V. Gate-therapy and .. , 79 V.1. Les enjeux d'une plate-forme Monte-Carlo dédiée à la physique médicale, 79 V.2. La structure et les caractéristiques du code, p.81

D. Dans and G. , Description des classes GATE pour l'appel des processus physiques Geant4-DNA, II.1.a, p.99

G. Dans, G. Dans, G. Dans, and G. , 101 II.2.b. Exemple d'utilisation du constructeur de liste de physique 104 II.3.a. Méthode de couplage des modèles physiques Geant4, II.2. L'intégration des listes de physiques 101 II.2.a. La construction des listes de physique 103 II.3. Couplage des modèles Geant4-DNA avec les autres modèles électromagnétiques, p.107

.. De-dose, 112 III.2.a.1. Définition des Dose Point Kernels (ou points kernels de dose), 112 III.2.a. Matériels et méthodes...................................... 113 III.2.a.3. Calcul de points kernels de dose avec GATE utilisant les processus

I. Tests-de-performance-sur-infrastructure-distribuée and .. , 120 IV.1. Description de l'interface, p.121

I. Introduction and .. , 126 II. Modalités d'irradiation, p.126

I. Un-faisceau-de-protonthérapie, 134 II.3.a. La géométrie de la ligne de protonthérapie, 134 II.3.b. Les caractéristiques dosimétriques du, p.138

J. Lyman, Complication Probability as Assessed from Dose-Volume Histograms, Radiat. Res, vol.19, pp.13-22, 1985.
DOI : 10.2307/3576626

C. Martin, Modélisation des dommages radioinduits sur l'ADN : prise en compte des radicaux libres et des réparations primaires, Thèse -Université de Toulouse III, 2003.

H. G. Menzel, P. Pihet, and A. Wambersie, Microdosimetric Specification of Radiation Quality in Neutron Radiation Therapy, International Journal of Radiation Biology, vol.42, issue.4, pp.865-83, 1990.
DOI : 10.1080/09553009014550991

K. Morstin, V. Bond, and J. Baum, Probabilistic Approach to Obtain Hit-Size Effectiveness Functions Which Relate Microdosimetry and Radiobiology, Radiation Research, vol.120, issue.3, pp.383-402, 1989.
DOI : 10.2307/3577791

D. Nardo, L. Alkaa, A. Khamphan, C. Conte, V. Colautti et al., A detector for track-nanodosimetry, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.484, issue.1-3, pp.312-338, 2002.
DOI : 10.1016/S0168-9002(01)01989-1

D. Nardo, L. Colautti, P. Baek, W. Y. Grosswendt, and B. , Track Nanodosimetry of an Alpha Particle, Radiation Protection Dosimetry, vol.99, issue.1, pp.355-363, 12194323.
DOI : 10.1093/oxfordjournals.rpd.a006801

D. Nardo, L. Colautti, P. Conte, V. Baek, W. Y. Grosswendt et al., Ionization-cluster distributions of alpha-particles in nanometric volumes of propane: measurement and calculation, Radiat. Environ. Biophys, vol.41, pp.235-56, 2002.

H. Nettelbeck and H. Rabus, Nanodosimetry: The missing link between radiobiology and radiation physics?, Radiation Measurements, vol.46, issue.9, pp.893-900, 2011.
DOI : 10.1016/j.radmeas.2011.03.029

H. Nikjoo, C. E. Bolton, R. Watanabe, M. Terrissol, O. Neill et al., Modelling of DNA Damage Induced by Energetic Electrons (100 eV to 100 keV), Radiation Protection Dosimetry, vol.99, issue.1, pp.77-80, 2002.
DOI : 10.1093/oxfordjournals.rpd.a006843

H. Paganetti, P. Olko, H. Kobus, R. Becker, T. Schmitz et al., Calculation of relative biological effectiveness for proton beams using biological weighting functions, International Journal of Radiation Oncology*Biology*Physics, vol.37, issue.3, 1997.
DOI : 10.1016/S0360-3016(96)00540-8

S. Paillas, V. Boudousq, B. Piron, N. Kersual, M. Bardiès et al., Apoptosis and p53 are not involved in the anti-tumor efficacy of 125I-labeled monoclonal antibodies targeting the cell membrane, Nuclear Medicine and Biology, vol.40, issue.4, pp.471-80
DOI : 10.1016/j.nucmedbio.2013.02.001

URL : https://hal.archives-ouvertes.fr/inserm-00815724

P. Pihet, H. G. Menzel, R. Schmidt, M. Beauduin, and A. Wambersie, Weighting Function for RBE Specification of Neutron Therapy Beams. Intercomparison of 9 European Centres, Radiat. Prot. Dosimetry, vol.31, pp.437-479, 1990.

S. Pszona, J. Kula, and S. Marjanska, A new method for measuring ion clusters produced by charged particles in nanometre track sections of DNA size, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.447, issue.3, pp.601-608, 2000.
DOI : 10.1016/S0168-9002(99)01191-2

H. Rabus and N. , Bridging the gap to radiation biophysics, Nanodosimetry Radiat. Meas, p.46, 2011.

H. Rossi, The effects of small doses of ionizing radiation, Physics in Medicine and Biology, vol.15, issue.2, pp.255-62, 1970.
DOI : 10.1088/0031-9155/15/2/002

H. Rossi and G. Failla, Tissue-equivalent ionization chambers, Nucleonics, vol.14, p.32, 1956.

B. Rydberg, M. Löbrich, and P. Cooper, DNA Double-Strand Breaks Induced by High-Energy Neon and Iron Ions in Human Fibroblasts. I. Pulsed-Field Gel Electrophoresis Method, Radiation Research, vol.139, issue.2, pp.133-174, 1994.
DOI : 10.2307/3578657

F. Sauli, GEM: A new concept for electron amplification in gas detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.386, issue.2-3, pp.531-535, 1997.
DOI : 10.1016/S0168-9002(96)01172-2

E. Schmid, H. Roos, G. Rimpl, and M. Bauchinger, Chromosome aberration frequencies in human lymphocytes irradiated in a multi-layer array by protons with different LET, International Journal of Radiation Biology, vol.35, issue.6, pp.661-666, 1997.
DOI : 10.1080/095530097142816

