]. A. Bibliographie1, J. Charlemagne, A. Blacher, J. Cohen, F. Collet et al., Epidemiology of atrial fibrillation in france : Extrapolation of international epidemiological data to france and analysis of french hospitalization data, Archives of Cardiovascular Diseases, vol.104, pp.115-124, 2011.

L. M. Loew and J. C. Schaff, The Virtual Cell: a software environment for computational cell biology, Trends in Biotechnology, vol.19, issue.10, pp.401-406, 2001.
DOI : 10.1016/S0167-7799(01)01740-1

J. Bassingthwaighte, Strategies for the Physiome Project, Annals of Biomedical Engineering, vol.28, issue.8, pp.1043-1058, 2000.
DOI : 10.1114/1.1313771

S. Binczak, J. Bilbault, and P. Marquie, PATTERN DYNAMICS IN A NONLINEAR ELECTRICAL LATTICE, International Journal of Bifurcation and Chaos, vol.13, issue.02, pp.483-492, 2003.
DOI : 10.1142/S0218127403006686

URL : https://hal.archives-ouvertes.fr/hal-00649857

V. Kazantsev, V. Nekorkin, S. Binczak, and J. Bilbault, Spiking patterns emerging from wave instabilities in a one-dimensional neural lattice, Physical Review E, vol.68, issue.1, p.17201, 2003.
DOI : 10.1103/PhysRevE.68.017201

S. Binczak, V. Kazantsev, V. Nekorkin, and J. Bilbault, Experimental study of bifurcations in modified FitzHugh-Nagumo cell, Electronics Letters, vol.39, issue.13, pp.961-962, 2003.
DOI : 10.1049/el:20030657

S. Binczak and J. M. Bilbault, EXPERIMENTAL PROPAGATION FAILURE IN A NONLINEAR ELECTRICAL LATTICE, International Journal of Bifurcation and Chaos, vol.14, issue.05, pp.1819-1830, 2004.
DOI : 10.1142/S0218127404010187

V. B. Kazantsev, V. I. Nekorkin, S. Binczak, S. Jacquir, and J. M. Bilbault, Spiking dynamics of interacting oscillatory neurons, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.15, issue.2, pp.23103-23113, 2005.
DOI : 10.1063/1.1883866

S. Jacquir, S. Binczak, J. Bilbault, V. Kazantsev, and V. Nekorkin, Synaptic Coupling Between Two Electronic Neurons, Nonlinear Dynamics, vol.64, issue.1-4, pp.29-36, 2006.
DOI : 10.1007/s11071-006-1932-6

URL : https://hal.archives-ouvertes.fr/hal-00583790

S. Jacquir, S. Binczak, and J. Bilbault, ANALYTICAL DETERMINATION OF INITIAL CONDITIONS LEADING TO FIRING IN NERVE FIBERS, International Journal of Bifurcation and Chaos, vol.17, issue.10, pp.3697-3701, 2007.
DOI : 10.1142/S0218127407019597

URL : https://hal.archives-ouvertes.fr/hal-00584230

V. Nekorkin, D. Shapin, A. Dmitrichev, V. Kazantsev, S. Binczak et al., Heteroclinic contours and self-replicated solitary waves in a reaction???diffusion lattice with complex threshold excitation, Physica D: Nonlinear Phenomena, vol.237, issue.19, pp.2463-2475, 2008.
DOI : 10.1016/j.physd.2008.03.035

S. Jacquir, S. Binczak, J. Gauthier, and J. Bilbault, Emergence of travelling waves in smooth nerve fibres, J. of Discrete and Continuous Dynamical Systems, vol.1, issue.2, pp.263-272, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00583779

V. Nekorkin, A. Dmitrichev, J. Bilbault, and S. Binczak, Polymorphic and regular localized activity structures in a two-dimensional two-component reaction???diffusion lattice with complex threshold excitation, Physica D: Nonlinear Phenomena, vol.239, issue.12, pp.972-987, 2010.
DOI : 10.1016/j.physd.2010.02.004

S. Jacquir, Systèmes dynamiques non linéaires, de la biologie à l'électronique, 2006.

S. Jacquir, S. Binczak, J. Bilbault, and P. Athias, A THEORETICAL APPROACH OF THE PROPAGATION THROUGH GEOMETRICAL CONSTRAINTS IN CARDIAC TISSUE, International Journal of Bifurcation and Chaos, vol.17, issue.12, pp.4417-4424, 2007.
DOI : 10.1142/S0218127407020075

URL : https://hal.archives-ouvertes.fr/hal-00584227

P. Athias, S. Jacquir, C. Tissier, D. Vandroux, S. Binczak et al., Excitation spread in cardiac myocyte cultures using paired microelectrode and microelectrode array recordings, Journal of Molecular and Cellular Cardiology, vol.42, issue.6, pp.3-3, 2007.
DOI : 10.1016/j.yjmcc.2007.03.007

S. Jacquir, C. Tissier, D. Vandroux, S. Binczak, J. Bilbault et al., Paired microelectrodes and microelectrode array analysis of cardiac impulse propagation in cardiomyocyte cultures, Fundamental Clinical Pharmacology, vol.22, issue.1, pp.51-52, 2008.

S. Jacquir, G. Laurent, D. Vandroux, S. Binczak, J. Bilbault et al., G005 In vitro simulation of spiral waves in cardiomyocyte networks using multi-electrode array technology, Archives of Cardiovascular Diseases, vol.102, issue.1, p.63, 2009.
DOI : 10.1016/S1875-2136(09)72280-6

G. Osipov, B. Shulgin, and J. Collins, Controlled movement and suppression of spiral waves in excitable media, Physical Review E, vol.58, issue.6, pp.6955-6958, 1998.
DOI : 10.1103/PhysRevE.58.6955

H. Zhang, B. Hu, and G. Hu, Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media, Physical Review E, vol.68, issue.2, p.26134, 2003.
DOI : 10.1103/PhysRevE.68.026134

T. K. Shajahan, A. R. Nayak, and R. Pandit, Spiral-Wave Turbulence and Its Control in the Presence of Inhomogeneities in Four Mathematical Models of Cardiac Tissue, PLoS ONE, vol.104, issue.3, p.4738, 2009.
DOI : 10.1371/journal.pone.0004738.s001

M. Allessie, W. Lammers, F. Bonke, and J. Hollen, Experimental evaluation of moe's multiple wavelet hypothesis of atrial fibrillation Cardiac Electrophysiology and Arrhythmias, pp.265-276, 1985.

