P. A. Withey, V. S. Vemuru, S. M. Bachilo, S. Nagarajaiah, and R. B. Weisman, Strain Paint: Noncontact Strain Measurement Using Single-Walled Carbon Nanotube Composite Coatings, Nano Letters, vol.12, issue.7, p.1234973500, 2012.
DOI : 10.1021/nl301008m

Z. Liu, S. Tabakman, K. Welsher, and H. Dai, Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery, Nano Research, vol.86, issue.2, p.85120, 2009.
DOI : 10.1007/s12274-009-9009-8

R. E. Weisman and . Smalley, Band gap uorescence from individual single-walled carbon nanotubes, Science, vol.297, issue.5581, p.593596, 2002.

W. Walden-newman, I. Sarpkaya, and S. Strauf, Quantum light signatures and nanosecond spectral diusion from cavity-embedded carbon nanotubes, Nano Letters, vol.12, issue.4, p.19341941, 2012.
DOI : 10.1021/nl204402v

J. Lefebvre, Y. Homma, and P. Finnie, Bright Band Gap Photoluminescence from Unprocessed Single-Walled Carbon Nanotubes, Physical Review Letters, vol.90, issue.21, p.217401, 2003.
DOI : 10.1103/PhysRevLett.90.217401

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel et al., Exponential decay lifetimes of excitons in individual singlewalled carbon nanotubes, Phys. Rev. Lett, vol.95, 2005.

A. Högele, C. Galland, M. Winger, and A. Imamo-§lu, Photon Antibunching in the Photoluminescence Spectra of a Single Carbon Nanotube, Physical Review Letters, vol.100, issue.21, p.217401, 2008.
DOI : 10.1103/PhysRevLett.100.217401

Y. Xiao, T. Q. Nhan, M. W. Wilson, and J. M. Fraser, Saturation of the Photoluminescence at Few-Exciton Levels in a Single-Walled Carbon Nanotube under Ultrafast Excitation, Physical Review Letters, vol.104, issue.1, p.17401, 2010.
DOI : 10.1103/PhysRevLett.104.017401

. Weisman, Stepwise quenching of exciton uorescence in carbon nanotubes by single-molecule reactions, Science, issue.5830, p.31614651468, 2007.

S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi et al., Exciton diusion in air-suspended single-walled carbon nanotubes

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, The Optical Resonances in Carbon Nanotubes Arise from Excitons, Science, vol.308, issue.5723, p.838841, 2005.
DOI : 10.1126/science.1110265

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi et al., Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Physical Review B, vol.72, issue.24, p.241402, 2005.
DOI : 10.1103/PhysRevB.72.241402

J. Lefebvre and P. Finnie, Excited Excitonic States in Single-Walled Carbon Nanotubes, Nano Letters, vol.8, issue.7, p.18901895, 2008.
DOI : 10.1021/nl080518h

F. Vialla, Y. Chassagneux, R. Ferreira, C. Roquelet, J. S. Lauret et al., Unifying the Low-Temperature Photoluminescence Spectra of Carbon Nanotubes: The Role of Acoustic Phonon Confinement, Physical Review Letters, vol.113, issue.5, 2014.
DOI : 10.1103/PhysRevLett.113.057402

URL : https://hal.archives-ouvertes.fr/hal-01066160

M. S. Arnold, J. L. Blackburn, J. J. Crochet, S. K. Doorn, J. G. Duque et al., Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin lm photovoltaics, Phys. Chem. Chem. Phys, vol.15, p.1489614918, 2013.

C. Roquelet, F. Vialla, C. Diederichs, . Ph, C. Roussignol et al., Local eld eects in the energy transfer between a chromophore and a carbon nanotube : A single-nanocompound investigation, ACS Nano, vol.6, issue.10, p.87968802, 2012.

F. Vialla, C. Roquelet, B. Langlois, G. Delport, S. M. Santos et al., Chirality Dependence of the Absorption Cross Section of Carbon Nanotubes, Physical Review Letters, vol.111, issue.13, p.137402, 2013.
DOI : 10.1103/PhysRevLett.111.137402

URL : https://hal.archives-ouvertes.fr/hal-00869868

M. S. Dresselhaus, R. Saito, and G. Dresselhaus, Physical Properties of Carbon Nanotubes, 1998.

J. Maultzsch, S. Reich, and C. Thomsen, Carbon Nanotubes : Basic Concepts and Physical Properties, 2004.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, p.5658, 1991.
DOI : 10.1038/354056a0

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, pp.603-605, 1993.
DOI : 10.1038/363603a0

P. R. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, p.622634, 1947.
DOI : 10.1103/PhysRev.71.622

J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature, issue.6662, pp.39159-62, 1998.