R. Schulte, V. Bashkirov, S. Shchemelinin, A. Breskin, R. Chechik et al., Mapping the sensitive volume of an ion-counting nanodosimeter, Journal of Instrumentation, vol.1, issue.04, pp.1748-0221, 2006.
DOI : 10.1088/1748-0221/1/04/P04004

S. Shchemelinin, A. Breskin, R. Chechik, P. Colautti, and R. Schulte, First Measurements of Ionisation Clusters on the DNA Scale in a Wall-less Sensitive Volume, Radiation Protection Dosimetry, vol.82, issue.1, pp.43-50, 1999.
DOI : 10.1093/oxfordjournals.rpd.a032605

S. Shchemelinin, A. Breskin, R. Chechik, A. Pansky, P. Colautti et al., Ionization measurements in small gas samples by single ion counting, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.368, issue.3, pp.859-61, 1996.
DOI : 10.1016/0168-9002(95)00874-8

S. Shchemelinin, G. Garty, A. Breskin, R. Chechik, and R. Schulte, Ion-counting nanodosimetry: a new method for assessing radiation damage to DNA, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.477, issue.1-3, pp.527-557, 2002.
DOI : 10.1016/S0168-9002(01)01887-3

D. Srdo?, Experimental Technique of Measurement of Microscopic Energy Distribution in Irradiated Matter Using Rossi Counters, Radiation Research, vol.43, issue.2, pp.302-321, 1970.
DOI : 10.2307/3573036

N. Tilly, J. Johansson, U. Isacsson, J. Medin, E. Blomquist et al., The influence of RBE variations in a clinical proton treatment plan for a hypopharynx cancer, Physics in Medicine and Biology, vol.50, issue.12, pp.2765-77, 2005.
DOI : 10.1088/0031-9155/50/12/003

J. J. Wilkens and U. Oelfke, A phenomenological model for the relative biological effectiveness in therapeutic proton beams, Physics in Medicine and Biology, vol.49, issue.13, pp.2811-2836, 2004.
DOI : 10.1088/0031-9155/49/13/004

J. J. Wilkens and U. Oelfke, Analytical linear energy transfer calculations for proton therapy, Medical Physics, vol.27, issue.5, pp.806-821, 2003.
DOI : 10.1118/1.1567852

J. J. Wilkens and U. Oelfke, Optimization of radiobiological effects in intensity modulated proton therapy, Medical Physics, vol.45, issue.2, pp.455-65, 2005.
DOI : 10.1118/1.1851925

S. Ahlen, Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles, Reviews of Modern Physics, vol.52, issue.1, pp.121-73, 1980.
DOI : 10.1103/RevModPhys.52.121

J. Apostolakis, A. Bagulya, S. Elles, V. N. Ivanchenko, J. Jacquemier et al., Validation and verification of Geant4 standard electromagnetic physics, Journal of Physics: Conference Series, vol.219, issue.3, p.32044, 2010.
DOI : 10.1088/1742-6596/219/3/032044

URL : https://hal.archives-ouvertes.fr/in2p3-00433753

J. Baró, J. Sempau, J. Fernández-vareac, and F. Salvat, PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.100, issue.1, pp.31-46, 1995.
DOI : 10.1016/0168-583X(95)00349-5

M. Berger, Monte Carlo calculation of the penetration and diffusion of fast charged particles, Methods Comput. Phys. Adv. Res. Appl, vol.1, pp.135-215, 1963.

M. Berger, Proton Monte Carlo transport programme PTRAN. Rep. NISTIR-5113, Natl. Inst. Stand. Technol, 1993.

M. J. Berger and S. Seltzer, Monte Carlo code system for electron and photon transport through extended media, ORNL Doc. RISC Comput. code Packag, p.107, 1973.

M. Bolorizadeh and R. M. , 2000-eV electron impact, Physical Review A, vol.33, issue.2, pp.882-889, 1986.
DOI : 10.1103/PhysRevA.33.882

D. J. Brenner and M. Zaider, A computationally convenient parameterisation of experimental angular distributions of low energy electrons elastically scattered off water vapour, Physics in Medicine and Biology, vol.29, issue.4, pp.443-450, 1983.
DOI : 10.1088/0031-9155/29/4/015

J. Briemeister, MCNP -A general Monte Carlo N-particle transport code, version 4C, Los Alamos Natl. Lab. Report, p.13709, 2000.

A. Brodsky, Handbook of Radiation Measurement and Protection, Boca Raton, 1978.

C. Champion, S. Incerti, H. Aouchiche, and D. Oubaziz, A free-parameter theoretical model for describing the electron elastic scattering in water in the Geant4 toolkit, Radiation Physics and Chemistry, vol.78, issue.9, pp.745-50, 2009.
DOI : 10.1016/j.radphyschem.2009.03.079

URL : https://hal.archives-ouvertes.fr/in2p3-00410416

A. Chatterjee and W. Holley, Computer Simulation of Initial Events in the Biochemical Mechanisms of DNA Damage, Adv. Radiat. Biol, vol.17, pp.181-226, 1993.
DOI : 10.1016/B978-0-12-035417-7.50007-6

H. Cho, Y. S. Park, H. Tanaka, and S. Buckman, Measurements of elastic electron scattering by water vapour extended to backward angles, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.37, issue.3, pp.625-659, 2004.
DOI : 10.1088/0953-4075/37/3/008

V. Cobut, L. Cirioni, and J. Patau, Accurate transport simulation of electron tracks in the energy range 1 keV???4 MeV, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.215, issue.1-2, pp.57-68, 2004.
DOI : 10.1016/S0168-583X(03)01782-8

D. E. Cullen, J. H. Hubbell, and L. Kissel, EPDL97: The evaluated photon data library,'97 version, 1997.
DOI : 10.2172/295438

J. E. Cygler, G. M. Daskalov, G. Chan, and G. Ding, Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning, Medical Physics, vol.27, issue.1, pp.142-53, 2004.
DOI : 10.1118/1.1633105

R. Dagnac, D. Blanc, and D. Molina, with a water-vapour target, Journal of Physics B: Atomic and Molecular Physics, vol.3, issue.9, pp.1239-51, 1970.
DOI : 10.1088/0022-3700/3/9/007

