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Resune en francais

Les systemes contrdlés via un réseau sont des systiansdesquels le process et le controleur
communigquent via un canal de communication numériqueagart L'utilisation d'un réseau
offre de nombreux avantages en termes de flexibilité, deptmxite de cablage, de colt et
de facilité de maintenance, par rapport aux connexionst{gopoint conventionnelles. Pour
ces raisons, le systemes commandés via un réseau sohisderpplus populaires. On peut
citer comme champs applicatifs I'industrie chimique, kffineries, les centrales électriques, les
avions, les réseaux de transport d’eau, les usines inellesy les réseaux d’énergie, le contrdle
environnemental, voirl[3, 76] par exemple. En contre-partie, réseau induit des cartggide
communication telles que I'échantillonnage irrégullarquantification des signaux, des pertes
de paquets, des retards de communication variables, vogxeaple 5, 48, 125. Il est donc
nécessaire de construire des lois de commande qui gaemtig stabilité du systéme tout en
prenant en compte ces contraintes. Nous nous concentrossl@l@adre de cette thése aux

limitations induites par I'échantillonnage des signaebignorons les autres effets possibles.

Le commande a transmissions événementielles corsideinir les instants de transmission
selon un critere dépendant de I'état du systeme et nonedhorloge a l'instar des implanta-
tions périodigues. Dans ce dernier cas, la période diillonnage doit étre inférieure a une
valeur maximale qui dépend du systéme en question. Biermeftie stratégie soit facile a mettre
en ceuvre, il n'est pas évident que I'échantillonnageopé@ue permette une utilisation effi-
cace du réseau. En effet, que le systeme soit en réginmeapent ou transitoire n’a aucun
impact sur le nombre de transmissions. Dans le cadre de lmaode, il semble plus approprié
d’adapter les instants de transmissions a I'état dwesystd’ou I'idée de commande a transmis-
sions événementielles. Ainsi, I'utilisation des resses de calcul et de communication peut
étre réduite significativement comparée aux méthoéemgiques. Lidée est de surveiller en

permanence I'état du systeme et de déclencher une tissism(et donc de fermer la boucle de
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commande) uniguement lorsqu’un critere prédéfini etssfsdt, voir [1, 7, 10, 22, 43,103, 120.

Ce paradigme est actuellement le sujet de nombreux travaux.

La plupart des résultats existants sur le commande amiias®ns événementielles supposent
gue les mesures completes de I'état sont disponiblesppliz@ation de ces résultats est donc
limitée puisqu’ils excluent de facto les lois de commande etour de sortie. Il s’avére que
lorsque seule une sortie du systeme est mesurée, leepreldevient beaucoup plus complexe.
Il devient en effet de garantir un temps minimum entre deamdmissions ce qui est nécessaire
pour que le contrbleur soit implantable. Il est donc imantide développer des commandes par

retour de sortie a transmissions événementielles.

Objectifs et contributions

Motivé par les discussions précédentes, dans cetse ti@us &tudions le probleme de la com-
mande par retour de sortie a transmissions événemestieEn particulier, nous traitons les

sujets suivants :

e Nous développons une conception basée sur 'emulatium ptabiliser une classe de

systemes non linéaires.

e Nous présentons une procédure pour concevoir simuitangla loi de commande et de
la condition de déclenchement pour les systemes lieg€aifin de réduire davantage la

quantité de transmissions.

e Nous proposons une méthode adaptée aux systemes paivdm dont la dynamique ont
deux échelles de temps. En particulier, nous nous appuyigsiement sur la connais-

sance d’'une approximation de la dynamique lente.

Plan de la These

Cette these est organisée de la fagon suivante.
Chapitre 1: Introduction

Nous définissons dans un premier temps les systemesEamia un réseau et nous présentons

ensuite les techniques de conception de lois de commangait&mous introduisons le principe
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de la commande a transmissions événementielles et nqulisi®ns ses avantages par rap-
port aux implantations périodiques. Nous passons alors\are les résultats existants dans la
litteérature sur ce theme et nous montrons les difficultebniques générées par les commandes

par retour de sortie. Enfin, nous présentons nos objettifesecontributions.

Chapitre 2 : Conception de lois de commandes transmission évenementielles pour des

sysemes non lireaires

Nous proposons une méthode de synthése de lois de comiiammentielle par retour de sor-
ties pour des systemes non linéaires. Cette approchéegiad émulation, puisqu’un retour de
sortie est tout d’abord construit en temps continu, en igmidiéchantillonnage, puis le critére de
transmission est congu. Le probleme est modélisé coommsystéme hybride. La loi de trans-
mission proposée consiste a combiner une horloge tetigetain critere dépendant de la sortie
afin de garantir I'existence d’'un temps minimal entre deargmissions. Les résultats sont ap-
pliqués a deux systemes physiques, ainsi qu'aux systdimeaires stabilisables et détectables.

Le cas particulier de la commande par retour d’état edeagant abordé.
Chapitre 3: Co-conception pour les systmes lirgaires

Ce chapitre étend les résultats du Chaptrafin de simultanément concevoir le loi de retour
de sortie et le critére de transmission pour stabilisersgetemes linéaires (il ne s’agit plus de
synthése par émulation). Nous présentons des inégatliitricielles linéaires qui permettent la
synthese en question. Nous expliquons ensuite commeltitexpes résultats pour optimiser
I'échantillonnage. Nous proposons d'abord une méthaae pgrandir le temps minimal entre
deux transmissions, puis nous présentons une méthogérdisation heuristique pour réduire

les transmissions.
Chapitre 4 : Systemes singukerement perturbés

Dans ce chapitre, nous examinons la synthese de commatnaesinissions événementielles
pour la stabilisation de systemes dont la dynamique @wsdlon deux échelles de temps. Notre
objectif est de concevoir la commande directement a pdutimodele approximé du systeme

lent (les dynamiques rapides sont ignorées).

Nous suivons I'approche par émulation : nous supposonsigue savons résoudre le probleme
en absence d’échantillonnage et ensuite nous étudionmeat concevoir la regle de transmis-
sion en présence des contraintes de communication. Nop®gwns dans un premier temps

un modele hybride et nous expliquons qu’une loi de détlenent que garantit la stabilité
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et I'existence d'un temps minimal uniforme entre deux traissions pour le modele lent ne
garantit pas toujours I'existence d’'un tel temps pour legsye global. Nous présentons ensuite
des conditions suffisantes sur le systeme hybride sieiguiient perturbé et nous présentons les
résultats principaux. Ensuite, nous montrons que lasdteds sont applicables a une classe des
systemes globalement Lipschitziens qui inclue les sysglinéaires comme un cas patrticulier.

Finalement, avons appliqué les résultats sur un modaléom F-8.
Chapitre 5: Conclusions

Dans ce chapitre, nous présentons les conclusionsajésgnous mettons en évidence les con-

tributions principales et nous fournissons quelques pistelr la recherche future.
AnnexeA : Preuves

Nous fournissons les preuves de résultats du Chapitre

AnnexeB : Rappels mathematiques

Nous rappelons quelques préliminaires mathématiqumss gile les outils fondamentaux requis

pour cette these.

Publications

Les travaux de cette thése ont fait I'objet des publicatismivantes.

Articles de journal

e M. Abdelrahim, R. Postoyan and J. Daafouz, Event-trigge@trol of nonlinear singu-

larly perturbed systems based only on the slow dynamiaggymatica, accept

e M. Abdelrahim, R. Postoyan, J. Daafouz and D. NeSic, Sralion of nonlinear systems
using event-triggered output feedback lawsumisa IEEE Transactions on Automatic

Control.

Articles de conference

e M. Abdelrahim, R. Postoyan and J. Daafouz, Event-trigge@trol of nonlinear singu-

larly perturbed systems based only on the slow dynarmd3roceedings of the 9th IFAC
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Symposium on Nonlinear Control Systems, Invited Papelpliea, Francepp. 347-352,
2013.

e M. Abdelrahim, R. Postoyan, J. Daafouz and D. NeSi¢, 8raion of nonlinear sys-
tems using event-triggered output feedback ldw&roceedings of the 21th International
Symposium on Mathematics Theory of Networks and SystemsinGen, Pays-Bapp.
274-281, 2014.

e M. Abdelrahim, R. Postoyan, J. Daafouz and D. NeSi¢, Caiggreof output feedback
laws and event-triggering conditions for linear system$roceedings of the 53rd IEEE

Conference on Decision and Control, Los Angeles, Etats;20i14.






Presentation

Networked control systems (NCS) are systems in which thet glad the controller communi-
cate with each other via a shared digital communication melaraditionally, the control laws
are implemented on dedicated platforms and the commuoicatith the plant is performed
through point-to-point rigid connections which leads tongdex wiring/diagnostic and high cost
of maintenance. The utilization of NCS offers attractivaddis in terms of flexibility, reduced
complexity in wiring connections, lower cost and ease ofrteiance. Due to these advantages,
the incorporation of a network in the feedback loop is becgmore and more popular in a
wide range of applications. Examples include chemical ggees, refineries, power plants, air-
planes, water transportation networks, industrial faesorenergy collection networks (such as
wind farms), environmental monitoring, battlefield and eswision. However, the insertion of
a network in the feedback loop induces communication caimés (variable transmission inter-
vals, quantization errors, delays, packet dropouts, ahddiding) which may seriously affect
the control objectives. A significant challenge in NCS igéfiere to achieve the control objec-
tives (in terms of stability and performance) despite tHaséations. In conventional setups,
data transmissions are time-driven and two successiverigsion instants are constrained to
be less than a fixed constant, called thaximum allowable transmission inter@ATI). Al-
though time-triggering is appealing from the analysis anglementation point of view, it is not
clear that this paradigm is always suitable in the conteXiG6. Indeed, the same amount of
transmissions per unit of time is generated even when tri@s&mns are not necessary, in view
of the control objectives, which may lead to an inefficiend @xcessive usage of the network.

To overcome this shortcoming, event-triggered controlliesen proposed as an alternative.

Event-triggered control is an implementation techniquevinich the transmission instants are
defined based on a state dependent criterion. The idea istmgously measure the plant state
and to close the feedback loop only when it is needed in viethefstability and/or perfor-

mance requirements. This may significantly reduce the atnafumansmissions compared to
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the time-triggered paradigm, which is essential for NCS.Adke that ETC is also attractive in
the context of embedded control systems to reduce the anodwaintrol updates, and there-
fore computation, and to save the energy of battery powesadass by reducing the number
of transmissions. This paradigm is receiving a consideratikrest in the control community
nowadays. Most of the existing results assume that thethiik sneasurement is available and
can be used for feedback. This is not realistic in many agptios. It appears that the design of
output feedback event-triggered controllers is much mbedlenging, in particular because it is
more difficult to ensure the existence of a minimum amountroétbetween two control input
updates which is crucial for the controller to be implemblgaFew results in the literature have
addressed this problem and mostly for linear systems. Theopa of this thesis is to provide
methodological tools for the design of output feedback etéggered controllers for different

classes of systems.

Objectives and contributions

The results of this thesis are threefold:
e We develop an emulation-based design for output feedbasht-¢riggered controllers to
stabilize a class of nonlinear systems.

e We present a co-design procedure to simultaneously ddsgyattput feedback law and
the event-triggering condition for linear systems in orttefurther reduce the amount of

transmissions.

e \We propose stabilizing event-triggered controllers fanlmear systems whose dynamics
have two-time scales. In particular, we only rely on the kieolge of an approximate

model of the slow dynamics.

Outline of the Thesis

The remainder of this thesis is organized as follows.
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Chapter 1: Introduction

We provide a brief overview on NCS and ETC. We first start byrdef§ NCS and we then
present the main control design approaches. Next, we imtethe basic concept of ETC and
we explain its advantages compared to time-triggered imefgation. Afterwards, we review
the existing results approaches on ETC and we demonstetechnical difficulties when the
full state measurements cannot accessed by the contrélieally, we present our objectives

and contributions.

Chapter 2: Emulation design for nonlinear systems

We study the emulation design of output feedback evengidried controllers to stabilize a class
of nonlinear systems. First, we derive the hybrid model ef HCS and we formally state the
problem. Next, we propose sufficient conditions to guarate asymptotic stability property
for the closed-loop system. We apply the technique on tweighy nonlinear examples. We
then show how the obtained results can be applied to thecpkaticases of LTI systems and to

state feedback controllers.

Chapter 3: Co-design for LTI systems

This chapter extends the results of Chajtéw the joint design of the output feedback law and
the event-triggering condition for LTI systems. The regdiconditions are formulated as LMI
conditions which are computationally tractable. Then, Wwews how the LMI can be used to
enlarge the guaranteed minimum inter-transmission tindg@heuristically reduce the amount

of transmissions. The results are illustrated on a numleziample.

Chapter 4: Singularly perturbed systems

We investigate the stabilization of two-time scales systéymevent-triggered controllers based
only on an approximate model describing the slow dynamigsfolbowing the emulation ap-
proach. We show that a triggering law which guarantees thigilgy and the existence of a
uniform minimum amount of time between two transmissionstiie slow model may not en-
sure the existence of such a time for the overall system. ;Miempropose sufficient conditions

on the hybrid singularly perturbed system to guarantee lthsed-loop stability of the original
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system as well as the existence of a dwell-time for the itteersmission times. Next, we show
that the results are applicable to a class of globally Ligsdystems which encompasses LTI
systems as a particular case. Finally, we apply the resulteet autopilot control of an F-8

aircraft model.

Chapter 5: Conclusions

We give general conclusions, we highlight the main contrdms, and we provide directions for

future research.

Appendix A: Proofs of Chapter 4

We provide the proofs of some of the results of Chagter

Appendix B: Mathematical review

We recall some mathematical preliminaries and fundaménbdd that support the presentation

of the technical results.

Publications

The following publications have been accepted or are uneddew, based on the presented

material in this thesis.

Journal papers

e M. Abdelrahim, R. Postoyan and J. Daafouz, Event-triggeatrol of nonlinear singu-

larly perturbed systems based only on the slow dynamiaggymatica, accepted

e M. Abdelrahim, R. Postoyan, J. Daafouz and D. NeSic, Sralion of nonlinear systems
using event-triggered output feedback lassbmitted for publication to IEEE Transac-

tions on Automatic Control
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Conference articles

e M. Abdelrahim, R. Postoyan and J. Daafouz, Event-trigge@trol of nonlinear singu-
larly perturbed systems based only on the slow dynarmd3roceedings of the 9th IFAC
Symposium on Nonlinear Control Systems, Invited Papelplieg, Francepp. 347-352,
2013.

e M. Abdelrahim, R. Postoyan, J. Daafouz and D. NeSic, Sralion of nonlinear systems
using event-triggered output feedback laimsProceedings of the 21th International Sym-
posium on Mathematics Theory of Networks and Systems, rigemi The Netherlands

pp. 274-281, 2014.

e M. Abdelrahim, R. Postoyan, J. Daafouz and D. NeS3i¢, Csiggreof output feedback
laws and event-triggering conditions for linear systemg?roceedings of the 53rd IEEE

Conference on Decision and Control, Los Angeles, U,2044.






Chapter 1

Introduction

1.1 Networked control systems

NCS are feedback systems in which the control loop is closed @ (shared) network. NCS

essentially consist of four components, see Fidute

sensors to collect plant measurements;

controller;

actuators to execute the control inputs;

communication network to transfer information from thess@s to the controller and/or from

the controller to the actuators.

> Plant

Actuators Sensors

Network

Controller

A

FIGURE 1.1: Block diagram of NCS.
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NCS offer great benefits compared to the conventional gohpint connection in terms of
lighter wiring, lower installation costs, greater abédi for diagnosis, flexible reconfiguration
and ease of maintenance. However, the insertion of a shateerk in the feedback loop

induces the following constraints and phenomena on datanresions (3], [125]):

e Variable inter-transmission times. In NCS, the next transmission instant for each
nodé is usually determined by local control units. These localtaalers may have lim-
ited processing power and clocks with low accuracy. Hereerdsulted inter-transmission

times may become uncertain and time varying.

e Scheduling. A rule called protocol is typically used to orchestrate sramssions of the
different nodes over the channel. When the plant sensomistréduted for instance, and
therefore not assigned to the same node, this implies teatdhtroller only receives a

partial knowledge of the plant output at each transmissistant.

e Quantization errors. This phenomenon occurs due to the A/D conversion of the plant
analog signal since, at each transmission instant, the plaasurement has to be repre-
sented by a finite number of bits. The deviation between tladogrvalue and its corre-

sponding binary conversion is known as the quantizatioor.err

e Packet dropouts. The sharing of a limited communication bandwidth by manyticmn
loops and applications may not allow the sensors to trangaé immediately when it is
needed since the network may be busy by other tasks. As d,resuoile packets may be

lost or arrive out of date.

e Time delays. Each node may have to wait a certain amount of time beforeirsgits
packet. Furthermore, the transmission time over the nétway not negligible. These

phenomena lead to time delays.

The presence of one or more of these network-induced camtstigan damage the closed-loop
performance or even lead to instability. Therefore, itiemsgly required to develop well-suited
control techniques for NCS to handle these issues. In tesighwe focus on the first commu-

nication constrainti.e. variable inter-transmission times.

1A node is a component connected to the network.
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1.1.1 Control design approaches

Inserting a shared network in the feedback loop increaseddhign complexity of control sys-
tems and requires to develop methodologies specificallptadao NCS. In fact, the design of
NCS combines the domains of control systems, communicagtworks (and real-time com-
puting). The main control design techniques in the litexatare: emulation, co-design, and
direct discrete-time. We briefly present these techniquéisa following and we refer the reader

to [46], [12] for more detailed explanation and literature review.

1.1.1.1 Emulation

The emulation approach consists in first synthesizing tmgroler in continuous-time, while
ignoring the network effects. Then the network is taken mtoount and sufficient conditions
on the latter are derived to maintain the properties endoyetie controller, see.g.[65], [45].
This approach is appealing as it allows to use availablestimotontinuous-time to design the
controller. On the other hand, the conditions imposed om#tevork are constrained by the
initial choice of the controller, and these may be too coratére. In this context, it has been
shown in the literature that for digital controllers degdrby emulation, the inter-transmission

times have to be less than the MATI to maintain stability of$\Gee=.g.[113], [117], [7§].

1.1.1.2 Co-design

In the emulation approach, the feedback law and the netwarlseparately designed in a se-
guential manner which may lead to restrictive conditionghennetwork. For instance, we may
need to work with a very small MATI to preserve stability. Os@ution to avoid this issue is

to simultaneously design the feedback law and the netwooke khat this co-design strategy is
more challenging since it is required to simultaneous|e tedre of the controller design and its
implementation which may result in conflicting constrairiisr more explanation and literature

review on this approach, we refer the readert],[[127], [21], [12].

1.1.1.3 Direct discrete-time

An alternative approach is to synthesize the controllexadiy based on the discrete time model

of the plant. The design procedure consists in three stepse,®.[19], [77], [31]:
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1. Obtain a discrete-time model of the plant.
2. Design the controller to stabilize the closed-loop syste

3. Verify the closed-loop stability of the true modeé. the continuous-time plant with the

sampled input.

The main drawback of this strategy is that it is very diffidalitobtain the exact discrete-time
model of the plant, in particular for nonlinear systemsgsiwe need to know an explicit analytic
solution of the differential equation that describes theticmous-time dynamics. On the other
hand, if an approximate discrete-time model is used, iti®bwious that the designed controller
for the approximate model will stabilize the true model of tHCS, see.qg. [80]. Therefore,

most existing results on this design strategy are dedidatidear systems4o].

1.2 Event-triggered control

In convention setups, the feedback laws are implementedimeatriggered fashion such that
two transmission instants are separated by (at most) thelMihough this strategy is appeal-
ing from the implementation point of view, it is not obviougat time-triggering is appropriate
for NCS. First, the transmission interval is usually desijisuch that the closed-loop stability
is guaranteed in all possible situations. To do so, the desag to be carried out based on the
worst case scenario which may result in a small MATI bouncke $écond reason is that the time-
triggered approach has a blind nature since the transmisstants are generated regardless the
system state. This may lead to an inefficient usage of the atatipn and the communication
resources. Intuitively, if the system has reached a desgedibrium point and no disturbance
is acting on the plant, there is no need to close the loop andltoilate a new control input, but
the time-triggered paradigm keeps doing so. In the lastadks;anany researchers suggested to
develop alternative implementation policies such tha&tmeunt of transmissions is adapted to
the current plant state. This may allow to significantly reglthe usage of the communication

and computation resources. ETC has been proposed in thisxton

1.2.1 Theidea

ETC is a control strategy in which the loop is closed only wiaedesigned state-dependent

criterion is violated, see.qg. [10], [7], [103, [44], [8], [1], [43] and the references therein.
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The event-triggered controller consists of two parts: ggering-condition which decides the
next transmission instant and a feedback law which gergetiagecontrol input based on the last

transmitted value of the plant measurements, see Figdre

Plant

Controller <—1

» Event-triggering |- - -~
oo ] mechanism  [¢

FIGURE 1.2: Event-triggered control schemat2].

ETC was originally motivated by the following consideraiso(see T], [10]):

e Close to the human behaviour. Event-triggered implementation is close in nature to
the way a human behaves as a controller which only sampletakes a control decision

when some events occur, like in the car driving.

e Natural approach for many applications. ETC is natural in many contexts, examples
include speed control of internal combustion engines, trrol of production rate for
manufacturing systems, motion control where an angle orsitipo are measured by

encoders, systems with relay feedback and many other erampl

e Time-triggered implementation may be inefficient or difficult to implement.  In
modern distributed control systems, it becomes difficulnefficient to stick to the time-
triggered paradigm, in particular for NCS since the chamm&y be shared by many pro-

cesses.

e Event-triggered control may reduce transmissions. Since the transmission instants
are adapted to the current system state, this may lead tondicagt reduction in the
amount of communication via the network as showreig. [11], [8], [90], [25], [56],

[89].

A fundamental issue in ETC is to ensure the existence of @ammistrictly positive lower bound

on the inter-transmission times. This requirement is d@&ddn prevent the occurrence of Zeno
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phenomenon,e. to avoid the generation of an infinite number of transmissiora finite time.
This task induces non trivial difficulties in the stabilityalysis. Note that the existence of such a
lower bound on the inter-transmission times is not only wigefprove stability but also because
two triggering instants cannot occur arbitrarily closeimé in practice due to the hardware

limitations.

Several terminologies in literature are used to refer t&h€, related to the context where it has
been applied. The tersend-on-deltas used in the context of sensor networggy.[73], [107],

[86], while the termlevel-crossing samplingas been utilized in context of signal conversion
and processing, seeg. [2], [66], [37]. In the control systems community, the terminologies
deadband samplinfB1], [109], Lebesgue samplind.1], [9] are also equivalently used to refer

to ETC.

1.2.2 Hybrid model

Consider the case where the controller communicates wethltint via a digital channel. In this
section, we derive a model of event-triggered control sgste the case where the feedback

law only has access to an output of the plant for the sake adrgéty (like in [22], [30], [87]).

Consider the nonlinear plant model

Ty, = fp(xzhu)v Yy = gp(xp)> (1.1)

wherez,, € R"* is the plant statey € R™ is the control inputy € R™ is the measured output

of the plant. Assume that the plant is stabilized by gengraadhic controller of the form

Te = fc(xmy)a uw = gc(lrc,y)a (1'2)

wherez, € R" is the controller state. Note that, by setting= g.(y), we obtain a static
controller. Since the feedback loop is closed via a digitermel, the plant output and the
control input are sent only at some transmission instanisc Zx, see Figurel.2 At each
transmission instant, the plant output is sent to the ciaetravhich computes a new control
input that is instantaneously transmitted to the plant. ¥#ime that this process is performed

in a synchronous manner and we ignore the computation timeshe possible transmission
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delays. In that way, we obtain

iy = fpzp, ) t € [t tiz1]
e = fe(ze,7) t € [ti,tiva]
u = ge(ze,9)
j =0 te [t tivi] (1.3)
u = 0 t € [ti,tiv1]
gt = y(t)
aty) = ut),

wherey and 4 respectively denote the last transmitted values of thetmatput and of the
control input. We assume that zero-order-hold devicessad to generate the sampled valges
and between two successive transmission instants which leagls-t0 anda = 0 for almost
allt € [t;, tiy1],7 € Z>o. Other types of holding function can be considere#i]j but we do
not investigate those in this thesis. After each transmissistanty andu are reset to the actual
values ofy andw, respectively. We introduce the network-induced eero= (e, e,) € R",

where

ey = Y—y L.4)

€y = U—u,

which are reset t6 at each transmission instant. Note that when static ougqaalifack controller

are considered, we have that= 0 and we only considet,,.

