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Université Paris-Sud
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Hard probes represent one of the hottest topics of the modern high en-
ergy physics. The production mechanism of quarkonia (mesons composed of a
charm or beauty quark and its antiquark) in hadronic collisions is of particular
interest. The suppression of J/ψ and other charmonium states was predicted
as one of the first signatures of the Quark Gluon Plasma (QGP) formation and
was seen at RHIC and SPS. It was also studied at the LHC in Pb-Pb colli-
sions. However, other effects can affect the charmonium production in Pb-Pb
collisions without the presence of the QGP. These effects are inherent to the
use of nuclei and are called “Cold Nuclear Matter” (CNM) effects. They can
be studied in p-Pb collisions.

This thesis is dedicated to the studies of J/ψ production in p-Pb colli-
sions at the LHC at a center of mass energy of 5.02 TeV per nucleon pair.
J/ψ production is studied as a function of transverse momentum, rapidity
and event activity. These results represent a significant step to better un-
derstanding of the CNM effects and to the establishment of a reference for
J/ψ production in Pb-Pb collisions.

Key words: J/ψ, cold nuclear matter, ALICE, muon spectrometer, p-Pb.

Les sondes dures apparaissent comme l’un des sujets les plus excitant de
la Physique des hautes énergies. Les mécanismes de production des quarko-
nia (mésons formés par l’état lié quark-antiquark charmé ou beau) dans les
collisions hadroniques sont particulièrement intéressants. La suppression du
J/ψ et des autres charmonia a été prédites comme l’une des signatures de la
formation du Plasma de Quark et de Gluons (PQG), suppression déjà observée
au SPS et au RHIC. De nombreuses études de la suppression des charmonia
ont également été menées au LHC.

Cependant, d’autres effets sont susceptibles de modifier la production de
charmonia sans requérir la formation d’un QGP. Ces effets, inhérents aux col-
lisions impliquant des noyaux, sont appelés effects nucléaires froids ou CNM
(“Cold Nuclear Matter”). Ils peuvent être étudiés dans les collisions p-Pb.

Cette thèse est dediée à l’analyse de la production de J/ψ dans les collisions
p-Pb collisions à une énergie dans le centre de masse de 5.02 TeV par paire de
nucléon au LHC. La production de J/ψ est étudiée en fonction de l’impulsion
transverse, de la rapidité et de l’activité de la collision.

Ces résultats apportent une contribution significative dans la compréhension
des effects CNM et dans l’établissement d’une référence pour l’interprétation
de la production de J/ψ dans les collisions Pb-Pb.

Mots-clés: J/ψ, matière nucléaire froide, ALICE, spectromètre à muons,
p-Pb.
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Introduction

Hard probes represent one of the hottest topic of the modern high energy
physics. The production mechanism of quarkonia (mesons composed of a quark
and its antiquark) in hadronic collisions is of particular interest. Various the-
oretical models based on Quantum Chromodynamics (QCD) were developed
but still none of them can provide a full description of the measurements. This
thesis is devoted to the studies of the charmonium (quarkonia of charm quarks
cc̄) production in p-Pb collisions at the Large Hadron Collider (LHC) with the
muon spectrometer of A Large Ion Collider Experiment (ALICE).

Chapter 1 presents the history of the charmonium production studies in
pp collisions, which started from the J/ψ meson discovery in November 1974.
This chapter also describes three theoretical models of charmonium produc-
tion: the Color Evaporation Model (CEM), the Color-Singlet Model (CSM)
and the Non-Relativistic QCD approach. Success and failures of these models
are also discussed when they are compared to the pp experimental measure-
ments.

In nucleus-nucleus collisions where a higher energy density is created, a new
state of matter is believed to be formed: the Quark Gluon Plasma (QGP). It
affects charmonium production which can be considered as a “QGP thermome-
ter”. Chapter 2 discusses charmonium production in hot medium of nucleus-
nucleus collisions, comparing also experimental measurements from heavy-ion
colliders: Super Proton Synchrotron (SPS), Relativistic Heavy Ion Collider
(RHIC) and LHC.

Chapter 3 is devoted to the description of the nuclear matter effects that
are not related to the QGP. They are called Cold Nuclear Matter (CNM)
effects. CNM effects are relevant both in nucleus-nucleus and in nucleon-
nucleus collisions. While in nucleus-nucleus collisions they are combined with
the QGP effects, it is generally assumed that in nucleon-nucleus collisions there
are no effects related to QGP. In this chapter, several theoretical approaches are
presented: gluon shadowing, gluon saturation, nuclear absorption and coherent
parton energy loss. These theoretical approaches are confronted to the RHIC
measurements for the J/ψ production in d-Au collisions at

√
sNN = 200 GeV.

Chapter 4 briefly introduces the LHC and provides an overview of the AL-
ICE detector. ALICE is dedicated to the study of heavy-ion collisions but also

15



Contents

includes in its physical program pp and p-Pb collisions. Thanks to its detection
capabilities ALICE allows one to measure quarkonium production over a large
rapidity range and down to zero transverse momentum pT. ALICE can be di-
vided into two main parts: central and forward detectors. The latter includes
the muon spectrometer - the main detector used for the analysis presented in
this thesis. The muon spectrometer is designed for quarkonium production
studies in the dimuon decay channel at forward rapidity (2.5 < y < 4).

Chapter 5 presents my personal work related to the tuning of the corre-
sponding Monte Carlo generator, used for the trigger rate estimations for the
p-Pb collisions at ALICE. This generator, based on the Glauber model, allows
to study the centrality dependence of quarkonium production in p-Pb colli-
sions. This chapter also provides the results of comparison of this generator
with the data from the pilot p-Pb run performed in September 2012.

Chapters 6 and 7 describe the two main analyses with my personal con-
tribution. The first one is devoted to the study of pT and y dependence of
the J/ψ production in p-Pb collisions while the second one is dedicated to
the studies of the J/ψ production in p-Pb collisions as a function of the event
activity.

Chapter 8 presents the results of the analyses described in the two pre-
vious chapters. These results include the J/ψ nuclear modification factor as
a function of rapidity, as a function of the event activity and as a function
of both pT and the event activity, as well as the forward-to-backward ratio
as a function of rapidity and pT in p-Pb collisions. From the pT and event
activity dependence, I also extracted the 〈pT〉 and 〈p2

T〉 as a function of the
event activity. Results of other ALICE analyses, where I was involved, are also
presented in this chapter: the pT dependence of the J/ψ nuclear modification
factor and the ψ(2S) production measurements in p-Pb collisions. The results
are compared to the theoretical models described in Chapter 3.

Finally the p-Pb measurements allow an estimation of the contribution of
the CNM to the Pb-Pb measurements and this is also discussed.

N.B.! It is important to mention that the ALICE figures presented in this
thesis are mostly the official ALICE plots. They are marked with the ALICE
logo or with the phrase “ALICE Preliminary” or “ALICE performance” and/or
has a link to the public source (article, proceedings, etc.). All the other figures
not fulfilling these requirements should be considered as the result of this thesis
and are not the official figures of the ALICE collaboration.
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Chapter 1

History of the charmonium
production studies in pp

This chapter describes the history of the discovery of the J/ψ meson and
introduces charmonium states (cc̄ bound states) in general. It also presents
the main theoretical models of the charmonium production and experimental
measurements of the charmonium production in pp collisions.

1.1 Discovery of J/ψ

The history of the charmonium production studies started in November
1974 when two independent groups working in two different experiments in
the USA discovered a new particle — a resonance with a mass of 3.1 GeV
(three times higher than a proton mass). One of the most curious properties
of this resonance was its very narrow width of 70 keV, which corresponds to the
life time of 10−23 seconds. The Alternating Gradient Synchrotron (AGS) group
from the Brookhaven National Laboratory (BNL) found it from the reaction p+
Be→ e+ +e−+x measuring the e+e− invariant mass spectrum (see Fig.1.1(a))
and called it a “J” particle [1]. The Stanford Positron Electron Asymmetric
Ring (SPEAR) group from the Stanford Linear Accelerator Center (SLAC)
observed it in the e+e− annihilation reaction in both e+e− and µ+µ− invariant
mass spectra and called it “ψ(3105)” [2]. This name was motivated by the event
display of the decay of the excited state of ψ(3105), i.e. ψ(2S) → ψ(3105) +
π+ + π− followed by ψ(3105)→ e+ + e− (see Fig.1.1(b)).

In 1976 Ting and Richter (leaders of the two groups mentioned above) were
awarded the Nobel Prize in physics for the simultaneous discovery of a new par-
ticle which was, consequently, renamed to “J/ψ”. It shows the importance of
that particle in this era where it was believed that only three elementary quarks
(u, d, s) exist. The SLAC group wrote in their paper: "The large mass, large
cross section, and narrow width of this structure is entirely unexpected." [2]
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Chapter 1. History of the charmonium production studies in pp

(a) Dielectron invariant mass spectrum
from 20 GeV/c protons on fixed target.

(b) Mark I (SPEAR) Event Display.

Figure 1.1. Discovery of the J/ψ particle by BNL (a) and SLAC (b).

However first ideas of the J/ψ as a charmed particle were announced in the
paper of the BNL group with a citation to the private communication with
S.L. Glashow [1]. A 4th quark was also expected from the GIM mechanism
(Glashow, Iliopoulos and Maiani). In fact it was still disputed whether quarks
exist at all and the discovery of calculable spectrum of charmonium states was
convincing evidence for many (the November revolution). The J/ψ discovery
resulted in a public resonance. It led to an increase of interest in studies in
the c quark sector.

1.2 Charmonium states

The bound states of heavy quark q and its anti-quark q̄ are referred to
as quarkonia. The quarkonia of charm quarks cc̄ are, consequently called
“charmonia” and of bottom quarks bb̄ “bottomonia”. In this section we will
mainly focus on the charmonium states since they represent the main topic of
this thesis.

The most famous charmonium state is, for sure, the J/ψ meson whose
discovery was described in the previous section. However besides the initially
found J/ψ there is a number of other bound states of cc̄ with different quantum
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1.2. Charmonium states

Figure 1.2. Charmonium family. The bottom row shows the spin, parity,
and the charge conjugation quantum numbers associated with the states above
it [3].

numbers. In Fig. 1.2 one can see all the charmonium states as well as the
transitions between them. These transitions are responsible for the so-called
“feed down” effect: in the final state, an experiment detecting only leptons
would be unable to separate a process J/ψ→ l+l− from the process ψ(2S)→
π+π−J/ψ followed by the consequent decay of the J/ψ : J/ψ→ l+l−. As a
result it will detect two J/ψ instead of one ψ(2S) and one J/ψ. They are
stable in the sense that their mass is less than twice the mass of the lightest
heavy meson which leads to the exclusion of the strong decays [4]. The main
characteristics of the charmonia, the mass and the binding energy which is
defined as the difference between the quarkonium mass and the open charm
threshold, are summarized in Table 1.1.

Table 1.1. Mass and binding energy (∆E) of charmonium states.

State ηc J/ψ χc0 χc1 χc2 ψ(2S)
Mass, GeV/c2 2.98 3.10 3.42 3.51 3.56 3.69

∆E, GeV 0.75 0.64 0.32 0.22 0.18 0.05

The reason why the J/ψ was discovered first with respect to the other
charmonium states arises mainly from the high Branching Ratio (BR) of its
decay to dileptons, BRJ/ψ→l+l− = 5.9%. This can be explained by the OZI
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(Okubo, Zweig, Iizuka) rule [5–7] which leads to a strong suppression of the
J/ψ hadronic decays: this effect increases the lifetime of the particle and
thereby gives its narrow decay width of 93.2± 2.1 keV/c2. Due to this strong
suppression, electromagnetic decays begin competing with hadronic decays
which leads to the significant branching ratio of the dileptons decays, and in
particular dimuon decays. Dimuon decays are rather easy to detect in high-
energy colliders in the sense that they give rather high signal-to-background
ratio since the muons, are not stopped when going through detectors and are
then detected by dedicated spectrometers.

A significant effect from the feed down decays from higher charmonium
states, as illustrated in Fig.1.2, and from open heavy flavour1 should be taken
into account. The J/ψ meson can be produced not only via the direct hadroniza-
tion of the cc̄ pair (“direct” J/ψ). It can be also produced via the radiative
feed down decay of ψ(2S) and of χcJ(1P ) (these J/ψ form with the direct
J/ψ the “prompt” J/ψ sample) or via the weak decays of the bottomed mesons
(B0, B0

s, B± and B±c ) decaying into J/ψ or ψ(2S) with forming one or more
additional hadrons. The J/ψ from these weak decays are called “non-prompt”
J/ψ and constitute with prompt J/ψ an “inclusive” J/ψ sample usually mea-
sured in the experiment. Knowing the fractions of prompt and non-prompt
J/ψ contributions to the inclusive J/ψ yield one could easily compare the
experimental data with theoretical predictions since the three types of the
J/ψ production involve different physics.

1.3 Theoretical description of charmonium pro-
duction

There are a number of models on the market offering theoretical description
of charmonium production. In the following, we will briefly describe the Color
Evaporation Model, the Color-Singlet Model and the Non-relativistic Quantum
Chromodynamics factorization approach.

1.3.1 Color Evaporation Model

The Color Evaporation Model (CEM) was first suggested three years after
the J/ψ discovery in 1977 [8,9]. Quarkonium production in the CEM is treated
identically to the open heavy quark production [10]. The only difference for
quarkonium is that the heavy quark pair invariant mass is restricted to be
less than twice the mass of the lowest mass meson that can be formed with

1Hadrons which consist of a heavy quark-antiquark pair (e.g. J/ψ = cc̄) are called heavy
quarkonia, or hidden heavy flavour. Hadrons containing a light quark and a heavy quark
(e.g. D and B mesons: D0 = cū, B+ = ub̄) are referred to as open heavy flavour.
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the heavy quark. The upper limit on the cc̄ pair for charmonium is 2mD =
3.74 GeV. The CEM assumes the identity of the quarkonium dynamics to low
invariant mass cc̄ pairs although they are typically produced in different color,
angular momentum, and spin states than the final charmonium states. The
hadronization of the charmonium states from the cc̄ pairs is non-perturbative
and usually involves the emission of one or more soft gluons. Then different
non-perturbative matrix elements depending on the quantum numbers of the
initial cc̄ pair and the final-state charmonium, should be considered. The aver-
age of these elements are combined into the universal factor F which depends
on the parton densities, the c-quark mass and the scale αs. It represents the
fraction of the charmonium cross section that produces a given cc̄ resonance in
the final state. Fixing F for the different charmonium states allows the CEM
to make successful predictions about energy and momentum dependencies.

Since at Leading Order (LO) the transverse momentum pT of the cc̄ pair
is zero, the Next-to-Leading Order (NLO) corrections can be considered to
perform the calculations of the pT dependence.

However CEM has some weak points. One of them is in the fact that the
CEM gives a simple qualitative prediction of the independence of the ratio of
the cross sections for any two quarkonium states from the process and kine-
matical region while some variations in these ratios were already observed. For
example, the cross sections ratio for χc and J/ψ are quite different in hadropro-
duction and photoproduction [11]. This fact presents a serious challenge to the
CEM.

1.3.2 Color-Singlet Model

The Color-Singlet Model (CSM) was proposed shortly after the J/ψ dis-
covery [12–16]. It assumes that the cc̄ pair evolving into the charmonium is in
a color-singlet state and has the same spin and angular-momentum quantum
numbers as the charmonium [17]. The production rate for each charmonium
state in the CSM is related to the absolute values of the cc̄ wave function and
its derivatives. They can be extracted from the experimental data. Once this
extraction is done CSM has no free parameters.

The CSM was successful in prediction of production cross sections at low
energy [18]. However it under-predicted the prompt charmonium production
cross section in pp̄ collisions, measured at Tevatron, by more than an order of
magnitude. Recently it was shown that, at high energies, NLO and next-to-
next-to-leading order (NNLO) give very large corrections in αS to the CSM [19–
21]. These higher order calculations re-emerged the possibility of the CSM to
embody an important production mechanism at high energies. However it is
not clear that the perturbative expansion in αS is convergent.
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1.3.3 NRQCD factorization approach

One of the most successful models for the charmonium production is the
Non-relativistic Quantum Chromodynamics (NRQCD) factorization approach [22].
It makes use of perturbative methods by separating the short-distance/high-
momentum, perturbative effects from the long-distance/low-momentum, non-
perturbative effects. This process is called “factorization”. It could be done
in terms of the effective field theory NRQCD. The latter reproduces full QCD
accurately at momentum scales of order mv and smaller, where v is the typical
heavy-quark velocity in the bound state in the center-of-mass frame (v2 ≈ 0.3c2

for charmonium) [11]. The inclusive cross section for the direct production of
a charmonium state H at large transverse momentum (pT & m) in hadron
or ep colliders or at large momentum in the center-of-mass frame (p? & m) in
e+e− colliders can be written as a sum of products of NRQCD matrix elements
and short-distance coefficients:

σ(H) =
∑
n

σn(Λ)〈OHn (Λ)〉, (1.1)

where Λ is the ultraviolet cutoff of the effective theory and the σn are the
short-distance coefficients representing expansions in powers of v of the cross
sections to produce a cc̄ pair in a state n which is determined by its color, spin
and orbital-angular momentum. Finally, the matrix elements 〈OHn (Λ)〉 are the
vacuum-expectation values of four-fermion operators in NRQCD.

In contrast to the CSM and CEM production cross section expressions,
the NRQCD factorization formula for the production of heavy-quarkonium
depends on an infinite number of unknown matrix elements. However reor-
ganization of the sum in (1.1) as an expansion in powers of v results in the
formulating of the NRQCD factorization formula as a double expansion in
powers of v and powers of αS. In phenomenological applications it is usually
truncated at a fixed order in v and considers only a few matrix elements. The
validity of this truncation as well as the universality of the long-distance ma-
trix elements and the perturbative calculability of the cc̄ cross sections define
the predictive power of the NRQCD factorization approach.

It should be noted that by dropping all of the color-octet terms and all
but one of the color-singlet terms in (1.1) one obtains the CSM [11]. However
such an omission of color-octet contributions leads to inconsistencies because of
uncanceled infrared divergences in the production rates of P -wave (see Fig.1.2)
and high orbital-angular momentum quarkonium states.

Assuming certain relationships between the NRQCD long-distance matrix-
elements then the CEM is obtained [23]. These relationships however are in-
consistent with the scaling of the matrix elements with v predicted by NRQCD.

The NRQCD factorization approach successfully described many observ-
ables. However there are still some open issues, both from the purely theoret-
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ical and from the phenomenological point of view. One of them is the validity
of the factorization formula (1.1) which was proven for the calculation of two
exclusive amplitudes [24,25]: exclusive production of quarkonium + light me-
son in B-meson decays and exclusive production of two quarkonium states in
e+e− annihilation, but not for the inclusive production. Moreover, this formula
breaks down when an additional heavy quark is produced in close proximity
to a qq̄ pair that evolves into a quarkonium. Experimental results on quarko-
nium + heavy-quark production should help in understanding the magnitude
of this process. It should be also mentioned that LO NRQCD had problems
in describing polarization results on prompt J/ψ production at Tevatron and
this was the reason for a revival of the CSM in the last years [19–21].

1.4 Experimental results on charmonia in pp

As it was already discussed above charmonia represent one of the most
exciting areas of the modern physics. This explains a large amount of ex-
perimental data on charmonium production in various collision systems at
the wide range of energies. In this section we provide some highlights of the
measurements of charmonium production in high energy elementary collisions
performed by Tevatron, Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC).

1.4.1 Tevatron results

The Collider Detector at Fermilab (CDF) collaboration [26] was the main
player in charmonium production studies at Tevatron [27]. In Run I (the first
period of the data taking) of the Tevatron, CDF performed measurements
of the direct production cross sections of J/ψ and ψ(2S) in pp̄ collisions at√
s =1.8 TeV [28,29]. A striking discrepancy was found with the existing the-

oretical predictions: CSM at LO in αS predicted more than an order of mag-
nitude lower rates than those observed in the experiment (See Section 1.3.2).
The dotted curves in Fig.1.3 show this discrepancy. Including the color-singlet
fragmentation increases the cross section values by more than an order of mag-
nitude at large pT. However it still falls below the data. To explain the CDF
results on J/ψ and ψ(2S) production, the leading color-octet contributions
〈OH8 (3S1)〉, 〈OH8 (3P0)〉 and 〈OH8 (1S0)〉 have to be included, adjusting the cor-
responding non-perturbative parameters to fit the data. For the χcJ states
production the most important matrix element is 〈OH8 (3S1)〉. Therefore to
fit the prompt J/ψ production from decay of χc the 〈Oχc08 (3S1)〉 contribution
should be adjusted [30].

The shape and the normalization of the prompt charmonium cross section
at the Tevatron can be also well described by the CEM. The normalization
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Figure 1.3. Top panel: Differential cross sections for the direct
J/ψ production in pp̄ → J/ψ + X at the Tevatron (

√
s = 1.8 TeV, pseudora-

pidity cut |η| < 0.6) compared to experimental data from CDF as a function of
pT. Middle panel: the same for the prompt ψ(2S). Bottom panel: the same for
the prompt J/ψ from decay of χc. Dotted lines are the CSM contributions, the
solid lines are the NRQCD factorization fits, other lines represent individual
color-octet contributions to the fits. pT is given in natural units. From [30].
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of the prompt J/ψ production cross section predicted by CEM at NLO are in
reasonable agreement with the CDF data from Run I.

A simple phenomenological model for the effects of multiple gluon emis-
sion on the theoretical predictions is kT smearing [23]. In kT smearing, the
colliding partons are given Gaussian distributions in the intrinsic transverse
momentum, with a width that is treated as a phenomenological parameter.
A particular version of this model that has been used in comparing the CEM
predictions with the CDF data attempts to account for multiple gluon emis-
sion from the two initial-state partons by adding two transverse momentum
“kicks” to the quarkonium momentum. The direction of each momentum kick
is symmetrically distributed over the 4π solid angle, and the magnitude kT of
each momentum kick distributed as

g(kT) =
1

π〈k2
T〉

exp(−k2
T/〈k2

T〉), (1.2)

where 〈k2
T〉 is a phenomenological parameter. Adding kT smearing, with

〈k2
T〉 = 2.5 (GeV/c)2, improves the agreement with the data for the J/ψ cross

sections (see Fig.1.4).
Other interesting result by the CDF is the polarization variables which

can be defined as ratios of cross sections for the production of different spin
states of the same charmonium. The models seen above give very different
predictions for the polarizations. In addition, many uncertainties cancel out
in this variables which makes it a powerful tool. The angular distribution of
the charmonium decay products depends on the spin state of the charmonium.
The polarization of a 1−− state (like J/ψ) can be measured from the angular
distribution of its decay into leptons pairs, taking θ as the angle in the J/ψ rest
frame between positive lepton momentum and the chosen polarization axis.
The choice of the axis depends on the process (see e.g. [31]). The differential
cross section has the form [11]:

dσ

d(cosθ)
∝ 1 + αcos2θ, (1.3)

where polarization variable α varies from −1 to +1. One can define longitu-
dinal and transverse polarization of J/ψ as a function of its spin components
along the polarization axis: α = 1 for the 100% transverse polarized J/ψ,
while α = −1 for the 100% longitudinal polarized J/ψ. Fig.1.5 shows the
striking disagreement between the NRQCD prediction and the experimentally
observed polarization. The kT factorization approach prediction [32], including
only color-singlet contributions is also shown. In this approach one takes into
account that gluons generated in the parton evolution cascade do carry non-
negligible transverse momentum (kT) and are off mass shell. This approach
also has a visible disagreement with the data but seems to describe the shape
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Figure 1.4. pT dependence of the differential cross sections for the production
of direct J/ψ (top left panel), prompt ψ(2S) (top right panel), and prompt
J/ψ from decays of χc (bottom panel) at the Tevatron. CDF data points are
taken from [28,29]. The dotted and solid lines are the CEM predictions at NLO
with 〈k2

T〉 = 2.5 (GeV/c)2, using different sets of charmonium parameters. pT is
given in natural units. From [11].

of the experimental measurements better.
The failure of NRQCD, which was successful in describing the J/ψ production

cross sections, lead to many theoretical efforts in the CSM framework.

1.4.2 RHIC results

Four experiments are hosted at RHIC (Relativistic Heavy Ion Collider) [35].
Two of them, PHENIX (Pioneering High Energy Nuclear Interaction eXperi-
ment) Collaboration [36] and STAR (Solenoidal Tracker at RHIC) Collabora-
tion [37] still continue operating. In 2009 results on the prompt J/ψ production
for pT up to 12 GeV/c in pp collisions at

√
s = 200 GeV have been released [38].

The pT-dependence of the measured production rate was compared to predic-
tions based on NRQCD factorization at LO [39] and the CSM up to NNLO∗

accuracy [21]. NNLO∗ corresponds to the yield at the NNLO accuracy (at α5
S)

from gg and gq fusion. The calculations do not include feeddown from the
ψ(2S) and the χc states. The NRQCD factorization prediction is favored by
the data over the CSM prediction. No strong conclusions can be made since
the feeddown effect was not taken into account. In fig.1.6 calculations of the
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Figure 1.5. pT dependence of the prompt polarizations in pp̄ collisions
at
√
s =1.96 TeV for (a) J/ψ and (b) ψ(2S). The band correspond to the

LO NRQCD prediction [33], while the line represent the kT factorization
model [32]. From [34].

prompt J/ψ production at RHIC including the feeddown from the ψ(2S) and
the χc states were performed in the CSM and the NRQCD factorization for-
malism at LO [40]. The NRQCD predictions are again favored over the CSM
predictions.

Higher-order corrections to the color-singlet contribution to J/ψ production
were found to be large [42]. In Fig.1.7 the comparison between the CSM
prediction for the J/ψ cross section and the prompt J/ψ data from STAR [38]
and PHENIX [43] is shown. NLO+ stands for the yield at NLO accuracy (up
to α4

S) from gg (gluon-gluon) and gq (gluon-quark) fusion added to the yield
from cg (charm-gluon) fusion at LO accuracy (at α3

S). See [42] for more details.
The color-singlet contributions through NLO+ agree with the PHENIX prompt
data at low pT but go below the data at pT > 2 GeV/c. The NNLO* color-
singlet contribution can be computed reliably only for pT > 5 GeV/c and shows
a good agreement with the data but has very large theoretical uncertainties.

PHENIX also measure a pT-dependence for the prompt J/ψ polarization.
In Fig.1.8 it is compared in the helicity frame1 to NRQCD LO and CSM LO
(left panel) and CSM NLO (right panel). The data indicate a polarization
compatible with zero, with a trend towards longitudinal polarization with in-
creasing pT. NRQCD LO and CSM NLO are favored by the data, while CSM
LO shows disagreement with the experimental measurements.

Thus, comparison of the J/ψ polarization in the experimental data to those
calculated by NRQCD LO leads to different conclusions at RHIC energies with
respect to those at the Tevatron energies.

1The most common polarization frame used in analyses performed at collider experiments
is where z axis is chosen as quarkonium momentum. Polarization measured in this manner
is referred to as being in the helicity frame [44].
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Figure 1.6. The pT dependence of the differential cross section for the inclu-
sive J/ψ measured by PHENIX in pp collisions at

√
s = 200 GeV [41]. The

shaded band represents the NRQCD prediction, while the band surrounded by
a solid line is the color-singlet contribution at LO in αs. Theoretical predictions
are made for the prompt J/ψ. From [40].

Figure 1.7. pT dependence of the differential cross sections for the prompt
J/ψ in pp collisions at

√
s = 200 GeV from STAR [38] and PHENIX [43] in two

rapidity regions at NLO+ (and cg LO + NNLO* for the left panel) compared.
Left panel: central (|y| < 0.35) region, right panel: forward (1.2<|y|<2.2)
region. pT is given in natural units. From [42].
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(a) From [40]. (b) From [42].

Figure 1.8. Prompt J/ψ polarization in pp collisions at RHIC at√
s = 200 GeV in the helicity frame compared to theoretical models: (a)

to NRQCD LO and CSM LO predictions; (b) to CSM NLO. pT is given in
natural units.

1.4.3 LHC results

The LHC [45–47], situated at CERN (European Organization for Nuclear
Research), is the highest-energy particle collider in the world. The four largest
detectors at the LHC are the following: ATLAS (A Toroidal LHC Appara-
tus) [48], CMS (Compact Muon Solenoid) [49], ALICE (A Large Ion Collider
Experiment) [50] and LHCb (Large Hadron Collider beauty) [51]. The AL-
ICE detector will be described in more details in Sect.4.2. First beams were
circulated through the LHC in September 2008. The full operation started in
November 2009.

Fig.1.9 shows the comparison of the prompt J/ψ production in pp collisions
at the LHC experiments at different collision energies. ALICE results are
shown for the inclusive J/ψ production at

√
s = 2.76 TeV and 7 TeV, while

CMS and ATLAS results are presented for the prompt J/ψ at 7 TeV and the
those of LHCb for the prompt J/ψ at 8 TeV. CMS and ATLAS are focused
mainly on the high-pT J/ψ while ALICE and LHCb study lower pT J/ψ. Both
NRQCD NLO and CSM with high order corrections describe the data rather
well in the wide pT range. One should mention however, that CMS can also
provide measurements for low pT J/ψ(see Fig.1.10).

Fig.1.11 shows the pT dependence of the fraction of prompt J/ψ produced in
χc decays measured by ATLAS and LHCb at high pT (pT > 10 GeV/c). Com-
parison with NRQCD NLO shows a good agreement between theory and ex-
periment. Total amount of the prompt J/ψ from χc is about 20-30%. Fig.1.12
presents another interesting observable measured by ATLAS and CMS: the
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(a) From [52]. (b) From [53].

(c) From [54]. (d) From [55].

Figure 1.9. J/ψ production cross sections in pp collisions at the LHC exper-
iments at

√
s = 2.76 TeV, 7 TeV and 8 TeV: (a) CMS, prompt J/ψ; (b) LHCb,

prompt J/ψ; (c) ALICE, inclusive J/ψ; (d) ATLAS, prompt J/ψ. pT is given
in natural units.

ratio of production cross sections of prompt J/ψ from χc2 to those from χc1 at
high pT (pT > 10 GeV/c). It is compared to NRQCD NLO and to CSM LO.
As in the previous case, NRQCD NLO fits the data rather well while the CSM
LO is unable to describe the experimental measurements.

Fig.1.13 shows the ALICE results on the inclusive J/ψ polarization in pp
collisions at

√
s = 7 TeV [60], compared to theoretical models. Only the re-

sults for pT > 3 GeV/c are shown in this plot while ALICE also performed
measurements in the pT range [2; 3] GeV/c. The two points presented in the
plot correspond to the pT ranges [3; 4] GeV/c and [4; 8] GeV/c. The CSM
NLO model is in agreement with the data in the pT range [3; 4] GeV/c, but
does not get the trend of the data and underestimates the J/ψ polarization
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Figure 1.10. pT dependence of the inclusive J/ψ cross section in pp at√
s =7 TeV measured by CMS. From [56].

Figure 1.11. pT dependence of the fraction of prompt J/ψ produced in
χc decays. The error bars represent the total uncertainty on the measurement,
assuming unpolarised production. LHCb points are from [57]. pT is given in
natural units. From [58].
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Figure 1.12. Ratio of production cross sections of prompt J/ψ from χc2 to
those from χc1. The error bars represent the total uncertainty on the measure-
ment, assuming the unpolarized production. The factors B1 and B2 denote the
branching ratios B1 = B(χc1 → J/ψγ) and B2 = B(χc2 → J/ψγ). CMS points
are from [59]. pT is given in natural units. From [58].

in the pT range [4; 8] GeV/c. The CSM LO model reproduces correctly the
trend of the data but strongly overestimate the measured J/ψ polarization.
The NRQCD approach gives a fair agreement with the data at both LO and
NLO.

Thus, NRQCD NLO provides a fair description of both the J/ψ cross
section and the J/ψ polarizaton in the helicity frame for pp collisions at√
s= 7 TeV. However the ALICE results represent the inclusive J/ψ production,

while the theoretical prediction are made for the prompt J/ψ. NRQCD NLO
also shows a good agreement with the J/ψ pp cross section at 2.76 TeV and
with the fraction of the J/ψ produced in χc decays in pp collisions at 7 TeV.
Therefore, NRQCD NLO can be indeed considered as a very successful model
for the J/ψ production at the LHC energies.
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Figure 1.13. Polarization of the inclusive J/ψ in the helicity frame in pp col-
lisions at

√
s = 7 TeV compared to theoretical models. Dotted line is the CSM

LO calculation. Dot-dashed line corresponds to the CSM NLO predictions in-
cluding theoretical uncertainties (hatched/blue band). Dashed line represents
the NRQCD LO. Solid line denotes the NRQCD NLO prediction including
theoretical uncertainties (shaded/yellow band). pT is given in natural units.
From [61].
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Chapter 2

The QGP and charmonium
production in A-A

In the previous chapter the charmonium production in elementary pp and
pp̄ collisions was described. In this chapter we will discuss charmonium pro-
duction in A-A collisions where a higher energy density is created over larger
volume.

2.1 QGP as a new state of matter

Lattice gauge theory shows that quarks inside the hadron interact with an
effective strength which grows approximately linearly with the spatial distance.
This leads to the effect of confinement where the quarks cannot quit the hadron
due to the strong force binding them. However, in a system with high energy
density (∼ 0.6−1 GeV/fm3), the hadrons start overlapping each other and their
constituents are no longer confined inside baryons and mesons. The interaction
between the elementary constituents becomes weak and a system of deconfined
quarks and gluons is formed. This new state of matter is called Quark-Gluon
Plasma (QGP) [62] and is believed to be formed at a critical temperature where
the phase transition occurs [63]. In the big bang cosmological scenario [64], the
early Universe may have gone through a QGP state at a very early time. The
QGP can be also obtained in laboratories in heavy-ion collisions. In Fig.2.1
the space-time evolution of a heavy-ion collision is shown schematically. It can
be described as follows1:

• Pre-equilibrium phase can be divided in two phases:

1The time given for each of these phases is not a result of experimental measurements
but represents some possible values. Indeed t-values depend on

√
sNN (the center-of-mass

energy per nucleon pair) of the collision.
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· Initial hards scatterings at t ≈ 0 fm/c where heavy quarks, jets and
direct photons are created.

