N

HAL

open science

TowardsWeb User-Centric Development

Emilian Pascalau

» To cite this version:

Emilian Pascalau. TowardsWeb User-Centric Development. Data Structures and Algorithms [cs.DS].
Conservatoire national des arts et metiers - CNAM, 2014. English. NNT: 2014CNAMO0916 . tel-

01062263

HAL Id: tel-01062263
https://theses.hal.science/tel-01062263

Submitted on 9 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01062263
https://hal.archives-ouvertes.fr

CONSERVATOIRE NATIONAL DES
ARTS ET METIERS e cham

ECOLE DOCTORALE INFORMATIQUE, TELECOMMUNICATION
ET ELECTRONIQUE (EDITE - PARIS)

EQUIPES VERTIGO - LABORATOIRE CEDRIC

THESE DE DOCTORAT
présentée par - Emilian PASCALAU

soutenue le : T avril 2014

pour obtenir le grade de : Docteur du Conservatoire National des Arts et Métiers

Discipline / Spécialité : Informatique

Vers un développement Web orienté utilisateur

Towards Web User-Centric Development

THESE DIRIGEE PAR

M. RIGAUX Philippe PR, CNAM
RAPPORTEURS

M. GROSS-AMBLARD David PR, Univ. Rennes 1

Mme. GRIGORI Daniela PR, Univ. Paris-Dauphine
EXAMINATEURS

Mme. BENBERNOU Salima PR, Paris Descartes

M. TRAVERS Nicolas MdC, CNAM

M. ZAMFIROIU Michel Directeur, KarmicSoft inc.

To my parents Emil and [uliana

Aknowledgements

I feel obliged to first thank God for the health and strength He gave me through out the years of study.

Second I would like to thank my supervisor Prof. Philippe Rigaux, for all his support both academic
and moral, without whom I would have never finished my thesis.

Also I would like to thank Dr. Adrian Giurca for our discussions and arguments on the topic.

A special thank to my dad for his moral support and to all my friends whom I am not going to
name here, but whom in one way or another helped me to get here.

A most sincere Thank you!

Contents

\ 1€
[Abstract
R¢ z m
(I__Introduction|
[I.1 Objective of thisthests| o
[1.2 Ourapproach| e e
1.3 The GPS device metaphor]
(14 Contributions] e
2 Related Work on Mashups|
[2.1 ~Mashups and Web Services / SOA| Lo
2.2 Semantic Web and Webof Datal
[2.3 Mashups and Software asa Service|. Lo
2.4 Mashups and Portals|
[2.5 Mashups - Conceptual approaches|
[2.5.1 Mashups as a Collection of Widgets|
[2.5.2 Pipes Based Mashups|. o oo
Hybrid|
[2.5.4 Domain Specific Languages for Mashups|
2.6 Discussionl.
3 A User-centric approach. Conceptual Model|
3.1 Our proposal - A User-centric approach|
I:il l s l Elld_u:icl l uliel _chltl lgl
3.1.2 Twolayersystem|
BIZTPIanl oo oo e e e e e e
[3.1.4 Intelligent system and human user and system interacting with each other| . .
3.1.5 Theapproach|
3.2 Conceptual Model|.
3.2.1 Concept]. L e
B22 CONEXT « « o o o ovoe e e e e
323 Behavion
[3.2.4 Mashup| L

iii

vii

N AW N

10
12
12
14
17
17
22
24
29
30

CONTENTS il
4 __Architecture] 51
4.1 Our Approach vs. GPS metaphor{ 51
B2 TomTOml . .« v v v oot e e e e e 53
4.2.1 Digital maps - Theplan|., 53

4.2.2 How the GPS System Works| 54

B23 0utcomesl . . . v o v v 54

B3 The Architecturel 54

4 Di 100]. . .. e e 59
4.4.1 Webpagesas Webservices|. oo 59

442 Mashupsstyles| 60

443 DOA and SOA mfluencesl 61

S Execution 63
5.1 DOMandDOMevents 63
[5.2 TheRuleEngine| 63
BIRUIEY . . oot e 66
BT EVEn . . - o o o oo oo e e 68

5.3.2 Conditionalelements| 69

B33 ACHONS - v v ot v e e 71

{6 Implementation| 73
6.1 Theprototype] e e e 73
02 UseCasesl e 76
6.2.1 Conference Calendar - The Recurrent Use Casel 76

[6.2.2 Security - Web Policies| o000 80

62,3 Personalizationl L 80

[6.2.4 Web Analytics|o 82

[6.3 Requirements| 82
(7__Conclusions| 85
[/1 Future Workl. 86
[7.1.1 Visual Modeling| 86

[/.1.2 Mobile Platforms| 87

[7.1.3 New Reasoning Techniques| 87
Bibliograp 87

Résumé

World Wide Web (WWW) est devenu le plus grand dépdt d’informations que I’homme ait jamais
assemblé et il est en croissance continue. WWW s’est transformé en un environnement génératif qui
favorise I’innovation par le développement des technologies et par un changement dans la perception
des gens sur le Web et comment ’utilisent. Le nouveau WWW ou I’Internet de 1’ Avenir est celui d’un
Internet des Services et un Internet des Objets.

Naturellement, une série des questions se posent a partir de ce contexte : comment filtrez-vous les
choses pour créer plus de valeur que vous obtenez actuellement ? Comment pouvez-vous regrouper
les choses d’une manieére intelligente et facile au lieu de la faire dans votre té€te? Le monde ne peut
pas étre décrit sans ambiguité, alors comment pouvez-vous permettre aux utilisateurs de traiter avec le
monde a leur maniere, en fonction de leur compréhension? Levine dans son livre "Cluetrain manifesto"”
a argumenté que les marchés sont conversations, alors comment peut-on impliquer les utilisateurs dans
la conversation ? Comment les utilisateurs peuvent étre autorisés a la consommation facile des services,
de I'information, des choses qu’ils trouvent autour?

Cependant, la conception et le déploiement d’un tel logiciel capable d’interaction directe et
I’autonomisation de I’utilisateur final reste toujours un probléme. On a, d’une part, les utilisateurs qui
ont des idées, mais qui n’ont pas I’environnement technique et les capacités en programmation pour
faire eux-mémes le développement. D’autre part, on a un grand volume des données, ressources et
services qui qui pourraient étre regroupées a la fois en termes de données, mais le plus important, en
termes de comportement d’innover et de créer nouveaux objets.

Notre objectif dans cette these est de combler ce manque d’outils qui sont capables d’une inter-
action directe et I’autonomisation des utilisateurs finaux, de maniere unifiée. Ainsi, notre principale
contribution dans cette these est le développement d’une approche holistique pour les systémes basés
sur le Web qui sont centrés sur 1’utilisateur et qui integrent des données, les services et le comportement
disponible sur le Web 2.0.

Mots clés :
développement web orienté utilisateur, mashups, services web, web 2.0, contexte, comportement

iii

v

Abstract

World Wide Web (WWW) has become the greatest repository of information that man has ever
assembled and it is continuously growing. WWW transformed itself into a generative environment that
fosters innovation through the advance of technologies and a shift in people’s perception of the Web
and how they use it. The new WWW or Future Internet is that of an Internet of Services and Internet of
Things.

Naturally, a series of questions arise from this context: how do you filter things to create more value
than you currently get? how do you aggregate things in an intelligent and easy way instead of doing it
in your head? The world cannot be described unambiguously, so how can you allow users to deal with
the world in their own way, based on their understanding? Levine in his book "Cluetrain manifesto"
was arguing that markets are conversations so how can users be involved in the conversation? how
can users be empowered with easy consumption of the services, information, things that they found
around?

However design and deployment of such software capable of direct interaction and empowerment
of the end-user is still an issue. We have on one side users that have ideas, but do not have technical
background and lack programming skills to do the development by themselves. On the other side, we
have large amounts of data, resources and services that could be aggregated both in terms of data, but
most important in terms of behavior to innovate and create new things.

Our goal in this thesis is to address this lack of tools that are capable of direct interaction and
empowerment of end-users, in a unified manner. Thus our main contribution in this thesis is the
development of a holistic approach for web based systems that are user-centric and that integrate data,
services and behavior available on the Web 2.0.

Keywords :
web oriented end-user development, mashups, web services, web 2.0, context, behavior

vi

Résumé étendu

World Wide Web (WWW) est devenu le plus grand dépdt d’informations que 1’homme ait jamais
assemblé et il est en croissance continue. WWW s’est transformé en un environnement génératif qui
favorise I’'innovation par le développement des technologies et par un changement dans la perception
des gens sur le Web et comment 1’utilisent [Zittrain, 2008]]. 11 "a passé des pages Internet basées sur la
transaction aux celles basées sur I’interaction” [Ogrinz, 2009]. WWW a radicalement changé, aussi
la facon dont les connaissances sont partagées, en abaissant la barriere pour la publication et 1’acces
aux documents [Bizer et al., 2010]. En outre, par la prolifération de Web APIs, Web est devenu une
plate-forme hautement programmable [Aghaee et al., 2013|]. Le nouveau WWW ou [’Internet de
[’Avenir est celui d’un Internet des Services et un Internet des Objets.

Selon [O’Reilly, 2007], "Web 2.0 est la révolution des affaires dans I’industrie informatique causée
par le passage a I’Internet comme une plate-forme, et une tentative de comprendre les régles de succes
sur cette nouvelle plate-forme". Les technologies Web 2.0 sont interactives et obligent les utilisateurs a
générer de nouvelles informations et contenus ou a modifier le travail des autres participants [Chul ef
al., 2009]]. Chul et al. continue a déclarer en [Chul et al., 2009]] que "la solution correcte vient des
participants corrects"”.

Naturellement, une série des questions se posent a partir de ce contexte : comment filtrez-vous les
objets pour créer plus de valeur que vous obtenez actuellement ? Comment pouvez-vous regrouper les
objets d’une maniere intelligente et facile au lieu de la faire dans votre téte? Le monde ne peut pas étre
décrit sans ambiguité, alors comment pouvez-vous permettre aux utilisateurs de traiter avec le monde a
leur maniere, en fonction de leur compréhension? Levine dans son livre "Cluetrain manifesto" [Levine.
2009] a argumenté que les marchés sont conversations, alors comment peut-on impliquer les utilisateurs
dans la conversation ? Comment peut-on autorise les utilisateurs a la consommation facile des services,
informations, objets qu’ils trouvent autour d’eux ?

Cependant, la conception et le déploiement d’un tel logiciel capable d’interaction directe et
I’autonomisation de I’utilisateur final reste toujours un probléme. On a, d’une part, les utilisateurs qui
ont des idées, mais qui n’ont pas I’environnement technique et les capacités en programmation pour
faire eux-mé€mes le développement. D’autre part, on a un grand volume des données, ressources et
services qui qui pourraient étre regroupées a la fois en termes de données, mais le plus important, en
termes de comportement d’innover et de créer nouveaux objets.

Objective et contributions

Notre objectif dans cette these est de combler ce manque d’outils qui sont capables d’une interaction
directe et I’autonomisation des utilisateurs finaux, d’une facon unifiée. Nous sommes préoccupés
en particulier des outils fondés sur le Web. Nous affirmons que pour ces systemes web centrés sur

I’utilisateur, utilisateurs, services (dans la forme générale définie en [C. Lovelock, 1996]), sémantique

vii

viil

et contexte sont components clés.

Les mushups sont I’un des paradigmes du Web 2.0. Le terme mashup a été emprunté a la musique
et représente une chanson ou une composition créée par le mélange de deux ou plusieurs chansonsﬂ
Dans le cas de web un mashup (voire par exemple [|Altinel ef al., 2007])) a été défini principalement
a partir d’une perspective technologique comme une application hybride qui emploi et combine de
données, présentation ou fonctionnalité de deux ou plusieurs sources pour créer de nouveaux services,
régulierement par 1’intermédiaire de Web APIsﬂ

Le calendrier des conférences est qu’un exemple — parmi tant d’autres — qui exige un mélange
d’idées (utilisateurs, services, données, comportement, contexte) discutés ici pour le rendre possible.
Nous allons utiliser cet exemple comme un exemple récurrent, tout au long de cette these pour expliquer
notre démarche.

Un tel calendrier est spécifique a I’ utilisateur, puisque par exemple, certains utilisateurs pourraient
étre intéressés par web conférences liées, d’autres dans le web sémantique, d’autres regles ou de
processus d’affaires des conférences. L’ information contextuelle est mashé pour satisfaire 1’objectif
de certains utilisateurs, donc des informations spécifiques sur les conférences sont stockées dans un
contexte de calendrier. Au moins deux services sont requis: celui qui traite avec les conférences et celui
qui offre un calendrier. Du point de vue technologique ces services peuvent ne pas étre compatibles les
uns avec les autres.

Pour les scientifiques dans le domaine de I'informatique, la liste de diffusion DbWorld est I’endroit
bien connu ot ils peuvent rechercher une conférence en informatique. Une série d’informations sont
fournies ici, mais le plus important c’est 1’objet, le délai et la page Web de 1’événement publié. D’un
point de vue technique, DBWorld ne fournit pas d’API pour permettre 1’acceés programmatique et
I’interrogation du service. En conséquence, par rapport a des approches de mashups actuelles, ce
service est inutile.

D’autre part, le Calendrier Google est 1’'une des applications Google Apps les plus connus.
L’information d’intérét pour le calendrier est le titre de I’événement, la date et la description d’un
événement. Ces informations se trouvent dans un Calendrier Google. Contrairement aux services
DbWorld, Google fournit pour ce service, en plus de la représentation de la page Web, une API pour
accéder au contenu. Cette situation est tout simplement un exemple qui soutient la nécessité d’étre en
mesure de traiter de facon non-uniforme 1’acces aux services.

La voie habituelle pour atteindre cet objectif d’avoir des conférences stockées dans le Calendrier
Google par leur date limite nécessite des interactions manuelles: (1) I’utilisateur doit maintenir deux
onglets ouverts dans le navigateur; (2) méme s’il peut y avoir plusieurs entrées qui sont conformes a un
terme de recherche, 1’utilisateur doit traiter les événements un par un parce que DBWorld ne fournit
pas une construction dans la fonctionnalité de recherche; (3) I’utilisateur doit se déplacer entre les
onglets ouverts a plusieurs reprises, afin de stocker un seul événement dans le calendrier, car un seul
élément d’information peut €tre copié et collé a la fois (par exemple, le titre de 1’événement).

Contribution

Le contenu de cette these réside a la confluence entre les themes suivants: Génie Logiciel, Architectures
orientées vers les services, Sensibilité au contexte, Sémantique Web et Raisonnement, Management du
proces des affaires et Systémes d’information.

Le travail présenté tout au long de cette these est présenté principalement du point de vue du génie
logiciel (Software Engineering). On concentre un peu sur la construction des théories et sur les rendre

Lhttp:/fen. wikipedia.org/wiki/Mashup_(music), retrieved 9 December 2013
2http:/fen.wikipedia.org/wiki/Mashup_(web_application_hybrid), retrieved 9 December 2013

CHAPTER 0. RESUME ETENDU ix

explicites [Sjsberg et al., 2008, |[Easterbrook et al., 2008]] au sein du génie logiciel parce que nous
employons des connaissances de plusieurs sujets, comme nous 1’avons indiqué précédemment, nous
trouvons important de préciser que la position philosophique [Easterbrook et al., 2008]], nous adoptons
le pragmatisme pour notre méthode de recherche.

Le pragmatisme reconnait que toute connaissance est approximative et incompleéte, et
que sa valeur dépend des méthodes par lesquelles elle a été obtenue [Easterbrook et al.
2008}, [Menand, 1997].

Pour les pragmatistes, la vérité est ce qui fonctionne a I’époque, entrainant un degré de relativisme.
C’est-a-dire, ce qui est utile pour une personne peut ne pas étre utile pour une autre, par conséquent
la vérité est relative pour I’observateur [[Easterbrook et al., 2008||. Pragmatisme adopte une approche
d’ingénierie pour rechercher la valeur des connaissances pratiques sur la connaissance abstraite. On
utilise des méthodes de recherche mixtes pour faire la lumiere sur la question a 1’étude.

Notre contribution principale est le développement d’une approche holistique pour les systemes
web qui sont centrés sur I'utilisateur et qui integrent les données, les services et le comportement
disponible sur le Web 2.0.

Nous croyons que 1’approche que nous avons développée nous amene un pas de plus pres pour
permettre aux utilisateurs finaux de programmer leurs propres applications. Par ailleurs I’approche que
nous avons développée est de compléter les techniques existantes.

En détails, nos contributions sont présentées en plusieurs étapes:

o Etape 1¥® : Nous commencons par aborder I’aspect conceptuel du probleme. Nous revisitons
les technologies web actuelles avec un accent sur les applications mashups a partir d’un point de
vue conceptuel et de discuter les concepts que nous allons utiliser dans notre approche.

o Etape 2¢™: Nous proposons une architecture qui hérite des caractéristiques de 1’appareil de
la métaphore TomTom, et considere I’utilisateur comme étant un composant du systeme. Les
principes de la SOA, SaaS et Web sont mélangés dans une solution hybride.

. Etape 3tme; Nous développons la sémantique opérationnelle du systeme.

e Etape 4°™: Nous discutons I’implémentation de la mise en ceuvre de tels systémes, nous
fournissons un ensemble de cas d’utilisation, et nous décrivons un prototype roulant qui constitue
une preuve de concept de notre approche.

Chaque étape est présentée dans un chapitre dédié.

Chapitre 2]est consacré a I’examen des travaux connexes. Des différentes approches Mashups sont
discutées avec les tendances influentes et les technologies qui forment les bases pour le développement
des mashups. Nous discutons aussi la raison pour laquelle nous considérons mashups que des travaux
connexes pertinents et nous exposons notre opinion sur la raison pour laquelle certaines des techniques
de mashups ont été abandonnées ou ont été intégrées dans les grands projets. Nous concluons le
chapitre avec une liste des exigences auxquelles I’approche et le systeme que nous allons présenter
dans les prochains chapitres doivent se conformer.

Chapitre[3] Dans ce chapitre nous présentons notre approche conceptuelle. Cette approche est
fortement orientée vers ’utilisateur final. L’ approche prévoit un systeéme composite qui comprend un
utilisateur humain et un systeme intelligent. Nous discutons des aspects conceptuels qui animent notre
approche: I'utilisateur final / centrée sur I’utilisateur; plan; syst¢me a deux couches; systéme intelligent;

Emilian Pascalau, 2014

humaine - I'interaction du systeme. Deuxiéme partie du chapitre décrit le modele conceptuel associé a
notre approche.

Chapitre[d] Nous proposons une architecture pour les systémes que nous discutons tout au long de
cette these. Cette architecture suivie la métaphore TomTom. Elle est influencée par Newell [Newell!
1994] Model du processeur humaine et hérité de I’architecture orientée vers les services et de
I’architecture orientée vers la distribution.

Chapitre 5| Nous proposons un modele d’exécution basé sur une technique de raisonnement de
chainage avant.

Chapitre[6] Ce chapitre affirme une série de lignes directrices de mise en ceuvre sur la fagon dont
ces systemes devraient étre mis en ceuvre. Une série de cas d’utilisation sont présentés dans ce chapitre.
Ces cases d’utilisation seront employées pour valider notre approche. Nous discutons également de la
mesure dans laquelle les exigences que nous avons identifiées dans le chapitre 3] ont été respectées. Un
prototype roulant de notre approche sera décrite dans ce chapitre.

Chapitre (7| Les conclusions du travail présenté dans cette these sont énumérées dans ce chapitre
avec les futures étapes sur fagon dont ce travail peut étre amélioré.

Chapitre 2 Résumé - Travaux connexes sur Mashups

Dans le deuxieéme chapitre, nous examinons les travaux existants dans le domaine des services Web,
Web 2.0, Web sémantique, les services Web sémantiques, Web des données présentant leurs influences
sur le développement d’outils de mashup.

Au meilleur de nos connaissances, nous ne sommes pas au courant de toute autre enquéte sur ces
dimensions et qui traite de tels nombreux aspects liés au développement de mashups.

Mashups sont I'une des paradigmes Web 2.0 et une zone de 1’application End User Development
(EUD) prometteuse [[Grammel et Storey, 2008|]. Nous croyons qu’ils sont le plus étroitement li€s du
type du case d’utilisation que nous avons énoncé dans le Chapitre ch:introduction.

Plusieurs définitions ont été données pour définir le concept de mashups. Altinel et al. Altinel et
al. [Altinel et al., 2007]] définit un mashup comme

une application web qui combine le contenu de deux ou plusieurs applications pour créer
une nouvelle application. Les applications situationnelles sont des applications web
d’entreprise reposant sur la volée pour résoudre un probléme commercial spécifique. Elles
sont souvent élaborées sans la participation du département informatique et operent en
dehors de son contrdle. Elles combinent les données provenant d’une variété de sources
d’entreprise telles que SAP ou des applications Office, bases de données back-end, et les
systemes de gestion de contenu.

Bien que toutes les définitions fournies soulignent plus ou moins les mémes caractéristiques, Eric
Schmidt de Google définit ces nouvelles applications comme

"applications qu’on I’assemble ” - avec les caractéristiques que les applications sont
relativement faibles, les données sont dans le nuage, les applications peuvent fonctionner
sur n’importe quel appareil (PC ou mobile), les applications sont trés rapides et tres
personnalisable, et sont réparties de maniere virale (réseaux sociaux, e-mail, etc)E]

3http://www.youtube.com/watch?v=T0QImmdw3b0, retrieved 17 December 2013

http://www.youtube.com/watch?v=T0QJmmdw3b0

CHAPTER 0. RESUME ETENDU xi

Un aspect que nous soulignons dans la premiere partie de notre étude est que la plupart des services
Web (par exemple SOA, Web sémantique et le Web des données, Software as a Service) les technologies
relatives ont influencé d’une certaine manicre le développement de mashups. Nous continuons plus
tard avec la présentation d’une large palette de mashups approches: mashups comme une collection
de widgets, mashups basés sur les tuyaux; des approches de mashups hybrides; domaine des langues
spécifiques pour les mashups.

Sur la base des nombreuses réflexions sur les tendances qui ont influencé la création de mashups
ainsi que sur la base des orientations de recherche identifiés par le Groupe d’experts FP8 I’UE travaillant
sur les services dans I’Internet du futur dans les paragraphes qui suivent nous allons faire une série
d’affirmations et considérations sur les raisons pour lesquelles nous croyons que les approches actuelles
n’ont pas vraiment atteint le résultat souhaité ; nous extrayons un modele commun minimal pour
mashups basé sur les approches de mashups présentées dans le chapitre ; nous énumérons les exigences
que nous considérons avec lesquels une approche de mashup doit se conformer. Notre approche, que
nous allons élaborer et présenter dans cette thése sera conforme aux besoins identifiés.

Bien que les mashups ont été d’abord pensés et développés qu’a partir d’un point de vue technique,
principalement par le biais des hacks, nous croyons que le c6té conceptuel du probleme doit €tre pris
en compte.

Le développement de mashup représente une zone d’application du End User Development (EDU)
prometteuse comme le fait valoir dans [[Grammel et Storey, 2008|]. En utilisant les services qui peuvent
étre accessibles par le Web comme plate-forme sous-jacente, I’effort de développement est passé
de la programmation traditionnelle. C’est pourquoi les difficultés rencontrées par les designers des
outils mashup comprennent la nécessité de définir un moyen de haut niveau pour la description et la
combinaison du calcul, de la logique d’intégration et des abstractions pour représenter les widgets Web,
les services Web, les sources de données sur le Web [Aghaee ef al., 2012]]. Néanmoins, ces objectifs
n’ont pas encore été atteints.

Un grand nombre d’outils de mashups ont été développés a la fois dans les universités et dans
I’industrie, mais seulement quelques-uns ont réussi. Un grand nombre de ces approches, méme si
ont été développés par les grandes entreprises comme Microsoft ou Google ont été abandonnées, a
savoir Microsoft Popfly, Google Mashup Editor. D’autres, comme JackBe Presto ou Serena Mashup
Composer sont encore en usage. Nous croyons qu’il y a un grand intérét pour ces outils tant dans le
milieu universitaire que dans I’industrie et de nouveaux cadres sont en cours de développement, c’est a
dire [Aghaee et al., 2013]]. Dans le méme temps, nous pensons que les approches actuelles n’ont pas
vraiment atteint le résultat souhaité car elles étaient soit trop technique ou trop scientifique, et qu’elles
n’avaient pas une bonne intégration entre la perspective technique et la perspective conceptuelle. De
cette maniere, ces approches ont perdu sur le chemin la cible fondamentale - 1’utilisateur final. Nous
croyons que cet état vient du fait qu’a I’heure actuelle le processus de développement de logiciels en
génie logiciel est principalement axée autour de la structure du logiciel en cours de construction et
des interactions entre ses composants. Alors qu’en réalité I’accent devrait Etre mis sur les utilisateurs
finaux.

Les clients de mashups Albeit qu’on fait valoir dans [Bioernstad et Pautasso, 2007]] sont mashup
réels, la quasi-totalité des approches que nous avons discuté dans ce chapitre sont les mashups c6té du
serveur. Nous croyons que les approches centrées sur I’utilisateur pour les mashups devraient étre des
mashups basés sur le client. Les utilisateurs finaux ne devraient pas étre tenus d’installer, de configurer
et de maintenir des serveurs. Les utilisateurs finaux doivent toutefois recevoir les outils qui sont en

“http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf, extrait le 13 janvier 2014
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf, extrait le 13 janvier 2014

Emilian Pascalau, 2014

http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf

Xii

général suffisantes pour répondre d’une maniere unifiée et holistique a la plupart des technologies
énumérés ici. Ces outils doivent cacher autant que possible le c6té de I’ingénierie et les technologies.
En outre, ces outils devraient étre les mémes, peu importe le type d’appareil qui est utilisé. Nous
affirmons que ces outils peuvent &tre atteints par I’avance de HTMLS et JavaScript. Nous pensons
qu’une solution basée sur un navigateur peut se conformer a tous ces aspects. D’autres chercheurs sont
d’accord avec nous sur ce sujet. On pourrait voir par exemple [Aghaee et Pautasso, 2010].

La liste des exigences que nous croyons un systeme de mashup orientée vers 1’utilisateur final doit
respecter :

El

E2

E3

E4

ES

E6

E7

ES8

E9

un tel systeme doit permettre 1’évolution, le partage et la distribution ; les utilisateurs finaux
doivent étre autorisés par saisie directe de mettre a jour / adapter 1’application;

un tel systeme ne devrait pas étre un domaine spécifique, et devrait permettre un large éventail
de cas d’utilisation;

dans un tel systeme 1’ utilisateur final devrait étre le coordonnateur de la fagcon dont le systeme
fonctionne, d’ou le systeme doit permettre un nouveau modele de programmation pour les
systemes composites (homme + services) E];

un tel systeéme devrait soutenir les développeurs qualifiés ainsi que les utilisateurs novices;

un tel systeme devrait se concentré sur I’utilisateur final et pas sur le systeme lui-méme. Le
systeme doit étre caché a I’utilisateur final autant que possible en fournissant le bon niveau de
représentation tels que la représentation de probléme pourrait étre traduit automatiquement dans
les concepts de base de la langue de programmation sous-jacent dans lequel le systeme global
est mis en ceuvre;

un tel systeme devrait permettre sur le développement de la demande en utilisant le web comme
une plate-forme Web comme un environnement d’exécution de I’application: s’appuyer sur des

idées, des sites, des applications existantes E];

un tel systeme doit €tre conforme aux principes de la SOA de: couplage de poux, réutilisation,
possibilité de découvrir, compossibilité;

un tel systeme doit permettre I’exécution décentralisée et délocalisée de logiciels / composants ﬂ

ces systemes devraient permettre un moment de la construction simultanée, le développement
des temps d’exécution et I’expérience Fﬂ

Ayant cette discussion comme point de départ, nous présenterons dans le chapitre [3] de notre
approche ainsi que le modele conceptuel que nous proposons d’aborder les questions soulignées dans
le chapitre

Shttp://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf, extrait le 13 janvier 2014
®http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf, extrait le 13 janvier 2014
"http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf, extrait le 13 janvier 2014
8http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf, extrait le 13 janvier 2014

http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf

CHAPTER 0. RESUME ETENDU Xiii

Chapitre 3 Résumé — Une approche centrée sur ’utilisateur. Model con-
ceptuel

Nous avons souligné dans le chapitre 2] une série de caractéristiques et des exigences avec lesquels
nous croyons que les mashups centrés dur 1’utilisateur doivent se conformer.

Ainsi, tels systemes devraient étre centrés sur ' utilisateur. Tels systémes devraient permettre un
nouveau modele de programmation pour les systemes composites (hommes + services) [E3]. Nous
soutenons que ces systemes soient des systemes intelligents étant capable d’interagir avec I’ utilisateur
final selon un plan convenu a I’avance, en soutenant 1’évolution, le partage et la distribution Par
conséquent, ces systemes sont deux systemes de couches: une couche de haut niveau, qui traite le
probléme a un niveau conceptuel et sémantique (I’accord sur le plan) et une couche de bas niveau qui
traite des internes du systeme et des technologies de bas niveau, par exemple, acces direct aux services,
etc. La couche de bas niveau doit étre cachée, autant que possible de I’utilisateur final [E3]

Les aspects (également représentées sur la figure[I)) qui conduisent au développement de notre
approche sont: orienté vers 1’utilisateur final ou centrée sur I’utilisateur ; les humains et le systéme
d’interagir avec I’autre; régime; systeme a deux couches; systeme intelligent. Ces aspects ont déja été
discutés dans la littérature de recherche, mais presque toujours d’une maniere de déconnexion avec
presque pas d’interaction entre eux. En outre une terminologie différente, selon les orientations de la
recherche ot il a été étudié, a été utilisée pour identifier réellement le méme concept.

End-user / user-centric Two layer system

Intelligent system

Our Approach

Plan] Human user and intelligent system interaction

Figure 1: Aspects that drive our approach

Ce chapitre décrit I’approche proposée par nous et le modele conceptuel que nous avons crée dans
la relation avec notre approche.

L’approche

Le développement de 1’utilisateur final a été défini dans [Lieberman ef al., 2006] comme une

une série des méthodes, techniques et outils permettant aux utilisateurs des systémes
logiciel qui agissent comme développeurs de logiciel non-professionnel, & un certain point
de créer, modifier ou étendre un artefact logiciel.

La recherche en génie logiciel de I’utilisateur final est interdisciplinaire [Lieberman ef al., 2006]
impliquant les idées : Informatique, génie logiciel, I’interaction homme-ordinateur, de 1’éducation, de
la psychologie et d’autres disciplines.

Les utilisateurs finaux que nous voulons soutenir, sont la plupart, pas des développeurs profes-
sionnels, qui manquent de compétences techniques, et qui n’ont pas les connaissances nécessaires
pour écrire des programmes logiciels, selon les spécifications techniques (cahier des charges pour les

Emilian Pascalau, 2014

X1V

services Web, les API, REST etc.). Les utilisateurs finaux ont une variété des objectifs. Ces objectifs
sont atteints par la création de nouvelles applications, par brassage des applications existantes, ou des
artefacts logiciels, par la modification ou I’adaptation des applications existantes.

Maintenant, afin de permettre aux utilisateurs finaux, qui ne sont pas des programmeurs profes-
sionnels a programmer, adapter les applications existantes ou des artefacts logiciels en fonction de
leurs besoins la couche technique a besoin d’étre caché, autant que possible, sinon ils ne seront pas en
mesure de le faire.

Pour réaliser cette séparation des préoccupations et ainsi cacher la couche technique, nous soutenons
qu’il est nécessaire un systeme a deux couches. La couche de haut niveau devrait fournir les moyens
pour permettre a deux utilisateurs de I’homme et le systeme de comprendre 1’autre en utilisant un
ensemble commun de concepts et suite a une avance d’accord sur le plan. D’autre part, la couche
de bas niveau doit étre caché a I’utilisateur final et doit étre accessible directement par le systeéme en
fonction de ce qui a été convenu dans le plan. Un développeur professionnel devrait également étre
autorisé a accéder a cette couche.

Le génie logiciel est le domaine de I’étude qui se préoccupe de tous les aspects liés a la conception et
le développement de systemes logiciels. Deux de ces aspects: ingénierie des exigences et la conception
du systeme sont d’intérét pour notre approche, parce que le comportement interne du systéme cible
alors que les besoins sont externes, concernant le monde.

La phase de la collecte des besoins précede la conception du systeme. Malheureusement, dans
la plupart des cas, le produit final n’est pas conforme aux attentes de 1’utilisateur final pour diverses
raisons: a savoir une mauvaise communication, une compréhension différente des concepts et des
situations, etc. [Tognazzini, 1992| Nardi, 1993|]. Un utilisateur final percoit et comprend un systéme
logiciel par I’intermédiaire de 1’interface d’utilisateur (UI). Basé sur I’interface d’utilisateur, qui est
devrait étre une représentation exacte et complete du systeme, 1’utilisateur final construit sa propre
compréhension de I’environnement constitué de concepts avec lesquels il travaille, et le comportement
associé [Clark et Sasse, 1997]. Impuissante dans de nombreuses situations de la compréhension de
’utilisateur final est trés différent de la compréhension et le message, les développeurs ont essayé
effectivement de transmettre [Tognazzini, 1992].

Une exigence dans I’ingénierie des exigences (Requirements Engineering (RE)), comme indiqué
dans [Pohl, 2010],

définit tant les besoins que les objectifs des utilisateurs, et les conditions et propriétés du
systeme a développer, ce résultat, par exemple, de besoins organisationnels, des lois ou
des normes.

Dans I’ingénierie des exigences un objectif est I’intention de parties concernant les objectifs, les
propriétés ou I’utilisation du systeme [Pohl, 2010]. Les exigences définissent ce qui doit étre développé
tandis que la conception de systeme définit la fagcon dont le systeéme doit étre développé [Pohl, 2010].

En conséquence, nous débattons que I’ingénierie des exigences signifie la couche de haut niveau
tandis que la conception du systéme correspond a la couche de bas niveau. Et par conséquent, nous
croyons que les deux I’ingénierie des exigences et la conception du systeéme doivent €tre unifiés
lorsqu’il s’agit de systemes intelligents appropriés centrés sur I’utilisateur (voir figure [2).

