windows (to attain desired orbits), the vehicle may be flown to a better
suited launch point, with a better alignment with the desired orbit. There have been tests
using a C-17 airplane in QuickReach project (see [33], [34], [35] and [36]), a F15 airplane
in Rascal project (see [37]), a B52 airplane in Proteus project and L-1011 in Pegasus
project (see [25]) as manned carrier aircraft without or little modification. Unlike them,
some others like the PERSEUS project are interested in an air launch system using a
unmanned carrier aircraft to fly the air launch vehicle to a drop point for example. This
idea presents several advantage compared to a classical air launch system in terms of
safety, and also because there is no need for life supporting kit and because there is no

human restrictions as tiredness in a long flight.

The present chapter considers an air launch system that uses an Unmanned Aerial
Vehicle (UAV) instead of a standard aircraft with a human pilot inboard, and addresses
the launching phase. It intends to introduce modeling and a robust controller for this
delicate procedure. In fact, air launch may be very challenging since the air launch vehicle
may be almost as heavy as the UAV. This means that the aircraft will instantaneously
lose almost half of its mass. Current air launch systems present a much smaller ratio
launcher/aircraft and rely on human pilot to stabilize the aircraft during and immediately
after the launching instant. Unlike those systems, this air launch uses an UAV, and as
consequence, the stabilization task is much more complex during and after the launching
phase with a much more adverse mass ratio. To the best of our knowledge, it does not
exist an equivalent research line, and then there is no results in the literature considering

this problem (modeling and control).

Chapter 2 is organized as follows: in section 2.2, the necessary mathematical tools
are presented. In section 2.3, we describe the nonlinear mathematical system model, two
approaches of air launch phase are also presented in this section. An LQR control design

is discussed in section 2.4, and its application to the full system model. The chapter is
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completed by computer simulations and conclusions.

2.2 Mathematical Tools

In this section the nonlinear dynamical model of an aerial vehicle is described. This
description is based on [10], [11], [12].

2.2.1 Reference frames

Figure 2.1: Reference frames on a flight

In order to describe the equations of an aerial vehicle’s motion, it is necessary to
define some reference frames on which the motion is described. The most commonly
used reference frame is Earth fixed reference frame Rpg, see Fig. 2.1. In the Earth fixed
reference frame Rpg, the Zg axis points to the center of Earth. The Xg axis is in an
arbitrary direction (to the north for example) and Y axis is perpendicular to the Xg
axis. This reference frame is used to describe the position and orientation of the flight.

Another reference frame is the body fixed reference frame Rpg, the origin of this ref-
erence frame is at the flight’s center of gravity, the Xp axis points forward through the
aircraft nose, the Yp axis through the right wing and the Zp axis downwards.

The coordinate transformation to the body fixed reference frame from the Earth fixed

reference frame is a matrix which is composed of three transformations, by the so called
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Euler’s angles: yaw (1)), pitch(€) and roll(¢) angles. Two intermediate systems are needed

to complete this transformation (see Fig. 2.2).

Figure 2.3: Body fixed reference frame and Wind axes reference frame
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Rxpyezs gty Rx,viz; T Rx,v,7, gty Rxpypzg (2.1)

The first coordinate transformation from the Ry reference frame to the intermediate
frame R; is through the yaw angle ¢) around Zp axis.

The second coordinate transformation is around Y; axis through the pitch angle 6 to
the second immediate reference frame.

And the last transformation to the body fixed reference frame through the roll angle
¢ around X, axis.

Multiplying the three matrices it is obtained the Euler transformation matrix from
Earth fixed reference frame to the body fixed reference frame.

Two other reference frames are useful for describing the flight dynamics, the stability
axis reference frame Rg and the wind axis reference frame Ry (see Fig. 2.1).

The stability axes reference frame: Xg axis is parallel and in the direction of the
projection of velocity vector V on the symmetric plane XgYp of the flight. The Yy axis
stays with Yp axis. The transformation from XgYgpZp frame to XgYsZg frame is by a
rotation around Yy axis through the angle of attack a.

The wind axes reference frame: Xy, axis is parallel and in the direction of velocity
vector V of the flight. It is a transformation from stability axes reference frame XgYsZg

to wind axes reference frame Xy Yy Zy by a rotation around Zg axis through the sideslip

angle 3.

2.2.1.1 Flight variables

In order to study the flight dynamic we determine some assumptions for the flight:

Assumption 2.2.1 The flight is a rigid body that means the distance of any two points

1s fized during the time interval over which the motion is considered.
Assumption 2.2.2 The FEarth is flat and non rotating.

Assumption 2.2.3 The mass is constant and the mass distribution is symmetric to the
XpOZg plane of the flight (i.e. left and right sides of the aircraft are identical). It implies
that inertia on OXgYp plane OYgZg planes of the flight are zero. This assumption is

necessary to apply Newton’s and Euler’s motion laws.

Under these assumptions, the flight is a solid body with 6 degrees of freedom. The

flight dynamics can be described by its position through position vector n; and velocity
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vector vy and by its orientation through the orientation vector n; and the angular velocity

Vs.
x
m = | y | is the position vector expressed in the Earth fixed reference frame Rp.
z
u
vy = | v | is the velocity vector expressed in the body fixed reference frame Rp
w
where u is the longitudinal velocity, v the lateral velocity and w the normal velocity.
[ ¢
1o = | 6 | is the orientation vector where ¢ is the roll angle, 6 the pitch angle and
| ¢
1 the yaw angle.
[ p
vy = | ¢ | is the angular rates vector where p, ¢ and r are the roll, pitch and yaw
|
angular velocities.
V
« is the airspeed vector in wind reference frame where V, a and § are the
5

airspeed, angle of attack and sideslip angle respectively.

These vectors can be illustrated in the Fig. 2.4.

Roll

Figure 2.4: Orientation and rotation vectors

The change of velocity expressed in R to that expressed in Rp is obtained through

the transformation:
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i = Tg/Bl1
where
coscosf costsinfsing — siny cosp  cossind cos ¢ + sin ) sin ¢
Tp/p =] sintcosf sineysinfsing — cosycos¢ sinpsinb cos ¢ + cos ) sin @

sin cos @ sin ¢ cos f cos ¢
(2.2)

In the same way, the change of velocity expressed in body fixed coordinate system Rp

to the wind axes coordinate system Ry is obtained through matrix:

cosacosS sinf  sinacosf
Tpw =] —cosasinfl cosff —sinasinf (2.3)

—sin « 0 Ccos &

We remind that the coordinate transformation of reference frame Rg with respect to

the reference frame Rp is consists of three rotations (see Fig. 2.2):

e Rotation of Rg reference frame to the intermediate frame R; through the yaw angle

1 around Zg axis.

e Rotation around Y] axis through the pitch angle 6 to the second intermediate ref-

erence frame Rs.

e Rotation to the body fixed reference frame through the roll angle ¢ around X, axis.

This can be expressed as:

Rp/Rg = Ri/Rp + Ry/Ry + Rp/ R,

W

This rotation vector of body fixed reference frame Rp with respect to Earth fixed

reference frame Ry can be stated:

&G =2y + Y, + 6Xp (2.4)
and expressing the vector in body fixed coordinate system w = (p, q,7)” = v», that means:

P 10 —sinf b
q| =10 cosp singcost 0
0 —sing cos¢cost w
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It implies that by inversing the matrix, obtain the Euler’s angles dynamics through

the following differential equations:

b 1 singtanf cos¢tant P
O | =10 coso —sin ¢ q (2.5)
U 0 sing/cos@ cos¢/cosd r

Remark 1 The nonlinear differential equations need the nonsingularity of matriz in

(2.5), which implies that 6 is different from 7 /2 4+ km where k is an integer.

2.2.1.2 Equations of motion of flight

In this section we will state the Newton’s second law and Euler’s law for a rigid body. At
first we introduce the external forces and external moments.

Definitions:

T = [T1a, T1y, le]T is the external force acting on the body of the aircraft in the body
fixed reference frame.

Ty = [Toz, T2y,ng]T is the external moment acting on the body of the aircraft in the
body fixed reference frame.

Force Equation: The Newton’s second law states that the sum of all external forces
acting on a body is equal to the time rate of change of its momentum, that means in Earth

fixed reference frame, we have:
d(mﬁl)
=|—- 2.6
=[5, =

It is interesting to study the velocity 14 in body fixed reference, a change of reference

frame from R to Rp is done as (see []):

{d(ql)

i),

- L Y@ X = {d(m”)]B + Q(mwy) (2.7)

where w is the rotation vector and € is defined as:

0 —r g
Q= r 0 —p
-q p 0

Expressing the previous equation on each axis of the body fixed reference frame, we

obtain:
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T, = m(t—vr+ wq)
Ty = m(0—wp+ur)
7. = m(w—uq+ vp)

where 71,, 71, and 71, depend on weight force W, aerodynamic force R and thrust force
E.
Thrust is assumed to be through the Xp axis, then

E, =T
E, = 0 (2.8)
E. =0

The weight force W can be expressed in the Rp frame with g the gravity constant:

W, = —mgsinf
W, = mgsin¢cosd (2.9)
W, = mgcos¢pcosb

and the aerodynamic force vector is F = (F,, F,, F\,)T in which F,, F, and F,, are function

of aircraft’s states:
e total velocity (airspeed) of the vehicle (V)
e geometry of the vehicle: wing area S, wing span b and mean acrodynamic chord &

e orientation of the flight angle of attack a and sideslip angle 5, angular rates p, q

and r
e control surfaces o of the aircraft: aileron ¢,, elevator §, and rudder 9,

The standard aerodynamic forces can be expressed under the form:

Fu = qSCw(a7ﬁ>p7Q7r757"'>
Fv = qSCy<aaﬁap7Q77n7 57 t ) (21())
Fw = qSCz(aaB7paqar76a'”)

where ¢ = 1/2pV? is the aerodynamic pressure. C,, C, and C, are aerodynamic coeffi-
cients obtained from wind tunnel data tests.

From these definitions, we have the complete force equations:

F,+T —mgsing = m(u—vr+wq)
F,+mgsin¢cosd = m(0— wp+ ur) (2.11)
Fy,+mgcospcosf® = m(w— uq+ vp)
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Moment Equation: The Euler’s law states that the summation of all external
moments acting on the body is equal to the time rate of change of its angular momentum,

so that in Earth fixed reference frame it is expressed as:

E::{dﬂﬁﬁ]E (2.12)

dt
In body fixed reference frame, it can be rewritten:

Ty = [@} ; + & x (Ith) = [%1 . + Q1) (2.13)

Because of the symmetry of the vehicle with respect to OXgZp plane, inertia matrix

has the form:

Izz 0 [a:z
I=| 0o I, O
_]mz O Izz

The external moments are those due to aerodynamic and thrust forces. In this case
we suppose that the moment due to thrust force can be neglected. The aerodynamic

moments are expressed as:

L = q_SBC[(Oé,B,p,q,T',(S,"')
M = qSéCm(aaﬁapaCbrvév'”) (214>
N = qSl_)On(a7ﬁap7Q7T757'”)

Expanding the previous equation on each axis of Rp reference frame, results in the

complete axis moment equation:

p o= m[(lyy]zz — 12, —12)rq—L.(Is + I, — I,y)pq + I..L — I, N]
o= e (<Ll + 12 + 12)pq + Lo Loy + Lz — Ly)rq + LN = 1,1
(2.15)

2.2.1.3 Summary of flight’s dynamics

The equations of motion presented in the previous sections can be rewritten as a system

of 12 equations to describe the flight dynamics.
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Force Equations of motion:

(

1
Uw=1v—qw—gsinf+ —(F,+7T)
m

1
U =pw —ru+ gsinpcosf + —F,
m

1
W= qu—pv+gcospcost + —F,
m

\

Equations of motion:
r . 1
—I,.N]

[(Iyy[zz - Iz22 - Ia%z)rq - Imz(lx:c + 1. — ]yy)pq +1..L

1
G = (e~ Lpr + 1o — 1) + M
[yy
: 1
"o ]m:Izz——p[(_[xnyy . [Z2Z - [§Z)pq + Iwz(lmc + 1., — Iyy)rq + 1. N

—I,.L]

Fuler’s angles dynamics:

¢ =p+ tanb(gsin ¢ + 7 cos @)
ézqcosgb—rsingb

b= gsin¢ + rcos¢

cos

Aireraft’s position dynamics:

(25 = ucoscosf + v(cos ) sin O sin ¢ — sin 1) cos @)
+ w(cos 1sinf cos ¢ + sin ) sin ¢)

Yp = usiny cos # + v(sin ¥ sin 0 sin ¢ — cos 1 cos ¢)
+ w(sin ¥ sind cos ¢ + cos Y sin @)

| g = usin® + v cosfsin ¢ + w cos b cos ¢

(2.16a)
(2.16D)

(2.16¢)

(2.17a)

(2.17b)

(2.17¢)

(2.18a)
(2.18b)

(2.18c¢)

(2.19a)

(2.19D)

(2.19¢)

It may be more convenient to express the force equations in wind axes reference frame,

it means the transformation (see Fig. 2.3):

u =V cosacos 3 V =Vu? + 0?4+ w?
v="Vsing & o = arctan(w/u)

w = Vsinacos f = arcsin(v/V)
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The force equation of motion can be expressed in wind axes reference frame as:

V _ uttvitwd
= Ui

Va

© o uw—wi
B _ oVa—Vuvu
T VZcosf

Substituting (1, 0, w) gives another form as follows:

(V _ cosozcosﬁ[T LR+ sinﬂFv n sinacosﬁFw (2.22)
m m m
+ g[— cos accos B sin @ + sin [ sin ¢ cos 6 + sin « cos [ cos ¢ cos 0]

sin « COS &

d:—Cosatanﬂp—l—q—sinatanﬁr—W(T—FFu)—l—m w (222b)
+ Veosd [sin « cos € + cos a cos ¢ cos 0]
. . cos asin 8 cos 8 sin arsin 3
_ _ _LosesmPin L F, — £, 2.92
[ = sinap — cosar 7 T+ F.,) + — v (2.22¢)

+ %[Cosasinﬁsine+cosﬂcosesin¢ — sin asin 3 cos ¢ cos 0

2.3 Modeling

The air launch phase can be described by the variations in mass, inertia and aerodynamic
coefficients of air launch system before and after launch phase. Modeling this phase
requires a large amount of data and previous knowledge about the real system, which
is actually not available in the case of study. However, it can also be represented as a
hybrid system composed by two (or three) continuous models that are switched. These
models represents the system before, (possible during) and after the separation phase. In

the present work we have adopted this strategy, we have considered three phases.

1. before the separation = a first aircraft model (representing the UAV and the rocket)

is in a stable operating condition

2. during the separation = a second aircraft model representing only the UAV, starting
on the previous operating condition is disturbed by impulses on forces and moments.
These disturbances are inside a time interval T},; and represent a not perfect sep-
aration. Furthermore the initial conditions, inherited from the first phase, are not

an equilibrium point for the second aircraft model.
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2.3. Modeling

3. after the separation = the disturbances stop (UAV and rocket are not in physical
contact anymore). It can be shown that the effect of launching the rocket from the

UAV impacts most the lift force, and the roll and pitch moments.

From this strategy, we have two approaches to model the air launch phase that we

present in the following section.

2.3.1 Initial Condition Approach

As a first approach to model the system, we adopt a hybrid technique that considers the
air launch as a switch between two continuous models, one previous the launch phase and
one following it. The switch itself is considered as instantaneous, but imperfect. In this
way impulses on the forces and moments affect the aircraft, resulting in possibly large
initial conditions for the second model, which is taken as an F-16. The resulting control
task may be stated as to design an stabilizing controller for this second system (after the

switch) with possible large initial conditions.

2.3.2 Perturbation on aerodynamic force and moment approach

Aircraft

Figure 2.5: The launcher attached to the aircraft carrier in the worst case

In a second approach to model our system, we have also considered the air launch as

a switch between two continuous models:

1. before the separation = the first model is considered at a stable operating condition

o1



Chapter 2. System’s dynamics and Modeling

2. during the separation = the launch phase itself happens during an interval T;,,,.
During this interval the second model is used, but disturbed by constant aerody-
namic force and moment representing an imperfect launch of the rocket from the

aircraft

3. after the separation = the disturbances stop, and the second model continues to be

used

In order to make our study as much general as possible, the first model is taken as an
F-16 with twice its normal mass, while the second model is taken as the complete F-16
model. It is important to remark that the first model, in practice, is only used to compute
the initial conditions. for the separation phase.

It can be shown that the effect of launching the rocket from the carrier aircraft disturb
mostly lift force, drag force and pitch and roll moments. We suppose that these disturbing
forces and moments are constant during the interval T}, (see Fig. 2.6). We call Fu,, Fu,,
L, and M, the disturbances on the lift force, on the roll moment and pitch moment

respectively (see Fig. 2.6).

Perturbation on the drag force F_(N) Pertyrbation on the lift force F_ (N)
x 10 X x 10 Z
0 . : . 8
-05 6
-1
4
_2 . 2
_2'50 Tint 0_‘5 1 1.‘5 2 00 Tt 0-5 1 15 2

Perturbation on the roll moment L (Nm) Per}umation on the pitch moment M (Nm)
0 4

-2000 : : 1 3
-4000
2
-6000

-8000 d

-10000

: ‘ : 0
0 T,05 1 15 2 0 T,,05 1 15 2

time (s) time (s)

Figure 2.6: Perturbation on aerodynamic forces and moments

We suppose that:
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2.3. Modeling

the perturbation on lift force during T}, is equal to the air launch vehicle’s mass,

that means F,,, = mg cos 0.

the perturbation on drag force is F,,, = —Psinfly = —mgsinf, where 0y is the

initial pitch angle of the first model at the launching phase.

the perturbation on pitch moment during 7;,,; is an worst case that is represented by
the rocket that remains attached to the aircraft by only one end during 73,,;, applying
a rotational movement to the aircraft, so a moment with value M, = mgl, cos /2

where [, is the rocket length.

the perturbation on roll moment during 7},; is small because of the rocket shape
(long and thin).

the model following the launch phase is the F-16 model. Its initial condition is the
state at an equilibrium point of the model previous the launch phase that is the

F-16 model but with twice its standard mass.

2.3.3 System Model

Following this strategy, the F-16 aircraft in the instant following the launching phase has

dynamics of a flying object as in (2.16), (2.5) (2.18) presented in the previous section.

We are interested in motion of velocity vector, Euler’s angles and angular rates only. The

carrier aircraft after the separation phase can be summarized as:

(

U=rv—qw— gsinf + %(Fu—i-T)

U =pw —ru+ gsin¢cosl + %Fv

W= qu — pv + gcos¢cosl + %Fw

D= e (G L = I = 1207 = L(los + Lo — L,)pg + L.L — L.V}

i = 1L — L)y + L (5 — 1) + M]

F = e (Lo lyy + 12+ )0 + Leo(Lng + Lo — Iy )rq + Le N — 1,21
¢ = p+ tan6(gsin ¢ + r cos ¢)

0 = qcos ¢ — rsin ¢

) — gsingtrcoss

L cos 6

In the present case, it is better to represent the state variables in the wind axes reference

frame OXyw Yw Zw because of the measurability of these state variables. We write again
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Chapter 2. System’s dynamics and Modeling

the dynamics of this carrier aircraft:

¢

o'zz—cosatanﬁerq—sinatanﬁr—%(TJrFu)Jr% w (2.23a)
[sin a cos O + cos a cos ¢ cos 0]
V cos
b= si cos cosasinﬁ[T+F]+cosﬁF sinasinﬁF (2.23b)
=sinap —cosar - ——— - .
P mV “ mv "’ mV v
+ %[cosasinﬁsine+cosﬁcos€sin¢)— sin asin 3 cos ¢ cos 0]
. COS (¢ COS sin sin « cos
V= J[T + F,]+ ﬁFv + JFU, (2.23¢)
m m m

+ glcos accos Bsin O + sin B sin ¢ cos 6 + sin a cos 5 cos ¢ cos 0]

. 1
p= m[(lyylzz — 12, —12)rq— Lo(Ipw + L. — Ipy)pg + L.L — I,.N]  (2.23d)
1
G = 7 (Les = Laa)pr + Loa(p® — %) + M] (2.23¢)
9y
1
r = m[(_fxmfyy + Ifz + Igz)pq + I (Ipg + Lo — Iyy)rq + Ina N — I, L] (2.23f)
é:p%—tane(qsingf)—{—rcos(b) (2.23g)
O =qeosg—rsing (2.23h)
R (2.231)
cos 0

The aerodynamic forces (F,, F,, F},) and moments (L,M,N) are function of all the
considered states. In this model, these aerodynamic forces and moments are under look-
up table from wind tunnel data measurements as may be found in [13]. Finally, the control
inputs are respectively the aileron (d,), rudder (d,) and elevator (J.) angles, in addition
to thrust (7).

In particular, we use the low quality mode of the F-16 model, and the aerodynamic

data is interpolated and extrapolated linearly in simulation from tables found in [13].

2.4 LQR control

A consequence of the considered model is that the control design for the air launch phase
becomes quite difficult because this is a nonlinear model and its aerodynamic coefficients
are under tabular form.

In order to simplify our study, we start our thesis with a control strategy that is robust
and simple to implement, and will be used as a first approach to control and stabilize the

air launch system, which is a simple LQR controller.
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2.4. LQR control

2.4.1 LQR control design

Consider a linear system under state space form:

{:t:A:B—I—Bu r€R" ue R (2.24)

y=Czx ye R"™

where x is the system state, y the system output and u the input. A € R"*", B € R™™
and C' € R™*".

If (A, B) is stabilizable and for @@ € R™" positive semidefinite matrix, R € R™*™
positive definite matrix, the LQR control law has the from (see [38],[39]):

u=—Kzx (2.25)
where K = R™'BP with P the positive semidefinite solution of the Riccati equation:

AP+ PA+Q—-PBR'BTP=0 (2.26)

2.4.2 Application to Air launch system

We will linearize the air launch system defined in (2.23) at an equilibrium point. Note
that the dynamics of airspeed (V') is much slower than any other state variables and it is
controlled by thrust force, we then assume that airspeed of the flight and the thrust are
constant.

The linearization of (2.23) except the airspeed’s equation (2.23) was done through its

variables:

e angle of attack («) and sideslip angle (5)

e Euler’s angles (¢, 0, )7

e angular rates (p,q,r)7

The equilibrium point of the second model, a F - 16 in our case, is (V, h) = (154m/s, 5000m)
which corresponds to the trimmed angle of attack @ = 4.6°, pitch angle § = 4.6° sideslip
B = 0° and ¢ = 0° and to trimmed control surface states: aileron 6, = 0°, elevator
0. = —2.5°, rudder 6, = 0° and all angular rates p, g, ¥ are zero.

A linearization of the second model at this equilibrium point gives us the linearized

system:
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where we define:
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2.5. Simulation and Results

This system can be rewritten symbolically as:

Af + Bi
{ S (2.28)
C

38
I

<
I
ST

It is easy to check that (A, B) is stabilizable, then an application of LQR control to

this system gives:

where K is calculated under Matlab for given R and Q.

—-0.2294-11.2 -0.2 -7.7 -13.7-0.0-0.4
K=107-19 03 -383 0.0 0.3 —1.0 0.0 (2.31)
-0206 19 —-01-124 14 —-0.0-0.1

and

100 0 0 0 0 0 0

0 500 0 0 0 0 0

0 0 1000 0 0 0 0 500
Q=10 0 0 2000 0 0 0|;R=1]1010

0 0 0 0 1000 0 0 005

0 0 0 0 0 1000 0

0 0 0 0 0 0 1

2.5 Simulation and Results

In the following simulations, we have applied the LQR control for stabilizing studied
states of the second model to its equilibrium point from several initial conditions in the
first modeling approach and from impulses on aerodynamic forces and moments for the
second modeling approach. This illustrates the performance of the LQR control face to

several launch conditions. Our control task is to:

e stabilize the states of the second model to its equilibrium point, which is is considered
on the operating point (V' = 154m/s,h = 5000m) corresponding to the trimmed
angle of attack a,, = 4.6°, sideslip 3, = 0°, roll angle ¢,, = 0° and to trimmed control

surface states: aileron 9, = 0°, elevator §, = —2.5° and rudder 6, = 0°.
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Chapter 2. System’s dynamics and Modeling

e guarantee the physical limitations of the actuators (]d,] < 21.5°, || < 25° and
|6, < 30°).

e agsure the flighting envelop of the F-16 model:

— limit of rates 60°/s for pitch and yaw rates, and 90°/s for roll rate.

— limit angles |[360°| for roll and yaw angles and |90°| for pitch angle.

The parameter of the controller u = — KT is:

—-0.2294-11.2 -0.2 -7.7 -13.7-0.0—-0.4
K=107-19 03 =383 0.0 0.3 —1.00.0 (2.32)
-0206 19 -01-124 14 —-0.0-0.1

In order to control airspeed, we design a simple PI controller for the thrust to regulate

the airspeed of the system. Its form is:
T =—kp(V = Viey) = kr(V = Viey)

where Vs is the airspeed reference, kp = 711.0 and k; = 6.2.
In the control cases, we suppose that there are measurement errors on the state variable
of the the system. These errors are defined as white noises perturbing the state variables

as seen in the Fig. 2.7.

Measurement error of Euler's Angles (deg)
10 T T T ! !

0 5 10 15 20 25 30

Measurement error of Angular Rates (deg/s)
20 ' ! ! T T

i i i
0 5 10 15 20 25 30
time (s)

-20 i i

Figure 2.7: Measurement errors of the state variables
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2.5. Simulation and Results

In the following section we will present the simulation results for two modeling ap-
proaches for the launch phase. First is the resulting initial condition, and second is

impulses during a Tj},; time interval.

2.5.1 Initial Condition Approach

As explained in section (2.3.1), this approach only uses the second model. The separation
phase results in large initial conditions in respect to the equilibrium point (angle of attack
a = 4.6°, sideslip angle § = 0° and roll angle ¢ = 0°) on the second model, which is an
F-16.

For our study, we consider three sets of initial conditions:

First case corresponds to a small initial condition error from the trimmed ones of the
aircraft after the phase of drop, with an angle of attack a = 8.0°, sideslip # = 5° and roll
angle ¢ = 10°.

The second case is a medium error between the initial and trimmed conditions with
a = 18.0°, sideslip f = 10° and ¢ = 20°. The last case corresponds to a large initial
condition with a = 33.0°, sideslip # = 20° and ¢ = 40°. In the following, one may see

how the system responds to these three cases.

Fig. 2.8 shows the convergence of the controlled outputs with the LQR controller
for different initial conditions, in the three cases distinct from the equilibrium point.
The dashed black line indicates the controlled outputs of system in the first case, the
continuous line is the controlled outputs for an medium error case, and the large error

situation corresponds to the dash dotted line.

Fig. 2.9 represents the behavior of other states of the system. In the left side, one can
see that the angular rates return to the origin. In the right side, it is shown how Euler’s
angles converge. The yaw angle that illustrates the lateral motion, is left free (the airplane
can go in any direction), but in this case it is converged. In Fig. 2.10 it illustrated the

input controls for the three studied cases.
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Angle of attack (deg)
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Figure 2.8: Angle of attack «, sideslip 5 and roll angle ¢ stabilized by LQR controller

Roll rate (deg/s) Roll angle (deq)

time (s) time (s)

Figure 2.9: Angular rates and Euler’s angles by LQR controller
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Aileron {deg)

Rudder (deg)

time (s)

Figure 2.10: Aileron ¢,, elevator . and rudder 9, of LQR controller
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Figure 2.11: Angle of attack «, sideslip S and roll angle ¢ unstable by LQR controller
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Aileron (deg)
0 ! ! ! ! ! !

time (s)

Figure 2.12: Aileron ¢,, elevator d, and rudder ¢, saturated with LQR controller

In these three cases of study, the outputs are stabilized to the operating point values.
This illustrates the good performance of the LQR controller. It can be easily seen that
the outputs return quickly to the operating point in 5s. This is compatible to the desired
specification. In terms of control inputs in Fig. 2.10, all actuators are inside their bounds
for the three cases, i.e. inside the limits of 21.5° for ailerons ¢,, 25° for elevators J, and
of 30° for rudders J,. It’s interesting to remark that the control input continues to react
to the very large measurement noise we have considered (see Fig. 2.7)

To verify the impact of very large errors on the initial conditions in the drop phase, we
increase them to: angle of attack a = 35°, sideslip 8 = 20° and ¢ = 40°. The simulation
result is demonstrated in Fig. 2.11 for the controlled outputs and in Fig. 2.12 for the
control surfaces.

Fig. 2.11 shows that the state outputs become unstable, the roll angle is out of the
flighting range of the F-16 model. In Fig. 2.12 it is shown that the demanded surface
controls are very high compared to their physical limitations. The response of the system
in this case is not compatible to the required specification and flighting range of the
F-16 model. It is possible that, since control inputs are saturated, this illustrates the
physical limits of stabilizability of this kind of aircraft, independently of the applied

control strategy.

62



2.5. Simulation and Results

2.5.2 Modeling approach of perturbation on aerodynamic force

and moment

We consider now the modeling approach of the airlaunch phase studied in subsection 2.3.2.
In a first step, the airlaunch system is taken with constant control inputs. We can then
find a maximum time interval T, beyond which the disturbances affecting aerodynamic
force and moment bring the system unstable. In a second step, we show that the LQR
controller designed in section 2.4 will stabilize the airlaunch system for several intervals

Tine greater than Thyq,.

We take, as the initial condition of the second model, an equilibrium point of the
first model, which is (V, h) = (154m/s, 5000m), that corresponds to the trimmed angle of
attack ag = 12.5°, pitch angle 6y = 12.5° sideslip 5y = 0°, ¢y = 0° and to control surface

states: aileron 9, = 0°, elevator ., = —4.0° and rudder 6, = 0°.

The second model following the launch phase will be stabilized to its equilibrium point
(V,h) = (1564m/s,5000m), that means angle of attack g to 4.6°, sideslip 5 to 0°, and roll
angle ¢ to 0°.

Angle of attack (deg)

Sideslip angle (deg)
30 T T

Airspeed (m/s)
160

140

120

100
0

time (s)

Figure 2.13: Angle of attack «, Sideslip # and Airspeed V stabilized by constant inputs
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Figure 2.14: Angular Rates and Euler’s Angles stabilized by constant inputs
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Figure 2.15: Instability of Angle of attack, Sideslip and Airspeed by constant inputs
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2.5.2.1 Airlaunch system with constant inputs

At first, we take an interval of perturbation T},; = 0.2s, the simulation can be seen in Fig.
2.13. The angle of attack and the sideslip seem to be stabilized in spite of the perturbation
on aerodynamic force and moment. However, Fig. 2.14 shows that roll angle and pitch
angle are not converged. The system becomes then unstable for a perturbation that lasts
Tint = 0.2s.