· Thermalization phase at t ≈ 1 − 2 fm/c is a result of multiple
scatterings of partons and a rapid increase of entropy caused by the
produced particles.

• QGP phase is a phase where the quarks and gluons are deconfined. The
system reaches it at t ≈ 2− 10 fm/c.

• Mixed phase corresponds to an intermediate state between the QGP and
the hadronic gas when the system is cooling down. It takes place at
t ≈ 10− 15 fm/c

• Hadronic gas phase starts at t ≈ 20 fm/c when the expanding system
cools down below a critical temperature and a hadronization of quarks
and gluons starts.

• Freeze-out phase can be also divided in two phases:

· Chemical freeze-out occurs when the inelastic processes are reduced
until the relative abundance of hadrons is fixed.

· Kinetic freeze-out takes place when all the interactions cease and
created hadrons stream out.

There are two ways to extract precise information about the initial pro-
cesses in the system. First is to study the observables which are related to
the early stage of the collision and are not affected by rescattering and sys-
tem expansion. Second is to make extrapolations to the earlier stages of the
evolution of the heavy-ion collision. This extrapolation is performed based
on the information, carried by the produced particles, about the final state of
the fireball. Depending on the choice of the way to proceed, two classes of
observables can be distinguished: early and late signatures [62]. The hadrons
made of light quarks (u and d) contribute to the late signature group and can
provide useful information about the hadronization and the freeze-out of the
collision. Thermal photons produced in the plasma, heavy flavors and quarko-
nia represent the early probes group. Charmonia as a signature of the QGP is
of particular interest in this work.

2.2 Quarkonium suppression as a signature of
the QGP

Almost thirty years ago, in 1986, T. Matsui and H. Satz proposed to study
the J/ψ suppression as one of the signatures of the QGP formation [63]. It was
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Figure 2.1. The space-time evolution of a heavy-ion collision, describing the
formation of a QGP and the phase transition to ordinary matter. From [65].

argued that at sufficiently high temperatures all quark-antiquark bound states
will be destroyed by the color screening in the deconfined medium. According
to lattice calculations at zero net-baryon density [66–75], deconfinement oc-
curs at a critical temperature Tc ∼ 165-195 MeV. Due to color screening, the
interaction range between heavy quarks becomes proportional to the inverse
temperature (1/T ). Consequently, at sufficiently high temperatures the bound
state of a heavy quark and its antiquark cannot be produced. The heavy-quark
interaction range becomes comparable to the charmonium radius and continue
to decrease at temperatures higher than Tc. Thus, charmonium states are not
expected to be bound after some temperature Td. This effect is usually referred
to as “dissociation” or “melting”. Different charmonium states fully dissociate
at different dissociation temperatures. For example, J/ψ is expected to disso-
ciate at a temperature two times higher than the critical temperature, while
ψ(2S) is believed to dissociate already at a temperature of the order of critical
temperature. This leads to a sequential suppression of different charmonium
states. This is the reason why the charmonia are sometimes called a “QGP
thermometer”. In Table 2.1 dissociation temperatures of different charmonium
and bottomonium states are shown.

There are also other effects seen in the hot medium which may significantly

37
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Table 2.1. Quarkonium dissociation temperatures, as a function of Tc.
From [76].

State J/ψ(1S) χc(1P) ψ(2S) Υ(1S) χb(1P) Υ(2S) χb(2P) Υ(3S)
Td/Tc 2.10 1.16 1.12 > 4.0 1.76 1.60 1.19 1.17

affect the charmonium production at high energy densities. One of them is
“regeneration” [77–81]. The main idea of this effect may be described as follows:
at sufficiently high energy densities in the hot medium the quarks and the anti-
quarks from two different cc̄ pairs may be located quite close to each other to be
able to recombine and to form a new state. This is possible since the number of
charm quarks (and cc̄ pairs) increases with the energy of collisions (see Fig.2.2).
Thus, the regeneration effect will compete with the dissociation effect, since
they affect the charmonium production in the opposite ways, and should be
taken into account when interpreting the data. A schematic illustration for
J/ψ production by regeneration is compared in Fig.2.3 to that from sequential
suppression. It is shown that at high energy densities the J/ψ production will
not be suppressed anymore but is expected to increase due to the regeneration.

2.3 Experimental measurements

The charmonium production can be studied at different temperatures of
the medium experimentally, varying

√
sNN and centrality of the collision (see

Section 5.1). In the absence of any medium effects its production in heavy-ion
collisions is scaled with the binary nucleon-nucleon collisions. For quantitative
studies, an observable called the Nuclear Modification Factor RAA is defined
as:

RAA =
d2NAA/dpTdη

< Ncoll > d2Npp/dpTdη
, (2.1)

where η is the pseudorapidity (which is defined as η = − ln tan θ/2 with
θ the polar angle relative to the beam axis), < Ncoll > is the mean number of
binary nucleon-nucleon collisions. The terms d2NAA/dpTdη and d2Npp/dpTdη
are the yields differential in transverse momentum pT and pseudo-rapidity
η produced in A-A and in pp collisions, respectively. If RAA is different from
unity it indicates that some medium effects affect the assumption on the binary
scaling.

It should be mentioned that medium effects occur not only in heavy-ion
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Figure 2.2. Energy dependence of the total charm production cross section
in pp collisions. In case of proton–nucleus (pA) or deuteron–nucleus (dA)
collisions, the measured cross sections have been scaled down by the number of
binary nucleon–nucleon collisions calculated in a Glauber model of the proton–
nucleus or deuteron–nucleus collision geometry. The NLO MNR (Mangano,
Nason, Ridolfi) calculation [82] and its uncertainties are represented by solid
and dashed lines, respectively. From [83].

collisions. Some of them take place even in a “cold” medium where the energy
densities are not high enough to create QGP. These “Cold Nuclear Matter”
(CNM) effects are studied in p(d)-A collisions. A description of the CNM ef-
fects is given in Chapter 3. The CNM effects most widely used to describe
the data are shadowing, nuclear absorption and coherent parton energy loss.
Shadowing takes place before the cc̄ pair formation and is related to the over-
lapping of the color fields of the gluons and to a respective modification of the
parton distribution functions. Nuclear absorption affects the formed cc̄ pairs
and is related to the absorption of cc̄ pair by the nucleus while crossing the
nuclear matter. Coherent parton energy loss is related to the multiple parton
scatterings resulting in a gluon radiation and corresponding radiative energy
loss. This effect can be seen before and after the cc̄ pair formation.

In order to draw conclusion from theory/data comparison of medium effects
in heavy-ion collisions, elementary pp collisions and in p(d)-A collisions should
be also studied (in the same kinematical domain and at the same

√
sNN).
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Figure 2.3. Statistical J/ψ regeneration vs sequential suppression. From [80].

2.3.1 SPS and RHIC results

In 1997 a fixed target experiment NA50 at SPS (Super Proton Synchrotron)
at CERN discovered an anomalous J/ψ suppression in Pb-Pb collisions at the
energy

√
sNN = 17.3 GeV [84]. It was shown that integrated over the impact

parameter, the ratio of the J/ψ to the Drell-Yan cross section1 was a factor
0.71± 0.03 below the value expected from nuclear absorption as extrapolated
from the previous experimental results. The same ratio for the most central
collisions were 0.62 ± 0.04 below the expected value. Fig.2.4 illustrates this
anomalous suppression for the J/ψ (left) and ψ(2S) (right) as a function of
L, the distance of nuclear matter traversed by the charmonium. Large L
values correspond to the most central collisions. The data are compared to
the nuclear absorption derived from the fit to p-A data [85, 86] based on the
Glauber formalism [87]. The p-A, S-U data points and the curves have been
rescaled to the conditions (energy and rapidity window) of the Pb-Pb data.

PHENIX measured J/ψ suppression in Au-Au collisions at∼10 times higher
energy (

√
sNN = 200 GeV) as a function of Npart, the number of participant

nucleons [89]. These measurements were performed in two rapidity domains:
mid and forward y with |y| < 0.35 and 1.2 < |y| < 2.2, respectively. Fig.2.5
presents the RHIC results compared to theoretical predictions. Model calcula-
tions by Zhao and Rapp from [79,90] are presented for two rapidity intervals,
incorporating cold and hot nuclear matter suppression as well as coalescence

1the Drell-Yan cross section was corrected for the “isospin effect” by the correction factor
AB · σDY calc

pp /σDY calc
AB where A and B are the colliding nuclei atomic numbers, σDY calc

pp and
σDY calc
AB the theoretical calculations of the Drell-Yan cross sections in pp and A-B collisions.
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Figure 2.4. Anomalous suppression of J/ψ (left) and ψ(2S) (right) measured
by NA38 and NA50, in p-A, S-U and Pb-Pb collisions, as a function of L. The
data are compared to the nuclear absorption predictions (black solid line) with
the corresponding uncertainties (dashed lines). See text for details. From [88].

of cc̄ pairs. The various line styles represent the different contributions to the
total as laid out in the legend, while the two colors represent the two rapidity
ranges: blue for midrapidity and red for forward rapidity. The lower panel
shows the ratio of forward rapidity to midrapidity nuclear modification fac-
tors. The J/ψ suppression is systematically higher at forward rapidity than at
midrapidity except for the very low Npart. A strong J/ψ suppression is seen
at the most central events (high values of Npart), while at the most peripheral
events (small values of Npart) the data are consistent with no J/ψ suppression.
The model can catch the main features of the J/ψ suppression at RHIC. How-
ever it slightly underestimates the measured J/ψ suppression at forward y in
the most central collisions. It also overestimates the J/ψ suppression at mid
rapidity. Finally, ratio of forward to mid rapidity nuclear modification factors
is described by the model only in the most central or in the most peripheral
events. This may indicate that the model shares the J/ψ production between
hot and cold nuclear matter effects not in the fully correct way.

In Fig.2.6 both SPS and RHIC results on the J/ψ suppression as a function
of the charged particle multiplicity at mid-rapidity, after having accounted for
estimated CNM effects, are compared. The highest charged particles multiplic-
ity corresponds to the most central collisions. A similar behaviour can be seen
for different systems. The magnitude of the anomalous J/ψ suppression is al-
most system- and

√
s -independent when expressed as a function of dNch/dη|η=0.

It was not expected to observe the same suppression at the energy ∼10 times
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Figure 2.5. J/ψ RAA as a function of Npart. Model calculations by Zhao and
Rapp from [79, 90] are presented for two rapidity intervals. The lower panel
shows the ratio of forward rapidity to midrapidity nuclear modification factors.
See text for details. From [89].

higher than the one at SPS.
While trying to deeper understand charmonium production in heavy-ion

collisions, more puzzles arised from the heavy-ion measurements by RHIC and
SPS. Larger suppression of J/ψ at forward compared to midrapidity, combined
with the similar suppression of J/ψ at midrapidity between RHIC and lower
energy experiments created an outstanding puzzle in terms of a full theoretical
description of the J/ψ production. Higher energy LHC results were strongly
anticipated.
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Figure 2.6. Comparison of the anomalous J/ψ suppression at the SPS and
RHIC as a function of dNch/dη at η = 0. From [17].
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2.3.2 LHC results

The LHC results were expected to confirm the recombination scenario since
at the LHC energies the number of the produced cc̄ pairs was expected to be
high enough to see the enhancement of the J/ψ production due to recombina-
tion.

ALICE collaboration published results of differential studies of the J/ψ
production in Pb–Pb collisions at

√
sNN = 2.76 TeV in the forward rapidity

region 2.5 < y < 4 [91]. In Fig.2.7, the centrality dependence of the nuclear
modification factor RAA is shown. A much lower J/ψ suppression at the LHC
energy with respect to that at RHIC energy is seen for 〈Npart〉 & 100 (top
panel). This effect is well described by models which include a recombination
scenario (bottom panel). However some of them fail to describe quantitatively
the lower Npart region (〈Npart〉 < 50).

Fig.2.8 shows the inclusive J/ψ RAA as a function of Npart in Pb-Pb colli-
sions at

√
sNN = 2.76 TeV for different ranges in pT. The results are compared

to two transport models and to a comover interaction model. Two transport
models from Zhao et al. [92] and from Liu et al. [93] differ in the rate equation
describing the J/ψ dissociation and recombination. Both models are shown
with the uncertainty bands which cover results with shadowing included (lower
limit) and without shadowing (upper limit). The comover interaction model or
CIM [94] combines shadowing, interaction with co-moving medium and recom-
bination effects. The uncertainty band of the model is related to the variation
of the charm cross-section dσ/dy from 0.4 to 0.6 mb. For the 30% most cen-
tral collisions (〈Npart〉& 150), the low pT J/ψ RAA is significantly larger than
the mid and high pT ones. This is consistent with the expectation from the
recombination hypothesis. The comparison to theoretical model leads to the
same conclusions as in the pT-integrated case: the models reasonably well de-
scribe the data for 〈Npart〉& 100 but fail to describe precisely the shape at low
〈Npart〉.

CMS collaboration measured J/ψ RAA at high pT in Pb-Pb collisions at√
sNN = 2.76 TeV at central rapidities |y| < 2.4 [95]. Fig.2.9 shows the compar-

ison of these results to those from the STAR collaboration for Au-Au collisions
at
√
sNN = 0.2 TeV at midrapidity |y| < 1. Recombination effects are expected

to be negligible at high pT and the dissociation of the J/ψ should play a more
significant role. This is confirmed by the data: at high pT less J/ψ suppression
is seen at RHIC than at the LHC.

The prediction of the charmonium suppression is complicated by various
factors: feed-down contributions from higher-mass resonances into the ob-
served charmonium yields, as well as several competing nuclear and medium
effects. The bottomonium family is expected to provide additional and the-
oretically cleaner probes of the deconfined medium. The three Υ(nS) states,
characterized by similar decay kinematics but different binding energies, allow
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(a)

(b)

Figure 2.7. Inclusive J/ψ RAA as a function of Npart in Pb-Pb collisions at√
sNN = 2.76 TeV, compared to the PHENIX measurements in Au-Au collisions

at
√
sNN = 0.2 TeV (a) and to theoretical models including in various ways a

J/ψ (re)combination component (b). From [91].
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Figure 2.8. Inclusive J/ψ RAA as a function of Npart in Pb-Pb collisions at√
sNN = 2.76 TeV for different ranges in pT, compared to transport models and

to comover interaction model. From [91].

the measurement of relative state suppression, where common experimental
and theoretical factors, and respective uncertainties, cancel. CMS collabora-
tion performed studies of sequential suppression of Υ(nS) states in Pb-Pb col-
lision [96, 97]. Fig.2.10 shows dimuon invariant mass distributions in pp (left)
and Pb-Pb (right) collisions at

√
sNN = 2.76 TeV measured by CMS. The three

Υ(nS) peaks are clearly visible in the pp case. In the Pb-Pb case the Υ(3S)
peak is less evident. More quantitative picture is presented in Fig.2.11.

The following double ratios were estimated directly from the distributions
in Fig.2.10:

Υ(2S)/Υ(1S)|PbPb
Υ(2S)/Υ(1S)|pp = 0.21 ± 0.07 (stat.) ± 0.02 (syst.),

Υ(3S)/Υ(1S)|PbPb
Υ(3S)/Υ(1S)|pp = 0.06 ± 0.06 (stat.) ± 0.06 (syst.) < 0.17 (95% CL)

(2.2)

These double ratios are expected to be compatible with unity in the ab-
sence of suppression of the excited states relative to the Υ(1S) state. The
measured values are considerably smaller, indicating a significant suppression
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Figure 2.9. Prompt J/ψ RAA as a function of Npart in Pb-Pb collisions at√
sNN = 2.76 TeV measured by CMS, compared to Au-Au results from the

STAR collaboration. From [95].

of the Υ(nS) states in Pb-Pb collisions compared to pp collisions. This result
supports the hypothesis of increased suppression of less strongly bound state:
the Υ(1S) is the least suppressed, while the Υ(3S) is the most suppressed of
the three states. The measured difference in the production yields in Pb-Pb
and in pp can be also partly ascribed to CNM effects.

Thus, the LHC results show a different behaviour of the J/ψ production
compared to the lower energy experiments. A hypothesis of the pure melting
of different charmonium states explains some part of the J/ψ suppression but
cannot fully describe the J/ψ suppression in heavy-ion collisions at high en-
ergies. Other effects like recombination and the CNM effects complement the
J/ψ melting effects. In order to quantify the hot nuclear matter effects it is,
therefore, necessary to know the CNM effects which can be studied in p(d)-A
collisions. It is also shown that quantifying the CNM effects is important not
only for J/ψ measurements but for other quarkonia, in particular for Υ(nS)
family.
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Figure 2.10. Dimuon invariant mass distributions in pp (left) and Pb-Pb
(right) collisions at

√
sNN = 2.76 TeV measured by CMS. From [97]. Solid

(signal+background) and dashed (background-only) curves represent the re-
sults of the simultaneous fit to the two data sets.

Figure 2.11. Centrality dependence of the nuclear modification factor
for the Υ(1S) and Υ(2S) states measured by CMS in Pb-Pb collisions at√
sNN = 2.76 TeV. The event centrality bins used are indicated by percentage

intervals. From [97].
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Cold Nuclear Matter Effects

In the previous chapter charmonium production in heavy-ion collisions was
described. It was explained that at high energy densities of the collision a state
of matter, referred to as QGP, is created. The presence of hot nuclear mat-
ter affects the charmonium production. However hot nuclear matter effects in
heavy-ion collisions cannot be easily distinguished from the additional effects
arising from “cold” nuclear matter (CNM). These effects can in principle mod-
ify the charmonium production both in nucleus-nucleus and nucleon-nucleus
collisions. A schematic classification of nuclear matter effects taking place in
different collision systems is shown in Fig.3.1. From this scheme, nucleon-
nucleus collision can be considered as the reference collision to study CNM
effects that affect Pb-Pb collision.

Figure 3.1. Schematic classification of nuclear matter effects taking place in
different collision systems.

CNM effects can be divided into three main groups, depending on the time
when they take place, with respect to the time of the cc̄ pair formation:

• Initial state effects: they take place in the first moments of the collision
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before the cc̄ pair formation. The initial state effects group the following
effects: multiple scattering, the radiative energy loss, gluon shadowing
and gluon saturation.

• Final state effects: they occur after the production of a pre-resonant
state (cc̄ pair). The final state effects includes the nuclear absorption
effect.

• Initial and final state coherent effects. These effects cannot be considered
neither as pure initial state effects nor as final state effects. This group
is represented by the coherent parton energy loss effect

In the following we will not discuss all possible cold nuclear matter effects
but we will focus only on few of them: gluon shadowing, gluon saturation,
nuclear absorption and coherent parton energy loss effects.

3.1 Definition of the kinematic variables

In this section, we will first review the kinematics of the deep inelastic
scattering (DIS) to introduce the kinematic variables and their meaning. Then
we will present the other variables, and their meaning, more specific to hadron
hadron collisions.

Let us consider a process l + N → l + X, where a charged lepton scatters
inelastically off a nucleon at rest; the final state contains the scattered lepton
and the debris of the nucleon. A Feynman diagram of such DIS is shown in
Fig.3.2, assuming exchange of only one virtual photon [98] (this assumption
is valid at the leading order of QCD). Let E and E ′ be the energies of the
incident and scattered lepton, k and k′ their four-momenta, and θ is the lepton
scattering angle, in the laboratory frame for the energies and the angles. Then,
neglecting the lepton mass, the following variables can be introduced:

• q = k − k′, the four-momentum of the virtual photon,

• Q2 = −q2 = −(k − k′)2 ' 4EE ′sin2(θ/2), where q2 is the square of the
four-momentum transferred from the lepton to the target nucleon,

• ν = P · q/M = E − E ′, the virtual photon energy,

• s = W 2 = (P + q)2 = M2 − Q2 + 2Mν, the square of the total energy
released in the interaction of the nucleon with the virtual photon,

• x = Q2/(2P · q) = Q2/(2Mν), the Bjorken scaling variable,

• y = P · q/(P · k) = ν/E, the fraction of energy transferred in the scat-
tering,
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where P is the four-momentum of the target nucleon and the rightmost
expressions for Q2, ν, x, y are valid in the laboratory frame, where the target
nucleon is at rest. The mass M is taken as the proton mass.

Figure 3.2. Deep inelastic lepton-nucleon scattering. From [98].

The original DIS definition of x is not very enlightening if hadron-hadron
collisions are studied. More interesting is the interpretation of x as a mo-
mentum fraction. If a DIS event is considered in a frame where the proton is
very highly boosted (such as the electron rest frame, also called the "infinite
momentum frame") then it turns out that kinematically the x of the event is
the fraction of the proton total momentum involved in the scattering. If the
electron had a hard interaction with an object within the proton, a “parton”,
then x can be considered as the fraction of the total proton momentum carried
by the parton that interact with the virtual photon.

This leads to the interpretation of the x-dependence of DIS spectra as a
probability of finding a parton with momentum fraction x within the proton.
Thus, the distribution of partons over x is an intrinsic property of the proton
which explains why it is a good scaling variable independent of the energy of
the electron.

The x-dependence of parton distributions is the most fundamental descrip-
tion of the nucleon as seen in high-energy interactions. The momentum dis-
tribution functions of the partons within the nucleon are called Parton Dis-
tribution Functions (PDFs). They represent the probability densities1 to find
a parton carrying a momentum fraction x at a squared energy scale Q2. DIS

1Strictly speaking they rather represent number densities as they are normalised to the
number of partons.
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experiments showed that the number of partons increases at low x and large
Q2, and decreases at high x. At x ∼ 1/3 there are three valence quarks sharing
the nucleon momentum. They are more dominant at low Q2 (the resolution
of the probe). And at low x, there is an increase of the sea quarks and gluon
component that rises with Q2. An example of the PDFs measured by H1 [99]
and ZEUS [100] collaborations is shown in Fig.3.3 for different Q2. The PDFs
are shown in form xf(x), where f denotes a PDF of flavour f . For example,
the PDFs for u valence are denoted as uv(x), d valence, dv(x), total sea, S(x),
the gluon, g(x).

Figure 3.3. Left: Comparison of PDFs for different flavours measured by
ZEUS and H1 at Q2 = 10 GeV2. Right: Comparison of gluon PDFs from
ZEUS and H1 analyses, at various Q2. From [101].

When studying hadron-hadron collisions, it is possible to describe the inter-
action as the following elementary process: a parton of the first hadron (beam
1) with momentum fraction x1 interacts with a parton of the second hadron
(beam 2) with a momentum fraction x2. Since the momenta of nucleons in the
beams are known, x1 and x2 can be immediately related to the total energy
and total momentum of the parton-parton system (x1 · x2 ·

√
sNN).

In a “2 → 1 process”, two partons with x1 and x2 combine to form a
single particle with the longitudinal momentum pL in the final state. Let both
hadron beams have the same energy. Total momentum conservation implies
pL = (x1 − x2) ·

√
s/2, where pL is the longitudinal momentum in the center

of mass frame of the two incident hadrons. If the mass of the final state
particle is small compared to

√
s, then the maximum pL the particle can have,

is essentially
√
s/2. Then one more widely-used variable xF — Feynman x can
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be defined as:
xF = pL/p

max
L =

2pL√
s

= x1 − x2. (3.1)

Rapidity y is an alternative way to study the pL-dependence:

y =
1

2
· lnE + pL

E − pL

. (3.2)

Longitudinal momentum pL can be also defined through the scattering
angle θ: pL = p · cosθ. Then a variable pT =

√
p2

L − p2 = p · sinθ can be
defined. pT is the transverse momentum in the center-of-mass frame.

Another observable measured in the experiment is “pseudorapidity”:

η =
1

2
· ln1 + cosθ

1− cosθ
=

1

2
· lncosθ/2

cosθ/2
=

1

2
· ln
(

tan
θ

2

)
. (3.3)

The pseudorapidity η is a good approximation of the true relativistic ra-
pidity y, when a particle is “relativistic” (i.e. p ≈ E).

3.2 Gluon shadowing

At high parton density the gluons interact (recombine) actively. It also
leads to a modification of PDFs of bound nucleons (in nucleus) to those of the
free nucleons. Such a modification is defined as follows:

RA
i (x,Q2) =

fA
i (x,Q2)

f free
i (x,Q2)

, (3.4)

where RA
i (x,Q2) denotes a nuclear modification to the free nucleon PDF

f free
i (x,Q2). The fA

i (x,Q2) represents the bound nucleon PDF and i stays for
the different parton flavours: i = V, S,G for valence quark distributions, for
all sea quarks and for gluons, respectively [102].

Nuclear effects are usually divided in the following four categories (Fig.3.4)
depending on the value of RA

i (x,Q2) [103]:

• shadowing, a depletion at small x,

• antishadowing, an excess at intermediate x,

• EMC effect, a depletion at higher x,

• Fermi motion, an excess at x close to 1.

The RA
i (x,Q2) function is then parametrized by piecewize functions to

cover all the four effects. An illustration of such fitting function is shown in
Fig.3.4.
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Figure 3.4. An illustration of RA
i (x) fitting function and its parameters.

From [102].

There are various models using different experimental datasets for con-
straining the fitting function parameters. A review of the current status of
PDF studies is given in [104]. In this chapter only EPS09 (Eskola, Paukkunen,
Salgado, 2009) parametrization is considered as an example of one of the latest
successful variants [102]. The main experimental data used in EPS09 are l–
A deep inelastic scatterings (DIS) measurements. Drell-Yan production from
fixed target p–A collisions at Fermilab, inclusive neutral-pion production mea-
sured in d–Au and pp collisions at RHIC were also used.

The parametrization of the nuclear modifications RA
i (x,Q2) is performed at

the charm quark mass threshold Q2
0 ≡ m2

c = 1.69 GeV2 imposing the momen-
tum and baryon number sum rules for each nucleus A separately. At higher
scales Q2 > Q2

0, the nuclear PDFs (nPDFs) are obtained by solving DGLAP
(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) QCD evolution equations for par-
ton densities [105–107] with NLO splitting functions [108–110]. These equa-
tions are then solved numerically. The uncertainties for the model originate
from the experimental uncertainties of the fitted data. DGLAP and BFKL
(Balitsky-Fadin-Kuraev-Lipatov) [111–113] equations are the evolution equa-
tions of parton densities. DGLAP evolution equations are used to describe
hadron interactions at short distances. DGLAP approach sums up higher or-
der αs contributions enhanced by lnQ2. In case of high-energy scattering, the
contributions enhanced by ln 1

x
become important. BFKL approach sums up

the leading-log contributions of the type (αs ln 1
x
)n.

In Fig.3.5 nuclear modification functions of lead nucleus are shown for three
parton flavours: valence, sea quarks and gluons. The production cross section
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3.3. Gluon saturation

Figure 3.5. The nuclear modifications RV , RS, RG for lead at the initial scale
Q2

0 = 1.69 GeV2 and Q2
0 = 100 GeV2. The thick black lines indicate the best-

fit results, while the dotted green curves denote the error sets. The shaded
bands are estimated from the experimental uncertainties of the fitted data.
From [102].

of the cc̄ pair at high energies is affected by the gluon PDFs. Thus, the large
uncertainty band for gluons in the top right panel shows the importance of
experimental studies using nuclear target at high energy (to probe the low x)
and charmonia (to probe the low Q2) to better constrain the model. Other
probes could be open charm and π0, both at low pT.

3.3 Gluon saturation

Collisions of any particles at high energy (DIS, hadron-hadron collisions
etc.) can be described within the Color Glass Condensate (CGC) model [114].
J/ψ production in proton-nucleus collisions at high energies can be also de-
scribed basing on the CGC picture of the nuclear wavefunction at small x [115].
The size of the gluon wavefunction depends on both x and Q2. At low x and
finite Q2, the gluon density increases as shown by the gluon PDF. Then at suf-
ficiently low x, the gluon densitiy is expected to reach a maximum and should
saturate. The condition for observing CGC requires small x and Q2 values
(Fig. 3.6).
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Figure 3.6. The partonic phase diagram. Evolution of parton densities can be
considered in energy/rapidity y (BFKL equation) or in Q2 (DGLAP equation).
From large x to low x, the dilute system becomes dense and undergoes a
transition to a saturation region which is characterized by saturation scale
Q2
s(Y ). From [116].

This condition can be formulated in terms of characteristic scale for gluon
saturation named the saturation scale, Qs(x). It describes the Q2 boundary
of the saturation regime that evolves with x [117]. A “pocket formula” used
for the energy and nuclear dependence estimation of the saturation scale is
Q2
s ∼ A1/3x−0.3: nonlinear high gluon density effects are enhanced at smaller

x and for larger A nuclei (A is the atomic number of the nucleus) [118].
The meaning of the CGC model name comes from:

• Color refers to the color charges of gluons.

• Glass represent a disordered system which can be considered as a solid
on short timescales and a liquid on long timescales. The partons color
fields are frozen at short timescales while on long timescales they can
fluctuate.

• Condensate refers to the very high density of gluons at their saturation
scale Qs.

In the CGC approach, the strength of the color field inside the nucleus is
proportional to the saturation scale Q2

s(x) determined by the density of partons
in the transverse plane. It is a growing function of the collision energy and
the atomic number of the nucleus. At RHIC kinematics, Qs � ΛQCD which
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implies that the inter-nucleon interactions play a little role in pA collisions at
high energies. In that case a nuclear color field at high energies can be described
by only one universal (process independent) dimensional scale Qs(x) where x
refers to the Bjorken variable corresponding to the nuclear parton distribution.
It was argued [119,120] that at high energies there are two different dynamical
regimes of the heavy quark production depending on the relation between the
quark mass m and the saturation scale:

• Qs � m: the heavy quark production is incoherent, i.e. produced in a
single sub-collision of a proton with a nucleon, and can be treated within
a conventional perturbative approach;

• Qs � m: the heavy quark production is coherent (since the whole nucleus
takes part in the process) and is sensitive to the strong color field [119,
121]. This regime is favoured at the LHC and at sufficiently small x at
RHIC.

An elementary process contributing to the J/ψ production in pA colli-
sions in the nucleus rest frame is the scattering of a gluon from the proton
wave function on the nucleus. Calculating properly all the contributions to
the J/ψ production, the gluon saturation effects can then be estimated and
compared to the data. It should be mentioned that the hadronization mech-
anisms of the cc̄ pair also play an important role within the framework of
this model. There are various approaches describing the gluon saturation ef-
fects on the J/ψ production, depending on the J/ψ production model used
in each approach: CSM [115, 119–123], CEM [124, 125], NRQCD [126]. All
these J/ψ production models with their advantages and disadvantages were
discussed in Section 1.3. It should be mentioned that some work is still needed
to calculate the J/ψ cross section within the NRQCD framework combined
with CGC.

3.4 Nuclear absorption

Interactions between the pre-resonant or fully formed cc̄ pair state and
the nucleus can cause the cc̄ pair dissociation. This effect is called “nuclear
absorption”. It can be studied using the Glauber model described in more
details in Section 5.1. This model describes the collision of two nuclei in terms
of independent interactions of the constituent nucleons. It assumes that at
sufficiently high energies, the nucleons carry sufficiently large momentum to
be essentially undeflected as the nuclei pass through each other. It also assumes
that the nucleons move independently in the nucleus and that the size of the
nucleus is large as compared to the extent of the nucleon-nucleon force. The
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Glauber formalism allows to integrate the nuclear absorption effect and to
calculate the observed charmonium production cross sections [127]:

σpA =
σ0

σG
abs

∫
d~b

[
1−

(
1− TA(~b)σG

abs

)A]
, (3.5)

where σG
abs represents the break-up cross section of an “object” going through

the nuclear matter. The nuclear thickness is represented by TA(~b), where b is
the impact parameter in-between the produced cc̄ pair and the nuclear matter.
Nuclear thickness function TA represents the nuclear density per unit of surface
and is usually calculated for a heavy nucleus using Woods-Saxon parametriza-
tion of the nuclear density profile. σ0 denotes the elementary nucleon-nucleon
charmonium production cross section [128]. It should be underlined that σG

abs

is not simply an interaction cross section of the produced cc̄ pair with nucle-
ons. cc̄ pair needs some time to cross the entire nucleus (crossing time). If the
crossing time is larger than the formation time of the charmonium bound state,
then the absorption will occur on the pre-resonant and fully formed state. If
the crossing time is lower than the formation time, then the absorption will
occur only on the pre-resonant state. Thus, the produced cc̄ pair may break
up even before forming the physical charmonium bound state. This is partic-
ularly true for the charmonium production through a spatially extended and
strongly interacting cc̄−g colour dipole state. The “formation time” argumen-
tation emphasizes the importance of studying the charmonium production as
a function of y, and at different collision energies.

A much simpler “〈ρL〉 parametrization” is often used:

σpA = σ0 · A exp
(
σρL

abs 〈ρL〉
)
, (3.6)

where 〈ρL〉 denotes the average amount of matter crossed by the cc̄ pair
from its production point till its escape from the nucleus. The formula (3.6) is
an approximation of the Glauber formula, which can be found from (3.5) by
expanding the term in square parentheses in powers of σabs. It can be shown
that

〈ρL〉 =
A− 1

2

∫
d~b
[
TA(~b)

]2

. (3.7)

There is also a third way to describe nuclear absorption, the so-called
“α parametrization”:

σpA = σ0 · Aα, (3.8)

which is equivalent to the previous approach for small enough absorption
cross section, if α = 1− σabs

〈ρL〉
ln A

. This parametrization is widely-used, though
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it is very rough. In particular, the value of α extracted from a fit to a given
data set depends on the nucleus used as the lightest target. In that case,
experiments comparing heavy targets with Deuterium systematically derive
artificially high values of α.

Nuclear absorption was used, for example, in Fig.2.4 to estimate the CNM
contribution to the J/ψ suppression. At high energy, nuclear absorption is not
expected to give a large effect since it is expected to decrease with collision
energy (since the crossing time decreases). Fig.3.7 shows the dependence of
the nuclear absorption cross section on the collision energy. Thus, at the LHC
energies it is expected to be a negligible effect.