A. Danjo and H. Nishimura, O Molecule, Journal of the Physical Society of Japan, vol.54, issue.4, pp.1224-1231, 1985.
DOI : 10.1143/JPSJ.54.1224

M. Dingfelder, D. Hantke, M. Inokuti, and H. Paretzke, Electron inelastic-scattering cross sections in liquid water, Radiation Physics and Chemistry, vol.53, issue.1, pp.1-18, 1998.
DOI : 10.1016/S0969-806X(97)00317-4

M. Dingfelder and M. Inokuti, The Bethe surface of liquid water, Radiation and Environmental Biophysics, vol.38, issue.2, pp.93-99, 1999.
DOI : 10.1007/s004110050143

M. Dingfelder, M. Inokuti, and H. Paretzke, Inelastic-collision cross sections of liquid water for interactions of energetic protons, Radiation Physics and Chemistry, vol.59, issue.3, pp.255-75, 2000.
DOI : 10.1016/S0969-806X(00)00263-2

M. Dingfelder, L. H. Toburen, and H. Paretzke, An effective charge scaling model for ionization of partially dressed helium ions with liquid water, Proc. Monte Carlo -2005 Top. Meet, 2005.

N. L. Djuri?, I. M. ?ade?, and M. V. Kurepa, H2O and D2O total ionization cross-sections by electron impact, International Journal of Mass Spectrometry and Ion Processes, vol.83, issue.3, pp.7-10, 1988.
DOI : 10.1016/0168-1176(88)80038-7

D. Emfietzoglou, Inelastic cross-sections for electron transport in liquid water: a comparison of dielectric models, Radiation Physics and Chemistry, vol.66, issue.6, pp.373-85, 2003.
DOI : 10.1016/S0969-806X(02)00504-2

D. Emfietzoglou, Semi-empirical Inelastic Cross Sections for Electron Transport in Liquid Water, Radiation Protection Dosimetry, vol.99, issue.1, pp.39-46, 2002.
DOI : 10.1093/oxfordjournals.rpd.a006814

D. Emfietzoglou, K. Karava, G. Papamichael, and M. Moscovitch, Monte Carlo simulation of the energy loss of low-energy electrons in liquid water, Physics in Medicine and Biology, vol.48, issue.15, pp.2355-71, 2003.
DOI : 10.1088/0031-9155/48/15/308

D. Emfietzoglou and M. Moscovitch, Inelastic collision characteristics of electrons in liquid water, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.193, issue.1-4, pp.71-79, 2002.
DOI : 10.1016/S0168-583X(02)00729-2

D. Emfietzoglou and H. Nikjoo, The Effect of Model Approximations on Single-Collision Distributions of Low-Energy Electrons in Liquid Water, Radiation Research, vol.163, issue.1, pp.98-111, 2005.
DOI : 10.1667/RR3281

B. A. Faddegon, M. Asai, P. J. Ross, C. Sempau, J. Tinslay et al., Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies, Medical Physics, vol.53, issue.1, pp.4308-4325, 2008.
DOI : 10.1088/0031-9155/53/5/021

B. A. Faddegon, J. Perl, and M. Asai, Monte Carlo simulation of large electron fields, Physics in Medicine and Biology, vol.53, issue.5, pp.1497-510, 2008.
DOI : 10.1088/0031-9155/53/5/021

U. Fano, Penetration of protons, alpha particles, and mesons. Stud. Penetration Charg, Part. Matter, vol.13, pp.1-66, 1963.

J. M. Fernandez-varea, D. Liljequist, S. Csillag, R. Rdty, and F. Salvat, Monte Carlo simulation of 0.1???100 keV electron and positron transport in solids using optical data and partial wave methods, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.108, issue.1-2, pp.35-50, 1996.
DOI : 10.1016/0168-583X(95)01055-6

Z. Francis, Simulations Monte-Carlo et étude microdosimétrique pour des irradiations cellulaires à faibles doses en neutrons de 14 MeV, 2007.

Z. Francis, S. Incerti, M. Karamitros, N. Tran, and C. Villagrasa, Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.269, issue.20, pp.2307-2318, 2011.
DOI : 10.1016/j.nimb.2011.02.031

URL : https://hal.archives-ouvertes.fr/in2p3-00658877

W. Friedland, P. Jacob, P. Bernhardt, H. G. Paretzke, and M. Dingfelder, Simulation of DNA Damage after Proton Irradiation, Radiation Research, vol.159, issue.3, pp.401-411, 2003.
DOI : 10.1667/0033-7587(2003)159[0401:SODDAP]2.0.CO;2

W. Friedland, P. Jacob, and P. Kundrát, Mechanistic simulation of radiation damage to DNA and its repair: on the track towards systems radiation biology modelling, Radiation Protection Dosimetry, vol.143, issue.2-4, pp.542-550, 2011.
DOI : 10.1093/rpd/ncq383

M. P. Gaigeot, P. Lopez-tarifa, F. Martin, M. Alcami, R. Vuilleumier et al., Theoretical investigation of the ultrafast dissociation of ionised biomolecules immersed in water: Direct and indirect effects, Mutation Research/Reviews in Mutation Research, vol.704, issue.1-3, pp.45-53, 20079878.
DOI : 10.1016/j.mrrev.2010.01.004

M. P. Gaigeot, R. Vuilleumier, C. Stia, M. E. Galassi, R. Rivarola et al., theoretical study of the production of free radicals in swift ion tracks in liquid water, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.40, issue.1, 2007.
DOI : 10.1088/0953-4075/40/1/001

URL : https://hal.archives-ouvertes.fr/hal-00172641

N. Green, On the simulation of diffusion processes close to boundaries, Molecular Physics, vol.49, issue.6, pp.37-41, 1988.
DOI : 10.1080/00268978800101871

I. Gudowska, N. Sobolevsky, P. Andreo, D. Belkic, and A. Brahme, Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT, Physics in Medicine and Biology, vol.49, issue.10, pp.1933-58, 2004.
DOI : 10.1088/0031-9155/49/10/008

H. Siantar, C. L. Walling, R. S. Daly, T. P. Faddegon, B. Albright et al., Monte Carlo dose calculation system for photon beams incident on a water phantom, Medical Physics, vol.45, issue.7, pp.1322-1359, 1322.
DOI : 10.1118/1.1381551