In order to see more clearly the instability of the second model affected by the per-
turbation, we increase T;,; to 0.227s, the system will be completely unstable as shown in
Fig. 2.15. The value of Th,. is then 0.227s.

2.5.2.2 Airlaunch system with LQR Controller

The LQR designed in section 2.4 is applied to the airlaunch system in order to stabilize the
system states after the launch phase. To this purpose, we are interested in the stability
of angle of attack, sideslip, roll angle, pitch angle, roll rate, pitch rate and yaw rate. The
yaw angle, that illustrates the lateral motion, can be neglected in this study (the aircraft

may be heading in any direction east-west-north-south).

We make the simulations using two disturbance durations, 7;,; = 0.227s that made
the airlaunch with constant control inputs unstable, and T;,; = 0.3s that will show the
limits of the proposed control scheme. For the simulation procedure, we take the worst

case perturbation described in subsection 2.3.2.

Figs. 2.16 to 2.18 show the simulation of airlaunch system controlled by LQR control
with perturbation during T;,, = 0.227s. The desired system outputs are the angle of
attack, sideslip and roll angle which are stabilized by LQR control to the equilibrium
point of the model following the launch phase (see Fig. 2.16 and Fig. 2.17).

Fig. 2.17 also shows the convergence to zero of angular rates of the system after launch
phase. Control surfaces seen in Fig. 2.18 are always in their physical limitations (plus the
result of the measurement noise). The result from Fig. 2.16 to Fig. 2.18 shows that the
airlaunch system is stabilized by the LQR controller.
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Figure 2.16: Angle of attack «, sideslip 3 stabilized by LQR controller
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Figure 2.17: Angular rates and Euler’s angles stabilized by LQR controller
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Figure 2.18: Aileron ¢,, Elevator ¢. and Rudder ¢, of LQR controller
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Figure 2.19: Angle of attack «, Sideslip 8 unstable by LQR controller
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Figure 2.20: Aileron ¢,, Elevator ¢, and Rudder ¢, saturated with LQR controller

When the perturbation 7;,; becomes too long, the airlaunch system can not remain
stable even with the LQR controller. Fig. 2.19 shows the system becomes unstable because
of long perturbation time on aerodynamic force and moment. The control surfaces in this
case are saturated by their physical limitations (see in Fig. 2.20).

We see in all figures from Fig. 2.8 to Fig. 2.11 and from Fig. 2.16 to Fig. 2.19,
the oscillation of state variables due to the measurement errors that we put during the

simulation.

Conclusion

We have introduced the modeling and simulation of an air launch system at the stage
phase between a reusable air launch vehicle and the down stage. This section allows
to illustrate the effects of the variations in mass, inertia, and aerodynamic coefficients
at the staging phase in the stability of the air launch system. Because our air launch
system have a down stage mass close to the launch vehicle’s one, the separation phase
produces large changes in the angle of attack, sideslip and other states of the system in a
first modeling approach and large changes in aerodynamic force and moment for a second

modeling approach of air launch phase, as demonstrated in section 2.3, which may bring
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the system unstable.

The first approach to model the air launch phase based on initial conditions is simpler,
but less complete, mainly because we can not study all initial conditions of system’s states
in the required flight envelop. The second approach based on perturbation on aerodynamic
force and moment of the air launch system represents the continuity of the effect of air
launch on the second model and is a better choice for modeling the air launch phase. It has
also the advantage of allowing simulation of proposed controllers during the disturbance
itself, such as to evaluate the ability of the controller to attenuate the effects of these
disturbances.

To stabilize the air launch system after this stage separation phase, an LQR control
is designed using optimal robust control theory. This controller is made using an F-16
model representing the aircraft just after dropping the second stage.

In the modeling approach based on an initial condition different from the equilibrium
point, the effects of the proposed controller are illustrated in computer simulations with
several initial conditions distinct from the equilibrium. In the case of small error on initial
conditions, the stability of the system after the drop stage is assured. When the error
becomes large, the state outputs are poorly stabilized causing bad transients. This can
either illustrate the limitations of the proposed controller or the limitations of the aircraft
itself.

In the second modeling approach applying disturbances on aerodynamic force and
moment, the stability of the system after the drop stage is assured even in an worst case
when the disturbance does not last too long. When the disturbance lasts longer, the state
outputs become unstable. Since inputs saturate, this could also happen for other control
schemes and would represent physical limitations.

The chapter presents our contribution in modeling and simulation of air launch system
during launching phase through two approaches. The chapter finished by a simple and
robust LQR control technique as our first control approach to illustrate the purpose of
the works in this thesis.

A more study on control techniques to stabilize the air launch system after the launch-
ing phase will be presented the next chapters concerning conditional integrator control
and its extension which is servo-compensator control. Another control strategy will be

also mentioned, that is nonlinear feedback linearization control.
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3.1 Introduction

In Chapter 1, we introduced the problem of air launch system using an unmanned carrier

aircraft during and after the launching phase. We then introduced in Chapter 2, two
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methods for modeling and simulating the air launch system during the separation phase.
A simple LQR control was applied to stabilize the air launch system after the stage phase.
It is designed taking into account a linearized system, so it is not a good solution in the
considered case where the launching phase results in large variation of states and pa-
rameters and as a consequence, the nonlinear behaviors will dominate. Moreover, the
aerodynamic parameters of air launch are obtained by wind tunnel experiments and are
presented in tabular form. They are then smoothed through interpolation and extrapola-
tion. These characteristics can be efficiently dealt with by a robust control that does not
rely too much on extremely detailed models and parameter’s values. For these reasons,
we choose to investigate the possibility of applying a more robust nonlinear control which
in my thesis takes the form, in a first step, of a modified Conditional Integrator control.

This control will be then further generalized into a conditional servocompensator control.

The control theory known as Conditional Integrator (CI) for single input single output
systems was developed in a series of papers from Khalil and co-workers ([14], [15], [17] and
[40]). This controller acknowledges a saturation (natural or not) on the control signal,
and takes advantage on that to behave, under some conditions, similar to a sliding mode
controller (SMC). On other conditions, when not saturated, the controller behaves as a
dynamical feedback with an important integral term. This approach has some interesting
features. For example well known drawbacks of integrators like performance degradation
and in particular the problem of integrator wind-up are avoided by the conditional nature
of such control scheme. The integral action is then only present inside a boundary given
by the saturations. In this way the control scheme assures the good properties of robust-
ness and performance of sliding mode controllers for large errors, while allowing a smooth
behavior given by its continuity what avoids chattering. Furthermore, the robustness of
the SMC-like nature of the system while saturated is combined with the “adaptive” charac-
teristic of the integral term when closer to equilibrium. In this way, such technique is very

interesting in the cases of poorly known systems or with large parameters’s uncertainties.

More recently ([41] and [42]), efforts were consecrated to extend these results for the
Multi-Input Multi-Output (MIMO) case, with good results for some classes of MIMO

nonlinear systems.

This chapter presents our work of [16] and [43], which can be seen as an extension of
those. This present work was motivated by airspace applications, that have poorly known
models and parameters. For these applications CI is an interesting control strategy, but
unfortunately they are also an example of a class of nonlinear systems not addressed by
previous results. On the other hand, in our work we have introduced important changes to

the CI and CS controllers, such that the SMC nature is much weaker. The main change

72



3.2.  Modified Conditional Integrator control design

is that the control algorithms we have developed are composed of two parts, one that
saturates and another that can grow unbounded. In this way, the comparison with SMC
is not valid anymore. In some sense, our proposed controller is more.

In this chapter, Section 3.2 will present the main results that develop a modified CI
controller for a class of nonlinear systems, mostly based on the nonlinear theory found in
[44], [45] and [46]. The modified conditional servocompensator control is then described
in Section 3.3, it is considered as an extension of Conditional Integrator control. These
results are applied in Section 3.4 to the lateral mode of a F-16 aircraft model, which is
a MIMO nonlinear system. This work should be seen in the optics of the recent papers
([47] and [1]) that have applied the Conditional Integrator controller to airspace, but in a

SISO framework for the first and a MIMO framework for a linearized case on the second.

3.2 Modified Conditional Integrator control design

The Conditional Integrator (CI) controller designed for the output regulation of a class of
minimum-phase nonlinear systems in case of asymptotically constant references is stud-
ied in [17] and [40]. The works of these papers concerns an integrator performing as a
sliding mode controller outside a boundary layer, and performing as a conditional one
that provides the integration only inside the boundary layer; achieving asymptotic output
regulation.

However, these works have addressed the case of single input single output systems or
linearized systems. The main objective of this section is to present a modified Conditional
Integrator(mCI) controller design for the output regulation of a class of MIMO nonlinear
systems, in the case of asymptotically constant references, providing the proof of the
exponential stability of the system under some assumptions.

Consider the nonlinear MIMO system in canonical form:

jjl = X9 (31&)
Ty = f(x1, ) + g(x1, 22)u (3.1b)
y=1 (3.1¢)

where z; € R" and x5 € R" are the state vector, y € R" the output vector, u € R" the
control input and f(z1,22) € R" | g(x1,x9) € R™™" are continuous functions.

Let yref = T1rep be a prescribed reference output function considered as constant such
that their derivatives are null.

Define the tracking error vector e;(t) as the difference between the actual system

output y(t) = z1(t) and the reference output Zi,ef: €1 = T3 — Tiyef, €2 = €1 = To— T1pef =
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x9 such that (3.1) can be expressed as:

€1 = €y
é2 = f(eh €2, Tref, :tref) + g<€1a €2, Tref, jzref)“
Since .y is constant, for a simpler notation we can skip .y, @, inside the functions

f(-) and g(-), and then the previous system can be rewritten as:

€1 = € 3.3a
¢y = f(e1,ea) + gler, ea)u (3.3b)
Saturation function

The saturation function of a vector v in R" is determined as:

sat(v) = { of Jell it fju = 1 (5.4)

v if |lvf| < 1
where || - || is a 2 - norm.

Integral error measurement and conditional integrator

The integral error measurement surface is a vector in R" defined as:
s = koo+ Kie; + ey (3.5)
where o0 € R" is the output of the conditional integrator
6 = —koo + psat(s/p) (3.6)

in which g is the boundary layer, ky is a positive parameter, K; € R™" is a positive
definite matrix chosen such a way that K; + sI,, is Hurwitz, and [, is the n x n identity
matrix.

The derivative of the integral error measurement surface can be then expressed as:
5 = koo + K€, + € (3.7)
From (3.3a), (3.3b) and (3.5), the previous equation may be written again :

s=ko(—koo + psat(s/p)) + Kieg + éo
=ko(—(s — (Kyie1 + e3)) + psat(s/p)) + Kies + éo (3.8)
=—kos + kopsat(s/p) + ko(Kie1 + e2) + Kieo + f(er, e2) + gler, e2)u
Now by letting

Aler, eq) = ko(Kieq + e2) + Kieo + f(eq, €2)
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The derivative of the integral error measurement surface becomes:
s=—kos + kousat(s/p) + Aler, ea) + g(eq, e2)u (3.9)

We will present now in a constructive way the control design in order to stabilize the
class of nonlinear MIMO systems defined in (3.2). This control design is done in two
parts representing the internal and external regions of the boundary layer. It will then be
summarized in the form of a theorem.

In the following we denote O, the region in the neighborhood of (0,0) with a radius
R,,.

O,={e=(e1,e2) e R" xR" | |le] < R,} (3.10)

3.2.1 In the region ||s|| > u, sat(s/pu) = s/||s||-

In this part, the controller is designed to bring the integral error measurement surface
inside the boundary layer. Before proceeding further, we introduce the following assump-

tions.

Assumption 3.2.1 A(ey,ey) defined in equation (3.9) is bounded by a class K function

Y(llex|| + |le2l]) and a positive constant Ay :
[A(er, e2)l] < A([leall + lle2ll) + Ao (3.11)
and as a consequence,
[A(er = 0,62 = 0)[| = [[(0,0)] < Ag

for (e1,e2) € R" x R™.

Function f(eq,ez) is required to be Lipschitz for (e1,e2) € O,, as a consequence
[f(e1,e2) = f(0,0)[ < L[| Krea]| + La|lez]]
v(|ler]] + |le2l]) is also required to be Lipschitz for (e1,es) € O,:

Ylleall + llezll) < mllKaeal + 2llezll

Assumption 3.2.2 Function g(eq,es) is continuous and invertible for all (e1,e5) € R™ X
R".
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Theorem 3.2.1 Consider the nonlinear system in (3.3) where function f(ey,es) satis-
fies Assumption 3.2.1, function g(ey,es) satisfies Assumption 3.2.2, and integral error

measurement surface is defined as (3.7), then control law
u = —Il(ey, es)sat(s/p) (3.12)

where we define:
I(-) = (mo + () + Kop + Do)g ™" (-) (3.13)

and my is a positive constant.

will bring the surface s into the boundary layer p in finite time.

Remark 2 [t is important to remark that the proposed control law differs from the stan-
dard CI. In fact, the control can even grow unbounded since the term (3.13) is not neces-
sarily bounded. Functions y(-) and g='(-) can grow continuously. For this reason we call
this controller a modified Conditional Integrator, composed of two terms (see (3.12-3.13))
one saturated and one not. The later will dominate for small errors, and as a consequence
the controller will behave as an integrator. In the case of large errors, it is the first that

dominates, and the controller acts as a robust controller.

Proof: Let’s consider the product s’'s
sts = —sTkos + kousTsat(s/u) + sTAley, ex) + st g(ey, ea)u

This product s7'$ can be developed with the previous assumptions and the definition

of saturation function (3.4):

sTs=—sTkos + psTkos/||s|| + sTA() — sTg()T(-)s/| sl
<—s"kos + pusTkos/||sl| + [AC) sl — s"g(-)IL()s/|s]]
<—s"kos + pusTkos/|s|| + (v(-) + Do)lIsl| = sTg()IL(-)s/||s]]
<—sTkos — sT(g()TI(-) — (ko + y(-) + Do) 1n)s/||s]|

Replacing the control law in (3.12) and (3.13), the term s”$ can be expressed as:

sT$<—5Tkos — sT(g()II(-) — (ko + () + Do) 1,)s/||]|
<—sTkos — sTmys/||s||

<—kols]|* — moIs]
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The product s's is then not positive and we have also

sTs

d(||s||?
W) = 5| Ael) — 9578 < 2(—mro||s]| — kol|5]|?)

t
d
. (I(Ltll) <—7r0—k0|| I

L Is@N<Ns(0)]] = mot — [[s(0)]|(e™ " = 1)

Then the integral error measurement surface s(t) reaches the boundary layer p in finite

time. Moreover, o and e; reach the region O, previously defined.

3.2.2 In the region ||s|| < p, sat(s/p) = s/u.

Consider again (3.3a), (3.5) and (3.9), which inside the boundary layer may be rewritten

as:

o= —koo +s (3.14a)
él = —K161 + s — k’oO‘ (314b)
$=A() = g()I()s/p (3.14c)

It can be shown that system (3.14) has an equilibrium point:

$=350=20 (3.15)
5 = koo = pl1=1(0,0)g7"(0,0) £(0,0) = -5/ (0,0)

The previous system may be rewritten with respect to § and &:

= —]{;00' + 3 (316&)
€1 = —K1€1 + s — k:()& (316b)
5= A() = gO()8/p — g()I()5/p (3.16¢)

where 6 =0 — 7, § =5 — 5.

Theorem 3.2.2 Consider system (3.14) that has an equilibrium point (€1, és, §, 7)),
function f(ey,es) satisfying Assumption 3.2.1 inside the boundary layer, then the control

law design in (3.12-3.13) guarantees

e that the equilibrium point of integral error measurement surface s is inside the bound-

ary layer, that means ||3|| < p.
e the exponential stability of system (3.16) to the equilibrium point.
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o
Proof:
The integral error measurement surface is in the boundary layer, ||s| < p.
In order that this is true, it is sufficient that:

151 < p = [TI71(0,0)g7'(0,0) f(0,0)]| < 1 (3.17)
where I1(0,0) = II(e; = 0,ea = 0), ¢(0,0) = g(e; = 0,e2 = 0) and f(0,0) = f(e; =
0, €9 = O)

In Assumption 3.2.1, we have:
A < A
[A(er, e2)|| < v(ex,e2) + Ag (3.18)
20,00 = A0, 0)] < Ag
Applied into (3.13) leads to:
I1(0,0) = (m + kop + Ao)g~(0,0)
. [[TT=1(0,0)g71(0,0) £(0,0)[| = [I((mo + kop + Ao)g~"(0,0))"'g~*(0,0) £(0,0)| (3.19)

- IT74(0,0)974(0,0)£(0.0)| = =t 1£(0.0)]) < 2170, 0)]
L I(0,0)g7(0,0)£(0,0)] < 42 < 1

The integral error measurement surface s is then inside the boundary layer.

Ezxponential stability of the system (3.16) to the equilibrium point
We would like to demonstrate that every trajectory starting inside the boundary layer,
will approach the equilibrium point as time tends to infinity when the control law (3.12)

is applied. Toward that end, we take

A A A
W = ?lko&T& + éeleel + ?%Tg

as a Lyapunov candidate, where \{, Ay and A3 are positive constants.

Its derivative can be easily calculated as:

W:)\lkoéTOL' + )\QG?Kleﬁ + )\3§T§
:/\11{305'T(—k505' + §) + AQG?Kl(—Klel + 5 — ko&) (320)
+A387(A() = g(IL()$/ e — g()IL(-)s/ 1)
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Since (e, e2) € O,, which means that ||s|| < p, A(-) can be expressed as:

A()=ko(s — koo) + K1(—Kie1 + s — koo) + f(-)
:k0§ — kg& — K12€1 -+ K1§ - koKla' + f()

Replacing system (3.16) and A(-) into the derivative of the Lyapunov function, we
have then (reminding that 5§ = uIT='(0,0)g7'(0,0)f(0,0) and TI(0,0) = (m + kou +
Ao)g_l(()?())):

W:/\lkoa'T<—k05' + §) + /\QG?Kl(—Klel + s — k()&)
AT (f() — 9()TI()5/ )
:—/\116(2)5'T5' + )\1]605'T§ — )\261 K e+ /\261 Kl(S — kfoO‘)
+>\3(§T(]€0]n + K1>§ + §T(l€0 + Kl)l{?(]O' - STK1261 - Tg()H()g//L)
X357 (F() = £(0,0) = =22 £(0,0))

(3.21)

Using equations (3.3a), (3.16b) and Assumption 3.2.1, we can have:

f() = f(0,0) - #@f@ 0))

(Ll Kre | + lafle2]) + mHNHHﬂO 0

(L Eer]l + Lallea)) + motras I3l (n [l Kreall + 1zlles]))

(Ll Kae]| + alleal]) + (IS ([ Kie| + olle2])

(L)l [ Kl + (2 + y2) 15]] [ ez]]

(llﬂl) (575 + el K2e)) + (l2+72) (575 + eley)

(llﬂl)(s s+ el K2ep) + (lQMQ)(S 54 (8 — koo — K1e1)T (3 — koo — Kiey))

() (575 4+ ef Key) + 20575 4+ 3(575 + k3oT6 + e Kfer))
3(l2+72)k2 Ts 4+ M( TK2e) +w(§%)

—_— — — —

_ =

Wy Wy

(3.22)

|/\ IN I/\ I/\ I/\ AN VAN VAR VAN

kJQO'TO' + 9575 + csé] K2€1

3(l2+72) Co = (Li+~1)+3(2+2) (Lidy1)+4(2+2)
2 2 2 '

where ¢; = and and c3 =

The derivative of the Lyapunov function is then:
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W=—Mk26T6 + M\6Tkos — MaeT K2eq + MpeT K1 (5 — koo ) 4 A3 (37 (koI + K1)3
=57 (ko + K1)koo — 8" Kiey — sTg()I()5/p+ 57 (f () — g()TI()5/m))
<—ME2GTG + N\ /2(375 + k267G) — Noel Kfey + No/2(el Kiey
+(8 — koo )T (5 — kod)) + A3(8T (koL + K1)5 + 1/2(57 (kol, + K1)?*5 + M\ k2575)
+1/2(87 K25+ el K?ey) — 8T g()()3/p + c1k26T 6 + coel K2ey + ¢3373)
<—ME2GTG + N /2(375 + k367G) — Ael Kfey + No/2(el Kiey + 2(57'5 + k2575))
+A3(87 (koI + K1)5 4+ 1/2(8" (koI + K1)?5 + k3676) + 1/2(37 K?5 + €] K#e)
—5Tg()(-)8/p + a1 k357G + coel Kiey + c3575)
—(NkE — N /2K3 — Nokd — N3/2k2 — A3c1k2)o TG
—eT (N K% — Xy J2K? — X\3/2K? — X\3¢2K%)ey
=T (\s(g(II() /i — (koln + K1) — M /21, — Ao
—1/2(kol, + K1)? — 1/2K? — c31,,))$
—(A1/2 = Xg = X3/2 — A3c1)k35TG — (M2/2 — A3/2 — A3co)ed Kie
=8 (Na((mo + ko + () + Do) /1t — (KoLn + K1) — 1/2(ko I, + K1)* — 1/2K7)
—(A/24+ Ao+ Ase3)1,)S
(3.23)
It can be verified that by taking A, A2, A3 and II(+) large enough and p small enough,
the following conditions are satisfied. The derivative of the Lyapunov function is then not

positive for all &, e; and §.

AM/2= X —A3/2  >ha

Aa/2 — A3/2 >A3Co

A ({metRt A IELN s N (Ko I + K1) — 1/2(kol, + K1)? — 1/2K3)
+(A/2 4+ Ao+ A\3c3) 1,

(3.24)

The previous inequality implies that the design condition of parameter my must satisfy:

3232 >1+ 20,
32 >1+ 2¢
(WOZAO)]H o Kl o 1/2(k0]n + K1)2 . 1/2K12 ( )\1 + )\2 + 03)]

In this way it is easy to check that W (t) satisfies W (t) > 0 and W < 0 for all o # 7,
e; # 0 and s # 5. Then W (t) reaches zero when time tends to infinite. As consequence,
the output error e;(t) tends to zero, o and s tend to their equilibrium values as time tends

to infinite. We may assure the stability of the system in the region of ||s|| < p.
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We can then state the results developed above in the form of the theorem:

Theorem 3.2.3 A class of Multi-Input Multi-Output nonlinear systems described by (3.3),
and satisfying Assumptions (3.2.1 and 3.2.2) can be stabilized globally to their constant
reference by the controller (3.12-3.13) with tunning parameters (mo, ko, i and Ky defined

in the previous section) and function () conveniently set.
o

In modified Conditional Integrator control theory, the fact that my and in particular
ko are a scalar, restricts the control performance to the nonlinear system where each state
has its proper dynamic. In order to improve the control performance, we will study the
control theory assuming the matrix of those parameters in the next section. The control
is then called Conditional Servocompensator (CS). Because CS control can be seen as a
generalization of CI, we will apply this control for an example of MIMO nonlinear system

and to our air launch system, while the modified Conditional Integrator is neglected.

3.3 Modified Conditional Servo-Compensator control
design

In Section 3.2 we have introduced the modified Conditional Integrator (mCI) control
theory for a class of MIMO nonlinear systems with application to the air launch system.
In this study the CI term is defined through ky and m, parameters which are scalar.
This definition simplifies the study, however it loses generality for nonlinear system which
different dynamics affect different outputs. This section aims to develop mCI theory
towards a theory called (modified) Conditional Servo-Compensator (mCS) control for a
MIMO nonlinear system (see [42]).
Consider again the nonlinear MIMO system in (3.3):

€1 = €9
ég = f(€1,€2)+g(61,62)u

We define the integral error measurement surface as:
S = K()O' + K161 + €9 (325)
where 0 € R" is the output of the Conditional Servo-Compensator
0 = —Koo+ usat(s/p) (3.26)
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in which p is the boundary layer, K; € R"*" is chosen such a way that K; + s, is
Hurwitz, I,, is the n x n identity matrix. Unlike the previous case in (3.6) where &y is a
positive scalar, K in this case is a positive definite matrix.

Its derivative can be expressed as:
§ = Koo+ K€, + 6 (3.27)
Equation (3.27) may be written again from (3.26) and (3.3)

§=Ko(—Koo + psat(s/un)) + Kiea + é3

=—Kos + pKosat(s/p) + Kreg + ég + Ko(Kie1 + e3) (3:28)
We define an intermediate variable:
Aler, ez) = Ko(Kieg + es) + Kiea + f(eq, e2) (3.29)
Equation (3.28) becomes
§=—Kos + nKosat(s/p) + Aler, e) + g(er, ea)u (3.30)
We can then define the controller:
u = —TII(ey, ez)sat(s/p) (3.31)
where we define:
() = g7 ()T + pEo + (v() + Do) 1) (3.32)

and Il is a positive definite matrix.

We will show that the control law defined in (3.31) and (3.32) can stabilize the class
of nonlinear MIMO systems defined in (3.3). This demonstration is also decomposed in
two parts representing the internal and external regions of the boundary layer and will be
later formally stated in the form of a theorem. It’s also important to remark that, like in
the previous section, the control law is composed of two terms where the first may grows

unbounded, while the second is saturated.

3.3.1 In the region ||s|| > u, sat(s/p) = s/|s|.

This part demonstrate that the proposed controller is able to bring the integral error
measurement surface inside the boundary layer under some assumptions (3.2.1 and 3.2.2)

in Section 3.2. We remind these assumptions in the following paragraph:

Definition 1 ); is an eigenvalue of the n X n positive definite matriz A, then \; > 0.
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o \nin(A) is the smallest eigenvalue of A.
e \ax(A) is the greatest eigenvalue of A.

o Vi, Anin(A) and Ayrax (A) satisfy:

Amin(A) < X < Ayrax(A) (3.33a)
Amin(A)zTr < 27 Az < Myyax(A)a'z (3.33b)

Assumption 3.2.1: f(e1,e2) is bounded by a class K function and a positive constant.
As a consequence, A(eq, e3) function of f(eq, es) is bounded by a function of (||e1 || +||e2]])

(where ~(+) is a class K function) and a positive constant Ag :
[A(er; e2) || < v(lleall + lle2ll) + Aq
and as a consequence,
[A(er = 0,62 = 0)][ = [|F(0,0)] < Ao

for (e1,e3) € R" x R". Inside the boundary layer, the function f(ey,es) is required to be

Lipschitz for (eq,e2) € O,, as a consequence
1/ (e1, €2) — f(0,0)|| < L[ K] + Laffe2]]
y(|lex]] + |le2]]) is also required to be Lipschitz for (e, eq) € O,:
v(lleall + [le2ll) < nl[Kreall + 2zlle|]

in which, [y, [, 71 and 7, are positive constants.

Assumption 3.2.2: Function g(eq,ey) is continuous and invertible for all (ej,es) €

R™ x R".

Theorem 3.3.1 Consider the nonlinear system in (3.3) where function f(e1,es) satisfies

Assumption 3.2.1, function g(ey,ey) satisfies Assumption 3.2.2, and integral error mea-
surement surface is defined as (3.25), then control law defined in (3.31) and (3.32) will

bring surface s into the boundary layer u in finite time.
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Proof: Let’s consider the product s?'s
sts = —sTKys+ ust Kosat(s/p) + sTAer, ex) + sTg(er, ea)u (3.34)

This product s?5 can be developed with the previous Assumption 3.2.1 and the defi-

nition of saturation function (3.4):

IC)s/ |||
Tg()I(-)s/Is]]
<—s"Kos — s"(g(-)II(-) — pKo — (7(-) + Qo) L)/ ||s]]
<—Amin(Ko)s"s = Ain(Io)s" s/ |5

<A (0) [[5]12 = Apmin (Tho) || s

sTs=—sTKos + ps? Kos/||s|| + sTA(-) — sTg(-
<—s"Kos + ps" Kos/|s[| + |AC)llIs]| — s

The product s”'s is then not positive and
52< )‘mm( )H 12 = Amin (To) |81 < = A (To) [ 5]
- = 2578 < 2(=Amin(Io) |Is]))
d(II D « )\mzn(HO)
" ls ()|| < [[s(O)[] = Amin (Io )2

Then s(t) reaches the set ||s(t)|| < p in finite time. o and e; reach the region called

O,, previously defined.

3.3.2 In the region ||s|| < p, sat(s/p) = s/u.
Consider again (3.25), (3.3), (3.26) and control law (3.31) and (3.32), which inside the

boundary layer may be rewritten as (remind that é; = es):

c=—Kpo+s
él = —K1€1 + 5 — K()O' (335)
§=A() = g()I()s/p

It can be shown that this system has an equilibrium point:

s=8§0=0 (3.36)
s = K05 = /LH?I(O’ O)gil(oa O)f(ov O) = (HO + NKO + AOIn)ilf(Ov O)

We can then conclude the design condition:

18]l < m (3.37)
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where I1(0,0) = II(e1, €2)]e;=0,e5=0

System (3.35) may be rewritten with respect to s and 7:

o=—Koo+35
61 = —Kiep +§— Koo (3.38)
§=A()—()g(-)§/pn — U ()g(-)5/

where 6 =0 — 0, § =5 — 5.

Theorem 3.3.2 Consider system (3.35) that has an equilibrium point (€1, €3, S, 7)),
function f(eq,es) satisfying Assumption 3.2.1 inside the boundary layer, then the control
law (3.31) and (3.32) guarantees

e that the equilibrium point of surface s is inside the boundary layer, that means
5[] < .

e cxponential stability of (3.35) to its equilibrium point.

©
Proof:
Surface s is in the boundary layer, ||5|| < p.
The design condition in 3.37 means:

I5]] < p = |ITT(0,0)97'(0,0).f(0,0)[| < 1 (3.39)
where H(an) = H<€1 = 0762 = O)? 9(070) = g<€1 = O; €y = 0) and f(0,0) = f(el =
0,62 = O)

We have (see (3.18)):
1£(0,0)]| < Ao (3.40)
As in (3.32)
11(0,0) = g7*(0,0)(Io + Kopt + Aol,)
= I (0,0)g7(0,0)7(0,0) = [TTo + Ko+ AT,) (0,0} )
< I0,0)g74(0,0) £(0,0)[| < (Ao Za) 11 £(0,0)]| = z;11£(0,0)]
<[40, 0)g7(0,0).£(0,0)[| < 1

Condition ||5|| < p is satisfied, the equilibrium point of (3.14) is then inside its bound-

ary layer.
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Ezponential stability of (3.35) to its equilibrium point.

