De la pertinence de l’énumération : complexité en logiques propositionnelle et du premier ordre

Johann Brault-Baron 1
1 Equipe AMACC - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : Beyond the decision of satisfiability problems, we investigate the problem of enumerating all their solutions. In a first part, we consider the enumeration problem in the framework of the propositional satisfiability problem. Creignou and Hébrard proved that the polynomial classes for the non-trivial sat problem are exactly those for the enumeration problem. We give optimal enumeration algorithms for each of these classes, that generalize any non-trivial decision algorithm for this class. This suggests that enumeration is the relevant problem in this case, rather than the decision problem. In a second part, we simplify and complete some results of Bagan et al. that establish a strong connection between the tractability of a conjunctive query and a notion of hypergraph acyclicity. We establish similar results for the dual class of the class of conjunctive queries, thanks to a new algorithm. Finally, we generalize all these results through a single dichotomy for the enumeration problem of conjunctive signed queries, by generalizing some classical combinatorial result by Brouwer and Kolen. This dichotomy establishes a close connection between enumeration strong tractability and decision strong tractability.
Complete list of metadatas

Cited literature [113 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/tel-01081392
Contributor : Greyc Référent <>
Submitted on : Friday, November 7, 2014 - 4:31:11 PM
Last modification on : Tuesday, February 5, 2019 - 12:12:41 PM
Long-term archiving on : Sunday, February 8, 2015 - 10:55:33 AM

Identifiers

  • HAL Id : tel-01081392, version 1

Citation

Johann Brault-Baron. De la pertinence de l’énumération : complexité en logiques propositionnelle et du premier ordre. Complexité [cs.CC]. Université de Caen, 2013. Français. ⟨tel-01081392⟩

Share

Metrics

Record views

230

Files downloads

371