Les approches de I’ingénierie des exigences proposent aussi I’ utilisation de scénarios, qui représen-
tent des exemples concrets, positifs ou négatifs de satisfaction ou I’échec de satisfaire un objectif ou un
ensemble d’objectifs [Pohl, 2010]]. Tels scénarios pour notre approche sont les plans que les utilisateurs
finaux créent. Configuration logicielle sont généralement exprimés en langage naturel. Cependant le
langage naturel ne peut pas étre une option ici. Nous avons besoin d’un ensemble structuré et bien
défini de concepts pour exprimer les plans de I’utilisateur final, telles que un systéme intelligent peut

CHAPTER 0. RESUME ETENDU XV

what plan (visible)
Requirements engineering . What needs to be done to fulfill goal
Software development
how (hidden)
_System design _How should the system be implemented

L >

Figure 2: Software development aspects

comprendre, raisonner et utiliser ce plan, dans son interaction avec 1’environnement et 1’ utilisateur
final.

Par conséquent, un plan d’utilisateur final comprend un ensemble de concepts, avec laquelle
I'utilisateur final fonctionne afin de satisfaire un objectif, leur relation les uns avec les autres, le cadre,
et un moyen pour exprimer le comportement aux formes de processus et des regles. Ainsi, pour
notre approche I'utilisateur dispose d’un plan de ce qui doit &tre fait pour atteindre un objectif. Les
besoins a faire ici signifie [’interaction (comportement) que I’ utilisateur doit exposer avec 1’application
(applications) afin de remplir I’objectif. En outre I’utilisateur attend une réponse particuliere du systéme
en réponse a des actions il / elle, I’utilisateur, effectue. Le comportement de 1’utilisateur est imposé
(influencé) par le contexte (environnement).

Pour I’approche que nous envisageons et conceptions dans cette theése, 1'utilisateur crée un plan qui
est partagé (donné) au systeme. Ce plan contient une description du contexte(s) et le comportement
que tant I’utilisateur humain et le systeme doivent effectuer en relation avec le contexte (s) comme
nous avons introduit dans [Pascalau, 2011a]. Le plan explique comment le systéme doit réagir en
réponse aux actions que 1’utilisateur humain effectue, ou comment le systeéme doit réagir en réponse
aux changements qui apparaissent dans I’environnement (contexte(s)). De cette facon, tant 1’ utilisateur
humain que le systéme suivront et partagent la méme compréhension, le méme plan.

Les deux derniers aspects que nous avons identifiés concernant notre approche sont les suivants:
systeme intelligent capable d’interagir avec l’utilisateur humain selon le plan convenu.

Nous affirmons que notre systeme peut étre assimilé a la notion d’un agent. Un agent hybride: une
combinaison entre un agent réactif, un agent déductive et également agent proactif.

Nous relions ainsi les aspects que nous venons de discuter et nous reprenons notre approche a
la figure 3| L approche que nous avons introduite dans cette section propose un nouveau modele de
programmation grice a un systeme composite ou 1’utilisateur humain et le systéme se trouvent en
interaction les uns avec les autres. L’interaction se fait via I’environnement et selon un plan prédéfini.
Ce plan est créé par I’utilisateur humain, d’ott ’homme est le coordinateur de la facon dont le systeme
fonctionne. Tant le systeme intelligent que 1’ utilisateur humain suivent le méme plan. Ce plan sert a
atteindre un objectif particulier et elle a été créée prenant en compte le contexte(s). Interaction est
percue par les changements qui apparaissent dans 1’environnement.

Le modéele conceptuel

Nous avons annoncé précédemment que la maniere appropriée de définir notre modele conceptuel
est au moyen d’ontologies [[Guarino, 1998]]. Les instances de ce modele représenteront le plan que
I’utilisateur va fournir au systéme.

Emilian Pascalau, 2014

XVi

Context(s) = environment L
perceives 3 perceives
‘ imposed (influenced)

Plan

created b .

Yoo _ (same understanding) yi

uses > T uses
according to } via
77777777777777777777777777 interact-—————— System according
| to our approach

Figure 3: Our approach

Comme le UML est considéré le standard modelant le langage [Guizzardi, 2005], nous I’employons
aussi pour formaliser notre cadre conceptuel.

Concept

Bien que de nombreuses approches ontologiques (voir, par exemple, OWL [Group, 2009]]) utilisent
comme l’entité de niveau supérieur, la notion d’objet pour notre cadre conceptuel I'unité la plus
générale de la connaissance est la notion de concept. En outre, la spécification de I’OMG pour la
Sémantique du Vocabulaire des Affaires et les Regles (SBVR) [OMG, 2008] utilise comme entité de
top la notion de concept notion.

Un concept a un nom et un ensemble de propriétés. Il s’agit d’une sous-classe uml: :Class
entité. Il peut étre identifié soit par son nom ou par I’ensemble (ou un sous-ensemble) des propriétés
qui le définissent. En génie logiciel lorsqu’il s’agit de langages typés, les entités sont reconnues par
leurs types (nom de la classe). Le sens inverse est basé sur un ensemble de caractéristiques.

Dans notre approche les deux points de vue sont pris en compte.

Un concept représente une unité de connaissance créée par une combinaison unique de caractéris-
tiques. Ainsi, comme le montre la figure [} chaque élément du cadre est un concept. De cette facon, le
processus de raisonnement peut entrainer aucune des concepts définis de maniere unifiée.

Rappelons le cas d’utilisation du calendrier des conférences que nous avons introduit dans le
chapitre [I] L objectif est de stocker automatiquement les événements qui sont annoncés dans la liste
de diffusion DbWorld dans un calendrier Google. Sans une approche similaire a celle décrite dans
cette these, pour atteindre cet objectif de stocker automatiquement les événements dans un calendrier
Google on a besoin de deux onglets ouverts dans le navigateur, nécessaire pour aller et retour entre ces
deux onglets et copier et coller chaque élément d’information manuellement pour chaque événement.
La figure Figure [5|représente le service de calendrier Google - I’événement facette de sauvegarde.

Le service de calendrier Google est un exemple de concept de Service. Depuis un concept
possede des caractéristiques, la caractéristique d’intérét pour nous est I’URL du service:

CHAPTER 0. RESUME ETENDU

X Vil

uml::Class @ ——— uml::Property
T ot
Concept

JAN

I I I I
Action Message Process Mashup
Event Rule Context Entity
VAN
I |
Human Service Object
Figure 4: Concepts
<€) | PEYEEEETEE hetps: v, google comfcalendar render?pli= 12gsessianid=0K
Mail Calendar Docurents Photos Reader Web more -

Google calendar

Search my calendars | Showsearch options

« Backto calendar Save Discard
Click to add atitle
572372011 9:30am to 10:30am 542372011 Time zone
Oal day CRepeat. .

Event details Find a time

Where
Calendar | 253 v

Created by s =m0 ey

Description

Event color BEEER BB

Figure 5: Google calendar service - save event facet

https://'www.google.com/calendar/. Un autre concept de I’intérét pour notre cas d’utilisation est
Iexistence du bouton Save. Empiriquement a partir d’un point de vue de I’utilisateur final d’identifier
le bouton Sauver comme le bouton de sauvegarde exige que le bouton est un bouton et a le contenu
du texte Save. Une représentation réelle, comme un arbre DOM, du bouton d’enregistrement selon le
modele de Google actuelle, a I’intérieur d’un navigateur, est représenté dans I’exemple[0.0.1] Ainsi,
dans le but d’identifier le bouton Sauver, la représentation de 1I’arbre DOM du service de calendrier
Google doit contenir un concept qui présente les caractéristiques suivantes: type de valeur div,
class avec la valeur goog-imageless—-button—-content, et textContent avec la valeur

Emilian Pascalau, 2014

XViil

Save.
Example 0.0.1 (Google Calendar Save Button DOM representation).

<div class="goog-imageless-button-content">
Save
</div>

D’une fagon similaire on peut identifier tous les autres concepts nécessaires pour ce cas d’utilisation.

Contexte

Pour notre cadre conceptuel la notion de contexte adhere a 1’appareil mathématique défini dans [Analyti
et al., 2007]], mais ici le contexte est un ensemble de concepts et pas un objet.
Un concept constitué d’un identificateur de contexte et un ensemble d’identificateurs de concepts.
Basé sur le mécanisme d’identification des concepts le contexte est identifié respectivement en
identifiant de maniere récursive tous les concepts constitutifs.

Example 0.0.2. Un contexte dans notre cas d’utilisation Calendrier Google comprendrait, par exemple,
le concept se référant au service de calendrier Google et les deux concepts nécessaires pour identifier
le bouton Sauver. Ainsi, le systeme afin d’€tre en mesure de dire qu’il est en cours d’exécution dans ce
contexte particulier on doit trouver les trois concepts qui sont compris dans ce contexte.

Comportement

Traditionnellement le comportement a été€ défini par des business rules et des business processes [Weske|
2007]. Notre cadre conceptuel est d’accord avec cette approche. En outre, nous pensons que le
comportement est fortement lié au contexte(s) [Pascalau, 2011a]..

Le comportement d’une entité représente 1’ensemble des événements, des actions et des messages
que cette entité produit. Un événement est une occurrence d’un phénomene observable. C’est quelque
chose qui "se passe”, un événement qui est détectée, soit un c1ick sur un bouton. Un événement a la
méme signification tant dans le cas d’une régle ainsi que d’un processus. Les événements peuvent étre
connectés a la fois.

Le comportement est un ensemble de regles et / ou un ensemble de processus, ou une combinaison
des deux, liée au contexte(s).

Example 0.0.3 (Exemple de Regle).

Si un événement de clic a été relevé de la touche de recherche réside dans le contexte de
services de calendrier et il y a un champ de recherche dans ce méme contexte et la valeur
du champ de recherche est trouvée dans la colonne de 1l’objet du contexte de service

DbWorld et il y a pour chaque événement une date de départ dans la méme ligne que la
colonne de 1l’objet et un emplacement, puis sauver cette entrée d’événement.

Mashup

En conséquence un mashup est un plan (carte) qui décrit le contexte(s) et le comportement afférent
qu’un utilisateur doit faire pour atteindre un but désiré. Une telle mashup est définie a partir d’un point
de vue de 'utilisateur.

Un mashup est un ensemble de contextes et comportement.

La figure[fillustre le cadre général. Ainsi, le concept de Mashup contient une ou plusieurs contextes.
En outre, un Mashup peut contenir processus, régles ou une combinaison des deux. Un contexte est
essentiellement une collection de concepts. En outre, un contexte pourrait avoir des sous-contextes. Un
contexte fait référence a une entité.

CHAPTER 0. RESUME ETENDU Xix

Concept

Mashup K>————>3 Context Entity

1 1.% il
1 1 1 *
Process
* *
Rule
* *

Figure 6: Mashup Concept

Chapitre 4 Résumé — Architecture

L’architecture que nous proposons dans ce chapitre suit 1’approche que nous venons d’introduire
auparavant. Au meilleur de notre connaissance, il n’existe pas de systeme liés au contexte web: (1) qui
suit une approche a deux couches pour la conception du systeme, (2) qui utilise une représentation
unique étant compris tant par I’utilisateur que par le systeéme de la méme voie; (3) qui estime et exige a
I’utilisateur final de participer activement dans le systéme afin d’atteindre un objectif désiré.

En dépit de cette lacune dans le contexte Web afférent - dont nous soutenons qu’elle peut étre
remplie avec une approche similaire a celle introduite dans cette thése — il y a une approche similaire
dans les caractéristiques au sein d’un domaine différent. Le systeéme TomTonﬁ est probablement [’un
des plus connu et le plus évolué [TomTom, 2007|]] parmi les systemes global de positionnement (GPSH
Ainsi TomTom est un exemple de la métaphore du GPS que nous 1’avons précisé dans I’introduction de
cette theése. L’architecture que nous proposons hérite des appareils TomTom.

Dans la figure /] est représentée la métaphore GPS d’un systeme complet nécessaire pour trouver
une personne, par exemple, de Paris a Berlin. Les acteurs impliqués sont I’ utilisateur humain (qui est
au volant d’une voiture) et le systéme intelligent qui dans ce cas est le systeme GPS. Tant I’ utilisateur
humain que le GPS utilisent un plan (ici une carte) pour atteindre 1’ objectif souhaité de se rendre a Berlin.
La carte contient la description du contexte(s) a savoir les villes, les routes, etc. Le comportement est
également spécifié. Une particularité de ce systeme est que pour définir le comportement, I’utilisateur
introduit directement ce comportement en spécifiant la route exacte a suivre et dans ce cas le systeme
GPS vérifie si ’utilisateur humain a dévié du comportement défini. Ou bien, la deuxieme possibilité
consiste simplement a définir le début et la fin de I’emplacement et le GPS calcule I’itinéraire qui doit
étre suivi par I’utilisateur humain. L’utilisateur final est également une partie du systéme, parce que
si I’utilisateur ne conduit pas le véhicule, le but recherché ne sera jamais atteinte. Au moment méme
ot le systeme GPS percoit I’environnement par la réception des événements par les satellites il est en
mesure de calculer en permanence la position actuelle ainsi.

Nous croyons que les similarités entre notre approche et la métaphore du GPS peuvent étre
facilement observés. La métaphore GPS suive en m&me temps le systeme a deux couches que nous

“http://www.tomtom.com/
http://en.wikipedia.org/wiki/GPS

Emilian Pascalau, 2014

http://www.tomtom.com/
http://en.wikipedia.org/wiki/GPS

XX

Satellites
oA Y
Route vd \\JQ
"‘/\’ send
4 follows A

A A

sets follows:

informs

User

O
| |

Entire System required to get from Paris to Berlin

drives

Figure 7: GPS Example

avons identifié pour notre approche. De méme, on utilise un plan qui a été défini par I’ utilisateur final et
puis donné eu systeme intelligent. Le plan (la carte) dans le cas du GPS comprend aussi une définition
du contexte(s) et le comportement qui doit étre suivi tant par I’ utilisateur humain que par le systeéme
intelligent. Le plan est compris de la méme facon par toutes les parties concernées. Le comportement
est percu aussi par les changements qui apparaissent au sein de I’environnement (contextes). Tant
I’utilisateur humain que le systéme sont nécessaires, comme components actives du systeme général,
pour attendre 1’objectif désiré par I’utilisateur final. Par conséquent, nous soutenons que la métaphore
du GPS est un exemple précis de notre approche.

De notre point de vue les aspects les plus importants que nous apprenons de 1’appareil TomTom
sont: d’abord que, la couche de bas niveau du systéme (le niveau du systéme) a été concue par défaut
comme systeme en temps réel et la seconde qu’au niveau du systéme, il y a une fagon unifiée pour
représenter I’information. Nous soutenons que ces deux aspects constituent le sous-sol et sont des
exigences fondamentales pour les systeémes conformes a la démarche que nous avons introduit la
construction. Etre en temps réel permet la spécification du comportement. La maniere unifiée pour
la représentation de 1’information est 1’obligation pour le plan défini par I’utilisateur final et pour la
construction d’un systéeme intelligent qui peut étre conscient de lui-méme et de 1’environnement.

L’architecture

L’architecture que nous présentons ici concerne les navigateurs web, en raison de plusieurs raisons.
Tout d’abord, selon les derniers commentaires qui ont fini la section précédente, les navigateurs Web
sont en effet en temps réel, et ils offrent aussi une fagon unifiée pour représenter I’information. En plus

CHAPTER 0. RESUME ETENDU Xxi

mymashup com

<)
O o @/m\ 0...

oy Q)

Legend:

mashups engine WwWw A /\ mashup
(Y ()
spiegel.de \)
. |_> web site \,‘;/
!‘ rowser) S

/

Figure 8: The General Architecture

de la représentation unifiée de I’information, les navigateurs Web fournissent également une maniere
unifiée de programmation et acces. En outre, presque tous les utilisateurs finaux savent comment
utiliser un navigateur Web ; un navigateur web existe presque sur tous les dispositifs réels, allant de
consoles de jeux, les récepteurs de télévision, les té€léphones intelligents, les tablettes, les ordinateurs
de bureau. La technologie est la méme partout ; toutes les systemes d’opération ont été construites
comme un navigateur web, voir par exemple Google Chrome Oﬂ Firefox OSE; un grand nombre
de kits de développement du logiciel pour la création d’applications mobiles multiplateformes sont
construites en utilisant HTMLS + JavaScript. Voir par exemple Sencha Touch ZH, PhoneGaﬂ jQuery
Mobild™]

L’architecture générale d’un systeme respectant I’approche que nous avons introduit (voir la
Figure [3) et qui est similaire aussi avec les appareils TomTom sont illustrés dans la Figure[§]

Cette architecture est adaptée pour le web. Comme on peut le voir de I’image, le moteur de mashup
fait partie du navigateur, ce qui lui donne un acces privilégié tant au contenu du navigateur lui-méme
qu’aux pages Web qui peuvent étre accessibles via le navigateur.

On peut imaginer tout le syst¢tme comme un type spécial d’aquarium qui n’a pas de fond. Le
navigateur enrichi d’un tel moteur de mashup est enfoncée dans 1’eau. Ainsi, I’utilisateur du navigateur
et par conséquent 1’utilisateur du moteur de mashup ont acces a tous les services auxquels le navigateur
et le moteur de mashup ont acces. Tant I’ utilisateur du navigateur que le moteur de mashup "regardent"”

"http://www.chromium.org/chromium-os
Phttp://www.mozilla.org/en-US/firefox/os/
Bhttp://www.sencha.com/products/touch/
“http://phonegap.com/
http://jquerymobile.com/

Emilian Pascalau, 2014

http://www.chromium.org/chromium-os
http://www.mozilla.org/en-US/firefox/os/
http://www.sencha.com/products/touch/
http://phonegap.com/
http://jquerymobile.com/

XXii

Mashups Engine

(e
DOMSensor

gMail.com

£
o
2
8
o
-)
c 2 Sensor ???
5} =
I B
c
_g Rule System
>
c
(1]
47 DOMActuator
@
172}
b
@
1)
=
2
o
47 Actuator ???
-
N J (N J

Figure 9: Mashups Engine

les services comme de 1’extérieur d’une boite. De ’intérieur de la boite on ne voit pas trop. Mais
de I’extérieur de la boite, on peut voir tout ce qui se trouve a I’intérieur de la boite ainsi que la boite
elle-méme. Ici on applique le mé€me principe.

En principe, les pages web accédées par un navigateur ont quelques couches. Il y a les couches
JavaScript et Ajax. Le code JavaScript peut étre partagé dans quelques fichiers et chargé de plusieurs
locations. La méme regle s’applique pour les objets Ajax. Ensuite, il y a le couche Modele Objet du
Document (en abréviation DOM en anglais) [Hors ef al., 2004]. N’importe ce que la représentation
est au sommet, a I’intérieur du navigateur cette représentation est un DOM. C’est la représentation
unifiée de I’'information que nous avons souligné comme une caractéristique fondamentale pour pouvoir
mettre en ceuvre un systeéme conforme a notre approche. Dans certains cas (par exemple Firefoxﬁ]
utilise XUL méme le navigateur lui-méme est un énorme DOM. Un aspect important sur le DOM
est qu’il est compleétement basé sur I’événement. Toute interaction, toute modification est signalée
par un événement DOM [Pixley, 2000]. En conséquence, nous avons aussi la deuxieéme condition
fondamentale, que nous avons identifiée alors qu’on enquétait sur I’appareil TomTom. Une troisieme
couche est la Feuille du Style en Cascade (en anglais CSS) [Bos et al., 2010]]. Cette couche applique
le style. La quatrieme couche est la représentation: soit une page web de base, un document XML,
ATOM, etc. Le moteur de mashup est une boite comportant toutes ces couches. Ainsi, il a acces
a chacun d’entre eux. Toute interaction, conversation, collaboration qui existe entre I’utilisateur, le
navigateur et I’un des services en créant un mashup, est réalisé par des actions et des événements.
L’ensemble des actions et des événements forment le comportement. L’ utilisateur est représenté dans
le systeme par I’intermédiaire de son comportement (actions et événements).

Le moteur de mashup représenté dans la figure [0 comporte un ensemble de capteurs et un en-
semble d’actionneurs. Par les capteurs, le moteur percoit les interactions et les communications avec
I’environnement. Le moteur utilise des actionneurs pour modifier et / ou de communiquer de nouveau

Shttp:/twww.mozilla.com/en-US/firefox/
Y http://developer.mozilla.org/En/XUL

CHAPTER 0. RESUME ETENDU xxiii

avec I’environnement. L’environnement comprend un nombre arbitraire de services et de mashup, le
navigateur et 1’utilisateur (par ses interactions avec le systéme).

Chapitre 5 Résumé — Exécution

Ce chapitre concerne I’exécution d’une application Web suivant 1I’approche et le modele conceptuel
que nous avons introduit dans le Chapitre [3| Pour récapituler, I’exécution est fondée sur des regles et
processus et est adaptée pour les navigateurs web.

Le Model Objet du Document ainsi que les Evénements DOM sont des interfaces neutres de
plateforme et langage qui permettront aux programmes et scripts d’accéder de la facon dynamique
et d’actualiser le contenu, la structure et le style des documents, et respectivement, permettent
I’enregistrement des gestionnaires des événements, décrivent la circulation de I’événement par une
structure type arbre et fournissent I’information contextuelle de base pour chaque événement.

Par conséquent, notre moteur d’exécution utilise directement ces interfaces neutres de plateformes
et langage. Ainsi, notre moteur d’exécution est neutre du point de vue de la plateforme et du langage.
En outre, nous pensons que grace a la combinaison d’un moteur d’exécution basé sur des regles et
I’utilisation de ces interfaces neutres des plateformes et du langage peuvent €tre atteints d’une approche
unifiée et générique pour la définition et I’exécution de nouvelles applications définies de I’ utilisateur
final qui respectent entierement la liste des exigences que nous avons identifié dans la section

La composante de raisonnement d’un Systeme de Regles de Production standard est le Moteur
d’Inférence (mé€me dans notre cas). Le Moteur d’Inférence met en correspondance des faits et des
données contre les regles de déduire des conclusions résultant des actions. Bien que les regles de
production se composent de deux parties principales : (1) conditions et (2) actions, nous traitons
principalement avec des regles de réaction ou des regles ECA qui comportent trois parties : (1)
événement, (2) conditions et (3) actions. Les deux types de régles utilisent la logique du premier ordre
pour la représentation des connaissances.

Le processus de mettre en correspondance de faits nouveaux ou existants contre les regles est
appelé algorithme de corrélation et est effectuée par le Moteur d’Inférence. Notre implémentation est
une variante de ReteOO qui aborde les systémes orientés vers I’objet. Plus précisément, ceux basé sur
la fermeture (JavaScript). En outre, il prend en charge par default les Evénements DOM.

Les regles pour notre systeme de regles sont stockées dans le plan défini par I’ utilisateur (mashup).
La mémoire de travail ou toutes les faits résident de sorte que le Moteur d’Inférence peut les accede
représente dans notre cas la structure DOM entiere (toutes les services, pages web qui ont été associés
avec les contextes dans le plan défini par I’utilisateur) o laquelle le Moteur d’Inférence a acces. Dans
notre implémentation tous les faits se trouvent déja dans la Mémoire de Travail. En outre, la Mémoire
de Travail dans notre cas tient aussi les Evénements DOM, tant les événements DOM W3C prédéfinies
(par exemple click, dblclick, mouseout, mouseover etc) ainsi que les événements DOM
personnalisés. Toutes les interactions ont lieu a I’intérieur de la Mémoire de Travail. La mémoire de
travail est en vie aussi longtemps que le mashup est activé dans le navigateur (cela signifie que tant que
dans le navigateur web il y a un onglet ouvert dans le navigateur qui contient le mashup, la mémoire de
travail sera maintenu en vie).

Il y a deux méthodes d’exécution pour le systeme des regles : le chainage avant et le chainage
derriere. Notre implémentation est une implémentation a chainage avant.

Les regles sont écrites en employant la Logique du Premier Ordre (FOL en anglais), ou la logique
des prédicats qui étend la logique propositionnelle. Les faits sont des objets (par exemple java beans,
objets JavaScript). Ainsi, pour notre systeme de régles, les faits sont tous objets JavaScript auxquels le

Emilian Pascalau, 2014

XX1V

moteur a acces, ¢’est-a-dire tous objets de la Mémoire de Travail. Cependant, on n’emploie que les
domaines des objets dans le proces de raisonnement, ou la structure statique d’un objet : propriétés
(domaine, propriété ou attribut ont le méme sens) et leurs valeurs. Puisque tous les éléments de notre
modele sont de Concepts, et en outre, un concept est une sous-classe de la classe uml: :Class,
puis I’'un d’eux peut étre faits. Dans les reégles de conséquence pourrait €tre utilisé pour raisonner sur
I’un d’eux d’une maniere unifiée.

Une regle précise que sur I’événement attiré, si une série particulieére des conditions intervienne,
spécifié dans le coté gauche (LHS en anglais) alors on fait ainsi, étant mentionnée comme une liste des
actions dans le co6té droit (RHS en anglais). LHS est un nom commun pour la partie conditionnelle de
la regle. Elle est constituée d’un zéro ou plusieurs éléments conditionnels. Les éléments conditionnels
concernent les concepts, qui a son tour appartiennent aux contextes.

La condition (LHS) partie d’une regle peut comporter quelques éléments conditionnels. Nous
envisageons une série d’éléments conditionnels pour notre langue d’exécution:

(1) un ConceptConditional, (2) un JavaScriptBooleanConditional,
(3)un EqualityConditional.

L’élément conditionnel concernant les Concepts (ConceptConditional) estles plus important.
Ce conditionnel est construit pour accommoder les objets et les caractéristiques des objets. Il décrit
en fait la fagcon dont I’objet (le concept) devrait ressembler. Un objet (concept) comporte un type et
propriétés (domaines). Par conséquent lorsqu’il s’agit d’un objet, dans notre cas, un concept, nous
devons vérifier le t ype, nous avons besoin de pouvoir tester / contraindre les valeurs de propriétés et
nous devons €tre en mesure de lier la valeur d’une propriété d’objet a une variable, de sorte qu’il puisse
étre utilisé plus tard dans un autre élément conditionnel d’une reégle. En outre I’objet lui-méme, pas
seulement une propriété de celui-ci, peut étre lié a une variable.

Conclusions

World Wide Web (WWW) est devenu le plus grand dépdt d’informations que I’homme ait jamais
assemblé et il est en croissance continue. Le nouveau WWW ou I’Internet de 1’ Avenir est celui d’un
Internet des Services et un Internet des Objets.

Naturellement, une série des questions se posent a partir de ce contexte : comment filtrez-vous les
objets pour créer plus de valeur que vous obtenez actuellement ? Comment pouvez-vous regrouper les
objets d’une maniere intelligente et facile au lieu de la faire dans votre téte? Le monde ne peut pas étre
décrit sans ambiguité, alors comment pouvez-vous permettre aux utilisateurs de traiter avec le monde a
leur maniere, en fonction de leur compréhension?

On a largement affirmé que la solution vient du droit des participants (utilisateurs finaux). Mal-
heureusement, bien que beaucoup d’efforts ont été mis dans le développement d’un grand nombre
de cadres a s’attaquer a certains des problemes que ce nouvel environnement a apporté (on peut voir
le chapitre [2), la conception et le déploiement d’un tel logiciel capable d’interaction directe et de
I’autonomisation de 1’utilisateur final est toujours un probleme.

Notre objectif dans cette these est de combler ce manque d’outils qui sont capables d’une interaction
directe et I’autonomisation des utilisateurs finaux, d’une facon unifiée. Pour atteindre cet objectif nous
proposons une approche centrée sur 1’utilisateur.

Pour son implémentation nous avons développé un modele conceptuel pour cette approche, nous
proposons une architecture qui est conforme a I’approche et nous avons aussi proposé un moteur
d’exécution qui emploient regles ECA et les processus pour exécuter les applications que les utilisateurs
finaux ont défini comme mushups.

CHAPTER 0. RESUME ETENDU XXV

Nous soutenons que par 1’approche discutée tout au long de cette these que nous avons beaucoup
avancé vers une approche enticrement centrée sur 1’utilisateur permettant aux utilisateurs finaux de
créer leurs propres applications en utilisant Architectures Orientées vers les Services.

Nous envisageons quelques directions possibles pour étendre le travail que nous avons présenté
et discuté au sein de cette these : (1) modélisation visuelle des plans définis par I’utilisateur ; (2)
I'utilisation de 1’approche des platesformes mobiles ; (3) ajout de différents types de raisonnement
comme la programmation logique abductive.

De notre point de vue, le chainon manquant nécessaire pour obtenir un systéme d’utilisateur final
complet est une approche visuelle (sur la base de modeles de conception d’interaction) qui cachera
complétement tous les autres aspects qui exposent encore des aspects techniques connexes, tels que le
mashup, rédigé en un format JSON.

Emilian Pascalau, 2014

XXVi

Chapter 1

Introduction

World Wide Web (WWW) has become the greatest repository of information that man has ever
assembled and it is continuously growing. WWW transformed itself into a generative environment that
fosters innovation through the advance of technologies and a shift in people’s perception of the Web and
how they use it [Zittrain, 2008]]. It "has shifted from transaction-based Web pages to interaction-based
ones" [[Ogrinz, 2009]. WWW changed radically, also the way knowledge is shared, by lowering the
barrier for publishing and accessing documents [Bizer et al., 2010]. Moreover with the proliferation of
Web APIs the Web has become a highly programmable platform [[Aghaee et al., 2013]].

The new WWW or Future Internet is that of an Internet of Services and Internet of Things. As
described by SAP co-CEO Henning Kagermann [Kagermann, 2008]],

The Internet of Services is largely based on a service-oriented architecture (SOA), which is
a flexible, standardized architecture that facilitates the combination of various applications
into inter-operable services.

The notion of a service is defined by Lovelock et al. [C. Lovelock, 1996 as

an act or performance offered by one party to another. Although the process may be tied to
a physical product, the performance is essentially intangible and does not normally result
in ownership of any of the factors of production.

The first steps towards such an approach were made by proposing the notion of a Web service.
A Web service is a form of a service. The notion of a Web service we use hereafter is provided by
Sommerville [Sommerville, 2006]:

loosely coupled, reusable software component that encapsulates discrete functionality,
which may be distributed and programmatically accessed. A web service is a service that
is accessed using standard Internet and XML-based protocols.

The concept of Service Oriented Architecture (SOA) is probably the most popular outcome of
research in service based composition and has created a completely new way of composing existing
functionality through dynamically binding and invoking services into a composite application. As
stated in [Ogrinz, 2009|], SOA is an evolutionary milestone and not a revolutionary one, where
the understanding of a service in SOA is that of a business task. Such tasks are implemented in
environments that facilitate loose coupling.

Yet, in reality, because of their still complicated technical nature, "Web services have hardly been
adopted beyond the boundaries of enterprises" [Davies et al., 2009].

1

1.1. OBJECTIVE OF THIS THESIS 2

According to [O’Reilly, 2007]], "Web 2.0 is the business revolution in the computer industry caused
by the move to the Internet as a platform, and an attempt to understand the rules for success on that
new platform". Web 2.0 technologies are interactive and require users to generate new information
and content or to edit the work of other participants [Chul ez al., 2009]]. Chul et al. continue to state
in [Chul et al., 2009] that, "the right solution comes from the right participants”.

Naturally, a series of questions arise from this context: how do you filter things to create more
value than you currently get? how do you aggregate things in an intelligent and easy way instead of
doing it in your head? The world cannot be described unambiguously, so how can you allow users to
deal with the world in their own way, based on their understanding? Levine in his book "Cluetrain
manifesto" [Levine, 2009]] was arguing that markets are conversations so how can users be involved in
the conversation? how can users be empowered with easy consumption of the services, information,
things that they found around?

By Levine [Levine, 2009]], whether delivering information, opinions, perspectives, dissenting
arguments or humorous asides, humans conversations are done typically in an open, natural, uncontrived
manner. Future Internet (Web 2.0), has opened the ways towards enabling conversations among human
beings that were simply not possible before.

However design and deployment of such software capable of direct interaction and empowerment
of the end-user is still an issue. We have on one side users that have ideas, but do not have technical
background and lack programming skills to do the development by themselves. On the other side, we
have large amounts of data, resources and services that could be aggregated both in terms of data, but
most important in terms of behavior to innovate and create new things. Nardi underlines this aspect
clearly in [[Nardi, 1993 stating that

"we have only scratched the surface of what would be possible if end users could freely
program their own applications... As has been shown time and again, no matter how much
designers and programmers try to anticipate and provide for what users will need, the
effort always falls short because it is impossible to know in advance what may be needed...
End users should have the ability to create customizations, extensions and applications..."

1.1 Objective of this thesis

Our goal in this thesis is to address this lack of tools that are capable of direct interaction and
empowerment of end-users, in a unified manner. We are concerned specifically with Web based tools.
We assert that for such web based user-centric systems, users, services (in the general form as defined
in [C. Lovelock, 1996]), semantics and context, are key components of the system.

Context, as defined by Dey and Abowd [Dey et Abowd, 1999a]

is any information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and the applications themselves.

Lately, the notion of context has been considered not simply as state but as part of a process in
which users are to be involved [[Coutaz et al., 2005|]. Context greatly influences the way humans or
machines act, the way they report themselves to situations and things; furthermore, any change in
context causes a transformation in the experience that is going to be lived [Bolchini ef al., 2007]]. Many
psychological studies have shown that when humans act, and especially when humans interact, they
consciously and unconsciously attend to context of many types as stated in [|Grudin, 2001]].

CHAPTER 1. INTRODUCTION 3

Harnessing collective intelligence [|[O’Reilly, 2007]] by allowing people to reuse data is a concrete
example that same data could gain a different meaning and could provide a different perspective on a
particular matter based on context or based on users’ goals.

See for instance the book store example given by David Weinberger in his book entitled "Everything
Is Miscellaneous: The Power of the New Digital Disorder” [Weinberger, 2007]]. While the normal
setup of a book store might work fine for users that know what they want, the same setup might not
work for others who do not really know what they want. Weinberger calls the first category seekers and
the second one browsers and emphasizes the fact that there are almost as many ways to organize for
browsers as there are browsers [Weinberger, 2007].

This example nicely underlines the aspects we have already emphasized: i.e. (1) each browser=user
has its own way to resolve its problem, or has its own idea on how to organize data; (2) from this
uniqueness that each user has, we can end up with different ways of combining services and data, in
order to achieve new perspectives.

Personalization technology is used to dynamically change / provide / suggest content that is relevant
to users. Contextual information, such as location (see for instance [Raptis ef al., 2005]]) has been
traditionally used in personalization and recommender systems. However this does not necessary
reflect or fulfill users’ expectations. Advertising in social networks is one example of personalization.
Ads are based on many factors, i.e. network of friends, pages that someone likes, brands that someone
likes etc. Personalization is one possible use case for our approach.