A. H. Castro-neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, issue.1, p.109162, 2009.
DOI : 10.1103/RevModPhys.81.109

J. W. Mintmire and C. T. White, Universal Density of States for Carbon Nanotubes, Physical Review Letters, vol.81, issue.12, p.25062509, 1998.
DOI : 10.1103/PhysRevLett.81.2506

M. Ouyang, J. Huang, C. L. Cheung, and C. M. Lieber, Energy Gaps in "Metallic" Single-Walled Carbon Nanotubes, Science, vol.292, issue.5517, p.292702705, 2001.
DOI : 10.1126/science.1058853

A. Grüneis, R. Saito, G. G. Samsonidze, T. Kimura, M. A. Pimenta et al., point in graphite and carbon nanotubes, Physical Review B, vol.67, issue.16, p.165402, 2003.
DOI : 10.1103/PhysRevB.67.165402

]. E. Mali¢, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, Analytical approach to optical absorption in carbon nanotubes, Physical Review B, vol.74, issue.19, 2006.
DOI : 10.1103/PhysRevB.74.195431

J. Jiang, R. Saito, A. Grüneis, G. Dresselhaus, and M. S. Dresselhaus, Optical absorption matrix elements in single-wall carbon nanotubes, Carbon, vol.42, issue.15, pp.423169-3176, 2004.
DOI : 10.1016/j.carbon.2004.07.028

J. Lefebvre, J. M. Fraser, P. Finnie, and Y. Homma, Photoluminescence from an individual single-walled carbon nanotube, Physical Review B, vol.69, issue.7, p.75403, 2004.
DOI : 10.1103/PhysRevB.69.075403

S. Uryu and T. Ando, Exciton absorption of perpendicularly polarized light in carbon nanotubes, Physical Review B, vol.74, issue.15, p.155411, 2006.
DOI : 10.1103/PhysRevB.74.155411

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Trigonal warping eect of carbon nanotubes, Phys. Rev. B, vol.61, p.29812990, 2000.

S. Berciaud, V. V. Deshpande, R. Caldwell, Y. Miyauchi, C. Voisin et al., All-optical structure assignment of individual singlewalled carbon nanotubes from rayleigh and raman scattering measurements, physica status solidi, issue.12, p.24924362441, 2012.

T. Ando, Excitons in Carbon Nanotubes, Journal of the Physics Society Japan, vol.66, issue.4, p.10661073, 1997.
DOI : 10.1143/JPSJ.66.1066

R. B. Capaz, C. D. Spataru, S. Ismail-beigi, and S. G. Louie, Diameter and chirality dependence of exciton properties in carbon nanotubes, Physical Review B, vol.74, issue.12, p.121401, 2006.
DOI : 10.1103/PhysRevB.74.121401

Y. Miyauchi, R. Saito, K. Sato, Y. Ohno, S. Iwasaki et al., Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials, Chemical Physics Letters, vol.442, issue.4-6, pp.442394-399, 2007.
DOI : 10.1016/j.cplett.2007.06.018

D. T. Nguyen, C. Voisin, . Ph, C. Roussignol, J. S. Roquelet et al., Elastic Exciton-Exciton Scattering in Photoexcited Carbon Nanotubes, Physical Review Letters, vol.107, issue.12, p.127401, 2011.
DOI : 10.1103/PhysRevLett.107.127401

URL : https://hal.archives-ouvertes.fr/hal-00623859

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, pp.31391-97, 1999.
DOI : 10.1016/S0009-2614(99)01029-5

G. Lolli, L. Zhang, L. Balzano, N. Sakulchaicharoen, Y. Tan et al., ) Structure of Single-Walled Carbon Nanotubes by Modifying Reaction Conditions and the Nature of the Support of CoMo Catalysts, The Journal of Physical Chemistry B, vol.110, issue.5, p.21082115, 2006.
DOI : 10.1021/jp056095e

A. G. Kim, D. T. Rinzler, G. E. Colbert, D. Scuseria, J. E. Tománek et al., Crystalline ropes of metallic carbon nanotubes, Science, issue.5274, p.273483487, 1996.

J. Lauret, C. Voisin, G. Cassabois, C. Delalande, . Ph et al., Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes, Physical Review Letters, vol.90, issue.5, p.57404, 2003.
DOI : 10.1103/PhysRevLett.90.057404

URL : https://hal.archives-ouvertes.fr/hal-00018421

S. Ghosh, S. M. Bachilo, and R. B. Weisman, Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation, Nature Nanotechnology, vol.2, issue.6, p.443450, 2010.
DOI : 10.1038/nnano.2010.68

A. Lucas, C. Zakri, M. Maugey, M. Pasquali, P. Van-der-schoot et al., Kinetics of nanotube and microber scission under sonication, The Journal of Physical Chemistry C, issue.48, p.1132059920605, 2009.