We would like to demonstrate that every trajectory starting inside the boundary layer,
will approach the equilibrium point as time tends to infinity. Toward that end, we take
again

A2 A3 -
W—?O'TKOO'—F 2€1K1€1+ 23 T

as a Lyapunov candidate, where A\{, Ay and A3 are positive constants.

(3.42)

Its derivative can be easily calculated as:
W:)\l(}TKo& + )\26{[(16.1 + )\3§T§
:Alc}TKO(—KO& + .§) + )\Qe?Kl(—Klel + s — Koa') (343)
+A38T(A() = g(()$/ 1 — g(II()s/ 1)

Since (e1,e2) € O,, A(+) can be rewritten as:
A():Ko(s - K()O') + Kl(—Klel + s — KOO') + f() (3 44)
=(Ko + K1)5 — (Ko + K1) Koo — Kiei + f(:)

then,

W=-MN6TK25 + MoTKos — MeT K2ey + Mel K1 (5 — Kyo)
+A35" (Ko + K1)3 — (Ko + K1) Koo — Kfey — g(-)II(+)3/11) (3.45)
+A38T(f()) — g()II(-)5/p)
We denote f(0) = f(0,0), g(0) = ¢(0,0) and II(0) = I1(0,0). In order to express the

derivative of the Lyapunov function candidate more clearly, we firstly consider the term:

1) = g(IC)s/pll = [1f () = g (0)g~(0) £ (O)]]
= [I£() = (Mo + Kop + (7() + Do) L) (Mo + Kopt + Aol,) £ (0)
= [I£() = f(0) = v() (o + Kop + AoLn) "' f(O)] (3.46)
< FC) = FO+ Iy (Mo + Kopt + Ao L)~ £(0) ]
< FC) = FO+C) < (b + )l Ereall + (B2 +72) e
Term 37 (f(-) — g(-)II(-)5/p) may be written using Assumption 3.2.1 and the relation

) = g5/ ) < NSIILFC) — g(TL()s/ |
(L + ) IS[l[[ K] + (12 +2)[[5][ [l ez]]
Ulﬂl) (575 4+ e  Kiey) + (l2+72) (575 + eley)
<l1+71> (575 + e K2e1) + “2“2) (575 + (5 — Koo — K1e1)7(5 — Koo — Kyey))  (3.47)

(llzm (575 4+ e  K2ey) + (l2+72)( §+3(575 4+ 6T K2o + el K2ey))
(ll+71)+24(12+72)§T§ + (12;’72) TK3~ + (11+“/1)+23(l2+72) ! K1261

VAR

IAIA I/\ I/\ I/\ IN

cléT& + 026{61 + 63§T§
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where we define ¢; = 3/2(la+72), ca = 1/2(l1 +71) +3/2(la+72) and ¢5 = 1/2((l +7) +
4(l2 4+ 72))-
From (3.35) and (3.47) the derivative of W can be developed:

W=-M\6TK36 + M\6TKoé — Mel Kiep 4+ Mel Ki(5 — Ko&) + A\3(87 (Ko + K,)3
—§1 (Ko + K1) Koo — 8" Kfey — 87 g(-)I1(-)5/p+ 37 (f () — g()TI()5/ 1))
<-MTKZ6 + M\ /2(575 4+ 6T KZG) — Ml Kiey + No/2(el Kiey
+(5 — Koo)T (8 — Kod)) + A3(57 (Ko + K1)5 + 1/2(37 (Ko + K1)?5 + M7 K25)
+1/2(sT K25 + el K?ey) — 5T g()(-)8/p + c16T K26 + coel Kiey + c357'3)
<-MGTK26 + M /2(875 + 6TK25) — MaeT K2ey + Mo /2(eT K2ey + 2(375 4+ 6T K25))
+A3(8T (Ko + K1)5 +1/2(8" (Ko + K1)?5 + 0T K§o) + 1/2(5T K75 + ef Kiey)
—5Tg()(-)8/p + 16T K26 + coeT Kiey + c357'3)
<—GT(NMKZ — N 2K2 — MKE — N3/2K2 — \3¢1K2)o
—el (WK% — \yJ2K? — X\3/2K2 — X3c.K?)ey
—5T (N (g(HT() /e — (Ko + K1) — 1/2(Ko + K1)? — 1/2K? — c31,,) — M /21, — \o1,,)3
<—(A\1/2 =Xy — A3/2 — A3¢1)0 T K26 — (Mo/2 — A3/2 — A3co)el Kiey
—5T(Ns(g(II(:) /pp — (Ko + K1) — 1/2(Ko + K1)? — 1/2K7) — (A1/2 + Ao + A\sc3) 1)
(3.48)
This inequality implies that Aj, Ao, A3 and II(-) must be taken large enough and pu

small enough in order to W negative for all §, & and e;:

)\1/2—)\2—)\3/2—>\301 >0
)\2/2 — )\3/2 — A\3Co >0 (349)
As(g(VIL(C) /e — (Ko + K1) — 1/2(Ko + K1) — 1/2K3)> (M/2 + Xo + Ases) 1y,

and if we consider that c;, co and c3 are significantly small then the design conditions must

satisfy:

AL > 2X9 + A3 > 33
/\2 > /\3
gO() /= (Ko + K1) = 1/2(Ko + K1)? = 1/2K7 > (- + 321, > 51,

or,

AL > 200+ A3 > 33
A2 > A3
(o + Aolp) /i — Ky — 1/2(Ko + K1)? = 1/2K7 > 31,
It can be verified that by taking A;, Ay large enough, ||IIy|| large enough with respect to
control dynamics or i small enough. In this way, W (t) satisfies W (t) > 0 and W < —woW
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(where wy is a positive constant) for all o # 7, e; # 0 and s # 5. Then W(t) reaches
exponentially zero when time tends to infinite. As consequence, the output error e;(t)
tends to zero and ¢ and s tend to their equilibrium values as time tends to infinite. We

may assure the exponential stability of the system in the region of ||s|| < p.

We can then state the results developed above in the form of the theorem:

Theorem 3.3.3 A class of Multi-Input Multi- Output nonlinear systems described by (3.3),
and satisfying assumptions (3.2.1 and 3.2.2) can be stabilized globally to their constant
reference by the controller (3.25-3.26-3.31-3.32) with tunning parameters (1ly, Ko, p and
K, defined in the previous section) and function v(-) conveniently set. Furthermore, the

stability is exponential inside an error region defined in (53.10).

Remark 3 The modified Conditional Integrator and modifier conditional servo-compensator
previously designed are applied to a class of systems defined in (3.3). These controllers
are interesting in the case where the system has a f(-) uncertain but g(-) known. A study

in the case where the system has f(-) and g(-) unknown, can be seen in Appendiz A.1.

In the following section we will apply this result to a nonlinear MIMO aircraft control

problem. The linearized version of this problem is already addressed in [1].

3.4 Example: F-16 aircraft’s lateral mode control de-
sign

In this section, we address the control of a nonlinear MIMO system applying the results
obtained in the previous section. The considered system is the nonlinear MIMO model of
an F-16 aircraft lateral mode. The work [1] has addressed this case designing a standard
Conditional Integrator based on the linearization of the system around an operating point.
In the present case, we extend those results and those of [42] addressing the nonlinear

MIMO system without linearization.
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3.4.1 Lateral control design

The F-16 aircraft lateral mode has two inputs (aileron and rudder) and two outputs
(sideslip angle and roll angle). In this way, only lateral state variables are time varying.
Others longitudinal state variables (like height, pitch, angle of attack, etc) are considered
as constant or null. Moreover it is assumed that the airspeed’s response is much slower
than other states, and that the control surface deflection has no effects on the aerody-
namic force components (lift and drag) but only on moments. Aerodynamic force F, and

moments L, N are calculated by their aerodynamic coefficients (see more in [12] and [11]).

F, = (Cy(B) + (Cy, (a)p + +Cy, (a)r)b/(2V))gS

= (Ci(B) + C, (o, B)pb/ (2V) + Ci, (o, B)rb/(2V) + Ci,, ()da + Ciy (@0)6,) 7S

N = (Cu(B) + Cu, (a0, B)pb/ (2V) + Cyy, (cr, B)rb/ (2V) + Cry, ()30 + Cy, ()0,)G S

By replacing F,, moments L, N and a = ag, § = 6, in (2.23b, 2.23g, 2.23d and 2.23f),
the lateral nonlinear dynamic model used for the control design procedure is consequently
reduced as:

'B:miv(—cos(ao)sin(ﬂ)(T—i—C (a0)@S) + cos(B)Cy(B)gS — sin(ag) sin(B)C (o, £)gS)
+ sin(ag)p — cos(ag)r + p = (cos(B)Cy, (an)bp + cos(B)Cy, (ag)br)
—i—%(cos(ao) sin(3) 5111(00) + cos(B) cos(bp) sin(¢p) — sin(ayp) sin(S) cos(¢) cos(bp))
$=p + cos(p) tan(fo)r )
p=I3Ci(ag, B)@Sb + LiCr (w0, B)3Sb + 2522150y, ()
+1,Cp, (a0))p + (I3C), (o) + 14Cy, (ag))r]
+45[(I3C15, () + 14Ch;, (a0))da + (I3Cy, (o) + 14Cns (a0))0r]
i =I,C)(w, B)GSb + IgCh(a, B)3SD + L5 [(14Cy, ()
+1I9Cn, (a0))p + (14C1,. (o) + I9Ch, (a0))7]
+qS[(14Cy;, (o) + 19Chn;, (0))da + (14C15 (o) + 19Chn;, (a0))dr]

(3.50)

IZZ
(Iaal-z—12.)°
ap, By and V are angle of attack, pitch angle and airspeed

in which S is the wing area, § dynamic pressure, b is reference wing span, I3 =
L= gy b = wasmy
considered as constant in the studied case, T', the thrust force is also constant. The state
variables of the system are 3, ¢, p,r which represent the sideslip angle, roll angle, roll
rate, yaw rate, respectively. Cy(a,dc), Cy, (o), Cy (), Ci(ag, ), Cplaw, B), Ci, (),
Cn, (), Ci, (), Cp, (o), C;, (), Chy, (o), Cis (o), Cry, () are lateral aerodynamic

coefficients taken from [48].
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The previous equation can be rearranged as:

O\ (8,0) + 55, )

(3.51)

i < B <

é
f —15(8,6) + 15(8,9)

95(8,9) H

where f2(-), fo,0), F(), f5(5), fo(-), and g5 (-) represent the terms of (3.50) respectively
(see Appendix A. 2)
Let us define 2 = [8, |7, 25 = & = [3, 4" and v = (8,,6,)T, then:

w3 = FA0)+ 1) [f ] <:> [ff ] = RO OE - ) (352)

o) .
B Ofl( " P
:c§= ];xf( )9:5 + Txg + f152() [7;
P p
=280, 4 o) |P| 4 SROUAO) + 74 |P] + 6 0w)
o _
Qzll +(FP0) + FO ) RO TS = FA0) + Fa() () + Fa()gs (u?
oo )
r
where we note that the term 507 ffg can be transformed into f7(:) [ P ] by a
l'l r

simple calculation, in which f(-) is function of 2 and 2.

It allows us to rewrite equation (3.51) into:

“’g = . s (3.53)
Ly = Fﬂ(l’l,mz)"‘Gﬁ (%a%)uﬁ

where

(P9 () = %g;f L1+ (F) + Fa() ) ()T O @ — 1)) + Fia() o ()

GP () = f()g5 ()

p, (3.54)

] Af5()

8xf
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We define an output error vector ¢} = 27 — x’fre s and e = ¢ where :L‘lm 1= (Brefs Pre )T

is the output reference considered as constant. Equation (3.54) can be transformed into

(3.55) with two new state variables €} and e}

eff = (3.554)
= FP(ef, e5) + G%(ef, e5)u’ (3.55b)

Remark 4 [t is worth noting that:

) flﬁl, fﬁ, fgl and f252 are function of aerodynamic coefficients under analytical forms
by interpolation from wind tunnel test data. FP(-), formed from these functions,
can be then bounded by a class K function and be a Lipschitz function in a flighting

envelop.

o GP(a¥ 25 is invertible in the flight domain, that means 8 € (—30°,30°) and ¢ €
(—180°, 180°).

As a consequence, they fulfill Assumptions 3.2.1 and 3.2.2.

An application of modified conditional servocompensator control law designed in pre-

vious section to (3.31) leads to the controller form:

= —Hﬂ(el,e2)sat( 1) (3.56)

where we define:
() = (G") ' () (Mg + 1’ K§ + (Y7 () + Ag) ) (3.57)

with

(3.58)

s = Koﬁaﬁ—i-Kfef—i-eg
& = —KJof + pPsat(s?/uP)

where Hg is a positive definite matrix, K(’)8 is a positive definite matrix, p/” is the boundary
layer and K f is a positive definite matrix chosen such a way that K f + sly is Hurwitz.
©

Theorem 3.4.1 System (5.55) with FP(.) satisfying Assumption 3.2.1, GP(-) satisfying
Assumption 3.2.2, and applying the control law (3.56- 3.58), will globally reach an arbi-
trary error region in finite time, and there on will be exponentially stabilized towards its

equilibrium point.
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O

Proof: Asin Section 3.3 of Chapter 3, we will demonstrate the exponential stability of
designed controller (3.56) and (3.58) for the lateral mode in (3.55). We will also consider
two regions: outside the boundary layer (||s?|| > p#) where the integral error measurement
surface will reaches the boundary layer and inside the boundary layer (||s?|| < p?) where
the system is exponentially stabilized to the its equilibrium point.

3.4.1.1 In the region ||s”|| > P, sat(s?/u?) = s°/||s?||.

We differentiate the surface expressed in (3.58):
§¢ = Kjof + KUl +é)
_  _ 1B BB B/,8 B(rB.B B BB 8. B(.Na,B
= —K)s® + pPKysat(s?/uP) + Ky (K{el +¢e5) + Kieh + FP(-) + G°()u
We define then AP
AP() = K{(KVe] +€5) + Kief + F°(-)
The previous derivative becomes:

P=—KPsP + P Klsat(sP /uP) + AP() + GB ()P (3.59)

Using remark 4, A?(+) function of F?(-) is then bounded by:

1P (eF, el < A (el + llez]l) + Ag (3.60)

and

1A% (e} = 0,5 = 0)]| = [[F7(0,0)]| < A7

for (€7, e5) € R® x R™
Consider product (s7)T$° outside the boundary layer.

— (") Kos” + uP(s°) Kysat(s”/1”) + (s7) 'A% (ef, €5) + (s7) g7 (€], e5)u”
—(s")'Kys® + u(°) Kg s |1°]| + (s7) AP () — ()" G ()P ()57 || 7|
—(N)T G s” + pP () Ky s |17+ AP O s?) = (2)T G (TP ()87 /|8
—(")TKGs” — (PGP IP() = 1P KG = (77 () + A0 ) /|17

()75

IA A

Using the control law in (3.57), the term (s%)7$” can be developed as:
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—~
V)
i)
~—
~
V)
="

—(sM) K" — (7 (g° (WP () = P K — (47() + A9 L2)s” /|||
—(s)TKgs" — (7)1 5% |||

~Amin (5§ ) (87)T'8% — Nin (T19) (%) 752 /|| 57|

mm(-K/B)HSﬁH2 mm(Hg)HsﬁH

AA

I/\ I/\ I/\ I/\
>‘ >/

(s”)Ts” is then not positive and we also obtain

()78 < = Din DI = Nin TS < (T 5
12 — )7 LU = ()7 < 2= (115) 7))

d(]|s

s <y (116

Is° @) < 15° ()] = Ammin (TIg )t

Then surface s°(t) reaches the boundary layer x” in finite time.

3.4.1.2 In the region ||s”|| < P, sat(s?/uP) = s°/uP.

In this region the system enters the boundary layer, the controller then behaves continu-
ously. We consider again (3.50), (3.58) and (3.59), but the saturation disappears in this

case.

i = —KJoP +§° (3.61a)
e = —Klel + 5 — Kjo® (3.61b)
§7=A°() = GP(P()s” [ p” (3.61c)

When é¢; = 0, 6 = 0 and s = 0 this system has an equilibrium point: e? = eg =0,

sP = 50, of = 5f with 5° = KJof = pP(11°)~1(0)(G?)"1(0)F?(0), where F?(0) =
F5(0,0), G#(0) = GP(0,0) and II°(0) = I1°(0,0). II°(0,0) = II%(ef = 0,¢f = 0),
GP(0,0) = GP(ef = 0,€e = 0) and F?(0,0) = F5(ef = 0,el = 0).

It may be rewritten with respect to 5° and &”:

50 = —Kj5’ + 3
e = KVl +5° — KJ5P (3.62)
38— AP() —TIP()GP (3% /P — TIP()GP ()3 /i

where 6% = o# — 58, 38 = 5% — 5P.
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Because of remark 4, F# (xf , xg ) is a Lipschitz function inside the boundary region e.g.

|s°|| < p?, such that:
1E (et e5) = FP(0,0)|| < W1 KY el ]| + 1y es | (3.63)

where llﬂ and 15 € R,

Since 7(-) is assumed as a Lipschitz function:

Y() S AlEL el + 7 llesl (3.64)

where 77 and 77 € R™.

We propose again a Lyapunov candidate:

()5
2

W/B — ﬁ(&ﬁ)TKﬁaﬂ + )\_g(eﬁ)TKﬁeﬂ
- 2 0 2 1 1*1

where )\f and )\g are positive constants.
Its derivative can be easily developed as:
WE=N (62T KJ6P + N (eTKPe) + (5°)T5°
=N (TR (—KJ5° + 5°) + X5 ()T K} (— K[ el +3° — Kj57) (3.65)
HE)A) = GO 1 = GO ()s° ()
Since ||s?|| < p?, AP(:) can be expressed as:
N()=Kg (s” — Kjof) + K{ (= K{el +5° — Kjo®) + F()
(K + K3 = (Kf + KRGS = (K] + P ()
In order to develop the derivative of the Lyapunov function candidate more clearly,

we firstly consider the term:

1F2() = GPOIP ()37 /p? || = [[F7(-) = GA()I() (7)1 (0)(G7) ~H(0) 2 (0) |

= [FP() = (15 + pPKg + (77() + A R (I + w” Kf + AJ L)~ F2(0)|

= |F7() = F2(0) =47 ()(ITg + W K¢ + ML) P (0)]

< [EPC) = FAO)| 4 27 ()T + w K§ + AG1)  F2(0) (3.66)
< FP() = PO + 77 () 0

< [EP() = FA0)| +7°()

< (I + ) IET eV ]|+ (I + ) lles |

Term (3°)T(FP(-) — GP(-)TIP(-)5° /uP) may be written using using (3.63) and (3.64)
and the relation in (3.25):
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(3T (FP() = G7()IP()87 /) < ISP FP () = GP()IP ()7 /|

(17 + ISP IIET Y] + (1 +72) 115 lez

%(lﬁ+vf)((§ﬁ)T§5+(€1) (K70 )+ < 51y +72)((37)73° + (e5)er)
G +7) + 35 +7))3 )Sﬂ+(§(lf+%) Sl +72)(e)) (K1) ey
5y +2)(57)" (K9)*(57)

¢/ (6%)"(Kp)*(67%) + 5 (e)" (KY) e + 5 (3%)75°

(3.67)

where we define ¢f = 3(-++1), ¢ = J(1?+0)+3(+) and &f = 3+ +A(E+5).

The derivative of the Lyapunov function can be developed as:

WP=—N/(6°)7 (Kq)*6” + X[ (67) K 3° = A ()T (K7)Pe + N5 (e) 'K (37 — Kg'6?)
+(3)T(Kg + K1)3% — (%) (K + K7)Kga® — (37)7 (K7)%e]
—(F)TGINP ()8 [ + (8°)T(F2(-) — GP ()P ()57 [ )

<-X(67)"(K7)%67 + 1/2Af((5ﬁ)T(K5)255 +(3)713%) = Xy (e]) KT e}
+1/2X5 ()T (K72 + 2((37)73° + (67)7 (Kg)?67)) + (37)" (K + K7)3°
+1/2((3°)" (Kg + Kf)Qgﬁ +(6°)T (Kg)?5") + 1/2((55)T(K5)255 + ()T (K7)%)
—(F)TGI (P ()37 /i + & (57)T (KJ)*(57) + &5 (ef) T (KT)%e +C§(§ﬂ)T§ﬂ
—(EAY =25 = 5 = )(E7)T(KPP67 — (1/2X5 — 1/2 — ) (e) " (k7))
—(E)NG( )Hﬁ( )1 = 1/20 T = Xo Iy — (K§ + K) = 1/2(Kg + Kf)
—1/2(K})? — &5 1,)5°
(3.68)
We obtain the same result on the derivative of the Lyapunov function found in the
theoretic part (see Section 3.3), but in this case it is applied for the lateral mode. This

inequality implies that the design condition matrices )\f , )\g and IIy must satisfy:

IND =5 >3+

%)\g >1/2+¢

(I + 1P K + (47() + A0) L) /1> (K§ + K) + 1/2(K7 + K[)? + 1/2(K7)?
(120 + N5 + &) I,

Now we will show that the Lyapunov function will reach zero exponentially. From
(3.68), we have
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WIS (3 = X = § = D)) (D)% — (34 — § = ) (DT (D]
—(&)(G(- )Hﬁ()/uﬁ—l/\ﬁfz NI — (K§ + KY) — &
%(Klﬁ) —061'2)55

)\ )\mm(Wl) /2(0—5)TK%6 - ABAmm(Wﬁ) /2(66)TK5 — Amin (W5 /2(39)T 57
A 1 Amin (W, ) ( )TKB B8 A5 )‘mm( ) ( )TKﬂ mm(Wf) (gﬁ)Tg,B)

( 2wq 2wo
(5@ K567 — () Ke] — 1(5)75)

2

(

Wa=(1 - IJ;QBCQ)Kf
_ B 6 I\Br _\Br (7B o 5B\ 1B L B2
Wi=2((Ilo + nKy + Aol2)/ sA e — Ny lr — (K + KY) — 5(Ky + KY)
_%(Kf) _C3I>
\wO :mzn(Amm(Wl)u )\mzn(WQ)a )\mzn(WB))

First we take )\f , )\g large enough, I1°(-) large enough with respect to control dynamics
or 1# small enough. In this way, W#(t) satisfies W7(t) > 0 and W? < —woW? (where
wq is a positive constant) for all o # 7, ¢ # 0 and s # 5°. Then W#(t) reaches
exponentially zero when time tends to infinite. As a consequence, the system is then

stabilized exponentially to the equilibrium point in the region of ||s?|| < u?.

3.4.2 Simulation Results

In the following simulations, we will apply the MIMO modified conditional servocompen-
sator controller for controlling the sideslip and roll angle of the lateral mode of the F-16
aircraft model at the same operating point that we have studied in Chapter 3. That
means (V) h) = (154m/s, 1500m) corresponding to the trimmed angle of attack agy = 2.7°,
pitch angle 6y = 2.7°, sideslip fy = 0°, ¢9 = 0° and to trimmed control surface values:
aileron ¢, = 0° and rudder 9, = 0°. We remind that the control inputs are always limited
by |04 < 21.5° and |6,| < 30°, which represent the physical limitations of these actuators.

The control law in (3.56) and (3.58) whose II(-) can be written in a more simple form

as below:
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{ u’ = ~TI(Jsat(s”/u”)

I°() = (G7(-) 7' (I +47(-) 1)

in which, v(-) = yi|le1|| + 72lle2]|, 71 and v, are positive constant, G?(-) can be seen in
Appendix A.2.

Sideslip reference (deg)

Figure 3.1: Reference input of sideslip and roll angle

Iy po| 1 and e Ky K
12 0.0 1.0 0.0 2.00.0
1.0 | 0.1 and 0.1
0.0 13 0.01.50 0.02.1

Table 3.1: Parameters of the conditional servo-compensator controller
The reference input Fig. 3.1 is taken as in [1] and [49] with a small change in its

amplitude. It consists of a step change in roll angle at ¢t = 8s and of a step change in

sideslip and roll angles at ¢ = 30s as:

(3.69)

Brer(t) | | 0.13(—0.25 + 1=z — 0.5)
Drey(t) 10(— 25 + 1w — 0.2)

Two initial conditions of sideslip and roll angle are studied:
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e 3y = 0° ¢g = 5°, the first corresponds to a small initial condition of sideslip and

roll angle from the equilibrium point of the system.

o [y =—10° ¢¢ = 20°, the second corresponds to a large one.

The simulation results of mCS Control will be compared with the results of Sliding
mode control where the integral term in (3.58) is removed, that means K, = 0. The
comparison with this controller allows us to demonstrate the important effects of ser-
vocompensator term inside the boundary layer which makes the system stabilize more
smoothly. The simulation results is also compared with the results of another control [1]

in the literature. These controllers will be described more clearly in the following.

3.4.2.1 Comparison of Conditional Servo-compensator Controller vs Sliding
Mode Controller

Sliding mode control

This controller was developed in a close manner compared to the modified Conditional
Servocompensator. The controller’s two terms become a saturated term (without integral

term) times a constant:

{ u? = —T1° (], €3 )sat(s” /p?) (3.70)

I1°() = (Gg) ™ (g + 1Ky + (AG) L)

where Gg is the transformation matrix at the equilibrium point and the integral error

measurement surface is defined as:
{ P = KPel e (3.71)

Assuming a small variation of 3.50 around its equilibrium point, (G#(-))~* = (G5)~!
and v?(-) = 0, and by removing the servocompensator term ¢ from (3.58), the controller
has the effects of a sliding mode control outside the boundary layer, which allows the
controller to bring the system into the boundary layer. But it can not stabilize smoothly
the system to the system’s equilibrium point inside the boundary layer. The control

quality depends then on the boundary layer value.

Comparison of Simulation Results
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Figure 3.2: Output Errors and Control Surfaces for a small initial condition. CS (solid) -

SMC (dashed)
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Figure 3.3: Output Errors and Control Surfaces for a high initial condition. CS (solid) -

SMC (dashed)
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The plots in Fig. 3.2 and Fig. 3.3 are obtained with the controller structure described
in Section 3.3 (solid lines) which is compared to a sliding mode controller (dashed lines)
where the sign function is replaced by a saturation function to avoid chattering. This
controller is used to regulate sideslip angle and roll angle errors. Fig. 3.2 represents
the system output errors in respect to the references. The mCS controller provides a
convergence to zero of the output error (solid lines) for both sideslip and roll angle in the
two cases of initial conditions. In contrast, the sliding mode controller (SMC) produces
an output error (dash lines) with non-zero steady state error. This well illustrate the

positive contribution of integral term to recover steady state information.

Rudder (deg)

30

251 ﬂ 3 = : -
'O

20§

L LT
1.1.--'-
.

15

10

10§

18] i i

-20 i
0

T
Pl
i

Figure 3.4: Detail on Control Surface (Rudder) for a high initial condition. CS (solid) -
SMC (dashed)

The benefit of the proposed controller is even more clear in the case of high initial
conditions where the SMC bring the system to a not constant behavior, even if still stable.

Fig. 3.3 shows the control surfaces of the system for both controllers. The solid
lines correspond to control surfaces (aileron and rudder) of the controller. The dash lines
represent control surfaces of sliding mode controller.

We present a detail of Fig. 3.3 in Fig. 3.4. There it is quite clear the mechanism of
the modified conditional servocompensator. One may observe that for large initial condi-
tions, the system is driven to the boundary layer where it is captured by the exponential

convergence property of the controller. From there on, the controller behaves in a very
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smooth way.

3.4.2.2 Comparison of modified Conditional Servocompensator and the Stan-

dard Conditional Integrator

Standard Conditional Integrator Controller

The standard Conditional Integrator controller applied to the F-16 aircraft’s lateral
mode in [1] used the Conditional Integrator method for a MIMO linearized system. This
control is based on the simplified model of lateral mode assuming a small variation of the
system around its equilibrium points. The simplified system is then transformed into a
normal form, and the standard Conditional Integrator controller is used for each variable
of the normal form in such a way that it is used for a single input single output system.
In the following we introduce the standard Conditional Integrator for the lateral mode.

The lateral mode is studied in the stability reference frame where the stability roll rate

and stability yaw rate are defined:

Ps = pCosagy~+ rsinag
rs = —psinagy + 7 Ccosqg

Substituting this expression into (3.50), we obtain the lateral mode dynamics in the

stability axis:

(B :ﬁ(— cos o sin B(T + Cr(v)qS) + cos BCy(5)q@S — sin ag sin fC; (g, 5)GS)

—rs + %(cos(ﬁ)E(Cyp(ao) cos o + Cy, (ap) sin o) ps)
—i—%(cos ﬁB(—Cyp(ozo) sin o + Cy, (ap) cos ao)rs)
—l—% (cos ag sin B sin Oy + cos 5 cos Oy sin ¢ — sin oy sin [ cos ¢ cos by)

b=t 1 e,

Ps=qSb[(I3C) (v, B) + 110y (a0, B)) cos ag + (I4Ci(ap, B) + I9Cy (v, B)) sin avg]
—1—%55[([30117(040) + 14,Cy, () cos? ag + (I3Cy, (ap) + 1,Cy, (ap)) cos ag sin ag
+(14Cy, (an) 4 I9Ch, (ap)) cos ag sin ag + (14Cy, (ag) + I9Ch, (o)) sin? aps
—i—%sg[—(fgClp (ap) + 14Cy, () cos g sin g — (I3C), (o) + 14Ch, (00)) cos? ap
—(I4Cy, (o) + I9Ch, () sin® g + (14Cy, (i) + I9Chr, (v0)) cos g sin a7 (3.72)
+qS[(I3Cy,, () + 14Ch;, () cos g + (14Cy;, (o) + 19Chy, (o)) sin agdg
+S[(I3C15, (an) + 14Cn;s (o)) cos ag + (14C; (o) + I9Chy, () sin ap)d,

r'szq’l;S[—i(IgCl(ao, B) + 1,Cp(ap, B)) sinag + (14Ci (g, B) + L9Ch (g, 5)) cos )
+%Sb[f(1305p (o) + 14Cp, (a0)) cos o sin ag — (13C7, (o) + 14Ch, () sin? ayg
+(I4qlp(a0) + I9Cy, (o)) cos? ag + (14Cy, () + I9Ch, (ap)) cos ag sin ag)ps
+EV (130, () + 14Chy (o)) 8in? g — (131, (010) + 14Ch, (cxg)) cos g sin o
—(I4C1, () + IgCh, (p)) cos g sin g + (14Cy, () + I9Ch, (o)) cos? ap]rs
+qS[—(I3C};, (o) + 14Chn;, () sin g + (14Cy;, (o) + 19Chn;, () cos apdg
+qS[—(I3Cy;, (o) + L14Chy, (a0)) sinap + (14C1; (o) + 19Chny;, (a0)) cos agldy
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Consider a small variation of the system around its equilibrium point which is g = 0,

¢ =0, ps, =0 and ry = 0 in this case, the previous equation can be rewritten:

g = %6%— @qﬂ-pcosaojt %ps + %rs — 7y
¢ = Zzzggps + ii)r;gg § (373)

ps = Lﬂﬁ + Lpps + LrTs + 5l(p57 7’s) + L6a (ﬁa 5a> + Lér (57 (5r>
7'05 == Nﬁﬁ + Npps + NTTS + 5n(P37 Ts) + N(Sa(ﬂa 5(1) + N(%(ﬁa 5r)

where we note that sin 8 ~ 3, sin¢ ~ ¢ around zero, and Y3,Y,.Y,, Lg, L., 0;, Ls,, Ls,
and Ng, N,, d,, Ns,, N;, are determined in Appendix A.3.