E. Heath, J. Seuntjens, and D. Sheikh-bagheri, Dosimetric evaluation of the clinical implementation of the first commercial IMRT Monte Carlo treatment planning system at 6 MV, Medical Physics, vol.45, issue.10, pp.2771-2780, 2004.
DOI : 10.1118/1.1786172

J. M. Heller, R. N. Hamm, R. Birkhoff, and . Painter, Collective oscillation in liquid water, The Journal of Chemical Physics, vol.60, issue.9, pp.3483-3489, 1974.
DOI : 10.1063/1.1681563

W. Hilgner, J. Kessler, and E. Steeb, Spin polarization of low-energy electrons scattered from molecules, Zeitschrift f??r Physik A Hadrons and nuclei, vol.221, issue.4, pp.324-356, 1969.
DOI : 10.1007/BF01394063

S. Incerti, G. Baldacchino, M. Bernal, R. Capra, C. Champion et al., THE GEANT4-DNA PROJECT, International Journal of Modeling, Simulation, and Scientific Computing, vol.01, issue.02, pp.157-78
DOI : 10.1142/S1793962310000122

URL : https://hal.archives-ouvertes.fr/in2p3-00394635

S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto et al., very low energy cross section models with experimental data in water, Medical Physics, vol.77, issue.9, pp.4692-708
DOI : 10.1118/1.3476457

URL : https://hal.archives-ouvertes.fr/in2p3-00530147

M. Inokuti, Inelastic Collisions of Fast Charged Particles with Atoms and Molecules???The Bethe Theory Revisited, Reviews of Modern Physics, vol.43, issue.3, pp.297-347, 1971.
DOI : 10.1103/RevModPhys.43.297

A. Ito, Calculation of double strand break probability of DNA for low LET radiations based on track structure analysis. Nuclear and atomic data for radiotherapy and related radiobiology, Intenational At. Energy Agency, 1987.

V. N. Ivanchenko, S. Incerti, Z. Francis, N. H. Tran, M. Karamitros et al., Combination of electromagnetic physics processes for microdosimetry in liquid water with the Geant4 Monte Carlo simulation toolkit, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.273, pp.95-102, 2012.
DOI : 10.1016/j.nimb.2011.07.048

URL : https://hal.archives-ouvertes.fr/in2p3-00657849

H. Iwase, K. Niita, and T. Nakamura, Development of General-Purpose Particle and Heavy Ion Transport Monte Carlo Code, Journal of Nuclear Science and Technology, vol.62, issue.1, pp.1142-51, 2002.
DOI : 10.1080/18811248.2002.9715305

S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol et al., GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Physics in Medicine and Biology, vol.56, issue.4, pp.881-901, 2011.
DOI : 10.1088/0031-9155/56/4/001

URL : https://hal.archives-ouvertes.fr/in2p3-00559709

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié et al., GATE: a simulation toolkit for PET and SPECT, Physics in Medicine and Biology, vol.49, issue.19, pp.4543-61, 2004.
DOI : 10.1088/0031-9155/49/19/007

URL : https://hal.archives-ouvertes.fr/in2p3-00021834

W. Johnstone and W. Newell, Absolute vibrationally elastic cross sections for electrons scattered from water molecules between 6 eV and 50 eV, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.24, issue.16, pp.3633-430953, 1991.
DOI : 10.1088/0953-4075/24/16/015

M. Karamitros, Extension de l'outil Monte Carlo généraliste Geant4 pour la simulation de la radiolyse de l'eau dans le cadre du projet Geant4-DNA, 2012.

M. Karamitros, A. Mantero, S. Incerti, W. Friedland, G. Baldacchino et al., Modeling Radiation Chemistry in the Geant4 Toolkit, Progress in Nuclear Science and Technology, vol.2, issue.0, pp.503-511, 2011.
DOI : 10.15669/pnst.2.503

URL : https://hal.archives-ouvertes.fr/in2p3-00658865

A. Katase, K. Ishibashi, Y. Matsumoto, T. Sakae, S. Maezono et al., Elastic scattering of electrons by water molecules over the range 100-1000 eV, Journal of Physics B: Atomic and Molecular Physics, vol.19, issue.17, pp.2715-2749, 1986.
DOI : 10.1088/0022-3700/19/17/020

I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version, Med. Phys, vol.2727485, issue.1, pp.499-513, 2000.

I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport. II. Application to ion chamber response simulations Med. Phys, pp.499-517, 1118.

S. P. Khare and W. J. Meath, S by electron impact, Journal of Physics B: Atomic and Molecular Physics, vol.20, issue.9, pp.2101-160022, 1987.
DOI : 10.1088/0022-3700/20/9/021

D. W. Koopman, Light-Ion Charge Exchange in Atmospheric Gases, Physical Review, vol.166, issue.1, pp.57-62, 1968.
DOI : 10.1103/PhysRev.166.57

M. S. Kreipl, W. Friedland, and H. Paretzke, Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation, Radiation and Environmental Biophysics, vol.77, issue.1, pp.11-20, 2009.
DOI : 10.1007/s00411-008-0194-8

A. V. Lappa, E. A. Bigildeev, D. Burmistrov, and O. Vasilyev, ?Trion? code for radiation action calculations and its application in microdosimetry and radiobiology, Radiation and Environmental Biophysics, vol.13, issue.1, pp.1-19, 1993.
DOI : 10.1007/BF01213126

H. Lewis, Multiple Scattering in an Infinite Medium, Physical Review, vol.78, issue.5, pp.526-535, 1950.
DOI : 10.1103/PhysRev.78.526

D. Liljequist and M. Ismail, Transport mean free path related to trajectory patterns: Comparison of nonrelativistic and highly relativistic electron penetration through matter, Journal of Applied Physics, vol.62, issue.2, pp.342-50, 1987.
DOI : 10.1063/1.339802

D. Liljequist, M. Ismail, F. Salvat, R. Mayol, and J. Martinez, Transport mean free path tabulated for the multiple elastic scattering of electrons and positrons at energies ???20 MeV, Journal of Applied Physics, vol.68, issue.7, p.3061, 1990.
DOI : 10.1063/1.346399