S. Singer and G. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes, Science, vol.175, issue.4023, pp.720-731, 1972.
DOI : 10.1126/science.175.4023.720

A. Molleman, Patch Clamping : An Introductory Guide to Patch Clamp Electrophysiology
DOI : 10.1002/0470856521

X. Duan, R. Gao, P. Xie, T. Cohen-karni, Q. Qing et al., Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor, Nature Nanotechnology, vol.470, issue.3, pp.174-179, 2012.
DOI : 10.1038/nnano.2011.223

C. Xie, Z. Lin, L. Hanson, Y. Cui, and B. Cui, Intracellular recording of action potentials by nanopillar electroporation, Nature Nanotechnology, vol.88, issue.3, pp.185-190, 2012.
DOI : 10.1038/nnano.2012.8

M. Halbach, U. Egert, J. Hescheler, and K. Banach, Estimation of Action Potential Changes from Field Potential Recordings in Multicellular Mouse Cardiac Myocyte Cultures, Cellular Physiology and Biochemistry, vol.13, issue.5, pp.271-284, 2003.
DOI : 10.1159/000074542

H. M. Himmel, A. Bussek, M. Hoffmann, R. Beckmann, H. Lohmann et al., Field and action potential recordings in heart slices: correlation with established in vitro and in vivo models, British Journal of Pharmacology, vol.28, issue.1, pp.276-296, 2012.
DOI : 10.1111/j.1476-5381.2011.01775.x

J. Hubbard, R. Llinás, D. Quastel, and P. Society, Electrophysiological analysis of synaptic transmission, 1969.

D. Venes, Taber's Cyclopedic Medical Dictionary, 2009.

R. Martini, Fundamentals of Anatomy & Physiology, 2000.

D. Rizzo, Delmar's fundamentals of anatomy & physiology, Cengage Learning, 2001.

K. A. Eagle, D. S. Cannom, and D. A. Garcia, Management of Atrial Fibrillation: Translating Clinical Trial Data into Clinical Practice, The American Journal of Medicine, vol.124, issue.1, pp.4-14, 2011.
DOI : 10.1016/j.amjmed.2010.05.016

P. Ruchat, K. Eisa, L. K. Segesser, and J. Schläpfer, Le traitement chirurgical moderne de la fibrillation auriculaire, Cardiovascular Medicine, vol.11, pp.90-94, 2008.

E. Brauer, Über das elektrische Verhalten des Chroms bei der Auflösung in Säuren, 1901.

E. Zeeman, Differential equations for the heartbeat and nerve impulse, Towards a theoretical biology, pp.8-67, 1972.

N. Wiener and A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle, Archivos del instituto de Cardiología de México, p.205, 1946.

G. K. Moe, W. C. Rheinboldt, and J. A. Abildskov, A computer model of atrial fibrillation, American Heart Journal, vol.67, issue.2, pp.200-220, 1964.
DOI : 10.1016/0002-8703(64)90371-0

D. Noble, Cardiac Action and Pacemaker Potentials based on the Hodgkin-Huxley Equations, Nature, vol.127, issue.4749, pp.495-497, 1960.
DOI : 10.1038/188495b0

D. Noble, A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials, The Journal of Physiology, vol.160, issue.2, p.317, 1962.
DOI : 10.1113/jphysiol.1962.sp006849

G. Beeler and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, The Journal of Physiology, vol.268, issue.1, p.177, 1977.
DOI : 10.1113/jphysiol.1977.sp011853

K. Yanagihara, A. Noma, and H. Irisawa, Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments., The Japanese Journal of Physiology, vol.30, issue.6, p.841, 1980.
DOI : 10.2170/jjphysiol.30.841

D. Hilgemann and D. Noble, Excitation-Contraction Coupling and Extracellular Calcium Transients in Rabbit Atrium: Reconstruction of Basic Cellular Mechanisms, Proceedings of the Royal Society of London. Series B. Biological Sciences, p.163, 1987.
DOI : 10.1098/rspb.1987.0015

F. Sachse, A. Moreno, and J. Abildskov, Electrophysiological Modeling of Fibroblasts and their Interaction with Myocytes, Annals of Biomedical Engineering, vol.95, issue.1, pp.41-56, 2008.
DOI : 10.1007/s10439-007-9405-8

S. Inada, J. Hancox, H. Zhang, and M. Boyett, One-Dimensional Mathematical Model of the Atrioventricular Node Including Atrio-Nodal, Nodal, and Nodal-His Cells, Biophysical Journal, vol.97, issue.8, pp.2117-2127, 2009.
DOI : 10.1016/j.bpj.2009.06.056

A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, p.500, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

R. C. Hoyt, The Squid Giant Axon, Biophysical Journal, vol.3, issue.5, pp.399-431, 1963.
DOI : 10.1016/S0006-3495(63)86829-0

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-466, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

J. Nagumo, S. Arimoto, and S. Yoshizawa, An Active Pulse Transmission Line Simulating Nerve Axon, Proceedings of the IRE, pp.2061-2070, 1962.
DOI : 10.1109/JRPROC.1962.288235

R. Mcallister, D. Noble, and R. Tsien, Reconstruction of the electrical activity of cardiac Purkinje fibres., The Journal of Physiology, vol.251, issue.1, 1975.
DOI : 10.1113/jphysiol.1975.sp011080

D. Bristow and J. Clark, A mathematical model of primary pacemaking cell in sa node of the heart, American Journal of Physiology-Heart and Circulatory Physiology, vol.243, issue.2, p.207, 1982.

H. Irisawa and A. Noma, Pacemaker mechanisms of rabbit sinoatrial node cells Cardiac rate and rhythm : physiological, morphological, and developmental aspects, pp.35-51, 1982.