1.2 Our approach

Mashups are one of Web 2.0 paradigms. The term mashup has been borrowed from music and is a
song or composition created by blending two or more song In web’s case a mashup (see for instance
Altinel et al. [[Altinel ef al., 2007])) has been defined mostly from a technological perspective as a hybrid
application that uses and combines data, presentation or functionality from two or more sources to
create new services, frequently by means of Web APISEI.

Conferences calendar is just an example — out of many — that requires a mixture of the ideas (users,
services, data, behavior, context) discussed here to make it possible. We will be using this use case as a
recurring example, through out this thesis to explain our approach.

Such a calendar is user specific, since for example some users might be interested in web related
conferences, others in semantic web, others in rules or business processes conferences. Contextual
information is mashed up to fulfill some user’s goal, hence specific information about conferences is
stored in a calendar context. At least two services are required: one that deals with conferences and
one that offers a calendar. From a technological point of view these services might not be compatible
with each other.

For scientists in the IT field, the DbWorld Mailing List is the well known place where they can
search for an IT conference. A series of information are provided here, but most important are the
subject, deadline and the web page of the event published. From a technical perspective, DBWorld
does not provide an API to allow programmatic access and interrogation of the service. In consequence,
with respect to current mashups approaches, this service is useless.

On the other hand, Google Calendar is one of the most known Google Apps services. The
information of interest for a calendar is the title of the event, the date and description of an event. This
information is found in a Google Calendar. Opposed to the DbWorld services, Google provides for this

Lhttp:/fen.wikipedia.org/wiki/Mashup_(music), retrieved 9 December 2013
2http:/fen.wikipedia.org/wiki/Mashup_(web_application_hybrid), retrieved 9 December 2013

Emilian Pascalau, 2014

1.3. THE GPS DEVICE METAPHOR 4

service, besides the regular web page representation, an API to access the contents. This situation is a
just a simple example that sustains the need to be able to deal with non-uniform ways of service access.

The usual way to achieve this goal of having conferences stored in Google Calendar by their
deadline requires manual interactions: (1) the user is required to maintain two open tabs in the browser;
(2) even though there might be several entries that comply with a search term, the user must deal with
the events one by one as DBWorld does not provide built in search functionality; (3) the user has to
move between the open tabs several times, in order to store only one event in the calendar, since just
one piece of information can be copied and pasted at a time (e.g. the title of the event).

Recorder/play like tools cannot be used in this scenario because the application must react according
to user’s behavior and according to specific search results. For example a particular search might return
5 entries while another might return 2 entries. Current mashups approaches are also unable to address
these type of use cases for several reasons, i.e.

1. current approaches are most of them data-based (data means only RSS/ATOM);
2. current approaches are mostly API based (REST services) or WSDL based services;
3. current approaches that try to take into account behavior are restricted to predefined actions;

4. current approaches are platform specific, meaning that in most of the cases, users are required to
run heavy infrastructure; users are required to install servers, configure them, maintain them and
so forth.

1.3 The GPS device metaphor

While currently there are no generic systems and approaches that, to the best of our knowledge, could
allow the design and deployment of use case such as the conferences calendar, there are systems that
provide similar behavior with the one we are looking for in other fields. Figure depicts a system
used almost daily. The goal of this system is to help and guide an user to get from place A to place B,
for example to get from Paris to Berlin.

This system incorporates a driver, a GPS device, a car, satellites, and maps. While the context
is clear and concerns navigation, the goal differs from one user to another as each user has its own
starting point and its own destination. To point the way, the GPS devices requires maps. Maps are
understood both by the user as well as the GPS device and provide context-dependent information (e.g.
the information and the amount of information provided inside a town is different than the one outside
a town). There is a continuous interaction between the user and the GPS device. But to actually fulfill
the goal of getting to destination, the driver must actually drive the car, there is no other way. Hence
the driver itself is part of the system.

Interestingly enough, this system can deal both with seekers as well as browsers. For seekers the
GPS device can point the way towards destination, for browsers can give the current location and as
such can guide them towards finding what they are looking for. Think about the case when you are
in the city (Paris) somewhere in Montmartre and you are looking for a nice restaurant. Using a GPS
device with Google Maps you can find this type of information. It can deal with on demand goals
according to drivers’ needs and provides information in strong connection with the context.

We consider that a system with similar characteristics it is also required to address user-centric
systems that integrate data, services and behavior available in the Web 2.0 [Pascalau, 2011b]]. This
type of software system has people not processes [Collins, 2008] at its heart and is capable of tackling

CHAPTER 1. INTRODUCTION 5

Satellites

Route

< follows

- sets

informs

sets follows

User

drives

Entire System required to get from Paris to Berlin

Figure 1.1: GPS Example

software on demand, business intelligence on demand, instant use but powerful, innovation and
creativity.

1.4 Contributions

The contents of this thesis reside at the confluence between the following topics: Software Engineer-
ing (SE), Service Oriented Architectures (SOA), Context-awareness, Semantic Web and Reasoning,
Business Process Management (BPM) and Information Systems.

The work presented throughout this thesis is presented primarily from a SE perspective. There
is little focus on building theories and making them explicit [Sjgberg et al., 2008 [Easterbrook ef al.|
2008 in SE and because we employ knowledge from several topics, as we have previously stated, we
find important to state that the philosophical stance [Easterbrook et al., 2008]] we adopt for our research
method is pragmatism.

Pragmatism acknowledges that all knowledge is approximate and incomplete, and its
value depends on the methods by which it was obtained [Easterbrook et al., 2008, Menand|
1997].

For pragmatists, truth is what works at the time, entailing a degree of relativism. This means that what
is useful for one person might not be useful for another; therefore truth is relative to the observer [East{
erbrook er al., 2008]]. Pragmatism adopts an engineering approach to research that values practical
knowledge over abstract knowledge. Mixed research methods are used to shed light on the issue under
study.

Our main contribution is the development of a holistic approach for web based systems that are
user-centric and that integrate data, services and behavior available on the Web 2.0.

Emilian Pascalau, 2014

1.4. CONTRIBUTIONS 6

We believe that the approach we have developed gets us one step closer towards completely
allowing end users to program their own applications. Moreover the approach we have developed
comes to complement the existing techniques.

Currently the software development processes in Software Engineering are mainly focused on
modeling and implementing software from a system-centric perspective — hence the design and
implementation process are centered around the structure of the software system being built and
interactions between its components. We believe that in Future Internet’ applications, the focus needs
to be on the end-users.

This trend towards empowering end-users and bringing them into the development process is
becoming more and more visible, i.e. [Harris, 2013 |Aghaee ef al., 2013} |Aghaee et Pautasso, 2013]].
For instance Derrick Harris talks in [Harris, 2013|] about a new Microsoft ‘design-first’ development
strategy for designing software that business users actually want to use.

In details, our contributions are presented in several steps:

e Step 1: We start by addressing the conceptual aspect of the problem. We revisit current web
technologies with an accent on mashups applications from a conceptual point of view and discuss
the concepts we are going to use in our approach.

e Step 2: We propose an architecture that inherits characteristics from the TomTom device
metaphor, and considers the user as being a component of the system. Principles of SOA, SaaS
and Web are mixed together in a hybrid solution.

e Step 3: We develop the operational semantics of the system.

e Step 4: We discuss the implementation of such systems, provide a set of use cases, and describe
a running prototype which constitute a proof of concept of our approach.

Each step is presented in a dedicated chapter.

Chapter [2|is devoted to discussing related work. Different mashups approaches are discussed
together with the influential trends and technologies that formed the groundwork for mashups develop-
ment. We discuss also the reason for which we consider mashups as pertinent related work and we
expose our opinion about why some of the mashups techniques have been discontinued or have been
integrated into larger projects. We conclude the chapter with a list of requirements with which the
approach and system that we are going to introduce in the next chapters need to comply with.

Chapter[3] In this chapter we present our conceptual approach. This approach is strongly end-user
oriented. The approach foresees a composite system that comprises a human user and an intelligent
system. We discuss the conceptual aspects that drive our approach: end-user / user-centric; plan; two
layer system; intelligent system; human - system interaction. Second part of the chapter is describes
the conceptual model associated with our approach.

Chapter [d] We propose an architecture for the systems that we discuss throughout this thesis. This
architecture follows the TomTom metaphor. It is influenced by the Newell’s [Newell, 1994|] Model
Human Processor and inherits from Service Oriented Architecture (SOA) and Distributed Oriented
Architecture (DOA).

Chapter[5] We propose an execution model based on a forward chaining reasoning technique.

Chapter[6] This chapter asserts a series of implementation guidelines on how such systems should
be implemented. A series of use cases are presented in this chapter. These use cases will be used to
validate our approach. We discuss also to which extent the requirements we identified in Chapter 3|
have been fulfilled. A running prototype of our approach will be described in this chapter as well.

CHAPTER 1. INTRODUCTION 7

Chapter[7} Conclusions of the work presented in this thesis are enumerated in this chapter together
with future steps on how this work can be improved.

Here is a list of the most representative publications that sustain this thesis:

1.

Emilian Pascalau (2011). Mashups: Behavior in Context(s). Proceedings of the 7th International
Workshop Knowledge Engineering and Software Engineering (KESE7) collocated with CAEPIA
2011 (Conference of the Spanish Association for Artificial Intelligence), Tenerife, Spain. CEUR
Workshop Proceedings, vol. 805 (double blind peer review)

Emilian Pascalau (2011). Towards TomTom like Systems for the Web - A Novel Architecture for
Browser-based Mashups. BEWEB 2011 March 25, 2011, Uppsala, Sweden, ACM.

. Emilian Pascalau and Clemens Rath (2010). Managing Business Process Variants at eBay. In the

2nd International Workshop on BPMN, Potsdam, Germany.

Emilian Pascalau and Adrian Giurca (2009). A Rule-Based Approach of Creating and Executing
Mashups. In Proceedings of 9th IFIP Conference on e-Business, e-Services, and e-Society, (I3E
2009). C. Godart et al. (Eds.): I3E 2009, IFIP AICT 305, pp. 82-95, 2009. 23-25 September,
Nancy, France.

Emilian Pascalau and Adrian Giurca (2009). A Lightweight Architecture of an ECA Rule Engine
for Web Browsers. In Proceedings of 5th Knowledge Engineering and Software Engineering,
KESE 2009, collocated with KI 2009, G. J. Nalepa and J. Baumeister(Eds.), September 15, 2009,
Paderborn, Germany, CEUR Workshop Proceedings, vol. 486.

Adrian Giurca and Emilian Pascalau. JSON Rules. In Proceedings of the 4th Knowledge
Engineering and Software Engineering, KESE 2008, collocated with KI 2008, G. J. Nalepa and J.
Baumeister(Eds.), Spetember 23, 2008, Kaiserlautern, Germany, CEUR Workshop Proceedings,
vol. 425.

Emilian Pascalau, 2014

1.4. CONTRIBUTIONS

Chapter 2

Related Work on Mashups

In this chapter we review existing work in the area of Web services, Web 2.0, Semantic Web, Semantic
Web Services, Web of data presenting their influences on developing mashup tools.

To the best of our knowledge we are not aware of any other survey of such dimensions and which
addresses so many aspects related to mashups development.

Mashups are one of the Web 2.0 paradigms and a promising End User Development (EUD)
application area [Grammel et Storey, 2008]]. We believe that they come most closely to the type of use
case that we have enunciated in Chapter I}

The term mashup is borrowed from pop music, where it denotes remixing songs or parts of songs
to deliver new derivative works. Similar to this, Web mashups remix content from the Web and deliver
new results, often insights among disparate and originally independent sets of information and function,
and thus create innovation through assembly. Mashup developers identify particular opportunities from
combining existing capabilities on the Web and offer new solutions and inspiration that in turn lead to
new and innovative opportunities.

Several definitions have been given to define the concept of mashups. Altinel et al. [Altinel ef al.)
2007]] define a mashup as

a web application that combines content from two or more applications to create a new
application. Situational applications are enterprise web applications built on-the-fly to
solve a specific business problem. They are often developed without involvement of the
IT department and operate outside of its control. They combine data from a variety of
enterprise sources such as SAP or Office applications, back-end databases, and content
management systems.

In a similar manner Grammel and Storey [[Grammel et Storey, 2008|] define mashups as

applications that reuse and combine data and services available on the web. They are
developed in a rapid, ad-hoc manner to automate processes and remix information. This
enables users to explore information in new ways and saves valuable time that may be lost
in laborious routine tasks.

Although all the definitions provided emphasize more or less the same characteristics, Eric Schmidt
from Google defines such novel applications as

"applications that are pieced together” - with the characteristics that the apps are relatively
small, the data is in the cloud, the apps can run on any device (PC or mobile), the apps are

9

2.1. MASHUPS AND WEB SERVICES / SOA 10

very fast and very customizable, and are distributed virally (social networks, email, etc)

2.1 Mashups and Web Services / SOA

The idea of providing services on the web has been tightly bound to Web services technologies
[Pedrinaci et Domingue, 2010|]. The reality, however is that, Web services, despite their name, are
hardly a Web-oriented technology, but rather one that is enterprise oriented. Moreover because of their
still complicated technical nature, "Web services have hardly been adopted beyond the boundaries of
enterprises” [Davies et al., 2009].

The notion of a service is defined by Lovelock et al. [C. Lovelock, 1996 as

an act or performance offered by one party to another. Although the process may be
tied to a physical product, the performance is essentially intangible and does not normally
result in ownership of any of the factors of production.

A Web service on the other hand has been defined in [Sommerville, 2006]:

as a loosely coupled, reusable software component that encapsulates discrete function-
ality, which may be distributed and programmatically accessed. A web service is a service
that is accessed using standard Internet and XML-based protocols.

The concept of Service Oriented Architecture (SOA) is probably the most popular outcome of
research in service based composition and has created a completely new way to composing existing
functionality through dynamically binding and invoking services into a composite application. As
stated in [Ogrinz, 2009, SOA is an evolutionary milestone and not a revolutionary one, where
the understanding of a service in SOA is that of a business task. Such tasks are implemented in
environments that facilitate loose coupling.

A holistic set of standards [MacKenzie et al., 2006] has been developed to support the automatic
discovery of service, binding of a service provider and a service requestor and invoking service
capabilities through homogeneous interfaces. These are the Web Service [Booth et al., 2004]] standards
along with specification of WSDL [Christensen et al., 2001] and SOAP [Gudgin et al., 2007].

The Universal Business Registry part of the Universal Description Discovery and Integration
(UDDI) [Hately et al., 2004] is probably the most well known effort towards supporting publication
and later discovery of services on the Web. Unfortunately, same as the Web services themselves these
registries did not have too much success either. They were complex registries and they lacked support
for expressive queries [Pedrinaci et Domingue, 2010].

To simplify the standard Web Services stack and impelled by the Web 2.0 phenomena Web APIs
have emerged, also called RESTful services when they comply with the REST [Fielding, 2000]
architectural style. These services rely on a different stack that is well suited for the Web: URIs, HTTP,
XML and JSON.

Figure [2.T] depicts the general operation required by SOA. On the other hand Figures [2.2]and [2.3]
present the mashup development scenarios [[Cappiello ef al., 2011]]. We can easily observe the
similarities between the two approaches. Based on the three figures (see [2.1] [2.2] [2.3]) both cases (Web
services and Mashups) follow the same conceptual approach. In the Web services’ case we have an
UDDI registry where service providers publish Web services. Service requestors then can find services
in the registry and bind to a found service. Similarly in the mashups case services (APIs) are published

Thttp://www.youtube.com/watch?v=TOQImmdw?3b0, retrieved 17 December 2013

http://www.youtube.com/watch?v=T0QJmmdw3b0

CHAPTER 2. RELATED WORK ON MASHUPS 11

in a repository. The repository in this case, does not follow any strict rules or guidelines like in the
UDDI case. The WWW could be the repository. Later either developers themselves or users find

and mashup (bind) services. However SOA generally focuses on server-side architecture and internal
corporate resources [[Ogrinz, 2009].

Service
pubfiish Provider bihd
Service Registry Service
uDDI Requestor

Figure 2.1: SOA operations: Publish, Find, Bind

chooses

publishes ~ Mashes up

S/ \writes N IS
/ \ Y,

\
‘ \ \
Component Developer | 3

| \
! \

|
1

i deugiops
Architectures
Data Sources

= A |
Protocols \IJ;\ Maéhup .
Languages Service epository H Mashup ‘
Styles /I—J Tool

Layout
Technologies

h
1
0
|

\
\

|

1

'

\ \
\ \

|

|

1

| \
'

Figure 2.2: Mashup development scenario 1, [Cappiello ef al., 2011]]

chooses selects

N - publishes

! / /
Component Developer | 3
|
\

|

\ ; Mashup User
i 1

!

! |
i devélops
|
V. |
Architectures
Data Sources

! ' : ;
Protocols \IJ;\ Mashup .
Languages Service epository H Mashup ‘
Styles /I—J Tool
Layout
Technologies

! |
I
v |
uses
! : P
1 !

|

1

|

| I
\ (W

|

|

1

i

i

Figure 2.3: Mashup development scenario 2, [Cappiello ef al., 2011]]

Emilian Pascalau, 2014

2.2. SEMANTIC WEB AND WEB OF DATA 12

2.2 Semantic Web and Web of Data

The Semantic Web or the web of Linked Data can be an extension of the human-readable Web by adding
formal knowledge representation such that intelligent software could reason with the information in an
automatic and flexible way.

The web of data is based on some simple principles [Pedrinaci et Domingue, 2010[]: (1) every
piece of data should be given an HTTP URI, when looked up (2) should provide useful information
using standards like RDF and SPARQL,; (3) data should be linked to other resources therefore allowing
humans and computer to discover new information.

The most notable example of Linked Data and Semantic Web is DBpedia [Auer et Lehmann, 2007]].
DBpedia is basically a copy of Wikipedia that takes advantage of "structured data" in the infobox that
is found on most of the wikipedia pages. This information is used to automatically extract, annotate
and store it as RDF triples.

2.3 Mashups and Software as a Service

While service composition and service based applications address provisioning of a business task from
a technological perspective, Software as a Service (SaaS) takes this approach one step further and
offers complete applications over the Web [Foster et Tuecke, 2005]]. In fact, SaaS can be seen as a
business model. Under such a business model, companies would not be required to invest money in an
internal development and management of applications. Instead they would rent needed functionality
from external service vendors. Usually, end users interact with these applications via a Web browser.

There are some key points that characterize software as a service (see for example [Traudt et
Konary, 2005]):

e network-based access and management of commercially available software;
e activities managed from central locations rather than at each customer’s site;

e enabling customers to access applications remotely via the Web, without the need to install any
software on client machines;

e application delivery typically closer to a one-fo-many model (single instance, multi-tenant
architecture) rather than to a one-to-one model, including architecture, pricing, partnering, and
management characteristics;

e continuous improvement and updates of the hosted software, which obviates the need for end-
users to download patches and upgrades;

e frequent integration into a larger network of communicating software—either as part of a mashup
or as a plugin to a platform as a service.

We provide a comparison [Pascalau et Giurca, 2009b]] that illustrates similarities between the
conceptual architecture of desktop applications, Software as a Service, and Mashups.

Computer systems run an operating system, and, on top of this, a number of application program-
ming interfaces (APIs) to access different services of the operating system, e.g., network, display, file
system, as depicted in Figure [2.4] These APIs facilitate application development, because they abstract
from the mechanisms to interact with hardware, which makes software development easier and more
efficient.

CHAPTER 2. RELATED WORK ON MASHUPS 13

Application
2l 5|8 e ul
o o =
z (%] (e
< a

Operating System

Figure 2.4: Desktop Computer, [Pascalau et Giurca, 2009b]

Software as a Service follows a similar approach, cf., Figure [2.5] whereas computer and operating
system have been replaced by Web application servers and the operating system APIs by Web APIs—
services that offer access to certain functionality over the Web. Application logic as well as data remain
on the Web; applications are not anymore desktop based but run in the Web browsers of users. In this
scenario, the APIs are under strong control of the provider of the SaaS application. This is due to the
nature of this business model: The provider needs to provide reliable and trustworthy applications.
Services and application are provided and controlled by the same authority, designed for a specific
and narrow use case. Famous examples of SaaS are many Google products such as Gmail, Docs and
Spreadsheets, or Calendar.

Application

< =z
218 g | 2 z
ol s = o o Ul
<| 5 5| < <

[4) 0

Platform as a Service

Figure 2.5: Software as a Service, [Pascalau et Giurca, 2009b]|

Mashups take the approach of offering Software as a Service another step further and broaden the
scope and origin of services [[Ogrinz, 2009]. Instead of assuming a closed domain of responsibility
to access services, or APIs, on the Web, the Internet has become the operating system—a famous
observation that has emerged along with Web 2.0 [O’Reilly, 2005[]. While SaaS is mainly based on a
proprietary central platform, which offers different services, mashups are generally based on various
service sources available on the Web, depicted in Figure 2.6l Many of such services are offered by
companies, such as Yahoo, Google, Technorati, Amazon, etc. In other cases, mashups may exploit
information or functionality that was not even intended for reuse in other applicationsﬂ [Alba et al..
2008].

%In fact, the developer of http://housingmaps.com, Paul Rademacher, was hired by Google to develop the Google Maps
API after he leveraged Google Maps by hacking them to create his very famous mashup.

Emilian Pascalau, 2014

http://housingmaps.com

2.4. MASHUPS AND PORTALS 14

Mashup
é) O c
K] o 2 o o =
a|lg|8|£|2|8 |8 ul
| & |0 3| s | & L
L =
INTERNET

Figure 2.6: Mashup, [Pascalau et Giurca, 2009b]

Similar to the above models, mashups leverage APIs to access data and functionality on the Web;
they even use similar technologies and are based on the same paradigms to building applications
and interacting with services running on a Web server [Garrett, 2005]. However, services are used
regardless of their origin or their intended use case. Mashup developers and service providers are, in
general, different bodies, and neither can assume the particular use cases of the other, which led to the
development of application independent APIs and protocols. This way, new applications are created
from old ones.

Due to their character, mashups expose characteristics beyond those stated for SaaS above:

e Mashups use APIs from different platforms to aggregate and reuse content;

o Usually mashups operate on content and protocols based on open standards, such as Atom [Not{
tingham et Sayre, 2005, AtomPub [Gregorio et de hOra, 2007], RSS 2.0 [RSS, 2009], and
RDF [Klyne et Caroll, 2004];

e "melting pot” style of content recombination, such that, content is aggregated arbitrarily serving
situational needs;

e data access is preferably based on the principles of REST [Fielding, 2000] applied to HTTP.

2.4 Mashups and Portals

Data aggregation from multiple sources inside and outside the boundaries of the work place is not a
new concept. This approach has been driven by companies’ needs of providing users — customers as
well as employees — with the ability to access disparate applications or at least services from one single,
centralized point: Web Portals or Enterprise Portals. Portals are an established technology that are
available as an extension to traditional Web applications [Abdelnur et Hepper, 2003|]. In general, a
portal aggregates fragments of data in so-called portlets.

A portlet

is an application that provides a specific piece of content (information or service) to
be included as part of a portal page. It is managed by a portlet container, that processes
requests and generates dynamic content. Portlets are used by portals as pluggable user
interface components that provide a presentation layer to information systems [Hepper!
2008]].

CHAPTER 2. RELATED WORK ON MASHUPS 15

A portlet generates a markup fragment, e.g., XML, HTML, that complies with specific rules. Such
fragments are aggregated to form a complete document, in the form of a Web page—the application
portal, which typically provides following features [|[Ogrinz, 2009, |Sun Microsystems, 2007]:

o Identity Management: for example single sign-on (SSO);
e Secure Remote Access: centralized administration of what information a user can access;

e Modularization: portlets expose information and functionality from disparate systems and may
interact with each other;

e Content Personalization: users have limited capabilities to modify the layout and presentation
of the site;

e Aggregation and Integration: the set of portlets offers an aggregate view on a set of information
sources and often provides search access among these.

Figure[2.7|depicts an abstract view on portals. A portal consists of a set of portlets, their composition
is up to customization on the user’s preferences. Portlets are deployed within the same domain
boundaries as the portal server, since portlets are rendered on server-side into a composite markup page,
e.g., HTML, that is delivered to the user agent, i.e., the browser. The OASIS specification [[Thompson.
2008|] for remote portlets, describes a way in which portlets could access Web services that are outside
of the portal application.

Widget-based mashups — also referred to as "Dashboards” [Kunze, 2009] — represent a specific
type of mashups that is quite similar to portals, in that the dashboard offers a set of widgets as
information fragments similar to portals offering portlets. The term dashboard refers to dashboards of
machines, e.g., vehicles, that provide an overview of a set of gauges at the same time. Yet, each of
these gauges retrieves its information from a different origin as the others and is mostly independent
of them. These gauges are called widgets or gadgets in the context of dashboard mashups. This
paradigm, which will be further addressed in Section [2.5.1] is less restrictive than the portal approach
and allows non-programmers to assemble their own mashups or mini applications in a simple fashion.
By that, dashboards come close to the ultimate desire of many mashup advocates: making application
development end user capable [Janner et al., 2009].

Portal Dashboard

A

e

|p1||p2|...|pk|...|pn W _
domain A domain A| |domain B domain Z

Figure 2.7: Architectural Concepts of Portals (left) and Dashboards (right)

In contrast to portals, where the set of portlets is limited by the driving entity, mainly the organi-
zation hosting the portal, dashboards allow the end user to add any widget that they would like—not

Emilian Pascalau, 2014

2.4. MASHUPS AND PORTALS 16

only those provided by a dashboard provider. Additionally, widgets can be obtained from any place on
the Web that is accessible from the user’s computer and are not restricted to those deployed within the
same domairl] as the dashboard itself.

This is illustrated in Figure While portals deliver all information fragments (portlets) statically
within one single markup document (HTML) from one single domain, a dashboard is only the container
for widgets. The widgets themselves are loaded from disparate domains after the instantiation of the
dashboard container (indicated through dashed lines in Figure[2.7)), and each of them runs within its
own execution context independently from each other. Extensions to the container, such as a message
based communication hub, cf., [Keukelaere er al., 2008], allow for interaction among widgets. In
contrast to portals, dashboards allow end users to add, remove, or change the set of widgets from any
source on the Web at runtime, without reloading the container. Widgets need not necessarily comply
with regulations, since they are in principle Web applications offered through a URL. This allows
widgets to be mashups, in turn.

While mashups tend to get rid of some of the obstacles of portals, e.g., the limited possibilities
for customization, and add new flexibility through enabling access to open Web APIs, they suffer
particularly from governance issues—identity management and secure remote access—due to the
nature of accessing federated content [[Kunze, 2009]. Table [2;1'] compares some more aspects of portals
and dashboards.

Increased interest in dashboards from organizations fueled the development of enterprise level
dashboards, often provided through established software providers, e.g., IBM Mashup Centelﬂ or SAP
Roofto;ﬂ At the same time, the formal specification of widgets, their behavior and interaction within a
common context is subject to current research, cf., [Abiteboul et al., 2008, (Guo et al., 2008} Hoyer et
al., 2009| Jackson et Wang, 2007, [Keukelaere et al., 2008, [Laga ef al., 2009, |Yu et al., 2007].

Criteria Portal Dashboard

aggregation style | side-by-side any manner, hybrid
content

information server-side client-side

fragments

aggregated on

standards JSR 168, JSR 268 no standards, but
adopted proposals,

e.g., Google Gadgets
API, W3C Widget
Packaging and
Configuration

who decides on organization, portal end user

available content | provider

Table 2.1: Portals vs. Mashups—Comparison

3The term "domain" is used twofold, here: the domain of responsibility for a set of IT services, which is embraced by an
organization; and a domain namespace in terms of the domain name system (DNS) used for referring to resources on the
Web [Mockapetris, 1987]]. On the Web, both generally complement each other.

“http://www-01.ibm.com/software/info/mashup-center/

Shttp://www.sapweb20.com/blog/2010/01/sap-innovation- enterprise-mashup-prototype-rooftop-marketplace/

http://www-01.ibm.com/software/info/mashup-center/
http://www.sapweb20.com/blog/2010/01/sap-innovation- enterprise-mashup-prototype-rooftop-marketplace/

CHAPTER 2. RELATED WORK ON MASHUPS 17

2.5 Mashups - Conceptual approaches

This section describes the major approaches that have been used to design mashups tools: (1) mashups
as collections of widgets; (2) pipes based mashups, and semantic pipes based mashups; (3) hybrid
approaches; (4) doman specific languages for mashups.

2.5.1 Mashups as a Collection of Widgets

While the World Wide Web Consortium (W3C) strives to establish a standard definition for widgets—
"client-side applications that are authored using Web standards, but whose content can also be embedded
into Web documents" [Caceres, 2009]—there are further definitions for the widget concept: Wikipedia
defines widgets as

a portable chunk of code that can be installed and executed within any separate HTML-
based web page by an end user without requiring additional compilation. They are akin to
plugins or extensions in desktop applications. Other terms used to describe a Web Widget
include Gadget, Badge, Module, Capsule, Snippet, Mini, and Flake [free encyclopedia|
2009].

Wicks et al. further characterize a widget as

a small program or piece of dynamic content that can be easily placed into a Web site.
"Mashable” widgets pass events, so that they can be wired together to create something
new, [Wicks et al., 2009].

Although the W3C provides a working draft [Caceres, 2009] that deals with packing and config-
uration of widgets there is no standard for creation and execution of widgets, as discussed in below
sections. Companies, such as Google, Yahoo, Amazon, Microsoft, and IBM, have developed their own
widgets and widget platforms.

Typically widgets are defined declaratively using an XML based language, but the generated
executable code is platform dependent. Run in a Web browser, they are usually embedded using
iframe elements.

The W3C proposed an architecture for Widgets, cf., Figure[2.8] The concepts involved are:

e host runtime environment: the hosting system for mashup instances;

e media type: a pre-registered media type [Freed et Borenstein, 1996] that associates the package
with a certain runtime environment, e.g., application/vnd.yahoo.widget;

e packaging format: self-contained, structured resource that encapsulates the contents of a
widget;

e manifest: a specific resource of the package that contains the configuration of the widget and of
the environment;

e APIs: a set of programming interfaces that provide functionality specific to widgets;

e resources: images, text, graphical user interface markup, style sheets, executable scripts and
other possible parts of the widget.

Emilian Pascalau, 2014

2.5. MASHUPS - CONCEPTUAL APPROACHES 18

Distribution Metadata Structural Semantics Presentation
and Deployment and Security (Accessibility) Logic and Behavior
N N A AL
7 7 a r
HTML or Proprietary XML
< *
k: Manifest* .
o () =
= S XMLHttpRequest Widgets
=% = API*
(L= s | 2 Css
a 9 8 = Resources
o D ° =))
; o g g (images, sounds, etc)
° > S XML ECMAScript
% o
1= DOM
Q
© HTTP | URI Unicode
Host Runtime Environment

* Proposed for standardization in “Widgets 1.0: Packaging and Configuration”

Figure 2.8: Widgets Architecture - W3C, [Caceres, 2009]]

Vendor Container File Extension | Media Type
Format

Yahoo! Widgets | Zip, directory, .widget application/

Engine proprietary vnd.yahoo.widget
flat-file

Microsoft Zip, Cab, .gadget application/x-

Windows directory windows-

Sidebar gadget

Google Desktop | Zip .gg app/gg

Opera Browser | Zip .Zip application/x-

opera-widgets

Apple Mac OS | Zip, Apple .wdgt or .zip application/x-

X Dashboard bundle macbinary

AOL Modules Zip .html text/html

Table 2.2: Widgets packaging formats

It is worth mentioning that widgets based on host runtime environment can also be used as desktop
applications. However, in this case the host environment is a desktop application that incorporates a
mashup server. Such a server, e.g., Konfabulator for Yahoo WidgetsE] has access to the web and also to
the local content, binding both contexts.

Tables and [2.3| provide information regarding the packaging formats, manifest files for several
of the major widget vendors. The mentioned tables are another evidence that there is no accepted
standard for widgets.

The next subsections present Google Gadgets and Yahoo Widgets, who, opposed to other ap-
proaches, expose an information-centric model. Although there are several vendors tackling widget

®http://widgets.yahoo.com/tools/

http://widgets.yahoo.com/tools/

CHAPTER 2. RELATED WORK ON MASHUPS

19

Vendor Manifest Manifest File UI Markup
Format

Yahoo! Widgets | Proprietary * kon Proprietary

Engine XML Yahoo! XMLWidgets
Widgets Reference
Reference

Microsoft Proprietary gadget.xml HTML + CSS

Windows XML Microsoft

Sidebar Gadgets

Google Desktop | Proprietary gadget.gmanifest | Proprietary
XML Google XML Google
Gadgets Gadgets

Opera Widgets | Proprietary config.xml HTML + CSS
XML Opera
Config

Apple Mac OS | Proprietary Info.plist HTML + CSS

X Dashboard XML Apple
pList

AOL Modules Microformat index.html HTML + CSS

(any capable AOL ModuleT

User Agent)

Table 2.3: Widgets manifest files formats

based technologies, such as Apple with the Mac OS X Dashboard[} Facebook®] or Pageflake’} their
approaches are rather programming-centric.

Google Gadgets.

Google Gadgets [Google, 2009] is Google’s approach to tackle mashups. Figure and Figure|2.10
depict the information model behind Google Gadgets. Google uses and contributes to the Open Social
gadgets specification [OpenSocial, 2009].

Google gadgets rely on two major concepts: Content and ModulePrefs. A gadget might have
more than one Content entity. Inside it the user might insert any HTML, possibly with embedded
JavaScript, Flash, ActiveX, or other browser objects, specified by the t ype property. A second option
is to provide just a URL of a remote page that contains a gadget’s content.

ModulePrefs specifies the gadget’s characteristics. Google gadgets facilitate the use of REST
services (Section @ authentication, e.g., OAuth entity, and also inherit the views approach (views
attribute of Preload) from portlets [Hepper, 2008].

Google provides means that allow users to create their own dashboard (see Sections [2.4]and [2.5.1):
Every Google user has their own iGoogle@] page where gadgets can be added or removed.