B. Lindsay, O:mAbsolute differential and integral cross sections, Physical Review A, vol.55, issue.5, pp.3945-3951, 1997.
DOI : 10.1103/PhysRevA.55.3945

C. M. Ma, B. A. Faddegon, D. Rogers, and T. Mackie, Accurate characterization of Monte Carlo calculated electron beams for radiotherapy, Medical Physics, vol.38, issue.3, pp.401-169089592, 1997.
DOI : 10.1118/1.597908

L. Maigne, Y. Perrot, D. R. Schaart, D. Donnarieix, and V. Breton, Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV, Physics in Medicine and Biology, vol.56, issue.3, 2011.
DOI : 10.1088/0031-9155/56/3/017

URL : https://hal.archives-ouvertes.fr/in2p3-00573741

G. Mardirossian, M. Hall, J. Montebello, and P. Stevens, Dose distribution to spinal structures from intrathecally administered yttrium-90, Physics in Medicine and Biology, vol.51, issue.1, pp.185-96, 2006.
DOI : 10.1088/0031-9155/51/1/014

R. Mayol and F. Salvat, TOTAL AND TRANSPORT CROSS SECTIONS FOR ELASTIC SCATTERING OF ELECTRONS BY ATOMS, Atomic Data and Nuclear Data Tables, vol.65, issue.1, pp.55-154, 1997.
DOI : 10.1006/adnd.1997.0734

J. Meesungnoen, J. Jay-gerin, A. Filali-mouhim, and S. Mankhetkorn, Low-Energy Electron Penetration Range in Liquid Water, Radiation Research, vol.158, issue.5, pp.657-60, 2002.
DOI : 10.1667/0033-7587(2002)158[0657:LEEPRI]2.0.CO;2

C. Melton, O, The Journal of Chemical Physics, vol.57, issue.10, pp.4218-4243, 1972.
DOI : 10.1063/1.1678051

V. Michalik, M. Begusova, and E. A. Bigildeev, Computer-Aided Stochastic Modeling of the Radiolysis of Liquid Water, Radiation Research, vol.149, issue.3, pp.224-260, 1998.
DOI : 10.2307/3579955

M. Michaud, A. Wen, and L. Sanche, Cross Sections for Low-Energy (1???100 eV) Electron Elastic and Inelastic Scattering in Amorphous Ice, Radiation Research, vol.159, issue.1, pp.3-22, 2003.
DOI : 10.1667/0033-7587(2003)159[0003:CSFLEE]2.0.CO;2

A. Muñoz, F. Blanco, G. Garcia, P. A. Thorn, M. J. Brunger et al., Single electron tracks in water vapour for energies below 100eV, International Journal of Mass Spectrometry, vol.277, issue.1-3, pp.175-184, 2008.
DOI : 10.1016/j.ijms.2008.04.028

H. Nagel, Die Berechnung von Elektron Photon-Kaskaden in Blei mit Hilfe der Monte-Carlo Methode. Inaugural-Dissertation zur Erlangung des Doktorgrades der Hohen Mathematich-Naturwissenschaftlichen Fakult¨at der Rheinischen FriedrichWilhelms, 1964.

H. Nikjoo, S. Uehara, D. Emfietzoglou, and F. A. Cucinotta, Track-structure codes in radiation research, Radiation Measurements, vol.41, issue.9-10, pp.1052-74, 2006.
DOI : 10.1016/j.radmeas.2006.02.001

J. J. Olivero, R. W. Stagat, and A. Green, Electron deposition in water vapor, with atmospheric applications, Journal of Geophysical Research, vol.72, issue.25, pp.4797-811, 1972.
DOI : 10.1029/JA077i025p04797

C. B. Opal, E. C. Beaty, and W. Peterson, Tables of secondary-electron-production cross sections, Atomic Data and Nuclear Data Tables, vol.4, pp.209-53, 1972.
DOI : 10.1016/S0092-640X(72)80004-4

H. Paretzke, Simulation von Elektronenspuren im Energiebereich 0.01-10 keV in Wasserdampf GSF ? Natl, Res. Cent. Heal. Environ. Neuherberg, Ger, vol.24, p.88, 1988.

S. T. Perkins, M. H. Chen, D. Cullen, and J. Hubbell, Tables and graphs of atomic subshell and relaxation data derived from the LLNL Evaluated Atomic Data Library (EADL), Z=1-100, 1991.

S. T. Perkins, D. Cullen, and S. Seltzer, Tables and Graphs of Electron-Interaction Cross-Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated Electron Data Library (EEDL), Z=1-100, 1991.
DOI : 10.2172/5691165

S. M. Pimblott, J. A. Laverne, A. Mozumder, and N. Green, Structure of electron tracks in water. 1. Distribution of energy deposition events, The Journal of Physical Chemistry, vol.94, issue.1, pp.488-95, 1990.
DOI : 10.1021/j100364a084

M. V. Rao, I. Iga, and S. Srivastava, O by electron impact, Journal of Geophysical Research, vol.363, issue.E12, pp.421-426, 1995.
DOI : 10.1029/95JE02314

M. E. Rudd, A. Itoh, and T. Goffe, on water vapor, Physical Review A, vol.32, issue.4, pp.2499-500, 1985.
DOI : 10.1103/PhysRevA.32.2499

P. S. Rudolph and C. Melton, O, and the Rare Gases by 2.2???MeV ?? Particles and by Electrons in a Mass Spectrometer, The Journal of Chemical Physics, vol.45, issue.6, pp.2227-2259, 1966.
DOI : 10.1063/1.1727915

Z. Saglam and N. Aktekin, Absolute total cross section for electron scattering on water in the energy range 25-300 eV, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.23, issue.9, pp.1529-360953, 1990.
DOI : 10.1088/0953-4075/23/9/022

F. Salvat, J. Fernandez-varea, and J. Sempau, PENELOPE -A code system for Monte Carlo simulation of electron and photon transport, Proc. Work. Course, 2003.

F. Salvat, J. Fernández-varea, and . Sempau, PENELOPE ? A Code System for Monte Carlo Simulation of Electron and Photon Transport Work, Proc. Online, p.6416, 2006.