We observe that the closed-loop system is a hybrid dynammodkl since it combines continuous-
time evolutions, to model the plant and the controller dyrearrand discrete phenomena which
model transmissions. Many modeling frameworks have beeelaiged in the literature to cap-
ture the hybrid nature of dynamical models. Examples irellagbrid dynamical system83],
[34], mixed logical dynamical (MLD) modelslfl], complementarity systemd4.(g, [39], hy-
brid automata47], hybrid inclusions or impulsive system84], [38] and switching systems
[59]. Among these frameworks, we choose to model NCS using thédhyjormalism of 34],

as in 2], [30], [1]. This choice is justified by the fact that this approach paes an efficient
and compact method to describe general hybrid systems.ditiay this formalism allows us

to use the elegant concepts of solutions and stability dpeel in B4]. In this way, the system



20 Chapter 1. Introduction

is modeled as follows

B f(z e (2.0) € C xt [ (0.6) € D, L5)
é g(x,e) et 0

wherez := (z,,z.) € R"*. The functionsf, ¢ in (1.5) are given by

fp (xpmgc(xm y + ey) + eu)
f(z,e) =
fc(xmy + ey)
(1.6)
oe€) = _a;gpgp(mp)fp <$pa ge(Te, y + ey) + eu)
— o ge(Te, Y + €y) fel@e, y + €y)

The flow and jump sets, respectively denoté@nd D, are defined according to the triggering
condition that we will design later. As long as the trigggricondition is not violated, the
system flows or”’ where no transmission occurs. Jumps occur only if the triggecondition

is verified,i.e. (z,e) € D. When(z,e) € C' N D, the system flows only if flowing keefs;, ¢)

in C, otherwise the system experiences a jump. The functfopsn (1.5 are assumed to be
continuous and the sefs and D are closed. This will be the case in this thesis to ensure that

system L.5) is well-posed, see Chapter 6 i84].

1.2.3 Event-triggering mechanisms

The main objective of the ETC problem is to design the flow dredjamp sets of systeni.©),
i.e. the triggering condition, to guarantee the closed-loopikty to reduce the number of
transmissions, and to ensure the existence of a uniformtlgtpositive lower bound on the
inter-transmission times. In what follows, we present seoramon techniques in the literature

to design the flow and the jump sets.
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1.2.3.1 Static threshold

The evolution of the norm of the network-induced error igrieted to be upper bounded by a

positive constant threshold. In this case, the flow and timpjsets for systeml(5) are

C =A{(z,e): le]| < A}
1.7)

D= {(a:,e) el > A}7

where A > 0 is a designed constant. In that way, the minimum inter-trassion time is
strictly positive and corresponds to the minimum time itetsHior |e| to evolve from zero to
A. However, the achieved stability property with this triggg mechanism is generally not
asymptoticj.e. the system state typically converges to some neighbourbbtite origin. This
triggering technique is referred to as deadband con@®j, [send-on-delta73], non-uniform

mechanism44].

1.2.3.2 State-dependent threshold

In many control system applications, asymptotic stabpityperties are required for the closed-
loop system. To achieve this goal, the triggering conditireshold should be a function of
the system state and not a fixed constant as in the previoheigee. Most of the existing
results on this triggering mechanism assume that the itk sheasurement can be accessed by
the controller,e.g. [43, 44, 57, 61, 70, 89, 119 and the references therein. Consequently, the
feedback law is designed based on the full state informatr@hwe have that, in view of.(3),

U = Ip, u = g.(&p) and the sampling induced error becomes

er = Tp — Tp. (1.8)

In this context, many strategies have been proposed intdratlire to construct the flow and
jump sets for the hybrid system.p). We present here the result ih(3 which is one of the
common techniques in the literature. Furthermore, we wadlttsrom this result to establish
our triggering mechanism later. The idea 0§ is to first assume that the state feedback law

u = k(Z,) renders the closed-loop system

iy = [p(zp, k(zp + €5)) (1.9)
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input-to-state stable (ISS) (see DefinitiBr2) with respect to the network-induced ereqr, see
e.g.[103, [1]. This property is usually ensured by the existence of a $simgmositive definite

and radially unbounded functioni : R" — R, such that, for all- € R"= and alle € R"

S (e + €)) < —aje]) + (], (110

wherea, v € K. Hence, if the triggering condition is constructed as
v(lel) < oa(|z]) (1.11)

for someo € (0,1), then (.10 becomes

O fa ke + ) < ~(1 - o)a(lal) (1.12)

which ensures thdt” strictly decreases along the solution to systém)( Hence, the obtained
stability property of systeml(9) in the absence of network is preserved. As a consequeree, th

flow and the jump sets irl(5) are defined as follows

C ={(x,e) : y(le|]) < oallz|)}
(1.13)

D= {(x,¢) :7(le]) = oa(|z])}-

It is important to highlight here that the construction dfi3 by itself does not a priori ensure
that the minimum inter-transmission time is strictly pogtto avoid the Zeno phenomenon.
Additional conditions are required to generate this propén [103 for instance, the functions

[y k,a™t vin (1.10 are required to be locally Lipschitz.

Remark 1.1. Condition (L.17) is only a sufficient condition to guarantee thati2 holds. It

is also possible to directly define the flow and the jump sets as

C ={(z,e): W fla,k(z+e) < —(1-0)alz])}
(1.14)

D ={(z,e): W f(a,k(z+e) > —(1 - o)a(lz)},

without using {.10), to potentially further reduce transmissions (see e9§),[[ 1]). O



1.2 Event-triggered control 23

1.2.3.3 Using additional variables

In some cases, additional variables R"™ can be introduced to design the triggering condition.
It is shown in fL], [89], [32] that such variables can be used to further reduce transmsss
Moreover, [L], [89] also explain that the technique id41] can be reinterpreted within the

formalism of 34] by adding an appropriate variable

1.2.4 Other state-dependent sampling paradigms

Other state-dependent sampling implementations havdatoproposed in the literature. Self-
triggered control is an implementation approach in whighriext transmission instant is deter-
mined by the controller itself based on the latest measumnesTef the state and knowledge on
the plant dynamical model, seeg.[110], [67], [89], [5], [117], [68], [3]. The potential advan-
tage of this approach is that we do not need to continuouslyitorothe plant measurements
as in ETC. However, a main challenge in self-triggered amérhow to precisely estimate the
next transmission instant. Periodic event-triggered robimg another alternative in which the
plant measurements are sampled periodically and, at eagfiiag instant, the event-triggering
condition is evaluated to decide whether or not to transewt measurements and control sig-
nals, see.qg.[7], [44], [27], [40Q], [42], [87]. The main benefit of this strategy is that the Zeno
phenomenon is ensured to be avoided since the periodic isgymplerval serves as a guaran-
teed lower bound on the inter-transmission times. On therdthnd, a thorough analysis of this
approach is not trivial to design an appropriate samplingopeof the triggering mechanism
such that the closed-loop stability is preserved and thfopeance is not degraded. An alter-
native state-dependent strategy has been propos@d]ibdsed on a mapping of the state space
which is designed offline to reduce the amount of transmissguring the real-time control of

the system. In this thesis, we focus on the event-triggeajroach.

1.2.5 Output feedback control

The methods presented so far assume that the full state caedmsured. In this case, both the
feedback law and the event-triggering condition are fuumgtiof the full state vector. In practice,
we often have access to an output of the plant and not to thetéé. It has to be noted that the

existing results on state feedback ETC cannot be directgnebed to output feedback controllers
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since the existence of a strictly positive lower bound onitter-transmission times is no longer
guaranteed in this case which induces more technical difeisuin the stability analysis. We

clarify this point by recalling Example 2 ir2p).

1.2.5.1 Motivating example

Consider the LTI system

. 0 1 0
Ty = Tp + U
-2 3 1 (1.15)
y = [-1 4]z,

wherex € R? is the plant statey € R is the control input ang € R is the output of the plant.

The system can be stabilized by the following dynamic outpetiback controller

T = Ze + Yy
0 -5 1 (1.16)

u = [1 —4]z,

wherez,. € R? is the state of the dynamic controller. Let the network-iretli error defined as,
fort ¢ [ti, tz'_;_l]
ey(t) = y(ti) —y(t). (1.17)

The straightforward extension of the triggering condit{@ril) gives

ley| < alyl (1.18)

for some sufficiently small > 0. Unfortunately, this triggering rule is not suitable sirtbe
existence of a uniform strictly positive lower bound is nosered like with state feedback
controllers and hence, Zeno phenomenon may occur. Inddeehy= 0, an infinite number
of jumps occurs for any value of such thatg,(z,) = 0. This situation is shown in Figure
1.3where we note that the transmission instants accumulate=afi.7674 which reveals the

occurrence of Zeno phenomerfon

2All the simulations in this thesis have been carried out bggislyEQ toolbox p2).
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FIGURE 1.3: Inter-transmission times with a zoom-in of the lashsraissions.

To overcome this issue, event-triggered controllers habetdeveloped in order to maintain the
closed-loop stability while ensuring that the minimum miinsmission time is strictly positive.
In [22] for instance, this issue was overcome by adding a constattitet triggering condition

which leads to

C = {(:c,e) : (|ey|2 <oylyl* + Ey) and(|6u|2 < oulul® + Eu)} (1.19)

D ={(@e): (leyf> = oylyl? + 2, ) or (Jeul® = oulul® +2.) }

for oy, 0u,ey,4 > 0, from which a practical stability property is derivag. the state trajectory

converges to a neighbourhood to the origin whose size depamthe parametets,, ,,.

1.2.5.2 Existing results

To the best of our knowledge, the problem of output feedbatk Eas been first investigated
in [53] and then in 8, 22, 30, 41, 55, 58, 72, 84, 100, 105, 12€ for LTI systems and only in
[123 for nonlinear systems. We have seen above that the evggeted controller proposed
for LTI systems in R2] guarantees a practical stability property. These coet®hre such that
the smaller the size of the neighbourhood to the origin, tieter the guaranteed minimum
inter-transmission time. The results ib2g], [72] focus on PETC for linear systems. 18]]
[10Q], [104],[58], [41], [30Q], event-triggered observer-based controllers have beealaped.
The triggering mechanisms in these architectures are @&sbtwnhave access to both the out-
put measurement and the estimated state by the observenoRlimear systems, we are only
aware of the result in123] where passivity tools were used to derive triggering cbhods to

achieve anC, stability property. To ensure the existence of a strictlgifae lower bound on
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the inter-transmission times, the authors 123 require that the output of the plaptbelongs
to a bounded sector of the state. This requirement seemsdonservative and we show that
this condition dos not hold for all the illustrative exampthat we have considered in the next

two chapters.

1.3 Obijectives and contributions

Motivated by the previous discussions, in this thesis, wiress the following problems in the

context of output feedback ETC.

Chapter 2: Emulation design for nonlinear systems

We design output feedback ETC for nonlinear systems by dmonjssee Sectiod.1.1.1 The
design objectives are to guarantee a (global) asymptatiligy property and to ensure the ex-
istence of a uniform strictly positive lower bound on thesiatransmission times. The proposed
strategy combines the event-triggering condition1dfj] adapted to output measurements and
the results on time-driven sampled-data system3% Indeed, the event-triggering condition

is only (continuously) evaluated aft&runits of times have elapsed since the last transmission,
whereT corresponds to the MATI given by §]. This two-step procedure is justified by the fact
that the adaption of the event-triggering condition D83 to output feedback on its own can

lead to Zeno phenomenon as we have seen in Setibh

Our results rely on similar assumptions asif][which allow us to derive both local and global
results. Contrary taj0], the approach is applicable to nonlinear systems and ttpeibieedback
law is not necessarily based on an observer. Comparet2@®, [we rely on a different set of
assumptions and we conclude a different stability propémntgddition, we show that our results
are applicable to any LTI systems that are stabilizable atdatable, which is a priori not
the case of123. Furthermore, we apply our results to the controlled Laremodel of fluid
convection and to a single-link robot arm model, which arelinear and which do not satisfy
the conditions of]23. It has to be noted that the event-triggering mechanisiviegropose is
different from the periodic event-triggered control (PBTaradigm, see.g.[42], [87], where
the triggering condition is verified only at some periodiengding instants. In our case, the
triggering mechanism isontinuouslyevaluated, onc’ units of time have elapsed since the last

transmission.
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For LTI systems, the required conditions are reformulated &near matrix inequality (LMI).
The triggering condition parameters are then obtained byingpthis LMI condition which
is shown to be always feasible for LTI systems that are stalble and detectable. We also
compare the effectiveness of our proposed triggering mesimawith the existing results on
a numerical example. Furthermore, we show how the propasethigue can be fruitfully
employed in the context of state feedback control as a dpemse, to directly tune the lower
bound on the inter-transmission times. Although such atdwend is guaranteed 103, the
obtained value may be subject to some conservatism. Maeeestingly, the internal structure
of our triggering mechanism ensures that the generated @nedaransmissions are less than

or, at least, equal to those produced by conventional pergedups usingq9].

Chapter 3: Co-design for linear systems

The vast majority of existing event-triggered controllare designed by emulation, see 43,
120 and the references therein. The potential disadvantagi@safechnique is that it is difficult
to obtain aroptimal design since we are restricted by the initial choice of tleeliback law. To
avoid the design constraints imposed by the emulation agprdhree directions of research are
proposed in the literature: co-design of feedback laws aedtetriggering conditionse.g. see
[49, 83, 85, 98, 99, 106, 124], joint design of control inputs and self-triggering coinalis, e.g.

[4, 15, 23, 28, 36, 11§, and optimal event-triggered contre.g.[6, 74, 75, 90, 97].

We are interested in the first direction where start form timellation analysis for linear sys-
tems in the previous part to develop a co-design procedare Sectiorl.1.1.2 of the output
feedback law and the event-triggering condition. To the bésur knowledge, this problem
has been only addressed ih2f, [72]. The proposed co-design methods 2§, [72] are
concerned with periodic event-triggered controllers inahtthe output measurements are sam-
pled periodically and then it is the task of the triggeringdition to decide whether the control
input needs to be updated. However, an open question regatitése techniques is how to
calculate the appropriate sampling period of the triggerirechanism. This is a key aspect in
the construction of PETC since the sampling of the triggermechanism may deteriorate the

closed-loop performance or may require a higher networkiwadth than the available one, see

[87].

Unlike [126], [72], we provide a co-design algorithm where the triggeringditton is con-

tinuously evaluated. The required conditions have beemdtated in terms of LMIs and the
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event-triggered controller is then obtained by solvingstheMiIs. It is important to note that
the results obtained by emulation approach do not allowdedesign because the resulted LMI
condition is nonlinear in this case. Furthermore, the entsred nonlinearity cannot be directly
handled by congruence transformations like in standanoubfeedback design problems, which
induces non-trivial technical difficulties. We thus neededntroduce an additional LMI con-
straint to linearize the LMI condition of the emulation casing the tools of §4]. We then
take advantage of the flexibility of co-design to enhanceetffieiency of the event-triggered
controllers in two senses. We first maximize the minimumriri@nsmission time which is es-
sential in practice. Indeed, while the existence of dwielketis typically ensured in emulation
results, its value may be very small and may thus violate #inévisare constraints. It is therefore
important to propose designs which are able to ensure larg@mum times between two trans-
missions. We then propose a heuristic to reduce the amourdrgmissions, whose efficiency

is confirmed by simulations.

Chapter 4: Singularly perturbed systems

Singularly perturbed systems are systems whose dynamiglvénphysical phenomena occur-

ring in two-time scales. The dynamical model of such systisrgenerally given by, se&p, 54]

z = f(x,z,u)
ez = g(x,z,u) (1.20)
u = k(z,2),

wherex € R"* andz € R"# are the states; € R™ is the control input, and > 0 is a small
parameter which determines the degree of separation betiheeslow and fast modes of the
system. Hence, the two-time scale feature comes from théhfaicdynamics ot evolves faster

thanz whene is small (sincez = g(x, z,u)/e).

The analysis of this class of systems requires careful irandf the two-time scale nature since
this property may lead to ill conditioning controllers arainstability of the closed-loop if
ignored. Singular perturbation theory provides powerdol$ to design and analyse these two-
time scale control systems, seg.[54], [52]. The cornerstone result of the singular perturbation

theory is that the original systerii.20 can be decomposed into two separate approximate slow
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and fast models of the form

) (1.21)

ey = gr(y,uy),
wheref,, g are the approximate functions ffg andy is obtained after changing the variables.
Next, reduced order controllets,, v are designed independently to stabilize each subsystem.
Then, under certain conditions, the composite controldaw u, + uy guarantees the overall
stability of the original system1(20 in virtue of the singular perturbation theory. In this way,
the control design problem is greatly simplified since weyorded to stabilize each approximate

model separately.

We are interested to design stabilizing event-triggeredrotiers based only on an approximate
model of the slow dynamics. This problem is motivated by #wt that engineers often neglect
the fast stable dynamics in practice and design the feedbackased only on the slow model.
To the best of our knowledge, this is the first result in thaection. We highlight specific

challenges which arise with the ETC of singularly perturbgstems:

e The state of the fast model experiences a jump at each trasismidue to the change
of variables that is introduced to separate the slow andasiedynamics using singular
perturbation theory. These jumps induce non-trivial difies in the stability analysis.
That is a feature of the problem which is not present in algbgleesults on event-triggered
control where only the sampling-induced error is reset to z¢ each transmission, see
e.g.[1, 22,43, 103 120Q;

e The existence of a strictly positive lower bound on the uitensmission times is no

longer ensured due to the fact that we neglect the fast dyssami

The stability of this type of systems is analysed98][ [115], [116. In this chapter, we address
a design problem as we construct the flow and jump setstle triggering condition) and we
propose different stability analyses under a differenbfassumptions. We propose two classes
of event-triggered controllers. The first policy relies be event-triggering condition22, 69|,
see Sectiorl.2.5 but it requires to fully modify the stability analysis tordle the features
of the problem due to the two-time scale nature of the syst&e. show that a semiglobal
practical stability property holds where the adjustablepeeter appears in the event-triggering
condition. The second technique combines the event-téggenplementation of103] with

the time-triggered results ir79)] like in Chapter2. We show that a global asymptotic stability
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property is satisfied in this case, under an additional agsam The results are shown to be
applicable to a class of globally Lipschitz systems, whisbampasses stabilizable LTI systems

as a particular case. The approach is illustrated on th@#attaontrol of an F-8 aircraft model.

1.4 Conclusion

In this chapter, we have presented a brief overview on NCEartiand we have then explained

the objectives and contributions of this thesis.

For NCS, we have started by introducing NCS and we have nmtiohe benefits and the
phenomena occurring due to the insertion of a shared conwaionn channel in the feedback
loop. Then, we have emphasized the main challenge that abesivmost existing results on

NCS. Afterwards, we have discussed the control design igabs for NCS.

In the second part of this chapter, the event-triggeredrobhtis been presented as a suitable
implementation strategy of feedback laws for NCS, we rdfier reader to47] for more ex-
planation on ETC. The approach has been first motivated thligiding the drawbacks of the
traditional time-triggered setups then, we have dematestrdne underlying idea of event-based
triggering and its advantages compared to the periodiamara The hybrid dynamical model
of of the closed-loop system has been then derived,G2¢[ B4] for more details on hybrid dy-
namical systems. Next, we have provided some insights o&Tl@by exploring the common
techniques in the literature where we have drawn the atiemti the Zeno phenomenon which
has to be avoided in order to make the triggering mechanigpteimentable in practice. Then,
it has been shown that the exclusion of Zeno behaviour besonoee challenging task when

the full state measurement is not available.

Our objectives and contributions have been briefly expthinghe last part of this chapter. We
have first motivated ourselves by the lack of results on dugmdback ETC in the literature to
develop an appropriate event-triggered mechanism forimeenl systems by emulation. Then,
to allow more flexibility in the design of the event-triggdreontroller, we will propose a co-
design procedure to simultaneously design the output tegdlaw and the flow and jump sets
for LTI systems, interested readers on dynamic output faeldioontrollers and LMI controller
synthesis are referred to Chapter 10 20][and Chapters 1,4 ir9f]. Finally, event-triggered
controllers will be developed to stabilize nonlinear silagly perturbed systems based only on

the slow dynamics, se®&4] and Chapter 11 ing2].



Chapter 2

Emulation design for nonlinear systems

This chapter addresses the synthesis of output feedbaok-teigered controllers for nonlin-
ear systems. We design the controller using the emulatiproaph (see Sectich1.1.]). The
proposed technique is illustrated on two physical nonlisyatems for which the required con-
ditions are verified. We show that the proposed strategy eaapplied to any detectable and
stabilizable LTI system. We also explain the interest ofttlggyering condition in the context of

state feedback control.

2.1 Hybrid model

As in Sectionl.1.1.1 we first ignore the communication constraints and we cengite non-

linear plant model
Ty = fp(ajmu)a y = gp(mp)> (2.1)

wherez,, € R"* is the plant statey € R™ is the control inputy € R™ is the measured output

of the plant. We focus on general dynamic controllers of trenf

Te = fc(xmy)a u = gc(lrc,y)a (2'2)

wherez. € R" is the controller state. We emphasize that thesystem is not necessarily
an observer. We assume that the controtle®)(has been designed to stabilize the closed-loop
system 2.1)-(2.2). Next, we consider the case where the feedback 2a8 is implemented over

a network. We define the sampling induced error ag i) @nd we introduce an additional clock
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variabler € R, to describe the time elapsed since the last transmissidh the dynamics

7=1 T1€C, =0 t€D. (2.3)

Then, the hybrid modell(5) is

T f(z,e) xt x
e | =1 g(ze (r,e,7) €C et | =10 (z,e,7) € D,
7 1 Tt 0

(2.4)
wheref, g are defined inX.6).

Our objective is to design the flow and the jump sets of sysed $uch that a (global) asymp-
totic stability property is guaranteed and the number afamaissions is reduced, while ensuring

the existence of a strictly positive lower bound on the kttansmission times.

2.2 Main results

We first present the conditions that we impose on syst#), (then we present the triggering
techniqgue and we state the main stability result. Finallg, ilustrate the technique on two

physical nonlinear examples.

2.2.1 Assumptions

We make the following assumption on syste, which is inspired by T9].

Assumption 2.1. There existA,, A, > 0, locally Lipschitz positive definite functions :

R™ — Rygand W : R™ — R, a continuous functiof : R"* — R, real numbers
L >0,v>0,aa€ Ky and continuous, positive definite functiohs R"» — R, and

a: Ry — Ry, such that, for ally € R™

a(lz]) < V(z) <a(lz)), (2.5)
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forall |e] < A. and almost allz| < A,
(VV(2), f(z,€)) < —a(lz]) — H*(z) = 8(y) + 7 W?(e) (2.6)
and for all |z| < A, and almost alle| < A,
(VW (e),g(z,e))y < LW(e) + H(z). 2.7)

We say that Assumptich1 holds globally if .6) and 2.7) hold for almost allz € R+ and
e € R, O

Conditions .5)-(2.6) imply that the systeni = f(x, €) is £5-gain stable fromiV to (H,/3).
This property can be analysed by investigating the robsstpeoperty of the closed-loop system
(2.1)-(2.2) with respect to input and/or output measurement erroregrabsence of sampling.
Note that, sincéV is positive definite and continuous (since it is locally Lldp&z), there exists

X € K« such thatW(e) < x(|e|) (according to Lemma 4.3 irbp]) and hence 2.5), (2.6)
imply that the system: = f(x, e) is input-to-state stable (ISS). We also assume an exp@ahenti

growth condition of the-system on flows inZ.7) which is similarly used in79].