"http://developer.apple.com/macosx/dashboard.html
8http://developers.facebook.com/
“http://developers.pageflakes.com/
http://www.google.com/ig

Emilian Pascalau, 2014

http://developer.apple.com/macosx/dashboard.html
http://developers.facebook.com/
http://developers.pageflakes.com/
http://www.google.com/ig

2.5. MASHUPS - CONCEPTUAL APPROACHES 20

Module

i

0.1 0. 1.*

ModulePrefs UserPref Content
-title[0..1] : String -name[1] : String -type[1] : ContentType = html
-titleURL[0..1] : String -displayName][0..1] : String -view[0..*] : ViewType
-description[0..1] : String -defaultValue[0..1] : String -preferedHeight[0..1] : Integer
-author[0..1] : String -required[0..1] : String -preferedWidth[0..1] : Integer
-authorEmail[0..1] : String -dataType[1] : DataType = string -href[0..1] : String
-screenshot[0..1] : String
-thumbnail[0..1] : String 1
-directoryTitle[0..1] : String

O”*
EnumValue

-value[1] : String
-displayValue[0..1] : String

Figure 2.9: Google Gadgets - Main Concepts

Gadgets are stored as XML [Bray et al., 2008] files, e.g.,
http://www.google.com/ig/imodules/calendar3.xml. The XML definitions have to be published on the
Google Gadget platform and, only after that, can be processed by the Google Gadget Engine.

From an engineering point of view gadgets are embedded with the help of script elements. The
result of their execution is usually an i f rame element that is added to the DOM [Hors et al., 2004] of
the embedding page.

Yahoo Widgets.

Similarly to Google gadgets, Yahoo Widgets [[Yahoo, 2009]—previously known as "Konfabulator’Elf
have a formal grammar, but a proprietary one that is not striving to become part of an open Web
standard. Figures[2.11)and [2.12) depict the Yahoo Widgets concepts. Some of the concepts are inherited
from HTML, e.g., Image, Text, Frame, Textarea, ScrollBar, Window, Canvas. Concepts
for menus, MenuItem, and for accessibility, Hot Key, are available, as well.

There are two fundamental differences compared to Google Gadgets: First, Yahoo Widgets are
oriented towards a functional API based approach, providing a Script element. Second, there is
an obvious tendency for a high level approach concerning actions. Action and Timer concepts
emphasize the issue of actions triggered by events. However, in the Yahoo widgets context they are
just part of a programmatic interfaces. On the other hand, from a high level perspective this approach
is either related to Event-Condition-Action (ECA) rules, where actions are triggered by events, or to
business processes where actions are preceded by concrete events or by implicit events.

The technical perspective has similarities as well as differences to Google. Users can run widgets
from their local machine, i.e., using the local server application. In this case an engine is required to be
installed on the client machine. Through the installed engine, widgets can access both the local content
and the remote content. Widgets can also be published on a Web server, the Yahoo Widget Server, and

Uhttp://konfabulator.com/cartoon/partOne.html

http://www.google.com/ig/modules/calendar3.xml
http://konfabulator.com/cartoon/partOne.html

CHAPTER 2. RELATED WORK ON MASHUPS 21

OAuthResource

-url[1] : String
-method[0..1] : MethodType = GET
-paramLocation[0..1] : ParamLocationType = auth-header

| Request | | Access | Authorization
-url[1] : String
1 1 /P
: 1
Service
OAuth -
-name[0..1] : String ="
0.1 01*
Link
-href[1] : String
N -rel[1] : String
0.. -method[0..1] : MethodType = GET
Locale
MSG
ModulePrefs -lang[0..1] : String “name[d] - Strin

-title[0..1] : String -country[0..1] : String -descl0 lj . Stri?w
-titleURL[0..1] : String 0.* |-messages|0..1] : String 0* |ms [1]"_ St.rin 9
-description[0..1] : String -languageDirection[1] : LanguageDirectionType = Itr 9l 9
-author[0..1] : String
-authorEmail[0..1] : String m Icon
-screenshot[0..1] : String N T Sirng =
thumbnail[0..1] : String _gggfo[oi]l ! ;sﬁit;';g base64
-directoryTitle[0..1] : String 0.* —conter'.ni[l]': Base64

Preload
-href[1] : String
-authz[1] : AuthzType = none
-signOwner[1] : Boolean = true
-signViewer[1] : Boolean = true
0.* -views[0..*] : ViewType
-oauthServiceName[0..1] : String
-oauthRequesToken[0..1] : String
-oauthRequesTokenSecret[0..1] : String

; _ GadgetFeatureType

0.x v -feature[1] : String
0.* 1
0”*
Param

-name[1] : String
-value[1] : String

Figure 2.10: Google Gadgets - ModulePrefs

be embedded into web pages, too. In the latter case, they are officially termed ”badges’ﬁ by Yahoo.
Picking up the discussion from Section [2.4] at a high level, we observe that both approaches
(widgets/gadgets and portlets) tackle the same concepts. However, the widget/gadget approach allow
for greater flexibility, due to advanced means for Uls definitions, mostly because of the functionality
provided by HTML and CSS, in addition to the new Canvas element introduced in HTML 5 (Yahoo
Widgets already use the Canvas element see Figure [2.T1). From the run-time perspective both the

Phttp://widgets.yahoo.com/badges/

Emilian Pascalau, 2014

http://widgets.yahoo.com/badges/

2.5. MASHUPS - CONCEPTUAL APPROACHES

22

0.* g
g
\V 0.% 0=
0.* . 0.1
Script o
src : Sting Action Settin i Canvas - °
-charset : String | [-file : String g. Window -scro::i{(: :nleger
i . Stri -value : String -url
interval : Strirgy. 1 0.. i - String
-bgColor : String

widget/gadget and portal approaches need some sort of a server that delivers the content.

Timer

| CanvasRenderingContext2D

-autoVScrollBar : Boolean
-autoHScrollBar : Boolean

-truncation : String
-wrap : Boolean

Q

AboutText

-color : String
-data : String
-hOffset : Integer
-vOffset : Integer
-font : String

-size : Integer
-style : String
-shadow : Shadow
-url : String

-bgColor : String
-bgOpacity : Integer
-color : String
-columns : Integer
-data : String
-editable : Boolean
-font : String

-lines : Integer
-onGainFocus : String
-onKeyDown : String
-onKeyUp : String
-onKeyPress : String
-onLoseFocus : String
-secure : Boolean
-scrollbar : Boolean
-size : Integer
-spellcheck : Boolean
-style : String

-thumbColor : String

Figure 2.11: Yahoo Widgets Information Model 1

2.5.2 Pipes Based Mashups

-interval : String -base : String
-ticking : Boolean 0. _vscrollBar
-onTimerFired : String 0.* Q/ _hscrollBar
Tor
*
-anchorStyle : String 0.
-bgColor : String
-bgOpacity : Integer Image
-color : String _ a
-data : String -colorize : String
-font : String -hsITiqting : String) o
-size : Integer -hslAdjustment : String -
-style : String -src : String
-scrolling : String
Textarea

The concept of a pipe has been introduced by Doug McIlroy{E in 1964, and refers to data aggregation
in the context of macros: The output of a process becomes the input of another process, i.e., a pipe is
a data processing pipeline [Hohpe et Woolf, 2003]]. In the mashups context, pipes are mainly about
data aggregation. Various sources of data (typically Atom or RSS feeds) are queried and aggregated to
create a new data source (usually a new feed).

Yahoo Pipes

Pipes for mashups were pioneered by Yahoo with their Yahoo Pipeﬂ which allows users to aggregate
feeds and create data mashups using a visual editor. Pipes are created by combing several building

Bhttp://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.pdf, http://www.princeton.edu/ hos/frs122/precis/mcilroy.htm

Yhttp://pipes.yahoo.com/pipes/

http://cm.bell-labs.com/cm/cs/who/dmr/mdmpipe.pdf
http://www.princeton.edu/~hos/frs122/precis/mcilroy.htm
http://pipes.yahoo.com/pipes/

CHAPTER 2. RELATED WORK ON MASHUPS 23

Widget

} x

o

HotKey Setting | Security | 0. 0.1

-name : String -name : String -hAlign : Integer
-key : Strin -value : Strin 1 -vAlign : Integer
-mg’diﬁer : glring 2 L Preference | AboutBox | -hOffset : Integer
-onKeyDown : String . -defaultValue : String -vOffset : Integer
-onKeyUp : String -description 1 w -firstChild
API -directory : String 1 -lastChild
-name : String -extension : String 1 0.* -next_Siinng i]
0.* - -previousSibling : String
group 1 -onClick : String
name 1 Aboutlmage AboutText -onDragDrop : String
Menultem -path : String [|-color : String ‘Ongfaggnﬁlﬂéts_mng
- - : Strin -onDragEXxit : String
:Zz:gl(:g N gg;f:: PreferenceGroup -ﬁaotgse?t: Intgeger -onMouseDown : String
-onSeIectA: String -name : S_tring -vOffset : Integer -onMouseEn_ter : S_tnng
title : String -icon : Sl(lng -font : String -onMouseEXxit : Strlng
-title : String -size : Integer -onMouseMove : String
-order : String -style : String -onMouseUp : String
_shadow : Shadow -onMultiClick : String
-url : String -opacity : Integer
AN -parentNode
-subviews

ScrollBar

-tooltip

-visible : Boolean
-window

-zOrder

-width : Integer

-autoHide : Boolean

-max : Integer

-min : Integer

-onValueChanged : String

-orientation : String

-pageSize : Integer

-thumbColor : String

-value : String

Figure 2.12: Yahoo Widgets Information Model 2

blocks, such as: User Inputs, Sources, URL, Operators, Location, and so forth.

A Yahoo pipe can have several inputs, but has only one output. The output is usually a feed (RSS
or Atom). Another class of concepts relevant to the pipes approach is the operator. Some of the
provided operators were greatly inspired from relational algebra such as sort, filter, or union, others are
control flow operators such as loops. Special modules that deal with most common data types are also
provided. Modules for Numbers, Strings, Date are defined. Modules for specific contexts, e.g.,
Location, have been taken into consideration, as well.

Semantic Web Pipes
Morbidoni et al. [Morbidoni et al., 2007]] define a

semantic pipe as implementing a predefined workflow that, given a set of RDF sources
(resolvable URLSs), processes them by means of special purpose operators.

The model is not a fully fledged workflow but rather a simple construction kit that consists of linked
operators.

Semantic Web Pipes deal with data aggregation as well as with processing the data in meaningful
ways. Various building blocks are defined to process data sources, e.g., HTML, XML and JSON, and
for processing data (mainly RDF data), i.e., operators (defined on top of the SPARQL query language)
as well as user input blocks and conditional blocks. In addition, these pipes use an XML language
behind the visual notations.

Emilian Pascalau, 2014

2.5. MASHUPS - CONCEPTUAL APPROACHES 24

As a consequence, a semantic mashup in this context is basically a data mashup using RDF(S) as
data model and SPARQL to query and process data. However, while in the basic case semantic pipes
just aggregate semantic data, semantic mashups may have reasoning capabilities, and semantic web
reasoners, such as KAONZD| Pelle(™] Racef] Jend™|

2.5.3 Hybrid
IBM Mashup Center

IBM Mashup Center has at its core a pipes-based technology, which has been improved with XPath
constructs. In addition it provides also means to create widgets. These widgets use as data sources the
feeds created with the corresponding pipes based tool.

Singh states in [[Singh, 2008]] that the IBM Mashup Center facilitates individuals to integrate and
share information from diverse sources across organizational boundaries. "Data from multiple data
sources can be merged, filtered, sorted, grouped, and transformed to create feed mashups". In addition,
according to [IBM, 2008] the tool deals only with feed mashups i.e. a feed mashup "is a feed that you
create by taking a source feed and applying operators and functions to filter and restructure source
data".

type : FeedType

Mashup
version : Double
url : anyURI 1
VersionInfo Variable
1
1 * 0..*
Source . L *
id : String " | Operator
name : String | id : String
originalType : FeedType [1.* [name : String
|
|
1

N\

«invariant»
{self.operator->size() = 1 implies self.operator.oclisKindOf(Publish)}

Figure 2.13: The Core Concepts of IBM Mashup Center

The general model of an IBM mashup is depicted in Figure [2.13] A mashup comprises a F1ow and
Data. While the most important concept is the F1ow, the Data concept is used to store intermediary
or output data. The F1ow holds the whole logic of the mashup. It contains at least one Operator,
the Publ1ish operator, may have flow variable declarations (Variable) and has one or more data
sources (Source). An IBM Mashup according to IBM view has a name and an URI. The URI is used
to identify the feed created as a result of the mashup execution. Consequently, IBM mashups can be
composed i.e. mashups can be integrated in other mashups, since their output is also a feed.

Bhttp://kaon2.semanticweb.org/
"®http://pellet.owldl.com/
http://www.racer-systems.com/
Bhttp://jena.sourceforge.net/

http://kaon2.semanticweb.org/
http://pellet.owldl.com/
http://www.racer-systems.com/
http://jena.sourceforge.net/

CHAPTER 2. RELATED WORK ON MASHUPS

25

«invariant»

{Source.type=Source.originaltype or Source.type=FeedType. XML

}

7
/
/

Source

id : String
name : String

type : FeedType

originalType : FeedType *

Advanced

repeatelement : XPath

originalrepeatelement : XPath

refreshinterval : Refreshinterval

URL

catalogid[0..1] : Long
name[1] : String
value[1] : anyURI
type[1] : URLType

Param
id : String
name : String 0.*
operatorSpecific : String
position : Integer
1> comments : String
inputld : String
type : ParamType
«enumeration»
«enumeration» FeedType
URLType +ATOM = ATOM
+EXTERNAL = external +XML = XML
+CATALOG = catalog +RSS = RSS

«enumeration»
Refreshinterval

+ALWAYS_FROM_SOURCE =0
+_10Minutes = 600

+_30Minutes = 1800

+_1Hour = 3600

+_2Hours = 7200

+_3Hours = 10800

+_4Hours = 13200

+_10Hours = 36000

+_1Day = 86400

Figure 2.14: The Source Concept of IBM Mashup Center

The Source is depicted in Figure[2.14] The Source encodes both the declaration of the data source

(its URI) but also its invocation. The URL expresses through its properties if it is an external feed or
an internal one, belonging to the catalog. It also points towards the physical location of the feed. In
addition, Source comprises a set of "advanced properties” (Advanced) covering the interpretation
of the data: when a feed is accessed the system automatically finds the type of the feed and stores
the type in the originalType attribute. However the user is allowed to declare how the system is
going to interpret the feed data, by storing a specific data type in the t ype attribute. However, there
is not too much freedom since the user defined t ype can be either the originalType (default) or
XML. Finally, other properties such as originalrepeatedelement and refreshInterval
encodes the repeating element of the feed and the frequency with which the feed should be retrieved.

Data sources can be parameterized declaring specific information on sources. Example[2.5.1| shows

an excerpt from a source declaration in a mashup.

Example 2.5.1 (An IBM Mashup data source).

<source xmlns="http://ibm.com/mashuphub" id="source598"

name="Weather Mashup"

originaltype="RSS" type="RSS" >

<url catalogid="67" caption="Weather Mashup" type="catalog">

http://weather.info/mashuphub/client/plugin/generate/entryid/19/pluginid/10

</url>
<advanced

originalrepeatelement="/rss/channel/item"
repeatelement="/rss/channel/item"
refreshInterval="3600"/>

<param id="sourceb598_pathO" name="domain name"

operatorspecific="http" type="text">

weather.info:9080
</param>

Emilian Pascalau, 2014

2.5. MASHUPS - CONCEPTUAL APPROACHES 26

</source>

{Input.id=Operator.id}

0.1 Input | Operator
id : String - -
N id : Strin
timestamp : Long N name : ngn
name : String 1 . 9

T

ConditionalOperator

Operator
~

—] Pubiish] [combine || [Filter
*

- {Input.id=Param.inputid}
Simple
*
[

Param * Transform «enumeration»
id[1] : String P?ramType
name[1] : String 1. % +TEXT = 1ext
L |operatorSpecific[0..1] : String +XPATH = xpath
position[1] : Integer 1.* +DYNAMIC = dynam_|c
* comments[1] : String +FUNCTION = function
inputld[0..1] : String

type[1] : ParamType

<

* «invariant»
{self.type = ParamType.TEXT implies self.value.ocllsTypeOf(Text)
and
. self.type = ParamType. XPATH implies self.value.ocllsTypeOf(XPath)
and

self.type = ParamType.FUNCTION implies self.value.ocllsTypeOf(Function)
and
self.type = ParamType.DYNAMIC implies self.value.ocllsTypeOf(Variable)

Figure 2.15: The IBM Mashup Operators

Figure [2.15] depicts a general view of the operators offered by the IBM mashup modeling envi-
ronment. There are simple operators and conditional operators. Conditional operators take usage of
conditional expressions. The operators are key constructs implementing the flow. They contain inputs
(derived from data sources) and possible conditions on the data that has to be processed. Example[2.13|
shows a simple Sort operator. Its execution results into creation of an ascending sorted list of cities.
The mechanism of implementing the flow is built via ids i.e. the input id (e.g. transform5284)
refers to the id of another mashup operator.

Example 2.5.2 (A simple IBM Mashup operator).

<operator xmlns="http://ibm.com/mashuphub" id="sort6490" name="By City" type="sort">
<input id="transform5284" name="cityAscending" timestamp="1212104921260"/>
<condition id="cond4664" conjunction="yes">
<param id="param6156" name="city" inputid="transform5284" type="xpath">
./content/row/ns3:city/text () [1]
</param>
<param id="param9523" name="sort" type="text" >
0
</param>
</condition>
</operator>

JackBe Presto Wires

This section presents the general model behind the JackBe Presto Wires composer [Presto, 2009].
JackBe developed an enterprise mashup platform, which enables application developers and end users

CHAPTER 2. RELATED WORK ON MASHUPS 27

to experience self-service data access, and situational integration to make more effective decisions and
independently complete daily tasks [Presto, 2009].
Figure depicts the general UML model of the JackBe mashups.

«invariant»
{self.operator->size() = 1 implies self.operator.oclisKindOf(Output)}

Mashup o 1 7
tstring | \V 4
name : s o+ . v
" Operation
Variable -
name : string = runMashup
Operator

id : number
name : string
label : string

——

| Input | |Directlnvoke| | Output |

Figure 2.16: The Core Concepts of JackBe Presto Wires

It is straightforward to see the strong similarities with the IBM mashups. However while IBM
defines a £1ow, JackBe defines an operation, unique in the scope of a mashup. An operation has a
name. Such a JackBe operation may have variable declarations which are global as in the IBM Mashups
case. The mashup operation contains one or more operators. JackBe operators include Input,
DirectInvoke, Output, and also operators concerning data transformation and data aggregation.
Operators may have inputs but they must have outputs (possibly stored in a Variable(s)).

Therefore, opposed to IBM mashups which defines this behavior implicitly, JackBe distinguish
between the input (Input) and its invocation (DirectInvoke) as well as its result (Output).

This distinction shows the strong influence and orientation towards web services (SOAP and REST)
paradigms (see WSDL [Chinnici et al., 2007]], and WADL [Hadley, 2006]]) while IBM mashups are
much more oriented to proceses/flows.

Example[2.5.3|depicts a simple excerpt of a join operator in JackBe. Unfortunately their XML
language does not really get advantage of XML markup - they widely use attributes instead of elements
(see, for example, the joincondition or inputvariables).

Example 2.5.3 (Simple Operator in JackBe).

<join label="Join" description="Simpel"

Jjoincondition="$Direct_Invoke_60_out=$Direct_Invoke_63_out and
$Direct_Invoke_60_out=$Direct_Invoke_63_out"

outputvariable="Join_58_out" name="Join_58"
inputvariables="Direct_Invoke_60_out, Direct_Invoke_63_out" id="58">
<select>
<Direct_Invoke_60_Direct_Invoke_63/>
</select>

</join>

Enterprise Mashup Markup Language
JackBe Presto provides also a (Domain Specific Language) DSL based approach: Enterprise
Mashup Markup Language (EMML) [Alliance, 2009, |Presto, 2009]. Initiated by J ackBeFEL EMML is

now provided by the Open Mashup AllianceFE] to which belong major companies, e.g., JackBe, Kapow
Technologies, Intel, Adobe, HP, working on a common standard for mashup solutions.

Yhttp://www.jackbe.com/
2http://openmashup.org/

Emilian Pascalau, 2014

http://www.jackbe.com/
http://openmashup.org/

2.5. MASHUPS - CONCEPTUAL APPROACHES 28

Rest-based
3" pParty Web
APIs

SOAP
Traditional
SOA Service

%,
O/ N
O/‘G Me]
.
(S [SQL Databases|
’/‘o,)CII
Open Mashup ~—
Marketplace o—

share -—

or Se” % Custom Data

Sources
deploy ~

interoperable interoperable

EMML
Runtime
Vendor A

EMML
Runtime
Vendor B

EMML
Runtime
Open Source

Figure 2.17: EMML, Dion Hinchcliffe - http://blogs.zdnet.com/Hinchclitfe/

Figure depicts, at a high level, the capabilities of EMML. The languages has been developed
to allow the definition of almost all the concepts used in the approaches described in previous sections.
As such, data flows can be defined using operators similar to Yahoo Pipes: API based aggregation, Web
clipping, and JavaScript embedding. In addition, the language provides constructs that deal with SOAP
based Web services, also BPEL similar constructs are provided. Specific constructs for accessing
enterprise data sources are also provided. Even though JackBe provides different environments for
developing such description files, they are very difficult to address.

The JackBe Mashup server allows the user to publish created mashups as Web services, in turn.

mashArt

mashArt is an approach that comprises "a unified component model and a universal, event-based
composition model, both able to abstract from low-level implementation details and technology
specifics" and aims at "empowering users with easy-to-use and flexible abstractions and techniques to
create and manage composite web applications” [Daniel et al., 2009]. This approach addresses the
mashups concept from a higher abstraction perspective.

The universal component model allows the modeling of Ul components, application components,
e.g., services with an API, and data components, e.g., feeds or access to XML and relational data. The
component model is based on four abstractions:

e state: represented by a set of name-value pairs; addresses changes that are relevant to other
components;

e events: communicate state changes and other information as name-value pairs to the composition

http://blogs.zdnet.com/Hinchcliffe/

CHAPTER 2. RELATED WORK ON MASHUPS 29

environment; a subscription mechanism is in place;
e operations: invoked as result of events; often represent state change requests;
e properties: arbitrary component setup information.

Combination of building blocks, as well as exposing the result as a component is done by means
of the universal composition model. The envisioned composition model deals with both stateful
and stateless components and UI composition. The authors argue that the model has features from
event-based composition as well as from flow-based composition, cf., [Daniel et al., 2009].

2.5.4 Domain Specific Languages for Mashups

Domain specific languages (DSLs) are built on top of hosting languages and abstract from technical
details, tackling a particular problem domain. Through moving the design of a system into the problem
domain, rather than solving it on a technical platform, DSLs can reduce complexity and increase the
efficiency of system development.

MashQL.

MashQL [Jarrar et Dikaiakos, 2008 is a domain specific language, that mainly deals with data mashups.
The language is influenced by Yahoo Pipes. However, an important aspect is that Jarrar and Dikaiakos
regard the Internet as a database, where each source is seen as a table, and a mashup is a query on these
tables. Moreover, they assume that the Web data sources are represented in RDF and that SPARQL is
the query language.

MashQL is a query-by-diagram language. The authors argue that users can formulate queries over
a data source without any prior knowledge about its schema [Jarrar et Dikaiakos, 2008]]; in addition,
no RDF or SPARQL knowledge is required to get started. Four constructs are provided to issue queries
over such web data:

e Query-by-Form: users fill in and submit a form; form fields are seen as query variables;

e Query-by-Example: queries are formulated as filling a table; names of the queried relations
and fields are selected first;

e Conceptual-Query-Languages: users select some concepts from a given conceptual diagram
and their relation is automatically translated into SQL queries;

e Query-by-Filter: permit/block items according to a certain set of conditions.

Mashlets.

The notion of a Mashlet has been introduced in [[Abiteboul et al., 2008]]: Abiteboul et al. define a

mashup as a dynamic network of interacting mashlets. A mashlet may query data sources, import other

mashlets, use external Web services and specify complex interaction patterns between its components.

Mashlets are based on object databases [[Cattell, 1994]] and on active databases [Widom et Ceri, 1996].
The state of a mashlet is maintained and represented by a set of relations:

e internal relations: store internal data;

e input/output relations: interaction with other mashlets or with users;

Emilian Pascalau, 2014

2.6. DISCUSSION 30

e service relations (bidding pattern): capture web services that a mashlet imports or exports.

Mashlet components, as well as interaction between them, can be defined statically or dynamically
at runtime. A mashlet includes in general five relations: Inputs, Outputs, Mashlets, MashletAPIs and
Rules.

Swashup DSL.

Swashup is another DSL introduced by Maximilien et al. [Maximilien et al., 2007|] and addresses
mashups with the help of three main components: (1) data and mediation, (2) service APIs and (3)
means to generate Web applications with customized Uls. The following concepts are Swashup
constituents:

o data: describes data elements used in a service. Such an element corresponds to an XML schema
type. Each data element has a name and a set of attributes;

e api: provides a complete description of a web service interface, including a service’s API
(operation names, parameters, and data types);

e mediation: describes how data elements have to be mapped to each other, including possible
transformations;

e service: binds a service api to a concrete service;

e recipe: constitutes a collection of services and mashups; includes also views for each of the
mashup wiring:

— mashup: composition of one or multiple services; comprises a collection of wiring declara-
tions; each mashup is translated into a composed service that can be further used by other
mashups;

— mediate: invokes a mediation declaration;
— wiring: includes a protocol definition and operations;

— step: one atomic step in a protocol mediation, a step is invoked by the step’s name as a
method call;

— tag: annotate terms.

2.6 Discussion

Based on the previous extensive considerations on trends that have influenced the creation of mashups
as well as based on the research directions identified by the EU FP8 Expert Group working on Services
in the Future Internet @ in the next paragraphs we are going to make a series of assertions and
considerations about the reasons for which we believe the current approaches did not really achieved
the desired outcome; we extract a minimal common model (see Figure[2.18) for mashups based on
mashups approaches presented earlier; we enumerate the requirements that we consider a mashup

http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf, retrieved 13 January 2014
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf, retrieved 13 January 2014

http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf

CHAPTER 2. RELATED WORK ON MASHUPS 31

approach should comply with. Our approach which we are going to develop and present in this thesis
will comply with the identified requirements.

Although mashups have been initially thought and developed only from a technical perspective,
mainly through hacks, we believe that the conceptual side of the problem needs to be taken into account
as well.

Mashup development is a promising End User Development (EUD) application area as argued
in [[Grammel et Storey, 2008]]. By using services that can be accessed through the web as the underlying
platform the development effort is shifted from traditional programming. Hence the challenges faced
by mashup tools designers include the need for defining a high level way for describing and combining
computation, integration logic and abstractions to represent Web widgets, Web Services, Web data
sources [Aghaee et al., 2012[]. Nonetheless these goals have not been yet achieved.

A large number of mashups tools have been developed both in the academia and in industry,
however only a few have succeeded. Many of these approaches even though have been developed by
big companies such as Microsoft or Google have been discontinued, i.e. Microsoft Popfly, Google
Mashup Editor. Others such as JackBe Presto or Serena Mashup Composer are still in use. We believe
that there is a big interest for such tools both in the academia and industry and new frameworks are
under development, i.e. [Aghaee ef al., 2013]]. In the same time we argue that the current approaches
did not really achieved the desired outcome because were either too technical or too scientific, and they
lacked a proper integration between the technical perspective and the conceptual perspective. In this
way these approaches lost on the way the fundamental target - the end-user. We believe that this state
arises from the fact that currently software development process in Software Engineering is mainly
focused around the structure of the software being built and the interactions between its components.
When in fact the focus should be on the end-users.

Albeit client mashups as argued in [Bioernstad et Pautasso, 2007|] are real mashup, almost all of
the approaches we have discussed throughout this chapter are server-side mashups. We believe that
user-centric approaches for mashups should be client based mashups. End-users should not be required
to install and configure and maintain servers. End-users however should be provided with tools that
are general enough to address most of the technologies enumerated here in a unified and holistic way.
These tools should hide as much as possible the engineering side and the technologies. Moreover these
tools should be the same no matter the type of device that is being used. We assert that such tools can
be achieved with the advance of HTMLS and JavaScript. We believe that a browser based solution can
comply with all these aspects. Other researchers are agreeing with us on this matter. One could see for
instance [Aghaee et Pautasso, 2010)].

Publishing and content syndication are important aspects in mashups’ life cycle. Based on the
discussed approaches it seems that data is the most important asset for mashups and that data is the
glue that links together mashed sites. The most common formats used are RSS [RSS, 2009] and
ATOM [|Gregorio et de hOra, 2007[]. Although publishing formats must be understood and known
very well by the creator, the general trend is to use XPath [Berglund ef al., 2007]] expressions to query
and or modify data. The use of XPath is embraced both by IBM Mashup Center and JackBe Presto.
Data consumed by mashups gets mixed, remixed and refashioned in a multitude of views imagined by
the end user — the creator. Yahoo Pipes and Microsoft Popfly follows the same architectural design.
Figure [2.18|shows a minimal common model of mashups based on previous comparison and according
with others observations. Since discussed models use different vocabularies, Table [2.4] depicts a
vocabulary mapping.

According to Figure [2.18]a user has to define a flow (choreography [Weske, 2007]) that takes place
inside of a "main" activity exposed by the mashup service. The mashup’s flow is composed of activities.
There is a general rule that, flow elements have at least one ativity (i.e. Publish). However, the

Emilian Pascalau, 2014

2.6. DISCUSSION 32

Minimal Model IBM Mashup Center | JackBe Presto Wires
Source Source Input

Flow Flow Operation

Activity Operator Operator

Output implicit Output

Input Input Input

Publish Publish Output

Table 2.4: Terminology

Mashup Source
name : string ;
. -t : FeedT
endPoint : anyURI 1..% ype - Feedlype *
0.* T~
Variabl «invaria_nt_»))) N))
Eab € {self.activity->size() = 1 implies self.activity.oclIsKindOf(Publish)}
0.x L7
* 1.
Activity 1.
- Input
name : String
* 1%
*
: :
/\ -
‘ ‘ «enumeration»
[[[T ‘f | [Aggregate | Publish FeedType
ransform ublis
Invoke gareg -ATOM = ATOM
type : FeedType type : FeedType | [+XML = XML
endPoint : anyURI +RSS = RSS

Figure 2.18: The Core Concepts of Mashups

mashup flow, opposed with other workflow languages such as YAWL [van der Aalst et ter Hofstede.
2005] or BPMN [Weske, 2007] it is strongly data oriented. As such its activities are classified into
two major categories: those who produce state changes i.e. actions (data transformation actions such
as Assign, Sort, Group, and Filter, data aggregation actions such as Join, and Merge), and
control flow operators (such as Sequence, Parallel, Loop, Conditional).

We argue that mashups tools should deal not only with data in RSS or ATOM format but also
regular data. Moreover behavior (events, actions) should be taken into account as well.

We also assert that it is possible to address semantics without the need to annotate and recopy the
web contents, as it has been done in the case of DBpedia. (we presented a larger discussion on the
mater in Section We believe that this can be achieved by using a similar approach as the one used
to automatically extract and annotate the contents. We will explain this approach in later chapters.

We arrive to the list of requirements with which we believe an end-user oriented mashup system
should comply with:

R1 such a system should allow evolution, sharing and distribution; end-users should be allowed
through direct input to update / adapt the application;

R2 such a system should not be domain specific, and should allow a wide range of use-cases;

CHAPTER 2. RELATED WORK ON MASHUPS 33

R3

R4

RS

R6

R7

R8

R9

in a such a system the end-user should be the coordinator of how the system works; hence the
system should provide a new approach for describing behavior of composite systems (humans +
services)

such a system should support both skilled developers as well as novice users;

such a system should focus on the end-user and not on the system itself. The system should be
hidden from the end-user as much as possible by providing the right level of representation such
that a problem representation could be automatically translated into the core concepts of the
underlying programming language in which the overall system is implemented;

such a system should allow on demand development using the web as a platform or web as open
application execution environment: build upon existing ideas, sites, applications

such a system should be compliant with SOA principles of: loose coupling, reusability, discover-
ability, composability;

such a system should allow decentralized and delocalized execution of software / components @;

such systems should allow simultaneous build time, run time development and experiment

Having this discussion as starting point we will present in the following chapter our approach as
well as the conceptual model which we propose to tackle the issues underlined in this section.

Zhttp://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf, retrieved 13 January 2014
Zhttp://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf, retrieved 13 January 2014
Zhttp://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf, retrieved 13 January 2014
Bhttp://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf, retrieved 13 January 2014

Emilian Pascalau, 2014

http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf

2.6. DISCUSSION

34

Chapter 3

A User-centric approach. Conceptual
Model

We have emphasized in the Discussion section (Section of Chapter 2]a series of characteristics and
requirements that we believe user-centric mashups should comply with. Thus such systems should be
end-user oriented. Such systems should provide a new approach for describing behavior of composite
systems (humans + services) [R3] We argue that such systems are intelligent systems being able to
interact with the end-user according with an agreed beforehand plan, supporting evolution, sharing and
distribution [R1] Hence these systems are two layer systems: one high level layer, that deals with the
problem at a conceptual and semantic level (the agreed on plan) and one low level layer that deals with
the internals of the system and low level technologies i.e. direct access to services, etc. The low level
layer should be hidden as much as possible from the end-user R3]

The aspects (also depicted in Figure that drive the development of our approach are: end-user
oriented or user-centric; humans and system interacting with each other; plan; two-layer system;
intelligent system. These aspects have been previously discussed in the research literature, however
almost always in a disconnect manner with almost no interaction with each other. In addition different
terminology, according to the research directions where it has been studied, has been used to identify
actually the same concept.

End-user / user-centric Two layer system

Intelligent system

Our Approach

Plan Human user and intelligent system interaction

Figure 3.1: Aspects that drive our approach

This chapter describes the approach we propose and the conceptual model we created in relationship
with our approach.

35

3.1. OUR PROPOSAL - A USER-CENTRIC APPROACH 36

3.1 Ouwr proposal - A User-centric approach

Because at the heart of the mashup phenomenon are the users and the innovation that users bring [Cap{
piello et al., 2011]] we start our discussion about the aspects driving our approach with the end-user
perspective.

3.1.1 End-user / user-centric

End-user development has been defined in [Lieberman et al., 2006 as a

set of methods, techniques, and tools that allow users of software systems, who are acting
as nonprofessionals software developers, at some point to create, modify, or extend a
software artifact.