W. Wenseleers, I. I. Vlasov, E. Goovaerts, E. D. Obraztsova, A. S. Lobach et al., Ecient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles, Advanced Functional Materials, issue.11, p.1411051112, 2004.

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, Sorting carbon nanotubes by electronic structure using density dierentiation, Nature nanotechnology, vol.1, issue.1, p.6065, 2006.

A. Hagen and T. Hertel, Quantitative analysis of optical spectra from individual single-wall carbon nanotubes, Nano Letters, vol.3, issue.3, p.383388, 2003.

A. V. Naumov, S. Ghosh, D. A. Tsyboulski, S. M. Bachilo, and R. B. Weisman, Analyzing Absorption Backgrounds in Single-Walled Carbon Nanotube Spectra, ACS Nano, vol.5, issue.3, p.16391648, 2011.
DOI : 10.1021/nn1035922

V. Perebeinos, J. Terso, and P. Avouris, Effect of Exciton-Phonon Coupling in the Calculated Optical Absorption of Carbon Nanotubes, Physical Review Letters, vol.94, issue.2, p.27402, 2005.
DOI : 10.1103/PhysRevLett.94.027402

O. N. Torrens, M. Zheng, and J. M. Kikkawa, -Momentum Dark Excitons in Carbon Nanotubes by Optical Spectroscopy, Physical Review Letters, vol.101, issue.15, p.157401, 2008.
DOI : 10.1103/PhysRevLett.101.157401

URL : https://hal.archives-ouvertes.fr/jpa-00215288

. Weisman, Structure-assigned optical spectra of single-walled carbon nanotubes

R. B. Weisman and S. M. Bachilo, Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension:?? An Empirical Kataura Plot, Nano Letters, vol.3, issue.9, p.12351238, 2003.
DOI : 10.1021/nl034428i

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2006.
DOI : 10.1007/978-0-387-46312-4

Y. Miyauchi, M. Oba, and S. Maruyama, Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy, Physical Review B, vol.74, issue.20
DOI : 10.1103/PhysRevB.74.205440

W. E. Moerner and D. P. Fromm, Methods of single-molecule uorescence spectroscopy and microscopy, Review of Scientic Instruments, vol.74, p.35973619, 2003.

L. Colombier, J. Selles, E. Rousseau, J. S. Lauret, F. Vialla et al., Detection of a Biexciton in Semiconducting Carbon Nanotubes Using Nonlinear Optical Spectroscopy, Physical Review Letters, vol.109, issue.19, 2012.
DOI : 10.1103/PhysRevLett.109.197402

URL : https://hal.archives-ouvertes.fr/hal-00750969

L. Darchy, N. Hani, F. Vialla, C. Voisin, P. Bayle et al., A highly selective non-radical diazo coupling provides low cost semi-conducting carbon nanotubes Hot electron cooling by acoustic phonons in graphene, Carbon Phys. Rev. Lett, vol.66, issue.109, pp.246-258056805, 2012.

S. Moehl, H. Zhao, B. Dal-son, S. Wachter, and H. Kalt, Solid immersion lens-enhanced nano-photoluminescence: Principle and applications, Journal of Applied Physics, vol.93, issue.10, p.6265, 2003.
DOI : 10.1063/1.1567035

T. Hertel, S. Himmelein, T. Ackermann, D. Stich, and J. Crochet, Diusion limited photoluminescence quantum yields in 1-d semiconductors : Single-wall carbon nanotubes, ACS Nano, vol.4, issue.12, p.71617168, 2010.

J. Crochet, M. Clemens, and T. Hertel, Quantum Yield Heterogeneities of Aqueous Single-Wall Carbon Nanotube Suspensions, Journal of the American Chemical Society, vol.129, issue.26, p.80588059, 2007.
DOI : 10.1021/ja071553d

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu et al., Brightening of excitons in carbon nanotubes on dimensionality modication, Nature Photonics, 2013.

A. Hartschuh, H. N. Pedrosa, L. Novotny, and T. D. Krauss, Simultaneous uorescence and raman scattering from single carbon nanotubes, Science, issue.5638, p.30113541356, 2003.