2.2.2 Event-triggering condition

Under Assumptior?.1, the adaptation of the idea df()3] leads to a triggering condition of the
form

Y'W?(e) < 6(y). (2.8)

The problem is that Zeno phenomenon may occur with this typiggering conditions as
explained in Sectiori.2.5 We propose instead to evaluate the event-triggering tondbnly
after 7" units have elapsed since the last transmission, whererresponds to the MATI given
by [79). In that way, we ensure the existence of a strictly positoxger bound on the inter-
transmission times. Although the rationale is intuitiviee analysis is not trivial as we will
show. Similar approaches have been followed3id, [/1, 122 to enforce a lower bound on the
inter-transmission times in different contexts, mainly lioear systems. Note that the idea of

enforcing a given time between two jumps is linked to timeutagzation techniques, seg(].
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We thus redesign the triggering condition as follows
YW(e) < d(y) or7 € 0,7), (2.9)

where we recall that € R, is the clock variable introduced i24). Consequently, the flow

and jump sets of systend.¢) are

C = {(1’76,7') :y*W3(e) < d(y) orr € [O’T]} (2.10)

D= {(m, e,7) : (72W2(e) = 5(y) andr > T) or (nyWz(e) > 5(y) andr = T) }

Hence, the inter-jump times are uniformly lower bounded/byThis constant is selected such

thatT < 7 (v, L), where

2 arctan(r) v>L
T(v.L):=4¢ 1 y=1L (2.11)
A arctanh(r) y<L

with r := /|(3)? — 1| and L,y come from Assumptio2.1as in [79].

2.2.3 Stability results

We are ready to state the main result.

Theorem 2.1. Suppose that Assumpti@nl holds and consider syster®.4) with the flow and
jump sets 2.10, where the constarif is such thatl" € (0,7 (v, L)). There exisA > 0 and
B € KL such that any solutios = (¢, ¢., ¢,) With |(¢.(0,0), . (0,0))| < A satisfies

|62(t, )] < B((¢2(0,0),6¢(0,0))[, ¢ +j) V(¢ j) € domg, (2.12)

furthermore, ifp is maximal, then it is complete. If Assumptidad holds globally, thenZ.12)

holds globally. O

Proof of Theorem 2.1 First, we prove the result when Assumpti@rl holds globally. Let

¢ : Ry — R be the solution to the following differential system, like[L7], [79]

C=—2LC—-XNC?+1) ¢0) =61, (2.13)
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wheref € (0,1), A := y/~2 + n for somen > 0 and~y comes from Assumptio.1 We denote

T(6,n,7, L) the time it takes fot to decrease frorfi—! to 6. By following the same lines as in

the proof of Claim 1 in 17], the time7~'(9, n,7, L) is given by

1 r(1-0) 2
— arctan VYye+n>L
Lr 22 (M2 1) 1146 R
T(ev’r/v’%L) = %%0 \/'72 —|—T]: L (214)
ﬁ arctanh rl-6) VY2 +n<L,

wherer = . We note that the tim& (6,7, v, L) is a continuous function

L

() -

of (8,7n) which is decreasing ifl andn (by invoking the comparison principle). On the other
hand, we note thaf (0,7,~, L) — T (v, L) as(8,n) tends to(0, 0) (where7 (v, L) is defined

in (2.11)). As a consequence, singe< T, there existg6, n) such thatl’ < 7(6,7,~,L). We
fix the couple(d, n).

Letq := (x,e, 7). We define foraly € C' U D
R(q) := V(z) + max{0, \((7)W?(e)}. (2.15)
Letq € D, we obtain, in view of 2.4) and the fact thalV' is positive definite,

R(G(q)) = V(z) + max{0, A\{(0)W?>(0)}
= V(z) < R(g), (2.16)

whereG(q) := (z,0,0).

Letq € C and suppose that(r) < 0. As a consequence,
R(q) =V (z) (2.17)

and it holds that > T'. Indeed,((7) is strictly decreasing ifr, in view of (2.13), and{(7") >
C(T)=6>0asT < T. Then((r) < 0 implies thatr > T. Hencen2W2(e) < §(y) in view
of (2.10 sinceq € C. Consequently, in view of page 100 ih{7], Lemmal, Assumption2.1
and @.15

R(q; F(q)) = (VV(x), f(z,e))
—a(|z]),

(2.18)

IA
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whereF(q) := (f(x,e),g(z,e),1). Hence, by following similar arguments as in the proof of
Theorem 1 in 79| since « is continuous and positive definite afdis positive definite and

radially unbounded, there exists a continuous positivendeffunctionp; such that

R°(q; F(q)) < —p1(V(x))
=: —p1(R(q)). (2.19)

Wheng € C and¢(7) > 0, we have
R(q) = V(z) + X{(T)W2(e). (2.20)
As above, in view of Lemma, Assumption2.1and .13, we obtain

R(¢:F(g)) = (VV(x), [(z,e)) + ()W () + 20 ()W (e)(VW (e), g(z, )

IN

—a(|z]) = H?(z) = 8(y) + 7> W3(e) + 20 (T)W (e) (LW (e) + H (x))
+)\W2(e)< COLC— AN+ 1))

IN

—a(|z]) = H*(z) = 3(y) +*W?(e) + 2X¢(1)W (e) H (z)
—N2C2(T)W2(e) — A2W2(e).

2.21
Using the fact tha2\( ()W (e) H (z) < N2¢%(1)W?(e) + H?(x), we have that o
R°(q: F(q)) < —a(|z) = 3(y) +~*W2(e) — NW?(e)
< —a(|z]) + ¥ W2(e) — X2W2(e). (2.22)
Recall that\? = 42 + 7, it holds that
R°(¢; F(q)) < —a(jz]) —nW>(e). (2.23)

By using the same argument as 19, we derive that

R (q: F()) < —p(V (@) — iW2(e)
= V() ~ o we)

= —p1(V () — p2(NTW2(e)), (2.24)
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whereps : s — ”—fs € Koo. Since¢(r) < 0~ forall 7 > 0in view of (2.13), it holds that

R°(q; F(9)) < —p1(V () = p2(AS(T)W?(e)). (2.25)
We deduce that there exists a continuous positive definitetifon p3 such that

R°(q; F(q)) < —p3(V (z) + A((T)W?(e))

=: —p3(R(q)). (2.26)
When((7) = 0, we obtain, in view 0f2.19), (2.26 and Lemmél
R°(q; F'(q)) < max{—p1(R(q)), —p3(1(q))}- (2.27)

Consequently, it holds that, for ajle C

R°(q; F(q)) < —p(R(q)), (2.28)

wherep := min{p1, p3} is continuous and positive definite. Lebe a solution toZ.4), (2.10.
In view of (2.28 and by definition of the Clarke’s derivative (see for instapage 99 in107),
it holds that, for allj and for almost alt € I/ (wherel’ = {t : (,j) € dom¢})

R((t, 7)) < R(6(t,5); F((t,5))) < —p(R(e(t,))). (2.29)

Thus, in view of .16, (2.29 and since inter-jump times are lower boundedbin view of
(2.10, we conclude that, by following the same lines as in the dntdeoproof of Theorem 1 in

[79], there exists3 € KL such that for any solution to (2.4), (2.10 and any(t, j) € domg,

R(9(t, 7)) < B(R(4(0,0)),0.5t + 0.5T). (2.30)

In view of Assumptior2.1and sincdV is continuous (since it is locally Lipschitz) and positive

definite, there exist@y € Ko such thaiV (e) < ayy (Je|) for all e € R™ according to Lemma

4.3 in [52]. As a result, in view of Assumptio.1, (2.13 and .19, it holds that, for all
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qe CuUD,

V() < R() < V() + 500

a(lr]) < R(g) < a(la]) + Saw (le])

a(lz]) < R(q) < a@r(|(z,e)]), (2.31)

whereag : s — @(s) + 3aw(s) € K. Hence, in view of 2.30 and @.31), we deduce that

for any solutiong to (2.4), (2.10 and for all(¢, j) € dom¢
a(éa(t,)]) < R(6(t,1)) < B(@n(1(6.(0,0), 6.(0,0)))),0.56-+05Tj).  (2.32)
Consequently,

0a(t.)| <™ (B(@R(1(6:(0,0), ¢¢(0,0))]), 05t +0.5T5)
B(1(9:(0.0), #c(0,0))]), ¢ + 1), (2.33)

e

whereg : (s1,s2) = a1 (B(@r(s1),s2)) € KL. Thus, .12 holds.

We now investigate the completeness of the maximal solsiiorsystemZ.4), (2.10. Let ¢ be
a maximal solution to4.4), (2.10. We first show that is nontrivial, i.e. its domain contains
at least two points (see Definition 2.5 i84]). According to Proposition 6.10 ir8], it suffices
for that purpose to prove th&#'(q)} N Te(q) # 0 for anyq := (z,e,7) € C\D, whereT¢(q)
is the tangent cone 0 atq. Letq € C\D. If ¢ is in the interior ofC, T:(q) = R™=+ne*+1 and
the required condition holds. {fis not in the interior ofC, necessarily- = 0 asq € C\D, in
this caselc(q) = R x R, and we see thak'(q) € Tc(q), in view of (2.4). Hence,o
is nontrivial according to Proposition 6.10 i84]. In view of (2.4), (2.10 and .33, ¢, and
¢ cannot explode in finite time. Recall that the network-ingtlierror isp. = (¢e, , ¢, ) With
be, = Oy(ts,7) — dy(t, ), de, = Oult), J) — du(t, j) for j > 0and(t,j) € dom¢ where we

write dom¢ = Ujcqo,.... 13 ([t5, 141, j) with some abuse of notation. Hence, in view 2flj,

.....

(2.2), (2.33 and sincey,, g. are continuous, it holds that, for gll> 0 and(t, j) € dome¢

|¢ey(t7j)‘ = |gp(¢zp(tj7j))_gp(¢zp(t7j))|

IN

195 (¢, (£, )| + |9p (b, (2, 5)))] (2.34)

< 2 maxlg(2)l.
|2|<B(|(¢2(0,0),4¢(0,0))],0)
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Similarly, we obtain, for allj > 0 and(¢, j) € dom¢

(Geu (B < 19e(Dac(ts7), Gy (8 )]+ 19e(Pae (2, 5)s by (L, 9))]

= 19e(90c(tis ) 99 (G, (L5 DI+ 19600 (8:5), 9000, s D5 5

< 2 max]|ge(z1, 22)|-

|21] < B((¢2(0,0),6¢(0,0))],0)

|22| < max [gp (21)|
Whenj = 0, we have that¢c, (¢,0)] < |¢e,(0,0)| + |gp(¢2,(0,0)) — gp(¢s,(t,0)) and
|Peu (t,0)] < [9e, (0,0)] + [ge(d2.(0,0), ¢y (0,0)) = ge(du.(t0),dy(0,0))| and we can de-
rive similar bounds on the intervél, ¢;]. Thus, in view of .34 and @.35 and sincep. is
reset to 0 at each jumpg, cannot blow up in finite time. As a consequengg;annot explode
in finite time. LetG(z, e, 7) := (x,0,0) denotes the jump map i2(0. The solutions toZ.4),
(2.10 cannot leave the sét U D after a jump sinc&(D) C C'in view of (2.4), (2.10. Thus,
we conclude that maximal solutions ®.4), (2.10 are complete according to Proposition 6.10
in [34]. Finally, we note that if AssumptioB.1 holds locally, then there exists > 0 such that
(2.1 and @.29 hold on the invariant sdtx, e)| < A and consequently2(12) holds locally.
O

Remark 2.1. We can redesign the triggering condition i2 {0 if the event-triggering mech-
anism has the access to both the plant outpaind the state of the dynamic controlle, as

considered in 105 for instance, see Figur@.1 Then, conditionZ.6) is modified to be
(VV(2), f(z,¢)) < —a(lz]) = H*(z) — 6(y) — &(Jae]) +7*W3(e), (2.36)

where¢ : R,y — Ry is a continuous positive definite function. As a consequetheeflow

and jump sets are

C= {(x,e,T) 22 (e) < 8(y) + E(|ze]) or T € [o,:r]}

D= {(%eﬁ) : (72W2(6) = 5(y) +&(|z|) and T > T) or (2.37)

(72W2(e) > 0(y) +&(jzc]) andT = T) }

which may yields larger inter-transmission times compace(?.10). 0
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FIGURE 2.1: Event-triggered control schemati®f

2.2.4 lllustrative examples

2.2.4.1 Controlled Lorenz model of fluid convection

Consider the controlled Lorenz equations which model flovection 114

1 = —ari+axy
jjg = b:L’l — X9 — 13+ U
(2.38)
jjg = XI1X9 — CT3
Yy = I,

wherex; is proportional to the intensity of the convective motian, is proportional to the
temperature difference between the ascending and desgeadirents,zs is proportional to
the distortion of the vertical temperature profile from laglimear, and. corresponds to the tilt
angle of a closed-loop of natural convection from the vattid@ he three parametessb, andc

are related to some physical constants and all three aréveosiee 111] for more detail.

The static output feedback law= —(Z—;a + b)x1, wherepy, p2 > 0, globally stabilizes system

(2.39, which can be verified as follows. Let:= (z1, z2, z3) and

—axry + ars
f(z) = bry —x9 — 21273 — (Z—;a +b)xy |- (2.39)

T1x9 — CT3
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Consider the quadratic functidi(z) = p12? + pex3 + pez?. It holds that, for al: € R3

(VV(x), f(z)) = 2pixi(—ax; + axz) + 2paza(bry — x2 — x123 + w)

+2poxs(z129 — CT3)

= —2p1am% — 2p2x§ — 2pgca;§ + 2(p1a + p2b)xix9 (2.40)
+2poxou + (—2p2 + 2p2)T12273

= —2p1ax? — 2paxd — 2pacal + 2(pra + pab)r1T2 + 2p2Tou.
Hence, by substituting by = —(Z—;a + b)z1, we have that
(VV (), f(z)) = —2p1ax? — 2pax3 — 2paca?. (2.41)

Therefore, the output feedback law= —(g—;a + b)x1 globally stabilizes the origin of2(39.

We take into account the network-induced error
e=9y—y=12 — .

Note that it is not necessary to consider the error ias the controller is static (see Section

1.2.9). As a consequence, the functiofige, ) andg(z, e) in (2.4) are

—ari + axs
= g (B
f(z,e) bry — xy — w123 — (Fra +b)(z1 +e) (2.42)
T1T9 — CT3
g(z,e) = axy; — axs.
Let W (e) = |e|. Consequently, for alt € R? and almost alk € R
(VW(e),g(z,e)) < allza] + |22). (2.43)

Hence, conditionZ.7) holds withZ = 0 and H (z) = a(|z1| + |z2|). By following the same
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lines as in 2.41), we have that

(VV(z), f(z,e)) = —2pjax? —2pex3 — 2pgca;§ + 2(p1a + p2b)x129 + 2p2ots

= —2pax? — 2pox3 — 2paca? + 2(pra + pab)ri7o
—2p2(Ba+b)za(z1 +e)
< —2praxt — 2paxy — 2pacai + 2pa(Pra + b)xze.
(2.44)
Using the fact tha2(La + b)aze < a3 + (BLa + b)*e?, it holds that

(VV(x), f(z,e)) < —2p1aa:% - 2p2x§ — 2pgcx§ —I—pgxg —I—pg(i—;a + b)2e?

(2.45)

= —2p1ax? — poxd — 2pocal + pg(g—;a + b)2e2.

Adding and subtracting the terfd?(z) = az? + ax? + 2a|z1||z2| < 2a2? + 2a22, we obtain

(VV(2), f(z,€)) < —2piaa} - poa} — 2poca} + pa(Ba + b)2e? — H2(z) + aa?

+azd + 2alxy||z2|

IN

—2p1ax? — paw3 — 2paca3 + p2(Ba+ b)2e? — H?(x) + 2ax?

+2ax3

(2.46)

(VV(2), f(z,e)) < —2a(p1 — 1)z} — (p2 — 2a)x3 — 2paca’ — H*(x) —l—pg(z—;a + b)2e?

IN

—min{a(py — 1), (p2 — 2a), 2pac}af* — a(py — 1)y* — H?(2)
—i—pg(%a + b)2e2.

(2.47)
By takingp; > 1 andpy > 2a, condition @.6) holds witha(|z|) = min{a(p; — 1), (p2 —

2a),2pac}|z|?, 6(y) = a(pr — 1)y® andy? = pa(Bla + ¢)*.

We have shown that Assumpti@il holds, we can then apply the results of Secoha3 For
the parameter values= 10,0 = 28,¢ = 8/3 used in [L14], we setp; = 2, p, = 3a and we
obtainT = 0.01. Table2.1 provides the minimum and the average inter-sampling tiraethe
proposed triggering mechanisrd. {0 for 200 randomly distributed initial conditions such that

|(2(0,0),e(0,0))] <100 andr(0,0) = 0. The constanta,y serves as a measure of the amount
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of transmissions (the biggesyg, the less transmissions). We present simulations for dtialin
condition (x(0,0), e(0,0),7(0,0)) = (—20,—-20,30,0,0). Figure2.2shows that plant states
converge asymptotically to the origin as expected. FiguBgprovides an insight of how the
proposed triggering mechanism works, in particular theraattion between the event-triggered
rule and the time-triggered part. We note that Zeno phenomeccurs when we remove the
latter. It can be noted that the results 112§ are not applicable to this system because condition

(3) of Proposition 1 in123 does not hold.

T ‘ Tmin Tavg

0.01 ‘ 0.01 ‘ 0.0109

TABLE 2.1: Minimum and average inter-transmission times for J@omly distributed ini-
tial conditions such thatx(0,0),¢(0,0))| < 100 and7(0,0) = 0 for a simulation time of

10s.
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2.2.4.2 Single-link robot arm model

Consider the dynamics of a single-link robot arm

ipl = xpg
Epy = —sin(zp)+u (2.48)
Yy = Tp1,

wherex,,; denotes the angle;,» the rotational velocity and the input torque. The system can
be written as

&y = Az + Bu — ¢(y), y = Cxp, (2.49)

wherezx,, 1= (21, Tp2) andA = [g 10} , B = [

[Le=toem=], |

sin(y)

In order to stabilize systen2(50, we first construct a state feedback controller of the form

u = Kz, + BT¢(y). Hence, systen2(48 reduces to
&p = (A+ BK)x,, y = Cuxp. (2.50)

We design the gaik such that the eigenvalues of the closed loop systest)are(—1, —2)
(which is possible since the paid(B) is controllable). Hence, the gaii is selected to be
K = [-2 —3]. Next, since only the measurementpofs available, we construct a state-

observer of the following form

. = Ax.+ Bu—¢(y)+ My — Cx.)
= (A—MC)x.+ Bu— ¢(y) + My,

(2.51)
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wherez,. € R? is the estimated state ard is the observer gain matrix. We design the gain
matrix M such that the eigenvalues @i — M C) are(—5, —6) (which is possible since the pair
(A, C) is observable). Thus, the observer gain is selected fdbe [11  30]7. As aresult, the
closed-loop system in the absence of sampling is given by

, = Axz,+ Bu—¢(y), y = Cug (2.52)

. = (A—MQC)x.+ Bu—¢(y) + My, u = Kz.+ BT¢(y).
We now take into account the effect of the network. We comdide scenario where the con-
troller receives the output measurements only at transsnisastantst;,: € Z>o while the
controller is directly connected to the plant actuators. d&fsign a triggering condition of the
form (2.9). As a consequence, the network-induced errersse, = y — y and we obtain, for

almost allt € [t;, t;1+1]

iy = Azp + B(Kze+ BT6(9) ) — o(y)

t.=(A—MC+ BK)x.+ MCx, + Me,. (2.53)
Letz := (zp,2.). Then, system2.53 has the following dynamics on flows

. A BK Tp 0 oy +e) — d(y)
T = + e+
MC A— MC + BK Te M 0 (2.54)

=: Az + Be + ¢(y, e).

Sincee = § — y and in view of £.48), we haveec = —y = —x,,2. Hence, the functiong, g in

(2.4) aref(z,e) = Ax + Be + 9(y,e) andg(z,e) = —xpo.

Verification of Assumption2.1
We now verify Assumptior2.1 Let W (e) := |e| for all e € R. Consequently, for almost &l

and allz
(VW (e), g(z,e)) < |zpal. (2.55)

Hence, condition4.7) holds with H(z) = |z, andL = 0. LetV(z) = 2T Px, where
P is a real positive definite symmetric matrix such togt P + PA = —Q (such a matrix
P always exist sinced is Hurwitz) and@ is real positive definite and symmetric such that

Amin (@) > 4. We select) as a block diagonal matrix with the diagonal elements equdl2,
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thus \min (Q) = 4.2. Then, we have, for ali € R and allz € R*

(VV(z), f(z,e)) = zT(ATP+ PA)x + 207 P(Be +1(y,e))
(2.56)
< “Din(Q)[z]* + 2| PBl|x||e] + 2| P||z||¢(y, ).

In view of (2.54), by applying the mean value theorem and sincesthgunction is globally

Lipschitz, it holds that, for some < [y,y + €]
[Y(y,e)l = [y +e) — ¢(y)| = [sin(y + e) —sin(y)| = [y + e — y[| cos(c)| < |e]. (2.57)
As a consequence,
(VV (@), f(x.€)) < =Amin(Q)|z[* + 2(|PB| + |P|)||le]. (2.58)

Using the fact tha®(|PB| + |P|)|z|le| < m‘“(Q |z)? + %M? and recalling that

mm(Q) > 1, it holds that

(VV(2), f(z,e)) < —2minl@ )24 202BHED o)

_)‘mm Amin (@) PB+P

)\mm(

S )‘mm |$|2 |:Ep2|2 _ mm(Q)y + 2(‘PB|+‘P| | |2
(2.59)
11 H 1fi 1 — )‘mm 2 — Amln(Q) —
Thus, condition 2.6) is verified with a(|z|) = 7|x\ o(y) = y? and? =
2(|PB|+| P])?
)\min(Q) )

Simulation results

We obtain the numerical value = 26.5333, which gives, in view of 2.11), 7 = 0.0592. We
takeT = 0.059. Figure2.5shows that the plant and the estimated state asymptotmailyerge
to the origin as expected. The generated inter-transmigsites by the proposed mechanism
(2.9 are shown in Figur@.6 where we can observe the interaction between the timeetragly
[79] and the event-triggeredLD3] techniques. Tabl@.2 gives the minimum and the average
inter-sampling times for the proposed triggering mechan(& 10 for 200 randomly distributed
initial conditions such thaf(x(0,0),e(0,0))] < 100 and7(0,0) = 0. Figure2.7 presents

the inter-transmission times with the triggering conditi?? W2 (e) < 4(y) without enforcing
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a constant timé" between transmissionsd. 7" = 0 in (2.9, (2.10). We note that Zeno

phenomenon occurs in this case, like in Secidh4.1

20 T

Magnitude

_30 | | | | | | | | |
0

1 2 3 4 5 6 7 8 9 10
Timel[s]
FIGURE 2.5: Actual and estimated states of the plant.
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FIGURE 2.6: Inter-transmission times.

T ‘ Tmin ‘ Tavg

0.059 ‘ 0.059 ‘ 0.0625

TABLE 2.2: Minimum and average inter-transmission times for J0@omly distributed ini-
tial conditions such thaf(xz(0,0),e(0,0))| < 100 and7(0,0) = 0 for a simulation time of
10s.
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2.3 Case studies

In this section, we show how the results can be applied forimwmmrtant special cases. We first
apply our results to LTI systems and we show that the requioedlitions are always satisfied
by LTI systems that are stabilizable and detectable. Thenllustrate the effectiveness of the
proposed strategy on a numerical example. Next, we show hewtoposed technique can
be exploited in the context of state feedback control. Wesitate the idea on two numerical

examples.

2.3.1 LTI systems

We now focus on the particular case of linear systems. Wedtat®a the required conditions in
Assumption2.1as an LMI constraint. Then, we design the triggering coaditiy solving this

LMI. We finally compare the results witt2P] on a numerical example.

2.3.1.1 Analytical results

Consider the LTI plant model

xp = Apzp + Byu, y = Cpxp, (2.60)
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wherez, € R"™, u € R"™, y € R™ andA,, B, C,, are matrices of appropriate dimensions.

We design the following dynamic controller to stabiliZ2g0 in the absence of sampling

T = Acwe + Bey, u = Cexe+ Dey, (2.61)

wherez,. € R" and A, B., C., D. are matrices of appropriate dimensions. We introduce the

network-induced error as il (), i.e.

ey = Y—y
(2.62)
€y = U—1U
Then, we obtain, for almost ale [t;, t;1+1]
&y, = (Ap+ B,D.Cp)xp+ B,Cee + BpDeey + Bpey (2.63)
T = Acxe+ B.Cpxy,+ Beey. '

The dynamics of the network-induced error between two ssiee transmission instants is

given by, for almost alt € [¢;,t;11]

= U= (2.64)
= —Cp(A,+ B,D.Cp)zy, — C,B,Cere — CpBpD.cey — CpBpe,
and
€y = —U=-— cic_Dc?j
(2.65)

= —C Az, —C.B.Cpx, — Cc.Beey.