End-user software engineering research is interdisciplinary [Lieberman et al., 2006] involving ideas
from: computer science, software engineering, human-computer interaction, education, psychology
and other disciplines.

The difference between professional programmers and end-user programmers are their goals [Ko
et al., 2011]]. Application developers can no longer anticipate all the needs of end-users. In addition
professionals are required to develop software that can be maintained over time as opposed to end-
users who write software mainly for personal use and to support a particular goal. End-users do
this by employing pre-existing computer applications. Often to make these application truly useful
end-users need to adapt these applications to their specific needs [Repenning et loannidou, 2006].
These adaptations can take many forms, ranging from simple forms i.e. application preferences to
more complex issues such as email filtering rules. There is an increasing need to be able to address
these complex forms of adaptations [Repenning et loannidou, 2006]. For instance browsers are used to
access fast growing information spaces. In this context only end-users of applications can decide what
to do with this large amount of information.

In consequence (see Figure [3.2)) the end-users whom we want to support, are most of them, not
professional developers, who lack technical skills, and don’t have the necessary knowledge to write
software programs, according to technical specifications (specifications for Web Services, APIs, REST
etc). End-users have a variety of goals. These goals are achieved by creating new applications, via
mashing up existing applications, or software artifacts, by modifying or adapting existing applications.

3.1.2 Two layer system

Now in order to allow end-users, who are not professional programmers to program, adapt existing
applications or software artifacts according to their needs the technical layer needs to be hidden as
much as possible, otherwise they will not be able to do it.

To achieve this separation of concerns and thus hide the technical layer we argue that a two layer
system is required. The high level layer should provide the means to allow both human users and the
system to understand each other using a common set of concepts and following a beforehand agreed on
plan. The low level layer on the other hand should be hidden from the end-user and should be accessed
directly by the system according to what has been agreed upon in the plan. A professional developer
should also be allowed access to this layer.

Software Engineering (SE) is the field of study that is concerned with all the aspects related to the
design and development of software systems. Two of these aspects: Requirements engineering and

CHAPTER 3. A USER-CENTRIC APPROACH. CONCEPTUAL MODEL 37

non professionals

lack technical skills

don't have necessary knowledge

»
|

__know how to use existing applications

| o

, have goals

create applications / software artifacts

a0 achieve goals modify applications / software artifacts

adapt applications / software artifacts

A

mash up existing applications / software artifacts

Figure 3.2: End-users related aspects

system design are of interest for our approach because system design targets the internal behavior of
the system while requirements are external, concerning the world.

The phase of gathering requirements precedes system design. Unfortunately in most of the situations
the final product does not actually comply with the end-user expectations for various reasons: i.e. bad
communication, different understanding of concepts and situations, etc. [Tognazzini, 1992| [Nardi.
1993]]. An end-user perceives and understands a software system through the user interface (UI).
Based on the UI, which is supposed to be an accurate and complete representation of the system, the
end-user builds its own understanding of the environment consisting of concepts, with which it is
working, and associated behavior [Clark et Sasse, 1997]]. Haplessly in many situations the end-user’s
understanding is very different than the understanding and the message, developers actually tried to
convey [Tognazzini, 1992].

A requirement in Requirements Engineering (RE), as stated in [Pohl, 2010],

defines both needs and goals of users, and conditions and properties of the system to be
developed, that result for example, from organizational needs, laws, or standards.

In RE a goal is a stakeholder’s intention with regard to the objectives, properties or use of the
system [Pohl, 2010]]. Requirements are said to define what should be developed while system design
defines how the system should be developed [Pohl, 2010].

In consequence we debate that RE stands for the high level layer and system design stands for the
low level layer. And therefore we believe that both RE and system design need to be unified when
dealing with proper intelligent user-centric systems (see Figure |3.3).

3.1.3 Plan

Requirements Engineering approaches propose also the use of scenarios, which are concrete positive or
negative examples of satisfying or failing to satisfy a goal or a set of goals [Pohl, 2010]. Such scenarios

Emilian Pascalau, 2014

3.1. OUR PROPOSAL - A USER-CENTRIC APPROACH 38

what plan (visible)
Requirements engineering . What needs to be done to fulfill goal
Software development
how (hidden)
_System design _How should the system be implemented

L >

Figure 3.3: Software development aspects

for our approach are the plans that end-users create. Software requirements are usually expressed in
natural language. However natural language can not be an option here. We need a structured and well
defined set of concepts to express end-user plans, such that an intelligent system can understand, reason
and use that plan, in its interaction with the environment and the end-user. Because this plan needs
to be from the perspective of end-user we looked first to research domains such as Human Computer
Interaction (HCI), conceptual design and cognitive psychology.

In these domains such a user defined plan is assimilated to the notion of a mental model [Clark et
Sasse, 1997]]. Such plans, in cognitive psychology have been conceptualized as "representations in
episodic memory of situations, acts or events spoken or thought about, observed or participated in by
human actors" [[van Dijk, 1997]]. According to [McDaniel, 2003|] such a plan consist of several parts:

e an image: if the mental model refers to a physical object then the model should contain a
simplified image of the object;

e qa script: if the mental model refers to a process, it should contain a description of that process;
e qa set of related mental models: mental models can be composed of other mental models;

e a controlled vocabulary: each mental models has a set of key definitions and variants;

e a set of assumptions: allow users to predict behavior.

Translating this description into the Web context, an end-user plan contains a set of concepts, with
which the end-user works with in order to fulfill a goal, their relationship with each other, the context;
and means to express behavior in the forms of processes and rules. Hence for our approach the user has
a plan of what needs to be done in order fo achieve a goal. Needs to be done here means the interaction
(behavior) that a user needs to exhibit with the application (applications) in order to fulfill the goal.
Moreover the user is expecting a particular answer from the system as a response to the actions he/she,
the user, performs. User behavior is imposed (influenced) by the context (environment).

Traditionally context has been perceived in computer science community as a matter of location
and identity, see for instance [Dey et Abowd, 1999b]. However interaction and problems concerning
interaction require more than just the environmental context (location, identity) used traditionally in
context-aware systems [Grudin, 2001]]. As such lately the notion of context has been considered not
simply as state but as part of a process in which users are to be involved [Coutaz et al., 2005]. Fischer,
however gives a definition that takes into account the human-centered computational environments.
Context is defined in [Fischer, 2012 as being the 'right’ information, at the 'right’ time, in the 'right’
place, in the ’right’ way to the ’right’ person.

CHAPTER 3. A USER-CENTRIC APPROACH. CONCEPTUAL MODEL 39

Context greatly influences the way humans or machines act, the way they report themselves to
situations and things; furthermore any change in context, causes a transformation in the experience
that is going to be lived, sensed [Bolchini ef al., 2007]]. Many psychological studies have shown that
when humans act, and especially when humans interact, they consciously and unconsciously attend
to context of many types as stated in [[Grudin, 2001]]. Nardi underlines this aspect clearly in [Nardi.
1993 stating that

we have only scratched the surface of what would be possible if end users could freely
program their own applications... As has been shown time and again, no matter how much
designers and programmers try to anticipate and provide for what users will need, the
effort always falls short because it is impossible to know in advance what may be needed...
End users should have the ability to create customizations, extensions and applications....

For the approach that we envision and design in this thesis, the user creates a plan that is shared
(given) to the system. This plan contains a description of the context(s) and the behavior that both
the human user and the system need to perform in relationship with the context(s) as we introduced it
in [Pascalau, 2011a]]. The plan explains how the system should react in response to the actions that
the human user performs, or how the system should react in response to changes that appear in the
environment (context(s)). In this way both the human user and the system will follow and will share
the same understanding, the same plan. Petrelli et al. emphasize this [Petrelli et al., 2000]] by stating
that the main objective of context should be to make technology invisible for the user, hence the focus
will not be anymore on how to use the technology in a proper way but the focus will be once again on
resolving our activities and achieving our goals in daily business activities and not only. To achieve
this objective will require a completely and reliable world representation; a shared understanding of
concepts [Petrelli ef al., 2000]]. For our design we adhere to the ideas discussed in [Bolchini et al..
2007]] and we argue that the world representation needs to be from an individual’s perspective. Such
an individual representation of the world needs to be a subset of the entire world that a system can
understand.

3.1.4 Intelligent system and human user and system interacting with each other

The last two aspects that we identified concerning our approach are: intelligent system able to interact
with the human user according to the agreed plan.

Artificial intelligence and Cognitive science are two of the research topics that address the problem
of intelligence and reasoning in machines and software. However these topics are developed most of
the time separately although they work with concepts that often overlap.

Russell and Norvig define in [Russell et Norvig, 2009]] an agent as anything that can perceive its
environment through sensors and then act in the environment through effectors. Agents are entities that
function continuously and autonomously in an environment in which other processes are running and
in which exist also other agents [Shoham, 1993|]. Based on this definition humans are agents, since
humans have eyes, ears and other organs that act as sensors and have hands, legs, mouth and other parts
of the body that act as effectors.

We assert that our system can be assimilated to the notion of an agent. A hybrid agent: a
combination between a reactive agent, a deductive agent and also proactive agent.

Cognition implies the ability to reason about the environment, about how things might change over
time, and how one should act according to this information [Vernon ef al., 2007]]. Vernon [Vernon ef
al., 2007]] continues and states that cognition can be viewed

Emilian Pascalau, 2014

3.2. CONCEPTUAL MODEL 40

as the process by which the system achieves robust adaptive, anticipatory, autonomous
behavior, entailing embodied perception and action.

The basic concepts of intelligent systems - representation, knowledge, symbols, and search - apply
both to humans and machines [Newell, 1994]. However human beings are very unique. Nevell argues
that a single system (mind) produces all aspects of behavior (see [Newell, 1994]]). Even though the
mind has different components, these components mesh together to produce behavior. Behavior is
flexible as a function of the environment [Newell, 1994]. Both a behaving organism as well as the
environment behave through time with a series of interactions between them. The behaving organism
takes actions as a function of the environment, hence if the environment is different an organism can
behave differently even though is performing the same actions. Behavior is assumed to be governed by
the rationality principle [[Pirolli, 1999||. Thus if the user knows that one of his or hers actions will lead
to a situation which is compliant with the goal, then he or she will intend to perform that action.

Previous paragraph completes our discussion about the notion of a plan by confirming that behavior
is influenced by the environment; that is a characteristic of an intelligent system and that it comprises
actions which are performed as response to perceived events in relationships with existing knowledge.

In addition we argue that our approach complies also with the notion of an intelligent system
as described by Newell in [Newell, 1994] as it comprise the basic concepts of intelligent systems:
representation, knowledge, symbols and search.

3.1.5 The approach

We link together the aspects we just discussed and we resume our approach in Figure[3.4] The approach
we have introduced in this section proposes a new programming model through a composite system
where human user and system interacting with each other. The interaction is via environment and
is according to a predefined plan. This plan is created by the human user, hence the human is the
coordinator of how the system works. Both the intelligent system and the human user follow the same
plan. Such a plan serves to achieve a particular goal and it has been created taken into account the
context(s). Interaction is perceived via changes that appear in the environment.

We believe that such an approach as discussed here is compliant with the meta-design framework,
which is a conceptual framework defining and creating social and technical infrastructures in which new
forms of collaborative design can take place [Fischer et Giaccardi, 2004]. Meta-design originates in
human computer interaction field and tackles end-user development. The approach, we have introduced,
in accordance with meta-design concerns adaptable systems where: users change the functionality of
the system; users extend knowledge; user are controlling how the system works.

3.2 Conceptual Model

We enunciated earlier that the proper way to define our conceptual model is by means of ontolo-
gies [Guarino, 1998]]. Instances of this model will represent the plan that a user is going to provide to
the system.

Uschold and Jasper argue in [[Uschold et Jasper, 1999] that though an "ontology can take a variety
of forms, it will include a vocabulary of terms, and some specification of their meaning". Definition of
concepts and their relationships impose a structure on the domain and constrain terms interpretation.
As UML is considered to be the de facto standard modeling language [Guizzardi, 2005]] we are also
using it to formalize our conceptual framework. We will discuss one by one the main elements of our
framework.

CHAPTER 3. A USER-CENTRIC APPROACH. CONCEPTUAL MODEL 41

_Context(s) = environment L
perceives 3 perceives
‘ imposed (influenced)

Plan

created b .

Yoo _ (same understanding) yi

uses > - uses
according to } via
77777777777777777777777777 interact-—————— System according
| to our approach

Figure 3.4: Our approach

Concept
(conceptualization)

S
& %y,
@ 0
Q %
@ ®\
/ refers to-- e
Symbol Thing

(language) (reality)

Figure 3.5: Ullmann’s Triangle depicts the relationships between things in reality, the conceptualization
of things and their symbolic representation. [Ullmann, 1972]

3.2.1 Concept

Figure 3.5 depicts Ullmann’s triangle [[Ullmann, 1972]] which explains the relationship between things
in reality, their conceptualization and their representation. The relationship should be read as follows:
A Symbol represents a Concept. A Concept abstracts Thing, and a Symbol refers to a Thing.
Although many of the ontological approaches (see for instance OWL [|Group, 2009]) use as the
upper level entity the thing notion for our conceptual framework the most general unit of knowledge
is the concept notion. Moreover the OMG specification for Semantics of Business Vocabulary and
Business Rules Specification (SBVR) [OMG, 2008 uses as top entity the concept notion as well.

Definition 1 (Concept). Unit of knowledge created by a unique combination of characteristics [OMG]
2008].

A concept has a name and a set of properties. It is a subclass of uml: :Class entity. It can

Emilian Pascalau, 2014

3.2. CONCEPTUAL MODEL 42

be identified either by its name or by the set (or a subset) of properties that define it. In software
engineering when dealing with typed languages, entities are recognized by their types (class name).
The other way around is based on a set of characteristics. Take for instance a car. Stating the concept’s
name "car" someone will be able to tell you the characteristics of a car, that it has for wheels, that it has
an engine etc. Nevertheless stating the characteristics of the concept that it has 4 wheels and an engine,
the answer will be a car. In our approach both perspectives are taken into account.

uml::Class [@———— uml::Property

Z% 1 *

Concept

JAN

| | | |
Action Message Process Mashup
Event Rule Context Entity
| |
Human Service Object

Figure 3.6: Concepts

Based on Definition [I] a concept is a unit of knowledge created by a unique combination of
characteristics. Thus as depicted in Figure [3.6|every element of the framework is a concept. In this way
the reasoning process can involve any of the concepts defined in a unified way.

Recall the conferences calendar use case we have introduced in Chapter[I] The goal is to automati-
cally store events that are announced in the DbWorld mailing list in a Google calendar. Without an
approach similar to the one described in this thesis, to achieve this goal of automatically storing events
in a Google calendar requires two tabs open in the browser, requires going back and froth between
these two tabs and copying and pasting each piece of information manually for each event. Figure|3.7
depicts the Google calendar service - the save event facet.

Google calendar service is an instance of the Service concept. Based on Definition (1| a
concept has characteristics. Hence the characteristic of interest for us is the URL of the service:
https://www.google.com/calendar/. Another concept of interest for our use case is the existence of the
button Save. Empirically from an end-user perspective to identify the save button as being the save
button requires that the button is a but t on and has the text content Save. A real representation, as a
DOM tree, of the save button according to the current google template, inside a browser, is depicted
in Example 3.2.1] Thus in order to identify the save button, the DOM tree representation of the
Google calendar service must contain a concept that has the following characteristics: t ype with value
div, class with value goog-inline-block goog-imageless-button, role with value
button and one child that has as value another concept. This second concept has the following charac-
teristics: type with the value div, class with the value goog—imageless-button-content
and textContent with the value Save.

Example 3.2.1 (Google Calendar Save Button DOM representation).

<div class="goog-inline-block goog-imageless-button" role="button"

CHAPTER 3. A USER-CENTRIC APPROACH. CONCEPTUAL MODEL 43

€) @ hitkps: ffwnae, google.comfcalendar render ?pli=1 fgsessionid=0K

Mt

Mail Calendar Docurents Photos Reader Web more -

Goc)8[C calendar Search my calendars | Show searsh options

« Backto calendar Save Discard

Click to add atitle

572372011 9:30am to 10:30am 572372011 Time zone

Oanday CIRepeat...

Event details Find a time
Where
Calendar | 253 5
Created by s=== Sy

Description

Event color EEER [1 |

Figure 3.7: Google calendar service - save event facet

style="-moz-user-select: none;" tabindex="0">
<div class="goog-imageless-button-content">
Save

</div>

</div>

In a similar way all the other necessary concepts for this use case can be identified.

3.2.2 Context

Context greatly influences the way humans or machines act, the way they report themselves to situations
and things; furthermore any change in context, causes a transformation in the experience that is going
to be lived, sensed [[Bolchini ef al., 2007]].

Although studied intensively there is no one accepted definition for the context notion. Dey in [Dey
et Abowd, 19994]] defines context as

information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves.

Context is under permanent change, is episodic, personal and hence subjective interpretations and
experiences of the communicative context [van Dijk, 1997],[Dey et Abowd, 1999a]. Analyti et al.
discuss in [Analyti et al., 2007]] a general framework to harness the notion of context in conceptual
modeling. A full mathematical apparatus has been defined to tackle issues such as containment and
relationships between contexts. According to them "context in an information base can be seen as
a higher-order conceptual entity that groups together other conceptual entities on which we want to
focus" [Analyti et al., 2007]]. More precisely a context is a set of objects within which each object is
associated with a set of names.

Emilian Pascalau, 2014

3.2. CONCEPTUAL MODEL 44

For our conceptual framework the notion of context adheres to the mathematical apparatus defined
in [Analyti et al., 2007]], however here a context is a set of concepts not objects.

Definition 2 (Context). A context consists of a context identifier and a set of concepts identifiers.

Based on the mechanism for identifying concepts context is identified respectively by recursively
identifying all the constituent concepts.

The notion of context supports a series of features as they have been defined in [[Analyti et al..
2007]:

e concept sharing or overlapping contexts: a concept can belong to one or more different
contexts;

e context-dependent concept names: same concept can have different names based on the
context;

o context dependent references: same concept can have different references within different
contexts;

e context sharing: two different concepts can have the same reference no matter whether they
belong or not to the same context;

e context-dependent reachability: from within a given context, we can "reach" any concept that
belongs to the reference of a concept within that context;

e synonyms, homonyms, anonyms: the same concept can have different names in the same con-
text (synonyms); two different concepts can have the same name in the same context (homonyms).
A concept might have no name within a context (anonyms).

Beside these features the notion of context is enhanced also with attribution, generalization and
classification.

Example 3.2.2. A context in our Google calendar use case would comprise for instance the concept
referring to the Google calendar service and the two concepts required to identify the Save button.
Thus the system in order to be able to say that it is running in this particular context must find the three
concepts that are comprised in this context.

3.2.3 Behavior

Traditionally behavior has been defined by means of business rules and business processes |Weske!
2007]]. Our conceptual framework agrees with this approach. In addition we argue that behavior is
strongly related to context(s) [Pascalau, 2011a].

Behavior of an entity is the set of events, actions and messages that that entity produces. An event
is any observable occurrence of a phenomena. It is something that "happens", an occurrence which is
detected, i.e. a c1ick on a button. An event has the same meaning both in the case of a rule as well as
for a process. Events can be connected to time.

Definition 3 (Rule). A rule is a statement of programming logic that specifies the execution of one or
more actions in the case that its conditions are satisfied [OMG, 2007]).

CHAPTER 3. A USER-CENTRIC APPROACH. CONCEPTUAL MODEL 45

RuleSet
1.* 1 ’ 1
1.
Concept Rule Context
* *

* * l. *
PR 0.* 1.*%

Condition Event Action

Figure 3.8: Rules

Definition [3is also the definition of a production rule. An Event Condition Action (ECA) rule

is a production rule triggered by an event. Thus the form of an ECA rule is: on [event (s)] 1if
[conditions] then do [action-list].

The model depicted in Figure 3.8]is compliant with the OMG PRR specification [OMG, 2007]] and
is the basic model for a Rule. A Rule is related to a Context. It can be triggered by an Event, in the case
of an Event Condition Action (ECA) Rule. It can be conditioned by a set of conditions. Conditions
concern Concepts. Actions are the result of rule execution, basically are calls to functions.

A example of a rule in natural language is depicted in Example [3.2.3]

Example 3.2.3 (Rule Example).

If a click event has been raised from the search button residing in the calendconf service
context and there are is a search field in this same context and the value of the search
field is found in the subject column of the DbWorld service context and there is for

each event a start date in the same row as the subject column and a location then save
this event entry.

There are different definitions for the notion of a process. However all agree that a process is about
behavior. Weske argues in [Weske, 2007] that a "business process consists of a set of activities that
are performed in coordination in an organizational and technical environment", Ackoff on the other
hand defines a process as a sequence of behavior that constitutes a system and has a goal producing
function [Ackoff, 1971]]. Our definition of a business process is enunciated in Definition [4]

Definition 4 (Business Process). A business process is an ordered and coordinated set of events and
activities required to achieve a user goal.

According to the BPMN specification [OMG, 2009] an activity is a general term for a work unit in
a process. An activity could be atomic or non-atomic (compound).

The Process Concept is expanded in Figure [3.2.3] The definition is based on the BPMN 2.0 specifi-
cation. Thus a process isa FlowContainer and contains FlowElement s and SequenceFlows.
Furthermore a FlowElement is either an Activity, a Gateway or an Event. An Activity
is subclassed by a SubProcess, meaning that a Process might have subprocesses, and by a Task.
A Task is an atomic Activity. However this model introduces the following relationships, which
were not previously contained by the BPMN 2.0 specification: the execution of a Task can mean

Emilian Pascalau, 2014

3.2. CONCEPTUAL MODEL 46

SequenceFlow

Figure 3.9: Business Process, based on BPMN 2.0 specification [OMG, 2009]]

the execution of RuleSets; Processes are related to Contexts. This particular relationship can
provide as discussed in [Pascalau et Rath, 2010] meaning to processes.

A rule action is the same with an atomic process activity. The difference between processes and
rules is that processes are ordered while rules are not. Hence processes are executed according to the
order in which constituent elements have been defined. Rules on the other hand are executed in no
particular order. Therefore by means of processes, mostly execution of rule actions can be ordered.

Therefore:

Definition 5 (Behavior). Behavior is a set of rules and / or a set of processes, or a combination of the
two, related to context(s).

3.2.4 Mashup

This section unifies and puts together previously discussed aspects in order to define the mashup concept.
In consequence a mashup is a plan (map) which describes the context(s) and related behavior that a
user needs to do in order to achieve a desired goal. Such a mashup is defined from a user perspective.
This plan created by the human user represents a common understanding of what needs to be done.
This plan contains context(s) and behavior which is strongly related to the context(s) [Pascalau, 2011a].
As we discussed in [Pascalau et Rath, 2010] context provides meaning to processes. For example
one could deal with a sel/buy process, a very generic one. But whenever contextual information is
added, the meaning of a process could be totally different, as there is a big difference between selling
tomatoes and selling e.g. chemical products. To support even more this idea SBVR specification [OMG;
2008]] states that a body of shared meaning that a community has is represented in concepts, fact types
(relationships between concepts) and business rules (constraints on concepts and fact types).

Definition 6 (Mashup). A mashup is a set of contexts and behavior.

Figure [3.10] depicts the general framework. Hence the Mashup concept contains 1 or more
Contexts. Further a Mashup can contain Processes, Rules or a combination of those two. A

CHAPTER 3. A USER-CENTRIC APPROACH. CONCEPTUAL MODEL 47

1.

Concept

Mashup K>————>3 Context Entity

1 1.% il
1 1 1 *
Process
* *
Rule
* *

Figure 3.10: Mashup Concept

Context is basically a collection of Concepts. In addition a Context could have subcontexts. A
Context refers to an Entity.

We argue that our model complies in general lines with (means that our approach can addresses
the use cases that where addressed using the common model) the common model for mashups we
extracted (see Figure [2.18]in Section 2.6).

To exemplify the use of the conceptual model, we use our recurrent conferences calendar example.
Figures [3.11] - DbWorld, [3.12]- Google calendar create event facet, [3.13]- Google calendar save
event facet, and respectively [3.14]- Calendconf, depict the services we need to achieve the end-user
goal of storing DbWorld events in a Google calendar. Three services are involved in this use case:
DbWorld, Google calendar and Calendconf. Calendconf is a user defined one. It is just a basic HTML
page, who has no concrete functionality attached to it. Please note that for us any web page is also
a service [Pascalau, 2011b]. Because DbWorld does not provide a search field we need a service
(Calendconf) to provide this capability: a search field and a search button to start the search.

According to Figure a service is an Entity. We have already explained that in the case of the
service concept the characteristic of interest is the URL. All these services are therefore identified using
their URLs. Next following the model depicted in Figure[3.10jeach Ent ity has an association with
a Context. Therefore for each service we have a Context associated with it. Contexts are set of
concepts. Contexts are identified if the set of concepts defined have been identified. For example
the DbWorld context is identified if we can find rows that have a particular structure, i.e. there is a
subject column, followed by a deadline column and by a web page column (Figure [3.T1). Similarly the
Calenconf contexts needs to have at least a search filed and a search button in order to be identified.
Since the contents of contexts might change over time, contexts’ definitions in the user created plan
need to contain only the minimal information necessary to identify them. For the Google calendar
related contexts we need to have a create button to create an event and later to know that we are in the
save event context, this context needs to have a series of input fields and a save button.

The rules that make the behavior of this user defined plan has been enunciated in Example[3.2.3]and
states the followings: "If a click event has been raised from the search button residing in the calendconf
service context and there are is a search field in this same context and the value of the search field is
found in the subject column of the DbWorld service context and there is for each event a start date in
the same row as the subject column and a location then save this event entry in the Calendocs context

Emilian Pascalau, 2014

3.2. CONCEPTUAL MODEL 48

(< BRI —]1e 2]
(st veted) Gating Sarted 5] Lotest Hosdins
3 cternt & DBWorld: Recent Messages 3 |
Sent |Message Type From [Subject Deadline |Web Page
23-May-2011[conf amn.[DCNLP 2011 [[Sbmsssion deadine esended] Call For Paper. ICNLP011, Chisng M, Thaland, 813 Noveraber 2011 o-ni-2011

&

[EDBT 2012 CALL FOR PAPERS [29-5ep-2011 [web page
[23-May-2011 [web page
[23-hu-2011

[22-May-2011 conf amn.
[22-May-2011conf amn.
[22-May-2011conf amn.
[22-May-2011 journal CFP
[22-May-2011conf amn. [Tmai Rheli
[22-May-2011conf amn. (Wil Kright

te

&

[31-May-2011 freb page
[15-Ri-2011
[29-May-2011 [web page

[22-May-2011conf ann [divesh srivastava [EDBT/ICDT 2012 Callfor Workshop Proposels [31-7u-2011 web page
[22-May-2011conf ann. (Opher Ftzion [DEBS 2011 - cal for panicipation [15-Jun-2011 b page
[21-May-2011 conf ann. [Ryriakos Krikos [Third Intemational Confers “omputational Aspects of Social Network: [1-9un-2011
[21-1a-2011 conf ann. [Sulemnan Bari-Ahmad EEE Jordan Conference on Applied Electrical Engineering and ting Technologies 2011 (AEECT 2011 [21-Aug-2011

Figure 3.11: DbWorld Browse

z
@ - (EEEEEIREE rvtps:i s oo comicalendarirendergsessionid=0k

2] Most visited || Getting Started 5 Latest Headines

,;._‘3 calendcanf Q DEWorld: Recent Messages Google Calendar <]

Mail Calendar Documents Photos Reader Web more -

GOL lglC calendar Search my calendars | Shew search options

We have changed the way we har

Create event Quick add Taoday [0 N30 May 22 - 28, 2011

May 2011 Sun 522 Mon 5123 Tue 524
s wm Tw T F g O
Sam
12 3 4 5 B 7
g 9 1011 12 13 14 CEm
15 16 17 18 19 20 21
22 23 24 25 26 27 28 Fam
29 30 31
g
My calendars o
2am

Figure 3.12: Google Calendar - create event facet

for review." After the human user reviews the results of the search and selects the desired events then a
second rule is run when the save button in the Calendconf context has been clicked. Saving an event in
the Google calendar requires a click on the create event that forwards the end user to the save event
context, where all information concerning an event can be entered. Secondly, this information needs
to be inserted in the correct fields and then the event can be saved. Hence this can be achieved with
two rules. One rule will take each selected event from the reviewed list of events and the second one
will be triggered as a result of executing the first rule. These rules are constructed similar to the one in
Example[3.2.3]

Therefore the user has created the plan that contains a description of all the services involved, the
contexts and the set of rules that are related to these contexts. Now this plan is followed by both the
human user as well as by the intelligent system. The system reacts to the actions that the human user
performs in the environment. And the human user at its own turn reacts to the changes that the system
performs.

CHAPTER 3. A USER-CENTRIC APPROACH. CONCEPTUAL MODEL 49

s hkkps: /v, google,.com/calendar render?pli=12gsessionid=Ck

Mail Calendar Docurents Photos Reader Web more -

Got)gle calendar Search my calendars | Show searsh options

« Backto calendar Saye Discard

Click to add atitle

572372011 9:30am to 10:30am 542372011 Time zone
Oal day CRepeat. .

Event details Find a time

Where

Calendar | 2553, A4

= e S

Created by ===

Description

Event color |

Figure 3.13: Google Calendar - save event facet

(@

(5 ot Vited () Goteng starte (1] Latst Hoaclins

| Beolendeont | =
o »

March 16, 2011 Calendconf is available! m

Calendcont allows you to search the £
DEWarld messages list for conferences of o
your choice and then stores autoratically | S iy S ——
selected events on your Google calendar. @V“l‘-‘“'b'l"

Calendcon is powered by novel Web 2.0
technalogy which (1) it is tailored for fully
fledged browser based mashups;

(2) the user is an active part of the system; (3) it utilizes a cognitive context aware
engine; (4) tackles software and business intellgence an demand, instant use but
powerful

Search DBWorld conference list:
<0 BPor wER
[| searcn®]

Search results:

Tiek desitad conference and hit"Save Conferanses’ bufion (For the time baing only ons sonfarence at
me. Sa ssue 83

Check Calendar Event Deadline

Save Conferences

BI:IIMIGI The Application The Use Case Search

Figure 3.14: Calendconf Service

Emilian Pascalau, 2014

3.2. CONCEPTUAL MODEL

50

Chapter 4

Architecture

The architecture we propose in this chapter follows the approach we have just introduced previously.
To the best of our knowledge there exists no system related to the Web context: (1) that follows a two
layer approach to system design; (2) that uses a single representation that is understood both by the
user and the system in the same way; (3) that considers and requires the end-user to actively participate
in the system in order to achieve a desired goal.

In spite of this void in the Web related context - which we argue that can be filled with an approach
similar to the one introduced in this thesis - there exists an approach similar in characteristics in a
different field. The TomTonﬂ system is probably one of the most known and most evolved [TomTom),
2007] Global Positioning Systems (GPSﬂ Hence TomTom is an instance of the GPS metaphor we
specified in the introductory chapter of this thesis. The architecture we propose inherits from the
TomTom devices.

We are not the first ones to underline that TomTom functionality and characteristics are to be desired
not only in navigation but also in other fields. For instance van der Aalst argues in [van der Aalst.
2009], [[van der Aalst, 2010] that some TomTom functionalities are helpful to improve Business Process
Management Systems (BPMSs). While in the case of a car navigation system such as TomTom, the
driver is always in control as the GPS device does not try take control, Business Process Management
Systems lack such features [van der Aalst, 2009]. Consequently the navigation system of a car provides
a continues overview of the current situation (i.e. traffic jams, speed) but this type of information is
typically missing in BPMSs.

The rest of this chapter is organized as follows: first we are going to discuss side by side our
approach which we introduced in Chapter [3|and the GPS metaphor we introduced in Chapter I} We
will explain why the GPS metaphor is similar to our approach. Then we will discuss how the TomTom
(GPS) system works. Afterwards we will present our architecture and discuss other aspects that are
inherited from cognitive systems, especially from the Human Processor defined in [Newell, 1994],
from multi agent systems (MAS), Service Oriented Architectures (SOA) and Distributed Oriented
Architectures (DOA). We will address as well why a web browser based solution.

4.1 Our Approach vs. GPS metaphor

Figure {.T] depicts the approach we introduced in Chapter 3] Hence what our approach proposes is a
system that combines the human user as well as an intelligent system, who need to work together in

"http://www.tomtom.com/
Zhttp://en.wikipedia.org/wiki/GPS

51

http://www.tomtom.com/
http://en.wikipedia.org/wiki/GPS

4.1. OUR APPROACH VS. GPS METAPHOR 52

order to achieve the desired goal of the human user. The goal is not explicitly defined, but the goal
fulfillment means the execution of a plan. The Human user provides the intelligent system with a plan
that is understood in the same way both by the human user and the intelligent system. However the
human user who created the plan does not necessarily need to be the same human user who is using
the system. The plan is a description of the environment (contexts), as well as behavior associated
with these contexts. The behavior defined in the plan, describes how the system needs to act and
react according to changes that appear in the environment. The human user as well, follows the same
behavior described in the plan. The intelligent system reacts only if the defined behavior and context(s)
description is present.

_Context(s) = environment L
perceives 3 perceives
‘ imposed (influenced)
Plan
/created by (same understanding) ~ /
uses > <« uses
according to } via
77777777777777777777777777 interact System according
| to our approach

Figure 4.1: Our approach

On the other hand, in Figure[4.2] is depicted the GPS metaphor of a complete system required to
get a person, for example, from Paris to Berlin. The actors involved are the human user (who is driving
a car) and the intelligent system which in this case is the GPS system. Both the human user and the
GPS use a plan (here a map) to achieve the desired goal of getting to Berlin. The map contains the
description of context(s) i.e. cities, roads, etc. Behavior is also specified. A particularity of this system
is that in order to define behavior, the user either directly inputs this behavior by specifying exactly
which route to follow and in this case the GPS system will verify if the human user has deviated from
the defined behavior. Or, the second possibility is just to define the start and end location and the GPS
will compute the route that needs to be followed by the human user. The end-user is also part of the
system, because if the user does not drive the car, the desired goal will never be achieved. At very
moment the GPS system perceives the environment by receiving events from the satellites and thus
being able to continuously computing current position.