Figure 3.7. The collision energy dependence of the nuclear absorption cross
section. Lines are the fits with exponential (solid line with error band) and
linear (dotted line) functions. From [129].

3.5 Coherent parton energy loss effect

An energetic parton travelling in a large nuclear medium undergoes mul-
tiple elastic scatterings, which induce gluon radiation. The amount of such
gluon radiation is usually referred to as the (radiative) energy loss of the fast
parton. The notion of parton energy loss is widely used in phenomenological
studies of nuclear effects. The suppression of production rates in A-A and
pA compared to pp collisions (after an adequate normalization) observed for
various processes in some kinematical regions was attributed, at least partly,
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to parton energy loss [130,131]. New scaling properties were identified in [132]
for the induced gluon radiation spectrum and associated energy loss of hard
processes where color charge undergoes small angle scattering through a static
medium (cold matter or QGP).

In the model from [132], the following assumption is made. The heavy-
quark qq̄ pair of mass M is assumed to be produced, within the perturbative
proper time1 scale τqq̄ ∼ 1/M , in a compact color octet state, and remains color
octet for a time τoctet � τqq̄.

In quarkonium production models where color neutralization is a soft,
non-perturbative process, τoctet coincides with the quarkonium hadronization
time2 τJ/ψ in the nucleus rest frame. In the CSM the gluon emission re-
quired for color neutralization of the qq̄ pair is constrained by energy conser-
vation at rather large xF . Thus it becomes softer and occurs late, leading to
τqq̄ � τoctet . τJ/ψ [133].

Therefore, the assumption of a color octet qq̄ pair living longer than the
perturbative time scale ∼ 1/M holds quite independently of the quarkonium
production model [133]. This assumption allows, at sufficiently large quarko-
nium energy E in the target rest frame, to consider quarkonium as a small
angle scattering of a color charge. Then the associated soft gluon radiation
spectrum depends on the amount of transverse momentum kick q⊥ to the
charge.

The typical q⊥ is expected to be larger in pA than in pp collisions due to the
transverse momentum nuclear broadening ∆q2

⊥. An average medium-induced
radiative loss is scaled with the quarkonium energy, ∆E ∝ E [134]. It should
be underlined that the medium-induced radiation spectrum is coherent. It
indeed arises from the interference between the initial and final state emission
amplitudes. The energy loss ∆E is thus neither a pure initial nor final state
effect.

The amount of medium-induced gluon radiation, and hence the strength of
J/ψ suppression in pA collisions, is controlled by ∆q2

⊥ mentioned above. For
a path length L travelled across the target (proton or nucleus), it is given by
the following equation:

∆q2
⊥(L) = q̂AL− q̂pLp, (3.9)

where the average path length is given by L = 3
2
r0A

1/3 with r0 = 1.12 fm,
assuming the hard process to occur uniformly in the nuclear volume [134].
Transport coefficients q̂A (q̂p) in the nucleus (proton) are related to the gluon
distribution G(x) in a target nucleon [135].

The L-dependence of q̂ enters mainly via the typical x at which xG(x)

1Usually proper time is the formation time in the cc̄ rest frame.
2The J/ψ case is considered as an example but the argumentation is valid for all quarko-

nium states.
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should be evaluated. If the hard production time in the nucleus rest frame
th � L, then x ' (2mpL)−1 ≡ x0 [135]. If th � L, the hard subprocess is
coherent over the whole nucleus, and, assuming a 2→ 1 subprocess kinematics,
x ∼ x2 where x2 is the nucleus parton momentum fraction (see (3.1)). Using
power-law behaviour xG(x) ∼ x−0.3 suggested by fits to HERA data [136], q̂ is
thus given by1

q̂(x) = q̂0

(
10−2

x

)0.3

; x = min(x0, x2). (3.10)

The transport coefficient q̂0 ≡ q̂(x = 10−2) is the only free parameter of the
model. It is determined by fitting the J/ψ suppression measured by E866 [137]
in p-W over p-Be collisions at

√
s = 38.7 GeV in the [0.2-0.8] xF -range. The

data from E866 are used to determine q̂0 since they are the most precise and
cover a wide xF -range2. The fit provides q̂0 = 0.09 GeV2/fm assuming energy
loss effects only. Including saturation effects into the model3 results in a lower
value [134]: q̂0 = 0.05 GeV2/fm.

Since the model has only one free parameter, it makes it predictive for
various collision energy.

3.6 Experimental results

In order to understand if the J/ψ suppression discovered by SPS with
respect to nuclear absorption (Fig.2.4) is anomalous or not, more accurate
studies on CNM effects were required. Afterwards PHENIX published a lot of
interesting results for J/ψ production in d-Au collisions at

√
sNN = 200 GeV in

different rapidity domains: |y| < 0.35, 1.2 < |y| < 2.2, measured via dielectron
and dimuon decay channels, respectively [138,139].

In Fig.3.8 J/ψ nuclear modification factors RdAu are shown as a function of
rapidity for peripheral (a) and central (b) collisions. In (c) their ratio is shown
and is referred to as RCP. The most central collisions correspond to cases where
nucleons in deuteron strike closer to the middle of the gold nucleus, and thus
nuclear effects are expected to be enhanced. This behavior is confirmed by
the data [138]. Peripheral RdAu measurements is compatible with a constant
suppression as a function of rapidity. However, the large uncertainty of the
order of 15% does not allow to make a strong conclusion. Central RdAu results

1x-dependence of q̂ is not essential. Similar results would be obtained using constant
q̂(x) = q̂ [134].

2The resulting uncertainty on q̂0 is found to be of the order of 20%, depending on the
xF range used for the fit [134].

3It should be noted that the phenomenological way of the inclusion of the saturation
effects is not fully correct. It was confirmed in the private discussion with the authors of
the model.
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show a significant J/ψ suppression at forward rapidity. The RCP ratio allows to
better constrain the models since some part of systematic uncertainties cancel
out. In Fig.3.8(c) a dramatic suppression of forward rapidity J/ψ yields for
central d-Au events with respect to peripheral events is shown. At backward
rapidity, RCP becomes compatible with unity.

Figure 3.8. The J/ψ nuclear modification factor RdAu for (a) peripheral and
(b) central collisions. In (c) their ratio RCP is shown. From [138].

The data in Fig.3.8 are compared to theoretical predictions of gluon satu-
ration model [115, 119] and gluon shadowing model with EPS09 parametriza-
tion [102] combined with a nuclear break-up cross section σbr = 4 mb [140].
Within uncertainties, shadowing model shows a reasonable agreement with the
data for the most central events. In the most peripheral events it shows an
agreement at midrapidity while at backward and forward rapidity it overes-
timates and underestimates the suppression, respectively. Shadowing predic-
tions for RCP are in fair agreement with the data for the most central events
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in the full rapidity range except the largest forward rapidity. Gluon saturation
model predicts a modest J/ψ enhancement at midrapidity due to double-gluon
exchange processes (not seen in the data). A stronger suppression at forward
rapidity, especially in the most central d-Au events (due to saturation effects)
predicted by the model are in a good agreement with the data. The RCP ra-
tio however is well described by this model both at forward and midrapidity,
showing the main disadvantage of such a variable: RCP can be well described
by the model even if it simultaneously fails to describe RdAu both in most
central and most peripheral events.

Figure 3.9. The J/ψ nuclear modification factor RdAu for (a) backward, (b)
midrapidity, (c) forward rapidity, integrated over centrality. From [139].

PHENIX also performed multidifferential studies of RdAu as a function of
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mean transverse momentum and rapidity (see Fig.3.9). Results were compared
to two models: a shadowing model with a nDSg parametrization [141] of nu-
clear PDFs, combined with a nuclear break-up cross section σbr = 4.2 mb,
proposed by Lansberg et al. [142], and a model of Kopeliovich et al. [143,144]
combining shadowing with a nDSg parametrization of nuclear PDFs, nuclear
break-up cross section and a Cronin effect. Cronin effect, or pT broadening,
is usually related to multiple elastic scattering of the incoming parton before
the hard collision that produces the J/ψ [145]. Both Lansberg and Kope-
liovich models use CSM as a J/ψ production model. Fig.3.9 shows a differ-
ent behaviour of RdAu at backward (−2.2 < y < −1.2) compared to mid
(|y| < 0.35) and forward (1.2 < y < 2.2) rapidities. At backward rapidity, the
RdAu is suppressed only at the lowest pT with a rapid increase to RdAu = 1
at pT ≈ 1.5 GeV/c. The mid and forward rapidity data show a similar level
of suppression at the lowest pT but a much slower increase of RdAu with pT,
reaching unity only at pT ≈ 4.0 GeV/c. The shape and absolute scale for
the mid and forward rapidity data is almost consistent for all pT measured by
PHENIX.

The results shows a good agreement with the Lansberg model calcula-
tions at low pT for mid and forward rapidity while the model has a flatter
pT dependence than the one seen in the data. The shape of the distribution
at backward rapidity in data shows a strong pT dependence with respect to
the model’s prediction. As for the Kopeliovich model, the pT shape is in good
agreement with the data at mid and forward rapidity but predicts a larger
suppression than the one seen in the data. At backward rapidity, the model
shows a pT shape different from the one measured in the experiment. The
difference in the two models results mainly from the Cronin effect used in
the model of Kopeliovich et al. The Cronin effect causes a suppression of the
J/ψ production at low pT and an increase at higher pT.

The coherent parton energy loss model [133] was very successful in de-
scription of both low (HERA) and high (PHENIX) energy experimental data
as it can be seen in Fig.3.10. As for the PHENIX results (Fig.3.10(b)), the
comparison is made with the model including (dashed line) or not (solid line)
saturation effects. The suppression at the most forward rapidity is often at-
tributed to gluon saturation effects or strong small-x shadowing [115, 140].
However energy loss effects alone might be responsible for the observed sup-
pression, although initial state effects such as gluon shadowing and saturation
might also play a role. The agreement is indeed better when saturation is in-
cluded. A disagreement is seen at negative rapidity where nuclear absorption
might also play a role (at least for y < −1.1).

It was shown in this chapter that various models can fair describe dif-
ferent experimental data. More experimental measurements at different en-
ergy, with different nuclei, are needed to constrain better the models. At

64



3.6. Experimental results

(a) HERA-B J/ψ suppression in p-A [146]. (b) PHENIX results on J/ψ RdAu [138].

Figure 3.10. Coherent parton energy loss model compared to experimental
data. From [133].

√
sNN = 5.02 TeV, the LHC measurements allow to probe a very low-x region

where different nuclear effects are expected: shadowing, saturation, coherent
energy loss or, less pronounced, nuclear absorption.
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Chapter 4

ALICE in the LHC wonderland

This chapter briefly describes the LHC and its goals and gives a detailed
description of the ALICE apparatus, which was used for the main results
presented in this thesis.

4.1 The LHC and its physics goals

The Large Hadron Collider (LHC) is the world largest and most powerful
particle accelerator [45–47]. It remains the latest edition of CERN’s accelerator
complex. The LHC consists of a 27-kilometer ring of superconducting magnets
with numerous accelerating structures to boost energy of the particles along
their way. The LHC has the following physics goals:

• The search of the Higgs boson. The Standard Model (SM) does
not explain the origin of mass and the difference of mass for different
particles. The so-called “Higgs mechanism” could be the answer to this
question. According to the theory of the Higgs mechanism, particles ac-
quire their masses by interacting with a “Higgs field” which is believed
to fill the whole space. The more intensively particles interact with this
field the larger mass they acquire. The Higgs field has at least one asso-
ciated particle, the Higgs boson. If it exists, it should be detected at the
LHC. Finally, it was discovered by the CMS and ATLAS collaborations
in 2012 [147–149].

• Supersymmetry (SUSY) existence checks and searches for the
SUSY particles responsible for dark matter and dark energy.
The SM is not able to provide a unified description of all the fundamental
forces since it is difficult to describe the gravity in the same way as the
other forces. The SUSY suggests the existence of more massive partners
of the standard particles which could facilitate the unification of funda-
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mental forces. If it is correct, the lightest of SUSY particles should be
found at the LHC.

Cosmological and astrophysical observation showed that the visible mat-
ter contributes only to 4% of the Universe while the other part consists
of the dark matter (23%) and dark energy (73%). No particles or phe-
nomena responsible for it have been found yet. SUSY particles could be
good candidates.

• Matter/antimatter asymmetry. The present Universe is made only
of matter. CP violation may describe some excess of matter with respect
to antimatter, but it is estimated to be far too small with respect to what
we currently observe in the Universe. The LHC could help to understand
matter/antimatter asymmetry.

• QGP studies The LHC allows to reach very high energy densities in
ultrarelativistic heavy ion collisions. This makes it a powerful tool for
studying the properties of the QGP which was defined in Section 2.1.

Figure 4.1. Scheme of the CERN accelerator complex. Protons after an
acceleration in the linear accelerator (LINAC) and the Proton Synchrotron
Booster, are injected in the Proton Synchrotron (PS) to be accelerated up to a
momentum of 25 GeV/c. The next step is the Super Proton Synchrotron (SPS),
where the protons reach a momentum of 450 GeV/c and are injected in the
LHC ring. The ions acceleration is more complex since it includes additional
stripping and accumulation phases at the very beginning. From [150].
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The particles collide at four locations inside the accelerator ring (Fig.4.1).
These colliding points correspond to the positions of the four experiments
mentioned in Section 1.4.3:

• ATLAS [48] is a general-purpose detector. It covers wide range of physics
at the LHC, from the search of the Higgs boson to SUSY and extra
dimensions. Its main feature is a large superconducting toroidal magnet.
ATLAS is the largest-volume collider-detector ever constructed.

• CMS [49] is also a general-purpose detector with the same physics goals
as ATLAS. However it has different technical solutions and design. It is
built around a huge superconducting solenoid.

• LHCb [51] was designed to study the slight asymmetry between matter
and antimatter present in interactions of B-particles (particles contain-
ing b quark). Instead of surrounding the entire collision point with an
enclosed detector, LHCb uses a series of sub-detectors to detect mainly
forward particles.

• ALICE [50] is a detector specialized in analyzing heavy-ion collisions. It
is dedicated to the study of the QGP properties. ALICE will be discussed
in details in the following section.

The first proton beams were circulated in the LHC in the end of 2008.
However a serious accident [151] delayed the LHC operations for one year. In
November 2009 the first pp collisions were performed at

√
s = 900 GeV.

4.2 ALICE subsystems

As it was already mentioned before, ALICE was designed for studying
the properties of the QGP in heavy-ion collisions. pp and p-Pb collisions
are already extensively studied and are fully included in the ALICE physics
program. ALICE covers a wide range of observables [152, 153]: global event
characteristics, heavy flavour production and jet fragmentation, elliptic flow,
quarkonium production, particle interferometry etc. It also has an excellent
particle identification employing different techniques and is able to track the
identified particles in a wide momentum range (from less than 0.1 up to 100
GeV/c). ALICE consists of two main parts: central barrel (which covers mid-
rapidity (|η| < 0.9) over the full azimuth) and several forward systems (see
Fig.4.2). The coordinate system of ALICE is defined as follows: origin of the
system is located in the interaction point (IP), x-axis is perpendicular to the
beam line and points to the center of the LHC ring in the horizontal plane,
y-axis points upwards and the z-axis is collinear with the beam line and is
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positive in the counter-clockwise direction. As it can be seen from Fig.4.2,
the central part of the ALICE detector is inside a solenoid magnet. Maximum
magnetic field of 0.5 T allows to track low momentum particles. Central barrel
includes detectors for tracking and identification of produced particles. The
muon spectrometer dedicated to quarkonia and HF studies is located in the
forward region.

The ALICE detector subsystems are detailed below. Section 4.4 is devoted
to the ALICE muon spectrometer.

4.2.1 Inner Tracking System (ITS)

The ITS [155] consists of six cylindrical layers of silicon detectors, with a
radius from 4 to 44 cm. The two innermost layers are Silicon Pixel Detectors
(SPD), the following two layers are Silicon Drift Detectors (SDD) and the two
outer layers include double-sided Silicon micro-Strip Detectors (SSD) as it is
shown in Fig.4.2.

The outer radius is determined to match tracks with those from Time Pro-
jection Chamber (TPC) while the inner radius corresponds to the minimum
allowed by the beam pipe. The first layer has an extended pseudo-rapidity
acceptance to provide, with the FMD (Forward Multiplicity Detector), a con-
tinuous coverage for the charged particle multiplicity measurements.

ITS allows to localize primary vertex with a resolution better than 100 µm,
to reconstruct secondary vertices from decays of hyperons, B and D mesons,
to track and identify particles with a low momentum (p < 100 MeV/c) and to
complement the informations from the TPC.

4.2.2 Time Projection Chamber (TPC)

The TPC [156] is the main tracking detector of central barrel allowing
charged-particle measurements with pT from 0.1 up to 100 GeV/c, with a good
particle identification and vertex determination even in the high multiplicity
environment of Pb-Pb collisions. The TPC has an inner radius of 85 cm and
outer radius of 250 cm (see Fig.4.3). The length of the TPC is 500 cm. Such
a size results in a 88 µs drift time. Low magnetic field (. 0.5T ) and a large
detector size allow to detect simultaneously high and low momentum particles
since a large section of the track is registered. Combined with the Time Of
Flight (TOF) system, the Transition Radiation Detector (TRD) and the ITS,
the TPC allows identifying particles by dE/dx.

4.2.3 Transition Radiation Detector (TRD)

The TRD [158] allows the identification of the electrons with momenta
higher than 1 GeV/c, where the pion rejection through the energy loss mea-
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Figure 4.3. The TPC layout. From [157].

surement in the TPC is not sufficient anymore. The TRD increases the ALICE
pion rejection capabilities by a factor of 100 for electron momenta above 3
GeV/c. Used together with the TPC and the ITS, the TRD allows to measure
light and heavy meson resonances production. With the impact parameter
determination of the ITS it is also possible to identify open charm and beauty.

4.2.4 Time Of Flight (TOF)

The TOF system [160, 161] allows the particle identification (PID) in a
large momentum range from 0.2 up to 2.5 GeV/c for pions and kaons, up to 4
GeV/c for protons. For such a wide pT range covered by the TOF, gaseous de-
tector is used which consists of Multi-gap Resistive Plate Chambers (MRPC)
providing an intrinsic time resolution better than 40 ps and almost 100% effi-
ciency (see Fig4.4). The π/K and K/p separation in the TOF system is better
than 3σ. Combined with the ITS and the TPC it allows an event-by-event
identification of pions, kaons and protons.

4.2.5 High-Momentum Particle Identification Detector
(HMPID)

The HMPID [162] is a single-arm array with an acceptance in pseudorapid-
ity of |η| < 0.6 and an azimuthal coverage of 56◦ which correspond to the 5%
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Figure 4.4. The TOF view with a zoom into the MRPC. From the official
ALICE web-page [159].

of phase space in the central barrel. Based on proximity-focusing Ring Imag-
ing Cherenkov counters, the HMPID identifies hadrons with pT > 1 GeV/c.
It enhances the ALICE PID capability by enabling the identification of parti-
cles beyond the momentum interval accessible through energy loss (in ITS and
TPC) and TOF measurements. The HMPID extends the range for π/K and
K/p discrimination, on a track-by-track basis, up to 3 GeV/c and 5 GeV/c.

4.2.6 PHOton Spectrometer (PHOS)

The PHOS [164] is a single-arm spectrometer including a highly segmented
electromagnetic calorimeter made of lead-tungstate crystals and a charged
particle veto detector consisting of a Multi-Wire Proportional Chamber with
cathode-pad readout. It covers a pseudo-rapidity range of |η| < 0.12 and az-
imuthal angle of 100◦. This electromagnetic spectrometer is aimed to identify
photons and neutral mesons through the two-photons decay channel. The
properties of the initial phase of the heavy-ion collisions can be tested through
the measurements of single photon or di-photon spectra and Bose-Einstein
correlations of direct photons. Detection of high pT π0 allows also to study jet
quenching as a deconfinement probe.
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Figure 4.5. The HMPID view. From the official HMPID web-page [163].

4.2.7 ElectroMagnetic CALorimeter (EMCAL)

The EMCAL [165] is large lead-scintillator calorimeter with alternating
layers of 1.44 mm of lead and 1.76 mm of polystyrene scintillator. It is located
between the ALICE spaceframe, supporting the central detectors and the mag-
net coils. The covered azimuthal acceptance of 107◦ is limited by the HMPID
and the PHOS. EMCAL improves the ALICE capabilities of jet studies and
provides trigger signals on hard jets, photons and electrons.

4.2.8 ALICE COsmic Ray DEtector (ACORDE)

The ACORDE [166] is an array of plastic scintillator counters placed on the
upper surface of the three upper faces of the ALICE magnet. The ACORDE
provides a fast trigger signal, for the commissioning, calibration and alignment
procedures of some of the tracking detectors. In combination with the TPC,
TRD and TOF, ACORDE detects single atmospheric muons allowing to study
high-energy cosmic rays.

4.2.9 Photon Multiplicity Detector (PMD)

The PMD [167, 168] is a preshower detector with a thick converter sand-
wiched between two planes of highly granular gas proportional counters. It
measures the multiplicity and spatial distribution of photons on an event-by-
event basis, in the forward region (2.3 < η < 3.7). It is placed in the side
opposite to the muon spectrometer, with respect to the IP. The PMD esti-
mates the transverse energy and the reaction plane on an even-by-event basis.
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4.2.10 Forward Multiplicity Detector (FMD)

The FMD [169] is a silicon strip detector. It consists of seven disks per-
pendicular to the beam pipe. The FMD provides a charged particle multiplic-
ity information complementary to the SPD, covering −3.4 < η < −1.7 and
1.7 < η < 5.1. High radial detector segmentation allows the FMD to measure
multiplicity fluctuations on an event-by-event basis, while azimuthal segmen-
tation allows the determination of the reaction plane for each event and the
flow analysis within the FMD’s pseudo-rapidity coverage.

4.2.11 V0

The V0 (or VZERO) [169] is a small angle detector consisting of two arrays
of scintillator counter, placed in the two opposite sides with respect to the IP:
V0A in the side of the PMD and V0C in the muon spectrometer side, having
pseudo-rapidity coverage of 2.8 < η < 5.1 and −3.8 < η < −1.7, respectively.
The V0 allows to identify and reject beam-gas events by measuring the differ-
ence of the time-of-flight between the two parts of the detector. Thus the V0
provides a minimum bias trigger for the central barrel detectors, a validation
signal for the muon trigger and allows the luminosity studies. The V0 also
measures the charged particle multiplicity allowing to determine centrality in
Pb-Pb and to estimate it in p-Pb collisions.

4.2.12 T0

The T0 [169] consists of two arrays of Cherenkov quartz counters, based
on a photomultiplier tube. The two array are installed in both sides of the
IP and have 12 counters each. The pseudo-rapidity coverage of these arrays
are −3.28 < η < −2.97 and 4.61 < η < 4.92, respectively. The T0 provides
for the TOF system a start time with a precision better than 50 ps. It also
measures the vertex position and allows to identify and reject beam-gas events,
providing additional checks to V0.

4.2.13 Zero Degree Calorimeter (ZDC)

The ZDC [170] consists of two pairs of quartz-fiber hadronic calorimeters
(ZN for neutrons and ZP for protons) installed close to the beam pipe, on
both sides of the IP, at a distance of 116 m from it. The ZDC is used to
provide a centrality estimation and a trigger in Pb-Pb and p-Pb collisions
by measuring the energy carried by non-interacting (spectator) nucleons in
the forward direction, and to estimate the reaction plane of the collision. The
ZDC system also has two electromagnetic calorimeters (ZEM), placed at about
7 m from IP, on both sides of the LHC beam pipe along the positive z axis.
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The ZEM measures the energy of particles emitted at forward rapidity (4.8 <
η < 5.7), mainly photons generated from π0 decays. It allows to discriminate
between central and peripheral collisions.

4.3 ALICE trigger and Data Acquisition

The ALICE Central Trigger Processor (CTP) collects the trigger signals
from the detectors. It selects events with various options and rates and al-
lows to perform a down-scaling of these rates in order to fit the bandwidth
requirements of the acquisition system. In order to select/reject an event as
fast as possible the triggers form 3 groups of the trigger levels depending on
their response time:

• L0 (Level-0): these trigger signals arrive to the CTP first. They are sent
by the fastest detectors, such as the SPD, V0, T0 and the muon trigger
system. In order to select a certain class of events, a logic AND and OR
is used when combining these signals in the CTP.

• L1 (Level-1): these trigger signals are sent from slower detectors and
must be delivered to the detectors in 6.5 µs after the collision took place.

• L2 (Level-2): the last trigger level. The time of arrival of ∼ 100 µs after
the collision is constrained by the TPC drift time and by the past-future
protection circuit. The latter looks for other events of a certain type in
time windows before and after the considered collision, thus helping the
rejection of the pile-up events and the read out of the detectors.

The ALICE Data AcQuisition (DAQ) system copes with both pp collisions
with high rates and relatively small event sizes, on the one hand, and with
Pb-Pb collisions with lower rates but larger event sizes (up to 1.25 GB/s sent
to the storage elements), on the other hand. After the CTP selects an event,
the trigger signal is sent to the FERO (Front-End Read-Out) electronics of
the involved detectors. The data are then transmitted to the computer farms
LDCs (Local Data Concentrator) which build the event fragments from the
front-end electronics into sub-events. Those sub-events are then transferred to
the GDC (Global Data Collectors) which build the whole event combining all
the sub-events from various LDCs. The whole event is then sent by the GDC
to the storage facilities.

4.4 ALICE muon spectrometer

The ALICE muon spectrometer [171, 172] is the main forward detector
with full tracking, identification and triggering capabilities. It is aimed to
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study open heavy flavours (D and B mesons), quarkonium (charmonium and
bottomonium) and low-mass vector mesons (φ, ω, ρ) production via their
muonic decay channels in a wide transverse momentum range in the pseudo-
rapidity range −4.0 < η < −2.5. Two main conditions were required for the
muon spectrometer: to perform charmonium detection down to zero transverse
momentum and to have a high enough mass resolution to separate the bot-
tomonium states (Υ,Υ′,Υ′′) in the large-background environment of central
Pb-Pb collisions. The layout of the muon spectrometer is shown in Fig.4.6.
It consists of the system of absorbers, five tracking stations (TRK1-TRK5), a
dipole magnet and two trigger chambers shielded by an iron wall. The total
length of the spectrometer is about 17 m, it covers a polar angular range from
171◦ to 178◦ with respect to the ALICE reference frame.

Figure 4.6. ALICE muon spectrometer layout. From [60].

4.4.1 System of absorbers

The main goal of the absorbers in the muon spectrometer is to protect
it from the high background produced in the central Pb-Pb collisions. Four
absorbers are used for this purpose: the front absorber, the beam shield, the
iron wall and the rear absorber.

4.4.1.1 Front absorber

The front absorber (see Fig.4.7) has two main functions:
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• A significant reduction of the charged particles flux and of background
of muons from pions and kaons decays. This can be achieved by limiting
the free path of primary pions and kaons via minimizing the distance
between the absorber and the IP and by using materials with low nuclear
interaction length λi1. Constrains with the ITS length along the beam
pipe line give the minimum value of 90 cm for such distance. The external
part of the absorber is made of lead and tungsten to protect the detectors
from the particle flux originated by particles crossing the absorber.

• Limitation of the multiple scattering which could affect the spectrometer
mass resolution. This is achieved using materials with high radiation
length X0

2 in the absorber layer close to the IP and with high atomic
number at the rear end. The central part, near the IP, is made of carbon
(a low Z material), to reduce muon multiple scattering effects. The rear
region is made of concrete, lead, tungsten and boronated polyethylene
to absorb the secondary particles produced in the absorber, low energy
neutrons and protons. The lead layer wrapping the whole absorber is
aimed to avoid the back-scattering particles into the TPC.

Figure 4.7. The layout of the front absorber of the ALICE muon spectrom-
eter. From [173].

1The nuclear interaction length λi is the mean path length required to reduce the numbers
of relativistic charged particles by the factor 1/e, or 0.368, as they pass through matter.

2The radiation length X0 is a characteristic of material representing a distance travelled
by a charged particle before losing 1/e of its energy.
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4.4.1.2 Beam shield

The low angle absorber is aimed to minimize the high background produced
by the interactions with the beam pipe of particles with low angle (up to 2◦),
mainly pions and kaons. This shield, made of tungsten and lead is covered by
a stainless steel layer [174].

4.4.1.3 Iron wall

The iron wall is installed between the last tracking station and the first
trigger chamber. It stops hadrons and secondary particles that punch through
the absorber. Since the wall is located after the tracking stations on the way
of particles, it does not affect the mass resolution of the detector. The front
absorber and the iron wall introduce a cut on the momentum of 4 GeV/c for
the muons.

4.4.1.4 Rear absorber

The trigger chamber must be protected from the background generated by
the accelerator (beam-gas residual interaction). This background is propor-
tional to the luminosity of the beam and, therefore, is very high during the
pp collisions data taking period. The rear absorber has recently been extended
to fully cover the tunnel aperture.

4.4.2 Dipole magnet

The warm dipole magnet of the ALICE muon spectrometer generates a
maximum central field of 0.67 T and an integral field of 3 Tm. It has an
angular acceptance of 171◦ < θ < 178◦. The direction of the magnetic field
generated by the dipole magnet lays in the horizontal plane, perpendicular to
the beam pipe line, defining a bending plane (zy plane) and a non bending
plane (xz plane). The polarity of the magnet can be reverted within a short
time. The magnet deflects muons according to their electric charge (allowing
to separate positive and negative muons) and transverse momentum. Thus,
the goal of the magnet is to allow the pT determination.

4.4.3 The tracking system

The tracking system is employed for the reconstruction of muon trajectories
inside the muon spectrometer. It consists of five tracking stations with two
chambers in each of them. The first two stations are installed right after the
front absorber, the third one is located inside the dipole and the last two
are placed between the magnet and the iron wall. The active area of each
station increases along the z axis going from the front absorber towards the
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trigger chambers, from 2.5 to 20 m2. The total area covered by the tracking
stations is about 100 m2. The active area of the first two stations is equal to
the geometrical projection of the front absorber, the third stations dimensions
are limited by the magnet, the last two stations are the largest ones and are
aimed to detect muons deflected by the dipole. The main constraints to the
performance of the tracking system are the following:

• a spacial resolution better than 100 µm in order to disentangle the Υ mass
with a mass resolution of 100 MeV/c2, and to operate in a maximum
hit density of about 5 · 10−2cm−2, the rate expected in central Pb-Pb
collisions;

• the resolution along the non-bending plane (parallel to the magnetic
field) better than about 2 mm to allow an efficient track finding.

Multi-Wire Proportional Chambers (MWPC) with cathode readout are
used to fulfill these requirements. Thus, each chamber in all five tracking
stations consists of a central anode plane with wires equally spaced parallel
to the y axis and sandwiched between two cathode planes. The wires have a
high voltage of ∼1600 V, while the cathode planes are grounded. It allows to
generate an electric field with its maximum value at the wire surface, decreasing
as 1/r near the wires. The segmentation of the cathode pads was designed to
keep the occupancy at a 5% level: the size of the pads increases with the radius
since the hit density decreases with the distance from the beam pipe. In total
there are 1.1 · 106 channels.

The chamber thickness is limited to 0.03 ·X0 in order to minimize multiple
scattering of the muons in the chamber. This is achieved by using composite
material, such as carbon fibres. The individual chambers were designed based
on standard MWPC technology taking into account the particular constraints
on the different tracking stations. The first two of them (TRK1 and TRK2)
are based on a quadrant structure, while the others have a slat structure. A
layout of the cathode plane for a quadrant of Station 1 is shown in Fig.4.8(a).
Fig. 4.8(c) shows a photography of TRK2. Figures 4.8(b) and 4.8(d) show
the same for the stations with a slat architecture. Within a tracker chamber
the quadrants (or slats) overlap to avoid dead zones, i.e. zones without active
detection area.

The front-end electronics based on a 64 channels board MANU (NUmerical
MAnas) is used for all the stations (Fig.4.9). The signals of four 16-channel
charge amplifier chips MANAS (Multiplexed ANAlogic Signal processor) lo-
cated on this board, are sent to two 12-bits ADCs (Analog-to-Digital Con-
verter) and to a readout chip MARC (Muon Arm Readout Chip). The MARC
controls the functioning of the MANAS and the zero suppression. The digital
signal is then transmitted to the CROCUS (Concentrator ReadOut Cluster)
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(a) (b)

(c) (d)

Figure 4.8. (a): The cathode plane layout of Station 1. From [50]. (b): Seg-
mentation of a station with a slat architecture. From [60]. (c): A photography
of TRK2. From [175]. (d): An overview of a station with a slat architecture.
From [50].

which dispatches the trigger signal from the CTP to each half plane. The
CROCUS performs the calibration of the MANU and gathers data through
specific buses PATCH (Protocol for the ALICE Tracking CHamber) sending
them further to the DAQ.

In order to estimate pT and y resolution of single muons or dimuons, the
following procedure can be done. pT and y distributions of muons (dimuons)
are generated in simulations. These distributions are then reconstructed in
the same way as the data. Furthermore, the difference between generated and
reconstructed pT and y is calculated providing corresponding pT and y distri-
butions. These distributions are then fitted with gaussian. The corresponding
gaussian width and/or RMS of the distributions are used to quantify the re-
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Figure 4.9. An example of a MANU including 4 MANAS, 2 ADC and 1
MARC. See text for details. From [173].

quired resolution. An example of such studies is presented in Fig. 4.10 where
J/ψ pT (left panel) and y (right panel) resolution in p-Pb collisions are shown.
Black points denote the RMS mentioned above, while white points represent
the corresponding gaussian widths.
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text for details. From [176].
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4.4.4 The trigger system

The trigger system was designed to select events with a high probability
to contain heavy quark or quarkonia decay muons. The selection is made on
the transverse momentum pT of each individual muons. The four planes of
RPCs (Resistive Plate Chamber) are arranged in two trigger stations (MT1
and MT2) and are installed behind the iron muon filter. The spatial resolution
should be better than 1 cm. The time resolution of 2 ns required for the bunch
crossing identification is obtained by using a special Front-End Electronics
(FEE) [177,178].