J. Schutten, Gross??? and Partial???Ionization Cross Sections for Electrons on Water Vapor in the Energy Range 0.1???20 keV, The Journal of Chemical Physics, vol.44, issue.10, pp.3924-3932, 1966.
DOI : 10.1063/1.1726553

J. Scofield, Radiative Transitions " in " Atomic Inner-Shell Processes, pp.265-92, 1975.

S. Seltzer, An Overview of ETRAN Monte Carlo Methods Monte Carlo Transp, Electrons Photons, vol.3810, pp.153-81, 1007.

V. A. Semenenko, J. Turner, and T. Borak, NOREC, a Monte Carlo code for simulating electron tracks in liquid water, Radiation and Environmental Biophysics, vol.42, issue.3, pp.213-220, 2003.
DOI : 10.1007/s00411-003-0201-z

P. Seroul and D. Sarrut, VV : Viewer for the evaluation of 4D image registration. MICCAI Work, Syst. Archit. Comput. Assist. Interv, 2008.

T. W. Shyn and A. Grafe, Angular distribution of electrons elastically scattered from water vapor, Physical Review A, vol.46, issue.7, pp.4406-4415, 1992.
DOI : 10.1103/PhysRevA.46.4406

C. Siantar and E. Moses, The PEREGRINETM program: using physics and computer simulation to improve radiation therapy for cancer, Eur. J. Phys, vol.196, pp.513-534, 1998.

H. C. Straub, B. G. Lindsay, K. A. Smith, and R. Stebbings, Absolute partial cross sections for electron-impact ionization of H2O and D2O from threshold to 1000 eV, The Journal of Chemical Physics, vol.108, issue.1, pp.109-125, 1998.
DOI : 10.1063/1.475367

O. Sueoka, S. Mori, and Y. Katayama, O molecules, Journal of Physics B: Atomic and Molecular Physics, vol.19, issue.10, pp.373-381, 1986.
DOI : 10.1088/0022-3700/19/10/008

C. Szmytkowski, Absolute total cross sections for electron-water vapour scattering, Chemical Physics Letters, vol.136, issue.3-4, p.136, 1987.
DOI : 10.1016/0009-2614(87)80267-1

Y. Tabata, Y. Ito, and S. Tagawa, Handbook of Radiation Chemistry, Boca Raton, 1991.

R. Taleei and H. Nikjoo, Biochemical DSB-repair model for mammalian cells in G1 and early S phases of the cell cycle, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol.756, issue.1-2, pp.206-218, 2013.
DOI : 10.1016/j.mrgentox.2013.06.004

R. Taleei, M. Weinfeld, and H. Nikjoo, A kinetic model of single-strand annealing for the repair of DNA double-strand breaks, Radiation Protection Dosimetry, vol.143, issue.2-4, pp.191-196, 2011.
DOI : 10.1093/rpd/ncq535

M. Terrissol and A. Beaudré, Simulation of Space and Time Evolution of Radiolytic Species Induced by Electrons in Water, Radiation Protection Dosimetry, vol.31, issue.1-4, pp.175-182, 1990.
DOI : 10.1093/rpd/31.1-4.175

L. H. Toburen, M. Y. Nakai, and R. Langley, Measurement of High-Energy Charge-Transfer Cross Sections for Incident Protons and Atomic Hydrogen in Various Gases, Physical Review, vol.171, issue.1, pp.114-136, 1968.
DOI : 10.1103/PhysRev.171.114

L. H. Toburen and W. Wilson, Energy and angular distributions of electrons ejected from water vapor by 0.3???1.5 MeV protons, The Journal of Chemical Physics, vol.66, issue.11, pp.5202-5215, 1977.
DOI : 10.1063/1.433783

L. H. Toburen, W. Wilson, and R. J. Popowich, Secondary Electron Emission from Ionization of Water Vapor by 0.3 to 2.0 MeV He+ and He2+ Ions, Radiat. Res, vol.81, pp.27-44, 1980.

H. Tomita, M. Kai, T. Kusama, and A. Ito, Monte Carlo simulation of physicochemical processes of liquid water radiolysis, Radiation and Environmental Biophysics, vol.36, issue.2, pp.105-121, 1997.
DOI : 10.1007/s004110050061

N. Tran, Extension et validation de l'outil Geant4 dans le cadre du projet Geant4-DNA pour la prédiction des dommages biologiques radioinduits à l'échelle cellulaire, Thèse -Université Bordeaux I), 2012.

J. E. Turner, J. L. Magee, H. A. Wright, A. Chatterjee, R. Hamm et al., Physical and Chemical Development of Electron Tracks in Liquid Water, Radiation Research, vol.96, issue.3, pp.437-486, 1983.
DOI : 10.2307/3576111

S. Uehara, The development of a Monte Carlo code simulating electron-photon showers and its evaluation by various transport benchmarks, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.14, issue.4-6, pp.559-70, 1986.
DOI : 10.1016/0168-583X(86)90154-0

S. Uehara and H. Nikjoo, Monte Carlo Track Structure Code for Low-Energy Alpha-Particles in Water, The Journal of Physical Chemistry B, vol.106, issue.42, pp.11051-63, 2002.
DOI : 10.1021/jp014004h

S. Uehara, H. Nikjoo, and D. Goodhead, Cross-sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region, Physics in Medicine and Biology, vol.38, issue.12, pp.1841-580031, 1993.
DOI : 10.1088/0031-9155/38/12/010

D. A. Vroom and R. Palmer, Measurement of energy distributions of secondary electrons ejected from water vapor by fast electrons, The Journal of Chemical Physics, vol.66, issue.8, pp.3720-3723, 1977.
DOI : 10.1063/1.434410

W. E. Wilson, J. H. Miller, D. J. Lynch, R. Lewis, and M. Batdorf, Analysis of Low-Energy Electron Track Structure in Liquid Water, Radiation Research, vol.161, issue.5, pp.591-597, 2004.
DOI : 10.1667/RR3179

W. Wilson and H. Nikjoo, A Monte Carlo code for positive ion track simulation, Radiation and Environmental Biophysics, vol.38, issue.2, pp.97-104, 1999.
DOI : 10.1007/s004110050144

M. Zaider, D. Brenner, and W. W. , The Applications of Track Calculations to Radiobiology I. Monte Carlo Simulation of Proton Tracks, Radiation Research, vol.95, issue.2, pp.231-278, 1983.
DOI : 10.2307/3576252

A. Zecca, G. Karwasz, S. Oss, R. Grisenti, and R. Brusa, O at intermediate energies, Journal of Physics B: Atomic and Molecular Physics, vol.20, issue.4, pp.133-139, 1987.
DOI : 10.1088/0022-3700/20/4/005

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids New York 2 7.59e-07 -5, world_phys hIoni ?????????????????????.?????????????????????, 2003.