H. Htoon, M. J. O-'connell, P. J. Cox, S. K. Doorn, and V. I. Klimov, Low Temperature Emission Spectra of Individual Single-Walled Carbon Nanotubes: Multiplicity of Subspecies within Single-Species Nanotube Ensembles, Physical Review Letters, vol.93, issue.2, p.27401, 2004.
DOI : 10.1103/PhysRevLett.93.027401

J. Lefebvre, P. Finnie, and Y. Homma, Temperature-dependent photoluminescence from single-walled carbon nanotubes, Physical Review B, vol.70, issue.4, p.45419, 2004.
DOI : 10.1103/PhysRevB.70.045419

O. Kiowski, S. Lebedkin, F. Hennrich, and M. M. Kappes, Single-walled carbon nanotubes show stable emission and simple photoluminescence spectra with weak excitation sidebands at cryogenic temperatures, Physical Review B, vol.76, issue.7, p.75422, 2007.
DOI : 10.1103/PhysRevB.76.075422

. Bright, long-lived and coherent excitons in carbon nanotube quantum dots, Nature Nanotechnology, 2013.

I. Sarpkaya, Z. Zhang, W. Walden-newman, X. Wang, J. Hone et al., Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes, Nature Communications, vol.3, 2013.
DOI : 10.1038/ncomms3152

N. Ai, W. Walden-newman, Q. Song, S. Kalliakos, and S. Strauf, Suppression of Blinking and Enhanced Exciton Emission from Individual Carbon Nanotubes, ACS Nano, vol.5, issue.4, p.26642670, 2011.
DOI : 10.1021/nn102885p

S. Ghosh, S. M. Bachilo, R. A. Simonette, K. M. Beckingham, and R. B. Weisman, Oxygen doping modies near-infrared band gaps in uorescent single-walled carbon nanotubes, Science, issue.6011, p.33016561659, 2010.

Y. Piao, B. Meany, L. R. Powell, N. Valley, H. Kwon et al., Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects, Nature Chemistry, vol.413, issue.10, 2013.
DOI : 10.1038/nchem.1711

J. J. Crochet, J. G. Duque, J. H. Werner, and S. K. Doorn, Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes, Nature Nanotechnology, vol.101, issue.2, p.126132, 2012.
DOI : 10.1038/nnano.2011.227

S. Berciaud, L. Cognet, and B. Lounis, Luminescence Decay and the Absorption Cross Section of Individual Single-Walled Carbon Nanotubes, Physical Review Letters, vol.101, issue.7, p.77402, 2008.
DOI : 10.1103/PhysRevLett.101.077402

URL : https://hal.archives-ouvertes.fr/hal-00719454

Y. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, Femtosecond Spectroscopy of Optical Excitations in Single-Walled Carbon Nanotubes: Evidence for Exciton-Exciton Annihilation, Physical Review Letters, vol.94, issue.15, p.157402, 2005.
DOI : 10.1103/PhysRevLett.94.157402

S. M. Santos, B. Yuma, S. Berciaud, J. Shaver, M. Gallart et al., All-Optical Trion Generation in Single-Walled Carbon Nanotubes, Physical Review Letters, vol.107, issue.18
DOI : 10.1103/PhysRevLett.107.187401

URL : https://hal.archives-ouvertes.fr/hal-00617981

C. Georgi, A. A. Green, M. C. Hersam, and A. Hartschuh, Probing exciton localization in single-walled carbon nanotubes using high-resolution near-eld microscopy, ACS Nano, vol.4, issue.10, p.59145920, 2010.

B. O. Tayo and S. V. Rotkin, Charge impurity as a localization center for singlet excitons in single-wall nanotubes, Physical Review B, vol.86, issue.12, p.125431, 2012.
DOI : 10.1103/PhysRevB.86.125431

S. Berger, F. Iglesias, P. Bonnet, C. Voisin, G. Cassabois et al., Optical properties of carbon nanotubes in a composite material: The role of dielectric screening and thermal expansion, Journal of Applied Physics, vol.105, issue.9, p.94323, 2009.
DOI : 10.1063/1.3116723

URL : https://hal.archives-ouvertes.fr/hal-00384084

D. Karaiskaj, C. Engtrakul, T. Mcdonald, M. J. Heben, and A. Mascarenhas, Intrinsic and Extrinsic Effects in the Temperature-Dependent Photoluminescence of Semiconducting Carbon Nanotubes, Physical Review Letters, vol.96, issue.10, p.106805, 2006.
DOI : 10.1103/PhysRevLett.96.106805

C. Manzoni, A. Gambetta, E. Menna, M. Meneghetti, G. Lanzani et al., Intersubband Exciton Relaxation Dynamics in Single-Walled Carbon Nanotubes, Physical Review Letters, vol.94, issue.20, p.207401, 2005.
DOI : 10.1103/PhysRevLett.94.207401

K. Matsuda, T. Inoue, Y. Murakami, S. Maruyama, and Y. Kanemitsu, Exciton dephasing and multiexciton recombinations in a single carbon nanotube, Physical Review B, vol.77, issue.3, p.33406, 2008.
DOI : 10.1103/PhysRevB.77.033406

C. Galland, A. Högele, H. E. Türeci, and A. Imamo-§lu, Non-Markovian Decoherence of Localized Nanotube Excitons by Acoustic Phonons, Physical Review Letters, vol.101, issue.6, p.67402, 2008.
DOI : 10.1103/PhysRevLett.101.067402

K. Huang and A. Rhys, Theory of light absorption and non-radiative transitions in f-centres, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.204, p.406423, 1078.