Figure 4.11. Schematic view of a Resistive Plate Chamber. From [173].

The RPCs (Fig.4.11) are based on the traditional spark chambers, where
a spark is created by a charged particle crossing a gas placed in an electric
field between two metallic parallel plates. In a following multiplication pro-
cess created after that, electrons are driven to the anode while the ions move
towards the cathode. Due to the planar geometry of the RPC, its electric field
does not decrease with a distance from the anode which yield to the fact that
multiplication process occurs in the whole gas volume. The main difference
of RPC from the standard spark chambers is the resistive materials used in
RPC for the electrodes. They prevent the signal propagation beyond the small
region, thus allowing to control the sparks under consideration.

It should be also emphasized that RPC can be used in two regimes, de-
pending on the gas mixtures and the high voltage values [179]:

• The streamer mode is used in high multiplicity A-A collisions. It allows
a large signal amplification in the detector and therefore is less sensitive
to electronics noise. However it leads to a fast ageing.

• The avalanche mode has a very good time resolution and slower ageing.
It is employed during high luminosity pp runs with a high collision rate.
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The signal generated in the RPC is sent to conductive strips electrically
insulated from the electrodes. The strips are placed in both sides of the cham-
bers, in the front face and in the rear, orthogonally to each other, providing
a two-dimensional tracks reconstruction. The horizontal strips aligned with
the x axis, measure the bending deviation due to the dipole magnetic field,
while the vertical strips aligned with the y axis, measure the non-bending di-
rection. The two corresponding read-out strip layers are called bending and
non-bending planes.

The read-out strips described above are connected with the FEE. The sig-
nals coming from the FEE consist in the x and y fired strip patterns of the
four detection planes, and are sent to the local trigger electronics. The whole
system is divided in 234 detection areas, each of them associated with a local
trigger board. The density of the local board reflects the segmentation of the
strip: it is finer in the region close to the beam pipe, where particle multiplic-
ity is expected to be high. The local electronics is aimed to perform the local
trigger algorithm, deliver the trigger decision on single tracks and to backup
strip patterns and trigger decision in a pipeline memory which is read-out on
occurrence of an ALICE trigger sequence.

Figure 4.12. The muon spectrometer trigger principle. See text for details.

The muons coming from the IP, depending on their momentum, are devi-
ated by a giving angle due to the magnetic field of the dipole magnet (Fig.4.12).
The muons spectrometer principle of the mean transverse momentum pT cut
is based on the estimation of the pT track: the larger the distance between YF
and the pT→ ∞ straight line, the lower the pT of the track . The estimation
is made by the local boards. The maximum measurable deflection is fixed to
±1 strip in the horizontal and ±8 strips in the vertical direction.

The main features of the ALICE muon trigger system are the following:
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• It is able to provide trigger inputs at the L0 level.

• it selects muon candidates with pT of a muon track larger than a given
programmable threshold.
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Chapter 5

p-Pb physics program preparation

For the preparation of the 2013 p-Pb physics run at the LHC, a Monte-
Carlo (MC) generator for quarkonia and open HF production was developed,
based on the ALICE software. The main motivation for its development was
the absence of a generator for p(A)-A collisions including an underlying event
(UE) and a realistic production of heavy-flavour (HF) hadrons and quarko-
nia. PYTHIA [180] does not provide a realistic description of the quarkonia
and open HF production in pp collisions. This led us to use PYTHIA with-
out HF, combined with NLO pQCD and the CDF-data inputs for the HF
description. When precise measurements became available at the LHC at√
sNN = 7 TeV, an extrapolation of pp cross-section to other LHC collision

energies (2.76 and 5 TeV) became achievable, using CDF and LHC data [181].
The idea was to build a cocktail generator for p(A)-A in analogy to the pp case,
with Glauber scaling of pp cross sections, centrality dependence of the quarko-
nia cross-sections and the CNM effects. The goal of this generator was to
provide estimations for the trigger rate and for the "signal-to–background"
ratio.

In this chapter I will first describe the Glauber model, then the generator
for the J/ψ production. After that the pilot p-Pb run performed at the LHC
in September 2012 is described. Finally, a comparison of the generator with
the data from the pilot p-Pb run is given.

5.1 Glauber model

The high energy scattering with composite particles was of great interest in
1950’s to both nuclear and particle physicists. In his lectures in 1958, Glauber
was first to present the systematic calculations treating the many-body nuclear
system either as a projectile or target. His work put the quantum theory of
collisions on a firm basis, providing a consistent description of the experimental
data for protons colliding with deuterons and light nuclei [182,183]. This model
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was then further improved by other authors. In 1967 Czyz and Lesniak, using
the Glauber model, correctly predicted position and magnitude of the dips
observed later in the elastic peaks [184]. In 1976 Bialas, Bleszynski and Czyz
applied their model, the "wounded nucleon model" to hadron-nucleus collision
and then the Glauber approach to inelastic nuclear collisions [185]. Their
approach introduced the thickness function and a prototype of the nuclear
overlap function TAB. They also defined a convention allowing to use the
optical limit for analytical and numerical calculations.

The estimation of the collision properties from the measured distributions
is the main feature of the Glauber model. A collision can be defined by the
impact parameter b, the number of participating nucleons Npart, the number of
the binary nucleon-nucleon collisions Ncoll. The model describes the collision of
two nuclei in terms of independent interactions of the constituent nucleons. It
assumes that at sufficiently high energies, the nucleons carry sufficiently large
momentum to be essentially undeflected as the nuclei pass through each other.
It also assumes that the nucleons move independently in the nucleus and that
the size of the nucleus is large as compared to the extent of the nucleon-nucleon
force.

Figure 5.1. Schematic view of a nucleus-nucleus collision in the Glauber
model in two projections: (a) transverse and (b) longitudinal. From [186].

Fig.5.1 shows in a transverse (a) and longitudinal (b) projection a schematic
view of a heavy-ion collision with a projectile B and a target A colliding at the
relativistic speed with an impact parameter b. The two flux tubes located at a
displacement s from the center of the target nucleus and a distance s-b from the
center of the projectile, overlap during the collision. The probability per unit of
transverse area of a given nucleon to be located in a target flux tube is TA(s) =∫

dzAρA(s, zA), where ρA(s, zA) is the probability per unit volume, normalized
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to unity, to find the nucleon at a position (s,zA). The same expression is given
for the projectile nucleon. Then, the joint probability per unit area of nucleons
to be located in the overlapping target and projectile flux tubes of differential
area d2s can be derived from the product TA(s)TB(s − b)d2s. Integrating this
value over s defines the “thickness function” [186]:

TAB(b) =

∫
TA(s)TB(s − b)d2s. (5.1)

In the following, the Glauber model will be applied to pA collisions which
can be considered as a simplified version of nucleus-nucleus collisions. It should
be mentioned that Npart in pA can be easily derived from Ncoll from the ex-
pression: NpA

part = NpA
coll + 1.

5.1.1 Inelastic cross section

The inelastic cross section in pA collisions for a given collision energy
√
s is

usually given in the optical-limit in the eikonal form [187]:

σpA(s) =

∫
d2b [1− exp (−σNN(s)TA(b))] , (5.2)

where σNN(s) is nucleon-nucleon inelastic cross section for the energy
√
s and

TA(b) =
∫

dzρA(b, z) the nuclear thickness function (nuclear profile function).
The latter gives the number of nucleons in the nucleus A per unit area along the
direction z separated from the center of the nucleus by an impact parameter b.
The nuclear density ρA(b, z) is usually parametrized by a three-parameters
Woods-Saxon distribution:

ρA(r) = ρ0
1 + ω (r/RA)2

1 + exp ((r −RA) /z)
(5.3)

where RA is the nuclear radius and RA = 1.19 · A 1
3 − 1.61 · A− 1

3 fm, α is the
surface thickness and α = 0.54, and ω is a parameter taken equal to zero for
Pb nuclei [187,188]. The central density ρ0 is found from the normalization∫

d3r ρA(r) =

∫
d2b TA(b) = A. (5.4)

The inelastic cross section (5.2) is also called geometrical cross section σgeo. In
the following, the energy dependence will be omitted.
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5.1.2 Hard processes

The expression (5.2) for the cross section can be applied to the inclusive
process p+ A→ h+X, where h is a given particle.

If the corresponding cross section σhardNN � 1 then in the first approximation:

σhardpA ≈
∫

d2b σhardNN TA(b), (5.5)

from which using (5.4) and assuming that σhardNN does not depend on b:

σhardpA = σhardNN · A. (5.6)

In that case the average number of hard scattering collisions for a given
impact parameter b can be found as:〈

Nhard
pA

〉
(b) = σhardNN · TA(b), (5.7)

and the same for the average number of binary inelastic collisions in a nucleon-
nucleus reaction with impact parameter b:

〈Ncoll〉 (b) = σNN · TA(b). (5.8)

5.1.3 Centrality dependence

Let’s introduce the centrality dependence by defining C, the centrality bin,
corresponding to the range of impact parameter b in [b1; b2]. Using (5.4) and
(5.5), the fraction of the total cross section for hard processes occurring in a
given centrality bin C can be defined as:

fhardC =
σhardpA C

σhardpA

=

b2∫
b1

d2b σhardNN TA(b)∫
d2b σhardNN TA(b)

=

b2∫
b1

2πb db TA(b)

A
=

2π

A

b2∫
b1

b db TA(b). (5.9)

Similarly, using (5.2), the fraction of the geometric cross section in a cen-
trality bin C can be found as follows:

σpA C
=

2π
b2∫
b1

b db [1− exp (−σNN(s)TA(b))]

σgeo
. (5.10)

Then the relation between 〈Ncoll〉C and
〈
Nhard
pA

〉
C

can be also found by
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using (5.8) and (5.7).:

〈Ncoll〉C =

b2∫
b1

2πb db 〈Ncoll〉 (b)

σgeoC
=

=

σNN · 1
σhardNN

b2∫
b1

2πb db σhardNN TA(b)

σgeoC
=
σNN
σhardNN

·
〈
Nhard
pA

〉
C
.

(5.11)

From (5.11) and (5.5) one obtains:

〈Ncoll〉C =
σNN
σhardNN

·
σhardpA C

σgeoC
. (5.12)

The < Ncoll >MB can be calculated from (5.6):

〈Ncoll〉MB =
σNN
σhardNN

·
σhardpA

σgeo
=
σNN
σgeo

· A, (5.13)

where “MB” stands for minimum bias, i.e. a centrality range of [0;100%].
If the hard cross section fraction is defined for a given centrality bin C as

rC =
σhardpA C

σgeoC

and consequently rMB =
σhardpA

σgeo
,

(5.14)

the ratio between 〈Ncoll〉C and 〈Ncoll〉MB can be calculated in terms of these
hard cross section fractions:

〈Ncoll〉C
〈Ncoll〉MB

=
σNN
σhardNN

· σ
hard
NN

σNN
·
σhardpA C

σgeoC
· σgeo
σhardpA

=
rC
rMB

, (5.15)

5.2 MC generator for the J/ψ production

As mentioned above a MC generator was developed to study the J/ψ pro-
duction in p-Pb collisions. It was built in two steps:

• HIJING (Heavy-Ion Jet Interaction Generator) [189] is used to generate
an UE, in particular the background from the pions/kaons decays. It
simulates the event centrality according to the Glauber model.
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• Open HF and quarkonium generation. A pT and y dependence for HF
are generated according to the perturbative QCD calculations at fixed
order with next-to leading order resummation (FONLL) [190]. A pT, y
and b-dependent production of quarkonia are simulated according to a
parametrization on real data and the following assumptions:

· factorization for pT and y-dependence of pp cross section d2σpp
dpTdy

is
assumed;

· y-dependence is taken from CEM;

· pT-dependence is extrapolated from the world data [191].

A scheme of this MC generator is shown in Fig.5.2. The generation of
event starts with HIJING which generates an impact parameter b based on
the Glauber model in an optical limit (see (5.2)). In that case the cross sections
of hard processes are found using (5.5) and (5.6). Then open HF are gener-
ated taking into account shadowing calculations performed for the centrality-
integrated case. Afterwards quarkonium family is generated, depending on
the impact parameter b, according to the cross sections corrected by the shad-
owing calculations from the EPS09 LO parametrization. In order to increase
the quarkonium statistics for some specific needs, a factor may be used to
scale the quarkonium production cross sections. HIJING provides the dimuon
background from π/K meson decays. Generation of HF hadrons is used for
the main dimuon background from HF as well as to reproduce the J/ψ and
ψ(2S) from B-hadron decays.

Figure 5.2. A scheme of a MC generator for the J/ψ production in p-Pb.

It should be mentioned that the impact parameter b was used to define
a corresponding centrality bin for each event. The number of centrality bins
in the MC generator was fixed to four: 0-20%, 20-40%, 40-60%, 60-100%
of the geometric cross section (see (5.10)). The number and the ranges of
centrality bins can be defined differently. However the choice of centrality
ranges for the most peripheral centrality bins is limited due to small Ncoll (and
Npart) and consequently, a low charged particle multiplicity, used for centrality
determination with V0A detector. The centrality determination in ALICE will
be detailed in Chapter 7.
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5.3 The Glauber model inputs to the generator

The main inputs of the generator are the definition of the centrality bins,
the nucleon-nucleon and p-Pb cross section and the quarkonium cross sections.
The impact parameter distribution provided by HIJING is shown in Fig.5.3.
First, this generator was mainly used for studying J/ψ production. The fol-

Figure 5.3. Impact parameter distribution provided by HIJING.

lowing values were fixed in the code from the Glauber MC calculations [192]
and private discussions with Smbat Grigoryan (one of the co-authors of [181]):
σpPb = 2100 mb, σNN = 70 mb and σJ/ψ = 5.5 mb. Using (5.13), one can ob-
tain the value 〈Ncoll〉MB = 6.93. First row of Table 5.1 represents the fraction
of the p-Pb cross section, related to the centrality bin determination. Sec-
ond row shows the values of the impact parameter bup corresponding to b2

from (5.10). The corresponding mean values of the impact parameter in each
centrality bin are denoted as 〈b〉. Third row provides 〈Ncoll〉C . Finally, fourth
row shows the shadowing factors calculated for each centrality bin according
to the EPS09-LO parametrization.

Table 5.1. Main inputs to the MC generator.

Fraction of the σpPb 0-20% 20-40% 40-60% 60-100% 0-100%
bup, 〈b〉 fm 3.66, 2.44 5.17, 4.46 6.34, 5.77 10, 7.50 10, 5.53
〈Ncoll〉C 13.4 10.2 6.34 2.31 6.93

EPS09-LO
shadowing factor 0.715 0.775 0.856 0.951 0.785
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5.4 p-Pb run set-up

A short pilot p-Pb run was performed at the LHC in September 2012 at the
energy

√
sNN = 5.02 TeV in preparation of the p-Pb physics run scheduled for

the beginning of 2013. Beam 1 consisted of protons at 4 TeV energy circulating
in the negative z-direction of the ALICE laboratory frame. Beam 2 consisted
of fully stripped 208

82 Pb ions at 82 · 4 = 328 TeV energy. Due to the low lumi-
nosity only Minimum Bias (MB) triggers were recorded. The ALICE detector
collected two million MB events during 10 hours of data taking, including 3
hours with the ALICE muon spectrometer (Fig.5.4). During the run, beams
consisting of 13 bunches were circulating, with about 1010 protons and 6× 107

Pb ions per bunch. In the ALICE interaction region, 8 pairs of bunches were
colliding, leading to a luminosity L ∼ 8 · 1025cm−2s−1 [193]. During this short
data taking period it was expected to see approximately 8 J/ψ in the muon
spectrometer rapidity range (2.5 < y < 4 in the ALICE laboratory system).

Figure 5.4. Online monitor during the pilot p-Pb run in 2012.

In Fig.5.5 the dimuon invariant mass distribution from the pilot run anal-
ysis is shown. Analysis details are discussed in Chapter 6 dedicated to the
p-Pb physics run and to this kind of analysis. In this plot a J/ψ signal is seen
around the mass value of 3.1 GeV/c2. Assuming no background, 8 events are
counted within the mass window [3; 3.2] GeV/c2. This rough estimation of the
number of J/ψ corresponds well to the expected J/ψ yield mentioned above.
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Figure 5.5. Invariant mass distribution of the opposite-sign dimuons recon-
structed during the pilot p-Pb run in the muon spectrometer rapidity range.

5.5 Comparison of MC simulations to the pilot
p-Pb run

To validate the MC generator, it was compared to the data from the pilot
p-Pb run. In Fig. 5.6 a comparison of the pseudorapidity η distribution1 of
single muons matching the all-pT (Apt) single muon trigger2 is shown. The
pseudorapidity is multiplied by the sign of the muons to distinguish µ+ from
µ−, and is normalized by the total number of MB events. Thus, negative
pseudorapidity corresponds to µ+, positive to µ−. In the bottom part of the
figure the ratio of the data to the MC distribution is shown for a quantitative
comparison. A discrepancy is seen both in the shape and in the magnitude
reaching a ratio data/MC of 2 at η = −2.5 for both µ+ and µ−.

The pT distribution of the single muons matching an Apt trigger, presented
in Fig. 5.7 also shows a discrepancy between the data and the MC. The distri-
bution from the data is always higher than the MC one. At low pT, where the
spectrum is dominated by secondary muons, the data and simulations disagree
in shape. In the region dominated by open HF (at pT >2 GeV/c) similar shape
in data and MC is seen, but simulations underestimate the data by a factor of
2.5.

1Pseudorapidity η is defined as η = −ln tan(θ/2), where θ is the polar angle between the
charged particle direction and the beam axis z.

2ALICE muon spectrometer provides different trigger options, allowing to trigger muons
with different pT thresholds. All-pT trigger indicates that the muons with the lowest
pT trigger threshold are triggered (0.5 GeV/c). More triggers are presented in Section 6.2.
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Figure 5.6. Comparison of the pseudorapidity distribution of the single
muons. The distribution from the simulation is shown in red, while the data
are shown in black, and in blue their ratio is presented. The pseudorapid-
ity is multiplied by the sign of the muons to distinguish µ+ from µ−, and is
normalized by the total number of the MB events.

The discrepancies between the MC generator results and the pilot p-Pb run
data demonstrated that further studies are needed for this MC generator. One
of the possibilities to improve this generator is to tune some numbers fixed in
it, using the real data. It is important to note that this MC was used to define
the trigger strategy. The comparison with the data was sufficiently good to
estimate the rate of trigger with different pT threshold (in the pilot run, only
one trigger threshold of 0.5 GeV/c could be tested).
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Figure 5.7. A comparison of the pT distribution of the single muons measured
in the described MC generator (red points) and in the pilot p-Pb run data
(black points), and their ratio (blue points). No separation is made between
µ+ and µ−. Both pT distributions are normalized by the total number of the
corresponding MB events.
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Chapter 6

pT and y dependence of the J/ψ
production in p-Pb

This chapter describes the analysis of the J/ψ production in p-Pb collisions
integrated over the event activity. This chapter describes the event and muon
track selection criteria, the related acceptance and efficiency corrections, the
raw J/ψ yield extraction, the event normalization, the pp reference estimation
and the evaluation of the systematic uncertainties.

6.1 Main observables

The main observables of this analysis are the inclusive J/ψ cross section, the
nuclear modification factor and the Forward-to-Backward ratio. The definition
of these observables is presented below.

The inclusive J/ψ cross section is computed as:

dσ

dydpT

(pT, y) =
YJ/ψ→µ+µ−(∆pT,∆y)

BR×∆pT ×∆y
× σMB, (6.1)

where BR is the J/ψ → µ+µ− branching ratio equal to (5.93±0.06)% [194],
σMB is the MB cross section determined from van der Meer scans [195]. Finally,
YJ/ψ→µ+µ−(∆pT,∆y) is the inclusive J/ψ invariant yield for a given range in
pT and y, ∆pT and ∆y respectively. It can be written as:

YJ/ψ→µ+µ−(∆pT,∆y) =
NJ/ψ→µ+µ−(∆pT,∆y)

NMB × Aε(∆pT,∆y)
, (6.2)

where NMB is the number of equivalent MB events and Aε(∆pT,∆y) is the
acceptance times efficiency of the detector.

The inclusive J/ψ yield cross section in p-Pb collisions is compared to the
inclusive J/ψ cross section in pp collisions σpp

J/ψ→µ+µ− at the same energy to
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extract the nuclear modification factor RpPb defined as:

RpPb(pT, y) =
YJ/ψ→µ+µ−(∆pT,∆y)

〈TpPb〉 ×∆pT ×∆y ×
BR×dσpp

J/ψ→µ+µ−

dydpT
(pT, y)

, (6.3)

where 〈TpPb〉 = 0.0983 ± 0.0035mb−1, the nuclear overlap function, is de-
termined using the Glauber model [196].

In order to exclude the systematic uncertainty from the pp cross section
and the nuclear overlap function, a Forward-to-Backward ratio RFB is defined
as follows:

RFB(y) =
RpPb(|y|)
RpPb(−|y|)

. (6.4)

6.2 Data samples

The present analysis is based on the data collected by ALICE in January
and February 2013 in p-Pb collisions at

√
sNN = 5.02 TeV. ALICE allows to

study the J/ψ production down to zero transverse momentum pT in two dilep-
ton decay channels: dimuon at forward and dielectron at mid-rapidity (see
more details in Section 4.2). This analysis is based on the dimuons measured
by the ALICE muon spectrometer with an acceptance of −4 < ηlab < −2.5 in
the ALICE coordinate system (defined in Section 4.2). Two p-Pb beam con-
figurations were provided by the LHC and analyzed. In the first configuration
(p-Pb), beam 1 of protons was circulated towards the Muon spectrometer in
the negative z direction (clockwise in LHC) while beam 2 of Pb ions was circu-
lated in the positive z direction (counter clockwise). The second configuration
(Pb-p) was obtained by inverting the beams 1 and 2. The first configuration
allows to probe the forward rapidity region while the second one the back-
ward rapidity region. Due to the beam energy asymmetry there is a shift in
rapidity of ∆y = 0.465 in the laboratory system towards the proton beam
direction, leading to two asymmetric rapidity ranges of the muon spectrome-
ter in the center-of-mass system: forward (2.03 < ycms < 3.53) and backward
(−4.46 < ycms < −2.96)1. The following periods of data taking took place:

• MB trigger periods (LHC13b,c for p-Pb only) collecting MB data;

• Rare trigger periods (LHC13d,e for p-Pb and LHC13f for Pb-p) aiming
to collect the rare events (e.g. events where a J/ψ is produced and decays
into two muons).

1The sign of y in two beam configurations is defined with respect to the proton beam
direction and is aimed to show that the two beam configurations probe different physics.
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Standard quality checks for the detectors considered in the analysis (V0,
SPD, ZDC, muon tracking and trigger chambers) have been applied to select
the data.

Different triggers were activated during data taking. The Minimum Bias
(MB) trigger is called CINT7. It is defined as the coincidence of a signal
in VZERO-A and VZERO-C detectors synchronized with the passage of the
colliding lead and proton bunches. During the rare trigger periods the MB
trigger was downscaled at the L0 level of dimuon trigger to allow more DAQ
bandwidth for rare triggers. For the muon part, the following triggers were
used:

• Single muon low-pT (where the pT of a single muon pT
µ ≥ 0.5 GeV/c)

or CMSL

• Single muon higt-pT (pT
µ ≥ 4 GeV/c) or CMSH

• Unlike sign dimuon low-pT (pT
µ ≥ 0.5 GeV/c on each muon) or CMUL

• Like sign dimuon low-pT (pT
µ ≥ 0.5 GeV/c on each muon) or CMLL

We define the corresponding L0 trigger inputs by replacing “C” with “0”
in the beginning of the trigger name (i.e. 0MSL, 0MSH, 0MUL, 0MLL). The
CMUL7 trigger used in the analysis is defined as the coincidence of 0MUL
and CINT7. Timing cuts on the signals from the VZERO and from the ZDC
were used to reduce the beam induced background. This physics selection
(PS) removes from few percent up to 10% of the events depending on the
run (and the beam configuration). In total, after applying the event physics
selection, a data sample of 9.27 M collisions in p-Pb and 20.9 M collisions in
Pb-p triggered by CMUL7 trigger were collected. The data sample comes only
from the rare trigger samples since the luminosity was low in the MB sample
resulting to a low number of J/ψ. The V0AND cross section (corresponding
to the coincidence of V0A and V0C signals) is measured in van der Meer
scans [195]: 2.09 b ± 3.2% (2.12 b ± 3.0%) in p-Pb (Pb-p). The normalization
factors between CMUL7 and CINT7 trigger described in Section 6.6 allow to
compute the total integrated luminosities of 5.01 ± 0.17 nb−1 in p-Pb and
5.81 ± 0.18 nb−1 in Pb-p. The two periods LHC13d and LHC13e with p-Pb
configuration were considered together.

6.3 Event and track selection

In order to select a clean data sample, only events passing the physics
selection cuts were kept. The analysis of the J/ψ decaying into two unlike
sign muons required to select only CMUL7 triggered events. The standard
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J/ψ analysis cuts on single muons and on the opposite-sign dimuons were
applied:

• 2.5< ηµ <4 on both muons, to reject tracks at the edges of the spectrom-
eter acceptance. An additional geometrical cut was added at the dimuon
level: 2.5< yµµ <4.

• both muon tracks reconstructed in the tracking chambers should match
a trigger track reconstructed in the trigger system, above the low pT

threshold.

• 17.6< Rabs <89.5 cm, where Rabs is the radial transverse position of the
muon tracks at the end of the absorber. This cut removes the tracks at
the edge of the absorber.

6.4 Signal extraction

J/ψ candidates are obtained combining pairs of muons of opposite charge
reconstructed within the geometrical acceptance of the spectrometer. Most
of the hadrons escaping or produced in the front absorber, single muons, low
pT muons from pions and kaons decays, secondary muons produced in the front
absorber and fake tracks are removed by the cuts described above.

The J/ψ raw yield is then extracted using a fit to the invariant mass spec-
trum. The fitting function is a superposition of a signal and a background
shapes. Three functions were used for modeling the signal shape: an extended
Crystal Ball (CB2) function (allowing a non gaussian tail both on the right
and left side of the resonance peak), “NA60 function” (a gaussian with a fixed
width core around the J/ψ pole and mass dependent widths on the right and
on the left side of it) [127] and NA60CB2 function merging the left tail of
NA60 and the right tail of CB2 functions. Given a poor Signal-to-Background
ratio in the tail region, it is not possible to fix the tails of these signal shapes
directly by fitting the data. Therefore, the signal shape parameters are tuned
on the J/ψ from MC simulations and then fixed in the fit procedure to the
invariant mass spectra. In particular, parameters are tuned in each kinematic
interval under study. As an example, in Fig.6.1,6.2,6.3, the CB2, the NA60
and the mixed NA60CB2 fits to the MC results are shown.

Even if the region around the peak, corresponding to the core of the
J/ψ statistics, is well described by all the functions, the CB2 function does not
properly describe the left part of the J/ψ mass distribution. The agreement
improves when the NA60 function is used. The mixed NA60CB2 function still
improves the description of the right tail of the mass spectra, in particular
when high-pT J/ψ are studied. The only signal parameters which are kept free
in the final fit are the J/ψ mass, width and absolute normalization.
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Figure 6.1. Fit to the J/ψ MC invariant mass spectra with the CB2 function.

Figure 6.2. Fit to the J/ψ MC invariant mass spectra with the NA60 func-
tion.

The background is described with three functions: a variable width gaus-
sian function (VWG) and an exponential function (Exp) multiplied by 2nd or
4th order polynomials (Pol2, Pol4). Background parameters are given by the
fit to the invariant mass spectrum. The ψ(2S) resonance is also included in
the fitting procedure. Given the low signal to background ratio for the ψ(2S) ,
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Figure 6.3. Fit to the J/ψ MC invariant mass spectra with the NA60CB2
function.

its mass mψ(2S) and the width σψ(2S) are bound to the J/ψ ones as follows:

mψ(2S) = mJ/ψ +
(
mPDG
ψ(2S) −mPDG

J/ψ

)
; σψ(2S) = σJ/ψ ×

(
mPDG
ψ(2S)

mPDG
J/ψ

)
, (6.5)

where PDG stands for Particle Data Group values [194]. An approach with
the ψ(2S) width bound to the J/ψ one by the ratio of the σ obtained in the
MC, have been tested and has shown a negligible influence on the J/ψ signal
extraction. The other ψ(2S) parameters are fixed to the J/ψ ones.

Two independent analyses have been performed with the following tests:

• CB2 or NA60CB2 signal shape combined with VWG or Pol2 × Exp for
the background, using a fitting range 2-5 (GeV/c)2 or 2.3-4.7 (GeV/c)2;

• CB2 or NA60 signal shape combined with VWG or Pol4 × Exp for the
background, using a fitting range 2-5 (GeV/c)2 or 2.2-4.5 (GeV/c)2.

Both analyses give very similar results at each step.
For all the periods of data taking under study, the J/ψ mass position

mJ/ψ = 3.098± 0.001(GeV/c)2 is in very good agreement with the PDG value
and the J/ψ width is ∼70 MeV/c2. The signal to background ratio in the
invariant mass range of mJ/ψ ± 3σ is ≥2 for all the periods, for the pT and y
integrated spectrum. The invariant mass spectra, corresponding to the total
statistics collected in the Pb-p and p-Pb, are shown in Fig.6.4.

As it was mentioned above, the J/ψ raw yields have been extracted by
varying the signal and background shape as well as the fitting range. The
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Figure 6.4. An example of a fit to the invariant mass spectra corresponding
to LHC13d+e (left) and LHC13f (right) periods. The invariant mass spectra
correspond to the total collected statistics (integrated over pT and rapidity).

weighted average of all the obtained results provide the final results. The
RMS of the raw yield distributions provides the systematic uncertainty on the
signal extraction. In Fig. 6.5 an example of the J/ψ raw yields extraction for
the LHC13d+e and LHC13f periods as a function of the tests is shown.

The average J/ψ raw yields obtained for the two periods are reported in
Table 6.1, together with the statistical and systematic uncertainties. The pro-
cedure is repeated to extract the J/ψ yield in each kinematic range under study,
tuning the tails of the signal function on the corresponding MC simulations.

Table 6.1. J/ψ raw yields for the total collected statistics of the LHC13d+e
and LHC13f periods. The first uncertainty represents the statistical one, while
the second denotes the systematic one. The quoted systematic uncertainty is
related only to the signal extraction.

Period J/ψ raw yield
LHC13d+e 66948± 486± 844
LHC13f 56749± 451± 662

For the rapidity dependence measurements, 6 intervals are considered in
the 2.5 ≤ ylab ≤ 4 range. Signal-to-background ratio estimated in a 3σ in-
terval around the J/ψ mass peak does not go below 1.4, providing a clear
visible J/ψ signal in all the intervals under study. The number of J/ψ varies
from ∼2000-4000 at the edges of the y range to ∼15000 at |y| ∼ 3.25. See
Appendix A for details.

In order to study the Forward-to-Backward ratio RFB, the J/ψ raw yields
are extracted in the y range common to p-Pb and Pb-p, i.e. 2.96 ≤ ycms ≤ 3.53.
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Figure 6.5. J/ψ raw yield as a function of the signal extraction tests for
LHC13d+e (top panel) and LHC13f (bottom panel).

The average raw yields, obtained for the LHC13d+e and LHC13f periods, and
the associated uncertainties are reported in Table 6.2.

The systematic uncertainty on the signal extraction is computed directly on
the ratio of the forward to backward raw yields. The same tests as mentioned
above have been performed. The signal function was assumed to be the same
for both p-Pb and Pb-p. The fitting range was also varied for forward and
backward data simultaneously. The only independently varied option in those
tests was the background shape. An example of the raw yield ratio as a function
of the tests is shown in Fig.6.6.

The RFB ratio is studied in y and pT intervals. In this case the tail pa-
rameters of the fit are also tuned in each kinematic bin. For the differential
study versus pT, 15 intervals were analyzed in the 0 ≤ pT ≤ 15 GeV/c range.
The number of J/ψ varies between 4000-5000 around pT∼ 2 GeV, where the
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Table 6.2. J/ψ raw yields (LHC13d+LHC13e and LHC13f periods) with
statistical (first) and systematic (second) uncertainties corresponding to the y
range used for the RFB study, i.e. 2.96≤ ycms ≤3.53

Period J/ψ yield
LHC13d+e 17913± 216± 203
LHC13f 22411± 312± 361

Figure 6.6. Forward to backward ratio of the J/ψ raw yields as a function of
the signal extraction tests.

bulk of the J/ψ production is, to ∼ 150 in the highest pT bin. In the last bin
(10 ≤ pT ≤ 15 GeV/c) where the statistics is low, the J/ψ peak is clearly visible
thanks to the higher signal to background ratio. For the study of RFB versus
y (where three intervals were analyzed), the average J/ψ raw yield decreases
from ∼10000 to ∼2000 moving towards the edges of the muon spectrometer
acceptance.

6.5 Acceptance and efficiency corrections

In order to estimate the invariant yields, the raw yields have to be cor-
rected by the detector acceptance and efficiency (Aε). A run-per-run simula-
tion was performed using a pure signal parametrization reproducing the mea-
sured J/ψ kinematical pT and y distributions. A small or zero J/ψ polarization
is suggested by the recent measurement at the LHC [197–199].

In the p-Pb and Pb-p data taking periods, occupancy in the detector was
small and no deterioration of the muon tracking chamber efficiency was ob-
served even for the most central events, justifying the use of pure signal simu-
lations [200].

The simulations were performed in a run-per-run basis with a number of
events generated proportional to the number of unlike-sign dimuon triggers
after the physics selection. Fig. 6.7 shows the Aε correction as a function of
the run number for LHC13d+e (left plot) and LHC13f (right plot). At the
end of each period, an increasing number of hardware issues in the tracking
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chambers (mainly HV trips) lead to a decrease of the tracking efficiency. As a
consequence, lower Aε are obtained.