D. Noble and S. Noble, A Model of Sino-Atrial Node Electrical Activity Based on a Modification of the DiFrancesco--Noble (1984) Equations, Proceedings of the Royal Society of London. Series B, Biological Sciences, pp.295-304, 1984.
DOI : 10.1098/rspb.1984.0065

D. Difrancesco and D. Noble, A Model of Cardiac Electrical Activity Incorporating Ionic Pumps and Concentration Changes, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.307, issue.1133, pp.353-398, 1985.
DOI : 10.1098/rstb.1985.0001

D. Noble, D. Difrancesco, and J. Denyer, Ionic mechanisms in normal and abnormal cardiac pacemaker activity, Neuronal and Cellular Oscillators, pp.59-85, 1989.

R. Rasmusson, J. Clark, W. Giles, K. Robinson, R. Clark et al., A mathematical model of electrophysiological activity in a bullfrog atrial cell, American Journal of Physiology-Heart and Circulatory Physiology, vol.259, issue.2, p.370, 1990.

R. Rasmusson, J. Clark, W. Giles, E. Shibata, and D. Campbell, A mathematical model of a bullfrog cardiac pacemaker cell, American Journal of Physiology-Heart and Circulatory Physiology, vol.259, issue.2, p.352, 1990.

C. Luo and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circulation Research, vol.68, issue.6, p.1501, 1991.
DOI : 10.1161/01.RES.68.6.1501

R. Wilders, H. Jongsma, and A. Van-ginneken, Pacemaker activity of the rabbit sinoatrial node. A comparison of mathematical models, Biophysical Journal, vol.60, issue.5, pp.1202-1216, 1991.
DOI : 10.1016/S0006-3495(91)82155-5

A. Karma, Spiral breakup in model equations of action potential propagation in cardiac tissue, Physical Review Letters, vol.71, issue.7, pp.1103-1106, 1993.
DOI : 10.1103/PhysRevLett.71.1103

C. Nordin, Computer model of membrane current and intracellular ca 2+ flux in the isolated guinea pig ventricular myocyte, American Journal of Physiology -Heart and Circulatory Physiology, vol.265, issue.6, p.2117, 1993.

C. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circulation Research, vol.74, issue.6, p.1071, 1994.
DOI : 10.1161/01.RES.74.6.1071

S. Demir, J. Clark, C. Murphey, and W. Giles, A mathematical model of a rabbit sinoatrial node cell, American Journal of Physiology-Cell Physiology, vol.266, issue.3, p.832, 1994.

D. Lindblad, C. Murphey, J. Clark, and W. Giles, A model of the action potential and underlying membrane currents in a rabbit atrial cell, American Journal of Physiology- Heart and Circulatory Physiology, vol.271, issue.4, p.1666, 1996.

S. Dokos, B. Celler, and N. Lovell, Ion Currents Underlying Sinoatrial Node Pacemaker Activity: A New Single Cell Mathematical Model, Journal of Theoretical Biology, vol.181, issue.3, pp.245-272, 1996.
DOI : 10.1006/jtbi.1996.0129

R. Aliev and A. Panfilov, A simple two-variable model of cardiac excitation, Chaos, Solitons & Fractals, vol.7, issue.3, pp.293-301, 1996.
DOI : 10.1016/0960-0779(95)00089-5

F. Fenton and A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.8, issue.1, pp.20-47, 1998.
DOI : 10.1063/1.166311

L. Priebe and D. Beuckelmann, Simulation Study of Cellular Electric Properties in Heart Failure, Circulation Research, vol.82, issue.11, p.1206, 1998.
DOI : 10.1161/01.RES.82.11.1206

A. Nygren, C. Fiset, L. Firek, J. Clark, D. Lindblad et al., Mathematical Model of an Adult Human Atrial Cell : The Role of K+ Currents in Repolarization, Circulation Research, vol.82, issue.1, p.63, 1998.
DOI : 10.1161/01.RES.82.1.63

M. Courtemanche, R. Ramirez, and S. Nattel, Ionic mechanisms underlying human atrial action potential properties : insights from a mathematical model, American Journal of Physiology-Heart and Circulatory Physiology, vol.275, issue.1, p.301, 1998.

R. Winslow, J. Rice, S. Jafri, E. Marban, and B. O-'rourke, Mechanisms of Altered Excitation-Contraction Coupling in Canine Tachycardia-Induced Heart Failure, II : Model Studies, Circulation Research, vol.84, issue.5, p.571, 1999.
DOI : 10.1161/01.RES.84.5.571

R. Ramirez, S. Nattel, and M. Courtemanche, Mathematical analysis of canine atrial action potentials : rate, regional factors, and electrical remodeling, American Journal of Physiology-Heart and Circulatory Physiology, vol.279, issue.4, p.1767, 2000.

H. Zhang, A. Holden, I. Kodama, H. Honjo, M. Lei et al., Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node, American Journal of Physiology-Heart and Circulatory Physiology, vol.279, issue.1, p.397, 2000.

J. Puglisi and D. Bers, Labheart : an interactive computer model of rabbit ventricular myocyte ion channels and ca transport, American Journal of Physiology-Cell Physiology, vol.281, issue.6, p.2049, 2001.

S. Pandit, R. Clark, W. Giles, and S. Demir, A Mathematical Model of Action Potential Heterogeneity in Adult Rat Left Ventricular Myocytes, Biophysical Journal, vol.81, issue.6, pp.3029-3051, 2001.
DOI : 10.1016/S0006-3495(01)75943-7

O. Bernus, R. Wilders, C. Zemlin, H. Verschelde, and A. Panfilov, A computationally efficient electrophysiological model of human ventricular cells, American Journal of Physiology - Heart and Circulatory Physiology, vol.282, issue.6, p.2296, 2002.
DOI : 10.1152/ajpheart.00731.2001

J. Fox, J. Mcharg, and R. Gilmour-jr, Ionic mechanism of electrical alternans, American Journal of Physiology - Heart and Circulatory Physiology, vol.282, issue.2, p.516, 2002.
DOI : 10.1152/ajpheart.00612.2001

J. Greenstein and R. Winslow, An Integrative Model of the Cardiac Ventricular Myocyte Incorporating Local Control of Ca2+ Release, Biophysical Journal, vol.83, issue.6, pp.2918-2945, 2002.
DOI : 10.1016/S0006-3495(02)75301-0

Y. Kurata, I. Hisatome, S. Imanishi, and T. Shibamoto, Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.5, p.2074, 2002.
DOI : 10.1152/ajpheart.00900.2001