Additionally, the nonlinear expressions &;(ps, rs)+ Ls, (8, 04)+ Ls, (3, 0,) and &, (ps, rs)+
Ns,(5,04) + Ns,.(,6,) can be expressed as linear combinations of two unknown functions
of B, ¢, ps, 75, 04 and 9,.

{ 0u(ps,rs) + Ls,(8,0a) + Lo, (8,6:) = L, (a + f1()) + L5, (0r + f2("))
5n(p3a Ts) + N(Sa(ﬁa 5a) + Nér(ﬂ? 5r) N5a(5a + fl()) + N5r(5r + fQ())

Substituting this expression into (3.73), we obtain the lateral mode’s dynamics in state

space form:
B B
. 5. .
Cloal? |y *h0) (3.74)
Ps Ps 57" + fQ()
Ts s
where
Y gcosby Yp Yr 1
i% i% i% v
A 0 0 —zgzgg —ZSZE B = 0 0 = 1 0 00
Lz 0 L, L, Ls, Ls, 01 00
Nz 0 N, N, Ns, Ns,
Or
i = Az + B(u+ (8,6, pes 7,60, 0,)) (3.75)

The paper [1] has studied the case f(-) independent on §, and d,. It is easy to check
that (3.75) with f(5, ¢, ps, 75,0, = 0,9, = 0) has a vector relative degree p = 2,2. The

change of variables ejg = 8 — B,cf, €28 = €18, €16 = @ — ey and ez = €14, Will transform
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3.4. FEzample: F-16 aircraft’s lateral mode control design

(3.75) into a normal form where each variable is controllable by a control input. The
application of continuous sliding mode control for each new variable is produced as done

in the SISO case (see [50] and [40]). We define then:

S, = kzoezl + €. (3 76)
0, = —kyo,+ uzsat(%) '

The control for each new variable of the transformed system is expressed for every
z= {5, ¢}
z = — t(2=
{ ve = —sat(y) (3.77)

v is a constant

The control of (3.75) is then obtained by a transformation matrix:

dq
u =
oy
where T'= BAC.

We can find numerical parameters for this control in [1].

=71

ve ] (3.78)
Vo

Comparison of modified Conditional Servocompensator Controller and Controller in

the literature [1]

Error in Sideslip (deg) Aileron Surface(deg)

Error in Rell Angle (deg) Rudder Surface(deg)

Figure 3.5: Output Errors and Control Surfaces for a small initial condition. CS (solid) -
Controller in [1] (dashed)
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The plots in Fig. 3.5 to Fig. 3.6 are obtained with the controller structure described
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3.4. FEzample: F-16 aircraft’s lateral mode control design

in Section 3.3 and the standard Conditional Integrator for the F-16 aircraft lateral mode,
linearized at the equilibrium point (V' = 154m/s, o = 2.7°) used to regulate sideslip angle
and roll angle errors. All parameters are obtained from control design in [1].

The two controllers give the same output error and control surfaces for the case of
small initial conditions (Fig. 3.5). That demonstrate the good performance of both con-
trollers. For high initial conditions, the standard Conditional Integrator controller based
on linearizations may have very large oscillations (up to 16° in Fig. 3.6). Moreover, Figs
3.7 that presents a closer view of Fig. 3.6 well illustrate the behavior of the controller, with
an exponential convergence since entering a residual region, obtaining a better transitory

for large initial conditions.
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Chapter 4

Application to the Airlaunch System
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4.1 Introduction

The previous chapter has introduced the theory of modified Conditional Integrator(mCI)
and modified Conditional Servocompensator(mCS) to a new class of MIMO nonlinear
systems. To avoid to much repetition in this thesis, it was only presented an example of
mCS control applied to a MIMO nonlinear system. The simulation results in section 3.4

show its performance compared to the other controllers.
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Chapter 4. Application to the Airlaunch System

In this chapter, we would like to apply these control strategies to the object of this
thesis: the air launch during and after the launch phase. A standard method to flight
control design is to separate the flight motion in two: longitudinal motion which is in the
OXpZp plane which is the symmetrical plane of the object and lateral motion which is
the motion in other directions. Another method consists of designing a controller for a
complete flying object, which is more difficult and more complex. In general the coupling
of the two dynamics is sufficient small what justify this procedure.

In section 4.2 we will design two controllers, using the results developed in the previous
chapter. First it will be designed two modified Conditional Integrator controllers, one for
each flight mode, which will be evaluated by simulations in the full model. In the following,
we’ll design a controller using modified Conditional Servocompensator theory for the full

airlaunch system. The chapter ends with some conclusion.

Objectives and Assumptions

Following the discussion in Chapter 1, we set up the following objectives for the controller:

e the controller should stabilize the airlaunch system, after the launching phase, to its
equilibrium point, i.e. an equilibrium point for the second model after the launching

phase.

e the airlaunch system must not collide with the rocket after the separation phase,
whose trajectory is represented by a free drop under earth gravity with the same

initial speed of the airlaunch system before the separation phase.

In order that the modified Conditional Integrator and modified conditional servocom-

pensator to be applicable to our airlaunch system, we need the following assumptions:

Assumption 4.1.1 The control surface deflections only produce aerodynamic moments,
not aerodynamic forces. Moreover, their dynamics are assumed to be fast enough to be

disregarded.

Assumption 4.1.2 The airspeed of the airlaunch system varies slowly compared to the
controlled variables and is controlled by the thrust force T. Therefore, their time deriva-
tives can be neglected. The thrust is also considered constant.

The yaw angle which orientates the airlaunch system to right and left directions, has

less interest in our objective. Its dynamic is therefore neglected.
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4.2 Application of Modified Conditional Integrator
to the Airlaunch System

As said before, a very common method for flight control design is to separate the flight into
two motions: longitudinal motion which is in the O XpZp plane which is the symmetrical
plane of the object and lateral motion which is the motion in other directions. A controller
will be designed to regulate the angle of attack in the longitudinal motion. This system
is a single input single output nonlinear system. Another controller is designed to control
the lateral motion represented by the sideslip angle 5 and the roll motion represented by
the roll angle ¢.

For the modified Conditional Integrator control to be applicable to our airlaunch sys-
tem, we therefore need the assumptions 4.1.1 and 4.1.2. Moreover, we also need another

assumption:

Assumption 4.2.1 The longitudinal and lateral modes are assumed to be decoupled.
Hence, when the angle of attack is controlled, the sideslip and roll angles are consid-
ered constant. Conversely, when sideslip and roll angles are controlled the angle of attack

18 considered constant.

Assumption 4.2.1 is not real in practice, but it is quite close to reality (the coupling
is usually very small), and it allows us to design two controllers for two motion modes
separately. The numerical simulations will show a good performance considering the with
coupling between the two motions of the airlaunch system. Under these assumptions, we

can now design the controllers for our airlaunch system after the launching phase.

4.2.1 Lateral control design

Nonlinear control problem

We presented in section 3.4 the definition of an output error vector e? = xf — x’fref and

eg = 61 where xlre 5= Brers brep)? is the output reference considered as constant. The

lateral mode’s dynamics in (3.50) can be transformed into:
¢) = el (4.1a)
62 - Fﬂ(el ’ 62) + Gﬁ<€fv eg)uﬁ (41b>

As mentioned in Section 3.4, F?(-) satisfies the Assumption 3.2.1, then bounded and
Lipschitz. G®(z,25) is invertible in the considered domain of z? = [, ¢]”, i = 25 with
g€ (—30°,30°) and ¢ € (—180°,180°).
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Control law

An application of the Modified Conditional Integrator Controller to the lateral motion

gives then the controller form (see section 3.3):

W= T, ef)sat(s? /)
8 8 8 ) (4.2)
() = (m +77() + kor” + AG)(G7())”
with
s = kgaﬁ +Klﬁef + e’g
' 5 (4.3)
6% = —kyof + pPsat(s’/pP)

where Wg is a constant, kg is a positive parameter, ;1 is the boundary layer and K 15 is a

positive definite matrix chosen such a way that K7 + sI, is Hurwitz.

Remark 5 We can state that with 7r§ a constant large enough, kg a positive parameter,
1P the boundary layer small enough, the lateral system will be exponentially stabilized to
its equilibrium point inside the boundary layer e.g. ||s°|| < puP. The demonstration is the

same as in case of mCS control for the lateral mode of the airlaunch system (see Appendiz

A.2).

4.2.2 Longitudinal control design

As in the case of lateral control design, in the longitudinal case it is considered that only
longitudinal state variables are time varying. It is a single input single output system

where angle of attack is the output and elevator is the input.

Nonlinear control problem

Aerodynamic forces F,, F,, and moment M can be calculated by its aerodynamic coeffi-
cients (see more in [9]).
Fy = (Co(a) + eCy, (a)q/(2V))qS
Fy = (Cula, B) + ¢C, ()q/(2V))S
M = (Cp(a) + Cry(@)qc/(2V) + Cps (a0)de) S

By replacing F,,, F,,, moment M and f =0, ¢ =0, p=0, r =0 in (2.23), the model for
longitudinal dynamic can be written as:

d=-L[—sina(T + C,()qS) + cos aCs(a)gS] + ¢ + £ (- sinaC,, (@)c

+cosaC’, (a)e)q + & cos (0 — a)
§=1;qS(Cr ()¢ + Cp, ()Cq + Cpny, () C6e)
0=q

(4.4)
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in which ¢ mean aerodynamic chord, I; = 1/1,,, Cy(a), Cy, (o), C.(a), C. (o), Cpn(a),
Cy(@) Cpyy, (@) are aerodynamic coefficients taken from [48].

Equation (4.4) can be rearranged as:

0 = ¢
@ = fii(a)+ 1+ fis(a))g + [z, 0) (4.5)
¢ = fsi(a) + fp(a)g + g5 (a)de

where f3 (), fis(a), fi(a,8), f&(a), f5(a) and g5 () represent the terms of (4.4)
respectively (see Appendix A.2).

(67

Let us define z{ = a, 2§ = 2¢ = & and u* = J., which allow us to have the

relationship:

(e2 = fy(af) = fis(m0) -y

25 = fii(z1) + fis(@,0) + [L+ fis(z)]q & q= [L+ fiy(a)

and

) PR 1 T -
g =) g | L0 g D105 BN b0y 4 g 0]

_afgx(fﬁ) « + 3f13($1 9) a + 8f13 9 0+ 3f12($1)q+ [1 +f12(x1)] (f2al<l,?>

+f55q + g5 (x )5 )

=U0CD o 1 OBELD o 1 IBELDG 4 [1 4 fy(an)] f5i(25)

9 z T T x{,0 o al o
TR0 4 04 o) ] SR 1) o

—280t g 4 | 2B (1 fiy ()] + f5(09)] (08 — fAD) + [T+ fix()] fa(2)
LU D0 (SR (1 4 fo o) + S (o] Fi(o.6)
+[1+ fis(z1)] 95 (%)5.3

System (4.5) can be rewritten into:

6 =1 (22,25,0) (4.7)
] = x5
5 = 1 (05, 08) + 1 (05,25, 0) + g™ (a5, 25" (4.7b)

where

770‘,—( = fTi(a) = fis(7,0)) /(1 + fia(a7))
r —afg;xl’xz [ 2R 1+ fy(an)] + S| (@8 - f13 @) + [+ Sp(@n)] S5 (25)
U o RO (OB 1y g (00)] 4 S5 ()] S )

!/

g% =[1+ fiy(z1)] g5 (1)

(4.8)
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In (4.7b), fo‘/(') is function of z¢ and x§. Function A'(-) is function of 2§, x§ and 6,

it can be expressed as:

! 0—a) Of%(z{) o oo . N o /o
h() = _%(fij{%(m?))) fgm(;l)% — L cos (0 — a) fsy(af) + Lsin (0 — o)z —(111;;5;(2%))

g \2sin (0—a) cos (6—a) g sin (0—a)ff (z9)
) T e TV e

(4.9)
Remark 6 We have some remarks:

o [, s, fis, I35, fsh and g5 are function of aerodynamic coefficients under analytical
forms by interpolation from wind tunnel test data. F® and h', formed from these
functions, can be then bounded by a class K function and be a Lipschitz function in

a flighting envelop.
o G is invertible in the flight domain, that means o € (—10°,45°) and 6 € (—90°,90°).
As a consequence, they fulfill Assumptions 3.2.1 and 3.2.2.

We define now the reference for the angle of attack «,.; considered as constant in this
study, and the error vector of angle of attack e = x{ —f,.; = & — o,y and the variable

e§ = é7. Equation (4.7b) can be transformed into:

€y = f(ef,e5) + (et e3,0) + g (ef, e5)u” (4.10b)

{é‘f =Y (4.10a)

Since function h(-) depends on 6 under cosines and sinus functions, it is easy to show

that h(-) is bounded by a function of class K function 7¢(-) and a constant hy.

(el 5, 0)] < AT (let] + [eg]) + ho (4.11)

Control law

We will apply the control algorithm presented in (3.12) for system (4.10) which in this

case is a nonlinear single input single output system, gives the controller:

{ ur = —m(e, eg)sat(s® /ue) (4.12)
() = (mg () + kgu + 68) (g ()
with
{ s* = kg™ + kel + e (4.13)
o = —k§o® + pSsat(s®/p®)

where 7f, n, K{" and k{j are positive constants.
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Stability Analysis

Theorem 4.2.1 System (4.10) with f(-) satisfying Assumption 3.2.1, g*(-) satisfying
Assumption 3.2.2, and the control law (4.12-4.13), will globally reach an arbitrary error
region in finite time, and there on will be exponentially stabilized towards its equilibrium

point.
0

Proof: In order to demonstrate the exponential stability of designed controller (4.12)
and (4.13) for the longitudinal mode in (4.10), we will consider the two regions, outside the
boundary layer (|s%| > p*) and inside the boundary layer (|s*| < u®). The longitudinal

mode in this study is a single input single output system.

4.2.2.1 In the region |s®| > u®, sat(s*/u®) = s*/|s“|.
The derivative of the integral error measurement surface can be then expressed as:
5% = ko +k{ey +¢é3 (4.14)

From (4.10) and (4.13), the previous equation may be written again :

$7=kG (—kgo® + psat(s*/p”)) + ki'e§ + €
=k (=(s" — (kfef + €5)) + usat(s*/u®)) + ke + e
=—kgs + kg posat(s?/p*) + kg (kT ef + e5) + kfes + () + g% (-)u

Now by letting
5°() = kg (kges + ) + keg + () + A(-) (4.15)
The derivative of the integral error measurement surface becomes:
$¥=—k&'s® + k§u“sat(s®/u®) + 0“(-) + g*(-)u” (4.16)

The term f*(z{,25) is bounded by a function 7§ (|ef| + |e3|) outside the boundary

region e.g. |s*| > u® and a positive constant f§', where 4¢(-) is a class K function.

[F(el, )] < 25 (lef] + les]) + /5 (4.17)
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Function A(-) is also bounded in the same way (see (4.11)). Then 6°(+) is bounded by

a v*(+) class K function and a positive constant J:

0%(es )] < Af(let] + les]) + ho + 3 (lef] + les]) + /¢ (4.18)
[0%(ets es)l < *(le] + les]) + o5
where y*(-) = 77(-) +75(-) and 6§ = ho + f¢'
and as a consequence,
[0%(e7 = 0,e5 = 0)| = [f(0,0)] < &5 (4.19)
for (ef,e5) € R" x R™.
Let’s consider the product s*s* (since s is a scalar)
595 = —k§(s%)? + k§usvsat(s*/u”) + s*0%(eg, e5) + s*g% (e, e5)u (4.20)

This product (s*)7$* can be developed with the definition of saturation function (3.4):

)2+ kG (s2)? /157 4 s76% () — s%g (- )m()s%/| 5]

)2+ pkG (s%)? /157 + 10(- )Hsal - 8"‘9“() ()8 /15

kG (%)% 4 pokG (s7)? /s + (7 () + 08) 5] = s2g* ()7 ()5 /] s
)2 = s(g7()m () = (ukg + () +58‘))S°‘/|S°’|

(4.21)

6(s7)?/|s (4.22)

The product s*s* is then not positive and we have also

d((s*)? a|d(]s 55 ol oo af oo
((dt) : =2|s | l = 255 < 2(—=mg s — kg (s )?)
s D < e kz“|sa] (4.23)
s ()ISIS (0) = m§t — [s*(0)|(e)~M* — 1)
Then the integral error measurement surface s®(t) reaches the boundary layer u® in

finite time.
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4.2.2.2 In the region |s| < u®, sat(s/p*) = s/p”.

Consider again (4.13) and (4.16), which inside the boundary layer may be rewritten as:

0% = —kyjo® + s* (4.24a)
él = —kief + s* — k{o® (4.24b)
8% =0%() = g"()m(-)s"/u® (4.24c)

It can be shown that this system has an equilibrium point: e} = e = 0, s* = 57,
0% = 5% with § = k§a® = p2(7*(0,0))"1(g°(0,0)) " (*(0,0) + h(0,0,6)) = (f2(0,0) +
h(0,0,0))/ (G + kG u® 4 05).-

System (4.24) may be rewritten with respect to s* and *:

0% = —kS5® + 3 (4.25a)
¢ = —ke + 3 — kg5° (4.25b)
5% = 0%() = g ()m ()5 — g ()m* ()5 (4.25¢)

where % = 0% — g%, §% = s* — §°.
Function f*(z¢,x) is Lipschitz inside the boundary region e.g. |s*| < u® (see remark
6), such that:

[f(el, e3) = (0, 0)] < I |ATer| + 15 ]e5 ] (4.26)

where [§ and 1S € RT.
~v$(+) and ~{(+) is are chosen so that are differentiable, then Lipschitz. As a conse-

quence, function v*(+) is then Lipschitz.

74() < difkyer| + dsles] (4.27)

where d¢ and d§ € RT.
We would like to demonstrate that every trajectory of system (4.25) starting inside
the boundary layer, will approach the equilibrium point as time tends to infinity when

the control law (4.12) is applied. Toward that end, we take:

2\ & sa\2
W = ZLES(6Y) + 2 k8 (e)? + Gl (4.28)
2 2 2
as a Lyapunov candidate, where A{ and \§ are positive constants.
Since |s¥| < p®, 6%(-) can be expressed as:
0%()=(k§ + k)5* — (kg + kP)k§ o™ — (k)€ + f() + h(:) (4.29)
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From (4.25) and reminding that s = (f*(0,0) + h(0,0,0))/(7§ + k§p* + o) and
g () (+) = (m§+ES >+ (-)+65 ), the derivative of the Lyapunov function is developed:

Wo=AEGG0 4+ Mgk efed + 575

=A\YGOkS (ko™ + 5%) + MGk e (—k{ef + 5% — k§a®)
+840%(-) — g*()m(-)3/ e — g () m(-) 3/ )

=\ (k§52)? + A\tkgo23® — NS (kSe$)? + A\gkSeg (5% — k§a™)
F(k§ 4 k) (3%)? = (k§ + kD)EG5%5™ — (k9)%ef5™ — g*()m*(-) /u*(53%)?
+34(f() + h(-) — g ()m()5%/ )

=\ (k§52)? + Nkgo23 — Ag(kSe$)? + A\gkSeg (5% — k§a™) (4.30)
+(k§ 4 k) (3%)? = (k§ + kD)EG5%5™ — (k9)%ef5™ — g*(-)m(-) /u*(5%)?
+5°(f2 () + () — BRSO (£2(0,0) + h(0,0,6)))

=AY (k§52)? 4+ AN0kG55 — NG (kSe$)? + AghSeS (5% — k§a™)

+(k§ + k) (5%)? — (k§ + k§)k§500™ — (k7)%et5* — g*()m*(-)/n*(5%)*

+8¢(f*(-) = f*(0,0) — (ﬂaJrZa—(aJﬂ;afa( 0))
+8%(h*(-) — h*(0,0,0) — h*(0,0,0))

W

Using equations (4.10a) and (4.25b), the relation in (4.26) and in (4.27) can be ex-

pressed as:

W2
Q
—~

fe(ef,es) — f4(0,0) — (awx—awfa(o 0))
(£ (efs e8) = £(0,0)] + | rarmaram £ (0, 0)])
S|k er] + I5]es| + dy|kyet| + d3les])

T )ler]ls?] + (d3 +15)]eg ]3] (4.31)
< 1/2(d + 1) ((kf'e)? + (5%)%) + 1/2(d5 + 15)((5%)?

+3((5%)% + ((Af'ef)® + (k§5)?))

< a1(k§a*)? + ca(kfef)? + cs(5)°

where ¢; = 3/2(d$+15), co = 1/2(dY+1{)+3/2(dy +1$) and ¢z = 1/2(dY +1{) +2(d +15).
and then,

!

/\__

VAN VAN VAN VAN

W= (k§G*)? + 1/2X3((k§5)? + (3%)2) — A3 (kfef)?

F1/2X8 ((kfed)? +2((3%)* 4 (k§a*)?)) + (kg + k) (5%)?
F1/2((k§a*)? + ((k§ + E§)5*)?) 4+ 1/2((kfef)? 4 (k§3%)%) — g*(-)m () /u*(3%)?
+c1(k§a®)? + co(kfet)? + e3(5%)2 + |h(+) — h%(0,0,0) — Wh“(O 0,0)]|5%|
—(1/2/\? o 1/2 — cl)(k;g‘&“)2 — (1/2)\‘2)‘ — 1/2 — c2)(k:“ )
—(g* ()T () /> = 1/2X¢ — As — (kG + kT) — 1/2(kg 4 k) — 1/2(k$)? — ¢3)(5%)°
HR(-) = h(0,0,0) — G drgmyh(0,0,0)]13°]

(4.32)
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Because inside the boundary region e.g. [s*| < u®, functions h(-) and v*(-) are

bounded, the following term is bounded by a positive constant C'pu:

() .
he(-) — h(0,0,6) — h(0,0,0)||5%] < C 4.33

For any value of 6, it is very important to remark that this variable was not included

in this analysis, even if its derivative is. We will discuss this point again later, but the
main reason is that the airlaunch may be performed under any pitch angle ¢, and even
under a looping-like trajectory. From (4.32), the derivative of the Lyapunov function can

be further developed:

Wo<—(1/20¢ — XS — 1/2 — ¢1)(k§5°)2 — (1/2X8 — 1/2 — ¢3) (k®e$)?
—(g* ()T u = 1228 = Xg — (kg + k) — 1/2(kg + kY)? — 1/2(kD)? — ¢3)(3°)?
+Cu
<=k (67)? — A5 (ef)? — B(3%)? + O
Swo(— g (6%)? — i (ef)? — 32 (3)%) + Cp

2wo 2wo 2wo

Swo(—3 (%) = F(ef)? = 5(5%)?) + Cu

(4.34)
where
’LU2:(1 o 1+262)k‘?

AS
wy=2((m§ + kGu® +05)/u™ — 1/20 = A5 — (kg + k§) — 1/2(k§ + k§)? — 1/2(k7)* — ¢3)
wo=min(wy, wy, ws3)
(4.35)
The derivative of Lyapunov function negative implies that A{, A and 7§ large enough

and p® small enough, to satisfy:

1> 205 +1/242¢c1

1> e (4.36)
(7 +08) /1 — K — 1/2(kg + k§)? = 1/2(k8)? > 1/2X8 + 23 + c3

In this way, W (t) satisfies W (¢) > 0 and W < —woW*+Cp (where wy is a positive
constant) for all o # 0@, ef # 0 and s # §*. Then W(t) is ultimately bounded towards
a neighborhood of zero when time tends to infinite, independent of the pitch angle 6. As
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consequence, ef(t), c® and s tend to a region around their equilibrium point as time
tends to infinite and for every pitch angle 6. The system is then said to be ultimately
bounded to a small region which is function of pitch angle 6. Finally, it is interesting to
remark that, as said before, variable 6 is left free in order to allow situations as a looping,
where 6 is continuously varying. Its derivative on the other hand is bounded, and also goes
to a residual set. In fact, the best trajectory for airlaunch is still an open problem. There
are proposals of launching in horizontal, constant angle (climbing), concave or convex

(zero gravity instant) trajectories.
0

Since the airspeed control is only a secondary objective, we design a simple PI controller

for the thrust to regulate airspeed. Its form is:
T = —kp(V = Vies) = kr(V = Vieg)

where Vs is the airspeed reference, kp = 711.0 and k; = 6.2.

4.2.3 Simulation Results

In section 3.2, the design methodology of the modified Conditional Integrator controller
to stabilize the angle of attack, sideslip and roll angle is proposed. This section presents
numerical simulation results to demonstrate the performance of the proposed modified

Conditional Integrator control laws in the drop phase.

Baselines

As mentioned in section 2.4, we have considered the launch phase as impulses on aerody-
namic force and moments during a time interval T},;, and that the model following the
launch phase is that of an F-16. This model is used since it has already been applied for
(manned) airlaunch, and because its nonlinear model, wind tunnel informations and data
are widely known and used for control design. It is important to remark that the model
used in the following simulations is even more complete than that used in the control de-
sign, for example it includes actuator dynamics and their limitations. As a consequence,
simulations also illustrate some properties of robustness to unmodeled dynamics.

In the following simulations, we have simultaneously applied the SISO longitudinal
controller for angle of attack, and the MIMO lateral one for sideslip and roll angles in the
full nonlinear F-16 aircraft model. We may note that the control inputs are limited by
their physical bounds introduced in section 3.2.

The objective for the controller after the launching phase are:
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4.2. Application of Modified Conditional Integrator to the Airlaunch System

e the controller must return the airlaunch system to the equilibrium point of the
second model which corresponds to angle of attack a, = 4.6°, sideslip 3, = 0°, and
roll angle ¢, = 0° and all others variables to zero (at V' = 154m/s, h = 5000m).

The control surfaces at the equilibrium point are ¢, = 0°, §, = —2.5° and 9, = 0°.
e There is no collision between airlaunch system and the rocket.

o (ap =17.5° By = 4° and ¢y = 10°) are the initial conditions for the second model
which represents the airlaunch system after the separation phase, all others variables
are zero. This is the final state of the first model plus a small aleatory disturbance

on the system output.

Numerical Applications

The control law in (3.12) whose II(-) can be written more simply as:

{u = —Il(ey, eq9)sat(s/p)
) = (Mo+~()G0)™

with v(-) = y1lle1]|? + 72lle2]|?, 71 and 7o positive constants. G(-)~! is G*(-)~! defined in
(4.10) or GA(-)~! in (3.55) depending on longitudinal mode or lateral mode (they can be
found in Appendix A.2).

Application of this control law to two motion modes presented in subsections (3.4.1)
and (4.2.2) is done by determining the set of parameters IT{, vi, 74, p', Ki and k} with
1 = a, 3 corresponding to longitudinal mode and lateral mode respectively. We use the
design parameters in Table 4.1 for the longitudinal controller, and the design parameters
in Table 4.2 for the lateral controller.

g | p° 71 and vy ky | KY
25.0 | 1.0 | 0.001 and 0.001 | 2.0 | 2.0

Table 4.1: Parameters for the longitudinal mode controller

o p? | ) and 5 ko K}
10 0.0 0.80.0] | [1.20.0
1.0 | 0.01 and 0.01
0.0 10 0.00.8| | [0.01.2

Table 4.2: Parameters for the lateral mode controller
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As we have done in Chapter 2, we also include a set of disturbances representing
errors in the split phase. These disturbances last for a time interval T},;. The considered

disturbances are:

e the perturbation F,,, = mg cos fjy on the aerodynamic normal force, the perturbation
on drag force is F,, = —Psinfly = —mgsin ), the perturbation M, = mgl, cos 6o/2
on the aerodynamic pitch moment and a small perturbation on the aerodynamic

roll force during T;,;, where [, is the rocket length.
e three sets of time interval are simulated:

1. Ty = 0.227s (corresponding to solid lines in Fig. 4.1 to Fig. 4.3), produces

damped oscillations by constant inputs.

2. Ty = 0.3s, the system is unstable for a simple LQR controller (corresponding
to dashed lines in Fig. 4.1 to Fig. 4.3).

3. Tyt = 0.43s (corresponding to dash dotted lines in Fig. 4.1 to Fig. 4.3), is

stabilized by the modified conditional servocompensator controller.

4. Ty = 0.44s (corresponding to Fig. 4.4 to Fig. 4.5), the system is unstable for

this large time interval.

Results

Fig. 4.1 illustrates the convergence of the system output to the operating point of
the aircraft at the end of 5s without static steady error for the three cases of Tj,; =
(0.227s,0.3s,0.43s). All system outputs are still under their physical limitations.

Figs. 4.3 shows that angular rates converge to zero in all cases. In Fig. 4.2, it can be
seen that the control variables are saturated by their physical limitations due to a high
perturbation on aerodynamic forces and moments.

Finally we show in Fig. 4.4 and Fig. 4.5 that the system will be unstable for an
interval T},; = 0.46s.

Collision Avoidance

Airlaunch problem does not only require stability of system’s states, but also to avoid
the possibility of collision between the aircraft and the rocket after the drop phase. Fig.
4.6 shows the altitude of the aircraft from 0 to 1s in the three previous cases of study
Tint = (0.2275,0.35,0.43s). They are compared with the trajectory of the rocket that
drop freely with the initial airspeed of the aircraft (the solid plot). It is important to
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4.2. Application of Modified Conditional Integrator to the Airlaunch System

remark that there is a small distance from the initial height of the rocket and the aircraft,
representing the distance between centers of mass of the aircraft and the rocket.