Figure 6.7. Integrated Aε (Acc×Eff) correction as a function of the run
number in p-Pb (left) and Pb-p (right).

The pT and y input distributions of the generated J/ψ were tuned directly
on the J/ψ raw yield extracted from the data. Starting from a generator based
on a parametrization of the J/ψ production in pp collisions at

√
s = 5.02 TeV, a

single iteration over the corrected data allowed to describe the measured pT and
y distribution within 10% accuracy as shown in Fig. 6.8 for LHC13d+e.

The integrated Aε is approximately (25.4 ± 1.3)% and (17.1 ± 1.2)% for
the periods LHC13de and LHC13f, respectively. The quoted uncertainty is
systematic (see Section 6.8.3). The lower value for LHC13f is mainly due to
a smaller detector efficiency. Fig.6.9 shows the y (left panel) and pT (right
panel) dependences of Aε for the two periods of data taking.

6.6 Dimuon trigger event normalization

In order to estimate the invariant yields, the number of MB events is
needed. There are three methods to estimate the equivalent number of MB
events from the measured number of opposite-sign dimuon triggers in the rare
trigger periods. We will discuss them below, but first we define pile-up effect
which is common to all the three methods.

6.6.1 Pile-up effect

The pile-up (PU) events are the events with more than one inelastic colli-
sion. PU effect, denoted as Fpile−up, is defined as the ratio of number of real
MB events to the number of triggered MB events.
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Figure 6.8. Raw distributions for extracted J/ψ as a function of pT (left
panel) and rapidity (right panel) for data (full line) and simulation (dashed
line) in LHC13de.

Figure 6.9. Differential Aε correction as a function of y and integrated over
pT (left panel) and as a function of pT for different y range (right panel) for
p-Pb (full points) and Pb-p (open points).

Assuming that the number of inelastic collisions per bunch crossing follows
a Poisson distribution, the probability of an event with N inelastic collisions
is found as:

P i(N) =
(µi)Ne−µ

i

N !
, (6.6)
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with µ as the mean number of collisions per bunch crossing:

µi = −ln

(
1− PSiCINT7 × L0bRateiCINT7

N i
colliding × fLHC

)
, (6.7)

where PSCINT7 denotes the fraction of good MB events selected by the physics
selection on recorded events, Ncolliding is the number of colliding bunches and
fLHC = 11245 Hz, the LHC revolution frequency. It was assumed that the
physics selection effect, i.e. the fraction of good MB events does not depend
on the trigger veto at the L0 level.

Then the MB event correspond to the probability of having at least one
collision in run i is equal to:

P i(N ≥ 1) = 1− P i(0) = 1− e−µi , (6.8)

and the pile-up probability is found as:

P i(N ≥ 2) = P i(N ≥ 1)− P i(1) = 1− e−µi − µie−µi . (6.9)

The pile-up correction factor Fpile−up defined above is obtained as follows:

F i
pile−up =

µi

P i(N ≥ 1)
=

µi

1− e−µi
(6.10)

6.6.2 1st method (“naive offline method”)

The equivalent number of MB (CINT7) events can be estimated from the
number of dimuon (CMUL7) triggered events for each run, i, through the
normalization factor F i

norm:

F i
norm =

MBi

MBi&0MUL
× Fipile−up (6.11)

where for each run i, MB is the number of good (i.e. physics selected)
MB events, MB&0MUL the number of MB events which have in addition the
0MUL L0 trigger input present. The ratio F i

norm is computed offline.
The CMUL trigger, as well as CINT7, is affected by beam-gas tracks, whose

amount varies from run to run. The Fnorm ratio thus should be computed
run by run. However the limited CINT7 statistics due to the downscaling of
this trigger in the rare trigger periods results in a non-negligible statistical
uncertainty for the ratio (FnormOffline1PUPS in Fig. 6.10).
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Figure 6.10. Evolution of Fnorm computed using the two offline methods
(FnormOffline1PUPS for the 1st method and FnormOffline2PUPS for the 2nd
method). The two-steps method (FnormOffline2PUPS) decreases the statisti-
cal uncertainty.

6.6.3 2nd method (“offline method”)

To improve the statistical uncertainty on the ratio Fnorm a two steps method
can be applied, using a trigger condition that has a large statistic within the
cluster CINT7. The single low pT muon trigger input (0MSL) can be used for
that:

F i
norm =

CMSLi

(CMSL&0MUL)i
× CINT7i

(CINT7&0MSL)i
× Fipile−up (6.12)

It allows to decrease the statistical uncertainty (Fig. 6.10), but it is still
not optimal.
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6.6.4 3rd method (“scalers method”)

Another way to calculate Fnorm is based on the L0b trigger scalers1 where
the statistics is huge. In that case, at first order :

F i
norm =

L0b(CINT7)i

L0b(CMUL7)i
(6.13)

This factor is corrected by the physics selection (PS) on both triggers
(CINT7 and CMUL) and by the PU effect Fpile−up (Fig. 6.11):

F i
norm =

L0b(CINT7)i × PSiCINT7 × Fipile−up

L0b(CMUL7)i × PSiCMUL7

. (6.14)

The corrections due to PS and PU are small (Tab.6.3). The PS effect is
very similar for both CINT7 and CMUL7 triggers resulting in a small ratio
PSCINT7

PSCMUL7
. The PU factor has a slightly bigger effect. The global correction

factor is then 1.02 for p-Pb and 1.04 for Pb-p.

Period PSCINT7 PSCMUL7
PSCINT7
PSCMUL7

Fpile−up
PSCINT7
PSCMUL7

Fpile−up

LHC13de 0.997±0.001 0.996±0.001 1.001±0.001 1.020±0.001 1.022± 0.001

LHC13f 0.999±0.001 0.981±0.001 1.017±0.001 1.023±0.001 1.041± 0.002

Table 6.3. Correction factors used in the computation of Fnorm using the
scalers method.

6.6.5 Final estimation of Fnorm

In the previous chapter, it was shown that Fnorm needs to be calculated run
per run. When considering the whole period, Fnorm was obtained as a weighted
average of the run-by-run normalization factor, with the number of CMUL7
taken as a weight for each run:

Fnorm =

nruns∑
i=1

F i
norm ×N i

CMUL7

nruns∑
i=1

N i
CMUL7

(6.15)

1There are six trigger class counters: L0b, L0a, L1b, L1a, L2b and L2a, where “b” and
“a” stand for “before” and “after” veto. In particular, L0b gives the number of times a given
trigger class is fired, and L2a gives the number of times the same trigger class passes the CTP
and detector dead-time, as well as any other possible veto. These counters are measured
online and can be retrieved off-line for each run [201].
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Figure 6.11. Correction factors used in the computation of Fnorm in the
scalers method. CorrectionPSMB corresponds to the factor PSiCINT7, Correc-
tionPSMUL is PSiCMUL7, CorrectionPUPSMB represents PSiCINT7×Fipile−up and
CorrectionPSratio shows the PSiCINT7

PSiCMUL7
ratio from (6.14).

Period FOffline2PUPS
norm FScalersPUPS

norm Offline-Scalers
relative

difference (%)

Fnorm

LHC13de 1124.00± 4.99 1129.33± 1.71 0.55± 0.41 1129.08± 1.75
LHC13f 588.52± 2.65 589.48± 2.33 0.19± 0.22 589.31± 2.34

Table 6.4. Fnorm values for different periods and the two different methods
of computation.
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The run-by-run variation of the F i
norm factor computed using the two meth-

ods (the 2nd and 3rd method described in this chapter) reaches 14% in some
runs (Fig. 6.12). However these runs contribute to a small fraction of the total
number of analyzed events. At the level of the global Fnorm the difference is
less than 1% (third column of Tab. 6.4). The central value is taken as the
weighted (by their error) average of the two methods (last column of Tab.6.4).
A systematic uncertainty of 1% is considered on the Fnorm ratio. It includes
the difference between the two methods.
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Figure 6.12. Run-by-run evolution of the relative difference (in percentage)
between the offline and scalers methods.

6.7 pp reference at
√
s = 5.02 TeV

The pp J/ψ cross section (pp reference) at
√
s = 5.02 TeV is needed for

the evaluation of the nuclear modification factor RpPb defined in (7.1). Since
σ

J/ψ
pp is not measured at

√
sNN = 5.02 TeV, an energy interpolation procedure

described in [202] was applied. In this approach only the pp ALICE data in
the forward rapidity region 2.5 < ycms < 4 have been used1. This is a two-step
procedure:

1For the preliminary results [203] the pp reference was based on a different approach,
where all the available results obtained at several energies and at different rapidity were
used [204].
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s = 5.02 TeV

• Energy interpolation: existing ALICE pp results at
√
s= 2.76 TeV [205]

and at
√
s = 7 TeV [206] in 2.5 < ycms < 4, 0 < pT <8 GeV/c, were in-

terpolated with empirical shapes (linear, power law and exponential) in
six rapidity bins with ∆y = 0.25.

• Rapidity extrapolation: due to the y-shift in p-Pb, the results from
the previous step were fitted with empirical shapes (gaussian, polyno-
mial) to reach the measured rapidity coverage at

√
s = 5.02 TeV.

6.7.1 Energy interpolation for 2.5 < ycms < 4

The illustration of the energy interpolation procedure in the full rapidity
range 2.5 < ycms < 4 is shown in Fig.6.13. Red points corresponds to the
existing pp measurements while the blue one is the interpolated value. Lines
correspond to different empirical shapes used for the interpolation. A least
mean squares method was used for the estimation of the uncertainties from
the fit. The uncertainties in the fit procedure are the quadratic sum of statis-
tical and uncorrelated systematic uncertainties. A 5% correlated uncertainty
between the

√
s = 2.76 TeV and

√
s = 7 TeV ALICE data points was added

in quadrature to the uncertainty from the interpolation result. This 5% cor-
related uncertainty corresponds to a combination of uncertainties on tracking
and triggering efficiency, and to the uncertainty on the branching ratio of the
J/ψ decay to two muons. The final value of the interpolated cross section is
found as a weighted average of the interpolated results with the three different
fitting functions. The weights are the inverse of the variances of the individ-
ual points. An additional 0.10 µb uncertainty corresponds to the maximum
deviation of the individual fits from the average value. The uncertainty of the
interpolated cross section at

√
s = 5.02 TeV is then 7.9%. The corresponding

results are shown in Table 6.5.

Fitting function shape Cross-section, µb
linear 5.17± 0.41

power law 5.26± 0.40
exponential 5.38± 0.40

weighted average 5.28± 0.40± 0.10

Table 6.5. The interpolation of cross section at
√
s = 5.02 TeV with empirical

shapes. See text for details.

A small additional systematic uncertainty was found from the compari-
son of the empirical shapes to those calculated with the LO CEM [207] and
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Chapter 6. pT and y dependence of the J/ψ production in p-Pb

Figure 6.13. pp cross section interpolation procedure.The blue point at√
s = 5.02 TeV is the result of this procedure. The error bar represents the

error propagation of the experimental uncertainties from the measurements at√
s = 2.76 TeV and

√
s = 7 TeV. From [202].

FONLL1 [190] models (Fig.6.14). The predicted cross section is taken as the
average of the models that describe the data. The CEM gives σ(5.02 TeV) =
5.29 ± 0.10 µb, while FONLL provides σ(5.02 TeV) = 5.32 ± 0.02 µb, where
the uncertainty corresponds to the RMS of the corresponding fit results. Both
values of the cross section are in agreement with the weighted average from
Table 6.5. The maximum deviation of the LO CEM and FONLL results
from the weighted average in Table 6.5, was conservatively taken as an ad-
ditional systematic uncertainty. Finally, the interpolated inclusive J/ψ cross
section at

√
s = 5.02 TeV in 2.5 < ycms < 4 was found as: σJ/ψ

pPb|√s=5.02 TeV =
5.28± 0.40(exp.)± 0.10(interp.)± 0.05(theor.) µb = 5.28± 0.42 µb.

6.7.2 Energy interpolation for different rapidity bins

The procedure described above was repeated for smaller rapidity bins ob-
tained by dividing the full rapidity range 2.5 < ycms < 4 in six equal intervals.
The result of this procedure is illustrated in Fig.6.15, and numerical values are
given in Table 6.6.

1FONLL predicts the cc̄ cross-sections, not the J/ψ cross-section.
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s = 5.02 TeV

Figure 6.14. Interpolation of the J/ψ cross section at
√
s = 5.02 TeV using

theoretical predictions of LO CEM [207] and FONLL [190]. From [202].

Figure 6.15. The energy interpolation of dσ
dy
|√s=5.02 TeV. See text for details.

From [202].

6.7.3 Rapidity extrapolation

Since the backward (−4.46 < ycms < −2.96) and forward (2.03 < ycms <
3.53) rapidity ranges in p-Pb collisions are not equal to the y range of the
interpolated results at 2.5 < ylab < 4 (see Section 6.2) an extrapolation of the
rapidity dependence of the J/ψ cross section dσ

dy
|√s=5.02 TeV is needed.

To extrapolate the J/ψ cross section to the rapidity ranges not covered by
the ALICE pp measurements, three empirical shapes were used to describe

117



Chapter 6. pT and y dependence of the J/ψ production in p-Pb

ycms range dσ
dy
|√s=2.76 TeV,

µb

dσ
dy
|√s=7 TeV, µb dσ

dy
|√s=5.02 TeV,

µb
2.50 < ycms < 3.75 3.05±0.35±0.25 5.85±0.13±0.61 4.65±0.43±0.12
2.75 < ycms < 3.00 2.37±0.19±0.19 5.37±0.06±0.59 4.01±0.36±0.04
3.00 < ycms < 3.25 2.26±0.15±0.18 4.73±0.05±0.55 3.64±0.33±0.06
3.25 < ycms < 3.50 2.01±0.14±0.16 4.32±0.05±0.51 3.29±0.30±0.05
3.50 < ycms < 3.75 2.00±0.16±0.16 3.90±0.05±0.44 3.08±0.28±0.07
3.75 < ycms < 4.00 1.68±0.19±0.13 3.47±0.08±0.35 2.68±0.24±0.05

Table 6.6. The interpolation of dσ
dy
|√s=5.02 TeV in six rapidity intervals in the

range 2.5 < ycms < 4. See text for details.

Table 6.7. dσ/dy in the p-Pb y-range. The 1st uncertainty is uncorrelated
in rapidity and comes from the first step of the interpolation procedure; the
2nd one is the y-correlated uncertainty, the 3rd one is related to the maximum
spread between results obtained with the three interpolating functions. The
4th uncertainty represents the theory-related contribution.

ycms range dσ/dy (µb)
2.03 < ycms < 2.28 4.72± 0.28± 0.26± 0.42± 0.12
2.28 < ycms < 2.53 4.53± 0.25± 0.25± 0.24± 0.11
2.53 < ycms < 2.78 4.30± 0.20± 0.23± 0.11± 0.04
2.78 < ycms < 3.03 4.02± 0.16± 0.22± 0.01± 0.11
3.03 < ycms < 3.28 3.70± 0.12± 0.20± 0.04± 0.09
3.28 < ycms < 3.53 3.36± 0.10± 0.18± 0.06± 0.08

2.03 < ycms < 3.53 4.12± 0.18± 0.23± 0.11± 0.10

−3.21 < ycms < −2.96 3.81± 0.13± 0.21± 0.03± 0.09
−3.46 < ycms < −3.21 3.47± 0.11± 0.19± 0.06± 0.09
−3.71 < ycms < −3.46 3.11± 0.11± 0.17± 0.04± 0.03
−3.96 < ycms < −3.71 2.70± 0.15± 0.15± 0.02± 0.03
−4.21 < ycms < −3.96 2.30± 0.21± 0.13± 0.10± 0.06
−4.46 < ycms < −4.21 1.95± 0.26± 0.11± 0.15± 0.05

−4.46 < ycms < −2.96 2.86± 0.13± 0.16± 0.05± 0.07

the dσ
dy
|√s=5.02 TeV rapidity dependence: gaussian, 2nd and 4th order polyno-

mial [181]. This procedure is illustrated in Fig.6.16. In these fits only the
statistical and the y-uncorrelated systematic uncertainties of dσ

dy
|√s=5.02 TeV
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were taken into account. A 5.4% y-correlated uncertainty1 was then added
in quadrature to the uncertainties of each fit. The final values are taken as
the average of the results of the three fits. Table 6.7 gives the results for the
backward (−4.46 < ycms < −2.96) and forward (2.03 < ycms < 3.53) rapidity
ranges.

Figure 6.16. The rapidity extrapolation of dσ
dy
|√s=5.02 TeV. See text for details.

From [202].

6.8 Systematic uncertainties

6.8.1 Signal extraction

As discussed in Section 6.4, the J/ψ raw yields have been estimated with
different functions. The weighted average of the raw yields extracted in the
different tests provides the final J/ψ raw yields. The RMS of the raw yield
distributions gives the systematic uncertainty on the signal extraction. This
systematic uncertainty is of the order of ∼ 1% on the integrated J/ψ raw yields
both in p-Pb and in Pb-p. When the raw yields are extracted in rapidity
intervals the uncertainties reach 2-4%.

1This uncertainty is a quadratic sum of two sources from the first step of the interpo-
lation procedure: 1) a 5% uncertainty corresponding to

√
s -correlated uncertainty; 2) a

2% uncertainty related to the average spread of the values obtained with different fitting
functions (linear, power law or exponential).
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Chapter 6. pT and y dependence of the J/ψ production in p-Pb

For the RFB studies, the systematics on the signal extraction are evaluated
directly on the ratio between the J/ψ collected in Pb-p and p-Pb (see an
example in Fig.6.6). For the integrated RFB the systematic uncertainty on the
signal extraction is ∼ 1%. For the pT dependence of RFB, this uncertainty
varies from ∼ 1% to ∼ 13% in the less populated high pT bin. For the y
dependence of the RFB studies, the uncertainty is in the range 1-4%.

The systematic uncertainty on the signal extraction is considered as un-
correlated in pT and y. However when comparing the forward (p-Pb) and
backward (Pb-p) rapidity results it is considered as partially correlated since
the main contribution to this uncertainty is related to the choice of the signal
function, i.e. CB2 or NA60 (NA60CB2). The integral of the NA60 (NA60CB2)
function always gives a larger J/ψ yield with respect to the CB2 one, intro-
ducing a correlation between p-Pb and Pb-p extracted yields.

6.8.2 pp reference systematics

The systematic uncertainties on the pp reference are summarized in Sec-
tion 6.7. They include uncorrelated, correlated and partially correlated con-
tributions. They represent one of the main contributions to the systematic
uncertainties of RpPb results.

6.8.3 Aε systematics from the MC parametrization

The J/ψ distributions in rapidity and pT were extracted from the data in
p-Pb and Pb-p for different event activity classes and kinematic ranges:

• the event activity class 0− 20% of V0M multiplicity1, 50− 80% of V0M
multiplicity;

• low pT events (0 ≤ pT ≤ 2 GeV/c), high pT events (5 ≤ pT ≤ 15 GeV/c);

• low y events (2.5 ≤ y ≤ 3), high y events (3.5 ≤ y ≤ 4).

From these boundary distributions, the two extreme distributions, a softest
and a hardest, were defined in pT and y. It results in four different combinations
of the pT and y distributions corresponding to four sets of simulations. The
systematic on Aε was estimated as the maximum difference between the values
obtained with these simulations and the nominal one. Integrated over pT and
y, the systematic amounts to 1.5% both for p-Pb and Pb-p. It is almost
constant as a function of pT, while it varies by 0% − 5% as a function of y.
The lower and higher y ranges give the larger uncertainties. The uncertainty
on Aε is expected to be uncorrelated with respect to pT, y and the period of

1The event activity estimators used in ALICE are discussed in Chapter 7
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data taking (p-Pb or Pb-p). Finally the acceptance was estimated assuming
unpolarized J/ψ [197–199] and no uncertainty from the unknown polarization
of the J/ψ is considered.

6.8.4 Tracking efficiency

The single-muon tracking efficiencies are obtained using an algorithm based
on reconstructed tracks [208]. The tracking efficiency was measured on the data
and amounts to approximately 90%, 85% and 74% for LHC13d, LHC13e and
LHC13f periods, respectively. It fluctuates from one run to another depend-
ing on the tracking chambers condition (Fig. 6.17). It was checked that this
quantity does not depend on the event activity as shown in Fig. 6.18 where
the V0M event activity estimator is used 1. The tracking efficiency measured
in the data is also compared to the one measured in the MC simulations in
Fig.6.17. The difference observed between the data and the MC simulations is
taken as a systematics for single muon and was found to be 2% (3%) for p-Pb
(Pb-p). This uncertainty was assumed to be uncorrelated between the two
detecting muons, resulting, at the dimuon level, in 4% (6%) for p-Pb (Pb-p).
The uncertainty is uncorrelated with respect to pT, y and the period of data
taking. It represents one of the main sources of the systematic uncertainties
in this analysis.

6.8.5 Trigger efficiency

The trigger efficiency was measured at sufficiently high pT from the data
and amounts to approximately 97 − 97.5% for each chamber leading to an
overall trigger efficiency above 99% [209,210].

The systematic uncertainty arising from the intrinsic trigger efficiency was
estimated by varying by 2% the efficiency of each local board in the simula-
tion. This value corresponds to the uncertainty on the local board efficiency
determined by varying the cuts on the trigger or tracker tracks used to deter-
mined the intrinsic efficiency. Using pure signal simulations, an uncertainty on
dimuon trigger efficiency (extrapolated from the single muon studies) of the
order of 2% was found. This uncertainty is uncorrelated as a function of pT, y
and the period of data taking due to possible variations from one local board
to another.

The systematic uncertainty arising from the trigger pT threshold is esti-
mated by varying the pT dependence of the trigger efficiency in the simula-
tions. In previous J/ψ analyses [54, 208, 211], the trigger threshold was set

1This was expected since the most central (i.e. highest event activity) events in p-Pb
correspond to 60%-70% centrality range in Pb-Pb where no effect from tracking chambers
occupancy was measured.
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Figure 6.17. Tracking efficiency measured both in the data and in the MC
simulations for Pb-p. From JavierBlanco.
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Figure 6.18. Tracking efficiency vs V0M event activity classes for LHC13d
(left panel) and LHC13f (right panel). From [200].

to 1 and 4 GeV/c and the difference between the data and MC simulations
in the ratio between the 0.5 and 1 GeV/c trigger thresholds was considered
to estimate the systematic uncertainty on the trigger threshold. However in
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6.8. Systematic uncertainties

2013, the trigger threshold was set to 0.5 and 4 GeV/c and it was therefore
not possible to estimate the systematic uncertainty using the same method.
It was assumed in the data and in the MC simulations that the variation be-
tween 0 and 0.5 GeV/c trigger threshold in 2013 is the same as between 0.5
and 1 GeV/c trigger threshold in Pb-Pb data in 2011. From this study, the
systematic uncertainty is found to be of the order of 3% for the dimuons (ex-
trapolated from the single muon studies) and decreases with higher value of
pT. It is an uncorrelated uncertainty with respect to pT, y and the period of
data taking.

6.8.6 Matching efficiency

The systematic uncertainty on the matching efficiency between the track
reconstructed in the tracking chambers and the one reconstructed in the trigger
chambers was found to be 0.5−1% for single muons [212]. It was estimated as
the difference observed in the simulations compared to the data when apply-
ing different goodness-of-fit χ2 cuts on the matching between the trigger and
tracker track. For large mass resonance as the J/ψ , this uncertainty amounts
to 1%. This uncertainty is uncorrelated as a function of pT , y and the period
of data taking.

6.8.7 Normalization CINT7 - CMUL7

The systematic uncertainty on the normalization amounts to 1% and is
described in Section 6.6. This uncertainty is correlated as a function of pT and
y and uncorrelated for the different collision systems. However as it is small,
it is also considered as uncorrelated in pT and y.

6.8.8 Other systematics

The systematic uncertainty on the nuclear thickness function TpPb is taken
from [196] and is equal to 0.0035 mb−1 (3.6%). It is correlated as a function
of pT, y and the period of data taking. The systematic uncertainty on the
V0AND cross section σV 0AND ≡ σMB

pPb are described in 6.2. Finally for the
J/ψ cross section studies, the branching ratio of J/ψ decay to dimuon pair is
used with its 1% uncertainty taken from [194].

The summary of all the systematic uncertainties is presented in Table 7.8.
The values given in parenthesis correspond to the uncertainty variation in dif-
ferent y bins. The uncertainties on σMB

pPb are relevant only for the inclusive
J/ψ cross section results while the uncertainties on σ

J/ψ
pp and on 〈TpPb〉 con-

tribute only to the nuclear modification factors measurements.
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Source LHC13d+e LHC13f
Uncorrelated

Tracking efficiency 4 6
Trigger efficiency 2.8 3.2
Signal extraction 1.3 (1.5-3.4) 1.2 (1.6-3.8)

MC input 1.5 (1.1-3) 1.5 (0.9-4.2)
Matching efficiency 1 1

Normalization factor Fnorm 1 1
σ

J/ψ
pp 4.3 (3.1-6) 4.6 (3.1-13.4)

Partially correlated
σMB

pPb 3.2 3
σ

J/ψ
pp 3.7 (2.7-9.2) 3.1 (1.2-8.3)

Correlated
Branching ratio 1

〈TpPb〉 3.6
σ

J/ψ
pp 5.5

Table 6.8. Systematic uncertainties (given in percentage) contributing to
the measurement of the inclusive J/ψ cross sections and corresponding nuclear
modification factors in different data taking periods. See text for details.
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Chapter 7

Event activity and pT dependence
analysis

This chapter describes the analysis of the J/ψ production in p-Pb collisions
as a function of the event activity (centrality) of the collision. It includes also
the description of the centrality determination in ALICE. This chapter also
describes the extraction of the mean transverse momentum and the mean
square of the transverse momentum from the measured pT spectra.

7.1 Main observables

The main observables of this analysis are the inclusive J/ψ cross section,
the biased nuclear modification factor and the mean transverse momentum.
The definition of the inclusive J/ψ cross section is given in (6.1).

The nuclear modification factor is referred to as Qi
pPb and not the usual

Ri
pPb when evaluated in a given event activity class i, due to the possible biases

(discussed in Section 7.2.1) in the determination of Ncoll (or TpPb). Qi
pPb is thus

not necessarily equal to unity in the absence of nuclear effects. It is defined as
follows:

Qi
pPb(pT, y) =

Y i
J/ψ→µ+µ−(∆pT,∆y)

〈TpPb〉i ×∆pT ×∆y ×
BR×dσpp

J/ψ→µ+µ−

dydpT
(pT, y)

, (7.1)

where T ipPb, the nuclear overlap function, is determined separately for each
event activity estimator (discussed in Section 7.2.1), Y i

J/ψ→µ+µ−(∆pT,∆y) is
the inclusive J/ψ yield defined in (6.2).

125



Chapter 7. Event activity and pT dependence analysis

7.2 Centrality determination in ALICE

7.2.1 Centrality estimators

In ALICE, several centrality (event activity) estimators are available [213]:

• CL1 (|η| < 1.4) denotes the number of clusters in the outer layer of the
SPD;

• V0A (V0C) with η range 2.8 < η < 5.1 (−3.7 < η < −1.7) is the
amplitude measured by the VZERO hodoscopes on the A-side (C-side),
corresponding to Pb-remnant side in p-Pb (Pb-p);

• V0M is the sum of the VZERO amplitude’s hodoscopes on the A- and
C-side (V0A+V0C);

• ZNA (ZNC) is the energy deposited in Zero-degree Neutron calorimeter
on the A-side (C-side).

The details on the centrality determination for each of the estimators can
be found in [213]. In the following, the V0A and ZN estimators are used
since they are located in a region outside of the J/ψ measurement. Indeed
in order to avoid situation where the centrality measurement is biased by the
J/ψ muon decay itself, a large rapidity gap between the muon spectrometer
and the centrality detector is required. Therefore, the V0A and ZN centrality
estimators have less bias than the CL1 and the V0C for the J/ψ analysis. V0A
estimator was used for both periods of data taking, p-Pb and Pb-p. The ZNA
(ZNC) estimator was used for p-Pb (Pb-p).

The centrality of the collision is usually determined from a monotonic de-
pendence of an experimental observable on the number of binary collisions
Ncoll, e.g. the particle multiplicity or the summed energy in a certain pseudo-
rapidity range. The distributions of the V0A multiplicity and of the ZDC
neutron energy with corresponding division into the centrality classes are il-
lustrated in Fig.7.1. These distributions are fitted with theory-based functions:
negative binomial distribution (NBD) for V0A and functions from slow-nucleon
models (SNM) [214, 215] for ZN. These models are coupled to the Glauber
model which provides a distribution of Ncoll for each centrality class (see Sec-
tion 5.1).

In p-Pb collisions, in contrast to Pb-Pb ones, the fluctuations of multiplic-
ity for a fixed Ncoll are large with respect to the relatively small range of Ncoll.
This leads to a wide correlation between Ncoll and the particle multiplicity,
introducing a dynamical bias which depends on the centrality classes deter-
mination. It should be mentioned that different centrality estimators have
different level of bias in p-Pb collisions:
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7.2. Centrality determination in ALICE

Figure 7.1. Left: Sum of amplitudes in the VZERO-A scintillators for p-
Pb. Right: Neutron energy spectra measured in the ZNA calorimeter. The
distributions are compared with theory-based functions from the NBD-Glauber
and the SNM-Glauber fits, respectively. From [213].

• V0C: strong bias due to full overlap with the tracking region. But for
Pb-p it is reduced because of the important contribution from Pb frag-
mentation region.

• V0M: biased since it includes V0C.

• CL1: reduced bias since it is outside of the tracking region.

• V0A: reduced bias since it is outside of the tracking region. For p-Pb
it is even more reduced because of the important contribution from Pb
fragmentation region.

• ZNA (ZNC): small bias since the slow nucleon1 production is independent
of hard processes.

The term “event activity” instead of “centrality” is used further in this work,
drawing attention to the unknown biases in its determination.

7.2.2 TpPb and Ncoll determination

TheNcoll and TpPb values are calculated using the approach described above
and in [216]. For the V0A estimator, a Glauber model (Section 5.1) was em-
ployed. For the ZN estimator, a more complicated “Hybrid” approach described

1Emitted nucleons are classified as “black” and “gray”. This definition from emulsion ex-
periment is related to the track grain density. Black particles are the low energy target (Pb)
fragments emitted by evaporation processes with momentum p < 250 MeV/c. Gray particles
are the soft nucleons knocked out by wounded nucleons with 250 MeV/c < p < 1 GeV/c. In
both cases, the momentum is given in the nucleus rest frame.
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Chapter 7. Event activity and pT dependence analysis

in [216] is used. This approach is based on the following three assumptions,
providing three slightly different sets of TpPb values for the event activity classes
used in the analysis:

• The multiplicity at mid-rapidity is proportional to Npart. Corresponding
observables are denoted with a superscript “mult”.

• The yield of the high-pT particles is proportional to Ncoll. Corresponding
observables are denoted with a superscript “high-pT”.

• The Pb-going side multiplicity is proportional to Npart. Corresponding
observables are denoted with a superscript “Pb-side”.

Table 7.1 (Table 7.2) summarizes the Ncoll (TpPb) values for V0A and ZN
analyses. The V0A results are given with two systematic uncertainties: the
first one comes from the Glauber model and the second one from the variation
between Ncoll extracted from the fit and from the MC simulations using HI-
JING [189] as input. For ZN estimator, the results are given for the three cases
(mult, high-pT, Pb-side) and the maximum deviation is taken as a systematic
uncertainty, denoted as “model uncertainty”. An additional systematic uncer-
tainty of 8.0% arising from the Glauber model (“Glauber uncertainty”) should
be added quadratically. The Glauber uncertainty is thus common for all the
bins. For the results, the multiplicity assumption is chosen to determine Ncoll.

Table 7.1. The Ncoll values for V0A and ZN analyses for different event
activity classes. See text for details.

Event
activity
class

V0A ZN
NV0A

coll Nmult
coll Nhigh−pT

coll NPb−side
coll Max.

deviation
0-5% 14.8 ± 10% ± 3% 12.226 12.540 13.308 8.9%
5-10% 13.0 ± 10% ± 1% 11.625 12.076 12.280 5.6%
10-20% 11.7 ± 10% ± 2% 10.961 11.257 11.397 4.0%
20-40% 9.36 ± 8.8% ± 2% 9.551 9.694 9.603 1.5%
40-60% 6.42 ± 6.6% ± 3% 7.074 6.795 6.741 4.9%
60-80% 3.81 ± 4.3% ± 20% 4.380 4.094 4.002 9.5%
80-100% 1.94 ± 2.0% ± 23% 2.052 2.107 2.060 2.7%

7.2.3 Event activity distribution for MB events with V0A

If the centrality ranges are well calibrated run per run, the event ac-
tivity distribution is expected to be flat for MB events. While in the MB
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Table 7.2. The TpPb values for V0A and ZN analyses for different event
activity classes. See text for details.

Event
activity
class

V0A ZN
TV0A

pPb Tmult
pPb T high−pT

pPb TPb−side
pPb Max.

deviation
0-5% 0.211 ± 3.7% ± 3% 0.1747 0.1792 0.1901 8.9%
5-10% 0.186 ± 3.5% ± 1% 0.1661 0.1725 0.1754 5.6%
10-20% 0.167 ± 3.2% ± 2% 0.1566 0.1608 0.1628 4.0%
20-40% 0.134 ± 3.1% ± 2% 0.1364 0.1385 0.1372 1.5%
40-60% 0.0918 ± 4.3% ± 3% 0.1011 0.0971 0.0963 4.9%
60-80% 0.0544 ± 6.7% ± 20% 0.0626 0.0585 0.0572 9.5%
80-100% 0.0277 ± 9.3% ± 23% 0.0292 0.0301 0.0294 2.7%

trigger period (LHC13b,c), event activity estimators are correctly calibrated,
they may suffer from miscalibration and/or pile-up in the rare trigger period
(LHC13d,e,f) where the CINT7 trigger rate reaches up to 200 kHz. The event
activity distribution from the V0A estimator for MB events is shown in Fig. 7.2
for p-Pb (top left) and for Pb-p (top right) data taking periods. Events are
required to pass the Physics Selection. The event activity distributions are
fitted by a constant value and the ratio between the distribution and the fit
result is shown in the bottom plots of Fig. 7.2. Small deviations (up to 4%)
from the fit result are observed in the event activity distribution.