S. Camarasu-pop, T. Glatard, H. Benoit-cattin, and D. Sarrut, Enabling Grids for GATE Monte-Carlo radiation therapy simulations with the GATE-Lab. Appl, 2011.

C. Champion, Theoretical cross sections for electron collisions in water: structure of electron tracks, Physics in Medicine and Biology, vol.48, issue.14, pp.2147-68, 2003.
DOI : 10.1088/0031-9155/48/14/308

C. Champion, S. Incerti, H. Aouchiche, and D. Oubaziz, A free-parameter theoretical model for describing the electron elastic scattering in water in the Geant4 toolkit, Radiation Physics and Chemistry, vol.78, issue.9, pp.745-50, 2009.
DOI : 10.1016/j.radphyschem.2009.03.079

URL : https://hal.archives-ouvertes.fr/in2p3-00410416

W. Cross, N. Freedman, and P. Wong, Beta-ray Dose Distributions From Point Sources in an Infinite Water Medium, Health Physics, vol.63, issue.2, pp.160-71, 1992.
DOI : 10.1097/00004032-199208000-00002

Z. Francis, S. Incerti, M. Karamitros, N. Tran, and C. Villagrasa, Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4-DNA package, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.269, issue.20, pp.2307-2318, 2011.
DOI : 10.1016/j.nimb.2011.02.031

URL : https://hal.archives-ouvertes.fr/in2p3-00658877

T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, Flexible and Efficient Workflow Deployment of Data-Intensive Applications On Grids With MOTEUR, International Journal of High Performance Computing Applications, vol.22, issue.3, pp.347-60, 2008.
DOI : 10.1177/1094342008096067

V. N. Ivanchenko, S. Incerti, Z. Francis, N. H. Tran, M. Karamitros et al., Combination of electromagnetic physics processes for microdosimetry in liquid water with the Geant4 Monte Carlo simulation toolkit, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.273, pp.95-102, 2012.
DOI : 10.1016/j.nimb.2011.07.048

URL : https://hal.archives-ouvertes.fr/in2p3-00657849

L. Maigne, Y. Perrot, D. R. Schaart, D. Donnarieix, and V. Breton, Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV, Physics in Medicine and Biology, vol.56, issue.3, 2011.
DOI : 10.1088/0031-9155/56/3/017

URL : https://hal.archives-ouvertes.fr/in2p3-00573741

E. Mainegra-hing, D. Rogers, and I. Kawrakow, Calculation of photon energy deposition kernels and electron dose point kernels in water, Medical Physics, vol.12, issue.3, pp.685-99, 2005.
DOI : 10.1118/1.1861412

A. Tsaregorodtsev, N. Brook, A. C. Ramo, P. Charpentier, J. Closier et al., Seco Miguelez M and Zhelezov A 2010 DIRAC3 ? the new generation of the LHCb grid software, Conf. Ser. 219 062029 Online

D. E. Charlton, D. T. Goodhead, W. Wilson, and H. Paretzke, The Deposition of Energy in Small Cylindrical Targets by High LET Radiations, Radiation Protection Dosimetry, vol.13, issue.1-4, pp.123-128, 1985.
DOI : 10.1093/rpd/13.1-4.123

D. E. Charlton, H. Nikjoo, and J. Humm, Calculation of Initial Yields of Single- and Double-strand Breaks in Cell Nuclei from Electrons, Protons and Alpha Particles, International Journal of Radiation Biology, vol.13, issue.1, p.2569005, 1989.
DOI : 10.1080/09553008914551141

Z. Francis, C. Villagrasa, and I. Clairand, Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm, Computer Methods and Programs in Biomedicine, vol.101, issue.3, pp.265-70, 2011.
DOI : 10.1016/j.cmpb.2010.12.012

S. Incerti, C. Champion, N. H. Tran, M. Karamitros, M. Bernal et al., Energy deposition in small-scale targets of liquid water using the very low energy electromagnetic physics processes of the Geant4 toolkit, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.306, pp.158-64
DOI : 10.1016/j.nimb.2012.12.054

URL : https://hal.archives-ouvertes.fr/in2p3-00835915

M. Karamitros, A. Mantero, S. Incerti, W. Friedland, G. Baldacchino et al., Modeling Radiation Chemistry in the Geant4 Toolkit, Progress in Nuclear Science and Technology, vol.2, issue.0, pp.503-511, 2011.
DOI : 10.15669/pnst.2.503

URL : https://hal.archives-ouvertes.fr/in2p3-00658865

W. Koltun, Space filling atomic units and connectors for molecular models. United States Pat. Off. 3170246 Online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Space+filling+atomic+units+and+conne ctors+for+molecular+models#4, 1965.

D. A. Low, W. B. Harms, S. Mutic, and J. Purdy, A technique for the quantitative evaluation of dose distributions, Medical Physics, vol.23, issue.5, pp.656-61, 1998.
DOI : 10.1118/1.598248

D. Macdonald, K. Herbert, X. Zhang, T. Polgruto, and P. Lu, Solution structure of an A-tract DNA bend, Journal of Molecular Biology, vol.306, issue.5, pp.1081-98, 2001.
DOI : 10.1006/jmbi.2001.4447

H. Nikjoo, D. T. Goodhead, D. Charlton, and H. Paretzke, Energy Deposition in Small Cylindrical Targets by Monoenergetic Electrons, International Journal of Radiation Biology, vol.95, issue.5, pp.739-56, 1991.
DOI : 10.1080/09553009114552561

H. Nikjoo, D. T. Goodhead, D. Charlton, and H. Paretzke, Energy Deposition in Small Cylindrical Targets by Monoenergetic Electrons, International Journal of Radiation Biology, vol.95, issue.5, pp.739-56, 1991.
DOI : 10.1080/09553009114552561