S. Matsuoka, N. Sarai, S. Kuratomi, K. Ono, and A. Noma, Role of Individual Ionic Current Systems in Ventricular Cells Hypothesized by a Model Study, The Japanese Journal of Physiology, vol.53, issue.2, pp.105-123, 2003.
DOI : 10.2170/jjphysiol.53.105

C. Cabo and P. Boyden, Electrical remodeling of the epicardial border zone in the canine infarcted heart: a computational analysis, American Journal of Physiology - Heart and Circulatory Physiology, vol.284, issue.1, p.372, 2003.
DOI : 10.1152/ajpheart.00512.2002

N. Sarai, S. Matsuoka, S. Kuratomi, K. Ono, and A. Noma, Role of Individual Ionic Current Systems in the SA Node Hypothesized by a Model Study, The Japanese Journal of Physiology, vol.53, issue.2, pp.125-134, 2003.
DOI : 10.2170/jjphysiol.53.125

K. T. Tusscher, D. Noble, P. Noble, and A. Panfilov, A model for human ventricular tissue, AJP: Heart and Circulatory Physiology, vol.286, issue.4, p.1573, 2004.
DOI : 10.1152/ajpheart.00794.2003

V. Iyer, R. Mazhari, and R. Winslow, A Computational Model of the Human Left-Ventricular Epicardial Myocyte, Biophysical Journal, vol.87, issue.3, pp.1507-1525, 2004.
DOI : 10.1529/biophysj.104.043299

T. Hund and Y. Rudy, Rate Dependence and Regulation of Action Potential and Calcium Transient in a Canine Cardiac Ventricular Cell Model, Circulation, vol.110, issue.20, p.1, 2004.
DOI : 10.1161/01.CIR.0000147231.69595.D3

T. Shannon, F. Wang, J. Puglisi, C. Weber, and D. Bers, A Mathematical Treatment of Integrated Ca Dynamics within the Ventricular Myocyte, Biophysical Journal, vol.87, issue.5, pp.3351-3371, 2004.
DOI : 10.1529/biophysj.104.047449

V. Bondarenko, G. Szigeti, G. Bett, S. Kim, and R. Rasmusson, Computer model of action potential of mouse ventricular myocytes, AJP: Heart and Circulatory Physiology, vol.287, issue.3, p.1378, 2004.
DOI : 10.1152/ajpheart.00185.2003

R. Simitev and V. Biktashev, Conditions for Propagation and Block of Excitation in an Asymptotic Model of Atrial Tissue, Biophysical Journal, vol.90, issue.7, pp.2258-2269, 2006.
DOI : 10.1529/biophysj.105.072637

M. Mangoni, A. Traboulsie, A. Leoni, B. Couette, L. Marger et al., Bradycardia and Slowing of the Atrioventricular Conduction in Mice Lacking CaV3.1/??1G T-Type Calcium Channels, Circulation Research, vol.98, issue.11, p.1422, 2006.
DOI : 10.1161/01.RES.0000225862.14314.49

E. Cherry, J. Ehrlich, S. Nattel, and F. Fenton, Pulmonary vein reentry???Properties and size matter: Insights from a computational analysis, Heart Rhythm, vol.4, issue.12, pp.1553-1562, 2007.
DOI : 10.1016/j.hrthm.2007.08.017

A. Bueno-orovio, E. Cherry, and F. Fenton, Minimal model for human ventricular action potentials in tissue, Journal of Theoretical Biology, vol.253, issue.3, pp.544-560, 2008.
DOI : 10.1016/j.jtbi.2008.03.029

A. Mahajan, Y. Shiferaw, D. Sato, A. Baher, R. Olcese et al., A Rabbit Ventricular Action Potential Model Replicating Cardiac Dynamics at Rapid Heart Rates, Biophysical Journal, vol.94, issue.2, pp.392-410, 2008.
DOI : 10.1529/biophysj.106.98160

L. Wang and E. Sobie, Mathematical model of the neonatal mouse ventricular action potential, AJP: Heart and Circulatory Physiology, vol.294, issue.6, p.2565, 2008.
DOI : 10.1152/ajpheart.01376.2007

P. Stewart, O. V. Aslanidi, D. Noble, P. J. Noble, M. R. Boyett et al., Mathematical models of the electrical action potential of Purkinje fibre cells, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.279, issue.Pt_2, pp.2225-2255, 2009.
DOI : 10.1152/ajpheart.00027.2004

P. Camelliti, T. K. Borg, and P. Kohl, Structural and functional characterisation of cardiac fibroblasts, Cardiovascular Research, vol.65, issue.1, pp.40-51, 2005.
DOI : 10.1016/j.cardiores.2004.08.020

B. J. Kogan, Mathematical Models of Action Potential, Introduction to Computational Cardiology, pp.45-80, 2010.
DOI : 10.1007/978-0-387-76686-7_4

F. Bezanilla and C. M. Armstrong, Inactivation of the sodium channel. I. Sodium current experiments, The Journal of General Physiology, vol.70, issue.5, pp.549-566, 1977.
DOI : 10.1085/jgp.70.5.549

C. M. Armstrong and F. Bezanilla, Inactivation of the sodium channel. II. Gating current experiments, The Journal of General Physiology, vol.70, issue.5, pp.567-590, 1977.
DOI : 10.1085/jgp.70.5.567

P. Hunter, A. Mcculloch, and H. Ter-keurs, Modelling the mechanical properties of cardiac muscle, Progress in Biophysics and Molecular Biology, vol.69, issue.2-3, pp.289-331, 1998.
DOI : 10.1016/S0079-6107(98)00013-3

M. P. Nash and A. V. Panfilov, Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Progress in Biophysics and Molecular Biology, vol.85, issue.2-3, pp.501-522, 2004.
DOI : 10.1016/j.pbiomolbio.2004.01.016

C. Cherubini, S. Filippi, P. Nardinocchi, and L. Teresi, Electromechanical Modelling of Cardiac Tissue, 2010.
DOI : 10.1007/978-90-481-2850-1_16

K. Tran, N. P. Smith, D. S. Loiselle, and E. J. Crampin, A Thermodynamic Model of the Cardiac Sarcoplasmic/Endoplasmic Ca2+ (SERCA) Pump, Biophysical Journal, vol.96, issue.5, pp.2029-2042, 2009.
DOI : 10.1016/j.bpj.2008.11.045

K. Cole, Dynamic electrical characteristics of the squid axon membrane, Arch. sci. physiol, vol.3, issue.25, pp.3-25, 1949.