In the three cases (dotted plot, dashed plot and dash dotted plot), the altitude of the
aircraft satisfies the specification that requires there is no collision between the aircraft
and the rocket in the airlaunch phase.
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5 6 7 8
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Figure 4.1: Angle of attack, Sideslip Angle and Roll angle stabilized by MCI controller
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Figure 4.2: Aileron, Elevator and Rudder of MCI controller
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Figure 4.3: Angular rates stabilized by MCI controller
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Figure 4.4: Angle of attack, Sideslip Angle and Roll angle unstable by MCI controller
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Figure 4.5: Saturation of Aileron, Elevator and Rudder with MCI controller
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Figure 4.6: Altitude of the aircraft in the case of MCI controller
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4.3 Application of modified Conditional Servocom-

pensator Control to the Airlaunch System

In the previous section we have applied the modified Conditional Integrator control to our
airlaunch system by separating the complete flight system into two modes: longitudinal
mode and lateral mode, and designing then a single input single output controller for the
longitudinal mode with angle of attack as the output and a multi-input multi-output lat-
eral controller for the lateral mode with roll and sideslip angles as the output, we obtained
a stabilization of our system to its equilibrium point without collision. In the same way,
we can apply the modified conditional servocompensator control developed in section 3.3
to two modes of the airlaunch system by designing two controllers: longitudinal controller
for angle of attack and lateral controller for roll and sideslip angles, the simulation results
can also be found in Appendix A. To avoid repetition this will not be done in this section,
we will show that the mCS control can also be applied to the complete airlaunch system
without any separation of the system. The simulation results will be presented in the end

of the section.

For the modified conditional servocompensator control to be applicable to our air-
launch system, we therefore need two assumptions 4.1.1 and 4.1.2 presented in Section

4.2. In this case, Assumption 4.2.1 is not necessary.

4.3.1 Modifed Conditional Servocompensator Control Design

The mCS control will be designed for the a complete airlaunch system after the launching
phase. We define in this case the angle of attack, sideslip angle and roll angle as the

system outputs and control surfaces: aileron, elevator and rudder as the control inputs.

Nonlinear control problem

Aerodynamic forces and moments can be calculated from their aerodynamic coefficients
(see [13]),
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= (Cala) +cCy, (@)q/(2V))aS

= (Cy(a, B) + €C., (@)q/(2V))qS

= (Cy(B) + (Cy, ()p + +Cy, (a)r)b/ (2V))7S
(Con(@) + Cpy, (a)qc/ (2V) + Cpy (a0)e)GSE
(

(

Ci(B) + Ci, (a, B)pb/ (2V) + Ci, (e, B)rb/ (2V) + Ciy, (a)da + Ciy, ()0,)G S
Cu(B) + Cu, (0, B)pd/ (2V) + Cy, (a, B)rb/ (2V) + Coy, ()0 + Cny, ()6,)gSD

2h§§j§j£‘j

By substituting these expressions into 2.23, the airlaunch model can be written as:

9 = gcos¢ —rsing
a cosﬁ((T+Cqu) sina + C,qS cos )
Bl = #V —sin (T + CrqS) cosa + C.gSsina) + CyqS cos 3
¢ 0
0 Cosﬂ(Czq cosa — Oy, sin ) 0 D
+ % Cy,beos B —sin B(Cy, cosa+ Cs, sina)e Cy,beos B | | g
0 0 0 r (4.37)
[ — cosatan 8 1 —sinatan g P
+ sin 0 —cos q
i 1 singtanf cos ¢ tan 6 r
[ Colsﬁ (sin arsin € + cos a cos ¢ cos )
+ & | cosasin Bsinf + cos B cos § sin ¢ — sin asin 3 cos 0 cos ¢
i 0
P Iopq + Igr I3C)(a, B)@Sb + 1,Cy (v, B)@Sb
q|=|Ispr — Is(p* —7r?) | + 1:C,,qSe
7 Iyqr + Igpq LiCi(a, B)gSb + I9Cy(cr, B)GSb

LCwb+ LiCyyb 0 I3Cub+ LiCypb| [p
Vs 0 I:Cmg 0 q
IiCipb+ I9Cppb - 0 IClb+ InCryb | 7

I3C5, (o, B)b + I4Chs, (, B)b 0 1305, (a0, B)b + I4Cys,. (ar, B)b] [ 04

+3S 0 [Congt 0 5.

LCis, (a, B)b + IgChrs, (o, B)b 0 14Cis, (v, B)b + IgChs, (v, B)b] |6,
(4.38)

We note that the control surfaces deflection on the aerodynamic forces are neglected,
and the airspeed V' is a much slower variable that can be regulated by thrust force T. T

in 4.37 is then considered as constant.
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Equations (4.37) and (4.38) can be rearranged as:

(

p
0 = qcosp—rsing =mn(-) | ¢
- e
S 1B = mO+GO) | g |+ fis(-,0) (4.39)
L ¢ L7
D [ p ] o
q = fa()+ falt) | ¢ | +G2() | b
(L7 L 7 Or

where 179(+), fi1(+), G1(+), fi3(-,0), fo1(-), fa2(-) and Ga(-) represent the terms of (4.37)
and (4.38) respectively (see Appendix A.5).

Remark 7 Functions fi11, foo and Gy are function of (o, ), G1 function of (a, B, ),
f13(+,0) function of («, B, ¢,0) while far is function of (c, B,p,q,7) and ny function of ¢.

o & O
Let us definexy = | B |, 22 =101 = ﬁ and u = | 0, |, which allow us to write
¢ ¢ 0,

down the relationship between x5 and 15, where we remind that vy = (p, q,7)7.

2y = () + fis(-,0) + Gi(e & vy = G () (w2 — fur() — fis(-,0)) (4.40)

Derivative &5 can be easily found:

by ="ty PGy 4 AT 4 Sy 4 G ()i

:8];1;()33 + 3f13(ail 9)3;, + 3f13 xl 0) 9 + f( )y2 + G1<)(f21() + f227/2 + GQ()U)

_0fu() 9f13(%1,0) of (fﬂ 9 9
20y, 4 Aand), | Salnd)g

() + Ci() far (NG () (w2 = fr(-) = fis(,0)) + Gi(-) for () + G ()G
=200 gy 4 (F() + Gr() fa ()G ()@ — fu(5) + Ga () far ()
+ 200 ) 4 Phs@O G (f() 4 Gi() far ()G () aa(-, 0) +

G1(-)Ga()u

where we note that the term %m can be transformed into f(-)vo by a simple

calculation, in which f(-) is function of z; and .
We then rewrite (4.37) and (4.38) into:

126



4.8. Application of modified Conditional Servocompensator Control to the Airlaunch System

0 = n(x1,0,06) (4.41a)
&g = Fs(-) + Hs(-,0) + Gs(-)u (4.41D)

where

N =0()(Gh() (w2 — fur (1) — fis(21,0))

s() =200, 1 (F() +Gi() far ()G (Vw2 — fua () + Gi () fer ()
Hs<,e> Ohalend) ) 4 2o (f() 4+ G () ool ))GT () s, 0)
Gs(-) =G1(-)Ga(")

In (4.41), Fs(-) is function of z; and 5. Function Hs(-) is function of zy, x5 and 6,

T

(4.42)

Hs(-) can be expressed as:

Hs() = 2y, 4 20l (2y, 25) (G (1)) ™ (w2 — fur(@1) = frs(e1,0)
—(f (21, 22) + Gl(xl)f22($1))G1 H(21) fra(1,0)

Remark 8 We have some remarks:

(4.43)

e o, fi1, Gi, fi3(-,0), fa1, faz and Gy are function of aerodynamic coefficients un-
der analytical forms by interpolation from wind tunnel test data. F's(-) and Hs(-),
formed from these functions, can be then bounded by a class K function and be a
Lipschitz function in a flighting envelop. In the control design, we do not need a

detail on these functions, we do not need to develop them then.

o Gs(-) is invertible in the flight domain, that means o € (—10°,45°), 6 € (—90°,90°),
B € (—30°,30°) and ¢ € (—180°,180°).

As a consequence, they fulfill Assumptions 3.2.1 and 3.2.2.

Defining now the constant reference for the output i,cr = (Qyef, Bress ¢ref)T and the

error vector e = &1 — Z1,¢5 and e; = é;. Equation (4.41b) can be transformed into:

él = €9 (444&)
ég = F(Bl,eg) —|—H(€1,€2,0) +G(€1,62)U (444b)

e Function F'(eq,es) is composed of aerodynamic coefficients, which analytical forms
come from table look up wind tunnel tests, F'(e, eq) satisfies then the assumption

3.2.1, which means F'(eq, e5) is bounded by a function of class K plus a constant Fy.
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e Function H(-) depends on # under cosines and sinus functions, it is easy to show
that H(-,0) is bounded by a class K function 7v(-) and a constant Hy.

[H (€1, e2,0)| < nlea] + [e2]) + Ho (4.45)

e It is worth noticing that G(ey, e2) is invertible for the entire domain of actuation of

the system.

Control law

Applying the control algorithm presented in (3.31) for system (4.44) which in this case is

a multi-input multi-output nonlinear system, gives the controller:

{ u = —H(elieg)sat(s/u) (4.46)
() = (G() ' (Io + (y(-) + pKo + Ag)13)

with
s = Koo + Kie; + e
. 0 €1+ €2 (4.47)
0 = —Koo + psat(s/p)
where Iy, K; and K, are positive definite matrices and p a positive constant.
o

Stability Analysis

Theorem 4.3.1 System (4.44) with F(-) satisfying Assumption 3.2.1, G(-) satisfying
Assumption 3.2.2, and the control law (4.40-4.47), will globally reach an arbitrary error

region in finite time, and there on will be stabilized towards its equilibrium point.
OJ

Proof: We will consider the system in two regions: outside the boundary layer (||s|| >

w) and inside the boundary layer (||s|| < u).

4.3.1.1 In the region ||s|| > u, sat(s/u) = s/|s||.

We differentiate the integral error measurement surface expressed in (4.47):

s = Koo+ Kié1 +é9
= —Kos+ pKosat(s/p) + Ko(Kieq +e2) + Kiea + F(-) + H(-,0) + G(-)u
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We define function A as:

A() = KO(K161 + 62) + Kleg + F() + H(,H)

The previous derivative becomes:

§=—Kos + pKsat(s/pn) + A() + G()u (4.48)

Remark 9 As previous remark, function F(x1,15) is bounded by a function vs(||e1]| +
lea||) outside the boundary region e.g. ||s|| > p and a positive constant Fy, where v5(-) is

a class K function.

[ (e, )] < a(llexl + lle2ll) + Fo (4.49)

Function H(-) is also bounded in the same way (see (4.45)). Then A(-) is bounded by

ay(+) class K function and a positive constant Ag:

[A(er, e2)|
[A(er, ea)|

(el + llezll) + Ho + va(ller]| + [lezl]) + Fo

4.50
A(lleall + leal) + Ao (450)

<
<

where Y(+) = y1(+) + 72() and Ao = Ho + Fy. 71(+) and v(+) are chosen in the way that
they are differentiable, then Lipschitz.

and as a consequence,

[A(er = 0,e2 = 0)[ = [|[F(0,0)[| < Ag (4.51)

for (e1,e3) € R" x R".

Consider the product (s)7'$ inside the boundary layer.

(5)'s = —(5)" Kos + p(s)" Kosat(s/u) + (s)" Aler, €2) + (s)" g(ex, e2)u
= —(8)"Kos + u(s) Kos/||sl| + ()T A() = ()" G()I()s/|Is]
< —(s)"Kos + pu(s) Kos/[sll + [JAC sl = ()" G)II()s/|Is]
< —(8)" Kos — ()" (GOI() = Ko — (v(-) + Ao)I3)s/Is]
< —(s)"Kos — (s)"os/|s]
< = Anin(Ko)(s)"'s = Amin(Ilo) (5) s/ || 5]l
< Amin(Ko) [[8[I* = Amin (TTo) [15]

(s)T's is then not positive and we also obtain
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(8)78 < =Amin (Ko) [15]1* = Amin (To) [ s]| < —Apin (o) I

5_2 d(]|s :
IZ — 9] 202D — ()75 < 2(— Ay (o) ||5]])

dt

d(]|s

s ls@IF < s = Amin (o )2

Then the integral error measurement surface s(t) reaches the boundary layer y in finite

time.

4.3.1.2 In the region ||s|| < p, sat(s/pu) = s/u.

Consider again (4.47) and (4.48), which inside the boundary layer may be rewritten as:

06 =—Koo+s (4.52a)
él = —K161 + s — K()O' (452b)
5= A() = GOT()s/p (4.5%)

When é¢; = 0, ¢ = 0 and s = 0 the system has an equilibrium point: e; = e; = 0,
s=35,0 =0 with s = Koo = plT"1(0)G1(0)(F(0) + H(0,0,6)),
where F'(0) = F(0,0), g(0) = G(0,0) and II(0) = I1(0,0). I1(0,0) = II(e; = 0,e2 = 0),
G(0,0) = G(e; = 0,e3 =0) and F(0,0) = F(e; =0,ey = 0).

System (4.52) may be rewritten with respect to s and a:

0=—Kyo+3 (4.53a)
é1=—Kiey + 35— Koo (4.53b)
s =A() = GOI()3/n— GC()5/u (4.53c)

where 6 =0 — 07, § =5 — 5.
Because F(x1,x2) is a Lipschitz function inside the boundary region e.g. ||s|| < p (see

remark 8), one obtains:
[F(e1s e2) = F(0,0)[ < L[ Krea|| + Lol eo] (4.54)

where [ and I, € R™.
Function 7(-) is a Lipschitz function in the boundary region e.g. ||s|| < u (see remark

9), such that:

v(:) < di||Krer]| + dolles]] (4.55)
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where d; and dy € R™.
We take again a Lyapunov candidate:
At

A I o
W = EO'TK()O' + 22 Q?Klel + §8TS

where A1 and Ay are positive constants.

Its derivative can be easily developed as:
W=M\6TKo + Mgel Kie, + 575
:Ala'TKo(—KQ(} + 5) + )\QG{Kl(—Klel + 5 — K06) (456)
+5T(A() = GOI()8/ i — g()TI()5/ 1)

Since ||s|| < p, A(+) can be expressed as:

A():K()(S — K()O') + Kl(—Klel + S5 — K()O') + F() + H(, 9)
In order to develop the derivative of the Lyapunov function candidate more clearly,

we firstly consider the term using assumption 3.2.1:

17(-) = GO (0)g~H(0) F(0)
= F(-) = (o + Kop + (y(-) + Do) L3)(Iy + Kop + Aol3) " F(0) ]|
= [|F'(-) = F(0) = v(-)(Io + Kop + Ao L3) ' F(0)| (4.57)
< NEC) = FO) + Iv(-) (o + Kop + Aol3) = F(0)|
<|FC) = FON +~() < (b + d)|[Kreal| + (2 + da) ezl
and then, using the relation in (3.3a) for term (3)7(F(-) — G(-)II(-)5/):

SHF() = GOIEIH0)g~H(0)F(0) < [IBIHIF() = GO 0)g = (0) F(0)]

< (I + do) |5 Kreal| + (12 + dz)||5]]||ez|

< (ll+d1)(s S+ e Kiey) + (l2+d latda) (375 1 eley)

< +d1)(s §+eKer) + (l2+d2)(5 §4 (58— Koo — Kye1)T(5 — Ko6 — K1e1)) (4.58)
< (I +d1)(8 S+€1K261)+ (l2+d2)(8 S+3(S S+0‘TK§U+€1K1261))

< qu+ 3(12+d2) TK20+M TK2

< 67 U+626161 + 3575

where Cl = 3/2([2 + d2)HKO||> Cy = 1/2(([1 + dl) + 3/2([2 + d2>HK1”> and C3 = (1/2(([1 +
di) +4(la + d2)) + (la + da)).
Because inside the boundary region e.g. |s| < p, functions H(-) and ~(+) are bounded,

the following term is bounded by a positive constant:
[ (- 0) = H(0,0) — 7(-)(Io + po + AgI3) " H(0,0,0)[|[3] < Cpu (4.59)
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where, as in the previous section, we allow the pitch 6 to assume any value. Its derivative
though will be shown to be stabilized.

We obtain then the derivative of Lyapunov function:

W=—X\16"K35 + M67"Kos — Mael Kier + Aoel Ki(5 — Ko6) + (37 (Ko + K1)3
=T (Ko + K1) Koo — 5" Kiey — 8TG()I()8/p+ 57 (F() = GO)I(-)s/ )
+5T(F() + H(-,0) — (o + Kop + (v(-) + Do) I3) (o + Ko + Aol3) ™ (F(0)
+H(0,0,0)))

=—MGTK§o + M6 K5 — haef Kiey + Asel K1(5 — Koo) + (57 (Ko + K1)3
=51 (Ko + K1) Koo — 5" Ktey — 5T G()I()5/p+ 57 (F() = G()I(-)s5/ )
+8T(F() = (o + Kop + (7() + Do) I3)(Ig + pKo + Aol3) ' F(0))
+8T(H(-,0) — (o + Kop + (7(-) + Do) I3)(Ilo + Ko + Aol3) " H(0,0,0))

Using (4.58) and (4.59), the previous derivative continues to be developed:

(4.60)
F
H

W<-MNGTKZG 4+ M\ /2(575 + 6TK25) — Mael K2ey + My /2(eT K2e,
+(8 — Koo)' (s — Ko0)) + (87 (Ko + K1)$ + 1/2(87 (Ko + K1)*5 + MoT K§a)
+1/2(37 K25 + ef' K?ey) — TG()I(-)3/pn + 16T K36 + coel Kiey + 357'3)
+8T(H (- 0) — (Mo + Kop + (y(+) + Ao)L3) (Mg + puKo + Ao l3) ' H(0,0,0))
<—MNGTK2G + M /2(875 + 6TK2G) — el K2ey + Mo /2(eT K2ey + 2(875 + 6T K25))
+(sT (Ko + K1)s + 1/2(87 (Ko + K1)?5 + 6T K3o) + 1/2(s7 K75 + e] Kiey)
—5TG()(-)8/ 1 + 16T K26 + coel Key + ¢3573)
HISIHH (- 6) = H(0,6) — () (o + ko + Aol3)~"H (0,0, 0)]|
<67 (MK — M\ /2K — K2 — 1/2K2 — 1 K2)o
—eT (N K2 — \o/2K? —1/2K?% — 3 K?)ey
—5T(GU()/pu— (Ko + K1) — 1/2(Ko + K1)* — 1/2K? — c313) — M\ /213 — \oI3)$
<—(M/2 =X —1/2—¢1)6T K35 — (M2/2 — 1/2 — co)e] Kiey
—8"((Mo + Kop + (v(-) + Do) I3) /p — (Ko + K1) — 1/2(Ko + K1)? — 1/2K7)
—(M/2+ X+ c3)]3)5+Cp
(4.61)
The control conditions imply that A, Ay and II(-) must be taken large enough and pu
small enough to satisfy:

M/2=X—1/2—¢ >0
Ao/2 —1/2 — ¢y >0
(Mo + Aol3) /1w — Ky — 1/2(Ko + K1)? — 1/2K3)> (A\/2 + Xa + ¢3) 13
Then W (t) is converges to a neighborhood of zero when time tends to infinite inde-

pendent of the pitch angle 6. As consequence, €;(t), ¢ and s tend to a region around
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their equilibrium point as time tends to infinite and for every pitch angle 6. The system

is ultimately bounded to a small region which is function of pitch angle 6.

4.3.2 Simulation Results

We continue now to apply the modified conditional servocompensator control technique
presented in section 3.3 of chapter 3 to the airlaunch system. Unlike the modified Con-
ditional Integrator control case where we designed two different modified Conditional
Integrator controllers for two separated modes of the airlaunch system, in this case we
will apply a mCS controller for the complete system.

As in the previous control application, we have considered the launch phase impact
on the carrier as impulses on aerodynamic force and moments during a time interval T},
and that the model following the launch phase is an F-16 which is a complete model with

actuators dynamics and their limitations.

Baselines

We remind the objective of the controller designed for the airlaunch system during and

after the launching phase

e the controller must return the airlaunch system to the equilibrium point of the
second model which corresponds to angle of attack a, = 4.6°, sideslip 5, = 0°, and
roll angle ¢, = 0° and all others variables to zero (at V = 154m/s,h = 5000m).

The control surfaces at the equilibrium point are ¢, = 0°, §, = —2.5° and 9, = 0°.
e There is no collision between airlaunch system and the rocket.

o (ap =17.5° By = 4° and ¢y = 10°) are the initial conditions for the second model
which represents the airlaunch system after the separation phase, all others variables
are zero. This is the final state of the first model plus a small aleatory disturbance

on the system output.

Numerical Applications

The control law is expressed as in 4.46:
u = —Il(ey, e9)sat(s/p)
() = G+ () 1s)

where TI(+) is written in a simpler form, v(-) = yi|le1||* + y2|le2]|?, 71 and 7, positive
constant and G(-)~! defined in (4.42) (see in appendix A.5).
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1 K 71 and o Ky K,
7.0 0.0 0.0 0.8 0.0 0.0 1.3 0.0 0.0
0.0 9.0 0.0 1.0 | 0.001 and 0.001 0.0 0.7 0.0 0.0 1.3 0.0
0.0 0.0 8.0 0.0 0.0 0.8 0.0 0.0 1.5

Table 4.3: Parameters for the modified conditional servocompensator controller

Iy, v1, 72, p, Ky and K| are the set of parameters of the controller, which are deter-
mined in Table 4.3. 11y, Ky and K; are defined following the dynamic property of output
variables angle of attack, sideslip and roll angle.

The second model is disturbed on its aerodynamic force and moments during an in-

terval Tj,,;.

e the perturbation F,,, = mg cos 6y on the acrodynamic normal force, the perturbation
on drag force is F,,, = —Psinfy = —mgsin 6y, the perturbation M, = mgl, cos 6y/2
on the aerodynamic pitch moment and a small perturbation on the aerodynamic

roll force during T;,;, where [, is the rocket length.
e three sets of time interval are simulated:

1. Ty = 0.227s (corresponding to solid lines in Fig. 4.7 to Fig. 4.10), produces

damped oscillations for constant inputs (Chapter 2).

2. Tyt = 0.3s (corresponding to dashed lines in 4.7 to Fig. 4.10), the system is

unstable for a simple LQR controller.

3. Tint = 0.43s (corresponding to dash dotted lines in 4.7 to Fig. 4.10), is stabi-
lized by the mCS control.

We remind that the simple PI controller for the thrust to regulate airspeed is:
T = —kp(V = Vies) = ki(V = Viep)

where Vs is the airspeed reference, kp = 711.0 and k; = 6.2.

Results

Figs. 4.7, 4.9 and 4.10 show the output and the state variables of the system after
the launching phase: angle of attack, sideslip and roll angle, three angular rates and

three Euler’s angles of the system. The system output return to their equilibrium value.
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The angular rates return to zero, the pitch and yaw angles reach to a constant value.
It illustrates the stabilization of the airlaunch system after the launching phase by the

controller.

Fig. 4.12 shows the control surfaces of the system in three cases of the time interval
Tint. When T;,, is large, it means that the perturbation on aerodynamic forces and
moments lasts, it needs a high control value for stabilizing the system. Because of the
physical limit of the control surfaces, a saturation appears whenever T}, is large enough

as we can see in the figures.

Collision Avoidance

Fig. 4.13 shows the altitude of the aircraft from 0 to 1s in the three previous cases of
study Tiny = (0.227s,0.3s,0.43s) compared to the trajectory of the rocket that drop freely
with the initial airspeed of the aircraft (the solid plot) as we did in the case of the modified
Conditional Integrator control in Section 4.2. We obtain here the same result which means

that there is no collision in the three sets of T},,;.

Angle of attack (deg)
T

-20 i i i | I I
0 1 2 3 4 5 6 7 8 9 10
Roll angle (deg)
100 T T T T T
‘\o\""y
o Y Lt .
& "

time (s)

Figure 4.7: Angle of attack, Sideslip Angle and Roll angle correctly stabilized by SC

controller
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Airspeed of the flight

180

160

140

i i i i i i
1200 2 4 6 8 10 12 14 16 18 20

Angle of Attack

20 i i i 1 i i

0 1 2 3 4 5 6 7 8 9 10
Sideslip Angle
! 1 ‘
i | | | | L
4 5 6 8 9 10
time (s)

Figure 4.8: Airspeed, Angle of attack and Sideslip angle well stabilized by SC controller
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™
(Y 4 \ \"-J."'r-y.,
Osf\‘-‘./.:,‘}"‘". ’\," I ;
-100L LW ‘ |
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2000 2 ; 8 10
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100

8 10

time (s)

Figure 4.9: Roll rate, Pitch rate and Yaw rate correctly stabilized by SC controller
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Roll Angle (deg)

200 . ‘ ‘
100} “",_-- \‘ |
OE-A:-I:’M- > P
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1000 4 6 10
Pitch Angle (deg)
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100 . ‘ \
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Figure 4.10: Roll angle, Pitch angle and Yaw angle stabilized by SC controller
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Figure 4.11: Three positions of the system with SC controller
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Aileron surface (degq)

40 T T
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Figure 4.12: Aileron, Elevator and Rudder of SC controller
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Figure 4.13: Altitude of the system in three
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4.4 Conclusion

In this chapter we have developed for the considered application, unmanned airlaunch,
the theoretical results obtained in the previous Chapter 3. These results are the modified
Conditional Integrator control and the modified conditional servocompensator control for
the airlaunch system after the launching phase, modeled in Chapter 2 by impulses on
aerodynamic forces and moments of the second model which represents the carrier after
the separation stage, and in practice is an F-16 model. The results show the stabilization
of the airlaunch system after the separation phase and collision avoidance.

The modified conditional servocompensator control is more promising if compared
to the modified Conditional Integrator because it provides flexibility to adjust the pa-
rameters of the controller depending on the dynamics of each output. Although the
two approaches have their limitations, the airspeed control in those approaches was still
controlled by thrust through a separated PI control, that complicates the controller’s

parameters regulation task, and then is still an open topic for the next chapters.
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Chapter 5

Full aircraft’s Dynamic Feedback
Linearization: Application to

Airlaunch

5.1 Introduction

The works in Chapters 3 and 4 based on MIMO conditional integrator and conditional
servocompensator developed gave good results on the stabilization of the airlaunch system.
They have the fundamental advantage of being very robust to parameter’s and model’s
uncertainties. In foot, those controllers only need bound functions for most system’s
dynamics. However the problem of full stabilization of an airlaunch system can still
conveniently solved in those cases. In those results, at least one of airlaunch system’s
states remains uncontrolled. On the other hand the thrust force was not taken into
account in the stabilization procedure. As a consequence, the available inputs are being
underused while some states still need to be better controlled.

For all these reasons we suggest a new possibility of applying a dynamic feedback lin-
earization controller for this problem. Many works have suggested feedback linearization
for aircraft control when large state excursion is expected (see [51] and [7]).

Flight stabilization and control were widely studied in recent decades particularly in
extreme flight conditions, such as high angle of attack or high angular rates. First there
are the conventional linear design methods ([52], [53] and [54]). These methods are based
on linearization that normally requires that a controller be designed for a large number

of different points in the flight envelope. Other methods are based on the separation of
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longitudinal control and lateral control in considering a small coupling between two motion
modes (see [6] and [47]). In extreme flight conditions, their performance deteriorates due
to unmodeled nonlinear effects or a strong coupling between lateral and longitudinal modes
in the flight dynamics.

Nonlinear flight control offers several advantages over the conventional schemes in
extreme flight conditions. This is due to the fact that the nonlinear flight control approach
takes into account the nonlinearities of aerodynamic forces and moments, and the coupling
of lateral and longitudinal motions. Nonlinear control schemes have also the advantage of
clearly showing the interactions of states and control inputs, i.e. which states are directly
controlled by which inputs.

A nonlinear flight control, based on inverse dynamics is presented in [7] and is improved
as a probabilistic robust control of nonlinear uncertain flight system in [55]. The inverse
dynamics control provided high performance for large angle of attack conditions. Other
nonlinear approaches were based on backstepping control laws (see [56]) and backstepping
and neural network control (see [9]) in the case of extreme flight conditions.

A different nonlinear approach from inverse dynamic is presented in [51] for the V/TOL
aircraft and for a helicopter in [57] by using nonlinear feedback linearization. In order
to be feedback linearizable, the system must satisfy necessary and sufficient conditions
shown in [58] and [21]. The regulator is designed, following a system transformation, such
that the system tracks the output of a reference model.

Based on the dynamic feedback linearization theory (see [18], [19] and [20]) it was
proved that, given some assumptions, a simplified version of the considered system can
be dynamic feedback linearizable using a first order integration of the thrust input.

These results have pointed some specific system characteristics that are further ex-
ploited in the thesis. Here it is used the dynamic feedback control strategy based on
the nonlinear model to globally stabilize the full 12" order airlaunch system in extreme
situations after launch phase.

In this chapter, we describe in Section 5.2 the flight dynamics in the body fixed ref-
erence frame, and in Section 5.3 the dynamic feedback linearization control design, its
application to the full nonlinear system model will be presented in Section 5.4. The

chapter is completed by some computer simulations and conclusions.

5.2 Nonlinear control problem

In the previous chapter, we have described the flight dynamics in aerodynamic reference

frame and have studied the conditional integrator and conditional servocompensator con-
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trols for the airlaunch system. In order to facilitate the task of feedback linearization of
the flight dynamics, the aircraft’s dynamics of the airlaunch will be also described in the
body fixed axes as (see [10] and [12]):

& = ucos cos b + v(cos 1 sin b sin ¢ — sin ) cos @) + w(cos Y sinh cos ¢ + sinPsing) (5.1a)
¥ = usiny cos f + v(sin v sin O sin ¢ + cos 1) cos @) + w(sin 1 sin @ cos p — cosYsinp) (5.1b)
Z = —usinf 4 v cosfsin ¢ + w cos 6 cos ¢ (5.1c)
1
W=1v—qw—gsinf+ —(F, +7) (5.1d)
m

1
U =pw—ru+ gsingcosf + —F, (5.1e)

m

1
wW=qu—pv+gcospcost + —F, (5.1f)

m
gﬁ:p+tan9(qsinq§+rcos¢) (5.1g)
0 = qcos ¢ — rsin ¢ (5.1h)
. gsing +rcos¢ )
= 5.1
v cos 6 (5-11)
. 1 .
p= 5 ((Tyylzz — Igz - Igz)rq — Lpo(Iog + Loz — Iyy)pg + L. L — I N| (5.1j)

szIzz - Ixz
. 1
q= T[(Izz - Iw:p)pr + I:vz(pQ - TQ) + M] (51}{)
yy
. 1
xrz

where all parameters are defined in Section 2.3 of Chapter 2.
Before entering into the design of a Nonlinear Dynamic Feedback Linearization con-
troller for stabilizing the airlaunch system after dropping phase, we state again the fol-

lowing standard assumption:

Assumption 5.2.1 The control surface deflections only produce moments, not forces.
Moreover, their dynamics are assumed to be fast enough to be disregarded.