The V0C estimator cannot be used for the J/ψ analysis due to the bias
from the measurement itself. However, in the Pb-p the V0A is not located
in the Pb-beam remnant side. This leads to a lower multiplicity used for the
centrality determination in the Pb-p and may affect it. It was checked in
Fig. 7.3 that the V0A event multiplicity in Pb-p is correlated with the V0C
one for MB events. This correlation allows us to use the V0A estimator not
only for p-Pb but also for Pb-p.

Since no cut was applied on the primary vertex position along z-axis in
the event selection of the J/ψ analysis, it was necessary to check that the
V0A event activity distribution is independent from the z vertex position.
Top panels of Fig.7.4 show the V0A event activity distribution for p-Pb (left)
and Pb-p (right) for different cuts on the primary vertex: no z-vertex found,
|z| < 10 cm, z > −10 cm, z ≥ 10 cm. In the bottom panels of Fig. 7.4, the
ratio between the event activity distribution with a given z-vertex cut (color
lines) and the one without any cut (black line “all”) are shown for both periods.
Using the V0A estimator, the event activity dependence is flat for the three
classes of events: |z| ≤ 10 cm, z ≤ −10 cm, z ≥ 10 cm. In addition, most of
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Figure 7.2. V0A event activity distribution of MB events, for p-Pb (top
left) and Pb-p (top right). The event activity distributions (blue points) are
normalized by the corresponding width of the event activity classes ∆X and
then fitted by a constant (red line). The ratio between the event activity
distribution and the fit result is shown for both periods in the bottom panels.
Color lines in the top panels correspond to the pile-up events estimated with
different pile-up cuts, but they are not discussed in this figure (see Section 7.3.1
for more details).

the events have a vertex except 2-3% in the lowest event activity class.

7.2.4 Event activity distribution for MB events with ZN

The event activity distribution of the ZNA(C) of the MB events is shown
in Fig. 7.5 for p-Pb (Pb-p) periods in the top left (top right) panel. Events are
required to pass the Physics Selection. Events with event activity higher than
100% are counted in the lowest event activity bin (80-100%). No dependence
of the ZN estimator on the vertex position along z was assumed, as it was
observed for the V0A estimator.
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Figure 7.3. V0A vs V0C event activity distribution of the MB events in
Pb-p.

7.3 Contribution from pile-up events

In p-Pb collisions data taking, the bunch spacing is 200 ns. In the data
selection, the muon tracks are requested to be matched with the muon trigger
which has a trigger decision time of 25 ns. This condition implies that the
J/ψ events are not sensitive to pile-up from different bunches. The V0A has a
very fast time (< 25 ns), thus it is expected to be insensitive to pile-up from
different bunches. For the ZN, the gate value was 100 ns during 2013 data
taking. The ZDC signal is 60 ns long and starts around 20 ns after the arrival
of the gate, so it is below the 200 ns spacing of two collisions. Therefore pile-up
events from different bunches are expected to be negligible for the detectors
used for this analysis. In the following, pile-up will always refer to pile-up
from the same bunch crossing. Pile-up refers to MB events. Pile-up events can
increase the multiplicity of the events, smearing an event from a lower event
activity bin to a higher one. Different cuts were applied in order to reject
pile-up events both for the V0A and the ZN estimators. An illustration of
these cuts and their effect on the event activity distribution is shown for the
ZN estimator in Fig. 7.5. A detailed description of these cuts is given below.
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Figure 7.4. V0A event activity distribution of the MB events for p-Pb (top
left) and Pb-p (top right) for different requirement on the z-vertex. The ratio
between the event activity distribution with a given z-vertex cut (color lines)
and the one without any cut (black line “all”) is shown in the bottom panels.
All the event activity distributions are normalized by the corresponding width
of the event activity classes ∆X.

7.3.1 Estimation of the fraction of pile-up events

The pile-up contribution can be estimated run per run using the L0b trigger
rate for CINT7 (MB) trigger (L0bRateCINT7) and assuming that the number
of collisions per bunch crossing follows a Poisson distribution (see also Sec-
tion 6.6). In particular, the mean number of collisions per bunch crossing, µ,
is obtained for a given run i from the following expression:

µi = −ln

(
1− PSiCINT7 × L0bRateiCINT7

N i
colliding × fLHC

)
(7.2)

where PSCINT7 denotes the fraction of good MB events selected by the physics
selection on recorded events, Ncolliding is the number of colliding bunches and
fLHC = 11245 Hz, the LHC revolution frequency. It was assumed that the
physics selection effect, i.e. the fraction of good MB events does not depend
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7.3. Contribution from pile-up events

Figure 7.5. ZNA(C) event activity distribution of MB events for p-Pb (Pb-p)
in the top (bottom) panel. The ratio between the event activity distribution
without any pile-up cut to those with different pile-up cuts are shown in the
bottom part of the plots.

on the trigger veto at the L0 level.
One can then derive the MB pile-up fraction run per run as:

MB pile-up fractioni =
P i(n > 1)

P i(n > 0)
= 1− µie−µ

i

1− e−µi
(7.3)

Fig. 7.6 and Fig. 7.7 show the pile-up fraction run per run for p-Pb and
Pb-p for different pile-up estimators (see in Section 7.3.2 for details). The thick
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black line indicates the estimation of pile-up fraction obtained from (7.3). The
estimated pile-up fraction varies from 1% to 3%, with a structure corresponding
to the LHC fills. A decreasing trend is observed due to the lowering of the
beams intensities (in particular, the Pb beam). The method described above
gives an estimation of the average pile-up fraction per run but cannot be used
to identify pile-up events in different event activity classes.
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Figure 7.6. Top: pile-up fraction in p-Pb estimated run per run from the
L0b CINT7 rate (black thick line) and from the SPD method using different
options (see text for details). Bottom: ratio between the fraction of pile-up
event using SPD tagging method and the MB pile-up fraction estimated using
(7.3).

7.3.2 Tagging pile-up events with multi-vertices in SPD

The candidates to the primary vertex are found using the SPD tracklets
and the distances between them. SPD tracklet is defined as a line segment
built using two clusters in the inner and outer SPD layers within a small
azimuthal window. The primary vertex corresponds to the candidate with
the largest number of contributors (the tracklets contributing to this vertex).
Pile-up events are tagged by the SPD if more than one vertex is reconstructed
per event. This method has different parameters. In particular, a vertex
is considered only if it has a minimum number of contributors and if the
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Figure 7.7. Top: pile-up fraction in Pb-p estimated run per run from the
L0b CINT7 rate (black thick line) and from the SPD method using different
options (see text for details). Bottom: ratio between the fraction of pile-up
event using SPD tagging method and MB pile-up fraction estimated using
(7.3).

distance between the pile-up and the primary vertex is higher than a given
minimum distance to the primary vertex. This method suffers from inefficiency,
in particular if the multiplicity of tracks in the SPD is low or if the minimum
distance to the primary vertex is low. This method may also be contamined by
false positive events (where the pile-up is detected in events without pile-up),
in particular at high multiplicity of tracks in the SPD and/or at low minimum
number of contributors.

The SPD pile-up fraction is defined as:

SPD pile-up fraction =
NSPD pile−up

Ntot

(7.4)

where Ntot is the number of events of a particular trigger that pass the PS and
NSPD pile−up the number of events tagged as pile-up by the SPD.

In Fig.7.6 and 7.7, the SPD pile-up fraction is presented in the top panels
as a function of the run number for MB events. Different options of the method
are displayed where n refers to the minimum number of contributors and d to
the minimum distance in mm to the primary vertex. The options “multbinstd”
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and “multbin” were not used in the final results and are not discussed here.
In the bottom panels of Fig.7.6 and 7.7, the ratio between the pile-up fraction
detected by the SPD and the estimated one is shown. This comparison allows
us to discard the option n = 3 which indicates a much larger pile-up fraction as
compared to the estimated value. This is probably due to a large contamination
from good events tagged as pile-up by the method, or false positive events. It
also indicates that the minimum distance of 6 or 8 mm does not vary much
the pile-up contribution. The options n4d6, n5d6 and n6d6 reproduce fairly
well the trend of the estimated pile-up fraction but underestimate it by 60%
to 80%. The numbers below show the total number of MB events that passed
the PS and the SPD-pile-up cut. In the parenthesis the percentage of pile-up
events is indicated. The mean number of collisions per bunch crossing, µ, is
equal to 0.038 for p-Pb and 0.043 for Pb-p:

• p-Pb: estimated pile-up fraction with µ = 0.038 is 1.89%

· no SPD pile-up cut: 3721882
· d = 6 mm„ n = 3: 3559243 (4.57% of pile-up)
· d = 6 mm„ n = 4: 3663631 (1.59% of pile-up)
· d = 6 mm„ n = 5: 3676736 (1.23% of pile-up)
· d = 6 mm„ n = 6: 3680696 (1.12% of pile-up)
· d = 8 mm„ n = 3: 3563426 (4.45% of pile-up)
· d = 8 mm„ n = 4: 3664804 (1.56% of pile-up)
· d = 8 mm„ n = 5: 3677394 (1.21% of pile-up)
· d = 8 mm„ n = 6: 3681211 (1.10% of pile-up)

• Pb-p: estimated pile up with µ = 0.043 is 2.13%

· no SPD pile-up cut: 4217841
· d = 6 mm„ n = 3: 4028896 (4.69% of pile-up)
· d = 6 mm„ n = 4: 4144053 (1.78% of pile-up)
· d = 6 mm„ n = 5: 4158719 (1.42% of pile-up)
· d = 6 mm„ n = 6: 4163726 (1.30% of pile-up)
· d = 8 mm„ n = 3: 4033663 (4.57% of pile-up)
· d = 8 mm„ n = 4: 4145426 (1.75% of pile-up)
· d = 8 mm„ n = 5: 4159556 (1.40% of pile-up)
· d = 8 mm„ n = 6: 4164428 (1.28% of pile-up)

From these numbers, the option d = 6 mm„ n = 4 shows the best efficiency
( 85% of the total estimated pile-up).
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7.3.3 SPD pile-up events contribution to MB events as a
function of the event activity

The ratios between the distribution without any pile-up cut and those with
different pile-up cuts are shown in the bottom plots of Fig.7.5 as a function of
the event activity defined by the ZN estimator in p-Pb (left) and Pb-p (right).
In this figure minz corresponds to d/10, nc stands for n, noPUcut denotes the
case without any pile-up cut. The options “multbinsdef” and “multbinsnew”
were not used in the final results and are not discussed here. The MultiVertexer
cut (MVcut) uses a slightly different approach for the pile-up determination.
However it is not discussed here since it gives a non-physical result. As shown
previously in the integrated case, the option with n = 3 gives a large pile-up
fraction and is not reliable. At low ZN event activity (below 2%), the fraction
of pile-up events is larger than 10% for each SPD pile-up cut.

In the J/ψ analysis as a function of the ZN event activity, for the cross
section and QpPb studies, it was decided to remove, for the preliminary results,
the event activity class 0-5% and to quote 2% of partially correlated uncertainty
for each event activity class. It was also checked with a simple toy MC that
the pile-up does not exceed this limit of 2% in each ZN event activity class
except the event activity class 0-5%.

Fig.7.8 shows the SPD pile-up fraction for MB events as function of the V0A
event activity in p-Pb (left) and Pb-p (right). The pile-up fraction increases
with the event activity. It reaches, for the 0 − 5% V0A event activity class,
6-8% in p-Pb and 11-12% in Pb-p, depending on the SPD pile-up cut options.
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Figure 7.8. SPD pile-up fraction for MB events as a function of the V0A
event activity for p-Pb (left) and Pb-p (right).
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7.3.4 SPD pile-up events contribution to Dimuon trig-
gered events as a function of the event activity

Fig. 7.9 shows the SPD pile-up fraction for dimuon triggered events as
function of the V0A event activity in p-Pb (left panel) and Pb-p (right panel).
The pile-up fraction increases with the event activity. It reaches, for the 0−5%
V0A event activity class, 9-11% in p-Pb and 12-14% in Pb-p. Integrated over
the event activity, the fraction of the dimuon triggered events tagged as pile-up
with the SPD pile-up cut n5d6 amounts to 3.6% in p-Pb and to 3.5% in Pb-p.

These values of the SPD pile-up fraction for dimuon triggered events are
different to those for MB events. The dimuon triggered events are affected
by the pile-up in MB interaction, i.e. no additional pile-up contribution is
expected in the dimuon triggered events. Therefore, a difference in the pile-up
fraction in the dimuon triggered events and the pile-up fraction in the MB
events is a priori not expected. However the efficiency of the SPD tagging
method may be different for MB and dimuon triggered events in particular
because of the number of tracks produced at mid-rapidity. This can explain
the observed difference.
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Figure 7.9. SPD pile-up fraction for dimuon triggered events as a function
of the V0A event activity for p-Pb (left) and Pb-p (right).

7.4 Analysis details

The results presented in this chapter are extracted from the data sample
described in Chapter 6. The same analysis technique is used.
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7.4. Analysis details

In addition to the event selection described in Chapter 6, events were binned
in event activity classes according to the V0A estimator for p-Pb or Pb-p and
with ZNA (ZNC) estimator for p-Pb (Pb-p).

The J/ψ raw yields are corrected by acceptance and efficiency described in
Chapter 6. No dependence of the detectors efficiency with the event activity is
expected, therefore the same Aε value is used for different event activity classes.
This assumption is based on the tracking efficiency studies as a function of
multiplicity [200].

The event normalization has been checked as a function of the event activity
for the V0A estimator, resulting in a flat dependence of the normalization
factor with the event activity. The same behaviour was assumed for the ZN
estimator.

7.4.1 pp reference at
√
s = 5.02 TeV

The pp reference is obtained using the same method as described in the
previous chapter. The interpolated values of the d2σpp/dydpT of inclusive
J/ψ at

√
s = 5.02 TeV are presented in Table 7.3 with the corresponding

uncertainties.

Table 7.3. Interpolated d2σpp/dydpT of inclusive J/ψ at
√
s = 5.02 TeV. The

first quoted systematic uncertainty is uncorrelated, the second one is correlated
and the third one is partially correlated. The correlation is with pT (i.e not y).

pT range
(GeV/c)

Interpolated d2σpp/dydpT (µb/(GeV/c))
2.03 < ycms < 3.53 2.96 < ycms < 4.46

0-1 0.624±0.036±0.032±0.025 0.490±0.029±0.026±0.017
1-2 1.197±0.064±0.062±0.046 0.892±0.048±0.046±0.030
2-3 0.980±0.051±0.051±0.039 0.693±0.036±0.036±0.025
3-4 0.579±0.032±0.030±0.022 0.388±0.021±0.020±0.012
4-5 0.294±0.017±0.015±0.008 0.187±0.011±0.010±0.004
5-6 0.156±0.011±0.008±0.005 0.094±0.007±0.005±0.002
6-8 0.057±0.005±0.003±0.003 0.032±0.003±0.002±0.002

7.4.2 Signal extraction

The J/ψ raw yield extraction as a function of the V0A event activity is
carried out as described in Chapter 6. For the ZN estimator few changes were
applied to the J/ψ raw yield extraction procedure:
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Chapter 7. Event activity and pT dependence analysis

• New tests were added: the width of the ψ(2S) was fixed to the width of
the J/ψ with a factor of 0.9, 1.0 and 1.1.

• The NA60 function was changed by a new formulation which better scales
with the invariant mass. NA60CB2 function was replaced by the new
NA60 function.

• An additional systematic uncertainty of 2% related to the tails defini-
tion was added to the final results. This uncertainty is estimated when
varying the tails obtained for different pT intervals [217].

The results of the signal extraction procedure for p-Pb and Pb-p integrated
over the event activity, for the highest and the lowest ZN event activity classes
are presented in Appendix A. Signal-to-background ratio estimated in a 3σ
interval around the J/ψ mass peak does not go below 0.97, providing a clear
visible J/ψ signal in all the intervals under study.

7.5 pT distribution and < pT > extraction for
inclusive J/ψ

7.5.1 Extraction of < pT > and < p2
T >

Fig.7.10 shows the pT distributions of d2σpPb/dydpT for p-Pb (top) and Pb-
p (bottom) for different V0A event activity classes. Calculation of 〈pT〉 and its
corresponding uncertainties is based on these pT distributions. The procedure
is divided into 3 steps:

1 〈pT〉 calculation

2 calculation of the statistical uncertainty

3 calculation of the systematic uncertainty

1st step: To obtain the 〈pT〉 in the range [0; pmax
T ], the pT dependence of

d2σpPb/dydpT is fitted with a function f(pT). The statistical and the uncorre-
lated systematic uncertainties of the pT-dependent cross sections are quadrat-
ically combined when performing the fit. Then, the 〈pT〉 is computed as:

〈pT〉 =

∫ pmax
T

0
pTf(pT) dpT∫ pmax

T

0
f(pT) dpT

(7.5)

In an ideal case, pmax
T should be equal to infinity. In a real experiment due

to the limited statistics, the range of integration is also limited. Assuming that
the J/ψ cross section pT-dependence outside of the range [0; pmax

T ] follows the
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7.5. pT distribution and < pT > extraction for inclusive J/ψ

Figure 7.10. d2σpPb/dydpT as a function of pT for different V0A event activity
classes in p-Pb (top) and Pb-p (bottom).
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Chapter 7. Event activity and pT dependence analysis

distribution of the fit function, one can estimate the contribution of the range
[pmax

T ;∞] to the 〈pT〉.
In this analysis, the following function is used to parametrize the pT de-

pendence:
f(pT) = C

pT

(1 + (pT/p0)2)n
(7.6)

For pmax
T , three values were used: 8 GeV/c (the upper limit of the J/ψ pp anal-

ysis), 15 GeV/c (the upper limit of this analysis) and 1000 GeV/c (for pmax
T =

∞). It was seen that there is 3-5% difference between the results obtained
with pmax

T = 8 GeV/c and with pmax
T = 15 GeV/c, while the latter results are

very similar to the results obtained with pmax
T = ∞. Indeed, the cross-section

at forward rapidity integrated over 0 − 15 GeV/c represent 99.9% of the to-
tal cross-section (if one considers the fitted function). This allows to consider
15 GeV/c as a correct upper limit to extract the pT. However in the result,
the range of integration is always specified.

Since the exact position of the bin centers is not known a priori, the ROOT
option I is used when fitting the pT -dependence of d2σpPb/dydpT (see Tables
7.4, 7.5). This option uses the integral of each bin when fitting.

The value obtained from the procedure described above correspond to the
extracted 〈pT〉.

2nd step: The fit of d2σpPb/dydpT is then repeated using only the sta-
tistical uncertainties. Then using the fit function (7.6), a contour plot of 1σ
on the parameters p0 and n was obtained (the parameter C is fixed since it
just affects the overall normalization not the 〈pT〉). To produce the contour
plot, 2000 random points were generated. The 〈pT〉 was computed using (7.5)
with these values of p0 and n. A histogram was filled with this 〈pT〉 values.
The statistical uncertainty on 〈pT〉 was then taken as the largest difference
between the mean value obtained in the first step and the positions of the two
peaks at the edge of the histogram mentioned above (Fig. 7.11).

3rd step: Finally, following the step 2, the fit of d2σpPb/dydpT was re-
peated using only the uncorrelated systematic uncertainties with pT. The
obtained uncertainty is the systematic uncertainty on 〈pT〉. Note that the sys-
tematic uncertainties evaluated on 〈pT〉 are partially correlated with the event
activity. The systematic uncertainties on the signal extraction and pile-up
uncertainties are uncorrelated while the other systematics are considered as
correlated.

The procedure described above is illustrated in Fig. 7.11.
For the 〈p2

T〉 calculation the procedure is similar to the one applied for the
〈pT〉 but with the following definition:

〈p2
T〉 =

∫ pmax
T

0
p2

Tf(pT) dpT∫ pmax
T

0
f(pT) dpT

(7.7)
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Table 7.4. J/ψ d2σpPb/dydpT in p-Pb as a function of pT (row) and event
activity (column). The first quoted uncertainty is statistical and the second
represents the uncorrelated systematic uncertainty.

pT
range
(GeV/c)

J/ψ d2σpPb/dydpT (µb/(GeV/c))
Event activity classes in percent

0-100% 0-5% 5-10% 10-20% 20-40% 40-60% 60-80% 80-100%
0-1 76 ± 2

± 4
8.5 ±
0.6 ±
0.6

7.3 ±
0.6 ±
0.5

12.2 ±
0.6 ±
0.7

20 ± 1
± 1

14.6 ±
0.7 ±
0.8

9.5 ±
0.5 ±
0.5

5.1 ±
0.3 ±
0.3

1-2 156 ±
3 ± 8

16.2 ±
0.7 ±
0.9

13.8 ±
0.7 ±
0.7

25 ± 1
± 1

41 ± 1
± 2

31 ± 1
± 2

19 ± 1
± 1

8.9 ±
0.4 ±
0.5

2-3 134 ±
2 ± 7

15.3 ±
0.7 ±
0.8

13.9 ±
0.7 ±
0.8

20 ± 1
± 1

37 ± 1
± 2

25 ± 1
± 1

16.3 ±
0.6 ±
0.9

6.1 ±
0.4 ±
0.4

3-4 89 ± 2
± 5

9.9 ±
0.5 ±
0.6

8.5 ±
0.5 ±
0.5

14.4 ±
0.6 ±
0.8

24 ± 1
± 1

16.5 ±
0.6 ±
0.9

11.5 ±
0.5 ±
0.7

4.2 ±
0.3 ±
0.2

4-5 52 ± 1
± 3

6.3 ±
0.4 ±
0.4

4.9 ±
0.3 ±
0.2

8.0 ±
0.4 ±
0.5

14.2 ±
0.6 ±
0.8

10.1 ±
0.4 ±
0.5

6.3 ±
0.3 ±
0.4

2.3 ±
0.2 ±
0.1

5-6 29 ± 1
± 1

3.4 ±
0.2 ±
0.2

2.9 ±
0.2 ±
0.1

5.5 ±
0.3 ±
0.3

7.6 ±
0.3 ±
0.4

5.5 ±
0.3 ±
0.3

3.2 ±
0.2 ±
0.2

0.95 ±
0.10 ±
0.05

6-8 11.5 ±
0.2 ±
0.6

1.30 ±
0.08 ±
0.08

1.15 ±
0.08 ±
0.07

2.0 ±
0.1 ±
0.1

3.2 ±
0.1 ±
0.2

2.2 ±
0.1 ±
0.1

1.28 ±
0.08 ±
0.07

0.37 ±
0.05 ±
0.02

8-15 1.56 ±
0.05 ±
0.08

0.148 ±
0.007 ±
0.009

0.17 ±
0.01 ±
0.01

0.29 ±
0.02 ±
0.02

0.44 ±
0.02 ±
0.03

0.32 ±
0.02 ±
0.02

0.17 ±
0.01 ±
0.01

0.039 ±
0.008 ±
0.003

where the fit function f(pT) is the same as in (7.6). The corresponding uncer-
tainties are evaluated as for the 〈pT〉.

The same procedure is performed for calculating the 〈pT〉 value in pp at√
sNN = 5.02 TeV using the interpolated pT-dependence of d2σpp/dydpT from [218]

(see Table 7.3). However all the uncertainties are quadratically combined for
this calculation.

In Table 7.6 the results on 〈pT〉 and 〈p2
T〉 are summarized for p-Pb and

Pb-p data as well as for pp interpolated data, with different pT-ranges (e.g.
different pmax

T used in (7.5) and (7.7)).
The 〈pT〉 and 〈p2

T〉 values for the pp data at
√
s = 2.76 TeV and

√
s = 7 TeV

were also extracted in order to compare the results of the present analysis
with the published ones [54]. The results are presented in Table 7.7. The
difference of the order of

√
2.3 in both statistical and systematic uncertainties
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Table 7.5. J/ψ d2σpPb/dydpT distribution in Pb-p in µb/(GeV/c) as a func-
tion of pT (row) and event activity (column). The first quoted uncertainty is
statistical and the second represents the uncorrelated systematic uncertainty.

pT
range
(GeV/c)

J/ψ d2σpPb/dydpT (µb/(GeV/c))
Event activity classes in percent

0-100% 0-5% 5-10% 10-20% 20-40% 40-60% 60-80% 80-100%
0-1 97 ± 2

± 7
12.1 ±
0.8 ±
0.9

10.7 ±
0.8 ±
0.8

15 ± 1
± 1

25 ± 1
± 2

18 ± 1
± 1

12.0 ±
0.7 ±
0.9

5.5 ± 0.4
± 0.4

1-2 197 ±
3 ± 14

26 ± 1
± 2

21 ± 1
± 1

33 ± 1
± 2

52 ± 1
± 4

35 ± 1
± 2

22 ± 1
± 2

8.7 ± 0.5
± 0.7

2-3 159 ±
2 ± 11

21 ± 1
± 2

16 ± 1
± 1

28 ± 1
± 2

43 ± 1
± 3

29 ± 1
± 2

17 ± 1
± 1

6.0 ± 0.3
± 0.4

3-4 92 ± 2
± 6

13.1 ±
0.7 ±
0.9

9.5 ±
0.6 ±
0.6

16 ± 1
± 1

25 ± 1
± 2

17 ± 1
± 1

9.8 ±
0.4 ±
0.7

2.6 ± 0.2
± 0.2

4-5 47 ± 1
± 3

6.4 ±
0.4 ±
0.5

5.5 ±
0.4 ±
0.4

8.3 ±
0.4 ±
0.6

14.0 ±
0.5 ±
1.0

7.2 ±
0.4 ±
0.5

4.5 ±
0.3 ±
0.3

1.3 ± 0.1
± 0.1

5-6 22 ± 1
± 1

2.9 ±
0.2 ±
0.2

2.4 ±
0.2 ±
0.2

4.4 ±
0.2 ±
0.3

5.8 ±
0.3 ±
0.4

4.1 ±
0.2 ±
0.3

2.1 ±
0.2 ±
0.1

0.59 ±
0.09 ±
0.04

6-8 8.5 ±
0.2 ±
0.6

1.19 ±
0.08 ±
0.09

1.07 ±
0.09 ±
0.08

1.6 ±
0.1 ±
0.1

2.3 ±
0.1 ±
0.2

1.27 ±
0.09 ±
0.09

0.85 ±
0.07 ±
0.08

0.15 ±
0.03 ±
0.01

8-15 0.89 ±
0.04 ±
0.07

0.13 ±
0.01 ±
0.01

0.10 ±
0.01 ±
0.01

0.15 ±
0.02 ±
0.01

0.27 ±
0.02 ±
0.02

0.12 ±
0.02 ±
0.01

0.10 ±
0.02 ±
0.01

0.028 ±
0.007 ±
0.002

for 〈pT〉 and 〈p2
T〉 between the published results and the new calculations comes

from a different evaluation of the uncertainties in [54] where in the second and
third step a contour plot of 2.3σ was used instead of 1σ.
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Figure 7.11. Example of 〈pT〉 calculation procedure for p-Pb at forward
rapidity integrated over the event activity. Three rows of plots represent
the fitting procedure performed considering the total uncertainties on the
d2σpp/dydpT distribution (top row), only the statistical uncertainties (mid-
dle row) and only the systematic uncertainties (bottom row). The right two
plots in each row show the 1σ contour plot on the parameters p0 and n (top
right plot in each row) and the corresponding histogram with 〈pT〉 values (bot-
tom right plot in each row) used for the evaluation of the uncertainty (see text
for details). The same procedure is used for 〈p2

T〉 calculation.
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Table 7.6. 〈pT〉 and 〈p2
T〉 summary. First quoted uncertainty is statistical

and second one is systematic. See text for details.

System ycms range event ac-
tivity

0-pmax
T ,

GeV/c
〈pT〉, GeV/c 〈p2

T〉, (GeV/c)2

pp [2.96; 4.46] 0–100% 0–8 2.30 ± 0.03 7.33 ± 0.20
pp [2.96; 4.46] 0–100% 0–15 2.37 ± 0.04 8.18 ± 0.30
pp [2.96; 4.46] 0–100% 0–1000 2.38 ± 0.04 8.35 ± 0.40
pp [2.03; 3.53] 0–100% 0–8 2.42 ± 0.04 8.06 ± 0.22
pp [2.03; 3.53] 0–100% 0–15 2.52 ± 0.04 9.28 ± 0.40
pp [2.03; 3.53] 0–100% 0–1000 2.53 ± 0.05 9.60 ± 0.62
p–Pb [-4.46; -2.96] 0–100% 0–8 2.40 ± 0.01 ± 0.03 7.87 ± 0.06 ± 0.19
p–Pb [-4.46; -2.96] 0–100% 0–15 2.47 ± 0.01 ± 0.03 8.73 ± 0.08 ± 0.21
p–Pb [-4.46; -2.96] 0–100% 0–1000 2.48 ± 0.01 ± 0.03 8.87 ± 0.08 ± 0.21
p–Pb [-4.46; -2.96] 0–5% 0–8 2.43 ± 0.03 ± 0.03 8.08 ± 0.17 ± 0.20
p–Pb [-4.46; -2.96] 0–5% 0–15 2.51 ± 0.03 ± 0.03 9.04 ± 0.20 ± 0.22
p–Pb [-4.46; -2.96] 0–5% 0–1000 2.52 ± 0.03 ± 0.03 9.20 ± 0.22 ± 0.22
p–Pb [-4.46; -2.96] 5–10% 0–8 2.41 ± 0.03 ± 0.04 7.99 ± 0.19 ± 0.20
p–Pb [-4.46; -2.96] 5–10% 0–15 2.50 ± 0.03 ± 0.04 9.02 ± 0.23 ± 0.24
p–Pb [-4.46; -2.96] 5–10% 0–1000 2.51 ± 0.03 ± 0.04 9.23 ± 0.27 ± 0.25
p–Pb [-4.46; -2.96] 10–20% 0–8 2.48 ± 0.02 ± 0.04 8.30 ± 0.14 ± 0.20
p–Pb [-4.46; -2.96] 10–20% 0–15 2.55 ± 0.03 ± 0.04 9.16 ± 0.17 ± 0.22
p–Pb [-4.46; -2.96] 10–20% 0–1000 2.55 ± 0.03 ± 0.04 9.27 ± 0.19 ± 0.22
p–Pb [-4.46; -2.96] 20–40% 0–8 2.43 ± 0.02 ± 0.03 8.04 ± 0.10 ± 0.18
p–Pb [-4.46; -2.96] 20–40% 0–15 2.51 ± 0.02 ± 0.03 8.97 ± 0.14 ± 0.21
p–Pb [-4.46; -2.96] 20–40% 0–1000 2.51 ± 0.02 ± 0.03 9.12 ± 0.15 ± 0.22
p–Pb [-4.46; -2.96] 40–60% 0–8 2.35 ± 0.02 ± 0.03 7.50 ± 0.12 ± 0.18
p–Pb [-4.46; -2.96] 40–60% 0–15 2.40 ± 0.02 ± 0.03 8.16 ± 0.15 ± 0.20
p–Pb [-4.46; -2.96] 40–60% 0–1000 2.41 ± 0.02 ± 0.03 8.24 ± 0.16 ± 0.19
p–Pb [-4.46; -2.96] 60–80% 0–8 2.30 ± 0.03 ± 0.03 7.32 ± 0.15 ± 0.19
p–Pb [-4.46; -2.96] 60–80% 0–15 2.37 ± 0.03 ± 0.03 8.19 ± 0.21 ± 0.24
p–Pb [-4.46; -2.96] 60–80% 0–1000 2.38 ± 0.03 ± 0.03 8.38 ± 0.25 ± 0.28
p–Pb [-4.46; -2.96] 80–100% 0–8 2.04 ± 0.04 ± 0.03 5.88 ± 0.19 ± 0.15
p–Pb [-4.46; -2.96] 80–100% 0–15 2.09 ± 0.04 ± 0.03 6.45 ± 0.28 ± 0.17
p–Pb [-4.46; -2.96] 80–100% 0–1000 2.09 ± 0.04 ± 0.03 6.59 ± 0.34 ± 0.18
p–Pb [2.03; 3.53] 0–100% 0–8 2.63 ± 0.01 ± 0.03 9.40 ± 0.07 ± 0.17
p–Pb [2.03; 3.53] 0–100% 0–15 2.77 ± 0.01 ± 0.03 11.12 ± 0.09 ± 0.20
p–Pb [2.03; 3.53] 0–100% 0–1000 2.79 ± 0.01 ± 0.03 11.57 ± 0.11 ± 0.23
p–Pb [2.03; 3.53] 0–5% 0–8 2.69 ± 0.03 ± 0.03 9.69 ± 0.19 ± 0.20
p–Pb [2.03; 3.53] 0–5% 0–15 2.81 ± 0.03 ± 0.03 11.13 ± 0.21 ± 0.23
p–Pb [2.03; 3.53] 0–5% 0–1000 2.82 ± 0.03 ± 0.03 11.34 ± 0.21 ± 0.23
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7.5. pT distribution and < pT > extraction for inclusive J/ψ

System ycms range event ac-
tivity

0-pmax
T ,

GeV/c
〈pT〉, GeV/c 〈p2

T〉, (GeV/c)2

p–Pb [2.03; 3.53] 5–10% 0–8 2.67 ± 0.03 ± 0.03 9.63 ± 0.20 ± 0.19
p–Pb [2.03; 3.53] 5–10% 0–15 2.82 ± 0.04 ± 0.03 11.56 ± 0.28 ± 0.24
p–Pb [2.03; 3.53] 5–10% 0–1000 2.85 ± 0.04 ± 0.03 12.11 ± 0.38 ± 0.28
p–Pb [2.03; 3.53] 10–20% 0–8 2.67 ± 0.03 ± 0.03 9.68 ± 0.16 ± 0.18
p–Pb [2.03; 3.53] 10–20% 0–15 2.84 ± 0.03 ± 0.03 11.75 ± 0.21 ± 0.24
p–Pb [2.03; 3.53] 10–20% 0–1000 2.87 ± 0.03 ± 0.03 12.43 ± 0.29 ± 0.32
p–Pb [2.03; 3.53] 20–40% 0–8 2.65 ± 0.02 ± 0.03 9.51 ± 0.12 ± 0.17
p–Pb [2.03; 3.53] 20–40% 0–15 2.80 ± 0.02 ± 0.03 11.33 ± 0.16 ± 0.23
p–Pb [2.03; 3.53] 20–40% 0–1000 2.82 ± 0.02 ± 0.03 11.83 ± 0.21 ± 0.31
p–Pb [2.03; 3.53] 40–60% 0–8 2.62 ± 0.02 ± 0.03 9.35 ± 0.14 ± 0.17
p–Pb [2.03; 3.53] 40–60% 0–15 2.77 ± 0.02 ± 0.03 11.23 ± 0.18 ± 0.22
p–Pb [2.03; 3.53] 40–60% 0–1000 2.80 ± 0.02 ± 0.03 11.83 ± 0.24 ± 0.26
p–Pb [2.03; 3.53] 60–80% 0–8 2.60 ± 0.03 ± 0.03 9.14 ± 0.15 ± 0.17
p–Pb [2.03; 3.53] 60–80% 0–15 2.72 ± 0.03 ± 0.03 10.63 ± 0.20 ± 0.20
p–Pb [2.03; 3.53] 60–80% 0–1000 2.73 ± 0.03 ± 0.03 10.95 ± 0.25 ± 0.23
p–Pb [2.03; 3.53] 80–100% 0–8 2.36 ± 0.04 ± 0.03 7.65 ± 0.20 ± 0.16
p–Pb [2.03; 3.53] 80–100% 0–15 2.44 ± 0.04 ± 0.03 8.59 ± 0.28 ± 0.18
p–Pb [2.03; 3.53] 80–100% 0–1000 2.45 ± 0.04 ± 0.03 8.78 ± 0.34 ± 0.18

Table 7.7. 〈pT〉 and 〈p2
T〉 summary for pp collisions at

√
sNN = 2.76 TeV and

7 TeV compared to the published values from [54]. First quoted uncertainty is
statistical and the second one is systematic. See text details.