V. Elharrar and B. Surawicz, Cycle length effect on restitution of action potential duration in dog cardiac fibers, American Journal of Physiology -Heart and Circulatory Physiology, vol.244, pp.782-792, 1983.

M. Gmbh, Microelectrode Array (MEA) Manual. Multi Channel Systems MCS GmbH, 2011.

M. Fejtl, A. Stett, W. Nisch, K. Boven, and A. Möller, On Micro-Electrode Array Revival: Its Development, Sophistication of Recording, and Stimulation, Advances in Network Electrophysiology, pp.24-37, 2006.
DOI : 10.1007/0-387-25858-2_2

A. Winfree, Electrical turbulence in three-dimensional heart muscle, Science, vol.266, issue.5187, pp.1003-1006, 1994.
DOI : 10.1126/science.7973648

K. Agladze, J. P. Keener, S. C. Müller, and A. Panfilov, Rotating Spiral Waves Created by Geometry, Science, vol.264, issue.5166, pp.1746-1748, 1994.
DOI : 10.1126/science.264.5166.1746

R. A. Gray, J. Jalife, A. V. Panfilov, W. T. Baxter, C. Cabo et al., Mechanisms of Cardiac Fibrillation, Science, vol.270, issue.5239, p.1222, 1995.
DOI : 10.1126/science.270.5239.1222

R. A. Gray, A. M. Pertsov, and J. Jalife, Spatial and temporal organization during cardiac fibrillation, Nature, vol.392, issue.6671, pp.75-78, 1998.
DOI : 10.1038/32164

T. J. Wang, M. G. Larson, D. Levy, R. S. Vasan, E. P. Leip et al., Temporal Relations of Atrial Fibrillation and Congestive Heart Failure and Their Joint Influence on Mortality: The Framingham Heart Study, Circulation, vol.107, issue.23, pp.2920-2925, 2003.
DOI : 10.1161/01.CIR.0000072767.89944.6E

T. H. Everett, E. E. Wilson, S. Verheule, J. M. Guerra, S. Foreman et al., Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling, AJP: Heart and Circulatory Physiology, vol.291, issue.6, pp.2911-2923, 2006.
DOI : 10.1152/ajpheart.01128.2005

M. Allessie, F. Bonke, and F. Schopman, Circus Movement in Rabbit Atrial Muscle as a Mechanism of Tachycardia, Circulation Research, vol.33, issue.1, pp.54-62, 1973.
DOI : 10.1161/01.RES.33.1.54

J. M. Davidenko, P. F. Kent, D. R. Chialvo, D. C. Michaels, and J. Jalife, Sustained vortex-like waves in normal isolated ventricular muscle., Proceedings of the National Academy of Sciences, vol.87, issue.22, pp.8785-8789, 1990.
DOI : 10.1073/pnas.87.22.8785

J. M. Davidenko, A. V. Pertsov, R. Salomonsz, W. Baxter, and J. Jalife, Stationary and drifting spiral waves of excitation in isolated cardiac muscle, Nature, vol.355, issue.6358, pp.349-351, 1992.
DOI : 10.1038/355349a0

A. Pertsov, J. Davidenko, R. Salomonsz, W. Baxter, and J. Jalife, Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle, Circulation Research, vol.72, issue.3, pp.631-650, 1993.
DOI : 10.1161/01.RES.72.3.631

K. Nanthakumar, J. Jalife, S. Massé, and E. Downar, Optical mapping of Langendorff-perfused human hearts: establishing a model for the study of ventricular fibrillation in humans, AJP: Heart and Circulatory Physiology, vol.293, issue.1, pp.875-880, 2007.
DOI : 10.1152/ajpheart.01415.2006

H. J. Wellens, P. Brugada, and J. Farre, Ventricular arrhythmias: Mechanisms and actions of antiarrhythmic drugs, American Heart Journal, vol.107, issue.5, pp.1053-1057, 1984.
DOI : 10.1016/0002-8703(84)90174-1

J. Moreno, M. Warren, and J. Jalife, Ionic Currents and Ventricular Fibrillation Dynamics, Revista Espa??ola de Cardiolog??a (English Edition), vol.57, issue.1, pp.69-79, 2004.
DOI : 10.1016/S1885-5857(06)60089-3

R. D. White, Ventricular fibrillation and defibrillation: contemporary understanding of mechanisms, Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E, pp.215-224, 2007.
DOI : 10.1007/978-88-470-0571-6_20

C. Patel, M. Salahuddin, A. Jones, A. Patel, G. Yan et al., Atrial Fibrillation: Pharmacological Therapy, Current Problems in Cardiology, vol.36, issue.3, pp.87-120, 2011.
DOI : 10.1016/j.cpcardiol.2011.01.001

A. J. Camm, P. Kirchhof, and G. Y. Lip, Guidelines for the management of atrial fibrillation, European Heart Journal, vol.31, pp.2369-2429, 2010.

R. Weerasooriya, P. Khairy, J. Litalien, and L. Macle, Catheter Ablation for Atrial Fibrillation, Journal of the American College of Cardiology, vol.57, issue.2, pp.160-166, 2011.
DOI : 10.1016/j.jacc.2010.05.061

J. Geller, S. Reek, and C. Timmermans, Treatment of atrial fibrillation with an implantable atrial defibrillator ??? long term results, European Heart Journal, vol.24, issue.23, pp.2083-2089, 2003.
DOI : 10.1016/j.ehj.2003.09.033

J. Jalife, Rotors and Spiral Waves in Atrial Fibrillation, Journal of Cardiovascular Electrophysiology, vol.104, issue.7, pp.776-780, 2003.
DOI : 10.1046/j.1540-8167.2003.03136.x

G. Laurent, G. W. Moe, X. Hu, P. Pui-sze, A. So et al., Simultaneous Right Atrioventricular Pacing: A Novel Model to Study Atrial Remodeling and Fibrillation in the Setting of Heart Failure, Journal of Cardiac Failure, vol.14, issue.3, pp.254-262, 2008.
DOI : 10.1016/j.cardfail.2007.10.021