C. B. Duke and G. D. Mahan, Phonon-Broadened Impurity Spectra. I. Density of States, Physical Review, vol.139, issue.6A, pp.1965-1982, 1965.
DOI : 10.1103/PhysRev.139.A1965

B. Krummheuer, V. M. Axt, and T. Kuhn, Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots, Physical Review B, vol.65, issue.19, 2002.
DOI : 10.1103/PhysRevB.65.195313

H. Suzuura and T. Ando, Phonons and electron-phonon scattering in carbon nanotubes, Physical Review B, vol.65, issue.23, p.235412, 2002.
DOI : 10.1103/PhysRevB.65.235412

D. T. Nguyen, C. Voisin, . Ph, C. Roussignol, J. S. Roquelet et al., Phonon-induced dephasing in single-wall carbon nanotubes, Physical Review B, vol.84, issue.11, p.115463, 2011.
DOI : 10.1103/PhysRevB.84.115463

URL : https://hal.archives-ouvertes.fr/hal-00627579

I. Favero, G. Cassabois, D. Darson, C. Voisin, J. Tignon et al., Huangrhys side-bands in the emission line of a single inas quantum dot, Physica E : Low-dimensional Systems and Nanostructures, pp.2-4336, 2004.

M. W. Graham, Y. Ma, A. A. Green, M. C. Hersam, and G. R. Fleming, Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes, The Journal of Chemical Physics, vol.134, issue.3
DOI : 10.1063/1.3530582

A. V. Savin, B. Hu, and Y. S. Kivshar, Thermal conductivity of single-walled carbon nanotubes, Physical Review B, vol.80, issue.19, 2009.
DOI : 10.1103/PhysRevB.80.195423

L. A. Girifalco, M. Hodak, and R. S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Physical Review B, vol.62, issue.19, p.1310413110, 2000.
DOI : 10.1103/PhysRevB.62.13104

J. Mu, Y. Ma, H. Yin, C. Liu, and M. Rohlng, Photoluminescence of Single-Walled Carbon Nanotubes: The Role of Stokes Shift and Impurity Levels, Physical Review Letters, vol.111, issue.13, p.137401, 2013.
DOI : 10.1103/PhysRevLett.111.137401

B. F. Habenicht, H. Kamisaka, K. Yamashita, and O. V. Prezhdo, Ab Initio Study of Vibrational Dephasing of Electronic Excitations in Semiconducting Carbon Nanotubes, Nano Letters, vol.7, issue.11, p.32603265, 2007.
DOI : 10.1021/nl0710699

W. R. Salaneck, R. H. Friend, and J. L. Brédas, Electronic structure of conjugated polymers: consequences of electron???lattice coupling, Physics Reports, vol.319, issue.6, pp.319231-251, 1999.
DOI : 10.1016/S0370-1573(99)00052-6

J. L. Bredas and G. B. Street, Polarons, bipolarons, and solitons in conducting polymers, Accounts of Chemical Research, vol.18, issue.10, p.309315, 1985.
DOI : 10.1021/ar00118a005

P. B. Shaw and E. W. Young, Strong-coupled electronacoustic-phonon system in one dimension, Phys. Rev. B, vol.24, p.714723, 1981.

L. Duclaux, Review of the doping of carbon nanotubes (multiwalled and singlewalled ), Carbon, issue.10, pp.401751-1764, 2002.

J. L. Bahr and J. M. Tour, Covalent chemistry of single-wall carbon nanotubes, Journal of Materials Chemistry, vol.12, issue.7
DOI : 10.1039/b201013p

A. N. Khlobystov, D. A. Britz, and G. A. Briggs, Molecules in carbon nanotubes, Accounts of Chemical Research, vol.38, issue.12, p.901909, 2005.

J. Chen and C. P. Collier, Noncovalent Functionalization of Single-Walled Carbon Nanotubes with Water-Soluble Porphyrins, The Journal of Physical Chemistry B, vol.109, issue.16, p.76057609, 2005.
DOI : 10.1021/jp050389i

J. Zhao, J. P. Lu, J. Han, and C. Yang, Noncovalent functionalization of carbon nanotubes by aromatic organic molecules, Applied Physics Letters, vol.82, issue.21, pp.3746-3748, 2003.
DOI : 10.1063/1.1577381

B. J. Landi, R. P. Raaelle, S. L. Castro, and S. G. Bailey, Single-wall carbon nanotubepolymer solar cells, Progress in Photovoltaics : Research and Applications, p.165172, 2005.