Letz = (2, z.) € R™ ande = (ey, e,) € R™. Inview of (2.63-(2.69, it holds that, between

two successive transmission instants

A, +B,D.C, B,C. | [ B,D. B, ey

BcOp Ac Zc Bc 0 €y (266)
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and
-Cy(Ap + B,D.C),) —C,B,C. Tp -CpB,D. —C,B), ey
e = +
-C.B.C) —C. A, T -C.B, 0 ew
=: Asx + Bae.
(2.67)

Hence, the hybrid systen2 @) becomes

T Az + Bre
é = ./42(13 + 826 (1‘, €, T) eC
T 1
(2.68)
xt x
et = 0 (z,e,7) € D.
Tt 0

We obtain the following result.

Proposition 1. Consider systen?2(68. Suppose that there exist, ¢, © > 0 and a positive

definite symmetric real matri® such that

ATP + PA + e1l,, + AJ Ay + .0, C,  PB;

<0, (2.69)

BfP —pll,,

whereC,, = [C,, 0] and O represents the matrix of zeros of sizex n.. Then Assumptiod.1
globally holds withV (z) = 27 Pz, a(|z]) = Amin(P)|z[?, @(|z|) = Amax(P)|z]?, W(e) =
lel, H(w) =|Asz], L=[Baf, 7= a(lz]) = efzl* andd(y) = e1fyl*. -

Proof of Proposition 1. Let W (e) = |e|. Then we have, for alt € R+ and almost alt € R"¢
(VW (e), Ao + Baoe) < |Aqz| + |Ba|el. (2.70)

Hence, condition.7) holds with L = |Bs| and H(x) = |Asx|. LetV(z) = 2T Pz. Conse-
quently, condition 2.5) is satisfied witha(|z]) = Amin(P)|z|? anda(|z|) = Amax(P)|z|?. It
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holds that, for alk € R™ and almost alk ¢ R"=

(VV(z), A1z + Bre) = 2T(ATP+ PA))z + 2T PBie+ eI BT Pa. (2.71)

By post- and pre-multiplying LMIZ.69 respectively by the state vectgr, ) and its transpose,

we obtain

T (A{ P+ PA)x + 2" PBie+ "Bl Pr < —egx’aw — 2" A Agxr — ElmTa;Fpr

+,ueTe
(2.72)

which implies

2T (AT P + PA)z + 2T PBie + eI BT Pr < —eslzf? — |Asz|? — e1|Cpz|? + plef?

= —egz? — [Agz|? — e1]y|® + plef?

(2.73)
As a result, in view of 2.71), (2.73, condition @.6) is verified witha(|z|) = ea|x|?, 6(y) =
e1ly|? andy = /. O
We note that the flow and jump se& 10 in the linear case are
C = {(@,e,7) : plef* < ealyl? or 7 € 0,77 |
(2.74)

D= {(aj, e,T): (,u|e|2 = e1|y/? andT > T) or (,u|e|2 > eq|y|? andr = T) },
with 7" defined in 2.17).

Propositionl provides a sufficient condition, namelg.69, for the verification of Assumption
2.1, which thus allows us to use the results in Secohfor LTI systems. It has to be noted
that the LMI .69 can always be satisfied when systeZ6() is stabilizable and detectable.
Indeed, in this case, we can select the controle8%) such that4; is Hurwitz. Noting that
(2.69 is equivalent to the following inequalities (by using theh8r complement of4.69, see
Section A.5.5in1€f)),

_IU‘]ITLE < 0

(2.75)
ATP + PAy + AL Ay +61C, Cp + 2, + LPBIBT P < 0.

We see that we can select the matfbsuch thatd? P + PA; + &1, + AT Ay + EQUZUP is

negative definite. It then suffices to selecsufficiently large to ensure the last inequality.
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In view of Propositionl, Assumptior2.1 holds with+? = ;. On the other hand, the smalter

the larger the upper-bound @hin (2.11). Hence, we can minimize under the linear constraint
(2.69 to enlarge the constafit. Note thatL = |B;] is fixed, since3; depends on the plant and
the controller matrices and the controller is assumed torfwsvk a priori, and hence, we can

only play with~ to enlarger.

2.3.1.2 lllustrative example

We consider the same example in Sectloh 5.1 i.e. the plant model is

Ty = Tp + U
-2 3 1 (2.76)

v = [
and the dynamic controller is
0 1 0
T = Te+ Y
0 =5 1 2.77)
w = [t e

In view of (2.66), (2.67), we obtain

0O 1 0 0 0 0
-2 3 1 -4 0 1
./4]_ - 9 Bl =
0O 0 0 1 0 0
-1 4 0 -5 1 0] (2.78)
_8 —11 —4 16 _0 —4
Ay = , By = .
—4 16 0o -21 4 0

Hence,L = |By| = 4. Then, we obtain the values = 1.5839, e = 13.9969, v = 89.9666
by solving the LMI .69 using the SEDUMI solver]01] with the YALMIP interface p2].
Consequently, the guaranteed minimum inter-transmigsioa is7" = 0.017, by using 2.17).
Table2.3 provides the minimum and the average inter-transmissioagj respectively denoted

aSTmin andTayg, for 100 randomly distributed initial conditions such tiat(0, 0), e(0,0))| <
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25 and7(0,0) = 0. The values ofrayg in Table 2.3 indicates that the generated amount of
transmissions by the proposed triggering mechanism isoappately 100 times less than the
amount given byZ2]. Moreover, the stability property achieved &7 is a practical stability
property, while we ensure a global asymptotic stabilitygemy. Figures2.8, 2.9 present the
simulations for one initial conditioriz(0,0), e(0,0),7(0,0)) = (10,-10,0,0,0,0,0). We
observe that the system state asymptotically convergdsetorigin as expected and the inter-
transmission times in Figurg.9 clarify the idea of the combined event-triggered and time-
triggered techniques. We note that the resultsl28] are not applicable to this system because
condition (3) of Proposition 1 inl23 is not again satisfied. We do not compare our results with
[109 because the triggering mechanism is different and the mymaontroller in [LOF is an

observer based controller. O

Guaranteed dwell-time Tmin Tavg

Donkers & Heemelsg?2]
6.5x1077 2.103 x 1076 | 1.68 x 107*
o1 =09 = 10_3, g1 =¢€1 = 1073

The proposed triggering mechanism 0.017 0.017 0.0202

TABLE 2.3: Minimum and average inter-transmission times for Ji@omly distributed ini-
tial conditions such thd{x(0,0),e(0,0))| < 25 and7(0,0) = 0 for a simulation time of 20
seconds.
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FIGURE 2.8: State trajectories of the plant and the dynamic cadetrol
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FIGURE 2.9: Inter-transmission times for the first five seconds.

2.3.2 State feedback controllers

The technique proposed in Secti@r? is also relevant in the context of state feedback control,
i.e. wheny = z, as the constarif’ in (2.10 can be used to directly tune the lower bound on
the inter-transmission time (up 0 in (2.11)). Although the existence of a lower bound on
the inter-transmission times is guaranteedligd, the obtained value may be subject to some
conservatism and it is not explicitly predetermined as in toiggering mechanism. Further-
more, the generated amount of transmissions by our triggeriechanism are ensured to be
less than or, at least, equal to those generated by conmahperiodic setups in the sense of
[79]. These properties of our proposed triggering mechanisienelxits interest to the context

of state feedback control.

2.3.2.1 Analytical results

Since the full state measurement is available, we can replad’2(e) < §(y) in (2.9) by
VW2(e) < o(al|z|) + H*(x) + 6(z)) when Assumptior2.1 holds. Consequently, the flow

and jump sets can be taken as

_ {(%677) 2 W2(e) < 0<a(‘m|) + H?(z) + 5(x)) orrt € [O,T]}

C
D= {(m,e,v-) : ( 2W2(e a(a (|=]) + H*( )—l—é(az)) andr > T) or (2.79)
(o

( 2W2 > oo ‘m| +H2 )_|_5(x)) andT:T)}7
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whereo € (0,1) andT is such thatl’ € (0,7 (v, L)). Note that, unlike .10, we have to
introduceo here to guarantee thav'V (z), f(x, e)) in (2.6) is strictly negative. The following

result is a direct consequence of Theor2rh

Corollary 2.1. Suppose that Assumpti@nil holds and consider syster@.{), (2.79. Then,

the conclusions of Theorefal hold. O

The proof of Corollary2.1 follows the same lines as in the proof of Theorgrh We illustrate

the benefits of the proposed triggering condition on thevalhg examples.

2.3.2.2 lllustrative examples

Example 1in [79]. Consider the following family of nonlinear systems

& = —2or+4+de’—a23—2 = f(z,e,d
H ) (2.80)
¢ = 2e+2r—dr’+23 = g(x,ed),
wherex € R, e € R and|d| < 1 is unknown and possibly time-varying. By followin@q], we

consider the functio (e) = |e| which satisfies

(VW (e),g(z,e,d)) < 2le| + |2z — dz? + 23| (2.81)

= 2W (e) + H(x,d), (2.82)

whereH (x,d) = |2z — dz? + x3|. Hence, conditionZ.7) is verified with L = 2. We consider

also the same Lyapunov function as 9]

x? z?

V(z) = Mz(’/7 + ﬁzﬁ (2.83)

wherepu, v, 8 > 0. By following similar lines as inT9], we obtain
(VV (@), f(z,e,d)) < —pPelaf* — H(x,d) + p?(20* + 26)e]?, (2.84)

wherey = 2,v = 0.77, 8 = 0.77, = 0.01. Thus, condition2.6) holds witha(|z|) := p%e|z|?
andy = p\/2v2 + 232 = 3.08. By substituting byL,~ in (2.11) we obtain7 = 0.3689.
Hence, we takg" = 0.36 and we run simulations with = 0.9 andd = 0.1 and by using HYyEQ
toolbox [92].
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The state trajectories and inter-sampling intervals utiterevent-triggered controller o103
and our proposed event-triggered controller (Witk= 0.36) are plotted in Figur@.1Q Table2.4
shows the obtained values of the minimum and the averagejumi® intervals with two differ-
ent values of” and for 200 randomly distributed initial conditions suchttfiz(0,0), e(0,0))| <
100 and7(0,0) = 0. We note that wheff® = 0.36, Tmin = Tavg implies that the transmission in-

stants are typically generated by the time-triggered dawdivhich is not the case faF = 0.1.

Our proposed mechanisr.79
(103
T=0.1 T =0.36
Tmin | 0.115 0.1599 0.36
Tavg | 0.1887 0.1902 0.36

TABLE 2.4: Minimum and average inter-execution times for 100 cemlg distributed initial
conditions such thgfz(0,0), e(0,0))| < 100 andr(0,0) = 0 for simulation time of 10 s.
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FIGURE 2.10: Closed-loop state trajectories with the triggerirechanismsZ.79 and [L03
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Numerical example in [L03. Consider the LTI system

& = Ax + Bu, (2.85)

0 1 0
wherez € R?, u € R, A = andB = . Since the pair4, B) is stabilizable, we
-2 3 1

take the control input, = Kz with K = [1 — 4] as in [L03. By following similar lines as
in Section2.3.1, we derive the LMI 2.69 with Ay = A, = A+ BK,B; = B, = BK and

e1 = 0. Hence, by solving the resulted LMI, we obtain the numen@diies] = 4.1231,¢e, =
0.68,y = 17.3495 which lead to7 = 0.079. We setl’ = 0.075 and we compare the generated
minimum and average inter-transmission times by both thpgsed triggering strategy and the
triggering condition in 103, i.e. with 7" = 0, as shown in Tabl@.5. We note that the proposed
mechanism produces larger valuesrgf,, Tavg. To spotlight the effect of the time-triggered
part in the proposed triggering mechanism, the enforceeéddwund? is plotted in Figures 2,
3 versus the generated inter-transmission times by botprtosed triggering mechanism and
the triggering condition inJ03] respectively, for one initial condition. The state tragees for

both cases are plotted in Figuzel3

[103 | Our proposed mechanisr.{9
Tmin | 0.0543 0.075

TABLE 2.5: Minimum and average inter-execution times for 100 cemlg distributed initial
conditions such thafz(0,0), ¢(0,0))| < 100 andr(0,0) = 0 for a simulation time of 10 s.
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2.4 Conclusion

In this chapter, we have developed output-based evemetegl controllers for the stabilization
of nonlinear systems. The proposed technique ensures mptstic stability property and en-
forces a minimum amount of time between two consecutivesirigsion instants. The required
conditions have been shown to hold for two physical nonlirse@tems. Moreover, we have
explained that the advantage of the proposed techniqueecamployed in the context of state
feedback control to directly tune the minimum inter-traigsion time. For LTI systems, the
conditions have been formulated in terms of an LMI which Bsible for any stabilizable and
detectable LTI systems. Then, the triggering conditionhis tase is designed by solving the
derived LMI. In the next chapter, we will start from this LMi tlevelop a co-design procedure

to construct the output feedback law and the event-triggezondition.






Chapter 3

Co-design for LTI systems

In the previous chapter, we have assumed that the feedbattokclaw was known in the ab-
sence of network, then we synthesized the triggering cimmdiThis sequential order of design
may prevent an efficient usage of the computation and conwation resources as we are re-
stricted by the initial choice of feedback law. To overcotnis tssue, in this chapter, we use the
triggering condition designed in Chapt2for linear systems as a starting point to simultane-

ously design the event-triggering condition and the feekilbaw.

3.1 Hybrid model

Consider the LTI system
Ty = Apxp + Bpu, y = Cpap, (3.2)

wherez, € R"™, u € R™, y € R"™ andA,, B,, C,, are matrices of appropriate dimensions.

We will design dynamic output feedback laws of the form (west®. = 0 for simplicity)
Te = Acxe + Bey, u = Cexe, (3.2)

wherez. € R™ andA., B., C. are matrices of appropriate dimensions. We focus on the case

where the controller has the same dimension as the plant,. = n,. By following the same
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lines as in SectioR.3.1, we obtain the hybrid model below

T A1z + Bie
é — A2a'; + 826 (Q:, 6, 7—) S C
T 1
(3.3)
xt x
et = 0 (z,e,7) € D,
T+ 0
where
A B,C. 0 B
./41 _ P p ’ Bl _ p
Bccp Ac Bc 0
(3.4)
. —CpA, —C,B,C, s 0 —C,B,
—C.B.C, —C.A, ~C.B, 0
and flow and jump sets are as defined2rv @)
C ={(@ e.r) : plel? < erlylP orr € 0,71}
(3.5)
D= {(a;,e,T) : (,u\e|2 = &1|y|? and7 > T) or <u|e\2 > ¢y andr = T)}
where
2 arctan(r) v>L
T(v.L):=4¢ 1 v = (3.6)
A arctanh(r) y<L
andr = /[($)? - 1].

Our objective is to design the dynamic controll8rd) and the flow and the jump set3.p) of

the hybrid system3.3) such that the conclusions of Theor@ hold.

The idea is to start from the LMP(69), i.e.

A{P + PA; + 51]1”1 + AgAQ + 626561, PBy
<0 3.7)

B P —ull,,
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to establish an LMI-based co-design procedure of both tiedlod jump sets3.5) and the dy-
namic controller 8.2). It is important to note that the derivation of LMI for cosign from @.7)

is not trivial as the nonlinear termd? A, depends on the controller matrices. This term does
not appeared in the classical output feedback design prabéand cannot be directly handled

by congruence transformations like in standard outputidaeki design problem$4].

3.2 Global asymptotic stabilization

The following theorem formulates the co-design problemhef dutput feedback lawB(2) and
the parameters of the flow and jump se®s5) in terms of LMI. We use boldface symbols to

emphasize the LMI decision variables.

Theorem 3.1. Consider systen8(3) with the flow and jump set8.6). Suppose that there exist
symmetric positive definite real matricd§, Y € R"™»*"», real matricesM € R"™*"» Z ¢

R™ >y N € R™*"™ ande, u > 0 such that

X(YA,+ ZC)) * * * * * *
A, +M7T Y(A,X + B,N) * * * * *
zT 0 —plly, * * * *
BlY BT 0  —pln, *  * * <0
YA, + ZC, M 0 0 -Y *
Ap ApX + B,N 0 0 I,, —X *
Cp CpX 0 0 0 0 —el,,
(3.8)
L, * * *
0 I, * *
< 0. (3.9)
—CpT 0 -Y x
-Xcl' -NT -I,, -X
Takey = \/—, L= |BQ|, g1 = Ef_l and
A=V} (M -YA,X -YB,N - ZC,X)U™T
(3.10)

B.=Vz, C.,=NUT,
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whereU,V € R™*™ are any square and invertible matrices such that/” = I, — XY.

Then, there existg € KL such that any solutiop = (¢, ¢., ¢,) satisfies

|02(t,7)] < x(|(¢2(0,0), 6 (0,0))], ¢ +j) V(t,5) € dome (3.11)

and, if¢ is maximal, it is also complete. O

Proof of Theorem 3.1 We define the following matrices

XU Y V Y I, ~C, 0
S = i I = .G = , (3.12)

Ul X vTy vT 0 0 —C.

whereX,Y e R™*™ are symmetric positive definite real matrices of appropriimension.
SinceSS~! = Iy, it holds thatXY + UV” =1, , XV +UY =0, U"Y + XVT = 0 and
UTV + XY =1,,. After some direct calculations, recall tr@}, = [C,, 0], we obtain

L, X Y I, zT 0
T T T
0U L, X Bl'Y B!
—C, —C,X YA, +2C, M (3.13)
GST = ,JTTAST =
0 -N A, A, X+ B,N

C,ST = (C, C,X).

LIn view of the Schur complement of LM8(9), we deduce tha@y H;;“ > OwhichimpliesthatX =Y ~! > 0
np
and thusl,, — XY is nonsingular. Hence, the existence of nonsingular nestic1” is always ensured.
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Consequently, inequalitie8.Q), (3.9 can be written as

—TT(SAT + 41T * * *
BiT —pll,, *
<0
T A,ST 0 -ITsT «
(3.14)
C,ST 0 0 —ely,
~-I,, GST
<0.
r'sGT —_tTsr

By pre and post multiplying the first LMI respectively by diﬁgz,ﬂne,GF_T,Hny) and its

transpose and by using the Schur complement of the secongviidbbtain

~TT(SAT + 415 * * *
BIT —pl,,  * *
<0 (3.15)
GA,ST 0 —-GSGT «
C,ST 0 0 —ely,
and
—I,, < —GSGT, (3.16)
As a consequence, it holds that
~TT(SAT + 415 « * *
BIT —pll,,  * *
< 0. (3.17)
GA18F 0 _Hne *
C,ST 0 0 —elp,

Let P = S~! and pre and post multiply3(17 respectively by diagPF_T,Hne,Hne,Hny) and
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its transpose. Then, we have (note tHat= G A,)

ATP+PA;  « * *
BI'pP —ul, * * T | TT
! Hone S et e N L)
./42 0 ]Ine * T2 T3
[ 0 0 —ely,

By using the Schur complement &.(8, we obtain

ATP + PA, + AY Ay +¢,C, C, PB,
<0, (3.19)

B P —pll,,

wheree; := 7. Hence, it holds that there exists > 0 sufficiently small such that

A{P + PA; + AgAQ + slﬁzﬁp + EQHnI PB;
<0. (3.20)

BIp —pul,

Thus, Theoren3.1holds in virtue of PropositioA. O

We note that LMI 8.8), (3.9) are computationally tractable and can be solved using B S I
solver [LO]] with the YALMIP interface p2]. Hence, by solving3.8) and @.9), we obtain the
feedback law, se€3(10, and the parameters of the flow and jump s8t5)(x ande;. Note that
T is also obtained by substituting i8.6) with v = /i andL = |By|.

We note also that the nonstandard tedi.A; in (3.7) is the reason why the constructed LMI
(3.9) differs from the classical one and why the additional canvenstraint 8.9) is needed in

Theorem3.1

3.3 Optimization problems

The flexibility of the co-design procedure proposed in SecH.2 can be exploited in many
ways. In this section, we explain how to use the LMI condiig8.8) and (3.9) to enlarge

the guaranteed minimum amount of time between any two tressgons. We then propose a
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heuristic method to reduce the amount of transmissions. effi@ency of these methods is

illustrated by simulations in Sectidh4.

3.3.1 Enlarging the guaranteed minimum inter-transmissia time

A key challenge in the design of output feedback event-tigd controllers is to ensure the
existence of a uniform strictly positive lower bound on theer-transmission times. Although
the existence of that lower bound is guaranteed by differectiniques in the literature, the
available expressions are often subject to some consarvali is therefore unclear whether the
event-triggered controller has a dwell-time which is cotiigpa with the hardware limitations.
We investigate in this section how to employ the LMI condigo3.9), (3.9 to maximize the
guaranteed minimum inter-transmission time. We first stagéefollowing lemma to motivate

our approach.

Lemma 3.1. LetS be the set of solutions to syste®nd), (3.5). It holds that
T = inf{t' —1:3) € Zoo, (1), (15 +1), (1, +1), (¢, +2) €domo}. (3.21)
€

0

Proof of Lemma3.1 LetT* := ;gg{t’—t :3j € Zeo, (t,7),(t,5+1), (', 7+1),(t',j+2) €
dom¢}. The definitions of the flow and jump sets Bi%) guarantee that™ > 7. We now show
thatT* < T. Let ¢ = (¢g, de, d-) € S be such thatr, (0,0) = 0, $.(0,0) = 0, $-(0,0) = 0.
Then, ¢, (t,j) = 0,c(t,j) = 0 for all (¢,5) € domg, in view of (3.3. As a consequence,
V2o (t, )2 = oe1|dy(t, )2 whered,(t,j) = Cpo.(t,j) for all (t,j) € domg and two
successive jumps are separatedZbynits of time. We have thaf’ = inf{t' — ¢ : 35 €

Zwo, (t,4),(t,5+1),(',j+1),(t,j+2) € domg} > T*. Consequentlyl’ = T*. O

Lemma3.1limplies that the lower boun@ on the inter-transmission times guaranteed 2)(
corresponds to the actual minimum inter-transmission asdefined by the right-hand side of

(3.21). Hence, by maximizing’, we enlarge the minimum inter-transmission time.

To maximizeT', we will maximize 7 (v, L) in (3.6). We see thaf increases as and L de-

crease. Hence, our objective is to minimiz@and L. Sincey corresponds tqQ/x andy enters
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linearly in the LMI (3.8), we can directly minimize, under the LMI 8.8), (3.9). The minimiza-
tion of L, on the other hand, requires more attention. We recalllthat|Bs| = 4 /)\maX(BQTBg),
where

BrcTC.B. 0
BIB, = (3.22)

0 BI'crc,B,

hence,

L = max <\/ Amax(BTCTC,B,), \/ )\max(BpTCpTC’po)> . (3.23)

Therefore,L can be minimized up tc{/Amax(BZCpTCpo) which is fixed as it only depends

on the plant matrices. In view 08(10, we have that
BIcTc.B.=zT"vTu'NTNU TV !Z. (3.24)

Thus, L depends nonlinearly on the LMI variabl®é and Z and it can a priori not be directly

minimized. To overcome this issue, we impose the followipger bound
BI'clc.B. < apl,, (3.25)

for someq, 5 > 0. As a result, minimizingr andg may help to minimizd. as we will show on
an example in Sectiod.4. We translate inequality3(25 into an LMI and we state the following

claim.