G. Laurent, G. Moe, X. Hu, H. Leong-poi, K. A. Connelly et al., Experimental studies of atrial fibrillation: a comparison of two pacing models, AJP: Heart and Circulatory Physiology, vol.294, issue.3, pp.1206-1215, 2008.
DOI : 10.1152/ajpheart.00999.2007

V. Krinsky, V. Biktashev, and A. Pertsov, Autowave Approaches to Cessation of Reentrant Arrhythmias, Mathematical Approaches to Cardiac Arrhythmias, pp.232-246, 1990.
DOI : 10.1016/0002-9149(82)90472-6

J. Davidenko, R. Salomonsz, A. Pertsov, W. Baxter, and J. Jalife, Effects of Pacing on Stationary Reentrant Activity : Theoretical and Experimental Study, Circulation Research, vol.77, issue.6, p.1166, 1995.
DOI : 10.1161/01.RES.77.6.1166

K. Kamjoo, T. Uchida, T. Ikeda, M. Fishbein, A. Garfinkel et al., Importance of Location and Timing of Electrical Stimuli in Terminating Sustained Functional Reentry in Isolated Swine Ventricular Tissues : Evidence in Support of a Small Reentrant Circuit, Circulation, vol.96, issue.6, p.2048, 1997.
DOI : 10.1161/01.CIR.96.6.2048

M. Allessie, C. Kirchhof, G. Scheffer, F. Chorro, and J. Brugada, Regional control of atrial fibrillation by rapid pacing in conscious dogs, Circulation, vol.84, issue.4, pp.1689-1697, 1991.
DOI : 10.1161/01.CIR.84.4.1689

S. Sridhar and S. Sinha, Controlling spatiotemporal chaos in excitable media using an array of control points, EPL (Europhysics Letters), vol.81, issue.5, p.50002, 2008.
DOI : 10.1209/0295-5075/81/50002

B. Xu, S. Jacquir, S. Binczak, G. Laurent, D. Vandroux et al., Mea-aided investigation of cardiac arrhythmia induced by elect-rical stimulation, MEA Meeting, pp.113-115, 2010.

S. Jacquir, S. Binczak, B. Xu, G. Laurent, D. Vandroux et al., INVESTIGATION OF MICRO SPIRAL WAVES AT CELLULAR LEVEL USING A MICROELECTRODE ARRAYS TECHNOLOGY, International Journal of Bifurcation and Chaos, vol.21, issue.01, pp.1-15, 2011.
DOI : 10.1142/S0218127411028374

URL : https://hal.archives-ouvertes.fr/hal-00585901

B. Xu, S. Jacquir, G. Laurent, J. Bilbault, and S. Binczak, Spiral wave induced numerically using electrical stimulation and comparison with experimental results, Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp.2650-2653, 2010.

B. Xu, S. Jacquir, S. Binczak, G. Laurent, and J. Bilbault, Suppression of spiral waves by electric stimulation : A simulation study, Computers in Cardiology, pp.469-472, 2009.

B. Xu, S. Jacquir, G. Laurent, J. Bilbault, and S. Binczak, A hybrid stimulation strategy for suppression of spiral waves in cardiac tissue, Chaos, Solitons & Fractals, vol.44, issue.8, pp.633-639, 2011.
DOI : 10.1016/j.chaos.2011.05.014

URL : https://hal.archives-ouvertes.fr/hal-00631743

S. Binczak, J. C. Eilbeck, and A. C. Scott, Ephaptic coupling of myelinated nerve fibers, Physica D: Nonlinear Phenomena, vol.148, issue.1-2, pp.159-174, 2001.
DOI : 10.1016/S0167-2789(00)00173-1

A. Scott, Neuroscience : a mathematical primer, 2002.

R. Clayton and A. Panfilov, A guide to modelling cardiac electrical activity in anatomically detailed ventricles, Progress in Biophysics and Molecular Biology, vol.96, issue.1-3, pp.19-43, 2008.
DOI : 10.1016/j.pbiomolbio.2007.07.004

I. Efimov, V. Krinsky, and J. Jalife, Dynamics of rotating vortices in the Beeler-Reuter model of cardiac tissue, Chaos, Solitons & Fractals, vol.5, issue.3-4, pp.3-4, 1995.
DOI : 10.1016/0960-0779(95)95761-F

V. Biktashev and A. Holden, Reentrant waves and their elimination in a model of mammalian ventricular tissue, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.8, issue.1, p.48, 1998.
DOI : 10.1063/1.166307

C. Cabo, A. Pertsov, J. Davidenko, and J. Jalife, Electrical turbulence as a result of the critical curvature for propagation in cardiac tissue, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.8, issue.1, p.116, 1998.
DOI : 10.1063/1.166292

J. Freudenberg, T. Schiemann, U. Tiede, and K. Höhne, Simulation of cardiac excitation patterns in a three-dimensional anatomical heart atlas, Computers in Biology and Medicine, vol.30, issue.4, pp.191-205, 2000.
DOI : 10.1016/S0010-4825(00)00005-6

R. Clayton and A. Holden, Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration, Progress in biophysics and molecular biology, pp.473-499, 2004.
DOI : 10.1016/j.pbiomolbio.2003.12.002

J. Trangenstein and C. Kim, Operator splitting and adaptive mesh refinement for the Luo???Rudy I model, Journal of Computational Physics, vol.196, issue.2, pp.645-679, 2004.
DOI : 10.1016/j.jcp.2003.11.014

K. Tusscher and A. Panfilov, Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions, Physics in Medicine and Biology, vol.51, issue.23, p.6141, 2006.
DOI : 10.1088/0031-9155/51/23/014

A. Benson, M. Ries, and A. Holden, Effects of Geometry and Architecture on Re-entrant Scroll Wave Dynamics in Human Virtual Ventricular Tissues, Functional Imaging and Modeling of the Heart, pp.200-209, 2007.
DOI : 10.1007/978-3-540-72907-5_21

M. Lieberman, J. Kootsey, E. Johnson, and T. Sawanobori, Slow Conduction in Cardiac Muscle, Biophysical Journal, vol.13, issue.1, pp.37-55, 1973.
DOI : 10.1016/S0006-3495(73)85968-5

L. Ebihara and E. Johnson, Fast sodium current in cardiac muscle. A quantitative description, Biophysical Journal, vol.32, issue.2, pp.779-790, 1980.
DOI : 10.1016/S0006-3495(80)85016-8

K. Yamaoka and I. Seyama, Some properties of na channel inactivation in isolated ventricular cells of frog, rana catesbeiana, Japanese heart journal, vol.27, p.21, 1986.