√
sNN ,
TeV

0-pmax
T ,

GeV/c
〈pT〉, GeV/c 〈p2

T〉, (GeV/c)2 source

2.76 0–8 2.28 ± 0.07 ± 0.04 7.06 ± 0.40 ± 0.22 published
2.76 0–8 2.28 ± 0.04 ± 0.03 7.06 ± 0.26 ± 0.13 new
2.76 0–15 2.32 ± 0.05 ± 0.02 7.50 ± 0.40 ± 0.14 new
2.76 0–1000 2.32 ± 0.05 ± 0.02 7.53 ± 0.44 ± 0.15 new
7 0–8 2.44 ± 0.09 ± 0.06 8.32 ± 0.50 ± 0.35 published
7 0–8 2.45 ± 0.06 ± 0.04 8.36 ± 0.35 ± 0.24 new
7 0–15 2.60 ± 0.08 ± 0.06 10.33 ± 0.82 ± 0.73 new
7 0–1000 2.65 ± 0.10 ± 0.10 11.45 ± 1.31 ± 1.99 new

147



Chapter 7. Event activity and pT dependence analysis

7.5.2 SPD pile-up effect on < pT > extraction

The effect of pile-up on the 〈pT〉 using different options of the SPD pile-up
tagging method was studied. One option was chosen to quantify the pile-up
effect on the extracted signal and 〈pT〉.

The pT dependent cross sections are shown in Fig.7.12 when removing
events tagged as SPD pile-up events.

Figure 7.12. d2σpPb/dydpT as a function of pT for different V0A event activity
classes in p-Pb (top) and Pb-p (bottom), with SPD pile-up cut: n = 5, d =
6mm
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7.6. Systematic uncertainties

Procedures of calculation of 〈pT〉 described in the previous section were
performed for each V0A event activity bins. The result is shown in Fig. 7.13,
for both p-Pb and Pb-p with n = 5, d = 6mm SPD pile-up cut and without
pile-up cut.

Removing or not the SPD pile-up events does not affect the 〈pT〉 values.
The difference between 〈pT〉 calculated with and without pile-up cut could be
considered as an additional systematic uncertainty uncorrelated with the the
event activity classes. However it was not included in the final results since
its effect on the 〈pT〉 and 〈p2

T〉 is negligible compared to the statistical and
systematic uncertainties.

7.6 Systematic uncertainties

The systematic uncertainties evaluations for the pT distributions are similar
to those described in the Section 6.8.

For the 〈pT〉 extraction, the systematics include uncertainties on the signal
extraction, MC parametrization, tracking, trigger and matching efficiency.

Tab.7.8 shows the sharing between the uncorrelated, the correlated and the
partially correlated systematic uncertainties for different results.

The main difference with respect to the previous analysis is the new ob-
servable, event activity. The dependence of the systematic uncertainties on
this observable is discussed below.

Such components of the systematic uncertainty as BR uncertainty, Glauber
uncertainty on TpPb, uncertainty from the luminosity and all different types
of uncertainties on the σJ/ψ

pp do not depend on the event activity due to their
nature. No dependence of the detectors efficiency with the event activity is
expected, therefore the same Aε value is used for different event activity classes.
Corresponding systematic uncertainties on the matching, trigger and tracking
efficiency thus also do not depend on the event activity.

Signal extraction systematic uncertainty is dependent on the event activity
by its definition. The same stands for the MC inputs. Fnorm systematic uncer-
tainty was considered as dependent on the event activity. In this way, it better
reflects the fact that the ZN event activity distribution is not completely flat.
Model uncertainty on TpPb also depends on the event activity since it is based
on TpPb from different hypotheses, estimated in each event activity class.
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Chapter 7. Event activity and pT dependence analysis

Figure 7.13. 〈pT〉 as a function of the V0A event activity in p-Pb (top) and
Pb-p (bottom). Blue (Red) points correspond to the calculations with SPD
pile-up cut (without SPD pile-up cut).
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7.6. Systematic uncertainties

Table 7.8. Summary on the systematic uncertainties.

Source QpPb vs event
activity

d2σpPb/dydpT

vs pT in event
activity bins

QpPb vs pT in event activity

BR
global

global
globalGlauber

uncertainty
on the TpPb

—

Corr. unc.
on σJψpp

—

Model
uncertainty
on TpPb

uncorrelated — Partially correlated

Signal
extraction uncorrelated
FNorm

Acc. inputs
Part. corr.
unc. on σJψpp

Correlated in
p-Pb or Pb-p,
but partially
correlated
when
considering
the two
periods
together

— Partially correlated

Uncorr.
unc. on σJψpp

—
uncorrelated

matching
uncorrelatedtrigger

efficiency
tracking

luminosity global global in p-Pb or Pb-p, but
partially correlated when

considering the two periods
together
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Chapter 8

Results

This chapter presents the results of the analyses described in the two pre-
vious chapters. These results include the J/ψ nuclear modification factor as
a function of rapidity, as a function of the event activity and as a function
of both pT and the event activity, as well as the forward-to-backward ratio
as a function of rapidity and pT in p-Pb collisions. From the pT and event
activity dependence, I also extracted the 〈pT〉 and 〈p2

T〉 as a function of the
event activity. Results of other ALICE analyses, where I was involved, are also
presented in this chapter: the pT dependence of the J/ψ nuclear modification
factor and the ψ(2S) production measurements in p-Pb collisions. The results
are compared to the theoretical models described in Chapter 3. Finally the
p-Pb measurements allow an estimation of the contribution of the CNM to the
Pb-Pb measurements and this is also discussed.

8.1 pT and y dependence of the J/ψ production

The results on cross section, nuclear modification factor and forward-to-
backward ratio are presented below. As stated previously, the following con-
vention was defined: the rapidity is defined according to the proton beam
direction. The muon spectrometer provides access to positive rapidity in p-Pb
and negative in Pb-p. This is motivated by the x value of the probed gluon in
the nucleus. In p-Pb configuration (corresponding to positive rapidity results),
the Pb beam is coming from the muon spectrometer side and the J/ψ detected
in the muon spectrometer are produced from gluons in the Pb beam with x
values of the order of 5 · 10−5, while in Pb-p configuration (corresponding to
negative rapidity results), x values of the gluons probed in the Pb beam are
of the order of 2 · 10−2. The results presented in this chapter are published
in [219]. In the following we will use p-Pb (Pb-p) to denote the forward (back-
ward) rapidity configuration.
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Chapter 8. Results

8.1.1 Inclusive J/ψ cross section measurement

8.1.1.1 Inclusive J/ψ cross section integrated over pT and y

The integrated cross sections are given in Tab.8.1. The uncorrelated sys-
tematics include the uncertainties on tracking, trigger, matching and on the
MC parametrization. The systematic uncertainties on signal extraction, branch-
ing ratio, CINT7-CMUL7 normalization and the MB cross section are either
fully or partially correlated between the backward and forward rapidity results.
The quadratic sum of these uncertainties is quoted as partially correlated.

ycms range σint (µb)
systematic uncertainties (µb)

uncorrelated partially correlated
[−4.46;−2.96] 966± 8 70 31

[2.03; 3.53] 886± 6 48 30

Table 8.1. Inclusive J/ψ cross section integrated over rapidity and pT in two
rapidity ranges for 0 ≤ pT ≤ 15 GeV/c.

8.1.1.2 Rapidity dependence of the inclusive J/ψ cross section

The rapidity dependence of the inclusive J/ψ cross section in p-Pb collisions
is presented in Fig.8.1 and is given in Tab.8.2 where 6 intervals in rapidity are
defined. A significant y dependence of the inclusive J/ψ production in p-Pb
collisions is found. The J/ψ cross section increases towards the lower |ycms|.
The J/ψ cross section is larger at backward than at forward rapidity by ∼ 20%.
The pp cross section interpolated at

√
sNN = 5.02 TeV and scaled by the Pb-

nucleus atomic mass number, is shown with its derived uncertainties as a blue
band. At backward rapidity the J/ψ cross section in p-Pb collisions is similar
to the scaled pp cross section while at forward rapidity the J/ψ p-Pb cross
section is smaller than the scaled pp one.

A comparison of the ALICE measurements with the LHCb data [220] is
presented in Fig.8.2. A good agreement is reached for ycms ≥ 2.5 and ycms ≤ −3
while the ALICE data points are systematically higher with respect to those
of LHCb for ycms < 2.5 and ycms > −3 by ∼10%. Both measurements are
however in agreement within 1σ.

8.1.2 Inclusive J/ψ nuclear modification factor

8.1.2.1 pT and y integrated RpPb

The inclusive J/ψ RpPb measured by ALICE at
√
sNN = 5.02 TeV and

integrated in the range −4.46 ≤ ycms ≤ −2.96 (2.03 ≤ ycms ≤ 3.53) and for
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8.1. pT and y dependence of the J/ψ production
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Figure 8.1. Rapidity dependence of the inclusive J/ψ cross section. The error
bars correspond to the statistical uncertainties, the open boxes to the uncorre-
lated and the shaded boxes to the partially correlated systematic uncertainties.
The bands are the inclusive J/ψ cross section obtained with an interpolation
procedure as described in Section 6.7 and scaled by the Pb-nucleus atomic
mass number. From [219].

0 ≤ pT ≤ 15 GeV/c is shown in Fig.8.3 and presented in Tab.8.3. The uncor-
related systematics (open boxes) include the normalization, matching, trigger,
tracking and MC parametrization uncertainties. The partially correlated sys-
tematics (shaded boxes) with the collision system include the uncertainty on
the yield extraction and the pp reference. Finally the fully correlated un-
certainty (grey box at unity) includes the uncertainty on the nuclear overlap
function.
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Chapter 8. Results

ycms range dσ
dy

(µb) systematic uncertainies (µb)
partially correlated uncorrelated

[−4.46;−4.21] 457 ± 14 15 39
[−4.21;−3.96] 504 ± 9 17 36
[−3.96;−3.71] 599 ± 9 20 44
[−3.71;−3.46] 680 ± 10 23 51
[−3.46;−3.21] 767 ± 12 25 59
[−3.21;−2.96] 856 ± 28 28 72

[2.03; 2.28] 721 ± 22 24 44
[2.28; 2.53] 687 ± 11 23 40
[2.53; 2.78] 618 ± 8 21 37
[2.78; 3.03] 554 ± 8 19 31
[3.03; 3.28] 498 ± 9 17 31
[3.28; 3.53] 440 ± 13 15 29

Table 8.2. Rapidity dependence of the cross section for the inclusive
J/ψ production for 0 ≤ pT ≤ 15 GeV/c.

Figure 8.2. Rapidity dependence of the inclusive J/ψ cross section for AL-
ICE (red points) and LHCb (blue points). The error bars correspond to the
statistical uncertainties, the open boxes to the uncorrelated and the shaded
boxes to the partially correlated systematic uncertainties. The LHCb inclusive
cross section has been obtained summing contributions from B feed down and
prompt J/ψ [220].

156



8.1. pT and y dependence of the J/ψ production
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Figure 8.3. Integrated RpPb in p-Pb (y ≥ 0) and Pb-p (y ≤ 0). The error bars
correspond to the statistical uncertainties, the open boxes to the uncorrelated
systematic uncertainties, the shaded boxes around the point to the partially
correlated systematic uncertainties and the box around RpPb = 1 to the size
of the correlated systematic uncertainties. Theoretical predictions: EPS09
NLO [221], CGC [125], coherent parton energy loss model [133]. From [219].

The results are compared to theoretical predictions of the following mod-
els: NLO CEM calculation with the EPS09 shadowing parametrization [221],
model including coherent parton energy loss contribution [133] either in ad-
dition to EPS09 shadowing or as the only nuclear effect, CGC-based model1

1It is assumed in the presented CGC-based model that the quark pair produced from
dense small-x gluons in the nuclear target bounds into a quarkonium outside the target.
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combined with a CEM production model [125]. Both shadowing and coherent
parton energy loss models describe well the data within the experimental un-
certainties, while the CGC-based prediction overestimates the J/ψ suppression.
Theoretical uncertainties of the EPS09 NLO model are related to the EPS09
shadowing parametrization and to the mass and scale uncertainties on the cross
section. The band for the CGC corresponds to the uncertainty from the choice
of the parton saturation scale and of the charm quark mass. The parameter
q0 is the transport coefficient defined in (3.10). None of the models includes a
suppression related to the break-up of the cc̄ pair. It allows to conclude that
the inclusive J/ψ production in p-Pb collisions at the LHC energies can be
reproduced by the models without the nuclear absorption contribution.

Theoretical predictions are done for the prompt J/ψ (direct J/ψ plus con-
tribution from ψ(2S) and χc decays) while the ALICE measurements are for
the inclusive J/ψ production (prompt J/ψ plus non-prompt contribution from
B-decays). However it was shown by LHCb that the pT-integrated non-prompt
J/ψ fraction is small: 7.1% at

√
sNN = 2.76 TeV in pp collisions in the kine-

matic range 2 < ycms < 4.5, pT < 12 GeV/c [222] and 9.8% at
√
sNN = 7 TeV in

pp collisions for 2 < ycms < 4.5, pT < 14 GeV/c [223]. The difference between
the inclusive and the prompt RpPb stays within uncertainties for a very large
range of Rnon−prompt

pPb , from almost complete suppression (Rnon−prompt
pPb = 0.2) to

a strong enhancement (Rnon−prompt
pPb = 1.3) [219]. This is true for the forward

and backward rapidity regions.

ycms RpPb
systematic uncertainties

partially
correlated

uncorre-
lated

fully
correlated

[−4.46;−2.96] 1.08 ± 0.01 0.03 0.09 0.07
[2.03; 3.53] 0.70 ± 0.01 0.03 0.05 0.05

Table 8.3. Integrated nuclear modification factor for inclusive J/ψ production
for 0 ≤ pT ≤ 15 GeV/c.

8.1.2.2 Rapidity dependence of RpPb

The inclusive J/ψ RpPb was measured for six intervals in rapidity in each
period of data taking as shown in Fig.8.4 and given in Tab.8.4.

Large uncertainties at the edges of the rapidity ranges correspond to the
large uncertainty of the interpolated pp cross section extrapolated outside the
y-range 2.5 < |ycms| < 4 (see details in Section 6.7). TheRpPb is consistent with
a constant at backward rapidity. The models described above are also shown.

An assumption of dilute-dense colliding system applies only in the positive rapidity region
(y > 0), especially for pp , which is needed in the denominator of the RpPb [125].
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Figure 8.4. RpPb as a function of rapidity in p-Pb collisions. The error bars
correspond to the statistical uncertainties, the open boxes to the uncorrelated,
the shaded boxes around the point to the partially correlated and the box
around RpPb = 1 to the correlated systematic uncertainties. The models are
the same as in Fig.8.3. From [219].

Both calculations of the energy loss model well describe the data within the
experimental uncertainties while they predict a steeper behaviour of RpPb at
backward rapidity. At forward rapidity both configurations agree with the data
in both the shape and the amplitude of RpPb. EPS09 NLO model also shows a
fair agreement with the experimental measurements but slightly overestimates
the RpPb at forward rapidity. CGC-based model significantly underestimates
the measured RpPb at forward rapidity for the full rapidity range.
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ycms RpPb
systematic uncertainties (µb)

uncorrelated partially correlated
[−4.46;−4.21] 1.12 ± 0.04 0.18 0.09
[−4.21;−3.96] 1.05 ± 0.02 0.12 0.05
[−3.96;−3.71] 1.06 ± 0.02 0.10 0.02
[−3.71;−3.46] 1.05 ± 0.02 0.09 0.02
[−3.46;−3.21] 1.06 ± 0.02 0.09 0.03
[−3.21;−2.96] 1.08 ± 0.04 0.10 0.03

[2.03; 2.28] 0.74 ± 0.02 0.06 0.07
[2.28; 2.53] 0.74 ± 0.01 0.06 0.05
[2.53; 2.78] 0.70 ± 0.01 0.05 0.02
[2.78; 3.03] 0.67 ± 0.01 0.05 0.02
[3.03; 3.28] 0.65 ± 0.01 0.05 0.02
[3.28; 3.53] 0.64 ± 0.02 0.05 0.02

Table 8.4. Rapidity dependence of the nuclear modification factor for inclu-
sive J/ψ production for 0 ≤ pT ≤ 15 GeV/c.

8.1.3 Forward to Backward ratio

In order to cancel out the pp interpolated cross section and its associated
systematic uncertainties, the forward to backward ratio RFB is defined:

RFB(2.96 ≤ ycms ≤ 3.53) =
Y pPb

J/ψ (∆pT, 3.43 ≤ ylab ≤ 4)

Y Pbp
J/ψ (∆pT,−3.07 ≤ ylab ≤ −2.5)

. (8.1)

In this ratio, the nuclear overlap function TpPb also cancels out. This ratio is
defined in the common rapidity range 2.96 ≤ ycms ≤ 3.53 which corresponds
to a rapidity range of 3.43 ≤ ylab ≤ 4 in p-Pb and of −3.07 ≤ ylab ≤ −2.5 in
Pb-p. Due to the reduced y-range used for the RFB calculation, the statistics
is reduced by a factor ∼ 3. It should be also noted, that even if a theoretical
model shows a good agreement with the measured RFB, it does not necessary
mean that it also describes correctly the corresponding invariant yields in both
rapidity ranges. In particular, it can be the case for the models which globally
overestimate/underestimate the nuclear modification factors.

8.1.3.1 pT and y integrated RFB

The inclusive J/ψ RFB in p-Pb collisions at
√
sNN = 5.02 TeV measured in

the range 2.96 ≤ ycms ≤ 3.53 and 0 ≤ pT ≤ 15 GeV/c is 0.60 ± 0.01(stat.) ±
0.06(syst.). The systematic uncertainties uncorrelated between p-Pb and Pb-
p data samples (tracking, matching and trigger efficiency, normalization, MC
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8.1. pT and y dependence of the J/ψ production

input) have been quadratically combined. The signal extraction uncertainties
have been calculated directly from the ratio of the number of J/ψ. The total
uncertainty on the RFB ratio is dominated by the tracking efficiency uncer-
tainty.

FBR
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Figure 8.5. RFB integrated over pT and y . The experimental error bar cor-
responds to the statistical and systematic uncertainties added in quadrature.
The uncertainties on the shadowing calculations are given when available. See
text for details. From [219].

In Fig.8.5 the RFB is compared to theoretical predictions from the models
described above. CGC-based model results are not presented since it gives
prediction only at forward rapidity. One additional model, based on the LO
approach, implementing 2 → 2 kinematics (gg → J/ψg) and using either the
EPS09 or the nDSG shadowing parametrization [224], is shown in the figure.
The model including both energy loss and shadowing predicts a value consis-
tent with the data within the experimental uncertainties. Pure shadowing or
pure energy loss model seem to overestimate the RFB ratio, except the EPS09
LO model which has a larger theoretical uncertainty which fully includes the
measured RFB with its total experimental uncertainty.

8.1.3.2 Transverse momentum dependence of the RFB ratio

The transverse momentum dependence of inclusive J/ψ RFB measured in
p-Pb collisions at

√
sNN = 5.02 TeV, integrated in the range 2.96 ≤ ycms ≤ 3.53

is shown in Fig.8.6 and is given in Tab.8.5 for 10 intervals in pT. An increase
of the RFB from 0.62 to 0.95 is seen with increasing pT.
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Figure 8.6. RFB as a function of pT. The error bars correspond to the statisti-
cal uncertainties, the open boxes to the uncorrelated systematic uncertainties.
From [219].

It is compared to two models with the energy loss contribution [225] and
to the EPS09 NLO model [221]. The energy loss model is in fair agreement
with the data, when including the shadowing contribution. Pure shadow-
ing model is in agreement with the data for pT > 5 GeV/c, while at lower
pT (2.5 < pT < 5 GeV/c) it predicts a higher RFB ratio than seen in the data.

8.1.3.3 Rapidity dependence of RFB

The rapidity dependence of inclusive J/ψ RFB measured in p-Pb collisions
at
√
sNN = 5.02 TeV in the rapidity range 2.96 ≤ ycms ≤ 3.53 is shown in
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ycms RFB systematic uncertainty
[0; 1] 0.62 ± 0.04 0.06
[1; 2] 0.57 ± 0.02 0.05
[2; 3] 0.57 ± 0.02 0.05
[3; 4] 0.64 ± 0.03 0.06
[4; 5] 0.70 ± 0.04 0.06
[5; 6] 0.76 ± 0.05 0.07
[6; 7] 0.81 ± 0.06 0.07
[7; 9] 0.70 ± 0.06 0.09
[9; 11] 0.82 ± 0.13 0.08
[11; 15] 0.95 ± 0.24 0.13

Table 8.5. pT dependence of the RFB for inclusive J/ψ production for 2.96 ≤
ycms ≤ 3.53.

Fig.8.7 and is given in Tab.8.6 for three rapidity bins. In this narrow y-range it
shows almost no rapidity dependence. The rapidity dependence of the models
which are consistent with the integrated RFB, show also a fair agreement with
the y dependence of the RFB. The energy loss model including the shadowing
contribution predicts a slight decrease of the RFB with the increase of y. This
behaviour is also in fair agreement with the data within the experimental
uncertainties. Other models also predict a slight decrease of the RFB with
the increase of y. However the large theoretical uncertainties do not allow to
conclude more.

ycms RFB systematic uncertainty
[2.96; 3.15] 0.58 ± 0.03 0.06
[3.15; 3.34] 0.60 ± 0.03 0.05
[3.34; 3.53] 0.61 ± 0.03 0.06

Table 8.6. Rapidity dependence of the RFB for inclusive J/ψ production for
0 ≤ pT ≤ 15 GeV/c.
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Figure 8.7. RFB as a function of y . The error bars correspond to the statisti-
cal uncertainties, the open boxes to the uncorrelated systematic uncertainties.
From [219].
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8.2 J/ψ production as a function of the event
activity

In the following, the results of the event activity dependence analysis are
presented: the pT dependence of the cross sections, 〈pT〉 and 〈p2

T〉, and QpPb as
a function of the event activity. The ZN and the V0A centrality estimators
were used for this analysis. Most of the official preliminary ALICE results
are performed using the ZN estimator, while the V0A estimator results are
mostly presented for comparison. The 〈pT〉 and 〈p2

T〉 results as a function of
the V0A event activity are official ALICE preliminary results first presented
in [226, 227]. In the V0A analysis, systematics from pile-up events are not
considered.

8.2.1 Cross-section as a function of pT for different event
activity classes

In Fig.8.8 the d2σ
J/ψ
pPb/dydpT as a function of pT for different ZN event

activity classes are shown for forward (top) and backward (bottom) rapidity.
All the cross sections are normalized by the width of the event activity interval.
Boxes represent the uncorrelated systematic uncertainties while the bars are
the statistical uncertainties.

For comparison, the same figures are shown in Fig.8.9 for the V0A esti-
mator. A visible difference is seen between the results obtained with the V0A
and with the ZN estimators. In particular, the amplitude d2σ

J/ψ
pPb/dydpT in the

largest event activity class (0-5%) is higher for the V0A estimator than for
the ZN estimator, while the lowest event activity class (80-100%) shows the
opposite: the amplitude of d2σ

J/ψ
pPb/dydpT is lower for the V0A estimator than

for the ZN estimator.

8.2.2 The J/ψ < pT > as a function of the V0A event
activity.

The results of the J/ψ 〈pT〉 dependence as a function of the V0A event ac-
tivity are presented in Fig.8.10. Green points correspond to the J/ψ 〈pT〉 mea-
sured in pp at

√
s =2.76 TeV and 7 TeV from [205]. These pp values were cal-

culated in the pT range [0; 8] GeV/c. At forward rapidity, the J/ψ 〈pT〉 values
are equal or higher than the pp ones. At backward rapidity, the J/ψ 〈pT〉 in
p-Pb collisions for all the V0A event activity classes higher than 80-100%, is
of the order of the J/ψ 〈pT〉 in pp . In the V0A event activity class 80-100%
at backward rapidity, the J/ψ 〈pT〉 in p-Pb collisions is lower than the pp one.
This is not expected (the J/ψ 〈pT〉 in p-Pb collisions should be either equal
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Figure 8.8. d2σ
J/ψ
pPb/dydpT as a function of pT for different ZN event activity

classes in p-Pb (top) and Pb-p (bottom). From [228].

or higher than pp) but this can be explained by the V0A event activity de-
termination: the events selected by the V0A estimator in this class can have
different characteristics (i.e. 〈Ncoll〉) with respect to the pp collisions.

The J/ψ 〈pT〉 decreases towards lower event activity at forward and back-
ward rapidity. The J/ψ 〈pT〉 was also measured for the V0A event activ-
ity interval 80 − 90%. The values of the J/ψ 〈pT〉 = 2.46 ± 0.04 ± 0.03
(〈pT〉 = 2.11 ± 0.04 ± 0.03) in p-Pb (Pb-p) are similar to the values mea-
sured in the V0A event activity class 80 − 100%: 〈pT〉 = 2.44 ± 0.04 ± 0.03
(〈pT〉 = 2.09 ± 0.04 ± 0.03) in p-Pb (Pb-p). It may be an indication of some
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8.2. J/ψ production as a function of the event activity

Figure 8.9. d2σ
J/ψ
pPb/dydpT as a function of pT for different V0A event activity

classes in p-Pb (top) and Pb-p (bottom).

bias in the V0A event activity class 80-100%.
In Fig.8.11 ∆〈p2

T〉
J/ψ
pPb is shown as a function of the V0A event activity for

forward (top) and backward (bottom) rapidity. ∆〈p2
T〉

J/ψ
pPb is defined as the

difference between the 〈p2
T〉

J/ψ
pPb and 〈p2

T〉
J/ψ
pp at the same energy and in the

same rapidity range. The 〈p2
T〉

J/ψ
pp values given in Tab.7.6 are common to all

the V0A event activity classes in p-Pb. For that reason, the total uncertainty
on the 〈p2

T〉
J/ψ
pp value is considered as fully correlated and is shown as a color

box around zero. ∆〈p2
T〉

J/ψ
pPb increases with the V0A event activity. This can
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Figure 8.10. The J/ψ 〈pT〉 as a function of the V0A event activity in p-Pb
(top) and Pb-p (bottom). Error bars represent statistical uncertainty, boxes
represent systematic uncertainty. From [227].

be an indication of the multiple parton scattering in the initial nucleus state
(the so-called Cronin effect). However the shadowing effect that deplete the
J/ψ of low pT leads to the same trend of ∆〈p2

T〉
J/ψ
pPb. In the smallest V0A

event activity class (80-100%) the p-Pb results are lower than the pp ones at
the same energy and rapidity range, but this is significant only at backward
rapidity. As explained earlier, this can be a result of the possible bias in this
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V0A event activity class or of the different event characteristics.

Figure 8.11. The V0A event activity dependence of ∆〈p2
T〉

J/ψ
pPb for forward

(top) and backward (bottom) rapidity. The boxes around zero represent the
uncertainties of 〈p2

T〉
J/ψ
pp . From [226,227].
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8.2.3 The J/ψ < pT > as a function of the ZN event ac-
tivity

In this section, the J/ψ 〈pT〉 is shown as a function of the ZN event activity.
The J/ψ 〈pT〉 dependence on the ZN event activity is presented in Fig. 8.12 for
p-Pb (red) and Pb-p (blue). ∆〈p2

T〉
J/ψ
pPb increases with the ZN event activity as it

was also seen in Fig.8.11 for the V0A estimator. The pp results at
√
s = 2.76

and 7 TeV [205] are also added for comparison. A visible difference is seen
compared to the V0A studies, especially in the lowest event activity classes
where the J/ψ 〈pT〉 in the ZN case is higher than the one obtained for the V0A
estimator. The difference is also visible in the top panel of Fig.8.13 where the
∆〈p2

T〉
J/ψ
pPb is shown as a function of the ZN event activity. In the event activity

selection with ZN, the lowest event activity class is similar to pp. This is not
observed with the V0A estimator indicating a different event activity selection
with the two estimators at low event activity.

In the bottom panel of Fig.8.13 the ∆〈p2
T〉

J/ψ
pPb is presented as a function

of Nmult
coll (see the correspondence between the ZN event activity and Nmult

coll in
Tab.7.1). It is compared to the ∆〈p2

T〉
J/ψ
dAu PHENIX results [139] as a function

of Ncoll for d-Au collisions at
√
sNN = 200 GeV. The pT broadening is the same

for all rapidities at RHIC energies and at backward rapidity at LHC energies.
Only for the forward rapidity at LHC, the pT broadening is larger. It should be
noted that there is no direct correspondence between the Nmult

coll and the Ncoll

due to the unknown level of bias in the Ncoll determination for the ZN event
activity classes. This can slightly shift the data points along the Ncoll axis.

8.2.4 Q
J/ψ
pPb as a function of the event activity

In Fig.8.14 QJ/ψ
pPb as a function of the V0A event activity is shown for p-Pb

(red) and Pb-p (blue) using TV0A
pPb from the column 2 of Table 7.2. At forward

rapidity QJ/ψ
pPb decreases for the higher event activity classes and at backward

rapidity QJ/ψ
pPb is consistent with unity except for the lowest and highest event

activity classes.

In the top panel of Fig.8.15 QJ/ψ
pPb as a function of the ZN event activity

is shown for p-Pb (red) and Pb-p (blue). At forward rapidity, QpPb decreases
towards the higher multiplicity collisions while at backward rapidity QJ/ψ

pPb is
consistent with unity in the full event activity range. The results for the
V0A estimator are consistent with those for the ZN estimator, except for the
smallest event activity class (80-100%). This is another hint of different event
characteristic selection with V0A and ZN in the event activity class 80-100%.

In the bottom panel of Fig.8.15 the same results as in the top panel are
shown as a function of Nmult

coll . The correspondence between the ZN event
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8.2. J/ψ production as a function of the event activity

Figure 8.12. The J/ψ 〈pT〉 as a function of the ZN event activity. Error bars
represent statistical uncertainty, boxes represent systematic uncertainty

activity and the Nmult
coll values is discussed above. The Nmult

coll dependence of
QpPb is compared to the predictions given in private communications by the
authors of the papers on EPS09 NLO [229] (striped bands) and coherent parton
energy loss model [225] (shaded bands). Blue data points and theoretical lines
correspond to the backward rapidity range while red points and lines are the
results for forward rapidity range. The dashed lines in the theoretical bands
correspond to the central values, the bands are the corresponding uncertainties.

The predictions of the EPS09 NLO model should be considered as prelim-
inary and the uncertainties on the corresponding curves are taken from the
centrality-integrated predictions made for [219]. The EPS09 NLO and the en-
ergy loss models calculations are genuine predictions made before the release of
the ALICE measurements. The EPS09 NLO model describes well Qmult

pPb for the
J/ψ at backward rapidity but significantly overestimates it at forward rapid-
ity. The energy loss model shows a good agreement with Qmult

pPb for the J/ψ at
forward rapidity and for small Nmult

coll at backward rapidity. For high Nmult
coll at

backward rapidity the energy loss model underestimates Qmult
pPb for the J/ψ .