We believe that similarities between our approach and the GPS metaphor can be easily observed.
The GPS metaphor follows as well the two layer system we identified for our approach. Similarly a
plan, which has been defined by the end-user and then given to the intelligent system, is used. The plan
(the map) in the GPS case comprises also a definition of the context(s) and the behavior that needs to
be followed both the human user and the intelligent system. The plan is understood in same way by

CHAPTER 4. ARCHITECTURE 53

Satellites
oA Y
Route vd \\JQ
"‘/\’ send
4 follows A

A A

sets follows:

informs

User

O
| |

Entire System required to get from Paris to Berlin

drives

Figure 4.2: GPS Example

all the parties involved. Behavior is perceived also through changes that appear in the environment
(contexts). Both the human user and the system are required, as active components of general system,
in order to achieve end-user’s desired goal. Therefore we argue that the GPS metaphor is a precise
instance of our approach.

Next section will present the components of the GPS system. We will use this in the design of the
architecture we propose.

4.2 TomTom

The GPS resolves a simple problem (intelligent navigation) compared to the Web. Navigation is an
ancient issue and before the technological advance people where navigating by reading the position
of stars, land based signs and paper based maps. Moreover navigators were required to know the
algorithms necessary to compute position based on natural elements i.e. stars. Nowadays all these low
level technical issues are hidden from the end user, exactly as per our requirements. Today only, digital
maps are presented to the user. Maps and all the elements defined and depicted on them, as well as
behavior are understood and shared between the end user and the GPS.

4.2.1 Digital maps - The plan

A map is a visual representation of an area - a symbolic depiction highlighting relationships between
elements of that space such as objects, regions, and themeﬂ

3http://en.wikipedia.org/wiki/Maps

Emilian Pascalau, 2014

http://en.wikipedia.org/wiki/Maps

4.3. THE ARCHITECTURE 54

Digital maps can provide users with way much more information than any traditional map. Traffic
signs, prohibited manoeuvres, vehicle restrictions, post/zip codes, house number ranges, points of
interest, tourist information etc are just simple examples of what type of information can be provided
by a digital map. In addition to this abundant amount of information digital maps provide also other
type of services such as route calculation, route guidance.

We have already indicated that a GPS map is equivalent with the plan for our approach.

4.2.2 How the GPS System Works

The GPS system as whole is the the first satellite navigation system, developed by the U.S. Government’s
Department of Defense and was lunched in 1973. Instead of using stars as reference points the GPS
uses a constellation of artificial satellites.

TomTom system (GPS receiver) comprises mainly a GPS module and digital maps. Beside these
it provides also a user interface (through which a user can define his/her destination points, etc.), as
well as other artifacts. The GPS and the digital maps interact with each other in the sense that position
computed by the GPS is displayed on maps.

Basically the GPS receiver perceives signals sent from 4 satellites and computes its location, which
is relative to the position of these 4 satellites. Satellites orbit outside of the earth atmosphere on fixed
paths. Location is computed based on synchronized timing between the satellites and the GPS receiver
as well as on long-term general information about the position of the satellites constellation satellites.
It is also important to mention that the satellites transmit continually signals and GPS units receive
them continuously.

4.2.3 Outcomes

Therefore we argue that our approach is 100% compliant with the TomTom system and vice-verse.
Moreover we learn that the TomTom system is heavily event based.

From our point of view the most important aspects that we learn from the TomTom device are: first
that, the low level layer of the system (system level) has been designed by default as real time system
and second that at the system level there is a unified way of representing information. We argue that
these two aspects provide the basement and are fundamental requirements for building systems that
comply with the approach we introduced. Being real time allows behavior specification. The unified
way for information representation is the requirement for the end-user defined plan and for building an
intelligent system than can be aware of itself and of the environment.

4.3 The Architecture

The architecture we introduce here concerns web browsers, because of several reasons. First of all, in
accordance with the last comments that ended the preceding section web browsers are indeed real time,
and they also offer a unified way for representing information. In addition to the unified of representing
information web browsers provide also a unified way to program and access it. Furthermore end-users
almost all of them know how to use a web browser; a web browser exists almost on all actual devices,
ranging from game consoles, TV receivers, smart phones, tablets, desktop computers. The technology
is the same everywhere; entire operating systems have been build as a web browser, see for instance
Google Chrome OSEI, Firefox Oqﬂ; a large number of SDKs for building cross-platform mobile apps

“http://www.chromium.org/chromium-os
Shttp://www.mozilla.org/en-US/firefox/os/

http://www.chromium.org/chromium-os
http://www.mozilla.org/en-US/firefox/os/

CHAPTER 4. ARCHITECTURE 55

mymashup com

_/ / D

Q Q Q

Legend:

mashups engine WwWw A /\ mashup
(Y ()
spiegel.de \)
‘ b |> . web site \,‘ ;/
rowser F

"/ user

Figure 4.3: The General Architecture

are build using HTMLS5+JavaScript. See for instance Sencha Touch QEI, PhoneGaIﬂ jQuery Mobileﬂ

The general architecture of a system that complies with the approach we introduced (see Figure @)
and which is similar also with TomTom devices is depicted in Figure 3]

This architecture is tailored for the web. As it can be seen from the image the mashup engine is
part of the browser, thus giving it elevated access to the content both of the browser itself and to the
web pages that can be accessed via the browser.

One can picture the whole system as a special type of aquarium that has no bottom. The browser
enriched with such a mashup engine it is sunken into the water. Thus the user of the browser and
consequently the user of the mashup engine have access to all the services that the browser and mashup
engine have access. Both the user of the browser as well as the mashup engine "look" at services as
out of a box. From inside the box one cannot see too much. But from outside the box one can see
everything is inside the box as well the box itself. Here the same principle is applied.

Figure [4.4] depicts a more detailed view of the position that the mashup engine has in relation to
the web pages (and any other service) that the browser accesses. In principle web pages accessed
via a browser have several layers. There is the JavaScript and Ajax layer. As depicted in Figure [d.4]
JavaScript code can be splitted into several files and loaded from several locations. The same rule
applies to Ajax objects. Then there is the Document Object Model (DOM) [Hors et al., 2004]] layer.
No matter what representation is at the top, inside the browser that representation is a DOM. This is
the unified representation of information that we emphasized as a fundamental characteristic to be able

®http://www.sencha.com/products/touch/
"http://phonegap.com/
8http://jquerymobile.com/

Emilian Pascalau, 2014

http://www.sencha.com/products/touch/
http://phonegap.com/
http://jquerymobile.com/

4.3. THE ARCHITECTURE 56

Browser WWw

L ——|
émm\mm AN 7 El
»
N 8
Qe
3
2)
= 4=
% t\
& = C
< - >
6\‘\ 3
S £
& S
® S
(7]
o ©
=

Figure 4.4: Browser Layers

to implement a system compliant with our approach. In some cases (i.e. Firefoxﬂ uses XUL@[) and
hence even the browser itself is a huge DOM. An important aspect about the DOM is that is completely
event based. Any interaction, any change is signaled via a DOM Event [Pixley, 2000]. In consequence
we have also the second fundamental requirement, as we identified while investigating the TomTom
device. A third layer is the Cascading Style Sheet (CSS) [Bos et al., 2010]] layer. This layer applies
styling. Forth layer is the representation: either a basic web page, an XML document, ATOM etc.
The mashup engine as depicted is a box that comprises all these layers. Thus it has access to all of
them. Any interaction, conversation, collaboration that exists between the user, browser and any of
the services creating a mashup is done via actions and events. The set of actions and events form the
behavior. The user is represented in the system via its behavior (actions and events).

The mashup engine depicted in Figure[d.5has a set of sensors and a set of actuators. Via the sensors
the engine perceives any interactions and communications with the environment. Different sensors and
different actuators can be implemented. The default sensor DOMSensor listens for DOM Events. The
engine uses the actuators to modify and / or communicate back with the environment. Default actuator
DOMActuator performs actions that concern the DOM, i.e. insert text into a text field in a form. The
environment comprises an arbitrary number of services and mashups, the browser and the user (user is
represented via its interaction with the system), and has the following characteristics:

e qaccessible: the entire environment is accessible to our intelligent system, because sensors have

® http:/fwww.mozilla.com/en-US/firefox/
" http:/ideveloper.mozilla.org/En/XUL

CHAPTER 4. ARCHITECTURE 57

Mashups Engine

(e
DOMSensor

gMail.com

£
o
2
8
o
-)
c 2 Sensor ???
5} =
I B
c
_g Rule System
>
c
(1]
47 DOMActuator
@
172}
b
@
1)
=
2
o
47 Actuator ???
-
N J (N J

Figure 4.5: Mashups Engine

access to all required information to be able to chose an action [Russell et Norvig, 2009];

o deterministic/nondeterministic: depending on the reasoning mechanism and because of the high
degree of complexity the environment can be seen both as deterministic and nondeterministic
from the point of view of the system (agent); however the default approach will be deterministic;

e episodic / nonepisodic: the environment can be both episodic and nonepisodic. Episodic
after [Russell et Norvig, 2009] means that an agent perceives and then acts, and subsequent
episodes do not depend on what actions occur in previous episodes;

e dynamic: the environment is dynamic because it can change while the agent is deliberating;

e Discrete / continuous: the environment can be both discrete and continuous depending on the
use case and on the plan provided.

All the events perceived, are processed by the Rule System. Based on the knowledge available, the
mashup definition and the events perceived, the Rule System computes the set of actions that the engine
has to perform in the environment. The Rule System receives events that come from the environment
as well as events that come from the rule system’s internal components. Both external and internal
behavior is performed via events and actions. The overall architecture is the one of a real-time system
as discussed in [Sommerville, 2007]], Chapter 15.

The Rule System of the mashup engine comprises two event processors one that deals with external
events and the other one that deals with the internal events. WorkingMemory stores knowledge over time.
The interaction between the components is mediated by the WorkingMemory. The Inference Engine
is the component in charge with the reasoning processes (basic functionality is pattern matching).
Different reasoning algorithms can be plugged-in.

Our architecture concerns an intelligent system and therefore the mashup engine has influences
from multi agents systems [Russell et Norvig, 2009] and from cognitive sciences [Newell, 1994] -

Emilian Pascalau, 2014

4.3. THE ARCHITECTURE

58

e N
Rule System
Working Memory
(facts)
~
External Events
Processor Custom DOM Events
L (i.e. DOM Events)) p N
System internal events
Internal Events System .
Processor internal events]_’ Inference Engine
\(system internal events) / (pattern matching)
A
System internal events
A 4
~
< Actuator Processor A J
(actions) actions-
J
N J
Figure 4.6: Mashups Engine - The Rule System
. N :
Editor Repository 9
BPMN based 222 3
Editor Editor Marketplace ©
h Manager B ‘;%
=
€ Uniform Communication Mechanism D ~—
~ g Local File System D
Manager Local File
/ ~ System
N~ —
Mashups Engine « DB
Manager < o8

J

Figure 4.7: Framework Architecture

especially the Model Human Processor (MHP) block diagram introduced in [Newell, 1994]]. The
behavior that the introduced architecture is capable to tackle, is as general as the W3C standards define.
Thus all DOM Events and actions defined by the [Pixley, 2000]] are taken into account. The DOMSensor
and DOMActuator are responsible for these. An arbitrarily number of sensors and actuators can be
defined. In addition, for example, browser specific sensors can be defined. Sensors and Actuators can
be defined also for frameworks such as YU

Figure 4.7 depicts the architecture of the entire framework. It comprises three major components:
the mashup editor, the mashup engine and the repository. The mashup editor it is foreseen to be also
browser based. The framework does not even constrict the editing environment to a particular language
or editing approach. As it can be seen in Figure 4.7 the editor must implement a Uniform Commu-
nication Mechanism. This mechanism acts as a translator between what ever language or approach

Uhttp://developer.yahoo.com/yui/

http://developer.yahoo.com/yui/

CHAPTER 4. ARCHITECTURE 59

are used by the editor and the mashup engine which knows its executable language. The conceptual
model of our solution has as smallest unit of knowledge the concept notion (see Section [3.2.1). This
allows great freedom to experiment and to address different type of users when it comes to visual
representation and modelization of mashups. For example for those who have a strong background in
business then a business processes, choreographies and business rules would be most suited while for
the segment of users that have a background in cognitive sciences and psychology perhaps a editor
capable of dealing with mental representations would be better. The second component is the mashup
engine which we just discussed. The repository, which sores and loads the masups definitions or the
"user plans" comes in different flavors: data base (DB), local file system and market place. These
different types address different types of users: private users, and business users. Business users can
use either the market place or their own DB if the business user is an enterprise wishing to provide own
employees with a uniform set of applications. The context/ontology representation approach is also
beneficial for repositories, allowing for context based and meta search facilities [Pascalau et Giurca,
2009a.

4.4 Discussion

4.4.1 Web pages as Web services

We argue that any web page should be considered as a web service and used accordingly. And the web
browser based mashups solutions supports this idea. This vision is also shared by others. However there
web pages are transformed before they can be mashed upm Another example discussed in [Ennals ef
al., 2007]] uses user defined extractors for web pages. These extractors are used by the mashup tool
to get access to the content. On the other hand, the solution we propose in this thesis uses web pages
natively without any other transformation into intermediary formats, or without requiring any sort of
annotations.

Sommerville [Sommerville, 2006] defines a Web service as a loosely coupled, reusable software
component that encapsulates discrete functionality, which may be distributed and programmatically
accessed. A web service is a service that is accessed using standard Internet and XML-based protocols.

A more general definition given by Lovelock [C. Lovelock, 1996] states that a service is an act or
performance offered by one party to another. Although the process may be tied to a physical product,
the performance is essentially intangible and does not normally result in ownership of any of the factors
of production.

According to this last definition any web page can be considered as a Web Service. Moreover we
believe that a web page complies also with the Web Service definition given in [Sommerville, 2006] as
a loosely coupled, reusable software component that encapsulates discrete functionality, which may be
distributed and programmatically accessed.

Hence our Web browser solution is concerned with all web services that can be accessed through a
web browser. In addition because some browsers such as Mozilla Firefox [use the same information
representation for themselves (uses XUL which is DOM based), our solution targets also the browser,
meaning that end-users could for instance personalize the functionality of the browser.

Being able to use also any web page as a web service our approach complies with requirement [R6]

Phttp://www.dapper.net
Bhttp://www.mozilla.com/en-US/firefox/
4http://developer.mozilla.org/En/XUL

Emilian Pascalau, 2014

http://www.dapper.net
http://www.mozilla.com/en-US/firefox/
http://developer.mozilla.org/En/XUL

4.4. DISCUSSION 60

http(s)

http(s)

Web Proxy

AHHHT—— O

Integration Code ‘

HTML and JavaScript Glue

| JavaScript A | Server-side Mashup

| JavaScript B |

| JavaScript C | JavaScript Program

Ajax Client Mashup (Browser) Ajax Application (Browser)

Figure 4.8: Mashups styles. Inspired from [[Valica, 2007]]

4.4.2 Mashups styles

Figure .8 recapitulates briefly the mashups composition styles that have been discussed at large in
Chapter

Typically, mashed-up applications are created by means of lightweight components - known as
widgets, or gadgets. These components have to be previously created, in order to be used. Wicks et al.
characterize a widget as "a small program or piece of dynamic content that can be easily placed into
a Web site. "Mashable" widgets pass events, so that they can be wired together to create something
new", [Wicks et al., 2009]. Typically widgets are defined declaratively using an XML based language,
but the generated executable code is platform dependent. A major downside of this approach is that in
order to have two or more widgets exchanging information all of them must run on the same platform.
This is required because of security reasons and because the widgets communicate via a container. The
widget technology it is said to be a client based approach. However we consider that is in fact a hybrid
approach: a client-server approach, because the gadgets run on a server side platform, and all the events
and data that is exchanged between the gadgets is performed via a server side mechanism. Nevertheless
from a compositional perspectives, users combine them in a client (browser) based environment.

Another client side approach is the API based. As depicted in Figure 48] JavaScript APIs are used
together to glue either data, which comes in different formats (i.e. ATOM, JSON), or presentation. An
important aspect to emphasize is that all APIs go through a web proxy, for security reasons. Thus again,
from the author’s perspective we are dealing with a hybrid approach as another server is involved.
Indeed the composition is done on the client side via JavaScript but still a proxy intermediates the
conversations. With respect to protocols and architectural styles the most used one is REST, but SOAP
is also an option.

Compared to this composition styles we argue that our proposal is pure client based mashup
solution. Moreover via the arcthitecture we proposed the end-user is not required to install and manage
any heavy solutions such as servers; end users are not required to run code on proprietary platforms

CHAPTER 4. ARCHITECTURE 61

nor are they required to run code through proxy servers in order to get access to content. We believe
that as required by requirement [R6| this architecture provides the means to have the web as an open
application execution environment.

4.4.3 DOA and SOA influences
Service Oriented Architecture(SOA) by OASIS:

A service is a set of functionality provided by one entity for the use of others. It is
invoked through a software interface but with no constraints on how the functionality is
implemented by the providing entity... A service is opaque in that its implementation
is hidden from the service consumer except for (1) the data model exposed through the
published service interface and (2) any information included as metadata to describe
aspects of the service which are needed by service consumers to determine whether a
given service is appropriate for the consumer’s needs

Distributed Objects Architecture(DOA) by OMG:

Distributed object applications are composed of objects, individual units of running
software that combine functionality and data, and that frequently (but not always) represent
something in the real world. Typically, there are many instances of an object of a single
type... For each object type you define an interface. The interface is the syntax part of the
contract that the server object offers to the clients that invoke it. Any client that wants
to invoke an operation on the object must use this interface to specify the operation it
wants to perform, and to marshal the arguments that it sends. When the invocation reaches
the target object, the same definition is used there to unmarshal the arguments so that the
object can perform the requested operation with them

The definitions themselves share many similarities. Both approaches are structured around remote
entities, either services or objects. In both cases remote entities export typed interfaces. Invocation by
clients at remote sites is provided by both approaches. As concluded in [Baker et Dobson, 2005] the
point of both architectures it to provide interoperability rather than homogeneity.

DOA provides a stable computing platform for the enterprises. However to extend DOA for
business-to-business interactions proved to be a very difficult task [Baker et Dobson, 2005]], hence
SOA has been developed both as a complement and / or based on the situation as a replacement
for DOA. SOA has been introduced to be more technological neutral and to tackle the highest-level
integration task. In opposition, DOA can be very specific to one specification or standard [Baker et
Dobson, 2005]).

[Baker et Dobson, 2005]] compares DOA and SOA architectures in detail. The outcome states that
there are both differences and similarities between distributed object architectures and service oriented
architectures. Four major differences have been identified: (1) SOA supports a more coarse grained
aggregated interfaces in order to simplify interactions across enterprises. Thus a smaller number if
interfaces has to be understood and this is an advantage in a world where businesses interact with
increased dynamics; (2) object references can be exchanged within the framework; as such different
providers can work with each others data; (3) reducing the importance of interface types does not lead
on the long term to simpler integration; (4) business integration has not started with SOA, however
SOA provides a better understanding for industries and commonalities that exists between providers.

Web services are distributed technologies, but are about interoperable document centric computing,
not distributed objects [[Vogels, 2003|.

Emilian Pascalau, 2014

4.4. DISCUSSION 62

In the browser DOA interfaces are the JavaScript APIs. Through these APIs applications have
access to distributed and remote objects. Same as in J2EE these APIs work similar to the exposed Java
beans. Another interesting fact about the browser and here browser based mashups is that it, in itself,
the browser is a singular platform providing a singular mechanism to exchange information and to
access remote objects via JavaScript APIs.

Web Services are said to be able to use lightweight HTTP interactions [Baker et Dobson, 2005]], but
they are not tight to HTTP or WSDL. Browser-based mashups respect the requirement of light weight
programming models. First the HTTP(s) protocol is used contrasting with CORBA’s heavyweight IIOP
and IDL and second browser based mashups do not require CORBA’s interoperable object references
(IORs).

The browser complies by default with the technological neutrality of SOA. In the browser every
page (service) is presented in the same way, no matter what technology has been used on the server
side (e.g. PHP, JSP, ASP etc.).

While SOA uses an explicit message based invocation mechanism [Baker et Dobson, 2005] DOA
uses a "push" model, thus the receipt of an event triggers the execution of handler code. The architecture
discussed here deals with first-class events which are manipulated programmatically.

In consequence this architecture is compliant with the specific SOA requirements and hence fulfills
the requirement[R7] Moreover as we stated in the preceding paragraphs this architecture has also DOA
characteristics and therefore complies also with requirements|[R8] In addition because javascript is an
interpreted language we argue that our architecture complies as well with requirement[R9]

Chapter 5

Execution

Current chapter concerns execution of Web based applications that follow the approach and the
conceptual model we introduced in Chapter[3] To recapitulate execution is based on rules and processes
and is tailored for web browsers.

5.1 DOM and DOM events

"The Document Object Model is a platform- and language-neutral interface that will allow programs
and scripts to dynamically access and update the content, structure and style of documents. The
document can be further processed and the results of that processing can be incorporated back into the
presented page." E]Thus even if a web page is represented via HTMLS, XML, XHTML or any other
XML based variant, at the low level (program level) they are represented using DOM platform- and
language-neutral interface.

"DOM Events on the other hand is a generic platform- and language-neutral event system which
allows registration of event handlers, describes event flow through a tree structure, and provides basic
contextual information for each event." DOM Events complement DOM. Moreover any DOM change
is signalized through a DOM Event.

Therefore our execution engine uses directly these platform and language neutral interfaces. In
consequence our execution engine is platform and language neutral. Moreover we argue that through
the combination of a rule based execution engine and the use of these platform and language neutral
interfaces can be achieved a unified and generic approach for defining and execution of new end-user
defined applications that comply entirely with the list of requirements we identified in Section [2.6]

5.2 The Rule Engine

The reasoning component of a standard Production Rules System is the Inference Engine (same in our
case, see Figure[5.1)). The Inference Engine matches facts and data against rules to infer conclusions
which result in actions. While basic production rules, consists of two main parts: (1) conditions and (2)
actions, we are dealing mostly with reaction rules or ECA rules which comprise three parts: (1) event,
(2) conditions and (3) actions. Both types of rules use First Order Logic for knowledge representation.

"http://www.w3.0rg/DOM/
Zhttp://www.w3.0rg/TR/DOM-Level-3-Events/

63

http://www.w3.org/DOM/
http://www.w3.org/TR/DOM-Level-3-Events/

5.2. THE RULE ENGINE 64

Rule System
Working Memory
(facts)
External Events
Processor Custom DOM Events
L (i.e. DOM Events) J P ~
A
System internal events
A 4
Internal Events System ‘
Processor internal evems]_’ Inference Engine
\(system internal events) . (pattern matching)
A
System internal events
\ 4
< Actuator Processor l
(actions) < actions-
[4

Figure 5.1: Mashups Engine - Rule System

The process of matching, new or existing facts against rules is called pattern matching and is
performed by the Inference Engine. During the last thirty years there were various proposals such
as RETE [Forgy, 1982], TREAT [Miranker, 1987]] and the Gator algorithm [Hanson et Hasan, 1993|]
which is derived from the other two. However, none of them are able to directly process DOM Events
and / or the Document Object Model. Moreover default implementations do not take into consideration
events. Our implementation is a variant of ReteOO which addresses Object Oriented systems. More
specifically closure based ones (JavaScript). In addition it takes care by default of DOM Events.

While in the case of a standard production rules system, rules are said to be stored in the production
memory, in our approach rules are stored in the user defined plan (mashup). In other words the
production memory in our case is the user defined plan or the mashup. Facts, on the other hand, in
a normal production system are asserted in the Working Memory (Figure [5.1]), where they may be
modified or retracted. For example if we area dealing with a database system, in order to be able to
have access to the facts, all necessary facts need to be first extracted from the database, asserted into
the Working Memory and only afterwards they can be used by the Inference Engine to match them
against the rules.

However the big difference between standard implementations and our own implementation with
respect to the Working Memory is that the Working Memory, for us it is the entire DOM structure
(all the services, web pages that have been associated with contexts in the user defined plan) to which the
Inference Engine has access. In addition because of this we do not require any assertion of facts in the
Working Memory. All the facts are already in the Working Memory. In addition the Working Memory
in our case holds also DOMEvents, both predefined W3C DOM events (i.e. click, dblclick,
mouseout, mouseover etc) as well as custom DOM Events. All interactions take place inside the
Working Memory. The Working Memory is alive as long as the mashup is active in the browser (it
means that as long as in the web browser there is a tab opened in the browser that contains the mashup,
the Working Memory will be kept alive).

As depicted in Figure [5.1] the Rule System has two event processors: an External Event
Processor and an Internal Event Processor. The External Events Processor receives
and deals with events from the Sensors (by default from the DOMSensor). The Internal Events

CHAPTER 5. EXECUTION 65

Determine
possible
rules to fire

Working
Memory

Fire Rule
No Rule Found
Exit if specified by rule exit

Figure 5.2: Basic execution flow of a forward chaining algorithm

Processor deals with system internal events. System components are decoupled from each other and
they communicate with each other via events. The Actuator Processor takes care of the actions
that need to be performed as result of rule matching. Actions can be any JavaScript function calls that
exist in the Working Memory. Since the Working Memory contains the DOM Structure this implies
also that all JavaScript objects and functions that have been defined in the web pages (services) are part
of the Working Memory.

There are two execution methods for rules systems: forward chaining and backward chaining. Our
implementation is a forward chaining implementation. Forward chaining is data driven, meaning that
when ever there is a change in the working memory, the inference engine reacts to these changes and
tries to match facts against rules. Figure[5.2]presents the basic execution flow of a forward chaining
algorithm.

We are dealing with ECA rules and hence we are treating separately DOM events from the regular
DOM structure. Therefore the External Events Processor as well as the Internal Event Processor use
each of them, their own specific EventStack. Events are stored in the stacks in the order they are caught
by the sensors (i.e. DOMSensor - in the case of predefined W3C DOM Events). The events are then
processed by the Inference Engine in order to trigger rules. This is depicted in Figure[5.3]

The Rule System’s main execution process is depicted in Figure This process incorporates the
basic execution flow for the forward chaining algorithm (Figure[5.2)). It starts by loading the mashup.
Continuously sensors listen for different types of events. Events are added to their specific stack of
events by the different Event processors (external and internal). Each event is verified against all the
rules defined in the mashup. If an event is found to match the event described in the rule, then the
conditional part of the rule is verified against the Working Memory. If also the conditional part of
the rule is found true then the action is added to the QueueOfActions that need to be fired. After
all rules have been verified for an event then that event is deleted from the specific stack of events
and the ActuatorProcessor will fire all the actions in the order they have been added to the
QueueOfActions. The QueueOfActions is deleted after all actions have been fired.

Emilian Pascalau, 2014

5.3. RULES 66
©)
()4{ Working Memory
@
Inference Engine
Sensor
@
EventStack (FIFO)
Event Processor
@ T
Figure 5.3: Events Capturing

QueuedfActions i

emptyActions -¢ executeActions
Queue
loadMashup ﬁ et i

5.3 Rules

addActions
ToQueue
OfActions

noMoreRulesLeft

Figure 5.4: Rule System’s Main Execution Process

Rules are written using First Order Logic (FOL), or predicate logic which extends propositional logic.
A proposition is a statement that is either true or false. If the statement can be determined to be true or
false just by itself it is said that that statement is a "closed statement": 20==4x5.

CHAPTER 5. EXECUTION 67

On the other hand expressions that evaluate against one or more variables, the facts, are "open
statements". Therefore the value of truth can not be determined until there exists a variable instance to
evaluate against: Event .type=='click’.

The conclusion’s action of a similar statement
(SELECT % from Events where Events.type=’click’) writtenin SQL is the return of
the set of rows, in which for any row in the resultset we have inferred that the facts are c11ick events.

For an object oriented system or closure based system such as JavaScript we say that a simple
proposition is of the form variable operator value. Frequently we refer to a value as being a literal
value and a proposition is a field constraint. Propositions can be combined with conjunctive (AND) and
disjunctive (OR) connectives. The current implementation of our own Rule System, takes into account
only conjunctive connective.

We find also important to mention that FOL extends propositional logic with new quantifier
concepts, specifically universal and existential quantifiers. Universal quantifier, or forall, checks that
something is true for everything in the Working Memory. Existential quantifier, on the other hand,
check for the existence of something, meaning that it should occur at least once in the Working Memory.

Facts are objects (i.e. java beans, JavaScript objects). Hence for our Rule System, facts are any
JavaScript objects to which the engine has access, thus any objects from the Working Memory. However
only objects’ fields are used in the reasoning process, or the static structure of an object: properties
(field, property or attribute have the same meaning) and their values. According to the conceptual
model (Figure[5.5)), because all the elements of our model are Concept s, and in addition a concept
is a subclass of uml: : Class then any of them can be facts. In consequence rules could be used to
reason about any of them in a unified way.

uml::Class [@——— uml::Property

Z% 1 X

Concept

JAN

I I I I
Action Message Process Mashup
Event Rule Context Entity
I I
Human Service Object

Figure 5.5: Concepts

A mashup rule is depicted in Figure[5.6/and should be read in the following way:

rule "id"
refersTo (list of contexts)
on

event
if
LHS
then
RHS
end

Emilian Pascalau, 2014

5.3. RULES 68

1
1.* 1.k
-refersTo *
Rule Context
Concept - - -
-id : String . . [hame: String
*
* L *
x f 0.* 1>

Condition | Event | | Action

Figure 5.6: Rule

A rule specifies that on event caught then if a particular set of conditions occur, specified in the Left
Hand Side (LHS) then do this, which is specified as a list of actions in the Right Hand Side (RHS).
LHS is a common name for the conditional part of the rule. It consists of a zero or more conditional
elements, as depicted also in Figure[5.6] Conditional elements refer to concepts, which in turn belong
to contexts. The LHS could contain the predefined boolean value t rue which in turn implies that the
LHS part of the rule is always true.

5.3.1 Event

An Event (see Figure[5.7) that triggers our rules is a DOM Event. Thus an event has a set of attributes
as defined by the W3C standard for DOM Events: type, timestamp, phase and a target,
and other attributes that are not depicted in the figure. Most used attributes are t ype and target.
Timestamp as the name states refers to the time when the event occurred. The phase is an attribute
that characterize the DOM event flow. Hence any event is propagated from the document towards
the specific element in the page which was targeted by the event (from the root node towards the leaf
node) El

The target of an event is the element (node) in the page on which the event has been dispatched.
The t ype of an event can be any of the DOM EventTypes or any custom event that follows the DOM
Event specification. Our current prototype implementation concerns only the type and target
attributes. The target attribute could be specified or not in the event section of a rule. If no target
is specified then it means an event of the specified type that was dispatched on any node in the page. If
target attribute is specified then it can be a specific DOM node or a variable. If a variable is specified,
then it is a free variable, and it needs to be specified in the LHS part of the rule. In this situation the
event part of a rule will be considered true only based on the type of the event. However the LHS part
of the rule will restrict the target of the event to a specific element type, as we will see later when we
will discuss the different types of conditional elements that can be expressed in the LHS.

3http://www.w3.0rg/TR/DOM-Level-3-Events/#event-flow

http://www.w3.org/TR/DOM-Level-3-Events/#event-flow

CHAPTER 5. EXECUTION 69

«enumeration» 1 * — -timestamp
DOM::EventType DOM::DOMTimeStamp
-target[0..1]
-type 1
* -
«enumeration»
-phase DOM::PhaseType

+AT_TARGET
1 +BUBLING_PHASE
+CAPTURING_PHASE

Figure 5.7: Event

Example 5.3.1 (EventDescription).

"event": {
"type" :"click"™,
"target":{"variable": {"name":"S$X"}}
br

A small example (in JSON format as used by the Rule System) of an event is provided in Example
[5.3.1] The event described in this example is an event of type c1ick. When ever a click event will
be fired rules which are triggered by c1ick events will be verified. The target of an event is the
element in the page on which the event has been dispatched. Because in this case the target is purely
bound to a free variable, named $X, the overall evaluation of the described event implies that any click
events no matter the target (a button element, a div element or anything else) will be taken into account.
However the target of the event could be restricted in the LHS part of the rule if desired so.

5.3.2 Conditional elements

The condition (LHS) part of a rule can comprise several conditional elements. We envision a se-
ries of conditional elements for our execution language: (1) a ConceptConditional, (2) a
JavaScriptBooleanConditional, (3) an EqualityConditional. These conditional ele-
ments are already implemented in our prototype implementation. In addition (4) XPathConditional
and (5) negation are also foreseen, but not implemented yet.

ConceptConditional

The conditional element concerning Concepts (ConceptConditional) is the most important one.
This conditional is built to accommodate objects and the features that objects have. It actually describes
how the object (concept) should look like. We identify concepts based on their properties. For example
we identify our car in a parking because we know the brand (type: Renault), we know the model (La-
guna), we know the color (black), we know the matriculation number (FR2014). The same process is
applied here. Hence an object (concept) has a type and has properties (fields). Therefore when dealing
with an object, in our case a concept, we need verify the t ype, we need to able to test/constrain
properties’ values and we need to be able to bind the value of an object property to a variable, so
that this can be used later on in another conditional element of a rule. Moreover the object itself, not
just a property of it, can be bind to a variable. We call constraints a PropertyConstraint and a
PropertyBinding. A ConceptConditional can have zero or more constraints. All subele-
ments of a ConceptConditional need to evaluate to true in order for the ConditionalElement to

Emilian Pascalau, 2014

5.3. RULES 70

be true.

Example 5.3.2 (ConceptConditional with PropertyRestriction).

{"conceptConditional": {
"type" :"HTMLButtonElement",

"binding": {"variable":{"name":"$X"}},
"constraints": [
{"propertyRestriction": {"property":"id",

"operator":"EQ",
"value":"mashSearchButton"

}

The ConceptConditinal depicted in Example [5.3.2] should be read and understood in this
way: Forall $X which are of t ype HTMLButtonElement with the value of the id attribute equal
to mashSearchButton. In order for this conditional to hold, the Rule System will search in the
Working Memory all the objects that are of type HTMLButtonElement (all buttons from a web
page) with a constraint on the id attribute. This constraint is a PropertyConstraint, because
the id attribute of all the found HTMLButtonElements must have the value mashSearchButton
otherwise the entire ConceptConditional will not be evaluated to true.

If we combine this Example [5.3.2] with Example[5.3.T| we observe that the variable $X has been
already bound to the target property of the event. So when the Inference Engine will meet this
variable in the ConceptConditional the overall meaning of the rule will be that when a c1ick
event is raised, then only click events that were dispatched on an HTMLButtonElement are of
interest., all others will be ignored.