Claim 3.1. Assume that LMIZ.8), (3.9) are verified. Then, there exiat, 3 > 0 such that

al,, * * %
0 I,, * =
o >0 (3.26)
0 N' X «
Z 0 I, Y
which implies that inequality3(25 holds. |

Proof of Claim 3.1 By using Schur complement 08.26), we deduce that

ol,, —ZTY'Z *
0 BL,,,, * > 0. (3.27)
-Y~'z NT X -Yy™!
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Re-applying the Schur complement of the last inequalitydgie

X-Y1'>0
oll,, —Z'Y 'z - ZTy1(X -y Y~y 1z *
> 0.
NX -y H-ly-lz Bl,, — N(X —Y~H)=INT
(3.28)
Using the fact that
vY-xHl=viliy(x-yHly! (3.29)

and sincgY — X171 > 0and(X —Y~1)~! > 0, in view of the Schur complement c3.9),
inequality 3.28 implies that

> 0. (3.30)

It holds that

(XY H vy = Y(X-Y ) '=@¥X-IL,)"

(3.31)
= —(I,, - YX)!
As a consequence
ally,, *
>0 (3.32)
~N(1,, - YX)"'Z pL,,,
which implies that
Z'1-YX) "N'NI-YX)'Z < apl,,. (3.33)
On the other hand, in viewd(10), we have
C.B.=NUTv-lZz=NUWvTh)Tz
(3.34)

— N(I,, — XY)TZ = N(L,, - YX)"Z.

As a result, in view 0f8.33, (3.39), it holds that

BI'CclC.B. < afl,,. (3.35)
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Thus, Claim3.1is verified. [ |

We note that3.26) does not introduce additional constraints on syster§ compared t03.8),
(3.9. This comes from the fact that there always existt > 0 (eventually large) such that

(3.26 holds, in view of Schur complement &.@6).

In conclusion, we formulate the problem as a multiobjectpémization problem as we want
to minimize u, a, 8 under the constraint3(8), (3.9 and @.26. Several approaches have been
proposed in the literature to handle such problemsesgd26]. We choose the weighted sum

strategy among others and we formulate the LMI optimizafiozblem as follows

min A g + Ao + A3f (3.36)
subject to 8.9), (3.9), (3.26

for some weights\i, Ao, A3 > 0.

3.3.2 Reducing the amount of transmissions

We present a heuristic to reduce the amount of transmisgemsrated by the triggering mech-
anism. This goal can be achieved by optimizing the parametathe event-triggered rule such
that the triggering condition is violated after the longpestsible time since the last transmis-
sion. In view of 8.5 and Theoren8.1, sincey = /j1,e1 = £~1, the event-triggering condition
is given by

ple|? < e tyl? orr € [0,T). (3.37)

As a consequence, in order to reduce the number of instant$iah the rule 8.37) is not
satisfied, we need to minimize the paramefeande. More precisely, we need to minimize
the productz=.. Since the producty is nonlinear, we simply minimize the weighted sum of
the two parameters to maintain the convexity property. Meee, we need to take into account
the evolution of thee-variable. Indeed, it is not because is minimized that less transmissions
will occur because the variablemay more rapidly reach the threshold B137) in this case.
To address this point, we notice that, in view of Assumptiand Propositiori, the variable:

satisfies, for all € R™"» and almost alk € R"e

(Vle|, Agx + Boe) < Lle| + | Aax|. (3.38)
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Thus, minimizingL may lead to the reduction of the rate of growth of the norm ef ¢hror.
Indeed, the rate of growth ¢f| is also affected by the matrid,. However, the handling ofl,
does not seem tractable since it depends nonlinearly oas@hpeters of the controller, s8ef),

and we may investigate in a future work.

To summarize, the optimization problem below may be useddaage the amount of transmis-
sions

min A g + Ao + A3f8 + A\ge (3.39)
subject to 8.9), (3.9), (3.26

for some weights\i, A2, A3, Ay > 0.

3.4 lllustrative example

We revisit Example 2 ing2] studied in Sectior2.3.1.2where the plant model is given by

0 1 0
Ty = Tp + U
-2 3 1 (3.40)

First, we solve the optimization probleri.86) to seek for the largest possible lower bound on

the inter-transmission times. We sgt= A\, = A3 = 1 and we obtain

= 0.0114, p = 18433, & = 2.7709 x 10°
(3.41)
L = 4.058, a = 4681.5, 8 = 4.6599
and
1.0919 —1.1422 16.7501
Ac = 5 Bc: 5
4.9734 —6.1425 64.6472 (3.42)
C. = [0.1157 —0.0928].

We note that, in view 0f3.23, (3.40), (3.42, L = max{4.0855,4} = 4.0855. Table3.1gives

the minimum and the average inter-sampling times for 10doany distributed initial condi-
tions such that(z(0,0),e(0,0))| < 25 and7(0,0) = 0. We observe from the corresponding
entries in Table3.1that,;, = Tayg Which implies that generated transmission instants are pe-
riodic. This may be explained by the fact that the produyct= 5.1075 x 10'° is very big and

thus the output-dependent part B137) is ‘quickly’ violated. To avoid that phenomenon, we
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optimize the parameters of the event-triggering conditioch that the rule is violated after the

longest possible time since the last transmission instandjscussed in Sectié3.2 Thus, we

minimize the weighted sum;u + A2ar + A3 + A4e subject to 8.8), (3.9), (3.26. We take

A1 = Ay = A3 = A4 = 1 and we obtain

T = 00113, p = 18455, ¢ = 28.6475
(3.43)
L = 4.0624, o = 4687.7, 8 = 4.6669
and the dynamic controller matrices are
4 1.0927 —1.1423 16.7530
49809 —6.1477 64.7121 | (3.44)
Ce = ]0.1158 —0.0927] :
Guaranteed
. Tmin Tavg
dwell-time
[22] .
6.5<1079 | 4.8055 x 1076 | 2.2905 x 10~*
01 =09 = 10_3, €1 =€1 = 1073
Optimization problem3.36
0.0114 0.0114 0.0114
AM=X=X=1
Optimization problem3.39
0.0113 0.0113 0.0116
M=L=1XA=1N\=1
Optimization problem3.39
0.0109 0.0109 0.0261
M =1,2=02X =0\ =10

TABLE 3.1: Minimum and average inter-transmission times for J@omly distributed ini-
tial conditions such thaf(x(0,0),e(0,0))| < 25 and7(0,0) = 0 for a simulation time of

20s.

We note from the corresponding entries in Tablethat the guaranteed dwell-timeis slightly

smaller than the previous one but the average inter-trassom timer,,g is larger than the

previous value (in this casgu = 5.2869 x 10°). Furthermore, we can play with the weight

coefficients\i, Ao, A3, \4 to further reduce transmissions. Since we know fhaannot become

less than 4 and that the value obtained above is already tdbés lower bound, we will give

¢ the most relative importance by increasing the weighto further decrease the magnitude of



3.4 lllustrative example 73

ep. We found that the minimum value ef: = 8049 is obtained with\; = 1, Ay = 0, A3 =
0, A4 = 10* which yield

T = 0.0109, p© = 19856, ¢ = 0.4054
(3.45)
L = 43801, a« = 8757, [ = 44183
and the dynamic controller matrices are
1.1684 —1.1627 B 16.9843
5.6744 —6.6241 | 70.3309 | (3.46)
Ce = 0.1182 —0.0908]-

We note thatrag is twice bigger than with the controlleB@3), (3.44 in this case and the
guaranteed minimum inter-transmission tiffiés of the same order of magnitude compared to
the previous values, as shown in TaBl&. It can be noticed in Tablg.1that, for all cases, the
guaranteed lower bouril corresponds to the minimum inter-transmission timeg, generated

by the triggering mechanism.

In comparison, the guaranteed lower bound on the intestnission times inj2] is 6.5 x 10~
while the observed lower bound and the average inter-tressgmn time during the simulations
respectively ard.8055 x 10~ and2.2905 x 10~%, as shown in Tabl8.1. Moreover, the stability
property achieved inZ2] is a practical stability property, while we ensure a gloasymptotic
stability property. These observations justify the pasrf the proposed co-design technique
to reduce transmissions. I7A4], the guaranteed and the the simulated lower bounds ontire in
transmission times are found to be the sampling peficd 10~4, which is 100 times smaller

than those we ensure.

We provide in Figure8.1, 3.2the state trajectories and the inter-transmission timethéinitial
condition (z(0,0), e(0,0),7(0,0)) = (10,—10,0,0,0,0,0). The impact of the time-triggered
rule on the triggering instants is clearly shown in FigBre@where a lower bound’ is enforced

on the inter-transmission times.
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FIGURE 3.1: State trajectories of the plant and the controller.
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FIGURE 3.2: Inter-transmission times.

3.5 Conclusion

A co-design procedure of output feedback laws and eveygering conditions for LTI systems
has been presented. The proposed scheme guarantees aglobptotic stability property for
the closed-loop and enforces a strictly positive lower laiboimthe inter-transmission times. The
required conditions have been formulated in terms of LMleifthe event-triggered controller
and the flow and jump sets are synthesized by solving these NBXt, we took advantage of
the flexibility of co-design to enhance the efficiency of tiwverd-triggered controllers in two
senses. We first demonstrated how the guaranteed lower loouthe: inter-transmission times
can be enlarged which can be useful in practice to help gaigsthe hardware constraints. We
then presented a heuristic to reduce the amount of tranemsssvhose efficiency is confirmed

by simulations.
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Singularly perturbed systems

4.1 Introduction

Many industrial control systems involve dynamical phenoeneccurring in two separate time
scales, known aslowandfastdynamics. These systems are usually referred to as sihgpéar
turbed systems or two-time scale systems. Examples inchader control systems, convection-
diffusion systems, power systems, magnetic-ball suspensystems, economic models, and
many others. In this chapter, we design event-triggeredraiters for nonlinear singularly
perturbed systems. In particular, we focus on the scendrayevthe triggering condition is syn-
thesized based only on the slow dynamics while we ignoreasienfiodel, which is assumed to

be stable.

It is well established in the literature that standard aantnethods cannot be directly applied
to singularly perturbed systems since the two-time scal@uhycal behaviour may lead to ill-
conditioned controllers and/or closed-loop instabilifg. handle these issues, the control design
and the stability analysis problems are usually addressgaivthe framework of singular per-
turbation, seeq4], [52]. The basic idea in this framework is to reduce the compjeaftthe
system through suitable approximations of the slow anddiasamics by means of Tikhonov's
theorem. In particular, if the approximate fast model isnagtotically stable, it is possible to
design the controller based only on the approximate slovahycs and to guarantee the stabil-
ity of the overall system under certain conditions. Thisrapph is often followed by engineers

and the purpose of this chapter is to investigate whethétliapplies in the context of ETC.



76 Chapter 4. Singularly perturbed systems

We design the event-triggered controllers by emulatioa lik Chapter2 and we first develop
a triggering mechanism to achieve a practical stabilitypprty. Then, we adapt the triggering
mechanism synthesized in Chapgeto this context. Note that the results in Chafeare no
longer valid for this class of systems for the reasons meati@bove. We need to greatly revisit
the stability analysis in order to ensure the desired asytepdtability property. The results are
shown to be applicable to a class of globally Lipschitz aystewhich encompasses stabilizable

LTI systems as a particular case.

4.2 Approximate models

We first recall the results of Chapter 11 2] for continuous-time systems to derive the ap-

proximate models. Consider the following nonlinear timeariant singularly perturbed system

z = f(x,z,u) (4.2)
ez =g(x,z,u) 4.2)
u=k(z,z2), (4.3)

wherex € R™ andz € R™ are the states; € R~ is the control input and > 0 is a small
parameter. We use singular perturbation theory to appraterthe slow and the fast dynamics.

We rely on the following standard assumption (see (11.3)4(lin [52]).

Assumption 4.1. The equatiory(zx, z,u) = 0 hasn > 1 isolated real roots

z=hi(z,u), i=1,2,...,n (4.4)

whereh; is continuously differentiable. O

In that way, the substitution of tha&h-root = = h(z,u) into (4.1) yields the corresponding
approximate slow model
&= flx, h(z,u),u). (4.5)

To investigate stability, it is more convenient to write teys @.1)-(4.2) with the coordinates
(z,y) where

y:=z—h(z,u) (4.6)
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is introduced to shift the quasi-steady-statezdb the origin. In the new coordinatés:, y),
system(4.1) becomes

In view of (4.2), (4.6), we have that

d
€y = €z — eah(a:, w)

oh Oh Ou 1 0h Ou
= g(IE,Z,U) - 6<a_mf(xazau) + %%f(xazau) + E%EQCI’Z’U))
Oh Ou oh  OhOu
_(1—%§)g(a:,z,u) —e(a—F%%)f(a:,z,u). (4.8)

We introduce a new time variabte= (¢ — ty) /¢, then
dy dy
€E— = —/—.
dt dr
In the new time scale, (4.8) is represented by

dy . Ohou oh  Ohou
i (1- %@)9(%27%) - 6(% + %%)f(m’,z,w

Then the fast dynamic is obtained by setting 0, see Chapter 11 irbp],

Z_il‘ =(1- %%)g(m,z,u). 4.9
The origin of system4.7)-(4.8) is usually stabilized thanks to a controller of the fou+- u ¢,
whereu, = k,(x) anduy = k¢(y) are respectively designed to stabilize the approximateafsod
(4.5, (4.9. In that way, it is possible to ensure stability properfassystem 4.7)-(4.8) under
some conditions on the interconnection of systdn?){(4.9). In particular, when the origin is
globally asymptotically stable for the fast dynamidsd, it is possible to take the controller to
beu = u, in some cases, like for LTI systems (see Chapter 34)[ some classes of nonlinear

systems (in view of Chapter 11 i87%]), and LTI sampled-data systems (s&g]].

In this study, we want to know whether a similar approach diagble in the context of ETC.
Hence, we concentrate on the case where the approximaidyfastics 4.9 is stable and we

aim at designing the feedback law based only on the slow mdds)|
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4.3 Hybrid model

We follow an emulation-like approach as we first assume tieastow model4.5) can be stabi-
lized by a controller of the form = k(z). Afterwards, we take into account the communication

constraints and we synthesize appropriate triggeringitond.

The controller receives the state measurements only atahsrission instants, i € Z>, and

we consider zero-order-hold devices. In that way, we haat tor almost alk € [t;, ;1]
u(t) = k(x(t;)). (4.10)

The sequence of transmission instahts € Zx is defined by the event-triggering condition

we will design. We introduce the sampling-induced eerar R™=, for almost allt € [¢;,t;1]
et) = a(t;) — x(t), (4.11)

which is reset to zero at each transmission instant. The fatiback controlle”(10 is there-

fore given by

u=k(z +e). (4.12)
Hence, the slow mode#(5 becomes
i = f(a:, h(z, k(z +€)), k(z + e)) = f,(z, €) (4.13)
and, in view of 4.6), the variabley is
y=2z—h(x,k(x+e)). (4.14)

We note that the variablg experiences a jump after each transmission @sreset to zero at
eacht;,i € Z>(. Consequently, systerd.(7) is, for aimost allt € [t;, ;1]

i = f(aj,y—l—h(fc,k‘(fv +e)), k(x +€)) (4.15)

= fm(waya e)

and we have

a(tfy) = 2(tisn). (4.16)
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On the other hand, we obtain from.(4), for almost allt € [t;, t;11]

. ) d
€y = €z — eah(ac,u)
oh Oh Ou Oh Ou
- g(x,z,u) - €<£f:ﬂ(x7y7 6) + %%fm(Z‘?y? 6) - %%fx(Z‘?y? 6)), (417)

whereé, = —i = — f,(x,y, e) by (4.11), then

€y = g(az, y+h(z,k(x+e)), k(z + e)) — e%fx(m, Y, €) (4.18)

=: fy(x,y,e), (4.19)

then we obtain the fast model by settiang- 0

dy

- = g(x,y + h(z, k(z +¢€)), k(z + 6))

=: gf(ac, y,€). (4.20)
and we have

y(t;:_l) h<33 2+1 2+1) +e(t z+1))>
h<9€ (tiv1), k(z(tiv1) + 0))
= y(tier) + h(2(tin). kaltinn) + eltivn)) = ((ti). K(z(tin))

=: hy(z(tiv1), y(tit1), e(tiv1))- (4.21)

z+1
7,+1

We note that the state variabjeexperiences a jump at each transmission which is an imgortan

difference with the model presented in Sectibh

Letq = (z,y,e,7) € R", wheren, = 2n, + ny, + 1 andr € R, is a clock variable which
describes the time elapsed since the last jump a. 8. (In view of (4.19-(4.2]), the system is

modeled as follows
¢ = Flg qeC

¢t = G(g qeD,

(4.22)
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where
fx(ﬂf,y, 6) xr
1
Pl = | V| = | MR (4.23)
—fx(a:,y, 6) 0
1 0

The flow and the jump maps are assumed to be continuous anet#ite and D will be closed.

Our objective is to design the flow and jump set2@ based only on the approximate model
of the slow dynamics and such that the overall stability aftesn @.22 is guaranteed and the

existence of a strictly positive amount of time between turops is ensured.

4.4 Assumptions

We present the assumptions made on syste&®). First, we assume that the slow systehri

is input-to-state stable (ISS) with respectto

Assumption 4.2. There exist a continuously differentiable functigp : R"* — R, class
K functionsa,, .,y with v; continuously differentiable and; > 0 such that for all

(z,e) € R?" the following is satisfied

o, (lz]) < Valz

88‘/; fs(ﬂj,e) < —m

IA
Ql

«(|2[)
+7(lel)-

(4.24)

<

~—

x(l‘

O

To guarantee the overall stability of the closed-loop syst®e need to make some assumptions
on the stability of the fast moded (20 in the presence of the communication constraints of the
slow system. In particular, we assume that the followingpitta property holds for the fast
dynamics like in $2].

Assumption 4.3. There exist a continuously differentiable functitp : R™ — R, class

K+ functionsa,, @, anday > 0 such that for all(z,y, e) € R+

a,(lyl) < Vy(z,y) <@y (lyl)
Gigr(x,ye) < —asVy(a,y).

(4.25)
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Assumption4.3 implies that the origin of the fast dynamic4.20 is globally asymptotically
stable. Note that Assumptioh3 does not imply that the origin of the fast dynamids2(Q) is
globally exponentially stable as the functiams @, can be nonlinear. We impose the following

conditions on the interconnections between the slow aridifasmics 4.13, (4.20.

Assumption 4.4. There exist a clas&’,, function~, and 1, 82,83 > 0 such that for all

(z,y,e) € R?"=T7y the following hold

IN

Ve (fo(z,y,€) — fslz,e)] Biv/ Vi () Vy (, )

(4.26)
%ny - 8{)—‘3/;% fz(xayae) < /82 \V Vz(x)vy(myy) + /83Vy(:1:7y) + 72(|€D,

whereV, and V,, come from Assumption&?2 and 4.3 respectively. In addition, there exists
L > 0 such that, for alls > 0
Yo 07 (s) < Ls, (4.27)

wherevy; comes from Assumptigh2 O

Conditions 4.26 represent the effect of the deviation of the original sys{d.22 from the
slow and fast modelgi(13, (4.20 respectively and are related to (11.43) and (11.44%%h. [

Finally, we assume that the dynamicslgfalong jumps of systen¥(22 satisfies the following

condition.

Assumption 4.5. There exist\;, Ao > 0 such that for all(x, y, ¢) € R?"=+"y

Vy(z, hy(z,y,e)) < Vy(z,y) + Ayi(le]) + Aoy /m(le))Vy(x, ), (4.28)

whereV,,, v andV, come from Assumptiods2 and 4.3 respectively. O

Assumption4.5is an algebraic condition which only requires the knowledfé, (which is
defined in ¢.21)) and~y; andV,, from Assumptionst.2and4.3respectively: we do not need to

know the triggering condition to check it.
Remark 4.1. Assumptiong.3 4.4require @.25, (4.26) to hold regardless the magnitude of

the sampling-induced errar. We show in Sectiofi.6that all these conditions are satisfied by a

class of globally Lipschitz systems which encompassesykidras as a particular case. [
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45 Main results

Before presenting the main results, we show that the desitgiggering conditions of the same
form as in LO3] for the slow model may not ensure the existence of a strmlsitive minimum

amount of time between two jumps for the overall system.

451 Afirst observation

We have seen in Sectiagh?2.5that the triggering mechanism ii(3 cannot be directly ex-
tended to the output feedback case since the Zeno phenomahoocur. A similar situation is
encountered here since we aim to ignore the fast state aydtfiesize the triggering condition
based only on the approximate slow model. To be more preicisggw of Assumptiord.2, a
first attempt would be to define a triggering condition of tbenf~; (|e]) > ooV, (z) where

o € (0,1) like in [103. The flow and jump sets are in this case

C=A{g:m(el) <oarVa(x)}

D ={q:m(le]) = carVa(2)}.

(4.29)

The results in 103 guarantee a global asymptotic stability property for thigia of the slow
model @.13 and the existence of a uniform (semiglobal) amount of tireeveen two jumps
(under some conditions). However, this triggering rule oiogler ensures a minimum time of
flow between two jumps for system.@2). IndeedG(D) N D = {q : x = e = 0} # (. Thus,
any solution inG(D) N D may jump an infinite number of times, which makes the corgraibt
implementable in practice. In the sequel, we first applyt@dsstrategies in order to overcome
this issue and we investigate how to modify the stabilitylgsia and what kind of stability
property one may expect. We also propose another strategjyaffows to guarantee a global

asymptotic stability property.

4.5.2 Semiglobal practical stabilization

The most straightforward approach to enforce a lower boumdhe inter-jumps for system

(4.22 is to add a dead-zone to the triggering conditiér29), i.e.

v (le|) > max{oai V. (x), p}, (4.30)
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wherep > 0 is a design parameter. The flow and jump setgli@d) are then

C = {g: (le]) < max{oa,V,(x), p}}

D ={q:m(le]) = max{oa1Vy(x), p}}

(4.31)

with ¢ = (x, y, e). Although this type of triggering conditions has alreadgtased in22], [69]
for example, the fact that the statexperiences jumps and that we rely on different assumptions

require to fully modify the stability analysis and leadshe following result.

Theorem 4.1. Consider system4(22 with the flow and jump sets defined ih31). Suppose
that Assumptiond.1-4.5hold. Then, for anyA, p > 0, there exispg € KL, x € Ko, ande* > 0
such that for any € (0, €*) and any solutionp = (¢, ¢y, ¢e) With [¢(0,0)] < A,

[6(t, 7)] < B(#(0,0)|, £ +j) + r(p) V(t,j) € domg, (4.32)

and all inter-transmission times are lower-bounded by &H8ir positive constan%, where
¢ : R>p — R~q is a continuous increasing function, i.e. for glE Z>q sup I/ —inf I7 > Ay
wherel’ = {t : (t,7) € domg}. Furthermore, all maximal solutions t@ @2 are complete.

0

The proof of Theorerd.1is provided in AppendiXA. Theorem4.1 ensures a semiglobal prac-
tical stability property for systen¥(22. Indeed, given an arbitrary (large) ball of initial condi-
tions centered at the origin and of radiisand any constan, there existg sufficiently small
such that solutions to4(22, (4.31) converge towards a neighbourhood of the origin whose
‘size’ can be rendered arbitrarily small by reducim@at the price of shorter inter-transmission

intervals, typically).

4.5.3 Global asymptotic stabilization

We propose another strategy to design the event-triggeongition to ensure a global asymp-
totic stability property under an extra assumption. We dworthe idea presented in Chapgto
combine the event-triggered technique HdJ with the time-triggered results o p] such that

we allow transmissions only after a fixed amount of tiffiehas elapsed since the last one.

We suppose that Assumptiodsl-4.5 are satisfied withy;(s) = ;5% andys(s) = 7252 for
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somey, 2 > 0 and fors > 0. We define the flow and jump sets as follows

C :={q:7le|* < oaiVy(x) orr € [0,T*]}

D:= {q : ('_71|e|2 = ooy Vy(x) andr > T*) or (ﬁ1|e|2 > oa1Vy(z)andr = T*) }
(4.33)

Inspired by [/9], we make the following additional assumption on systén23).

Assumption 4.6. There existV/, N > 0 such that, for all(z,y) € R"=*"v and for almost all

e € R

(Vlel, = fa(2,y,€)) < Mle| + N(V/Va(2) +/Vy(2,9)),

whereV,, andV, come from Assumptiods2 and4.3 respectively. O

The constanf™ in (4.33 is selected such that* < 7 (ay,71, M, N), like in [79], where

— arctan(r) M? < Wgﬁﬂ
T(ab’?lvM»N) = L M2 = nN? (434)

M ai

- arctanh(r)  M? > %

with
1 N2

= - 4.35
| w2

whereM, N come from Assumptiod.6anday,7y; come from Assumptiod.2. We obtain the

following result.