H. Nikjoo, D. T. Goodhead, D. Charlton, and H. Paretzke, Energy deposition in small cylindrical targets by ultrasoft X-rays, Physics in Medicine and Biology, vol.34, issue.6, pp.691-7052740437, 1989.
DOI : 10.1088/0031-9155/34/6/005

H. Nikjoo, O. Neill, P. Terrissol, M. Goodhead, and D. , Quantitative modelling of DNA damage using Monte Carlo track structure method, Radiation and Environmental Biophysics, vol.38, issue.1, pp.31-39, 1999.
DOI : 10.1007/s004110050135

H. Nikjoo, S. Uehara, D. Emfietzoglou, and L. Pinsky, A database of frequency distributions of energy depositions in small-size targets by electrons and ions, Radiation Protection Dosimetry, vol.143, issue.2-4, pp.145-51, 2011.
DOI : 10.1093/rpd/ncq396

Y. Perrot, Évaluation de la dose déposée par des faisceaux d'électrons en radiothérapie dans des fantômes voxélisés en utilisant la plateforme de simulation Monte Carlo GATE fondée sur GEANT4 dans un environnement de grille, Thèse -Université Blaise Pascal) Online, 2011.

Y. Perrot, V. Breton, D. Donnarieix, and L. Maigne, Radiotherapy Monte Carlo dosimetry using Gate/Geant4 : validation study in anthropomorphic phantom, Radiother. Oncol, vol.96, p.491, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00573820

Y. Perrot, V. Breton, D. Donnarieix, and L. Maigne, VALIDATION OF ELECTRON RADIOTHERAPY BEAMS USING GATE/GEANT4 IN VOXELISED PHANTOMS, Radiotherapy and Oncology, vol.92, p.71, 2009.
DOI : 10.1016/S0167-8140(12)72777-9

URL : https://hal.archives-ouvertes.fr/in2p3-00448714

G. Poludniowski, G. Landry, F. Deblois, P. Evans, and F. Verhaegen, : a program to calculate photon spectra from tungsten anode x-ray tubes, Physics in Medicine and Biology, vol.54, issue.19, pp.1-4, 2009.
DOI : 10.1088/0031-9155/54/19/N01

URL : http://epubs.surrey.ac.uk/739074/1/Spekcalc.pdf

T. Schalch, S. Duda, D. Sargent, and T. Richmond, X-ray structure of a tetranucleosome and its implications for the chromatin fibre, Nature, vol.47, issue.7047, pp.1-4, 2005.
DOI : 10.1038/nature03686

S. Uehara, H. Nikjoo, and D. Goodhead, Cross-sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region, Physics in Medicine and Biology, vol.38, issue.12, pp.1841-580031, 1993.
DOI : 10.1088/0031-9155/38/12/010

W. Wilson and H. Paretzke, Calculation of Distributions for Energy Imparted and Ionization by Fast Protons in Nanometer Sites, Radiation Research, vol.87, issue.3, pp.521-558, 1981.
DOI : 10.2307/3575518

I. Table, Estimations des CSB et des CDB calculées pour la géométrie du dinucléosome, p.151

I. Table, Estimations des CSB et des CDB calculées pour la géométrie de douze paires de base, p.151

J. I. Pham, H. N. Shin, and S. Tran, Incerti Extending Geant4 at the Physics-Medecine-Biology Frontier. acceptée pour publication dans, Trends in Computational Science and Engineering, 2013.

V. Shin, H. N. Stepan, and C. Tran, Villagrasa Simulating radial dose of ion tracks in liquid water simulated with Geant4-DNA: a comparative study, NIMB, vol.333, pp.92-98, 2014.

Q. T. Pham, Y. Perrot, E. Delage, J. I. Shin, S. B. Lee et al., Maigne Coupling of Geant4-DNA physics models into the GATE Monte Carlo platform: evaluation of radiation-induced damages for clinical and preclinical radiation therapy beams

E. Delage, Q. T. Pham, M. Karamitros, V. Stepan, S. Incerti et al., Maigne and Y. Perrot PDB4DNA : implementation of DNA geometry from Protein Data Bank (PDB) description into Geant4-DNA Monte-Carlo simulations, soumettre dans Computer Physics Communication Conférences

Q. T. Pham, Y. Perrot, S. Incerti, and L. , Maigne Geant4-DNA processes into GATE first validations and perspectives. Meeting de collaboration internationale GATE, 2011.

Q. T. Pham, Y. Perrot, S. Incerti, L. Clermont-ferrand, Q. T. Pham et al., Maigne Validation de modèles physiques et radiochimiques intervenant dans l'irradiation de molécules d'ADN en utilisant le logiciel GEANT4-DNA dans un environnement de grille Les 29 èmes journées des L Maigne Validation de modèles physiques et radiochimiques intervenant dans l'irradiation de molécules d'ADN en utilisant le logiciel GEANT4-DNA dans un environnement de grille Les 30 èmes journées des L, Maigne Developments and validation for the GATE multi-scale platform integrating GEANT4-DNA features

T. Pham, Y. Perrot, E. Delage, S. Incerti, and L. , Maigne Developments and validation for the GATE multi-scale platform integrating GEANT4-DNA features, 2013.

. Nous-avons-alors-proposé-de-simuler-avec-la, impact de faisceaux cliniques et pré-cliniques sur l'ADN cellulaire Nous avons ainsi modélisé un faisceau de protonthérapie de 193,1 MeV, un accélérateur linéaire en mode électrons de 6 MeV et un irradiateur RX de 250 kV. Ces simulations ont d'abord été validées en milieu aqueux par une comparaison de la dose macroscopique avec des mesures expérimentales. Les faisceaux ont ensuite été utilisés pour calculer, pour chacun d'entre eux, les fréquences de dépôts d'énergie à l'ADN. La molécule d'ADN a été simulée tout d'abord grâce à des cylindres équivalents en dimension à 10, équivalents à la taille d'un nucléosome

. Nous-avons-ensuite-reconstruit-la-molécule-d, ADN dans Geant4 à partir de la lecture de fichiers PDB (Protein Data Bank) représentant douze paires de base de la molécule d'ADN et un dinucléosome (347 paires de base) Enfin, nous avons développé un outil permettant de corréler les positions de dépôts d'énergie directs dans l'eau liquide avec les coordonnées des paires de base de l'ADN