Example 5.3.3 (ConceptConditional with PropertyBinding).

{"conceptConditional": {
"type" :"HTMLInputElement",
"binding": {"variable":{"name":"$cSearch"}},
"constraints": [
{"propertyRestriction": {"property":"type",
"operator":"EQ",
"value":"text"
}
}!
{"propertyRestriction":{"property":"id",
"operator":"EQ",
"value":"mashSearchInput"
}
}!
{"propertyBinding": {"property":"value",
"variable":{"name":"$sValue"}

}

CHAPTER 5. EXECUTION 71

A second ConceptConditional is provided in Example[5.3.3]and exemplifies a different case where
a PropertyBinding is involved: the variable ScSearch is a free variable meaning not bound
to any value. It will be bound to all HTMLInputElement instances from the Working Memory
complying with the property constraints from the ConceptConditional (i.e. the type attribute must
have the value "text" and the id attribute must have the value "mashSearchInput"). The
$sValue:value a PropertyBinding — the variable $sValue will be bound to the value of
the element’s attribute value.

JavaScriptBooleanConditional

JavaScriptBooleanConditional is intended to be used for those cases when the other condi-
tional elements cannot be used. This conditional is in principle a basic JavaScript boolean expression.
However in our case in can contain variables. Variables need to be bound before such an expression
can be evaluated. The evaluation is always a boolean value. If, for some reasons, the expression cannot
be logically evaluated then the final result of the evaluation is false. An example (written in our rule
system internal JSON format) of such conditional element looks like

{"javaScriptBooleanCondition":
"new RegExp ($sValue.toLowerCase()) .test (SY.toLowerCase())"}

This example uses a JavaScript Regular Expression construct to test that the text in lower case format
of the variable $sValue matches the text value of the variable SY, also in lower case format.

EqualityConditional

This conditional element computes the equality between either two concrete objects or between two
variables, e.g. $Y == $7Z. The equality succeeds if variables are bounded to the same real object.

XPathConditional

Compared to the other conditional elements which more or less deal with constructs similar to other
rule languages, this one is a bit more specific to the Web. It uses an XPath expression in relation with
either a DOM node or a variable, to express membership i.e. an XPathConditional verifies the
membership of a DOM node in a nodelist returned by the evaluation of the XPath expression. It is
interpreted as the typical Prolog member predicate to test the membership against a list.

For example $Y in ’child::$X’ typically checks if the value bound to $Y belongs to the
result list after the evaluation of the XPath expression child: : $X’. Not implemented yet.

5.3.3 Actions

Mashup Rules action concept complies with the W3C RIF Production Rule Dialect (RIF-PRD), [de
Sainte Marie ef al., 2009]).

As in RIF-PRD, mashup Rules actions (see Figure[5.6) are used to add, delete and modify facts
in the fact base (Working Memory). However, mashup rules allow a greater variety of actions i.e. a
mashup rule action can be any JavaScript function call. By default any javascript function can have a
list of parameters. We do not restrict this in any way. Moreover these parameters could be variables
that have been defined in the condition part or the event part of a rule. These variables, however can
not be free variables at the time of execution.

Table 5.1 maps the RIF-PRD actions to Mashups Rules actions.

Emilian Pascalau, 2014

5.3. RULES

72

Table 5.1: RIF-PRD actions mappings to Mashups Rules

RIF-PRD Mashups Rules

Assert insert a DOM Node

Retract removes all DOM Nodes that comply with defined formula
Retract object | remove a DOM Node

Modify update a DOM Node

Execute any JavaScript function call

Chapter 6

Implementation

In this chapter we discuss the implementation of a system that complies with all the aspects we have
introduced in the previous chapters. The prototype is our proof of concept. Moreover we will present a
series of use cases in order to validate our approach. To demonstrate the expressiveness and generality
of our approach, the set of use case address different topics: mashups (services); security and policies;
personalization; logs.

6.1 The prototype

The prototype implementation follows entirely the architecture we discussed in Chapter[d] Hence the
main components of the Rule System are those depicted in Figure[6.1] This image gets translated into
the real code in a series of packages. These packages are depicted in Figures and

Figure [6.2] depicts the main packages: rulesystem, repository, lang, utils, io. The
rulesystem package as the name states stands for the Rule System. Repository package

Rule System
[Working Memory]

(facts)

? Y
External Events) T

Processor Custom DOM Events

L (i.e. DOM Events) / P <
System internal events
h 4
£ 2

Internal Events System

Processor internal events]_’ Inference Engine
L (system internal events) J (pattern matching)

A
System internal events
h 4

(- N\
Actuator Processor \ J
(actions) < actions—

A

Figure 6.1: Mashups Engine - The Rule System

73

6.1. THE PROTOTYPE 74

—

rulesystem

lang

c
=
n

—

repositoy io

Figure 6.2: Main packages

contains the necessary code to load and parse the user defined plan (mashup description that end
users have created). The repository uses code from the io (input / output) package to read the
contents of the user defined plan. Default io implementation is AJAX based. The 1ang package
contains the classes necessary to instantiate the execution language constructs. Hence the code in the
repository package will first parse the contents and will then instantiate rules (create objects) using
the classes in the lang package. The main parser that we are using is a JSON parser. However there
are specific situations related to variables were we use regular expressions in the parsing process. For
example, we are using such an approach based on regular expressions when we area dealing with a
JavaScriptBooleanConditionalElement that is using variables. Hence we search for variables’ names
using the following regular expression \\ $\\w+. Variable names are preceded by the sign $. The
utils package contains a series of utilities classes. These classes implement for example algorithms for
arrays management and so forth.

The rulesystem package comprises a series of sub-packages as seen in Figure[6.3] These pack-
ages are an exact mirror of the conceptual components depicted in Figure[6.I] The eventprocessors
package contains both the external and internal event processors. As a general rule, the oriented associ-
ations lines between the packages basically express dependencies. The external event processor uses a
default list of events on which it listens for. The default list of events contains the W3C DOM Events.
W3C DOM Events are organized in several major categories: BasicEvents, KeyboardEvents,
MouseEvents,MouseWheelEvents, MouseMultiWheelEvents,MutationEvents, MutationNameEven
UIEvents.

The entire implementation is written in JavaScript. Hence the implementation of such a rule based
system for execution is very different than a regular implementation in Java for example, especially
because JavaScript is weakly typed and because of the environment where the code is going to run
is very demanding in terms of memory consumption. Because of the memory issues, as a general
guideline, we argue that iterative implementations should take priority over recursive implementations.

Although there are today a large number of JavaScript toolkits (i.e. jQueryEl, MochiKitEL Proto-

"http://jquery.com/
Zhttp://mochi.github.io/mochikit/

http://jquery.com/
http://mochi.github.io/mochikit/

CHAPTER 6. IMPLEMENTATION 75

[1

inferenceengine

[1

eventprocessors

_| workingmemory

repository

[1

actuatorprocessor

(R

Figure 6.3: Rule System packages

type+Scriptaculous’|and so forth) that can speed up JavaScript development we have opted out for
Dojotoolkitlﬂ We have chosen dojo because:

o dojotoolkit provides fundamental development constructs that are similar to OOP and especially
to Java;

e it is professional development oriented;
e provides a full stack for project management, build system, testing and so forth;
e it is corporate sustained: IBM and Sitepen.

As depicted in Figure[6.4] our engine can have access to the entire DOM structure, styles (CSS) and
events of a web page (service) or several services depending on where the engine resides. There are
two possibilities: either the engine is used at the level of a web page and then the engine has access
only to content that is strictly related to web page that loaded the engine. One should know that because
of security reasons if a web page contains i frame elements, the contents of these i f rames are not
accessible unless they load content from the same web server. The second possibility which gives full
flexibility and allows creation of mashups is to use the engine at the browser level as an add-on of
browser plugin. We are testing our prototype with Mozilla Firefox. Being an add-on then the engine
has access to all content: browser tabs, services, and the browser itself if this is implemented using an
XML derivative as we already argued in the preceding chapter. The engine requires as input the user
defined plan (mashup). It is worth mentioning that web sites can request the existence of a particular
add-on in order to function properly.

The implementation has been developed taken into consideration the environment, memory limita-
tions and the fact that users can not be kept waiting for an answer too long. Hence for instance the
transitive closure algorithm uses only lists of objects’ indexes and not lists containing entire objects.
Thus in the context of our recurrent conferences calendar use case, the inference process of an early

3http://script.aculo.us/
“http://dojotoolkit.org/

Emilian Pascalau, 2014

http://script.aculo.us/
http://dojotoolkit.org/

6.2. USE CASES 76

Browser WWw

Lo—
ém\ﬁ\\mm‘l \ 73 q[
(2]
Sl @ C
e
=
2)
H £
% S\ 2
& 2
< F >
6\‘\ 3
\ £
\9’5 B
® 3
)
. ©
s

Figure 6.4: Browser Layers

stage implementation took in terms of time more than 1 minute. Current implementation that uses an
algorithm based on indexes takes less than a second. We find important to mention that the dbworld
web page contains more than 10000 DOM nodes.

An early stage prototype that is capable of running very basic rules (among other things is missing
forall existential implementation) and capable of addressing simple use cases such as basic web site
personalization has been made available as a Google code project - https://code.google.com/p/jsonrules/.
Figure[6.5]shows a Google Analytics map of visits concerning the period of time between August 2009
when we have uploaded the project to February 9, 2014. The top 6 countries by the number of visits
where (United States of America: 2217 , India: 458, Germany: 368, United Kingdom: 274, France:
215 and Canada: 203).

6.2 Use Cases

We discuss in this section a series of use cases that address different topics in order to emphasize the
generality of our approach. The approach and the execution is unique so we will not insist on the
process itself but on the use cases themselves.

6.2.1 Conference Calendar - The Recurrent Use Case

The Conferences Calendar is our recurrent example that we used through out this thesis. The outcome
of this use case is to help end-users to store in semi-automatic way conferences announced on DBWorld

https://code.google.com/p/jsonrules/

Visits -
I 2217
Primary Dimension: Country/ Territory City Continent Sub Continent Region
Figure 6.5: Google Analytics Map of Visits (Aug 2009 - Feb 2014)
J # DBWorld: Recent Messages u +|
@ © @ hups://research.cs.wisc.edu/dbworld/browse.htm| ¢ | (B~ coogle Q) |\~ @ @
Message . N Web
Sent Type From Subject Deadline Page
10-Feb-2014 | journal Silviu Maniu DAPD Journal Special Issue on Databases and Crowdsourcing -- deadline extended 28-Feb-2000 | web
CFP page
10-Feb-2014 | conf. ann. | Chang Liu 5-May-2014 | web
age
10-Feb-2014 | conf. ann. | Yu Cao CALL FOR PAPERS, The 3rd ASE International Ci on Big Data Science and Ci 30-Apr-2014 | web
BigDataScie age
10-Feb-2014 | conf. ann. | Yu Cao Call for Workshop Proposals for 3rd ASE Conference on Big Data Science and Computin; 22-Feb-2014 | web
age
10-Feb-2014 | conf. ann. | Masao Mori Call for Papers:Sth International Ce on E-Service and Ki 28-Feb-2014 | web

Figure 6.6: DbWorld Service

5]
3

mailing list in a Google Calendar. We say semi-automatic because each user is looking for a different
conference, hence before storing them an end-user needs to find them and select them. Now to
achieving this is a time consuming and heavy process. First of all DbWorld (see Figure[6.6) does not
offer a search functionality, and therefore you are obliged to use the search functionality offered by the
web browser or just scroll up and down until you find all what you are looking for (not a good option).
Second, one needs to go back and forth between to browser tabs, one for DbWorld and one for Google
Calendar. For each event one needs to copy and paste at least twice (subject of the event and due date).

There are a series of problems that we would like to resolve with one app:

e see everything in just one tab, avoiding going back and forth between open tabs;

e provide a way to search in DbWorld list other than using the browser search;

e allow to analyze the search results before storing them in the calendar;

e select conference and store them automatically in the calendar.

Emilian Pascalau, 2014

6.2. USE CASES 78

m
Calendconf allows you to search the

DBWorld messages list for conferences of . ﬁ
% install calendconf app |

'your choice and then stores automatically o
selected events on your Google calendar. 3(., Svdivnveonr

Search

o Calendcont is powered by a novel Web 2.0 m

g technology which (1) it is tailored for fully

(1] fledged browser based mashups;

8 (2) the user is an active part of the system; (3) it utilizes a cognitive context aware

::’ engine; (4) tackles software and business intelligence on demand, instant use but

2 powerful

=

= .

2 Search DBWorld conference list:

3 2.9. BPM or WEB

a Search \

a

b

°

£ Search results:

U ok dosired confaranca and fit "Save Conferances” button. (For e time baing oy on confarence at a

B | tme. Sceo lssue £9)

2 Check Calendar Event Deadline

_E Save Conferences

o

: > ¢)
Powered by: 3 C Follow us:

Figure 6.7: Calendconf Stand Alone Service

To resolve these issues we created first a very basic web page (service which we called Calendconf)
with just an input field and a search button which we will use together with a user defined plan (mashup)
and the DbWorld service to perform search. Each entry found will be added in Calendconf to be further
analyzed before being stored in Google Calendar. Figure [6.7] presents the stand alone Calendconf
service. It looks like any other web page (service). The difference is that as mentioned earlier this
service asks for a browser add-on (the engine) to be installed, otherwise the service will not work.
After the installation of the add-on the contents of the browser tab change dramatically (see Figure[6.8).
After the engine has been installed and provided with the user defined plan, one tab browser contains
all the services described in the user defined plan.

According to our conceptual model which we discussed in Chapter [3| we are dealing here with 3
main contexts. Each of these contexts is related to a service: Calendconf, DbWorld and Google Calendar.
Again as discussed in the same chapter a context is identified by a set of concepts that are comprised in
these contexts. Hence for example for the Calendconf context we have the service identified by an URL
(i.e. http://calendconf.localhost/), and the search input and search button. Each of the latter concepts
(search input and search button) have a series of characteristics that allow one to identify them. For
instance the HTML representation of the search input field is <input id="mashSearchInput"
type="text" size="50" name="mashSearchInput"></input>. As such we consider
enough to use the t ype which is an INPUT and the name attribute which has the value mashSearchInput
to uniquely identify this search field. All concepts that we need or use in rules are identified in a similar
manner.

Figure [6.9]depicts the search and save operations. We have searched for "DEXA Workshop" and
the results are added for review in the Calendconf service under the search input field. The image also
shows that the first entry has been checked for save. In the Google calendar the event has been saved.
The Event contains the url of message on DbWorld and the deadline date. We have used for this use
6 rules: (1) one to clean up / delete search results before doing a new search; (2) one to perform the
search in the DbWorld service; (3) and 3 rules to do the save of the event in Google calendar.

CHAPTER 6. IMPLEMENTATION 79

technology which (1) itis tailored for fully
4 fledged browser based mashups; [o otinstttond Sent Type Subject Deadline | e
& (2)the useris an active part of the system; (3) it utilizes a cognitive context aware N - 5 5
2 engine; (4) tackles software and business intelligence on demand, instant use but U0 | 10-Feb-2014 | journal | Silviu Maniu DAPD Journal Special Issue on | 28-Feb-2000 | web
£ powerful CFP Databases and Crowdsourcing page
-- deadline extended
* Search DBWorld conference list:
5 roesmwerwes —— 10-Feb-2014 | conf. | Chang Liu CFP: IEEE BDSE2014 (Big 5-May-2014 | web
2 [|| search\ | ann. Data Science and Engineering), page
o Beijing. China, 24-26 Sept.
3 Search results: 2014
ok dasirad conference and hit & button. (For the time being st
- B — 10-Feb-2014 | conf. | Yu Cao CALL FOR PAPERS, The 3rd | 30-Apr-2014 | web
2 Check ann. ASE International Conference page
£ {aS=vniConfarmncesy| on Big Data Science and
& Computing (BigDataScie
Follow us:
10-Feb-2014 | conf. Yu Cao Call for Workshop Proposals 22-Feb-2014 | web
o . ann. for 3rd ASE Conference on Big page
GOL)SIE Search Calendar “ -~
Calendar Today < | > Feb 9-15, 2014 Day Weok Month 4Days Agenda More~ I -

m Sun 2/9 Mon 2/10 Tue 211 Wed 2112 Thu 213 Fri2na sat2/15
GMT+01

+ February 2014 < > 6am
SMTWTEFS
26 27 26 20 30 31 1 7am
2 34567 8°"
9 10[11]12 13 14 15
16 17 18 19 20 21 22 gam
23 24 25 26 27 28 1
234568678 9am
= My calendars [
— 10am

Figure 6.8: Calendconf Mashup

S calendconf hm T T— ” ” " . ’ ”

Search DBWorld conference list:
* o 6P or WED Sent |Message From Subject Deadline | Ve
—a Type Page
s |BEXA Workshop || Search ™\ |
< 10-Feb-2014 | journal | Silviu Maniu DAPD Journal Special Issue on | 28-Feb-2000 | web
E Search results: CFP Darahasfs and Crowdsourcing page
Tick desired it button. (For the time being -- deadline extended
- oo
S (Check Deadiine 10-Feb-2014 | conf. | Chang Liu CFP. [EEE BDSE2014 (Big | 5-May-2014 | web
= @ “hDEXAWorkshop on Information Systems for Situaion 5ya g4y ann. Data Science and Engineering), page
H Awareness and Situation Management Beijing, China, 24-26 Sept.
L - 4th DEXA Workshop on Information Systems for Situation 313172014 2014
") Awareness and Situation Management
o 4th DEXA Workshop on Information Systems for Situation 313112014 10-Feb-2014 | conf. Yu Cao CALL FOR PAPERS, The 3rd | 30-Apr-2014 | web
Awareness and Situation Manam‘:mem o ann. ASE International Conference pag
o 4th DEXA Wnrkshng on Information Systems for Situation 313112014 on Big Data Science and
Awareness and Situation Management ZLUlR. ala Seienee il
——————— Computing (BigDataScie
| save Conferences |
_ | 10-Feb-2014 | conf. Yu Cao Call for Workshop Proposals 22-Feb-2014 | web
Powered bv: Follow us: ann. for 3rd ASE Conference on Big Dage
GOL)SIQ Search Calendar n ———— ~
Added I8 .html on Mon Mar 31, 2014 at 8am. Undo
Calendar Today (> Mar 30 — Apr 5, 2014 Day Weok Month 4Days Agenda More~ LI~

m Sun 3130 Mon 3731 Tue 4/1 Wed 412 Thu 43 Fri 44 sat4is
GuTeo1

ram

Sam

CRBRao—0

~ March 2014
SMTWTF
23 24 25 26 27 28
234567
9 10 11 12 13 14
16 17 18 19 20 21
23 24 25 26 27 28
30311 2 3 4

10am

il

~ My calendars
W

11am

Figure 6.9: Calendconf Mashup - Search and Save

Emilian Pascalau, 2014

6.2. USE CASES 80

6.2.2 Security - Web Policies

This use case is based on [lannella, 2009]]. The author argues that there is a move towards Policy-
Oriented Web because of e-Society communities. With so much content generated by the end-users,
and shared over these social networks, "there is the real danger that the implicit sharing rules that com-
munities have developed over time will be lost in translation in the new digital communities" [lannella;
2009]]. We subscribe to the opinion of the author. Social networks like FaceBook have been quite
successful because they have provided features that empower end-user to express themselves online,
mainly by sharing content with friends and colleagues. However this social online experience can
have serious repercussions is the rules under which content is shared is not known or even worse not
respected.

The simplest example is that on FaceBook we can share photos of our friends. In addition we can
tag these friends in the photos. However we do not know if for example our friends want to share their
photos with anyone else but us. These type of restriction can be achieved to some extent, by specifying
individual friends that can see a picture, or those who can not see a picture. Nonetheless at this point,
when an user, either friend or not, sees your photo, they have the usual functionality that any web
browser provides to "Save Image As" to the local disk. After this, the photo is out of your reach and is
out of the FaceBook control as well.

Hence the question is how can we enforce or block this type of functionality when images are
tagged. Figure[6.10]depicts such a tagged photo. Our approach can be used to addresses such cases.
Hence end-user can define a rule or a set of rules that should be applied in this type of situations.
However this will work only if the end-user has installed the engine and the user defined plan containing
this rule or rules. But as we have stated in the previous section, web sites could ask users to install
add-ons in order for the web site to work.

Blocking users to save the image to their disk could be achieved in several ways: (1) remove the
"Save Image As" from the contextual menu - however this would be more difficult to achieve; (2) block
the right click functionality and hence not displaying the context menu; and (3) add a transparent image
over the real image - in this way the user will save actually a different image than the real one. Flicker
for example provides a similar approach to block users from saving the images.

No matter which of these three actions is taken first what is required, is to identify that we are
indeed in the correct context. Hence to achieve this we need to describe in the user defined plan the
context that is about the FaceBook service. Plus the other concepts that are telling us we are dealing
with an image that has been tagged, are as depicted in Figure [6.10] presents an example of such a
tagged image. The right hand side of the page containing the image has a section that starts with the
word with, followed by the FaceBook ids of the persons that are tagged in the image. Analyzing
the structure of the page we find out that the tags reside in a span element that has as value for the
attribute class the value fbPhotoTagList. The image is displayed in a div element with the value
for the attribute class being st age. Therefore these two concepts in relationship with the service
would be enough to identify that we are in the case of a tagged image on facebook and hence we would
like to hide the image underneath a transparent div.

6.2.3 Personalization

Web site personalization is yet another type of use case that can be addressed with the approach we
proposed in this thesis. Having the engine running as browser add-on would allow end-users to define
user defined plans that concern any website. For instance when ever an user is reading an email in
GMail, advertisements are displayed above the email subject (see Figure [6.1T]).

CHAPTER 6. IMPLEMENTATION 81

October 16, 2012

Allowed on Timeline +

See Translation
with

@ Tag Photo @ Add Location

Comment - Stop Notifications - Share
17 people like this.
L share

View 10 more comments

Figure 6.10: Facebook - Tagged Image Policy

Web Application Firewall - www.bee-ware.net - i-Suite, solution de référence de sécurité applicative. Test gratuit! Why this ad?
! Ad ®
[Dbweorld] ICEIRD 2014: Final Call for Abstracts Inbox x dowerld x & B
Web Conferencing Server
Feb 8 (2 days ago) -~ = Unlimited users. Free audio. 15
- webcams. No monthly fee. Free Trial
0 dbworld = rhubcom.com/Web_Conferencing

*** Final Call for Abstracts ***

Figure 6.11: Personalization Use Case - Remove Gmail Add - Before Rule Execution

“- (1] B Mova to Inbox LY Mors LS e) -
[Dbworld] ICEIRD 2014: Final Call for Abstracts Inbox x dbworld x Y]
l Feb 8 (2 days ago) -~ -
to dbworld |~

*** Final Call for Abstracts ***

Figure 6.12: Personalization Use Case - Remove Gmail - After Rule Execution

Figure [6.11] depicts the visual representation of situation. This visual representation of the add
above the mail subject is given by the following <div class="mqg"></div>. Therefore in order
to get rid of this advertisement a rule to do so would sound like: ON event Ioad IF exists an
element of type div with class attribute equal to mg then delete this
node. The result of executing such a rule is depicted in Figure

Emilian Pascalau, 2014

6.3. REQUIREMENTS 82

6.2.4 Web Analytics

Web site analytics are a well known topic of interest for the web. Platforms such as Google AnalyticsE]
or Piwiklﬂ are examples of tools that address this issue. Both of them offer almost the same insights,
i.e. visits, downloads, keywords and so forth.

Our approach can be used straight forward for this type of use cases. Moreover specific rules can
be defined to describe complex situations. For instance let’s take the case of an online shop. With our
approach it is easy to define a set of rules that for example transmit in real time, the activity of an user
on the web site. Which are the articles that he/she is currently browsing, which were the articles that
were added to the shopping cart but were later deleted from the shopping cart. Real time analytics can
be used also to suggest on the fly new products based on what the user is viewing. The great advantage
over the other approaches is that logging and things of interest are expressed by means of rules and
processes. Hence if at some point in time, changes are required, this is very easy to achieve. Moreover
because the engine uses directly the DOM and DOM Events we argue that the type of rules that can
be described are limited only by the end-user’s imagination. In addition because a larger and more
complex set of information can be sent back home to be analyzed, the use of an intelligent document
management such as FUI Polymathic |Z] together with our engine can provide different and complex
views on the collected data in relationship with business concepts that the company uses.

However when a service is used via a mashup in relationship with other services it is not possible
to get information on how the web site (service) is used in relationship with other web sites (service).
The mashup itself, just looking at the contexts defined, the services to which the described contexts
refer to as well as based on the rules who are connecting these concepts together (please recall that for
our conceptual model everything is a concept) can provide this type of statistics. In addition in such a
situation, the provider of the mashup can gather statistics via our engine about other services again in
relationship with the base service.

6.3 Requirements

We recapitulate in this section the list of requirements we introduced in Section [2.6|and explain how
they have been fulfilled.

R1 such a system should allow evolution, sharing and distribution; end-users should be allowed
through direct input to update / adapt the application;

Description: User defined plans (mashups) are in JSON format and stored basically in a file. However
as depicted in Figure in Chapter [] they can be stored as well in a database and / or
made available through a marketplace. Hence these mashups can be shared and distributed.
Users can update and / or adapt them to their own needs and to other services.

R2 such a system should not be domain specific, and should allow a wide range of use-cases;

Description: Our engine uses directly the DOM and DOM Events which are platform and language
neutral interfaces. In consequence our execution engine is platform and language neutral,
and therefore is as general as these languages. Moreover we have already discussed a series
of use cases to emphasize even more this aspect.

Shttp://www.google.com/analytics/
®http://piwik.org/
"http://polymathic.cnam.fr/

http://www.google.com/analytics/
http://piwik.org/
http://polymathic.cnam.fr/

CHAPTER 6. IMPLEMENTATION 83

R3 in a such a system the end-user should be the coordinator of how the system works; hence the
system should provide a new approach for describing behavior of composite systems (humans +
services) (humans + services) ﬂ;

Description: Users define mashups that the engine executes and follows. In addition these mashups
describe also how the engine should behave based on the behavior that the end-users exhibit.
In consequence we argue that indeed we have defined a new approach for describing
behavior of composite systems: humans + services.

R4 such a system should support both skilled developers as well as novice users;

Description: Skilled developers can definitely use our approach, without any difficulties. The approach
improves and provides means also for experienced developers to improve the process of
writing code. We believe that we have improved and simplified things for novice users.
However we accept that we have not managed to completely hide technology, since users
are still required to write the mashups in a JSON format. To fully hide the technology,
for example, a visual approach that uses pattern based interaction would be required.
Nonetheless visually created model would still require an execution engine as the one
discussed here. As such we argue that through this approach we are only missing the visual
modeling link to fully achieve end-user development environment that is general enough.

RS such a system should focus on the end-user and not on the system itself. The system should be
hidden from the end-user as much as possible by providing the right level of representation such
that a problem representation could be automatically translated into the core concepts of the
underlying programming language in which the overall system is implemented;

Description: We believe that this requirement is already proven based on the previous statements.

R6 such a system should allow on demand development using the web as a platform or web as open
application execution environment: build upon existing ideas, sites, applications EI;

Description: Because our system has been developed as a component of a web browser which already
can access the web, we can therefore get access to any of these services in a unified way
via the browser.

R7 such a system should be compliant with SOA principles of: loose coupling, reusability, discover-
ability, composability;

Description: Again because we are using DOM and DOM events, we are not bound to any specific
technology, and we can arbitrarily use any service that can be accessed via the web browser,
in an unbounded manner. Parts of the user defined plans that refer to a particular service
can be reused in relationship with other services. Services can be discovered as usually via
regular approaches that are available in a web browser.

R8 such a system should allow decentralized and delocalized execution of software / components m;

8http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf, retrieved 13 January 2014
“http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf, retrieved 13 January 2014
1http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf, retrieved 13 January 2014

Emilian Pascalau, 2014

http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/questions.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf

6.3. REQUIREMENTS 84

Description: As per our discussion in Section d.4.3| this requirements is fulfilled.
R9 such systems should allow simultaneous build time, run time development and experimentm

Description: User defined plans are interpreted, hence the build time, run time and experiment happen
almost in the same time.

Uhttp://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf, retrieved 13 January 2014

http://cordis.europa.eu/fp7/ict/ssai/docs/fp8-preparations/researchchallenges.pdf

Chapter 7

Conclusions

World Wide Web (WWW) has become the greatest repository of information that man has ever
assembled and it is continuously growing. The new WWW or Future Internet is that of an Internet of
Services and Internet of Things. Naturally, a series of questions arise from this context: how do you
filter things to create more value than you currently get? how do you aggregate things in an intelligent
and easy way instead of doing it in your head? The world cannot be described unambiguously, so how
can you allow users to deal with the world in their own way, based on their understanding?

It has been argued extensively that the right solution comes from the right participants (the end-
users). Unfortunately although a lot of effort has been put into developing a large number of frameworks
to tackle some of the issues that this new environment has brought (one can see Chapter [2)), design and
deployment of such software capable of direct interaction and empowerment of the end-user is still an
issue.

Our goal in this thesis was to address this lack of tools that are capable of direct interaction and
empowerment of end-users, in a unified manner. To achieve this we proposed a conceptual user-centric
approach.

To implement it we developed a conceptual model for this approach, we proposed an architecture
that complies with the approach, and also proposed an execution engine that uses ECA rules and
processes to execute applications that end-users have defined as mashups.

The systems that we envision has to allow a new programming model for composite systems
(humans + services). We argue that such systems are intelligent systems being able to interact with
the end-user according with an agreed beforehand plan, supporting evolution, sharing and distribution.
Hence these systems are two layer systems: one high level layer, that deals with the problem at a
conceptual and semantic level (the agreed on plan) and one low level layer that deals with the internals
of the system and low level technologies i.e. direct access to services, etc. The low level layer should be
hidden as much as possible from the end-user. The aspects that drive the development of our approach
are: end-user oriented or user-centric; humans and system interacting with each other; plan; two-layer
system; intelligent system.

To complement the approach we proposed a conceptual model. As UML is considered to be the de
facto standard modeling language we also used it to formalize our conceptual framework. The main
elements of our conceptual model are: Concept, Context, Behavior and Mashup. Instances of this
conceptual model represent the user defined plans.

A web system that complies with our approach, to the best of our knowledge does not exists
yet. However a GPS system does indeed complies with the conceptual approach we have introduced.
Therefore our system architecture has been inspired from the GPS devices. However GPS devices

85

7.1. FUTURE WORK 86

resolve a very specific problem, compared to wide range of applications that can be developed using
the Web as a platform. From our point of view the most important aspects that we learn from the GPS
devices are: first that, the low level layer of the system (system level) has been designed by default as
real time system and second that at the system level there is a unified way of representing information.
We argue that these two aspects provide the basement and are fundamental requirements for building
systems that comply with the approach we introduced.

The execution engine that follows the approach and architecture is a web browser system. The
engine is a variation of a production system. End-users define mashups (representing behavior related
to contexts). These models are fed into the engine and they are executed by the engine. Both users and
the system interact with each other via behavior that is expressed in the web browser.

We argue that with the approach discussed through out this thesis we have advanced a lot towards
a fully user-centric approach that allows end-users to create their own applications using services
oriented architectures.

From our point of view the missing link required to achieve a complete end-user system is a visual
approach that will entirely hide all the few remaining aspects that still expose technical related aspects
such as the mashup being written in a JSON format. In the next section we will shortly show future
directions of research on the side of the subject and directions to achieve the missing visual modeling
environment.

7.1 Future Work

We envision several possible directions for extending the work we presented and discussed in this
thesis: (1) visual modeling of user defined plans; (2) usage if the approach with mobile platforms; (3)
addition of different types of reasoning such as abductive logic programming.

7.1.1 Visual Modeling

We argue that visual modeling of user defined plan is the last missing link towards having a complete
end-user approach that tackles the issues we discussed in this thesis. There are at least two directions
for implementing a visual based solution for modeling user defined plans: (1) a solution that uses
directly the UI and the services through interaction design patterns; (2) a solution that uses other
established visual languages such as BPMN choreographies.

In order to improve end-user interaction with systems, over time a set of interaction design patterns
have been defined [van Welie et Tratteberg, 2000]. Patterns based approaches seem also to improve
understanding. There have been defined both a list of patterns E] and list of design wizards E] for
the web context. These wizards concern specific web situations such as: selection and choice; data
representation; navigation around; page types; page layout; page elements. We argue that a visual
solution that takes advantage of these patterns and is capable of translating them into the mashup
context in order to visually define user defined plans is worth investigating.

Choreographies refer to business-to-business collaborations and ensure interoperability between
process orchestrations [Weske, 2007]]. Choreographies are the specification of collaboration rules
between businesses. BPMN 2.0 [OMG, 2009] specification defines a choregraphy also as a process,
however it differs in purpose and behavior from a standard BPMN process. While a standard process
or orchestration concerns the activities that are performed within a single business partner, process

Thttp://www.welie.com/patterns/
Zhttp://patternwizard.nl/pattern/wizard/

http://www.welie.com/patterns/
http://patternwizard.nl/pattern/wizard/

CHAPTER 7. CONCLUSIONS 87

choreogrpahies formalize interactions between business partners. In choreography terms a business
partner refers to an organization. Hence the focus of a process choreography is on the message exchange
between business partners. Especially because of this focus on exchanging messages and interactions
between partners (services in the mashups case) we believe that choreographies can be used to model
user defined plans.

7.1.2 Mobile Platforms

The proliferation of HTML 5 and JavaScript frameworks (see for instance Sencha Touch ZEL PhoneGaIﬂ
jQuery MobileE]) for building cross-platform mobile apps is a good enough incentive to try the approach
and the prototype implementation we discussed in this thesis with these type of SDKs. We believe that
the integration of our prototype with these type of SDKs should not pose too many difficulties.

The second perspective concerning mobile platforms is the use of our approach with the Android
operating system. We argue that Android OS complies with the two fundamental aspects that we
identified in Section[d.2.3|as being mandatory for implementing our approach. Hence being real time
and having the conceptual model behind Android OS that includes concepts such as Activities, Intents,
Services, Events. Therefore we believe that our approach fits very well with the Android OS and this
perspective should be explored more.

7.1.3 New Reasoning Techniques

The reasoning engine is currently basically a forward chaining one. However the architecture allows
extensions. Therefore further extensions can address the use of other reasoning techniques such as
backward chaining, reasoning by abduction and so forth. Abductive logic programming could be
particularly of interest because it allows some predicates to be incompletely defined. It would be
useful to have this type reasoning techniques in the web environment and especially in an user-centric
approach.