Theorem 4.2. Consider system4(22 with the flow and jump sets defined $# 33 and sup-

pose the following hold.

1. Assumptiong.1-4.6hold with~ (s) = 7152 andys(s) = 7252 with1, 52 > 0, for s > 0.

2. The constan™ in (4.33 is such thatr™ € (0, 7).

Then there existt € KL and € > 0 such that for anye € (0,€) and any solutionp =
(be? Qby» ¢e> ¢T)

[(¢2(t,5), ¢y (t,5)] < B(|6(0,0)], £ +5) V(t,j) € domg. (4.36)

Moreover, all maximal solutions t@(22 are complete. O
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The proof of Theoren#.2is given in AppendixA. We see that Theoredh 2 ensures a global
asymptotic stability property and that it requires an adddl condition to hold, namely As-

sumption4.6, compared to Sectioh.5.2

4.6 Case studies

4.6.1 A class of globally Lipschitz systems

In this section, we show that all the conditions of Sectia®are verified by a class of globally
Lipschitz systems, which includes LTI systems as a padiccase. We assume that the vector
fields f, g andk are globally Lipschitz and that the stability of the slow d@hd fast model can
be verified using quadratic function§ andV,,. Under these conditions, the proposition below
states that Assumptiods1-4.6hold. Hence, the triggering rules presented in Sectbbiand
4.5.3can be applied.

Proposition 2. Consider systend(1)-(4.2), (4.12. Suppose the following hold.

1. Assumptior.lis satisfied and there existg, > 0 such that

|h(1‘1,€1) — h($2,€2)| < Lh(|l‘1 — 1‘2| + |€1 — €2|). (437)

2. There exisL, L, > 0 such that the functiong(x, y, e) in (4.19, (4.13 verifies that

|f(z1,y1,e1) — f(@2,y2,e2)| < Lyp(lwr — 22| + [y1 — ya| + |e1 — e2])
|fs($ve)_fs($70)| S LS|€|'

(4.38)

3. There exist positive definite and symmetric real matriegsP, such that the functions

Ve o 2T Pz andV, : y — yT Py satisfy, for all(z, y, e) € R?=Tmw

Ve

ox
oV,
8—;gf(af,y, e) < —aVy(z,y), (4.40)

INA
|
Ql

fs(x,0) 1Va(2) (4.39)
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whereaq, @ > 0. Then, Assumptionk 2-4.6 are satisfied with

o 2L2|P1 |2 | 12
o= 5 nlle) = Fxnthle
- 2Lf|P1\
(% = « =
2 2 /81 \/)‘min(Pl)Amin(PQ)
. 2Lth\P2| o 3Lth\P2|
IB2 o \/)\min(Pl))\min(PQ) ’ 183 o )\min(PQ)
— L.L:P 2 I = a1 Lp L f Ain (P1)| P2 (4.41)
72(|6D - h f‘ 2H6|7 - 2L§|P1|2
_ @lLi)\min(Pl)IPQ‘ _ a_flL%)‘min(Pl)‘PQP
R 111 S R VA ¥ N A1
L
M = L N = i ,
s iy Aeni (1) Do (P2)}
]

Proof of Proposition 2.
e Assumptiord.2 In view of (4.13 and item (3) of Propositio@, we have, for allz, e) €
Ran’
%L;fs(l‘a e) = %L;fs($>0) + %L;(fs(l‘, e) - fs(l‘a 0))
< —aVi(z) + 27 Pi(fo(z,€) — fo(,0) (4.42)

< —oaVe(x) + 20al[ Py fs(z, €) — fs(,0)

As a consequence, in view of item (1) in Propositiyn

oV,

%fs(x, e) < —a1Vi(z) + 2Lg| Py ||x||e]|. (4.43)

Using the fact that

)\min(Pl)

a 2
2L\ Paalle] < SRR g 4 AP (@4

O41)\min(P1)

and the fact thab,;, (P1)|z|?> < Vi.(z), sinceP; is positive definite and symmetric, it
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holds that

V. _ &1 Ammin (P 2L2| Py
Nefe) < —anVale) + DimplP) g2 4 2P

< G Va(o) + BVa(e) + g fef?

IA

o 2L P
— BV (@) + D ef?.

2L |P1 ‘ |2

Hence Assumptiod.2 holds witha; = § and, (Je|) = 7 )

e Assumptiord.3follows directly from item (3) of Propositio2 with as = @o.

e Assumption4.4 In view of items (1), (3) of Propositio and since\ i, (P;)|z|? <

Ve (z) andAmin(P2)]y)? < Vy(z,9), it holds that, for all(z, y, e) € R? =Ty

G folwy,0) = folwe)] = 20" Pi(fa(w,y,€) = fila,e))
< 2|Pfa]|fa(z, y, ) — fal(x,€)|
< 2Lg|Pylx]]y]
Tt Ain(POREV Auin (P2 P
2L | Py

Ve(z)Vy(z,y).

- \/Amin(Pl)Amin(PQ)
(4.45)

2L¢|P1]
\/)\min(Pl))\min(PQ)

On the other hand, in view of items (1), (3) of Propositidrand using the fact that

Thus, the first condition in Assumptiah4is verified with5; =

2le|ly] < |y|* + |e|? and using thatf,(0,0,0) = 0 since the origin of system4(13
is asymptotically stable in view o#(39), it holds that, for all(z, y, ¢) € R?"=+ny
v, 9,
< 2[Ryl Ln Ly (|| + ly| + le])
= 2|Po| Ly Ly|x|ly| + 2| P2| Ly Lyly|? + 2| Po| Lp Ly ylle]

< 2|Po| L Lylz|lyl + 2| Po|LiLslyl* + | Pa| L Ly (ly|* + [e]?)
(4.46)
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oV, oV, 2|Po|Lp L
(5 -] o) < w,,li,'l(;‘l):,,f,l(z:z) Veleliny) (4.47)

3|P2|Ly L
+ SV, (@,y) + | Po|LnLylel

2|Py| L Ly _
\/Armn(Pl) rmn(PQ) 53

3|Ps|LpL¢ . 2L%| P
[l L andn(le]) = [Po|LiLylef. Sinceyi (Je]) = 255 e, it holds that

Hence, the second condition in Assumptibd holds with5, =

dl)\min(Pl)|e‘

-1
el) = 4.48
e = Y (4.48)
As a consequence,
— a1 Amin (P
207 (le]) = |Po|LyLp2iompoy L2|1(3 ‘12)‘e| (4.49)
o ai )‘mm(Pl Lth‘P2|| | '
2L2[Pi
Then, the third condition in Assumptich4is satisfied withl, = "“‘Q‘(LIQ%TQL" [Pl

e Assumptiord.5: In view of (4.21) and the definition o/,

Vy(z, hy(z,y,e)) = hg(az,y, e)Pyhy(x,y,e)
T
= (y+ o, bz +€)) = hiz, k() Ps(y+ bz, ke + ) = bz, k(2)))
=yI' Py + (h(z,k(z +¢€)) — h(z, k()T Po(h(z, k(x + €)) — h(z, k(z)))
+yT Po(h(z, k(z + €)) — h(x, k() + (h(x, k(z + €)) — h(z, k(x)))T Py
< Vy(z,y) + [Pl |12, k(z + €)) — h(z, k(2))?

+2|Polyl|h(z, k(z + ) — h(z, k(z))].

(4.50)
Sinceh is globally Lipschitz, it holds that
Vy(@, hy(z,y.€)) < Vy(z,y) + [Po|Ljlel* + 2| Po[ly|Lple|
< Vy(a,y) + [Po|L3 SpmmP) o (fe)) (4.51)

7>‘minP
+2|Py| L, Yo2mn ) 1 /()

V2L2[P12 \/Amin(P2) Vy(z,y)
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a1L2 Apin (P1)| P
Vy(w, hy(z,y,€)) < Vy(a,y) + 2EimmelIBL, (o))

(4.52)

\/QLZO_Q)\min(Pl)|P2‘2 (|€|)

Vin(P2) L2 P12 Vy(,y).

1 L2 Amin (P1)| P2

STETAR and

Consequently, Assumptich5is satisfied with\; =
\/2L2a1>\rmn(P1 |P2| \/—
Ay = v/ Amin (P2)L2|Py|2 (leDVy (@, y)
e Assumption4.6. In view of (4.22-(4.23 and item (1) of Propositiol2 and using that
12(0,0,0) = 0, it holds that, for all(x, y) € R"=*"v and for almost alk € R"=

(Vle|, = falz,y,€)) < Ly(lz] + [yl + le])

. 1 1

= Lf|€|+Lf(\/vaw($)+\/mvvy(QC»y())' )
4.53

: Ly . O

mln{\/)‘min(Pl)y\/)‘min(PQ)}

Hence, Assumptio#.6is verified withM = Ly andN =

4.6.2 Application to LTI systems

The results in Sectiod.6.1can be directly applied to LTI systems. However, we can okt
this class of systems less conservative values for the gdeasin Assumptiond.2-4.6 than
those derived in Sectiofi6.1 We first derive the approximate models as in Seciithen we

state the result.

Consider the LTI singularly perturbed systems

T =Anx+ Aoz + Biu = f(z,2z,u) (4.54)
€2 = Agrx + Aoz + Bou = g(x, z,u) (4.55)
u= Kz (4.56)

wherex € R™, z € R™, u € R* ande > 0. We assume thatly, is invertible and Hurwitz.

Hence, Assumptiod.1 holds with
h(z,u) = —Ay; (Ag1x + Bau). (4.57)

By introducing the sampling errerand applying the change of variablgs= =z — h(z,u), the
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x-system 4.54) becomes

T = Apz+ Alg(y — A2_21A21:L’ — A2_2lBgu) + Biu
= (Ay — A1p Ay Az + Ay + (By — A1 Ay Bo)K (z + e)

(4.58)
= (A() + B()K).Z‘ + Algy + B()Ke
= folz,y50),
where
Ay = Ay — ApAtA
0 11 12 212 21 (4'59)
BQ = Bl - A12A2_2 Bg.
Let A := Ag + BoK and by setting; = 0, we obtain the approximate slow model
& = Axz+ ByKe
0 (4.60)

= fs(z,e).

Assuming that the pairdy, By) is stabilizable, we také&” such that\ is Hurwitz. By following

similar lines as in4.18, they-system becomes

€y = ez'—e%m'

= Aogjx + Aog (y — A2_21A21.Z‘ — A2_21B2u) + Bou + 6A2_21A21 (Aaj‘ + A12y + B()Ke)
= Agy + €Ay Aoy (Ax + Aoy + BoKe)

= fy(% y7 6)
(4.61)
By introducing the time variable = § and yb settingg = 0, We derive the approximate fast
model
d
= Any = gy(@,y.¢). (4.62)

Hence, the hybrid model o#(22) is, recall thaly = (z,y,e,7) € R"q,

¢ = Flg qeC

(4.63)
¢t = G(qg) qeD,
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and the flow and jump maps are given by
Az + Apy+ BoKe x
FA.Z‘—I—(FAH—I—%AQQ)Z/-FFB()KE y—1
(q) = 5 G(Q) = 5 (464)
—A.Z‘ - Algy — B()Ke
1 0

wherel := Ay} Ay; andTy := Ay, By K.

Proposition 3. Consider system#(54)-(4.56. Suppose thatlss is invertible and Hurwitz and

the pair (Ag, By) is stabilizable. LetP;, P, be real positive definite and symmetric matrices

such thatAT P, + PIA = —1,, and AL P, + PyAgs = —1,,,. Then, Assumption$.2-4.6 are

satisfied with

a1 = ﬁx(l%)’

a = x—tm,

P2 = \/)\mif(‘ij )F)ﬁrllin(PQ) ’
vallel) = e,

A= %’

M = |ByK],

Proof of Proposition 3.

71(le])
A1

B3

2| P BoK |?|e|?

2|P1 A12]
\/)‘min (Pl ))‘min (PQ)

2| PaT' Ay |+ | PaT Bo K |2

)‘min(PQ)
(4.65)
N S
2|P1 BoK|?
207 Py
|PLBo K|\/2Amin (P2)
max{ AL lAnl
\/)\min(Pl) \/)\min(PQ)
g

e Assumption4.2 let V,(z) = x” Px. Hence, the first condition of Assumptigh2 is
A

verified with o, (|z]) =

r € R

min(P)|z)?, @(|z]) = Amax(Pr)]z[2. It holds that, for all

(VVa(2), fo(z,€)) = 2T (ATPy + PiA)z + 22T P By Ke

= 2",z + 22T P,ByKe

< —|z? + 2|P By K ||z||e|.

(4.66)
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2 we obtain

Using the fact tha| P, BoK ||z|le| < 3|z|* + 2|P By K |*|e

1
(VVe(2), fs(,€)) < —§I$|2 +2|PLByK|?e|?

1
<-—— _V 2| P, BoK |?|e]?. 4.67
S T () (7) +2[PLBoK|"e] (4.67)

Hence, Assumptiod.2is verified witha; = m and~; (|e|) = 2|P1 BoK|?|e|?.

e Assumptiond.3 let V,(z,y) = yT Pyy. It holds that, for ally € R™

(VVy(2,y), 97 (@, y,€)) = AJo Py + PyAgy = —y Iy < —|y[?
1

S —mvy(x,y). (468)

2, ay(|y‘) = )‘maX(P2)‘y|2 and

Thus, Assumptiort.3 holds witha, (Jy|) = Amin(P2)[y

_ 1
O[Q - )\max(PQ) '

e Assumptiord.4: In view of (4.58, (4.60), it holds that

%‘;x [fo(z,y,e) — fo(z, )] = 20T P Aoy
< 2|P1 Av||z]ly]
a \/Amii‘(];?)ijin(p2) Va(2)Vy(2,y) (4.69)
and
[% - %—‘3%} folz,y,e) = =2yT Po(~T)(Az 4+ Aoy + BoKe)

< 2|RTA|fz]ly| + 2| PaT Ar[y[?

+2|P, T BoK||e||y]. (4.70)
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Using the fact thag| P, T BoK ||e||y| < |e|® + |PoT' Bo K |?|y|?, it holds

ov, 0V, 0oh 2\(,/(2
“y _Z I (@,y,e) < 2| PTA 2|P,T Ajg| + |P.T BoK
[m a &E]f(ﬂcye) [PaTA|[ally] + (2/PaT Ava] + | BT BoK Py

+ Jef?

2|P,T'A
< PoTA Va(@)Vy(@:y) + ef?
\/)\min(Pl))\min(P2)
+ (2|P2FA12| + |P2FBOK|2)mVy(l‘,y)
(4.71)

Hence, in view of 4.69, (4.71), conditions 4.26 in Assumption4.4 are satisfied with

_ 2| Py Aso| a2 _ 2| P,T'A|
51 o \/)\min(Pl))\min(PQ) ’ 72(|e‘) o |e‘ ’ 52 o \/)\min(Pl))\min(PQ)

B3 = 2"’?“;?'%@;{’90“2. Sincevi(le]) = 2|PiBoK|?|e|?, we have thaty; ! (|e|) =

le]
STPBRT consequently,

, and

_ 1
Y2077 (le]) = WM- (4.72)

As a result, condition4.27) in Assumptiord.4is verified withL = m.

e Assumption4.5. the dynamics oW/, along jumps of the trajectories of systemq3 is
given by
Vy('rv hy(l‘, Y, 6)) = Vy('ra Yy — Flem)
= (y—T1e)" Py(y —T1e)
=yl Py +elTTPe —yT Pol'ie — eI TT Py

< Vy(@,y) + [T Pl el + 2|07 Plle]|y]

ITT PoT |
< . = -t
21T P,
1 P (Vg (@73)

/2| P BoK [P Amin (P2)
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ITT PoTy |

< - - - -
Vol hy(,9,)) < V(o) + gt iam(lel)

2[TT Py
| P Bo K |\/2Amin (P2)

Y (le))Vy(z,y). (4.74)

|TT PoTy |

Thus, Assumptiod.5holds with\; = W and)\g = 2T Pyl

|PlBOK‘\/2)‘min(P2) ’

e Assumptiord.6: in view of (4.63), it holds that

(Vlel, =fo(z,y,€)) < |Allx] + [Ar2lly| + [BoK||e]

AL | A
< |BoKlle] + ——V/Va(x) + ———1/ V) (=,
| ’ || | \/ mln Pl \Y )\min(PQ) y( y)

< Mlel + N(/Va(@) + Vil ) (4.75)
|A12]

1'1’111’1 Pl \/)\min(PQ)
verified. 0

whereM = |ByK|andN = max{\/)\ }. Hence, Assumptiod.6 is

4.7 Autopilot control of an F-8 aircraft

We apply the results developed to the autopilot control ef ltngitudinal motion of an F-8

aircraft. We borrow the model from Chapter 4 5]

T = A1z + A9z + Biu (4.76)

€2 = Aoz + Agz + Bou 4.77)

wherez € R? represents the slow 'phugoid mode’ andt R? represents the fast 'short period

mode’ of the longitudinal motion of an airplane. The paragnetis equal to 0.0336 and the
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coefficient matrices are given by

—0.195378 —0.676469 —0.917160 0.109033
An = , A =

1.478265 0 0 0

_—0.051601 0 _—0.367954 0.438041
Ay = , Agp =

0.013579 O —2.102596 —0.214640

—0.023109 —0.048184
B = : B, =

—16.945030 —3.810954

We notice thatAss is invertible and Hurwitz with the eigenvalues8.6696 + 28.4712¢ and
the pair(Ay, By) is controllable whered, B, are defined in4.59. Thus, the conditions of
Section4.6.2are satisfied. The origin of the open-loop system is glolbailyonentially stable.
Nevertheless, the eigenvalues of the slow system are satkhthoverall system solutions ex-
hibit large oscillations and a slow convergence, see FiguteHence, we design the controller
u = Kz to improve the closed-loop response. The dga&ins selected to place the eigenvalues

of the slow system &t-2, —3).

15 T T T T T T T T T

Magnitude

_15 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Time[s]

FIGURE 4.1: Open-loop state trajectories of the slow dynamics

_ 1.6063 0.0826
We obtain~y (le]) = 1.7795]e|?, aq = 0.3104, P| = and we setr =

0.0826 0.1112
0.05 small in order not to deteriorate the continuous-time aesep performance. We run

simulations for the initial conditioriz(0, 0), (0, 0), (0, 0), 7(0,0)) = (10,—-10,5,5,0,0,0).
For the triggering condition in4(31), we takep = 0.0001 and for the triggering condition in
(4.33, we obtain7™ = 0.021 by using @.34).
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Simulation results with the triggering mechanism in [LO3  To justify the discussion in Sec-
tion 4.5.1, we first apply the triggering conditiod 29. Simulations have shown that any initial
condition satisfyinge(0,0) = 0 andz(0,0) # 0 leads to infinite jumps at= 0 which supports

the conclusion in Sectiof.5.1and motivates our proposed triggering conditions.

Simulation results of the triggering mechanism 4.31) Figure 4.2 shows the norm of the
state vector and Figur.3 shows that it converges to a neighbourhood of the origin. thoe
time scale dynamics can be observed in FigdrdsFigure4.5, where the statg converges to
the origin faster than the state The evolution of the sampling induced error is provided in
Figure4.6where it can be noted thatis reset wher; |e|? hits the maximum o, V() and

p. The generated inter-transmission times are given in Eigut

15 T T T T T T T T T

10 b

||

0 | | | | | + 4 L
0 0.5 1 15 2 25 3 35 4 4.5 5

Time[s]

FIGURE 4.2: Norm of the state vector during the first 5 seconds.

X
5.4072 T T T T T T T T T
5.4072 B

__5.4072} b
8

5.4072 b

5.4072 b

200 210 220 230 240 250 260 270 280 290 300
Time[s]

FIGURE 4.3: Norm of the state vector after 200 seconds.
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Magnitude

Magnitude

15

T] = = = T2

-10
0

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time[s]

FIGURE 4.4: State trajectories of the slow model.

Y1 === Yy

1 1.5 2 2.5 3 3.5 4 4.5 5
Time[s]

FIGURE 4.5: State trajectories of the fast model.

Magnitude

3.1 3.2 33 34 35 3.6 3.7 3.8 3.9 4
Time[s]

FIGURE 4.6: Evolution of the sampling error.
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FIGURE 4.7: Inter-transmission times.

Simulation results with the triggering mechanism @.33 Figure4.8 shows the norm of the
state vector and Figure9shows its asymptotic convergence to the origin. The stajedtories
of the slow and fast states are given in FigudesQ Figure4.11 The internal structure of
the triggering mechanisn4 (33 is revealed in Figured.12 4.13 We observe that the time-
triggered part enforces the lower boufidvhile the event-triggered part allows for larger inter-

transmission times than.

15 T T T T T T T T T

||

0 | | | | | . L L
0 0.5 1 15 2 25 3 35 4 4.5 5

Time[s]

FIGURE 4.8: Norm of the state vector at the first 5 seconds.
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20 21 22 23 24 25 26 27 28 29 30
Time[s]
FIGURE 4.9: Norm of the state vector after 30 seconds.
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FIGURE 4.10: State trajectories of the slow model.
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FIGURE 4.11: State trajectories of the fast model.
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FIGURE 4.12: Evolution of the sampling error.
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FIGURE 4.13: Inter-transmission times.

We compare the average inter-transmission interval of thpgsed event-triggered solutions.
Table4.1 shows the average inter-execution times with a simulaiioe bf 5 seconds for 200

randomly distributed initial conditions such thét(0, 0), (0, 0),¢(0,0))| < 100 and7(0,0) =

0. We note in this example that the triggering mechanigr83 ensures larger minimum inter-

transmission time while the triggering mechanigh8() generates less amount of transmissions.

Triggering mechanism¥(31)

Triggering mechanismé(33

Tmin

0.0017

0.021

Tavg

0.0306

0.028

TABLE 4.1: Minimum and average inter-execution times for 100 canly distributed initial
conditions such thatz(0, 0), y(0,0),e(0,0))| < 100 and7(0,0) = 0 for a simulation time of

5s.
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4.8 Conclusion

We have investigated the event-triggered stabilizationosflinear singularly perturbed systems
based only on the slow dynamics. Two classes of controllave lbeen developed which en-
sure different asymptotic stability properties. The firggdgering strategy consists of adding
some positive constant to the triggering condition basefil6f] to ensure that the minimum
inter-transmission time is strictly positive. We have shaat a practical stability property is
achieved in this case. In the second triggering policy, weetdeveloped an event-triggering
condition by combining results from event-triggered amdetitriggered techniques. The idea
is to turn on the event-triggered part only after a fixed amairtime has been elapsed since
the last transmission instant, like in ChapferThe proposed mechanism allows to guarantee
asymptotic stability property under an additional assuompt The results are applicable to a

class of globally Lipschitz systems which encompasses y3Jtesns as a particular case.






Chapter 5

Conclusions

5.1 Conclusions

We have investigated the synthesis of stabilizing outpediii@ck event-triggered controllers for

both nonlinear and linear systems. In particular, we hadeessed the following problems:

¢ In Chapter2, we have developed output feedback event-triggered dersdo stabilize a
general class of nonlinear systems by following the enaatiesign approach. The pro-
posed triggering mechanism combines the event-trigget6d pnd the time-triggered
[79] results to enforce a strictly positive amount of time begwéwo transmissions. This
minimum time is designed as the MATI given ing). Our results rely on similar assump-
tions as in 79] which allow us to derive both local and global results. Théamed results
have been applied to two physical nonlinear systems for lwtfie required conditions
have been proved to hold. We have also shown that the requineditions are always
verified by LTI systems that are stabilizable and detectablevhich case these were
reformulated as an LMI. Moreover, we have explained thathieefit of our proposed
triggering mechanism can be nicely transferred to the cbufiestate feedback control to

allow the user to directly tune the guaranteed lower bouniheinter-transmission times.

e In Chapter3, to overcome the design constraints induced by the emauolapproach,
we have proposed an LMI-based co-design algorithm for LEteays to simultaneously
construct the feedback law and the event-triggering cmnditWe have then discussed

how the resulted LMI can be exploited to optimize the eveggered condition in two
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senses. The first optimization procedure aims to enlargguheanteed lower bound on
the inter-transmission times. The second optimizatiorblera allows to heuristically
reduce the amount of transmissions generated by the evggering mechanism. The

effectiveness of the approach has been demonstrated onexinahexample.