O. Brian, M. Regan, and . Graetzel, A low-cost, high-eciency solar cell based on dye-sensitized, nature, vol.353, p.24, 1991.

L. M. Johnston, R. J. Herz, and . Nicholas, Nanoengineering coaxial carbon nanotubedual-polymer heterostructures, ACS Nano, vol.6, issue.7, p.60586066, 2012.

F. Ernst, T. Heek, A. Setaro, R. Haag, and S. Reich, Functional Surfactants for Carbon Nanotubes: Effects of Design, The Journal of Physical Chemistry C, vol.117, issue.2, p.11571162, 2013.
DOI : 10.1021/jp3098186

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, Quantum control of energy ow in light harvesting, Nature, issue.6888, p.417533535, 2002.

M. G. Walter, A. B. Rudine, and C. C. Wamser, Porphyrins and phthalocyanines in solar photovoltaic cells, Journal of Porphyrins and Phthalocyanines, vol.14, issue.09, p.759792, 2010.
DOI : 10.1142/S1088424610002689

M. Palummo, C. Hogan, F. Sottile, P. Bagala, and A. Rubio, electronic and optical spectra of free-base porphyrins: The role of electronic correlation, The Journal of Chemical Physics, vol.131, issue.8, p.131084102, 2009.
DOI : 10.1063/1.3204938

T. Hasobe, S. Fukuzumi, and P. V. Kamat, Ordered Assembly of Protonated Porphyrin Driven by Single-Wall Carbon Nanotubes. J- and H-Aggregates to Nanorods, Journal of the American Chemical Society, vol.127, issue.34, p.1271188411885, 2005.
DOI : 10.1021/ja050687t

G. Magadur, J. S. Lauret, V. Alain-rizzo, C. Voisin, . Ph et al., Excitation Transfer in Functionalized Carbon Nanotubes, ChemPhysChem, vol.32, issue.9, p.12501253, 2008.
DOI : 10.1002/cphc.200800104

URL : https://hal.archives-ouvertes.fr/hal-00285155

H. Murakami, T. Nomura, and N. Nakashima, Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin???nanotube nanocomposites, Chemical Physics Letters, vol.378, issue.5-6, pp.481-485, 2003.
DOI : 10.1016/S0009-2614(03)01329-0

Y. Allard and . Sun, Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes, Journal of the American Chemical Society, vol.126, issue.4, p.10141015, 2004.

A. Satake, Y. Miyajima, Y. Kobuke, and M. Prato, Porphyrin-carbon nanotube composites formed by noncovalent polymer wrapping Electronically interacting single wall carbon nanotubeporphyrin nanohybrids, Chemistry of Materials Journal of Materials Chemistry, vol.17, issue.161, p.7167246265, 2005.

J. P. Casey, S. M. Bachilo, and R. B. Weisman, Ecient photosensitized energy transfer and near-ir uorescence from porphyrin-swnt complexes
DOI : 10.1039/b716649d

S. Cambré, W. Wenseleers, J. ƒulin, S. Van-doorslaer, A. Fonseca et al., Characterisation of Nanohybrids of Porphyrins with Metallic and Semiconducting Carbon Nanotubes by EPR and Optical Spectroscopy, ChemPhysChem, vol.22, issue.13, p.19301941, 2008.
DOI : 10.1002/cphc.200800317

J. D. Correa and W. Orellana, Optical response of carbon nanotubes functionalized with (free-base, Zn) porphyrins, and phthalocyanines: A DFT study, Physical Review B, vol.86, issue.12, p.125417, 2012.
DOI : 10.1103/PhysRevB.86.125417

J. D. Correa and W. Orellana, Light-harvesting eciency of a (6,5) carbon nanotube functionalized with a free-base tetraphenylporphyrin : Density functional theory calculations, Journal of Applied Physics, issue.17, p.113174305, 2013.

C. Roquelet, B. Langlois, F. Vialla, D. Garrot, J. S. Lauret et al., Light harvesting with non covalent carbon nanotube/porphyrin compounds, Chemical Physics, vol.413, issue.0, pp.41345-54, 2013.
DOI : 10.1016/j.chemphys.2012.09.004

URL : https://hal.archives-ouvertes.fr/hal-00829151

C. Roquelet, D. Garrot, J. S. Lauret, C. Voisin, V. Alain-rizzo et al., Quantum eciency of energy transfer in noncovalent carbon nanotube/porphyrin compounds, Appl. Phys. Lett, issue.14, p.97141918, 2010.