The aerodynamic forces depend only on linear velocities, not on angular rates.

The assumption means that the control surfaces deflection and angular rates have no
effects on the aerodynamic forces (F,, F, and F,) but only on moments L, M, N. These
forces F,,, F, and F, depend then only on the linear velocities u,v,w. This assumption
is used in the control design procedure. The stability analysis will then take in account
the effects of control surfaces deflection and the dependence on angular rates.

Unlike Assumption 4.1.2; the dynamic feedback linearization control takes into account

the airspeed of the airlaunch system, and it considers the thrust force as an input.
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5.3 Dynamic Feedback Linearization Control for an
Aircraft

5.3.1 Control Design

(i =u cos 1 cos § + v(cos 1) sin fsin ¢ — sin 1) cos @) + w(cos 1) sin @ cos ¢ + sin 1) sin ¢)
Y =usin cos  + v(sin ¢ sin O sin ¢ + cos 1 cos @) + w(sin 1) sin 6 cos ¢ — cos Y sin ¢)
Z =—wusinf + v cos # sin ¢ + w cos O cos ¢
w=rv—qw—gsinf + f, +n
U =pw — ru + gsin ¢ cosf + f,
wWw=qu — pv + gcos ¢ cos b + f,
¢ =p + tan O(gsin ¢ + r cos ¢)
9zqcos¢—rsin¢

¢_ q sin ¢+ cos ¢
\ 7 cos 6

(5.2)
where n =T /m, f, = F,/m, f, = F,/m and f,, = F,,/m.

As already mentioned in the introduction, previous works in dynamic feedback lin-
earization theory have proven that, system (5.2) composed by the first nine differential
equations from (5.1a) to (5.1i) which satisfies Assumption 5.2.1, can be dynamic feedback
linearizable using (p, q,7) as control variables, as well as a first order integrator applied
on the thrust (see [18], [19] and [20]).

We follow and make a step forward on this technique to demonstrate the dynamic
feedback linearizability of the complete 12/* order flight dynamics. We will use a second
order integration of thrust input and develop a nonlinear control algorithm in order to
stabilize the aircraft and track a given trajectory.

Because (p,q,r) in (5.1) from (5.1j) to (5.11) can be controlled by (L, M, N) and as a
consequence controlled by (0, de, d,-) contained in (L, M, N'), we can, by a suitable choice

of 0,4, 0. and §,, simplify the angular motion of the last three equations in (5.1) as ':

P = Do
q = do (5.3)
=7

where we consider py, ¢o, 79 as the control inputs.

System (5.1) with a simplification of derivative p, ¢, in (5.3) is then of the type:

'Remark that the three last equations in (5.1) are linear independent
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.

& =ucost cosf + v(cospsin fsin ¢ — sin ) cos ¢) + w(cos 1 sin 6 cos ¢ + sin 1 sin ¢)
Y =usin cos  + v(sin ¢ sin O sin ¢ + cos ) cos @) + w(sin ¢ sin 6 cos ¢ — cos P sin ¢)
2 =—wusinf 4 v cos# sin ¢ + w cos O cos ¢

u=rv—qw—gsinf+ f, +n

U =pw — ru+ gsingpcosf + f,

w=qu — pv + gcos pcosh + f,

¢ =p + tan 0(gsin ¢ + r cos ¢)

ézqcosgzﬁ—rsingb

w: q sin ¢+ cos ¢

cos 0
P =Po
q =qo
P =g
\ (5.4)
Or,
s = F(&) + Pogi(&s) + dogz(Es) + Toga(&s) + mga(&s) (5.5)

where f, g1, g2, g3, g4 are obtained from (5.4) respectively and n = T'/m,

ucos 1 cos O + v(cos 1 sin O sin ¢ — sin 1) cos @) + w(cos 1 sin @ cos ¢ + sin P sin @)
usiny cos O + v(sin v sin 0 sin ¢ + cos ) cos ¢) + w(sin 1) sin 6 cos ¢ — cos Y sin @)
—usin @ + v cos 0sin ¢ + w cos 6 cos ¢

rv—qw—gsind+ f, +n

pw — ru + gsin ¢ cos 0 + f,

qu — pv + gcos g cos O + [y

p + tan 0(gsin ¢ + r cos @)

qcos¢ — rsing

g sin ¢+ cos ¢
cos 6

0
0
0

f(fs) =

58 = ('CE7y7z7u7v7w7¢?07w7p7q77n)T
g1 = (070707070707070707 1707 O>T
g2 = (0,0,0,0,0,0,0,0,0,0,1,0)"

g3 = (07 Oa 07 07 07 Oa 07 07 07 Oa Oa ]-)T
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g4 = (07 07 07 17 07 Oa 07 07 07 Oa 07 O)T

Or g1, g2, g3 and g4 can be displayed simply:
0 0 0 0
glza—p; 9220—61% 93:§§ 942%
Definition 2 Let G be a distribution on a manifold M. The distribution G is called
involutive if the Lie brackets [X,Y]| € G whenever X and Y are vectorfields in G.

Theorem 5.3.1 System (5.1) satisfying Assumption 5.2.1 is not statically linearizable,

but it is dynamically linearizable with a second order of integration of the thrust force.

Proof:

System is not statically linearizable
We can compute the Lie brackets ad,,g; for 1 <1i,j7 <4 and check that

e Gy = span(g1, g2, g3, ga) is involutive

o Gy = span(g1, g2, g3, 94, ad g1, adsga, adsgs, adsgy) is not involutive

This result implies (see [21]) that system (5.1) is not static feedback linearizable (see
Appendix B for the theorem of static feedback linearizability of a nonlinear system and

the above verification).

System is dynamically linearizable

We have then considered the possibility of developing a dynamic feedback linearization.
The first step is to acknowledge that g4, which lies in the direction of thrust, plays an
important role in the dynamics of the aircraft. For this reason, we augment the system

by a second order integrator on the thrust (n,7, 1), and check the condition for dynamic

feedback linearization.

Ao = span(g1, g2, g3)

Ay = Ay +adsAg + span{gs}

ANy = Ay + ads Ay + span{gs}

Az = Ay + adsAy = R?
System (5.6) satisfies all sufficient conditions of the theory presented in [20] and [22],

(5.6)

which means(see Appendix B):
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Ay is involutive and has rank 3

Ay is involutive and has rank 7

A, is involutive and has rank 10

A3 is involutive and has rank 12

The extended system in (5.1) with the simplified equations (5.3) and the second order
integrator on thrust is dynamic feedback linearizable. This can be physically explained

by the fact that engine dynamics of thrust are of second order type, as mentioned in [7].
O

The work in [22] has shown that the system composed by the nine first differential equa-
tions of (5.1), using (p, ¢, 7, 1) as control variables, can be dynamically feedback linearized.
There it is first defined (; = x, (o = y, (3 = 2z, 01 = n. Then, a change of coordinates
from X =(x,y,z,u,v,w,¢,0,0,1) to C :(a:,fo,L?;x,y,Lfy,Lf;y,z,sz,L?;z,al) makes
the nine first differential equations in (5.1) feedback linearizable in respect to the control
variables (p, g, ,7). There, (5.2) with v, = 17 = T'/m is rewritten in the form X = f+gi.

In this thesis, distinctly from [22], we will define o; as another variable to avoid
singularity of the matrix +;(-) that we will introduce later.

For this reason, now the nine first differential equations 5.2 and the first order inte-

grator on the thrust can be transformed into a new feedback linearizable system as:

(G =G=
§2 G5 =
(3=2C6 = L z
Cx =(7 = L2~$
25 28 (5.7)
6 = Cg =

(= DO+Dp+Dq+D3T+D4v4
(s = DY+ Dlp + D2q + D3r + D,
Cg DY + Dip+ D3q + Dir + Divy

= D} + Dip+ D3q+ Dir + Djv,

\

where vy = 1 and D;'» for i = 1.4, j = 0..3 are function of X and can be computed:

(4 = ucosfcosp + v(cos ) sinfsin ¢ — cos ¢ sin ) + w(sin O cos ¢ cos ¥ + sin ¢ sin )
(5 = ucosfsinty + v(sin e sin fsin ¢ + cos ¢ cos ) + w(sin  cos ¢ sin 1y — sin ¢ cos )

(¢ = —sinfu + v cos O sin ¢ + w cos B cos ¢

147



Chapter 5. Full aircraft’s Dynamic Feedback Linearization: Application to Airlaunch

(7 = cosBcostp(—gsinf + f, +n) + (cossinfsin ¢ — cos psin))(gcosfsing + f,)
+ (sin 6 cos ¢ cosp + sin g sinh) (g cos ¢ cosd + f,)

(s = cosOsiny(—gsind + f, +n) + (siny sin O sin ¢ + cos ¢ cos)(gcosfsin ¢ + f,)
+ (sin 6 cos ¢ sinp — sin ¢ cos ) (g cos p cos + f,)

(o = —sinf(—gsind + f, +n) + cosOsin ¢(gcosfsin ¢ + f,)
+ cos 0 cos ¢(g cos g cos 0 + f)

DY :LffuCOSQCOS@b+Lffv(coswsinesingb—cosgbsin@/z)
+Lffw(sinecosqﬁcosw+sin¢sin¢)

DY = Ljfucosfsini + Ljf,(sintsinfsin ¢ + cos ¢ cos )
+ L fu(sin @ cos ¢ siny) — sin ¢ cos )

D = —Lfusin® + Lif, cosOsing + Lgf, cosfcosg

Di = f,(sin 6 cos ¢ cos 1) + sin ¢sin ) — f,(costysinfsin ¢ — cos gsiny) + di
D? = —(f, +n)(sinf cos ¢ cosy + sin psin) + f, cosf cosp + d;

D? = (fy +n)(costsinfsin ¢ — cos ¢sinh) — f, cosf costp + di

D} = cos 6 cos 1)

D} = f,(sinf cos ¢sin1p — sin ¢ cos 1)) — f,,(sin 1) sin @ sin ¢ + cos ¢ cos ) + dj
D3 = —(f. +n)(sinf cos ¢siny — sin ¢ cos ) + f,, cos Osinvp + d3

Di = (fy +n)(sinvsin @ sin ¢ + cos ¢ cos ) — f, cos @ sinvp + dy

Dj = cosfsin

D} = f,cosfcos¢ — f,cosfsine + ds
D3 = —(fy+mn)cosfcosp — f,sinf + dj
D3 = (f, +n)cosfsing + f,sinf + ds

D3 = —sinf

DY, Di, D% D} and Dj will depend on the choice of the last variable
with
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di = Ly, fucosfcosty + L, f,(costpsin 0 sin ¢ — cos ¢ sin 1))
+ Ly, fu(sin @ cos ¢ cosp +sin gsinyy) for 1 <i <3
ds = Ly, fucos@sint + Ly, f,(sin sin @ sin ¢ + cos ¢ cos ¢))
+ Ly, fu((sinfcos ¢psiny —singcosyp) for 1 <i<3
dy = —Lg, fusinf + Ly, f,cosfsin¢ + Ly, f,,cosf@cosp  for 1 <i<3

and

Lifu= f( gsingd + f,) + ai<gsm¢cose+fv) afu(gcos¢cose+fw)
LfoIZ—f(—gsianu) a_f(931n¢0039+fv) af”(gcos¢cose+fw)
Lifw = f( gsinf + f,) + L(gsmgzﬁcos@-Ffv) %{U(QCOS¢COSQ+fw)
Ly, fu Zw%‘i“ —v%; Ly, fu = —w%{j +u%; Ly, fu :vaafz - aaf;u
Lglfuzw%f— gf” Lo fo =~ %J;U-i- gf” Loy fo = %{ZJ_ %{j

From (5.7), we define four new variables (o = (7, €11 = s, Gz = Co and 0y = 4.

Cio p
Ci1 5 S q
= x1(X) +n(X) (5.8)
Ci2 r
09 V4
where
D; Dy D} D} Dj
~ D? DY D2 D3 Di
X — 0 ; ) = 2 2 2 2 59
@ =1 [ mO= | 5 5 e o (5.9)
Dy Dy, Di Di Dj

Di for i = 1..4 are function of X and depend on the choice of variable oy to avoid
singularity of = (-).
We return to the angular dynamics which was simplified in (5.3). Noticing in this time

that L, M, N are function of system states and control surfaces:
L = (Ci(B) + Ci, (v, B)pb/(2V) + C, (e, B)rb/ (2V) + Ciy, ()3 + Ciy, ()6,)GSD
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M = (Crn(@) + C, (@)qc/ (2V) + Ciyy (@)dc)qSE

N = (Cn(ﬁ) + Cnp (aa ﬁ)pl_)/(QV) + Ch, (Oz, ﬁ)Tl_)/(QV) + On(sa (O‘)(ga + CnaT (O‘>5r)@51b

Substituting L, M, N into the three last equations in 5.1, The angular dynamics are

then rewritten as:

P Ipg + Ligr I3Cy(, B)3Sb + LCy (a, £)gSh
q|=|Ispr — Is(p* — r?)| + I;Cp(a)@Se
7 Irqr + Ispq 1,Ci(a, B)gSb + IyCy(a, 5)qSh
L0, ()b + I41Chp ()b 0 I3C ()b + IiCrr(a)b] [p
+e¥5 0 I:Cpg()E 0 q (5.10)

LiCry(a)b + IgCrp ()b 0 LCp ()b + IgChry(a)b] |7
I3Cy5, (o, B)b + 14,Cys, (a, B)b 0 I3C5. (o, B)b + I4Chs, (v, B)b] [da
+q5 0 I:Cpg(a) 0 Se
1,Cs, (v, B)b + IgChs, (v, B)b 0 LiCs, (a, B)b + I9Chs, (v, B)b] |6
where I3 = m, Iy = Iy = (Izﬂiz—ﬂ[%) and Iy = 1/1,,. Cy(a), Cy, (),
C.(a), Czq<04)a Cn(a), qu<05) Cmae(Oé)v Cy<05756)a pr(a)’ Cyr(a)> Ci(a, B), Cula, B),
G, (a), Cy (), Cp(a), Cy (), Cy, (), Cpy, (@), Cis (), Cry, () are aerodynamic coef-

ficients taken from [48].

Iy
(Tealzz—13.)"

We can rewrite more symbolically the previous expression,

i~
=2
S

= XT(u,v,w,p,q,T) +7T<U7U7w) 66 (511>

<. Q.
=
S

then,

O

— X’f‘( ) + ’y’l“(u”U?w) O 56

0 0 1] o

By By

where x,(u,v,w,p,q,7) € R**, ~,.(u,v,w) € R*? represent the terms in (5.10) respec-
tively. It is important to remark that matrix 7, (u, v, w) is invertible in the required flight

envelop.
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The derivatives of (5.8) can be easily found using (5.11):

C?lO P 5a
> > & r\’ o r\W, U, 0 56
=) + ) || () [XO() F(X) [” . “’)J v
(j'g V4 ’(.14
5,
(Ko, vs) + 0 (X) [%”(“’“’w”] O (5.12)
0 11 16,
()
5,
i _ s,
=x7(X,p,q,7r,v4) + yr(X) 5
Uy
where
() =60+ 400 | 1] +a0) [X”O(')] 5.13)
Vg
(%) = 21 (X) [7’“(“’0“’ w)?] (5.14)

By defining v, = v = 7 as a state variable, v, as the input uy, we have a feedback

linearizable system in (5.7) and (5.12) with 14 states by the change of coordinates from
(l’, Y, %, U, v, w, gba 07 ¢ap7 q, 7,1, T) to (Cla §2a C37 C47 C57 C67 C77 CSa §9a ClOa Clla Cl?) 01, 0-2)'
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G=Ci= fiB
C2 C5
G=C=
l=¢= Li~$
(=C(s=

G = Go = L%

(= Clo—D1+Dp+Dq+D7"+DlT
(s = Ci1 = D2+ Dip+ D3q+ D3r + Dit
{o = (1o = D} + Dip+ D3q+ Djr + Dir
61 =0y = D} + Dip+ Diq+ Dir+ Dir

(5.15)

élO 5(1
éll oy > 7"‘(“71)’“}) 0 68
: = X7 y 4y ' + X

‘i XT( p,q,T T) 71( ) 0 1 5
lop ur

\

In (5.15), we have 12 physical states from the aircraft, and 2 states from the integration
of thrust. We need now the nonsingularity of ~7(-), that means the nonsingularity of
matrix 7y (+), since 7,.(+) is nonsingular by the physical characteristics of the aircraft in the
required flying envelop.

Now we will define oy as ¢, which has the dynamics:

¢ = p+ qtanfsin ¢ + rtan 6 cos ¢

Matrix 71 () then becomes

DY D} D3 Dt

D} D3 D3 D3
N — 5.16
ne) D! D? D3 D! (5.16)

1 tanfsing tanfcos¢ O

The nonsingularity of matrix ~;(-) in this case is guaranteed in the required flight
envelop. It is physically explained by the fact that three control variables are used to
control the trajectory of the aircraft, and the last control variable is used to control the

roll motion.

The linearizing feedback can now be given as:
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(5.17)

g Ciores —k11(C1 — Cirer) — k12(Ca — Carer)
Je e Cllref n —k21(Co — Corer) — k22(C5 — Corer)
Or v Cmref —k31(¢3 — Carey) — k32(Cs — Cores)
ur Oref 0

_kl?)(C? C?ref) k14 ClO - ClOref)
—ka3(Cs — Carer) —koa(Ci1 — Cires)
—k33<C9 - CQTef) k34(<12 — <12ref>

—k33(01 - 01ref) —k44(02 - U2ref)

)

where the k;; for 1 <14, j <4 are positive parameters to be tunned, the output references

are defined as:

Lref, yrefazref)T = ClrefaCQrefaCBref)T
)

T = C47"efa C57‘ef: CGref)T

(
(
= (Cwef, C8ref7 C9ref)T
= (
= (

Lref, yrefy Zref

!

7\

3) (3 (5.18)

T _
'ref’ yref’ 'ref

((

(a

(Iref Uref Zref)
(a! o) Croress Criress Crares)”
( 4) (4)

ref’ yref7 ref) €10T€f7 Cll””(if’ ClQT@f)T

kgbref = Olref, d)ref = 0-2ref;¢ref = d?ref

The system output will track the output reference when time tends to infinite.

C10 — Crores + k11(C1 — Ciref) + k12(Ca — Cares) + k13(Cr — Crrey
Ci1 — Cuires + k21(Co — Caref) + k22 (Cs — Cores) + k23 (Cs — Cares
G2 — Crares + k31(G — Carey) + k32(Co — Corer) + K33(Co — Cores
G2 — Oaref + k31((3 — Gref) + k33(01 — Oiref) + kaa(02 — Oores

+ k14(C10 — Ciores) =0
+ k24(C11 — Cirey) =0
+ k34(Ci2 — Cizrey) =0
=0

In summary, the linearizing feedback controller of the aircraft is determined as:

o (X ) =77 (X)(—x7(X) = K1(& — R1) — K»(& — Ry) — Ks( [€3 — )
e (5.19)
— Ky ( [64 — Ry) + Rs)
§20

where § = (C17.C2,C3)T7 §o = (C47 Cs, Cﬁ)T7 {3 = (C77<87<9)T7 §a = (Clo, C11,C12)T; §1¢ =01 =
G, §2p = 02 = ¢;

Grres Gloref Ciore !

Clre f <4re f C g C

8 11 11

Ry = §2T€f Ry = <5ref Ry = ref iRy = ref i Ry = > ref
Coref Ciaref Ciaref

C3T€f C6T‘6f )
Olref O2ref Ooref

(5.20)
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ki 00 ks 0 0 k130 0 0 ks 0 0 0
0 kn 0| | O0knO| o |0k 00| | 0ku0 0
P 0 0k 0 Oksal 0 L0 0k 0| {0 0 ks 0
00 0 00 0 0 0 0 ki 00 0 ky
(5.21)

Remark 10 The forth row of Ky and Ky is zero because they don’t interfere the control

of variable state ¢.

5.3.2 Stability Analysis

In the last section, through Assumption 5.2.1 we neglected the effect of moments and
the effect of control surfaces on the aerodynamic force in considering that they are small.
We designed the Feedback Linearization Control based on the approximate system. This
subsection is to analyze the stability of the Feedback Linearization Control in the presence
of these effects. We suppose that the effects of angular rates and of control surfaces on

the aerodynamic forces by the following assumption:

Assumption 5.3.1 The effect of angular rates (p,q,r) on the aerodynamic force F,, F,, F,
is defined by function ¥1,(X), ¥1,(X), ¥1,(X) with the factor €1, and the effect of con-
trol surfaces (ug = (04,0¢,0,)" ) is defined by functions aue(X), Vopa(X), Vou-(X) and
Yowe(X). they can be then expressed as:

F,/m fu V1u(X) 0 V2ue(X) 0 da

Fv/m = fv + €1 wlfu (X) + €2 wQUa(X> 0 w2’ur (X) 66

Fw/m fw wlw (X) O 7vb2we()() O 57‘
(5.22)

where X = (z,y, 2, u,v,w, $,0,9,p,q,r,n,7)T, €1 and €5 are constant.

Taking in account the effects of angular rates and control surfaces, the true aircraft

dynamics can be written as:
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(i =ucostcosh+ v(cos 1 sin O sin ¢ — sin 1) cos @) + w(cos 1 sin 6 cos ¢ + sin ¢ sin @)
¥ =usint cosf + v(sin 1 sin O sin ¢ + cos 1 cos ¢) + w(sin 1 sin 6 cos ¢ — cos 1) sin @)
Z =—usinf + vcosfsinp + wcos b cos ¢
@] [ro—qu—gsmf+ futn Pru(X) 0 oue(X) 0 7 [d
{v —|pw—rutgsingeosf+ fu | + e |Gro(X) | + e |$alX) 0 oun(X)| |0
w qu — pv + gcos pcosf + f, P10(X) 0 towe(X) O O
) =p + tan 0(gsin ¢ + r cos @)
6 =qcos¢ — rsing
J —asin fjs% cos ¢
P = yylee = 12, = I)rq = Loa(Tow + Lz — Iy )pg + Lo L — IpoN]
¢ =7l = Loo)pr + Loz (07 = 1%) + M]
r :m[(_fmjyy + I?z + Igz)pq + I (Ipg + Iy — Iyy)rq + Ipx N — I, L
n =T
T  =ur
(5.23)
or compactly,
X = f(X) + g(X)uq + 1901 (X) + €202(X)uq (5.24)

where

0 0 0 0
0 0 0 0
0 0 0 0
V1a(X) 0 Voue(X) 0 0
P1(X) P10(X) ¥2(X) Vva(X) 0 Yaur(X) 0
Prw(X 0 Vowe(X) 0 0
0 0 0 0 0
0 0 0 0 0|

While the approximate system dynamics which is used to design the dynamic feedback

linearization law, is expressed symbolically as:

X = f(X) + g(X)uq

(5.25)

This system is called slightly non - minimum phase system, a stability analysis for

such systems can be seen in [51]. In the following, we demonstrate that an aircraft is
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exponentially stabilized by the previously designed controller in considering the effect of

moments and control surfaces on the aerodynamic force.

We define state vectors,

(&1 =(2,9,2)" = (¢1, G, )T
3 —51 (@, 9, 2)" = (€, G55 G6)"
{3 =6 = (2,9, )T (C%C&Cg)

5.26
&4 53 (2™, 43 2N = (¢, G115 C12) " (5:26)
§19=¢ = 01
| S26= E1p= ¢ =0y

From (5.7), (5.12), (5.26) and (5.25), the approximate system can be described as:

;

G =09 = 2270 + o) = &

& =52 (f(X) + 9(X)ua) = &

& =32 (f(X) + 9(X)ua) = &

§1¢>—§2¢>

& :%(f(X) + 9(X)ua) = X70(X) + 770(X)ttg
| Sao=x11 (X) + 711 (X) g

(5.27)

Yro(X)

where the matrix vy (X) =
Yr1(X)

] is nonsingular in the studied field of X and

XTO(X)
x71(X)

Computing the effects of moment and of control surfaces, we have the derivatives of

xr(X) = [ ] ,ro(X) € R i (X) € R, (X)) € R and yro(X) € R.

transformation variables as:

1:%(]”()() + 9(X)uq + 101(X) + e2¢02(X)u,) = &
=02 (F(X) + g(X)ua + e1s(X) + extn(X)u) = 53 + 5 (11 (X) + extha(Xua (X))
étSZ%(f(X) + g9(X)uq + 61%( )+ 62%( Ju ) = &+ 52 (eva(X) + extha(X)ua(X))

It is worth noticing that & does not depend on angular rates and control surfaces,
then the effects of angular rates and control surfaces do not appear in the derivative of

&1. The true system dynamics can be then described as:
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& =6
& =&+ 2 (@t (X) + extha(X)ua(X))
§3 =&+ (%3( 109(X) + eath2(X)ua (X)) (5.28)
§16=82¢
€4 =x10(X) + vr0(X ), + %(61%(){) + €2tha(X)ua (X))
| Eas=xr1(X) + 771 (X) g
The approximate tracking controller that we designed in the last subsection is:
Yro(X) Xro(X) 3
X —Ki(&— Ry) — Ky(&— Ry) — K - R
ua(X)= [77*1 X)] (— LTl X)] 1(§1 = Ra) = Ka(& — Re) — K( LM’ 3)
— K [é‘ — Ry) + Rs)
(5.29)
We define the trajectory error vector:
(61 =& —
ey =& —
= & — Ry or e=¢(—R (5.30)
€5 fl¢
€4 _ &4 — R,
€6 20

\

Then the system (5.28) with the approximate tracking controller in (5.17) can be

rewritten as:

él €1 0 0
€2 Is 0 0 0 €2 852 et (X) 852 52 €202(X)ua(X)
‘ 0 I; 0 0 353 X 353 X)ug(X
6'3 _ 3 €3 n €1¢1( ) 4 62%( ) ( ) (5'31>
€5 0 0 I, 0 €5 0 0
€ K~ Ko~ K3~ K| | |ed Ere(X) St (X)ua(X)

| é(; ] L €g | i 0 ] | 0 ]

Or compactly,
= A€+61\111(X) +€2\I[2(X)UG(X) (532)

We will show now that e is bounded. To this end, we consider the Lyapunov candidate:
W = el Pe (5.33)

157



Chapter 5. Full aircraft’s Dynamic Feedback Linearization: Application to Airlaunch

where matrix P is the solution of:
ATP 4+ PA= I (5.34)

By assuming that all output references are bounded, that means R; for 1 <i <5 are

bounded, or R bounded by a constant b4, we have then:

E=e+ R
= €]l < llell + 12l (5.35)
= €l < llell + ba

Furthermore, we can check that W;(X) and Wa(X)u,(X) are locally Lipschitz, note
that X is a local diffeomorphism of &, so || X|| < 1, [[£]].

[PUL (X[ < L[ X < hlafl€]] (5.36)

[PV (X )ua (X)) < Lf| X[ < lol[I€]] (5.37)

Take the derivative of Lyapunov function (5.33), we find that:

W=—eTe+2eTP(e191(X) + e2Us(X)ua (X))
<—llell* + 2llell(eslal €]l + ealola]I€]])
—llell* + 2llell (extala(llell + ba) + ealalu(lle]| + ba))
—|lell? + 2(e1lily + ealaly)|le]|? + 2(erlily + €xlaly)balle]|
—(3/4 = 2(e1l1l, + e3laly))||ell? = (lle]l /2 — 2(erl1l, + €3lal,)bg)?
+(2(e1l1ly + €alaly)by)?

(5.38)

VANRVAN VAN

Remark 11 W < 0 whenever e is large, then & and X are bounded. If the references
are chosen neighborhood of initial conditions so that by is sufficiently small, all system
states remain in a small neighborhood of the tracked values. For the purpose of aircraft
stabilization after the launching phase, the references and their derivatives are zero, by
(5.30) R is equal to zero, and then by is zero. The system is then exponentially stable
if €1 and ey are sufficiently small. We can see for the purpose of flight stabilization, the

dynamic feedback linearization controller satisfies the performance requirement.

5.4 Simulation Results

In Section 5.3, the design methodology of a dynamic feedback linearization controller to
stabilize a flight system is proposed. The stability analysis has shown that the aircraft
system is exponentially stabilized for the case of small effects of control surface and an-

gular rates’s deflections on the aerodynamic force. In this section will apply this control
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to the air launch system after the launching phase. Then, it will be presented numeri-
cal simulation results for the controller to demonstrate the performance of the proposed
feedback linearization control laws in the drop phase.

Similarly to the case of applying modified conditional integrator and conditional ser-
vocompensator controls to the airlaunch system, the launching phase is considered as a
perturbation on aerodynamic force and moment during an interval T},;. This perturba-
tion affects affects the aircraft model following the launch phase, which model is taken as
an F-16 as we mentioned in Section 2.4 of Chapter 2. We then remind that the model
used in the following simulations is even more complete than that used in the control de-
sign, for example it includes actuator dynamics and their limitations. As a consequence,

simulations also illustrate some properties of robustness to unmodeled dynamics.

Baselines

We remind the objective of the controller designed for the airlaunch system after the

launching phase

o (ap = 17.5°, By = 4° and ¢g = 10°) is the initial condition of the second model
which is the airlaunch system after the separation phase, all others variables start
at zero. This is the final state of the first model added by a small disturbance on
the system output.

e The controller must return the airlaunch system to the angle of attack «, = 4.6°,
sideslip 8, = 0°, and roll angle ¢, = 0° and all others variables to zero, which
corresponds to the equilibrium point of the second model following the launch phase
(at V = 154m/s, h = 5000m). That corresponds to u,e; = 150m/s, wy.r = 33m/s,
Uref = Om/s and ¢,y = 0°, all other variables are zero in body fixed reference frame.

The control surfaces at the equilibrium point are §, = 0°, 6. = —2.5° and 9, = 0°.

e There is no collision between airlaunch system and the rocket.

Numerical Applications

The linearizing feedback controller of the airlaunch system is determined as in (5.19):

o (X)=77 ' (X)(—x7(X) — K1(& — Ry) — K3(& — Ry) — Ks( [53 — Ry)

1¢
&4

§2¢

—Ky( [ — Ry)+ Rs)
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where v7(X) is defined in (5.13), xr(X) is defined in (5.14). Ry, Re, R3, Ry and R; are
defined in (5.20), and K;, Ks, K3, K, and K5 are defined in (5.21).