The theoretical predictions are made for the Ncoll dependence of the prompt
J/ψ production, while the ALICE results are for the Nmult

coll dependence of the
inclusive J/ψ production. The effect from the non-prompt contribution of the
J/ψ production to the nuclear modification factor is expected to be small as
it was discussed in Section 8.1.2.1. As explained earlier, there is no direct
correspondence between the Nmult

coll and the Ncoll. It can slightly shift the data
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Figure 8.13. Top: The ZN event activity dependence of ∆〈p2
T〉

J/ψ
pPb. Bot-

tom: ∆〈p2
T〉

J/ψ
pPb ALICE results as a function of Nmult

coll at
√
sNN = 5.02 TeV

compared to the ∆〈p2
T〉

J/ψ
dAu PHENIX results [139] vs Ncoll for d-Au collisions

at
√
sNN = 200 GeV. Data points are shown in colors: red (ALICE, forward

y), blue (ALICE, backward y), green (PHENIX, forward y), purple (ALICE,
mid-y), black (PHENIX, backward y). The color boxes around zero represent
the uncertainties of 〈p2

T〉
J/ψ
pp for the results with the same color. From [228].

points along the Ncoll axis. Also the amplitude of Qmult
pPb can slightly vary since

it is obtained from Nmult
coll . However the amplitude of the forward-to-backward
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8.2. J/ψ production as a function of the event activity

Figure 8.14. QJ/ψ
pPb as a function of the V0A event activity for p-Pb (red) and

Pb-p (blue) using obtained using TV0A
pPb from the column 2 of Table 7.2.

ratio does not suffer from the bias in the Nmult
coll determination and can be used

to better constrain the models even if the Ncoll coordinates of the RFB can also
slightly move along the Ncoll axis.

8.2.5 Q
J/ψ
pPb as a function of the J/ψ pT for different event

activity classes

Q
J/ψ
pPb is shown in Fig.8.16 for p-Pb (top) and Pb-p (bottom) as a function

of the J/ψ pT for three different V0A event activity classes: 5-10% (red), 40-
60% (black) and 80-100% (blue). The bars are the statistical uncertainties,
the open boxes represent the uncorrelated and the shaded boxes denote the
partially correlated systematic uncertainties. Grey box at unity is the global
uncertainty. At forward rapidity, the QJ/ψ

pPb dependence on the J/ψ pT is similar
in shape and in amplitude for two V0A event classes: 5-10% and 40-60%. QJ/ψ

pPb

in this two classes increases with the J/ψ pT, while Q
J/ψ
pPb in the V0A event

activity class 80-100% is consistent with no dependence on the J/ψ pT. At
backward rapidity, QJ/ψ

pPb increases with the J/ψ pT for the class 5-10%, and
decreases with the J/ψ pT for the class 80-100%, while for the class 40-60% it
is consistent with unity for the full pT range.

In Fig.8.17 QJ/ψ
pPb is shown for p-Pb (left) and Pb-p (right) as a function of

the J/ψ pT for three different ZN event activity classes. QJ/ψ
pPb as a function of
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the J/ψ pT in different event activity classes shows a similar behaviour for the
event activity classes 5-10% and 40-60% as for the V0A estimator. A significant
difference between the two estimators is seen for the event activity class 80-
100%: for the ZN estimator it is consistent with unity for the full pT range
at forward rapidity (except at pT = 2.5 GeV/c) and backward rapidity. This
shows again that the results obtained with the V0A estimator are similar to
those of the ZN estimator for the event activity higher than 80%. For the event
activity class 80-100% a possible bias or different event characteristic with the
V0A estimator gives different results with the V0A estimator as compared to
the ZN one.

In the next figure (Fig.8.18), theQJ/ψ
pPb results as a function of the J/ψ pT are

shown separately in three ZN event activity classes. In the 80-100% ZN event
activity class, QJ/ψ

pPb at forward and backward rapidity are quite similar and are
consistent with unity. At larger event activity, the difference increases: QpPb

differs from unity, it decreases in p-Pb and increases in Pb-p.
Q

J/ψ
pPb is expected to be equal to unity in the ZN event activity class 80-

100%. Indeed this class corresponds to the most peripheral events which are
expected to give the same results as in pp collisions. Looking at Fig.8.18, one
can conclude that the ZN estimator results agree with this hypothesis. The
ZN event activity estimator seems to be a very good estimator of the centrality
dependence.

In summary, the results with the ZN estimator indicate a strong pT depen-
dence of QJ/ψ

pPb for large event activity, while for small event activity, QJ/ψ
pPb is

consistent with unity in the full pT range.
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Figure 8.15. Qmult
pPb for the J/ψ as a function of the ZN event activity (top,

from [228]) and of the Nmult
coll (bottom) for forward (red) and backward (blue)

rapidity. Vertical errors represent the statistical uncertainties, shaded boxes
around the points the partially correlated uncertainties and open boxes around
the points the uncorrelated uncertainties. Grey box at unity is the global
uncertainty. The theoretical predictions in the right panel are from the private
communications with the authors of the papers on EPS09 LO [229] (striped
bands) and coherent parton energy loss model [225] (shaded bands). The
dashed lines in the theoretical bands correspond to the central values, the
bands are the corresponding uncertainties.
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Figure 8.16. QJ/ψ
pPb as a function of the J/ψ pT for three different V0A event

activity classes: 5-10% (red), 40-60% (black)) and 80-100% (blue) in p-Pb
(top) and Pb-p (bottom).
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Figure 8.17. QpPb as a function of the J/ψ pT in p-Pb (top) and Pb-p (bot-
tom) for 3 different ZN event activity classes: 5-10% (red), 40-60% (black)
and 80-100% (blue). Lines: statistical uncertainties, open boxes: uncorrelated
uncertainties (signal extraction, matching, trigger, tracking, MC inputs, nor-
malization), shaded boxes: partially correlated uncertainties (uncorrelated and
partially correlated uncertainties on pp cross section, TpPb model uncertainty,
pile-up). Grey box: global uncertainties (correlated uncertainty on pp cross
section, BR, TpPb Glauber uncertainty).
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Figure 8.18. QpPb vs pT separately in three different bins in ZN event activity:
largest (top left panel), intermediate (top right panel) and smallest (bottom
panel) event activity in p-Pb (red) and Pb-p (blue). Lines: statistical un-
certainties, open boxes: uncorrelated uncertainties (signal extraction, match-
ing, trigger, tracking, MC inputs, normalization, uncorrelated uncertainty on
pp cross section), shaded boxes: partially correlated uncertainties (partially
correlated uncertainty on pp cross section, luminosity). Grey box: global
uncertainties (correlated uncertainty on pp cross section, BR, TpPb Glauber
uncertainty, TpPb model uncertainty, pile-up).
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8.3 Other ALICE p-Pb results

In addition to the results presented In Section 8.1 and Section 8.2, other p-
Pb measurements related to the charmonium production at

√
sNN = 5.02 TeV

are available from ALICE. They include the pT-dependence of the J/ψ produc-
tion integrated over y and the event activity, both in dimuon and dielectron
decay channels, the ψ(2S) production in the dimuon decay channel.

Fig.8.19 shows the pT-dependence of R
J/ψ
pPb at backward (top left), mid (top

right) and forward (bottom) rapidities. They are compared to theoretical pre-
dictions from the EPS09 NLO [221], CGC [125] and coherent parton energy
loss model [225]. The uncertainties of the models were already discussed, ex-
cept the uncertainties in the coherent parton energy loss model (not shown in
the previous results). They include a variation of both the q0 parameter and
the parametrization of the production cross section.1 The EPS09 NLO calcu-
lations reproduce fairly well the pT-dependence R

J/ψ
pPb for pT > 2.5 GeV/c in

all the three rapidity intervals. The coherent parton energy loss model predic-
tions including the EPS09 NLO shadowing contribution improve the agreement
however it predicts a steeper pT-dependence at low pT than seen in the data at
forward rapidity. This leads to a slight overestimation of the J/ψ suppression
for pT < 1 GeV/c at forward rapidity. The pure coherent parton energy loss
model has a less predictive power. It overestimates the J/ψ suppression for
pT <2 GeV/c at backward rapidity and for pT < 1 GeV/c at forward rapidity
and underestimates it for pT > 3 GeV/c at forward rapidity, while it agrees
with the mid-rapidity experimental results in the full pT range. Finally the
CGC model was compared to the data at mid and forward rapidity. While it
is in agreement with the data for pT > 1 GeV/c at mid-y, it systematically
underestimates RJ/ψ

pPb at forward rapidity.
The ψ(2S) results usually suffer from much lower statistics than in the cor-

responding J/ψ analysis. One of the main reasons for that is a much lower
branching ratio of the ψ(2S) dimuon decay than the one of the J/ψ dimuon
decay: B.R.ψ(2S)→µ+µ− = (0.77± 0.08)% compared to B.R.J/ψ→µ+µ− = (5.93±
0.06)%. In addition, about 59.5% of the ψ(2S) decay into the J/ψ [194]. Apart
from that, ALICE was able to perform the differential ψ(2S) studies in p-Pb
collisions. The main results of this analysis are presented below. Fig.8.20 shows
the ratios B.R.ψ(2S)→µ+µ−σ

ψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ of ψ(2S) and J/ψ cross sec-
tions for backward and forward rapidity in p-Pb at

√
sNN = 5.02 TeV. They

are compared to the ALICE pp results at
√
sNN = 7 TeV, 2.5 < ycms < 4 [231]

due to the absence of the pp results in the same kinematic conditions as in
p-Pb. The p-Pb ratios for both rapidity ranges are significantly lower than
those for pp .

1When the model considers both energy loss and EPS09 NLO, since the uncertainty on
EPS09 NLO is the dominant one, only this one is considered.
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Figure 8.19. R
J/ψ
pPb vs pT at backward (top left), mid (top right) and for-

ward (bottom) rapidities. Error bars are the statistical uncertainties, while
the open boxes are the uncorrelated uncertainties and the shaded boxes rep-
resent the partially correlated uncertainties (partially correlated uncertainty
on pp cross section, luminosity). Grey box: global uncertainties. Theoret-
ical predictions: EPS09 NLO [221], CGC [125], coherent parton energy loss
model [225]. From [230].

Dividing p-Pb results to those from pp one obtains a useful observable,
double-ratio

[
σψ(2S)/σJ/ψ

]
pPb

/
[
σψ(2S)/σJ/ψ

]
pp
, which allows to directly com-

pare the relative suppression of the two states between various experiments.
Fig.8.21 shows such a comparison between the ALICE p-Pb measurements at√
sNN = 5.02 TeV and the d-Au PHENIX data at

√
sNN =200 GeV [233]. The

ALICE results are obtained by division of the p-Pb results at
√
sNN = 5.02 TeV

to the pp results at
√
sNN = 7 TeV (see Fig.8.20). The possible dependence of

the σψ(2S)/σJ/ψ on the
√
sNN and y was estimated in pp collisions. This effect

was estimated to be smaller than 8% and was added as an additional systematic
uncertainty to the ratio. Finally, it is seen that the ψ(2S) is more suppressed
than the J/ψ for the ALICE results both at backward and forward rapidity
and for the PHENIX measurements at mid-y. The level of this suppression is
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Figure 8.20. The ratios B.R.ψ(2S)→µ+µ−σ
ψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ of the

ψ(2S) and the J/ψ cross sections for backward and forward rapidity in p-
Pb at

√
sNN = 5.02 TeV, compared to the pp results at

√
sNN = 7 TeV [231].

The horizontal bars represent the width of the corresponding rapidity ranges,
the vertical bars are statistical uncertainties, the boxes correspond to the sys-
tematic uncertainties. From [232].

similar for both ALICE and PHENIX results within uncertainties.
It should be mentioned that CMS measured slightly higher double-ratios

for the Υ(nS) states at rapidity ycms < |1.93| [234]:

Υ(2S)/Υ(1S)|pPb
Υ(2S)/Υ(1S)|pp = 0.83 ± 0.05 (stat.) ± 0.05 (syst.),

Υ(3S)/Υ(1S)|pPb
Υ(3S)/Υ(1S)|pp = 0.71 ± 0.08 (stat.) ± 0.09 (syst.).

(8.2)

However within uncertainties the CMS results for the Υ(nS) states are
compatible with the

[
σψ(2S)/σJ/ψ

]
dAu

/
[
σψ(2S)/σJ/ψ

]
pp

measured by RHIC at
midrapidity. This can be an indication of the similar effects for both charmonia
and bottomonia.

Fig.8.22 shows the comparison between the Rψ(2S)
pPb (red) and the RJ/ψ

pPb (blue)
for backward and forward rapidity, integrated over pT, y and the event activity.
The ψ(2S) nuclear modification factor is calculated by combining RJ/ψ

pPb with
the double ratio shown above:

R
ψ(2S)
pPb = R

J/ψ
pPb ·

σ
J/ψ
pPb

σ
ψ(2S)
pPb

· σ
ψ(2S)
pp

σ
J/ψ
pp

(8.3)

The theoretical predictions shown in the plot correspond to J/ψ. In the
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Figure 8.21. Double ratios
[
σψ(2S)/σJ/ψ

]
pPb (dAu)

/
[
σψ(2S)/σJ/ψ

]
pp

for p-Pb
ALICE (red) and d-Au PHENIX (black) results. The horizontal bars rep-
resent the width of the corresponding rapidity ranges, the vertical bars are
statistical uncertainties. For ALICE points, the boxes correspond to the un-
correlated systematic uncertainties, while the shaded boxes denote the corre-
lated uncertainties. Open box for the PHENIX point includes various sources
of systematic uncertainties combined in quadrature. From [232].

coherent parton energy loss model the predictions for J/ψ are identical to those
for ψ(2S). For the EPS09 NLO, the calculations predict a larger Rψ(2S)

pPb than
the RJ/ψ

pPb by 2-3%. Such predictions are in strong disagreement with the data
where a significant difference, up to ∼ 2 times at backward y, is seen in the
J/ψ and ψ(2S) suppression.

The pT-dependence of R
ψ(2S)
pPb (red) is compared to RJ/ψ

pPb (blue) for backward
(top panel) and forward (bottom panel) rapidity is shown in Fig.8.23. The
R
ψ(2S)
pPb is calculated using (8.3). The Rψ(2S)

pPb shows a strong suppression with
almost no pT-dependence at forward rapidity. At backward rapidity, a hint
of a decreasing trend of the ψ(2S) suppression towards hight pT is seen. The
ψ(2S) is systematically more suppressed than the J/ψ, as it was for the pT-
integrated case.

Finally the ZN event activity dependence of the ψ(2S) production is shown
in Fig.8.24 for backward and forward y. Q

ψ(2S)
pPb is compared Q

J/ψ
pPb. Q

ψ(2S)
pPb

shows a strong suppression, increasing towards the largest ZN event activity
class. At forward rapidity, this decreasing trend is similar to the one of QJ/ψ

pPb.
At backward rapidity, the ψ(2S) suppression has completely different ZN event
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8.3. Other ALICE p-Pb results

Figure 8.22. Comparison between the Rψ(2S)
pPb (red) and the RJ/ψ

pPb (blue) for
backward and forward rapidity, integrated over pT, y and the event activity.
The horizontal bars represent the width of the corresponding rapidity ranges,
the vertical bars are statistical uncertainties, the boxes correspond to the un-
correlated and the shaded boxes stand for the partially correlated systematic
uncertainties. A grey box at unity is the uncertainty fully correlated between
the J/ψ and the ψ(2S). From [232].

activity dependence with respect to the one of the J/ψ. This difference reaches
a factor ∼ 4 at the largest event activity class (5-20%), pointing to some
additional final state effects suppressing the most weakly bound ψ(2S).
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Figure 8.23. The pT-dependence of the Rψ(2S)
pPb (red) compared to the RJ/ψ

pPb

(blue) for backward (top panel) and forward (bottom panel) rapidity. The
horizontal bars represent the width of the corresponding rapidity ranges, the
vertical bars are statistical uncertainties, the boxes correspond to the uncor-
related and the shaded boxes stand for the partially correlated systematic
uncertainties. The grey boxes at unity are the uncertainties fully correlated
between J/ψ and ψ(2S). From [232].

184



8.3. Other ALICE p-Pb results

Figure 8.24. ZN event activity dependence of the ψ(2S) (red) production
for backward (top panel) and forward (bottom panel) rapidity compared to
the J/ψ results (green). The horizontal bars represent the width of the cor-
responding rapidity ranges, the vertical bars are statistical uncertainties, the
boxes correspond to the uncorrelated and the shaded boxes stand for the par-
tially correlated systematic uncertainties. The grey boxes at unity are the
uncertainties fully correlated between the J/ψ and the ψ(2S). From [235].
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8.4 From p-Pb to Pb-Pb: theory vs experiment

One of the main motivations for the studies of p-Pb collisions is to quantify
the CNM effects and, if possible, to extrapolate them to Pb-Pb collisions. An
estimation of the CNM effects in Pb-Pb collisions from the p-Pb measurements
can be made if one assumes that:

• The J/ψ production mechanism is g + g → J/ψ. In this process the
J/ψ kinematics defines entirely the nucleon longitudinal momentum frac-
tions, x1,2, carried by the two initial gluons. It allows then to compare
the gluon x in the nucleus in p-Pb collisions at

√
sNN = 5.02 TeV to the

one in Pb-Pb collisions at
√
sNN = 2.76 TeV. The x values are close but

not equal (within 10%).

• Shadowing is the dominant cold nuclear matter effect. This hypothesis
is in agreement with the integrated over event activity analysis. In that
case the first approximation of CNM effects on RPb−Pb can be obtained as
a product of Rforward

pPb ×Rbackward
pPb , where Rforward

pPb (Rbackward
pPb ) is the nuclear

modification factor at forward (backward) rapidity.

Figure 8.25. RPb−Pb and Rforward
pPb × Rbackward

pPb as a function of the J/ψ pT.
The bars correspond to statistical uncertainties, shaded areas represent the
partially correlated and the open boxes stand for the uncorrelated systematic
uncertainties. N.B. A mistype is made in the Pb-Pb reference (should be Phys.
Lett. B743 instead of Phys. Lett. B734). From [226].
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The product Rforward
pPb ×Rbackward

pPb integrated over pT, y and the event activity
gives 0.75 ± 0.10 ± 0.12 [219] (the first uncertainty is the quadratical combi-
nation of statistical and uncorrelated systematic uncertainties, the second one
is the linear combination of the correlated uncertainties), which is larger than
RPb−Pb = 0.57 ± 0.01 ± 0.09 [236]. Such a difference could be an indication
that the J/ψ suppression in Pb-Pb collisions cannot be ascribed to CNM ef-
fects only. However, no strong conclusion can be made due to the large size of
uncertainties.

This comparison is presented differentially as a function of the J/ψ pT in
Fig.8.25. The Pb-Pb points are taken from [236] and the RPb−Pb is calculated
in the centrality range 0-90%. For pT > 3 GeV/c, the extrapolated CNM effect
is small and the Rforward

pPb × Rbackward
pPb is consistent with unity. At lower pT the

suppression in Pb-Pb collisions is similar to the one estimated from CNM effect
alone. This can be explained by a superposition of the hot nuclear matter
effects in this region and it thus could be an indication of the regeneration.
A large J/ψ suppression at hight pT in Pb-Pb collisions with respect to the
pp case, which cannot be explained by the CNM effects, indicates that at high
pT hot nuclear matter effects become dominant.

Similar estimations were also made for the mid-y results (Fig.8.26) where

RPbPb is compared to
(
Rmidy

pPb

)2

. RPb−Pb at mid-y is calculated in the cen-
trality range 0-40%. Similar conclusion can be made as for the forward ra-
pidity. For pT > 7 GeV/c, the extrapolated CNM effect is small, while
at lower pT (3 GeV/c < pT < 6 GeV/c) it increases allowing to ascribe
the J/ψ suppression in Pb-Pb collisions to this effect alone (in sense that
hot nuclear matter effects compensate each other). However at even smaller
pT (pT < 3 GeV/c) the extrapolated CNM effect is seen, while RPb−Pb is con-
sistent with unity. This can be explained by the superposition of the CNM
effect with the contribution from the re-combination of cc̄ pairs [236] in hot
medium.
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Figure 8.26. RPb−Pb and
(
Rmidy

pPb

)2

vs pT. The bars correspond to statistical
uncertainties, shaded areas represent the partially correlated and the open
boxes stand for the uncorrelated systematic uncertainties. From [226].

188



Conclusions and outlooks

This thesis has presented a detailed study of the J/ψ production in p-Pb
collisions at

√
sNN = 5.02 TeV with the ALICE Muon Spectrometer at the

LHC. The analysis is based on the data of the p-Pb run performed at the LHC
in the beginning of 2013. The work presented in this thesis can be divided in
three main parts.

In the first part of the thesis (Chapters 1, 2 and 3) I studied the the-
oretical background of the J/ψ production. The J/ψ production plays an
important role in the understanding of fundamental processes in heavy-ion
collisions. In nucleus-nucleus collisions there are two types of effects affecting
the J/ψ production: hot and cold nuclear matter (CNM) effects. Since they
cannot be distinguished properly in nucleus-nucleus collisions, nucleon-nucleus
collisions are used to quantify the CNM effects, providing a reference of the
CNM effects for nucleus-nucleus collisions. Different models of the CNM ef-
fects are described. They include gluon shadowing, gluon saturation, nuclear
absorption and coherent parton energy loss models.

The second part of the thesis (Chapters 4 and 5) describes my work related
to the preparation of the J/ψ production studies in the ALICE Collaboration.
This work included the participation in shifts during data taking of the pilot
p-Pb run in 2012 and of the p-Pb run in 2013 and the tuning of the corre-
sponding MC generator. In cooperation with the author of this generator, we
found and corrected several bugs in the beta version and implemented in the
code a function of scaling of the charmonia and bottomonia cross sections.
This generator allowed to estimate the production rates and to prepare the
required framework for the real data analysis. I also compared the results of
the generator to the real data from the pilot p-Pb run.

The third part of the thesis (Chapters 6, 7 and 8) is devoted to the data
analysis with my personal contribution. It includes the studies of the J/ψ and
ψ(2S) production in p-Pb collisions at the LHC with the ALICE muon spec-
trometer. This work consists of three main analyses:

• pT and y dependence of the J/ψ production;

• event activity and pT dependence of the J/ψ production;

• ψ(2S) production studies.
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I contributed mainly to the first two analyses but I also performed some
analysis steps in the third one. My contribution included the full signal ex-
traction procedure and the final estimation of the physical observables. In
addition I made a major contribution to the pile-up effect estimation.

The result of this work yielded in four ALICE internal analyses notes where
I was one of the co-authors. Two corresponding ALICE papers are already pub-
lished: “J/ψ production and nuclear effects in p-Pb collisions at

√
sNN = 5.02

TeV” [219], where I was chosen as a member of the paper committee, and “Sup-
pression of ψ(2S) production in p-Pb collisions at

√
sNN = 5.02 TeV” [232].

Two other ALICE papers are in preparation: “Event activity dependence of
inclusive J/ψ production in p-Pb collisions at

√
sNN = 5.02 TeV”, where I am

a member of the paper committee, and “Event activity dependence of ψ(2S)
production in p-Pb collisions at

√
sNN = 5.02 TeV”.

The measurements of the pT and y dependence of the J/ψ production al-
lowed to study p-Pb collisions in different kinematic domains. An asymmetric
J/ψ suppression is seen as a function of rapidity. While at backward rapidity
the J/ψ production is similar to the one in pp collisions scaled by the number
of binary collisions, strong CNM effects are seen at forward rapidity (where
x values are smaller). A strong pT dependence was also observed in for the
J/ψ suppression in p-Pb collisions. CNM effects were found to play less sig-
nificant role at high pT since the particles with high pT interact less time with
the cold nuclear matter than those with smaller pT values.

The measurements of the event activity dependence of the J/ψ production
allowed to study p-Pb collisions from another angle focusing on geometrical
properties of the collision. Different centrality estimators were used for these
studies. A strong event activity dependence of the J/ψ suppression was mea-
sured in this analysis. At the smallest event activity, corresponding to the
most peripheral collisions, the measurements show no CNM effects on the
J/ψ production. Large event activity events corresponding to the most cen-
tral collisions show strong CNM effects. This can be ascribed to the much
lower density of the nuclear matter affecting the J/ψ production in the most
peripheral collisions with respect to the most central collisions.

The comparison of the presented results with theoretical models shows
that the CGC-based model including the CEM as a J/ψ production model
fails to describe the J/ψ production at forward rapidity while it is in fair
agreement with the pT-dependence of the J/ψ production at mid rapidity.
Probably the failure of this model is related to the wrong tuning of the intrinsic
J/ψ production model. Some recent improvements to the model with a change
of the CEM to NRQCD show good results for pp collisions [237] and will be
probably extended to p-Pb collisions.

The shadowing model based on the EPS09 NLO parametrization shows a
good agreement with the event activity and the rapidity dependence of the
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J/ψ production at backward y, while it underestimates its suppression and
does not describe the Ncoll dependence at forward rapidity. It is also in fair
agreement with the pT dependence of the J/ψ production for all the rapidity
intervals considered in this analysis, for pT > 3 GeV/c.

The coherent parton energy loss model seems to be very promising. When
including the contribution from shadowing, it shows a fair agreement with al-
most all the presented results within the experimental uncertainties. However
this model predicts a steeper behaviour of the y dependence of the J/ψ nuclear
modification factor at backward rapidity. Its configuration without shadowing
contribution also slightly underestimates the enhancement of the J/ψ production
at backward rapidity at the largest event activity, while it provides a good
description of forward rapidity results in the full event activity range. The
pT-dependence of the J/ψ production is well described by the coherent parton
energy loss model including the shadowing contribution at all rapidities for
pT > 1 GeV/c, while the pure energy loss model does not describe well these
data, except for the results at backward rapidity for pT > 2 GeV/c where a
fair agreement is seen with the data.

Finally, the ψ(2S) production studies were performed using the same anal-
ysis technique as for the J/ψ. Indeed, the J/ψ analysis includes also the
ψ(2S) one since the signal extraction is carried out on the same invariant mass
distributions. In addition, universal fitting functions which include simultane-
ously signal functions for both ψ(2S) and J/ψ were used. Due to much lower
statistics for the ψ(2S) analysis as compared to the J/ψ one, the final uncer-
tainty for the ψ(2S) results is much larger. But it was possible to perform
some interesting studies of the ψ(2S) production including the ratio between
the ψ(2S) and J/ψ production yields.

Despite the success of some theoretical predictions for J/ψ production there
is one puzzle which is not resolved by the existing theoretical models: the dif-
ference between the suppression of the J/ψ and ψ(2S) production, not expected
by the existing models.

In order to better constrain the models, two improvements of the present
analysis can be done. First, one can reduce one of the main contributors to
the systematic uncertainty: the pp reference. This reduction can be achieved
by performing the pp collisions at the same energy as the p-Pb collisions.
Secondly, one can study the prompt J/ψ production instead of the inclusive
J/ψ production used in the ALICE J/ψ analysis. The Muon Forward Tracker
(MFT) [238] will allow to track the muons from B-hadrons decays and thus,
separate the prompt and non-prompt J/ψ. The MFT project was approved
by the LHC Comittee (LHCC) in 2013 and it will be ready for the data taking
in 2019.
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Appendix A

Signal extraction of J/ψ

Fig. A.1 and A.2 show the examples of the signal extraction procedure for
p-Pb and Pb-p in different rapidity intervals, integrated over pT and the event
activity.

Figure A.1. Examples of the signal extraction in p-Pb with Pol2×Exp +
NA60CB2 fit for different y intervals integrated over pT and the event activity.

Fig. A.3 and A.4 show the examples of the signal extraction procedure for
p-Pb and Pb-p in the common rapidity range (for the RFB calculations) in
different pT intervals, integrated over the event activity.

Fig. A.5 and A.6 show the examples of the signal extraction procedure for
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Figure A.2. Examples of the signal extraction in Pb-p with Pol2×Exp +
NA60CB2 fit for different y intervals integrated over pT and the event activity.

p-Pb and Pb-p in different V0A event activity classes, integrated over pT and
y.

Fig. A.7, A.8, A.9, A.10, A.11 and A.12 represent the examples of the signal
extraction procedure for p-Pb and Pb-p integrated over the event activity, for
the highest and the lowest ZN event activity classes.
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Figure A.3. Examples of the signal extraction in p-Pb with Pol2×Exp +
NA60CB2 fit in the rapidity range 2.96 < ycms < 3.53 in different pT intervals,
integrated over the event activity.
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Figure A.4. Examples of the signal extraction in Pb-p with Pol2×Exp
+ NA60CB2 fit in the rapidity range −3.53 < ycms < −2.96 in different
pT intervals, integrated over the event activity.
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Figure A.5. Examples of the signal extraction in p-Pb with Pol2×Exp +
NA60CB2 fit in different V0A event activity classes, integrated over pT and y.
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Figure A.6. Examples of the signal extraction in Pb-p with Pol2×Exp +
NA60CB2 fit in different V0A event activity classes, integrated over pT and y.
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a) 0 <pT < 1 GeV/c b) 1 <pT < 2 GeV/c

c) 2 <pT < 3 GeV/c d) 3 <pT < 4 GeV/c

e) 4 <pT < 5 GeV/c f) 5 <pT < 6 GeV/c

g) 6 <pT < 8 GeV/c h) 8 <pT < 15 GeV/c

Figure A.7. Examples of the signal extraction in p-Pb with VWG + CB2 fit
for different pT intervals integrated over the event activity.
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a) 0 <pT < 1 GeV/c b) 1 <pT < 2 GeV/c

c) 2 <pT < 3 GeV/c d) 3 <pT < 4 GeV/c

e) 4 <pT < 5 GeV/c f) 5 <pT < 6 GeV/c

g) 6 <pT < 8 GeV/c h) 8 <pT < 15 GeV/c

Figure A.8. Examples of the signal extraction in p-Pb with VWG + CB2 fit
for different pT intervals for the ZN event activity class 0-5%.
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a) 0 <pT < 1 GeV/c b) 1 <pT < 2 GeV/c

c) 2 <pT < 3 GeV/c d) 3 <pT < 4 GeV/c

e) 4 <pT < 5 GeV/c f) 5 <pT < 6 GeV/c

g) 6 <pT < 8 GeV/c h) 8 <pT < 15 GeV/c

Figure A.9. Examples of the signal extraction in p-Pb with VWG + CB2 fit
for different pT intervals for the ZN event activity class 80-100%.
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a) 0 <pT < 1 GeV/c b) 1 <pT < 2 GeV/c

c) 2 <pT < 3 GeV/c d) 3 <pT < 4 GeV/c

e) 4 <pT < 5 GeV/c f) 5 <pT < 6 GeV/c

g) 6 <pT < 8 GeV/c h) 8 <pT < 15 GeV/c

Figure A.10. Examples of the signal extraction in Pb-p with VWG + CB2
fit for different pT intervals integrated over the event activity.
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a) 0 <pT < 1 GeV/c b) 1 <pT < 2 GeV/c

c) 2 <pT < 3 GeV/c d) 3 <pT < 4 GeV/c

e) 4 <pT < 5 GeV/c f) 5 <pT < 6 GeV/c

g) 6 <pT < 8 GeV/c h) 8 <pT < 15 GeV/c

Figure A.11. Examples of the signal extraction in Pb-p with VWG + CB2
fit for different pT intervals for the ZN event activity class 0-5%.
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a) 0 <pT < 1 GeV/c b) 1 <pT < 2 GeV/c

c) 2 <pT < 3 GeV/c d) 3 <pT < 4 GeV/c

e) 4 <pT < 5 GeV/c f) 5 <pT < 6 GeV/c

g) 6 <pT < 8 GeV/c h) 8 <pT < 15 GeV/c

Figure A.12. Examples of the signal extraction in Pb-p with Pol2xExp +
NA60 fit for different pT intervals for the ZN event activity class 80-100%.
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Appendix B

Functions used for the signal
extraction

The following functions were used for the signal extraction. In all of them
only x, σ,N are left free when fitting the data, while all the other parameters
are fixed from the corresponding pure J/ψ MC simulations.

B.1 CB2 function

An extended Crystal Ball Function is defined as follows:

f(x;N, x̄, σ, α, α′, n, n′) = N ·


exp

(
− (x−x̄)2

2σ2

)
,−α < x−x̄

σ
< α′

A ·
(
B − x−x̄

σ

)−n
, x−x̄

σ
≤ −α

C ·
(
D + x−x̄

σ

)−n
, x−x̄

σ
≥ −α′

, (B.1)

where
A =

(
n
|α|

)n
· exp

(
− |α|

2

2

)
B = n

|α| − |α|

C =
(
n′

|α′|

)n′
· exp

(
− |α

′|2
2

)
D = n′

|α′| − |α
′|

B.2 NA60 function

The NA60 function was first used in one PhD thesis of the NA60 Collabo-
ration [127].

f(x;N, x̄, σ, x1, x2, p1, ..., p6) = N · exp

(
−(x− x̄)2

2σ2
NA60

)
, (B.2)
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where

σNA60 =


σ ·
(

1 + (p1(x1 − x))p2−p3
√
x1−x

)
, x < x1

σ , x1 ≤ x < x2

σ ·
(

1 + (p4(x1 − x))p5−p6
√
x−x2

)
, x ≥ x2

B.3 NA60CB2 function

The NA60CB2 function is a combination of the two previous functions
where NA60 function was used for the left tail, CB2 function was used for the
right tail. The core is the same in both functions and was not modified.

B.4 New formulation of NA60 function

Variables x1,2 can be redefined via x̄: x1,2 = a1,2 ·x̄. Then a new formulation
of the NA60 function can be proposed [239]:

f(x;N, x̄, σ, t1, t2, p1, ..., p6) = N · exp

(
−1

2

(
t

t0

)2
)
, (B.3)

where
t =

x− x̄
σ

and

t0 =


1 + (p1(t1 − t))p2−p3

√
t1−t , t < t1

1 , t1 ≤ t < t2

1 + (p4(t− t2))p5−p6
√
t−t2 , t ≥ t2

This formulation is equivalent to the formulation on the previous slide,
provided that one replaces the old formulation parameters, obtained from the
fit to MC J/ψ signal, by the parameters for the new formulation, using the
following prescription:
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t1 = (xMC
1 − x̄MC)/σMC = (a1 − 1) · x̄MC/σMC,

t2 = (xMC
2 − x̄MC)/σMC = (a2 − 1) · x̄MC/σMC,

pnew
1 = σMC · pold

1 ,

pnew
2 = pold

2 ,

pnew
3 =

√
σMC · pold

3 .

Values of xMC
1,2 , x̄

MC and σMC are fixed with the old formulation of NA60
from the corresponding MC simulations.
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