R. K. Wang, W. C. Chen, D. K. Campos, and K. J. Ziegler, Swelling the Micelle Core Surrounding Single-Walled Carbon Nanotubes with Water-Immiscible Organic Solvents, Journal of the American Chemical Society, vol.130, issue.48, p.1301633016337, 2008.
DOI : 10.1021/ja806586v

Z. Chernia and D. Gill, Flattening of TMPyP Adsorbed on Laponite. Evidence in Observed and Calculated UV???vis Spectra, Langmuir, vol.15, issue.5, p.16251633, 1999.
DOI : 10.1021/la9803676

O. Ohno, Y. Kaizu, and H. Kobayashi, Luminescence of some metalloporphins including the complexes of the IIIb metal group, The Journal of Chemical Physics, vol.82, issue.4, p.17791787, 1985.
DOI : 10.1063/1.448410

M. Huang, Y. Wu, B. Chandra, H. Yan, Y. Shan et al., Direct Measurement of Strain-Induced Changes in the Band Structure of Carbon Nanotubes, Physical Review Letters, vol.100, issue.13, p.136803, 2008.
DOI : 10.1103/PhysRevLett.100.136803

S. D. Stranks, J. K. Sprafke, H. L. Anderson, and R. J. Nicholas, Electronic and mechanical modication of single-walled carbon nanotubes by binding to porphyrin oligomers, ACS Nano, vol.5, issue.3, p.23072315, 2011.

T. M. Aminabhavi, V. B. Patil, M. I. Aralaguppi, and H. T. Phayde, Density, Viscosity, and Refractive Index of the Binary Mixtures of Cyclohexane with Hexane, Heptane, Octane, Nonane, and Decane at (298.15, 303.15, and 308.15) K, Journal of Chemical & Engineering Data, vol.41, issue.3, p.41521525, 1996.
DOI : 10.1021/je950279c

K. A. Pressprich, S. G. Maybury, R. E. Thomas, R. W. Linton, E. A. Irene et al., Molecular sieving by electropolymerized porphyrin lms only a few monolayers thick, The Journal of Physical Chemistry, issue.14, p.9355685574, 1989.

P. K. Palomaki, A. Krawicz, and P. H. Dinolfo, Thickness, surface morphology, and optical properties of porphyrin multilayer thin lms assembled on si(100) using copper(i)-catalysed azide-alkyne cycloaddition, Langmuir, issue.8, p.2746134622, 2011.

A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, Journal of The Electrochemical Society, vol.124, issue.5, 1997.
DOI : 10.1149/1.2133374

Y. Homma, S. Chiashi, T. Yamamoto, K. Kono, D. Matsumoto et al., Photoluminescence Measurements and Molecular Dynamics Simulations of Water Adsorption on the Hydrophobic Surface of a Carbon Nanotube in Water Vapor, Physical Review Letters, vol.110, issue.15, p.157402, 2013.
DOI : 10.1103/PhysRevLett.110.157402

H. D. Heck, Statistical theory of cooperative binding to proteins. Hill equation and the binding potential, Journal of the American Chemical Society, vol.93, issue.1, pp.23-29, 1971.
DOI : 10.1021/ja00730a004

J. N. Weiss, The hill equation revisited : uses and misuses, The FASEB Journal, vol.11, issue.11, p.83541, 1997.

H. Oh, J. Sim, and S. Ju, Binding anities and thermodynamics of noncovalent functionalization of carbon nanotubes with surfactants, Langmuir, issue.35, pp.2911154-11162, 2013.

Y. Kato, A. Inoue, Y. Niidome, and N. Nakashima, Thermodynamics on Soluble Carbon Nanotubes: How Do DNA Molecules Replace Surfactants on Carbon Nanotubes?, Scientific Reports, vol.4, 2012.
DOI : 10.1038/srep00733

A. V. Finkelstein and J. Janin, The price of lost freedom: entropy of bimolecular complex formation, "Protein Engineering, Design and Selection", vol.3, issue.1, p.13, 1989.
DOI : 10.1093/protein/3.1.1

X. Wan, J. Dong, and D. Y. Xing, Optical properties of carbon nanotubes, Physical Review B, vol.58, issue.11, p.67566759, 1998.
DOI : 10.1103/PhysRevB.58.6756

W. Lu, D. Wang, and L. Chen, Near-Static Dielectric Polarization of Individual Carbon Nanotubes, Nano Letters, vol.7, issue.9, p.27292733, 2007.
DOI : 10.1021/nl071208m

Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, and S. Maruyama, Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol, Chemical Physics Letters, vol.387, issue.1-3, pp.198-203, 2004.
DOI : 10.1016/j.cplett.2004.01.116

Z. Luo, L. D. Pfeerle, G. L. Haller, and F. Papadimitrakopoulos, (n,m) abundance evaluation of single-walled carbon nanotubes by uorescence and absorption spectroscopy, Journal of the American Chemical Society, issue.48, p.1281551115516, 2006.