Because the controller stabilizes the system to the equilibrium point of the second
model at the altitude 6500m, Ry, Ry, R3, R4 and Rj are then determined as:

ref — 0
Cirer = Vit = 150t Carer =V ? ! _0
Ry = Coref = 0 ;R = | Gorep =0 |;R3= Cgmf 0 ;
Iref —
Cares = —6500 Cores = 0 !
Olref = 0
Cl[)ref =0 élOref =0
T€e = O : re = 0
Ri— Ciires R = §11 f
C12ref =0 Cl2ref =0
O2ref = 0 d27‘6f =0
Parameters K, Ko, K3, K; and K5 are found as:
0.10 0 O 100 0 O 1000 0 O 2000 0 O
0 0.10 0 0 100 O 0400 0 O 05000 0
K, = s Ky = K3 = s Ky =
0 0 0.20 0 0 300 0 0400 0 0 04000
0 0 0 0 0 O 0 0 0 200 0 0 030

The second model is disturbed on aerodynamic force and moment during an interval

T;n: as in Chapter 2.

e Perturbation F,,, = mg cos 6 on the aerodynamic normal force, the perturbation on
drag force is F,, = —Psintly = —mgsin 6y and the perturbation M, = mgl,. cos 0o/2

on the aerodynamic pitch moment during 7T},;, where [, is the rocket length.
e three sets of time interval are simulated:

1. T;s = 0.227s, the system is visually unstable for constant inputs as mentioned
in the part of Modeling and Simulation of the airlaunch system (see Chapter

2). The simulation results correspond to solid lines in Fig. 5.1 to Fig. 5.6.

2. Tiny = 0.3s, the system is unstable for a simple LQR controller (see Chapter
2). The simulation results correspond to dashed lines in Fig. 5.1 to Fig. 5.6.

3. Ty = 0.43s, this is a very long time interval for the perturbation on the
aerodynamic force and moment. The simulation results correspond to dash
dotted lines in Fig. 5.1 to Fig. 5.6.
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Results

It is interesting to remind that the aircraft with constant inputs (trim conditions) is unsta-
ble for T},; greater than 0.227s (see [59]). The dynamic feedback linearization controller
we designed in Section 5.3 will stabilize the system for much longer periods. Finally, we
can verify that the system will be unstable for an interval T;,, greater than 0.43s. Never-
theless, in this case the control inputs are strongly saturated. As a consequence this time
interval represents more likely the limitations of the aircraft itself than the limitations of

the control algorithm.

Figs. 5.1 to 5.3 represent the convergence of the system states to the operating point
of the aircraft at the end of 10s for three cases of T}, = (0.227s,0.3s,0.43s). For T},; =
(0.227s,0.3s) the system is well stabilized, while for T},,; assuming larger values the system

becomes more oscillatory and attains its limits of stability in case of T},; = 0.43s.

Fig. 5.5 shows how the control variables and thrust behave for the three cases of
study. The control surfaces in the last case are saturated by their physical limitations
due to a high perturbation on aerodynamic force and moment. It can be said that the
performance of the Feedback Linearization Controller allows the system to keep stability

even with large perturbation during a long time interval Tj,,;.

Collision Avoidance

Airlaunch problem does not only require stability of system’s states, but also to avoid the
possibility of collision between the aircraft and the rocket after the drop phase. Fig. 5.7
shows the altitude of the aircraft from 0 to 1s in the three previous cases of study by
using the Feedback Linearization Controller. They are compared with the trajectory of
the rocket that drop freely with the initial airspeed of the aircraft (the thin solid plot).

In the three cases (dotted plot, dashed plot and dash dotted plot), the altitude of the
aircraft satisfies the specification that requires there is no collision between the aircraft

and the rocket in the airlaunch phase.
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Figure 5.1: Airspeed, Angle of attack and sideslip angle stabilized by DFL Controller
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Figure 5.2: Angular rates stabilized by DFL Controller
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Figure 5.3: Euler’s angles stabilized by DFL Controller
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Figure 5.4: Three positions of the aircraft carrier after the launching phase
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Figure 5.5: Aileron, elevator and Rudder of DFL Controller
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Figure 5.6: Thrust Force of DFL Controller
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Figure 5.7: Altitude of the aircraft with DFL Controller

5.5 Conclusion

We have presented the design of Full Dynamic Feedback Linearization Controller aiming
to control an aircraft. This chapter has its starting point in the work of [22] from the
literature. This chapter shows that a flight system is not be static feedback linearizable,
but by using a special class of dynamic compensator, a second order integration of thrust,
the flight system becomes able to be dynamic feedback linearizable in a first step where
it was neglected the derivatives of aerodynamic forces with respect to control surfaces
and angular rates. In a second step, a deeper analysis shows that this dynamic feedback
linearization controller exponentially stabilizes the aircraft towards a small residual set
even when are taken into account the effects of the control surfaces and angular rates on
the aerodynamic forces.

The proposed controller is then applied to the airlaunch system which has been mod-
eled by an F-16 model disturbed by large impulses on forces and moments that may
destabilize the system as explained in Section 2.4. The performance of the proposed con-
troller is illustrated by computer simulations with initial conditions representing the final
(stable) state before the launch phase. In three of the studied cases, the stability of the
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system after the drop phase is assured, all states return to their equilibrium values, and
there is no collision between the aircraft and the rocket, even if the the perturbation inter-
val T},; becomes large. The controller satisfies then the requirement of flight stabilization
and collision avoidance with the rocket.

Until now, this thesis has developed a modified conditional integrator control and con-
ditional servocompensator control in Chapters 3 and 4 and dynamic feedback linearization
control in Chapter 5, and applied them to our airlaunch problem. In the next chapter,

there will be a comparison of these control techniques.
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Comparison of Control Approaches
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6.1 Introduction

In the three last chapters we have presented the modified Conditional Integrator(mCI),
modified Conditional Servocompensator(mCS) controls (Chapters 3 and 4) and dynamic
feedback linearization control (Chapter 5) with their application to the air launch sys-
tem. The simulation results have shown the stabilization of the air launch system after
the launching phase with a certain performance both control methods. In this chapter
we will compare these controls in particular the modified conditional servocompensator
control and dynamic feedback linearization control. We illustrate also advantages and
disadvantages of each control. We conclude by providing insights on the choice of each of

these controls.

6.2 Comparison

The mCS control designed in Chapters 3 and 4 has the sliding mode properties outside

the boundary layer and has the integral servo-compensation inside the boundary layer
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which allows the system to avoid chattering effects. While dynamic feedback linearization
control is designed in Chapter 5 based on the dynamic feedback linearizability of the

system with double integration of the thrust force.

6.2.1 Baselines

We remind the objective of the controller designed for the airlaunch system after the

launching phase

o (ap =17.5° By = 4° and ¢y = 10°) is the initial conditions of the second model which
is the airlaunch system after the separation phase, all others variables are initially
taken as zero. This is the final state of the first model with a small disturbance on

system output.

e The controller must return the airlaunch system to angle of attack o, = 4.6°, sideslip
B, = 0°, and roll angle ¢, = 0° and all others variables to zero, which corresponds
to the equilibrium point of the second model following the launch phase (V' =

154m/s, h = 5000m). The control surfaces at the equilibrium point are §, = 0°,
0. = —2.5° and 9, = 0°.

e There is no collision between airlaunch system and the rocket.

6.2.2 Numerical Applications

In order to avoid repetition(we consider the CI as an special case of CS), we take the mod-
ified conditional servocompensator control law expressed in 4.46 and dynamic feedback
controller for (5.1) determined in (5.19).

The second model is disturbed on aerodynamic force and moment during an interval

T;ne as in Chapter 2 by:

e the perturbation F,, = mgcosfy on the aerodynamic normal force, the perturba-
tion on drag force is F,,, = —Psinfly = —mgsinf, and the perturbation M, =
mgl, cos p/2 on the aerodynamic pitch moment and a negligible perturbation on

the aerodynamic roll force during 7;,;, where [, is the rocket length.
e Four sets of time interval are simulated:

1. Tje = 0.227s, the system is visually unstable for constant inputs (see Chapter

2). The simulation results correspond to Fig. 6.1 to Fig. 6.6.
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2. Tine = 0.3s, the system is unstable for a simple LQR controller (see chapter 2).
The simulation results correspond to Fig. 6.7 to Fig. 6.12.

3. Tyt = 0.43s, this is a large time interval for the perturbation on the aerody-
namic force and moment. The simulation results correspond to Fig. 6.13 to
Fig. 6.18.

6.2.3 Simulation Results

The simulation results of the modified conditional servocompensator control are illustrated
by continuous lines in Figs. 6.1 to 6.18, while that of the dynamic feedback linearization
control correspond to dashed lines. It is worth noticing that the dynamic feedback lin-
earization control was designed for the set of state variables: linear velocities (u,v,w),
angular rates (p,q,r), Euler’s angles (¢,0,1) and system’s positions (z,y,z). In the re-
sults the set of airspeed (V'), angle of attack («) and sideslip angle (3) are illustrated
instead of linear velocities (u, v, w) to compare with the results of the mCS control. The

transformation from (u,v,w) to (V, «, ) can be effected as in (2.20):

u =V cosacosf V =vu?+v?2+w?
v="Vsinp & o = arctan(w/u)
w = Vsinacos f = arcsin(v/V)
Time interval: T;,, = 0.227s , which corresponds to the case where the system is

visibly unstable with constant inputs. We have some remarks:

Stabilization of system’s states

Fig. 6.1 to Fig. 6.4: The stabilization of the principal state variables are assured after
10s such as the angle of attack, sideslip, roll angle and angular rates.

In the case of the mCS control, the pitch angle and yaw angle are move freely. The
yaw angle converges to a constant. The pitch angle and airspeed are stabilized slowly to
a constant. As a consequence, the lateral position y is free, and the altitude is stabilized
very slowly.

In the case of the dynamic feedback linearization control, a complete stabilization
of the system is obtained but slower than the results of the mCS control. Because the
control parameters for three positions are leak, three positions don’t converge to the

desired positions but with an error.

System’s Control:
Fig. 6.5 and Fig. 6.6: The control surfaces are the same for two controllers with a

small saturation on rudder. Inversely, the thrust forces on the two cases are different.
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For the dynamic feedback linearization control, the thrust force converges fast, while it

converges slowly in the case of CSC. It explains the difference of convergence on system’s

airspeed in the two cases.
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Time interval 7;,, = 0.3s which corresponds to the case where the system is visibly
unstable with a simple LOR controller (see Chapter 2).
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Figure 6.9: Euler’s Angles for T;,; = 0.3s
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and Figure 6.8: Angular Rates: roll, pitch and
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Figure 6.10: System’s Position for T},; = 0.3s



Chapter 6. Comparison of Control Approaches

Aileron surface (deg) x10* Altitude of Aircraft (m)
40 T T 3573, T T T
W
3
25 2 4 6 8 10 25
Elevator surface (deg)
40 T T "]
20¢ & |
A
0 ;
15 ‘\
-20 L = \
0 2 4 6 8 10
Rudder surface (deg) 1
50 r T %,
Rik
0/’_\/’&\& ----------------- 2nne VL SO SR I e st s
_SGO é 4 é 8 10 00 f; 1b 15 Zb 25 30 35 40
time (s) time (s)

Figure 6.11: Control Surfaces for T;,; = 0.3s  Figure 6.12: Thrust Force for T;,; = 0.3s
It is worth noticing that:

Stabilization of system’s states

Fig. 6.7 to Fig. 6.10: The stabilization of the airlaunch system is assured after the
launching phase by the controller.

In the case of the mCS control, the convergence of the state variables is fast. But we
obtain again a slow convergence of non controlled state variables like pitch angle, yaw
angle, airspeed and positions of the air launch system after the separation phase.

In the case of the dynamic feedback linearization control, a complete stabilization of

the system is obtained again but slower.

System’s Control:

Fig. 6.11 and Fig. 6.12: For the two control methods, the control surfaces are much
more saturated when the perturbation on aerodynamic forces moments lasts longer.

Time interval T;,, = 0.43s which corresponds to a large time interval where the
system is still stable for both controllers as we can see in Chapters 4 and 5. Some remarks

are:

Stabilization of system’s states

Fig. 6.13 to Fig. 6.16: Even if the the stabilization of the airlaunch system is assured
after the launching phase by both control methods, the system’s state variables oscillate
clearly, in particular the angular rates (Fig. 6.14) and Euler’s angles (Fig. 6.15). The air
launch system is at the limit of stability in this case.

Modified Conditional servocompensator control case: The convergence of the state
variables is still fast to their equilibrium values. It is worth noticing that the pitch angle
oscillates with a high amplitude (20°), it causes a risk of collision with the separated

rocket. The yaw angle which is left free, causes the turn of the air launch system to the
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left.

Dynamic feedback linearization control case: Also a complete stabilization of the sys-
tem is obtained but much slower than the other control method. We note also that the
state variables oscillate with a high amplitude, in particular the angle of attack and the

sideslip angle which exceed the physical limit of these state variables.

System’s Control:

Fig. 6.17 and Fig. 6.18: It is clear that the control surfaces are saturated for the two
control methods. However, even with a slower convergence of the state variables for the
case of the dynamic feedback linearization control, the control surfaces of this controller

is more saturated than the other control method.

Using the dynamic feedback linearization control for the airlaunch system to stabilize
the system, the thrust force varies strongly at the beginning of the simulation. It is not
the case for the CSC where the thrust is used to control justly the airspeed of the system
(see Fig. 6.18).
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Figure 6.13: Airspeed, Angle of attack and Figure 6.14: Angular Rates: roll, pitch and
sideslip angle for Tj,; = 0.43s yaw rates for T;,; = 0.43s
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Figure 6.18: Thrust Force for T;,; = 0.43s

Fig. 6.19: We are interested in the moment just after the launching phase and can see

from the previous chapters that there are no collision between the airlaunch system and

the rocket 1s after the separation phase. However, we also remark that when the rocket

goes up to Earth orbit and the airlaunch system is still stabilizing, with large amplitude

of oscillation on the pitch angle in the case of mCS control, it risks a possible collision

with the rocket when the airlaunch system goes down.
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Figure 6.19: Altitude of the system for two control methods vs altitude of the rocket

6.3 Conclusion
The chapter can be concluded by some remarks:

e The modified Conditional Servocompensator control is applied to the airlaunch sys-
tem through three system’s outputs: angle of attack, sideslip and roll angle. The
airspeed of the system is controlled by a PI controller through the thrust force. Be-
cause the controller is designed for the airlaunch system under a normal form with
6 state variables, the controller guarantees the stabilization of these state variables
but not a complete stabilization of the system after the launching phase. For exam-
ple, the pitch angle and yaw angle evolute freely. It may risk a collision between the
airlaunch system and the rocket after the separation phase. Inversely, the dynamic
feedback linearization control guarantees a complete stabilization of the airlaunch
system after the separation phase as demonstrated in Chapter 5. However, it does
not allow to guarantee that certain state variables remain in their physical limits

such as angle of attack or sideslip angle.

e Two controls are designed under some assumptions previously mentioned. For the
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modified conditional servocompensator control, it is assumed that the control sur-
face deflections affect only aerodynamic moments and not aerodynamic forces, and
that the airspeed of the system is much slower than other state variables. For the
dynamic feedback linearization control, it is also assumed that the control surface
deflections affect only aerodynamic moments and not aerodynamic forces and that

the aerodynamic forces depend only on linear velocities but not on angular rates.

e The modified conditional servocompensator control is designed less based on the
system model than the dynamic feedback linearization control, which requires a
precision of aerodynamic coefficient data and their derivatives. It is an advantage
of the conditional servocompensator control compared to the dynamic feedback lin-

earization control.

The choice of the control methods depends on some criterion of the system. If the
system has less information about the aerodynamic characteristics, the modified condi-
tional servocompensator control will be a better solution. In the case where the system
has information enough, the dynamic feedback linearization control is a better choice. In
our case, it may be better to choose the dynamic feedback linearization control. It must

be confirm by a test of two controls on the model of the real platform.
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7.1 Main Contributions

In this thesis, we have investigated and developed the airlaunch system model during and
after the launching phase, a modified Conditional Integrator(mCI) control, a modified
Conditional Servocompensator(mCS) control and a dynamic feedback linearization control
as possible framework for stabilizing the airlaunch system and collision avoidance. The

main contributions of the thesis are:

In term of modeling:

e Modeling the airlaunch system during and after the drop phase has been done using

two approaches (see Chapter 2):
— Initial conditions approach
— Impulses on aerodynamic force and moment
In term of control methodologies:

e The design of a simple LQR control as a first standard approach to stabilize our

airlaunch system after the separation phase. The controller allowed us to have a
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first point of view on the stabilization of the system and can be considered as a

standard to be compared to the new nonlinear controllers developed in this thesis.

e The development of a modified Conditional Integrator control for a class of multi-
input multi-output nonlinear systems from conditional integrator control theory
developed by Khalil and his co-workers, and in the following, its applications to

airlaunch.

e An extended modified Conditional Servocompensator control from the modified
Conditional Integrator one is developed for the same class of MIMO nonlinear sys-
tems. Its shows a better performance compared to LQR controller, sliding mode
controller and also the conditional integrator control for the linearized air launch

system around its equilibrium point.

e The demonstration of the possibility for an aircraft to be dynamic feedback lin-
earizable is shown in Chapter 5. A dynamic feedback linearization control is then
designed for the flight system. The interest of this control technique is that it is
able to formally stabilize a complete flight system.

In term of applications and results

e The application of the LQR controller as the first approach gave us the stabilization
of the air launch system, but only for small initial conditions in the first approach
for air launch system modeling, and for a small time interval T;,,; of disturbances on

the aerodynamic forces and moments, as we can see in Chapter 2.

e The modified Conditional Integrator control, and in particular the modified Con-
ditional Servocompensator, have shown a better performance to stabilize the air
launch system after the separation phase through a large time interval T;,; corre-
sponding to the duration of the separation phase. In addition, the moCI control and
mCS control are developed for a class of MIMO nonlinear systems. In this thesis,
they have been applied to other examples of this class of MIMO nonlinear systems

as we have shown in Chapter 3.

e The dynamic feedback linearization control was more effective to fully stabilize the
airlaunch system. As shown in Chapter 5, it stabilized the complete air launch

system including Euler’s angles, to linear velocities and angular rates.

e The three studied controllers were able to avoid collision between the air launch

system and the rocket during and after the separation phase.
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7.2 Future Works

This thesis has addressed a challenging new (and open) problem of stabilizing an un-
manned airlaunch. Several good and important results were obtained, in the form of
different control systems, each adducted for different situations. These results are (in our
best knowledge) the first obtained in this field. As consequence of this originality, much
field is still open for future works. Some of the most important ones are summarized in

the following:

e Modeling the airlaunch system during and after the launching phase was a key point
of the thesis, because of unavailability of a real model with real data in the literature.
We have adopted two successive approaches. The first considers that the split was
instantaneous, and has already finished. As a consequence of the split, the aircraft
was brought to an initial condition, from where the controller must stabilize the
system. The second consider the switch from one first model (with the launcher
still attached to the carrier) to a second model corresponding to the carrier alone.
This switch is not considered as instantaneous, and last a certain amount of time
Tint. During this time impulses, representing a worst case, disturb the aircraft. The
controller must guarantee the stability of the system during the longest as possible
time interval, and bring all states back to their new equilibrium values. If we could
obtain a better model for the airlaunch prior to the split phase, the strategy of
switching among three phases could be enhanced, and taken more explicitly into

account.

e A second result was the development of a mCI control and then a mCS control
have been developed for a class of MIMO nonlinear systems. These two control
strategies were considered to be applied for the airlaunch problem, but they were
not able to address MIMO nonlinear systems. Nevertheless, these control theories
present several advantages (in particular its robustness to unknown parameters) that
make them very interesting to the control of aerial vehicles. For this reason we have
extended this theory to a class of MIMO nonlinear system that includes aircrafts. In
the following, there results were used to the airlaunch problem as shown in Section

3.4 of Chapter 3.

e The dynamic feedback linearization control allows us to obtain a better simulation
results compared to the modified conditional integrator control or mCS control. It
stabilizes completely the airlaunch system after the separation phase. However,

the control depends on more detailed analytical models for aerodynamic coefficients
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which in practice are under look up table from wind tunnel tests. As a consequence,
the precision of analytical models and their parameters are not assured. Therefore,
it is necessary to couple this theory to other estimation or adaptive schemes that can
reduce its dependence on accurate models. Possibilities would be first to develop
an adaptive version of DFL controller. Another would be to make this indirectly
through signal processing . approaches to identify these parameters online, and use

these estimations in the control algorithms.

e For all control design procedures, we have assumed that all state variables of the
airlaunch system are measurable, but sometimes it is not the case. In those cases
we would need an estimator to reconstruct these variables for the design procedure.
The choice of observer’s structure depends on the performance requirement and can

be found in the literature (see for example [23] and [24]).

e [t would be interesting to extend the simulation results in Chapters 4 and 5. Be-
sides, a comparison with other control methods would be interesting to show the
performance of the proposed methods: modified Conditional Integrator, modified

Conditional Servocompensator control and dynamic feedback linearization control.

e Test of the proposed control methods on a real platform is needed.
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Appendix A

Modified Conditional Integrator and
Modified Conditional

Servocompensator

A.1 Modified Conditional Servo-Compensator in the

case of f(:) and ¢(-) unknown

Consider the system:

{ T (A1)

és = fler,e2) +gler,ex)u

Let us impose the sliding surface as:
s = Koo+ Kie; + e (A.2)
where ¢ € R" is the output of the conditional servocompensator
0 = —Koo+ usat(s/p) (A.3)

in which p is the boundary layer, K is a positive definite matrix, K; € R™™" is chosen
such a way that Ky + s/, is Hurwitz., I, is the n X n identity matrix. The saturation

function is determined as:

s/lsll i [|sll > p

. (A4)
s/p it ls[] < p

sat(s/p) = {

where || - || is a L2 norm.

The derivative of the sliding surface can be expressed as:
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s = K(]O' + Klél + 6.2 (A5>

Equation (A.5) may be written again from (A.1) and (A.2)

é:KO(_KOU + IUSGt(S/,U)) + K1€2 + é2

A6
:—K03+K0psat(s/u) +K1€2+é2 +K0(K161 +€2) ( )
Now by letting
A(Gheg) = KO(K161 +62) +K1€2+f(€1,62) (A7>
Equation (A.6) becomes
s=—Kos + Kousat(s/u) + Aley, es) + gler, ea)u (A.8)
We can then define the controller:
u = —1II(ey, e2)sat(s/ ) (A.9)

This controller allows to robustly stabilize the system (A.1) in a semi-global manner.
We will now demonstrate that the control law defined in (A.9) can stabilize the class
of nonlinear MIMO systems defined in (A.1). This demonstration is decomposed in two
parts representing the internal and external regions of the boundary layer and will be

later formally stated in the form of a theorem.

A.1.1 In the region |s|| > pu, sat(s/pn) = s/||s|.

In this part, we demonstrate that the control law in (A.9) with II(-) defined later in

(A.18) will bring the sliding surface inside the boundary layer. Before proceeding further,

we remind the assumption 3.2.1 and introduce a new assumption on g¢(-) function.
Assumption 3.2.1: A(eq, e5) defined in equation (3.9) is bounded by a class K function

v(|le1]| + [|e2]]) and a positive constant Ay :
[A(er; e2) ]| < y(lleall + lle2ll) + Ag (A.10)
and as a consequence,
[A(er = 0,e2 = 0)[| = [[£(0,0)[| < Ao
for (e1,es) € R" x R".

188



A.1. Modified Conditional Servo-Compensator in the case of f(-) and g(-) unknown

Function f(eq,ez) is required to be Lipschitz for (e1, es) € O,, as a consequence
[1f(e1, e2) = f(0,0)]| < Laf|Krea| + Lalles]] (A.11)
v(|le1]] + |le2]]) is also required to be Lipschitz for (eq,es) € O,

Yllexll + lleall) < mlEaeall +2lleal| (A.12)

Assumption A.1.1 Function g(ey,es) satisfies two hypothesis:
Hypothesis 1: for (e1,e3) € R" x R"

gler,ea) + g* (e, e2) > 2X1,,, for a constant A\ > 0 (A.13)

Hypothesis 2: with (e1,e2) € O,, function g(ey,eq) satisfies the Lipschitz-like con-
dition:
lg(e1,e2)g71(0,0) = L[| < vler,e2) (A.14)

in which, v(ey,es) is a suitable function satisfying (should remind that e; and ey are in

the bounded region):

vier,e2) = wvif|Kiel| + vallesf < K, (A.15)

where vy, vy and K, are suitable positive constants.

Lets now consider the product s’'s

sts = —sTKys+ psTKosat(s/p) + sTAler, ea) + s g(er, ea)u (A.16)

This product s”s can be developed with the previous assumption and the definition

of saturation function (A.4):

sts=—sTKys + us' Kos/||s|| + sTA(-) — sTg()II(-)s/|s]|
<—s"Kos + us" Kos/|[s[| + [|AC)[[[s]] = sTg(-)II(-)s/]|s]
<—sTKys — sT(AIL(+) — uKo — (7(-) + Do) 1)s/||s]] (A.17)
—1/25"(g(-) + g7 () = AL)I()s/| ]
<—5"Kos — As"Hos/|[s]] < —=Amin (Ko)[Is[I* = Amin (Io) || s

where we define
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() = o + (Kot + (1) + Ao) L) /A (A.18)

and Il is a positive definite matrix.

The product s's is then not positive and

$78 < = Amin (o) [5]1* = Amin (To) [|5]] < =AM (TTo) |||
A = 20|54 = 2675 < 2(=Min(To) ) (A19)
N d(lclzi”) < = Mnin (o) '
= [[s(@Il < [[s(O)]] = Amin(Io)?
Then the sliding surface s(t) reaches the set ||s(¢)|| < w in finite time.
0

A.1.2 In the region ||s|| < u, sat(s/p) = s/u.

Consider again (A.2), (A.19), (A.8) and control law (A.9), which inside the boundary

layer may be rewritten as (A.20) (remind that é; = es).

o= —K()O' +s
él = —Klel + s — K()U <A20>
§=A() —g(U()s/p

It can be shown that system (A.20) has an equilibrium point: e; = es = 0, s = 3,
o =0 with § = Koo = pIl=1(0)g=(0) f(0).
System (A.20) may be rewritten with respect to § and 7:

G=—Koo+3
él = —K161 + s — K()a' (A21)
s=A() = H()g(-)5/p = T()g(-)5/p

where 6 =0 — 7, § =5 — 5.

In the following we will show that the state variables of the system (A.21) are driven to
the equilibrium point when the control law (A.9) is applied, with II(-) defined in (A.18),
when the system is inside the boundary layer.

We would like to demonstrate that every trajectory starting inside the boundary layer,

will approach the equilibrium point as time tends to infinity. Toward that end, we take

A A A
W= ?léTK()& + felTKlel + §§T§ (A.22)
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as a Lyapunov candidate, where \; and Ay are positive constants.

Its derivative can be easily calculated as:

W:)\l(}TK[)& + )\26{[(16'1 + )\3§T§
:)\15'TK0(—K05' + §) + )\Qe?Kl(—Klel + s — Koa') <A23>
+As87(A() = g(V()S/ = g()TI()$/ )

Since (e, e2) € O, A(+) can be expressed:

A():Ko(s — KQU) + Kl(—Klel + 85— KOU) + f()

~ ~ (A.24)
=(Ko+ K1)5 — (Ko + K1) Koo — Kiey + f(-)

then,

W=-\6TK25 + MoTKos — MeT K2ey + Mpel K1 (5 — Kyo)
+A35" (Ko + K1)5 — (Ko + K1) Koo — Kfer — g(-)TI()3/ ) (A.25)
+A38T(f(-) = g()I(-)5/p)

We denote f(0) = f(0,0), g(0) = ¢(0,0) and II(0) = II(0,0). In order to express the
derivative of the Lyapunov function candidate more clearly, we consider firstly the term

using assumptions 3.2.1 and A.1.1:

— g (0)g~ (0) £ (O)]|
(0) = (9(-)g~"(0) = 1) f(0)
971(0) = 1n)g(0)(I1(-) — I(0)IT~*(0)g~(0).f (0)
(I1(-) = IL(0)IT=(0)g~"(0) £(0)
= [If() —9(')H(')§/MI|<||f(') = FO + I(g(-)g7(0) = L)1 £ (O)]]
+()/All(g(-)g~(0) = L) g (O) T O)H]g = ()1 1£(O)]]
+y()/AlgOI= ) [lg~* O)II1]f )]
= [[F() = gOIC)s/pl[<Lal[Kaer]l + Lafleall + Ao(vr[[ Kreal| + valle:])
+GoKu(mllKrer +2llexll) + Go(rll Kre|l + 72l e2])
= (1) = g5/ pl<(Ly + Aovr + GoKuon + Gom) [ K e
F(La + Aguz + Go K72 + Goya) lez]|
= [[F(-) = g(UC)s/pl<ar[Krer + azllez]]
(A.26)
where Gy = [|g(0,0)]|[[g71(0,0)|| is a constant, a; = L; + Agvy + GoKyy1 + Govi, as =
Ly + Agug + GoK e + Goye and remark that ||IT71(0)[|]]£(0)]] < 1.
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Using the relation in (A.1), the previous equation can be expressed as:

ST(FC) = gOIC)s/w) < SNFC) = g()TL()5/ |

< ay|sll[[Kren]| + az|s][le2|

< U575+ e1Kiey) + 2 (5754 efes)

S a—zl(S S + elK 61) L (§T§ + (5 - Koa' — Klel)T(§ - K()& - K161>> (A27)
< U875+ e Kiey) + %2 (5754 3(5"54+ 0" Kjo + ef Kiey))

< al +4a2 TS + 3(12 TKQO_ + CL1+23CL2 61 K12€1

<1676 + cpele; + 3573

where we define ¢; = 3/2as, co = 1/2a1 + 3/2as and c3 = 1/2(a; + 4as).
From (A.21) and (A.27) the derivative of W can be developed:

W=—-MN6TK25 + MoT K5 — MeT K2ey + Mpel K1 (5 — Kob) 4+ As(37 (Ko + K1)3

=51 (Ko + K1) Koo — 8" Kiey — 3Tg(-)I1(-)3/p+ 7 (f () — g(-)1L(-)5/n))

<—MGTKZG + M\ /2(375 + 6T K25) — Mel K2ey + Mo /2(eT Kiey
+(3 — Ko&)T(3 — Ko5)) + As(37 (Ko + K1)5 + 1/2(87 (Ko + K1)?5 + M\ 6T K26)
+1/2(57 K35 + e Kfey) — ASTII()3/p — 1/257 (g(-) + g7 () — 2V)T1(-)3/p
+c16T K36 + coel Kiey + 3573)

<-MNGTKZG + M /2(375 + 6T K25) — el Kiey + \o/2(eT K2ey + 2(375 4+ 6T KZ5))
+A3(8T (Ko + K1)$ + 1/2(8T (Ko + K1)?5 + 67 K26) + 1/2(sT K35 + el Kiey)
“AFTII()E e~ 1/287 (g() + g7 () — 2NTI()3/p + 167 K36 + coel Key + ¢;575)
—6T(MKE — M\ /J2KE — MNK2 — \3/2K2 — X3¢, K2)6
—eT (Mg K? — Xy /2K? — \3/2K? — M\3caK?)ey
=T (A (MII(+) /pp — (Ko + K1) — 1/2(Ko + K1)? — 1/2K} — ¢31,) — M\ /21, — Ao 1)
—X3/25"(g(-) + ¢" (-) = 2M)TI(-)3/
—(A1/2 =Xy — X3/2 — X3¢1)0T K26 — (Ma/2 — A3/2 — A3co)el Kiey
—§T(AsMIL(:) /n— (Ko + K1) — 1/2(Ko + K1)? — 1/2K3) — (A/2 + Mo + A3¢3) 1)

—3/287(g() + ¢"(-) = 20)I1(-)3/p
(A.28)

It can be verified that by taking A;, Ay large enough, ||II(-)|| large enough with respect

to control dynamics or i small enough, the following conditions are satisfied:

M2 = Ao — Ag/2 — Ngcr )
Ao/2 — A3/2 — Azco >0

As(AIL(-) /p — (Ko + K1) = 1/2(Ko + K1)? = 1/2K7)> (A1/2 + A + Ases) I
g(-)+ ¢ () —2X >0 from assumption A.1.1
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In this way, W (t) satisfies W (t) > 0 and W < —woWW (where wy is a positive constant)
for all 0 # 7, e; # 0 and s # 5. Then W (t) reaches exponentially zero when time tends
to infinite. As consequence, the output error e;(t) tends to zero and o and s tend to their
equilibrium values as time tends to infinite. We may assure the stability of the system in
the region of ||s|| < pu.