¢ In Chapter4, we have studied the event-triggered stabilization of inealr singularly
perturbed systems based only on the slow dynamics. The-&iggred controllers have
been designed by emulation within the framework of singpkrturbation to capture the
two-time scale phenomena exhibited by such systems. Wefinstgecomposed the orig-
inal system into two approximate slow and fast models. Thenhave synthesised two
appropriate triggering mechanisms based only on the ajpade slow dynamics. The
first triggering mechanism relies on existing techniquesewent-triggered control and
achieves a practical stability property for the closedslod he second proposed mech-
anism adapts the presented technique in Chdbtersingularly perturbed systems and

leads to an asymptotic stability property, under additi@sgumptions.

5.2 Contributions

The contributions of this thesis are summarized as follows.

e Fewresults in the literature address the output feedbamhtaviggered stabilization prob-
lem and most of them are dedicated to linear systems. Thidegmrohas been only studied
in [123] for nonlinear systems, to the best for our knowledge. Weetpmeposed an alter-
native design as well as an alternative analysis, which séenely on different conditions
compared to123]. We have notably seen in Chapt&that all the considered examples

violate the conditions imposed in23).

e An interesting question in practice is whether the evaggéred implementation will
achieve less amount of transmissions than those produc&ddijional periodic setups.
The idea of the proposed triggering mechanism in Chdpeovides a qualitative answer

to this question.

e Very few results are available in the literature for the @sign of the feedback law and
the event-triggering condition and only for specific typégwaplementations using state-

feedbacks. No available results exist for the case wheng amloutput of the plant is
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continuously monitored. In Chapt8rwe have presented a co-design procedure based on
output measurements which is easy to use and may furthecedtie amount of trans-

missions as demonstrated on examples.

e To the best of our knowledge, the results in Chagten the event-triggered stabilization
of singularly perturbed systems are the first ones in thiction. These results are useful
in practice since many control systems exhibit two-timeesciynamics and engineers

usually design the controller based only on the slow model.

5.3 Recommendations for future research

We think that the obtained results in this thesis can be éurtixtended in several directions.

e An interesting future research direction is to investigiie robustness of our proposed
triggering mechanism in Chapt@rwith respect to the measurement errors (and model
uncertainties). These phenomena are usually encounterpthétice and may have a
significant impact on the closed-loop stability and perfance and may lead to the Zeno
phenomenon. We believe that the fact that transmissionsotawcur beforél” units of

time have elapsed can be useful in this context to avoid tberoence of Zeno.

e In [95], it has been developed a set of useful LMI tools to syntlesiabilizing output
feedback controllers while achieving a desired level ofgrenance in terms of distur-
bance rejection, peak output amplitudé,, H.,, and other properties. In the same spirit,
it would be interesting to improve our proposed co-desigicedure to satisfy some per-

formance requirements on the closed-loop system, in votyi@s).

e A possible extension of the results on singularly perturbgstems is to investigate the
general case where the fast dynamics is not necessarilg stedba consequence, the fast
model cannot be ignored and two triggering conditions shoel synthesized to stabilize

both the approximate slow and fast subsystems a priori.

e It would be interesting to investigate whether the desigpregch in Chapted can be
transferred to other classes of nonlinear systems to dirthe control design problem.
In other words, it would be useful in practice if we can sysibhe event-triggered con-
trollers for nonlinear systems, that are not necessarnilgwsarly perturbed, based on an

approximate model obtained by other means like model remuct averaging.
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e It is also of interest to develop the triggering conditiorctmsider other communication
constraints like signal quantization, as ir2f]. This is an interesting direction in practice
since the asymptotic convergence of solutions can be lastthe equilibrium in the pres-
ence of quantization errors as the difference between tiierduand the desired values of

the state becomes small.



Appendix A

Proofs of Chapter4

We present here the proofs of Theorefnt 4.2in Chapter4.

A.1 Proof of Theorem4.1

We define the function (like in the proof of Theorem 1 88])
V(q) :=Vi(z) + VeV, (z,y) VgeR™ (A.1)

with e € (0, ¢*) wheree* > 0 will be defined in the following. Le € C, it holds that, in view
of (4.15 and @.18

(VV(9), F(q)) = G falw,y,e) + Vegt ful,y,e) + L52 fy(2,y, )

= e fo(@e) + B2 [fol,y.0) — fai(z,0)] + Z 505 (@, y,¢)

(A.2)

In view of the definition of the seaf’, we have that
71(le]) < max{oa1Va(z), p} (A3)
and, sinceys(.) is increasing, it holds that

ta(lel) < 72 077 (max{oon Va(w). p}). (A.4)
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The condition ¢.27) ensures that
Y2(le]) < Lmax{oa V(x), p}- (A.5)

Using Assumptiong.2-4.5, we derive that

(VVig), F(q)) < —arVa(x) +mlel) + b/ Va(2)Vy (2, y) — 2Vy(2,y)
+Ve(Barn/Va(@)Vy (2, y) + B3Vy (2, y) +72(le]))

IN

—a1Ve(z) + max{on Vo (), p} — (£ — VeB3)Vy (2, y)

+(B1 + VeBa)/ V() Vy (2, y) + VeL max{oai Vy(z),p}  (A.6)

= —a(l —o(l+ Vel))Va(x) — (£ — Ves)Vy(z,y)

+(B1 + VeB2)/ Va(@)Vy(z,y) + (1 + VeL)p

= —x"Ax+ (1+eL)p,

wherey := (y/Vz(z), v/Vy(z,y)) and

e a1(l —o(L++/eLl)) —(B1+Veba)/2 ‘ A7)

—(B1+ VeBa)/2 *- VeBs

Let 4 > 0 defined as follows

1€ (0,01(1=0)) (A.8)

The following conditions ensure that > pdiag(1, ve), i.e. A — pdiag(1, \/€) is positive
definite, where diag, 1/¢) is the diagonal matrix with elements, 1/¢) on the diagonal,

a1(l—o(l++eLl)) > p
(A.9)

(011 =01+ VL) = i) (% — VaBs — Van) = (B + Ver)?/4
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The inequalities inA.9) are always satisfied fare (0, ¢*), wheree* > 0 is sufficiently small.

Consequently
(VV(), F(q)) < —px"diagl,v/e)x + (1 +/eL)p
= —uV(gQ)+ (1+eL)p (A.10)
= V() - 4V(9) + (1+ VeD)p
Hence, if5V (q) > (14 /€L)p, it holds that
(VV(q),F(q)) < —LV(qg) (A.11)
implying that, by invoking standard comparison principle,
V(g) < e 2tV (¢(0,0)). (A.12)

On the other hand, i§V (¢q) < (1 4 \/eL)p, thenV (q) < w. Thus, the Lyapunov

function V' (¢) satisfies on flows

Vig) < Hlax{e_%(t_to){/(q(ojo)%w}

(A.13)
— L (t—to) 2(1+L)p
< max{e” 50V (g(0,0)), 2EEe
where we have used the factis sufficiently small such that* < 1.
Letq € D,
V(G(q) = Va(x) + VeVy(z, hy(z, y, ). (A.14)
In view of Assumptiord.5and the definition of the se?,
Vy(@,hy(z,y,e)) < Vy(z,y) + nllel) + Aay/m(le))Vy(z, y)
< Vy(z,y) + My max{oa; V;(x), p} (A.15)

+A2y/max{oaiV;(z), p}Vy(z,y).
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Using that

Vmax{oaiVy(z), p}Vy(z,y) < e 1 max{oa;Vy(z), p} + E%Vy(az, Y)
(A.16)
< e_%aale(az)+6_ip+6%Vy(az,y),

we deduce that

Vy(x, hy(z,y,e)) < Vy(z,y)+ MoaiVa(z) + Aip+ e_%Agaale(a:)
1 1 (A17)
+e i hop +ex XV (z,y).

In view of (A.14), (A.17) and using the fact that < 3, since is sufficiently small, we obtain
V(@) =Va(®) + \/E(Vy(x’ y) + MoarVa(z) + Aip + € Thaoar Va(x) + € Thap
et Vy ()

= (Va(@) + VeV, (2, 1)) + Vehoay Va(x) + v/ehip + €1 hagoar Vi ()

—I-e%)\gp + 6%\/2)\2‘/3,(1‘,:1/)
<V(q) + eioar (M + M) Va(@) + € (A1 + M) VeV, (2,) + €3 (A1 + Ag)p
< V(q) + €1 (M + Ao) max{oa, 1} (Vo () + VeV (z,y) + €1 (A + Aa)p

<V(g) + 1AV (g) + € p,

(A.18)
where
A= (A + A2) max{oaq, 1}. (A.19)
As a consequence
V(G(g)) < (1+2ei))max{V(q),p}. (A.20)

We note that propertieA(13), (A.20) are not sufficient to conclude about the asymptotic sta-
bility of the origin for the system4.22 as V' (q) may increase at jumps in view oA(20).
Nevertheless, Proposition 3.29 B4 allows to show that4.32) is satisfied provided that solu-
tions to @.22 have a sufficiently long dwell-time. The claim below formzak this result. It has

to be noted that in (4.32 depends on the ball size of initial conditiodAswhich is not the case

in [60] and thus, the proof requires a particular careful to hatidiepoint.

Claim A.1. Let¢ = (¢z, ¢y, Pe) be a solution t04.22), (4.31) with |4(0,0)] < A. If the
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parametere is sufficiently small such thate (0, €*) with

1 4p _%
€* := min <§(e#€(A) — 1)) ;18 (A21)

wherep, 1 come from 4.31), (A.8) respectively and : R~y — R+ is a continuous increasing

function. Then, all inter-transmission times are lower bded byr(A), where
T(A) = 2In(1+2e1)) (A.22)
and ) is defined in A.19. Furthermore, any solution to (4.22) satisfies, for some > 0

V(g(t,j)) < max{e HIV(4(0,0)),6p}  V(t,j) € doms, (A.23)
whered := (1 + 2)) max{22E 13, u

The proof of ClaimA.1 is given after the proof of Theoret1

We now show that the stability property.82 holds. In view of 4.24) and @.25, for any
(t,j) € domg,

o, (l62(t, 7)) < max{e"HDa(4(0,0)),0p}
(A.24)

6o (t.5)] < ai! (max {7 Ha(¢(0,0))),6p}) -
Using thaty (le]) < max{ca1V (z),p} foranyq € C U D U G(D), we deduce that for any
(t,j) € dom¢

|¢e(t>j)| < max{ﬁe(|¢(0>0)|vt+j)7’lge(p)} (A.25)

for somegs, € KL andd, € K. We are left with the;-component ofp. In view of Assump-

tions4.3-4.4, it holds that

(VVy(z,y), (fa, fy)) = %%g—i—[%_%%] fa
< W)+ BV TRV ) + V() + (i)

< (22 = By — B3)Vy (2, y) + BaVa(z) 4+ 72(lel)
(A.26)
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and, as shown before,

Vy(x, hy(z,y,e)) < Vy(z,y) + Mmillel) + Ao/ (le))Vy (2, y)
(A.27)

< (1+ e%)\g)Vy(:E,y) + (M + 6_%)\2)’71(|€|)

By following similar lines as above, we deduce that, by tgkihsufficiently small, they-system
is ISS with respect te@ ande. As a consequence, in view gk 24), (A.26) and A.27) we derive

that

|6y(t,5)] < max {B,(|6(0,0)],¢ + ), Fy(p)} (A.28)
for somes, € KL andf, € K. The property 4.32 then follows from A.24), (A.25) and
(A.28). Equations AA.24), (A.25) and (A.28) ensure that cannot explode in finite time, neither
it can flow out ofC' U D sinceG(D) C C. Noting that system4(.22), (4.31) does not admit

trivial solution', we conclude that maximal solutions #©22), (4.31) are complete according to

Proposition 6.10 in34]. O

Proof of Claim A.1. First, we assume that\(22) holds and we deriveA(.23) by induction.
Then, we show thatA.22) is always satisfied for all solutiong. We start by studying the
dynamics ofl/(¢) in the first transmission timég. j = 0,¢ € [0,¢;], wheret; denotes the first

transmission instant.
V(t,0) € domeg

Assume without loss of generalftyhat ¢. (0, 0) = 0. In view of (A.13), we have
V(6(t,0) < max{e”5V(4(0,0)), 282 p}. (A.29)
At ¢t = t;, we obtain

V(g(t1,0)) < max{e"51V((0,0)), 20 p}. (A.30)

This comes from the fact that\ D is the interior ofC. Hence, the tangent cone (see SecBoBin Appendix
B) isR™ and (VC) in Proposition 6.10 ir84] holds for any point inC\ D

2If that is not the case, the inequality obtained laterAr2@) will hold for any (¢, j) € dome with j > 1. A
bound onV (¢) on the interval0, ¢1] can then be derived using(13) and A.20) to upper-bound oV (¢) on the
whole domain domp. Note that if¢ never jumps, the bound on the inter-jump times used\i2?) trivially holds
and A.23) will be verified.
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Next, we study the dynamics &f(q) in the second transmission times. j = 1,¢ € [t1, t2].
V(t,1) € domg

In view of (A.20), (A.30), we have

V(6(t1,1)) < (1 +2652) max{V (¢(t1,0)), p}
<1+ 26i)\) max{e~ 21V (¢(0,0)), 2@@ o}

= max{(1 + 2e10)e" 21V (6(0,0)), (1 + 2e10) 2 p (1 4 2680)p}.
(A.31)
In view of (A.13), we obtain

V(6(t,1)) < max { e IV (g(11,1)), 25 p)

< max { (1+2e1A)e” 5070 50V((0,0)), (1 + 261 0) 2L pe=5 (=0,

(14265 7)pe 5010 2L )
=max{ (1+ 26%)\)6_%”/(@5(0, 0)), (1 + ZE%A)@pe_%(t_tl),

(1-+ 26k )pe e, 20522 )
(A.32)
At t = ty, we have

V(@(t2,1)) < max { (1+2e7\)e”52V(¢(0,0)), (1 + 2¢10) 2L pe= 5 (t2=t0),
w
(A.33)
1 —L(ta—t1) o(1+L)
(1+2eaX)pe 2270 2= p}.
similarly, we study the third inter-transmission time, j = 2,¢ € [ta, t3].

V(t,2) € domeg
In view of (A.20), (A.33), we obtain
V(@(t2,2)) < (1 + 2653 max{V (¢(t2,1)), p}

< max { (1 +2¢1A)%e” 52V (¢(0,0)), (1 + 2610)2 2L pe=5(t=0) - (A34)

(1+2610)2pe 502700 (14261 0) 2L p (14 2¢7 )}
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In view of (A.13), we have

V((b(t, 2)) < max{ e_%(t_tQ)V((b(tQ’ 2))’ 2(1—;—L)p}

<max{ (1+ 26%)\)26_%t26_%(t_t2)V(¢(O, 0)),

(14 261 X200 pe—f (2=t =5 0-t2)
(A.35)
(1 + 265 \)2pe5 (l2—t) o= 5 (tt2)

(1 + 25 0) 2 pe 5 12),

(1 + 26%)\)[)6_%@_1&2), 2(1:L)p}

V(6(t,2)) < max { (14 2e12)2e~ 51V (4(0,0)),

At ¢t = t3, we have

(14265 22D po—b (tatn) = tt2),
(1+ 2eiN)2pe 5t2—t) =5 (t2), (A.36)
(1 + 265 \) 20 o= 5 (t—t2)

" 9

(14 267A)pe 5 (012) 2L 5y,

V($(t3,2)) < max { (1+ 2e3X)2e53V($(0,0)),

1+ 26%)\)2Wpe_%(m_tl)e_%(%—b)’
(1+ 26%)\)2,06_%(tQ_tl)e_%(t3_t2)7 (A.37)
(1+ 26%)\)2(1_:“/)6—5@3—152)’

(1 2ed om0, 20210
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In view of (A.20), (A.37), we obtain
V(6(t3,3)) < (1 + 21 \) max{V (¢(ts,2)), p}
< max {(1 4 2e1\)3e 25V (¢(0,0)),
(1+ 25}\)3 2(1;—L) pe= 5 (t2—t) = b (ta—t2)
(A.38)

(1+ Qeﬁ)\)3/)6—%(152—151)6—%(153—152)7
(1+ 26%)\)2 2(1;‘L) pe_%(t3_t2),

(1 + 263 X)2pe 5712 (1 4 268 ) 2L ),

Sincer(A) is a dwell-time, thert; 1 —t; > 7(A) andt; > j7(A). Hence, it holds that

V(6(ts,3)) < max {(1+ 2113”537V (¢(0,0)),
(1+ 2&)\)3@/)6_27@), (1+ 25%)\)3/)@—27@)7
(14 26722 pe=(8), (1 4 265 3)2pe 7 (4),

(14261 )) 2L, o)

The inequality A.22) ensures that

T(A) > ZIn(1+261))

implying that
(1+2e1\)e 27(A) <1,

Consequently(1 + 2¢1\)"e~2""(8) < 1 for anyn > 1. As a result, A.39) verifies

V(6(ts, 3)) < max {V(6(0,0)), (1 +2e10) 2 5 (14 2¢10)p,

(14261 0) 2 (14 260 0)p, (1 + 2e10)2E )

= max {V(¢(0,0)), (1 + 261 \) 2L p (1 4 2¢10)p}.

Thus, by induction, we deduce that, for afty, j)dome¢

V(o(t;,5)) < max{V(¢(0,0)),0p},

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)
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wheref = (1 + 2)) max{z%, 1} and by using the fact thati < 1 sincee € (0,€*) is

sufficiently small. In view of A.36), (A.41), it holds that

V(6(t,2)) < max { (1421 X)2e™5'V(4(0,0)),
(1+ 2&)\)2_2(1;@) pe‘gT(A),
(1+ QGiA)Qpe_T(A),

(1+ 2¢1 A) —2(1:L) pe TR
(A.44)

(1+ 261 \)pe (@), 2LEL)

< max { (1+ 2e30)2e 54V (¢(0,0)),
(14 ZE%A)Q(I—ZL)p, (1+ 2ei)\)p,

2(1+L) 2(1+L)
P, 0, =}

V($(t,2)) < max { (14 2€3X)2e™ 51V ((0,0)),
(A.45)

(1+ 26%0@@ (1+ 26%)\)p}.

Hence, by induction, we deduce that, for dtyj) € dom¢

V(4(t,5)) < max {(1+2ex\) e~ 5V ((0,0)), p}
(A.46)

1 .
= max {F2INIEY(6(0,0)), 0p}

We now use similar arguments as in Proposition 3329 fo conclude. Le{t, j) € dom¢. We

want to show thag (1426 Ni=4¢ < o=(t+s), wheret) > 0, which is equivalent to show that
In(1 + 2€3X)j — &t < —a(t + j). (A.47)
By re-arranging the terms
(In(1+261)) +9)j < (4 -9t (A.48)

Sincer(A) is a dwell-time by assumption, it holds that, for aity;) € dome, t > 7(A)j, i.e.
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J< T(tA). As a result, the following inequality ensure’.48)

(n(1+2650) + )y < (5 — )t

(In(1+2630) +¢) =y < b—9 (A.49)

=
2
B»—'
_|_
N
N

1

B _In(1+ 2e1))

1
T(A)"

N

We therefore see that it suffices to haye- In(1 + Zei)\)m > ( to guarantee the existence

of b > 0, which can be written as

% 1y 1
5 > In(1+ 264)\)7_(A). (A.50)
Using the definition of-(A), we obtain
Iz i p
5 > In(1+ 264)\)41n(1+2 Y (A51)
L
2 4
which is always true sinceg > 0. Hence, we take
£ _In(1+ 21 N) =
ve o2 —— UGN (A.52)
Ry
As a consequence, for aify, j) € dome,
V(g(t,§)) < max{e 7¢IV (¢(0,0)),0p}. (A.53)

To finish the proof of ClaimA.1, we need to show thatA(22) is always satisfied. For that

purpose, we study the dynamics of the sampling error funetjg|e|) as follows. The length of

the inter-jump interval is lower bounded by the time it tak&sy; (|¢.|) to grow from0 to p in

view of (4.31). In view of (4.24), (4.29, (A.29), it holds that

V((b(t,())) < maX{e_%tV((b(O’O))’Q%p}

IA

max {V/((0.0)). 65}

IA

IN

max {@(|(¢2(0,0), ¢ (0,0))|), 0p},

(A.54)

max {az(|¢2(0,0)]) + v/eay(|¢,(0,0)]), 0p}
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wherea(|(d(, ), ¢y (L, 5))]) = @ (l¢2(L, 5)]) + @y (|dy (2, 5)[) and using the fact that < 1.
Consequently ¢, (t,0), ¢,(t, 0)) lie in the compact set, for aft,0) € dom¢

S(A) :=={(z,y) : V(z,y,0) < max {@(A),0p}}. (A.55)

Sincegp.(t,0) = ¢,(0,0) — ¢»(t,0), we deduce thap(t,0) lie in the compact sef(A) for all
(t,0) € dome. Sincev; is continuously differentiable by assumptiehis continuous between

two jump instantsf, is continuous an&(A) is compact

Lot (|6e(1,0)]) < In(|6e(t, 0))] f2(¢(t,0))]

IN

sup {971 (lel)lfi (2., )} (A.56)

qeS(A)

< {(A),

for some¢(A) > 0, which ensures the property on the inter-jump intervaltedtaelow 4.32).
Hencer(A) > @. The first jump instant; is lower bounded by the time it takes for(|e|)
to grow form0 to p which in return is lower bounded by the time it takes fer> £(A) to grow
from0top, i.e.

t > %A). (A57)

By following similar lines as above, we deduce that; — ¢; > % for all (t,j) € domg. To

satisfy dwell-time conditionA.22), the following must hold, for al(t, j) € dom¢

tio1 —t; > =L > ZIn(1 + 2€1\) (A.58)

€* := min { (%(eﬁ - 1)) - , 1} (A.59)

which completes the proof of Claim.1. |

A.2 Proof of Theorem4.2

The proof uses elements of the proofs of Theor2rs4.1and Theorem 1 ind9]. We first build

a differential equation from which the value ®fin (4.34) is obtained. Second, we construct



Appendix A. Proofs 119

a Lyapunov function candidat® for system 4.22. Third, we study the evolution aR along

flows and jumps. Finally, we apply Proposition 3.29 34][to deduce 4.36).

Let the functiony : [0, 7] — R be the solution of the differential equation, s&&][

N2
a1

p=-1-2Mp— o(T)? (0)=9"" o(T) =1, (A.60)

whered € (0,1), M, N come from Assumptiod.6 and?; is defined in condition (1) in Theo-
rem4.2 The timeT is the time it takes for the to decrease from¥—! to ) and is given by the

following claim.

ClaimA.2. (i) Forall 7 € [0,7] we havep(r) € [J,9~!] with

1 r(1-9?) 2 _ N2
—— arctan 5= M < B2—
Mr L0205 T +0)+ 53k 2E0(1412) o
_ - ) _
T, 01,71, M,N) := = - 5111—1]9\/1) — M2 = “ﬂa_NQ
(404 oy 5, 04550 '
1 r(1-9?) 2 o NN?
— arctanh — M= > L=
Mr 1+0( 25 3 40)+ 57y L9 (1-r2) a1

wherer is defined in4.35.

(i) 79, a1,51,M,N) — T(a1,7, M,N) whend — 0, whereT (a1, 71, M, N) defined

in (4.34).
|
The proof of ClaimA.2 is given after the proof of Theorermh?2
We now define the following differential system
(= —1-2M¢(r) == (m(r) + G5 (NG(7)?) 62
= fe(7)

with ¢(0) = 9%, ¥ € (0,1) andn € (0,04). Let T (n,9) denotes the time it takes fgrto
decrease from# ! to . We note that this tim& (1, ?)) is a continuous function af, 9 which
is decreasing im, ¥ (by invoking the comparison principle). On the other hand, vote that
T (n,9) — T as(n,?) tends to(0,0) by following similar lines as in the proof of Claim 1 in
[79], whereT is defined in 4.34. As a consequence, sin@& < 7, there exist), ¥ such that

T* < T (n,9) which we fix.
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We define
R(q) := Vi(z) + dVy(z,y) + max{0,7:((7)|e|*} Vg € R", (A.63)
where
.M l—0om 92 (e”T* —1)2 >
d e | 0, min{—mn, — , ,1 A.64
< L ¢ VS WA ; (A.64)
and

A= max{ A, (A1 + A2)oaq }. (A.65)

Letq € C and consider the case where) > 0. In view of Assumptiongl.2-4.6 and Lemmal

R(¢;F(q) < —(x. le)TAi(x, lel), (A.66)

wherex := (/Vz(z), \/Vy(z,v)),

o1 —3(Bi+dBs) —nN((T)

Av=1| x  day—dB; —HN((T) (A.67)
* * ’U(T)
and
u(T) i= =1 — dye — Y fe(T) = 27 M((T). (A.68)

The following conditions ensure that, according to Sylggstcriterion,
Ay > ndiag(1, d, 71 ¢(7)). (A.69)
As a consequence,
0 < a1—n
0 < (a1 —n)d(tas—B3—n) > 1(B1 +dB2)?

