Certified Compilation and Worst-Case Execution Time Estimation

André Oliveira Maroneze 1
1 ALF - Amdahl's Law is Forever
Inria Rennes – Bretagne Atlantique , IRISA-D3 - ARCHITECTURE
Abstract : Safety-critical systems - such as electronic flight control systems and nuclear reactor controls - must satisfy strict safety requirements. We are interested here in the application of formal methods - built upon solid mathematical bases - to verify the behavior of safety-critical systems. More specifically, we formally specify our algorithms and then prove them correct using the Coq proof assistant - a program capable of mechanically checking the correctness of our proofs, providing a very high degree of confidence. In this thesis, we apply formal methods to obtain safe Worst-Case Execution Time (WCET) estimations for C programs. The WCET is an important property related to the safety of critical systems, but its estimation requires sophisticated techniques. To guarantee the absence of errors during WCET estimation, we have formally verified a WCET estimation technique based on the combination of two main methods: a loop bound estimation and the WCET estimation via the Implicit Path Enumeration Technique (IPET). The loop bound estimation itself is decomposed in three steps: a program slicing, a value analysis based on abstract interpretation, and a loop bound calculation stage. Each stage has a chapter dedicated to its formal verification. The entire development has been integrated into the formally verified C compiler CompCert. We prove that the final estimation is correct and we evaluate its performances on a set of reference benchmarks. The contributions of this thesis include (a) the formalization of the techniques used to estimate the WCET, (b) the estimation tool itself (obtained from the formalization), and (c) the experimental evaluation. We conclude that our formally verified development obtains interesting results in terms of precision, but it requires special precautions to ensure the proof effort remains manageable. The parallel development of specifications and proofs is essential to this end. Future works include the formalization of hardware cost models, as well as the development of more sophisticated analyses to improve the precision of the estimated WCET.
Document type :
Theses
Liste complète des métadonnées

Cited literature [67 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/tel-01064869
Contributor : Sandrine Blazy <>
Submitted on : Saturday, February 7, 2015 - 11:59:27 AM
Last modification on : Friday, November 16, 2018 - 1:40:27 AM
Document(s) archivé(s) le : Friday, May 8, 2015 - 10:07:14 AM

File

Identifiers

  • HAL Id : tel-01064869, version 2

Citation

André Oliveira Maroneze. Certified Compilation and Worst-Case Execution Time Estimation. Cryptography and Security [cs.CR]. Université Rennes 1, 2014. English. ⟨NNT : 2014REN1S030⟩. ⟨tel-01064869v2⟩

Share

Metrics

Record views

816

Files downloads

494