M. Spach, P. Dolber, and J. Heidlage, Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation, Circulation Research, vol.62, issue.4, p.811, 1988.
DOI : 10.1161/01.RES.62.4.811

B. Roth, Action potential propagation in a thick strand of cardiac muscle, Circulation Research, vol.68, issue.1, p.162, 1991.
DOI : 10.1161/01.RES.68.1.162

V. Fast and A. Kleber, Microscopic conduction in cultured strands of neonatal rat heart cells measured with voltage-sensitive dyes, Circulation Research, vol.73, issue.5, p.914, 1993.
DOI : 10.1161/01.RES.73.5.914

X. Wehrens, H. Abriel, C. Cabo, J. Benhorin, and R. Kass, Arrhythmogenic Mechanism of an LQT-3 Mutation of the Human Heart Na+ Channel ??-Subunit : A Computational Analysis, Circulation, vol.102, issue.5, p.584, 2000.
DOI : 10.1161/01.CIR.102.5.584

C. Henriquez, J. Tranquillo, D. Weinstein, E. Hsu, C. Johnson et al., Three-dimensional propagation in mathematical models : Integrative model of the mouse heart Cardiac Electrophysiology from cell to bedside, 2004.

A. A. Dawodu, F. Monti, K. Iwashiro, M. Schiariti, R. Chiavarelli et al., The shape of human atrial action potential accounts for different frequency-related changes in vitro, International Journal of Cardiology, vol.54, issue.3, pp.237-249, 1996.
DOI : 10.1016/0167-5273(96)02605-8

P. Wallisch, Matlab for neuroscientists : An introduction to scientific computing in Matlab, 2009.

A. L. Goldin, Resurgence of Sodium Channel Research, Annual Review of Physiology, vol.63, issue.1, pp.871-894, 2001.
DOI : 10.1146/annurev.physiol.63.1.871

J. Kneller, J. Kalifa, R. Zou, A. V. Zaitsev, M. Warren et al., Mechanisms of Atrial Fibrillation Termination by Pure Sodium Channel Blockade in an Ionically-Realistic Mathematical Model, Circulation Research, vol.96, issue.5, pp.35-47, 2005.
DOI : 10.1161/01.RES.0000160709.49633.2b

A. Burashnikov, J. M. Di-diego, A. C. Zygmunt, L. Belardinelli, and C. Antzelevitch, Atrium-Selective Sodium Channel Block as a Strategy for Suppression of Atrial Fibrillation: Differences in Sodium Channel Inactivation Between Atria and Ventricles and the Role of Ranolazine, Circulation, vol.116, issue.13, pp.1449-1457, 2007.
DOI : 10.1161/CIRCULATIONAHA.107.704890

S. Binczak, T. Sliwa, S. Jacquir, and J. Bilbault, Reaction???diffusion network for geometric multiscale high speed image processing, Image and Vision Computing, vol.28, issue.6, pp.914-926, 2010.
DOI : 10.1016/j.imavis.2009.11.008

URL : https://hal.archives-ouvertes.fr/hal-00583468

M. C. Wijffels, C. J. Kirchhof, R. Dorland, and M. A. Allessie, Atrial Fibrillation Begets Atrial Fibrillation : A Study in Awake Chronically Instrumented Goats, Circulation, vol.92, issue.7, pp.1954-1968, 1995.
DOI : 10.1161/01.CIR.92.7.1954

C. Trial, Investigators. preliminary report : effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction, N Engl J Med, vol.321, issue.6, pp.406-412, 1989.

P. Athias, D. Vandroux, C. Tissier, and L. Rochette, Development of cardiac physiopathological models from cultured cardiomyocytes, Annales de Cardiologie et d'Angéiologie, pp.90-99, 2006.

F. Pillekamp, M. Reppel, K. Brockmeier, and J. Hescheler, Impulse propagation in latestage embryonic and neonatal murine ventricular slices, Journal of Electrocardiology, vol.39, pp.425-426, 2006.

A. Stett, U. Egert, E. Guenther, F. Hofmann, T. Meyer et al., Biological application of microelectrode arrays in drug discovery and basic research, Analytical and Bioanalytical Chemistry, vol.377, issue.3, pp.486-495
DOI : 10.1007/s00216-003-2149-x

K. Banach, M. D. Halbach, P. Hu, J. Hescheler, and U. Egert, Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells, American Journal of Physiology - Heart and Circulatory Physiology, vol.284, issue.6, pp.2114-2123, 2003.
DOI : 10.1152/ajpheart.01106.2001

J. Hescheler, M. Halbach, U. Egert, Z. J. Lu, H. Bohlen et al., Determination of electrical properties of ES cell-derived cardiomyocytes using MEAs, Journal of Electrocardiology, vol.37, pp.110-116, 2004.
DOI : 10.1016/j.jelectrocard.2004.08.034

A. A. Kondratyev, J. G. Ponard, A. Munteanu, S. Rohr, and J. P. Kucera, Dynamic changes of cardiac conduction during rapid pacing, AJP: Heart and Circulatory Physiology, vol.292, issue.4, pp.1796-1811, 2007.
DOI : 10.1152/ajpheart.00784.2006

A. Grynberg, M. Degois, L. Guenot, and P. Athias, Primary rat cardiac cell culture: diet of the mother rats as a determinant parameter of cardiomyoblast production from neonates, Biology of the Cell, vol.57, issue.1, p.89, 1986.
DOI : 10.1111/j.1768-322X.1986.tb00466.x

A. Savitzky and M. J. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures., Analytical Chemistry, vol.36, issue.8, pp.1627-1639, 1964.
DOI : 10.1021/ac60214a047

F. Takens, Detecting strange attractors in turbulence, Dynamical Systems and Turbulence, pp.366-381, 1981.
DOI : 10.1007/BF01646553