0 < (a1 —n){d(tag — Bz —n)(v(r) —m¢(1)) — (M¢(T)N)?} (A.70)

+5(B1 + dB2) {—5 (B + dB2)(v(1) — n71¢(7)) — (1¢(T)N)*}

—MN(T) {381+ dB2)M ()N + 31 N¢(T)d(Las — Bs — 1)} .

The first two inequalities above are respectively verifieddefinition of » and by takinge
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sufficiently small. For the last inequality to hold, it suéfcto select sufficiently small provided

that
Qs ({01 = )w = 13€() = (UNE)Y) > 0 (a71)

which is equivalent to, by definition af and definition off in (A.62),

(1 = n)(Mn —dy) >0 (A.72)

which holds by definition ofl andrn. Consequently, by selectirgsufficiently small
R°(¢;F(q)) < —nR(q). (A.73)

Suppose now thaj(7) < 0, hencey;le|?> < oca;V,(x) in view of the definition of the sef’.

Using Assumptiong.2-4.6 and Lemmél,

R(q;F(q)) < —xTAx, (A.74)

where

Ay = ( o1 (1= o+ w7 D) —a(f+df) ) : (A.75)

—2(B1 + dBo) Loy — dps

By following similar arguments as above and sice 1%"% andR(q) = Vy(z) + dVy(z,y)

in this case, we derive tha#\(73) holds by selecting sufficiently small.

When((r) = 0, (A.73) is verified in view of Lemmal and the results obtained for the cases

where¢(7) > 0 and((r) < 0.

Let ¢ € D. Suppose that = T* (note thatyi|e|> > oa;V,(z) in this case). In view of

Assumptiord.5
R(G(q)) = V() +dVy(z, hy(z,y,e€))

< V(@) +d(Vy(w,y) + Amnlel? + doy/ eV p)).

(A.76)

Using that

1
VAlel2Vy(z,y) < —=Tle* + VaVy(z,y) (A.77)

S
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and sincel < v/d < 1, it holds that

R(G(q)) < Va(x)+dVy(z,y) + VA + ) Fale]® + draVdVy(z, y)

< Valw) + dVy(a,y) + VA + A2)Filel? + Xavd(Vi(z) + dVy(z,y)).

(A.78)
We taked sufficiently small such that (sin(§€(7~'(n, 9)) =)
VA +Xo)mile? < C(T(n,0))lef? (A79)
= mdlef
As a consequence
R(G(q)) < (14 \aVa)(Va(x) + dVy (@, y) + 71T (0, 9))[e]*). (A.80)

Since in this case we transmit at= 7* < 7 (n,9), then¢(r) > ((T(n,9)), as¢(r) is a

decreasing function, and we obtain

R(G(q)) < (1 + M\VA)R(q). (A.81)

Whenr > T*, it holds thaty; |e|? = oa;V, () in view of (4.33. Hence, by following similar

lines as above, we deduce that

R(G(q)) < (1+MWd)R(q), (A.82)

where\ = max{\g, (A1 + A2)oa; }. Thus, @.82) holds for allg € D (sincels < \).

Finally, we use similar arguments as in Proposition 3.238# {o conclude. In view of A.73)
and (A.82), the property (3.10) in Proposition 3.29 holds with= —7 ande* = (1 + A\Vd).
Lety > 0and(t,j) € dome. To satisfy the last condition of Proposition 3.29, we neeshiow
that

In(1+AVd)j —nt < —b(t +j). (A.83)

Sincej < TL in view of (4.33, it suffices to show that

In(1 + )\\/3)% —nt < —(t+ %) (A.84)
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which is equivalent to

t
(In(1+AVd) + ) < (7 = D)t (A.85)
ie.
1 1
Ui + 1) <n—In(l+ A\/E)F. (A.86)
Hence, we take < (L;‘l)2 which ensures that
1
n—1In(1+ A\/&)F > 0. (A.87)
It then suffices to take
—In(1 4+ \d)
b e (0, n(l V)7 ) > 0. (A.88)

T*+1

As a result, like in the proof of Proposition 3.29 8¢], we obtain, for all(t, j) € dom¢
R($(t, 7)) < eI R(6(0,0)). (A.89)

By using Assumptiong.2-4.3 and the fact that () € [¢,9~!], we deduce fromA.89) that
(4.36 holds.

Let ¢ = (¢u, ¢y, Pe, d-) be a maximal solution to4(22)-(4.33. We note that is non-trivial
by using similar arguments as in the proof of Theorer In view of (A.89), ¢, and¢, cannot
explode in finite time. Sincé.(t,j) = ¢.(t;,7) — ¢x(t,j) for any (t;,7), (t,j) € dome
andj > 1, ¢. cannot explode in finite time. The same conclusion holdspfom view of its
dynamics, see4(22). Hence,¢ cannot explode in finite-time. In additiods(D) C C. As a

consequencey is complete according to Proposition 6.10 34, O
Now we provide the proof of Claim.2.

Proof of ClaimA.2: Let 3 := N2 for the sake of simplicity. We follow similar lines as in the

a1

proof of Lemma 2 in17]. In view of (A.60), it holds that

_ 0 do
T:_/é B2 +2Mo+ 1 (A.90)
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We defines := ¢ + % Hence, A.90) in terms ofs becomes

T 19—’_% ds
e
N
B %—i—% 82—(%)2—‘,—%
In view of (4.39, r = ‘% — ‘ Hence, A.91) can be written as
— 1 [ d
T=-3 S (A.91)

By 2 —sgn(M? - B)(%)?
wheresgn(.) is the sign function witlsgn(0) = 0.

When 2 = 3, using the fact that- 1 [ % = L(1 — 1), we have

a s2

_ 1 B _ _BY
_B<,Bz9+M B+M19>

il

_1 9
B9+M — B+MY

B+MOI—9(BO+M)
(BY+M)(B+MD)

— B—9?)
= B2O+BMI?+BM+M3Y

sinceM? = §, it holds that

_ B(1—1¥%)
= BMZO+BMIZ+BM+ M

Il

1 B(1—v¥%)
M BMVY+BI2+B+MI

1 B(1—v?)
M B(1+92)+M9(14-5)

(1—92)
(14+92)+ 222 (148) "

<~
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WhenM? < 3, using the fact that 3 [ TMT)? = MT(arctan(]i’f ) — arctan (£2. )) and

that for allny, ny > 0 we havearctan(n) — arctan(ng) = arctan({3/% ), we obtain

=
Il

—ﬁ (arctan (%%) — arctan (54%11\’{19%))

= —ﬁ (arctan (61?\%\4) — arctan (6;2%19))

1 Bﬁ+M B+M19
= —q7; arctan (ﬂ719+M)(ﬁ+Mﬁ)
Ry o e

M=r<9

) B2 MY—B— MY
R Mrd
= — g7 arctan

M27r294 329+ BMI2+BM~+M29
M2r29

= _ 1 BMr(92—1)
T =-1 arCtan<M2r219+6219+,8M192+BM+M219

BMr(92—1)
BM (1+20+92)+ M29(1412)

= —ﬁ arctan
using the fact that- arctan(z) = arctan(—zx), it holds that

r(1—92)
14+9( 47 +0)+242 (1412)”

T= ﬁ arctan (A.92)
WhenM? > 3, using the fact tha% f (MT = = = (arctanh( ~) — arctanh(ﬁ)) and
that for allny, ny > 0 we havearctanh(n,) —arctanh(ng) = arctanh(-72) and in the light

of (A.92), we obtain

_ BMr(92—1)
T = Mr arctanh (M2r219—,82219—6M192—5M—M2’9)

B —BMr(1—93)

= - arctanh —BM(1+ L 0+02)—M29(1—12)
2

= 1 arctanh pant =)

BM (142 94+92)+ M29(1—r2)

r(1-9?)
1+9( 2 +9)+ M2 (1-r2)

= M - arctanh

recall thatr? < 1 sinceM? > /3. Thus, in view of A.92), (A.92) and A.93), ClaimA.2 holds.
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Appendix B

Mathematical review

In this appendix, we provide some mathematical prelimes&nd fundamental tools that have

been used to obtain the technical results.

B.1 Fundamental properties

The following concepts are useful to investigate the emisteand uniqueness of solutions of

differential equations.

Definition B.1. A functionf : R™ — R™ is said to be locally Lipschitz in if there exist a

neighbourhoodD C R"™ of x and a constani > 0, called the Lipschitz constant, such that

|fy) = f@)| < Lly—x| Va,yeD. (B.1)
If D = R", we say that the functiofi is globally Lipschitz. 0

The following lemma shows that a continuously differenigatoinction is locally Lipschitz.

Lemma B.1(Lemma 3.1 52)). Letf : [a,b] x D — R™ be continuous for some domain
D c R™. Suppose tha@%} exists and is continuous dn,b] x D. If, for a convex subset

W c D, there is a constant > 0 such that

—(t,a:)' <L (B.2)
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onla,b] x W, then
[f(t,x) = f(t,y)| < Llz -yl (B.3)

forall ¢ € [a,b], x € W, andy € W. O

The local Lipschitz property of a function is stronger thamtinuity and weaker than contin-
uous differentiability. The absolute value function fostance is globally Lipschitz but not

(continuously) differentiable everywhere.

Functions properties

AfunctionV : R™* — R is said to be positive definite if (0) = 0 andV'(x) > 0 for = # 0.

The sign function of a real number denoted asgn : R — R, is defined as

-1 if =<0
sgn(z) =< 0 if z=0; (B.4)
1 if z>0.

The following properties of comparison functions are ubefud have been used within the

proofs of our results.

LemmaB.2(Lemma4.252]). Leta; anday be classC functions on0, a) for somea > 0,
ag and ay be classK,, functions, ands be a classiCL function. Denote the inverse af by
a; . then

e o' is defined o0, a1 (a)) and is of classC;

e a; ' is defined orj0, c0) and is of classCo;

e (1 o« IS of classkC;

e 30y IS of classiCy;

o o(r,s) = a1(B(az(r),s)) is of classKCL. O
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Lemma B.3(Remark 2.3in24]). Foranya, as € K, there exisky, @ € K such that
a(s1+ s2) < ai(sy) + ag(s2) < a(sy +s2), Vsi,s2 > 0. (B.5)

In particular, we can takex(s) := min{a;(5), a2(5)} anda(s) := max{2a1(s), 2az(s)} for

all s1 > 0,8 >0. O

LemmaB.4(Lemma4.352],[51]). LetV : D — R be acontinuous positive definite function
defined on a domai® C R™ that contains the origin. LeB,. C D for somer > 0. Then, there

exist clasgC functionsa; and aw, defined orj0, r|, such that
ar(lz]) < V(z) < az(|z) (B.6)

forall z € B,. If D = R" andV () is radially unbounded, then there exist claSs, functions

a1 andas such that the above inequality holds for alke R™. O

Derivative of locally Lipschitz functions

We consider locally Lipschitz Lyapunov functions that aot necessarily differentiable every-
where. Therefore, we use the generalized directional aérés of Clarke which inherits some
useful properties when dealing with locally Lipschitz ftinos, see Proposition 2.1.1 idg.

For alocally Lipschitz functiorV : R™ — R, and a vectow € R",

Ve(x;v) ;= limsup Viy +hv) - V(y)

B.7
h—0t y—z h ( )

For a continuously differentiable functidn, V°(x; v) reduces to the standard directional deriva-

tive (VV (z),v), whereVV (z) is the (classical) gradient.

Note that, if+ = v(¢) for almost allt, then%V(m(t)) is defined for almost all and equals the

usual one-sided directional derivative., for almost allz,

(B.8)

Comparing B.8) with (B.7), we see that the generalized directional derivative uppands the
usual directional derivative. Moreover, the generalizieeational derivative offers the following

convenient property
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e If f(z,d)anda(x,d) are continuous and

ov

5o (@)f(2.d) < dla.d), Vd,x ¢ Q. (8-9)

where(2 is a set of measure zero containing the set whéig not differentiable, then

Vo(x; f(x,d) < a(x,d), V(z,d). (B.10)

Fore more detail, see pages 99, 1001ia7.

The proofs of the previous chapters often involve a Lyapufumction which is defined by
the maximum of two locally Lipschitz functions. To deal wihich functions, we invoke the

following result, see Lemma 1.1 ir6[)].

Lemma 1. Consider two functiong/; : R® — R andU, : R®™ — R that have well-defined
Clarke derivatives for alk: € R™ andv € R™. Introduce three setd := {z : Uy (z) > Us(z)},
B :={x:Ui(z) < Uy(x)}, T := {z : Uy(x) = Us(x)}. Then, for anyw € R", the function
U(x) := max{U;(x),Us(x)} satisfies

(i) U°(z;v) = Uy (x;v) forall z € A;

(i) U°(z;v) =Us(x;v) forall x € B;

(i) U°(z;v) < max{Uy(z;v),Us (x;v)} forall x € T O

B.2 Input-to-state stability

Consider the following system

wherezx € R™, v € R™ and f : R® x R™ is locally Lipschitz inz andu.
Definition B.2 (Input-to-state stability (ISS), Definition 4.7 i6%]). The systemH.1]) is said

to be input-to-state stable if there exist a cl&S8 function s and a classC function such that

for any initial statez(0) and any bounded input, the corresponding solutiom exists for all
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t > to and satisfies

M@Néﬁ@ﬂmmt—m)+v<mmlwﬂ0-

to<t<t

ISS is usually ensured using the following Lyapunov chandzation.

Theorem B.1(Lyapunov conditions for ISS, Theorem 4.19 B2]). LetV : R®™ — R be a
continuously differentiable function such that
ai(fz]) < V(z) < ax(lz])

(B.12)
N few) < —ale), Va2 plul) >0

for all (z,u) € R™ x R™, wherea;,as € Ko, p € K anda : Ry = Ry is a continuous
positive definite function oR™. Then, the system is input-to-state stable with a1—1 o0 p.

O

B.3 Hybrid dynamical systems

Throughout the thesis, we model the event-triggered chetr®systems by using the hybrid
formalism of 34] which allows us to use the well-defined notion of solutiomsl @ahe tools
developed to analyse the stability iB4]. Hence, we consider hybrid systems of the following
form

t=F(x) xe€C, T =G(x) ze€D, (B.13)

wherex € R" is the stateC; D € R™ and F, G are single-valued functions. This model
suggests that the stateof the hybrid system evolves according to the differentigliaion

¢ = F(z) as long ast € C, and it experiences an instantaneous change according to th
difference equation™ = G(x) whenz € D. Whenz € C N D, the system behaves according
to the differential equatiort = F'(x) only if this evolution keeps: in C, otherwise the system
experiences a discrete transition. To shorthand the patatve will refer to the continuous
behaviour described by a differential equatiorflaw and the discrete behaviour described by a
difference equation gamp. Consequently, from now on, the elements of hybrid moBelg)

will be named as follows
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e [is the flow map; e (G is the jump map;

e (Cis the flow set; e D s the jump set.

Assumption 6.5 in34] provides sufficient conditions on the hybrid model to eesilvat model
is well-posed, see Section 5.4 i3 for more detail on the well-posedness of hybrid dynamical

models. In the case of single-valued functidngs, these sufficient conditions reduce to

() C,D C R™ are closed sets;

(i) F,G are continuous functions.

From now on, we assume that conditions (i) and (ii) hold.

Notion of solution

The solutions to systenB(13) are defined on the so-called hybrid time domains. Alset
Ry % Z> is called acompact hybrid time domaifi £ = jE{OPLlJWJ_l}([tj,tj+1],j) for some
finite sequence of time8 = ¢y, < t; < ... < t; and it is ahybrid time domainf for all
(T,J) € E,EN([0,T]%x{0,1,..., J}) is acompact hybrid time domain. A functign: £ — R"
is a hybrid arc ifE' is a hybrid time domain and if for each e Zx,t — ¢(t, ) is locally
absolutely continuous off := {t : (t,j) € E}. A hybrid arc¢ is a solution to systenB(13)

if $(0,0) € C' U D and

(i) foreveryj € Z>,

' for almost allt € I7; (B.14)
o(t,7) = F(o(t, 7)),

(i) for every (t,j) € dome such thatt,j + 1) € domg,

ot,j) € D,
o(t,7+1) = G(o(t 1)),

for almost allt € I7. (B.15)

Definition 1 (Types of hybrid arcs) A hybrid arc¢ is called:

e nontrivial if dom¢ contains at least two points;
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e maximal ifdom¢ cannot be extended;
e complete iidom¢ is unbounded;

e Zeno ifitis complete anglip, dom¢ < oo. O

The following notion of tangent cone is useful to study thes&nce of nontrivial solutions for
system B.13).

Definition 2 (Tangent cone) The tangent cone to a sft C R™ at a pointz € R", denoted
Ts(x), is the set of all vectorsy € R™ for which there exists; € S, 7; > 0 with x; — =,

7 \¢ 0, and

Ty, — X

w = lim (B.16)

1—00 T
U

Proposition 1 (Basic existence of solutions, Proposition 6.103d]]. LetH = (C,F, D, G).
Take any arbitrary¢ e CUD. If £ € D or
(VC) there exists a neighborhoad of £ such that for every € U N C,

F(z) € To(x),

then there exists a nontrivial solutianto # with ¢(0,0) = £. If (VC) holds for ever§ € C'\ D,
then there exists a nontrivial solution # form every initial point inC' U D, and every € Sy
satisfies exactly one of the following conditions:

(a) ¢ is complete;

(b) dom¢ is bounded and the intervdl’, whereJ = sup; dome, has nonempty interior and
t — ¢(t,J) is a maximal solution t& € F(z), in factlim;,7 |¢(t, J)| = oo, where

T = sup, domg;

(c) o(T,J) ¢ CUD,where(T,J) = supdome.

Furthermore, ifG(D) C C U D, then(c) above does not occur. O

Stability

We introduce here the definitions of some stability properind alternative characterizations.

We start by defining the uniform global pre-asymptotic sigbfUGpAS) of a closed set. This
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property entails that the distance of each solution to angset is bounded by a function of two
guantities: the initial condition’s distance to the set #melamount of elapsed time at which the
solution is evaluated; moreover, this bound tends to zetbeamitial condition’s distance to the

set tends to zero or the amount of elapsed hybrid time tenid$imdty.

Definition 3 (Distance to a closed set, Definition 3.5 B4]). Given a vectorr € R™ and a

closed setd C R", the distance of to A is denoted a$r| 4 and is defined by

— inf |z — . B.17
|z] 4 ;gA\m Yl (B.17)

The UGPpAS property is formally defined as follows.

Definition 4 (Uniform global pre-asymptotic stability (UGpAS), Defiioih 3.6 in [34]). Con-
sider a hybrid systerit on R™. Let.A C R" be closed. The set is said to be

¢ uniformly globally stable fo#{ if there exists a clasf-,, functiona such that any solution
¢ to H satisfiedo(t, j)| a4 < a(|¢(0,0)|4) for all (¢, ) € domg;

¢ uniformly globally pre-attractive fo#{ if for eache > 0 andr > 0 there existsI’ > 0

such that, for any solution to # with (¢, j) € dom¢ andt+j > T imply|o(t, j)|a < &;
o uniformly globally pre-asymptotically stable féf if it is both uniformly globally stable

and uniformly globally pre-attractive. O

The prefix “Pre” indicates that maximal solutions are nourssf to be complete. We remove
this prefix when maximal solutions are complete. The follugviheorem is an equivalent char-

acterization of UGpAS.

Theorem 1 (Equivalence of UGpAS and EL bound, Theorem 3.40 irBf]). Let? be a

hybrid system andl C R"” be closed. The following statements are equivalent:

(a) The setA is uniformly globally pre-asymptotically stable éf;

(b) There exists &£ L function s such that any solutiop to #H satisfies

¢(t, 7)la < B(16(0,0)[a,t +5)  V(¢,j) € domg. (B.18)
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B.4 Miscellaneous

We provide below a review of some diverse elements of mattieahanalysis that have been

used in this thesis.

Definition B.3 (Schur complement, Appendix A.5.2q]). Consider a real symmetric matrix

A B
X = ,
BT C

whereA € R¥*%_If det(A) # 0, the matrix

X € R™" partitioned as

S=C-BTA'B

is called the Schur complement.4fin X. The following characterizations of positive definite-

ness or semidefiniteness of the block ma¥fikold:

e X >0ifandonlyifA > 0andS > 0;

o If A >0,thenX > 0ifand onlyifS > 0. O

Lemma B.5(Comparison lemma, Lemma 387). Consider the scalar differential equation

U= f(t>u)v U(to) = Uo

where f (¢, ) is continuous int and locally Lipschitz inu, forall t > 0 and allu € J C R.
Let [tg, T") (T could be infinity) be the maximal interval of existence ofgbkitionw(¢), and
supposeu(t) € J forall ¢t € [tg,T). Letv(t) be a continuous function whose upper right-hand

derivative Dt v (t) satisfies the differential inequality

DYo(t) < f(t,u(t), wv(te) < wuo

withv(t) € Jforall ¢t € [tg,T). Thenw(t) < u(t) forall ¢ € [to,T). O

Theorem B.2(Mean Value Theorem, page 651 B2]). Assume thaf : R™ — R is contin-

uously differentiable at at each pointof an open sef C R". Letx andy be two points o5
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such that the line segmen{z,y) C S. Then there exists a poiatof L(x, y) such that

_9f

ox|,_,

fy) = f(z) (y — ),
where the line segmeliit(z, y) joining two distinct points, y € R™ is

L(z,y) ={z|z=0x+ (1 —-0)y, 0 <6 <1}.

g
Lemma B.6. Foranya,b € Randn € R_, 2ab < %a2 + nb2. O
LemmaB.7. Foranya,b € R, max{a,b} <a+b. O

Lemma B.8. For any real symmetric positive definite matéixe R"*" and for anyx € R",

)\min(P)|«T‘2 < IL'TPIL’ < )\max(P)|x‘2'
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Réesume

La commande a transmissions événementielles est umedepdans laquelle les instants
transmission sont définis selon un critere dépendanéts Hu systeme et non plus d’une he
loge a l'instar des implantations périodiques. Dansecttése, nous nous concentrons su

synthese de telles lois de commande par retour de sorteecdr@ributions sont les suivante§ :

(i) nous proposons une méthode de synthése dite par éamueur des systemes non linéaire
(i) nous présentons une méthode de synthése jointeldeda commande et de la condition ¢
déclenchement pour les systemes linéaires; (iii) nausrintéressons au cas de systemes
linéaires singulierement perturbés et nous constngig® contrdleur a partir d’approximation ¢
la dynamique lente uniqguement.

Mots clés :Commande a transmissions événementielles; Systeomsdles via un résead;

S,
e
non
e

Systémes singulierement perturbés; Systemes dyn@sigybrides; Systemes non linéaires.

Summary

Event-triggered control is a sampling paradigm in whichsbguence of transmission instants
determined based on the violation of a state-dependestiontand not a time-driven clock. |
this thesis, we deal with event-triggered output-basedrobers to stabilize classes of nonline
systems. The contributions of the presented material aeefitid: (i) we stabilize a class ¢

nonlinear systems by using an emulation-based approacie(develop a co-design proceduf

to simultaneously design the output feedback law and thetdxiggering condition for linear
systems; (iii) we propose stabilizing event-triggeredtoaliers for nonlinear systems whos
dynamics have two-time scales (in particular, we only relytlee knowledge of an approximal
model of the slow dynamics).

Keywords:Event-triggered control; Networked control systems; 8lagdy perturbed systems;

Hybrid dynamical systems; Nonlinear systems.
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