A. Jorio, C. Fantini, M. A. Pimenta, D. A. Heller, M. S. Strano et al., Carbon nanotube population analysis from Raman and photoluminescence intensities, Applied Physics Letters, vol.88, issue.2, p.23109, 2006.
DOI : 10.1063/1.2162688

T. Okazaki, T. Saito, K. Matsuura, S. Ohshima, M. Yumura et al., Photoluminescence and population analysis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods, Chemical Physics Letters, vol.420, issue.4-6, pp.420286-290, 2006.
DOI : 10.1016/j.cplett.2005.11.128

M. F. Islam, D. E. Milkie, C. L. Kane, A. G. Yodh, and J. M. Kikkawa, Direct Measurement of the Polarized Optical Absorption Cross Section of Single-Wall Carbon Nanotubes, Physical Review Letters, vol.93, issue.3, p.37404, 2004.
DOI : 10.1103/PhysRevLett.93.037404

J. Blancon, M. Paillet, H. N. Tran, X. T. Than, S. A. Guebrou et al., Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes, Nature Communications, vol.4, 2013.
DOI : 10.1080/17458080.2010.498839

URL : https://hal.archives-ouvertes.fr/hal-00925394

K. Liu, X. Hong, S. Choi, C. Jin, R. B. Capaz et al., Systematic determination of absolute absorption cross-section of individual carbon nanotubes, Proceedings of the National Academy of Sciences, vol.111, issue.21, 2013.
DOI : 10.1073/pnas.1318851111

K. Liu, X. Hong, Q. Zhou, C. Jin, J. Li et al., High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices, Nature Nanotechnology, vol.96, issue.12, p.917, 2013.
DOI : 10.1038/nnano.2013.227

S. Choi, J. Deslippe, R. B. Capaz, and S. G. Louie, An Explicit Formula for Optical Oscillator Strength of Excitons in Semiconducting Single-Walled Carbon Nanotubes: Family Behavior, Nano Letters, vol.13, issue.1, p.5458, 2013.
DOI : 10.1021/nl303426q

Y. Oyama, R. Saito, K. Sato, J. Jiang, G. G. Samsonidze et al., Photoluminescence intensity of single-wall carbon nanotubes, Carbon, vol.44, issue.5, pp.44873-879, 2006.
DOI : 10.1016/j.carbon.2005.10.024

D. A. Tsyboulski, J. D. Rocha, S. M. Bachilo, L. Cognet, and R. B. Weisman, Structure-dependent uorescence eciencies of individual single-walled carbon nanotubes, Nano Letters, vol.7, issue.10, p.30803085, 2007.

S. Reich, C. Thomsen, and J. Robertson, Exciton Resonances Quench the Photoluminescence of Zigzag Carbon Nanotubes, Physical Review Letters, vol.95, issue.7, p.77402, 2005.
DOI : 10.1103/PhysRevLett.95.077402

G. D. Dorough, J. R. Miller, and F. M. Huennekens, Spectra of the metalloderivatives of ?,?,?,?-tetraphenylporphine, Journal of the American Chemical Society, vol.73, issue.9, p.43154320, 1951.

J. B. Kim, J. J. Leonard, and F. R. Longo, Mechanistic study of the synthesis and spectral properties of meso-tetraarylporphyrins, Journal of the American Chemical Society, vol.94, issue.11, p.9439863992, 1972.
DOI : 10.1021/ja00766a056

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth et al., Fine structure constant denes visual transparency of graphene, Science, issue.5881, p.3201308, 2008.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich et al., Measurement of the Optical Conductivity of Graphene, Physical Review Letters, vol.101, issue.19, 2008.
DOI : 10.1103/PhysRevLett.101.196405

I. Wilson-rae, C. Galland, W. Zwerger, and A. Imamo-§lu, Exciton-assisted optomechanics with suspended carbon nanotubes, New Journal of Physics, vol.14, issue.11, p.115003, 2012.
DOI : 10.1088/1367-2630/14/11/115003

A. Benyamini, A. Hamo, S. V. Kusminskiy, F. Von-oppen, and S. Ilani, Realspace tailoring of the electronphonon coupling in ultraclean nanotube mechanical resonators, Nature Physics, 2014.

G. Clavé, G. Delport, C. Roquelet, J. Lauret, E. Deleporte et al., Functionalization of Carbon Nanotubes through Polymerization in Micelles: A Bridge between the Covalent and Noncovalent Methods, Chemistry of Materials, vol.25, issue.13, p.2527002707, 2013.
DOI : 10.1021/cm401312v