We can then state the results developed above in the form of the theorem:

Theorem A.1.1 A class of Multi-Input Multi-Output nonlinear systems described by
(A.1), and satisfying assumptions (3.2.1 and A.1.1) can be stabilized globally to their
constant reference by the controller (A.9-A.2-A.3-A.18) with tunning parameters (1o,

Ko, 1 and K defined in the previous section) and function v(-) conveniently set.

A.2 Functions of lateral and longitudinal modes for

the control design

e [Functions defined in the lateral mode:

f11 [ —v (—cos(a) sin(B) (T + Cr(0)qS) + cos(B)Cy(B)qS — sin(ap) sin(B)C- (o, B)7S)
0
4 (cos(ap) sin(f) sin(fo) + cos(B) cos(fo) sin(¢) — sin(ap) sin(3) cos(¢)) ]
£ () = [ sin(ag) + % cos(B)Cy, (ag)b  —cos(ag) + % cos(B)Cy, (ap)b ]
12 1 cos(¢) tan(fp)
B0 = I3C (v, 8)q@Sb + 14Cr (a0, B)7Sb
2 14Ci (a0, B)GSb + IoCh (a0, B)gSb
f ( ) ,OVSb (Igclp (ao) + I4Cnp (Ozo)) (IgClr (Ozo) + 1I,C, T(Oz())) ]
” 4 | (LG, (o) + IyCh,(a0))  (11Ci, (a0) + I9Cr, (a0))
8.\ —ol| I3C, (a0) + 11Cn;, (a0))  (I3Ci5 (a0) + 1aChy (o))
95 () =qs
(14Cl,, (a0) + I9Chy, (a0))  (1aCiy (o) + I9Chs ()
5.9) (sin(ag) + 22 cos(8)C,y, (a0)b) (= cos(an) + £3 cos(8)Cy, (a)b) ] .
’ 1 cos(¢) tan(6p)

(IsCty, (00) + 14Chy (00))  (IsCi, (0) + 11Chy (a0)) ]
(I4Ci, (a0) + IoChy, (a0))  (I4Ciy, () + IoChns, (010))
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A.

e Functions defined in the longitudinal mode:

fi(a) = mLV[_ sina(T + Cp(a)qS) + cos aC(a)qS]

fia(a
fis(a, 0
fan(a

G«

(— sinaCy, ()¢ + cos aC, (a)c)
0s (6 — a); f5i (@) = [2gS(Cr(a)c

[)E g5 (@) = Oy, ()
(1+ Zi (=sinaCy, (a)e + cosaC, (a)c))Cn,, (a)e

4_
V
o

ol

) =
) =
) =
)=

3 Functions and parameters of the linearized sys-

tem

In section 3.4 we remind some terms concerning the lateral mode dynamics in the stability

reference frame. This appendix serves to define these terms. Y3,Y,,Y,, Lg, L, d;, Ls,, Ls,
and Ng, N,, 6., Ns,, Ns,, 61(ps,7s) and 0,(ps, rs) are determined in Appendix A.

(

B = (= cos ag sin B(T + Cy(a)qS) + cos BCy(B)qS — sin a sin BC. (ag, B)qS)
—rs + ffr; (cos(B)b(Cy, (o) cos ag + Cy, () sin ag)ps)
—i—f (cos Bb(—Cy, (a) sin ag + Cy, () cos ag)rs)
—l—% (cos a sin B'sin Oy + cos 5 cos by sin ¢ — sin oy sin 5 cos ¢ cos bp)

b=+ B2

Ps=qSb|(I3C) (v, B) + 11Cy (v, B)) cos ag + (I4Ci (g, B) + I9Cp (v, B)) sin ag)
—1—%55[(130117 (a0) + 14Cy, () cos? ag + (I3Cy, (an) + 14Ch, (cx0)) cos ag sin ag
+(14Cy, () + IgCh, () ) cos ag sin g + (14Cy, () + I9Ch, () sin? aw]ps
—i—%sg[—(fgClp(ao) + 14Cy, (o)) cos ag sin g — (13C), (o) + 14Ch, () cos? a
—(I4Cy, (@) + IgCh, () sin® g + (I4Cy, () + I9Ch, (10)) cos o sin aglrs (A.29)
+qS[(I13Cy;, (o) + 14Chn;, () cos ag + (14Cy;, () + 19Chy, (o)) sin agdg
+qS[(I13Cy;, (o) + 14Chy, () cos ap + (14Ch; () + 19Chy; () sin agld,

7s=qbS[—(I3C; (v, B) + I41Cr (g, B)) sin ag + (14Ci(avg, B) + I9Cr (v, B)) cos ag]
HEYSE (1,0 (ap) 4+ IiCi, (@0)) cos ap sinag — (I3C), (ag) + 14Ch, (ap)) sin? ag

+(11C, () + I9Ch, (ap)) cos? g + (14Cy, () + I9Ch, (rg)) cos ag sin ag)ps

+%%[(I3Clp(ao) + 14Cy, (ag)) sin® ag — (130}, (o) + 14Cy, (ap)) cos ag sin ag
—(I14Cy, () + IgCh, () cos ag sin g + (14Cy, () + I9Ch, (ag)) cos? a]rs
+qS[—(I3C};, (o) + 14Cn;, () sin g + (14C};, () + 19Chy, () cos ap]da
+qS[—(I3C};, (o) + L14Chy, (a0)) sin ag + (14C15 (o) + 19Ch;s () cos apldy
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The lateral force components need to be defined in (3.73):

Vs = %(— cos(ap) (T + Cy(ap)qS) + (8%(6) — sin(ao)Cx (o, B))q5)
Y, = %ﬂ‘;b(q@(ao) cos(ag) + Cy, (o) sin(ayg))
Y= %:;b(_cyp (Oéo) Sin(ao) + Cyr (aO) COS(O‘O))

o OlIC (o, B) + 14C(a, B)) cos ag + (14Ci(w, B) + I9Cl(aw, B)) sin ay

5=0
pVSB 9 )
L,= T[(IgClp(ao) + 1,Cy, (ag)) cos™ o + (13C), (o) + 14Cy, () cos o sin oy
+ (14Cy, () + I9Chy () cos ag sin ag + (14Cy, (o) + LoCh, (1)) sin® axg]
pV Sb ) 9
L, = T[—([gclp(()é()) + 14C,,, () cos ag sin ag — (130}, (o) + 14Oy, () cos™ ag
— (LCy () + IyCh, () sin? ag + (140}, (a) + I9Ch, () cos g sin ay)
3 9=U3Ci (o, B) + 1,0, (v, B)) sin ag + (I.Ciap, B) + I9Ch(a, B)) cos ay]
Ng = L]Sb
B B=0
pV Sb . .2
N, = T[—([gC[p(Oéo) + 14,0y, () cos g sin ag — (£3C), (o) + L4Ch, () sin® g
+ (LiCy () 4 19Ch, (1)) cos® g + (14Cy, () + I9Ch, (1)) cOs g sin axg]
VSh
NT = pT[<I3Clp (Oéo) -+ I4Cnp (Oéo)) SiIl2 Qo — (IgClT (Oé()) —+ I4Cn,« (Oéo)) COS (g sin Qo

- (I4Clp (Oéo) + IgCnp (Oé(])) COS (g sin g + (I4Clr (Oéo) + IgCnT (Oé())) COS2 Oéo]

Ls, = @S[(I3Ci5, (a0) + 14Chy, (a0)) cos ag + (14Cy;, (o) + I9Chy, (a0)) sin ag]

Ls, = qS[(I3C1; (o) + 14Cn; () cos ag + (14Cy;, (an) + 19Chs () sin g
qS[—(I3Cy,, (o) + 14Cn;, (o)) sinag + (14C};, () + 19Chy, () cos g

Ns, = qS[—(I3C1;, (o) + 14Cn; (o)) sinag + (14C; (o) + I9Chy, () cos ap]

31(ps; 7s) = GSb[(I3C1(v, B) + 1sCn(av, B)) cos ag + (IsCi(ao, B) + IyCr(a, B)) sinag] — Lg

6n(ps, rs) = @Sb[—(I3C) (g, B) + I4Ch (g, B)) sinag + (14C (o, B) + IoCr (o, B)) cos ag] — Ng

=
[
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A.4 Application of Modified Conditional Integrator

Control to Airlaunch System

The modified Conditional Integrator controller for the lateral motion has the form (see

section 3.3):

W= (e, ef)sat(s? i)
3 3 3 . (A.30)
°(:) = (m +79°() + ko’ + Ag)(G7())
with
sﬁzk‘gaﬁ—l—Klﬁef—l—eg (A.31)
6% = —ko® + pPsat(s® /) '

where Hg is a constant large enough, k:g is a positive parameter, 1 is the boundary layer

and K 16 is a positive definite matrix chosen such a way that K 16 + sly is Hurwitz.

Theorem A.4.1 System (3.55) with FP(-) satisfying Assumption 3.2.1, GP(-) satisfying
Assumption 3.2.2, and applying the control law (A.30- A.31), will globally reach an arbi-
trary error region in finite time, and there on will be exponentially stabilized towards its

equilibrium point.
O

Proof: In order to demonstrate the exponential stability of designed controller (A.30)
and (A.31) for the lateral mode in (3.55) which is a nonlinear MIMO system where sideslip
and roll angles are the outputs and aileron and rudder are the inputs, we will consider

two regions: outside the boundary layer (||s’|| > ©#) and inside the boundary layer
(Is”]] < ).

A.4.0.1 In the region ||s°|| > i?, sat(s®/uP) = s°/||s"|.

The derivative of s? can be expressed as:

§° = kjof + K¢l + ¢}
—kPsB 4+ kPP B /1B BBl 4 P BB B(. B(Vub
kos” + kop”sat(s®/p”) + ko (Kyey +e3) + Kiey + F7(-) + GP(-)u

Now by letting
A°() = ko (KYe) +e5) + Kfey + F7()

It becomes:
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P=—kf " + kD pPsat(s® /pP) + AP () + GP(uf (A.32)

Because of boundedness of FA (2, 25, 6), AP(-) is bounded by a function of v°(||e? || +

le5]) (where 4°(-) is a class K function) and a positive constant AJ (assumption 3.2.1):
1AP (X )]l < A (el + llez]l) + Ag (A.33)

and as a consequence,
1A% (e = 0, ey = 0)|| = [|F?(0,0)[| < Ag (A.34)

for (¢f,e) € R" x R™.
Let’s consider the product (s%)7s”
(878 = —(")"kos” + kg’ () sat(s° [ 1P) + ()T AP (el e5) + ()G ef, e)u”
This product (s?)7$” can be developed:
COMS Thys® 4+ 1 (%) kg s? /||| + (s7)T AP () = (s°) TGP ()TIP ()5 /|||

)
?)
(sP)Tky P/l + (V2 () + AP | — (sP)TGE(YIB ()5 /|| s° |
—(P)Tkf P — (s2)T(GP(YIP () — (1Pl + 4P () + AG)In)s? /||sP |

IAIA 1A H
A@AA
22238

S

o

@

2l

=

+

7;

=)

Replacing the control law in (A.30) and (A.31), the term (s7)T$? can be expressed as:
(%) kgs” — (°)"(GP (I () = WPk +7°() + Ag)L)s?/|1s°]

B
<—(5%)Tkys® — (s°) Tl sP /|57
<—K5|IsP|12 = = ||s?||

(s7)"s

The product (s7)T$% is then not positive and we have also

d(]|sP|2 9 d 8'3 -9 sP)T 3B ) Bl .8 B .8
(”dtH )B = H ﬁ” (” D = o o)it < ( ;OHS H _kOHS H2)
d(]|s B B

g ||85(t)||§||sﬁ( )II —mot — s (0)|(¢?) et — 1)

Then the sliding surface s°(t) reaches the boundary layer 4 in finite time.

A.4.0.2 In the region ||s| < p’], sat(s/u’) = s/uP.

Consider again (A.31) and (A.32), which inside the boundary layer may be rewritten as:
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P = —kfo? 4+ §° (A.35a)
e = —KVel + % —1kPo? (A.35Db)
§7=AP() = GP(P()s” [ (A.35¢)

It can be shown that this system has an equilibrium point: éf = ég =0, =35% 0° =
o with 5% = kga? = p#(11°(0,0)) 71 (G?(0,0)) 1 F#(0,0) = p? F#(0,0) /(g + kg 1’ + A7).
System (A.35) may be rewritten with respect to 5° and 7°:

5 = kP58 + §° (A.36a)
& =Kyl + 5 — kj5° (A.36D)
§7 = AP() =GP ()& [ = G ()P ()57 /1 (A.36¢)

where 67 = o# — 58, 38 = % — 5P.
FP(4% 25) is a Lipschitz function inside the boundary region e.g. [|s?|| < x?, such
that:
1FP (el ) — F2(0,0)|| < t/[ley || + b5 les | (A.37)

where lf and l§ eR".
Following assumption 3.2.1 and (A.34), ~”(-) is also a Lipschitz function, such that:

YV OIEP0,0)[ < (mg + ko’ + A5) (W lled | + 2 llex ) (A.38)
where 715 and 72’8 € R,

We would like to demonstrate that every trajectory of system (A.36) starting inside
the boundary layer, will approach the equilibrium point as time tends to infinity when
the control law (A.30) is applied. Toward that end, we take:

A
2

(57)"5°
2

Wh =

~A\T ~8 Ag T B
(0”) o "’7‘31617L

as a Lyapunov candidate, where /\’fi and A§ are positive constants.

Its derivative can be easily developed as:

WE=N1kg (6°)T67 + No(ef )T KV ef + (3°)T5°
=\ikg (69)T(—kg 57 + %) + Na(e])TKY (—K7ef +3° — kg &”) (A.39)
+(E)T(AP() = GIC)IP ()87 [ — GP( )P ()5 /)

Since ||s?|| < p?, AP(-) can be expressed as:
A=K — ()07 — (KDl + KP50 — KDo + FA()
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Replacing system (A.36) and AP(-) into the derivative of the Lyapunov function, we
have then (reminding that 5° = p?(I1°(0,0))~*(G#(0,0)) "' F#(0,0) and I1°(0,0) = (IIJ +
ko + A0)(GP(0,0)7):

WP=X1k5 (69)T (—kD 5P + 3°) + N () TKP (—KPeP + 57 — k5P)

+(3°)T (k§ 5" — <kﬁ>2 b — (KY)%e) + KY3° — kg K{ 6% — GO (1P ()57 /uP)

+(3 >T<Fﬂ<> G (P ()% /1)
)

=i (k§)2(67)T67 + Mk (6°)75° — ha(ef)T(KD)2e] + Na(e] ) TKT (37 — ki 5P)
+((3 >T<k:€1n + K7)3% + (3°)7 (k§ + Kf)k@&ﬂ — (37T (&Y%} — (3°)7GP ()P ()58 /1P
HEEI() = F0.0) — el F(0,0))

Using equations (3.55a) and (A.36b), equation (A.37) can be expressed as:

~ B(.
(397 (F7(-) = %(0,0) — WMFB(QO))

< 81 NET N+ Blleal) + gtz 181170, 0)]

< IS Bl + 1 leall) + WMH&H(%MMH + 75 lleall)

< IS EL el + Bllezll) + 151 IET eS| + 75 lleall)

( +ﬁvf)|l~HllKﬁ el + 5+ 22l

E—><< s+ ()T )Pe)) + SR ()
W) (35 4 ()T (KP)2ef) + L) (397

+(5 — kg5’ — Kel)T (5 — kyo? — K{el))

< Wd) (39Y75 4 ()T (KP)2ef) + G (5775

+3(5)75 + (K(07)76° + el (K))?e]))

< WD ()2 667 + DR () (1) e

+(l +’71)+24(l +‘72)((86)T§)

< 1 (ED)2(6°) 768 + o(3°)T5 4 cs(e)T (K7V)%e!

IN

IA
e

+ €g€2>

(A.40)

|/\
e

Using (A.36) and (A.40), the derivative of the Lyapunov function is developed:
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Appendiz A. Modified Conditional Integrator and Modified Conditional Servocompensator

WP==\1(kg)2(5%) 76 + M (67)T ks — ha(e]) T (KT)2e] + ha(e])T KT (5 — k&)

+((3 )w%4Jﬁﬁ—@%W%+Kﬁ%ﬂtwﬁﬁmﬂ%ﬂwﬁfw%mﬂﬁww

+(E)T(FP() — GP()TIP()5/p?))
<=Mi(k§)2E%) 767 + M /2((37) T + (kG)2(6%)T57) — Na(e]) T (KY)%e]
+ho/2((e))T(KY)2e] + (57 — kg ™) T (57 — kya®)) + ((5°)7 (kg I + K7)3°
+1/2((87)T (kg L + K7)?5% + M (kg)2(6%)76%) +1/2((3°) T (K7)25° + (e])T (KY)%€;)

—(F TGP (P ()5 1 + c1(kg)2(57)T 67 + cale])T(KY)2e] + c3(3%)T57)
<Am€>w>oﬂ+hm«%>ﬁ+%%< OYT50) = Na(e])T(KY)2e]
+h2/2((e])T(K7)%e; +2((37)T5 + (k§)2(67)T57)) + ((3 ><k%+Kﬁ>§ﬁ
+1/2((3 >T<k€1‘ +—frﬁ> 50+ (kg)2(&%)T <76>+—1/2<<sﬁ> (K7)25% + (e)T(KY)%e))

—(E)TGP(YIP ()3 P + e1(k)2(67)T6° + cale])T (K7 )2 + C3<sﬂ> 5%

<—(M(kg)? Al/zucﬁ) — (k)2 — 1/2(kg)? — ea(k§)?) (%) 75

—(eD)T(N2(KT)? = Ma/2(KY)? = 1/2(K7)? — ea(K)?)el)

S Ca((e <->Hﬁ<->//ﬁ—<k51n+K1>—A1/2In—AzIn

—1/2(k0 1, + KP)2 — 1/2(KP)? = ¢31,,))3°
—(M/2 =X = 1/2 = e1)(k§)2(6%)76% — (Aa/2 = 1/2 = e5)(e]) T (K7)2e]
—(3) (] + ko p? + 92 () + AG) /1P — (kg I + KV) = 1/2(kg I + K7)?
—1/2(KP)2 — (A1/2 4 Ao + ¢3)1,,)5°
(A.41)
It can be verified that by taking )\f , )\g and I1°(-) large enough and p” small enough,
the derivative of Lyapunov function is negative. We establish the additional design pa-
rameter’s condition:

A/2— Xy —1/2 >c

A2/2 —1/2 >co

(et P OLB0 s (T, + KF) — 1/20k T + K7)? — 1/2(K7)?)
+(A1/2 4+ A2+ e3) I,

This inequality implies that the design condition of parameter kg and matrix K lﬁ must

satisty:
AL —2X >1+ 2¢;
A2 >1 4 2¢o
B AB
G2, — K7 = 1/2(k L+ KT)? = 1/2(K7)*> (3 + %o + &),

In this way, W2(t) satisfies W5 (¢) > 0 and W* < 0 for all 0 # 08, ef # 0 and 5% # 5°.
Then W#(t) reaches zero when time tends to infinite. As consequence, the output error
eff (t) tends to zero while o” and s” tend to their equilibrium values as time tends to

infinite. We may then assure the stability of the system in the region of ||s?|| < p”.
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O

A.5 Functions used for Conditional Servocompensator

Control Design

The functions defined in (4.39) are expressed as:

No = [ 0 cos¢p —sing }
L_((T + C,qS) sina + C.gS cos )

1 " cospB
fu) = pooe 2l B sin B((T 4 C»qS) cos a + C.qS sin ) + CyqS cos 3
0
)8 70 ccffﬁ (O, cosa — Cp, sina) 70
Gi(-) = . Cy,bcos 8 —sin B(Cy, cosa+ C,, sina)c Oy, bcos B
0 0 0
—cosatan 3 1 —sinatan 3
+ sin « 0 —cos o
1 singtanf  cos¢tan6
colsg (sinasin @ + cos a cos ¢ cos 0)
fi3(-,0) = % cos asin B sin @ + cos B cos 6 sin ¢ — sin asin 5 cos 0 cos ¢
0
Iopg + LLigr IsCy(a, B)@Sb + 141Cp(cx, B)@Sh
fa1(:) = | Ispr — Is(p*> —1?) | + I,C,,gSc
Irqr + Ispq LCy(av, B)qSb + IgCp(cv, 3)qSb
IgClpl_) + I4Cnpl_7 0 Igclrl_) + I4Cm«l_)
pVS _
f22(') == +T 0 I7Cqu 0

I4Clp5+fgcnpl_) 0 I4Cl7~l_7—|- IQCm@

I35, (o, BY)b + 14Chs, (cv, B)b 0 I;Cs, (v, B)b + IyCs, (v, B)D
Gg() =qSs 0 I7Cmq5 0
LiCys, (o, B)b + IgChs, (cv, B)b 0 LiCis, (ar, B)b + IgChs, (v, B)D

G(-)™' = Gi()Ga()

It is reminded that C;,C7j are aerodynamic coefficients of the F-16 model under

analytical forms found in [48].
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Appendix B

Static and dynamic feedback

linearization of a nonlinear system

Consider a nonlinear control system:

m

i=f(2)+ > (gi(2ult) = f(2) + G(z)u z€R", ueR™ (B.1)

=1

and a linear controllable system. The previous one is wanted to be transformed to:
t=Ar+Bv zeR", veR" (B.2)
Through the state space diffeomorphism:
r=¢(z) p(0)=0 z€R", veR™ (B.3)
and the state feedback transformations:
u=a(z)+ B(z)v veR™ (B.4)

where a(0) = 0 and (z) € R™*™ a nonsingular matrix.

or the dynamic state feedback transformations
(B.5)

where «(0,0) = 0 and f(z,w) € R™™ a nonsingular matrix.
A special class of dynamic compensators, which is studied in this thesis, are defined
as (see [22]):
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Appendiz B. Static and dynamic feedback linearization of a nonlinear system

(k1) 7]

=a(z,w) + B(zw) | . (B.6)
i ugﬁf’”) i | U |
where uW = dtu/dtt, w = (ul,ul,...ug“l),um,um,...u“mm) with g; > 0, 1 < i < m,

po= > i, @(0,0) = 0, B(z,w) is nonsingular in Vj, a neighborhood of the origin in

R Tt can be constructed as

Wl =wl, 1<j<p—11<j<m p;>1
W), = aj(z,w) + 330 Bz, w)y 1< j<m p; >0

u; =w] p; >0
uj = aj(z,w) + 30 Bz w)o 1<j<m p; =0
When system (B.1) is transformable into (B.2) by (B.3) and (B.4) it is then called
static feedback linearizable respectively.

We now recall the basic definition and results on the conditions for a nonlinear system

to be static feedback linearizable. Define the distributions:

Go = span{g;, 1 < j < m}

B.7
G = spanfadig;, 0<1<i, 1<j<m}, i>0 (B1)

We denote by adsg = [f, g] the Lie bracket of the smooth vector fields f and g. We

have

6] = S0 i (22 ~ (32002
It notes that ad(}g =g and adl}g =[f, ad’;flg],

We remind the definition of an involutive distribution G.

Definition 3 Let G be a distribution on a manifold M. The distribution G is called
involutive if [X,Y]| € G whenever X and Y are vectorfields in G.

Theorem B.0.1 System (B.1) is locally static feedback linearizable if and only if in Uy,
a neighborhood of the origin in R":

e G, in an involutive distribution of constant rank for every i > 0

204



B.1. Proof of the non static feedback linearizability of the system

o rank G,_1=n

Theorem B.0.2 If for a set of integers {pu, .., fim, 0 < p11 < oo < flgm, 0= o0y f1i, the

distributions, up to input reordering,

o Ay = span{gi, pr =0}

o Aipy =A;+adsA; + span{gk; =i+ 1}, 1 >0
are such that in Uy, a neighborhood of the origin

o A, is involutive and of constant rank for 0 < i < n 4+ p,, — 1
o rankA,y, —1=n

o [g;, A;] € Ajyy forall0 < i < m, such that pi; > 1 and alli, 0 < i < n+p,,—1; then
the system (B.1) is locally dynamic feedback linearizable by a dynamic compensator
(B.6) with indexes puy, ..., iy and a local diffeomorphism in Vy, a neighborhood of

the origin in the extended state space R™ .

B.1 Proof of the non static feedback linearizability
of the system

As mentioned in section 5.3.1, we will check that

e Go = span(g1, 9o, g3, g4) is involutive

o Gy = span(g1, g2, g3, 94, ad g1, adsga, adsgs, adsgy) is not involutive

Proof:

Go = span(g1, 92, g3, ga) s involutive

We have adg,g; = 0 then adg,g; € Go for 1 < ¢ <4, 1< j<4andi#j. Gyis
involutive and rankG, = 4.

G1 = span(g1, g2, g3, Ga, adggr, adsge, adsgs, adsgs) is not involutive

We recall that

0
gl—a_p
0
92:3_(1
_8
93—5
_8
94—%



Appendiz B. Static and dynamic feedback linearization of a nonlinear system

We compute all vectors of the distribution G;.

adggr = [f, 91 :w{i; _”a%+ 8%5

adggs = [f, 92] = —wag + uai + tan 6 sin ¢8_¢ + cos ¢ o+ (S:z;(za?p

adrgs = [f, 93] = va% - ua% + tan 6 cos ¢a—¢ sin qs_ + ZZZ?%

adsgs = [f, ga] = COSiﬁCOSH({)2 + smwcose(% — Sm@@ + %% (= + %JZ)%

It is easy to check that [g4,adsgs] = —2£ does not belong to Gy, and as a conse-

quence, G; is not involutive. In another words, we can check that rank G; = 7, and
rank{G, [g1, adsgs]} 8.
We can then conclude that the conditions are not satisfied for Theorem B.0.1, and

then system (5.1) is not static feedback linearizable.

B.2 Proof of the dynamic feedback linearizability of
the system

This section is meant to demonstrate that the aircraft defined in (5.1) with a second order
of thrust force is dynamic feedback linearizable as mentioned in section 5.3.1 of chapter
5. It means that A; for 1 < ¢ < 3 satisfies Theorem B.0.2. We remind the definition of
A; for 1 <i<3in (5.6)

Ao = span{g1, g2, g3}

Ay = Ao+ adp, Ay + span{gs}
Ay = Ay +ads, Ay + span{gs}
Ag = Ay + ads, Ay

Proof:

Ao = span{gi, g2, g3}, then Ay is involutive.

Ay = Ay + adp, ANy + span{gs} = span{gi, 92, g3, ad g1, adsgs, adsgs, g4}, Ay is then
involutive.

Ay = span{gi, g2, g3, 9, adpgr, adyga, adggs, adypgy, adi gy, adigs, adigs}, where adig,
ad?pgg, adfcgg are computed below. It is easy to check that rank A, = 10 and A, is

involutive.
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B.2. Proof of the dynamic feedback linearizability of the system

adigi=[f,adsg] = ((r + B)w + (—q¢ + %2 )v) Z
+((%2)w — (p+ %) — qu+ pv — fu) 2
+((— p+8fw)w+(af”)v+pw—ru+fv)aw+tan9(qcos¢—7"s1ngb)
—i—(—qsmgb—rcosqﬁ)ae (w)aw

cos 6

(B.8)

ad?go=[f, adsgs] = (—(Z)w + (—q + L2)u+ qu — pv + fu) 2
H=(—r+%)w+ (p+ %2)u >%+( (G yw+ (Syu—rv-f)2  (BY)
+(— ptan@cos¢+r) +(psm¢) Zﬁi‘é’ai

ad3gs=[f, adsgs] = (%) — (r+ %2 u —pw +ru— f,) 2
(%) — (2 yu— qu + f) 2 + (%) — (3)u+vg + up) 2 (B.10)

+(—q + ptand cos ¢)8—¢ + pcos qﬁ% +pzions<g%

Az = Ay + span{adfcg4, ad?gl, adz}gg, adfcgg}, rank Az = 12. We have then Az involu-
tive and As = R,
Therefore, the sufficient conditions of Theorem B.0.2 are satisfied, which leads to the

conclusion that system (5.1) is dynamic feedback linearizable.
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