N. Golyandina, V. Nekrutkin, and A. Zhigljavsky, Analysis of time series structure : SSA and related techniques, 2001.
DOI : 10.1201/9781420035841

L. Pasti, B. Walczak, D. Massart, and P. Reschiglian, Optimization of signal denoising in discrete wavelet transform, Chemometrics and Intelligent Laboratory Systems, vol.48, issue.1, pp.21-34, 1999.
DOI : 10.1016/S0169-7439(99)00002-7

B. N. Singh and A. K. Tiwari, Optimal selection of wavelet basis function applied to ECG signal denoising, Digital Signal Processing, vol.16, issue.3, pp.275-287, 2006.
DOI : 10.1016/j.dsp.2005.12.003

G. Golub and C. Reinsch, Singular value decomposition and least squares solutions, Numerische Mathematik, vol.11, issue.5, pp.403-420
DOI : 10.1007/BF02163027

S. Rohr, Role of gap junctions in the propagation of the cardiac action potential, Cardiovascular Research, vol.62, issue.2, pp.309-322, 2004.
DOI : 10.1016/j.cardiores.2003.11.035

C. Tissier, S. Bes, D. Vandroux, E. Fantini, L. Rochette et al., Specific electromechanical responses of cardiomyocytes to individual and combined components of ischemia, Canadian Journal of Physiology and Pharmacology, vol.80, issue.12, pp.1145-1157, 2002.
DOI : 10.1139/y02-143

T. Schreiber and A. Schmitz, Improved Surrogate Data for Nonlinearity Tests, Physical Review Letters, vol.77, issue.4, pp.635-638, 1996.
DOI : 10.1103/PhysRevLett.77.635

J. Mazaraki, Dynamical methods for analysing and forecasting chaotic data, 1997.

T. Schreiber and A. Schmitz, Discrimination power of measures for nonlinearity in a time series, Physical Review E, vol.55, issue.5, p.5443, 1997.
DOI : 10.1103/PhysRevE.55.5443

Q. Ho-kim, N. Kumar, N. Kumar, and H. Lam, Invitation to Contemporary Physics, World Scientific, 2004.

L. Perko, Differential equations and dynamical systems, 2001.

A. Garfinkel, P. Chen, D. Walter, H. Karagueuzian, B. Kogan et al., Quasiperiodicity and chaos in cardiac fibrillation., Journal of Clinical Investigation, vol.99, issue.2, p.305, 1997.
DOI : 10.1172/JCI119159

D. Ruelle and F. Takens, On the nature of turbulence, Communications in Mathematical Physics, vol.169, issue.3, pp.167-192
DOI : 10.1007/BF01646553

M. B. Kennel, R. Brown, and H. D. , Determining embedding dimension for phase-space reconstruction using a geometrical construction, Physical Review A, vol.45, issue.6, pp.3403-3411, 1992.
DOI : 10.1103/PhysRevA.45.3403

A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E. Rapp, Singular-value decomposition and the Grassberger-Procaccia algorithm, Physical Review A, vol.38, issue.6, pp.3017-3026, 1988.
DOI : 10.1103/PhysRevA.38.3017

D. S. Broomhead and G. P. King, Extracting qualitative dynamics from experimental data, Physica D: Nonlinear Phenomena, vol.20, issue.2-3, pp.217-236, 1985.
DOI : 10.1016/0167-2789(86)90031-X

H. Froehling, J. Crutchfield, D. Farmer, N. Packard, and R. Shaw, On determining the dimension of chaotic flows, Physica D: Nonlinear Phenomena, vol.3, issue.3, pp.605-617, 1981.
DOI : 10.1016/0167-2789(81)90043-9

S. Jacquir, S. Binczak, D. Vandroux, G. Laurent, P. Athias et al., Cardiac arrhythmias induced by an electrical stimulation at a cellular level, 2008 Computers in Cardiology, pp.625-628, 2008.
DOI : 10.1109/CIC.2008.4749119

B. Xu, S. Jacquir, G. Laurent, J. Bilbault, and S. Binczak, A hybrid stimulation strategy for suppression of spiral waves in cardiac tissue, Chaos, Solitons & Fractals, vol.44, issue.8, pp.633-639, 2011.
DOI : 10.1016/j.chaos.2011.05.014

URL : https://hal.archives-ouvertes.fr/hal-00631743

S. Jacquir, S. Binczak, B. Xu, G. Laurent, D. Vandroux et al., INVESTIGATION OF MICRO SPIRAL WAVES AT CELLULAR LEVEL USING A MICROELECTRODE ARRAYS TECHNOLOGY, International Journal of Bifurcation and Chaos, vol.21, issue.01, pp.1-15, 2011.
DOI : 10.1142/S0218127411028374

URL : https://hal.archives-ouvertes.fr/hal-00585901

B. Xu, S. Jacquir, G. Laurent, J. Bilbault, and S. Binczak, Spiral wave induced numerically using electrical stimulation and comparison with experimental results, Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp.2650-2653, 2010.

B. Xu, S. Jacquir, S. Binczak, G. Laurent, D. Vandroux et al., Mea-aided investigation of cardiac arrhythmia induced by elect-rical stimulation, MEA Meeting, pp.113-115, 2010.

N. Navoret, B. Xu, S. Jacquir, and S. Binczak, Comparison of complex fractionated atrial electrograms at cellular scale using numerical and experimental models, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp.3249-3252, 2010.
DOI : 10.1109/IEMBS.2010.5627235

B. Xu, S. Jacquir, S. Binczak, G. Laurent, and J. Bilbault, Suppression of spiral waves by electric stimulation : A simulation study, Computers in Cardiology, pp.469-472, 2009.

S. Jacquir, B. Xu, T. Bakir, J. Bilbault, and S. Binczak, Analysis of cardiac cells field potentials using wavelet transform, Computers in Cardiology, pp.401-404, 2009.

T. Bakir, B. Xu, S. Jacquir, and S. Binczak, Reconstruction from experimental data of a mathematical model of cardiac tissue : A feasibility study, Computers in Cardiology, pp.185-188, 2009.

S. Jacquir, B. Xu, S. Binczak, and J. Bilbault, Spiral waves in a reactiondiffusion medium : The cardiac cells example, International Symposium on Complex Dynamical Systems and Applications, p.29, 2009.