3http://www.sencha.com/products/touch/
“http://phonegap.com/
Shttp://jquerymobile.com/

Emilian Pascalau, 2014

http://www.sencha.com/products/touch/
http://phonegap.com/
http://jquerymobile.com/

7.1. FUTURE WORK

88

Bibliography

[Abdelnur et Hepper, 2003] Alejandro Abdelnur et Stefan Hepper. JavaTM Portlet Specification,
Version 1.0. JSR 168: Portlet Specification, October 2003. http.//jcp.org/en/jsr/detail 2id=168.

[Abiteboul er al., 2008] Serge Abiteboul, Ohad Greenshpan, et Tova Milo. Modeling the mashup space.
In WIDM’08: Proceeding of the 10th ACM workshop on Web information and data management,
pages 87-94, 2008.

[Ackoff, 1971] R.L. Ackoff. Towards a System of System Concepts. Management Science, 17(11),
1971.

[Aghaee et al., 2012] Saeed Aghaee, Marcin Nowak, et Cesare Pautasso. Reusable decision space for
mashup tool design. In Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive
computing systems (EICS ’12), pages 211-220. ACM, 2012.

[Aghaee et al., 2013] Saeed Aghaee, Cesare Pautasso, et Antonella De Angeli. Natural end-user
development of web mashups. In IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC 2013),2013.

[Aghaee et Pautasso, 2010] Saeed Aghaee et Cesare Pautasso. Mashup development with html5. In
Proceedings of the 3rd and 4th International Workshop on Web APIs and Services Mashups. ACM,
2010.

[Aghaee et Pautasso, 2013] Saeed Aghaee et Cesare Pautasso. Guidelines for efficient and effective
end-user development of mashups. In Yvonne Dittrich, Margaret Burnett, Anders Mgrch, et David
Redmiles, editors, Proceedings of 4th International Symposium, IS-EUD 2013, volume 7897 of
Lecture Notes in Computer Science, pages 260-265. Springer, 2013.

[Alba et al., 2008] Alfredo Alba, Varun Bhagwan, et Tyrone Grandison. Accessing the Deep Web:
When Good Ideas Go Bad. In OOPSLA Companion ’08: Companion to the 23rd ACM SIGPLAN
conference on Object oriented programming systems languages and applications, pages 815-818,
New York, NY, USA, 2008. ACM.

[Alliance, 2009] Open Mashup Alliance. Enterprise Mashup Markup Language (EMML) . Open
mashup Alliance Recommendation, 2009. http://www.openmashup.org/omadocs/vi.0/index.html.

[Altinel et al., 2007] Mehmet Altinel, Paul Brown, Susan Cline, Rajesh Kartha, Eric Louie, Volker
Markl, Louis Mau, Yip-Hing Ng, David Simmen, et Ashutosh Singh. Damia - A Data Mashup
Fabric for Intranet Applications. In Proceedings of the 33th International Conference on Very Large
Data Bases. VLDB, 2007. http://www.vldb.org/conf/2007/papers/demo/p1370-altinel.pdf.

89

BIBLIOGRAPHY 90

[Analyti et al., 2007] Anastasia Analyti, Manos Theodorakis, Nicolas Spyratos, et Panos Constan-
topoulos. Contextualization as an independent abstraction mechanism for conceptual modeling .
Information Systems, 32(1):24-60, 2007.

[Auer et Lehmann, 2007] Soren Auer et Jens Lehmann. What Have Innsbruck and Leipzig in Com-
mon? Extracting Semantics from Wiki Content. In ESWC, pages 503-517, 2007.

[Baker et Dobson, 2005] Sean Baker et Simon Dobson. Comparing Service-Oriented and Dsitributed
Object Architectures. In Proceedings of the International Symposium on Distributed Objects and
Applications, number 3760 in LNCS, pages 631-645. Springer Verlag, 2005.

[Berglund et al., 2007] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Ro-
bie, et J. Simeon. XML Path Language (XPath) 2.0. W3C, 2 edition, January 2007.
http:/fwww.w3.0rg/TR/xpath20/.

[Bioernstad et Pautasso, 2007] B. Bioernstad et C. Pautasso. Let it flow: Building Mashups
with Data Processing Pipelines. In Proc. of Mashups’07 International Workshop on Web
APIs and Services Mashups at ICSOC’07, number 4907 in LNCS, pages 15-28, 2007.
http:/fwww.jopera.org/files/jopera_mashup07.pdyf.

[Bizer et al., 2010] Christian Bizer, Tom Heath, et Tim berners Lee. Linked Data - The Story So Far.
International Journal on Semnatic Web and Information Systems, 2010.

[Bolchini et al., 2007] Cristiana Bolchini, Carlo A. Curino, Elisa Quintarelli, Fabio A. Schreiber, et
Letizia Tanca. A data-oriented survey of context models. ACM SIGMOD Record, 36(4):19-26,
2007.

[Booth et al., 2004] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, et David Orchard. Web Services Architecture. http://www.w3.org/TR/ws-arch/, Feb
2004.

[Bos et al., 2010] Bert Bos, Tantek Celik, Ian Hickson, et Hakon Wium Lie. Cascading Style
Sheets Level 2 Revision 1 (CSS 2.1) Specification. W3C Working Draft, December 2010.
http:/fwww.w3.0rg/TR/CSS?2.

[Bray et al., 2008] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, et Francois Yergeau.
Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation, November 2008.
http:/fwww.w3.0rg/TR/2008/REC-xml-20081126/.

[C. Lovelock, 1996] S. Vandermerwe et al. C. Lovelock, editor. Services Marketing, chapter 12.
Englewood Cliffs, NJ: Prentice Hall, 1996.

[Caceres, 2009] Marcos Caceres. Widgets 1.0: Packaging and Configuration. W3C Candidate
Recommendation, July 2009. http://www.w3.org/TR/widgets/.

[Cappiello et al., 2011] Cinzia Cappiello, Florian Daniel, Maristella Matera, Matteo Picozzi, et
Michael Weiss. Enabling end user development through mashups: Requirements, abstractions and
innovation toolkits. In Proceedings of the 3rd International Symposium, IS-EUD 2011, Torre Canne
(BR), Italy, June 7-10, 2011, volume 6654 of LNCS, pages 9-24. Springer, 2011.

[Cattell, 1994] R. Cattell. The Object Database Standard: ODMG-93. Morgan Kaufmann Publishers,
1994.

BIBLIOGRAPHY 91

[Chinnici et al., 2007] R. Chinnici, J.J. Moreau, A. Ryman, et Sanjiva Weerawarana. Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language. W3C, 2 edition, June 2007.
hitp://www.w3.org/TR/wsdl20/, retrieved Novemeber 2008.

[Christensen et al., 2001] Erik Christensen, Francisco Curbera, Greg Meredith, et Sanjiva Weer-
awarana. Web Services Description Language (WSDL). http://www.w3.0rg/TR/wsdl, Mar 2001.

[Chul et al., 2009] Michael Chul, Andy Miller, et Roger P. Roberts. Six Ways to make Web 2.0 work.
Business Technology, The McKinsey Quaterly, pages 1-6, February 2009.

[Clark et Sasse, 1997] Louise Clark et M. Angela Sasse. Conceptual design reconsidered: The case of
the internet session directory tool. In In Proceedings of HCI’97 People and Computers XII, 1997.

[Collins, 2008] Stephen Collins. Enterprise 2.0 A new Age of Aquarius?
http://www.acidlabs.org/2008/11/20/enterprise-20-a-new-age-of-aquarius/, November 2008.

[Coutaz et al., 2005] Joelle Coutaz, James L. Crowley, Simon Dobson, et David Garlan. Context is
key. Communications of the ACM, 48(3):49-53, 2005.

[Daniel et al., 2009] Florian Daniel, Fabio Casati, Boualem Benatallah, et Ming-Chien Shan. Hosted
Universal Composition: Models, Languages and Infrastructure in mashArt. In Proceeding of the

2nd international workshop on Ontologies and Information systems for the Semantic Web (ER’09),
volume 5829/2009 of LNCS, pages 428-443. Springer Berlin / Heidelberg, 2009.

[Davies et al., 2009] J. Davies, M. Potter, M. Richardson, S. Stincic, J. Domingue, C. Pedrinaci,
D. Fensel, et R. Gonzalez-Cabero. Towards the open service web . BT Technology Journal,
26(2):1694-1719, 2009.

[de Sainte Marie et al., 2009] Christian de Sainte Marie, Adrian Paschke, et Gary Hallmark. RIF Pro-
duction Rule Dialect. W3C Candidate Recommendation, October 2009. http://www.w3.org/TR/rif-
prd/.

[Dey et Abowd, 1999a] Anind K. Dey et Gregory D. Abowd. Towards a better understanding of
context and context-awareness. Technical Report GIT-GVU-99-22, Georgia Institute of Technology,
1999.

[Dey et Abowd, 1999b] Anind K. Dey et Gregory D. Abowd. Towards a better understanding of
context and context-awareness. In In HUC ’99: Proceedings of the Ist international symposium on
Handheld and Ubiquitous Computing, pages 304-307. Springer-Verlag, 1999.

[Easterbrook et al., 2008] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, et Daniela Damian.
Guide to Advanced Empirical Software Engineering, chapter Selecting Empirical Methods for
Software Engineering Research, pages 285-311. Springer, 2008.

[Ennals et al., 2007] Rob Ennals, Eric Brewer, Minos Garofalakis, Michael Shadle, et Prashant Gandhi.
Intel mash maker: Join the web. SIGMOD Record, 36(4), 2007.

[Fielding, 2000] Roy T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

Emilian Pascalau, 2014

BIBLIOGRAPHY 92

[Fischer et Giaccardi, 2004] Gerhard Fischer et Elisa Giaccardi. End User Development - Empowering
People to Flexibly Employ Advanced Information and Communication Technology, chapter Meta-
Design: A Framework fo the Future of the End-User Development. Kluwer Academic Publishers,
2004.

[Fischer, 2012] Gerhard Fischer. Context-aware systems - the ‘right’ information, at the 'right’ time,
in the ’right’ place, in the 'right’ way, to the ’right’ person. In AVI’12. ACM, 2012.

[Forgy, 1982] Charles Forgy. Rete — A Fast Algorithm for the Many Pattern / Many Object Pattern
Match Problem. Artificial Intelligence, 19:17-37, 1982.

[Foster et Tuecke, 2005] I. Foster et S. Tuecke. Describing the Elephant: The Different Faces of IT as
Service. Enterprise Distributed Computing, 3(6):26-34, July/August 2005.

[free encyclopedia, 2009] Wikipedia-The free encyclopedia. Web widget.
http://en.wikipedia.org/wiki/Web_widget, 2009.

[Freed et Borenstein, 1996] N. Freed et N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types. RFC 2046 (Draft Standard), November 1996. Updated by RFCs 2646,
3798, 5147.

[Garrett, 2005] Jesse James Garrett. Ajax: A New Approach to Web Applications.
http://www.adaptivepath.com/ideas/essays/archives/000385.php, Feb 2005.

[Google, 2009] Google. gadgets.* APl Developer’s Guide. Google, 2009.
http://code.google.com/apis/gadgets/docs/dev_guide.html.

[Grammel et Storey, 2008] Lars Grammel et Margaret-Anne Storey. An End User perspec-
tive on Mashup Makers. Technical report, University of Victoria, September 2008.
http://lars.grammel.googlepages.com/paper_mashup_makers.pdf.

[Gregorio et de hOra, 2007] J. Gregorio et B. de hOra. The Atom Publishing Protocol (RFC5023).
http://tools.ietf.org/html/rfc5023, 2007.

[Group, 2009] W3C OWL Working Group. OWL 2 Web Ontology Language.
http://www.w3.org/TR/owl2-overview/, 2009.

[Grudin, 2001] Jonathan Grudin. Desituating action: digital representation of context. Human-
Computer Interaction, 16(2):269-286, 2001.

[Guarino, 1998] Nicola Guarino. Formal Ontology and Information Systems. In Proceedings of
FOIS 98, Trento, Italy, 6-8 June 1998, pages 3—15. 10S Press, Amsterdam, 1998.

[Gudgin et al., 2007] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarkar, et Yves Lafon. SOAP. http://www.w3.0rg/TR/soap12-partl/,
Apr 2007.

[Guizzardi, 2005] Giancarlo Guizzardi. Ontological Foundations for Structural Conceptual Mod-
els. PhD thesis, Telematics Instituut, Enschede, The Netherlands, 2005. Telematica Instituut
Fundamental Research Series No. 15, ISBN 90-75176-81-3.

BIBLIOGRAPHY 93

[Guo et al., 2008] Rui Guo, Bin Zhu, Min FENG, Aimin PAN, et Bosheng ZHOU. Compoweb: a
component-oriented web architecture. WWW ’08: Proceeding of the 17th international conference
on World Wide Web, Apr 2008.

[Hadley, 2006] M. J. Hadley. Web Application Description Language (WADL). Sun Microsystems
Inc., November 2006. https://wadl.dev.java.net/wadl20061109.pdf, retrieved Novemeber 2008.

[Hanson et Hasan, 1993] E. Hanson et M. Hasan. Gator: An optimized discrimination network for
active database rule condition testing. Technical report, Univ. of Florida, 1993.

[Harris, 2013] Derrick Harris. A peek inside microsoft’s new ’design-first’ development strategy.
Gigaom, October 2013. accessed on 21 October 2013.

[Hately er al., 2004] L. C. A. Hately, C. von Riegen, et T. Rogers. Uddi specification version 3.0.2.
Technical report, OASIS, 2004.

[Hepper, 2008] Stefan Hepper. JavaTM Portlet Specification, Version 2.0. JSR 286: Portlet Specifica-
tion 2.0, June 2008. http://jcp.org/en/jsr/detail ?id=286.

[Hohpe et Woolf, 2003] Gregor Hohpe et Bobby Woolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[Hors et al., 2004] A. Le Hors, P. Le Hegaret, L. Wood, G. Nicol, J. Robie, M. Champion, et S. Byrne.
Document Object Model (DOM) Level 3 Core Specification. W3C Recommendation, April 2004.
http:/fwww.w3.0rg/TR/DOM-Level-3-Core/.

[Hoyer et al., 2009] Volker Hoyer, Florian Gilles, Till Janner, et Katarina Stanoevska-Slabeva. Sap
research rooftop marketplace: Putting a face on service-oriented architectures. In SERVICES ’09:
Proceedings of the 2009 Congress on Services - I, pages 107-114, Washington, DC, USA, 2009.
IEEE Computer Society.

[lannella, 2009] Renato lannella. Towards e-society policy interoperability. In Proceedings of the 9th
IFIP WG 6.1 Conference on e-Business, e-Services and e-Society, I3E 2009, Nancy, France, Septem-
ber 23-25, 2009, volume 305 of IFIP Advances in Information and Communication Technology,
pages 369-384. Springer, 2009.

[IBM, 2008] IBM. IBM InfoSphere MashupHub. User and Administrator Guide. 1BM, 1 edition,
2008.

[Jackson et Wang, 2007] Collin Jackson et Helen J. Wang. Subspace: Secure Cross-domain Commu-
nication for Web Mashups. In WWW °07: Proceedings of the 16th international conference on
World Wide Web, pages 611-620, New York, NY, USA, 2007. ACM.

[Janner et al., 2009] Till Janner, Robert Siebeck, Christoph Schroth, et Volker Hoyer. Patterns for
enterprise mashups in b2b collaborations to foster lightweight composition and end user development.
ICWS ’09: IEEE International conference on Web Services 2009, 0:976-983, 2009.

[Jarrar et Dikaiakos, 2008] M. Jarrar et M. D. Dikaiakos. Mashql: a query-by-diagram topping sparql.
In ONISW °08: Proceeding of the 2nd international workshop on Ontologies and nformation systems
for the semantic web, pages 89-96, New York, NY, USA, 2008. ACM.

Emilian Pascalau, 2014

BIBLIOGRAPHY 94

[Kagermann, 2008] H. Kagermann. Toward a European Strategy for the
Future Internet A Call for Action. White paper, SAP AG, 2008.
http://www.sap.com/about/company/research/fields/internet_services/index.epx.

[Keukelaere et al., 2008] Frederik De Keukelaere, Sumeer Bhola, Michael Steiner, Suresh Chari, et
Sachiko Yoshihama. SMash: Secure Component Model for Cross-Domain Mashups on Unmodified
Browsers. In WWW ’08: Proceeding of the 17th international conference on World Wide Web, pages
535-544, New York, NY, USA, 2008. ACM.

[Klyne et Caroll, 2004] G. Klyne et J.J. Caroll. Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C Recommendation, February 2004. http.//www.w3.0rg/TR/rdf-concepts/.

[Ko et al., 2011] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan F. Blackwell, Margaret M.
Burnett, Martin Erwig, Christopher Scaffidi, Joseph Lawrance, Henry Lieberman, Brad A. Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, et Susan Wiedenbeck. The state of the art in
end-user software engineering. ACM Computing Surveys, 43(3):1 — 44, 2011.

[Kunze, 2009] Matthias Kunze. Business Process Mashups — An Analysis of Mashups and their
Value Proposition for Business Process Management. Master’s thesis, Hasso Plattner Institut an der
Universitit Potsdam, 2009.

[Laga et al., 2009] Nassim Laga, Emmanuel Bertin, et Noel Crespi. A web based framework for rapid
integration of enterprise applications. ICPS "09: Proceedings of the 2009 international conference
on Pervasive services, Jul 2009.

[Levine, 2009] Rick Levine. The Cluetrain Manifesto. Basic Books, 10th edition, 2009.

[Lieberman et al., 2006] Henry Lieberman, Fabio Paterno, et Volker Wulf, editors. End-User Devel-
opment, volume 9 of Human-Computer Interaction Series. Springer, 2006.

[MacKenzie et al., 2006] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F. Brown, et
Rebekah Metz. OASIS Reference Model for Service Oriented Architecture. http://docs.oasis-
open.org/soa-rm/v1.0/, Oct 2006.

[Maximilien et al., 2007] E. Michael Maximilien, Hernan Wilkinson, Nirmit Desai, et Stefan Tai. A
Domain-Specific language for Web APIs and Services Mashups. In Proceedings of ICSOC 2007,
volume 4749 of LNCS, pages 13-26. Springer-Verlag Berlin Heidelberg, 2007.

[McDaniel, 2003] Scott McDaniel. What’s your idea of a mental model?
http://boxesandarrows.com/whats-your-idea-of-a-mental-model/, February 2003. Retrieved
11th Janury 2014.

[Menand, 1997] Louis Menand. Pragmatism: A Reader. Vintage, 1997.

[Miranker, 1987] D. Miranker. Treat: A better match algorithm for Al production systems. In
Proceedings of the AAAI’87 Conference, 1987.

[Mockapetris, 1987] P.V. Mockapetris. Domain names - concepts and facilities. RFC 1034 (Standard),
November 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033,
4034, 4035, 4343, 4035, 4592.

BIBLIOGRAPHY 95

[Morbidoni et al., 2007] Christian Morbidoni, Axel Polleres, Danh Le Phuoc, et Giovanni Tummarello.
Semantic Web Pipes. Technical report, DERI, November 2007.

[Nardi, 1993] Bonnie A. Nardi. A Small Matter of Programming: Perspectives on End User Computing.
MIT Press, 1993.

[Newell, 1994] Allen Newell. Unified Theories of Cognition. Harvard University Press, 1994,

[Nottingham et Sayre, 2005] M. Nottingham et R. Sayre. The Atom Syndication Format (RFC4287).
http://tools.ietf.org/html/rfc4287, 2005.

[Ogrinz, 2009] Michael Ogrinz. Mashup Patterns: Design and Examples for the Modern Enterprise.
Addison-Wesley Professional, 2009. ISBN:978-0321579478.

[OMG, 2007] OMG. Production Rule Representation (PRR), Beta 1, November 2007.

[OMG, 2008] OMG. Semantics of Business Vocabulary and Business Rules Specification.
http://www.omg.org/spec/SBVR/, January 2008.

[OMG, 2009] OMG. Business Process Model and Notation (BPMN). FTF Beta 1 for Version 2.0.
http://www.omg.org/spec/BPMN/2.0, August 2009.

[OpenSocial, 2009] OpenSocial. OpenSocial Gadgets API Specification vO0.9. OpenSo-
cial, 2009. http://www.opensocial.org/Technical-Resources/opensocial-spec-v09/Gadgets-API-
Specification.html.

[O’Reilly, 2005] T. O’Reilly. What Is Web 2.0. Design Patterns and Business
Models for the Next Generation of Software. Oreillynet.com, September 2005.
http://'www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.

[O’Reilly, 2007] T. O’Reilly. What Is Web 2.0. Design Patterns and Business Models for the Next
Generation of Software. Communications and Startegies, 1st quarter(65):17, 2007.

[Pascalau et Giurca, 2009a] Emilian Pascalau et Adrain Giurca. A Lightweight Architecture of an
ECA Rule Engine for Web Browsers. In Proceedings of 5th Knowledge Engineering and Software
Engineering, KESE 2009, collocated with KI 2009, volume 486, pages 9-20. CEUR Workshop
Proceedings, 2009.

[Pascalau et Giurca, 2009b] Emilian Pascalau et Adrian Giurca. A Rule-Based Approach of Creating
and Executing Mashups. In C. Godart et al., editor, Proceedings of the 9th IFIP Conference on
e-Business, e-Services, and e-Society (I3E 2009), volume 305 of IFIP AICT, pages 82-95. Springer,
2009.

[Pascalau et Rath, 2010] Emilian Pascalau et Clemens Rath. Managing Business Process Variants at
eBay. In Jan Mendling et Mathias Weske, editors, Proceedings of the 2nd International Workshop
on BPMN, BPMN2010. Springer, 2010.

[Pascalau, 2011a] Emilian Pascalau. Mashups: Behavior in context(s). In Proceedings of 7th Workshop
on Knowledge Engineering and Software Engineering (KESE7) at the 14th Conference of the Spanish
Association for Artificial Intelligence (CAEPIA 2011), volume 805, pages 29-39. CEUR-WS, 2011.

Emilian Pascalau, 2014

BIBLIOGRAPHY 96

[Pascalau, 2011b] Emilian Pascalau. Towards TomTom like systems for the web: a novel architec-
ture for browser-based mashups. In Proceedings of the 2nd International Workshop on Business
intelligencE and the WEB (BEWEBI 1), pages 44-47. ACM New York, NY, USA, 2011.

[Pedrinaci et Domingue, 2010] Carlos Pedrinaci et John Domingue. Toward the next wave of services:
Linked services for the web of data. Journal of Universal Computer Science, 16(13):1694-1719,
2010.

[Petrelli ef al., 2000] Daniela Petrelli, Elena Not, Carlo Strapparava, Oliviero Stock, et Massimo
Zancanaro. Modeling context is like taking pictures. In CHI’2000 Workshop on Context Awareness,
2000.

[Pirolli, 1999] Peter Pirolli. Handbook of Applied Cognition, chapter 15, Cognitive Engineering
Models and Cognitive Architectures in Human-Computer Interaction. John Wiley and Sons, 1999.

[Pixley, 2000] T. Pixley. Document Object Model (DOM) Level 2 Events Specification. W3C
Recommendation, November 2000. http://www.w3.0rg/TR/DOM-Level-2-Events/.

[Pohl, 2010] Klaus Pohl. Requirements Engineering Fundamentals, Principles, and Techniques.
Springer, 2010.

[Presto, 2009] Presto. Presto Library. Presto, 2.6.1 edition, 2009.

[Raptis et al., 2005] Dimitrios Raptis, Nikolaos Tselios, et Nikolaos Avouris. Context-based design of
mobile applications for museums: a survey of existing practices. In MobileHCI *05 Proceedings of
the 7th international conference on Human computer interaction with mobile devices & services,

pages 153-160, 2005.

[Repenning et Ioannidou, 2006] Alexander Repenning et Andri Ioannidou. What makes end-user
development tick? 13 design guidelines. In End User Development, volume 9 of Human-Computer
Interaction Series, pages 51-85. Springer Netherlands, 2006.

[RSS, 2009] RSS. RSS 2.0 Specification, version 2.0.11. http://www.rssboard.org/rss-specification,
March 20009.

[Russell et Norvig, 2009] Stuart Russell et Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2009.

[Shoham, 1993] Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60:51 — 92,
1993.

[Singh, 2008] H. Singh. IBM Mashup Center and the InfoSphere MashupHub, Part 1: Get started
with InfoSphere MashupHub. IBM Developer Works, page 20, 2008.

[Sjgberg et al., 2008] Dag I. K. Sjgberg, Tore Dyba, Bente C. D. Anda, et Jo E. Hannay. Guide to
Advanced Empirical Software Engineering, chapter Building Theories in Software Engineering,
pages 312-336. Springer, 2008.

[Sommerville, 2006] Ian Sommerville. Software Engineering 8. Addison Wesley, 2006. ISBN:978-
0321313799.

[Sommerville, 2007] Ian Sommerville. Software Engineering 8. Addison Wesley, 2007.

BIBLIOGRAPHY 97

[Sun Microsystems, 2007] Inc Sun Microsystems. Sun Java SystemPortal Server 7.1 Deployment
Planning Guide. Sun Microsystems,Inc, 2007. http://dlc.sun.com/pdf/819-5073/819-5073.pdyf.

[Thompson, 2008] Rich Thompson. Web Services for Remote Portlets Specification v2.0. OASIS
Standard, 2008. http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html.

[Tognazzini, 1992] Bruce Tognazzini. TOG on Interfaces. Addison-Wesley Professional, 1992.

[TomTom, 2007] TomTom. Total navigation: Our route to the future. anual report and accounts 2007.
http://ar2007.tomtom.com/pdf/tomtom_Ar07.pdf, 2007.

[Traudt et Konary, 2005] E. Traudt et A. Konary. Software as a Service Taxonomy and Research
Guide. Technical report, IDC.com, 2005.

[Ullmann, 1972] Stephen Ullmann. Semantics: An Introduction to the Science of Meaning. Oxford,
1972.

[Uschold et Jasper, 1999] Mike Uschold et Robert Jasper. A Framework for Understanding and
Classifying Ontology Applications. In Proceedings of the IJCAI-99 workshop on Ontologies and
Problem-Solving Methods (KRRS), Stockholm, Sweden, 1999.

[Valica, 2007] Ecaterina Valica. Mashups - Work You Don’t Have To Do
http://www.slideshare.net/valicac/mashups-87355/1, 2007.

[van der Aalst et ter Hofstede, 2005] W.M.P. van der Aalst et A.H.M. ter Hofstede. YAWL: Yet
Another Workflow Language. Information Systems, 30(4):245-275, 2005.

[van der Aalst, 2009] W.M.P. van der Aalst. TomTom for Business Process Management (Tom-
Tom4BPM). In Proceedings of the 21st International Conference on Advanced Information Systems
Engineering (CAiSE’09), number 5565 in LNCS, pages 2-5. Springer-Verlag, Berlin, 2009.

[van der Aalst, 2010] W.M.P. van der Aalst. Challenges in Business Process Mining. Technical report,
Eindhoven University of Technology, 2010.

[van Dijk, 1997] Teun A. van Dijk. Cognitive context models and discourse. Language structure,
discourse and the access to consciousness, pages 189-226, 1997.

[van Welie et Tratteberg, 2000] Martijn van Welie et Hallvard Tratteberg. Interaction patterns in user
interfaces. In Proc. Seventh Pattern Languages of Programs Conference: PLoP 2000, pages 13-16,
2000.

[Vernon et al., 2007] David Vernon, Giorgio Metta, et Giulio Sandini. A survey of artificial cognitive
systems: Implications for the autonomous development of mental capabilities in computational
agents. IEEE Transactions on Evolutionary Computation, 11(2):151 — 180, 2007.

[Vogels, 2003] Werner Vogels. Web Services Are Not Dis-
tributed Objects. IEEE Internet Computing, 7(6):59-66, 2003.
http:/fiat.ubalt.edu/courses/old/idia618.185_Sp04/reading/computer.org.w6059.pdf.

[Weinberger, 2007] David Weinberger. Everything Is Miscellaneous: The Power of the New Digital
Disorder. Times Books, 2007.

Emilian Pascalau, 2014

[Weske, 2007] Mathias Weske. Business Process Management: Concepts, Languages, Architectures .
Springer-Verlag Berlin Heidelberg, 2007.

[Wicks et al., 2009] Gary Wicks, Egide Van Aerschot, Omar Badreddin, Knut Kubein, Kevin
Lo, et Daphne Steele. Powering SOA Solutions with IMS. ibm.com/redbooks, 2009.
http://www.redbooks.ibm.com/redbooks/pdfs/sg247662.pdf.

[Widom et Ceri, 1996] J. Widom et S. Ceri. Active Database Systems: triggers and Rules For Ad-
vanced Database Processing. Morgan Kaufmann Publishers, 1996.

[Yahoo, 2009] Yahoo. Konfabulator Reference Manual. Yahoo, 4.5 edition, 2009.
http://manual.widgets.yahoo.com/.

[Yu et al., 2007] Jin Yu, Boualem Benatallah, Regis Saint-Paul, Fabio Casati, Florian Daniel, et
Maristella Matera. A framework for rapid integration of presentation components. WWW °07:
Proceedings of the 16th international conference on World Wide Web, May 2007.

[Zittrain, 2008] Jonathan Zittrain. The Future of the Internet And How to Stop It. Yale University
Press New Haven and London, 2008.

Emilian PASCALAU

/€ Cnam | Vers un développement Web orienté utilisateur | € Cnam
Towards Web User-Centric Development

Résumé :

World Wide Web (WWW) est devenu le plus grand dép6t d’informations que I’homme ait jamais assemblé et il
est en croissance continue. WWW s’est transformé en un environnement génératif qui favorise I’innovation par le
développement des technologies et par un changement dans la perception des gens sur le Web et comment 1’utilisent.
Le nouveau WWW ou I'Internet de 1’ Avenir est celui d’un Internet des Services et un Internet des Objets.
Naturellement, une série des questions se posent a partir de ce contexte : comment filtrez-vous les choses pour
créer plus de valeur que vous obtenez actuellement ? Comment pouvez-vous regrouper les choses d’une maniere
intelligente et facile au lieu de la faire dans votre téte? Le monde ne peut pas étre décrit sans ambiguité, alors
comment pouvez-vous permettre aux utilisateurs de traiter avec le monde a leur maniere, en fonction de leur
compréhension? Levine dans son livre "Cluetrain manifesto" a argumenté que les marchés sont conversations, alors
comment peut-on impliquer les utilisateurs dans la conversation ? Comment les utilisateurs peuvent €tre autorisés a
la consommation facile des services, de I’information, des choses qu’ils trouvent autour?

Cependant, la conception et le déploiement d’un tel logiciel capable d’interaction directe et I’autonomisation de
I’utilisateur final reste toujours un probléme. On a, d’une part, les utilisateurs qui ont des idées, mais qui n’ont pas
I’environnement technique et les capacités en programmation pour faire eux-mémes le développement. D’autre part,
on a un grand volume des données, ressources et services qui qui pourraient &tre regroupées a la fois en termes de
données, mais le plus important, en termes de comportement d’innover et de créer nouveaux objets.

Notre objectif dans cette these est de combler ce manque d’outils qui sont capables d’une interaction directe et
I’autonomisation des utilisateurs finaux, de maniere unifiée. Ainsi, notre principale contribution dans cette these est
le développement d’une approche holistique pour les systemes basés sur le Web qui sont centrés sur 1’utilisateur et
qui integrent des données, les services et le comportement disponible sur le Web 2.0.

Mots clés :

développement web orienté utilisateur, mashups, services web, web 2.0, contexte, comportement

Abstract :

World Wide Web (WWW) has become the greatest repository of information that man has ever assembled and it
is continuously growing. WWW transformed itself into a generative environment that fosters innovation through
the advance of technologies and a shift in people’s perception of the Web and how they use it. The new WWW or
Future Internet is that of an Internet of Services and Internet of Things.

Naturally, a series of questions arise from this context: how do you filter things to create more value than you
currently get? how do you aggregate things in an intelligent and easy way instead of doing it in your head? The
world cannot be described unambiguously, so how can you allow users to deal with the world in their own way,
based on their understanding? Levine in his book "Cluetrain manifesto" was arguing that markets are conversations
so how can users be involved in the conversation? How can users be empowered with easy consumption of the
services, information, things that they found around?

However design and deployment of such software capable of direct interaction and empowerment of the end-user is
still an issue. We have on one side users that have ideas, but do not have technical background and lack programming
skills to do the development by themselves. On the other side, we have large amounts of data, resources and services
that could be aggregated both in terms of data, but most important in terms of behavior to innovate and create new
things.

Our goal in this thesis is to address this lack of tools that are capable of direct interaction and empowerment of
end-users, in a unified manner. Thus our main contribution in this thesis is the development of a holistic approach
for web based systems that are user-centric and that integrate data, services and behavior available on the Web 2.0.
Keywords :

web oriented end-user development, mashups, web services, web 2.0, context, behavior

	Résumé
	Abstract
	Résumé étendu
	Introduction
	Objective of this thesis
	Our approach
	The GPS device metaphor
	Contributions

	Related Work on Mashups
	Mashups and Web Services / SOA
	Semantic Web and Web of Data
	Mashups and Software as a Service
	Mashups and Portals
	Mashups - Conceptual approaches
	Mashups as a Collection of Widgets
	Pipes Based Mashups
	Hybrid
	Domain Specific Languages for Mashups

	Discussion

	A User-centric approach. Conceptual Model
	Our proposal - A User-centric approach
	End-user / user-centric
	Two layer system
	Plan
	Intelligent system and human user and system interacting with each other
	The approach

	Conceptual Model
	Concept
	Context
	Behavior
	Mashup

	Architecture
	Our Approach vs. GPS metaphor
	TomTom
	Digital maps - The plan
	How the GPS System Works
	Outcomes

	The Architecture
	Discussion
	Web pages as Web services
	Mashups styles
	DOA and SOA influences

	Execution
	DOM and DOM events
	The Rule Engine
	Rules
	Event
	Conditional elements
	Actions

	Implementation
	The prototype
	Use Cases
	Conference Calendar - The Recurrent Use Case
	Security - Web Policies
	Personalization
	Web Analytics

	Requirements

	Conclusions
	Future Work
	Visual Modeling
	Mobile Platforms
	New Reasoning Techniques

	Bibliography

